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Chapter 1 Introduction

1.1 Overview

This chapter describes computation models, compatibility with the PowerPC
Architecture, document conventions, a processor overview, instruction formats,
storage addressing, and instruction fetching.

1.2 Compatibility with the PowerPC
Architecture

Book E provides binary compatibility for 32-bit PowerPC application programs.
Binary compatibility is not necessarily provided for privileged PowerPC instruc-
tions.

1.3 32-bit Book E Implementations

While Book E is expressed as a 64-bit architecture, there remains a viable market
for 32-bit processors where applications do not require extended addressing capa-
bilities nor 64-bit integer processing, or their need for such capability does not
outweigh the cost of a 64-bit processor. Appendix A, “Guidelines for 32-bit Book
E”, on page 371 provides a set of guidelines for hardware developers to develop
32-bit implementations of 64-bit Book E. Likewise, a set of guidelines is also out-
lined for software developers. Application software written to these guidelines can
be labelled 32-bit Book E applications and can expect to execute properly on all
implementations of Book E, both 32-bit and 64-bit implementations.

32-bit Book E implementations will execute applications that adhere to the soft-
ware guidelines for 32-bit Book E software outlined in Appendix A and are not
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expected to properly execute 64-bit Book E applications, or any applications not
adhering to these guidelines (i.e. 64-bit Book E applications).

1.4 Instruction Mnemonics and Operands

The description of each instruction includes the mnemonic and a formatted list of
operands. Some examples are the following.

stw       RS,D(RA)
addis     RT,RA,SI

1.5 Document Conventions

1.5.1 Notes

The document employs several different forms of notes. Information contained in
these notes are not considered part of the architecture proper, but do contain
advice and strong recommendations for producing a Book E-compliant system.

Architecture Note
Used to convey the direction of the architecture definition with respect to
a particular function or feature.

Programming Note
Used to convey recommendations and suggestions to software developers
on how a particular function or feature should be used in an application
or operating system.

Engineering Note
Used to convey information on implementation options or how a particu-
lar feature might be supported. While the primary audience is hardware
developers, software developers should benefit as well.

Compiler Note
Used to convey information to compiler developers how best to support or
denigrate a particular feature that is either being added to, is currently a
part of, or is being evicted from Book E.

Compatibility Note
Used to convey information on compatibility with the PowerPC
Architecture.

Note
Used to convey information on generic, miscellaneous issues.
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1.5.2 Notation

The following definitions and notation are used throughout the Book E document.

• All numbers are decimal unless specified in some special way.

– 0bnnnn means a number expressed in binary format.
– 0xnnnn means a number expressed in hexadecimal format.

Underscores may be used between digits for clarity purposes.

• Bits in registers, instructions, and fields are specified as follows.

– Bits are numbered, left to right, most-significant bit to least-significant bit,
starting with bit 0.

– Ranges of bits are specified by two numbers separated by a colon (:). The
range p:q consists of bits p through q.

• Xp means bit p of register/field X.

• Xp:q means bits p through q of register/field X.

• Xp q ... means bits p, q, ... of register/field X.

• ¬X means the one's complement of the contents of register/field X.

• Field i refers to bits 4×i through 4×i+3 of a register.

• A period (.) as the last character of an instruction mnemonic means that the
instruction records status information in certain fields of the Condition Regis-
ter as a side effect of execution, as described in Chapter 3 through Chapter 5.

• The symbol || is used to describe the concatenation of two values. For exam-
ple, 010 || 111 is the same as 010111.

• xn means x raised to the nth power.

• nx means the replication of x, n times (i.e., x concatenated to itself n–1 times).
n0 and n1 are special cases:

– n0 means a field of n bits with each bit equal to 0. Thus 50 is equivalent to
0b00000.

– n1 means a field of n bits with each bit equal to 1. Thus 51 is equivalent to
0b11111.

• /, //, ///, ... denotes a reserved1 field in an instruction or in a register.

• ?, ???, ... denotes an allocated field in an instruction.

• A shaded field denotes a field that is reserved or allocated in an instruction or
in a register.

1. Each bit and field in instructions, and in status and control registers (e.g. Integer Exception Register and Floating-Point
Status and Control Register) and other Special Purpose Registers, is either defined, allocated, or reserved. See Sections
1.5.4, 1.5.5, and 1.5.6.
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1.5.3 Definitions

The following definitions are used for Book E.

aligned storage access
A load or store is aligned if the address of the target storage location is a
multiple of the size of the transfer effected by the instruction.

block
The aligned unit of storage operated on by each Cache Management
instruction. The size of a block can vary by instruction and by
implementation. The maximum block size is one page.

boundedly undefined
If the results of executing a given instruction could have been achieved by
executing an arbitrary sequence of instructions, starting in the state the
machine was in before executing the given instruction. Boundedly undefined
results for a given instruction may vary between implementations, and
between different executions on the same implementation, and are not further
defined in this document.

byte
A 8-bit element of storage.

context of a program
The environment (e.g., privilege and relocation) in which the program
executes. That context is controlled by the contents of certain system
registers, such as the Machine State Register, and of the address translation
tables.

data storage
The view of storage as seen by a Storage Access or Cache Management
instruction.

doubleword
A 64-bit element of storage.

exception
An error, unusual condition, or external signal that may set a status bit and
may or may not cause an interrupt, depending upon whether the
corresponding interrupt is enabled.

halfword
A 16-bit element of storage.

hardware
Any combination of hard-wired implementation, emulation assist, or interrupt
for software assistance. In the last case, the interrupt may be to an
architected location or to an implementation-dependent location. Any use of
emulation assists or interrupts to implement the architecture is described in
User’s Manual.

 instruction completion
The point in time when the instruction causes no further effect on processor
state, when all results have been recorded in architected state.

instruction fetching
In general, instructions appear to execute sequentially, in the order in which
they appear in storage. The exceptions to this rule are listed below.
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– Branch instructions for which the branch is taken cause execution to
continue at the target address specified by the Branch instruction.

– Trap instructions for which the trap conditions are satisfied cause a Trap
exception type Program interrupt to be taken.

– System Call instructions cause a System Call interrupt to be taken.

– Exceptions can cause interrupts to be taken, as described in Chapter 7 on
page 143.

– Returning from an interrupt handler causes execution to continue at a
specified address.

The model of program execution in which each instruction appears to
complete before the next instruction starts is called the ‘sequential execution
model’. In general, from the view of the processor executing the instructions,
the sequential execution model is obeyed. From the perspective of user mode,
for the instructions and facilities defined in Book E, the only exceptions to
this rule are the following.

– A floating-point exception occurs when the processor is running in one of
the Imprecise floating-point exception modes (see Section 5.4 on page 81).
The instruction that causes the exception does not complete before the
next instruction starts, with respect to setting exception bits and (if the
exception is enabled) invoking an Enabled exception type Program
interrupt.

– A Store instruction modifies a storage location that contains an
instruction. Software synchronization is required to ensure that
subsequent instruction fetches from that location obtain the modified
version of the instruction: see Section 6.3.2 on page 139.

instruction storage
The view of storage as seen by the mechanism that fetches instructions.

interrupt
The act of changing the machine state in response to an exception, as
described in Section 7 on page 143.

interrupt handler
A component of the system software that receives control when an interrupt
occurs. The interrupt handler includes a component for each of the various
kinds of interrupts. These interrupt-specific components are referred to as the
Alignment interrupt handler, the Data Storage interrupt handler, etc.

latency
Refers to the interval from the time an instruction begins execution until it
produces a result that is available for use by a subsequent instruction.

main storage
The level of the storage hierarchy in which all storage state is visible to all
processors and mechanisms in the system.

Programming Note
If a program modifies the instructions it intends to execute, it should execute the
sequence of instructions listed in Section 6.3.2 on page 139 before attempting to
execute the modified instructions, to ensure that the modifications have taken
effect with respect to instruction fetching.
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multiprocessor
A system that contains two or more Book E processors.

negative
Means less than zero.

page
A "power of 2"-aligned unit of storage for which protection and control
attributes are independently specifiable and for which reference and change
status are independently recorded.

performed
A load or instruction fetch by a processor or mechanism (P1) is performed
with respect to any processor or mechanism (P2) when the value to be
returned by the load or instruction fetch can no longer be changed by a store
by P2. A store by P1 is performed with respect to P2 when a load by P2 from
the location accessed by the store will return the value stored (or a value
stored subsequently). An instruction cache block invalidation by P1 is
performed with respect to P2 when an instruction fetch by P2 will not be
satisfied from the copy of the block that existed in its instruction cache when
the instruction causing the invalidation was executed, and similarly for a data
cache block invalidation. The preceding definitions apply regardless of
whether P1 and P2 are the same entity.

positive
Means greater than zero.

processor
A hardware component that executes Book E instructions specified in a
program.

program
A sequence of related instructions.

program order
The execution of instructions in the order required by the sequential
execution model (see below).

quadword
A 128-bit element of storage.

real page
A unit of real storage to which a virtual page is or could be mapped.

sequential execution model
The model of program execution described in ‘instruction fetching’ on page 4.

Additional exceptions to the rule that the processor obeys the sequential
execution model, beyond those described in ‘instruction fetching’, are the
following.

– A System Reset or Machine Check interrupt may occur. The determination
of whether an instruction is required by the sequential execution model is
not affected by the potential occurrence of a System Reset or Machine
Check interrupt. (The determination is affected by the potential occurrence
of any other kind of interrupt.)

– A context-altering instruction is executed (see Chapter 11 on page 225).
The context alteration need not take effect until the required subsequent
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synchronizing operation has occurred.

shared storage multiprocessor
A multiprocessor that contains some common storage, which all of the Book E
processors in the system can access.

storage access
An access to a storage location caused by executing a Storage Access or Cache
Management instruction (‘data access’) or by fetching an instruction, or an
implicit access that occurs as a side effect of such an access (e.g., to translate
the effective address).

storage location
One or more sequential bytes of storage beginning at the address specified by
a Storage Access or Cache Management instruction or by the instruction
fetching mechanism. The number of bytes comprising the location is based on
the type of instruction being executed, or is four for instruction fetching.

system
A combination of processors, storage, and associated mechanisms that is
capable of executing programs. Sometimes the reference to system includes
services provided by the operating system.

system library program
A component of the system software that can be called by an application
program using a Branch instruction.

system service program
A component of the system software that can be called by an application
program using a System Call instruction.

system trap handler
A component of the system software that receives control when the conditions
specified in a Trap instruction are satisfied.

trap interrupt
An interrupt that results from execution of a Trap instruction

unavailable
Refers to a resource that cannot be used by the program. Storage is
unavailable if access to it is denied. Floating-point instructions are
unavailable if use of them is denied. See Section 7.6.8 on page 165.

Engineering Note
Although External and imprecise interrupts must be considered in determining
whether an instruction is required by the sequential execution model, the fact that
these interrupts are not required to be recognized at any specific point in the
instruction stream allows an implementation to halt instruction dispatching and
delay recognition of the interrupt until the processor comes into a state consistent
with the sequential execution model. Such an implementation need not consider
these interrupts in determining whether an instruction is required by the sequential
execution model.

Instruction-caused precise interrupts must also be considered in determining
whether an instruction is required by the sequential execution model. However, for
these it is always possible to predict whether they might be caused by any given
instruction and thus to determine whether subsequent instructions are sure to be
required by the sequential execution model.
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uniprocessor
A system that contains one Book E processor.

word
A 32-bit element of storage.

1.5.4 Reserved Fields

All reserved fields in instructions should be zero. If they are not, the instruction
form is invalid: see Section 1.9.2, "Invalid Instruction Forms", on page 28.

The handling of reserved bits in System Registers (e.g. Integer Exception Register,
Floating-Point Status and Control Register) is implementation-dependent. Soft-
ware is permitted to write any value to such a bit with no visible effect on proces-
sors that implement this version of Book E. A subsequent reading of the bit
returns a 0 if the last value written to the bit was 0 and returns an undefined
value (0 or 1) otherwise.

Certain System Registers are defined as 32-bit registers, with their bits numbered
32:63. These 32-bit registers, with the exception of the Floating-Point Status and
Control Register and its unique behavior on Move From FPSCR instructions (see
Section 5.6.7 on page 104), can be treated as 64-bit registers with the upper 32
bits being reserved. However, Book E guarantees that the upper 32 bits of these
registers will remain reserved.

Engineering Note
Reserved bits in System Registers need not be implemented.

Programming Note
It is the responsibility of software to preserve bits that are now reserved in System Regis-
ters, as they may be assigned a meaning in some future version of the architecture.

In order to accomplish this preservation in implementation-independent fashion, soft-
ware should do either or both of the following.

1. Initialize each such register supplying zeros for all reserved bits.

2. Alter (defined) bit(s) in the register by reading the register, altering only the desired
bit(s), and then writing the new value back to the register.

The Integer Exception Register and Floating-Point Status and Control Register are par-
tial exceptions to this recommendation. Software can alter the status bits in these
registers, preserving the reserved bits, by executing instructions that have the side effect
of altering the status bits. Similarly, software can alter any defined bit in the Floating-
Point Status and Control Register by executing a Floating-Point Status and Control Regis-
ter instruction. Using such instructions is likely to yield better performance than using
the method described in the second item above.

When a currently reserved bit is subsequently assigned a meaning, every effort will be
made to have the value to which the system initializes the bit correspond to the ‘old
behavior’.
8 Book E: Enhanced PowerPC Architecture Version 1.0 07 May 02



1.5.5 Preserved Fields

Preserved bits in System Registers are bits that were defined in the PowerPC
Architecture, are not defined in Book E, but are preserved to allow implementa-
tions of Book E to support the legacy definition for software compatibility.

The handling of preserved bits in System Registers is implementation-dependent.
While software is permitted to write any value to such a bit, the effect of writing a
1 to a preserved bit is implementation-dependent. Writing a 1 to a preserved bit
either has no effect or causes an effect that adheres to the PowerPC Architecture
definition of the bit. A subsequent reading of the bit returns an implementation-
dependent value.

1.5.6 Allocated Fields

Allocated bits in System Registers are bits provided for implementation-dependent
use. The effect of setting an allocated bit to a value other than 0 is implementa-
tion-dependent. Allocated bits return an implementation-dependent value when
read.

Engineering Note
Preserved bits in System Registers need not be implemented.

Programming Note
Software has the responsibility of maintaining the contents of preserved bits in System
Registers. Preserved bits may be assigned a meaning in some future version of Book E.

In order to maintain the contents of preserved bits in an implementation-independent
fashion, software should do either or both of the following.

1. Initialize each such register supplying zeros for all preserved bits.

2. Alter (defined) bit(s) in the register by reading the register, altering only the desired
bit(s), and then writing the new value back to the register.

Engineering Note
Allocated bits in System Registers need not be implemented.

Architecture Note
Allocated bits are provided to support implementation-dependent extensions to the
Book E.

Programming Note
It is the responsibility of software to preserve bits that are now allocated in System Reg-
isters, as they may be assigned a meaning in some future version of the architecture.

In order to accomplish this preservation in implementation-independent fashion, soft-
ware should do either or both of the following.

1. Initialize each such register supplying zeros for all allocated bits.

2. Alter (defined) bit(s) in the register by reading the register, altering only the desired
bit(s), and then writing the new value back to the register.
07 May 02 Chapter 1 Introduction 9



1.5.7 Description of Instruction Operation

A formal description is given of the operation of each instruction. In addition, the
operation of most instructions is described by a series of statements using a semi-
formal language at the register transfer level (RTL). This RTL uses the notation
given below, in addition to the definitions and notation described in Section 1.5.1
and Section 1.5.3. Some of this notation is also used in the formal descriptions of
instructions. RTL notation not summarized here should be self-explanatory.

The RTL descriptions cover the normal execution of the instruction, except that
"implicit" setting of the Condition Register, Integer Exception Register, and Float-
ing-Point Status and Control Register, such as to reflect the final status of the
execution of the instruction, is not always shown. (Explicit setting of these regis-
ters, such as the setting of Condition Register Field 0 by the stwcx. instruction, is
shown.) The RTL descriptions do not cover all of the cases in which the interrupt
may be invoked, or for which the results are boundedly undefined, and may not
cover all invalid forms.

The RTL descriptions specify the architectural transformation performed by the
execution of an instruction. They do not imply any particular implementation.

Notation Meaning

← Assignment

←f Assignment in which the data may be reformatted in the target location

¬ NOT logical operator (one’s complement)

+ Two's complement addition

– Two's complement subtraction, unary minus

× Multiplication

÷ Division (yielding quotient)

+dp Floating-point addition, result rounded to double-precision

–dp Floating-point subtraction, result rounded to double-precision

×dp Floating-point multiplication, product rounded to double-precision

÷dp Floating-point division, quotient rounded to double-precision

+sp Floating-point addition, result rounded to single-precision

–sp Floating-point subtraction, result rounded to single-precision

×sp Floating-point multiplication, product rounded to single-precision

÷sp Floating-point division, quotient rounded to single-precision

×fp Floating-point multiplication to ‘infinite’ precision (no rounding)

FPSquareRoot-
Double(x)

Floating-point , result rounded to double-precision

FPSquareRoot-
Single(x)

Floating-point , result rounded to single-precision

FPReciprocal-
Estimate(x)

Floating-point estimate of

FPReciprocal-
SquareRoot-
Estimate(x)

Floating-point estimate of

Allocate-
DataCache-
Block(x)

If the block containing the byte addressed by x does not exist in the data
cache, allocate a block in the data cache and set the contents of the block
to 0.

Flush-
DataCache-
Block(x)

If the block containing the byte addressed by x exists in the data cache
and is dirty, the block is written to main storage and is removed from the
data cache.

Invalidate-
DataCache-
Block(x)

If the block containing the byte addressed by x exists in the data cache,
the block is removed from the data cache.

x

x

1
X
----

1

x
-------
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Store-
DataCache-
Block(x)

If the block containing the byte addressed by x exists the data cache and
is dirty, the block is written to main storage but may remain in the data
cache.

Prefetch-
DataCache-
Block(x,y)

If the block containing the byte addressed by x does not exist in the por-
tion of the data cache specified by y, the block in storage is copied into
the data cache.

Prefetch-
ForStore-
DataCache-
Block(x,y)

If the block containing the byte addressed by x does not exist in the por-
tion of the data cache specified by y, the block in storage is copied into
the data cache and made exclusive to the processor executing the in-
struction.

ZeroDataCache-
Block(x)

The contents of the block containing the byte addressed by x in the data
cache is set to 0.

Invalidate-
Instruction-
CacheBlock(x)

If the block containing the byte addressed by x is in the instruction
cache, the block is removed from the instruction cache.

Prefetch-
Instruction-
CacheBlock(x,y)

If the block containing the byte addressed by x does not exist in the por-
tion of the instruction cache specified by y, the block in storage is copied
into the instruction cache.

=, ≠ Equals, Not Equals relations

<, ≤, >, ≥ Signed comparison relations

<u, >u Unsigned comparison relations

? Unordered comparison relation

&, | AND, OR logical operators

⊕, ≡ Exclusive OR, Equivalence logical operators ((a≡b) = (a⊕¬b))

CEIL(x) Least integer ≥ x

DCREG(x) Device Control Register x

DOUBLE(x) Result of converting x from floating-point single format to floating-point
double format, using the model shown on page 98.

EXTS(x) Result of extending x on the left with sign bits

FPR(x) Floating-Point Register x

GPR(x) General Purpose Register x

MASK(x, y) Mask having 1s in bit positions x through y (wrapping if x>y) and 0s else-
where

MEM(x,1) Contents of the byte of storage located at address x.

MEM(x,y)
(for y={2,4,8})

Contents of y bytes of storage starting at address x.

If big-endian storage (see Section 6.2.5.5 on page 136), the byte at ad-
dress x is the most-significant byte and the byte at address x+y-1 is the
least-significant byte of the value being accessed.

If little-endian storage (see Section 6.2.5.5 on page 136), the byte at ad-
dress x is the least-significant byte and the byte at address x+y–1 is the
most-significant byte of the value being accessed.

MOD(x,y) Modulo y of x (remainder of x divided by y).

ROTL64(x, y) Result of rotating the 64-bit value x left y positions

ROTL32(x, y) Result of rotating the 64-bit value x||x left y positions, where x is 32 bits
long

SINGLE(x) Result of converting x from floating-point double format to floating-point
single format, using the model shown on page 100.

SPREG(x) Special Purpose Register x

TRAP Invoke a Trap type Program interrupt

undefined An undefined value. The value may vary between implementations, and
between different executions on the same implementation.

CIA Current Instruction Address, which is the 64-bit address of the instruc-
tion being described by a sequence of RTL. Used by relative branches to
set the Next Instruction Address (NIA), and by Branch instructions with
LK=1 to set the Link Register. CIA does not correspond to any architected
register.

Notation Meaning
07 May 02 Chapter 1 Introduction 11



The precedence rules for RTL operators are summarized in Table 1-1. Operators
higher in the table are applied before those lower in the table. Operators at the
same level in the table associate from left to right, from right to left, or not at all,
as shown. (For example, – associates from left to right, so a–b–c = (a–b)–c.) Paren-
theses are used to override the evaluation order implied by the table or to increase
clarity: parenthesized expressions are evaluated before serving as operands.

Table 1-1. Operator precedence

NIA Next Instruction Address, which is the 64-bit address of the next instruc-
tion to be executed. For a successful branch, the next instruction ad-
dress is the branch target address: in RTL, this is indicated by assigning
a value to NIA. For other instructions that cause non-sequential instruc-
tion fetching (see Section 2.2.1 on page 43), the RTL is similar. For in-
structions that do not branch, and do not otherwise cause instruction
fetching to be non-sequential, the next instruction address is CIA+4. NIA
does not correspond to any architected register.

if ... then ...
else ...

Conditional execution, indenting shows range; else is optional

do Do loop, indenting shows range. ‘To’ and/or ‘by’ clauses specify incre-
menting an iteration variable, and a ‘while’ clause gives termination con-
ditions.

leave Leave innermost do loop, or do loop described in leave statement

Operators Associativity

subscript, function evaluation left to right

pre-superscript (replication),
post-superscript (exponentiation)

right to left

unary –, ¬ right to left

×, ÷ left to right

+, – left to right

|| left to right

=, ≠, <, ≤, >, ≥, <u, >u, ? left to right

&, ⊕, ≡ left to right

| left to right

: (range) none

← none

Notation Meaning
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1.6 Book E Overview

The architecture defines the instruction set, the storage model, interrupt action,
and other facilities. Instructions that the processor can execute fall into several
classes:

Integer instructions operate on byte, halfword, word, and, in 64-bit implementa-
tions, doubleword operands. Floating-point instructions operate on single-preci-
sion and double-precision floating-point operands. Book E uses instructions that
are four bytes long and word-aligned. It provides for byte, halfword, word, and, in
64-bit implementations, doubleword operand loads and stores between storage
and a set of 32 General Purpose Registers (GPRs). It also provides for word and
doubleword operand loads and stores between storage and a set of 32 Floating-
Point Registers (FPRs).

Signed integers are represented in two's complement form.

There are no computational instructions that reference storage, except Load Half
Algebraic, Load Floating-Point Single, Load Floating-Point Double, and Store Float-
ing-Point Single. Normally, to use a storage operand in a computation and then
modify the same or another storage location, the contents of storage must be
loaded into a register, modified, and then stored back to the target location.
Figure 1-3 shows the user-mode registers of Book E. Figure 1-4 shows the signifi-
cant supervisor-mode registers of Book E. Figure 1-6 shows the interrupt-specific
registers of Book E. Figure 1-7 shows the storage control-specific register of
Book E. Figure 1-8 shows the timer-specific registers of Book E. Figure 1-9 shows
the debug-specific registers of Book E. Note that bits for 32-bit registers are num-
bered 32:63 rather than 0:31 to indicate their true bit alignment with respect to
64-bit registers. 32-bit registers can be correctly interpreted as 64-bit registers
with bits 0:31 permanently reserved.

Instruction Class Section Page

system linkage instructions 2.2.1 43

processor control register manipulation instructions 2.2.2 43

branch instructions 3.3 49

CR instructions 3.4 52

integer instructions 4.3 55

floating-point instructions (including FPSCR manipulation) 5.6 98

storage (i.e. synchronization, cache and TLB) control instructions 6.3 139

implementation-dependent instructions
See User’s

Manual
—i
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Figure 1-1. Book E user-mode base register set

Figure 1-2. Book E user-mode timer facilities register set1

CR Condition Register (page 45)

Link Register (page 48)LR

Count Register (page 48)CTR

GPR 0

GPR 1

. . .

. . . General Purpose Registers (page 53)

GPR 30

GPR 31

Integer Exception Register (page 53)XER

0 32 63

FPR 0

FPR 1

. . .

. . . Floating-Point Registers (page 69)

FPR 30

FPR 31

0 63

Floating-Point Status and Control Register (page 69)FPSCR

32 63

Time Base Upper (page 189)TBU

Time Base Lower (page 189)TBL

32 63

1. TBH, and TBL are user-mode read-access only.
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Figure 1-3. Book E user-mode software-use register set1

Figure 1-4. Book E supervisor-mode base register set

Figure 1-5. Book E supervisor-mode software-use register set

User Software-use SPR 0 (page 42)USPRG0

0 32 63

Software-use SPRs (page 42)

SPRG3

SPRG4

SPRG5

SPRG6

SPRG7

0 32 63

1. SPRG3 user-mode accessibility is implementation-dependent. SPRG4, SPRG5, SPRG6, and SPRG7 are user-mode read-
access only.

Machine State Register (page 39)MSR

PVR Processor Version Register (page 41)

PIR Processor Identification Register (page 41)
32 63

Software-use SPRs (page 42)

SPRG0

SPRG1

SPRG2

SPRG3

SPRG4

SPRG5

SPRG6

SPRG7

0 32 63
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Figure 1-6. Book E supervisor-mode interrupt register set

Figure 1-7. Book E supervisor-mode storage control register set

Figure 1-8. Book E supervisor-mode timer facilities register set

Save/Restore Register 0 (page 144)SRR0

0 32 63

Save/Restore Register 1 (page 144)SRR1

32 63

Critical Save/Restore Register 0 (page 144)CSRR0

0 32 63

Critical Save/Restore Register 1 (page 145)CSRR1

32 63

Data Exception Address Register (page 145)DEAR

0 32 63

Exception Syndrome Register (page 146)ESR

32 63

Interrupt Vector Prefix Register (page 145)IVPR

0 32 63

IVOR0

IVOR1

Interrupt Vector Offset Registers (page 147):
:

IVOR14

IVOR15

32 63

Process Identification Register (page 121)PID

32 63

Timer Control Register (page 186)TCR

Timer Status Register (page 188)TSR

Time Base Upper (page 189)TBU

Time Base Lower (page 189)TBL

Decrementer (page 194)DEC

Decrementer Auto-Reload (page 194)DECAR

32 63
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Figure 1-9. Book E debug facilities register set

Debug Control Register 0 (page 210)DBCR0

Debug Control Register 1 (page 212)DBCR1

Debug Control Register 2 (page 215)DBCR2

Debug Status Register (page 217)DBSR

32 63

Instruction Address Compare 1 (page 218)IAC1

Instruction Address Compare 2 (page 218)IAC2

Instruction Address Compare 3 (page 218)IAC3

Instruction Address Compare 4 (page 218)IAC4

Data Address Compare 1 (page 218)DAC1

Data Address Compare 2 (page 218)DAC2

Data Value Compare 1 (page 219)DVC1

Data Value Compare 2 (page 219)DVC2

0 32 63
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1.7 Instruction Formats

All instructions to be executed are four bytes long and word-aligned in storage.
Thus, whenever instruction addresses are presented to the processor (as in
Branch and Branch Extended instructions) the two low-order bits are treated as
0s. Similarly, whenever the processor develops an instruction address its two low-
order bits are zero.

Bits 0:5 always specify the primary opcode (OPCD, below). Many instructions also
have an extended opcode (XO, below). The remaining bits of the instruction con-
tain one or more fields as shown below for the different instruction formats.

The format diagrams given below show horizontally all valid combinations of
instruction fields.

In some cases an instruction field is reserved, or must contain a particular value.
If a reserved field does not have all bits set to 0, or if a field that must contain a
particular value does not contain that value, the instruction form is invalid and
the results are as described in Section 1.9.2, "Invalid Instruction Forms", on page
28.

Split Field Notation

In some cases an instruction field occupies more than one contiguous sequence of
bits, or occupies one contiguous sequence of bits that are used in permuted order.
Such a field is called a split field. In the format diagrams given below and in the
individual instruction layouts, the name of a split field is shown in lower-case let-
ters, once for each of the contiguous sequences, each with their respective bit
numbering. In the RTL description of an instruction having a split field, and in
certain other places where individual bits of a split field are identified, the name of
the field in upper-case letters represents the bit-ordered concatenation of the
sequences.

Figure 1-10. A instruction format

Figure 1-11. B instruction format

OPCD FRT /// FRB /// XO Rc

OPCD FRT FRA /// FRC XO Rc

OPCD FRT FRA FRB /// XO Rc

OPCD FRT FRA FRB FRC XO Rc

0 6 11 16 21 26 31

OPCD BO BI BD AALK

0 6 11 16 30 31
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Figure 1-12. D instruction format

Figure 1-13. DE instruction format

Figure 1-14. I instruction format

Figure 1-15. M instruction format

Figure 1-16. MD instruction format

Figure 1-17. MDS instruction format

OPCD BF / L RA SI

OPCD BF / L RA UI

OPCD FRS RA D

OPCD FRT RA D

OPCD RS RA D

OPCD RS RA UI

OPCD RT RA D

OPCD RT RA SI

OPCD TO RA SI

0 6 9 10 11 16 31

OPCD FRS RA DES XO

OPCD FRT RA DES XO

OPCD RS RA DE XO

OPCD RS RA DES XO

OPCD RT RA DE XO

OPCD RT RA DES XO

0 6 11 16 28 31

OPCD LI AALK

0 6 30 31

OPCD RS RA RB MB ME Rc

OPCD RS RA SH MB ME Rc

0 6 11 16 21 26 31

OPCD RS RA sh1:5 mb1:5 mb0 XO sh0 /

OPCD RS RA sh1:5 me1:5 me0 XO sh0 /

0 6 11 16 21 26 27 30 31

OPCD RS RA RB mb1:5 mb0 XO /

OPCD RS RA RB me1:5 me0 XO /

0 6 11 16 21 26 27 31
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Figure 1-18. X instruction format

OPCD /// XO /

OPCD ??? XO /

OPCD /// E /// XO /

OPCD /// RA RB XO /

OPCD ??? RA RB XO ?

OPCD BF /// XO /

OPCD BF /// U / XO Rc

OPCD BF // BFA /// XO /

OPCD BF // FRA FRB XO /

OPCD BF / L RA RB XO /

OPCD BT /// XO Rc

OPCD CT RA RB XO /

OPCD FRS RA RB XO /

OPCD FRT /// XO Rc

OPCD FRT /// FRB XO /

OPCD FRT /// FRB XO Rc

OPCD FRT RA RB XO /

OPCD MO /// XO /

OPCD RS RA /// XO Rc

OPCD RS RA /// XO /

OPCD RS RA RB XO /

OPCD RS RA RB XO Rc

OPCD RS RA RB XO 1

OPCD RS RA NB XO /

OPCD RS RA SH XO Rc

OPCD RT /// XO /

OPCD RT RA /// XO /

OPCD RT RA /// XO Rc

OPCD RT RA RB XO /

OPCD RT RA RB XO Rc

OPCD RT RA NB XO /

OPCD TO RA RB XO /

0 6 9 10 11 14 15 16 18 20 21 31
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Figure 1-19. SC instruction format

Figure 1-20. XFL instruction format

Figure 1-21. XFX instruction format

Figure 1-22. XL instruction format

Figure 1-23. XS instruction format

OPCD /// 1 /

0 6 30 31

OPCD / FLM / FRB XO Rc

0 6 7 15 16 21 31

OPCD RS / FXM / XO /

OPCD RS dcrn5:9 dcrn0:4 XO /

OPCD RS sprn5:9 sprn0:4 XO /

OPCD RT dcrn5:9 dcrn0:4 XO /

OPCD RT sprn5:9 sprn0:4 XO /

0 6 11 12 16 20 21 31

OPCD /// XO /

OPCD BF // BFA /// XO /

OPCD BO BI /// XO LK

OPCD BT BA BB XO /

0 6 9 11 14 16 21 31

OPCD RS RA sh1:5 XO sh0 /

0 6 11 16 21 30 31
07 May 02 Chapter 1 Introduction 21



1.7.1 Instruction Fields

AA (30)
Absolute Address bit.

0 The immediate field represents an address relative to the current
instruction address.

– For I-form Branch instructions the effective address of the branch
target is the sum 320 || (CIA+EXTS(LI||0b00))32:63.

– For B-form Branch instructions the effective address of the branch
target is the sum 320 || (CIA+EXTS(BD||0b00))32:63.

– For I-form Branch Extended instructions the effective address of the
branch target is the sum CIA+EXTS(LI||0b00).

– For B-form Branch Extended instructions the effective address of the
branch target is the sum CIA+EXTS(BD||0b00).

1 The immediate field represents an absolute address.

– For I-form Branch instructions the effective address of the branch
target is the value 320 || EXTS(LI||0b00)32:63.

– For B-form Branch instructions the effective address of the branch
target is the value 320 || EXTS(BD||0b00)32:63.

– For I-form Branch Extended instructions the effective address of the
branch target is the value EXTS(LI||0b00).

– For B-form Branch Extended instructions the effective address of the
branch target is the value EXTS(BD||0b00).

BA (11:15)
Field used to specify a bit in the Condition Register to be used as a source.

BB (16:20)
Field used to specify a bit in the Condition Register to be used as a source.

BD (16:29)
Immediate field specifying a 14-bit signed two's complement branch
displacement which is concatenated on the right with 0b00 and sign-extended
to 64 bits.

BF (6:8)
Field used to specify one of the Condition Register fields or one of the
Floating-Point Status and Control Register fields to be used as a target.

BFA (11:13)
Field used to specify one of the Condition Register fields or one of the
Floating-Point Status and Control Register fields to be used as a source.

BI (11:15)
Field used to specify a bit in the Condition Register to be used as the
condition of a Branch Conditional instruction.
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BO (6:10)
Field used to specify options for the Branch Conditional instructions. The
encoding is described in Section 3.3 on page 49.

BT (6:10)
Field used to specify a bit in the Condition Register or in the Floating-Point
Status and Control Register to be used as a target.

CT (6:10)
Field used by the Cache Touch instructions (dcbt[e], dcbtst[e], and icbt[e]) to
specify the target portion of the cache facility to place the prefetched data or
instructions and is implementation-dependent.

D (16:31)
Immediate field used to specify a 16-bit signed two's complement integer
which is sign-extended to 64 bits.

dcrn(16:20||11:15)
Field used to specify a Device Control Register for the mtdcr and mfdcr
instructions.

DE (16:27)
Immediate field used to specify a 12-bit signed two's complement integer
which is sign-extended to 64 bits.

DES (16:27)
Immediate field used to specify a 12-bit signed two's complement integer
which is concatenated on the right with 0b00 and sign-extended to 64 bits.

E (15)
Immediate field used to specify a 1-bit value used by wrteei to place in the EE
(External Input Enable) bit of the Machine State Register.

FLM (7:14)
Field mask used to identify the Floating-Point Status and Control Register
fields that are to be updated by the mtfsf instruction.

FRA (11:15)
Field used to specify a Floating-Point Register to be used as a source.

FRB (16:20)
Field used to specify a Floating-Point Register to be used as a source.

FRC (21:25)
Field used to specify a Floating-Point Register to be used as a source.

FRS (6:10)
Field used to specify a Floating-Point Register to be used as a source.

FRT (6:10)
Field used to specify a Floating-Point Register to be used as a target.

FXM (12:19)
Field mask used to identify the Condition Register fields that are to be
updated by the mtcrf instruction.

L (10)
Field used to specify whether a integer Compare instruction is to compare 64-
bit numbers or 32-bit numbers.
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LI (6:29)
Immediate field specifying a 24-bit signed two's complement integer which is
concatenated on the right with 0b00 and sign-extended to 64 bits.

LK (31)
LINK bit.

0 Do not set the Link Register.
1 Set the Link Register. The sum of the value 4 and the address of the

Branch instruction is placed into the Link Register.

MB (21:25) and ME (26:30)
Fields used in M-form Rotate instructions to specify a 64-bit mask consisting
of 1-bits from bit MB+32 through bit ME+32 inclusive and 0-bits elsewhere,
as described in Section 4.3.7 on page 63.

mb (26 || 21:25)
Field used in MD-form and MDS-form Rotate instructions to specify the first
1-bit of a 64-bit mask, as described in Section 4.3.7 on page 63.

me (26 || 21:25)
Field used in MD-form and MDS-form Rotate instructions to specify the last
1-bit of a 64-bit mask, as described in Section 4.3.7 on page 63.

MO (6:10)
Field used to specify the subset of storage accesses that are ordered by the
Memory Barrier instruction.

NB (16:20)
Field used to specify the number of bytes to move in an immediate Move
Assist instruction.

OPCD (0:5)
Primary opcode field.

RA (11:15)
Field used to specify a General Purpose Register to be used as a source or as
a target.

RB (16:20)
Field used to specify a General Purpose Register to be used as a source.

Rc (31)
RECORD bit.

0 Do not alter the Condition Register.
1 Set Condition Register Field 0 or Field 1 as described in Section 3.2.1 on

page 45.

RS (6:10)
Field used to specify a General Purpose Register to be used as a source.

RT (6:10)
Field used to specify a General Purpose Register to be used as a target.

SH (16:20)
Field used to specify a shift amount in Rotate Word Immediate and Shift Word
Immediate instructions.
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sh (30 || 16:20)
Field used to specify a shift amount in Rotate Doubleword Immediate and Shift
Doubleword Immediate instructions.

SI (16:31)
Immediate field used to specify a 16-bit signed integer.

sprn (16:20||11:15)
Field used to specify a Special Purpose Register for the mtspr and mfspr
instructions.

TO (6:10)
Field used to specify the conditions on which to trap. The encoding is
described in Section 4.3.6 on page 62.

U (16:19)
Immediate field used as the data to be placed into a field in the Floating-Point
Status and Control Register.

UI (16:31)
Immediate field used to specify a 16-bit unsigned integer.

WS (18:20)
Field used to specify a word in the Translation Lookaside Buffer entry being
accessed.

XO (21:29, 21:30, 22:30, 26:30, 27:29, 27:30, 28:31)
Extended opcode field.

1.8 Classes of Instructions

An instruction falls into exactly one of the following four classes, which is deter-
mined by examining the primary opcode, and the extended opcode, if any.

1. Defined instructions (see Appendix H on page 419)
2. Allocated instructions (Section F.2 on page 404)
3. Preserved instructions (Section F.1 on page 403)
4. Reserved (-illegal or -nop) instructions (Section F.3 on page 404)

1.8.1 Defined Instruction Class

This class of instructions consists of all the instructions defined in Book E. In
general, defined instructions are guaranteed to be supported within a Book E sys-
tem as specified by the architecture, either within the processor implementation
itself or within emulation software supported by the system operating software.

One exception to this is that, for implementations which only provide the 32-bit
subset of Book E, it is not expected (and likely not even possible) that emulation of
the 64-bit behavior of the defined instructions will be provided by the system. See
Appendix A, “Guidelines for 32-bit Book E”, on page 371.

Any attempt to execute a defined instruction will:
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• cause an Illegal Instruction exception type Program interrupt, if the instruc-
tion is not recognized by the implementation; or

• cause an Unimplemented Instruction exception type Program interrupt, if the
instruction is recognized but not supported by the implementation, and isn’t a
floating-point instruction; or

• cause an Unimplemented Instruction exception type Program interrupt, if the
instruction is recognized but not supported by the implementation, and is a
floating-point instruction and floating-point processing is enabled; or

• cause a Floating-Point Unavailable interrupt if the instruction is recognized
but is not supported by the implementation, is a floating-point instruction,
and floating-point processing is disabled; or

• perform the actions described in the rest of this document, if the instruction
is recognized and supported by the implementation. The architected behavior
may cause other exceptions.

A defined instruction may be retained by future versions of Book E as a defined
instruction, or may be re-classified as a preserved instruction (process of removal
from the architecture) and eventually classified as reserved-illegal.

1.8.2 Allocated Instruction Class

This class of instructions contains the set of instructions (a set of primary
opcodes, as well as a set of extended opcodes for certain primary opcodes) listed in
Section F.2 on page 404.

Allocated instructions are allocated to purposes that are outside the scope of
Book E for implementation-dependent and application-specific use.

Any attempt to execute an allocated instruction will:

• cause an Illegal Instruction exception type Program interrupt, if the instruc-
tion is not recognized by the implementation; or

• cause an Unimplemented Instruction exception type Program interrupt, if the
instruction is recognized and enabled for execution, but direct execution of
the instruction is not supported by the implementation; or

• cause a Floating-Point Unavailable interrupt if the instruction is recognized
but is not supported by the implementation, is a floating-point instruction,
and floating-point processing is disabled; or

• perform the actions described in the User’s Manual for the implementation.
The implementation-dependent behavior may cause other exceptions.
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An allocated instruction is guaranteed by Book E to remain allocated.

1.8.3 Preserved Instruction Class

Preserved instructions are provided to support backward compatibility with the
PowerPC Architecture.

Any attempt to execute a preserved instruction will:

• perform the actions described in the previous version of this architecture, if
the instruction is recognized and supported by the implementation; or

• cause an Illegal Instruction exception type Program interrupt, if the instruc-
tion is not recognized by the implementation.

A preserved instruction may be retained by future versions of Book E as a pre-
served instruction, may be subsequently re-classified as an allocated instruction,
or may even be adopted into Book E. A preserved instruction (in the process of
removal from the architecture) may also eventually be classified as reserved-ille-
gal.

1.8.4 Reserved Instruction Class

This class of instructions consists of all instruction primary opcodes (and associ-
ated extended opcodes, if applicable) which do not belong to either the defined,
allocated, or preserved instruction classes.

Reserved instructions are available for future extensions of Book E. That is, some
future version of Book E may define any of these instructions to perform new
functions or make them available for implementation-dependent use as allocated
instructions. There are two types of reserved instructions, reserved-illegal and
reserved-nop.

Attempt to execute a reserved-illegal instruction will cause an Illegal Instruction
exception type Program interrupt (see Section 7.6.7 on page 163) on implementa-
tions conforming to the current version of Book E. Reserved-illegal instructions
are, therefore, available for future extensions to Book E which would affect archi-
tected state. Such extensions might include new forms of integer or floating-point
arithmetic or new forms of load or store instructions which write their result in an
architected register.

Note
Some allocated instructions may have associated new process state, and, therefore, may
provide an associated enable bit, similar in function to MSRFP for floating-point instruc-
tions. ‘Enabled for execution’ for these instructions implies any associated enable bit is
set to allow, or enable, execution of these instructions. For these allocated instructions,
the architecture provides an Auxiliary Processor Unavailable interrupt vector (see
Section 7.6.10 on page 166) in the event execution of any of these instructions is
attempted when not ‘enabled for execution’.

Other allocated instructions may not have any associated new state and therefore may
not require an associated enable bit. These instructions are assumed to always be
‘enabled for execution’ if they are supported by the implementation.
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Attempt to execute a reserved-nop instruction will either have no effect on imple-
mentations conforming to the current version of Book E (i.e. treated as a no-oper-
ation instruction), or will cause either an Illegal Instruction exception type
Program interrupt (see Section 7.6.7 on page 163). Reserved-nop instructions are
available for future architecture extensions which have no effect on architected
state. Such extensions might include performance-enhancing hints such as new
forms of Cache Touch instructions, and would be able to be added while remain-
ing functionally compatible with implementations of previous versions of Book E.

A reserved-illegal instruction may be retained by future versions of Book E as a
reserved-illegal instruction, may be subsequently re-classified as an allocated
instruction, or may even be employed in the role of a subsequently defined
instruction.

A reserved-nop instruction may be retained by future versions of Book E as a
reserved-nop instruction, may be subsequently re-classified as an allocated
instruction, or may even be employed in the role of a subsequently defined
instruction which has no effect on architected state.

1.9 Forms of Defined Instructions

1.9.1 Preferred Instruction Forms

There is one defined instruction that has a preferred form. The Or Immediate
instruction is the preferred form for expressing a no-operation.

1.9.2 Invalid Instruction Forms

Some of the defined instructions have invalid forms. An instruction form is invalid
if one or more fields of the instruction, excluding the opcode field(s), are coded
incorrectly in a manner that can be deduced by examining only the instruction
encoding.

Any attempt to execute an invalid form of an instruction will either cause an Ille-
gal Instruction type Program interrupt or yield boundedly undefined results.
Exceptions to this rule are stated in the instruction descriptions.

Some kinds of invalid form instructions can be deduced just from examining the
instruction layout. These are listed below.

• Field shown as reserved but coded as nonzero.
• Field shown as containing a particular value but coded as some other value.

These invalid forms are not discussed further.

Engineering Note
Implementations are strongly encouraged to support reserved-nop instructions as a true
no-operation instruction.
28 Book E: Enhanced PowerPC Architecture Version 1.0 07 May 02



Other invalid instruction forms can be deduced by detecting an invalid encoding
of one or more of the instruction operand fields. These kinds of invalid form are
identified in the instruction descriptions.

• the Branch Conditional and Branch Conditional Extended instructions (i.e.
undefined encoding of BO field)

• the Load with Update instructions (i.e. RT=RA or RA=0)
• the Store with Update instructions (i.e. RA=0)
• the Load Multiple instruction (i.e. RA or RB in range of registers to be loaded)
• the Load String Immediate instruction (i.e. RA in range of registers to be

loaded)
• the Load String Indexed instruction (i.e. RT=RA or RT=RB)
• the Load/Store Floating-Point with Update instructions (i.e. RA=0)

1.10 Optionality

An implementation is allowed to trap on the use of any instruction or architec-
tural feature and emulate in software. There are certain architectural features
that cannot and are not expected to be supported in this manner. A 32-bit Book E
implementation cannot be expected to emulate the behavior of a 64-bit Book E
implementation. A Book E implementation that supports only a subset of the
Book E debug facilities (see Chapter 9 on page 199) may not be able to emulate
the remainder of the defined debug facilities. Implementations of this architecture
must be capable of supporting all other defined Book E facilities either in hard-
ware or with software assistance.

1.11 Storage Addressing

A program references storage using the effective address computed by the proces-
sor when it executes a Storage Access or Branch instruction (or certain other
instructions described in Section 6.3.2 on page 139, and Section 6.3.3 on
page 142), or when it fetches the next sequential instruction.

Engineering Note
Causing an Illegal Instruction type Program interrupt if an attempt is made to execute
an invalid form of an instruction facilitates the debugging of software.

One exception is that Book E strongly recommends that hardware ignore bit 31 of the
instruction encoding for X-form Storage Access instructions rather than causing an Ille-
gal Instruction type Program interrupt when this reserved bit is set to 1. This facilitates
subsequent definition of bit 31 for performance enhancement extensions to the architec-
ture while remaining functionally compatible with implementations of previous versions
of Book E.
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1.11.1 Storage Operands

Bytes in storage are numbered consecutively starting with 0. Each number is the
address of the corresponding byte.

Storage operands may be bytes, halfwords, words, or doublewords, or, for the
Load Multiple, Store Multiple, Load String and Store String instructions, a sequence
of words or bytes. The address of a storage operand is the address of its first byte
(i.e., of its lowest-numbered byte). Byte ordering can be either big-endian or little-
endian (see Section 1.11.3 on page 33).

Operand length is implicit for each instruction with respect to storage alignment.
The operand of a scalar Storage Access instruction has a ‘natural’ alignment
boundary equal to the operand length. In other words, the ‘natural’ address of an
operand is an integral multiple of the operand length. A storage operand is said to
be aligned if it is aligned at its natural boundary: otherwise it is said to be
unaligned.

Storage operands for single-register Storage Access instructions have the follow-
ing characteristics.

The concept of alignment is also applied more generally, to any datum in storage.
For example, a 12-byte datum in storage is said to be word-aligned if its address
is an integral multiple of 4.

Some instructions require their storage operands to have certain alignments. In
addition, alignment may affect performance. For scalar Storage Access instruc-
tions the best performance is obtained when storage operands are aligned.

Instructions are always four bytes long and word-aligned.

Operand
Operand
Length

Addr60:63 if aligned

Byte (or String)  8 bits  xxxx

Halfword  2 bytes  xxx0

Word  4 bytes  xx00

Doubleword  8 bytes  x000
An ‘x’ in an address bit position indicates that the bit can be 0 or 1 independent of
the state of other bits in the address.
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1.11.2 Effective Address Calculation

The 64-bit address computed by the processor when executing a Storage Access
or Branch instruction (or certain other instructions described in Section 6.3.2 on
page 139, and Section 6.3.3 on page 142), or when fetching the next sequential
instruction, is called the effective address and specifies a byte in storage. For a
Storage Access instruction, if the sum of the effective address and the operand
length exceeds the maximum effective address, the storage access is considered to
be undefined.

Effective address arithmetic, except for next sequential instruction address com-
putations, wraps around from the maximum address, 264–1, to address 0.

1.11.2.1 Data Storage Addressing Modes

There are five data storage addressing modes supported by Book E.

Base+Displacement (D-mode) addressing mode:
The 16-bit D field is sign-extended and added to the contents of the GPR
designated by RA or to zero if RA=0. 32 zeros are prepended to the low-order
32 bits of the sum to produce the 64-bit effective address.

Base+Index (X-mode) addressing mode:
The contents of the GPR designated by RB (or the value 0 for lswi and stswi)
are added to the contents of the GPR designated by RA or to zero if RA=0. 32
zeros are prepended to the low-order 32 bits of the sum to produce the 64-bit
effective address.

Base+Displacement Extended (DE-mode) addressing mode:
The 12-bit DE field is sign-extended and added to the contents of the GPR
designated by RA or to zero if RA=0 to produce the 64-bit effective address.

Base+Displacement Extended Scaled (DES-mode) addressing mode:
The 12-bit DES field is concatenated on the right with 0b00, sign-extended,
and then added to the contents of the GPR designated by RA or to zero if
RA=0 to produce the 64-bit effective address.

Base+Index Extended (XE-mode) addressing mode:
The contents of the GPR designated by RB are added to the contents of the
GPR designated by RA or to zero if RA=0 to produce the 64-bit effective
address
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1.11.2.2 Instruction Storage Addressing Modes

I-form Branch Extended instructions:
The 24-bit LI field is concatenated on the right with 0b00, sign-extended, and
then added to either the 64-bit address of the Branch Extended instruction if
AA=0, or to 0 if AA=1, to form the 64-bit effective address of the next
instruction.

I-form Branch instructions:
The 24-bit LI field is concatenated on the right with 0b00, sign-extended, and
then added to either the address of the Branch instruction if AA=0, or to 0 if
AA=1. 32 zeros are prepended to the low-order 32 bits of the sum to form the
64-bit effective address of the next instruction.

Taken B-form Branch Extended instructions:
The 14-bit BD field is concatenated on the right with 0b00, sign-extended,
and then added to either the address of the Branch Extended instruction if
AA=0, or to 0 if AA=1, to form the 64-bit effective address of the next
instruction.

Taken B-form Branch instructions:
The 14-bit BD field is concatenated on the right with 0b00, sign-extended,
and then added to either the address of the Branch instruction if AA=0, or to 0
if AA=1. 32 zeros are prepended to the low-order 32 bits of the sum to form
the 64-bit effective address of the next instruction.

Taken XL-form Branch Extended instructions:
The contents of bits 0:61 the Link Register or the Count Register are
concatenated on the right with 0b00 to form the 64-bit effective address of the
next instruction.

Taken XL-form Branch instructions:
The contents of bits 32:61 of the Link Register or the Count Register are
concatenated on the right with 0b00 and prepended with 32 zeros on the left
to form the 64-bit effective address of the next instruction.

Sequential instruction fetching (or non-taken Branch or Branch Extended instruc-
tions):

The value 4 is added to the address of the current instruction to form the 64-
bit effective address of the next instruction. If the address of the current
instruction is 0xFFFF_FFFF_FFFF_FFFC, the address of the next sequential
instruction is undefined.

Any Branch or Branch Extended instruction with LK=1:
The value 4 is added to the address of the current instruction and the 64-bit
result is placed into the LR. If the address of the current instruction is
0xFFFF_FFFF_FFFF_FFFC, the result placed into the LR is undefined.

Programming Note
While some implementations may support next sequential instruction address computa-
tions wrapping from the highest address 0xFFFF_FFFF_FFFF_FFFC to
0x0000_0000_0000_0000 as part of the instruction flow, portable software is strongly
encouraged not to depend on this. If code must span this boundary, software should
place a non-linking branch at address 0xFFFF_FFFF_FFFF_FFFC which always
branches to address 0x0000_0000_0000_0000 (either absolute or relative branches will
work). See also Section A.1.3 on page 372.
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1.11.3 Byte Ordering

If scalars (individual data items and instructions) were indivisible, there would be
no such concept as “byte ordering.” It is meaningless to consider the order of bits
or groups of bits within the smallest addressable unit of storage, because nothing
can be observed about such order. Only when scalars, which the programmer and
processor regard as indivisible quantities, can comprise more than one address-
able unit of storage does the question of order arise.

For a machine in which the smallest addressable unit of storage is the 64-bit dou-
bleword, there is no question of the ordering of bytes within doublewords. All
transfers of individual scalars between registers and storage are of doublewords,
and the address of the byte containing the high-order eight bits of a scalar is no
different from the address of a byte containing any other part of the scalar.

For Book E, as for most computer architectures currently implemented, the
smallest addressable unit of storage is the 8-bit byte. Many scalars are halfwords,
words, or doublewords, which consist of groups of bytes. When a word-length sca-
lar is moved from a register to storage, the scalar occupies four consecutive byte
addresses. It thus becomes meaningful to discuss the order of the byte addresses
with respect to the value of the scalar: which byte contains the highest-order eight
bits of the scalar, which byte contains the next-highest-order eight bits, and so
on.

Given a scalar that contains multiple bytes, the choice of byte ordering is essen-
tially arbitrary. There are 4! = 24 ways to specify the ordering of four bytes within
a word, but only two of these orderings are sensible:

• The ordering that assigns the lowest address to the highest-order (‘left-most’)
eight bits of the scalar, the next sequential address to the next-highest-order
eight bits, and so on.

This ordering is called big-endian because the “big end” (most-significant) of
the scalar, considered as a binary number, comes first in storage. The Motor-
ola 68000 is an example of a processor using this byte ordering.

• The ordering that assigns the lowest address to the lowest-order (‘right-most’)
eight bits of the scalar, the next sequential address to the next-lowest-order
eight bits, and so on.

This ordering is called little-endian because the “little end” (least-significant) of
the scalar, considered as a binary number, comes first in storage. The Intel
8086 is an example of a processor using this byte ordering.

Book E provides support for both big-endian and little-endian byte ordering in the
form of a storage attribute. See Section 6.2.5 on page 132 and Section 6.2.5.5 on
page 136.

1.11.3.1 Structure Mapping Examples

The following C language structure, s, contains an assortment of scalars and a
character string. The comments show the value assumed to be in each structure
element; these values show how the bytes comprising each structure element are
mapped into storage.
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struct {
int a;     /* 0x1112_1314 word */
double b;  /* 0x2122_2324_2526_2728 doubleword */
char *c;  /* 0x3132_3334 word */
char d[7]; /* 'A','B','C','D','E','F','G' array of bytes */
short e;  /* 0x5152 halfword */
int f;  /* 0x6162_6364 word */

} s;

C structure mapping rules permit the use of padding (skipped bytes) to align sca-
lars on desirable boundaries. The structure mapping examples below show each
scalar aligned at its natural boundary. This alignment introduces padding of four
bytes between a and b, one byte between d and e, and two bytes between e and f.
The same amount of padding is present in both big-endian and little-endian map-
pings.

Big-Endian Mapping

The big-endian mapping of structure s follows. (The data is in boldface print in the
structure mappings. Addresses, in hexadecimal, are below the data stored at the
address. The contents of each byte, as defined in structure s, is shown as a (hexa-
decimal) number or character (for the string elements).

Little-Endian Mapping

Structure s is shown mapped little-endian.

11 12 13 14
0x00 0x01 0x02 0x03 0x04 0x05 0x06 0x07

21 22 23 24 25 26 27 28
0x08 0x09 0x0A 0x0B 0x0C 0x0D 0x0E 0x0F

31 32 33 34 'A' 'B' 'C' 'D'
0x10 0x11 0x12 0x13 0x14 0x15 0x16 0x17

'E' 'F' 'G' 51 52
0x18 0x19 0x1A 0x1B 0x1C 0x1D 0x1E 0x1F

61 62 63 64
0x20 0x21 0x22 0x23 0x24 0x25 0x26 0x27

14 13 12 11
0x00 0x01 0x02 0x03 0x04 0x05 0x06 0x07

28 27 26 25 24 23 22 21
0x08 0x09 0x0A 0x0B 0x0C 0x0D 0x0E 0x0F

34 33 32 31 'A' 'B' 'C' 'D'
0x10 0x11 0x12 0x13 0x14 0x15 0x16 0x17

'E' 'F' 'G' 52 51
0x18 0x19 0x1A 0x1B 0x1C 0x1D 0x1E 0x1F

64 63 62 61
0x20 0x21 0x22 0x23 0x24 0x25 0x26 0x27
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1.11.3.2 Instructions Byte Ordering

Book E defines instructions as aligned words (four bytes) in memory. As such,
instructions in a big-endian program image are arranged with the most-signifi-
cant byte (MSB) of the instruction word at the lowest numbered address.

Consider the big-endian mapping of instruction at address 0x00, where, for
example, p = add r7, r7, r4:

On the other hand, in a little-endian program the same instruction is arranged
with the least-significant byte (LSB) of the instruction word at the lowest num-
bered address:

When an instruction is fetched from memory, the instruction must be placed in
the pipeline with its bytes in the proper order. Otherwise, the instruction decoder
cannot recognize it. Book E numbers bits such that the most-significant byte of
an instruction is the byte containing bits 0:7 of the instruction, the next most-sig-
nificant byte of an instruction is the byte containing bits 8:15 of the instruction,
the next most-significant byte of an instruction is the byte containing bits 16:23 of
the instruction, and the least-significant byte of an instruction is the byte con-
taining bits 24:31 of the instruction, as depicted in the instruction format dia-
grams (see Section 1.7, "Instruction Formats", on page 18). Given the difference in
byte order between the two endian formats, the processor must perform whatever
byte reversal is required (depending on the particular byte order in use) before
attempting to execute the instruction. This reversal may occur between the mem-
ory interface and an instruction cache, or between the cache and the instruction
decoder.

If storage is reprogrammed from one endian format to the other, the contents of
the storage must be reloaded with program and data structures in the appropriate
Endian format. If the contents of instruction memory change, the instruction
cache must be made coherent with the updates. The instruction cache must be
invalidated and the updated memory contents must be fetched in the new Endian
format so that the proper byte ordering occurs in the event that this byte reversal
is performed between the memory interface and the cache.

1.11.3.3 Data Byte Ordering

Unlike instruction fetches, data accesses cannot be byte-reversed between mem-
ory and a data cache. Data byte ordering in memory depends on the data type
(byte, halfword, word, or doubleword) of a specific data item. It is only when mov-
ing a data item of a specific type from or to an architected register that it becomes
known whether byte reversal is required due to the Endian format of the data
item. Therefore, byte reversal during load or store accesses is performed between
memory (or the data cache) and the architected register (e.g. GPR, FPR, etc.),
depending on whether the load or store was a byte, halfword, word, or doubleword
access.

Referring to the big-endian and little-endian mappings of structure s, as shown on
page 34, the differences between the byte locations of any data item in the struc-

MSB LSB

0x00 0x01 0x02 0x03

LSB MSB

0x00 0x01 0x02 0x03
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ture depends upon the size of the particular data item. For example (again refer-
ring to the big-endian and little-endian mappings of structure s):

• The word a has its four bytes reversed within the word spanning addresses
0x00–0x03.

• The halfword e has its two bytes reversed within the halfword spanning
addresses 0x1C–0x1D.

Note that the array of bytes d, where each data item is a byte, is not reversed
when the big-endian and little-endian mappings are compared. For example, the
character ‘A’ is located at address 0x14 in both the big-endian and little-endian
mappings.

The size of the data item being loaded or stored must be known before the proces-
sor can decide whether, and if so, how to reorder the bytes when moving them
between a register and storage.

• For byte loads and stores, including strings, no reordering of bytes occurs.

• For halfword loads and stores, bytes may be reversed within the halfword,
depending on the byte order.

• For word loads and stores, bytes may be reversed within the word, depending
on the byte order.

• For doubleword loads and stores, bytes may be reversed within the double-
word, depending on the byte order.

Note that this mechanism applies, regardless of the alignment of data.

For example, when loading a data word from storage, all four bytes of the word are
retrieved from memory (or the data cache) starting with the byte at the calculated
effective address and continuing with the next three higher numbered bytes.
Then, the bytes are placed in the register so that the byte from either the highest
address or the lowest address is placed in the least-significant byte of the register
for big-endian or little-endian storage, respectively.

1.11.3.4 Integer Load and Store Byte-Reverse Instructions

Book E provides a set of Load Byte-Reverse and Store Byte-Reverse instructions
that access storage that is specified as being in one byte ordering in the same
manner that a non-byte-reverse Load or Store instruction would access storage
that is specified as being in the opposite byte ordering. For example, a Load Half-
word Byte-Reverse Indexed instruction performs an halfword data storage access
from a big-endian storage location in the same manner as a Load Halfword
Indexed instruction performs an halfword data storage access from a little-endian
storage location, and vice-versa.

The function of the Load Byte-Reverse and Store Byte-Reverse instructions is use-
ful when a particular page in storage contains some data written in big-endian
ordering and other data written in little-endian ordering. In such an environment,
the Endianness storage attribute for the page would be set according to the pre-
dominant byte ordering for the page, and ‘normal’, non-byte-reverse Load and
Store instructions would be used to access data operands which used this pre-
dominant byte ordering. Conversely, Load Byte-Reverse and Store Byte-Reverse
instructions would be used to access the data operands which used the other byte
ordering.
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1.11.3.5 Origin of Endian

The terms Big-Endian and Little-Endian come from Part I, Chapter 4, of Jonathan
Swift's Gulliver's Travels. Here is the complete passage, from the edition printed in
1734 by George Faulkner in Dublin.

. . . our Histories of six Thousand Moons make no Mention of any other
Regions, than the two great Empires of Lilliput and Blefuscu. Which two
mighty Powers have, as I was going to tell you, been engaged in a most
obstinate War for six and thirty Moons past. It began upon the following
Occasion. It is allowed on all Hands, that the primitive Way of breaking
Eggs before we eat them, was upon the larger End: But his present
Majesty's Grand-father, while he was a Boy, going to eat an Egg, and
breaking it according to the ancient Practice, happened to cut one of his
Fingers. Whereupon the Emperor his Father, published an Edict,
commanding all his Subjects, upon great Penalties, to break the smaller
End of their Eggs. The People so highly resented this Law, that our
Histories tell us, there have been six Rebellions raised on that Account;
wherein one Emperor lost his Life, and another his Crown. These civil
Commotions were constantly fomented by the Monarchs of Blefuscu; and
when they were quelled, the Exiles always fled for Refuge to that Empire.
It is computed that eleven Thousand Persons have, at several Times,
suffered Death, rather than submit to break their Eggs at the smaller End.
Many hundred large Volumes have been published upon this Controversy:
But the Books of the Big-Endians have been long forbidden, and the whole
Party rendered incapable by Law of holding Employments. During the
Course of these Troubles, the Emperors of Blefuscu did frequently
expostulate by their Ambassadors, accusing us of making a Schism in
Religion, by offending against a fundamental Doctrine of our great Prophet
Lustrog, in the fifty-fourth Chapter of the Brundrecal, (which is their
Alcoran.) This, however, is thought to be a mere Strain upon the text: For
the Words are these; That all true Believers shall break their Eggs at the
convenient End: and which is the convenient End, seems, in my humble
Opinion, to be left to every Man's Conscience, or at least in the Power of the
chief Magistrate to determine. Now the Big-Endian Exiles have found so
much Credit in the Emperor of Blefuscu's Court; and so much private
Assistance and Encouragement from their Party here at home, that a
bloody War has been carried on between the two Empires for six and
thirty Moons with various Success; during which Time we have lost Forty
Capital Ships, and a much greater Number of smaller Vessels, together
with thirty thousand of our best Seamen and Soldiers; and the Damage
received by the Enemy is reckoned to be somewhat greater than ours.
However, they have now equipped a numerous Fleet, and are just
preparing to make a Descent upon us: and his Imperial Majesty, placing
great Confidence in your Valour and Strength, hath commanded me to lay
this Account of his Affairs before you.
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1.12 Synchronization

The synchronization described in this section refers to the state of the processor
that is performing the synchronization.

1.12.1 Context Synchronization

An instruction or event is context synchronizing if it satisfies the requirements
listed below. Such instructions and events are collectively called context synchro-
nizing operations. Examples of context synchronizing operations include the sc
instruction, the rfi and rfci instructions, and most interrupts.

1. The operation is not initiated or, in the case of isync, does not complete, until
all instructions already in execution have completed to a point at which they
have reported all exceptions they will cause.

2. The instructions that precede the operation complete execution in the context
(privilege, address space, storage protection, etc.) in which they were initiated.

3. If the operation directly causes an interrupt (e.g., sc directly causes a System
Call interrupt) or is an interrupt, the operation is not initiated until no inter-
rupt-causing exception exists having higher priority than the exception
associated with the interrupt (see Section 7.9 on page 178).

4. The instructions that follow the operation will be fetched and executed in the
context established by the operation as required by the sequential execution
model. (This requirement dictates that any prefetched instructions be dis-
carded and that any effects and side effects of executing them out-of-order
also be discarded, except as described in Section 6.1.5 on page 112.)

A context synchronizing operation is necessarily execution synchronizing; see
Section 1.12.2. “Execution Synchronization”. Unlike the msync and mbar
instructions, a context synchronizing operation does not affect the order in which
storage accesses are performed with respect to other processors and mechanisms.

1.12.2 Execution Synchronization

An instruction is execution synchronizing if it satisfies items 1 and 2 of the defini-
tion of context synchronization (see Section 1.12.1). msync is treated like isync
with respect to item 1 (i.e., the conditions described in item 1 apply to the comple-
tion of msync). Examples of execution synchronizing instructions are msync,
mtmsr, wrtee, and wrteei. Also, all context synchronizing instructions are execu-
tion synchronizing.

Unlike a context synchronizing operation, an execution synchronizing instruction
need not ensure that the instructions following that instruction will execute in the
context established by that instruction. This new context becomes effective some-
time after the execution synchronizing instruction completes and before or at a
subsequent context synchronizing operation.
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Chapter 2 Processor Control

2.1 Processor Control Registers

2.1.1 Machine State Register

The Machine State Register (MSR) is a 32-bit register. Machine State Register bits
are numbered 32 (most-significant bit) to 63 (least-significant bit). This register
defines the state of the processor (i.e. enabling and disabling of interrupts and
debugging exceptions, selection of address space for instruction and data storage
accesses, and specifying whether the processor is in supervisor or user mode).

The Machine State Register contents are automatically saved, altered, and
restored by the interrupt-handling mechanism, as described in Section 7.5 on
page 151. If a non-critical interrupt is taken, the contents of the Machine State
Register are automatically copied into Save/Restore Register 1. If a critical inter-
rupt is taken, the contents of the Machine State Register are automatically copied
into Critical Save/Restore Register 1. When an rfi or rfci is executed, the con-
tents of the Machine State Register are restored from Save/Restore Register 1 or
Critical Save/Restore Register 1, respectively.

The contents of the Machine State Register can be read into bits 32:63 of a GPR
using mfmsr RT, setting bits 0:31 of GPR(RT) to an undefined value. The contents
of bits 32:63 of GPR(RS) can be written to the Machine State Register using mtmsr
RS. MSREE may be set or cleared atomically using wrtee or wrteei.

Table 2-1. Machine State Register Definition

Bit(s) Description

32:37 Reserved

38 Allocated for implementation-dependent use

39:44 Reserved
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45 Wait State Enable (WE)

=0 The processor is not in wait state and continues processing

=1 The processor enters the wait state by ceasing to execute instructions and
entering low power mode. The details of how the wait state is entered and
exited, and how the processor behaves while in the wait state, are imple-
mentation-dependent. See the User’s Manual for the implementation for
complete details.

46 Critical Enable (CE)

=0 Critical Input and Watchdog Timer interrupts are disabled

=1 Critical Input and Watchdog Timer interrupts are enabled

47 Preserved for PowerPC ILE

48 External Enable (EE)

=0 External Input, Decrementer, and Fixed-Interval Timer interrupts are dis-
abled.

=1 External Input, Decrementer, and Fixed-Interval Timer interrupts are en-
abled.

49 Problem State (PR)

=0 The processor is in supervisor mode, can execute any instruction, and can
access any resource (e.g. GPRs, SPRs, MSR, etc.).

=1 The processor is in user mode, cannot execute any privileged instruction,
and cannot access any privileged resource.

MSRPR also affects storage access control, as described in Section 6.2.4.

Editorial Note
The term "problem state" is synonymous with the term "user mode".

50 Floating-Point Available (FP)

=0 The processor cannot execute any floating-point instructions, including
floating-point loads, stores and moves.

=1 The processor can execute floating-point instructions.

51 Machine Check Enable (ME)

=0 Machine Check interrupts are disabled.

=1 Machine Check interrupts are enabled.

52 Floating-Point Exception Mode 0 (FE0) (See below)

53 Allocated for implementation-dependent use

54 Debug Interrupt Enable (DE)

=0 Debug interrupts are disabled

=1 Debug interrupts are enabled if DBCR0IDM=1

55 Floating-Point Exception Mode 1 (FE1) (See below)

56 Reserved

57 Preserved for PowerPC IP

58 Instruction Address Space (IS)

=0 The processor directs all instruction fetches to address space 0 (TS=0 in
the relevant TLB entry).

=1 The processor directs all instruction fetches to address space 1 (TS=1 in
the relevant TLB entry).

59 Data Address Space (DS)

=0 The processor directs all data storage accesses to address space 0 (TS=0 in
the relevant TLB entry).

=1 The processor directs all data storage accesses to address space 1 (TS=1 in
the relevant TLB entry).

60:61 Reserved

62 Preserved for PowerPC RI

63 Preserved for PowerPC LE

Programming Note
An Machine State Register bit that is reserved may be altered by rfi/rfci.

Bit(s) Description
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The Floating-Point Exception Mode bits FE0 and FE1 are interpreted as shown
below. For further details see Section 5.4 on page 81.

FE0 FE1 Mode
0 0 Ignore Exceptions
0 1 Imprecise Nonrecoverable
1 0 Imprecise Recoverable
1 1 Precise

2.1.2 Processor Identification Register

The Processor Identification Register (PIR) is a 32-bit register. Processor Identifica-
tion Register bits are numbered 32 (most-significant bit) to 63 (least-significant
bit). The Processor Identification Register contains a value that can be used to dis-
tinguish the processor from other processors in the system.

The contents of the Processor Identification Register can be read into bits 32:63 of
GPR(RT) using mfspr RT,PIR, setting bits 0:31 of GPR(RT) to an undefined value.
The means by which the Processor Identification Register is initialized are imple-
mentation-dependent (see User’s Manual).

2.1.3 Processor Version Register

The Processor Version Register (PVR) is a 32-bit read-only register. Processor Ver-
sion Register bits are numbered 32 (most-significant bit) to 63 (least-significant
bit). The Processor Version Register contains a value identifying the version and
revision level of the processor.

The Processor Version Register distinguishes between processors that differ in
attributes that may affect software. It contains two fields.

The contents of the Processor Version Register can be read into bits 32:63 of
GPR(RT) using mfspr RT,PVR, setting bits 0:31 of GPR(RT) to an undefined value.
Write access to the Processor Version Register is not provided.

Table 2-2. Processor Version Register Definition

Version numbers are assigned by Book E process. Revision numbers are assigned
by an implementation-defined process.

Bit(s) Description

32:47 Version
A 16-bit number that identifies the version of the processor. Different version
numbers indicate major differences between processors, such as which optional
facilities and instructions are supported.

48:63 Revision
A 16-bit number that distinguishes between implementations of the version. Dif-
ferent revision numbers indicate minor differences between processors having the
same version number, such as clock rate and Engineering Change level.
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2.1.4 Software-Use Special Purpose Registers

Software-use Special Purpose Registers (SPRG0 through SPRG7, and USPRG0)
that have no defined functionality.

SPRG0 through SPRG2
These 64-bit registers can be accessed only in supervisor mode.

SPRG3
This 64-bit register can be written only in supervisor mode. SPRG3 can be
read in supervisor mode. It is implementation-dependent whether or not
SPRG3 can be read in user mode. See the User Manual for the
implementation.

SPRG4 through SPRG7
These 64-bit registers can be written only in supervisor mode. These registers
can be read in supervisor or user mode.

USPRG0
This 64-bit register can be accessed in supervisor or user mode.

The contents of SPRGi can be read into GPR(RT) using mfspr RT,SPRGi. The con-
tents of GPR(RS) can be written into SPRGi using mtspr SPRGi,RS.

The contents of USPRG0 can be read into GPR(RT) using mfspr RT,USPRG0. The
contents of GPR(RS) can be written into USPRG0 using mtspr USPRG0,RS.

2.1.5 Device Control Registers

Device Control Registers (DCRs) are on-chip registers that exist architecturally
outside the processor core and thus are not actually part of Book E. Book E sim-
ply defines the existence of a Device Control Register ‘address space’ and the
instructions to access them and does not define any particular Device Control
Registers themselves.

Engineering Note
Although the classification of a given difference between processors as ‘major’ or ‘minor’
is somewhat arbitrary, the following are examples of differences that generally should be
considered ‘major’.

• number and types of execution units
• optional facilities and instructions supported
• level of support of instructions (hard-wired or emulated)
• size, geometry, and management of caches and of TLBs

The following are examples of differences that generally should be considered ‘minor’.

• remapping a processor to a new technology
• redesigning a critical path to increase clock rate
• fixing bugs

In general, any change to a processor should cause a new PVR value to be assigned.
Even a seemingly trivial change that is not expected to be apparent to software should
cause a new revision number to be assigned, in case the change is later discovered to
have introduced an error that software must circumvent.
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Device Control Registers may control the use of on-chip peripherals, such as
memory controllers (see the User’s Manual for specific Device Control Register
definitions).

The contents of Device Control Register DCRN can be read into GPR(RT) using
mfdcr RT,DCRN. The contents of GPR(RS) can be written into Device Control Reg-
ister DCRN using mtdcr DCRN,RS.

2.2 Processor Control Instructions

2.2.1 System Linkage Instructions

sc, rfi, and rfci are system linkage instructions which enable the program to call
upon the system to perform a service (i.e. invoke a System Call interrupt), and by
which the system can return from performing a service or from processing an
interrupt. System linkage instructions are context synchronizing, as defined in
Section 1.12.1 on page 38.

Table 2-3. System Linkage Instruction Set Index

2.2.2 Processor Control Register Manipulation Instruc-
tions

Table 2-4. System Register Manipulation Instruction Set Index

2.2.3 Instruction Synchronization Instruction

Table 2-5. Instruction Synchronization Instruction Set Index

Mnemonic Instruction Page
sc System Call 334
rfci Return From Critical Interrupt 325
rfi Return From Interrupt 326

Mnemonic Instruction Page
mfdcr RT,DCRN Move From Device Control Register 307
mfmsr RT Move From Machine State Register 308
mfspr RT,SPRN Move From Special Purpose Register 309
mtdcr DCRN,RS Move To Device Control Register 311
mtmsr RS Move To Machine State Register 315
mtspr SPRN,RS Move To Special Purpose Register 316
wrtee RA Write MSR External Enable 368
wrteei E Write MSR External Enable Immediate 368

Mnemonic Instruction Page

isync Instruction Synchronize 288
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2.2.4 Auxiliary Processing Query Instruction

Book E allows implementation-dependent extensions that enable processors to
more optimally address a specific application area or even a broad range of appli-
cation areas. Extensions can range from a single instruction to a new class of
functionality (e.g. multimedia and 3-D graphics extensions).

Table 2-6. Auxiliary Processing Query Instruction Set Index

Mnemonic Instruction Page
mfapidi RT,RA Move From APID Indirect 307
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Chapter 3 Branch and Condition Register
Operations

3.1 Branch Operations Overview

This section describes the registers and instructions that make up the branch and
Condition Register operations facilities of Book E.

3.2 Registers for Branch Operations

3.2.1 Condition Register

The Condition Register (CR) is a 32-bit register. Condition Register bits are num-
bered 32 (most-significant bit) to 63 (least-significant bit). The Condition Register
reflects the result of certain operations, and provides a mechanism for testing
(and branching).

Figure 3-1. Condition Register

The bits in the Condition Register are grouped into eight 4-bit fields, named CR
Field 0 (CR0), CR Field 1 (CR1),..., and CR Field 7 (CR7), which are set in one of
the following ways.

• Specified fields of the Condition Register can be set by a move to the
Condition Register from a GPR (mtcrf).

CR0 CR1 CR2 CR3 CR4 CR5 CR6 CR7

32 36 40 44 48 52 56 60 63
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• A specified field of the Condition Register can be set by a move to the
Condition Register from another Condition Register field (mcrf), from the Inte-
ger Exception Register (mcrxr), or from the Floating-Point Status and Control
Register (mcrfs).

• CR Field 0 can be set as the implicit result of an integer instruction.

• CR Field 1 can be set as the implicit result of a floating-point instruction.

• A specified Condition Register field can be set as the result of either an inte-
ger or a floating-point Compare instruction.

Instructions are provided to perform logical operations on individual
Condition Register bits and to test individual Condition Register bits (see
Section 3.4 on page 52).

3.2.1.1 Condition Register setting for integer instructions

For all integer word instructions in which the Rc bit is defined and set to 1, and
for addic., andi., and andis., the first three bits of CR Field 0 (bits 32:34 of the
Condition Register) are set by signed comparison of bits 32:63 of the result to
zero, and the fourth bit of CR Field 0 (bit 35 of the Condition Register) is copied
from the final state of the SO bit of the Integer Exception Register. The Rc bit is
not defined for doubleword integer operations.

if      (target_register) 32:63  < 0 then c ← 0b100
else if (target_register) 32:63  > 0 then c ← 0b010
else           c ← 0b001
CR0 ← c || XERSO

If any portion of the result is undefined, then the value placed into the first three
bits of CR Field 0 is undefined.

The bits of CR Field 0 are interpreted as follows.

CR Bit Description

32 Negative (LT)
Bit 32 of the result is equal to 1.

33 Positive (GT)
Bit 32 of the result is equal to 0 and at least one of bits 33:63 of the
result is non-zero.

34 Zero (EQ)
Bits 32:63 of the result are equal to 0.

35 Summary Overflow (SO)
This is a copy of the final state of the SO bit of the Integer Exception Reg-
ister at the completion of the instruction.

Programming Note
CR Field 0 may not reflect the ‘true’ (infinitely precise) result if overflow occurs: see Sec-
tion 4.3.3, “Integer Arithmetic Instructions”, on page 59.
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3.2.1.2 Condition Register setting for store conditional instruc-
tions

The Integer Store Conditional instructions stwcx., stwcxe., and stdcxe. also set
CR Field 0. See instruction descriptions on page 342 and page 353 for a detailed
description of how CR Field 0 is set.

3.2.1.3 Condition Register setting for floating-point instructions

For all floating-point instructions in which the Rc bit is defined and set to 1, CR
Field 1 (bits 36:39 of the Condition Register) is set to the Floating-Point exception
status, copied from bits 32:35 of the Floating-Point Status and Control Register.
These bits are interpreted as follows.

CR Bit Description

36 Floating-Point Exception Summary (FX)
This is a copy of the final state of the FX bit of the Floating-Point Status
and Control Register at the completion of the instruction.

37 Floating-Point Enabled Exception Summary (FEX)
This is a copy of the final state of the FEX bit of the Floating-Point Sta-
tus and Control Register at the completion of the instruction.

38 Floating-Point Invalid Operation Exception Summary (VX)
This is a copy of the final state of the VX bit of the Floating-Point Status
and Control Register at the completion of the instruction.

39 Floating-Point Overflow Exception (OX)
This is a copy of the final state of the OX bit of the Floating-Point Status
and Control Register at the completion of the instruction.

3.2.1.4 Condition Register setting for compare instructions

For Compare instructions, a CR field specified by the BF field in the instruction is
set to reflect the result of the comparison. The bits of CR Field BF are interpreted
as follows. A complete description of how the bits are set is given in the instruc-
tion descriptions in Section 4.3.5, “Integer Compare Instructions”, on page 62 and
Section 5.6.6, “Floating-Point Compare Instructions”, on page 104.

CR Bit Description

4×BF + 32 Less Than, Floating-Point Less Than (LT, FL)
For signed-integer Compare, GPR(RA) < SI or GPR(RB)
For unsigned-integer Compare, GPR(RA) <u UI or GPR(RB)
For floating-point Compare, FPR(FRA) <fp FPR(FRB).

4×BF + 33 Greater Than, Floating-Point Greater Than (GT, FG)
For signed-integer Compare, GPR(RA) > SI or GPR(RB).
For unsigned-integer Compare, GPR(RA) >u UI or GPR(RB).
For floating-point Compare, FPR(FRA) >fp FPR(FRB).

4×BF + 34 Equal, Floating-Point Equal (EQ, FE)
For integer Compare, GPR(RA) = SI, UI, or GPR(RB).
For floating-point Compare, FPR(FRA) =fp FPR(FRB).
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4×BF + 35 Summary Overflow, Floating-Point Unordered (SO, FU)
For integer Compare, this is a copy of the final state of the SO bit
of the Integer Exception Register at the completion of the
instruction.
For floating-point Compare, one or both of FPR(FRA) and
FPR(FRB) is a Not a Number.

3.2.2 Link Register

The Link Register (LR) is a 64-bit register. Link Register bits are numbered 0
(most-significant bit) to 63 (least-significant bit). The Link Register can be used to
provide the branch target address for the Branch Conditional to Link Register
instruction, and it holds the return address after Branch and Link instructions.

The contents of the Link Register can be read into a GPR using mfspr RT,LR. The
contents of GPR(RS) can be written to the Link Register using mtspr LR,RS.

3.2.3 Count Register

The Count Register (CTR) is a 64-bit register. Count Register bits are numbered 0
(most-significant bit) to 63 (least-significant bit). Bits 32:63 of the Count Register
can be used to hold a loop count that can be decremented during execution of
Branch instructions that contain an appropriately encoded BO field. If the value in
bits 32:63 of the Count Register is 0 before being decremented, it is –1 afterward
and bits 0:31 are left unchanged. The entire 64-bit Count Register can also be
used to provide the branch target address for the Branch Conditional to Count Reg-
ister instruction.

The contents of the Count Register can be read into a GPR using mfspr RT,CTR.
The contents of GPR(RS) can be written to the Count Register using mtspr CTR,RS.
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3.3 Branch Instructions

The sequence of instruction execution can be changed by the Branch instructions.
Because all instructions are on word boundaries, bits 62 and 63 of the generated
branch target address are considered to be 0 by the processor in performing the
branch.

The Branch instructions compute the effective address (EA) of the target in one of
the following four ways, as described in Section 1.11.2.2, “Instruction Storage
Addressing Modes”, on page 32.

1. Adding a displacement to the address of the Branch instruction (Branch or
Branch Conditional with AA=0).

2. Specifying an absolute address (Branch or Branch Conditional with AA=1).

3. Using the address contained in the Link Register (Branch Conditional to Link
Register).

4. Using the address contained in the Count Register (Branch Conditional to
Count Register).

For the first two methods, the target addresses can be computed sufficiently
ahead of the Branch instruction that instructions can be prefetched along the tar-
get path. For the third and fourth methods, prefetching instructions along the tar-
get path is also possible provided the Link Register or the Count Register is loaded
sufficiently ahead of the Branch instruction.

Branching can be conditional or unconditional, and the return address can
optionally be provided. If the return address is to be provided (LK=1), the effective
address of the instruction following the Branch instruction is placed into the Link
Register after the branch target address has been computed: this is done whether
or not the branch is taken.

In Branch Conditional instructions, the BO field specifies the conditions under
which the branch is taken. The first four bits of the BO field specify how the
branch is affected by or affects the Condition Register and the Count Register.
The fifth bit, shown below as having the value ‘y’, may be used by some implemen-
tations as described below.

The encoding for the BO field is as follows. If the BO field specifies that the Count
Register is to be decremented, bits 32:63 of the Count Register are decremented. If
the BO field specifies a condition that must be TRUE or FALSE, that condition is
obtained from the contents of bit BI+321 of the Condition Register.

1. Note that bits in the Condition Register are numbered 32:63 and that ‘BI’ refers to the BI field in the Branch
instruction encoding. For example, specifying BI=2 refers to bit 34 of the Condition Register.
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Table 3-1. BO Encodings

Above, ‘z’ denotes a bit that is ignored.

The ‘y’ bit provides a hint about whether a conditional branch is likely to be taken,
and may be used by some implementations to improve performance.

The ‘branch always’ encoding of the BO field does not have a ‘y’ bit.

For Branch Conditional instructions that have a ‘y’ bit, using y=0 indicates that
the following behavior is likely.

• If the instruction is bc, bcl, bca, bcla, bce, bcel, bcea, or bcela with a nega-
tive value in the displacement field, the branch is taken.

• In all other cases (bc, bcl, bca, bcla, bce, bcel, bcea, or bcela with a nonneg-
ative value in the displacement field, bclr, bclrl, bclre, bclrel, bcctr, bcctrl,
bcctre, or bcctrel), the branch falls through (is not taken).

Using y=1 reverses the preceding indications.

The displacement field is used as described above even if the target is an absolute
address.

BO Description

0000y Decrement CTR32:63, then branch if the decremented CTR32:63≠0 and
the condition is FALSE.

0001y Decrement CTR32:63, then branch if the decremented CTR32:63=0 and
the condition is FALSE.

001zy Branch if the condition is FALSE.

0100y Decrement CTR32:63, then branch if the decremented CTR32:63≠0 and
the condition is TRUE.

0101y Decrement CTR32:63, then branch if the decremented CTR32:63=0 and
the condition is TRUE.

011zy Branch if the condition is TRUE.

1z00y Decrement CTR32:63, then branch if the decremented CTR32:63≠0.

1z01y Decrement CTR32:63, then branch if the decremented CTR32:63=0.

1z1zz Branch always.

Programming Note
The ‘z’ bits should be set to 0, as they may be assigned a meaning in some future ver-
sion of the architecture.

The default value for the ‘y’ bit should be 0: the value 1 should be used only if software
has determined that the prediction corresponding to y=1 is more likely to be correct than
the prediction corresponding to y=0.
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Engineering Note
For all three Branch Conditional instructions, the branch should be statically predicted
to be taken if the value of the following expression is 1, and to fall through if the value is
0.

(BO0 & BO2) | (s ⊕ BO4)

Here ‘s’ is bit 16 of the instruction, which is the sign bit of the displacement field if the
instruction has a displacement field and is 0 otherwise. BO4 is the ‘y’ bit, or a bit that is
ignored for the ‘branch always’ encoding of the BO field. (Advantage is taken of the fact
that, for bclr, bclrl, bclre, bclrel, bcctr, bcctrl, bcctre, or bcctrel, bit 16 of the instruc-
tion is part of a reserved field and therefore must be 0.)

Implementations should also consider dynamic, or run-time-driven branch prediction
techniques in addition to static branch prediction, where appropriate.

Programming Note
In some implementations the processor may keep a stack of the Link Register values
most recently set by Branch and Link instructions, with the possible exception of the
form shown below for obtaining the address of the next instruction. To benefit from this
stack, the following programming conventions should be used.

Let A, B, and Glue be programs.

• Obtaining the address of the next instruction:

Use the following form of Branch and Link.

     bcl    20,31,$+4

• Loop counts:

Keep them in the Count Register, and use one of the Branch Conditional instructions
to decrement the count and to control branching (e.g., branching back to the start of
a loop if the decremented counter value is nonzero).

• Computed goto's, case statements, etc.:

Use the Count Register to hold the address to branch to, and use the bcctr
instruction (LK=0) to branch to the selected address.

• Direct subroutine linkage:

Here A calls B and B returns to A. The two branches should be as follows.

– A calls B: use a Branch instruction that sets the Link Register (LK=1).
– B returns to A: use the bclr instruction (LK=0) (the return address is in, or can

be restored to, the Link Register).

• Indirect subroutine linkage:

Here A calls Glue, Glue calls B, and B returns to A rather than to Glue. (Such a
calling sequence is common in linkage code used when the subroutine that the
programmer wants to call, here B, is in a different module from the caller: the Binder
inserts ‘glue’ code to mediate the branch.) The three branches should be as follows.

– A calls Glue: use a Branch instruction that sets the Link Register (LK=1).
– Glue calls B: place the address of B into the Count Register, and use the bcctr

instruction (LK=0).
– B returns to A: use the bclr instruction (LK=0) (the return address is in, or can

be restored to, the Link Register).
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Table 3-2. Branch Instruction Set Index

3.4 Condition Register Instructions

Table 3-3. Condition Register Instruction Set Index

Mnemonic Instruction Page
b LI
bl LI
ba LI
bla LI

Branch
Branch & Link
Branch Absolute
Branch & Link Absolute

237

be LI
bel LI
bea LI
bela LI

Branch Extended
Branch Extended & Link
Branch Extended Absolute
Branch Extended & Link Absolute

237

bc BO,BI,BD
bcl BO,BI,BD
bca BO,BI,BD
bcla BO,BI,BD

Branch Conditional
Branch Conditional & Link
Branch Conditional Absolute
Branch Conditional & Link Absolute

238

bce BO,BI,BD
bcel BO,BI,BD
bcea BO,BI,BD
bcela BO,BI,BD

Branch Conditional Extended
Branch Conditional Extended & Link
Branch Conditional Extended Absolute
Branch Conditional Extended & Link Absolute

238

bclr BO,BI
bclrl BO,BI

Branch Conditional to Link Register
Branch Conditional to Link Register & Link

240

bclre BO,BI
bclrel BO,BI

Branch Conditional to Link Register Extended
Branch Conditional to Link Register Extended & Link

240

bcctr BO,BI
bcctrl BO,BI

Branch Conditional to Count Register
Branch Conditional to Count Register & Link

239

bcctre BO,BI
bcctrel BO,BI

Branch Conditional to Count Register Extended
Branch Conditional to Count Register Extended & Link

239

Mnemonic Instruction Page
crand BT,BA,BB Condition Register AND 244
crandc BT,BA,BB Condition Register AND with Complement 244
creqv BT,BA,BB Condition Register Equivalent 244
crnand BT,BA,BB Condition Register NAND 245
crnor BT,BA,BB Condition Register NOR 245
cror BT,BA,BB Condition Register OR 245
crorc BT,BA,BB Condition Register OR with Complement 246
crxor BT,BA,BB Condition Register XOR 246
mcrf BF,BFA Move Condition Register Field 305
mfcr RT Move From Condition Register 307
mtcrf FXM,RS Move To Condition Register Fields 311
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Chapter 4 Integer Operations

4.1 Integer Operations Overview

This chapter describes the registers and instructions that make up the integer
operations. Section 4.2 describes the registers associated with the integer opera-
tions. Section 4.3 describes the instructions associated with integer operations.

4.2 Registers for Integer Operations

4.2.1 General Purpose Registers

Implementations of this architecture provide 32 General Purpose Registers (GPRs)
for integer operations. The instruction formats provide 5-bit fields for specifying
the General Purpose Registers to be used in the execution of the instruction. The
General Purpose Registers are numbered 0-31. Each General Purpose Register is
a 64-bit register and can be used to contain address and integer data.

4.2.2 Integer Exception Register

The Integer Exception Register (XER) is a 64-bit register. Table 4-1 provides bit
definitions for the Integer Exception Register.

Integer Exception Register bits are set based on the operation of an instruction
considered as a whole, not on intermediate results (e.g., the Subtract From Carry-
ing instruction, the result of which is specified as the sum of three values, sets
bits in the Integer Exception Register based on the entire operation, not on an
intermediate sum).
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The contents of the Integer Exception Register can be read into a General Purpose
Register using mfspr RT,XER. The contents of a General Purpose Register can be
written to the Integer Exception Register using mtspr XER,RS.

Table 4-1. Integer Exception Register Definition

Bit(s) Description

0 Summary Overflow 64 (SO64)
The Summary Overflow 64 bit is set to 1 whenever an instruction (except mtspr) sets
the Overflow 64 bit to 1. Once set to 1, the SO64 bit remains set until it is cleared
by an mtspr instruction (specifying the Integer Exception Register) or an mcrxr in-
struction. The SO64 bit is not altered by Compare instructions, nor by other instruc-
tions (except mtspr to the Integer Exception Register, and mcrxr64) that cannot
overflow. Executing an mtspr instruction to the Integer Exception Register, supply-
ing the values 0 for SO64 and 1 for OV64, causes SO64 to be set to 0 and OV64 to
be set to 1.

1 Overflow 64 (OV64)
The Overflow 64 bit is set to indicate that an overflow has occurred during execution
of an instruction. X-form Add, Subtract From, and Negate instructions having OE=1
set OV64 to 1 if the carry out of bit 0 is not equal to the carry out of bit 1, and set
OV64 to 0 otherwise. This condition reflects a signed overflow. XO-form Multiply Low
Doubleword and Divide Doubleword instructions having OE=1 set OV64 to 1 if the
result cannot be represented in 64 bits (mulld, divd, divdu), and set OV64 to 0 oth-
erwise. The OV64 bit is not altered by Compare instructions, nor by other instruc-
tions (except mtspr to the Integer Exception Register, and mcrxr64) that cannot
overflow.

2 Carry 64 (CA64)
The Carry 64 bit is set as follows during execution of certain instructions. Add Car-
rying, Subtract From Carrying, Add Extended, and Subtract From Extended instruc-
tions set CA64 to 1 if there is a carry out of bit 0, and set CA64 to 0 otherwise. CA64
can be used to indicate unsigned overflow for add and subtract operations that set
CA64. Shift Right Algebraic Doubleword instructions set CA64 to 1 if any 1-bits have
been shifted out of a negative operand, and set CA64 to 0 otherwise. The CA64 bit
is not altered by Compare instructions, nor by other instructions (except Shift Right
Algebraic, mtspr to the Integer Exception Register, and mcrxr64) that cannot carry.

3:31 Reserved

32 Summary Overflow (SO)
The Summary Overflow bit is set to 1 whenever an instruction (except mtspr) sets
the Overflow bit. Once set, the SO bit remains set until it is cleared by an mtspr in-
struction (specifying the Integer Exception Register) or an mcrxr instruction. The SO
bit is not altered by Compare instructions, nor by other instructions (except mtspr
to the Integer Exception Register, and mcrxr) that cannot overflow. Executing an
mtspr instruction to the Integer Exception Register, supplying the values 0 for SO
and 1 for OV, causes SO to be set to 0 and OV to be set to 1.

33 Overflow (OV)
The Overflow bit is set to indicate that an overflow has occurred during execution of
an instruction. X-form Add, Subtract From, and Negate instructions having OE=1 set
OV to 1 if the carry out of bit 32 is not equal to the carry out of bit 33, and set OV
to 0 otherwise. This condition reflects a signed overflow. X-form Multiply Low Word
and Divide Word instructions having OE=1 set OV to 1 if the result cannot be repre-
sented in 32 bits (mullw, divw, divwu), and set OV to 0 otherwise. The OV bit is not
altered by Compare instructions, nor by other instructions (except mtspr to the In-
teger Exception Register, and mcrxr) that cannot overflow.

34 Carry (CA)
The Carry bit is set as follows, during execution of certain instructions. Add Carry-
ing, Subtract From Carrying, Add Extended, and Subtract From Extended instructions
set it to 1 if there is a carry out of bit 32, and set it to 0 otherwise. CA can be used
to indicate unsigned overflow for add and subtract operations that set CA. Shift Right
Algebraic Word instructions set CA to 1 if any 1-bits have been shifted out of a neg-
ative operand, and set CA to 0 otherwise. The CA bit is not altered by Compare in-
structions, nor by other instructions (except Shift Right Algebraic Word, mtspr to the
Integer Exception Register, and mcrxr) that cannot carry.
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4.3 Integer Instructions

4.3.1 Integer Load Instructions

The Integer Load instructions compute the effective address (EA) of the storage to
be accessed as described in Section 1.11.2, “Effective Address Calculation”, on
page 31.

The byte, halfword, word, or doubleword in storage addressed by EA is loaded into
GPR(RT).

Many of the Integer Load instructions have an ‘update’ form, in which GPR(RA) is
updated with the effective address. For these forms, if RA≠0 and RA≠RT, the effec-
tive address is placed into GPR(RA) and the storage element (byte, halfword, word,
or doubleword) addressed by EA is loaded into GPR(RT). If RA=0 or RA=RT, the
instruction form is invalid.

Integer Load storage accesses will cause a Data Storage interrupt if the program is
not allowed to read the storage location. Integer Load storage accesses will cause a
Data TLB Error interrupt if the program attempts to access storage that is
unavailable (.e. not currently mapped by the TLB).

Book E supports both Big-Endian and Little-Endian byte ordering.

Table 4-2. Basic Integer Load Instruction Set Index

35:56 Reserved

57:63 This field specifies the number of bytes to be transferred by a Load String Indexed or
Store String Indexed instruction.

Programming Note
In some implementations, the Load Halfword Algebraic and ‘with update’ Integer Load
instructions may have greater latency than other types of Load instructions. Moreover,
‘with update’ Integer Load instructions may take longer to execute in some implementa-
tions than the corresponding pair of a non-update Load instruction and an Add
instruction.

Programming Note
The DES field in DE-form Integer Load instructions is a word offset, not a byte offset like
the DE field in DE-form Integer Load instructions and D field in D-form Integer Load
instructions. However, for programming convenience, assemblers should support the
specification of byte offsets for both forms of instruction.

Engineering Note
Implementations are strongly recommended to ignore bit 31 of instruction encodings for
X-form Integer Load instructions.

Mnemonic Instruction Page
lbz RT,D(RA)
lbzu RT,D(RA)

Load Byte and Zero
Load Byte and Zero with Update

289

Bit(s) Description
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Table 4-3. Integer Load Byte-Reverse Instruction Set Index

Table 4-4. Integer Load Multiple Instruction Set Index

Table 4-5. Integer Load String Instruction Set Index

lbze RT,DE(RA)
lbzue RT,DE(RA)

Load Byte and Zero Extended
Load Byte and Zero with Update Extended

289

lbzx RT,RA,RB
lbzux RT,RA,RB

Load Byte and Zero Indexed
Load Byte and Zero with Update Indexed

289

lbzxe RT,RA,RB
lbzuxe RT,RA,RB

Load Byte and Zero Indexed Extended
Load Byte and Zero with Update Indexed Extended

289

lde RT,DES(RA)
ldue RT,DES(RA)

Load Doubleword Extended
Load Doubleword with Update Extended

291

ldxe RT,RA,RB
lduxe RT,RA,RB

Load Doubleword Indexed Extended
Load Doubleword with Update Indexed Extended

291

lha RT,D(RA)
lhau RT,D(RA)

Load Halfword Algebraic
Load Halfword Algebraic with Update

294

lhae RT,DE(RA)
lhaue RT,DE(RA)

Load Halfword Algebraic Extended
Load Halfword Algebraic with Update Extended

294

lhax RT,RA,RB
lhaux RT,RA,RB

Load Halfword Algebraic Indexed
Load Halfword Algebraic with Update Indexed

294

lhaxe RT,RA,RB
lhauxe RT,RA,RB

Load Halfword Algebraic Indexed Extended
Load Halfword Algebraic with Update Indexed Extended

294

lhz RT,D(RA)
lhzu RT,D(RA)

Load Halfword and Zero
Load Halfword and Zero with Update

296

lhze RT,DE(RA)
lhzue RT,DE(RA)

Load Halfword and Zero Extended
Load Halfword and Zero with Update Extended

296

lhzx RT,RA,RB
lhzux RT,RA,RB

Load Halfword and Zero Indexed
Load Halfword and Zero with Update Indexed

296

lhzxe RT,RA,RB
lhzuxe RT,RA,RB

Load Halfword and Zero Indexed Extended
Load Halfword and Zero with Update Indexed Extended

296

lwz RT,D(RA)
lwzu RT,D(RA)

Load Word and Zero
Load Word and Zero with Update

303

lwze RT,DE(RA)
lwzue RT,DE(RA)

Load Word and Zero Extended
Load Word and Zero with Update Extended

303

lwzx RT,RA,RB
lwzux RT,RA,RB

Load Word and Zero Indexed
Load Word and Zero with Update Indexed

303

lwzxe RT,RA,RB
lwzuxe RT,RA,RB

Load Word and Zero Indexed Extended
Load Word and Zero with Update Indexed Extended

303

Mnemonic Instruction Page
lhbrx RT,RA,RB Load Halfword Byte-Reverse Indexed 295
lhbrxe RT,RA,RB Load Halfword Byte-Reverse Indexed Extended 295
lwbrx RT,RA,RB Load Word Byte-Reverse Indexed 302
lwbrxe RT,RA,RB Load Word Byte-Reverse Indexed Extended 302
When used in a Book E system operating with Big-Endian byte order, these instructions have the effect
of loading data in Little-Endian order. Likewise, when used in a Book E system operating with Little-
Endian byte order, these instructions have the effect of loading data in Big-Endian order.

Mnemonic Instruction Page
lmw RT,D(RA) Load Multiple Word 297

Mnemonic Instruction Page
lswi RT,RA,NB Load String Word Immediate 298
lswx RT,RA,RB Load String Word Indexed 298
The Integer Load String instructions, in combination with the Integer Store String instructions, allow
movement of data from storage to registers or from registers to storage without concern for alignment.
These instructions can be used for a short move between arbitrary storage locations or to initiate a long
move between unaligned storage fields.

Mnemonic Instruction Page
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Table 4-6. Integer Load and Reserve Instruction Set Index

4.3.2 Integer Store Instructions

The Integer Store instructions compute the effective address (EA) of the storage to
be accessed as described in Section 1.11.2, “Effective Address Calculation”, on
page 31.

The contents of GPR(RS) are stored into the byte, halfword, word, or doubleword
in storage addressed by EA.

Many of the Integer Store instructions have an ‘update’ form, in which GPR(RA) is
updated with the effective address. For these forms, the following rules apply.

• If RA≠0, the effective address is placed into GPR(RA).

• If RS=RA, the contents of GPR(RS) are copied to the target storage element
and then EA is placed into GPR(RA).

Integer Store storage accesses will cause a Data Storage interrupt if the program is
not allowed to write to the storage location. Integer Store storage accesses will
cause a Data TLB Error interrupt if the program attempts to access storage that is
unavailable.

Book E supports both Big-Endian and Little-Endian byte ordering.

Mnemonic Instruction Page
ldarxe RT,RA,RB Load Doubleword And Reserve Indexed Extended 290
lwarx RT,RA,RB
lwarxe RT,RA,RB

Load Word And Reserve Indexed
Load Word And Reserve Indexed Extended

300

The Integer Load And Reserve instructions (lwarx, lwarxe, and ldarxe), in combination with the Integer
Store Conditional instructions (stwcx., stwcxe., and stdcxe.), permit the programmer to write a
sequence of instructions that appear to perform an atomic update operation on a storage location. This
operation depends upon a single reservation resource in each processor. At most one reservation exists
on any given processor: there are not separate reservations for words and for doublewords.
Programming Note
Because the Integer Load And Reserve instructions have implementation dependencies (e.g., the granu-
larity at which reservations are managed), they must be used with care. The operating system should
provide system library programs that use these instructions to implement the high-level synchronization
functions (Test and Set, Compare and Swap, etc.) needed by application programs. Application pro-
grams should use these library programs, rather than use the Integer Load And Reserve instructions
directly.
Architecture Note
The Integer Load And Reserve instructions require the EA to be aligned. Software should not attempt to
emulate an unaligned Load And Reserve instruction, because there is no correct way to define the
address associated with the reservation.
Engineering Note
Causing an Alignment interrupt to be invoked if an attempt is made to execute a Load And Reserve
instruction having an incorrectly aligned effective address facilitates the debugging of software by signal-
ling the exception when and where the exception occurs.
Programming Note
The granularity with which reservations are managed is implementation-dependent. Therefore the stor-
age to be accessed by the Load And Reserve instructions should be allocated by a system library pro-
gram. Additional information can be found in Section 6.1.6.2, “Atomic Update Primitives”, on page 117.

Programming Note
The DES field in DE-form Integer Store instructions is a word offset, not a byte offset like
the DE field in DE-form Integer Store instructions and D field in D-form Integer Store
instructions. However, for programming convenience, assemblers should support the
specification of byte offsets for both forms of instruction.
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Table 4-7. Basic Integer Store Instruction Set Index

Table 4-8. Integer Store Byte-Reverse Instruction Set Index

Table 4-9. Integer Store Multiple Instruction Set Index

Table 4-10. Integer Store String Instruction Set Index

Engineering Note
Implementations are strongly recommended to ignore bit 31 of instruction encodings for
X-form Integer Store instructions.

Mnemonic Instruction Page
stb RS,D(RA)
stbu RS,D(RA)

Store Byte
Store Byte with Update

341

stbe RS,DE(RA)
stbue RS,DE(RA)

Store Byte Extended
Store Byte with Update Extended

341

stbx RS,RA,RB
stbux RS,RA,RB

Store Byte Indexed
Store Byte with Update Indexed

341

stbxe RS,RA,RB
stbuxe RS,RA,RB

Store Byte Indexed Extended
Store Byte with Update Indexed Extended

341

stde RS,DES(RA)
stdue RS,DES(RA)

Store Doubleword Extended
Store Doubleword with Update Extended

343

stdxe RS,RA,RB
stduxe RS,RA,RB

Store Doubleword Indexed Extended
Store Doubleword with Update Indexed Extended

343

sth RS,D(RA)
sthu RS,D(RA)

Store Halfword
Store Halfword with Update

347

sthe RS,DE(RA)
sthue RS,DE(RA)

Store Halfword Extended
Store Halfword with Update Extended

347

sthx RS,RA,RB
sthux RS,RA,RB

Store Halfword Indexed
Store Halfword with Update Indexed

347

sthxe RS,RA,RB
sthuxe RS,RA,RB

Store Halfword Indexed Extended
Store Halfword with Update Indexed Extended

347

stw RS,D(RA)
stwu RS,D(RA)

Store Word
Store Word with Update

351

stwe RS,DE(RA)
stwue RS,DE(RA)

Store Word Extended
Store Word with Update Extended

351

stwx RS,RA,RB
stwux RS,RA,RB

Store Word Indexed
Store Word with Update Indexed

351

stwxe RS,RA,RB
stwuxe RS,RA,RB

Store Word Indexed Extended
Store Word with Update Indexed Extended

351

Mnemonic Instruction Page
sthbrx RS,RA,RB Store Halfword Byte-Reverse Indexed 348
sthbrxe RS,RA,RB Store Halfword Byte-Reverse Indexed Extended 348
stwbrx RS,RA,RB Store Word Byte-Reverse Indexed 352
stwbrxe RS,RA,RB Store Word Byte-Reverse Indexed Extended 352
When used in a Book E system operating with Big-Endian byte order, these instructions have the effect
of storing data in Little-Endian order. Likewise, when used in a Book E system operating with Little-
Endian byte order, these instructions have the effect of storing data in Big-Endian order.

Mnemonic Instruction Page
stmw RS,D(RA) Store Multiple Word 349

Mnemonic Instruction Page
stswi RS,RA,NB Store String Word Immediate 350
stswx RS,RA,RB Store String Word Indexed 350
The Integer Store String instructions, in combination with the Integer Load String instructions, allow
movement of data from storage to registers or from registers to storage without concern for alignment.
These instructions can be used for a short move between arbitrary storage locations or to initiate a long
move between unaligned storage fields.
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Table 4-11. Integer Store Conditional Instruction Set Index

4.3.3 Integer Arithmetic Instructions

The integer arithmetic instructions use the contents of the GPRs as source oper-
ands, and place results into GPRs, into status bits in the Integer Exception Regis-
ter, and into CR Field 0. addi and addis use the value 0, not the contents of
GPR(0), if RA=0.

The integer arithmetic instructions treat source operands as signed, two’s comple-
ment integers unless the instruction is explicitly identified as performing an
unsigned operation.

The X-form instructions with Rc=1, and the D-form instruction addic. set the
first three bits of CR Field 0 to characterize bits 32:63 of the result that is placed
in the target register. These bits are set by signed comparison of bits 32:63 of the
result to zero.

addic[.], subfic, addc[o][.], subfc[o][.], adde[o][.], subfe[o][.], addme[o][.], sub-
fme[o][.], addze[o][.], and subfze[o][.] always set CA and CA64 to reflect the carry
out of bit 32 and the carry out of bit 0, respectively.

The X-form Arithmetic instructions set SO and OV when OE=1 to reflect overflow
of bits 32:63 of the result. X-form Arithmetic instructions also set SO64 and OV64
when OE=1 to reflect overflow of bits 0:63 of the result.

Mnemonic Instruction Page
stdcxe. RS,RA,RB Store Doubleword Conditional Indexed Extended 342
stwcx. RS,RA,RB
stwcxe. RS,RA,RB

Store Word Conditional Indexed
Store Word Conditional Indexed Extended

353

The Integer Store Conditional instructions (stwcx., stwcxe., and stdcxe.), in combination with the Inte-
ger Load And Reserve instructions (lwarx, lwarxe, and ldarxe), permit the programmer to write a
sequence of instructions that appear to perform an atomic update operation on a storage location. This
operation depends upon a single reservation resource in each processor. At most one reservation exists
on any given processor: there are not separate reservations for words and for doublewords.
Programming Note
Because the Integer Store Conditional instructions have implementation dependencies (e.g., the granu-
larity at which reservations are managed), they must be used with care. The operating system should
provide system library programs that use these instructions to implement the high-level synchronization
functions (Test and Set, Compare and Swap, etc.) needed by application programs. Application pro-
grams should use these library programs, rather than use the Integer Store Conditional instructions
directly.
Architecture Note
The Integer Store Conditional instructions require the EA to be aligned. Software should not attempt to
emulate an unaligned Integer Store Conditional instruction, because there is no correct way to define the
address associated with the reservation.
Engineering Note
Causing an Alignment interrupt to be invoked if an attempt is made to execute an Integer Store Condi-
tional instruction having an incorrectly aligned effective address facilitates the debugging of software by
signalling the exception when and where the exception occurs.
Programming Note
The granularity with which reservations are managed is implementation-dependent. Therefore the stor-
age to be accessed by the Integer Store Conditional instructions should be allocated by a system library
program. Additional information can be found in Section 6.1.6.2, “Atomic Update Primitives”, on
page 117.

Programming Note
Instructions with the OE bit set or that set CA may execute slowly or may prevent the
execution of subsequent instructions until the instruction has completed.
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For mulld, divd, and divdu, SO, OV and CA are not modified. For mullw, divw,
and divwu, SO64, OV64 and CA64 are not affected.

Table 4-12. Integer Arithmetic Instruction Set Index

Programming Note
Notice that CR Field 0 may not reflect the ‘true’ (infinitely precise) result if overflow
occurs.

Programming Note
addi, addis, add, and subf are the preferred instructions for addition and subtraction,
because they set few status bits.

Mnemonic Instruction Page
add RT,RA,RB
add. RT,RA,RB
addo RT,RA,RB
addo. RT,RA,RB

Add 229

addc RT,RA,RB
addc. RT,RA,RB
addco RT,RA,RB
addco. RT,RA,RB

Add Carrying 230

adde RT,RA,RB
adde. RT,RA,RB
addeo RT,RA,RB
addeo. RT,RA,RB
adde64 RT,RA,RB
adde64o RT,RA,RB

Add Extended 231

addi RT,RA,SI
addis RT,RA,SI

Add Immediate
Add Immediate Shifted

232

addic RT,RA,SI
addic. RT,RA,SI

Add Immediate Carrying 233

addme RT,RA,RB
addme. RT,RA,RB
addmeo RT,RA,RB
addmeo. RT,RA,RB
addme64 RT,RA,RB
addme64oRT,RA,RB

Add to Minus One Extended 234

addze RT,RA,RB
addze. RT,RA,RB
addzeo RT,RA,RB
addzeo. RT,RA,RB
addze64 RT,RA,RB
addze64o RT,RA,RB

Add to Zero Extended 235

divd RT,RA,RB
divdo RT,RA,RB

Divide Doubleword 255

divdu RT,RA,RB
divduo RT,RA,RB

Divide Doubleword Unsigned 256

divw RT,RA,RB
divw. RT,RA,RB
divwo RT,RA,RB
divwo. RT,RA,RB

Divide Word 257

divwu RT,RA,RB
divwu. RT,RA,RB
divwuo RT,RA,RB
divwuo. RT,RA,RB

Divide Word Unsigned 258

mulhd RT,RA,RB Multiply High Doubleword 317
mulhdu RT,RA,RB Multiply High Doubleword Unsigned 317
mulhw RT,RA,RB
mulhw. RT,RA,RB

Multiply High Word 318

mulhwu RT,RA,RB
mulhwu. RT,RA,RB

Multiply High Word Unsigned 318

mulld RT,RA,RB
mulldo RT,RA,RB

Multiply Low Doubleword 319

mulli RT,RA,SI Multiply Low Immediate 319
mullw RT,RA,RB
mullw. RT,RA,RB
mullwo RT,RA,RB
mullwo. RT,RA,RB

Multiply Low Word 320

neg RT,RA
neg. RT,RA
nego RT,RA
nego. RT,RA

Negate 322
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4.3.4 Integer Logical Instructions

The Logical instructions perform bit-parallel operations on 64-bit operands.

The X-form Logical instructions with Rc=1, and the D-form Logical instructions
andi. and andis. set the first three bits of CR Field 0 as described in Section
4.3.3, “Integer Arithmetic Instructions”, on page 59. The Logical instructions do
not change the SO, OV, CA, SO64, OV64 and CA64 bits in the Integer Exception
Register.

Table 4-13. Integer Logical Instruction Set Index

subf RT,RA,RB
subf. RT,RA,RB
subfo RT,RA,RB
subfo. RT,RA,RB

Subtract From 355

subfc RT,RA,RB
subfc. RT,RA,RB
subfco RT,RA,RB
subfco. RT,RA,RB

Subtract From Carrying 356

subfe RT,RA,RB
subfe. RT,RA,RB
subfeo RT,RA,RB
subfeo. RT,RA,RB
subfe64 RT,RA,RB
subfe64o RT,RA,RB

Subtract From Extended 357

subfic RT,RA,SI Subtract From Immediate Carrying 358
subfme RT,RA,RB
subfme. RT,RA,RB
subfmeo RT,RA,RB
subfmeo. RT,RA,RB
subfme64 RT,RA,RB
subfme64oRT,RA,RB

Subtract From Minus One Extended 359

subfze RT,RA,RB
subfze. RT,RA,RB
subfzeo RT,RA,RB
subfzeo. RT,RA,RB
subfze64 RT,RA,RB
subfze64o RT,RA,RB

Subtract From Zero Extended 360

Mnemonic Instruction Page
and[.] RA,RS,RB AND 236
andc[.] RA,RS,RB AND with Complement 236
andi. RA,RS,UI AND Immediate 236
andis. RA,RS,UI AND Immediate Shifted 236
cntlzd RA,RS Count Leading Zeros Doubleword 243
cntlzw RA,RS
cntlzw. RA,RS

Count Leading Zeros Word 243

eqv RA,RS,RB
eqv. RA,RS,RB

Equivalent 259

extsb RA,RS
extsb. RA,RS

Extend Sign Byte 260

extsh RA,RS
extsh. RA,RS

Extend Sign Halfword 260

extsw RA,RS Extend Sign Word 260
nand RA,RS,RB
nand. RA,RS,RB

NAND 321

nor RA,RS,RB
nor. RA,RS,RB

NOR 323

or RA,RS,RB
or. RA,RS,RB

OR 324

orc RA,RS,RB
orc. RA,RS,RB

OR with Complement 324

ori RA,RS,UI OR Immediate 324
oris RA,RS,UI OR Immediate Shifted 324
xor RA,RS,RB
xor. RA,RS,RB

XOR 369

xori RA,RS,UI XOR Immediate 369

Mnemonic Instruction Page
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4.3.5 Integer Compare Instructions

The integer Compare instructions compare the contents of GPR(RA) with (1) the
sign-extended value of the SI field, (2) the zero-extended value of the UI field, or (3)
the contents of GPR(RB). The comparison is signed for cmpi and cmp, and
unsigned for cmpli and cmpl.

For 64-bit implementations, the L field controls whether the operands are treated
as 64-bit or 32-bit quantities, as follows:

L Operand length
0 32-bit operands
1 64-bit operands

When the operands are treated as 32-bit signed quantities, bit 32 of the register
(RA or RB) is the sign bit.

For 32-bit implementations, the L field must be zero.

The Compare instructions set one bit in the left-most three bits of the designated
CR field to 1, and the other two to 0. The SO bit of the Integer Exception Register
is copied to bit 3 of the designated CR field.

The CR field is set as follows.

Bit Name Description

0 LT (RA) < SI or GPR(RB) (signed comparison)
(RA) <u UI or GPR(RB) (unsigned comparison)

1 GT (RA) > SI or GPR(RB) (signed comparison)
(RA) >u UI or GPR(RB) (unsigned comparison)

2 EQ (RA) = SI, UI, or GPR(RB)

3 SO Summary Overflow from the Integer Exception Register

Table 4-14. Integer Compare Instruction Set Index

4.3.6 Integer Trap Instructions

The Trap instructions are provided to test for a specified set of conditions from
comparing the contents of one GPR with a second GPR or immediate data. If any
of the conditions tested by a Trap instruction are met, a Trap exception type Pro-

xoris RA,RS,UI XOR Immediate Shifted 369

Mnemonic Instruction Page
cmp BF,L,RA,RB Compare 241
cmpi BF,L,RA,SI Compare Immediate 241
cmpl BF,L,RA,RB Compare Logical 242
cmpli BF,L,RA,SI Compare Logical Immediate 242

Mnemonic Instruction Page
62 Book E: Enhanced PowerPC Architecture Version 1.0 07 May 02



gram interrupt is invoked. If none of the tested conditions are met, instruction
execution continues normally.

The contents of GPR(RA) are compared with either the sign-extended value of the
SI field or the contents of GPR(RB), depending on the Trap instruction. For tdi
and td, the entire contents of RA (and RB) participate in the comparison; for twi
and tw, only the contents of bits 32:63 of RA (and RB) participate in the compari-
son.

This comparison results in five conditions which are ANDed with TO. If the result
is not 0 the Trap exception type Program interrupt is invoked. These conditions
are as follows.

TO Bit ANDed with Condition
0 Less Than, using signed comparison
1 Greater Than, using signed comparison
2 Equal
3 Less Than, using unsigned comparison
4 Greater Than, using unsigned comparison

Table 4-15. Integer Compare Instruction Set Index

4.3.7 Integer Rotate and Shift Instructions

Instructions are provided that perform rotation operations on data from a GPR
and return the result, or a portion of the result, to a GPR.

The rotation operations rotate a 64-bit quantity left by a specified number of bit
positions. Bits that exit from position 0 enter at position 63.

Two types of rotation operation are supported.

For the first type, denoted rotate64 or ROTL64, the value rotated is the given 64-bit
value. The rotate64 operation is used to rotate a given 64-bit quantity.

For the second type, denoted rotate32 or ROTL32, the value rotated consists of two
copies of the given 32-bit value, one copy in bits 0:31 and the other in bits 32:63.
The rotate32 operation is used to rotate a given 32-bit quantity employing the 64-
bit rotator.

The Rotate and Shift instructions employ a mask generator. The mask is 64 bits
long, and consists of 1-bits from a start bit, mstart, through and including a stop
bit, mstop, and 0-bits elsewhere. The values of mstart and mstop range from 0 to
63. If mstart > mstop, the 1-bits wrap around from position 63 to position 0. Thus
the mask is formed as follows:

Mnemonic Instruction Page
td TO,RA,RB Trap Doubleword 361
tdi TO,RA,SI Trap Doubleword Immediate 361
tw TO,RA,RB Trap Word 367
twi TO,RA,SI Trap Word Immediate 367
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    if mstart ≤ mstop then
       mask mstart:mstop  = ones
       mask all other bits  = zeros
    else
       mask mstart:63  = ones
       mask 0:mstop  = ones
       mask all other bits  = zeros

There is no way to specify an all-zero mask.

For instructions that use the rotate32 operation, the mask start and stop positions
are always in bits 32:63 of the mask.

The use of the mask is described in following sections.

The Rotate Word and Shift Word instructions with Rc=1 set the first three bits of
CR field 0 as described in Section 4.3.3, “Integer Arithmetic Instructions”, on
page 59. Rotate and Shift instructions do not change the OV, OV64, SO, and SO64
bits. Rotate and Shift instructions, except algebraic right shifts, do not change the
CA or CA64 bits.

Table 4-16. Integer Rotate Instruction Set Index

Table 4-17. Integer Shift Instruction Set Index

Mnemonic Instruction Page
rldcl RA,RS,RB,MB Rotate Left Doubleword then Clear Left 327
rldcr RA,RS,RB,ME Rotate Left Doubleword then Clear Right 328
rldic RA,RS,SH,MB Rotate Left Doubleword Immediate then Clear 329
rldicl RA,RS,SH,MB Rotate Left Doubleword Immediate then Clear Left 327
rldicr RA,RS,SH,ME Rotate Left Doubleword Immediate then Clear Right 328
rldimi RA,RS,SH,MB Rotate Left Doubleword Immediate then Mask Insert 330
rlwimi RA,RS,SH,MB,ME
rlwimi. RA,RS,SH,MB,ME

Rotate Left Word Immediate then Mask Insert 331

rlwinm RA,RS,SH,MB,ME
rlwinm. RA,RS,SH,MB,ME

Rotate Left Word Immediate then AND with Mask 332

rlwnm RA,RS,RB,MB,ME
rlwnm. RA,RS,RB,MB,ME

Rotate Left Word then AND with Mask 332

These instructions rotate the contents of a register. Depending on the instruction type, the result of the
rotation is either

• inserted into the target register under control of a mask (if a mask bit is 1 the associated bit of the
rotated data is placed into the target register, and if the mask bit is 0 the associated bit in the tar-
get register remains unchanged); or

• ANDed with a mask before being placed into the target register.

The Rotate Left instructions allow right-rotation of the contents of a register to be performed (in concept)
by a left-rotation of 64-n, where n is the number of bits by which to rotate right. They allow right-rotation
of the contents of bits 32:63 of a register to be performed (in concept) by a left-rotation of 32-n, where n
is the number of bits by which to rotate right.
Architecture Note
For MD-form and MDS-form instructions, the MB and ME fields are used in permuted rather than
sequential order because this is easier for the processor. Permuting the MB field permits the processor
to obtain the low-order five bits of the MB value from the same place for all instructions having an MB
field (M-form and MD-form instructions). Permuting the ME field permits the processor to treat bits
21:26 of all MD-form instructions uniformly.

Mnemonic Instruction Page
sld RA,RS,RB Shift Left Doubleword 335
slw RA,RS,RB
slw. RA,RS,RB

Shift Left Word 336

srad RA,RS,RB Shift Right Algebraic Doubleword 337
sradi RA,RS,SH Shift Right Algebraic Doubleword Immediate 337
sraw RA,RS,RB
sraw. RA,RS,RB

Shift Right Algebraic Word 338

srawi RA,RS,SH
srawi. RA,RS,SH

Shift Right Algebraic Word Immediate 338
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4.3.8 Integer Exception Register Instructions

Table 4-18. Integer Exception Register Instruction Set Index

srd RA,RS,RB Shift Right Doubleword 339
srw RA,RS,RB
srw. RA,RS,RB

Shift Right Word 340

Programming Note
Any Shift Right Algebraic instruction, followed by addze, can be used to divide quickly by 2n.
Programming Note
Multiple-precision shifts can be programmed as shown in Section C.2, “Multiple-Precision Shifts”, on
page 387.
Engineering Note
The instructions intended for use with 32-bit data are shown as doing a rotate32 operation. This is
strictly necessary only for setting the CA bit for srawi and sraw. slw and srw could do a rotate64 oper-
ation if that is easier.

Mnemonic Instruction Page
mcrxr BF Move to Condition Register from Integer Exception Register 306
mcrxr64 BF Move to Condition Register from Integer Exception Register 64 306

Mnemonic Instruction Page
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Chapter 5 Floating-Point Operations

5.1 Overview

This chapter describes the registers and instructions that make up the floating-
point operations. Section 5.2 on page 69 describes the registers associated with
floating-point operations. Section 5.6 on page 98 describes the instructions asso-
ciated with floating-point operations.

This architecture specifies that the processor implement a floating-point system
as defined in ANSI/IEEE Standard 754-1985, ‘IEEE Standard for Binary Floating-
Point Arithmetic’ (hereafter referred to as ‘the IEEE standard’), but requires soft-
ware support in order to conform fully with that standard. That standard defines
certain required ‘operations’ (addition, subtraction, etc.); the term ‘floating-point
operation’ is used in this chapter to refer to one of these required operations, or to
the operation performed by one of the Multiply-Add or Reciprocal Estimate instruc-
tions. All floating-point operations conform to that standard, except if software
sets the Floating-Point Non-IEEE Mode (NI) bit in the Floating-Point Status and
Control Register to 1 (see page 71), in which case floating-point operations do not
necessarily conform to that standard.

Instructions are provided to perform arithmetic, rounding, conversion, compari-
son, and other operations in floating-point registers; to move floating-point data
between storage and these registers; and to manipulate the Floating-Point Status
and Control Register explicitly.

These instructions are divided into two categories.

• computational instructions

The computational instructions are those that perform addition, subtraction,
multiplication, division, extracting the square root, rounding, conversion,
comparison, and combinations of these operations. These instructions pro-
vide the floating-point operations. They place status information into the
Floating-Point Status and Control Register. They are the instructions
described in Section 5.6.4, Section 5.6.5, and Section 5.6.6.

• non-computational instructions
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The non-computational instructions are those that perform loads and stores,
move the contents of a floating-point register to another floating-point regis-
ter possibly altering the sign, manipulate the Floating-Point Status and
Control Register explicitly, and select the value from one of two floating-point
registers based on the value in a third floating-point register. The operations
performed by these instructions are not considered floating-point operations.
With the exception of the instructions that manipulate the Floating-Point Sta-
tus and Control Register explicitly, they do not alter the Floating-Point Status
and Control Register. They are the instructions described in Sections 5.6.1
through 5.6.3, and 5.6.7.

A floating-point number consists of a signed exponent and a signed significand.
The quantity expressed by this number is the product of the significand and the
number 2exponent. Encodings are provided in the data format to represent finite
numeric values, ±Infinity, and values that are ‘Not a Number’ (NaN). Operations
involving infinities produce results obeying traditional mathematical conventions.
NaNs have no mathematical interpretation. Their encoding permits a variable
diagnostic information field. They may be used to indicate such things as unini-
tialized variables and can be produced by certain invalid operations.

There is one class of exceptional events that occur during instruction execution
that is unique to floating-point operations: the Floating-Point Exception. Floating-
point exceptions are signaled with bits set in the Floating-Point Status and Con-
trol Register (FPSCR). They can cause an Enabled exception type Program inter-
rupt to be taken, precisely or imprecisely, if the proper control bits are set.

Floating-Point Exceptions

The following floating-point exceptions are detected by the processor:

• Invalid Operation Exception (VX)

SNaN (VXSNAN)
Infinity-Infinity (VXISI)
Infinity÷Infinity (VXIDI)
Zero÷Zero (VXZDZ)
Infinity×Zero (VXIMZ)
Invalid Compare (VXVC)
Software Request (VXSOFT)
Invalid Square Root (VXSQRT)
Invalid Integer Convert (VXCVI)

• Zero Divide Exception (ZX)
• Overflow Exception (OX)
• Underflow Exception (UX)
• Inexact Exception (XX)

Each floating-point exception, and each category of Invalid Operation Exception,
has an exception bit in the Floating-Point Status and Control Register. In addi-
tion, each floating-point exception has a corresponding enable bit in the Floating-
Point Status and Control Register. See Section 5.2.2 on page 69 for a description
of these exception and enable bits, and Section 5.4 on page 81 for a detailed dis-
cussion of floating-point exceptions, including the effects of the enable bits.
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5.2 Registers for Floating-Point Operations

5.2.1 Floating-Point Registers

Implementations of this architecture provide 32 Floating-Point Registers (FPRs).
The floating-point instruction formats provide 5-bit fields for specifying the Float-
ing-Point Registers to be used in the execution of the instruction. The Floating-
Point Registers are numbered 0-31.

Each Floating-Point Register contains 64 bits that support the floating-point dou-
ble format. Every instruction that interprets the contents of a Floating-Point Reg-
ister as a floating-point value uses the floating-point double format for this
interpretation.

The computational instructions, and the Move and Select instructions, operate on
data located in Floating-Point Registers and, with the exception of the Compare
instructions, place the result value into a Floating-Point Register and optionally
place status information into the Condition Register.

Load and store double instructions are provided that transfer 64 bits of data
between storage and the Floating-Point Registers with no conversion. Load single
instructions are provided to transfer and convert floating-point values in floating-
point single format from storage to the same value in floating-point double format
in the Floating-Point Registers. Store single instructions are provided to transfer
and convert floating-point values in floating-point double format from the Float-
ing-Point Registers to the same value in floating-point single format in storage.

Instructions are provided that manipulate the Floating-Point Status and Control
Register and the Condition Register explicitly. Some of these instructions copy
data from a Floating-Point Register to the Floating-Point Status and Control Reg-
ister or vice versa.

The computational instructions and the Select instruction accept values from the
Floating-Point Registers in double format. For single-precision arithmetic instruc-
tions, all input values must be representable in single format; if they are not, the
result placed into the target Floating-Point Register, and the setting of status bits
in the Floating-Point Status and Control Register and in the Condition Register (if
Rc=1), are undefined.

5.2.2 Floating-Point Status and Control Register

The Floating-Point Status and Control Register (FPSCR) controls the handling of
floating-point exceptions and records status resulting from the floating-point
operations. Bits 32:55 are status bits. Bits 56:63 are control bits.

The exception bits in the Floating-Point Status and Control Register (bits 35:45,
53:55) are sticky; that is, once set to 1 they remain set to 1 until they are set to 0
by an mcrfs, mtfsfi, mtfsf, or mtfsb0 instruction. The exception summary bits
in the Floating-Point Status and Control Register (FX, FEX, and VX, which are
bits 32:34) are not considered to be ‘exception bits’, and only FX is sticky.
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FEX and VX are simply the OR of other Floating-Point Status and Control Register
bits. Therefore these two bits are not listed among the Floating-Point Status and
Control Register bits affected by the various instructions.

Table 5-1. Floating-Point Status and Control Register Definition

Bit(s) Description

32 Floating-Point Exception Summary (FX)
Every floating-point instruction, except mtfsfi and mtfsf, implicitly sets FPSCRFX to
1 if that instruction causes any of the floating-point exception bits in the Floating-
Point Status and Control Register to change from 0 to 1. mcrfs, mtfsfi, mtfsf,
mtfsb0, and mtfsb1 can alter FPSCRFX explicitly.

33 Floating-Point Enabled Exception Summary (FEX)
This bit is the OR of all the floating-point exception bits masked by their respective
enable bits. mcrfs, mtfsfi, mtfsf, mtfsb0, and mtfsb1 cannot alter FPSCRFEX ex-
plicitly.

34 Floating-Point Invalid Operation Exception Summary (VX)
This bit is the OR of all the Invalid Operation exception bits. mcrfs, mtfsfi, mtfsf,
mtfsb0, and mtfsb1 cannot alter FPSCRVX explicitly.

35 Floating-Point Overflow Exception (OX)
See Section 5.4.3 on page 89.

36 Floating-Point Underflow Exception (UX)
See Section 5.4.4 on page 91.

37 Floating-Point Zero Divide Exception (ZX)
See Section 5.4.2 on page 88.

38 Floating-Point Inexact Exception (XX)
See Section 5.4.5 on page 93.

FPSCRXX is a sticky version of FPSCRFI (see below). Thus the following rules com-
pletely describe how FPSCRXX is set by a given instruction.

• If the instruction affects FPSCRFI, the new value of FPSCRXX is obtained by ORing
the old value of FPSCRXX with the new value of FPSCRFI.

• If the instruction does not affect FPSCRFI, the value of FPSCRXX is unchanged.

39 Floating-Point Invalid Operation Exception (SNaN) (VXSNAN)
See Section 5.4.1 on page 85.

40 Floating-Point Invalid Operation Exception (∞-∞) (VXISI)
See Section 5.4.1 on page 85.

41 Floating-Point Invalid Operation Exception (∞÷∞) (VXIDI)
See Section 5.4.1 on page 85.

42 Floating-Point Invalid Operation Exception (0÷0) (VXZDZ)
See Section 5.4.1 on page 85.

43 Floating-Point Invalid Operation Exception (∞×0) (VXIMZ)
See Section 5.4.1 on page 85.

44 Floating-Point Invalid Operation Exception (Invalid Compare) (VXVC)
See Section 5.4.1 on page 85.

45 Floating-Point Fraction Rounded (FR)
The last Arithmetic or Rounding and Conversion instruction incremented the fraction
during rounding. See Section 5.3.6 on page 79. This bit is not sticky.

46 Floating-Point Fraction Inexact (FI)
The last Arithmetic or Rounding and Conversion instruction either produced an inex-
act result during rounding or caused a disabled Overflow Exception. See
Section 5.3.6 on page 79. This bit is not sticky.

See the definition of FPSCRXX, above, regarding the relationship between FPSCRFI
and FPSCRXX.
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47:51 Floating-Point Result Flags (FPRF)
This field is set as described below. For arithmetic, rounding, and conversion instruc-
tions, the field is set based on the result placed into the target register, except that if
any portion of the result is undefined then the value placed into FPRF is undefined.
See Table 5-2 on page 72.

47 Floating-Point Result Class Descriptor (C)
Arithmetic, rounding, and conversion instructions may set this bit with the FPCC
bits, to indicate the class of the result.

48:51 Floating-Point Condition Code (FPCC)
Floating-point Compare instructions set one of the FPCC bits to 1 and the other three
FPCC bits to 0. Arithmetic, rounding, and conversion instructions may set the FPCC
bits with the C bit, to indicate the class of the result. Note that in this case the high-
order three bits of the FPCC retain their relational significance indicating that the val-
ue is less than, greater than, or equal to zero.

48 Floating-Point Less Than or Negative (FL or <)

49 Floating-Point Greater Than or Positive (FG or >)

50 Floating-Point Equal or Zero (FE or =)

51 Floating-Point Unordered or NaN (FU or ?)

52 Reserved

53 Floating-Point Invalid Operation Exception (Software Request) (VXSOFT)
This bit can be altered only by mcrfs, mtfsfi, mtfsf, mtfsb0, or mtfsb1. See
Section 5.4.1 on page 85.

54 Floating-Point Invalid Operation Exception (Invalid Square Root) (VXSQRT)
See Section 5.4.1 on page 85.

Architecture Note
This bit is defined even for implementations that do not support either of the two op-
tional instructions that set it, namely Floating Square Root and Floating Reciprocal
Square Root Estimate. Defining it for all implementations gives software a standard
interface for handling square root exceptions.

Programming Note
If the implementation does not support the optional Floating Square Root or Floating
Reciprocal Square Root Estimate instruction, software can simulate the instruction
and set this bit to reflect the exception.

55 Floating-Point Invalid Operation Exception (Invalid Integer Convert) (VXCVI)
See Section 5.4.1 on page 85.

56 Floating-Point Invalid Operation Exception Enable (VE)
See Section 5.4.1 on page 85.

57 Floating-Point Overflow Exception Enable (OE)
See Section 5.4.1 on page 85.

58 Floating-Point Underflow Exception Enable (UE)
See Section 5.4.1 on page 85.

59 Floating-Point Zero Divide Exception Enable (ZE)
See Section 5.4.1 on page 85.

60 Floating-Point Inexact Exception Enable (XE)
See Section 5.4.1 on page 85.

61 Floating-Point Non-IEEE Mode (NI)
If this bit is set to 1, the remaining Floating-Point Status and Control Register bits
may have meanings other than those given in this document, and the results of float-
ing-point operations need not conform to the IEEE standard. If the IEEE-conforming
result of a floating-point operation would be a denormalized number, the result of
that operation is 0 (with the same sign as the denormalized number) if FPSCRNI=1
and other requirements specified in the User’s Manual for the implementation are
met. The other effects of setting this bit to 1 are described in the User’s Manual and
may differ between implementations.

Bit(s) Description
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Table 5-2. Floating-Point Result Flags

62:63 Floating-Point Rounding Control (RN)
See Section 5.3.6 on page 79.

RN=00 Round to Nearest

RN=01 Round toward Zero

RN=10 Round toward +Infinity

RN=11 Round toward –Infinity

Result Flags Result Value Class

C < > = ?

1
0
0
1
1
0
1
0
0

0
1
1
1
0
0
0
0
0

0
0
0
0
0
0
1
1
1

0
0
0
0
1
1
0
0
0

1
1
0
0
0
0
0
0
1

Quiet NaN
–Infinity
–Normalized Number
–Denormalized Number
–Zero
+Zero
+Denormalized Number
+Normalized Number
+Infinity

Architecture Note
Setting Floating-Point Non-IEEE Mode (NI) to 1 is intended to permit results to be
approximate, and to cause performance to be more predictable and less data-dependent
than when NI=0. For example, in Non-IEEE Mode an implementation returns 0 instead
of a denormalized number, and may return a large number instead of an infinity. In
Non-IEEE Mode an implementation should provide a means for ensuring that all results
are produced without software assistance (i.e., without causing an Enabled exception
type Program interrupt or a Floating-Point Unimplemented Instruction exception type
Program interrupt, and without invoking an ‘emulation assist’: see Chapter 7 on
page 143). The means may be controlled by one or more other Floating-Point Status and
Control Register bits (recall that the other Floating-Point Status and Control Register
bits have implementation-dependent meanings when NI=1).

Bit(s) Description
72 Book E: Enhanced PowerPC Architecture Version 1.0 07 May 02



5.3 Floating-Point Data

5.3.1 Data Format

This architecture defines the representation of a floating-point value in two differ-
ent binary fixed-length formats. The format may be a 32-bit single format for a
single-precision value or a 64-bit double format for a double-precision value. The
single format may be used for data in storage. The double format may be used for
data in storage and for data in floating-point registers.

The lengths of the exponent and the fraction fields differ between these two for-
mats. The structure of the single and double formats is shown below.

Figure 5-1. Floating-point single format

Figure 5-2. Floating-point double format

Values in floating-point format are composed of three fields:

S sign bit
EXP exponent+bias
FRACTION fraction

If only a portion of a floating-point data item in storage is accessed, such as with a
load or store instruction for a byte or halfword (or word in the case of floating-
point double format), the value affected will depend on whether the Book E sys-
tem is operating with Big-Endian byte order or Little-Endian byte order.

Representation of numeric values in the floating-point formats consists of a sign
bit (S), a biased exponent (EXP), and the fraction portion (FRACTION) of the signif-
icand. The significand consists of a leading implied bit concatenated on the right
with the FRACTION. This leading implied bit is 1 for normalized numbers and 0
for denormalized numbers and is located in the unit bit position (i.e., the first bit
to the left of the binary point). Values representable within the two floating-point
formats can be specified by the parameters listed in Table 5-3.

S EXP FRACTION
0 1 9 31

S EXP FRACTION
0 1 12 63
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Table 5-3. IEEE floating-point fields

The architecture requires that the Floating-Point Registers support the floating-
point double format only.

5.3.2 Value Representation

This architecture defines numeric and non-numeric values representable within
each of the two supported formats. The numeric values are approximations to the
real numbers and include the normalized numbers, denormalized numbers, and
zero values. The non-numeric values representable are the infinities and the Not a
Numbers (NaNs). The infinities are adjoined to the real numbers, but are not
numbers themselves, and the standard rules of arithmetic do not hold when they
are used in an operation. They are related to the real numbers by order alone. It is
possible however to define restricted operations among numbers and infinities as
defined below. The relative location on the real number line for each of the defined
entities is shown in Figure 5-3.

Figure 5-3. Approximation to real numbers

The NaNs are not related to the numeric values or infinities by order or value but
are encodings used to convey diagnostic information such as the representation of
uninitialized variables.

The following is a description of the different floating-point values defined in the
architecture:

Binary floating-point numbers
Machine representable values used as approximations to real numbers. Three
categories of numbers are supported: normalized numbers, denormalized num-
bers, and zero values.

Normalized numbers (±NOR)
These are values that have an unbiased exponent value in the range:

–126 to 127 in single format
–1022 to 1023 in double format

Single Double

Exponent Bias +127 +1023

Maximum Exponent +127 +1023

Minimum Exponent –126 –1022

Widths (bits)
Format
Sign
Exponent
Fraction
Significand

32
1
8
23
24

64
1
11
52
53

+0-0–DEN +DEN +NOR +INF–INF –NOR
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They are values in which the implied unit bit is 1. Normalized numbers are inter-
preted as follows:

NOR = (-1)s x 2E x (1.fraction)

where s is the sign, E is the unbiased exponent, and 1.fraction is the significand,
which is composed of a leading unit bit (implied bit) and a fraction part.

The ranges covered by the magnitude (M) of a normalized floating-point number
are approximately equal to:

Single Format:

1.2x10-38 ≤ M ≤ 3.4x1038

Double Format:

2.2x10-308 ≤ M ≤ 1.8x10308

Zero values (±0)
These are values that have a biased exponent value of zero and a fraction value of
zero. Zeros can have a positive or negative sign. The sign of zero is ignored by
comparison operations (i.e., comparison regards +0 as equal to -0).

Denormalized numbers (±DEN)
These are values that have a biased exponent value of zero and a nonzero fraction
value. They are nonzero numbers smaller in magnitude than the representable
normalized numbers. They are values in which the implied unit bit is 0. Denor-
malized numbers are interpreted as follows:

DEN = (-1)s x 2Emin x (0.fraction)

where Emin is the minimum representable exponent value (-126 for single-preci-
sion, -1022 for double-precision).

Infinities (±∞)
These are values that have the maximum biased exponent value:

255 in single format
2047 in double format

and a zero fraction value. They are used to approximate values greater in magni-
tude than the maximum normalized value.

Infinity arithmetic is defined as the limiting case of real arithmetic, with restricted
operations defined among numbers and infinities. Infinities and the real numbers
can be related by ordering in the affine sense:

-∞ < every finite number < +∞

Arithmetic on infinities is always exact and does not signal any exception, except
when an exception occurs due to the invalid operations as described in
Section 5.4.1 on page 85.

Not a Numbers (NaNs)
These are values that have the maximum biased exponent value and a nonzero
fraction value. The sign bit is ignored (i.e., NaNs are neither positive nor negative).
If the high-order bit of the fraction field is 0 then the NaN is a Signalling NaN; oth-
erwise it is a Quiet NaN.
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Signaling NaNs are used to signal exceptions when they appear as operands of
computational instructions.

Quiet NaNs are used to represent the results of certain invalid operations, such as
invalid arithmetic operations on infinities or on NaNs, when Invalid Operation
Exception is disabled (FPSCRVE=0). Quiet NaNs propagate through all floating-
point operations except comparison, Floating Round to Single-Precision, and con-
version to integer. Quiet NaNs do not signal exceptions, except for ordered com-
parison and conversion to integer operations. Specific encodings in QNaNs can
thus be preserved through a sequence of floating-point operations, and used to
convey diagnostic information to help identify results from invalid operations.

When a QNaN is the result of a floating-point operation because one of the oper-
ands is a NaN or because a QNaN was generated due to a disabled Invalid Opera-
tion Exception, then the following rule is applied to determine the NaN with the
high-order fraction bit set to 1 that is to be stored as the result.

if FPR(FRA) is a NaN
then FPR(FRT) ← FPR(FRA)
else if FPR(FRB) is a NaN

then if instruction is frsp
then FPR(FRT) ← FPR(FRB)0:34 || 290
else FPR(FRT) ← FPR(FRB)

else if FPR(FRC) is a NaN
then FPR(FRT) ← FPR(FRC)
else if generated QNaN
then FPR(FRT) ← generated QNaN

If the operand specified by FRA is a NaN, then that NaN is stored as the result.
Otherwise, if the operand specified by FRB is a NaN (if the instruction specifies an
FRB operand), then that NaN is stored as the result, with the low-order 29 bits of
the result set to 0 if the instruction is frsp. Otherwise, if the operand specified by
FRC is a NaN (if the instruction specifies an FRC operand), then that NaN is
stored as the result. Otherwise, if a QNaN was generated due to a disabled Invalid
Operation Exception, then that QNaN is stored as the result. If a QNaN is to be
generated as a result, then the QNaN generated has a sign bit of 0, an exponent
field of all 1s, and a high-order fraction bit of 1 with all other fraction bits 0. Any
instruction that generates a QNaN as the result of a disabled Invalid Operation
must generate this QNaN (i.e., 0x7FF8_0000_0000_0000).

A double-precision NaN is representable in single format if and only if the low-
order 29 bits of the double-precision NaNs fraction are zero.

5.3.3 Sign of Result

The following rules govern the sign of the result of an arithmetic, rounding, or
conversion operation, when the operation does not yield an exception. They apply
even when the operands or results are zeros or infinities.

• The sign of the result of an add operation is the sign of the operand having
the larger absolute value. If both operands have the same sign, the sign of the
result of an add operation is the same as the sign of the operands. The sign of
the result of the subtract operation x-y is the same as the sign of the result of
the add operation x+(-y).

When the sum of two operands with opposite sign, or the difference of two
operands with the same sign, is exactly zero, the sign of the result is positive
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in all rounding modes except Round toward -Infinity, in which mode the sign
is negative.

• The sign of the result of a multiply or divide operation is the Exclusive OR of
the signs of the operands.

• The sign of the result of a Square Root or Reciprocal Square Root Estimate
operation is always positive, except that the square root of -0 is -0 and the
reciprocal square root of -0 is -Infinity.

• The sign of the result of a Round to Single-Precision or Convert To/From Inte-
ger operation is the sign of the operand being converted.

For the Multiply-Add instructions, the rules given above are applied first to the
multiply operation and then to the add or subtract operation (one of the inputs to
the add or subtract operation is the result of the multiply operation).

5.3.4 Normalization and Denormalization

The intermediate result of an arithmetic or frsp instruction may require normal-
ization and/or denormalization as described below. Normalization and denormal-
ization do not affect the sign of the result.

When an arithmetic or frsp instruction produces an intermediate result, consist-
ing of a sign bit, an exponent, and a nonzero significand with a 0 leading bit, it is
not a normalized number and must be normalized before it is stored.

A number is normalized by shifting its significand left while decrementing its
exponent by 1 for each bit shifted, until the leading significand bit becomes 1. The
Guard bit and the Round bit (see Section 5.5.1 on page 94) participate in the shift
with zeros shifted into the Round bit. The exponent is regarded as if its range were
unlimited.

After normalization, or if normalization was not required, the intermediate result
may have a nonzero significand and an exponent value that is less than the mini-
mum value that can be represented in the format specified for the result. In this
case, the intermediate result is said to be ‘Tiny’ and the stored result is deter-
mined by the rules described in Section 5.4.4 on page 91. These rules may require
denormalization.

A number is denormalized by shifting its significand right while incrementing its
exponent by 1 for each bit shifted, until the exponent is equal to the format's min-
imum value. If any significant bits are lost in this shifting process then ‘Loss of
Accuracy’ has occurred (See Section 5.4.4 on page 91) and Underflow Exception is
signaled.

Engineering Note
When denormalized numbers are operands of multiply, divide, and square root opera-
tions, some implementations may prenormalize the operands internally before
performing the operations.
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5.3.5 Data Handling and Precision

Instructions are defined to move floating-point data between the Floating-Point
Registers and storage. For double format data, the data are not altered during the
move. For single format data, a format conversion from single to double is per-
formed when loading from storage into an Floating-Point Register and a format
conversion from double to single is performed when storing from an Floating-
Point Register to storage. No floating-point exceptions are caused by these
instructions.

All computational, Move, and Select instructions use the floating-point double for-
mat.

Floating-point single-precision is obtained with the implementation of four types
of instruction.

1. Load Floating-Point Single

This form of instruction accesses a single-precision operand in single format
in storage, converts it to double format, and loads it into a Floating-Point Reg-
ister. No floating-point exceptions are caused by these instructions.

2. Round to Floating-Point Single-Precision

The Floating Round to Single-Precision instruction rounds a double-precision
operand to single-precision, checking the exponent for single-precision range
and handling any exceptions according to respective enable bits, and places
that operand into a Floating-Point Register as a double-precision operand. For
results produced by single-precision arithmetic instructions, single-precision
loads, and other instances of the Floating Round to Single-Precision instruc-
tion, this operation does not alter the value.

3. Single-Precision Arithmetic Instructions

This form of instruction takes operands from the Floating-Point Registers in
double format, performs the operation as if it produced an intermediate result
having infinite precision and unbounded exponent range, and then coerces
this intermediate result to fit in single format. Status bits, in the Floating-
Point Status and Control Register and optionally in the Condition Register,
are set to reflect the single-precision result. The result is then converted to
double format and placed into a Floating-Point Register. The result lies in the
range supported by the single format.

All input values must be representable in single format; if they are not, the
result placed into the target Floating-Point Register, and the setting of status
bits in the Floating-Point Status and Control Register and in the Condition
Register (if Rc=1), are undefined.

4. Store Floating-Point Single

This form of instruction converts a double-precision operand to single format
and stores that operand into storage. No floating-point exceptions are caused
by these instructions. (The value being stored is effectively assumed to be the
result of an instruction of one of the preceding three types.)
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When the result of a Load Floating-Point Single, Floating Round to Single-Precision,
or single-precision arithmetic instruction is stored in a Floating-Point Register,
the low-order 29 FRACTION bits are zero.

5.3.6 Rounding

The material in this section applies to operations that have numeric operands
(i.e., operands that are not infinities or NaNs). Rounding the intermediate result of
such an operation may cause an Overflow Exception, an Underflow Exception, or
an Inexact Exception. The remainder of this section assumes that the operation
causes no exceptions and that the result is numeric. See Section 5.3.2 on page 74
and Section 5.4 on page 81 for the cases not covered here.

The arithmetic, rounding, and conversion instructions produce an intermediate
result that can be regarded as having infinite precision and unbounded exponent
range. This intermediate result is normalized or denormalized if required, then
rounded to the destination format. The final result is then placed into the target
Floating-Point Register in double format or in integer format, depending on the
instruction.

The instructions that round their intermediate result are the Arithmetic and
Rounding and Conversion instructions. Each of these instructions sets Floating-
Point Status and Control Register bits FR and FI. If the fraction was incremented
during rounding then FR is set to 1, otherwise FR is set to 0. If the rounded result
is inexact then FI is set to 1, otherwise FI is set to 0.

The two Estimate instructions set FR and FI to undefined values. The remaining
floating-point instructions do not alter FR and FI.

Four user-selectable rounding modes are provided through the Floating-Point
Rounding Control field in the Floating-Point Status and Control Register. See
Section 5.2.2 on page 69. These are encoded as follows:

Programming Note
The Floating Round to Single-Precision instruction is provided to allow value conversion
from double-precision to single-precision with appropriate exception checking and
rounding. This instruction should be used to convert double-precision floating-point val-
ues (produced by double-precision load and arithmetic instructions and by fcfid) to
single-precision values prior to storing them into single format storage elements or using
them as operands for single-precision arithmetic instructions. Values produced by sin-
gle-precision load and arithmetic instructions are already single-precision values and
can be stored directly into single format storage elements, or used directly as operands
for single-precision arithmetic instructions, without preceding the store, or the arith-
metic instruction, by a Floating Round to Single-Precision instruction.

Programming Note
A single-precision value can be used in double-precision arithmetic operations. The
reverse is true only if the double-precision value is representable in single format.

Some implementations may execute single-precision arithmetic instructions faster than
double-precision arithmetic instructions. Therefore, if double-precision accuracy is not
required, single-precision data and instructions should be used.
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RN Rounding Mode
00 Round to Nearest
01 Round toward Zero
10 Round toward +Infinity
11 Round toward -Infinity

Let Z be the intermediate arithmetic result or the operand of a convert operation.
If Z can be represented exactly in the target format, then the result in all rounding
modes is Z as represented in the target format. If Z cannot be represented exactly
in the target format, let Z1 and Z2 bound Z as the next larger and next smaller
numbers representable in the target format. Then Z1 or Z2 can be used to approx-
imate the result in the target format.

Figure 5-4 shows the relation of Z, Z1, and Z2 in this case. The following rules
specify the rounding in the four modes. ‘lsb’ means ‘least-significant bit’.

Figure 5-4. Selection of Z1 and Z2

Round to Nearest
Choose the value that is closer to Z (Z1 or Z2). In case of a tie, choose the one
that is even (least significant bit 0).

Round toward Zero
Choose the smaller in magnitude (Z1 or Z2).

Round toward +Infinity
Choose Z1.

Round toward -Infinity
Choose Z2.

See Section 5.5.1 on page 94 for a detailed explanation of rounding.

By Incrementing lsb of Z
Infinitely Precise Value
By Truncating after lsb

0
Positive valuesNegative values

Z2 Z Z1Z2 Z Z1
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5.4 Floating-Point Exceptions

This architecture defines the following floating-point exceptions:

• Invalid Operation Exception

SNaN
Infinity-Infinity
Infinity÷Infinity
Zero÷Zero
Infinity×Zero
Invalid Compare
Software Request
Invalid Square Root
Invalid Integer Convert

• Zero Divide Exception
• Overflow Exception
• Underflow Exception
• Inexact Exception

These exceptions may occur during execution of computational instructions. In
addition, an Invalid Operation Exception occurs when a Move To Floating-Point
Status and Control Register instruction sets FPSCRVXSOFT to 1 (Software Request).

Each floating-point exception, and each category of Invalid Operation Exception,
has an exception bit in the Floating-Point Status and Control Register. In addi-
tion, each floating-point exception has a corresponding enable bit in the Floating-
Point Status and Control Register. The exception bit indicates occurrence of the
corresponding exception. If an exception occurs, the corresponding enable bit gov-
erns the result produced by the instruction and, in conjunction with the FE0 and
FE1 bits (see page 82), whether and how the Enabled exception type Program
interrupt is taken. (In general, the enabling specified by the enable bit is of invok-
ing the interrupt, not of permitting the exception to occur and the occurrence of
an exception depends only on the instruction and its inputs, not on the setting of
any control bits. The only deviations from this general rule are that the occur-
rence of an Underflow Exception may depend on the setting of the Underflow
Exception enable bit , and the occurrence of an Inexact Exception may depend on
the setting of the Overflow Exception and Underflow Exception enable bits.)

A single instruction, other than mtfsfi or mtfsf, may set more than one exception
bit only in the following cases:

• Inexact Exception may be set with Overflow Exception.

• Inexact Exception may be set with Underflow Exception.

• Invalid Operation Exception (SNaN) is set with Invalid Operation Exception
(∞×0) for Multiply-Add instructions for which the values being multiplied are
infinity and zero and the value being added is an SNaN.

• Invalid Operation Exception (SNaN) may be set with Invalid Operation Excep-
tion (Invalid Compare) for Compare Ordered instructions.

• Invalid Operation Exception (SNaN) may be set with Invalid Operation Excep-
tion (Invalid Integer Convert) for Convert To Integer instructions.
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When an exception occurs the instruction execution may be suppressed or a
result may be delivered, depending on the exception.

Instruction execution is suppressed for the following kinds of exception, so that
there is no possibility that one of the operands is lost:

• Enabled Invalid Operation
• Enabled Zero Divide

For the remaining kinds of exception, a result is generated and written to the des-
tination specified by the instruction causing the exception. The result may be a
different value for the enabled and disabled conditions for some of these excep-
tions. The kinds of exception that deliver a result are the following:

• Disabled Invalid Operation
• Disabled Zero Divide
• Disabled Overflow
• Disabled Underflow
• Disabled Inexact
• Enabled Overflow
• Enabled Underflow
• Enabled Inexact

Subsequent sections define each of the floating-point exceptions and specify the
action that is taken when they are detected.

The IEEE standard specifies the handling of exceptional conditions in terms of
‘traps’ and ‘trap handlers’. In this architecture, an Floating-Point Status and Con-
trol Register exception enable bit of 1 causes generation of the result value speci-
fied in the IEEE standard for the ‘trap enabled’ case: the expectation is that the
exception will be detected by software, which will revise the result. An Floating-
Point Status and Control Register exception enable bit of 0 causes generation of
the ‘default result’ value specified for the ‘trap disabled’ (or ‘no trap occurs’ or ‘trap
is not implemented’) case: the expectation is that the exception will not be
detected by software, which will simply use the default result. The result to be
delivered in each case for each exception is described in the sections below.

The IEEE default behavior when an exception occurs is to generate a default value
and not to notify software. In this architecture, if the IEEE default behavior when
an exception occurs is desired for all exceptions, all Floating-Point Status and
Control Register exception enable bits should be set to 0 and Ignore Exceptions
Mode (see below) should be used. In this case the Enabled exception type Program
interrupt is not taken, even if floating-point exceptions occur: software can
inspect the Floating-Point Status and Control Register exception bits if necessary,
to determine whether exceptions have occurred.

In this architecture, if software is to be notified that a given kind of exception has
occurred, the corresponding Floating-Point Status and Control Register exception
enable bit must be set to 1 and a mode other than Ignore Exceptions Mode must
be used. In this case the Enabled exception type Program interrupt is taken if an
enabled floating-point exception occurs. An Enabled exception type Program
interrupt is also taken if a Move To Floating-Point Status and Control Register
instruction causes an exception bit and the corresponding enable bit both to be 1;
the Move To Floating-Point Status and Control Register instruction is considered to
cause the enabled exception.

The FE0 and FE1 bits control whether and how an Enabled exception type Pro-
gram interrupt is taken if an enabled floating-point exception occurs. The location
of these bits and the requirements for altering them are described in Section 2.1.1
on page 39. (An Enabled exception type Program interrupt is never taken because
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of a disabled floating-point exception.) The effects of the four possible settings of
these bits are as follows.

In all cases, the question of whether a floating-point result is stored, and what
value is stored, is governed by the Floating-Point Status and Control Register
exception enable bits, as described in subsequent sections, and is not affected by
the value of the FE0 and FE1 bits.

In all cases in which an Enabled exception type Program interrupt is taken, all
instructions before the instruction at which the Enabled exception type Program
interrupt is taken have completed, and no instruction after the instruction at
which the Enabled exception type Program interrupt is taken has begun execu-
tion. (Recall that, for the two Imprecise modes, the instruction at which the
Enabled exception type Program interrupt is taken need not be the instruction
that caused the exception.) The instruction at which the Enabled exception type
Program interrupt is taken has not been executed unless it is the excepting

FE0 FE1 Description

0 0 Ignore Exceptions Mode
Floating-point exceptions do not cause an Enabled exception type
Program interrupt to be taken.

0 1 Imprecise Nonrecoverable Mode
An Enabled exception type Program interrupt is taken at some
point at or beyond the instruction that caused the enabled excep-
tion. It may not be possible to identify the excepting instruction or
the data that caused the exception. Results produced by the
excepting instruction may have been used by or may have affected
subsequent instructions that are executed before the interrupt is
taken.

1 0 Imprecise Recoverable Mode
An Enabled exception type Program interrupt is taken at some
point at or beyond the instruction that caused the enabled excep-
tion. Sufficient information is provided to the interrupt that it can
identify the excepting instruction and the operands, and correct
the result. No results produced by the excepting instruction have
been used by or have affected subsequent instructions that are
executed before the interrupt is taken.

1 1 Precise Mode
An Enabled exception type Program interrupt is taken precisely at
the instruction that caused the enabled exception.

Architecture Note
The FE0 and FE1 bits of the Machine State Register are defined in Section 2.1.1 on
page 39 in a manner such that they can be changed dynamically and can easily be
treated as part of a process' state.
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instruction, in which case it has been executed if the exception is not among
those listed on page 82 as suppressed.

In order to obtain the best performance across the widest range of implementa-
tions, the programmer should obey the following guidelines.

• If the IEEE default results are acceptable to the application, Ignore Excep-
tions Mode should be used with all Floating-Point Status and Control Register
exception enable bits set to 0.

• If the IEEE default results are not acceptable to the application, Imprecise
Nonrecoverable Mode should be used, or Imprecise Recoverable Mode if recov-
erability is needed, with Floating-Point Status and Control Register exception
enable bits set to 1 for those exceptions for which the Enabled exception type
Program interrupt is to be taken.

• Ignore Exceptions Mode should not, in general, be used when any Floating-
Point Status and Control Register exception enable bits are set to 1.

• Precise Mode may degrade performance in some implementations, perhaps
substantially, and therefore should be used only for debugging and other spe-
cialized applications.

Programming Note
In any of the three non-Precise modes, a Floating-Point Status and Control Register
instruction can be used to force any exceptions, due to instructions initiated before the
Floating-Point Status and Control Register instruction, to be recorded in the Floating-
Point Status and Control Register. (This forcing is superfluous for Precise Mode.)

In either of the Imprecise modes, a Floating-Point Status and Control Register instruction
can be used to force any invocations of the Enabled exception type Program interrupt,
due to instructions initiated before the Floating-Point Status and Control Register instruc-
tion, to occur. (This forcing has no effect in Ignore Exceptions Mode, and is superfluous
for Precise Mode.)

A sync instruction, or any other execution synchronizing instruction or event (e.g.,
isync), also has the effects described above. However, in order to obtain the best perfor-
mance across the widest range of implementations, a Floating-Point Status and Control
Register instruction should be used to obtain these effects.

Engineering Note
It is permissible for the implementation to be precise in any of the three modes that per-
mit interrupts, or to be recoverable in Nonrecoverable Mode.
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5.4.1 Invalid Operation Exception

Definition

An Invalid Operation Exception occurs when an operand is invalid for the speci-
fied operation. The invalid operations are:

• Any floating-point operation on a signaling NaN (SNaN)

• For add or subtract operations, magnitude subtraction of infinities (∞-∞)

• Division of infinity by infinity (∞÷∞)

• Division of zero by zero (0÷0)

• Multiplication of infinity by zero (∞×0)

• Ordered comparison involving a NaN (Invalid Compare)

• Square root or reciprocal square root of a negative (and nonzero) number
(Invalid Square Root)

• Integer convert involving a number too large in magnitude to be represented
in the target format, or involving an infinity or a NaN (Invalid Integer Convert)

In addition, an Invalid Operation Exception occurs if software explicitly requests
this by executing an mtfsfi, mtfsf, or mtfsb1 instruction that sets FPSCRVXSOFT
to 1 (Software Request).

Action

The action to be taken depends on the setting of the Invalid Operation Exception
Enable bit of the Floating-Point Status and Control Register.

When Invalid Operation Exception is enabled (FPSCRVE=1) and Invalid Operation
occurs or software explicitly requests the exception, the following actions are
taken:

1. One or two Invalid Operation Exceptions are set
FPSCRVXSNAN (if SNaN)
FPSCRVXISI (if ∞-∞)
FPSCRVXIDI (if ∞÷∞)
FPSCRVXZDZ (if 0÷0)
FPSCRVXIMZ (if ∞×0)
FPSCRVXVC (if invalid compare)
FPSCRVXSOFT (if software request)
FPSCRVXSQRT (if invalid square root)
FPSCRVXCVI (if invalid integer convert)

2. If the operation is an arithmetic, Floating Round to Single-Precision, or convert

Programming Note
The purpose of FPSCRVXSOFT is to allow software to cause an Invalid Operation Excep-
tion for a condition that is not necessarily associated with the execution of a floating-
point instruction. For example, it might be set by a program that computes a square
root, if the source operand is negative.
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to integer operation,

the target Floating-Point Register is unchanged
FPSCRFR FI are set to zero
FPSCRFPRF is unchanged

3. If the operation is a compare,

FPSCRFR FI C are unchanged
FPSCRFPCC is set to reflect unordered

4. If software explicitly requests the exception,

FPSCRFR FI FPRF are as set by the mtfsfi, mtfsf, or mtfsb1 instruction

When Invalid Operation Exception is disabled (FPSCRVE=0) and Invalid Operation
occurs or software explicitly requests the exception, the following actions are
taken:

1. One or two Invalid Operation Exceptions are set

FPSCRVXSNAN (if SNaN)
FPSCRVXISI (if ∞-∞)
FPSCRVXIDI (if ∞÷∞)
FPSCRVXZDZ (if 0÷0)
FPSCRVXIMZ (if ∞×0)
FPSCRVXVC (if invalid compare)
FPSCRVXSOFT (if software request)
FPSCRVXSQRT (if invalid square root)
FPSCRVXCVI (if invalid integer convert)

2. If the operation is an arithmetic or Floating Round to Single-Precision
operation,

the target Floating-Point Register is set to a Quiet NaN
FPSCRFR FI are set to zero
FPSCRFPRF is set to indicate the class of the result (Quiet NaN)

3. If the operation is a convert to 64-bit integer operation,

the target Floating-Point Register is set as follows:

FPR(FRT) is set to the most positive 64-bit integer if the operand in
FPR(FRB) is a positive number or +∞, and to the most negative 64-bit
integer if the operand in FPR(FRB) is a negative number, -∞, or NaN

FPSCRFR FI are set to zero

FPSCRFPRF is undefined

4. If the operation is a convert to 32-bit integer operation,

the target Floating-Point Register is set as follows:

FPR(FRT)0:31 ← undefined
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FPR(FRT)32:63 are set to the most positive 32-bit integer if the operand
in FPR(FRB) is a positive number or +∞, and to the most negative 32-bit
integer if the operand in FPR(FRB) is a negative number, -∞, or NaN

FPSCRFR FI are set to zero

FPSCRFPRF is undefined

5. If the operation is a compare,

FPSCRFR FI C are unchanged
FPSCRFPCC is set to reflect unordered

6. If software explicitly requests the exception,

FPSCRFR FI FPRF are as set by the mtfsfi, mtfsf, or mtfsb1 instruction
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5.4.2 Zero Divide Exception

Definition

A Zero Divide Exception occurs when a Divide instruction is executed with a zero
divisor value and a finite nonzero dividend value. It also occurs when a Reciprocal
Estimate instruction (fres or frsqrte) is executed with an operand value of zero.

Action

The action to be taken depends on the setting of the Zero Divide Exception Enable
bit of the Floating-Point Status and Control Register.

When Zero Divide Exception is enabled (FPSCRZE=1) and Zero Divide occurs, the
following actions are taken:

1. Zero Divide Exception is set

FPSCRZX ← 1

2. The target Floating-Point Register is unchanged

3. FPSCRFR FI are set to zero

4. FPSCRFPRF is unchanged

When Zero Divide Exception is disabled (FPSCRZE=0) and Zero Divide occurs, the
following actions are taken:

1. Zero Divide Exception is set

FPSCRZX ← 1

2. The target Floating-Point Register is set to ±Infinity, where the sign is deter-
mined by the XOR of the signs of the operands

3. FPSCRFR FI are set to zero

4. FPSCRFPRF is set to indicate the class and sign of the result (±Infinity)

Architecture Note
The name is a misnomer used for historical reasons. The proper name for this exception
should be ‘Exact Infinite Result from Finite Operands’ corresponding to what mathema-
ticians call a ‘pole’.
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5.4.3 Overflow Exception

Definition

Overflow occurs when the magnitude of what would have been the rounded result
if the exponent range were unbounded exceeds that of the largest finite number of
the specified result precision.

Action

The action to be taken depends on the setting of the Overflow Exception Enable
bit of the Floating-Point Status and Control Register.

When Overflow Exception is enabled (FPSCROE=1) and exponent overflow occurs,
the following actions are taken:

1. Overflow Exception is set

FPSCROX ← 1

2. For double-precision arithmetic instructions, the exponent of the normalized
intermediate result is adjusted by subtracting 1536

3. For single-precision arithmetic instructions and the Floating Round to Single-
Precision instruction, the exponent of the normalized intermediate result is
adjusted by subtracting 192

4. The adjusted rounded result is placed into the target Floating-Point Register

5. FPSCRFPRF is set to indicate the class and sign of the result (±Normal
Number)

When Overflow Exception is disabled (FPSCROE=0) and overflow occurs, the fol-
lowing actions are taken:

1. Overflow Exception is set

FPSCROX ← 1

2. Inexact Exception is set

FPSCRXX ← 1

3. The result is determined by the rounding mode (FPSCRRN) and the sign of the
intermediate result as follows:

A. Round to Nearest
Store ± Infinity, where the sign is the sign of the intermediate result

B. Round toward Zero
Store the format's largest finite number with the sign of the intermediate
result

C. Round toward +Infinity
For negative overflow, store the format's most negative finite number; for
positive overflow, store +Infinity

D. Round toward -Infinity
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For negative overflow, store -Infinity; for positive overflow, store the
format's largest finite number

4. The result is placed into the target Floating-Point Register

5. FPSCRFR is undefined

6. FPSCRFI is set to 1

7. FPSCRFPRF is set to indicate the class and sign of the result (±Infinity or ±Nor-
mal Number)
90 Book E: Enhanced PowerPC Architecture Version 1.0 07 May 02



5.4.4 Underflow Exception

Definition

Underflow Exception is defined separately for the enabled and disabled states:

• Enabled:
Underflow occurs when the intermediate result is ‘Tiny’.

• Disabled:
Underflow occurs when the intermediate result is ‘Tiny’ and there is ‘Loss of
Accuracy’.

A ‘Tiny’ result is detected before rounding, when a nonzero intermediate result
computed as though both the precision and the exponent range were unbounded
would be less in magnitude than the smallest normalized number.

If the intermediate result is ‘Tiny’ and Underflow Exception is disabled
(FPSCRUE=0) then the intermediate result is denormalized (see Section 5.3.4 on
page 77) and rounded (see Section 5.3.6 on page 79) before being placed into the
target Floating-Point Register.

‘Loss of Accuracy’ is detected when the delivered result value differs from what
would have been computed were both the precision and the exponent range
unbounded.

Action

The action to be taken depends on the setting of the Underflow Exception Enable
bit of the Floating-Point Status and Control Register.

When Underflow Exception is enabled (FPSCRUE=1) and exponent underflow
occurs, the following actions are taken:

1. Underflow Exception is set

FPSCRUX ← 1

2. For double-precision arithmetic instructions, the exponent of the normalized
intermediate result is adjusted by adding 1536

3. For single-precision arithmetic instructions and the Floating Round to Single-
Precision instruction, the exponent of the normalized intermediate result is
adjusted by adding 192

4. The adjusted rounded result is placed into the target Floating-Point Register

5. FPSCRFPRF is set to indicate the class and sign of the result (±Normalized
Number)

When Underflow Exception is disabled (FPSCRUE=0) and underflow occurs, the
following actions are taken:

Programming Note
The FR and FI bits are provided to allow the Enabled exception type Program interrupt,
when taken because of an Underflow Exception, to simulate a ‘trap disabled’ environ-
ment. That is, the FR and FI bits allow the Enabled exception type Program interrupt to
unround the result, thus allowing the result to be denormalized.
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1. Underflow Exception is set

FPSCRUX ← 1

2. The rounded result is placed into the target Floating-Point Register

3. FPSCRFPRF is set to indicate the class and sign of the result (±Normalized
Number, ±Denormalized Number, or ±Zero)
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5.4.5 Inexact Exception

Definition

An Inexact Exception occurs when one of two conditions occur during rounding:

1. The rounded result differs from the intermediate result assuming both the
precision and the exponent range of the intermediate result to be unbounded.
In this case the result is said to be inexact. (If the rounding causes an enabled
Overflow Exception or an enabled Underflow Exception, an Inexact Exception
also occurs only if the significands of the rounded result and the intermediate
result differ.)

2. The rounded result overflows and Overflow Exception is disabled.

Action

The action to be taken does not depend on the setting of the Inexact Exception
Enable bit of the Floating-Point Status and Control Register.

When Inexact Exception occurs, the following actions are taken:

1. Inexact Exception is set

FPSCRXX ← 1

2. The rounded or overflowed result is placed into the target Floating-Point
Register

3. FPSCRFPRF is set to indicate the class and sign of the result

Programming Note
In some implementations, enabling Inexact Exceptions may degrade performance more
than does enabling other types of floating-point exception.
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5.5 Floating-Point Execution Models

All implementations of this architecture must provide the equivalent of the follow-
ing execution models to ensure that identical results are obtained.

Special rules are provided in the definition of the computational instructions for
the infinities, denormalized numbers and NaNs. The material in the remainder of
this section applies to instructions that have numeric operands and a numeric
result (i.e., operands and result that are not infinities or NaNs), and that cause no
exceptions. See Section 5.3.2 on page 74 and Section 5.4 on page 81 for the cases
not covered here.

Although the double format specifies an 11-bit exponent, exponent arithmetic
makes use of two additional bits to avoid potential transient overflow conditions.
One extra bit is required when denormalized double-precision numbers are
prenormalized. The second bit is required to permit the computation of the
adjusted exponent value in the following cases when the corresponding exception
enable bit is 1:

• Underflow during multiplication using a denormalized operand.
• Overflow during division using a denormalized divisor.

The IEEE standard includes 32-bit and 64-bit arithmetic. The standard requires
that single-precision arithmetic be provided for single-precision operands. The
standard permits double-precision floating-point operations to have either (or
both) single-precision or double-precision operands, but states that single-preci-
sion floating-point operations should not accept double-precision operands.
Book E follows these guidelines: double-precision arithmetic instructions can
have operands of either or both precisions, while single-precision arithmetic
instructions require all operands to be single-precision. Double-precision arith-
metic instructions and fcfid produce double-precision values, while single-preci-
sion arithmetic instructions produce single-precision values.

For arithmetic instructions, conversions from double-precision to single-precision
must be done explicitly by software, while conversions from single-precision to
double-precision are done implicitly.

5.5.1 Execution Model for IEEE Operations

The following description uses 64-bit arithmetic as an example. 32-bit arithmetic
is similar except that the FRACTION is a 23-bit field, and the single-precision
Guard, Round, and Sticky bits (described in this section) are logically adjacent to
the 23-bit FRACTION field.

IEEE-conforming significand arithmetic is considered to be performed with a
floating-point accumulator having the following format, where bits 0:55 comprise
the significand of the intermediate result.

Figure 5-5. IEEE 64-bit execution model

The S bit is the sign bit.

S C L FRACTION G R X
0 1 52 55
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The C bit is the carry bit, which captures the carry out of the significand.

The L bit is the leading unit bit of the significand, which receives the implicit bit
from the operand.

The FRACTION is a 52-bit field that accepts the fraction of the operand.

The Guard (G), Round (R), and Sticky (X) bits are extensions to the low-order bits
of the accumulator. The G and R bits are required for post-normalization of the
result. The G, R, and X bits are required during rounding to determine if the inter-
mediate result is equally near the two nearest representable values. The X bit
serves as an extension to the G and R bits by representing the logical OR of all
bits that may appear to the low-order side of the R bit, due either to shifting the
accumulator right or to other generation of low-order result bits. The G and R bits
participate in the left shifts with zeros being shifted into the R bit. Table 5-4
shows the significance of the G, R, and X bits with respect to the intermediate
result (IR), the representable number next lower in magnitude (NL), and the repre-
sentable number next higher in magnitude (NH).

Table 5-4. Interpretation of G, R, and X bits

After normalization, the intermediate result is rounded, using the rounding mode
specified by FPSCRRN. If rounding results in a carry into C, the significand is
shifted right one position and the exponent incremented by one. This yields an
inexact result and possibly also exponent overflow. Fraction bits to the left of the
bit position used for rounding are stored into the Floating-Point Register and low-
order bit positions, if any, are set to zero.

Four user-selectable rounding modes are provided through FPSCRRN as described
in Section 5.3.6 on page 79. For rounding, the conceptual Guard, Round, and
Sticky bits are defined in terms of accumulator bits. Table 5-5 shows the posi-
tions of the Guard, Round, and Sticky bits for double-precision and single-preci-
sion floating-point numbers in the IEEE execution model.

Table 5-5. Location of the Guard, Round, and Sticky bits in the IEEE execution model

Rounding can be treated as though the significand were shifted right, if required,
until the least significant bit to be retained is in the low-order bit position of the
FRACTION. If any of the Guard, Round, or Sticky bits is nonzero, then the result
is inexact.

Z1 and Z2, as defined on page 80, can be used to approximate the result in the
target format when one of the following rules is used.

G R X Interpretation

0 0 0 IR is exact

0
0
0

0
1
1

1
0
1

IR closer to NL

1 0 0 IR midway between NL and NH

1
1
1

0
1
1

1
0
1

IR closer to NH

Format Guard Round Sticky

Double
Single

G bit
24

R bit
25

X bit
OR of 26:52, G, R, X
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• Round to Nearest

Guard bit = 0
The result is truncated. (Result exact (GRX = 000) or closest to next lower
value in magnitude (GRX = 001, 010, or 011))

Guard bit = 1
Depends on Round and Sticky bits:

Case a
If the Round or Sticky bit is 1 (inclusive), the result is incremented.
(Result closest to next higher value in magnitude (GRX = 101, 110, or
111))

Case b
If the Round and Sticky bits are 0 (result midway between closest rep-
resentable values), then if the low-order bit of the result is 1 the result
is incremented. Otherwise (the low-order bit of the result is 0) the
result is truncated (this is the case of a tie rounded to even).

• Round toward Zero
Choose the smaller in magnitude of Z1 or Z2. If the Guard, Round, or Sticky
bit is nonzero, the result is inexact.

• Round toward +Infinity
Choose Z1.

• Round toward -Infinity
Choose Z2.

Where the result is to have fewer than 53 bits of precision because the instruction
is a Floating Round to Single-Precision or single-precision arithmetic instruction,
the intermediate result is either normalized or placed in correct denormalized
form before being rounded.

5.5.2 Execution Model for Multiply-Add Type
Instructions

Book E provides a special form of instruction that performs up to three operations
in one instruction (a multiplication, an addition, and a negation). With this added
capability comes the special ability to produce a more exact intermediate result as
input to the rounder. 32-bit arithmetic is similar except that the FRACTION field
is smaller.

Multiply-add significand arithmetic is considered to be performed with a floating-
point accumulator having the following format, where bits 0:106 comprise the sig-
nificand of the intermediate result.

Figure 5-6. Multiply-Add 64-bit execution model

The first part of the operation is a multiplication. The multiplication has two 53-
bit significands as inputs, which are assumed to be prenormalized, and produces
a result conforming to the above model. If there is a carry out of the significand
(into the C bit), then the significand is shifted right one position, shifting the L bit

S C L FRACTION X’
0 1 105106
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(leading unit bit) into the most significant bit of the FRACTION and shifting the C
bit (carry out) into the L bit. All 106 bits (L bit, the FRACTION) of the product take
part in the add operation. If the exponents of the two inputs to the adder are not
equal, the significand of the operand with the smaller exponent is aligned (shifted)
to the right by an amount that is added to that exponent to make it equal to the
other input's exponent. Zeros are shifted into the left of the significand as it is
aligned and bits shifted out of bit 105 of the significand are ORed into the X' bit.
The add operation also produces a result conforming to the above model with the
X' bit taking part in the add operation.

The result of the addition is then normalized, with all bits of the addition result,
except the X' bit, participating in the shift. The normalized result serves as the
intermediate result that is input to the rounder.

For rounding, the conceptual Guard, Round, and Sticky bits are defined in terms
of accumulator bits. Table 5-6 shows the positions of the Guard, Round, and
Sticky bits for double-precision and single-precision floating-point numbers in the
multiply-add execution model.

Table 5-6. Location of the Guard, Round, and Sticky bits in the multiply-add execution
model

The rules for rounding the intermediate result are the same as those given in
Section 5.5.1 on page 94.

If the instruction is Floating Negative Multiply-Add or Floating Negative Multiply-
Subtract, the final result is negated.

Format Guard Round Sticky

Double
Single

53
24

54
25

OR of 55:105, X'
OR of 26:105, X'
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5.6 Floating-Point Instructions

5.6.1 Floating-Point Load Instructions

There are two basic forms of load instruction: single-precision and double-preci-
sion. Because the FPRs support only floating-point double format, single-preci-
sion Load Floating-Point instructions convert single-precision data to double
format prior to loading the operand into the target Floating-Point Register. The
conversion and loading steps are as follows.

Let WORD0:31 be the floating-point single-precision operand accessed from stor-
age.

Architecture Note
The rules followed in assigning new primary and extended opcodes.

1. Primary opcode 63 is used for the double-precision arithmetic instructions as well as
miscellaneous instructions (e.g. Floating-Point Status and Control Register
Manipulation instructions). Primary opcode 59 is used for the single-precision
arithmetic instructions.

2. The single-precision instructions for which there is a corresponding double-precision
instruction have the same format and extended opcode as that double-precision
instruction.

3. In assigning new extended opcodes for primary opcode 63, the following regularities
are maintained. In addition, all new X-form instructions in primary opcode 63 have
bits 21:22 = 0b11.

• Bit 26 = 1 iff the instruction is A-form.

• Bits 26:29 = 0b0000 iff the instruction is a comparison or mcrfs (i.e., iff the
instruction sets an explicitly-designated CR field).

• Bits 26:28 = 0b001 iff the instruction explicitly refers to or sets the Floating-
Point Status and Control Register (i.e., is a Floating-Point Status and Control
Register instruction) and is not mcrfs.

• Bits 26:30 = 0b01000 iff the instruction is a Move Register instruction, or any
other instruction that does not refer to or set the Floating-Point Status and
Control Register.

4. In assigning extended opcodes for primary opcode 59, the following regularities have
been maintained. They are based on those rules for primary opcode 63 that apply to
the instructions having primary opcode 59. In particular, primary opcode 59 has no
Floating-Point Status and Control Register instructions, so the corresponding rule
does not apply.

• If there is a corresponding instruction with primary opcode 63, its extended
opcode is used.

• Bit 26 = 1 iff the instruction is A-form.

• Bits 26:30 = 0b01000 iff the instruction is a Move Register instruction, or any
other instruction that does not refer to or set the Floating-Point Status and
Control Register.
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Normalized Operand
 if WORD1:8 > 0 and WORD1:8 < 255 then

FPR(FRT)0:1 ← WORD0:1
FPR(FRT)2 ← ¬WORD1
FPR(FRT)3 ← ¬WORD1
FPR(FRT)4 ← ¬WORD1
FPR(FRT)5:63 ← WORD2:31 || 290

Denormalized Operand
if WORD1:8 = 0 and WORD9:31 ≠ 0 then

sign ← WORD0
exp ← -126
frac0:52 ← 0b0 || WORD9:31 || 290
normalize the operand

do while frac0 = 0
frac ← frac1:52 || 0b0
exp ← exp - 1

FPR(FRT)0 ← sign
FPR(FRT)1:11 ← exp + 1023
FPR(FRT)12:63 ← frac1:52

Zero / Infinity / NaN
if WORD1:8 = 255 or WORD1:31 = 0 then

FPR(FRT)0:1 ← WORD0:1
FPR(FRT)2 ← WORD1
FPR(FRT)3 ← WORD1
FPR(FRT)4 ← WORD1
FPR(FRT)5:63 ← WORD2:31 || 290

For double-precision Load Floating-Point instructions no conversion is required,
as the data from storage are copied directly into the Floating-Point Register.

Many of the Floating-Point Load instructions have an ‘update’ form, in which
GPR(RA) is updated with the effective address. For these forms, if RA≠0 and
RA≠RT, the effective address is placed into GPR(RA) and the storage element (byte,
halfword, word, or doubleword) addressed by EA is loaded into FPR(RT). If RA=0
or RA=RT, the instruction form is invalid.

Floating-Point Load storage accesses will cause a Data Storage interrupt if the pro-
gram is not allowed to read the storage location. FLoating-Point Load storage
accesses will cause a Data TLB Error interrupt if the program attempts to access
storage that is unavailable.

Note: Recall that RA and RB denote General Purpose Registers, while FRT
denotes a Floating-Point Register.

Book E supports both Big-Endian and Little-Endian byte ordering.

Engineering Note
The above description of the conversion steps is a model only. The actual implementa-
tion may vary from this but must produce results equivalent to what this model would
produce.

Engineering Note
Implementations are strongly recommended to ignore bit 31 of instruction encodings for
X-form Floating-Point Load instructions.
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Table 5-7. Floating-Point Load Instruction Set Index

5.6.2 Floating-Point Store Instructions

There are three basic forms of store instruction: single-precision, double-preci-
sion, and integer. The integer form is provided by the optional Store Floating-Point
as Integer Word instruction, described on page 345. Because the FPRs support
only floating-point double format for floating-point data, single-precision Store
Floating-Point instructions convert double-precision data to single format prior to
storing the operand into storage. The conversion steps are as follows.

Let WORD0:31 be the word in storage written to.

No Denormalization Required (includes Zero / Infinity / NaN)
if FPR(FRS)1:11 > 896 or FPR(FRS)1:63 = 0 then

WORD0:1 ← FPR(FRS)0:1
WORD2:31 ← FPR(FRS)5:34

Denormalization Required
if 874 ≤ FRS1:11 ≤ 896 then

sign ← FPR(FRS)0
exp ← FPR(FRS)1:11 – 1023
frac ← 0b1 || FPR(FRS)12:63
denormalize operand

do while exp < –126
frac ← 0b0 || frac0:62
exp ← exp + 1

WORD0 ← sign
WORD1:8 ← 0x00
WORD9:31 ← frac1:23

else WORD ← undefined

Notice that if the value to be stored by a single-precision Store Floating-Point
instruction is larger in magnitude than the maximum number representable in
single format, the first case above (‘No Denormalization Required’) applies. The
result stored in WORD is then a well-defined value, but is not numerically equal
to the value in the source register (i.e., the result of a single-precision Load Float-
ing-Point from WORD will not compare equal to the contents of the original source
register).

Mnemonic Instruction Page
lfd FRT,D(RA)
lfdu FRT,D(RA)

Load Floating-Point Double
Load Floating-Point Double with Update

292

lfde FRT,DES(RA)
lfdue FRT,DES(RA)

Load Floating-Point Double Extended
Load Floating-Point Double with Update Extended

292

lfdx FRT,RA,RB
lfdux FRT,RA,RB

Load Floating-Point Double Indexed
Load Floating-Point Double with Update Indexed

292

lfdxe FRT,RA,RB
lfduxe FRT,RA,RB

Load Floating-Point Double Indexed Extended
Load Floating-Point Double with Update Indexed Extended

292

lfs FRT,D(RA)
lfsu FRT,D(RA)

Load Floating-Point Single
Load Floating-Point Single with Update

293

lfse FRT,DES(RA)
lfsue FRT,DES(RA)

Load Floating-Point Single Extended
Load Floating-Point Single with Update Extended

293

lfsx FRT,RA,RB
lfsux FRT,RA,RB

Load Floating-Point Single Indexed
Load Floating-Point Single with Update Indexed

293

lfsxe FRT,RA,RB
lfsuxe FRT,RA,RB

Load Floating-Point Single Indexed Extended
Load Floating-Point Single with Update Indexed Extended

293
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For double-precision Store Floating-Point instructions and for the Store Floating-
Point as Integer Word instruction no conversion is required, as the data from the
Floating-Point Register are copied directly into storage.

Many of the Floating-Point Store instructions have an ‘update’ form, in which
GPR(RA) is updated with the effective address. For these forms, if RA≠0, the effec-
tive address is placed into GPR(RA).

Floating-Point Store storage accesses will cause a Data Storage interrupt if the pro-
gram is not allowed to write to the storage location. Floating-Point Store storage
accesses will cause a Data TLB Error interrupt if the program attempts to access
storage that is unavailable.

Note: Recall that RA and RB denote General Purpose Registers, while FRS
denotes a Floating-Point Register.

Book E supports both Big-Endian and Little-Endian byte ordering.

Table 5-8. Floating-Point Store Instruction Set Index

Engineering Note
The above description of the conversion steps is a model only. The actual implementa-
tion may vary from this but must produce results equivalent to what this model would
produce.

Engineering Note
Implementations are strongly recommended to ignore bit 31 of instruction encodings for
X-form Floating-Point Store instructions.

Mnemonic Instruction Page
stfd FRS,D(RA)
stfdu FRS,D(RA)

Store Floating-Point Double
Store Floating-Point Double with Update

344

stfde FRS,DES(RA)
stfdue FRS,DES(RA)

Store Floating-Point Double Extended
Store Floating-Point Double with Update Extended

344

stfdx FRS,RA,RB
stfdux FRS,RA,RB

Store Floating-Point Double Indexed
Store Floating-Point Double with Update Indexed

344

stfdxe FRS,RA,RB
stfduxe FRS,RA,RB

Store Floating-Point Double Indexed Extended
Store Floating-Point Double with Update Indexed Extended

344

stfiwx FRS,RA,RB Store Floating-Point as Integer Word Indexed 345
stfiwxe FRS,RA,RB Store Floating-Point as Integer Word Indexed Extended 345
stfs FRS,D(RA)
stfsu FRS,D(RA)

Store Floating-Point Single
Store Floating-Point Single with Update

346

stfse FRS,DES(RA)
stfsue FRS,DES(RA)

Store Floating-Point Single Extended
Store Floating-Point Single with Update Extended

346

stfsx FRS,RA,RB
stfsux FRS,RA,RB

Store Floating-Point Single Indexed
Store Floating-Point Single with Update Indexed

346

stfsxe FRS,RA,RB
stfsuxe FRS,RA,RB

Store Floating-Point Single Indexed Extended
Store Floating-Point Single with Update Indexed Extended

346
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5.6.3 Floating-Point Move Instructions

These instructions copy data from one floating-point register to another, altering
the sign bit (bit 0) as described below for fneg, fabs, and fnabs. These instruc-
tions treat NaNs just like any other kind of value (e.g., the sign bit of a NaN may
be altered by fneg, fabs, and fnabs). These instructions do not alter the Floating-
Point Status and Control Register.

Table 5-9. Floating-Point Move Instruction Set Index

5.6.4 Floating-Point Arithmetic Instructions

5.6.4.1 Floating-Point Elementary Arithmetic Instructions

Table 5-10. Floating-Point Elementary Arithmetic Instruction Set Index

5.6.4.2 Floating-Point Multiply-Add Instructions

These instructions combine a multiply and an add operation without an interme-
diate rounding operation. The fraction part of the intermediate product is 106 bits
wide (L bit, FRACTION), and all 106 bits take part in the add/subtract portion of
the instruction.

Mnemonic Instruction Page
fabs FRT,FRB
fabs. FRT,FRB

Floating Absolute Value 261

fmr FRT,FRB
fmr. FRT,FRB

Floating Move Register 272

fnabs FRT,FRB
fnabs. FRT,FRB

Floating Negative Absolute Value 275

fneg FRT,FRB
fneg. FRT,FRB

Floating Negate 275

Mnemonic Instruction Page
fadd FRT,FRA,FRB
fadd. FRT,FRA,FRB

Floating Add 262

fadds FRT,FRA,FRB
fadds. FRT,FRA,FRB

Floating Add Single 262

fdiv FRT,FRA,FRB
fdiv. FRT,FRA,FRB

Floating Divide 270

fdivs FRT,FRA,FRB
fdivs. FRT,FRA,FRB

Floating Divide Single 270

fmul FRT,FRA,FRC
fmul. FRT,FRA,FRC

Floating Multiply 274

fmuls FRT,FRA,FRC
fmuls. FRT,FRA,FRC

Floating Multiply Single 274

fres FRT,FRB
fres. FRT,FRB

Floating Reciprocal Estimate Single 278

frsqrte FRT,FRB
frsqrte. FRT,FRB

Floating Reciprocal Square Root Estimate 282

fsqrt FRT,FRB
fsqrt. FRT,FRB

Floating Square Root 284

fsqrts FRT,FRB
fsqrts. FRT,FRB

Floating Square Root Single 284

fsub FRT,FRA,FRB
fsub. FRT,FRA,FRB

Floating Subtract 285

fsubs FRT,FRA,FRB
fsubs. FRT,FRA,FRB

Floating Subtract Single 285
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Status bits are set as follows.

• Overflow, Underflow, and Inexact Exception bits, the FR and FI bits, and the
FPRF field are set based on the final result of the operation, and not on the
result of the multiplication.

• Invalid Operation Exception bits are set as if the multiplication and the addi-
tion were performed using two separate instructions (fmul[s], followed by
fadd[s] or fsub[s]). That is, multiplication of infinity by 0 or of anything by an
SNaN, and/or addition of an SNaN, cause the corresponding exception bits to
be set.

Table 5-11. Floating-Point Multiply-Add Instruction Set Index

5.6.5 Floating-Point Rounding and Conversion
Instructions

Table 5-12. Floating-Point Rounding and Conversion Instruction Set Index

Mnemonic Instruction Page
fmadd FRT,FRA,FRB,FRC
fmadd. FRT,FRA,FRB,FRC

Floating Multiply-Add 271

fmadds FRT,FRA,FRB,FRC
fmadds. FRT,FRA,FRB,FRC

Floating Multiply-Add Single 271

fmsub FRT,FRA,FRB,FRC
fmsub. FRT,FRA,FRB,FRC

Floating Multiply-Subtract 273

fmsubs FRT,FRA,FRB,FRC
fmsubs. FRT,FRA,FRB,FRC

Floating Multiply-Subtract Single 273

fnmadd FRT,FRA,FRB,FRC
fnmadd. FRT,FRA,FRB,FRC

Floating Negative Multiply-Add 276

fnmadds FRT,FRA,FRB,FRC
fnmadds. FRT,FRA,FRB,FRC

Floating Negative Multiply-Add Single 276

fnmsub FRT,FRA,FRB,FRC
fnmsub. FRT,FRA,FRB,FRC

Floating Negative Multiply-Subtract 277

fnmsubs FRT,FRA,FRB,FRC
fnmsubs. FRT,FRA,FRB,FRC

Floating Negative Multiply-Subtract Single 277

Programming Note
Examples of uses of these instructions to perform various conversions can be found in
Section C.3 on page 389.

Mnemonic Instruction Page
fcfid FRT,FRB Floating Convert From Integer Doubleword 263
fctid FRT,FRB Floating Convert To Integer Doubleword 266
fctidz FRT,FRB Floating Convert To Integer Doubleword and round to Zero 266
fctiw FRT,FRB
fctiw. FRT,FRB

Floating Convert To Integer Word 268

fctiwz FRT,FRB
fctiwz. FRT,FRB

Floating Convert To Integer Word and round to Zero 268

frsp FRT,FRB
frsp. FRT,FRB

Floating Round to Single-Precision 279
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5.6.6 Floating-Point Compare Instructions

The floating-point Compare instructions compare the contents of two floating-
point registers. Comparison ignores the sign of zero (i.e., regards +0 as equal to -
0). The comparison result can be ordered or unordered.

The comparison sets one bit in the designated CR field to 1 and the other three to
0. The FPCC is set in the same way.

The CR field and the FPCC are set as follows.

Bit NameDescription
0 FL(FRA) < (FRB)
1 FG(FRA) > (FRB)
2 FE(FRA) = (FRB)
3 FU(FRA) ? (FRB) (unordered)

Table 5-13. Floating-Point Compare and Select Instruction Set Index

5.6.7 Floating-Point Status and Control Register
Instructions

Every Floating-Point Status and Control Register instruction synchronizes the
effects of all floating-point instructions executed by a given processor. Executing a
Floating-Point Status and Control Register instruction ensures that all floating-
point instructions previously initiated by the given processor have completed
before the Floating-Point Status and Control Register instruction is initiated, and
that no subsequent floating-point instructions are initiated by the given processor
until the Floating-Point Status and Control Register instruction has completed. In
particular:

• All exceptions that will be caused by the previously initiated instructions are
recorded in the Floating-Point Status and Control Register before the Floating-
Point Status and Control Register instruction is initiated.

• All invocations of the Enabled exception type Program interrupt that will be
caused by the previously initiated instructions have occurred before the Float-
ing-Point Status and Control Register instruction is initiated.

• No subsequent floating-point instruction that depends on or alters the set-
tings of any Floating-Point Status and Control Register bits is initiated until
the Floating-Point Status and Control Register instruction has completed.

(Floating-Point Load and Floating-Point Store instructions are not affected.)

Mnemonic Instruction Page
fcmpo BF,FRA,FRB Floating Compare Ordered 265
fcmpu BF,FRA,FRB Floating Compare Unordered 265
fsel FRT,FRA,FRB,FRC
fsel. FRT,FRA,FRB,FRC

Floating Select 283
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Table 5-14. Floating-Point Status and Control Register Instruction Set Index

Mnemonic Instruction Page
mcrfs BF,BFA Move to Condition Register from FPSCR 306
mffs FRT
mffs. FRT

Move From FPSCR 308

mtfsb0 BT
mtfsb0. BT

Move To FPSCR Bit 0 312

mtfsb1 BT
mtfsb1. BT

Move To FPSCR Bit 1 312

mtfsf FLM,FRB
mtfsf. FLM,FRB

Move To FPSCR Fields 313

mtfsfi BF,U
mtfsfi. BF,U

Move To FPSCR Field Immediate 314
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Chapter 6 Storage

6.1 Storage Model

6.1.1 Introduction

Section 1.11 defines storage as a linear array of bytes indexed from 0 to a maxi-
mum of 264 – 1. Each byte is identified by its index, called its address, and each
byte contains a value. This information is sufficient to allow the programming of
applications that require no special features of any particular system environ-
ment. This chapter expands this simple storage model to include caches, virtual
storage, and shared storage multiprocessors, and in conjunction with services
provided by the operating system, describes a mechanism that permits explicit
control of this expanded storage model. A simple model for sequential execution
allows at most one storage access to be performed at a time and requires that all
storage accesses appear to be performed in program order. In contrast to this sim-
ple model, Book E specifies a relaxed model of memory consistency. In a multipro-
cessor system that allows multiple copies of a location, aggressive
implementations of Book E can permit intervals of time during which different
copies of a location have different values. This chapter describes features of
Book E that enable programmers to write correct programs for this memory
model.
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6.1.2 Storage Addressing

A program references storage using the effective address computed by the proces-
sor when it executes a load, store, branch, or cache management instruction, and
when it fetches the next sequential instruction. The effective address is translated
to a real address according to procedures described in Section 6.2.2 and Section
6.2.3. The real address is sent to the memory subsystem to perform the storage
access (see Figure 6-2 on page 128).

For a complete discussion of storage addressing and effective address calculation,
see Section 1.11.

The storage model provides the following features:

• Book E allows storage implementations to take advantage of the performance
benefits of weak ordering of storage accesses between processors or between
processors and devices.

• Processor ordering: storage accesses by a single processor appear to complete
sequentially from the view of the programming model but may complete out of
order with respect to the ultimate destination in the storage hierarchy. Order
is guaranteed at each level of the storage hierarchy for accesses to the same
address from the same processor.

• Book E provides the following instructions that allow the programmer to
ensure a consistent and ordered storage state: dcbf[e], dcbst[e], dcbz[e],
icbi[e], isync, lwarx[e], ldarxe, msync, mbar, stwcx[e]., stdcxe., tlbsync.

• Storage consistency between processors and between a processor and devices
is controlled by software through mode bits in the TLB entry.

6.1.2.1 Virtual Storage

The Book E system implements a virtual storage model for applications. This
means that a combination of hardware and software can present a storage model
that allows applications to exist within a ‘virtual’ address space larger than either
the effective address space or the real address space.

Each program can access 264 bytes of ‘effective address’ (EA) space, subject to
limitations imposed by the operating system. In a typical Book E system, each
program's EA space is a subset of a larger ‘virtual address’ (VA) space managed by
the operating system.

Each effective address is translated to a real address (i.e., to an address of a byte
in real storage or on an I/O device) before being used to access storage. The hard-
ware accomplishes this using the address translation mechanism described in
Section 6.2.3. The operating system manages the real (physical) storage resources
of the system by setting up the tables and other information used by the hardware
address translation mechanism.

Storage access instruction descriptions deal primarily with effective addresses.
Each such effective address lies in a ‘virtual page’, which is mapped to a ‘real
page’ before data in the virtual page are accessed.

In general, real storage may not be large enough to map all the virtual pages used
by the currently active applications. With support provided by hardware, the oper-
ating system can attempt to use the available real pages to map a sufficient set of
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virtual pages of the applications. If a sufficient set is maintained, ‘paging’ activity
is minimized. If not, performance degradation is likely.

The operating system can support restricted access to virtual pages (including
individual enables for user state read, write, and execute, and supervisor state
read, write, and execute: see Section 6.2.4), based on system standards (e.g. pro-
gram code might be execute only, data structures mapped as read/write/no exe-
cute) and application requests.

6.1.2.2 Instruction Fetch

Instructions are fetched from the address space specified by MSRIS (see
Section 6.2.2 on page 125). When any context synchronizing event occurs, any
prefetched instructions are discarded and then instructions are re-fetched using
the then-current state of MSRIS and the then-current program counter.

Instructions are fetched using the address translated by the TLB mechanism.
Instructions are not fetched from no-execute storage (UX=0 or SX=0, see Section
6.2.4.1). If the effective address of the current instruction is mapped to no-execute
storage, an Instruction Storage interrupt is generated.

However, it is permissible for an instruction from no-execute storage to be in the
instruction cache if it was fetched into that cache when its effective address was
mapped to execute permitted storage. However, attempted execution of such
instructions will still result in an Instruction Storage interrupt. Thus, for example,
the operating system can mark an application's instruction pages as no-execute
without having to first flush them from the instruction cache.

6.1.2.3 Implicit Branch

Explicitly altering certain Machine State Register bits (using mtmsr), or explicitly
altering TLB entries or certain system registers may have the side effect of chang-
ing the addresses, virtual or real, from which the current instruction stream is
being fetched. This side effect is called an implicit branch. For example, an mtmsr
instruction that changes the value of MSRIS may change the real address from
which the current instruction stream is being fetched. The Machine State Register
bits and system registers for which alteration can cause an implicit branch are
indicated as such in Chapter 11 on page 225. Implicit branches are not supported
by Book E. If an implicit branch occurs, the results are boundedly undefined.
Software is required to precede or follow any implicit branch operation with the
appropriate synchronization operation, as specified in Chapter 11 on page 225.

6.1.2.4 Data Storage Access

Data accesses are performed to or from the address space specified by MSRDS.
When the state of MSRDS changes, subsequent accesses are made using the new
state of MSRDS following a context synchronizing operation (see Chapter 11 on
page 225).

The effective address is translated by the TLB mechanism.

6.1.2.5 Invalid Real Address

An attempt to fetch from, load from, or store to a real address that is not physi-
cally present in the machine may result in a Machine Check interrupt (see
Section 7.4.4 on page 151). This can occur by having the translation mechanism
set up in a way that causes nonexistent storage to be addressed.
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6.1.3 Single-Copy Atomicity

An access is single-copy atomic, or simply atomic, if it is always performed in its
entirety with no visible fragmentation. Atomic accesses are thus serialized: each
happens in its entirety in some order, even when that order is not specified in the
program or enforced between processors.

In Book E the following single-register accesses (i.e. aligned scalar accesses less
than or equal to the implemented width of the storage interface) are always
atomic:

• byte accesses (all bytes are aligned on byte boundaries)

• halfword accesses aligned on halfword boundaries

• word accesses aligned on word boundaries

• doubleword accesses aligned on doubleword boundaries

No other accesses are guaranteed to be atomic. For example, the access caused by
the following instructions is not guaranteed to be atomic.

• any Load or Store instruction for which the operand is unaligned

• lmw, stmw, lswi, lswx, stswi, stswx

• any Cache Management instruction

An access that is not atomic is performed as a set of smaller disjoint atomic
accesses. The number and alignment of these accesses are implementation-
dependent, as is the relative order in which they are performed.

The results for several combinations of loads and stores to the same or overlap-
ping locations are described below.

• When two processors execute atomic stores to locations that do not overlap,
and no other stores are performed to those locations, the contents of those
locations are the same as if the two stores were performed by a single
processor.

• When two processors execute atomic stores to the same storage location, and
no other store is performed to that location, the contents of that location are
the result stored by one of the processors.

• When two processors execute stores that have the same target location and
are not guaranteed to be atomic, and no other store is performed to that loca-
tion, the result is some combination of the bytes stored by both processors.

• When two processors execute multiple-byte stores to overlapping locations,
and no other store is performed to those locations, the result is some combi-
nation of the bytes stored by the processors to the overlapping bytes. The
portions of the locations that do not overlap contain the bytes stored by the
processor storing to the location.

• When a processor executes an atomic store to a location, a second processor
executes an atomic load from that location, and no other store is performed to
that location, the value returned by the load is the contents of the location
prior to the store or the contents of the location subsequent to the store.
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• When a load and a store with the same target location can be executed simul-
taneously, and no other store is performed to the location, the value returned
by the load is some combination, at the granularity of an atomic access, of the
contents of the location before the store and after the store.

6.1.4 Cache Model

A cache model in which there is one cache for instructions and another cache for
data is called a ‘Harvard-style’ cache. This is the model assumed by Book E, e.g.,
in the descriptions of the Cache Management instructions in Section 6.3.2. Alter-
native cache models may be implemented (e.g., a ‘combined cache’ model, in
which a single cache is used for both instructions and data, or a model in which
there are several levels of caches), but they must support the programming model
implied by a Harvard-style cache.

The processor is not required to maintain copies of storage locations in the
instruction cache that are consistent with modifications to those storage locations
(e.g., modifications caused by Store instructions).

In general, a location in the data cache is considered to be modified in that cache
if the location has been modified (e.g., by a Store instruction) and the modified
data have not been written to main storage. The only exception to this rule is
described in Section 6.2.5.1.

Cache Management instructions are provided so that programs can manage the
caches when needed. For example, program management of the caches is needed
when a program generates or modifies code that will be executed (i.e., when the
program modifies data in storage and then attempts to execute the modified data
as instructions). The Cache Management instructions are also useful in optimizing
the use of memory bandwidth in such applications as graphics and numerically
intensive computing. The functions performed by these instructions depend on
the storage attributes associated with the specified storage location (see Section
6.2.5).

The Cache Management instructions allow the program to do the following.

• give a hint that a block of storage should be copied to the instruction cache,
so that the copy of the block is more likely to be in the cache when subse-
quent accesses to the block occur, thereby reducing delays (icbt[e])

• invalidate the copy of storage in an instruction cache block (icbi[e])

• discard prefetched instructions (isync)

• invalidate the copy of storage in a data cache block (dcbi[e])

• give a hint that a block of storage should be copied to the data cache, so that
the copy of the block is more likely to be in the cache when subsequent
accesses to the block occur, thereby reducing delays (dcbt[e], dcbtst[e])

Engineering Note
Atomicity of storage accesses is provided by the processor in conjunction with the stor-
age subsystem. The processor must provide a storage subsystem interface that is
sufficient to allow a storage subsystem to meet the atomicity requirements specified
here.
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• allocate a data cache block and set the contents of that block to zeros, but no-
operation if no access is allowed to the data cache block and do not cause any
exceptions (dcba[e])

• set the contents of a data cache block to zeros (dcbz[e])

• copy the contents of a modified data cache block to main storage (dcbst[e])

• copy the contents of a modified data cache block to main storage and make
the copy of the block in the data cache invalid (dcbf[e]).

6.1.5 Performing Operations Out-of-Order

An operation is said to be performed ‘in-order’ if, at the time that it is performed,
it is known to be required by the sequential execution model. An operation is said
to be performed ‘out-of-order’ if, at the time that it is performed, it is not known to
be required by the sequential execution model.

Operations are performed out-of-order by the hardware on the expectation that
the results will be needed by an instruction that will be required by the sequential
execution model. Whether the results are really needed is contingent on every-
thing that might divert the control flow away from the instruction, such as
Branch, Trap, System Call, rfi and rfci instructions, and interrupts, and on
everything that might change the context in which the instruction is executed.

Typically, the hardware performs operations out-of-order when it has resources
that would otherwise be idle, so the operation incurs little or no cost. If subse-
quent events such as branches or interrupts indicate that the operation would not
have been performed in the sequential execution model, the processor abandons
any results of the operation (except as described below).

Most operations can be performed out-of-order, as long as the machine appears to
follow the sequential execution model. Certain out-of-order operations are
restricted, as follows.

• Stores

A Store instruction may not be executed out-of-order in a manner such that
the alteration of the target location can be observed by other processors or
mechanisms.

• Accessing Guarded storage

The restrictions for this case are given in Section 6.2.5.4.

No error of any kind other than Machine Check may be reported due to an opera-
tion that is performed out-of-order, until such time as it is known that the opera-

Architecture Note
In earlier versions of the architecture specification, ‘speculative’ was used instead of
‘out-of-order’. The terminology was changed to be consistent with the technical litera-
ture, where ‘speculative execution’ often means the execution of instructions past
unresolved branches and ‘out-of-order execution’ means execution of an instruction
before it is known to be required by the sequential execution model. Because the mean-
ing of ‘speculative’ in the literature differs from ordinary English usage the term would
cause confusion no matter how the architecture specification defined it, so the term is
no longer used here at all.
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tion is required by the sequential execution model. The only other permitted side
effect (other than Machine Check) of performing an operation out-of-order is non-
Guarded storage locations that could be fetched into a cache by in-order execu-
tion may be fetched out-of-order into that cache.

In general, Guarded storage is not accessed out-of-order, except in the following
cases.

• Load Instruction

If a copy of the location is in a cache then the location may be accessed in the
cache or in main storage.

• Instruction Fetch

There is no restriction on how a processor may perform instruction fetching
from guarded space, as long as the storage is execute permitted (UX/SX=1).

Engineering Note
Out-of-order execution of the Storage Synchronization instructions lwarx[e], ldarxe,
stwcx[e]., and stdcxe. is extremely complex and is not recommended.

Engineering Note
Because an asynchronous exception can become pending at any time, it might seem
that, for example, if MSREE=1 then fetching or executing any instruction beyond the
current instruction is an out-of-order operation. However, these operations need not be
treated as out-of-order if the taking of the interrupt is delayed until after they have com-
pleted. Similar considerations apply to Floating-Point Enabled Exception type Program
interrupts when one of the Imprecise floating-point exception modes is in effect.

Engineering Note
Implementations that perform operations out-of-order must take care to obey the
sequential execution model except as permitted by Book E. Examples of cases that may
require special attention include the following.

• changes of control flow, including sc, Trap, rfi, rfci, and interrupts as well as
branches

• changes of context due to changes of control flow. For example, the code at a branch
target location, or the handler for System Call or Trap interrupts, may change the
context and then return, so that the instructions immediately following the Branch,
sc, or Trap execute in a new context

• changes to resources, including but not limited to MSRPR IS DS and TLB entries,
that affect address translation, access control, or storage control attributes, when
the change is followed by the appropriate software synchronization

• execution synchronizing and context synchronizing operations

Programming Note
Software should mark guarded space as no-execute (UX=0 and SX=0) to prevent
inadvertent instruction fetch from guarded areas of storage.
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6.1.6 Shared Storage

Book E supports the sharing of storage between programs, between different
instances of the same program, and between processors and other mechanisms. It
also supports access to a storage location by one or more programs using different
effective addresses. All these cases are considered storage sharing. Storage is
shared at a page granularity.

When the same storage location has different effective addresses, the addresses
are said to be aliases. Each application can be granted separate access privileges
to aliased pages.

6.1.6.1 Storage Access Ordering

The storage model for the ordering of storage accesses is weakly consistent. This
model provides an opportunity for improved performance over a model that has
stronger consistency rules, but places the responsibility on the program to ensure
that ordering or synchronization instructions are properly placed when necessary
for the correct execution of the program.

The order in which the processor performs storage accesses, the order in which
those accesses are performed with respect to another processor or mechanism,
and the order in which those accesses are performed in main storage may all be
different. Several means of enforcing an ordering of storage accesses are provided
to allow programs to share storage with other programs, or with mechanisms
such as I/O devices. These means are listed below. The phrase ‘to the extent
required by the associated Memory Coherence Required attributes’ refers to the
Memory Coherence Required attribute, if any, associated with each access.

• If two Store instructions specify storage locations that are both Caching Inhib-
ited and Guarded, the corresponding storage accesses are performed in
program order with respect to any processor or mechanism.

• If a Load instruction depends on the value returned by a preceding Load
instruction (because the value is used to compute the effective address speci-
fied by the second Load), the corresponding storage accesses are performed in
program order with respect to any processor or mechanism to the extent
required by the associated Memory Coherence Required attributes. This
applies even if the dependency has no effect on program logic (e.g., the value
returned by the first Load is ANDed with zero and then added to the effective
address specified by the second Load).

• When a processor (P1) executes an msync or mbar instruction a memory bar-
rier is created, which separates applicable storage accesses into two groups,
G1 and G2. G1 includes all applicable storage accesses associated with
instructions preceding the barrier-creating instruction, and G2 includes all
applicable storage accesses associated with instructions following the barrier-
creating instruction. The memory barrier ensures that all storage accesses in
G1 are performed with respect to any processor or mechanism, to the extent
required by the associated Memory Coherence Required attributes, before any
storage accesses in G2 are performed with respect to that processor or
mechanism.

Engineering Note
Page-level aliasing can be implemented in many ways, such as with real-addressed
caches, L2 directories, or an external signal to an inverse directory. Each processor
implementation will decide on its level of implementation in support of its system
requirements.
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The ordering done by a memory barrier is said to be ‘cumulative’ if it also
orders storage accesses that are performed by processors and mechanisms
other than P1, as follows.

– G1 includes all applicable storage accesses by any such processor or
mechanism that have been performed with respect to P1 before the mem-
ory barrier is created.

– G2 includes all applicable storage accesses by any such processor or
mechanism that are performed after a Load instruction executed by that
processor or mechanism has returned the value stored by a store that is in
G2.

The memory barrier created by msync is cumulative, and applies to all stor-
age accesses except those associated with fetching instructions following the
msync instruction. See the definition of mbar on page 304 for a description of
the corresponding properties of the memory barrier created by that
instruction.

No ordering should be assumed among the storage accesses caused by a single
instruction (i.e, by an instruction for which the access is not atomic), and no
means are provided for controlling that order.

Programming Note
The first example below illustrates cumulative ordering of storage accesses preceding a
memory barrier, and the second illustrates cumulative ordering of storage accesses fol-
lowing a memory barrier. Assume that locations X, Y, and Z initially contain the value 0.

Example 1:

Processor A: stores the value 1 to location X

Processor B: loads from location X obtaining the value 1,
executes an msync instruction, then
stores the value 2 to location Y

Processor C: loads from location Y obtaining the value 2,
executes an msync instruction, then
loads from location X

Example 2:

Processor A: stores the value 1 to location X,
executes an msync instruction, then
stores the value 2 to location Y

Processor B: loops loading from location Y until the value 2 is obtained, then stores
the value 3 to location Z

Processor C: loads from location Z obtaining the value 3,
executes an msync instruction, then
loads from location X

In both cases, cumulative ordering dictates that the value loaded from location X by pro-
cessor C is 1.

Engineering Note
It is permissible to perform a dependent load before the load on which it depends, if soft-
ware accessing shared storage cannot tell the difference.

It is always permissible to prefetch a data cache block from non-Guarded storage based
on predicting the effective address specified by a Load or Store instruction.
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Programming Note
Because stores cannot be performed ‘out-of-order’ (see Section 6.1.5), if a Store instruc-
tion depends on the value returned by a preceding Load instruction (because the value
returned by the Load is used to compute either the effective address specified by the
Store or the value to be stored), the corresponding storage accesses are performed in
program order. The same applies if the Store instruction that is executed depends on a
conditional Branch instruction that in turn depends on the value returned by a preced-
ing Load instruction.

Because an isync instruction prevents the execution of instructions following the isync
until instructions preceding the isync have completed, if an isync follows a conditional
Branch instruction that depends on the value returned by a preceding Load instruction,
the load on which the Branch depends is performed before any loads caused by instruc-
tions following the isync. This applies even if the effects of the ‘dependency’ are
independent of the value loaded (e.g., the value is compared to itself and the Branch
tests the EQ bit in the selected CR field), and even if the branch target is the next
sequential instruction to be executed.

With the exception of the cases described above and earlier in this section, data depen-
dencies and control dependencies do not order storage accesses. Examples include the
following.

• If a Load instruction specifies the same storage location as a preceding Store instruc-
tion and the location is in storage that is not Caching Inhibited, the load may be
satisfied from a ‘store queue’ (a buffer into which the processor places stored values
before presenting them to the storage subsystem), and not be visible to other proces-
sors and mechanisms. A consequence is that if a subsequent Store depends on the
value returned by the Load, the two stores need not be performed in program order
with respect to other processors and mechanisms.

• Because a Store Conditional instruction may complete before its store has been per-
formed, a conditional Branch instruction that depends on the CR0 value set by a
Store Conditional instruction does not order the Store Conditional's store with respect
to storage accesses caused by instructions that follow the Branch.

• Because processors may predict branch target addresses and branch condition reso-
lution, control dependencies (e.g., branches) do not order storage accesses except as
described above. For example, when a subroutine returns to its caller the return
address may be predicted, with the result that loads caused by instructions at or
after the return address may be performed before the load that obtains the return
address is performed.

Because processors may implement non-architected duplicates of architected resources
(e.g., GPRs, CR fields, and the Link Register), resource dependencies (e.g., specification
of the same target register for two Load instructions) do not order storage accesses.

Examples of correct uses of dependencies, msync, and mbar to order storage accesses
can be found in Appendix D on page 397.

Because the storage model is weakly consistent, the sequential execution model as
applied to instructions that cause storage accesses guarantees only that those accesses
appear to be performed in program order with respect to the processor executing the
instructions. For example, an instruction may complete, and subsequent instructions
may be executed, before storage accesses caused by the first instruction have been per-
formed. However, for a sequence of atomic accesses to the same storage location, if the
location is in Memory Coherence Required storage, the definition of coherence guaran-
tees that the accesses are performed in program order with respect to any processor or
mechanism that accesses the location coherently. The same applies if the location is in
Caching Inhibited storage.

Because accesses to storage that is Caching Inhibited are performed in main storage,
memory barriers and dependencies on Load instructions order such accesses with
respect to any processor or mechanism even if the storage is not Memory Coherence
Required.
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6.1.6.2 Atomic Update Primitives

The Load And Reserve and Store Conditional instructions together permit atomic
update of a storage location. Book E provides word and doubleword forms of each
of these instructions. Described here is the operation of lwarx and stwcx.; opera-
tion of the other word forms, lwarxe and stwcxe., and the doubleword forms
ldarxe and stdcxe. is the same except for obvious substitutions.

The specified storage location must be in storage that is Memory Coherence
Required if the location may be modified by other processors or mechanisms. If
the specified location is in storage that is Write-Through Required or Caching
Inhibited, it is implementation-dependent whether these instructions function
correctly or cause the system data storage error handler to be invoked.

The lwarx instruction is a load from a word-aligned location that has two side
effects.

• A reservation for a subsequent stwcx. instruction is created.

• The storage coherence mechanism is notified that a reservation exists for the
storage location accessed by the lwarx.

The stwcx. instruction is a store to a word-aligned location that is conditioned on
the existence of the reservation created by the lwarx and on whether the same
storage location is specified by both instructions. To emulate an atomic operation
with these instructions, it is necessary that both the lwarx and the stwcx. access
the same storage location. lwarx and stwcx. are ordered by a dependence on the
reservation, and the program is not required to insert other instructions to main-
tain the order of storage accesses caused by these two instructions.

Engineering Note
The correct operation of msync and mbar depends on both the processor and the stor-
age subsystem.

The definition of memory barriers is not intended to preclude address pipelining. If two
applicable Storage Access instructions are separated by msync or mbar, it is permissi-
ble for the address associated with the second instruction to be presented to a given
level of the storage hierarchy before the data access caused by the first instruction has
completed at that level. However, if such pipelining is done, the processor must provide
sufficient information so that the storage subsystem can keep the storage accesses in
the correct order, and the storage subsystem must do so.

Programming Note
The Memory Coherence Required attribute on other processors and mechanisms
ensures that their stores to the specified storage location will cause the reservation cre-
ated by the lwarx, lwarxe, or ldarxe to be lost.

Programming Note
Warning: Support for Load and Reserve and Store Conditional instructions for which the
specified storage location is in storage that is Caching Inhibited is being phased out of
Book E. It is likely not to be provided on future implementations. New programs should
not use these instructions to access Caching Inhibited storage.

Engineering Note
For a given implementation, decisions regarding whether to support Load and Reserve
and Store Conditional instructions that specify a Caching Inhibited storage location, and
how well to make such instructions perform, must include consideration of migration
plans for existing software that uses these instructions in this manner.
07 May 02 Chapter 6 Storage 117



A stwcx. performs a store to the target storage location only if the storage location
accessed by the lwarx that established the reservation has not been stored into
by another processor or mechanism between supplying a value for the lwarx and
storing the value supplied by the stwcx. If the storage locations specified by the
two instructions differ the store is not necessarily performed. CR0 is set to indi-
cate whether the store was performed.

If a stwcx. completes but does not perform the store because a reservation no
longer exists, CR0 is set to indicate that the stwcx. completed but storage was not
altered.

A stwcx. that performs its store is said to ‘succeed’.

Examples of the use of lwarx and stwcx. are given in Appendix C on page 379.

A successful stwcx. to a given location may complete before its store has been
performed with respect to other processors and mechanisms. As a result, a sub-
sequent load or lwarx from the given location on another processor may return a
‘stale’ value. However, a subsequent lwarx from the given location on the other
processor followed by a successful stwcx. on that processor is guaranteed to have
returned the value stored by the first processor’s stwcx. (in the absence of other
stores to the given location).

Reservations

The ability to emulate an atomic operation using lwarx and stwcx. is based on
the conditional behavior of stwcx., the reservation set by lwarx, and the clearing
of that reservation if the target location is modified by another processor or mech-
anism before the stwcx. performs its store.

A reservation is held on an aligned unit of real storage called a reservation gran-
ule. The size of the reservation granule is implementation-dependent, but is a
multiple of 4 bytes for lwarx and lwarxe, and a multiple of 8 bytes for ldarxe.
The reservation granule associated with effective address EA contains the real
address to which EA maps. (‘real_addr(EA)’ in the RTL for the Load And Reserve
(page 290 and page 300) and Store Conditional instructions (page 342 and page
353) stands for ‘real address to which EA maps.’) When one processor holds a res-
ervation and another processor performs a store, the first processor's reservation
is cleared if the store affects any bytes in the reservation granule.

A processor has at most one reservation at any time. A reservation is established
by executing a lwarx instruction, and is lost (or may be lost, in the case of the
fourth and fifth bullets) if any of the following occur.

Engineering Note
Both lwarx and stwcx. have a data dependence on the processor reservation resource.

Programming Note
One use of lwarx and stwcx. is to emulate a ‘Compare and Swap’ primitive like that
provided by the IBM System/370 Compare and Swap instruction: see Appendix C on
page 379. A System/370-style Compare and Swap checks only that the old and current
values of the word being tested are equal, with the result that programs that use such a
Compare and Swap to control a shared resource can err if the word has been modified
and the old value subsequently restored. The combination of lwarx and stwcx.
improves on such a Compare and Swap, because the reservation reliably binds the
lwarx and stwcx. together. The reservation is always lost if the word is modified by
another processor or mechanism between the lwarx and stwcx., so the stwcx. never
succeeds unless the word has not been stored into (by another processor or mecha-
nism) since the lwarx.
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• The processor holding the reservation executes another lwarx: this clears the
first reservation and establishes a new one.

• The processor holding the reservation executes any stwcx., regardless of
whether the specified address matches that of the lwarx.

• Some other processor executes a Store, or dcbz[e] to the same reservation
granule.

• Some other processor executes a dcbtst[e], dcbst[e], or dcbf[e] to the same
reservation granule: whether the reservation is lost is undefined.

• Some other processor executes a dcba[e] to the same reservation granule: the
reservation is lost if the instruction causes the target block to be newly estab-
lished in the data cache or to be modified; otherwise whether the reservation
is lost is undefined.

• Some other mechanism modifies a storage location in the same reservation
granule.

Interrupts (see Chapter 7 on page 143) do not clear reservations (however, system
software invoked by interrupts may clear reservations).

Programming Note
In general, programming conventions must ensure that lwarx and stwcx. specify
addresses that match; a stwcx. should be paired with a specific lwarx to the same stor-
age location. Situations in which a stwcx. may erroneously be issued after some lwarx
other than that with which it is intended to be paired must be scrupulously avoided. For
example, there must not be a context switch in which the processor holds a reservation
in behalf of the old context, and the new context resumes after a lwarx and before the
paired stwcx.. The stwcx. in the new context might succeed, which is not what was
intended by the programmer.

Such a situation must be prevented by issuing a stwcx. to a dummy writable word-
aligned location as part of the context switch, thereby clearing any reservation estab-
lished by the old context. Executing stwcx. to a word-aligned location suffices to clear
the reservation, whether it was obtained by lwarx, lwarxe, or ldarxe.

Engineering Note
Reservations must take part in storage coherence. A reservation must be cleared if
another processor receives authorization from the coherence mechanism to store to the
reservation granule.

If an implementation continues to hold a reservation when the cache block in which the
reservation lies is evicted, the reservation must continue to participate in the coherence
protocol. In a snooping implementation, it must join in snooping. In a directory-based
implementation, it must register its interest in the reserved block with the directory
(shared-read access).

If an implementation demands that the reserved block be held in the cache, one way to
satisfy the architectural requirements is the following. The implementation must be able
to protect that block from eviction except by explicit invalidation (e.g., execution of
dcbf[e]) by the processor holding the reservation, and by cross-invalidates received from
other processors, as long as the reservation persists. Caches in such an implementation
must be sufficiently associative that the machine can continue to run with eviction of
the reserved block inhibited.
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Forward Progress

Forward progress in loops that use lwarx and stwcx. is achieved by a cooperative
effort among hardware, operating system software, and application software.

Book E guarantees that when a processor executes a lwarx to obtain a reserva-
tion for location X and then a stwcx. to store a value to location X, either

1. the stwcx. succeeds and the value is written to location X, or

2. the stwcx. fails because some other processor or mechanism modified loca-
tion X, or

3. the stwcx. fails because the processor's reservation was lost for some other
reason.

In Cases 1 and 2, the system as a whole makes progress in the sense that some
processor successfully modifies location X. Case 3 covers reservation loss
required for correct operation of the rest of the system. This includes cancellation
caused by some other processor writing elsewhere in the reservation granule for
X, as well as cancellation caused by the operating system in managing certain
limited resources such as real memory. It may also include implementation-
dependent causes of reservation loss.

An implementation may make a forward progress guarantee, defining the condi-
tions under which the system as a whole makes progress. Such a guarantee must
specify the possible causes of reservation loss in Case 3. While Book E alone can-
not provide such a guarantee, the characteristics listed in Cases 1 and 2 are nec-
essary conditions for any forward progress guarantee. An implementation and
operating system can build on them to provide such a guarantee.

Reservation Loss Due to Granularity

Lock words should be allocated such that contention for the locks and updates to
nearby data structures do not cause excessive reservation losses due to false indi-
cations of sharing that can occur due to the reservation granularity.

A processor holding a reservation on any word in a reservation granule will lose its
reservation if some other processor stores anywhere in that granule. Such prob-
lems can be avoided only by ensuring that few such stores occur. This can most
easily be accomplished by allocating an entire granule for a lock and wasting all
but one word.

Reservation granularity may vary for each implementation. There are no architec-
tural restrictions bounding the granularity implementations must support, so
reasonably portable code must dynamically allocate aligned and padded storage
for locks to guarantee absence of granularity-induced reservation loss.

Architecture Note
Book E does not include a ‘fairness guarantee.’ In competing for a reservation, two pro-
cessors can indefinitely lock out a third.
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6.2 Storage Management

This section describes the address translation facility, access control, and storage
attributes and control for Book E storage.

Book E supports demand-paged virtual memory as well as a variety of other man-
agement schemes that depend on precise control of effective-to-real address
translation and flexible memory protection. Translation misses and protection
faults cause precise exceptions. Sufficient information is available to correct the
fault and restart the faulting instruction.

Book E divides the effective address space into pages. The page represents the
granularity of effective address translation, access control, and storage attributes.
Up to sixteen page sizes (1KB, 4KB, 16KB, 64KB, 256KB, 1MB, 4MB, 16MB,
64MB, 256MB, 1GB, 4GB, 16GB, 64GB, 256GB, 1TB) may be simultaneously
supported. In order for an effective to real translation to exist, a valid entry for the
page containing the effective address must be in the Translation Lookaside Buffer
(TLB). Addresses for which no TLB entry exists cause TLB Miss exceptions.

6.2.1 Storage Control Registers

In addition to the registers described below, the Machine State Register provides
the IS and DS bits, that specify which of the two address spaces the respective
instruction or data storage accesses are directed towards. MSRPR bit is also used
by the Book E storage access control mechanism.

6.2.1.1 Process ID Register

The Process ID Register (PID) is a 32-bit register. Process ID Register bits are
numbered 32 (most-significant bit) to 63 (least-significant bit). The Process ID
Register provides a value that is used to construct a virtual address for accessing
storage.

The contents of bits 32:63 of the Process ID Register can be read into bits 32:63 of
GPR(RT) using mfspr RT,PID, setting bits 0:31 of GPR(RT) to 0. The contents of
bits 32:63 of GPR(RS) can be written into the Process ID Register using
mtspr RS,PID. An implementation may opt to implement only the least-significant
n bits of the Process ID Register, where 0 ≤ n ≤ 32, and n must be the same as the
number of implemented bits in the TID field of the TLB entry. The most-significant
32–n bits of the Process ID Register are treated as reserved. See the User’s Manual
for the implementation.

Some implementations may support more than one Process ID Register. See
User’s Manual for the implementation.

6.2.1.2 Translation Lookaside Buffer

The Translation Lookaside Buffer (TLB) is the hardware resource that controls
translation, protection, and storage attributes. The organization of the TLB (e.g.
unified versus separate instruction and data, hierarchies, associativity, number of
entries, etc.) is implementation-dependent. Thus, the software for updating the
TLB is also implementation-dependent. For the purposes of this discussion, a uni-
fied TLB organization is assumed. The differences for an implementation with sep-
arate instruction and data TLB’s are for the most part obvious (e.g. separate
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instructions or separate index ranges for reading, writing, searching, and invali-
dating each TLB). For details on how to synchronize TLB updates with instruction
execution see Chapter 11 on page 225.

Maintenance of TLB entries is under software control. System software deter-
mines TLB entry replacement strategy and the format and use of any page state
information. The TLB entry contains all the information required to identify the
page, to specify the translation, to specify access controls, and to specify the stor-
age attributes. The format of the TLB entry is implementation-dependent.

While the TLB is managed by software, Book E does not prohibit an implementa-
tion from implementing partial or full hardware assist for TLB management (e.g.
support of PowerPC Architecture’s virtual memory architecture). However, such
implementations should be able to disable such support with implementation-
dependent software or hardware configuration mechanisms.

A TLB entry is written by copying information from a GPR or other implementa-
tion-dependent source, using a series of tlbwe instructions (see page 366). A TLB
entry is read by copying information to a GPR or other implementation-dependent
target, using a series of tlbre instructions (see page 363). Software can also
search for specific TLB entries using the tlbsx[e] instruction (see page 364). Writ-
ing, reading and searching the TLB is implementation-dependent.

Each TLB entry describes a page that is eligible for translation and access con-
trols. Fields in the TLB entry fall into four categories:

• Page identification fields (information required to identify the page to the
hardware translation mechanism).

• Address translation fields

• Access control fields

• Storage attribute fields

While Book E requires the fields prescribed in Tables 6-1, 6-2, 6-3, and 6-4 to be
implemented, no particular TLB entry format is formally specified. Book E does
provide the ability to read or write portions of individual entries using the tlbre
and tlbwe instructions.

Table 6-1. TLB Entry Page Identification Fields

Field Description

V Valid (1 bit)
This bit indicates that this TLB entry is valid and may be used for translation.
The Valid bit for a given entry can be set or cleared with a tlbwe instruction; al-
ternatively, the Valid bit for an entry may be cleared by a tlbivax[e] instruction.

EPN Effective Page Number (54 bits)
Bits 0:n–1 of the EPN field are compared to bits 0:n–1 of the effective address (EA)
of the storage access (where n=64–log2(page size in bytes) and page size is spec-
ified by the SIZE field of the TLB entry). See Table 6-5.

Note
Implementations may implement bits N:53 of the EPN field, where N≥0. See Us-
er’s Manual for the implementation.
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Table 6-2. TLB Entry Translation Field

TS Translation Address Space (1 bit)
This bit indicates the address space this TLB entry is associated with. For in-
struction storage accesses, MSRIS must match the value of TS in the TLB entry
for that TLB entry to provide the translation. Likewise, for data storage accesses,
MSRDS must match the value of TS in the TLB entry. For tlbsx[e] and tlbivax[e]
instructions, an implementation-dependent source provides the address space
specification that must match the value of TS.

SIZE Page Size (4 bits)
The SIZE field specifies the size of the page associated with the TLB entry as
4SIZEKB, where SIZE ∈ {0, 1, …, 15}. Implementations may implement any one
or more of these page sizes. See Table 6-5.

TID Translation ID (implementation-dependent size)
Field used to identify a shared page (TID=0) or the owner’s process ID of a private
page (TID≠0). See Section 6.2.2.

Field Description

RPN Real Page Number (up to 54 bits)
Bits 0:n–1 of the RPN field are used to replace bits 0:n–1 of the effective address
to produce the real address for the storage access (where n=64–
log2(page size in bytes) and page size is specified by the SIZE field of the TLB en-
try). Software must set unused low-order RPN bits (i.e. bits n:53) to 0. See Sec-
tion 6.2.3.

Note
Implementations may implement bits M:53 of the RPN field, where M≥0. See Us-
er’s Manual for the implementation.

Field Description
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Table 6-3. TLB Entry Access Control Fields

Table 6-4. TLB Entry Storage Attribute Bits

Bit Description

UX User State Execute Enable (1 bit) See Section 6.2.4.1.

=0 Instruction fetch and execution is not permitted from this page while
MSRPR=1 and will cause an Execute Access Control exception type
Instruction Storage interrupt.

=1 Instruction fetch and execution is permitted from this page while
MSRPR=1.

SX Supervisor State Execute Enable (1 bit) See Section 6.2.4.1.

=0 Instruction fetch and execution is not permitted from this page while
MSRPR=0 and will cause an Execute Access Control exception type
Instruction Storage interrupt.

=1 Instruction fetch and execution is permitted from this page while
MSRPR=0.

UW User State Write Enable (1 bit) See Section 6.2.4.2.

=0 Store operations, including dcba[e] and dcbz[e], are not permitted to
this page when MSRPR=1 and will cause a Write Access Control ex-
ception. Except as noted in Table 6-7 on page 131, a Write Access
Control exception will cause a Data Storage interrupt.

=1 Store operations, including dcba[e] and dcbz[e], are permitted to this
page when MSRPR=1.

SW Supervisor State Write Enable (1 bit) See Section 6.2.4.2.

=0 Store operations, including dcba[e], dcbi[e], and dcbz[e], are not per-
mitted to this page when MSRPR=0. Store operations, including dc-
bi[e] and dcbz[e], will cause a Write Access Control exception. Except
as noted in Table 6-7 on page 131, a Write Access Control exception
will cause a Data Storage interrupt.

=1 Store operations, including dcba[e], dcbi[e], and dcbz[e], are permit-
ted to this page when MSRPR=0.

UR User State Read Enable (1 bit) See Section 6.2.4.3.

=0 Load operations (including load-class Cache Management instruc-
tions) are not permitted from this page when MSRPR=1 and will cause
a Read Access Control exception. Except as noted in Table 6-7 on
page 131, a Read Access Control exception will cause a Data Storage
interrupt.

=1 Load operations (including load-class Cache Management instruc-
tions) are permitted from this page when MSRPR=1.

SR Supervisor State Read Enable (1 bit) See Section 6.2.4.3.

=0 Load operations (including load-class Cache Management instruc-
tions) are not permitted from this page when MSRPR=0 and will cause
a Read Access Control exception. Except as noted in Table 6-7 on
page 131, a Read Access Control exception will cause a Data Storage
interrupt.

=1 Load operations (including load-class Cache Management instruc-
tions) are permitted from this page when MSRPR=0.

Bit(s) Description

W Write-Through Required (1 bit) See Section 6.2.5.1.

=0 The page is not Write-Through Required.

=1 The page is Write-Through Required.

I Caching Inhibited (1 bit) See Section 6.2.5.2.

=0 The page is not Caching Inhibited.

=1 The page is Caching Inhibited.
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6.2.2 Page Identification

Instruction effective addresses are generated for sequential instruction fetches
and for addresses that correspond to a change in program flow (branches, inter-
rupts). Data effective addresses are generated by Load, Store, and Cache Manage-
ment instructions. TLB Management generate effective addresses to determine the
presence of or to invalidate a specific TLB entry associated with that address.

The Valid (V) bit, Effective Page Number (EPN) field, Translation Space Identifier
(TS) bit, Page Size (SIZE) field, and Translation ID (TID) field of a particular TLB
entry identify the page associated with that TLB entry. Except as noted, all com-
parisons must succeed to validate this entry for subsequent translation and
access control processing. Failure to locate a matching TLB entry based on this
criteria for instruction fetches will result in an Instruction TLB Miss exception
type Instruction TLB Error interrupt. Failure to locate a matching TLB entry
based on this criteria for data storage accesses will result in a Data TLB Miss
exception which may result in a Data TLB Error interrupt. Figure 6-1 on page 127
illustrates the criteria for a virtual address to match a specific TLB entry.

There are two address spaces, one typically associated with interrupt-related stor-
age accesses and one typically associated with non-interrupt-related storage
accesses. There are two bits in the Machine State Register, the Instruction
Address Space bit (IS) and the Data Address Space bit (DS), that control which
address space instruction and data storage accesses, respectively, are performed
in, and a bit in the TLB entry (TS) that specifies which address space that TLB
entry is associated with.

Load, Store, Cache Management, Branch, tlbsx[e], and tlbivax[e] instructions and
next-sequential-instruction fetches produce a 64-bit effective address. The virtual
address space is extended from this 64-bit effective address space by prepending
a one-bit address space identifier and a process identifier. For instruction fetches,
the address space identifier is provided by MSRIS and the process identifier is pro-
vided by the contents of the Process ID Register. For data storage accesses, the

M Memory Coherence Required (1 bit) See Section 6.2.5.3.

=0 The page is not Memory Coherence Required.

=1 The page is Memory Coherence Required.

Hardware support for Memory Coherence Required storage is optional for imple-
mentations that do not support multiprocessing. If the implementation does not
support this storage attribute, then all storage access will behave as if M=0, and
setting M=1 in a TLB entry will have no effect.

G Guarded (1 bit) See Section 6.2.5.4 and Section 6.1.5.

=0 The page is not Guarded.

=1 The page is Guarded.

E Endianness (1 bit) See Section 6.2.5.5.

=0 All accesses to the page are performed in a big-endian fashion, which
means that, for all multiple-byte scalar accesses, the byte at the low-
est numbered address is treated as the most-significant byte.

=1 All accesses to the page are performed in a little-endian fashion, which
means that, for all multiple-byte scalar accesses, the byte at the low-
est numbered address is treated as the least-significant byte

U0-U3 User-Definable Storage Attributes (4 bits) See Section 6.2.5.6.
Specifies implementation-dependent and system-dependent storage attributes
for the page associated with the TLB entry. See the User’s Manual for the imple-
mentation.

Bit(s) Description
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address space identifier is provided by the MSRDS and the process identifier is
provided by the contents of the Process ID Register. For tlbsx[e], and tlbivax[e]
instructions, the address space identifier and the process identifier are provided
by implementation-dependent sources.

This virtual address is used to locate the associated entry in the TLB. The address
space identifier, the process identifier, and the effective address of the storage
access are compared to the Translation Address Space bit (TS), the Translation ID
field (TID), and the value in the Effective Page Number field (EPN), respectively, of
each TLB entry.

The virtual address of a storage access matches a TLB entry if:

for every TLB entry i in the congruence class specified by EA:

- the value of the address specifier for the storage access (MSRIS for
instruction fetches, MSRDS for data storage accesses, and implementa-
tion-dependent source for tlbsx[e] and tlbivax[e]) is equal to the value
of the TS bit of the TLB entry, and

- either the value of the process identifier (Process ID Register for
instruction and data storage accesses, and implementation-dependent
source for tlbsx[e] and tlbivax[e]) is equal to the value in the TID field
of the TLB entry, or the value of the TID field of the TLB entry is equal
to 0, and

- the contents of bits 0:n–1 of the effective address of the storage or TLB
access are equal to the value of bits 0:n-1 of the EPN field of the TLB
entry (where n=64-log2(page size in bytes) and page size is specified by
the value of the SIZE field of the TLB entry). See Table 6-5.

A TLB Miss exception occurs if there is no valid entry in the TLB for the page spec-
ified by the virtual address (Instruction or Data TLB Error interrupt). Although the
possibility to place multiple entries into the TLB that match a specific virtual
address exists, assuming a set-associative or fully-associative organization, doing
so is a programming error and the results are undefined.
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Table 6-5. Page Size and Effective Address to EPN Comparison

Figure 6-1. Virtual Address to TLB Entry Match Process

SIZE Page Size
(4SIZEKB)

EA to EPN Comparison
(bits 0:53–2×SIZE)

=0b0000
=0b0001
=0b0010
=0b0011
=0b0100
=0b0101
=0b0110
=0b0111
=0b1000
=0b1001
=0b1010
=0b1011
=0b1100
=0b1101
=0b1110
=0b1111

1KB
4KB

16KB
64KB

256KB
1MB
4MB

16MB
64MB

256MB
1GB
4GB

16GB
64GB

256GB
1TB

EPN0:53 =? EA0:53
EPN0:51 =? EA0:51
EPN0:49 =? EA0:49
EPN0:47 =? EA0:47
EPN0:45 =? EA0:45
EPN0:43 =? EA0:43
EPN0:41 =? EA0:41
EPN0:39 =? EA0:39
EPN0:37 =? EA0:37
EPN0:35 =? EA0:35
EPN0:33 =? EA0:33
EPN0:31 =? EA0:31
EPN0:29 =? EA0:29
EPN0:27 =? EA0:27
EPN0:25 =? EA0:25
EPN0:23 =? EA0:23

TLB entry i matches effective address

MSRIS for instruction fetches, or
MSRDS for data storage accesses, or
implementation-dependent for tlbsx[e]

AS

Legend:

EA effective address of storage access

63 – log2(page size)N-1

{=0?

private page

shared page

=?

n 64 – # of implemented PID/TID bits

=?

contents of Process ID Register for

implementation-dependent for tlbsx[e]
Process ID

instruction fetches and data

TLBentry[i][V]

TLBentry[i][TS]

AS

Process IDn:63

TLBentry[i][TID]n:63

TLBentry[i][EPN]0:N-1

EA0:N-1 {

=?

 & tlbivax[e]

storage accesses, or

& tlbivax[e]
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6.2.3 Address Translation

A program references memory by using the effective address computed by the pro-
cessor when it executes a Load, Store, Cache Management, or Branch instruction,
and when it fetches the next instruction. The effective address is translated to a
real address according to the procedures described in this section. The storage
subsystem uses the real address for the access. All storage access effective
addresses are translated to real addresses using the TLB mechanism. See Figure
6-2.

Figure 6-2. Effective-to-Real Address Translation Flow

If the virtual address of the storage access matches a TLB entry in accordance
with the selection criteria specified in Section 6.2.2, the value of the Real Page
Number field (RPN) of the selected TLB entry provides the real page number por-
tion of the real address. Let n=64–log2(page size in bytes) where page size is spec-
ified by the SIZE field of the TLB entry. Bits n:63 of the effective address are
appended to bits 0:n–1 of the 54-bit RPN field of the selected TLB entry to produce
the 64-bit real address (i.e. RA = RPN0:n–1 || EAn:63). The page size is determined
by the value of the SIZE field of the selected TLB entry. See Table 6-6.

The rest of the selected TLB entry provides the access control bits (UX, SX, UW,
SW, UR, SR), and storage attributes (U0, U1, U2, U3, W, I, M, G, E) for the storage
access. The access control bits and storage attribute bits specify whether or not
the access is allowed and how the access is to be performed. See Sections 6.2.4
and 6.2.5.

The Real Page Number field (RPN) of the matching TLB entry provides the transla-
tion for the effective address of the storage access. Based on the setting of the
SIZE field of the matching TLB entry, the RPN field replaces the corresponding
most-significant N bits of the effective address (where N = 64 – log2(page size)), as
shown in Figure 6-6, to produce the 64-bit real address that is to be presented to
main storage to perform the storage access.

64-bit Effective Address

64-bit Real Address

Virtual Address

NOTE: n = 64–log2(page size)

PID Effective Page Address Offset

0 n 63

Real Page Number Offset

n 630

TLB
multiple-entry

MSRIS for instruction fetch

A
S

MSRDS for data storage accesses

RPN0:53

n–1

n–1
128 Book E: Enhanced PowerPC Architecture Version 1.0 07 May 02



Table 6-6. Effective Address to Real Address

6.2.4 Storage Access Control

After a matching TLB entry has been identified, Book E provides an access control
mechanism for selectively granting shared access, granting execute access, grant-
ing read access, granting write access, and prohibiting access to areas of storage
based on a number of criteria. Figure 6-3 illustrates the access control process
and is described in detail in Sections 6.2.4.1, 6.2.4.2, 6.2.4.3, 6.2.4.4, and
6.2.4.5.

An Execute, Read, or Write Access Control exception occurs if the appropriate TLB
entry is found but the access is not allowed by the access control mechanism
(Instruction or Data Storage interrupt). See Section 7.6 for additional information
about these and other interrupt types. In certain cases, Execute, Read, and Write
Access Control exceptions may result in the restart of (re-execution of at least part
of) a Load or Store instruction.

Some implementation may provide additional access control capabilities beyond
that described here. See the User’s Manual for the implementation.

Figure 6-3. Access Control Process

SIZE Page Size
(4SIZEKB)

RPN Bits Required
to be Equal to 0

Real Address

=0b0000
=0b0001
=0b0010
=0b0011
=0b0100
=0b0101
=0b0110
=0b0111
=0b1000
=0b1001
=0b1010
=0b1011
=0b1100
=0b1101
=0b1110
=0b1111

1KB
4KB

16KB
64KB

256KB
1MB
4MB

16MB
64MB

256MB
1GB
4GB

16GB
64GB

256GB
1TB

none
RPN52:53=0
RPN50:53=0
RPN48:53=0
RPN46:53=0
RPN44:53=0
RPN42:53=0
RPN40:53=0
RPN38:53=0
RPN36:53=0
RPN34:53=0
RPN32:53=0
RPN30:53=0
RPN28:53=0
RPN26:53=0
RPN24:53=0

RPN0:53 || EA54:63
RPN0:51 || EA52:63
RPN0:49 || EA50:63
RPN0:47 || EA48:63
RPN0:45 || EA46:63
RPN0:43 || EA44:63
RPN0:41 || EA42:63
RPN0:39 || EA40:63
RPN0:37 || EA38:63
RPN0:35 || EA36:63
RPN0:33 || EA34:63
RPN0:31 || EA32:63
RPN0:29 || EA30:63
RPN0:27 || EA28:63
RPN0:25 || EA26:63
RPN0:23 || EA24:63

access granted

instruction fetch
MSRPR

TLBentry[UX]

TLBentry[SX]

load-class data storage access
TLBentry[UR]

TLBentry[SR]

store-class data storage access
TLBentry[UW]

TLBentry[SW]

TLB match (see Figure 6-1)
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6.2.4.1 Execute Access

The UX and SX bits of the TLB entry control execute access to the page (see Table
6-3 on page 124).

Instructions may be fetched and executed from a page in storage while in user
state (MSRPR=1) if the UX access control bit for that page is equal to 1. If the UX
access control bit is equal to 0, then instructions from that page will not be
fetched, and will not be placed into any cache as the result of a fetch request to
that page while in user state.

Instructions may be fetched and executed from a page in storage while in supervi-
sor state (MSRPR=0) if the SX access control bit for that page is equal to 1. If the
SX access control bit is equal to 0, then instructions from that page will not be
fetched, and will not be placed into any cache as the result of a fetch request to
that page while in supervisor state.

Furthermore, if the sequential execution model calls for the execution of an
instruction from a page that is not enabled for execution (i.e. UX=0 when
MSRPR=1 or SX=0 when MSRPR=0), an Execute Access Control exception type
Instruction Storage interrupt is taken.

6.2.4.2 Write Access

The UW and SW bits of the TLB entry control write access to the page (see Table
6-3 on page 124).

Store operations (including Store-class Cache Management instructions) are per-
mitted to a page in storage while in user state (MSRPR=1) if the UW access control
bit for that page is equal to 1. If the UW access control bit is equal to 0, then exe-
cution of the Store instruction is suppressed and a Write Access Control exception
type Data Storage interrupt is taken.

Store operations (including Store-class Cache Management instructions) are per-
mitted to a page in storage while in supervisor state (MSRPR=0) if the SW access
control bit for that page is equal to 1. If the SW access control bit is equal to 0,
then execution of the Store instruction is suppressed and a Write Access Control
exception type Data Storage interrupt is taken.

6.2.4.3 Read Access

The UR and SR bits of the TLB entry control read access to the page (see Table 6-
3 on page 124).

Load operations (including Load-class Cache Management instructions) are per-
mitted from a page in storage while in user state (MSRPR=1) if the UR access con-
trol bit for that page is equal to 1. If the UR access control bit is equal to 0, then
execution of the Load instruction is suppressed and a Read Access Control excep-
tion type Data Storage interrupt is taken.

Load operations (including Load-class Cache Management instructions) are per-
mitted from a page in storage while in supervisor state (MSRPR=0) if the SR access
control bit for that page is equal to 1. If the SR access control bit is equal to 0,
then execution of the Load instruction is suppressed and a Read Access Control
exception type Data Storage interrupt is taken.
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6.2.4.4 Storage Access Control Applied to Cache Management
Instructions

dcbi[e] and dcbz[e] instructions are treated as Stores since they can change data
(or cause loss of data by invalidating a dirty line). As such, they both can cause
Write Access Control exception type Data Storage interrupts.

dcba[e] instructions are treated as Stores since they can change data. As such,
they can cause Write Access Control exceptions. However, such exceptions will
not result in a Data Storage interrupt.

icbi[e] instructions are treated as Loads with respect to protection. As such, they
can cause Read Access Control exception type Data Storage interrupts.

dcbt[e], dcbtst[e], and icbt[e] instructions are treated as Loads with respect to
protection. As such, they can cause Read Access Control exceptions. However,
such exceptions will not result in a Data Storage interrupt.

dcbf[e] and dcbst[e] instructions are treated as Loads with respect to protection.
Flushing or storing a line from the cache is not considered a Store since the store
has already been done to update the cache and the dcbf[e] or dcbst[e] instruction
is only updating the copy in main storage. As a Load, they can cause Read Access
Control exception type Data Storage interrupts.

Table 6-7. Storage Access Control Applied to Cache Instructions

6.2.4.5 Storage Access Control Applied to String Instructions

When the string length is zero, neither lswx nor stswx can cause Data Storage
interrupts.

Instruction

Read
Protection
Violation

Exception?

Write
Protection
Violation

Exception?

dcba[e] No Yes2

dcbf[e] Yes No

dcbi[e] No Yes

dcbst[e] Yes No

dcbt[e] Yes1 No

dcbtst[e] Yes1 No

dcbz[e] No Yes

icbi[e] Yes No

icbt[e] Yes1 No
1.dcbt[e], dcbtst[e], & icbt[e] may cause a Read Access Control ex-
ception but does not result in a Data Storage interrupt
2.dcba[e] may cause a Write Access Control exception but does not
result in a Data Storage interrupt
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6.2.5 Storage Attributes

Some operating systems may provide a means to allow programs to specify the
storage attributes described in this section. Because the support provided for
these attributes by the operating system may vary between systems, the details of
the specific system being used must be known before these attributes can be
used.

Storage attributes are associated with units of storage called pages. Each storage
access is performed according to the storage control attributes of the specified
storage location, as described below. The storage control attributes are the follow-
ing.

• Write-Through Required (W)
• Caching Inhibited (I)
• Memory Coherence Required (M)
• Guarded (G)
• Endianness (E)
• User-Definable (U0, U1, U2, U3)

The W, I, M, G, E, U0, U1, U2, and U3 bits in the TLB entry control the way in
which the processor performs storage accesses in the page associated with the
TLB entry.

All combinations of these attributes are supported except combinations which
simultaneously specify a region as Write-Through Required and Caching Inhib-
ited.

In the remainder of this chapter, ‘Load instruction’ includes the Cache Manage-
ment and other instructions that are stated in the instruction descriptions to be
‘treated as a Load’, and similarly for ‘Store instruction’.

6.2.5.1 Write-Through Required

A store to a Write-Through Required (W) storage location is performed in main
storage. A Store instruction that specifies a location in Write-Through Required
storage may cause additional locations in main storage to be accessed. If a copy of
the block containing the specified location is retained in the data cache, the store
is also performed in the data cache. The store does not cause the block to be con-
sidered to be modified in the data cache.

If some Store instructions executed by a given processor access locations in a
block as Write-Through Required and other Store instructions executed by the
same processor access locations in the block as not Write-Through Required, soft-
ware must ensure that the block is not in storage that is accessed by another pro-
cessor or mechanism. Also, if a Store instruction that accesses a location in the
block as Write-Through Required is executed when the block is already consid-
ered to be modified in the data cache, the block may continue to be considered to

Programming Note
The Write-Through Required and Caching Inhibited attributes are mutually exclusive
because, as described below, the Write-Through Required attribute permits the storage
location to be in the data cache while the Caching Inhibited attribute does not.

Storage that is Write-Through Required or Caching Inhibited is not intended to be used
for general-purpose programming. For example, the lwarx[e], ldarxe, stwcx[e]. and std-
cxe. instructions may cause the system data storage error handler to be invoked if they
specify a location in storage having either of these attributes; see Section 6.1.6.2.
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be modified in the data cache even if the store causes all modified locations in the
block to be written to main storage.

In general, accesses caused by separate Store instructions that specify locations
in Write-Through Required storage may be combined into one access. Such com-
bining does not occur if the Store instructions are separated by an msync instruc-
tion or by an mbar instruction.

6.2.5.2 Caching Inhibited

An access to a Caching Inhibited (I) storage location is performed in main storage.
A Load instruction that specifies a location in Caching Inhibited storage may
cause additional locations in main storage to be accessed unless the specified
location is also Guarded. An instruction fetch from Caching Inhibited storage may
cause additional words in main storage to be accessed. No copy of the accessed
locations is placed into the caches.

In general, non-overlapping accesses caused by separate Load instructions that
specify locations in Caching Inhibited storage may be combined into one access,
as may non-overlapping accesses caused by separate Store instructions that spec-
ify locations in Caching Inhibited storage. Such combining does not occur if the
Load or Store instructions are separated by an msync instruction, or by an mbar
instruction if the storage is also Guarded.

6.2.5.3 Memory Coherence Required

An access to a Memory Coherence Required (M) storage location is performed
coherently, as follows.

Memory coherence refers to the ordering of stores to a single location. Atomic
stores to a given location are coherent if they are serialized in some order, and
no processor or mechanism is able to observe any subset of those stores as
occurring in a conflicting order. This serialization order is an abstract
sequence of values; the physical storage location need not assume each of the
values written to it. For example, a processor may update a location several
times before the value is written to physical storage. The result of a store
operation is not available to every processor or mechanism at the same
instant, and it may be that a processor or mechanism observes only some of
the values that are written to a location. However, when a location is accessed
atomically and coherently by all processor and mechanisms, the sequence of
values loaded from the location by any processor or mechanism during any
interval of time forms a subsequence of the sequence of values that the loca-
tion logically held during that interval. That is, a processor or mechanism can
never load a ‘newer’ value first and then, later, load an ‘older’ value.

Memory coherence is managed in blocks called coherence blocks. Their size is
implementation-dependent (see the User’s Manual for the implementation), but is
usually larger than a word and often the size of a cache block.

For storage that is not Memory Coherence Required, software must explicitly
manage memory coherence to the extent required by program correctness. The
operations required to do this may be system-dependent.

Because the Memory Coherence Required attribute for a given storage location is
of little use unless all processors that access the location do so coherently, in
statements about Memory Coherence Required storage elsewhere in this docu-
ment it is generally assumed that the storage has the Memory Coherence
Required attribute for all processors that access it.
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The ability to disable Memory Coherence Required is provided (see Table 6-4 on
page 124) to allow improved performance in systems in which accesses to storage
kept consistent by hardware are slower than accesses to storage not kept consis-
tent by hardware, and in which software is able to enforce the required consis-
tency. When the Storage attribute is off (M=0), the hardware need not enforce data
coherence for storage accesses initiated by the processor. When the Storage
attribute is on (M=1), the hardware must enforce data coherence for storage
accesses initiated by the processor.

When an access is performed for which data coherence is required, the processor
performing the access must inform the coherence mechanism that the access
requires memory coherence. Other processors affected by the access must
respond to the coherence mechanism. However since the mode control bits have
no direct relation to data or instructions in the cache, processors responding to
the coherence request are able to respond without knowledge of the state of this
bit. Because instruction storage need not be consistent with data storage, it is
permissible for an implementation to ignore the M bit for instruction fetches.

Hardware support for Memory Coherence Required storage attribute is optional
for implementations that do not support multiprocessing.

Programming Note
Operating systems that allow programs to request that storage not be Memory Coher-
ence Required should provide services to assist in managing memory coherence for such
storage, including all system-dependent aspects thereof.

In most systems the default is that all storage is Memory Coherence Required. For some
applications in some systems, software management of coherence may yield better per-
formance. In such cases, a program can request that a given unit of storage not be
Memory Coherence Required, and can manage the coherence of that storage by using
the msync instruction, the Cache Management instructions, and services provided by
the operating system.

Engineering Note
Memory coherence can be implemented, for example, by an ownership protocol that
allows at most one processor at a time to store to a given location in Memory Coherence
Required storage.

A processor observing a storage access initiated by another processor or mechanism
must honor the coherence requirements of that access, even if the observing processor
last accessed the affected storage location as not Memory Coherence Required.

System Note
Entities other than processors can request that their memory transactions obey mem-
ory coherence.

Engineering Note
Treating instruction fetches as non-coherent can result in better performance in an
implementation in which a coherent storage request has greater latency or overhead
than a non-coherent storage request.
134 Book E: Enhanced PowerPC Architecture Version 1.0 07 May 02



6.2.5.4 Guarded

Storage is said to be ‘well-behaved’ if the corresponding real storage exists and is
not defective, and if the effects of a single access to it are indistinguishable from
the effects of multiple identical accesses to it. Data and instructions can be
fetched out-of-order from well-behaved storage without causing undesired side
effects.

A data access to a Guarded storage location is performed only if either the access
is caused by an instruction that is known to be required by the sequential execu-
tion model, or the access is a load and the storage location is already in a cache. If
the storage is also Caching Inhibited, only the storage location specified by the
instruction is accessed; otherwise any storage location in the cache block contain-
ing the specified storage location may be accessed.

Instruction fetch is not affected by Guarded storage. While Book E does not pre-
vent instructions from being fetched out-of-order from Guarded storage, system
software should prevent all instruction fetching from Guarded storage by making
Guarded pages ‘no-execute’ (see Table 6-4 on page 124). Then, if the effective
address of the current instruction is in such storage, an Execute Access Control
type Instruction Storage interrupt is invoked.

In general, storage that is not well-behaved should be Guarded. Because such
storage may represent a control register on an I/O device or may include locations
that do not exist, an out-of-order access to such storage may cause an I/O device
to perform unintended operations or may result in a Machine Check.

If an aligned, elementary load or store to storage that is both Caching Inhibited
and Guarded has accessed main storage and an asynchronous or imprecise mode
Floating-Point Enabled exception is pending, the Load or Store instruction com-
pletes before the interrupt occurs.

Programming Note
In some implementations, instructions may be executed before they are known to be
required by the sequential execution model. Because the results of instructions exe-
cuted in this manner are discarded if it is later determined that those instructions would
not have been executed in the sequential execution model, this behavior does not affect
most programs.

This behavior does affect programs that access storage locations that are not ‘well-
behaved’ (e.g., a storage location that represents a control register on an I/O device that,
when accessed, causes the device to perform an operation). To avoid unintended results,
programs that access such storage locations should request that the storage be
Guarded, and should prevent such storage locations from being in a cache (e.g., by
requesting that the storage also be Caching Inhibited).

Architecture Note
The rules for accessing Guarded storage when an Imprecise mode Floating-Point
Enabled exception is pending should be revisited when Book E is clarified with respect
to those modes. For example, it may be acceptable to require software synchronization
between any instruction that could cause a floating-point enabled exception in Impre-
cise mode and a subsequent instruction that accesses Guarded storage. (A Floating-Point
Status and Control Register instruction might provide sufficient synchronization.)
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6.2.5.5 Endianness

Objects may be loaded from or stored to memory in byte, halfword, word, or dou-
bleword units. For a particular data length, the loading and storing operations are
symmetric; a store followed by a load of the same data object will yield an
unchanged value. There is no information in the process about the order in which
the bytes which comprise the multiple-byte data object are stored in memory.

Big Endian

If a stored multiple-byte object is probed by reading its component bytes one at a
time using load-byte instructions, then the storage order may be perceived. If
such probing shows that the lowest memory address contains the highest-order
byte of the multiple-byte scalar, the next higher sequential address the next least
significant byte, and so on, then the multiple-byte object is stored in Big Endian
form.

Note that strings are not multiple-byte scalars but are interpreted as a series of
single-byte scalars. Bytes in a string are loaded from storage, using a Load String
Word instruction, starting at the lowest-numbered address, and placed into the
target register or registers starting at the left-most byte of the least-significant
word. Bytes in a string are stored, using a Store String Word, instruction from the
source register starting at the left-most byte of the least-significant word, and
placed into storage, starting at the lowest numbered address.

Little Endian

Alternatively, if the probing shows that the lowest memory address contains the
lowest-order byte of the multiple-byte scalar, the next higher sequential address
the next most significant byte, and so on, then the multiple-byte object is stored
in Little Endian form.

6.2.5.6 User-Definable

User-definable storage attributes control user-definable and implementation-
dependent behavior of the storage system. These bits are both implementation-
dependent and system-dependent in their effect. They may be used in any combi-
nation and also in combination with the other storage attribute bits. See User’s
Manual for the implementation.

6.2.5.7 Supported Storage Attribute Combinations

Support for M=1 storage is optional. Storage modes where both W=1 and I=1
(which would represent Write-Through Required but Caching Inhibited storage)
are not supported. For all supported combinations of the W, I and M bits, both G
and E may be 0 or 1.

Engineering Note
Some implementations may only support the Endianness storage attribute in a static
manner and may require software assistance as well as a context-synchronizing event
between successive accesses to little-endian and big-endian storage (e.g. support the
Endianness storage attribute as a static mode). These implementations may rely on the
Byte Ordering exception type Data Storage or Instruction Storage interrupt to switch
between ‘little-endian mode’ and ‘big-endian mode’.
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6.2.5.8 Mismatched Storage Attributes

Accesses to the same storage location using two effective addresses for which the
Write-Through Required storage attribute (W bit) differs meet the memory coher-
ence requirements described in Section 6.2.5.3, if the accesses are performed by a
single processor. If the accesses are performed by two or more processors, coher-
ence is enforced by the hardware only if the Write-Through Required storage
attribute is the same for all the accesses.

Loads, Stores, dcbz[e] instructions, and instruction fetches to the same storage
location using two effective addresses for which the Caching Inhibited storage
attribute (I bit) differs must meet the requirement that a copy of the target loca-
tion of an access to Caching Inhibited storage not be in the cache. Violation of this
requirement is considered a programming error; software must ensure that the
location has not previously been brought into the cache or, if it has, that it has
been flushed from the cache. If the programming error occurs, the result of the
access is boundedly undefined. It is not considered a programming error if the
target location of any other cache management instruction to Caching Inhibited
storage is in the cache.

Accesses to the same storage location using two effective addresses for which the
Guarded storage attribute (G bit) differs are always permitted.

Except for instruction fetches, accesses to the same storage location using two
effective addresses for which the endian storage attribute (E bit) differs are always
permitted. Instruction storage locations must be flushed before the endian stor-
age attribute can be changed for those addresses.

The specification of mismatched user storage attributes (U0 through U3) is imple-
mentation-dependent. See the User’s Manual for the implementation.

Accesses to the same storage location using two effective addresses for which the
memory coherence Storage attribute (M bit) differs may require explicit software
synchronization before accessing the location with M=1 if the location has previ-
ously been accessed with M=0. Any such requirement is system-dependent. For
example, in some ‘snooping bus’ based systems no software synchronization may
be required. In some ‘directory based’ systems, software may be required to exe-
cute dcbf[e] instructions on each processor to flush all storage locations accessed
with M=0 before accessing those locations with M=1.

6.2.6 TLB Management

Book E does not imply any format for the page tables or the page table entries.
Software has significant flexibility in implementing a custom replacement strat-
egy. For example, software may choose to lock TLB entries that correspond to fre-
quently used storage, so that those entries are never cast out of the TLB and TLB
Miss exceptions to those pages never occur. At a minimum, software must main-
tain an entry or entries for the Instruction and Data TLB Error interrupt handlers.

Engineering Note
If an implementation uses a ‘MESI’ coherence protocol, a store addressed to a write-
through page may find the addressed cache block in the cache and modified. If so, the
store should update the location in both the cache block and main storage (the normal
operation of a store to Write-Through Required storage). It is acceptable for the imple-
mentation to write the block back to main storage, in which case it can change the state
to ‘unmodified.’ It is also acceptable for the implementation to leave the state of the
cache block ‘modified’ after updating the location in cache and main storage.
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TLB management is performed in software with some hardware assist. This hard-
ware assist consists of a minimum of:

• Automatic recording of the effective address causing a TLB Miss exception.
For Instruction TLB Miss exceptions, the address is saved in the Save/Restore
Register 0. For Data TLB Miss exceptions, the address is saved in the Data
Exception Address Register.

• Instructions for reading, writing, searching, invalidating, and synchronizing
the TLB (see Section 6.3.3).

Programming Note
This note suggests one example for managing reference and change recording in a
Book E system.

When performing physical page management, it is useful to know whether a given physi-
cal page has been referenced or altered. Note that this may be more involved than
whether a given TLB entry has been used to reference or alter memory, since multiple
TLB entries may translate to the same physical page. If it is necessary to replace the
contents of some physical page with other contents, a page which has been referenced
(accessed for any purpose) is more likely to be maintained than a page which has never
been referenced. If the contents of a given physical page are to be replaced, then the
contents of that page must be written to the backing store before replacement, if any-
thing in that page has been changed. Software must maintain records to control this
process.

Similarly, when performing TLB management, it is useful to know whether a given TLB
entry has been referenced. When making a decision about which entry to cast-out of the
TLB, an entry which has been referenced is more likely to be maintained in the TLB than
an entry which has never been referenced.

Execute, Read and Write Access Control exceptions may be used to allow software to
maintain reference information for a TLB entry and for its associated physical page. The
entry is built, with its UX, SX, UR, SR, UW, and SW bits off, and the index and effective
page number of the entry retained by software. The first attempt of application code to
use the page will cause an Access Control exception (because the entry is marked ‘No
Execute’, ‘No Read’, and ‘No Write’). The Instruction or Data Storage interrupt handler
records the reference to the TLB entry and to the associated physical page in a software
table, and then turns on the appropriate access control bit. An initial read from the page
could be handled by only turning on the appropriate UR or SR access control bits, leav-
ing the page ‘read-only’. Subsequent execute, read, or write accesses to the page via this
TLB entry will proceed normally.

In a demand-paged environment, when the contents of a physical page are to be
replaced, if any storage in that physical page has been altered, then the backing storage
must be updated. The information that a physical page is dirty is typically recorded in a
‘change’ bit for that page.

Write Access Control exceptions may be used to allow software to maintain change infor-
mation for a physical page. For the example just given for reference recording, the first
write access to the page via the TLB entry will create a Write Access Control exception
type Data Storage interrupt. The Data Storage interrupt handler records the change sta-
tus to the physical page in a software table, and then turns on the appropriate UW and
SW bits. All subsequent accesses to the page via this TLB entry will proceed normally.
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6.3 Storage Control Instructions

6.3.1 Storage Synchronization Instructions

The Storage Synchronization instructions can be used to control the order in
which storage accesses are performed with respect to other processors and with
respect to other mechanisms that access storage.

Table 6-8. Storage Synchronization Instruction Set Index

6.3.2 Cache Management Instructions

The Cache Management instructions obey the sequential execution model except
as described in the example on page 141 of managing coherence between the
instruction and data caches.

In the instruction descriptions the statements ‘this instruction is treated as a
Load’ and ‘this instruction is treated as a Store’ mean that the instruction is
treated as a Load from or a Store to the addressed byte with respect to address
translation, storage protection, and the storage access ordering done by msync,
mbar, and the other means described in Section 6.1.6.1.

Architecture Note
All processors in a symmetric multiprocessor must be identical with respect to the cache
model, the coherence block size, and the reservation granule sizes.

Mnemonic Instruction Page
mbar Memory Barrier 304
msync Memory Synchronize 310

Engineering Note
An example of the requirements of the sequential execution model with respect to Cache
Management instructions is that a Load instruction that specifies a storage location in
the block specified by a preceding dcbf[e] instruction must be satisfied from main stor-
age (if the location is in storage that is not Memory Coherence Required) or from
coherent storage (if the location is in storage that is Memory Coherence Required), and
not from the copy of the location that existed in the cache when the dcbf[e] instruction
was executed.

Similar requirements apply to cache reload buffers. For example, if a cache reload
request for a given instruction cache block is pending when an icbi[e] instruction is exe-
cuted specifying the same block, the results of the reload request must not be used to
satisfy a subsequent instruction fetch.

An example of the requirements of data dependencies with respect to Cache Manage-
ment instructions is that if a dcbf[e] instruction depends on the value returned by a
preceding Load instruction, the invalidation caused by the dcbf[e] must be performed
after the load has been performed.
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Each implementation provides an efficient means by which software can ensure
that all blocks that are considered to be modified in the data cache have been cop-
ied to main storage before the processor enters any power conserving mode in
which data cache contents are not maintained. The means are described in the
User’s Manual for the implementation.

It is permissible for an implementation to treat any or all of the Cache Touch
instructions (i.e. icbt[e], dcbt[e], or dcbtst[e]) as no-operations, even if a cache is
implemented.

The instruction cache is not necessarily kept consistent with the data cache or
with main storage. When instructions are modified by processors or by other
mechanisms, software must ensure that the instruction cache is made consistent
with data storage and that the modifications are made visible to the instruction
fetching mechanism. The following instruction sequence can be used to accom-
plish this when the instructions being modified are in storage that is Memory
Coherence Required and one program both modifies the instructions and exe-
cutes them. (Additional synchronization is needed when one program modifies
instructions that another program will execute.) In this sequence, location instr is
assumed to contain instructions that have been modified.

Engineering Note
If the applicable cache does not exist, all of the Cache Management instructions except
dcbz[e] must be treated as no-operations. If the data cache does not exist, dcbz[e] must
either (a) set to zero all bytes of the area of main storage that corresponds to the speci-
fied block or (b) cause an Alignment interrupt to be taken.

If, at any level of the storage hierarchy, a combined cache is implemented such that
locations in that cache lack an indication of whether they were fetched as data or as
instructions, the locations must be treated as if they were fetched as data. E.g., dcbf[e]
must flush and invalidate them, and icbi[e] must not invalidate them. (Permitting icbi[e]
to invalidate a block that was fetched as data would make icbi[e] act as an user mode
dcbi[e], and thereby create a security and data integrity exposure.)

Programming Note
It is suggested that the operating system provide a service that allows an application
program to obtain the following information.

• Page sizes supported by the implementation (see User’s Manual)
• Coherence block size
• Granule sizes for reservations
• An indication of the cache model implemented (e.g., separate instruction and data

caches versus a combined cache)
• Instruction cache size
• Data cache size
• Instruction cache block size (see User’s Manual)
• Data cache block size (see User’s Manual)
• Block size for icbi[e] (if no instruction cache, number of bytes zeroed by dcbz[e])
• Block size for dcbt[e] and dcbtst[e] (if no data cache, number of bytes zeroed by

dcbz[e])
• Block size for dcbz[e], dcbst[e], dcbf[e], and dcba[e] (if no data cache, number of

bytes zeroed by dcbz[e])
• Instruction cache associativity
• Data cache associativity
• Factors for converting the Time Base to seconds

If the caches are combined, the same value should be given for an instruction cache
attribute and the corresponding data cache attribute.
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   dcbst  instr   #update block in main storage
   msync          #order update before invalidation
   icbi   instr   #invalidate copy in instr cache
   msync          #order invalidation before discarding
                  #  prefetched instructions
   isync          #discard prefetched instructions

Table 6-9. Cache Management Instruction Set Index

Programming Note
Because the optimal instruction sequence may vary between systems, many operating
systems will provide a system service to perform the function described above.

Engineering Note
Correct operation of the instruction sequence shown above, and of any corresponding
system-dependent sequence, may require that an instruction fetch request not bypass a
writeback of the same storage location caused by the sequence (including a writeback by
another processor).

Programming Note
As stated above, the effective address is translated using translation resources used for
data accesses, even though the block being invalidated was copied into the instruction
cache based on translation resources used for instruction fetches.

Mnemonic Instruction Page

dcba RA,RB Data Cache Block Allocate 247
dcbae RA,RB Data Cache Block Allocate Extended 247
dcbf RA,RB Data Cache Block Flush 248
dcbfe RA,RB Data Cache Block Flush Extended 248
dcbi RA,RB Data Cache Block Invalidate 249
dcbie RA,RB Data Cache Block Invalidate Extended 249
dcbst RA,RB Data Cache Block Store 251
dcbste RA,RB Data Cache Block Store Extended 251
dcbt CT,RA,RB Data Cache Block Touch 252
dcbte CT,RA,RB Data Cache Block Touch Extended 252
dcbtst CT,RA,RB Data Cache Block Touch for Store 253
dcbtste CT,RA,RB Data Cache Block Touch for Store Extended 253
dcbz RA,RB Data Cache Block set to Zero 254
dcbze RA,RB Data Cache Block set to Zero Extended 254
icbi RA,RB Instruction Cache Block Invalidate 286
icbie RA,RB Instruction Cache Block Invalidate Extended 286
icbt CT,RA,RB Instruction Cache Block Touch 287
icbte CT,RA,RB Instruction Cache Block Touch Extended 287
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6.3.3 TLB Management Instructions

While Book E describes logically separate instruction fetch and integer (including
effective address computation) operations, the programming model is that there is
a common translation mechanism. Separate instruction and data TLBs as well as
multi-level TLBs are allowed in Book E at the discretion of the implementation.

Table 6-10. TLB Management Instruction Set Index

Mnemonic Instruction Page

tlbivax RA,RB TLB Invalidate Virtual Address Indexed 362
tlbivaxe RA,RB TLB Invalidate Virtual Address Indexed Extended 362
tlbre RT,RA,WS TLB Read Entry 363
tlbsx RA,RB TLB Search Indexed 364
tlbsxe RA,RB TLB Search Indexed Extended 362
tlbsync TLB Synchronize 365
tlbwe RT,RA,WS TLB Write Entry 366
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Chapter 7 Interrupts and Exceptions

7.1 Overview

An interrupt is the action in which the processor saves its old context (Machine
State Register and next instruction address) and begins execution at a pre-deter-
mined interrupt-handler address, with a modified Machine State Register. Excep-
tions are the events that will, if enabled, cause the processor to take an interrupt.

In Book E, exceptions are generated by signals from internal and external periph-
erals, instructions, the internal timer facility, debug events, or error conditions.

All interrupts, except Machine Check, are ordered within the two categories of
non-critical and critical, such that only one interrupt of each category is reported,
and when it is processed (taken) no program state is lost. Since Save/Restore Reg-
ister pairs SRR0/SRR1 and CSRR0/CSRR1 are serially reusable resources used
by all non-critical and critical interrupts respectively, program state may be lost
when an unordered interrupt is taken (see Section 7.8 on page 174).

All interrupts, except Machine Check, are context synchronizing as defined in
Section 1.12.1 on page 38. A Machine Check interrupt acts like a context syn-
chronizing operation with respect to subsequent instructions; that is, a Machine
Check interrupt need not satisfy items 1-2 of Section 1.12.1 but does satisfy items
3-4.
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7.2 Interrupt Registers

7.2.1 Save/Restore Register 0

Save/Restore Register 0 (SRR0) is a 64-bit register. Save/Restore Register 0 bits
are numbered 0 (most-significant bit) to 63 (least-significant bit). The register is
used to save machine state on non-critical interrupts, and to restore machine
state when an rfi is executed. On a non-critical interrupt, Save/Restore Register
0 is set to the current or next instruction address. When rfi is executed, instruc-
tion execution continues at the address in Save/Restore Register 0.

In general, Save/Restore Register 0 contains the address of the instruction that
caused the non-critical interrupt, or the address of the instruction to return to
after a non-critical interrupt is serviced.

The contents of Save/Restore Register 0 can be read into GPR(RT) using mfspr
RT,SRR0. The contents of GPR(RS) can be written into Save/Restore Register 0
using mtspr SRR0,RS.

7.2.2 Save/Restore Register 1

Save/Restore Register 1 (SRR1) is a 32-bit register. Save/Restore Register 1 bits
are numbered 32 (most-significant bit) to 63 (least-significant bit). The register is
used to save machine state on non-critical interrupts, and to restore machine
state when an rfi is executed. When a non-critical interrupt is taken, the contents
of the Machine State Register are placed into Save/Restore Register 1. When rfi is
executed, the contents of Save/Restore Register 1 are placed into the Machine
State Register.

Bits of Save/Restore Register 1 that correspond to reserved bits in the Machine
State Register are also reserved.

The contents of Save/Restore Register 1 can be read into bits 32:63 of GPR(RT)
using mfspr RT,SRR1, setting bits 0:31 of GPR(RT) to zero. The contents of bits
32:63 of GPR(RS) can be written into the Save/Restore Register 1 using mtspr
SRR1,RS.

7.2.3 Critical Save/Restore Register 0

Critical Save/Restore Register 0 (CSRR0) is a 64-bit register. Critical Save/Restore
Register 0 bits are numbered 0 (most-significant bit) to 63 (least-significant bit).
The register is used to save machine state on critical interrupts, and to restore
machine state when an rfci is executed. When a critical interrupt is taken, the
Critical Save/Restore Register 0 is set to the current or next instruction address.
When rfci is executed, instruction execution continues at the address in Critical
Save/Restore Register 0.

Programming Note
A Machine State Register bit that is reserved may be altered by rfi/rfci.
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In general, Critical Save/Restore Register 0 contains the address of the instruc-
tion that caused the critical interrupt, or the address of the instruction to return
to after a critical interrupt is serviced.

The contents of Critical Save/Restore Register 0 can be read into GPR(RT) using
mfspr RT,CSRR0. The contents of GPR(RS) can be written into Critical Save/
Restore Register 0 using mtspr CSRR0,RS.

7.2.4 Critical Save/Restore Register 1

Critical Save/Restore Register 1 (CSRR1) is a 32-bit register. Critical Save/Restore
Register 1 bits are numbered 32 (most-significant bit) to 63 (least-significant bit).
The register is used to save machine state on critical interrupts, and to restore
machine state when an rfci is executed. When a critical interrupt is taken, the
contents of the Machine State Register are placed into Critical Save/Restore Reg-
ister 1. When rfci is executed, the contents of Critical Save/Restore Register 1 are
placed into the Machine State Register.

Bits of Critical Save/Restore Register 1 that correspond to reserved bits in the
Machine State Register are also reserved.

The contents of Critical Save/Restore Register 1 can be read into bits 32:63 of
GPR(RT) using mfspr RT,CSRR1, setting bits 0:31 of GPR(RT) to zero. The contents
of bits 32:63 of GPR(RS) can be written into the Critical Save/Restore Register 1
using mtspr CSRR1,RS.

7.2.5 Data Exception Address Register

The Data Exception Address Register (DEAR) is a 64-bit register. Data Exception
Address Register bits are numbered 0 (most-significant bit) to 63 (least-significant
bit). The Data Exception Address Register contains the address that was refer-
enced by a Load, Store or Cache Management instruction that caused an Align-
ment, Data TLB Miss, or Data Storage interrupt.

The contents of Data Exception Address Register can be read into GPR(RT) using
mfspr RT,DEAR. The contents of GPR(RS) can be written into the Data Exception
Address Register using mtspr DEAR,RS.

7.2.6 Interrupt Vector Prefix Register

The Interrupt Vector Prefix Register (IVPR) is a 64-bit register. Interrupt Vector
Prefix Register bits are numbered 0 (most-significant bit) to 63 (least-significant
bit). Bits 48:63 are reserved. Bits 0:47 of the Interrupt Vector Prefix Register pro-
vides the high-order 48 bits of the address of the exception processing routines.
The 16-bit exception vector offsets (provided in Section 7.2.8) are concatenated to
the right of bits 0:47 of the Interrupt Vector Prefix Register to form the 64-bit
address of the exception processing routine.

Programming Note
A Machine State Register bit that is reserved may be altered by rfi/rfci.
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The contents of Interrupt Vector Prefix Register can be read into GPR(RT) using
mfspr RT,IVPR. The contents of GPR(RS) can be written into Interrupt Vector Prefix
Register using mtspr IVPR,RS.

7.2.7 Exception Syndrome Register

The Exception Syndrome Register (ESR) is a 32-bit register. Exception Syndrome
Register bits are numbered 32 (most-significant bit) to 63 (least-significant bit).
The Exception Syndrome Register provides a syndrome to differentiate between
the different kinds of exceptions that can generate the same interrupt type. Upon
the generation of one of these types of interrupts, the bit or bits corresponding to
the specific exception that generated the interrupt is set, and all other Exception
Syndrome Register bits are cleared. Other interrupt types do not affect the con-
tents of the Exception Syndrome Register. The Exception Syndrome Register does
not need to be cleared by software. Table 7-1 shows the bit definitions for the
Exception Syndrome Register.

Table 7-1. Exception Syndrome Register Definition

Bit(s) Syndrome Associated
Interrupt Types

32:35 Allocated

36 PIL Illegal Instruction exception Program

37 PPR Privileged Instruction exception Program

38 PTR Trap exception Program

39 FP Floating-point operation Alignment
Data Storage
Data TLB
Program

40 ST Store operation Alignment
Data Storage
Data TLB Error

41 Reserved

42
43

DLK0
DLK1

Cache Locking (implementation-dependent) Data Storage

44 AP Auxiliary Processor operation Alignment
Data Storage
Data TLB
Program

45 PUO Unimplemented Operation exception Program

46 BO Byte Ordering exception Data Storage
Inst Storage

47 PIE Imprecise exception Program

48:55 Reserved

56:63 Allocated for implementation-dependent use

Programming Note
The information provided by the Exception Syndrome Register is not complete. System
software may also need to identify the type of instruction that caused the interrupt,
examine the TLB entry accessed by a data or instruction storage access, as well as
examining the Exception Syndrome Register to fully determine what exception or excep-
tions caused the interrupt. For example, a Data Storage interrupt may be caused by
both a Protection Violation exception as well as a Byte Ordering exception. System soft-
ware would have to look beyond ESRBO, such as the state of MSRPR in Save/Restore
Register 1 and the page protection bits in the TLB entry accessed by the storage access,
to determine whether or not a Protection Violation also occurred.
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The contents of the Exception Syndrome Register can be read into bits 32:63 of
GPR(RT) using mfspr RT,ESR, setting bits 0:31 of GPR(RT) to zero. The contents of
bits 32:63 of GPR(RS) can be written into the Exception Syndrome Register using
mtspr ESR,RS.

7.2.8 Interrupt Vector Offset Registers

The Interrupt Vector Offset Registers (IVORs) are 32-bit registers. Interrupt Vector
Offset Register bits are numbered 32 (most-significant bit) to 63 (least-significant
bit). Bits 32:47 and bits 60:63 are reserved. An Interrupt Vector Offset Register
provides the quadword index from the base address provided by the IVPR (see
Section 7.2.6) for its respective interrupt type. Interrupt Vector Offset Registers 0
through 15 are provided for the defined interrupt types. SPR numbers corre-
sponding to Interrupt Vector Offset Registers 16 through 31 are reserved. SPR
numbers corresponding to Interrupt Vector Offset Registers 32 through 63 are
allocated for implementation-dependent use. Table 7-2 provides the assignments
of specific Interrupt Vector Offset Registers to specific interrupt types.

Table 7-2. Interrupt Vector Offset Registers

Bits 48:59 of the contents of IVORi can be read into bits 48:59 of GPR(RT) using
mfspr RT,IVORi, setting bits 0:47 and bits 60:63 of GPR(RT) to zero. Bits 48:59 of
the contents of GPR(RS) can be written into bits 48:59 of IVORi using mtspr
IVORi,RS.

Engineering Note
An implementation may choose to implement additional Exception Syndrome Register
bits to identify implementation-specific exception types or provide additional informa-
tion about architected interrupt types.

IVORi Interrupt Type

IVOR0
IVOR1
IVOR2
IVOR3
IVOR4
IVOR5
IVOR6
IVOR7
IVOR8
IVOR9
IVOR10
IVOR11
IVOR12
IVOR13
IVOR14
IVOR15

Critical Input
Machine Check
Data Storage
Instruction Storage
External Input
Alignment
Program
Floating-Point Unavailable
System Call
Auxiliary Processor Unavailable
Decrementer
Fixed-Interval Timer Interrupt
Watchdog Timer Interrupt
Data TLB Error
Instruction TLB Error
Debug

IVOR16
:

IVOR31

Reserved for future architectural use

IVOR32
:

IVOR63

Allocated for implementation-dependent use
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7.3 Exceptions

There are two kinds of exceptions, those caused directly by the execution of an
instruction and those caused by an asynchronous event. In either case, the
exception may cause one of several types of interrupts to be invoked.

Examples of exceptions that can be caused directly by the execution of an instruc-
tion include but are not limited to the following:

• an attempt to execute a reserved-illegal instruction (Illegal Instruction excep-
tion type Program interrupt)

• an attempt by an application program to execute a ‘privileged’ instruction
(Privileged Instruction exception type Program interrupt)

• an attempt by an application program to access a ‘privileged’ Special Purpose
Register (Privileged Instruction exception type Program interrupt)

• an attempt by an application program to access a Special Purpose Register
that does not exist (Unimplemented Operation Instruction exception type Pro-
gram interrupt)

• an attempt by a system program to access a Special Purpose Register that
does not exist (boundedly undefined)

• the execution of a defined instruction using an invalid form (Illegal Instruc-
tion exception type Program interrupt, Unimplemented Operation exception
type Program interrupt, or Privileged Instruction exception type Program
interrupt)

• an attempt to access a storage location that is either unavailable (Instruction
TLB Error interrupt or Data TLB Error interrupt) or not permitted (Instruc-
tion Storage interrupt or Data Storage interrupt)

• an attempt to access storage with an effective address alignment not sup-
ported by the implementation (Alignment interrupt)

• the execution of a System Call instruction (System Call interrupt)

• the execution of a Trap instruction whose trap condition is met (Trap type
Program interrupt)

• the execution of a floating-point instruction when floating-point instructions
are unavailable (Floating-point Unavailable interrupt)

• the execution of a floating-point instruction that causes a floating-point
enabled exception to exist (Enabled exception type Program interrupt)

• the execution of a defined instruction that is not implemented by the imple-
mentation (Illegal Instruction exception or Unimplemented Operation
exception type of Program interrupt)

• the execution of an allocated instruction that is not implemented by the
implementation (Illegal Instruction exception or Unimplemented Operation
exception type of Program interrupt)

• the execution of an allocated instruction when the auxiliary instruction is
unavailable (Auxiliary Unavailable interrupt)
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• the execution of an allocated instruction that causes an auxiliary enabled
exception (Enabled exception type Program interrupt)

The invocation of an interrupt is precise, except that if one of the imprecise modes
for invoking the Floating-point Enabled Exception type Program interrupt is in
effect then the invocation of the Floating-point Enabled Exception type Program
interrupt may be imprecise. When the interrupt is invoked imprecisely, the
excepting instruction does not appear to complete before the next instruction
starts (because one of the effects of the excepting instruction, namely the invoca-
tion of the interrupt, has not yet occurred).

7.4 Interrupt Classes

All interrupts, except for Machine Check, can be categorized according to two
independent characteristics of the interrupt:

• Asynchronous/Synchronous
• Critical/Non-critical

7.4.1 Asynchronous Interrupts

Asynchronous interrupts are caused by events that are independent of instruc-
tion execution. For asynchronous interrupts, the address reported to the excep-
tion handling routine is the address of the instruction that would have executed
next, had the asynchronous interrupt not occurred.

7.4.2 Synchronous Interrupts

Synchronous interrupts are those that are caused directly by the execution (or
attempted execution) of instructions, and are further divided into two classes, pre-
cise and imprecise.

Synchronous, precise interrupts are those that precisely indicate the address of
the instruction causing the exception that generated the interrupt; or, for certain
synchronous, precise interrupt types, the address of the immediately following
instruction.

Synchronous, imprecise interrupts are those that may indicate the address of the
instruction causing the exception that generated the interrupt, or some instruc-
tion after the instruction causing the exception.

7.4.2.1 Synchronous, Precise Interrupts

When the execution or attempted execution of an instruction causes a synchro-
nous, precise interrupt, the following conditions exist at the interrupt point.

• Save/Restore Register 0 or Critical Save/Restore Register 0 addresses either
the instruction causing the exception or the instruction immediately following
instruction causing the exception. Which instruction is addressed can be
determined from the interrupt type and status bits.
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• An interrupt is generated such that all instructions preceding the instruction
causing the exception appear to have completed with respect to the executing
processor. However, some storage accesses associated with these preceding
instructions may not have been performed with respect to other processors
and mechanisms.

• The instruction causing the exception may appear not to have begun execu-
tion (except for causing the exception), may have been partially executed, or
may have completed, depending on the interrupt type. See Section 7.7 on
page 173.

• Architecturally, no subsequent instruction has executed beyond the instruc-
tion causing the exception.

7.4.2.2 Synchronous, Imprecise Interrupts

When the execution or attempted execution of an instruction causes an imprecise
interrupt, the following conditions exist at the interrupt point.

• Save/Restore Register 0 or Critical Save/Restore Register 0 addresses either
the instruction causing the exception or some instruction following the
instruction causing the exception that generated the interrupt.

• An interrupt is generated such that all instructions preceding the instruction
addressed by Save/Restore Register 0 or Critical Save/Restore Register 0
appear to have completed with respect to the executing processor.

• If the imprecise interrupt is forced by the context synchronizing mechanism,
due to an instruction that causes another exception that generates an inter-
rupt (e.g., Alignment, Data Storage), then Save/Restore Register 0 addresses
the interrupt-forcing instruction, and the interrupt-forcing instruction may
have been partially executed (see Section 7.7 on page 173).

• If the imprecise interrupt is forced by the execution synchronizing mecha-
nism, due to executing an execution synchronizing instruction other than
msync or isync, then Save/Restore Register 0 or Critical Save/Restore Regis-
ter 0 addresses the interrupt-forcing instruction, and the interrupt-forcing
instruction appears not to have begun execution (except for its forcing the
imprecise interrupt). If the imprecise interrupt is forced by an msync or isync
instruction, then Save/Restore Register 0 or Critical Save/Restore Register 0
may address either the msync or isync instruction, or the following
instruction.

• If the imprecise interrupt is not forced by either the context synchronizing
mechanism or the execution synchronizing mechanism, then the instruction
addressed by Save/Restore Register 0 or Critical Save/Restore Register 0 may
have been partially executed (see Section 7.7 on page 173).

• No instruction following the instruction addressed by Save/Restore Register 0
or Critical Save/Restore Register 0 has executed.

7.4.3 Critical/Non-Critical Interrupts

Interrupts can also be classified as critical or non-critical interrupts. Certain
interrupt types demand immediate attention, even if other interrupt types are cur-
rently being processed and have not yet had the opportunity to save the state of
the machine (i.e. return address and captured state of the Machine State Regis-
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ter). To enable taking a critical interrupt immediately after a non-critical interrupt
is taken (i.e. before the state of the machine has been saved), two sets of Save/
Restore Register pairs are provided. Critical interrupts use the Save/Restore Reg-
ister pair CSRR0/CSRR1. Non-Critical interrupts use Save/Restore Register pair
SRR0/SRR1.

7.4.4 Machine Check Interrupts

Machine Check interrupts are a special case. They are typically caused by some
kind of hardware or storage subsystem failure, or by an attempt to access an
invalid address. A Machine Check may be caused indirectly by the execution of an
instruction, but not be recognized and/or reported until long after the processor
has executed past the instruction that caused the Machine Check. As such,
Machine Check interrupts cannot properly be thought of as synchronous or asyn-
chronous, nor as precise or imprecise. They are handled as critical class inter-
rupts however. In the case of Machine Check, the following general rules apply:

1. No instruction after the one whose address is reported to the Machine Check
interrupt handler in Critical Save/Restore Register 0 has begun execution.

2. The instruction whose address is reported to the Machine Check interrupt
handler in Critical Save/Restore Register 0, and all prior instructions, may or
may not have completed successfully. All those instructions that are ever
going to complete appear to have done so already, and have done so within
the context existing prior to the Machine Check interrupt. No further inter-
rupt (other than possible additional Machine Check interrupts) will occur as a
result of those instructions.

7.5 Interrupt Processing

Associated with each kind of interrupt is an interrupt vector, that is the address of
the initial instruction that is executed when the corresponding interrupt occurs.

Interrupt processing consists of saving a small part of the processor’s state in cer-
tain registers, identifying the cause of the interrupt in another register, and con-
tinuing execution at the corresponding interrupt vector location. When an
exception exists that will cause an interrupt to be generated and it has been deter-
mined that the interrupt can be taken, the following actions are performed, in
order:

1. Save/Restore Register 0 (for non-critical class interrupts) or Critical Save/
Restore Register 0 (for critical class interrupts) is loaded with an instruction
address that depends on the type of interrupt; see the specific interrupt
description for details.

2. The Exception Syndrome Register is loaded with information specific to the
exception type. Note that many interrupt types can only be caused by a single
type of exception event, and thus do not need nor use an Exception Syn-
drome Register setting to indicate to the cause of the interrupt was.

3. Save/Restore Register 1 (for non-critical class interrupts) or Critical Save/
Restore Register 1 (for critical class interrupts) is loaded with a copy of the
contents of the Machine State Register.
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4. The Machine State Register is updated as described below. The new values
take effect beginning with the first instruction following the interrupt.
Machine State Register bits of particular interest are the following.

• MSRWE,EE,PR,FP,FE0,FE1,IS,DS are set to 0 by all interrupts.

• MSRCE,DE are set to 0 by critical class interrupts and left unchanged by
non-critical class interrupts.

• MSRME is set to 0 by Machine Check interrupts and left unchanged by all
other interrupts.

• Other defined Machine State Register bits are left unchanged by all
interrupts.

See Section 2.1.1 on page 39 for more detail on the definition of the Machine
State Register.

5. Instruction fetching and execution resumes, using the new Machine State
Register value, at a location specific to the interrupt type. The location is

IVPR0:47 || IVORi48:59 || 0b0000

where IVPR is the Interrupt Vector Prefix Register and IVORi is the Interrupt
Vector Offset Register for that interrupt type (see Table 7-2 on page 147). The
contents of the Interrupt Vector Prefix Register and Interrupt Vector Offset
Registers are indeterminate upon reset, and must be initialized by system
software using the mtspr instruction.

Interrupts do not clear reservations obtained with Load and Reserve instructions.
The operating system should do so at appropriate points, such as at process
switch.

At the end of a non-critical interrupt handling routine, execution of an rfi causes
the Machine State Register to be restored from the contents of Save/Restore Reg-
ister 1 and instruction execution to resume at the address contained in Save/
Restore Register 0. Likewise, execution of an rfci performs the same function at
the end of a critical interrupt handling routine, using Critical Save/Restore Regis-
ter 0 instead of Save/Restore Register 0 and Critical Save/Restore Register 1
instead of Save/Restore Register 1.

Programming Note
In general, at process switch, due to possible process interlocks and possible data avail-
ability requirements, the operating system needs to consider executing the following.

• stwcx[e]. or stdcxe., to clear the reservation if one is outstanding, to ensure that a
lwarx[e] or ldarxe in the “old” process is not paired with a stwcx[e]. or stdcxe. in
the “new” process.

• msync, to ensure that all storage operations of an interrupted process are complete
with respect to other processors before that process begins executing on another
processor.

• isync, rfi or rfci, to ensure that the instructions in the “new” process execute in the
“new” context.
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7.6 Interrupt Definitions

Table 7-3 provides a summary of each interrupt type, the various exception types
that may cause that interrupt type, the classification of the interrupt, which
Exception Syndrome Register bits can be set, if any, which Machine State Register
bits can mask the interrupt type and which Interrupt Vector Offset Register is
used to specify that interrupt type’s vector address.

Table 7-3. Interrupt and Exception Types
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IVOR0 Critical Input Critical Input x x CE 1 155
IVOR1 Machine Check Machine Check x ME 2,4 156
IVOR2 Data Storage Access x [ST],[FP,AP] 9 157

Load and Reserve or
Store Conditional to
‘write-thru required’
storage (W=1)

x [ST] 9

Cache Locking x {DLK0,DLK1},[ST] 8
Byte Ordering x [ST],[FP,AP],BO

IVOR3 Inst Storage Access x 159
Byte Ordering x BO

IVOR4 External Input External Input x EE 1 160
IVOR5 Alignment Alignment x [ST],[FP,AP] 161
IVOR6 Program Illegal x PIL 163

Privileged x PPR,[AP]
Trap x PTR
FP Enabled x x FP,[PIE] FE0,FE1 6,7
AP Enabled x x AP
Unimplemented Op x PUO,[FP,AP] 7

IVOR7 FP Unavailable FP Unavailable x 165
IVOR8 System Call System Call x 166
IVOR9 AP Unavailable AP Unavailable x 166
IVOR10 Decrementer x EE DIE 167
IVOR11 FIT x EE FIE 168
IVOR12 Watchdog x x CE WIE 169
IVOR13 Data TLB Error Data TLB Miss x [ST],[FP,AP] 170
IVOR14 Inst TLB Error Inst TLB Miss x 171
IVOR15 Debug Trap x x DE IDM 172

Inst Addr Compare x x DE IDM
Data Addr Compare x x DE IDM
Instruction Complete x x DE IDM 3
Branch Taken x x DE IDM 3
Return From Interrupt x x DE IDM
Interrupt Taken x x DE IDM
Uncond Debug Event x x DE IDM
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Table 7-3 Notes

1. Although it is not specified as part of Book E, it is common for system
implementations to provide, as part of the interrupt controller, independent
mask and status bits for the various sources of Critical Input and External
Input interrupts.

2. Machine Check interrupts are a special case and are not classified as asyn-
chronous nor synchronous. See Section 7.4.4 on page 151.

3. The Instruction Complete and Branch Taken debug events are only defined for
MSRDE=1 when in Internal Debug Mode (DBCR0IDM=1). In other words, when
in Internal Debug Mode with MSRDE=0, then Instruction Complete and
Branch Taken debug events cannot occur, and no Debug Status Register sta-
tus bits are set and no subsequent imprecise Debug interrupt will occur (see
Section 9.3 on page 201).

4. Machine Check status information is commonly provided as part of the sys-
tem implementation, but is not part of Book E. See the User’s Manual.

5. In general, when an interrupt causes a particular Exception Syndrome Regis-
ter bit or bits to be set (or cleared) as indicated in the table, it also causes all
other Exception Syndrome Register bits to be cleared. There may be special
rules regarding the handling of implementation-specific Exception Syndrome
Register bits. See the User’s Manual.

Legend:
[xxx] means ESRxxx could be set
[xxx,yyy] means either ESRxxx or ESRyyy may be set, but never both
(xxx,yyy) means either ESRxxx or ESRyyy will be set, but never both
{xxx,yyy} means either ESRxxx or ESRyyy will be set, or possibly both
xxx means ESRxxx is set

6. The precision of the Floating-point Enabled Exception type Program interrupt
is controlled by the MSRFE0,FE1 bits. When MSRFE0,FE1=0b01 or 0b10, the
interrupt may be imprecise. When such a Program interrupt is taken, if the
address saved in SRR0 is not the address of the instruction that caused the
exception (i.e. the instruction that caused FPSCRFEX to be set to 1), ESRPIE is
set to 1. When MSRFE0,FE1=0b11, the interrupt is precise. When
MSRFE0,FE1=0b00, the interrupt is masked, and the interrupt will subse-
quently occur imprecisely if and when Floating-point Enabled Exception type
Program interrupts are enabled by setting either or both of MSRFE0,FE1, and
will also cause ESRPIE to be set to 1. See Section 7.6.7 on page 163. Also,
exception status on the exact cause is available in the Floating-Point Status
and Control Register (see Section 5.2.2 on page 69 and Section 5.4 on
page 81).

The precision of the Auxiliary Processor Enabled Exception type Program
interrupt is implementation-dependent. See the User’s Manual.

7. Auxiliary Processor exception status is commonly provided as part of the
implementation and is not part of Book E.

8. Cache locking and cache locking exceptions are implementation-dependent.
See the User’s Manual.

9. Software must examine the instruction and the subject TLB entry to deter-
mine the exact cause of the interrupt.
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7.6.1 Critical Input Interrupt

A Critical Input interrupt occurs when no higher priority exception exists (see
Section 7.9 on page 178), a Critical Input exception is presented to the interrupt
mechanism, and MSRCE=1. While the specific definition of a Critical Input excep-
tion is implementation-dependent, it would typically be caused by the activation
of an asynchronous signal that is part of the system. Also, implementations may
provide an alternative means (in addition to MSRCE) for masking the Critical Input
interrupt. See the User’s Manual.

Critical Save/Restore Register 0, Critical Save/Restore Register 1, and Machine
State Register are updated as follows:

Critical Save/Restore Register 0
Set to the effective address of the next instruction to be executed.

Critical Save/Restore Register 1
Set to the contents of the Machine State Register at the time of the
interrupt.

Machine State Register

ME Unchanged.

All other Machine State Register bits set to 0.

Instruction execution resumes at address IVPR0:47||IVOR048:59||0b0000.

Programming Note
Software is responsible for taking any action(s) that are required by the implementation
in order to clear any Critical Input exception status prior to re-enabling MSRCE in order
to avoid another, redundant Critical Input interrupt.
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7.6.2 Machine Check Interrupt

A Machine Check interrupt occurs when no higher priority exception exists (see
Section 7.9 on page 178), a Machine Check exception is presented to the interrupt
mechanism, and MSRME=1. The specific cause or causes of Machine Check excep-
tions are implementation-dependent, as are the details of the actions taken on a
Machine Check interrupt. See the User’s Manual.

Critical Save/Restore Register 0, Critical Save/Restore Register 1, Machine State
Register, and Exception Syndrome Register are updated as follows:

Critical Save/Restore Register 0
Set to an instruction address. As closely as possible, set to the effective
address of an instruction that was executing or about to be executed
when the Machine Check exception occurred.

Critical Save/Restore Register 1
Set to the contents of the Machine State Register at the time of the
interrupt.

Machine State Register

All Machine State Register bits set to 0.

Exception Syndrome Register

Implementation-dependent (see User’s Manual).

Instruction execution resumes at address IVPR0:47||IVOR148:59||0b0000.

Programming Note
If a Machine Check interrupt is caused by an error in the storage subsystem, the stor-
age subsystem may return incorrect data, that may be placed into registers and/or on-
chip caches.

Programming Note
On implementations that a Machine Check interrupt can be caused by referring to an
invalid real address, executing a dcbz[e] or dcba[e] instruction can cause a delayed
Machine Check interrupt by establishing in the data cache a block that is associated
with an invalid real address. See Section 6.3.2 on page 139. A Machine Check interrupt
can eventually occur if and when a subsequent attempt is made to write that block to
main storage, for example as the result of executing an instruction that causes a cache
miss for which the block is the target for replacement or as the result of executing a
dcbst[e] or dcbf[e] instruction.
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7.6.3 Data Storage Interrupt

A Data Storage interrupt may occur when no higher priority exception exists (see
Section 7.9 on page 178) and a Data Storage exception is presented to the inter-
rupt mechanism. A Data Storage exception is caused when any of the following
exceptions arises during execution of an instruction:

Read Access Control exception
A Read Access Control exception is caused when one of the following
conditions exist.

– While in user mode (MSRPR=1), a Load or ‘load-class’ Cache Management
instruction attempts to access a location in storage that is not user mode
read enabled (i.e. page access control bit UR=0).

– While in supervisor mode (MSRPR=0), a Load or ‘load-class’ Cache
Management instruction attempts to access a location in storage that is
not supervisor mode read enabled (i.e. page access control bit SR=0).

Write Access Control exception
A Write Access Control exception is caused when one of the following
conditions exist.

– While in user mode (MSRPR=1), a Store or ‘store-class’ Cache Management
instruction attempts to access a location in storage that is not user mode
write enabled (i.e. page access control bit UW=0).

– While in supervisor mode (MSRPR=0), a Store or ‘store-class’ Cache
Management instruction attempts to access a location in storage that is
not supervisor mode write enabled (i.e. page access control bit SW=0).

Byte Ordering exception
A Byte Ordering exception may occur when the implementation cannot
perform the data storage access in the byte order specified by the Endian
storage attribute of the page being accessed.

Cache Locking exception
A Cache Locking exception may occur when the locked state of one or more
cache lines has the potential to be altered. This exception is implementation-
dependent.

Storage Synchronization exception
A Storage Synchronization exception may occur when an attempt is made to
execute a Load and Reserve or Store Conditional instruction from or to a
location that is Write Through Required or Caching Inhibited (if the interrupt
does not occur then the instruction executes correctly: see Section 6.1.6.2 on
page 117).

If a Store Conditional instruction produces an effective address for which a normal
Store would cause a Data Storage interrupt, but the processor does not have the
reservation from a Load and Reserve instruction, then it is implementation-
dependent whether a Data Storage interrupt occurs. See User’s Manual for the
implementation.

Architecture Note
The Byte Ordering exception is provided to assist implementations that cannot sup-
port dynamically switching byte ordering between consecutive storage accesses,
cannot support the byte order for a class of storage accesses, or cannot support
unaligned storage accesses using a specific byte order.
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Instructions lswx or stswx with a length of zero, icbt[e], dcbt[e], dcbtst[e], or
dcba[e] cannot cause a Data Storage interrupt, regardless of the effective address.

When a Data Storage interrupt occurs, the processor suppresses the execution of
the instruction causing the Data Storage exception.

Save/Restore Register 0, Save/Restore Register 1, Machine State Register, Data
Exception Address Register, and Exception Syndrome Register are updated as fol-
lows:

Save/Restore Register 0
Set to the effective address of the instruction causing the Data Storage
interrupt.

Save/Restore Register 1
Set to the contents of the Machine State Register at the time of the
interrupt.

Machine State Register

CE, ME, DE Unchanged.

All other Machine State Register bits set to 0.

Data Exception Address Register
Set to the effective address of a byte that is both within the range of the
bytes being accessed by the Storage Access or Cache Management
instruction, and within the page whose access caused the Data Storage
exception.

Exception Syndrome Register

FP Set to 1 if the instruction causing the interrupt is a floating-point
load or store; otherwise set to 0.

ST Set to 1 if the instruction causing the interrupt is a Store or ‘store-
class’ Cache Management instruction; otherwise set to 0.

DLK0:1 Set to an implementation-dependent value due to a Cache Lock-
ing exception causing the interrupt. See User’s Manual.

AP Set to 1 if the instruction causing the interrupt is an Auxiliary Pro-
cessor load or store; otherwise set to 0.

BO Set to 1 if the instruction caused a Byte Ordering exception; other-
wise set to 0.

All other defined Exception Syndrome Register bits are set to 0.

Instruction execution resumes at address IVPR0:47||IVOR248:59||0b0000.

Programming Note
The icbi[e] and icbt[e] instructions are treated as Loads from the addressed byte with
respect to address translation and protection. These Instruction Cache Management
instructions use MSRDS, not MSRIS, to determine translation for their operands.
Instruction Storage exceptions and Instruction TLB Miss exceptions are associated with
the ‘fetching’ of instructions not with the ‘execution’ of instructions. Data Storage excep-
tions and Data TLB Miss exceptions are associated with the ‘execution’ of Instruction
Cache Management instructions.
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7.6.4 Instruction Storage Interrupt

An Instruction Storage interrupt occurs when no higher priority exception exists
(see Section 7.9 on page 178) and an Instruction Storage exception is presented to
the interrupt mechanism. An Instruction Storage exception is caused when any of
the following exceptions arises during execution of an instruction:

Execute Access Control exception
An Execute Access Control exception is caused when one of the following
conditions exist.

– While in user mode (MSRPR=1), an instruction fetch attempts to access a
location in storage that is not user mode execute enabled (i.e. page access
control bit UX=0).

– While in supervisor mode (MSRPR=0), an instruction fetch attempts to
access a location in storage that is not supervisor mode execute enabled
(i.e. page access control bit SX=0).

Byte Ordering exception
A Byte Ordering exception may occur when the implementation cannot
perform the instruction fetch in the byte order specified by the Endian storage
attribute of the page being accessed.

When an Instruction Storage interrupt occurs, the processor suppresses the exe-
cution of the instruction causing the Instruction Storage exception.

Save/Restore Register 0, Save/Restore Register 1, Machine State Register, and
Exception Syndrome Register are updated as follows:

Save/Restore Register 0
Set to the effective address of the instruction causing the Instruction Stor-
age interrupt.

Save/Restore Register 1
Set to the contents of the Machine State Register at the time of the
interrupt.

Machine State Register

CE, ME, DE Unchanged.

All other Machine State Register bits set to 0.

Exception Syndrome Register

BO Set to 1 if the instruction fetch caused a Byte Ordering exception;
otherwise set to 0.

Architecture Note
This exception is provided to assist implementations that cannot support dynami-
cally switching byte ordering between consecutive storage accesses, cannot support
the byte order for a class of storage accesses, or cannot support unaligned storage
accesses using a specific byte order.
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All other defined Exception Syndrome Register bits are set to 0.

Instruction execution resumes at address IVPR0:47||IVOR348:59||0b0000.

7.6.5 External Input Interrupt

An External Input interrupt occurs when no higher priority exception exists (see
Section 7.9 on page 178), an External Input exception is presented to the inter-
rupt mechanism, and MSREE=1. While the specific definition of an External Input
exception is implementation-dependent, it would typically be caused by the acti-
vation of an asynchronous signal that is part of the processing system. Also,
implementations may provide an alternative means (in addition to MSREE) for
masking the External Input interrupt. See the User’s Manual.

Save/Restore Register 0, Save/Restore Register 1, and Machine State Register are
updated as follows:

Save/Restore Register 0
Set to the effective address of the next instruction to be executed.

Save/Restore Register 1
Set to the contents of the Machine State Register at the time of the
interrupt.

Machine State Register

CE, ME, DE Unchanged.

All other Machine State Register bits set to 0.

Instruction execution resumes at address IVPR0:47||IVOR448:59||0b0000.

Programming Note
Protection Violation and Byte Ordering exceptions are not mutually exclusive.
Even if ESRBO is set, system software must also examine the TLB entry
accessed by the instruction fetch to determine whether or not a Protection Viola-
tion may have also occurred.

Programming Note
Software is responsible for taking whatever action(s) are required by the implementation
in order to clear any External Input exception status prior to re-enabling MSREE in
order to avoid another, redundant External Input interrupt.
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7.6.6 Alignment Interrupt

An Alignment interrupt occurs when no higher priority exception exists (see
Section 7.9 on page 178) and an Alignment exception is presented to the interrupt
mechanism. An Alignment exception may be caused when the implementation
cannot perform a data storage access for one of the following reasons:

• The operand of a Load or Store is not aligned.

• The instruction is a Move Assist, Load Multiple or Store Multiple.

• The operand of dcbz[e] is in storage that is Write Through Required or Cach-
ing Inhibited, or dcbz[e] is executed in an implementation that has either no
data cache or a Write Through data cache.

• The operand of a Store, except Store Conditional, is in storage that is Write-
Through Required.

For lmw and stmw with an operand that is not word-aligned, and for Load and
Reserve and Store Conditional instructions with an operand that is not aligned, an
implementation may yield boundedly undefined results instead of causing an
Alignment interrupt. A Store Conditional to Write Through Required storage may
either cause a Data Storage interrupt, cause an Alignment interrupt, or correctly
execute the instruction. For all other cases listed above, an implementation may
execute the instruction correctly instead of causing an Alignment interrupt. (For
dcbz[e], ‘correct’ execution means setting each byte of the block in main storage to
0x00.)

When an Alignment interrupt occurs, the processor suppresses the execution of
the instruction causing the Alignment exception.

Save/Restore Register 0, Save/Restore Register 1, Machine State Register, Data
Exception Address Register, and Exception Syndrome Register are updated as fol-
lows:

Save/Restore Register 0
Set to the effective address of the instruction causing the Alignment
interrupt.

Save/Restore Register 1
Set to the contents of the Machine State Register at the time of the
interrupt.

Machine State Register

CE, ME, DE Unchanged.

All other Machine State Register bits set to 0.

Programming Note
The architecture does not support the use of an unaligned effective address by Load and
Reserve and Store Conditional instructions. If an Alignment interrupt occurs because
one of these instructions specifies an unaligned effective address, the Alignment inter-
rupt handler must not attempt to emulate the instruction, but instead should treat the
instruction as a programming error.
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Data Exception Address Register
Set to the effective address of a byte that is both within the range of the
bytes being accessed by the Storage Access or Cache Management
instruction, and within the page whose access caused the Alignment
exception.

Exception Syndrome Register

FP Set to 1 if the instruction causing the interrupt is a floating-point
load or store; otherwise set to 0.

ST Set to 1 if the instruction causing the interrupt is a Store; other-
wise set to 0.

AP Set to 1 if the instruction causing the interrupt is an Auxiliary Pro-
cessor load or store; otherwise set to 0.

All other defined Exception Syndrome Register bits are set to 0.

Instruction execution resumes at address IVPR0:47||IVOR548:59||0b0000.
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7.6.7 Program Interrupt

A Program interrupt occurs when no higher priority exception exists (see
Section 7.9 on page 178), a Program exception is presented to the interrupt mech-
anism, and, for Floating-point Enabled exception, MSRFE0,FE1 are non-zero. A
Program exception is caused when any of the following exceptions arises during
execution of an instruction:

Floating-point Enabled exception

A Floating-point Enabled exception is caused when FPSCRFEX is set to 1 by
the execution of a floating-point instruction that causes an enabled exception,
including the case of a Move To FPSCR instruction that causes an exception
bit and the corresponding enable bit both to be 1. Note that in this context,
the term ‘enabled exception’ refers to the enabling provided by control bits in
the Floating-Point Status and Control Register. See Section 5.2.2 on page 69.

Auxiliary processor Enabled exception

The cause of an Auxiliary Processor Enabled exception is implementation-
dependent.

Illegal Instruction exception
An Illegal Instruction exception does occur when execution is attempted of
any of the following kinds of instructions.

– a reserved-illegal instruction

– when MSRPR=1 (user mode), an mtspr or mfspr that specifies an SPRN
value with SPRN5=0 (user-mode accessible) that represents an
unimplemented Special Purpose Register

An Illegal Instruction exception may occur when execution is attempted of any
of the following kinds of instructions. If the exception does not occur, the
alternative is shown in parentheses. See User’s Manual for the
implementation.

– an instruction that is in invalid form (boundedly undefined results)

– an lswx instruction for which GPR(RA) or GPR(RB) is in the range of
registers to be loaded (boundedly undefined results)

– a reserved-nop instruction (no-operation performed is preferred)

– a defined or allocated instruction that is not implemented by the
implementation (Unimplemented Operation exception)

Privileged Instruction exception
A Privileged Instruction exception occurs when MSRPR=1 and execution is
attempted of any of the following kinds of instructions.

– a privileged instruction

– an mtspr or mfspr instruction that specifies an SPRN value with SPRN5=1

Trap exception
A Trap exception occurs when any of the conditions specified in a Trap
instruction are met and the exception is not also enabled as a Debug
interrupt. If enabled as a Debug interrupt (i.e. DBCR0TRAP=1, DBCR0IDM=1,
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and MSRDE=1), then a Debug interrupt will be taken instead of the Program
interrupt.

Unimplemented Operation exception
An Unimplemented Operation exception may occur when a defined or
allocated instruction is encountered that is not implemented by the
implementation. Otherwise an Illegal Instruction exception occurs. See the
User’s Manual for the implementation.

Save/Restore Register 0, Save/Restore Register 1, Machine State Register, and
Exception Syndrome Register are updated as follows:

Save/Restore Register 0
For all Program interrupts except an Enabled exception when in one of
the imprecise modes (see Section 2.1.1 on page 39) or when a disabled
exception is subsequently enabled, set to the effective address of the
instruction that caused the Program interrupt.

For an imprecise Enabled exception, set to the effective address of the
excepting instruction or to the effective address of some subsequent
instruction. If it points to a subsequent instruction, that instruction has
not been executed, and ESRPIE is set to 1. If a subsequent instruction is
an msync or isync, Save/Restore Register 0 will point at the msync or
isync instruction, or at the following instruction.

If FPSCRFEX=1 but both MSRFE0=0 and MSRFE1=0, an Enabled exception
type Program interrupt will occur imprecisely prior to or at the next syn-
chronizing event if these Machine State Register bits are altered by any
instruction that can set the Machine State Register so that the expression

(MSRFE0 | MSRFE1) & FPSCRFEX

is 1. When this occurs, Save/Restore Register 0 is loaded with the
address of the instruction that would have executed next, not with the
address of the instruction that modified the Machine State Register caus-
ing the interrupt, and ESRPIE is set to 1.

Save/Restore Register 1
Set to the contents of the Machine State Register at the time of the
interrupt.

Machine State Register

CE, ME, DE Unchanged.

All other Machine State Register bits set to 0.

Exception Syndrome Register

PIL Set to 1 if an Illegal Instruction exception type Program interrupt;
otherwise set to 0

PPR Set to 1 if a Privileged Instruction exception type Program inter-
rupt; otherwise set to 0

PTR Set to 1 if a Trap exception type Program interrupt; otherwise set
to 0

PUO Set to 1 if an Unimplemented Operation exception type Program
interrupt; otherwise set to 0

FP Set to 1 if the instruction causing the interrupt is a floating-point
instruction; otherwise set to 0.
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PIE Set to 1 if a Floating-point Enabled exception type Program inter-
rupt, and the address saved in SRR0 is not the address of the
instruction causing the exception (i.e. the instruction that caused
FPSCRFEX to be set); otherwise set to 0.

AP Set to 1 if the instruction causing the interrupt is an Auxiliary Pro-
cessor instruction; otherwise set to 0.

All other defined Exception Syndrome Register bits are set to 0.

Instruction execution resumes at address IVPR0:47||IVOR648:59||0b0000.

7.6.8 Floating-Point Unavailable Interrupt

A Floating-Point Unavailable interrupt occurs when no higher priority exception
exists (see Section 7.9 on page 178), an attempt is made to execute a floating-
point instruction (i.e. any instruction listed in Section 5.6 on page 98), and
MSRFP=0.

When a Floating-Point Unavailable interrupt occurs, the processor suppresses the
execution of the instruction causing the Floating-Point Unavailable interrupt.

Save/Restore Register 0, Save/Restore Register 1, and Machine State Register are
updated as follows:

Save/Restore Register 0
Set to the effective address of the instruction that caused the interrupt.

Save/Restore Register 1
Set to the contents of the Machine State Register at the time of the
interrupt.

Machine State Register

CE, ME, DE Unchanged.

All other Machine State Register bits set to 0.

Instruction execution resumes at address IVPR0:47||IVOR748:59||0b0000.

Engineering Note
Supporting the Imprecise Recoverable Mode Floating-Point Enabled exception type Pro-
gram interrupt as a precise interrupt may be convenient for some implementations.
However, if the Imprecise Recoverable Mode Floating-Point Enabled exception type Pro-
gram interrupt is implemented as an imprecise interrupt, the hardware must provide, at
the minimum, the address at which to resume the interrupted process (this is given in
Save/Restore Register 0), the excepting instruction’s opcode, extended opcode, and
record bit, the source values or registers, and the target register. This information can
be provided directly in registers or by means of a pointer to the excepting instruction.
See the User’s Manual for the implementation.
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7.6.9 System Call Interrupt

A System Call interrupt occurs when no higher priority exception exists (see
Section 7.9 on page 178) and a System Call (sc) instruction is executed.

Save/Restore Register 0, Save/Restore Register 1, and Machine State Register are
updated as follows:

Save/Restore Register 0
Set to the effective address of the instruction after the sc instruction.

Save/Restore Register 1
Set to the contents of the Machine State Register at the time of the
interrupt.

Machine State Register

CE, ME, DE Unchanged.

All other Machine State Register bits set to 0.

Instruction execution resumes at address IVPR0:47||IVOR848:59||0b0000.

7.6.10 Auxiliary Processor Unavailable Interrupt

An Auxiliary Processor Unavailable interrupt occurs when no higher priority
exception exists (see Section 7.9 on page 178), an attempt is made to execute an
Auxiliary Processor instruction (including Auxiliary Processor loads, stores, and
moves), the target Auxiliary Processor is present on the implementation, and the
Auxiliary Processor is configured as unavailable. Details of the Auxiliary Proces-
sor, its instruction set, and its configuration are implementation-dependent. See
User’s Manual for the implementation.

When an Auxiliary Processor Unavailable interrupt occurs, the processor sup-
presses the execution of the instruction causing the Auxiliary Processor Unavail-
able interrupt.

Registers Save/Restore Register 0, Save/Restore Register 1, and Machine State
Register are updated as follows:

Save/Restore Register 0
Set to the effective address of the instruction that caused the interrupt.

Save/Restore Register 1
Set to the contents of the Machine State Register at the time of the
interrupt.

Machine State Register

CE, ME, DE Unchanged.

All other Machine State Register bits set to 0.

Instruction execution resumes at address IVPR0:47||IVOR948:59||0b0000.
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7.6.11 Decrementer Interrupt

A Decrementer interrupt occurs when no higher priority exception exists (see
Section 7.9 on page 178), a Decrementer exception exists (TSRDIS=1), and the
interrupt is enabled (TCRDIE=1 and MSREE=1). See Section 8.5 on page 194.

Save/Restore Register 0, Save/Restore Register 1, Machine State Register, and
TSR are updated as follows:

Save/Restore Register 0
Set to the effective address of the next instruction to be executed.

Save/Restore Register 1
Set to the contents of the Machine State Register at the time of the
interrupt.

Machine State Register

CE, ME, DE Unchanged.

All other Machine State Register bits set to 0.

Timer Status Register (See Section 8.3 on page 188.)

DIS Set to 1.

Instruction execution resumes at address IVPR0:47||IVOR1048:59||0b0000.

Note
MSREE also enables the External Input and Fixed-Interval Timer interrupts.

Programming Note
Software is responsible for clearing the Decrementer exception status prior to re-
enabling the MSREE bit in order to avoid another redundant Decrementer interrupt. To
clear the Decrementer exception, the interrupt handling routine must clear TSRDIS.
Clearing is done by writing a word to TSR using mtspr with a 1 in any bit position that
is to be cleared and 0 in all other bit positions. The write-data to the TSR is not direct
data, but a mask. A 1 causes the bit to be cleared, and a 0 has no effect.
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7.6.12 Fixed-Interval Timer Interrupt

A Fixed-Interval Timer interrupt occurs when no higher priority exception exists
(see Section 7.9 on page 178), a Fixed-Interval Timer exception exists (TSRFIS=1),
and the interrupt is enabled (TCRFIE=1 and MSREE=1). See Section 8.6 on
page 195.

Save/Restore Register 0, Save/Restore Register 1, Machine State Register, and
TSR are updated as follows:

Save/Restore Register 0
Set to the effective address of the next instruction to be executed.

Save/Restore Register 1
Set to the contents of the Machine State Register at the time of the
interrupt.

Machine State Register

CE, ME, DE Unchanged.

All other Machine State Register bits set to 0.

Timer Status Register (See Section 8.3 on page 188.)

FIS Set to 1

Instruction execution resumes at address IVPR0:47||IVOR1148:59||0b0000.

Note
MSREE also enables the External Input and Decrementer interrupts.

Programming Note
Software is responsible for clearing the Fixed-Interval Timer exception status prior to re-
enabling the MSREE bit in order to avoid another redundant Fixed-Interval Timer inter-
rupt. To clear the Fixed-Interval Timer exception, the interrupt handling routine must
clear TSRFIS. Clearing is done by writing a word to TSR using mtspr with a 1 in any bit
position that is to be cleared and 0 in all other bit positions. The write-data to the TSR is
not direct data, but a mask. A 1 causes the bit to be cleared, and a 0 has no effect.
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7.6.13 Watchdog Timer Interrupt

A Watchdog Timer interrupt occurs when no higher priority exception exists (see
Section 7.9 on page 178), a Watchdog Timer exception exists (TSRWIS=1), and the
interrupt is enabled (i.e. TCRWIE=1 and MSRCE=1). See Section 8.7 on page 196.

Critical Save/Restore Register 0, Critical Save/Restore Register 1, Machine State
Register, and TSR are updated as follows:

Critical Save/Restore Register 0
Set to the effective address of the next instruction to be executed.

Critical Save/Restore Register 1
Set to the contents of the Machine State Register at the time of the
interrupt.

Machine State Register

ME Unchanged.

All other Machine State Register bits set to 0.

Timer Status Register (See Section 8.3 on page 188.)

WIS Set to 1.

Instruction execution resumes at address IVPR0:47||IVOR1248:59||0b0000.

Note
MSRCE also enables the Critical Input interrupt.

Programming Note
Software is responsible for clearing the Watchdog Timer exception status prior to re-
enabling the MSRCE bit in order to avoid another redundant Watchdog Timer interrupt.
To clear the Watchdog Timer exception, the interrupt handling routine must clear TSR-

WIS. Clearing is done by writing a word to TSR using mtspr with a 1 in any bit position
that is to be cleared and 0 in all other bit positions. The write-data to the TSR is not
direct data, but a mask. A 1 causes the bit to be cleared, and a 0 has no effect.
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7.6.14 Data TLB Error Interrupt

A Data TLB Error interrupt occurs when no higher priority exception exists (see
Section 7.9 on page 178) and any of the following Data TLB Error exceptions is
presented to the interrupt mechanism.

TLB Miss exception
Caused when the virtual address associated with a data storage access does
not match any valid entry in the TLB as specified in Section 6.2.2 on
page 125.

If a Store Conditional instruction produces an effective address for which a normal
Store would cause a Data TLB Error interrupt, but the processor does not have
the reservation from a Load and Reserve instruction, then it is implementation-
dependent whether a Data TLB Error interrupt occurs. See User’s Manual for the
implementation.

When a Data TLB Error interrupt occurs, the processor suppresses the execution
of the instruction causing the Data TLB Error interrupt.

Save/Restore Register 0, Save/Restore Register 1, Machine State Register, Data
Exception Address Register and Exception Syndrome Register are updated as fol-
lows:

Save/Restore Register 0
Set to the effective address of the instruction causing the Data TLB Error
interrupt

Save/Restore Register 1
Set to the contents of the Machine State Register at the time of the
interrupt.

Machine State Register

CE, ME, DE Unchanged.

All other Machine State Register bits set to 0.

Data Exception Address Register
Set to the effective address of a byte that is both within the range of the
bytes being accessed by the Storage Access or Cache Management
instruction, and within the page whose access caused the Data TLB Error
exception.

Exception Syndrome Register

ST Set to 1 if the instruction causing the interrupt is a Store, dcbi[e],
or dcbz[e] instruction; otherwise set to 0.

FP Set to 1 if the instruction causing the interrupt is a floating-point
load or store; otherwise set to 0.

AP Set to 1 if the instruction causing the interrupt is an Auxiliary Pro-
cessor load or store; otherwise set to 0.

All other defined Exception Syndrome Register bits are set to 0.

Instruction execution resumes at address IVPR0:47||IVOR1348:59||0b0000.
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7.6.15 Instruction TLB Error Interrupt

An Instruction TLB Error interrupt occurs when no higher priority exception
exists (see Section 7.9 on page 178) and any of the following Instruction TLB Error
exceptions is presented to the interrupt mechanism.

TLB Miss exception
Caused when the virtual address associated with an instruction fetch do not
match any valid entry in the TLB as specified in Section 6.2.2 on page 125.

When an Instruction TLB Error interrupt occurs, the processor suppresses the
execution of the instruction causing the Instruction TLB Miss exception.

Save/Restore Register 0, Save/Restore Register 1, and Machine State Register are
updated as follows:

Save/Restore Register 0
Set to the effective address of the instruction causing the Instruction TLB
Error interrupt.

Save/Restore Register 1
Set to the contents of the Machine State Register at the time of the
interrupt.

Machine State Register

CE, ME, DE Unchanged.

All other Machine State Register bits set to 0.

Instruction execution resumes at address IVPR0:47||IVOR1448:59||0b0000.
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7.6.16 Debug Interrupt

A Debug interrupt occurs when no higher priority exception exists (see Section 7.9
on page 178), a Debug exception exists in the Debug Status Register, and Debug
interrupts are enabled (DBCR0IDM=1 and MSRDE=1). A Debug exception occurs
when a Debug Event causes a corresponding bit in the Debug Status Register to
be set. See Chapter 9 on page 199.

Critical Save/Restore Register 0, Critical Save/Restore Register 1, Machine State
Register, and Debug Status Register are updated as follows.

Critical Save/Restore Register 0
For Debug exceptions that occur while Debug interrupts are enabled
(DBCR0IDM=1 and MSRDE=1), Critical Save/Restore Register 0 is set as
follows:

– For Instruction Address Compare (IAC1, IAC2, IAC3, IAC4), Data
Address Compare (DAC1R, DAC1W, DAC2R, DAC2W), Data Value
Compare (DVC1, DVC2), Trap (TRAP), or Branch Taken (BRT) debug
exceptions, set to the address of the instruction causing the Debug
interrupt.

– For Instruction Complete (ICMP) debug exceptions, set to the address
of the instruction that would have executed after the one that caused
the Debug interrupt.

– For Unconditional Debug Event (UDE) debug exceptions, set to the
address of the instruction that would have executed next if the Debug
interrupt had not occurred.

– For Interrupt Taken (IRPT) debug exceptions, set to the interrupt vec-
tor value of the interrupt that caused the Interrupt Taken debug event.

– For Return From Interrupt (RET) debug exceptions, set to the address
of the rfi or rfci instruction that caused the Debug interrupt.

For Debug exceptions that occur while Debug interrupts are disabled
(DBCR0IDM=0 or MSRDE=0), a Debug interrupt will occur at the next syn-
chronizing event if DBCR0IDM and MSRDE are modified such that they are
both 1 and if the Debug exception Status is still set in the Debug Status
Register. When this occurs, Critical Save/Restore Register 0 is set to the
address of the instruction that would have executed next, not with the
address of the instruction that modified the Debug Control Register 0 or
Machine State Register and thus caused the interrupt.

Critical Save/Restore Register 1
Set to the contents of the Machine State Register at the time of the
interrupt.

Machine State Register

ME Unchanged.

All other Machine State Register bits set to 0.

Debug Status Register
Set to indicate type of Debug Event (see Chapter 9 on page 199)

Instruction execution resumes at address IVPR0:47||IVOR1548:59||0b0000.
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7.7 Partially Executed Instructions

In general, the architecture permits load and store instructions to be partially exe-
cuted, interrupted, and then to be restarted from the beginning upon return from
the interrupt. Unaligned Load and Store instructions, or Load Multiple, Store Multi-
ple, Load String, and Store String instructions may be broken up into multiple,
smaller accesses, and these accesses may be performed in any order. In order to
guarantee that a particular load or store instruction will complete without being
interrupted and restarted, software must mark the storage being referred to as
Guarded, and must use an elementary (non-string or non-multiple) load or store
that is aligned on an operand-sized boundary.

In order to guarantee that Load and Store instructions can, in general, be
restarted and completed correctly without software intervention, the following
rules apply when an execution is partially executed and then interrupted:

• For an elementary Load, no part of the target register GPR(RT), or FPR(FRT),
will have been altered.

• For ‘with update’ forms of Load or Store, the update register, GPR(RA), will not
have been altered.

On the other hand, the following effects are permissible when certain instructions
are partially executed and then restarted:

• For any Store, some of the bytes at the target storage location may have been
altered (if write access to that page in which bytes were altered is permitted by
the access control mechanism). In addition, for Store Conditional instruc-
tions, CR0 has been set to an undefined value, and it is undefined whether
the reservation has been cleared.

• For any Load, some of the bytes at the addressed storage location may have
been accessed (if read access to that page in which bytes were accessed is
permitted by the access control mechanism).

• For Load Multiple or Load String, some of the registers in the range to be
loaded may have been altered. Including the addressing registers (GPR(RA),
and possibly GPR(RB)) in the range to be loaded is a programming error, and
thus the rules for partial execution do not protect against overwriting of these
registers.

In no case will access control be violated.

As previously stated, the only load or store instructions that are guaranteed to not
be interrupted after being partially executed are elementary, aligned, guarded
loads and stores. All others may be interrupted after being partially executed. The
following list identifies the specific instruction types for which interruption after
partial execution may occur, as well as the specific interrupt types that could
cause the interruption:

1. Any Load or Store (except elementary, aligned, guarded):

Any asynchronous interrupt
Machine Check
Program (Imprecise Mode Floating-Point Enabled)
Program (Imprecise Mode Auxiliary Processor Enabled)
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2. Unaligned elementary Load or Store, or any multiple or string:

All of the above listed under item 1, plus the following:
Data Storage (if the access crosses a protection boundary)
Debug (Data Address Compare, Data Value Compare)

3. mtcrf may also be partially executed due to the occurrence of any of the inter-
rupts listed under item 1 at the time the mtcrf was executing.

• All instructions prior to the mtcrf have completed execution. (Some
storage accesses generated by these preceding instructions may not have
completed.)

• No subsequent instruction has begun execution.

• The mtcrf instruction (the address of which was saved in SRR0/CSRR0 at
the occurrence of the interrupt), may appear not to have begun or may
have partially executed.

7.8 Interrupt Ordering and Masking

It is possible for multiple exceptions to exist simultaneously, each of which could
cause the generation of an interrupt. Furthermore, the architecture does not pro-
vide for reporting more than one interrupt of the same class (critical or non-criti-
cal) at a time. Therefore, the architecture defines that interrupts are ordered with
respect to each other, and provides a masking mechanism for certain persistent
interrupt types.

When an interrupt type is masked (disabled), and an event causes an exception
that would normally generate an interrupt of that type, the exception persists as a
status bit in a register (which register depends upon the exception type). However,
no interrupt is generated. Later, if the interrupt type is enabled (unmasked), and
the exception status has not been cleared by software, the interrupt due to the
original exception event will then finally be generated.

All asynchronous interrupt types can be masked. In addition, certain synchro-
nous interrupt types can be masked. An example of such an interrupt type is the
Floating-Point Enabled exception type Program interrupt. The execution of a float-
ing-point instruction that causes the FPSCRFEX bit to be set to 1 is considered an
exception event, regardless of the setting of MSRFE0,FE1. If MSRFE0,FE1 are both 0,
then the Floating-Point Enabled exception type of Program interrupt is masked,
but the exception persists in the FPSCRFEX bit. Later, if the MSRFE0,FE1 bits are
enabled, the interrupt will finally be generated.

Architectural Note
As is the case with this example, when an otherwise synchronous, precise interrupt type
is “delayed” in this fashion via masking, and the interrupt type is later enabled, the
interrupt that is then generated due to the exception event that occurred while the inter-
rupt type was disabled is then considered a synchronous, imprecise class of interrupt.
However, this particular category of synchronous, imprecise interrupt is not generally
discussed in other sections of this document. Rather, the discussion of synchronous,
imprecise interrupts is generally limited to those specific interrupt types that are defined
to be imprecise to begin with, and not those that are delayed versions of otherwise syn-
chronous, precise interrupts.
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The architecture enables implementations to avoid situations in which an inter-
rupt would cause the state information (saved in Save/Restore Registers) from a
previous interrupt to be overwritten and lost. As a first step, upon any non-critical
class interrupt, hardware automatically disables any further asynchronous, non-
critical class interrupts (External Input) by clearing MSREE. Likewise, upon any
critical class interrupt, hardware automatically disables any further asynchro-
nous interrupts of either class (critical and non-critical) by clearing MSRCE in
addition to MSREE. The additional interrupt types that are disabled by the clear-
ing of MSRCE,DE are the Critical Input, Watchdog Timer and Debug interrupts.
Note that Machine Check interrupts, while not considered asynchronous nor syn-
chronous, are not maskable by either MSRCE, MSRDE, or MSREE, and could be
presented in a situation that could cause loss of state information.

This first step of clearing MSREE (and MSRCE,DE for critical class interrupts) pre-
vents any subsequent asynchronous interrupts from overwriting the Save/
Restore Registers (SRR0/SRR1 or CSRR0/CSRR1), prior to software being able to
save their contents. Hardware also automatically clears, on any interrupt,
MSRWE,PR,FP,FE0,FE1,IS,DS. The clearing of these bits assists in the avoidance of
subsequent interrupts of certain other types. However, guaranteeing that these
interrupt types do not occur and thus do not overwrite the Save/Restore Registers
(SRR0/SRR1 or CSRR0/CSRR1) also requires the cooperation of system software.
Specifically, system software must avoid the execution of instructions that could
cause (or enable) a subsequent interrupt, if the contents of the Save/Restore Reg-
isters (SRR0/SRR1 or CSRR0/CSRR1) have not yet been saved.

7.8.1 Guidelines for System Software

The following list identifies the actions that system software must avoid, prior to
having saved the Save/Restore Registers’ contents:

• Re-enabling of MSREE (or MSRCE,DE in critical class interrupt handlers)

This prevents any asynchronous interrupts, as well as (in the case of MSRDE)
any Debug interrupts (which include both synchronous and asynchronous
types).

• Branching (or sequential execution) to addresses not mapped by the TLB, or
mapped without UX=1 or SX=1 permission.

This prevents Instruction Storage and Instruction TLB Error interrupts.

• Load, Store or Cache Management instructions to addresses not mapped by
the TLB or not having required access permissions.

This prevents Data Storage and Data TLB Error interrupts.

• Execution of System Call (sc) or Trap (tw, twi, td, tdi) instructions

This prevents System Call and Trap exception type Program interrupts.

• Execution of any floating-point instruction

This prevents Floating-Point Unavailable interrupts. Note that this interrupt
would occur upon the execution of any floating-point instruction, due to the
automatic clearing of MSRFP. However, even if software were to re-enable
MSRFP, floating-point instructions must still be avoided in order to prevent
Program interrupts due to various possible Program interrupt exceptions
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(Floating-Point Enabled, Unimplemented Operation).

• Re-enabling of MSRPR

This prevents Privileged Instruction exception type Program interrupts. Alter-
natively, software could re-enable MSRPR, but avoid the execution of any
privileged instructions.

• Execution of any Auxiliary Processor instruction

This prevents Auxiliary Processor Unavailable interrupts, and Auxiliary Pro-
cessor Enabled type and Unimplemented Operation type Program interrupts.

• Execution of any Illegal instructions

This prevents Illegal Instruction exception type Program interrupts.

• Execution of any instruction that could cause an Alignment interrupt

This prevents Alignment interrupts. Included in this category are any string or
multiple instructions, and any unaligned elementary load or store instruc-
tions. See Section 7.6.6 on page 161 for a complete list of instructions that
may cause Alignment interrupts.

Machine Check interrupts are a special case. Machine Checks are critical class
interrupts, but normal critical class interrupts (Critical Input, Watchdog Timer
and Debug) do not automatically disable Machine Checks. Machine Checks are
disabled by clearing the MSRME bit, and only a Machine Check interrupt itself
automatically clears this bit. Thus there is always the risk that a Machine Check
interrupt could occur within a normal, critical interrupt handler, prior to the
Save/Restore Registers’ contents having been saved. In such a case, the interrupt
may not be recoverable.

It is not necessary for hardware or software to avoid critical class interrupts from
within non-critical class interrupt handlers (and hence hardware does not auto-
matically clear MSRCE,ME,DE upon a non-critical interrupt), since the two classes
of interrupts use different pairs of Save/Restore Registers to save the instruction
address and Machine State Register (SRR0/SRR1 for non-critical, and CSRR0/
CSRR1 for critical). The converse, however, is not true. That is, hardware and soft-
ware must cooperate in the avoidance of both critical and non-critical class inter-
rupts from within critical class interrupt handlers, even though the two classes of
interrupts use different Save/Restore Register pairs. This is because the critical
class interrupt may have occurred from within a non-critical handler, prior to the
non-critical handler having saved the non-critical pair of Save/Restore Registers.
Therefore, within the critical class interrupt handler, both pairs of Save/Restore
Registers may contain data that is necessary to the system software.

7.8.2 Interrupt Order

The following is a prioritized listing of the various enabled interrupt types for
which exceptions might exist simultaneously:
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1. Synchronous (Non-Debug) Interrupts:

Data Storage
Instruction Storage
Alignment
Program
Floating-Point Unit Unavailable
Auxiliary Processor Unavailable
System Call
Data TLB Error
Instruction TLB Error

Only one of the above types of synchronous interrupts may have an existing
exception generating it at any given time. This is guaranteed by the exception
priority mechanism (see Section 7.9 on page 178) and the requirements of the
Sequential Execution Model.

2. Machine Check
3. Debug
4. Critical Input
5. Watchdog Timer
6. External Input
7. Fixed-Interval Timer
8. Decrementer

Even though, as indicated above, the non-critical, synchronous exception types
listed under item 1 are generated with higher priority than the critical interrupt
types listed in items 2-5, the fact is that these non-critical interrupts will immedi-
ately be followed by the highest priority existing critical interrupt type, without
executing any instructions at the non-critical interrupt handler. This is because
the non-critical interrupt types do not automatically disable the Machine State
Register mask bits for the critical interrupt types (CE and ME). In all other cases,
a particular interrupt type from the above list will automatically disable any sub-
sequent interrupts of the same type, as well as all other interrupt types that are
listed below it in the priority order.
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7.9 Exception Priorities

Book E requires all synchronous (precise and imprecise) interrupts to be reported
in program order, as required by the Sequential Execution Model. The one excep-
tion to this rule is the case of multiple synchronous imprecise interrupts. Upon a
synchronizing event, all previously executed instructions are required to report
any synchronous imprecise interrupt-generating exceptions, and the interrupt
will then be generated with all of those exception types reported cumulatively, in
both the Exception Syndrome Register, and any status registers associated with
the particular exception type (e.g. the Floating-Point Status and Control Register).

For any single instruction attempting to cause multiple exceptions for which the
corresponding synchronous interrupt types are enabled, this section defines the
priority order by which the instruction will be permitted to cause a single enabled
exception, thus generating a particular synchronous interrupt. Note that it is this
exception priority mechanism, along with the requirement that synchronous
interrupts be generated in program order, that guarantees that at any given time,
there exists for consideration only one of the synchronous interrupt types listed in
item 1 of Section 7.8.2 on page 176. The exception priority mechanism also pre-
vents certain debug exceptions from existing in combination with certain other
synchronous interrupt-generating exceptions.

Because unaligned Load and Store instructions, or Load Multiple, Store Multiple,
Load String, and Store Sting instructions may be broken up into multiple, smaller
accesses, and these accesses may be performed in any order. The exception prior-
ity mechanism applies to each of the multiple storage accesses in the order they
are performed by the implementation.

This section does not define the permitted setting of multiple exceptions for which
the corresponding interrupt types are disabled. The generation of exceptions for
which the corresponding interrupt types are disabled will have no effect on the
generation of other exceptions for which the corresponding interrupt types are
enabled. Conversely, if a particular exception for which the corresponding inter-
rupt type is enabled is shown in the following sections to be of a higher priority
than another exception, it will prevent the setting of that other exception, inde-
pendent of whether that other exception’s corresponding interrupt type is enabled
or disabled.

Except as specifically noted, only one of the exception types listed for a given
instruction type will be permitted to be generated at any given time. The priority of
the exception types are listed in the following sections ranging from highest to
lowest, within each instruction type.

Note
Some exception types may even be mutually exclusive of each other and could other-
wise be considered the same priority. In these cases, the exceptions are listed in the
order suggested by the sequential execution model.
178 Book E: Enhanced PowerPC Architecture Version 1.0 07 May 02



7.9.1 Exception Priorities for Defined Instructions

7.9.1.1 Exception Priorities for Defined Floating-Point Load and
Store Instructions

The following prioritized list of exceptions may occur as a result of the attempted
execution of any defined Floating-Point Load and Store instruction.

1. Debug (Instruction Address Compare)
2. Instruction TLB Error
3. Instruction Storage Interrupt (all types)
4. Program (Illegal Instruction)
5. Floating-Point Unavailable
6. Program (Unimplemented Operation)
7. Data TLB Error
8. Data Storage (all types)
9. Alignment
10.Debug (Data Address Compare, Data Value Compare)
11.Debug (Instruction Complete)

If the instruction is causing both a Debug (Instruction Address Compare) and a
Debug (Data Address Compare) or Debug (Data Value Compare), and is not caus-
ing any of the exceptions listed in items 2-9, it is permissible for both exceptions
to be generated and recorded in the Debug Status Register. A single Debug inter-
rupt will result.

7.9.1.2 Exception Priorities for Other Defined Load and Store
Instructions and Defined Cache Management
Instructions

The following prioritized list of exceptions may occur as a result of the attempted
execution of any other defined Load or Store instruction, or defined Cache Man-
agement instruction.

1. Debug (Instruction Address Compare)
2. Instruction TLB Error
3. Instruction Storage Interrupt (all types)
4. Program (Illegal Instruction)
5. Program (Privileged Instruction) (dcbi and dcbie only)
6. Program (Unimplemented Operation)
7. Data TLB Error
8. Data Storage (all types)
9. Alignment
10.Debug (Data Address Compare, Data Value Compare)
11.Debug (Instruction Complete)

If the instruction is causing both a Debug (Instruction Address Compare) and a
Debug (Data Address Compare) or Debug (Data Value Compare), and is not caus-
ing any of the exceptions listed in items 2-9, it is permissible for both exceptions
to be generated and recorded in the Debug Status Register. A single Debug inter-
rupt will result.
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7.9.1.3 Exception Priorities for Other Defined Floating-Point
Instructions

The following prioritized list of exceptions may occur as a result of the attempted
execution of any defined floating-point instruction other than a load or store.

1. Debug (Instruction Address Compare)
2. Instruction TLB Error
3. Instruction Storage Interrupt (all types)
4. Program (Illegal Instruction)
5. Floating-Point Unavailable
6. Program (Unimplemented Operation)
7. Program (Floating-point Enabled)
8. Debug (Instruction Complete)

7.9.1.4 Exception Priorities for Defined Privileged Instructions

The following prioritized list of exceptions may occur as a result of the attempted
execution of any defined privileged instruction, except dcbi[e], rfi, and rfci
instructions.

1. Debug (Instruction Address Compare)
2. Instruction TLB Error
3. Instruction Storage Interrupt (all types)
4. Program (Illegal Instruction)
5. Program (Privileged Instruction)
6. Program (Unimplemented Operation)
7. Debug (Instruction Complete)

For mtmsr, mtspr (DBCR0, DBCR1, DBCR2), mtspr (TCR), and mtspr (TSR), if
they are not causing Debug (Instruction Address Compare) nor Program (Privi-
leged Instruction) exceptions, it is possible that they are simultaneously enabling
(via mask bits) multiple existing exceptions (and at the same time possibly caus-
ing a Debug (Instruction Complete) exception). When this occurs, the interrupts
will be handled in the order defined by Section 7.8.2 on page 176.

7.9.1.5 Exception Priorities for Defined Trap Instructions

The following prioritized list of exceptions may occur as a result of the attempted
execution of a defined Trap instruction.

1. Debug (Instruction Address Compare)
2. Instruction TLB Error
3. Instruction Storage Interrupt (all types)
4. Program (Illegal Instruction)
5. Program (Unimplemented Operation)
6. Debug (Trap)
7. Program (Trap)
8. Debug (Instruction Complete)

If the instruction is causing both a Debug (Instruction Address Compare) and a
Debug (Trap), and is not causing any of the exceptions listed in items 2-5, it is
permissible for both exceptions to be generated and recorded in the DBSR. A sin-
gle Debug interrupt will result.
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7.9.1.6 Exception Priorities for Defined System Call Instruction

The following prioritized list of exceptions may occur as a result of the attempted
execution of a defined System Call instruction.

1. Debug (Instruction Address Compare)
2. Instruction TLB Error
3. Instruction Storage Interrupt (all types)
4. Program (Illegal Instruction)
5. Program (Unimplemented Operation)
6. System Call
7. Debug (Instruction Complete)

7.9.1.7 Exception Priorities for Defined Branch Instructions

The following prioritized list of exceptions may occur as a result of the attempted
execution of any defined branch instruction.

1. Debug (Instruction Address Compare)
2. Instruction TLB Error
3. Instruction Storage Interrupt (all types)
4. Program (Illegal Instruction)
5. Program (Unimplemented Operation)
6. Debug (Branch Taken)
7. Debug (Instruction Complete)

If the instruction is causing both a Debug (Instruction Address Compare) and a
Debug (Branch Taken), and is not causing any of the exceptions listed in items 2-
5, it is permissible for both exceptions to be generated and recorded in the Debug
Status Register. A single Debug interrupt will result.

7.9.1.8 Exception Priorities for Defined Return From Interrupt
Instructions

The following prioritized list of exceptions may occur as a result of the attempted
execution of a defined Return From Interrupt or Return From Critical Interrupt
instruction.

1. Debug (Instruction Address Compare)
2. Instruction TLB Error
3. Instruction Storage Interrupt (all types)
4. Program (Illegal Instruction)
5. Program (Privileged Instruction)
6. Program (Unimplemented Operation)
7. Debug (Return From Interrupt)
8. Debug (Instruction Complete)

If the rfi or rfci instruction is causing both a Debug (Instruction Address Com-
pare) and a Debug (Return From Interrupt), and is not causing any of the excep-
tions listed in items 2-5, it is permissible for both exceptions to be generated and
recorded in the Debug Status Register. A single Debug interrupt will result.
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7.9.1.9 Exception Priorities for Other Defined Instructions

The following prioritized list of exceptions may occur as a result of the attempted
execution of all other instructions not listed above.

1. Debug (Instruction Address Compare)
2. Instruction TLB Error
3. Instruction Storage Interrupt (all types)
4. Program (Illegal Instruction)
5. Program (Unimplemented Operation)
6. Debug (Instruction Complete)

7.9.2 Exception Priorities for Allocated Instructions

7.9.2.1 Exception Priorities for Allocated Load and Store
Instructions

The following prioritized list of exceptions may occur as a result of the attempted
execution of any allocated load or store instruction.

1. Debug (Instruction Address Compare)
2. Instruction TLB Error
3. Instruction Storage Interrupt (all types)
4. Program (Illegal Instruction)
5. Floating-Point Unavailable

Auxiliary Processor Unavailable
6. Program (Privileged Instruction)
7. Program (Unimplemented Operation)
8. Data TLB Error
9. Data Storage (all types)
10.Alignment
11.Debug (Data Address Compare, Data Value Compare)
12.Debug (Instruction Complete)

If the instruction is causing both a Debug (Instruction Address Compare) and a
Debug (Data Address Compare) or Debug (Data Value Compare), and is not caus-
ing any of the exceptions listed in items 2-9, it is permissible for both exceptions
to be generated and recorded in the Debug Status Register. A single Debug inter-
rupt will result.

7.9.2.2 Exception Priorities for Other Allocated Instructions

The following prioritized list of exceptions may occur as a result of the attempted
execution of any allocated instruction that is not a load or store.

1. Debug (Instruction Address Compare)
2. Instruction TLB Error
3. Instruction Storage Interrupt (all types)
4. Program (Illegal Instruction)
5. Floating-Point Unavailable

Auxiliary Processor Unavailable
6. Program (Privileged Instruction)
7. Program (Unimplemented Operation)
8. Program (Floating-point Enabled)

Program (Auxiliary Processor Enabled)
9. Debug (Instruction Complete)
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7.9.3 Exception Priorities for Preserved Instructions

7.9.3.1 Exception Priorities for Preserved Load, Store, Cache
Management, and TLB Management Instructions

The following prioritized list of exceptions may occur as a result of the attempted
execution of any preserved load or store instruction.

1. Debug (Instruction Address Compare)
2. Instruction TLB Error
3. Instruction Storage Interrupt (all types)
4. Program (Illegal Instruction)
5. Program (Privileged Instruction)
6. Program (Unimplemented Operation)
7. Data TLB Error
8. Data Storage (all types)
9. Alignment
10.Debug (Data Address Compare, Data Value Compare)
11.Debug (Instruction Complete)

If the instruction is causing both a Debug (Instruction Address Compare) and a
Debug (Data Address Compare) or Debug (Data Value Compare), and is not caus-
ing any of the exceptions listed in items 2-9, it is permissible for both exceptions
to be generated and recorded in the Debug Status Register. A single Debug inter-
rupt will result.

7.9.3.2 Exception Priorities for Other Preserved Instructions

The following prioritized list of exceptions may occur as a result of the attempted
execution of any preserved instruction that is not a load or store.

1. Debug (Instruction Address Compare)
2. Instruction TLB Error
3. Instruction Storage Interrupt (all types)
4. Program (Illegal Instruction)
5. Program (Privileged Instruction)
6. Program (Unimplemented Operation)
7. Debug (Instruction Complete)

7.9.4 Exception Priorities for Reserved Instructions

The following prioritized list of exceptions may occur as a result of the attempted
execution of any reserved instruction.

1. Debug (Instruction Address Compare)
2. Instruction TLB Error
3. Instruction Storage Interrupt (all types)
4. Program (Illegal Instruction)
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Chapter 8 Timer Facilities

8.1 Overview

The Time Base (TB), Decrementer (DEC), Fixed-Interval Timer (FIT), and Watchdog
Timer (WDT) provide timing functions for the system. All of these must be initial-
ized during start-up.

• The Time Base provides a long-period counter driven by an implementation-
dependent frequency.

• The Decrementer, a counter that is updated at the same rate as the Time
Base, provides a means of signaling an exception after a specified amount of
time has elapsed unless:

– the Decrementer is altered by software in the interim, or
– the Time Base update frequency changes

The Decrementer is typically used as a general-purpose software timer.

• The Fixed-Interval Timer is really a selected bit of the Time Base, which pro-
vides a means of signalling an exception whenever the selected bit transitions
from 0 to 1, in a repetitive fashion. The Fixed-Interval Timer is typically used
to trigger periodic system maintenance functions. Software may select one of
four bits in the Time Base to serve as the Fixed-Interval Timer. Which bits
may be selected is implementation-dependent.

• The Watchdog Timer is also a selected bit of the Time Base, which provides a
means of signalling a critical class exception whenever the selected bit transi-
tions from 0 to 1. In addition, if software does not respond in time to the
initial exception (by clearing the associated status in the Timer Status Regis-
ter (TSR) prior to the next expiration of the Watchdog Timer interval), then a
Watchdog Timer-generated processor reset may result, if so enabled. The
Watchdog Timer is typically used to provide a system error recovery function.

The relationship of these Timer facilities to each other is illustrated in Figure 8-1
below.
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Figure 8-1. Relationship of Timer Facilities to Time Base

8.2 Timer Control Register

The Timer Control Register (TCR) is a 32-bit register. Timer Control Register bits
are numbered 32 (most-significant bit) to 63 (least-significant bit). The Timer Con-
trol Register controls Decrementer (see Section 8.5), Fixed-Interval Timer (see
Section 8.6), and Watchdog Timer (see Section 8.7) options. Table 8-1 specifies
the bit definitions of the Timer Control Register.

The contents of the Timer Control Register can be read into bits 32:63 of a
GPR(RT) using mfspr RT,TCR, setting bits 0:31 of GPR(RT) to zero. The contents of
bits 32:63 of GPR(RS) can be written to the Timer Control Register using mtspr
TCR,RS.

Table 8-1. Timer Control Register Definition

Bit(s) Description

32:33 Watchdog Timer Period (WP) (See Section 8.7)
Specifies one of 4 bit locations of the Time Base used to signal a Watchdog Timer
exception on a transition from 0 to 1. The 4 Time Base bits that can be specified to
serve as the Watchdog Timer period are implementation-dependent.

Timer Clock

TIME BASE  (incrementer)

Decrementer event ⇐ 0/1 detect

DEC

31

DECAR

0

auto-reload

310

TBL

310

TBU

(decrementer)

Watchdog Timer events based on one of 4
Time Base bits selected by RCRWDP

(the 4 Time Base bits that can be selected by
TCRWDP are implementation-dependent)

Fixed-Interval Timer events based on one of
4 Time Base bits selected by RCRFP

(the 4 Time Base bits that can be selected by
TCRFP are implementation-dependent)
186 Book E: Enhanced PowerPC Architecture Version 1.0 07 May 02



34:35 Watchdog Timer Reset Control (WRC) (See Section 8.7)

=00 No Watchdog Timer reset will occur
TCRWRC resets to 0b00. This field may be set by software, but can-
not be cleared by software (except by a software-induced reset)

=01
=10
=11

Force processor to be reset on second time-out of Watchdog Timer.
The exact function of any of these settings is implementation-de-
pendent. See the User’s Manual for the implementation for
further details.

The Watchdog Timer Reset Control field is cleared to zero by processor re-
set. These bits are set only by software; however, hardware does not allow
software to clear these bits once they have been set. Once software has
written a 1 to one of these bits, that bit remains a 1 until a reset occurs.
This is to prevent errant code from disabling the Watchdog reset function.

36 Watchdog Timer Interrupt Enable (WIE) (See Section 8.7)

=0 Disable Watchdog Timer interrupt

=1 Enable Watchdog Timer interrupt

37 Decrementer Interrupt Enable (DIE) (See Section 8.5)

=0 Disable Decrementer interrupt

=1 Enable Decrementer interrupt

38:39 Fixed-Interval Timer Period (FP) (See Section 8.6)
Specifies one of 4 bit locations of the Time Base used to signal a Fixed-
Interval Timer exception on a transition from 0 to 1. The 4 Time Base bits
that can be specified to serve as the Fixed-Interval Timer period are im-
plementation-dependent.

40 Fixed-Interval Timer Interrupt Enable (FIE) (See Section 8.6)

=0 Disable Fixed-Interval Timer interrupt

=1 Enable Fixed-Interval Timer interrupt

41 Auto-Reload Enable (ARE)

=0 Disable auto-reload of the Decrementer
Decrementer exception is presented (i.e. TSRDIS is set to 1) when
the Decrementer is decremented from a value of 0x0000_0001. The
next value placed in the Decrementer is the value 0x0000_0000.
The Decrementer then stops decrementing. If MSREE=1, TCRDIE=1,
and TSRDIS=1, a Decrementer interrupt is taken. Software must re-
set TSRDIS.

=1 Enable auto-reload of the Decrementer
Decrementer exception is presented (i.e. TSRDIS is set to 1) when
the Decrementer is decremented from a value of 0x0000_0001. The
contents of the Decrementer Auto-Reload Register is placed in the
Decrementer. The Decrementer resumes decrementing. If
MSREE=1, TCRDIE=1, and TSRDIS=1, a Decrementer interrupt is
taken. Software must reset TSRDIS.

42 Allocated for implementation-dependent use
Implementation Note
This bit is allocated for Book E implementations that support a mode that causes
the Decrementer to emulate the PowerPC Decrementer.

43:63 Reserved

Bit(s) Description
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8.3 Timer Status Register

The Timer Status Register (TSR) is a 32-bit register. Timer Status Register bits are
numbered 32 (most-significant bit) to 63 (least-significant bit). The Timer Status
Register contains status on timer events and the most recent Watchdog Timer-ini-
tiated processor reset.

The Timer Status Register is set via hardware, and read and cleared via software.
The contents of the Timer Status Register can be read into bits 32:63 of a GPR(RT)
using mfspr RT,TSR, setting bits 0:31 of GPR(RT) to zero. Bits in the Timer Status
Register can be cleared using mtspr TSR,RS. Clearing is done by writing bits 32:63
of a General Purpose Register to the Timer Status Register with a 1 in any bit
position that is to be cleared and 0 in all other bit positions. The write-data to the
Timer Status Register is not direct data, but a mask. A 1 causes the bit to be
cleared, and a 0 has no effect.

Table 8-2. Timer Status Register Definition

Bit(s) Description

32 Enable Next Watchdog Timer (ENW) (See Section 8.7)

=0 Action on next Watchdog Timer time-out is to set TSR0

=1 Action on next Watchdog Timer time-out is governed by TSRWIS

33 Watchdog Timer Interrupt Status (WIS) (See Section 8.7)

=0 A Watchdog Timer event has not occurred.

=1 A Watchdog Timer event has occurred. When MSRCE=1 and
TCRWIE=1, a Watchdog Timer interrupt is taken.

34:35 Watchdog Timer Reset Status (WRS) (See Section 8.7)
These two bits are set to one of three values when a reset is caused by the
Watchdog Timer. These bits are undefined at power-up.

=00 No Watchdog Timer reset has occurred.

=01 Implementation-dependent reset information.

=10 Implementation-dependent reset information.

=11 Implementation-dependent reset information.

36 Decrementer Interrupt Status (DIS) (See Section 8.5)

=0 A Decrementer event has not occurred.

=1 A Decrementer event has occurred. When MSREE=1 and TCRDIE=1,
a Decrementer interrupt is taken.

37 Fixed-Interval Timer Interrupt Status (FIS) (See Section 8.6)

=0 A Fixed-Interval Timer event has not occurred.

=1 A Fixed-Interval Timer event has occurred. When MSREE=1 and
TCRFIE=1, a Fixed-Interval Timer interrupt is taken.

38:63 Reserved
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8.4 Time Base

8.4.1 Overview

The Time Base (TB) is composed of two 32-bit registers, the Time Base Upper
(TBU) concatenated on the right with the Time Base Lower (TBL). Time Base
Upper bits are numbered 32 (most-significant bit) to 63 (least-significant bit).
Time Base Lower bits are numbered 32 (most-significant bit) to 63 (least-signifi-
cant bit). The Time Base is interpreted as a 64-bit unsigned integer that is incre-
mented periodically. Each increment adds 1 to the least-significant bit. The
frequency at which the integer is updated is implementation-dependent.

The Time Base provides timing functions for the system. The Time Base is a vola-
tile resource and must be initialized during start-up.

The Time Base provides a long-period counter driven by an implementation-
dependent frequency.

The contents of the Time Base Upper can be read into bits 32:63 of a General Pur-
pose Register using mfspr RT,TBU, setting bits 0:31 of GPR(RT) to an undefined
value. The contents of bits 32:63 of GPR(RS) can be written to the Time Base
Upper using mtspr TBU,RS.

The contents of the Time Base Lower can be read into bits 32:63 of a General Pur-
pose Register using mfspr RT,TBL, setting bits 0:31 of GPR(RT) to an undefined
value. The contents of bits 32:63 of GPR(RS) can be written to the Time Base
Lower using mtspr TBL,RS.

There is no automatic initialization of the Time Base; system software must per-
form this initialization.

The Time Base Lower increments until its value becomes 0xFFFF_FFFF (232–1). At
the next increment, its value becomes 0x0000_0000 and Time Base Upper is
incremented. This process continues until the value in the Time Base Upper
becomes 0xFFFF_FFFF and the value in the Time Base Lower becomes
0xFFFF_FFFF, or the value in the Time Base is interpreted as
0xFFFF_FFFF_FFFF_FFFF (264–1). At the next increment, the value in the Time
Base Upper becomes 0x0000_0000 and the value in the Time Base Lower
becomes 0x0000_0000. There is no interrupt or other indication when this
occurs.

The period of the Time Base depends on the driving frequency. As an order of
magnitude example, suppose that the Time Base is driven by a frequency of
100MHz divided by 32. Then the period of the Time Base would be

TTB = 264×32/100 MHz = 5.90×1012 seconds

which is approximately 187,000 years.

The Time Base must be implemented such that the following requirements are
satisfied.

• Loading a General Purpose Register from the Time Base shall have no effect
on the accuracy of the Time Base.
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• Storing a General Purpose Register to the Time Base shall replace the value in
the Time Base with the value in the General Purpose Register.

Book E does not specify a relationship between the frequency at which the Time
Base is updated and other frequencies, such as the CPU clock or bus clock in a
Book E system. The Time Base update frequency is not required to be constant.
What is required, so that system software can keep time of day and operate inter-
val timers, is one of the following.

• The system provides an (implementation-dependent) interrupt to software
whenever the update frequency of the Time Base changes, and a means to
determine what the current update frequency is.

• The update frequency of the Time Base is under the control of the system
software.

Implementations must provide a means for either preventing the Time Base from
incrementing or preventing the Time Base from being read in problem state
(MSRPR=1). If the means is under software control, the Time Base must be acces-
sible only in privileged state (MSRPR=0).

Architecture Note
Disabling the Time Base or making reading the Time Base privileged prevents the Time
Base from being used to implement a ‘covert channel’ in a secure system.

The requirements stated above for the Time Base apply also to any other SPRs that mea-
sure time and can be read in problem state (e.g., Performance Monitor registers).

Programming Note
If the operating system initializes the Time Base on power-on to some reasonable value
and the update frequency of the Time Base is constant, the Time Base can be used as a
source of values that increase at a constant rate, such as for time stamps in trace
entries.

Even if the update frequency is not constant, values read from the Time Base are mono-
tonically increasing (except when the Time Base wraps from 264–1 to 0). If a trace entry
is recorded each time the update frequency changes, the sequence of Time Base values
can be post-processed to become actual time values.

Successive readings of the Time Base may return identical values.

See Section 8.4.4 on page 191 for ways to compute time of day in POSIX format from the
Time Base.

Architecture Note
It is intended that the Time Base be useful for timing reasonably short sequences of
code (a few hundred instructions) and for low-overhead time stamps for tracing. The
Time Base should not ‘tick’ faster than the CPU instruction clock. Driving the Time Base
directly from the CPU instruction clock is probably finer granularity than necessary; the
instruction clock divided by 8, 16, or 32 would be more appropriate.
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8.4.2 Writing the Time Base

It is not possible to write the entire 64-bit Time Base using a single instruction.
The Time Base can be written by a sequence such as:

    lwz    Rx,upper   # load 64-bit value for
    lwz    Ry,lower   #   TB into Rx and Ry
    addi   Rz,R0,0
    mtspr  TBL,Rz     # force TBL to 0
    mtspr  TBU,Rx     # set TBU
    mtspr  TBL,Ry     # set TBL

Provided that no interrupts occur while the last three instructions are being exe-
cuted, loading 0 into Time Base Lower prevents the possibility of a carry from
Time Base Lower to Time Base Upper while the Time Base is being initialized.

8.4.3 Reading the Time Base

It is not possible to read the entire 64-bit Time Base in a single instruction. mfspr
RT,TBL moves from the lower half of the Time Base (TBL) to a GPR, and mfspr
RT,TBU extended mnemonic moves from the upper half (TBU) to a GPR. Because
of the possibility of a carry from Time Base Lower to Time Base Upper occurring
between reads of Time Base Lower and Time Base Upper, a sequence such as the
following is necessary to read the Time Base.

 loop:
    mfspr  Rx,TBU        #load from TBU
    mfspr  Ry,TBL        #load from TBL
    mfspr  Rz,TBU        #load from TBU
    cmp    cr0,0,Rz,Rx   #see if 'old' = 'new'
    bc     4,2,loop      #loop if carry occurred

The comparison and loop are necessary to ensure that a consistent pair of values
has been obtained.

8.4.4 Computing Time of Day from the Time Base

Since the update frequency of the Time Base is implementation-dependent, the
algorithm for converting the current value in the Time Base to time of day is also
implementation-dependent.

As an example, assume that the Time Base is incremented at a constant rate of
once for every 32 cycles of a 100 MHz CPU instruction clock. What is wanted is
the pair of 32-bit values comprising a POSIX standard clock:1 the number of
whole seconds that have passed since midnight January 1, 1970, and the remain-
ing fraction of a second expressed as a number of nanoseconds.

Assume that:

1. Described in POSIX Draft Standard P1003.4/D12, Draft Standard for Information Technology -- Portable Operating System
Interface (POSIX) -- Part 1: System Application Program Interface (API) - Amendment 1: Real-time Extension [C Language].
Institute of Electrical and Electronics Engineers, Inc., Feb. 1992.
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• The value 0 in the Time Base represents the start time of the POSIX clock (if
this is not true, a simple 64-bit subtraction will make it so).

• The integer constant ticks_per_sec contains the value

100MHz / 32 = 3,125,000

which is the number of times the Time Base is updated each second.

• The integer constant ns_adj contains the value

1,000,000,000 / 3,125,000 = 320

which is the number of nanoseconds per tick of the Time Base.

The POSIX clock can be computed with an instruction sequence such as this:

# Read Time Base
loop:
    mfspr  Rx,TBU       #load from TBU into Rx
    mfspr  Ry,TBL       #load from TBL into Ry
    mfspr  Rz,TBU       #load from TBU into Rz
    cmp    CR0,0,Rz,Rx  #see if 'old TBU' = 'new TBU'
    bc     4,2,loop     #loop if carry occurred
    rldimi Ry,Rx,32,0   #splice TBU & TBL into Ry
#
# Compute POSIX clock
#
    lwz    Rx,ticks_per_sec
    divd   Rz,Ry,Rx     #Rz = whole seconds
    stw    Rz,posix_sec
    mulld  Rz,Rz,Rx     #Rz = quotient * divisor
    sub    Rz,Ry,Rz     #Rz = excess ticks
    lwz    Rx,ns_adj
    mulld  Rz,Rz,Rx     #Rz = excess nanoseconds
    stw    Rz,posix_ns

In the absence of a divd instruction (see Appendix A, “Guidelines for 32-bit Book
E”, on page 371), direct implementation of the algorithm given above is awkward.1

Such division can be avoided entirely if a time of day clock in POSIX format is
updated at least once each second.

Assume that:

• The operating system maintains the following variables:

– posix_tb (64 bits)
– posix_sec (32 bits)
– posix_ns (32 bits)

These variables hold the value of the Time Base and the computed POSIX sec-
ond and nanosecond values from the last time the POSIX clock was
computed.

1. See D. E. Knuth, The Art of Computer Programming, Volume 2, Seminumerical Algorithms, Section 4.3.1, Algorithm D. Addi-
son-Wesley, 1981.
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• The operating system arranges for an interrupt (see Chapter 8 on page 185) to
occur at least once per second, at which time it recomputes the POSIX clock
values.

• The integer constant billion contains the value 1,000,000,000.

The POSIX clock can be computed with an instruction sequence such as this:

 loop:
    mfspr  Rx,TBU         #Rx = TBU
    mfspr  Ry,TBL         #Ry = TBL
    mfspr  Rz,TBU         #Rz = 'new' TBU value
    cmp    CR0,0,Rz,Rx    #see if 'old' = 'new'
    bc     4,2,loop       #loop if carry occurred
 #      now have 64-bit TB in Rx and Ry
    lwz    Rz,posix_tb+4
    sub    Rz,Ry,Rz       #Rz = delta in ticks
    lwz    Rw,ns_adj
    mullw  Rz,Rz,Rw       #Rz = delta in ns
    lwz    Rw,posix_ns
    add    Rz,Rz,Rw       #Rz = new ns value
    lwz    Rw,billion
    cmp    CR0,0,Rz,Rw    #see if past 1 second
    bc     12,0,nochange  #branch if not
    sub    Rz,Rz,Rw       #adjust nanoseconds
    lwz    Rw,posix_sec
    addi   Rw,Rw,1        #adjust seconds
    stw    Rw,posix_sec   #store new seconds
 nochange:
    stw    Rz,posix_ns    #store new ns
    stw    Rx,posix_tb    #store new time base
    stw    Ry,posix_tb+4

Note that the upper half of the Time Base does not participate in the calculation to
determine the new POSIX time of day. This is correct as long as the time change
does not exceed one second.

Non-constant update frequency

In a system in which the update frequency of the Time Base may change over
time, it is not possible to convert an isolated Time Base value into time of day.
Instead, a Time Base value has meaning only with respect to the current update
frequency and the time of day that the update frequency was last changed. Each
time the update frequency changes, either the system software is notified of the
change via an interrupt (see Chapter 7 on page 143), or the change was instigated
by the system software itself. At each such change, the system software must
compute the current time of day using the old update frequency, compute a new
value of ticks_per_sec for the new frequency, and save the time of day, Time Base
value, and tick rate. Subsequent calls to compute time of day use the current
Time Base value and the saved data.
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8.5 Decrementer

The Decrementer (DEC) is a 32-bit register. Decrementer bits are numbered 32
(most-significant bit) to 63 (least-significant bit).

The contents of the Decrementer can be read into bits 32:63 of a General Purpose
Register using mfspr RT,DEC, setting bits 0:31 of GPR(RT) to zero. The contents of
bits 32:63 of GPR(RS) can be written to the Decrementer using mtspr DEC,RS.

The Decrementer Auto-Reload Register (DECAR) is a 32-bit register. Decrementer
Auto-Reload Register bits are numbered 32 (most-significant bit) to 63 (least-sig-
nificant bit). The Decrementer Auto-Reload Register is provided to support the
auto-reload feature of the Decrementer.

The contents of the Decrementer Auto-Reload Register cannot be read. The con-
tents of bits 32:63 of GPR(RS) can be written to the Decrementer Auto-Reload
Register using mtspr DECAR,RS.

The Decrementer decrements at the same rate that the Time Base increments. A
Decrementer event occurs when a decrement occurs on a Decrementer value of
0x0000_0001. Upon the occurrence of a Decrementer event, the Decrementer has
the following basic modes of operation.

Decrement to one and stop on zero
If TCRARE=0, TSRDIS is set to 1, the value 0x0000_0000 is then placed into
the DEC, and the Decrementer stops decrementing.

If enabled by TCRDIE=1 and MSREE=1, a Decrementer interrupt is taken. See
Section 7.6.11 on page 167 for details of register behavior caused by the

Decrementer interrupt.

Decrement to one and auto-reload
If TCRARE=1, TSRDIS is set to 1, the contents of the Decrementer Auto-Reload
Register is then placed into the DEC, and the Decrementer continues
decrementing from the reloaded value.

If enabled by TCRDIE=1 and MSREE=1, a Decrementer interrupt is taken. See
Section 7.6.11 on page 167 for details of register behavior caused by the

Decrementer interrupt.

The Decrementer interrupt handler must reset TSRDIS in order to avoid taking
another, redundant Decrementer interrupt once MSREE is re-enabled (assuming
TCRDIE is not cleared instead). This is done by writing a word to Timer Status
Register using mtspr with a 1 in the bit corresponding to TSRDIS (and any other
bits that are to be cleared) and 0 in all other bits. The write-data to the Timer Sta-
tus Register is not direct data, but a mask. A 1 causes the bit to be cleared, and a
0 has no effect.

Forcing the Decrementer to 0 using the mtspr instruction will not cause a Decre-
menter exception; however, decrementing which was in progress at the instant of
the mtspr may cause the exception. To eliminate the Decrementer as a source of
exceptions, set TCRDIE to 0 (clear the Decrementer Interrupt Enable bit).

If it is desired to eliminate all Decrementer activity, the procedure is as follows:

1. Write 0 to TCRDIE. This will prevent Decrementer activity from causing
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exceptions.

2. Write 0 to TCRARE to disable the Decrementer auto-reload.

3. Write 0 to Decrementer. This will halt Decrementer decrementing. While this
action will not cause a Decrementer exception to be set in TSRDIS, a near
simultaneous decrement may have done so.

4. Write 1 to TSRDIS. This action will clear TSRDIS to 0 (see Section 8.3 on
page 188). This will clear any Decrementer exception which may be pending.
Because the Decrementer is frozen at zero, no further Decrementer events are
possible.

If the auto-reload feature is disabled (TCRARE=0), then once the Decrementer dec-
rements to zero, it will stay there until software reloads it using the mtspr
instruction.

On reset, TCRARE is set to 0. This disables the auto-reload feature.

Book E has changed the definition of the Decrementer from the PowerPC Architec-
ture definition. However, Book E permits implementations of the architecture to
provide implementation-dependent facilities to enable emulation of the PowerPC
Architecture definition of the Decrementer for compatibility with legacy systems.
There are a number of approaches to providing this compatibility support, and
hence Book E allows implementation-dependent discretion. A new mode which
causes the Decrementer to operate in the PowerPC-compatible mode would be
required by implementations that support such compatibility. A mode bit that
enables this new mode is recommended to be placed in the Timer Control Regis-
ter. The PowerPC Decrementer operates continuously, wrapping from 0 to
0xFFFF_FFFF and generates an interrupt on every transition of bit 0 of the Decre-
menter from 0 to 1, including such a transition caused by a mtspr DEC,RS. A
Book E implementation that supports this PowerPC Decrementer mode would be
required to also provide facilities that enable the Book E Decrementer behavior.

8.6 Fixed-Interval Timer

The Fixed-Interval Timer (FIT) is a mechanism for providing timer interrupts with
a repeatable period, to facilitate system maintenance. It is similar in function to
an auto-reload Decrementer, except that there are fewer selections of interrupt
period available. The Fixed-Interval Timer exception occurs on 0 to 1 transitions
of a selected bit from the Time Base (see Section 8.2 on page 186).

The Fixed-Interval Timer exception is logged by TSRFIS. A Fixed-Interval Timer
interrupt will occur if TCRFIE and MSREE are enabled. See Section 7.6.12 on
page 168 for details of register behavior caused by the Fixed-Interval Timer inter-
rupt.

The interrupt handler must reset TSRFIS via software, in order to avoid another
Fixed-Interval Timer interrupt once MSREE is re-enabled (assuming TCRFIE is not
cleared instead). This is done by writing a word to the Timer Status Register using
mtspr with a 1 in the bit corresponding to TSRFIS (and any other bits that are to
be cleared) and 0 in all other bits. The write-data to the Timer Status Register is
not direct data, but a mask. A 1 causes the bit to be cleared, and a “0” has no
effect.
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Note that a Fixed-Interval Timer exception will also occur if the selected Time Base
bit transitions from 0 to 1 due to an mtspr TBL,RS that writes a 1 to the bit when
its previous value was 0.

8.7 Watchdog Timer

The Watchdog Timer is a facility intended to aid system recovery from faulty soft-
ware or hardware. Watchdog time-outs occur on 0 to 1 transitions of selected bits
from the Time Base (see Section 8.2 on page 186).

When a Watchdog Timer time-out occurs while Watchdog Timer Interrupt Status
is clear (TSRWIS = 0) and the next Watchdog Time-out is enabled (TSRENW = 1), a
Watchdog Timer exception is generated and logged by setting TSRWIS to 1. This is
referred to as a Watchdog Timer First Time Out. A Watchdog Timer interrupt will
occur if enabled by TCRWIE and MSRCE. See Section 7.6.13 on page 169 for
details of register behavior caused by the Watchdog Timer interrupt.

The interrupt handler must reset TSRWIS via software, in order to avoid another
Watchdog Timer interrupt once MSRCE is re-enabled (assuming TCRWIE is not
cleared instead). This is done by writing a word to the Timer Status Register using
mtspr with a 1 in the bit corresponding to TSRWIS (and any other bits that are to
be cleared) and a 0 in all other bits. The write-data to the Timer Status Register is
not direct data, but a mask. A 1 causes the bit to be cleared, and a 0 has no effect.

Note that a Watchdog Timer exception will also occur if the selected Time Base bit
transitions from 0 to 1 due to an mtspr TBL,RS that writes a 1 to the bit when its
previous value was 0.

When a Watchdog Timer time-out occurs while TSRWIS = 1 and TSRENW = 1, a
processor reset occurs if it is enabled by a non-zero value of the Watchdog Reset
Control field in the Timer Control Register (TCRWRC). This is referred to as a
Watchdog Timer Second Time Out. The assumption is that TSRWIS was not
cleared because the processor was unable to execute the Watchdog Timer inter-
rupt handler, leaving reset as the only available means to restart the system. Note
that once TCRWRC has been set to a non-zero value, it cannot be reset by software;
this feature prevents errant software from disabling the Watchdog Timer reset
capability.

A more complete view of Watchdog Timer behavior is afforded by Figure 8-2 on
page 197 and Table 8-3 on page 197, which describe the Watchdog Timer state
machine and Watchdog Timer controls. The numbers in parentheses in the figure
refer to the discussion of modes of operation which follow the table.
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Figure 8-2. Watchdog State Machine

Table 8-3. Watchdog Timer Controls

The controls described in the above table imply three different modes of operation
that a programmer might select for the Watchdog Timer. Each of these modes
assumes that TCRWRC has been set to allow processor reset by the Watchdog facil-
ity:

1. Always take the Watchdog Timer interrupt when pending, and never attempt
to prevent its occurrence. In this mode, the Watchdog Timer interrupt caused
by a first time-out is used to clear TSRWIS so a second time-out never occurs.
TSRENW is not cleared, thereby allowing the next time-out to cause another
interrupt.

2. Always take the Watchdog Timer interrupt when pending, but avoid when
possible. In this mode a recurring code loop of reliable duration (or perhaps a
periodic interrupt handler such as the Fixed-Interval Timer interrupt han-
dler) is used to repeatedly clear TSRENW such that a first time-out exception is
avoided, and thus no Watchdog Timer interrupt occurs. Once TSRENW has
been cleared, software has between one and two full Watchdog periods before
a Watchdog exception will be posted in TSRWIS. If this occurs before the soft-

Enable Next
WDT

(TSRENW)
WDT Status

(TSRWIS) Action when timer interval expires

0 0 Set Enable Next Watchdog Timer (TSRENW=1).

0 1 Set Enable Next Watchdog Timer (TSRENW=1).

1 0 Set Watchdog Timer interrupt status bit (TSRWIS=1).
If Watchdog Timer interrupt is enabled (TCRWIE=1
and MSRCE=1), then interrupt.

1 1 Cause Watchdog Timer reset action specified by
TCRWRC. Reset will copy pre-reset TCRWRC into
TSRWRS, then clear TCRWRC.

TSRENW,WIS=0b00

TSRENW,WIS=0b01

TSRENW,WIS=0b10

TSRENW,WIS=0b11

Time-out. No exception recorded in TSRWIS.

Time-out. WDT exception recorded in TSRWIS

Time-out. Set TSRENW

Time-out

(2) SW Loop

(3) SW Loop

(1) Watchdog

Handler

(2)
Interrupt
Handler

TSRWRS ← TCRWRC
TCRWRC ← 0b00

 WDT interrupt will occur if enabled by

Set TSRENW so next time-out will cause exception.

Interrupt

Watchdog

 so next time-out will

If TCRWRC≠00 then RESET, including

cause reset

TCRWIE and MSRCE
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ware is able to clear TSRENW again, a Watchdog Timer interrupt will occur. In
this case, the Watchdog Timer interrupt handler will then clear both TSRENW
and TSRWIS, in order to (hopefully) avoid the next Watchdog Timer interrupt.

3. Never take the Watchdog Timer interrupt. In this mode, Watchdog Timer
interrupts are disabled (via TCRWIE=0), and the system depends upon a recur-
ring code loop of reliable duration (or perhaps a periodic interrupt handler
such as the Fixed-Interval Timer interrupt handler) to repeatedly clear TSR-

WIS such that a second time-out is avoided, and thus no reset occurs. TSRENW
is not cleared, thereby allowing the next time-out to set TSRWIS again. The
recurring code loop must have a period which is less than one Watchdog
Timer period in order to guarantee that a Watchdog Timer reset will not occur.

8.8 Freezing the Timer Facilities

The debug mechanism provides a means of temporarily freezing the timers upon a
debug event. Specifically, the Time Base and Decrementer can be frozen and pre-
vented from incrementing/decrementing, respectively, whenever a debug event is
set in the Debug Status Register. This allows a debugger to simulate the appear-
ance of ‘real time’, even though the application has been temporarily ‘halted’ to
service the debug event. See the description of bit 63 of the Debug Control Regis-
ter 0 (Freeze Timers on Debug Event or DBCR0FT) in Table 9-1 on page 210.
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Chapter 9 Debug Facilities

9.1 Background

Book E provides debug facilities to enable hardware and software debug func-
tions, such as instructions and data breakpoints and program single stepping.
The debug facilities consist of a set of debug control registers (DBCR0, DBCR1,
and DBCR2) described in Section 9.4.1, a set of address and data value compare
registers (IAC1, IAC2, IAC3, IAC4, DAC1, DAC2, DVC1, and DVC2) described in
Sections 9.4.3, 9.4.4, and 9.4.5, a Debug Status Register (DBSR) described is
Section 9.4.2 for enabling and recording various kinds of debug events, and a spe-
cial Debug interrupt type built into the interrupt mechanism (see Section 7.6.16
on page 172). The debug facilities also provide a mechanism for software-con-
trolled processor reset, and for controlling the operation of the timers in a debug
environment.

Access to the debug facilities using the mfspr and mtspr instructions, as well as
the debug interrupt mechanism, are defined as part of Book E. In addition, imple-
mentations will typically include debug facilities, modes, and access mechanisms
which are implementation-specific and defined as part of the User’s Manual for
the implementation. For example, implementations will typically provide access to
the debug facilities via a dedicated interface such as the IEEE 1149.1 Test Access
Port (JTAG).
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Programming Note
There are two classes of debug exception types:

Type 1: exception before instruction
Type 2: exception after instruction

Almost all debug exceptions fall into the first category. That is, they all take the inter-
rupt upon encountering an instruction having the exception without updating any
architectural state (other than DBSR, CSRR0, CSRR1, MSR) for that instruction.

The CSRR0 for this type of exception points to the instruction that encountered the
exception. This includes IAC, DAC, branch taken, etc.

The only exception which fall into the second category is the instruction complete debug
exception. This exception is taken upon completing and updating one instruction and
then pointing CSRR0 to the next instruction to execute.

To make forward progress for any Type 1 debug exception one does the following:

1. Software sets up Type 1 exceptions (e.g. branch taken debug exceptions) and then
returns to normal program operation

2. Hardware takes critical debug interrupt upon the first branch taken debug
exception, pointing to the branch with CSRR0.

3. Software, in the debug handler, sees the branch taken exception type, does whatever
logging/analysis it wants to, then clears all debug event enables in the DBCR except
for the instruction complete debug event enable.

4. Software does an rfci.

5. Hardware would execute and complete one instruction (the branch taken in this
case), and then take a critical debug interrupt with CSRR0 pointing to the target of
the branch.

6. Software would see the instruction complete interrupt type. It clears the instruction
complete event enable, then enables the branch taken interrupt event again.

7. Software does an rfci.

8. Hardware resumes on the target of the taken branch and continues until another
taken branch, in which case we end up at step 2 again.

This, at first, seems like a double tax (i.e. 2 debug interrupts for every instance of a Type
1 exception), but it doesn't seem like any other clean way to make forward progress on
Type 1 debug exceptions. The only other way to avoid the double tax is to have the
debug handler routine actually emulate the instruction pointed to for the Type 1 excep-
tions, determine the next instruction that would have been executed by the interrupted
program flow and load the CSRR0 with that address and do an rfci; this is probably not
faster.
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9.2 Internal Debug Mode

Debug events include such things as instruction and data breakpoints. These
debug events cause status bits to be set in the Debug Status Register. The exist-
ence of a set bit in the Debug Status Register is considered a Debug exception.
Debug exceptions, if enabled, will cause Debug interrupts.

There are two different mechanisms that control whether Debug interrupts are
enabled. The first is the MSRDE bit, and this bit must be set to 1 to enable Debug
interrupts. The second mechanism is an enable bit in the Debug Control Register
0 (DBCR0). This bit is the Internal Debug Mode bit (DBCR0IDM), and it must also
be set to 1 to enable Debug interrupts.

When DBCR0IDM=1, the processor is in Internal Debug Mode. In this mode, debug
events will (if also enabled by MSRDE) cause Debug interrupts. Software at the
Debug interrupt vector location will thus be given control upon the occurrence of
a debug event, and can access (via the normal instructions) all architected proces-
sor resources. In this fashion, debug monitor software can control the processor
and gather status, and interact with debugging hardware connected to the proces-
sor.

When the processor is not in Internal Debug Mode (DBCR0IDM=0), debug events
may still occur and be recorded in the Debug Status Register. These exceptions
may be monitored via software by reading the Debug Status Register (using
mfspr), or may eventually cause a Debug interrupt if later enabled by setting
DBCR0IDM=1 (and MSRDE=1). Processor behavior when debug events occur while
DBCR0IDM=0 is implementation-dependent. The remainder of this chapter dis-
cusses processor behavior with the presumption that DBCR0IDM=1.

9.3 Debug Events

Debug events are used to cause Debug exceptions to be recorded in the Debug
Status Register (see Table 9-4 on page 217). In order for a debug event to be
enabled to set a Debug Status Register bit and thereby cause a Debug exception,
the specific event type must be enabled by a corresponding bit or bits in the
Debug Control Registers (DBCR0 defined in Table 9-1, DBCR1 defined in Table 9-
2, or DBCR2 defined in Table 9-3) (in most cases; the Unconditional Debug Event
(UDE) is an exception to this rule). Once a Debug Status Register bit is set, if
Debug interrupts are enabled by MSRDE, a Debug interrupt will be generated.

Certain debug events are not allowed to occur when MSRDE=0. In such situations,
no Debug exception occurs and thus no Debug Status Register bit is set. Other
debug events may cause Debug exceptions and set Debug Status Register bits
regardless of the state of MSRDE. The associated Debug interrupts that result
from such Debug exceptions will be delayed until MSRDE=1, provided the excep-
tions have not been cleared from the Debug Status Register in the meantime.

Any time that a Debug Status Register bit is allowed to be set while MSRDE=0, a
special Debug Status Register bit, Imprecise Debug Event (DBSRIDE), will also be
set. DBSRIDE indicates that the associated Debug exception bit in the Debug Sta-
tus Register was set while Debug interrupts were disabled via the MMSRDE bit.
Debug interrupt handler software can use this bit to determine whether the
address recorded in the Critical Save/Restore Register 0 should be interpreted as
the address associated with the instruction causing the Debug exception, or sim-
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ply the address of the instruction after the one which set the MSRDE bit, thereby
enabling the delayed Debug interrupt.

Debug interrupts are ordered with respect to other interrupt types (see Section
7.8 on page 174). Debug exceptions are prioritized with respect to other excep-
tions (see Section 7.9 on page 178).

There are eight types of debug events defined:

1. Instruction Address Compare debug events
2. Data Address Compare debug events
3. Trap debug events
4. Branch Taken debug events
5. Instruction Complete debug events
6. Interrupt Taken debug events
7. Return debug events
8. Unconditional debug events

9.3.1 Instruction Address Compare Debug Event

One or more Instruction Address Compare debug events (IAC1, IAC2, IAC3 or
IAC4) occur if they are enabled and execution is attempted of an instruction at an
address that meets the criteria specified in the DBCR0, DBCR1, IAC1, IAC2, IAC3,
and IAC4 Registers.

Instruction Address Compare User/Supervisor Mode
DBCR1IAC1US specifies whether IAC1 debug events can occur in user mode or
supervisor mode, or both.

DBCR1IAC2US specifies whether IAC2 debug events can occur in user mode or
supervisor mode, or both.

DBCR1IAC3US specifies whether IAC3 debug events can occur in user mode or
supervisor mode, or both.

DBCR1IAC4US specifies whether IAC4 debug events can occur in user mode or
supervisor mode, or both.

Effective/Real Address Mode
DBCR1IAC1ER specifies whether effective addresses, real addresses, effective
addresses and MSRIS=0, or effective addresses and MSRIS=1 are used in
determining an address match on IAC1 debug events.

DBCR1IAC2ER specifies whether effective addresses, real addresses, effective
addresses and MSRIS=0, or effective addresses and MSRIS=1 are used in
determining an address match on IAC2 debug events.

DBCR1IAC3ER specifies whether effective addresses, real addresses, effective
addresses and MSRIS=0, or effective addresses and MSRIS=1 are used in
determining an address match on IAC3 debug events.

DBCR1IAC4ER specifies whether effective addresses, real addresses, effective
addresses and MSRIS=0, or effective addresses and MSRIS=1 are used in
determining an address match on IAC4 debug events.
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Instruction Address Compare Mode
DBCR1IAC12M specifies whether all or some of the bits of the address of the
instruction fetch must match the contents of the Instruction Address
Compare 1 Register or Instruction Address Compare 2 Register, whether the
address must be inside a specific range specified by the Instruction Address
Compare 1 Register and Instruction Address Compare 2 Register or outside a
specific range specified by the Instruction Address Compare 1 Register and
Instruction Address Compare 2 Register for an IAC1 or IAC2 debug event to
occur.

DBCR1IAC34M specifies whether all or some of the bits of the address of the
instruction fetch must match the contents of the IAC3 Register or IAC4
Register, whether the address must be inside a specific range specified by the
IAC3 Register and IAC4 Register or outside a specific range specified by the
IAC3 Register and IAC4 Register for an IAC3 or IAC4 debug event to occur.

There are four instruction address compare modes.

– Exact address compare mode
If the 64-bit address of the instruction fetch is equal to the value in the
enabled IAC register, an instruction address match occurs.

– Address bit match mode
For IAC1 and IAC2 debug events, if the address of the instruction fetch
access, ANDed with the contents of the Instruction Address Compare 2
Register, are equal to the contents of the Instruction Address Compare 1
Register, also ANDed with the contents of the Instruction Address
Compare 2 Register, an instruction address match occurs.

For IAC3 and IAC4 debug events, if the address of the instruction fetch,
ANDed with the contents of the Instruction Address Compare 4 Register,
are equal to the contents of the Instruction Address Compare 3 Register,
also ANDed with the contents of the Instruction Address Compare 4
Register, an instruction address match occurs.

– Inclusive address range compare mode
For IAC1 and IAC2 debug events, if the 64-bit address of the instruction
fetch is greater than or equal to the contents of the Instruction Address
Compare 1 Register and less than the contents of the Instruction Address
Compare 2 Register, an instruction address match occurs.

For IAC3 and IAC4 debug events, if the 64-bit address of the instruction
fetch is greater than or equal to the contents of the Instruction Address
Compare 3 Register and less than the contents of the Instruction Address
Compare 4 Register, an instruction address match occurs.

– Exclusive address range compare mode
For IAC1 and IAC2 debug events, if the 64-bit address of the instruction
fetch is less than the contents of the Instruction Address Compare 1
Register or greater than or equal to the contents of the Instruction Address
Compare 2 Register, an instruction address match occurs.

For IAC3 and IAC4 debug events, if the 64-bit address of the instruction
fetch is less than the contents of the Instruction Address Compare 3
Register or greater than or equal to the contents of the Instruction Address
Compare 4 Register, an instruction address match occurs.

See Table 9-1 on page 210 and Table 9-2 on page 212 for a detailed description of
DBCR0 and DBCR1 and the modes of for detecting IAC1, IAC2, IAC3 and IAC4
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debug events. Instruction Address Compare debug events can occur regardless of
the setting of MSRDE or DBCR0IDM.

When an Instruction Address Compare debug event occurs, the corresponding
DBSRIAC1, DBSRIAC2, DBSRIAC3, or DBSRIAC4 bit or bits are set to record the
debug exception. If MSRDE=0, DBSRIDE is also set to 1 to record the imprecise
debug event.

If MSRDE=1 (i.e. Debug interrupts are enabled) at the time of the Instruction
Address Compare debug exception, a Debug interrupt will occur immediately (pro-
vided there exists no higher priority exception which is enabled to cause an inter-
rupt). The execution of the instruction causing the exception will be suppressed,
and Critical Save/Restore Register 0 will be set to the address of the excepting
instruction.

If MSRDE=0 (i.e. Debug interrupts are disabled) at the time of the Instruction
Address Compare debug exception, a Debug interrupt will not occur, and the
instruction will complete execution (provided the instruction is not causing some
other exception which will generate an enabled interrupt).

Later, if the debug exception has not been reset by clearing DBSRIAC1, DBSRIAC2,
DBSRIAC3, and DBSRIAC4, and MSRDE is set to 1, a delayed Debug interrupt will
occur. In this case, Critical Save/Restore Register 0 will contain the address of the
instruction after the one which enabled the Debug interrupt by setting MSRDE to
1. Software in the Debug interrupt handler can observe DBSRIDE to determine
how to interpret the value in Critical Save/Restore Register 0.

9.3.2 Data Address Compare Debug Event

One or more Data Address Compare debug events (DAC1R, DAC1W, DAC2R,
DAC2W) occur if they are enabled, execution is attempted of a data storage access
instruction, and the type, address, and possibly even the data value of the data
storage access meet the criteria specified in the Debug Control Register 0, Debug
Control Register 2, and the DAC1, DAC2, DVC1, and DVC2 registers.

Data Address Compare Read/Write Enable
DBCR0DAC1 specifies whether DAC1R debug events can occur on read-type
data storage accesses and whether DAC1W debug events can occur on write-
type data storage accesses.

DBCR0DAC2 specifies whether DAC2R debug events can occur on read-type
data storage accesses and whether DAC2W debug events can occur on write-
type data storage accesses.

All Load instructions are considered reads with respect to debug events, while
all Store instructions are considered writes with respect to debug events. In
addition, the Cache Management instructions, and certain special cases, are
handled as follows.

– dcbt[e], dcbtst[e], icbt[e], and icbi[e] are all considered reads with respect
to debug events. Note that dcbt[e], dcbtst[e], and icbt[e] are treated as no-
operations when they report Data Storage or Data TLB Miss exceptions,
instead of being allowed to cause interrupts. However, these instructions
are allowed to cause Debug interrupts, even when they would otherwise
have been no-op’ed due to a Data Storage or Data TLB Miss exception.

– dcbz[e], dcbi[e], dcbf[e], dcba[e], and dcbst[e] are all considered writes
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with respect to debug events. Note that dcbf[e] and dcbst[e] are considered
reads with respect to Data Storage exceptions, since they do not actually
change the data at a given address. However, since the execution of these
instructions may result in write activity on the processor’s data bus, they
are treated as writes with respect to debug events.

Indexed-string instructions (lswx, stswx) for which the XER field specifies
zero bytes as the length of the string are treated as no-ops, and are not
allowed to cause Data Address Compare debug events.

Data Address Compare User/Supervisor Mode
DBCR2DAC1US specifies whether DAC1R and DAC1W debug events can occur
in user mode or supervisor mode, or both.

DBCR2DAC2US specifies whether DAC2R and DAC2W debug events can occur
in user mode or supervisor mode, or both.

Effective/Real Address Mode
DBCR2DAC1ER specifies whether effective addresses, real addresses, effective
addresses and MSRDS=0, or effective addresses and MSRDS=1 are used to in
determining an address match on DAC1R and DAC1W debug events.

DBCR2DAC2ER specifies whether effective addresses, real addresses, effective
addresses and MSRDS=0, or effective addresses and MSRDS=1 are used to in
determining an address match on DAC2R and DAC2W debug events.

Data Address Compare Mode
DBCR2DAC12M specifies whether all or some of the bits of the address of the
data storage access must match the contents of the Data Address Compare 1
Register or Data Address Compare 2 Register, whether the address must be
inside a specific range specified by the Data Address Compare 1 Register and
Data Address Compare 2 Register or outside a specific range specified by the
Data Address Compare 1 Register and Data Address Compare 2 Register for a
DAC1R, DAC1W, DAC2R or DAC2W debug event to occur.

There are four data address compare modes.

– Exact address compare mode
If the 64-bit address of the data storage access is equal to the value in the
enabled Data Address Compare register, a data address match occurs.

– Address bit match mode
If the address of the data storage access, ANDed with the contents of the
Data Address Compare 2 Register, are equal to the contents of the Data
Address Compare 1 Register, also ANDed with the contents of the Data
Address Compare 2 Register, a data address match occurs.

– Inclusive address range compare mode
If the 64-bit address of the data storage access is greater than or equal to
the contents of the Data Address Compare 1 Register and less than the
contents of the Data Address Compare 2 Register, a data address match
occurs.

Engineering Note
dcba[e], dcbt[e], dcbtst[e], and icbt[e] may cause a Data Address Compare debug
event even when they are otherwise being no-op’ed due to causing a Data Storage or
Data TLB Miss exception. However, signalling a Debug exception is not required in
these cases.
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– Exclusive address range compare mode
If the 64-bit address of the data storage access is less than the contents of
the Data Address Compare 1 Register or greater than or equal to the
contents of the Data Address Compare 2 Register, a data address match
occurs.

Data Value Compare Mode
DBCR2DVC1M and DBCR2DVC1BE specify whether and how the data value
being accessed by the storage access must match the contents of the Data
Value Compare 1 Register for a DAC1R or DAC1W debug event to occur.

DBCR2DVC2M and DBCR2DVC2BE specify whether and how the data value
being accessed by the storage access must match the contents of the Data
Value Compare 2 Register for a DAC2R or DAC2W debug event to occur.

See Table 9-1 on page 210 and Table 9-3 on page 215 for a detailed description of
DBCR0 and DBCR2 and the modes for detecting Data Address Compare debug
events. Data Address Compare debug events can occur regardless of the setting of
MSRDE or DBCR0IDM.

When an Data Address Compare debug event occurs, the corresponding
DBSRDAC1R, DBSRDAC1W, DBSRDAC2R, or DBSRDAC2W bit or bits are set to 1 to
record the debug exception. If MSRDE=0, DBSRIDE is also set to 1 to record the
imprecise debug event.

If MSRDE=1 (i.e. Debug interrupts are enabled) at the time of the Data Address
Compare debug exception, a Debug interrupt will occur immediately (provided
there exists no higher priority exception which is enabled to cause an interrupt),
the execution of the instruction causing the exception will be suppressed, and
Critical Save/Restore Register 0 will be set to the address of the excepting instruc-
tion. Depending on the type of instruction and/or the alignment of the data
access, the instruction causing the exception may have been partially executed
(see Section 7.7 on page 173).

If MSRDE=0 (i.e. Debug interrupts are disabled) at the time of the Data Address
Compare debug exception, a Debug interrupt will not occur, and the instruction
will complete execution (provided the instruction is not causing some other excep-
tion which will generate an enabled interrupt). Also, DBSRIDE is set to indicate
that the debug exception occurred while Debug interrupts were disabled by
MSRDE=0.

Later, if the debug exception has not been reset by clearing DBSRDAC1R,
DBSRDAC1W, DBSRDAC2R, DBSRDAC2W, and MSRDE is set to 1, a delayed Debug
interrupt will occur. In this case, Critical Save/Restore Register 0 will contain the
address of the instruction after the one which enabled the Debug interrupt by set-
ting MSRDE to 1. Software in the Debug interrupt handler can observe DBSRIDE to
determine how to interpret the value in Critical Save/Restore Register 0.

9.3.3 Trap Debug Event

A Trap debug event (TRAP) occurs if DBCR0TRAP=1 (i.e. Trap debug events are
enabled) and a Trap instruction (tw, twi, td, tdi) is executed and the conditions
specified by the instruction for the trap are met. The event can occur regardless of
the setting of MSRDE or DBCR0IDM.

When a Trap debug event occurs, DBSRTR is set to 1 to record the debug excep-
tion. If MSRDE=0, DBSRIDE is also set to 1 to record the imprecise debug event.
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If MSRDE=1 (i.e. Debug interrupts are enabled) at the time of the Trap debug
exception, a Debug interrupt will occur immediately (provided there exists no
higher priority exception which is enabled to cause an interrupt), and CSRR0 will
be set to the address of the excepting instruction.

If MSRDE=0 (i.e. Debug interrupts are disabled) at the time of the Trap debug
exception, a Debug interrupt will not occur, and a Trap exception type Program
interrupt will occur instead if the trap condition is met.

Later, if the debug exception has not been reset by clearing DBSRTR, and MSRDE
is set to 1, a delayed Debug interrupt will occur. In this case, Critical Save/
Restore Register 0 will contain the address of the instruction after the one which
enabled the Debug interrupt by setting MSRDE to 1. Software in the debug inter-
rupt handler can observe DBSRIDE to determine how to interpret the value in Crit-
ical Save/Restore Register 0.

9.3.4 Branch Taken Debug Event

A Branch Taken debug event (BRT) occurs if DBCR0BRT=1 (i.e. Branch Taken
Debug events are enabled), execution is attempted of a branch instruction whose
direction will be taken (that is, either an unconditional branch, or a conditional
branch whose branch condition is met), and MSRDE=1.

Branch Taken debug events are not recognized if MSRDE=0 at the time of the exe-
cution of the branch instruction and thus DBSRIDE can not be set by a Branch
Taken debug event. This is because branch instructions occur very frequently.
Allowing these common events to be recorded as exceptions in the DBSR while
debug interrupts are disabled via MSRDE would result in an inordinate number of
imprecise Debug interrupts.

When a Branch Taken debug event occurs, the DBSRBRT bit is set to 1 to record
the debug exception and a Debug interrupt will occur immediately (provided there
exists no higher priority exception which is enabled to cause an interrupt). The
execution of the instruction causing the exception will be suppressed, and Critical
Save/Restore Register 0 will be set to the address of the excepting instruction.

9.3.5 Instruction Complete Debug Event

An Instruction Complete debug event (ICMP) occurs if DBCR0ICMP=1 (i.e. Instruc-
tion Complete debug events are enabled), execution of any instruction is com-
pleted, and MSRDE=1. Note that if execution of an instruction is suppressed due
to the instruction causing some other exception which is enabled to generate an
interrupt, then the attempted execution of that instruction does not cause an
Instruction Complete debug event. The sc instruction does not fall into the cate-
gory of an instruction whose execution is suppressed, since the instruction actu-
ally completes execution and then generates a System Call interrupt. In this case,
the Instruction Complete debug exception will also be set.

Instruction Complete debug events are not recognized if MSRDE=0 at the time of
the execution of the instruction, DBSRIDE can not be set by an ICMP debug event.
This is because allowing the common event of Instruction Completion to be
recorded as an exception in the DBSR while Debug interrupts are disabled via
MSRDE would mean that the Debug interrupt handler software would receive an
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inordinate number of imprecise Debug interrupts every time Debug interrupts
were re-enabled via MSRDE.

When an Instruction Complete debug event occurs, DBSRICMP is set to 1 to record
the debug exception, a Debug interrupt will occur immediately (provided there
exists no higher priority exception which is enabled to cause an interrupt), and
Critical Save/Restore Register 0 will be set to the address of the instruction after
the one causing the Instruction Complete debug exception.

9.3.6 Interrupt Taken Debug Event

An Interrupt Taken debug event (IRPT) occurs if DBCR0IRPT=1 (i.e. Interrupt
Taken debug events are enabled) and a non-critical interrupt occurs. Interrupt
Taken debug events can occur regardless of the setting of MSRDE.

Only non-critical class interrupts can cause an Interrupt Taken debug event
because all critical interrupts automatically clear MSRDE, and thus would always
prevent the associated Debug interrupt from occurring precisely. Also, Debug
interrupts themselves are critical class interrupts, and thus any Debug interrupt
(for any other debug event) would always end up setting the additional exception
of DBSRIRPT upon entry to the Debug interrupt handler. At this point, the Debug
interrupt handler would be unable to determine whether or not the Interrupt
Taken debug event was related to the original debug event.

When an Interrupt Taken debug event occurs, DBSRIRPT is set to 1 to record the
debug exception. If MSRDE=0, DBSRIDE is also set to 1 to record the imprecise
debug event.

If MSRDE=1 (i.e. Debug interrupts are enabled) at the time of the Interrupt Taken
debug event, a Debug interrupt will occur immediately (provided there exists no
higher priority exception which is enabled to cause an interrupt), and Critical
Save/Restore Register 0 will be set to the address of the non-critical interrupt vec-
tor which caused the Interrupt Taken debug event. No instructions at the non-
critical interrupt handler will have been executed.

If MSRDE=0 (i.e. Debug interrupts are disabled) at the time of the Interrupt Taken
debug event, a Debug interrupt will not occur, and the handler for the interrupt
which caused the Interrupt Taken debug event will be allowed to execute.

Later, if the debug exception has not been reset by clearing DBSRIRPT, and MSRDE
is set to 1, a delayed Debug interrupt will occur. In this case, CSRR0 will contain
the address of the instruction after the one which enabled the Debug interrupt by
setting MSRDE to 1. Software in the Debug interrupt handler can observe the
DBSRIDE bit to determine how to interpret the value in Critical Save/Restore Reg-
ister 0.

9.3.7 Return Debug Event

A Return debug event (RET) occurs if DBCR0RET=1 and an attempt is made to
execute an rfi. Return debug events can occur regardless of the setting of MSRDE.

When a Return debug event occurs, DBSRRET is set to 1 to record the debug
exception. If MSRDE=0, DBSRIDE is also set to 1 to record the imprecise debug
event.
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If MSRDE=1 at the time of the Return Debug event, a Debug interrupt will occur
immediately, and Critical Save/Restore Register 0 will be set to the address of the
rfi.

If MSRDE=0 at the time of the Return Debug event, a Debug interrupt will not
occur.

Later, if the Debug exception has not been reset by clearing DBSRRET, and MSRDE
is set to 1, a delayed imprecise Debug interrupt will occur. In this case, Critical
Save/Restore Register 0 will contain the address of the instruction after the one
which enabled the Debug interrupt by setting MSRDE to 1. An imprecise Debug
interrupt can be caused by executing an rfi when DBCR0RET=1 and MSRDE=0,
and the execution of that rfi happens to cause MSRDE to be set to 1. Software in
the Debug interrupt handler can observe the DBSRIDE bit to determine how to
interpret the value in Critical Save/Restore Register 0.

9.3.8 Unconditional Debug Event

An Unconditional debug event (UDE) occurs when the Unconditional Debug Event
(UDE) signal is activated by the debug mechanism. The exact definition of the
UDE signal and how it is activated is implementation-dependent (see the User’s
Manual for the implementation for more details). The Unconditional debug event
is the only debug event which does not have a corresponding enable bit for the
event in DBCR0 (hence the name of the event). The Unconditional debug event
can occur regardless of the setting of MSRDE.

When an Unconditional debug event occurs, the DBSRUDE bit is set to 1 to record
the Debug exception. If MSRDE=0, DBSRIDE is also set to 1 to record the imprecise
debug event.

If MSRDE=1 (i.e. Debug interrupts are enabled) at the time of the Unconditional
Debug exception, a Debug interrupt will occur immediately (provided there exists
no higher priority exception which is enabled to cause an interrupt), and Critical
Save/Restore Register 0 will be set to the address of the instruction which would
have executed next had the interrupt not occurred.

If MSRDE=0 (i.e. Debug interrupts are disabled) at the time of the Unconditional
Debug exception, a Debug interrupt will not occur.

Later, if the Unconditional Debug exception has not been reset by clearing
DBSRUDE, and MSRDE is set to 1, a delayed Debug interrupt will occur. In this
case, CSRR0 will contain the address of the instruction after the one which
enabled the Debug interrupt by setting MSRDE to 1. Software in the Debug inter-
rupt handler can observe DBSRIDE to determine how to interpret the value in Crit-
ical Save/Restore Register 0.
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9.4 Debug Registers

This section describes debug-related registers that are accessible to software run-
ning on the processor. These registers are intended for use by special debug tools
and debug software, and not by general application or operating system code.

9.4.1 Debug Control Registers

Debug Control Register 0 (DBCR0), Debug Control Register 1 (DBCR1), and
Debug Control Register 2 (DBCR2) are each 32-bit registers. Bits of Debug Control
Register 0, Debug Control Register 1, and Debug Control Register 2 are numbered
32 (most-significant bit) to 63 (least-significant bit). Debug Control Register 0,
Debug Control Register 1, and Debug Control Register 2 are used to enable debug
events, reset the processor, control timer operation during debug events, and set
the debug mode of the processor.

9.4.1.1 Debug Control Register 0

The contents of the Debug Control Register 0 can be read into bits 32:63 a Gen-
eral Purpose Register using mfspr RT,DBCR0, setting bits 0:31 of GPR(RT) to 0.
The contents of bits 32:63 of a General Purpose Register can be written to the
Debug Control Register 0 using mtspr DBCR0,RS. Table 9-1 provides bit defini-
tions for Debug Control Register 0.

Table 9-1. Debug Control Register 0 Definition

Bit(s) Description

32 Allocated for implementation-dependent use. See the User’s Manual for the imple-
mentation for details.

33 Internal Debug Mode (IDM)

=0 Debug interrupts are disabled.

=1 If MSRDE=1, then the occurrence of a debug event or the recording of an
earlier debug event in the Debug Status Register when MSRDE=0 or
DBCR0IDM=0 will cause a Debug interrupt.

Programming Note
Software must clear debug event status in the Debug Status Register in the Debug
interrupt handler when a Debug interrupt is taken before re-enabling interrupts
via MSRDE. Otherwise, redundant Debug interrupts will be taken for the same de-
bug event.

34:35 Reset (RST)

=00 No action

=01 See the User’s Manual for the implementation for details.

=10 See the User’s Manual for the implementation for details.

=11 See the User’s Manual for the implementation for details.

Warning
Writing 0b01, 0b10, or 0b11 to these bits may cause a processor reset to occur.

36 Instruction Completion Debug Event (ICMP)

=0 ICMP debug events are disabled

=1 ICMP debug events are enabled

Note
Instruction Completion will not cause an ICMP debug event if MSRDE=0.
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37 Branch Taken Debug Event Enable (BRT)

=0 BRT debug events are disabled

=1 BRT debug events are enabled

Note
Taken branches will not cause a BRT debug event if MSRDE=0.

38 Interrupt Taken Debug Event Enable (IRPT)

=0 IRPT debug events are disabled

=1 IRPT debug events are enabled

Note
Critical interrupts will not cause an IRPT debug event if MSRDE=0.

39 Trap Debug Event Enable (TRAP)

=0 TRAP debug events cannot occur

=1 TRAP debug events can occur

40 Instruction Address Compare 1 Debug Event Enable (IAC1)

=0 IAC1 debug events cannot occur

=1 IAC1 debug events can occur

41 Instruction Address Compare 2 Debug Event Enable (IAC2)

=0 IAC2 debug events cannot occur

=1 IAC2 debug events can occur

42 Instruction Address Compare 3 Debug Event Enable (IAC3)

=0 IAC3 debug events cannot occur

=1 IAC3 debug events can occur

43 Instruction Address Compare 4 Debug Event Enable (IAC4)

=0 IAC4 debug events cannot occur

=1 IAC4 debug events can occur

44:45 Data Address Compare 1 Debug Event Enable (DAC1)

=00 DAC1 debug events cannot occur

=01 DAC1 debug events can occur only if a store-type data storage access

=10 DAC1 debug events can occur only if a load-type data storage access

=11 DAC1 debug events can occur on any data storage access

46:47 Data Address Compare 2 Debug Event Enable (DAC2)

=00 DAC2 debug events cannot occur

=01 DAC2 debug events can occur only if a store-type data storage access

=10 DAC2 debug events can occur only if a load-type data storage access

=11 DAC2 debug events can occur on any data storage access

48 Return Debug Event Enable (RET)

=0 RET debug events cannot occur

=1 RET debug events can occur

Note
Return From Critical Interrupt will not cause an RET debug event if MSRDE=0.

49:62 Reserved

63 Freeze Timers on Debug Event (FT)

=0 Enable clocking of timers

=1 Disable clocking of timers if any DBSR bit is set (except MRR)

Bit(s) Description
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9.4.1.2 Debug Control Register 1

The contents of the Debug Control Register 1 can be read into bits 32:63 a Gen-
eral Purpose Register using mfspr RT,DBCR1, setting bits 0:31 of GPR(RT) to 0.
The contents of bits 32:63 of a General Purpose Register can be written to the
Debug Control Register 1 using mtspr DBCR1,RS. Table 9-2 provides bit defini-
tions for the Debug Control Register 1.

Table 9-2. Debug Control Register 1 Definition

Bit(s) Description

32:33 Instruction Address Compare 1 User/Supervisor Mode (IAC1US)

=00 IAC1 debug events can occur

=01 Reserved

=10 IAC1 debug events can occur only if MSRPR=0

=11 IAC1 debug events can occur only if MSRPR=1

34:35 Instruction Address Compare 1 Effective/Real Mode (IAC1ER)

=00 IAC1 debug events are based on effective addresses

=01 IAC1 debug events are based on real addresses

=10 IAC1 debug events are based on effective addresses and can occur only if
MSRIS=0

=11 IAC1 debug events are based on effective addresses and can occur only if
MSRIS=1

36:37 Instruction Address Compare 2 User/Supervisor Mode (IAC2US)

=00 IAC2 debug events can occur

=01 Reserved

=10 IAC2 debug events can occur only if MSRPR=0

=11 IAC2 debug events can occur only if MSRPR=1

38:39 Instruction Address Compare 2 Effective/Real Mode (IAC2ER)

=00 IAC2 debug events are based on effective addresses

=01 IAC2 debug events are based on real addresses

=10 IAC2 debug events are based on effective addresses and can occur only if
MSRIS=0

=11 IAC2 debug events are based on effective addresses and can occur only if
MSRIS=1

40:41 Instruction Address Compare 1/2 Mode (IAC12M)

=00 Exact address compare

• IAC1 debug events can occur only if the address of the instruction fetch
is equal to the value specified in IAC1.

• IAC2 debug events can occur only if the address of the instruction fetch
is equal to the value specified in IAC2.

=01 Address bit match

• IAC1 and IAC2 debug events can occur only if the address of the instruc-
tion fetch, ANDed with the contents of IAC2 are equal to the contents of
IAC1, also ANDed with the contents of IAC2.

• If IAC1US≠IAC2US or IAC1ER≠IAC2ER, results are boundedly unde-
fined.

=10 Inclusive address range compare

• IAC1 and IAC2 debug events can occur only if the address of the instruc-
tion fetch is greater than or equal to the value specified in IAC1 and less
than the value specified in IAC2.

• If IAC1US≠IAC2US or IAC1ER≠IAC2ER, results are boundedly unde-
fined.
212 Book E: Enhanced PowerPC Architecture Version 1.0 07 May 02



40:41 =11 Exclusive address range compare

• IAC1 and IAC2 debug events can occur only if the address of the instruc-
tion fetch is less than the value specified in IAC1 or is greater than or
equal to the value specified in IAC2.

• If IAC1US≠IAC2US or IAC1ER≠IAC2ER, results are boundedly unde-
fined.

42:47 Reserved

48:49 Instruction Address Compare 3 User/Supervisor Mode (IAC3US)

=00 IAC3 debug events can occur

=01 Reserved

=10 IAC3 debug events can occur only if MSRPR=0

=11 IAC3 debug events can occur only if MSRPR=1

50:51 Instruction Address Compare 3 Effective/Real Mode (IAC3ER)

=00 IAC3 debug events are based on effective addresses

=01 IAC3 debug events are based on real addresses

=10 IAC3 debug events are based on effective addresses and can occur only if
MSRIS=0

=11 IAC3 debug events are based on effective addresses and can occur only if
MSRIS=1

52:53 Instruction Address Compare 4 User/Supervisor Mode (IAC4US)

=00 IAC4 debug events can occur

=01 Reserved

=10 IAC4 debug events can occur only if MSRPR=0

=11 IAC4 debug events can occur only if MSRPR=1

54:55 Instruction Address Compare 4 Effective/Real Mode (IAC4ER)

=00 IAC4 debug events are based on effective addresses

=01 IAC4 debug events are based on real addresses

=10 IAC4 debug events are based on effective addresses and can occur only if
MSRIS=0

=11 IAC4 debug events are based on effective addresses and can occur only if
MSRIS=1

Bit(s) Description
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56:57 Instruction Address Compare 3/4 Mode (IAC34M)

=00 Exact address compare

• IAC3 debug events can occur only if the address of the instruction fetch
is equal to the value specified in IAC3.

• IAC4 debug events can occur only if the address of the instruction fetch
is equal to the value specified in IAC4.

=01 Address bit match

• IAC3 and IAC4 debug events can occur only if the address of the data
storage access, ANDed with the contents of IAC4 are equal to the con-
tents of IAC3, also ANDed with the contents of IAC4.

• If IAC3US≠IAC4US or IAC3ER≠IAC4ER, results are boundedly unde-
fined.

=10 Inclusive address range compare

• IAC3 and IAC4 debug events can occur only if the address of the instruc-
tion fetch is greater than or equal to the value specified in IAC3 and less
than the value specified in IAC4.

• If IAC3US≠IAC4US or IAC3ER≠IAC4ER, results are boundedly unde-
fined.

=11 Exclusive address range compare

• IAC3 and IAC4 debug events can occur only if the address of the instruc-
tion fetch is less than the value specified in IAC3 or is greater than or
equal to the value specified in IAC4.

• If IAC3US≠IAC4US or IAC3ER≠IAC4ER, results are boundedly unde-
fined.

58:63 Reserved

Bit(s) Description
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9.4.1.3 Debug Control Register 2

The contents of the Debug Control Register 2 can be read into bits 32:63 a Gen-
eral Purpose Register using mfspr RT,DBCR2, setting bits 0:31 of GPR(RT) to 0.
The contents of bits 32:63 of a General Purpose Register can be written to the
Debug Control Register 2 using mtspr DBCR2,RS. Table 9-3 provides bit defini-
tions for the Debug Control Register 2.

Table 9-3. Debug Control Register 2 Definition

Bit(s) Description

32:33 Data Address Compare 1 User/Supervisor Mode (DAC1US)

=00 DAC1 debug events can occur

=01 Reserved

=10 DAC1 debug events can occur only if MSRPR=0

=11 DAC1 debug events can occur only if MSRPR=1

34:35 Data Address Compare 1 Effective/Real Mode (DAC1ER)

=00 DAC1 debug events are based on effective addresses

=01 DAC1 debug events are based on real addresses

=10 DAC1 debug events are based on effective addresses and can occur only if
MSRDS=0

=11 DAC1 debug events are based on effective addresses and can occur only if
MSRDS=1

36:37 Data Address Compare 2 User/Supervisor Mode (DAC2US)

=00 DAC2 debug events can occur

=01 Reserved

=10 DAC2 debug events can occur only if MSRPR=0

=11 DAC2 debug events can occur only if MSRPR=1

38:39 Data Address Compare 2 Effective/Real Mode (DAC2ER)

=00 DAC2 debug events are based on effective addresses

=01 DAC2 debug events are based on real addresses

=10 DAC2 debug events are based on effective addresses and can occur only if
MSRDS=0

=11 DAC2 debug events are based on effective addresses and can occur only if
MSRDS=1

40:41 Data Address Compare 1/2 Mode (DAC12M)

=00 Exact address compare

• DAC1 debug events can occur only if the address of the data storage ac-
cess is equal to the value specified in DAC1.

• DAC2 debug events can occur only if the address of the data storage ac-
cess is equal to the value specified in DAC2.

=01 Address bit match

• DAC1 and DAC2 debug events can occur only if the address of the data
storage access, ANDed with the contents of DAC2 are equal to the con-
tents of DAC1, also ANDed with the contents of DAC2.

• If DAC1US≠DAC2US or DAC1ER≠DAC2ER, results are boundedly unde-
fined.

=10 Inclusive address range compare

• DAC1 and DAC2 debug events can occur only if the address of the data
storage access is greater than or equal to the value specified in DAC1 and
less than the value specified in DAC2.

• If DAC1US≠DAC2US or DAC1ER≠DAC2ER, results are boundedly unde-
fined.
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40:41 =11 Exclusive address range compare

• DAC1 and DAC2 debug events can occur only if the address of the data
storage access is less than the value specified in DAC1 or is greater than
or equal to the value specified in DAC2.

• If DAC1US≠DAC2US or DAC1ER≠DAC2ER, results are boundedly unde-
fined.

42:43 Reserved

44:45 Data Value Compare 1 Mode (DVC1M)

=00 DAC1 debug events can occur

=01 DAC1 debug events can occur only when all bytes specified in
DBCR2DVC1BE in the data value of the data storage access match their
corresponding bytes in DVC1

=10 DAC1 debug events can occur only when at least one of the bytes specified
in DBCR2DVC1BE in the data value of the data storage access matches its
corresponding byte in DVC1

=11 DAC1 debug events can occur only when all bytes specified in
DBCR2DVC1BE within at least one of the halfwords of the data value of the
data storage access matches their corresponding bytes in DVC1

46:47 Data Value Compare 2 Mode (DVC2M)

=00 DAC2 debug events can occur

=01 DAC2 debug events can occur only when all bytes specified in
DBCR2DVC2BE in the data value of the data storage access match their
corresponding bytes in DVC2

=10 DAC2 debug events can occur only when at least one of the bytes specified
in DBCR2DVC2BE in the data value of the data storage access matches its
corresponding byte in DVC2

=11 DAC2 debug events can occur only when all bytes specified in
DBCR2DVC2BE within at least one of the halfwords of the data value of the
data storage access matches their corresponding bytes in DVC2

48:55 Data Value Compare 1 Byte Enables (DVC1BE)
Specifies which bytes in the aligned data value being read or written by the storage
access are compared to the corresponding bytes in DVC1.

56:63 Data Value Compare 2 Byte Enables (DVC2BE)
Specifies which bytes in the aligned data value being read or written by the storage
access are compared to the corresponding bytes in DVC2

Bit(s) Description
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9.4.2 Debug Status Register

The Debug Status Register (DBSR) is a 32-bit register and contains status on
debug events and the most recent processor reset. Table 9-4 provides bit defini-
tions for the Debug Status Register.

The Debug Status Register is set via hardware, and read and cleared via software.
The contents of the Debug Status Register can be read into bits 32:63 of a General
Purpose Register using mfspr RT,DBSR, setting bits 0:31 of GPR(RT) to zero. Bits
in the Debug Status Register can be cleared using mtspr DBSR,RS. Clearing is
done by writing bits 32:63 of a General Purpose Register to the Debug Status Reg-
ister with a 1 in any bit position that is to be cleared and 0 in all other bit posi-
tions. The write-data to the Debug Status Register is not direct data, and
DBCR0IAC1=1but a mask. A 1 causes the bit to be cleared, and a 0 has no effect.

Table 9-4. Debug Status Register Definition

Bit(s) Description

32 Imprecise Debug Event (IDE)
Set to 1 if MSRDE=0 and a debug event causes its respective Debug Status Register
bit to be set to 1.

33 Unconditional Debug Event (UDE)
Set to 1 if an Unconditional debug event occurred. See Section 9.3.8 on page 209.

34:35 Most Recent Reset (MRR)
Set to one of three values when a reset occurs. These two bits are undefined at
power-up.

=00 No reset occurred since these bits last cleared by software

=01 Implementation-dependent reset information

=10 Implementation-dependent reset information

=11 Implementation-dependent reset information

Note
See the User’s Manual for the implementation for further details.

36 Instruction Complete Debug Event (ICMP)
Set to 1 if an Instruction Completion debug event occurred and DBCR0ICMP=1.
See Section 9.3.5 on page 207.

37 Branch Taken Debug Event (BRT)
Set to 1 if a Branch Taken debug event occurred and DBCR0BRT=1.
See Section 9.3.4 on page 207.

38 Interrupt Taken Debug Event (IRPT)
Set to 1 if an Interrupt Taken debug event occurred and DBCR0IRPT=1.
See Section 9.3.6 on page 208.

39 Trap Instruction Debug Event (TRAP)
Set to 1 if a Trap Instruction debug event occurred and DBCR0TRAP=1.
See Section 9.3.3 on page 206.

40 Instruction Address Compare 1 Debug Event (IAC1)
Set to 1 if an IAC1 debug event occurred and DBCR0IAC1=1. See Section 9.3.1 on
page 202.

41 Instruction Address Compare 2 Debug Event (IAC2)
Set to 1 if an IAC2 debug event occurred and DBCR0IAC2=1. See Section 9.3.1 on
page 202.

42 Instruction Address Compare 3 Debug Event (IAC3)
Set to 1 if an IAC3 debug event occurred and DBCR0IAC3=1. See Section 9.3.1 on
page 202.

43 Instruction Address Compare 4 Debug Event (IAC4)
Set to 1 if an IAC4 debug event occurred and DBCR0IAC4=1. See Section 9.3.1 on
page 202.

44 Data Address Compare 1 Read Debug Event (DAC1R)
Set to 1 if a read-type DAC1 debug event occurred and DBCR0DAC1=0b10 or
DBCR0DAC1=0b11. See Section 9.3.2 on page 204.
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9.4.3 Instruction Address Compare Registers

The Instruction Address Compare 1 Register (IAC1), Instruction Address Compare
2 Register (IAC2), Instruction Address Compare 3 Register (IAC3), and Instruction
Address Compare 4 Register (IAC4) are each 64-bits, with bits 62:63 being
reserved.

A debug event may be enabled to occur upon an attempt to execute an instruction
from an address specified in either Instruction Address Compare 1 Register,
Instruction Address Compare 2 Register, Instruction Address Compare 3 Register,
or Instruction Address Compare 4 Register, inside or outside a range specified by
Instruction Address Compare 1 Register and Instruction Address Compare 2 Reg-
ister or, inside or outside a range specified by Instruction Address Compare 3 Reg-
ister and Instruction Address Compare 4 Register, or to blocks of addresses
specified by the combination of the Instruction Address Compare 1 Register and
Instruction Address Compare 2 Register, or to blocks of addresses specified by the
combination of the Instruction Address Compare 3 Register and Instruction
Address Compare 4 Register. Since all instruction addresses are required to be
word-aligned, the two low-order bits of the Instruction Address Compare Registers
are reserved and do not participate in the comparison to the instruction address.
See Section 9.3.1 on page 202.

The contents of the Instruction Address Compare i Register (where i={1,2,3, or 4})
can be read into a General Purpose Register using mfspr RT,IACi. The contents of
a General Purpose Register can be written to the Instruction Address Compare i
Register using mtspr IACi,RS.

9.4.4 Data Address Compare Registers

The Data Address Compare 1 Register (DAC1) and Data Address Compare 2 Reg-
ister (DAC2) are each 64-bits.

A debug event may be enabled to occur upon loads, stores, or cache operations to
an address specified in either the Data Address Compare 1 Register or Data
Address Compare 2 Register, inside or outside a range specified by the Data
Address Compare 1 Register and Data Address Compare 2 Register, or to blocks
of addresses specified by the combination of the Data Address Compare 1 Register
and Data Address Compare 1 Register. See Section 9.3.2 on page 204.

45 Data Address Compare 1 Write Debug Event (DAC1W)
Set to 1 if a write-type DAC1 debug event occurred and DBCR0DAC1=0b01 or
DBCR0DAC1=0b11. See Section 9.3.2 on page 204.

46 Data Address Compare 2 Read Debug Event (DAC2R)
Set to 1 if a read-type DAC2 debug event occurred and DBCR0DAC2=0b10 or
DBCR0DAC2=0b11. See Section 9.3.2 on page 204.

47 Data Address Compare 2 Write Debug Event (DAC2W)
Set to 1 if a write-type DAC2 debug event occurred and DBCR0DAC2=0b01 or
DBCR0DAC2=0b11. See Section 9.3.2 on page 204.

48 Return Debug Event (RET)
Set to 1 if a Return debug event occurred and DBCR0RET=1. See Section 9.3.7 on
page 208.

49:63 Reserved

Bit(s) Description
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The contents of the Data Address Compare i Register (where i={1 or 2}) can be read
into a General Purpose Register using mfspr RT,DACi. The contents of a General
Purpose Register can be written to the Data Address Compare i Register using
mtspr DACi,RS.

The contents of the Data Address Compare 1 Register or Data Address Compare 2
Register are compared to the address generated by a data storage access instruc-
tion.

9.4.5 Data Value Compare Registers

The Data Value Compare 1 Register (DVC1) and Data Value Compare 2 Register
(DVC2) are each 64-bits.

A DAC1R, DAC1W, DAC2R, or DAC2W debug event may be enabled to occur upon
loads or stores of a specific data value specified in either or both of the Data Value
Compare 1 Register and Data Value Compare 2 Register. DBCR2DVC1M and
DBCR2DVC1BE control how the contents of the Data Value Compare 1 Register is
compared with the value and DBCR2DVC2M and DBCR2DVC2BE control how the
contents of the Data Value Compare 2 Register is compared with the value. See
Section 9.3.2 on page 204 and Table 9-3 on page 215 for a detailed description of
the modes provided.

The contents of the Data Value Compare i Register (where i={1 or 2}) can be read
into a General Purpose Register using mfspr RT,DVCi. The contents of a General
Purpose Register can be written to the Data Value Compare i Register using mtspr
DVCi,RS.
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Chapter 10 Reset and Initialization

This chapter describes the requirements for Book E processor reset. This includes
both the means of causing reset, and the specific initialization that is required to
be performed automatically by the processor hardware. This chapter also provides
an overview of the operations that should be performed by initialization software,
in order to fully initialize the processor.

In general, the specific actions taken by a processor upon reset are implementa-
tion dependent, and are described in the User’s Manual for the implementation.
Also, it is the responsibility of system initialization software to initialize the major-
ity of processor and system resources after reset. Implementations are required to
provide a minimum processor initialization such that this system software may be
fetched and executed, thereby accomplishing the rest of system initialization.

10.1 Reset Mechanisms

This specification defines two processor mechanisms for internally invoking a
reset operation using either the Watchdog Timer (see Section 8.7 on page 196) or
the Debug facilities using DBCR0RST (see Figure 9-1 on page 210). In addition,
implementations will typically provide additional means for invoking a reset oper-
ation, via an external mechanism such as a signal pin which when activated will
cause the processor to reset.

10.2 Processor State After Reset

The initial processor state is controlled by the register contents after reset. In gen-
eral, the contents of most registers are undefined after reset.

The processor hardware is only guaranteed to initialize those registers (or specific
bits in registers) which must be initialized in order for software to be able to reli-
ably perform the rest of system initialization.
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The Machine State Register and Processor Version Register and a TLB entry are
updated as follows:

Machine State Register

Processor Version Register
Implementation-Dependent. (This register is read-only, and contains a
value which identifies the specific implementation)

TLB entry
A TLB entry (which entry is implementation-dependent) is initialized in an
implementation-dependent manner that maps the last 4KB page in the
implemented storage address space, with the following field settings:

Instruction execution begins at address 2M+12 - 4, where M is the size of the
implemented TLB RPN field and is implementation-dependent. Note that this
address is different from the PowerPC Architecture System Reset interrupt vector.

Bit Setting Comments

WE 0 Wait State disabled

CE 0 Critical Input interrupts disabled

DE 0 Debug interrupts disabled

EE 0 External Input interrupts disabled

PR 0 User mode

FP 0 FP unavailable

ME 0 Machine Check interrupts disabled

FE0 0 FP exception type Program interrupts disabled

FE1 0 FP exception type Program interrupts disabled

IS 0 Instruction Address Space 0

DS 0 Data Address Space 0

Field Setting Comments

EPN 2N-4 N is the size of the implemented TLB EPN field

RPN 2M-4 M is the size of the implemented TLB RPN field

TS 0 translation address space 0

SIZE 0b0001 4KB page size

W ? implementation-dependent value

I ? implementation-dependent value

M ? implementation-dependent value

G ? implementation-dependent value

E ? implementation-dependent value

U0 ? implementation-dependent value

U1 ? implementation-dependent value

U2 ? implementation-dependent value

U3 ? implementation-dependent value

TID ? implementation-dependent value, but page must be accessible

Engineering Note
A non-0 value may require the PID Register also be initialized
to the same value to provide accessibility.

UX ? implementation-dependent value

UR ? implementation-dependent value

UW ? implementation-dependent value

SX 1 page is execute accessible in supervisor mode

SR 1 page is read accessible in supervisor mode

SW 1 page is write accessible in supervisor mode
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10.3 Software Initialization Requirements

When reset occurs, the processor is initialized to a minimum configuration to
start executing initialization code. Initialization code is necessary to complete the
processor and system configuration. The initialization code described in this sec-
tion is the minimum recommended for configuring the processor to run applica-
tion code.

Initialization code should configure the following processor resources:

• Invalidate the instruction cache and data cache (implementation-dependent).

• Initialize system memory as required by the operating system or application
code.

• Initialize processor registers as needed by the system.

• Initialize off-chip system facilities.

• Dispatch the operating system or application code.
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Chapter 11 Synchronization Requirements

This section discusses synchronization requirements for special registers and
translation lookaside buffers. Changing the value in certain system registers and
invalidating TLB entries can have the side effect of altering the context in which
data addresses and instruction addresses are interpreted, and in which instruc-
tions are executed. For example, changing MSRIS=0 to MSRIS=1 has the side effect
of changing address space. These side effects need not occur in program order
(program order refers to the execution of instructions in the strict order in which
they occur in the program), and therefore may require explicit synchronization by
software.

An instruction that alters the context in which data addresses or instruction
addresses are interpreted, or in which instructions are executed, is called a “con-
text-altering instruction.” This chapter covers all the context-altering instructions.
The software synchronization required for each is shown in Table 11-1, “Data
Access,” on p. 11-4 and Table 11-2, “Instruction Fetch And/Or Execution,” on
p. 11-5.

The notation “CSI” in the tables means any context synchronizing instruction (i.e.,
sc, isync, rfci or rfi). A context synchronizing interrupt (that is, any interrupt
except non-recoverable Machine Check) can be used instead of a context synchro-
nizing instruction. If it is, phrases like “the synchronizing instruction,” below,
should be interpreted as meaning the instruction at which the interrupt occurs. If
no software synchronization is required before (after) a context-altering instruc-
tion, “the synchronizing instruction before (after) the context-altering instruction”
should be interpreted as meaning the context-altering instruction itself.

The synchronizing instruction before the context-altering instruction ensures that
all instructions up to and including that synchronizing instruction are fetched
and executed in the context that existed before the alteration. The synchronizing
instruction after the context-altering instruction ensures that all instructions
after that synchronizing instruction are fetched and executed in the context
established by the alteration. Instructions after the first synchronizing instruc-
tion, up to and including the second synchronizing instruction, may be fetched or
executed in either context.
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If a sequence of instructions contains context-altering instructions and contains
no instructions that are affected by any of the context alterations, no software
synchronization is required within the sequence.

No software synchronization is required before altering the MSR (except perhaps
when altering the WE bit: see the tables), because mtmsr is execution synchroniz-
ing. No software synchronization is required before most of the other alterations
shown in Table 11-2, because all instructions before the context-altering instruc-
tion are fetched and decoded before the context-altering instruction is executed
(the processor must determine whether any of the preceding instructions are con-
text synchronizing)

Table 11-1 below identifies the software synchronization requirements for data
access for all context-altering instructions.

Table 11-1. Data Access

Table 11-2 below identifies the software synchronization requirements for instruc-
tion fetch and/or execution for all context-altering instructions.

Programming Note
Sometimes advantage can be taken of the fact that certain instructions that occur natu-
rally in the program, such as the rfi/rfci at the end of an interrupt handler, provide the
required synchronization.

Context Altering Instruction or Event
Required
Before

Required
After

Notes

interrupt none none

rfi none none

rfci none none

sc none none

mtmsr (PR) none CSI

mtmsr (ME) none CSI 1

mtmsr (DS) none CSI

mtspr (DAC1, DAC2, DVC1, DVC2) — — 4

mtspr (DBCR0, DBCR2) — — 4

mtspr (DBSR) — — 4

mtspr (PID) CSI CSI

tlbiva[e] CSI CSI or msync 5,6

tlbwe CSI CSI or msync 5,6
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Table 11-2. Instruction Fetch And/Or Execution

Notes for Tables 11-1 and 11-2

1. A context synchronizing instruction is required after altering MSRME to
ensure that the alteration takes effect for subsequent Machine Check
interrupts, which may not be recoverable and therefore may not be context
synchronizing.

2. Synchronization requirements for changing the Wait State Enable are imple-
mentation-dependent, and are specified in the User’s Manual for the
implementation.

3. The effect of changing MSREE or MSRCE is immediate.

If an mtmsr, wrtee, or wrteei instruction sets MSREE to ‘0’, an External
Input, DEC or FIT interrupt does not occur after the instruction is executed.

If an mtmsr, wrtee, or wrteei instruction changes MSREE from ‘0’ to ‘1’ when
an External Input, Decrementer, Fixed-Interval Timer, or higher priority
enabled exception exists, the corresponding interrupt occurs immediately
after the mtmsr, wrtee, or wrteei is executed, and before the next instruc-
tion is executed in the program that set MSREE to ‘1’.

If an mtmsr instruction sets MSRCE to ‘0’, a Critical Input or Watchdog Timer
interrupt does not occur after the instruction is executed.

Context Altering Instruction or Event
Required
Before

Required
After

Notes

interrupt none none

rfi none none

rfci none none

sc none none

mtmsr (WE) — — 2

mtmsr (CE) none none 3

mtmsr (EE) none none 3

wrtee none none 3

wrteei none none 3

mtmsr (PR) none CSI

mtmsr (FP) none CSI

mtmsr (ME) none CSI 1

mtmsr (FE0) none CSI

mtmsr (FE1) none CSI

mtmsr (DE) none CSI

mtspr (IVPR) none none

mtspr (IVORi) none none

mtmsr (IS) none CSI 7

mtspr (PID) none CSI 7

mtspr (DEC) none none 8

mtspr (TCR) none none 8

mtspr (TSR) none none 8

mtspr (IAC1, IAC2, IAC3, IAC4) — — 4

mtspr (DBCR0, DBCR1) — — 4

mtspr (DBSR) — — 4

tlbiva[e] none CSI or msync 5,6

tlbwe none CSI or msync 5,6
07 May 02 Chapter 11 Synchronization Requirements 227



If an mtmsr instruction changes MSRCE from ‘0’ to ‘1’ when a Critical Input,
Watchdog Timer or higher priority enabled exception exists, the correspond-
ing interrupt occurs immediately after the mtmsr is executed, and before the
next instruction is executed in the program that set MSRCE to ‘1’.

4. Synchronization requirements for changing any of the Debug Facility regis-
ters are implementation-dependent, and are specified in the User’s Manual for
the implementation.

5. For data accesses, the context synchronizing instruction before the tlbwe or
tlbiva[e] instruction ensures that all storage accesses due to preceding
instructions have completed to a point at which they have reported all excep-
tions they will cause.

The context synchronizing instruction after the tlbwe or tlbiva[e] ensures
that subsequent storage accesses (data and instruction) will use the updated
value in the TLB entry(s) being affected. It does not ensure that all storage
accesses previously translated by the TLB entry(s) being updated have com-
pleted with respect to storage; if these completions must be ensured, the
tlbwe or tlbiva[e] must be followed by an msync instruction as well as by a
context synchronizing instruction.

6. Multiprocessor systems have other requirements to synchronize “TLB shoot
down” (i.e., to invalidate one or more TLB entries on all processors in the mul-
tiprocessor system and to be able to determine that the invalidations have
completed and that all side effects of the invalidations have taken effect).

7. The alteration must not cause an implicit branch in real address space. Thus
the real address of the context-altering instruction and of each subsequent
instruction, up to and including the next context synchronizing instruction,
must be independent of whether the alteration has taken effect.

8. The elapsed time between the Decrementer reaching zero, or the transition of
the selected Time Base bit for the Fixed-Interval Timer or the Watchdog Timer,
and the signalling of the Decrementer, Fixed-Interval Timer or the Watchdog
Timer exception is not defined.

Programming Note
The following sequence illustrates why it is necessary, for data accesses, to ensure
that all storage accesses due to instructions before the tlbwe or tlbiva[e] have com-
pleted to a point at which they have reported all exceptions they will cause. Assume
that valid TLB entries exist for the target storage location when the sequence starts.

1. A program issues a load or store to a page.

2. The same program executes a tlbwe or tlbiva[e] that invalidates the
corresponding TLB entry.

3. The Load or Store instruction finally executes, and gets a TLB Miss exception.

The TLB Miss exception is semantically incorrect. In order to prevent it, a context
synchronizing instruction must be executed between steps 1 and 2.
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Chapter 12 Instruction Set

Add

add RT,RA,RB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (OE=0, Rc=0)
add. RT,RA,RB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (OE=0, Rc=1)
addo RT,RA,RB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (OE=1, Rc=0)
addo. RT,RA,RB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (OE=1, Rc=1)

carry 0:63 ← Carry(GPR(RA) + GPR(RB))
sum0:63 ←       GPR(RA) + GPR(RB)
if OE=1 then do

OV ← carry 32 ⊕ carry 33
SO ← SO | (carry 32 ⊕ carry 33)
OV64 ← carry 0 ⊕ carry 1
SO64 ← SO64 | (carry 0 ⊕ carry 1)

if Rc=1 then do
LT ← sum 32:63  < 0
GT ← sum 32:63  > 0
EQ ← sum 32:63  = 0
CR0 ← LT || GT || EQ || SO

GPR(RT) ← sum

The sum of the contents of GPR(RA) and the contents of GPR(RB) is placed into
GPR(RT).

Special Registers Altered:
CR0  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(if Rc=1)
SO OV SO64 OV64 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (if OE=1)

0 1 1 1 1 1 RT RA RB OE 1 0 0 0 0 1 0 1 0 Rc

0 6 11 16 21 31
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Add Carrying

addc RT,RA,RB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (OE=0, Rc=0)
addc. RT,RA,RB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (OE=0, Rc=1)
addco RT,RA,RB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (OE=1, Rc=0)
addco. RT,RA,RB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (OE=1, Rc=1)

carry 0:63 ← Carry(GPR(RA) + GPR(RB))
sum0:63 ←       GPR(RA) + GPR(RB)
if OE=1 then do

OV ← carry 32 ⊕ carry 33
SO ← SO | (carry 32 ⊕ carry 33)
OV64 ← carry 0 ⊕ carry 1
SO64 ← SO64 | (carry 0 ⊕ carry 1)

if Rc=1 then do
LT ← sum 32:63  < 0
GT ← sum 32:63  > 0
EQ ← sum 32:63  = 0
CR0 ← LT || GT || EQ || SO

GPR(RT) ← sum
CA ← carry 32
CA64 ← carry 0

The sum of the contents of GPR(RA) and the contents of GPR(RB) is placed into
GPR(RT).

Special Registers Altered:
CA CA64
CR0  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(if Rc=1)
SO OV SO64 OV64 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (if OE=1)

0 1 1 1 1 1 RT RA RB OE 0 0 0 0 0 1 0 1 0 Rc

0 6 11 16 21 31
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Add Extended

adde RT,RA,RB . . . . . . . . . . . . . . . . . . . . . . . . . . . . (E=0, OE=0, Rc=0)
adde. RT,RA,RB . . . . . . . . . . . . . . . . . . . . . . . . . . . . (E=0, OE=0, Rc=1)
addeo RT,RA,RB . . . . . . . . . . . . . . . . . . . . . . . . . . . . (E=0, OE=1, Rc=0)
addeo. RT,RA,RB . . . . . . . . . . . . . . . . . . . . . . . . . . . . (E=0, OE=1, Rc=1)
adde64 RT,RA,RB . . . . . . . . . . . . . . . . . . . . . . . . . . . . (E=1, OE=0, Rc=0)
adde64o RT,RA,RB . . . . . . . . . . . . . . . . . . . . . . . . . . . . (E=1, OE=1, Rc=0)

if E=0 then Cin ← CA else Cin ← CA64
carry 0:63 ← Carry(GPR(RA) + GPR(RB) + Cin)
sum0:63 ←       GPR(RA) + GPR(RB) + Cin
if OE=1 then do

OV ← carry 32 ⊕ carry 33
SO ← SO | (carry 32 ⊕ carry 33)
OV64 ← carry 0 ⊕ carry 1
SO64 ← SO64 | (carry 0 ⊕ carry 1)

if Rc=1 then do
LT ← sum 32:63  < 0
GT ← sum 32:63  > 0
EQ ← sum 32:63  = 0
CR0 ← LT || GT || EQ || SO

GPR(RT) ← sum
CA ← carry 32
CA64 ← carry 0

For adde[o][.], the sum of the contents of GPR(RA), the contents of GPR(RB), and
CA is placed into GPR(RT).

For adde64[o], the sum of the contents of GPR(RA), the contents of GPR(RB), and
CA64 is placed into GPR(RT).

For adde64[o], if Rc=1 the instruction form is invalid.

Special Registers Altered:
CA CA64
CR0  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(if Rc=1)
SO OV SO64 OV64 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (if OE=1)

0 1 1 1 1 1 RT RA RB OE E 1 0 0 0 1 0 1 0 Rc

0 6 11 16 21 31
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Add Immediate [Shifted]

addi RT,RA,SI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (S=0)
addis RT,RA,SI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (S=1)

if RA=0 then a ← 640 else a ← GPR(RA)
if s=0  then b ← EXTS(SI)
if s=1  then b ← EXTS(SI || 160)
GPR(RT) ← a + b

If addi and RA=0, the sign-extended value of the SI field is placed into GPR(RT).

If addi and RA≠0, the sum of the contents of GPR(RA) and the sign-extended
value of field SI is placed into GPR(RT).

If addis and RA=0, the sign-extended value of the SI field, concatenated with 16
zeros, is placed into GPR(RT).

If addis and RA≠0, the sum of the contents of GPR(RA) and the sign-extended
value of the SI field concatenated with 16 zeros, is placed into GPR(RT).

Special Registers Altered:
None

0 0 1 1 1 S RT RA SI

0 6 11 16 31
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Add Immediate Carrying [and Record]

addic RT,RA,SI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (Rc=0)
addic. RT,RA,SI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (Rc=1)

carry 0:63 ← Carry(GPR(RA) + EXTS(SI))
sum0:63 ←       GPR(RA) + EXTS(SI)
if Rc=1 then do
   LT ← sum 32:63  < 0
   GT ← sum 32:63  > 0
   EQ ← sum 32:63  = 0
   CR0 ← LT || GT || EQ || SO
GPR(RT) ← GPR(RA)+EXTS(SI)
CA ← carry 32
CA64 ← carry 0

The sum of the contents of GPR(RA) and the sign-extended value of the SI field is
placed into GPR(RT).

Special Registers Altered:
CA CA64
CR0  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(if Rc=1)

0 0 1 1 0 Rc RT RA SI

0 5 6 11 16 31
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Add to Minus One Extended

addme RT,RA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (E=0, OE=0, Rc=0)
addme. RT,RA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (E=0, OE=0, Rc=1)
addmeo RT,RA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (E=0, OE=1, Rc=0)
addmeo. RT,RA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (E=0, OE=1, Rc=1)
addme64 RT,RA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (E=1, OE=0, Rc=0)
addme64o RT,RA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (E=1, OE=1, Rc=0)

if E=0 then Cin ← CA else Cin ← CA64
carry 0:63 ← Carry(GPR(RA) + Cin + 0xFFFF_FFFF_FFFF_FFFF)
sum0:63 ←       GPR(RA) + Cin + 0xFFFF_FFFF_FFFF_FFFF
if OE=1 then do

OV ← carry 32 ⊕ carry 33
SO ← SO | (carry 32 ⊕ carry 33)
OV64 ← carry 0 ⊕ carry 1
SO64 ← SO64 | (carry 0 ⊕ carry 1)

if Rc=1 then do
LT ← sum 32:63  < 0
GT ← sum 32:63  > 0
EQ ← sum 32:63  = 0
CR0 ← LT || GT || EQ || SO

GPR(RT) ← sum
CA ← carry 32
CA64 ← carry 0

For addme[o][.], the sum of the contents of GPR(RA), CA, and 641 is placed into
GPR(RT).

For addme64[o], the sum of the contents of GPR(RA), CA64, and 641 is placed
into GPR(RT).

For addme64[o], if Rc=1 the instruction form is invalid.

Special Registers Altered:
CA CA64
CR0  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(if Rc=1)
SO OV SO64 OV64 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (if OE=1)

0 1 1 1 1 1 RT RA /// OE E 1 1 1 0 1 0 1 0 Rc

0 6 11 16 21 31
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Add to Zero Extended

addze RT,RA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (E=0, OE=0, Rc=0)
addze. RT,RA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (E=0, OE=0, Rc=1)
addzeo RT,RA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (E=0, OE=1, Rc=0)
addzeo. RT,RA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (E=0, OE=1, Rc=1)
addze64 RT,RA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (E=1, OE=0, Rc=0)
addze64o RT,RA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (E=1, OE=1, Rc=0)

if E=0 then Cin ← CA else Cin ← CA64
carry 0:63 ← Carry(GPR(RA) + Cin)
sum0:63 ←       GPR(RA) + Cin
if OE=1 then do

OV ← carry 32 ⊕ carry 33
SO ← SO | (carry 32 ⊕ carry 33)
OV64 ← carry 0 ⊕ carry 1
SO64 ← SO64 | (carry 0 ⊕ carry 1)

if Rc=1 then do
LT ← sum 32:63  < 0
GT ← sum 32:63  > 0
EQ ← sum 32:63  = 0
CR0 ← LT || GT || EQ || SO

GPR(RT) ← sum
CA ← carry 32
CA64 ← carry 0

For addze[o][.], the sum of the contents of GPR(RA) and CA is placed into
GPR(RT).

For addze64[o], the sum of the contents of GPR(RA) and CA64 is placed into
GPR(RT).

For addze64[o], if Rc=1 the instruction form is invalid.

Special Registers Altered:
CA CA64
CR0  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(if Rc=1)
SO OV SO64 OV64 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (if OE=1)

0 1 1 1 1 1 RT RA /// OE E 1 1 0 0 1 0 1 0 Rc

0 6 11 16 21 31
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AND [ Immediate [Shifted] | with Complement]

and RA,RS,RB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (Rc=0)
and. RA,RS,RB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (Rc=1)

andi. RA,RS,UI. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (S=0, Rc=1)
andis. RA,RS,UI. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (S=1, Rc=1)

andc RA,RS,RB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (Rc=0)
andc. RA,RS,RB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (Rc=1)

if ‘andi.’   then b ← 480 || UI
if ‘andis.’  then b ← 320 || UI || 160
if ‘and[.]’  then b ← GPR(RB)
if ‘andc[.]’ then b ← ¬GPR(RB)
result 0:63 ← GPR(RS) & b
if Rc=1 then do

LT ← result 32:63  < 0
GT ← result 32:63  > 0
EQ ← result 32:63  = 0
CR0 ← LT || GT || EQ || SO

GPR(RA) ← result

For andi., the contents of GPR(RS) are ANDed with 480 || UI.

For andis., the contents of GPR(RS) are ANDed with 320 || UI || 160.

For and[.], the contents of GPR(RS) are ANDed with the contents of GPR(RB).

For andc[.], the contents of GPR(RS) are ANDed with the one’s complement of the
contents of GPR(RB).

The result is placed into GPR(RA).

Special Registers Altered:
CR0  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(if Rc=1)

0 1 1 1 1 1 RS RA RB 0 0 0 0 0 1 1 1 0 0 Rc

0 6 11 16 21 31

0 1 1 1 0 S RS RA UI

0 5 6 11 16 31

0 1 1 1 1 1 RS RA RB 0 0 0 0 1 1 1 1 0 0 Rc

0 6 11 16 21 31
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Branch [Extended] [and Link] [Absolute]

b LI  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (E=0, AA=0, LK=0)
ba LI  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (E=0, AA=1, LK=0)
bl LI  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (E=0, AA=0, LK=1)
bla LI  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (E=0, AA=1, LK=1)

be LI  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (E=1, AA=0, LK=0)
bea LI  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (E=1, AA=1, LK=0)
bel LI  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (E=1, AA=0, LK=1)
bela LI  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (E=1, AA=1, LK=1)

if AA=1 then a ← 640 else a ← CIA
if E=0  then NIA ← 320 || (a + EXTS(LI ||0b00)) 32:63
if E=1  then NIA ← a + EXTS(LI ||0b00)
if LK=1 then LR ← CIA + 4

Let the branch target effective address (BTEA) be calculated as follows:

• For b[l][a], let BTEA be 32 0s concatenated with bits 32:63 of the sum of the
current instruction address (CIA), or 64 0s if AA=1, and the sign-extended
value of the LI instruction field concatenated with 0b00.

• For be[l][a], let BTEA be the sum of the current instruction address (CIA), or
64 0s if AA=1, and the sign-extended value of the LI instruction field concate-
nated with 0b00.

The BTEA is the address of the next instruction to be executed.

If LK=1, the sum CIA+4 is placed into the Link Register.

Special Registers Altered:
LR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (if LK=1)

0 1 0 E 1 0 LI AALK

0 5 6 30 31
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Branch Conditional [Extended] [and Link] [Absolute]

bc BO,BI,BD  . . . . . . . . . . . . . . . . . . . . . . . . . . . . (E=0, AA=0, LK=0)
bca BO,BI,BD  . . . . . . . . . . . . . . . . . . . . . . . . . . . . (E=0, AA=1, LK=0)
bcl BO,BI,BD  . . . . . . . . . . . . . . . . . . . . . . . . . . . . (E=0, AA=0, LK=1)
bcla BO,BI,BD  . . . . . . . . . . . . . . . . . . . . . . . . . . . . (E=0, AA=1, LK=1)

bce BO,BI,BD  . . . . . . . . . . . . . . . . . . . . . . . . . . . . (E=1, AA=0, LK=0)
bcea BO,BI,BD  . . . . . . . . . . . . . . . . . . . . . . . . . . . . (E=1, AA=1, LK=0)
bcel BO,BI,BD  . . . . . . . . . . . . . . . . . . . . . . . . . . . . (E=1, AA=0, LK=1)
bcela BO,BI,BD  . . . . . . . . . . . . . . . . . . . . . . . . . . . . (E=1, AA=1, LK=1)

if ¬BO2 then CTR 32:63 ← CTR32:63  – 1
ctr_ok ← BO2 | ((CTR 32:63 ≠ 0) ⊕ BO3)
cond_ok ← BO0 | (CR BI+32 ≡ BO1)
if ctr_ok & cond_ok then
   if AA=1 then a ← 640 else a ← CIA
   if E=0 then NIA ← 320 || (a + EXTS(BD ||0b00)) 32:63
   if E=1 then NIA ← a + EXTS(BD ||0b00)
else           NIA ← CIA + 4
if LK=1 then LR ← CIA + 4

Let the branch target effective address (BTEA) be calculated as follows:

• For bc[l][a], let BTEA be 32 0s concatenated with bits 32:63 of the sum of the
current instruction address (CIA), or 64 0s if AA=1, and the sign-extended
value of the BD instruction field concatenated with 0b00.

• For bce[l][a], let BTEA be the sum of the current instruction address (CIA), or
64 0s if AA=1, and the sign-extended value of the BD instruction field concat-
enated with 0b00.

The BO field of the instruction specifies the condition or conditions that must be
met in order for the branch to be taken, as defined in Section 3.3 on page 49. The
sum BI+32 specifies the bit of the Condition Register that is to be used.

If the branch conditions are met, the BTEA is the address of the next instruction
to be executed.

If LK=1, the sum CIA + 4 is placed into the Link Register.

Special Registers Altered:
CTR  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (ifBO2=0)
LR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (if LK=1)

0 1 0 0 0 0 BO BI BD AALK

0 6 11 16 30 31

0 0 1 0 0 1 BO BI BD AALK

0 6 11 16 30 31
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Branch Conditional to Count Register [Extended] [and Link]

bcctr BO,BI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (E=0, LK=0)
bcctrl BO,BI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (E=0, LK=1)

bcctre BO,BI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (E=1, LK=0)
bcctrel BO,BI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (E=1, LK=1)

cond_ok ← BO0 | (CR BI+32 ≡ BO1)
if  cond_ok & E=0 then NIA ← 320 || CTR32:61 || 0b00
if  cond_ok & E=1 then NIA ← CTR0:61 || 0b00
if ¬cond_ok       then NIA ← CIA + 4
if LK=1 then LR ← CIA + 4

Let the branch target effective address (BTEA) be calculated as follows:

• For bcctr[l], let BTEA be 32 0s concatenated with the contents of bits 32:61 of
the Count Register concatenated with 0b00.

• For bcctre[l], let BTEA be the contents of bits 0:61 of the Count Register con-
catenated with 0b00.

The BO field of the instruction specifies the condition or conditions that must be
met in order for the branch to be taken, as defined in Section 3.3 on page 49. The
sum BI+32 specifies the bit of the Condition Register that is to be used.

If the branch condition is met, the BTEA is the address of the next instruction to
be executed.

If LK=1, the sum CIA + 4 is placed into the Link Register.

If the ‘decrement and test CTR’ option is specified (BO2=0), the instruction form is
invalid.

Special Registers Altered:
LR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (if LK=1)

0 1 0 0 1 1 BO BI /// 1 0 0 0 0 1 0 0 0 E LK

0 6 11 16 21 31
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Branch Conditional to Link Register [Extended] [and Link]

bclr BO,BI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (E=0, LK=0)
bclrl BO,BI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (E=0, LK=1)

bclre BO,BI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (E=1, LK=0)
bclrel BO,BI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (E=1, LK=1)

if ¬BO2 then CTR 32:63 ← CTR32:63  - 1
ctr_ok ← BO2 | ((CTR 32:63 ≠ 0) ⊕ BO3)
cond_ok ← BO0 | (CR BI+32 ≡ BO1)
if   ctr_ok & cond_ok & E=0 then NIA ← 320 || LR 32:61 || 0b00
if   ctr_ok & cond_ok & E=1 then NIA ← LR 0:61 || 0b00
if ¬(ctr_ok & cond_ok)      then NIA ← CIA + 4
if LK=1 then LR ← CIA + 4

Let the branch target effective address (BTEA) be calculated as follows:

• For bclr[l], let BTEA be 32 0s concatenated with the contents of bits 32:61 of
the Link Register concatenated with 0b00.

• For bclre[l], let BTEA be the contents of bits 0:61 of the Link Register concat-
enated with 0b00.

The BO field of the instruction specifies the condition or conditions that must be
met in order for the branch to be taken, as defined in Section 3.3 on page 49. The
sum BI+32 specifies the bit of the Condition Register that is to be used.

If the branch condition is met, the BTEA is the address of the next instruction to
be executed.

If LK=1, the sum CIA + 4 is placed into the Link Register.

Special Registers Altered:
CTR  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (ifBO2=0)
LR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (if LK=1)

0 1 0 0 1 1 BO BI /// 0 0 0 0 0 1 0 0 0 E LK

0 6 11 16 21 31
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Compare [Immediate]

cmp BF,L,RA,RB

cmpi BF,L,RA,SI

if L=0 then a ← EXTS(GPR(RA) 32:63 )
else        a ← GPR(RA)
if ‘cmpi’      then b ← EXTS(SI)
if ‘cmp’ & L=0 then b ← EXTS(GPR(RB) 32:63 )
if ‘cmp’ & L=1 then b ← GPR(RB)
if a < b then c ← 0b100
if a > b then c ← 0b010
if a = b then c ← 0b001
CR4×BF+32:4 ×BF+35 ← c || XERSO

If cmp and L=0, the contents of bits 32:63 of GPR(RA) are compared with the con-
tents of bits 32:63 of GPR(RB), treating the operands as signed integers.

If cmp and L=1, the contents of GPR(RA) are compared with the contents of
GPR(RB), treating the operands as signed integers.

If cmpi and L=0, the contents of bits 32:63 of GPR(RA) are compared with the
sign-extended value of the SI field, treating the operands as signed integers.

If cmpi and L=1, the contents of GPR(RA) are compared with the sign-extended
value of the SI field, treating the operands as signed integers.

The result of the comparison is placed into CR field BF.

Special Registers Altered:
CR field BF

0 1 1 1 1 1 BF / L RA RB 0 0 0 0 0 0 0 0 0 0 /

0 6 9 10 11 16 21 31

0 0 1 0 1 1 BF / L RA SI

0 6 9 10 11 16 31
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Compare Logical [Immediate]

cmpl BF,L,RA,RB

cmpli BF,L,RA,UI

if L=0 then a ← 320 || GPR(RA) 32:63
else        a ← GPR(RA)
if ‘cmpli’      then b ← 480 || UI
if ‘cmpl’ & L=0 then b ← 320 || GPR(RB) 32:63
if ‘cmpl’ & L=1 then b ← GPR(RB)
if a < u b then c ← 0b100
if a > u b then c ← 0b010
if a =  b then c ← 0b001
CR4×BF+32:4 ×BF+35 ← c || XERSO

If cmpl and L=0, the contents of bits 32:63 of GPR(RA) are compared with the con-
tents of bits 32:63 of GPR(RB), treating the operands as unsigned integers.

If cmpl and L=1, the contents of GPR(RA) are compared with the contents of
GPR(RB), treating the operands as unsigned integers.

If cmpli and L=0, the contents of bits 32:63 of GPR(RA) are compared with the
zero-extended value of the UI field, treating the operands as unsigned integers.

If cmpli and L=1, the contents of GPR(RA) are compared with the zero-extended
value of the UI field, treating the operands as unsigned integers.

The result of the comparison is placed into CR field BF.

Special Registers Altered:
CR field BF

0 1 1 1 1 1 BF / L RA RB 0 0 0 0 1 0 0 0 0 0 /

0 6 9 10 11 16 21 31

0 0 1 0 1 0 BF / L RA UI

0 6 9 10 11 16 31
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Count Leading Zeros (Word | Doubleword)

cntlzw RA,RS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (Z=0, Rc=0)
cntlzw. RA,RS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (Z=0, Rc=1)

cntlzd RA,RS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (Z=1, Rc=0)

if ‘cntlzd’ then n ← 0 else n ← 32
i ← 0
do while n < 64
   if GPR(RS) n = 1 then leave
   n ← n + 1
   i ← i + 1
GPR(RA) ← i
if Rc=1 then do
   GT ← i > 0
   EQ ← i = 0
   CR0 ← 0b0 || GT || EQ || SO

For cntlzw[.], a count of the number of consecutive zero bits starting at bit 32 of
the contents of GPR(RS) is placed into GPR(RA). This number ranges from 0 to 32,
inclusive. If Rc=1, CR Field 0 is set to reflect the result.

For cntlzd, a count of the number of consecutive zero bits starting at bit 0 of the
contents of GPR(RS) is placed into GPR(RA). This number ranges from 0 to 64,
inclusive. If Rc=1, the instruction form is invalid.

Special Registers Altered:
CR0  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(if Rc=1)

0 1 1 1 1 1 RS RA /// 0 0 0 0 Z 1 1 0 1 0 Rc

0 6 11 16 21 31
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Condition Register AND

crand BT,BA,BB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 01000)

CRBT+32 ← CRBA+32 & CR BB+32

The content of bit BA+32 of the Condition Register is ANDed with the content of
bit BB+32 of the Condition Register, and the result is placed into bit BT+32 of the
Condition Register.

Special Registers Altered:
CR

Condition Register AND with Complement

crandc BT,BA,BB

CRBT+32 ← CRBA+32 & ¬CRBB+32

The content of bit BA+32 of the Condition Register is ANDed with the one’s com-
plement of the content of bit BB+32 of the Condition Register, and the result is
placed into bit BT+32 of the Condition Register.

Special Registers Altered:
CR

Condition Register Equivalent

creqv BT,BA,BB

CRBT+32 ← CRBA+32 ≡ CRBB+32

The content of bit BA+32 of the Condition Register is XORed with the content of
bit BB+32 of the Condition Register, and the one’s complement of result is placed
into bit BT+32 of the Condition Register.

Special Registers Altered:
CR

0 1 0 0 1 1 BT BA BB 0 1 0 0 0 0 0 0 0 1 /

0 6 11 16 21 31

0 1 0 0 1 1 BT BA BB 0 0 1 0 0 0 0 0 0 1 /

0 6 11 16 21 31

0 1 0 0 1 1 BT BA BB 0 1 0 0 1 0 0 0 0 1 /

0 6 11 16 21 31
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Condition Register NAND

crnand BT,BA,BB

CRBT+32 ← ¬(CRBA+32 & CR BB+32)

The content of bit BA+32 of the Condition Register is ANDed with the content of
bit BB+32 of the Condition Register, and the one’s complement of the result is
placed into bit BT+32 of the Condition Register.

Special Registers Altered:
CR

Condition Register NOR

crnor BT,BA,BB

CRBT+32 ← ¬(CRBA+32 | CR BB+32)

The content of bit BA+32 of the Condition Register is ORed with the content of bit
BB+32 of the Condition Register, and the one’s complement of the result is placed
into bit BT+32 of the Condition Register.

Special Registers Altered:
CR

Condition Register OR

cror BT,BA,BB

CRBT+32 ← CRBA+32 | CR BB+32

The content of bit BA+32 of the Condition Register is ORed with the content of bit
BB+32 of the Condition Register, and the result is placed into bit BT+32 of the
Condition Register.

Special Registers Altered:
CR

0 1 0 0 1 1 BT BA BB 0 0 1 1 1 0 0 0 0 1 /

0 6 11 16 21 31

0 1 0 0 1 1 BT BA BB 0 0 0 0 1 0 0 0 0 1 /

0 6 11 16 21 31

0 1 0 0 1 1 BT BA BB 0 1 1 1 0 0 0 0 0 1 /

0 6 11 16 21 31
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Condition Register OR with Complement

crorc BT,BA,BB

CRBT+32 ← CRBA+32 | ¬CRBB+32

The content of bit BA+32 of the Condition Register is ORed with the one’s comple-
ment of the content of bit BB+32 of the Condition Register, and the result is
placed into bit BT+32 of the Condition Register.

Special Registers Altered:
CR

Condition Register XOR

crxor BT,BA,BB

CRBT+32 ← CRBA+32 ⊕ CRBB+32

The content of bit BA+32 of the Condition Register is XORed with the content of
bit BB+32 of the Condition Register, and the result is placed into bit BT+32 of the
Condition Register.

Special Registers Altered:
CR

0 1 0 0 1 1 BT BA BB 0 1 1 0 1 0 0 0 0 1 /

0 6 11 16 21 31

0 1 0 0 1 1 BT BA BB 0 0 1 1 0 0 0 0 0 1 /

0 6 11 16 21 31
246 Book E: Enhanced PowerPC Architecture Version 1.0 07 May 02



Data Cache Block Allocate

dcba RA,RB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (X-mode, E=0)
dcbae RA,RB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (XE-mode, E=1)

if RA=0 then a ← 640 else a ← GPR(RA)
if X-mode  then EA ← 320 || (a + GPR(RB)) 32:63
if XE-mode then EA ← a + GPR(RB)
AllocateDataCacheBlock( EA )

Let the effective address (EA) be calculated as follows:

Addressing Mode EA for RA=0 EA for RA≠0
X-mode 320 || GPR(RB)32:63

320 || (GPR(RA)+GPR(RB))32:63
XE-mode GPR(RB) GPR(RA)+GPR(RB)

This instruction is a hint that performance will probably be improved if the block
containing the byte addressed by EA is established in the data cache without
fetching the block from main storage, because the program will probably soon
store into a portion of the block and the contents of the rest of the block are not
meaningful to the program. If the hint is honored, the contents of the block are
undefined when the instruction completes. The hint is ignored if the block is
Caching Inhibited.

If the block containing the byte addressed by EA is in storage that is Memory
Coherence Required and the block exists in the data cache(s) of any other proces-
sor(s), it is kept coherent in those caches.

This instruction is treated as a Store (see Section 6.2.4.4 and Section 6.3.2),
except that an interrupt is not taken for a translation or protection violation.

This instruction may establish a block in the data cache without verifying that the
associated real address is valid. This can cause a delayed Machine Check inter-
rupt, as described in Section 7.4.4, “Machine Check Interrupts,” on page 151.

Special Registers Altered:
None

0 1 1 1 1 1 /// RA RB 1 0 1 1 1 1 E 1 1 0 /

0 6 11 16 21 31

Engineering Note
If the target block is already in the data cache, leaving the contents of the block unmodi-
fied may provide the best performance, especially if the block is Write Through Required.
However, setting the contents of the block to zero may be easier to implement, because
of the similarity to dcbz[e].

If the target block is not already in the data cache and the block is Write Through
Required, ignoring the hint may provide the best performance.

If a dcba[e] causes the target block to be newly established in the data cache, proces-
sors must set all bytes of the block to zero, and all processors must treat the access as a
Store. In particular, if the newly established block is Write Through Required, the con-
tents of the cache block must be written to main storage.

Architecture Note
dcba[e] setting all bytes of newly established cache blocks to zero prevents a program
executing the dcba[e] from reading the preexisting contents of the block, which may
include data that the program is not authorized to read. Such prevention is a require-
ment of secure systems.
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Data Cache Block Flush

dcbf RA,RB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (X-mode, E=0)
dcbfe RA,RB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (XE-mode, E=1)

if RA=0 then a ← 640 else a ← GPR(RA)
if X-mode  then EA ← 320 || (a + GPR(RB)) 32:63
if XE-mode then EA ← a + GPR(RB)
FlushDataCacheBlock( EA )

Let the effective address (EA) be calculated as follows:

Addressing Mode EA for RA=0 EA for RA≠0
X-mode 320 || GPR(RB)32:63

320 || (GPR(RA)+GPR(RB))32:63
XE-mode GPR(RB) GPR(RA)+GPR(RB)

If the block containing the byte addressed by EA is in storage that is Memory
Coherence Required, a block containing the byte addressed by EA is in the data
cache of any processor, and any locations in the block are considered to be modi-
fied there, then those locations are written to main storage. Additional locations in
the block may also be written to main storage. The block is invalidated in the data
caches of all processors.

If the block containing the byte addressed by EA is in storage that is not Memory
Coherence Required, a block containing the byte addressed by EA is in the data
cache of this processor, and any locations in the block are considered to be modi-
fied there, then those locations are written to main storage. Additional locations in
the block may also be written to main storage. The block is invalidated in the data
cache of this processor.

The function of this instruction is independent of whether the block containing
the byte addressed by EA is in storage that is Write Through Required or Caching
Inhibited.

This instruction is treated as a Load (see Section 6.2.4.4 and Section 6.3.2).

Special Registers Altered:
None

0 1 1 1 1 1 /// RA RB 0 0 0 1 0 1 E 1 1 0 /

0 6 11 16 21 31
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Data Cache Block Invalidate

dcbi RA,RB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (X-mode, E=0)
dcbie RA,RB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (XE-mode, E=1)

if RA=0 then a ← 640 else a ← GPR(RA)
if X-mode  then EA ← 320 || (a + GPR(RB)) 32:63
if XE-mode then EA ← a + GPR(RB)
InvalidateDataCacheBlock( EA )

Let the effective address (EA) be calculated as follows:

Addressing Mode EA for RA=0 EA for RA≠0
X-mode 320 || GPR(RB)32:63

320 || (GPR(RA)+GPR(RB))32:63
XE-mode GPR(RB) GPR(RA)+GPR(RB)

If the block containing the byte addressed by EA is in storage that is Memory
Coherence Required and a block containing the byte addressed by EA is in the
data cache of any processors, then the block is invalidated in those data caches.
On some implementations, before the block is invalidated, if any locations in the
block are considered to be modified in any such data cache, those locations are
written to main storage and additional locations in the block may be written to
main storage.

If the block containing the byte addressed by EA is in storage that is not Memory
Coherence Required and a block containing the byte addressed by EA is in the
data cache of this processor, then the block is invalidated in that data cache. On
some implementations, before the block is invalidated, if any locations in the
block are considered to be modified in that data cache, those locations are written
to main storage and additional locations in the block may be written to main stor-
age.

The function of this instruction is independent of whether the block containing
the byte addressed by EA is in storage that is Write Through Required or Caching
Inhibited.

This instruction is treated as a Store (see Section 6.2.4.4 and Section 6.3.2) on
implementations that invalidate a block without first writing to main storage all
locations in the block that are considered to be modified in the data cache, except
that the invalidation is not ordered by mbar. On other implementations this
instruction is treated as a Load (see the section cited above).

Execution of this instruction is privileged and restricted to supervisor mode only.

Additional information about this instruction is as follows.

• The data cache block size for dcbi[e] is the same as for dcbf[e].

• If a processor holds a reservation and some other processor executes a dcbi[e]
to the same reservation granule, whether the reservation is lost is undefined.

dcbi[e] may cause a cache locking exception. See the User’s Manual for the imple-
mentation.

Special Registers Altered:
None

0 1 1 1 1 1 /// RA RB 0 1 1 1 0 1 E 1 1 0 /

0 6 11 16 21 31
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Engineering Note
It is permissible to implement dcbi[e] as an instruction that performs the same opera-
tions as dcbf[e] but is privileged.
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Data Cache Block Store

dcbst RA,RB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (X-mode, E=0)
dcbste RA,RB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (XE-mode, E=1)

if RA=0 then a ← 640 else a ← GPR(RA)
if X-mode  then EA ← 320 || (a + GPR(RB)) 32:63
if XE-mode then EA ← a + GPR(RB)
StoreDataCacheBlock( EA )

Let the effective address (EA) be calculated as follows:

Addressing Mode EA for RA=0 EA for RA≠0
X-mode 320 || GPR(RB)32:63

320 || (GPR(RA)+GPR(RB))32:63
XE-mode GPR(RB) GPR(RA)+GPR(RB)

If the block containing the byte addressed by EA is in storage that is Memory
Coherence Required and a block containing the byte addressed by EA is in the
data cache of any processor, and any locations in the block are considered to be
modified there, those locations are written to main storage. Additional locations in
the block may be written to main storage. The block ceases to be considered to be
modified in that data cache.

If the block containing the byte addressed by EA is in storage that is not Memory
Coherence Required and a block containing the byte addressed by EA is in the
data cache of this processor and any locations in the block are considered to be
modified there, those locations are written to main storage. Additional locations in
the block may be written to main storage. The block ceases to be considered to be
modified in that data cache.

The function of this instruction is independent of whether the block containing
the byte addressed by EA is in storage that is Write Through Required or Caching
Inhibited.

This instruction is treated as a Load (see Section 6.2.4.4 and Section 6.3.2).

Special Registers Altered:
None

0 1 1 1 1 1 /// RA RB 0 0 0 0 1 1 E 1 1 0 /

0 6 11 16 21 31
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Data Cache Block Touch

dcbt CT,RA,RB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (X-mode, E=0)
dcbte CT,RA,RB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (XE-mode, E=1)

if RA=0 then a ← 640 else a ← GPR(RA)
if X-mode  then EA ← 320 || (a + GPR(RB)) 32:63
if XE-mode then EA ← a + GPR(RB)
PrefetchDataCacheBlock( CT, EA )

Let the effective address (EA) be calculated as follows:

Addressing Mode EA for RA=0 EA for RA≠0
X-mode 320 || GPR(RB)32:63

320 || (GPR(RA)+GPR(RB))32:63
XE-mode GPR(RB) GPR(RA)+GPR(RB)

If CT=0, this instruction is a hint that performance will probably be improved if
the block containing the byte addressed by EA is fetched into the data cache,
because the program will probably soon load from the addressed byte.

An implementation may use other values of CT to enable software to target spe-
cific, implementation-dependent ‘portions of its cache hierarchy or structure that
may better enhance performance. See the User’s Manual for the implementation.

Implementations should perform no operation when CT specifies a value that is
not supported by the implementation.

The hint is ignored if the block is Caching Inhibited.

This instruction is treated as a Load (see Section 6.2.4.4 and Section 6.3.2),
except that an interrupt is not taken for a translation or protection violation.

Special Registers Altered:
None

0 1 1 1 1 1 CT RA RB 0 1 0 0 0 1 E 1 1 0 /

0 6 11 16 21 31

Engineering Note
Programs are likely to execute dcbt[e] for several blocks before executing Load or Store
instructions that refer to the first of these blocks. Implementations on which dcbt[e]
fetches the block into a separate buffer rather than directly into the data cache should
provide buffer space sufficient for this use.
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Data Cache Block Touch for Store

dcbtst CT,RA,RB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (X-mode, E=0)
dcbtste CT,RA,RB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (XE-mode, E=1)

if RA=0 then a ← 640 else a ← GPR(RA)
if X-mode  then EA ← 320 || (a + GPR(RB)) 32:63
if XE-mode then EA ← a + GPR(RB)
PrefetchForStoreDataCacheBlock( CT, EA )

Let the effective address (EA) be calculated as follows:

Addressing Mode EA for RA=0 EA for RA≠0
X-mode 320 || GPR(RB)32:63

320 || (GPR(RA)+GPR(RB))32:63
XE-mode GPR(RB) GPR(RA)+GPR(RB)

If CT=0, this instruction is a hint that performance will probably be improved if
the block containing the byte addressed by EA is fetched into the data cache,
because the program will probably soon store into the addressed byte.

An implementation may use other values of CT to enable software to target spe-
cific, implementation-dependent portions of its cache hierarchy or structure that
may better enhance performance. See the User’s Manual for the implementation.

Implementations should perform no operation when CT specifies a value that is
not supported by the implementation.

The hint is ignored if the block is Caching Inhibited.

This instruction is treated as a Load (see Section 6.2.4.4 and Section 6.3.2),
except that an interrupt is not taken for a translation or protection violation.

Special Registers Altered:
None

0 1 1 1 1 1 CT RA RB 0 0 1 1 1 1 E 1 1 0 /

0 6 11 16 21 31

Engineering Note
Executing dcbtst[e] does not cause the specified block to be considered to be modified in
the data cache.
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Data Cache Block set to Zero

dcbz RA,RB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (X-mode, E=0)
dcbze RA,RB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (XE-mode, E=1)

if RA=0 then a ← 640 else a ← GPR(RA)
if X-mode  then EA ← 320 || (a + GPR(RB)) 32:63
if XE-mode then EA ← a + GPR(RB)
ZeroDataCacheBlock( EA )

Let the effective address (EA) be calculated as follows:

Addressing Mode EA for RA=0 EA for RA≠0
X-mode 320 || GPR(RB)32:63

320 || (GPR(RA)+GPR(RB))32:63
XE-mode GPR(RB) GPR(RA)+GPR(RB)

If the block containing the byte addressed by EA is in the data cache, all bytes of
the block are set to zero.

If the block containing the byte addressed by EA is not in the data cache and is in
storage that is not Caching Inhibited, the block is established in the data cache
without fetching the block from main storage, and all bytes of the block are set to
zero.

If the block containing the byte addressed by EA is in storage that is Caching
Inhibited or Write Through Required, then either (a) all bytes of the area of main
storage that corresponds to the addressed block are set to zero, or (b) an Align-
ment interrupt is taken. See the User’s Manual for the implementation.

If the block containing the byte addressed by EA is in storage that is Memory
Coherence Required and the block exists in the data cache(s) of any other proces-
sor(s), it is kept coherent in those caches.

This instruction may establish a block in the data cache without verifying that the
associated real address is valid. This can cause a delayed Machine Check inter-
rupt, as described in Section 7.4.4, “Machine Check Interrupts,” on page 151.

This instruction is treated as a Store (see Section 6.2.4.4 and Section 6.3.2).

This instruction may cause a cache locking exception. See the User’s Manual for
the implementation.

Special Registers Altered:
None

0 1 1 1 1 1 /// RA RB 1 1 1 1 1 1 E 1 1 0 /

0 6 11 16 21 31

Programming Note
If the block containing the byte addressed by EA is in storage that is Caching Inhibited
or Write Through Required, the Alignment interrupt handler should set to zero all bytes
of the area of main storage that corresponds to the addressed block.
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Divide Doubleword

divd RT,RA,RB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(OE=0)
divdo RT,RA,RB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(OE=1)

dividend 0:63 ← GPR(RA)
divisor 0:63 ← GPR(RB)
if OE=1 then do
   OV64 ← ( (GPR(RA)=-2 63) & (GPR(RB)=-1) ) | (GPR(RB)=0)
   SO64 ← SO64 | OV64
GPR(RT) ← dividend ÷ divisor

The 64-bit quotient of the contents of GPR(RA) divided by the contents of GPR(RB)
is placed into GPR(RT). The remainder is not supplied as a result.

Both operands and the quotient are interpreted as signed integers. The quotient is
the unique signed integer that satisfies

dividend = (quotient × divisor) + r

where 0 ≤ r < |divisor| if the dividend is nonnegative, and –|divisor| < r ≤ 0 if the
dividend is negative.

If an attempt is made to perform any of the divisions

0x8000_0000_0000_0000 ÷ -1
<anything> ÷ 0

then the contents of GPR(RT) are undefined. In these cases, if OE=1 then OV is set
to 1.

Special Registers Altered:
SO64 OV64. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (if OE=1)

0 1 1 1 1 1 RT RA RB OE 1 1 1 1 0 1 0 0 1 /

0 6 11 16 21 31

Programming Note
The 64-bit signed remainder of dividing GPR(RA) by GPR(RB) can be computed as fol-
lows, except in the case that GPR(RA) = –263 and GPR(RB) = –1.

    divd   RT,RA,RB    # RT = quotient
    mulld  RT,RT,RB    # RT = quotient*divisor
    subf   RT,RT,RA    # RT = remainder
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Divide Doubleword Unsigned

divdu RT,RA,RB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(OE=0)
divduo RT,RA,RB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(OE=1)

dividend 0:63 ← GPR(RA)
divisor 0:63 ← GPR(RB)
quotient 0:63 ← dividend ÷ divisor
if OE=1 then do
   OV64 ← (GPR(RB)=0)
   SO64 ← SO64 | OV64
GPR(RT) ← quotient

The 64-bit quotient of the contents of GPR(RA) divided by the contents of GPR(RB)
is placed into GPR(RT). The remainder is not supplied as a result.

Both operands and the quotient are interpreted as unsigned integers. The quo-
tient is the unique unsigned integer that satisfies

dividend = (quotient × divisor) + r

where 0 ≤ r < divisor.

If an attempt is made to perform the division

<anything> ÷ 0

then the contents of GPR(RT) are undefined. In this case, if OE=1 then OV is set to
1.

Special Registers Altered:
SO64 OV64. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (if OE=1)

0 1 1 1 1 1 RT RA RB OE 1 1 1 0 0 1 0 0 1 /

0 6 11 16 21 31

Programming Note
The 64-bit unsigned remainder of dividing GPR(RA) by GPR(RB) can be computed as
follows.

    divdu  RT,RA,RB    # RT = quotient
    mulld  RT,RT,RB    # RT = quotient*divisor
    subf   RT,RT,RA    # RT = remainder
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Divide Word

divw RT,RA,RB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (OE=0, Rc=0)
divw. RT,RA,RB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (OE=0, Rc=1)
divwo RT,RA,RB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (OE=1, Rc=0)
divwo. RT,RA,RB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (OE=1, Rc=1)

dividend 0:31 ← GPR(RA) 32:63
divisor 0:31 ← GPR(RB) 32:63
quotient 0:31 ← dividend ÷ divisor
if OE=1 then do
   OV ← ( (GPR(RA) 32:63 =-2 31) & (GPR(RB) 32:63 =-1) ) | (GPR(RB) 32:63 =0)
   SO ← SO | OV
if Rc=1 then do

LT ← quotient < 0
GT ← quotient > 0
EQ ← quotient = 0
CR0 ← LT || GT || EQ || SO

GPR(RT)32:63 ← quotient
GPR(RT)0:31 ← undefined

The 32-bit quotient of the contents of bits 32:63 of GPR(RA) divided by the con-
tents of bits 32:63 of GPR(RB) is placed into bits 32:63 of GPR(RT). Bits 0:31 of
GPR(RT) are undefined. The remainder is not supplied as a result.

Both operands and the quotient are interpreted as signed integers. The quotient is
the unique signed integer that satisfies

dividend = (quotient × divisor) + r

where 0 ≤ r < |divisor| if the dividend is nonnegative, and –|divisor| < r ≤ 0 if the
dividend is negative.

If an attempt is made to perform any of the divisions

0x8000_0000 ÷ -1
<anything> ÷ 0

then the contents of GPR(RT) are undefined as are (if Rc=1) the contents of the LT,
GT, and EQ bits of CR Field 0. In these cases, if OE=1 then OV is set to 1.

Special Registers Altered:
CR0  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(if Rc=1)
SO OV. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (if OE=1)

0 1 1 1 1 1 RT RA RB OE 1 1 1 1 0 1 0 1 1 Rc

0 6 11 16 21 31

Programming Note
The 32-bit signed remainder of dividing GPR(RA)32:63 by GPR(RB)32:63 can be computed
as follows, except in the case that GPR(RA)32:63 = –231 and GPR(RB)32:63 = –1.

    divw   RT,RA,RB    # RT = quotient
    mullw  RT,RT,RB    # RT = quotient*divisor
    subf   RT,RT,RA    # RT = remainder
07 May 02 Chapter 12 Instruction Set 257



Divide Word Unsigned

divwu RT,RA,RB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (OE=0, Rc=0)
divwu. RT,RA,RB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (OE=0, Rc=1)
divwuo RT,RA,RB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (OE=1, Rc=0)
divwuo. RT,RA,RB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (OE=1, Rc=1)

dividend 0:31 ← GPR(RA) 32:63
divisor 0:31 ← GPR(RB) 32:63
quotient 0:31 ← dividend ÷ divisor
if OE=1 then do
   OV ← (GPR(RB) 32:63 =0)
   SO ← SO | OV
if Rc=1 then do

LT ← quotient < 0
GT ← quotient > 0
EQ ← quotient = 0
CR0 ← LT || GT || EQ || SO

GPR(RT)32:63 ← quotient
GPR(RT)0:31 ← undefined

The 32-bit quotient of the contents of bits 32:63 of GPR(RA) divided by the con-
tents of bits 32:63 of GPR(RB) is placed into bits 32:63 of GPR(RT). Bits 0:31 of
GPR(RT) are undefined. The remainder is not supplied as a result.

Both operands and the quotient are interpreted as unsigned integers, except that
if Rc=1 the first three bits of CR Field 0 are set by signed comparison of the result
to zero. The quotient is the unique unsigned integer that satisfies

dividend = (quotient × divisor) + r

where 0 ≤ r < divisor.

If an attempt is made to perform the division

<anything> ÷ 0

then the contents of GPR(RT) are undefined as are (if Rc=1) the contents of the LT,
GT, and EQ bits of CR Field 0. In this case, if OE=1 then OV is set to 1.

Special Registers Altered:
CR0  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(if Rc=1)
SO OV. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (if OE=1)

0 1 1 1 1 1 RT RA RB OE 1 1 1 0 0 1 0 1 1 Rc

0 6 11 16 21 31

Programming Note
The 32-bit unsigned remainder of dividing GPR(RA)32:63 by GPR(RB)32:63 can be com-
puted as follows.

    divwu  RT,RA,RB    # RT = quotient
    mullw  RT,RT,RB    # RT = quotient*divisor
    subf   RT,RT,RA    # RT = remainder
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Equivalent

eqv RA,RS,RB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (Rc=0)
eqv. RA,RS,RB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (Rc=1)

result 0:63 ← GPR(RS) ≡ GPR(RB)
if Rc=1 then do

LT ← result 32:63  < 0
GT ← result 32:63  > 0
EQ ← result 32:63  = 0
CR0 ← LT || GT || EQ || SO

GPR(RA) ← result

The contents of GPR(RS) are XORed with the contents of GPR(RB) and the one’s
complement of the result is placed into GPR(RA).

Special Registers Altered:
CR0  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(if Rc=1)

0 1 1 1 1 1 RS RA RB 0 1 0 0 0 1 1 1 0 0 Rc

0 6 11 16 21 31
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Extend Sign (Byte | Halfword | Word)

extsb RA,RS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (SZ=0b01, Rc=0)
extsb. RA,RS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (SZ=0b01, Rc=1)

extsh RA,RS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (SZ=0b00, Rc=0)
extsh. RA,RS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (SZ=0b00, Rc=1)

extsw RA,RS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (SZ=0b10, Rc=0)

if ‘extsb[.]’ then n ← 56
if ‘extsh[.]’ then n ← 48
if ‘extsw’    then n ← 32
if Rc=1 then do

LT ← GPR(RS) n:63  < 0
GT ← GPR(RS) n:63  > 0
EQ ← GPR(RS) n:63  = 0
CR0 ← LT || GT || EQ || SO

s ← GPR(RS) n
GPR(RA) ← ns || GPR(RS) n:63

For extsb[.], the contents of bits 56:63 of GPR(RS) are placed into bits 56:63 of
GPR(RA). Bit 56 of the contents of GPR(RS) is copied into bits 0:55 of GPR(RA). If
Rc=1, CR Field 0 is set to reflect the result.

For extsh[.], the contents of bits 48:63 of GPR(RS) are placed into bits 48:63 of
GPR(RA). Bit 48 of the contents of GPR(RS) is copied into bits 0:47 of GPR(RA). If
Rc=1, CR Field 0 is set to reflect the result.

For extsw, the contents of bits 32:63 of GPR(RS) are placed into the contents of
bits 32:63 of GPR(RA). Bit 32 of the contents of GPR(RS) is copied into bits 0:31 of
GPR(RA). If Rc=1, the instruction form is invalid.

Special Registers Altered:
CR0  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(if Rc=1)

0 1 1 1 1 1 RS RA /// 1 1 1 S Z 1 1 0 1 0 Rc

0 6 11 16 21 31
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Floating Absolute Value

fabs FRT,FRB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (Rc=0)
fabs. FRT,FRB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (Rc=1)

FPR(FRT) ← 0b0 ||FPR(FRB) 1:63

The contents of FPR(FRB) with bit 0 set to zero are placed into FPR(FRT).

An attempt to execute fabs[.] while MSRFP=0 will cause a Floating-Point Unavail-
able interrupt.

Special Registers Altered:
CR1 ← FX || FEX || VX || OX  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(if Rc=1)

1 1 1 1 1 1 FRT /// FRB 0 1 0 0 0 0 1 0 0 0 Rc

0 6 11 16 21 31
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Floating Add [Single]

fadd FRT,FRA,FRB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (P=1, Rc=0)
fadd. FRT,FRA,FRB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (P=1, Rc=1)

fadds FRT,FRA,FRB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (P=0, Rc=0)
fadds. FRT,FRA,FRB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (P=0, Rc=1)

if P=1 then FPR(FRT) ← FPR(FRA) + dp FPR(FRB)
else        FPR(FRT) ← FPR(FRA) + sp  FPR(FRB)

The floating-point operand in FPR(FRA) is added to the floating-point operand in
FPR(FRB).

If the most significant bit of the resultant significand is not 1, the result is nor-
malized. The result is rounded to the target precision under control of the Float-
ing-Point Rounding Control field RN of the Floating-Point Status and Control
Register and placed into FPR(FRT).

Floating-point addition is based on exponent comparison and addition of the two
significands. The exponents of the two operands are compared, and the signifi-
cand accompanying the smaller exponent is shifted right, with its exponent
increased by one for each bit shifted, until the two exponents are equal. The two
significands are then added or subtracted as appropriate, depending on the signs
of the operands, to form an intermediate sum. All 53 bits of the significand as well
as all three guard bits (G, R, and X) enter into the computation.

If a carry occurs, the sum's significand is shifted right one bit position and the
exponent is increased by one.

FPSCRFPRF is set to the class and sign of the result, except for Invalid Operation
Exceptions when FPSCRVE=1.

An attempt to execute fadd[s][.] while MSRFP=0 will cause a Floating-Point
Unavailable interrupt.

Special Registers Altered:
FPRF FR FI FX OX UX XX VXSNAN VXISI
CR1 ← FX || FEX || VX || OX  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(if Rc=1)

1 1 1 P 1 1 FRT FRA FRB /// 1 0 1 0 1 Rc

0 6 11 16 21 26 31
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Floating Convert From Integer Doubleword

fcfid FRT,FRB

sign ← FPR(FRB)0
exp ← 63
frac0:63 ← FPR(FRB)
If frac0:63 = 0 then go to Zero Operand
If sign = 1 then frac0:63 ← ¬frac0:63 + 1
Do while frac0 = 0 /* do loop 0 times if FPR(FRB) = max negative integer */

frac0:63 ← frac1:63 || 0b0
exp ← exp – 1

End

Round Float( sign, exp, frac0:63, FPSCRRN )

If sign = 0 then FPSCRFPRF ← ‘+normal number’
If sign = 1 then FPSCRFPRF ← ‘–normal number’
FPR(FRT)0 ← sign
FPR(FRT)1:11 ← exp + 1023   /* exp + bias */
FPR(FRT)12:63 ← frac1:52
Done

Zero Operand:
FPSCRFR FI ← 0b00
FPSCRFPRF ← ‘+zero’
FPR(FRT) ← 0x0000_0000_0000_0000
Done

Round Float( sign, exp, frac0:63, round_mode ):
inc ← 0
lsb ← frac52
gbit ← frac53
rbit ← frac54
xbit ← frac55:63 > 0
If round_mode = 0b00 then

Do /* comparison ignores u bits */
If sign || lsb || gbit || rbit || xbit = 0bu11uu then inc ← 1
If sign || lsb || gbit || rbit || xbit = 0bu011u then inc ← 1
If sign || lsb || gbit || rbit || xbit = 0bu01u1 then inc ← 1

End
If round_mode = 0b10 then

Do /* comparison ignores u bits */
If sign || lsb || gbit || rbit || xbit = 0b0u1uu then inc ← 1
If sign || lsb || gbit || rbit || xbit = 0b0uu1u then inc ← 1
If sign || lsb || gbit || rbit || xbit = 0b0uuu1 then inc ← 1

End
If round_mode = 0b11 then

Do /* comparison ignores u bits */
If sign || lsb || gbit || rbit || xbit = 0b1u1uu then inc ← 1
If sign || lsb || gbit || rbit || xbit = 0b1uu1u then inc ← 1
If sign || lsb || gbit || rbit || xbit = 0b1uuu1 then inc ← 1

End
frac0:52 ← frac0:52 + inc
If carry_out = 1 then exp ← exp + 1
FPSCRFR ← inc
FPSCRFI ← gbit | rbit | xbit
FPSCRXX ← FPSCRXX | FPSCRFI
Return

The 64-bit signed operand in FPR(FRB) is converted to an infinitely precise float-
ing-point integer. The result of the conversion is rounded to double-precision,
using the rounding mode specified by FPSCRRN, and placed into FPR(FRT).

FPSCRFPRF is set to the class and sign of the result. FPSCRFR is set if the result is
incremented when rounded. FPSCRFI is set if the result is inexact.

1 1 1 1 1 1 FRT /// FRB 1 1 0 1 0 0 1 1 1 0 /

0 6 11 16 21 31
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An attempt to execute fcfid while MSRFP=0 will cause a Floating-Point Unavail-
able interrupt.

Special Registers Altered:
FPRF FR FI FX XX
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Floating Compare

fcmpu BF,FRA,FRB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (U=0)
fcmpo BF,FRA,FRB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (U=1)

if FPR(FRA) is a NaN or
   FPR(FRB) is a NaN then        c ← 0b0001
else if FPR(FRA) < FPR(FRB) then c ← 0b1000
else if FPR(FRA) > FPR(FRB) then c ← 0b0100
else                             c ← 0b0010
FPCC ← c
CR4×BF:4 ×BF+3 ← c
if ‘fcmpu’ then do
   if FPR(FRA) is a SNaN or FPR(FRB) is a SNaN then
      VXSNAN ← 1
if ‘fcmpo’ then do
   if FPR(FRA) is a SNaN or FPR(FRB) is a SNaN then do
      VXSNAN ← 1
      if VE=0 then VXVC ← 1
   else if FPR(FRA) is a QNaN or FPR(FRB) is a QNaN then VXVC ← 1

The floating-point operand in FPR(FRA) is compared to the floating-point operand
in FPR(FRB). The result of the compare is placed into CR field BF and the FPCC.

If either of the operands is a NaN, either quiet or signaling, then CR field BF and
the FPCC are set to reflect unordered.

If fcmpu then if either of the operands is a Signaling NaN, then VXSNAN is set.

If fcmpo then do the following:
If either of the operands is a Signaling NaN and Invalid Operation is disabled
(VE=0), VXVC is set and VXSNAN is set. If neither operand is a Signaling NaN
but at least one operand is a Quiet NaN, then VXVC is set.

An attempt to execute fcmpo or fcmpu while MSRFP=0 will cause a Floating-Point
Unavailable interrupt.

Special Registers Altered:
CR field BF
FPCC FX VXSNAN
VXVC  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (if fcmpo)

1 1 1 1 1 1 BF // FRA FRB 0 0 0 0 U 0 0 0 0 0 /

0 6 9 11 16 21 31
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Floating Convert To Integer Doubleword

fctid FRT,FRB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (Z=0)
fctidz FRT,FRB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (Z=1)

if ‘fctid[.]’  then round_mode ← FPSCRRN
if ‘fctidz[.]’ then round_mode ← 0b01
sign ← FPR(FRB)0
If FPR(FRB)1:11 = 2047 and FPR(FRB)12:63 = 0 then goto Infinity Operand
If FPR(FRB)1:11 = 2047 and FPR(FRB)12 = 0 then goto SNaN Operand
If FPR(FRB)1:11 = 2047 and FPR(FRB)12 = 1 then goto QNaN Operand
If FPR(FRB)1:11 > 1086 then goto Large Operand
If FPR(FRB)1:11 > 0 then exp ← FPR(FRB)1:11 – 1023   /* exp – bias */
If FPR(FRB)1:11 = 0 then exp ← –1022

/* normal; need leading 0 for later complement */
If FPR(FRB)1:11 > 0 then frac0:64 ← 0b01 || FPR(FRB)12:63 || 110

/* denormal */
If FPR(FRB)1:11 = 0 then frac0:64 ← 0b00 || FPR(FRB)12:63 || 110

gbit || rbit || xbit ← 0b000
Do i=1,63–exp   /* do the loop 0 times if exp = 63 */

frac0:64 || gbit || rbit || xbit ← 0b0 || frac0:64 || gbit || (rbit | xbit)
End

Round Integer( sign, frac0:64, gbit, rbit, xbit, round_mode )

/* needed leading 0 for –264 < FPR(FRB) < –263 */
If sign=1 then frac0:64 ← ¬frac0:64 + 1

If frac0:64 > 263–1 then goto Large Operand
If frac0:64 < –263 then goto Large Operand

FPSCRXX ← FPSCRXX | FPSCRFI
FPSCRFPRF ← undefined
FPR(FRT) ← frac1:64
Done

Round Integer( sign,frac0:64, gbit, rbit, xbit, round_mode ):
inc ← 0
If round_mode = 0b00 then /* comparison ignores u bits */

Do
If sign || frac64 || gbit || rbit || xbit = 0bu11uu then inc ← 1
If sign || frac64 || gbit || rbit || xbit = 0bu011u then inc ← 1
If sign || frac64 || gbit || rbit || xbit = 0bu01u1 then inc ← 1

End

If round_mode = 0b10 then /* comparison ignores u bits */
Do

If sign || frac64 || gbit || rbit || xbit = 0b0u1uu then inc ← 1
If sign || frac64 || gbit || rbit || xbit = 0b0uu1u then inc ← 1
If sign || frac64 || gbit || rbit || xbit = 0b0uuu1 then inc ← 1

End
If round_mode = 0b11 then /* comparison ignores u bits */

Do
If sign || frac64 || gbit || rbit || xbit = 0b1u1uu then inc ← 1
If sign || frac64 || gbit || rbit || xbit = 0b1uu1u then inc ← 1
If sign || frac64 || gbit || rbit || xbit = 0b1uuu1 then inc ← 1

End

frac0:64 ← frac0:64 + inc
FPSCRFR ← inc
FPSCRFI ← gbit | rbit | xbit
Return

Infinity Operand:
FPSCRFR FI VXCVI ← 0b001
If FPSCRVE = 0 then Do

If sign = 0 then FPR(FRT) ← 0x7FFF_FFFF_FFFF_FFFF

1 1 1 1 1 1 FRT /// FRB 1 1 0 0 1 0 1 1 1 Z /

0 6 11 16 21 31
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If sign = 1 then FPR(FRT) ← 0x8000_0000_0000_0000
FPSCRFPRF ← undefined

End
Done

SNaN Operand:
FPSCRFR FI VXSNAN VXCVI ← 0b0011
If FPSCRVE = 0 then Do

FPR(FRT) ← 0x8000_0000_0000_0000
FPSCRFPRF ← undefined

End
Done

QNaN Operand:
FPSCRFR FI VXCVI ← 0b001
If FPSCRVE = 0 then Do

FPR(FRT) ← 0x8000_0000_0000_0000
FPSCRFPRF ← undefined

End
Done

Large Operand:
FPSCRFR FI VXCVI ← 0b001
If FPSCRVE = 0 then Do

If sign = 0 then FPR(FRT) ← 0x7FFF_FFFF_FFFF_FFFF
If sign = 1 then FPR(FRT) ← 0x8000_0000_0000_0000
FPSCRFPRF ← undefined

End
Done

For fctid or fctid., the rounding mode is specified by FPSCRRN.
For fctidz or fctidz., the rounding mode used  is Round toward Zero.

The floating-point operand in FPR(FRB) is converted to a 64-bit signed integer,
using the rounding mode specified by the instruction, and placed into FPR(FRT).

If the floating-point operand in FPR(FRB) is greater than 263–1, then
0x7FFF_FFFF_FFFF_FFFF is placed into FPR(FRT). If the floating-point operand
in FPR(FRB) is less than –263, then 0x8000_0000_0000_0000 is placed into
FPR(FRT).

Except for enabled Invalid Operation Exceptions, FPSCRFPRF is undefined.
FPSCRFR is set if the result is incremented when rounded. FPSCRFI is set if the
result is inexact.

An attempt to execute fctid[z] while MSRFP=0 will cause a Floating-Point Unavail-
able interrupt.

Special Registers Altered:
FPRF (undefined) FR FI FX XX VXSNAN VXCVI
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Floating Convert To Integer Word

fctiw FRT,FRB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (Z=0, Rc=0)
fctiw. FRT,FRB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (Z=0, Rc=1)

fctiwz FRT,FRB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (Z=1, Rc=0)
fctiwz. FRT,FRB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (Z=1, Rc=1)

if ‘fctiw[.]’  then round_mode ← FPSCRRN
if ‘fctiwz[.]’ then round_mode ← 0b01
sign ← FPR(FRB)0
If FPR(FRB)1:11 = 2047 and FPR(FRB)12:63 = 0 then goto Infinity Operand
If FPR(FRB)1:11 = 2047 and FPR(FRB)12 = 0 then goto SNaN Operand
If FPR(FRB)1:11 = 2047 and FPR(FRB)12 = 1 then goto QNaN Operand
If FPR(FRB)1:11 > 1086 then goto Large Operand
If FPR(FRB)1:11 > 0 then exp ← FPR(FRB)1:11 – 1023   /* exp – bias */
If FPR(FRB)1:11 = 0 then exp ← –1022

/* normal; need leading 0 for later complement */
If FPR(FRB)1:11 > 0 then frac0:64 ← 0b01 || FPR(FRB)12:63 || 110

/* denormal */
If FPR(FRB)1:11 = 0 then frac0:64 ← 0b00 || FPR(FRB)12:63 || 110
gbit || rbit || xbit ← 0b000
Do i=1,63–exp   /* do the loop 0 times if exp = 63 */

frac0:64 || gbit || rbit || xbit ← 0b0 || frac0:64 || gbit || (rbit | xbit)
End

Round Integer( sign, frac0:64, gbit, rbit, xbit, round_mode )

/* needed leading 0 for –264 < FPR(FRB) < –263 */
If sign=1 then frac0:64 ← ¬frac0:64 + 1

If frac0:64 > 231–1 then goto Large Operand
If frac0:64 < –231 then goto Large Operand

FPSCRXX ← FPSCRXX | FPSCRFI

FPR(FRT) ← 0xuuuu_uuuu || frac33:64 /* u is undefined hex digit */
FPSCRFPRF ← undefined
Done

Round Integer( sign, frac0:64, gbit, rbit, xbit, round_mode ):
inc ← 0
If round_mode = 0b00 then /* comparison ignores u bits */

Do
If sign || frac64 || gbit || rbit || xbit = 0bu11uu then inc ← 1
If sign || frac64 || gbit || rbit || xbit = 0bu011u then inc ← 1
If sign || frac64 || gbit || rbit || xbit = 0bu01u1 then inc ← 1

End
If round_mode = 0b10 then /* comparison ignores u bits */

Do
If sign || frac64 || gbit || rbit || xbit = 0b0u1uu then inc ← 1
If sign || frac64 || gbit || rbit || xbit = 0b0uu1u then inc ← 1
If sign || frac64 || gbit || rbit || xbit = 0b0uuu1 then inc ← 1

End

If round_mode = 0b11 then /* comparison ignores u bits */
Do

If sign || frac64 || gbit || rbit || xbit = 0b1u1uu then inc ← 1
If sign || frac64 || gbit || rbit || xbit = 0b1uu1u then inc ← 1
If sign || frac64 || gbit || rbit || xbit = 0b1uuu1 then inc ← 1

End

frac0:64 ← frac0:64 + inc
FPSCRFR ← inc
FPSCRFI ← gbit | rbit | xbit
Return

1 1 1 1 1 1 FRT /// FRB 0 0 0 0 0 0 1 1 1 Z Rc

0 6 11 16 21 31
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Infinity Operand:
FPSCRFR FI VXCVI ← 0b001
If FPSCRVE = 0 then Do /* u is undefined hex digit */

If sign = 0 then FPR(FRT) ← 0xuuuu_uuuu_7FFF_FFFF
If sign = 1 then FPR(FRT) ← 0xuuuu_uuuu_8000_0000
FPSCRFPRF ← undefined

End
Done

SNaN Operand:
FPSCRFR FI VXSNAN VXCVI ← 0b0011
If FPSCRVE = 0 then Do    /* u is undefined hex digit */

FPR(FRT) ← 0xuuuu_uuuu_8000_0000
FPSCRFPRF ← undefined

End
Done

QNaN Operand:
FPSCRFR FI VXCVI ← 0b001
If FPSCRVE = 0 then Do /* u is undefined hex digit */

FPR(FRT) ← 0xuuuu_uuuu_8000_0000
FPSCRFPRF ← undefined

End
Done

Large Operand:
FPSCRFR FI VXCVI ← 0b001
If FPSCRVE = 0 then Do /* u is undefined hex digit */

If sign = 0 then FPR(FRT) ← 0xuuuu_uuuu_7FFF_FFFF
If sign = 1 then FPR(FRT) ← 0xuuuu_uuuu_8000_0000
FPSCRFPRF ← undefined

End
Done

For fctiw or fctiw., the rounding mode is specified by FPSCRRN.
For fctiwz or fctiwz., the rounding mode used  is Round toward Zero.

The floating-point operand in FPR(FRB) is converted to a 32-bit signed integer,
using the rounding mode specified by the instruction, and placed into bits 32:63
of FPR(FRT). Bits 0:31 of FPR(FRT) are undefined.

If the operand in FPR(FRB) is greater than 231–1, then bits 32:63 of FPR(FRT) are
set to 0x7FFF_FFFF. If the operand in FPR(FRB) is less than –231, then bits 32:63
of FPR(FRT) are set to 0x8000_0000.

Except for enabled Invalid Operation Exceptions, FPSCRFPRF is undefined.
FPSCRFR is set if the result is incremented when rounded. FPSCRFI is set if the
result is inexact.

An attempt to execute fctiw[z][.] while MSRFP=0 will cause a Floating-Point
Unavailable interrupt.

Special Registers Altered:
FPRF (undefined) FR FI FX XX VXSNAN VXCVI
CR1 ← FX || FEX || VX || OX  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(if Rc=1)
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Floating Divide [Single]

fdiv FRT,FRA,FRB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (P=1, Rc=0)
fdiv. FRT,FRA,FRB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (P=1, Rc=1)

fdivs FRT,FRA,FRB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (P=0, Rc=0)
fdivs. FRT,FRA,FRB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (P=0, Rc=1)

if P=1 then FPR(FRT) ← FPR(FRA) ÷dp FPR(FRB)
else        FPR(FRT) ← FPR(FRA) ÷sp  FPR(FRB)

The floating-point operand in FPR(FRA) is divided by the floating-point operand in
FPR(FRB). The remainder is not supplied as a result.

If the most significant bit of the resultant significand is not 1, the result is nor-
malized. The result is rounded to the target precision under control of the Float-
ing-Point Rounding Control field RN of the Floating-Point Status and Control
Register and placed into FPR(FRT).

Floating-point division is based on exponent subtraction and division of the signif-
icands.

FPSCRFPRF is set to the class and sign of the result, except for Invalid Operation
Exceptions when FPSCRVE=1 and Zero Divide Exceptions when FPSCRZE=1.

An attempt to execute fdiv[s][.] while MSRFP=0 will cause a Floating-Point
Unavailable interrupt.

Special Registers Altered:
FPRF FR FI FX OX UX ZX XX VXSNAN VXIDI VXZDZ
CR1 ← FX || FEX || VX || OX  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(if Rc=1)

1 1 1 P 1 1 FRT FRA FRB /// 1 0 0 1 0 Rc

0 6 11 16 21 26 31
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Floating Multiply-Add [Single]

fmadd FRT,FRA,FRC,FRB  . . . . . . . . . . . . . . . . . . . . . . . . . . (P=1, Rc=0)
fmadd. FRT,FRA,FRC,FRB  . . . . . . . . . . . . . . . . . . . . . . . . . . (P=1, Rc=1)

fmadds FRT,FRA,FRC,FRB  . . . . . . . . . . . . . . . . . . . . . . . . . . (P=0, Rc=0)
fmadds. FRT,FRA,FRC,FRB  . . . . . . . . . . . . . . . . . . . . . . . . . . (P=0, Rc=1)

if P=1 then FPR(FRT) ← [FPR(FRA) ×fp  FPR(FRC)] + dp FPR(FRB)
else        FPR(FRT) ← [FPR(FRA) ×fp  FPR(FRC)] + sp  FPR(FRB)

The floating-point operand in FPR(FRA) is multiplied by the floating-point operand
in FPR(FRC). The floating-point operand in FPR(FRB) is added to this intermediate
result.

If the most significant bit of the resultant significand is not 1, the result is nor-
malized. The result is rounded to the target precision under control of the Float-
ing-Point Rounding Control field RN of the Floating-Point Status and Control
Register and placed into FPR(FRT).

FPSCRFPRF is set to the class and sign of the result, except for Invalid Operation
Exceptions when FPSCRVE=1.

An attempt to execute fmadd[s][.] while MSRFP=0 will cause a Floating-Point
Unavailable interrupt.

Special Registers Altered:
FPRF FR FI FX OX UX XX VXSNAN VXISI VXIMZ
CR1 ← FX || FEX || VX || OX  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(if Rc=1)

1 1 1 P 1 1 FRT FRA FRB FRC 1 1 1 0 1 Rc

0 6 11 16 21 26 31
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Floating Move Register

fmr FRT,FRB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (Rc=0)
fmr. FRT,FRB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (Rc=1)

FPR(FRT) ← FPR(FRB)

The contents of FPR(FRB) are placed into FPR(FRT).

An attempt to execute fmr[.] while MSRFP=0 will cause a Floating-Point Unavail-
able interrupt.

Special Registers Altered:
CR1 ← FX || FEX || VX || OX  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(if Rc=1)

1 1 1 1 1 1 FRT /// FRB 0 0 0 1 0 0 1 0 0 0 Rc

0 6 11 16 21 31
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Floating Multiply-Subtract [Single]

fmsub FRT,FRA,FRC,FRB  . . . . . . . . . . . . . . . . . . . . . . . . . . (P=1, Rc=0)
fmsub. FRT,FRA,FRC,FRB  . . . . . . . . . . . . . . . . . . . . . . . . . . (P=1, Rc=1)

fmsubs FRT,FRA,FRC,FRB  . . . . . . . . . . . . . . . . . . . . . . . . . . (P=0, Rc=0)
fmsubs. FRT,FRA,FRC,FRB  . . . . . . . . . . . . . . . . . . . . . . . . . . (P=0, Rc=1)

if P=1 then FPR(FRT) ← [FPR(FRA) ×fp  FPR(FRC)] - dp FPR(FRB)
else        FPR(FRT) ← [FPR(FRA) ×fp  FPR(FRC)] - sp  FPR(FRB)

The floating-point operand in FPR(FRA) is multiplied by the floating-point operand
in FPR(FRC). The floating-point operand in FPR(FRB) is subtracted from this
intermediate result.

If the most significant bit of the resultant significand is not 1, the result is nor-
malized. The result is rounded to the target precision under control of the Float-
ing-Point Rounding Control field RN of the Floating-Point Status and Control
Register and placed into FPR(FRT).

FPSCRFPRF is set to the class and sign of the result, except for Invalid Operation
Exceptions when FPSCRVE=1.

An attempt to execute fmsub[s][.] while MSRFP=0 will cause a Floating-Point
Unavailable interrupt.

Special Registers Altered:
FPRF FR FI FX OX UX XX VXSNAN VXISI VXIMZ
CR1 ← FX || FEX || VX || OX  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(if Rc=1)

1 1 1 P 1 1 FRT FRA FRB FRC 1 1 1 0 0 Rc

0 6 11 16 21 26 31
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Floating Multiply [Single]

fmul FRT,FRA,FRC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (P=1, Rc=0)
fmul. FRT,FRA,FRC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (P=1, Rc=1)

fmuls FRT,FRA,FRC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (P=0, Rc=0)
fmuls. FRT,FRA,FRC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (P=0, Rc=1)

if P=1 then FPR(FRT) ← FPR(FRA) ×dp FPR(FRC)
else        FPR(FRT) ← FPR(FRA) ×sp  FPR(FRC)

The floating-point operand in FPR(FRA) is multiplied by the floating-point operand
in FPR(FRC).

If the most significant bit of the resultant significand is not 1, the result is nor-
malized. The result is rounded to the target precision under control of the Float-
ing-Point Rounding Control field RN of the Floating-Point Status and Control
Register and placed into FPR(FRT).

Floating-point multiplication is based on exponent addition and multiplication of
the significands.

FPSCRFPRF is set to the class and sign of the result, except for Invalid Operation
Exceptions when FPSCRVE=1.

An attempt to execute fmul[s][.] while MSRFP=0 will cause a Floating-Point
Unavailable interrupt.

Special Registers Altered:
FPRF FR FI FX OX UX XX VXSNAN VXIMZ
CR1 ← FX || FEX || VX || OX  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(if Rc=1)

1 1 1 P 1 1 FRT FRA /// FRC 1 1 0 0 1 Rc

0 6 11 16 21 26 31
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Floating Negative Absolute Value

fnabs FRT,FRB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (Rc=0)
fnabs. FRT,FRB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (Rc=1)

FPR(FRT) ← 0b1 ||FPR(FRB) 1:63

The contents of FPR(FRB) with bit 0 set to one are placed into FPR(FRT).

An attempt to execute fnabs[.] while MSRFP=0 will cause a Floating-Point Unavail-
able interrupt.

Special Registers Altered:
CR1 ← FX || FEX || VX || OX  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(if Rc=1)

Floating Negate

fneg FRT,FRB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (Rc=0)
fneg. FRT,FRB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (Rc=1)

FPR(FRT) ← ¬FPR(FRB) 0||FPR(FRB) 1:63

The contents of FPR(FRB) with bit 0 inverted are placed into FPR(FRT).

An attempt to execute fneg[.] while MSRFP=0 will cause a Floating-Point Unavail-
able interrupt.

Special Registers Altered:
CR1 ← FX || FEX || VX || OX  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(if Rc=1)

1 1 1 1 1 1 FRT /// FRB 0 0 1 0 0 0 1 0 0 0 Rc

0 6 11 16 21 31

1 1 1 1 1 1 FRT /// FRB 0 0 0 0 1 0 1 0 0 0 Rc
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Floating Negative Multiply-Add [Single]

fnmadd FRT,FRA,FRC,FRB  . . . . . . . . . . . . . . . . . . . . . . . . . . (P=1, Rc=0)
fnmadd. FRT,FRA,FRC,FRB  . . . . . . . . . . . . . . . . . . . . . . . . . . (P=1, Rc=1)

fnmadds FRT,FRA,FRC,FRB  . . . . . . . . . . . . . . . . . . . . . . . . . . (P=0, Rc=0)
fnmadds. FRT,FRA,FRC,FRB  . . . . . . . . . . . . . . . . . . . . . . . . . . (P=0, Rc=1)

if P=1 then FPR(FRT) ← -([FPR(FRA) ×fp  FPR(FRC)] + dp FPR(FRB))
else        FPR(FRT) ← -([FPR(FRA) ×fp  FPR(FRC)] + sp  FPR(FRB))

The floating-point operand in FPR(FRA) is multiplied by the floating-point operand
in FPR(FRC). The floating-point operand in FPR(FRB) is added to this intermediate
result.

If the most significant bit of the resultant significand is not 1, the result is nor-
malized. The result is rounded to the target precision under control of the Float-
ing-Point Rounding Control field RN of the Floating-Point Status and Control
Register, then negated and placed into FPR(FRT).

This instruction produces the same result as would be obtained by using the
Floating Multiply-Add instruction and then negating the result, with the following
exceptions.

• QNaNs propagate with no effect on their ‘sign’ bit.

• QNaNs that are generated as the result of a disabled Invalid Operation Excep-
tion have a ‘sign’ bit of 0.

• SNaNs that are converted to QNaNs as the result of a disabled Invalid Opera-
tion Exception retain the ‘sign’ bit of the SNaN.

FPSCRFPRF is set to the class and sign of the result, except for Invalid Operation
Exceptions when FPSCRVE=1.

An attempt to execute fnmadd[s][.] while MSRFP=0 will cause a Floating-Point
Unavailable interrupt.

Special Registers Altered:
FPRF FR FI FX OX UX XX  VXSNAN VXISI VXIMZ
CR1 ← FX || FEX || VX || OX  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(if Rc=1)

1 1 1 P 1 1 FRT FRA FRB FRC 1 1 1 1 1 Rc

0 6 11 16 21 26 31
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Floating Negative Multiply-Subtract [Single]

fnmsub FRT,FRA,FRC,FRB  . . . . . . . . . . . . . . . . . . . . . . . . . . (P=1, Rc=0)
fnmsub. FRT,FRA,FRC,FRB  . . . . . . . . . . . . . . . . . . . . . . . . . . (P=1, Rc=1)

fnmsubs FRT,FRA,FRC,FRB  . . . . . . . . . . . . . . . . . . . . . . . . . . (P=0, Rc=0)
fnmsubs. FRT,FRA,FRC,FRB  . . . . . . . . . . . . . . . . . . . . . . . . . . (P=0, Rc=1)

if P=1 then FPR(FRT) ← -([FPR(FRA) ×fp  FPR(FRC)] – dp FPR(FRB))
else        FPR(FRT) ← -([FPR(FRA) ×fp  FPR(FRC)] – sp  FPR(FRB))

The floating-point operand in FPR(FRA) is multiplied by the floating-point operand
in FPR(FRC). The floating-point operand in FPR(FRB) is subtracted from this
intermediate result.

If the most significant bit of the resultant significand is not 1, the result is nor-
malized. The result is rounded to the target precision under control of the Float-
ing-Point Rounding Control field RN of the Floating-Point Status and Control
Register, then negated and placed into FPR(FRT).

This instruction produces the same result as would be obtained by using the
Floating Multiply-Subtract instruction and then negating the result, with the fol-
lowing exceptions.

• QNaNs propagate with no effect on their ‘sign’ bit.

• QNaNs that are generated as the result of a disabled Invalid Operation Excep-
tion have a ‘sign’ bit of 0.

• SNaNs that are converted to QNaNs as the result of a disabled Invalid Opera-
tion Exception retain the ‘sign’ bit of the SNaN.

FPSCRFPRF is set to the class and sign of the result, except for Invalid Operation
Exceptions when FPSCRVE=1.

An attempt to execute fnmsub[s][.] while MSRFP=0 will cause a Floating-Point
Unavailable interrupt.

Special Registers Altered:
FPRF FR FI FX OX UX XX  VXSNAN VXISI VXIMZ
CR1 ← FX || FEX || VX || OX  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(if Rc=1)

1 1 1 P 1 1 FRT FRA FRB FRC 1 1 1 1 0 Rc

0 6 11 16 21 26 31
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Floating Reciprocal Estimate Single

fres FRT,FRB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (Rc=0)
fres. FRT,FRB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (Rc=1)

FPR(FRT) ← FPReciprocalEstimate( FPR(FRB) )

A single-precision estimate of the reciprocal of the floating-point operand in
FPR(FRB) is placed into FPR(FRT). The estimate placed into FPR(FRT) is correct to
a precision of one part in 256 of the reciprocal of (FRB), i.e.,

where x is the initial value in FPR(FRB). Note that the value placed into FPR(FRT)
may vary between implementations, and between different executions on the
same implementation.

Operation with various special values of the operand is summarized below.

FPSCRFPRF is set to the class and sign of the result, except for Invalid Operation
Exceptions when FPSCRVE=1 and Zero Divide Exceptions when FPSCRZE=1.

An attempt to execute fres[.] while MSRFP=0 will cause a Floating-Point Unavail-
able interrupt.

Special Registers Altered:
FPRF FR (undefined) FI (undefined)
FX OX UX ZX VXSNAN
CR1 ← FX || FEX || VX || OX  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(if Rc=1)

1 1 1 0 1 1 FRT /// FRB /// 1 1 0 0 0 Rc

0 6 11 16 21 26 31

Operand Result Exception

-∞ -0 None

-0 -∞1 ZX

+0 +∞1 ZX

+∞ +0 None

SNaN QNaN2 VXSNAN

QNaN QNaN None
1 No result if FPSCRZE = 1.
2 No result if FPSCRVE = 1.

Architecture Note
No double-precision version of this instruction is provided because graphics applica-
tions are expected to need only the single-precision version, and no other important
performance-critical applications are expected to need a double-precision version.

estimate - 1
x
---

1
x
---

-----------------------------------
1

256
---------≤
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Floating Round to Single-Precision

frsp FRT,FRB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (Rc=0)
frsp. FRT,FRB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (Rc=1)

If FPR(FRB)1:11 < 897 and FPR(FRB)1:63 > 0 then Do
If FPSCRUE = 0 then goto Disabled Exponent Underflow
If FPSCRUE = 1 then goto Enabled Exponent Underflow

If FPR(FRB)1:11 > 1150 and FPR(FRB)1:11 < 2047 then Do
If FPSCROE = 0 then goto Disabled Exponent Overflow
If FPSCROE = 1 then goto Enabled Exponent Overflow

If FPR(FRB)1:11 > 896 and FPR(FRB)1:11 < 1151 then goto Normal Operand
If FPR(FRB)1:63 = 0 then goto Zero Operand
If FPR(FRB)1:11 = 2047 then Do

If FPR(FRB)12:63 = 0 then goto Infinity Operand
If FPR(FRB)12 = 1 then goto QNaN Operand
If FPR(FRB)12 = 0 and FPR(FRB)13:63 > 0 then goto SNaN Operand

Disabled Exponent Underflow:
sign ← FPR(FRB)0
If FPR(FRB)1:11 = 0 then Do

exp ← –1022
frac0:52 ← 0b0 || FPR(FRB)12:63

If FPR(FRB)1:11 > 0 then Do
exp ← FPR(FRB)1:11 – 1023
frac0:52 ← 0b1 || FPR(FRB)12:63

Denormalize operand:
G || R || X ← 0b000
Do while exp < –126

exp ← exp + 1
frac0:52 || G || R || X ← 0b0 || frac0:52 || G || (R | X)

FPSCRUX ← (frac24:52 || G || R || X) > 0
Round Single(sign,exp,frac0:52,G,R,X)
FPSCRXX ← FPSCRXX | FPSCRFI
If frac0:52 = 0 then Do

FPR(FRT)0 ← sign
FPR(FRT)1:63 ← 0
If sign = 0 then FPSCRFPRF ← ‘+zero’
If sign = 1 then FPSCRFPRF ← ‘–zero’

If frac0:52 > 0 then Do
If frac0 = 1 then Do

If sign = 0 then FPSCRFPRF ← ‘+normal number’
If sign = 1 then FPSCRFPRF ← ‘–normal number’

If frac0 = 0 then Do
If sign = 0 then FPSCRFPRF ← ‘+denormalized number’
If sign = 1 then FPSCRFPRF ← ‘–denormalized number’

Normalize operand:
Do while frac0 = 0

exp ← exp–1
frac0:52 ← frac1:52 || 0b0

FPR(FRT)0 ← sign
FPR(FRT)1:11 ← exp + 1023
FPR(FRT)12:63 ← frac1:52

Done

Enabled Exponent Underflow:
FPSCRUX ← 1
sign ← FPR(FRB)0
If FPR(FRB)1:11 = 0 then Do

exp ← –1022
frac0:52 ← 0b0 || FPR(FRB)12:63

1 1 1 1 1 1 FRT /// FRB 0 0 0 0 0 0 1 1 0 0 Rc

0 6 11 16 21 31
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If FPR(FRB)1:11 > 0 then Do
exp ← FPR(FRB)1:11 – 1023
frac0:52 ← 0b1 || FPR(FRB)12:63

Normalize operand:
Do while frac0 = 0

exp ← exp – 1
frac0:52 ← frac1:52 || 0b0

Round Single(sign,exp,frac0:52,0,0,0)
FPSCRXX ← FPSCRXX | FPSCRFI
exp ← exp + 192
FPR(FRT)0 ← sign
FPR(FRT)1:11 ← exp + 1023
FPR(FRT)12:63 ← frac1:52
If sign = 0 then FPSCRFPRF ← ‘+normal number’
If sign = 1 then FPSCRFPRF ← ‘–normal number’
Done

Disabled Exponent Overflow
FPSCROX ← 1
If FPSCRRN = 0b00 then Do               /* Round to Nearest */

If FPR(FRB)0 = 0 then FPR(FRT) ← 0x7FF0_0000_0000_0000
If FPR(FRB)0 = 1 then FPR(FRT) ← 0xFFF0_0000_0000_0000
If FPR(FRB)0 = 0 then FPSCRFPRF ← ‘+infinity’
If FPR(FRB)0 = 1 then FPSCRFPRF ← ‘–infinity’

If FPSCRRN = 0b01 then Do                /* Round toward Zero */
If FPR(FRB)0 = 0 then FPR(FRT) ← 0x47EF_FFFF_E000_0000
If FPR(FRB)0 = 1 then FPR(FRT) ← 0xC7EF_FFFF_E000_0000
If FPR(FRB)0 = 0 then FPSCRFPRF ← ‘+normal number’
If FPR(FRB)0 = 1 then FPSCRFPRF ← ‘–normal number’

If FPSCRRN = 0b10 then Do                /* Round toward +Infinity */
If FPR(FRB)0 = 0 then FPR(FRT) ← 0x7FF0_0000_0000_0000
If FPR(FRB)0 = 1 then FPR(FRT) ← 0xC7EF_FFFF_E000_0000
If FPR(FRB)0 = 0 then FPSCRFPRF ← ‘+infinity’
If FPR(FRB)0 = 1 then FPSCRFPRF ← ‘–normal number’

If FPSCRRN = 0b11 then Do                /* Round toward –Infinity */
If FPR(FRB)0 = 0 then FPR(FRT) ← 0x47EF_FFFF_E000_0000
If FPR(FRB)0 = 1 then FPR(FRT) ← 0xFFF0_0000_0000_0000
If FPR(FRB)0 = 0 then FPSCRFPRF ← ‘+normal number’
If FPR(FRB)0 = 1 then FPSCRFPRF ← ‘–infinity’

FPSCRFR ← undefined
FPSCRFI ← 1
FPSCRXX ← 1
Done

Enabled Exponent Overflow:
sign ← FPR(FRB)0
exp ← FPR(FRB)1:11 – 1023
frac0:52 ← 0b1 || FPR(FRB)12:63
Round Single(sign,exp,frac0:52,0,0,0)
FPSCRXX ← FPSCRXX | FPSCRFI

Enabled Overflow:
FPSCROX ← 1
exp ← exp – 192
FPR(FRT)0 ← sign
FPR(FRT)1:11 ← exp + 1023
FPR(FRT)12:63 ← frac1:52
If sign = 0 then FPSCRFPRF ← ‘+normal number’
If sign = 1 then FPSCRFPRF ← ‘–normal number’
Done

Zero Operand:
FPR(FRT) ← FPR(FRB)
If FPR(FRB)0 = 0 then FPSCRFPRF ← ‘+zero’
If FPR(FRB)0 = 1 then FPSCRFPRF ← ‘–zero’
FPSCRFR FI ← 0b00
Done

Infinity Operand:
FPR(FRT) ← FPR(FRB)
If FPR(FRB)0 = 0 then FPSCRFPRF ← ‘+infinity’
If FPR(FRB)0 = 1 then FPSCRFPRF ← ‘–infinity’
FPSCRFR FI ← 0b00
Done
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QNaN Operand:
FPR(FRT) ← FPR(FRB)0:34 || 290
FPSCRFPRF ← ‘QNaN’
FPSCRFR FI ← 0b00
Done

SNaN Operand:
FPSCRVXSNAN ← 1
If FPSCRVE = 0 then Do

FPR(FRT)0:11 ← FPR(FRB)0:11
FPR(FRT)12 ← 1
FPR(FRT)13:63 ← FPR(FRB)13:34 || 290
FPSCRFPRF ← ‘QNaN’

FPSCRFR FI ← 0b00
Done

Normal Operand:
sign ← FPR(FRB)0
exp ← FPR(FRB)1:11 – 1023
frac0:52 ← 0b1 || FPR(FRB)12:63
Round Single(sign,exp,frac0:52,0,0,0)
FPSCRXX ← FPSCRXX | FPSCRFI
If exp > 127 and FPSCROE = 0 then go to Disabled Exponent Overflow
If exp > 127 and FPSCROE = 1 then go to Enabled Overflow
FPR(FRT)0 ← sign
FPR(FRT)1:11 ← exp + 1023
FPR(FRT)12:63 ← frac1:52
If sign = 0 then FPSCRFPRF ← ‘+normal number’
If sign = 1 then FPSCRFPRF ← ‘–normal number’
Done

Round Single(sign,exp,frac0:52,G,R,X):
inc ← 0
lsb ← frac23
gbit ← frac24
rbit ← frac25
xbit ← (frac26:52||G||R||X)≠0
If FPSCRRN = 0b00 then Do /* comparison ignores u bits */

If sign || lsb || gbit || rbit || xbit = 0bu11uu then inc ← 1
If sign || lsb || gbit || rbit || xbit = 0bu011u then inc ← 1
If sign || lsb || gbit || rbit || xbit = 0bu01u1 then inc ← 1

If FPSCRRN = 0b10 then Do /* comparison ignores u bits */
If sign || lsb || gbit || rbit || xbit = 0b0u1uu then inc ← 1
If sign || lsb || gbit || rbit || xbit = 0b0uu1u then inc ← 1
If sign || lsb || gbit || rbit || xbit = 0b0uuu1 then inc ← 1

If FPSCRRN = 0b11 then Do /* comparison ignores u bits */
If sign || lsb || gbit || rbit || xbit = 0b1u1uu then inc ← 1
If sign || lsb || gbit || rbit || xbit = 0b1uu1u then inc ← 1
If sign || lsb || gbit || rbit || xbit = 0b1uuu1 then inc ← 1

frac0:23 ← frac0:23 + inc
If carry_out = 1 then Do

frac0:23 ← 0b1 || frac0:22
exp ← exp + 1

frac24:52 ← 290
FPSCRFR ← inc
FPSCRFI ← gbit | rbit | xbit
Return

The floating-point operand in FPR(FRB) is rounded to single-precision, using the
rounding mode specified by FPSCRRN, and placed into FPR(FRT).

FPSCRFPRF is set to the class and sign of the result, except for Invalid Operation
Exceptions when FPSCRVE=1.

An attempt to execute frsp[.] while MSRFP=0 will cause a Floating-Point Unavail-
able interrupt.

Special Registers Altered:
FPRF FR FI FX OX UX XX VXSNAN
CR1 ← FX || FEX || VX || OX  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(if Rc=1)
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Floating Reciprocal Square Root Estimate

frsqrte FRT,FRB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (Rc=0)
frsqrte. FRT,FRB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (Rc=1)

FPR(FRT) ← FPReciprocalSquareRootEstimate( FPR(FRB) )

A double-precision estimate of the reciprocal of the square root of the floating-
point operand in FPR(FRB) is placed into FPR(FRT). The estimate placed into
FPR(FRT) is correct to a precision of one part in 32 of the reciprocal of the square
root of (FRB), i.e.,

where x is the initial value in FPR(FRB). Note that the value placed into FPR(FRT)
may vary between implementations, and between different executions on the
same implementation.

Operation with various special values of the operand is summarized below.

FPSCRFPRF is set to the class and sign of the result, except for Invalid Operation
Exceptions when FPSCRVE=1 and Zero Divide Exceptions when FPSCRZE=1.

An attempt to execute frsqrte[.] while MSRFP=0 will cause a Floating-Point
Unavailable interrupt.

Special Registers Altered:
FPRF FR (undefined) FI (undefined)
FX ZX VXSNAN VXSQRT
CR1 ← FX || FEX || VX || OX  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(if Rc=1)

1 1 1 1 1 1 FRT /// FRB /// 1 1 0 1 0 Rc

0 6 11 16 21 26 31

Operand Result Exception

-∞ QNaN2 VXSQRT

< 0 QNaN2 VXSQRT

-0 -∞1 ZX

+0 +∞1 ZX

+∞ +0 None

SNaN QNaN2 VXSNAN

QNaN QNaN None
1 No result if FPSCRZE = 1.
2 No result if FPSCRVE = 1.

Architecture Note
No single-precision version of this instruction is provided because it would be super-
flous: if (FRB) is representable in single format, then so is (FRT).

estimate - 1

x
------- 

 

1

x
-------

---------------------------------------------
1
32
------≤
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Floating Select

fsel FRT,FRA,FRC,FRB  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (Rc=0)
fsel. FRT,FRA,FRC,FRB  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (Rc=1)

if FPR(FRA) ≥ 0.0 then FPR(FRT) ← FPR(FRC)
else                   FPR(FRT) ← FPR(FRB)

The floating-point operand in FPR(FRA) is compared to the value zero. If the oper-
and is greater than or equal to zero, FPR(FRT) is set to the contents of FPR(FRC).
If the operand is less than zero or is a NaN, FPR(FRT) is set to the contents of
FPR(FRB). The comparison ignores the sign of zero (i.e., regards +0 as equal to –0).

An attempt to execute fsel[.] while MSRFP=0 will cause a Floating-Point Unavail-
able interrupt.

Special Registers Altered:
CR1 ← FX || FEX || VX || OX  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(if Rc=1)

1 1 1 1 1 1 FRT FRA FRB FRC 1 0 1 1 1 Rc

0 6 11 16 21 26 31

Architecture Note
The Select instruction is similar to a Move instruction, and therefore does not alter the
Floating-Point Status and Control Register.

Programming Note
Examples of uses of this instruction can be found in Appendix C.4.

Warning: Care must be taken in using fsel if IEEE compatibility is required, or if the
values being tested can be NaNs or infinities; see Section C.4.4 on page 396.
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Floating Square Root [Single]

fsqrt FRT,FRB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (P=1, Rc=0)
fsqrt. FRT,FRB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (P=1, Rc=1)

fsqrts FRT,FRB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (P=0, Rc=0)
fsqrts. FRT,FRB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (P=0, Rc=1)

if P=1 then FPR(FRT) ← FPSquareRootDouble( FPR(FRB) )
else        FPR(FRT) ← FPSquareRootSingle( FPR(FRB) )

The square root of the floating-point operand in FPR(FRB) is placed into
FPR(FRT).

If the most significant bit of the resultant significand is not 1, the result is nor-
malized. The result is rounded to the target precision under control of the Float-
ing-Point Rounding Control field RN of the Floating-Point Status and Control
Register and placed into FPR(FRT).

Operation with various special values of the operand is summarized below.

FPSCRFPRF is set to the class and sign of the result, except for Invalid Operation
Exceptions when FPSCRVE=1.

An attempt to execute fsqrt[s][.] while MSRFP=0 will cause a Floating-Point
Unavailable interrupt.

Special Registers Altered:
FPRF FR FI FX XX VXSNAN VXSQRT
CR1 ← FX || FEX || VX || OX  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(if Rc=1)

1 1 1 P 1 1 FRT /// FRB /// 1 0 1 1 0 Rc

0 6 11 16 21 26 31

Operand Result Exception

–∞ QNaN1 VXSQRT

< 0 QNaN1 VXSQRT

–0 –0 None

+∞ +∞ None

SNaN QNaN1 VXSNAN

QNaN QNaN None
1No result if FPSCRVE = 1
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Floating Subtract [Single]

fsub FRT,FRA,FRB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (P=1, Rc=0)
fsub. FRT,FRA,FRB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (P=1, Rc=1)

fsubs FRT,FRA,FRB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (P=0, Rc=0)
fsubs. FRT,FRA,FRB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (P=0, Rc=1)

if P=1 then FPR(FRT) ← FPR(FRA) - dp FPR(FRB)
else        FPR(FRT) ← FPR(FRA) - sp  FPR(FRB)

The floating-point operand in FPR(FRB) is subtracted from the floating-point oper-
and in FPR(FRA).

If the most significant bit of the resultant significand is not 1, the result is nor-
malized. The result is rounded to the target precision under control of the Float-
ing-Point Rounding Control field RN of the Floating-Point Status and Control
Register and placed into FPR(FRT).

The execution of the Floating Subtract instruction is identical to that of Floating
Add, except that the contents of FRB participate in the operation with the sign bit
(bit 0) inverted.

FPSCRFPRF is set to the class and sign of the result, except for Invalid Operation
Exceptions when FPSCRVE=1.

An attempt to execute fsub[s][.] while MSRFP=0 will cause a Floating-Point
Unavailable interrupt.

Special Registers Altered:
FPRF FR FI FX OX UX XX VXSNAN VXISI
CR1 ← FX || FEX || VX || OX  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(if Rc=1)

1 1 1 P 1 1 FRT FRA FRB /// 1 0 1 0 0 Rc

0 6 11 16 21 26 31
07 May 02 Chapter 12 Instruction Set 285



Instruction Cache Block Invalidate

icbi RA,RB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (xop=982, X-mode)
icbie RA,RB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (xop=990, XE-mode)

if RA=0 then a ← 640 else a ← GPR(RA)
if X-mode  then EA ← 320 || (a + GPR(RB)) 32:63
if XE-mode then EA ← a + GPR(RB)
InvalidateInstructionCacheBlock( EA )

Let the effective address (EA) be calculated as follows:

Addressing Mode EA for RA=0 EA for RA≠0
X-mode 320 || GPR(RB)32:63

320 || (GPR(RA)+GPR(RB))32:63
XE-mode GPR(RB) GPR(RA)+GPR(RB)

If the block containing the byte addressed by EA is in storage that is Memory
Coherence Required and a block containing the byte addressed by EA is in the
instruction cache of any processors, the block is invalidated in those instruction
caches, so that subsequent references cause the block to be fetched from main
storage.

If the block containing the byte addressed by EA is in storage that is not Memory
Coherence Required and a block containing the byte addressed by EA is in the
instruction cache of this processor, the block is invalidated in that instruction
cache, so that subsequent references cause the block to be fetched from main
storage.

The function of this instruction is independent of whether the block containing
the byte addressed by EA is in storage that is Write Through Required or Caching
Inhibited.

This instruction treated as a Load (see Section 6.2.4.4).

This instruction may cause a cache locking exception. See the User’s Manual for
the implementation.

Special Registers Altered:
None

0 1 1 1 1 1 /// RA RB 1 1 1 1 0 1 E 1 1 0 /

0 6 11 16 21 31
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Instruction Cache Block Touch

icbt CT,RA,RB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (X-mode, E=0)
icbte CT,RA,RB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (XE-mode, E=1)

if RA=0 then a ← 640 else a ← GPR(RA)
if X-mode  then EA ← 320 || (a + GPR(RB)) 32:63
if XE-mode then EA ← a + GPR(RB)
PrefetchInstructionCacheBlock( CT, EA )

Let the effective address (EA) be calculated as follows:

Addressing Mode EA for RA=0 EA for RA≠0
X-mode 320 || GPR(RB)32:63

320 || (GPR(RA)+GPR(RB))32:63
XE-mode GPR(RB) GPR(RA)+GPR(RB)

If CT=0, this instruction is a hint that performance will probably be improved if
the block containing the byte addressed by EA is fetched into the instruction
cache, because the program will probably soon execute code from the addressed
location.

An implementation may use other values of CT to enable software to target spe-
cific, implementation-dependent portions of its cache hierarchy or structure that
may better enhance performance. See the User’s Manual for the implementation.

Implementations should perform no operation when CT specifies a value that is
not supported by the implementation.

The hint is ignored if the block is Caching Inhibited.

This instruction treated as a Load (see Section 6.2.4.4), except that an interrupt is
not taken for a translation or protection violation.

Special Registers Altered:
None

0 1 1 1 1 1 CT RA RB 0 0 0 0 0 1 E 1 1 0 /

0 6 11 16 21 31
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Instruction Synchronize

isync

The isync instruction provides an ordering function for the effects of all instruc-
tions executed by the processor executing the isync instruction. Executing an
isync instruction ensures that all instructions preceding the isync instruction
have completed before the isync instruction completes, and that no subsequent
instructions are initiated until after the isync instruction completes. It also
causes any prefetched instructions to be discarded, with the effect that subse-
quent instructions will be fetched and executed in the context established by the
instructions preceding the isync instruction.

The isync instruction may complete before storage accesses associated with
instructions preceding the isync instruction have been performed.

This instruction is context synchronizing (see Section 1.12.1 on page 38).

Special Registers Altered:
None

0 1 0 0 1 1 /// 0 0 1 0 0 1 0 1 1 0 /

0 6 21 31
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Load Byte and Zero [with Update] [Indexed] [Extended]

lbz RT,D(RA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (D-mode, U=0)
lbzu RT,D(RA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (D-mode, U=1)

lbze RT,DE(RA). . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(DE-mode, U=0)
lbzue RT,DE(RA). . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(DE-mode, U=1)

lbzx RT,RA,RB . . . . . . . . . . . . . . . . . . . . . . . . . . . (X-mode, E=0, U=0)
lbzux RT,RA,RB . . . . . . . . . . . . . . . . . . . . . . . . . . . (X-mode, E=0, U=1)
lbzxe RT,RA,RB . . . . . . . . . . . . . . . . . . . . . . . . . . (XE-mode, E=1, U=0)
lbzuxe RT,RA,RB . . . . . . . . . . . . . . . . . . . . . . . . . . (XE-mode, E=1, U=1)

if RA=0 then a ← 640 else a ← GPR(RA)
if D-mode  then EA ← 320 || (a + EXTS(D)) 32:63
if X-mode  then EA ← 320 || (a + GPR(RB)) 32:63
if DE-mode then EA ← a + EXTS(DE)
if XE-mode then EA ← a + GPR(RB)
GPR(RT) ← 560 || MEM(EA,1)
if U=1 then GPR(RA) ← EA

Let the effective address (EA) be calculated as follows:

• For lbz and lbzu, let EA be 32 0s concatenated with bits 32:63 of the sum of
the contents of GPR(RA), or 64 0s if RA=0, and the sign-extended value of the
D instruction field.

• For lbzx and lbzux, let EA be 32 0s concatenated with bits 32:63 of the sum
of the contents of GPR(RA), or 64 0s if RA=0, and the contents of GPR(RB).

• For lbze and lbzue, let EA be the sum of the contents of GPR(RA), or 64 0s if
RA=0, and the sign-extended value of the DE instruction field.

• For lbzxe and lbzuxe, let EA be the sum of the contents of GPR(RA), or 64 0s
if RA=0, and the contents of GPR(RB).

The byte in storage addressed by EA is loaded into bits 56:63 of GPR(RT). Bits
0:55 of GPR(RT) are set to 0.

If U=1 (‘with update’), EA is placed into GPR(RA).

If U=1 (‘with update’), and RA=0 or RA=RT, the instruction form is invalid.

Special Registers Altered:
None

1 0 0 0 1 U RT RA D

0 6 11 16 31

1 1 1 0 1 0 RT RA DE 0 0 0 U

0 6 11 16 28 31

0 1 1 1 1 1 RT RA RB 0 0 0 1 U 1 E 1 1 1 /

0 6 11 16 21 31
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Load Doubleword And Reserve Indexed Extended

ldarxe RT,RA,RB

if RA =0 then EA ← GPR(RB)
else         EA ← GPR(RA) + GPR(RB)
RESERVE← 1
RESERVE_ADDR← real_addr(EA)
GPR(RT) ← MEM(EA,8)

Let the effective address (EA) be the sum of the contents of GPR(RA), or 64 0s if
RA=0, and the contents of GPR(RB).

The doubleword in storage addressed by EA is loaded into GPR(RT).

This instruction creates a reservation for use by a Store Doubleword Conditional
instruction. An address computed from the EA is associated with the reservation
and replaces any address previously associated with the reservation: the manner
in which the address to be associated with the reservation is computed from the
EA is described in Section 6.1.6.2 on page 117.

EA must be a multiple of 8. If it is not, either an Alignment interrupt is invoked or
the results are boundedly undefined.

Special Registers Altered:
None

0 1 1 1 1 1 RT RA RB 0 1 1 1 0 1 1 1 1 1 /

0 6 11 16 21 31
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Load Doubleword [with Update] [Indexed] Extended

lde RT,DES(RA). . . . . . . . . . . . . . . . . . . . . . . . . . . .(DES-mode, U=0)
ldue RT,DES(RA). . . . . . . . . . . . . . . . . . . . . . . . . . . .(DES-mode, U=1)

ldxe RT,RA,RB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (XE-mode, U=0)
lduxe RT,RA,RB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (XE-mode, U=1)

if RA=0 then a ← 640 else a ← GPR(RA)
if DES-mode then EA ← a + EXTS(DES ||0b00)
if XE-mode  then EA ← a + GPR(RB)
GPR(RT) ← MEM(EA,8)
if U=1 then GPR(RA) ← EA

Let the effective address (EA) be calculated as follows:

• For lde and ldue, let EA be the sum of the contents of GPR(RA), or 64 0s if
RA=0, and the sign-extended value of the DES instruction field concatenated
with 0b00.

• For ldxe and lduxe, let EA be the sum of the contents of GPR(RA), or 64 0s if
RA=0, and the contents of GPR(RB).

The doubleword in storage addressed by the EA is loaded into GPR(RT).

If U=1 (‘with update’), EA is placed into GPR(RA).

If U=1 (‘with update’), and RA=0 or RA=RT, the instruction form is invalid.

Special Registers Altered:
None

1 1 1 1 1 0 RT RA DES 0 0 0 U

0 6 11 16 28 31

0 1 1 1 1 1 RT RA RB 1 1 0 0 U 1 1 1 1 1 /

0 6 11 16 21 31
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Load Floating-Point Double

lfd FRT,D(RA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (D-mode, U=0)
lfdu FRT,D(RA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (D-mode, U=1)

lfde FRT,DES(RA). . . . . . . . . . . . . . . . . . . . . . . . . . .(DES-mode, U=0)
lfdue FRT,DES(RA). . . . . . . . . . . . . . . . . . . . . . . . . . .(DES-mode, U=1)

lfdx FRT,RA,RB . . . . . . . . . . . . . . . . . . . . . . . . . . (X-mode, E=0, U=0)
lfdux FRT,RA,RB . . . . . . . . . . . . . . . . . . . . . . . . . . (X-mode, E=0, U=1)
lfdxe FRT,RA,RB . . . . . . . . . . . . . . . . . . . . . . . . . (XE-mode, E=1, U=0)
lfduxe FRT,RA,RB . . . . . . . . . . . . . . . . . . . . . . . . . (XE-mode, E=1, U=1)

if RA=0 then a ← 640 else a ← GPR(RA)
if D-mode   then EA ← 320 || (a + EXTS(D)) 32:63
if X-mode   then EA ← 320 || (a + GPR(RB)) 32:63
if DES-mode then EA ← a + EXTS(DES ||0b00)
if XE-mode  then EA ← a + GPR(RB)
FPR(FRT) ← MEM(EA,8)
if U=1 then GPR(RA) ← EA

Let the effective address (EA) be calculated as follows:

• For lfd and lfdu, let EA be 32 0s concatenated with bits 32:63 of the sum of
the contents of GPR(RA), or 64 0s if RA=0, and the sign-extended value of the
D instruction field.

• For lfdx and lfdux, let EA be 32 0s concatenated with bits 32:63 of the sum
of the contents of GPR(RA), or 64 0s if RA=0, and the contents of GPR(RB).

• For lfde and lfdue, let EA be the sum of the contents of GPR(RA), or 64 0s if
RA=0, and the sign-extended value of the DES instruction fielfd concatenated
with 0b00.

• For lfdxe and lfduxe, let EA be the sum of the contents of GPR(RA), or 64 0s
if RA=0, and the contents of GPR(RB).

The doubleword in storage addressed by EA is placed into FPR(FRT).

If U=1 (‘with update’), EA is placed into register RA.

If U=1 (‘with update’) and RA=0, the instruction form is invalid.

An attempt to execute lfd[u][x][e] while MSRFP=0 will cause a Floating-Point
Unavailable interrupt.

Special Registers Altered:
None

1 1 0 0 1 U FRT RA D

0 6 11 16 31

1 1 1 1 1 0 FRT RA DES 0 1 1 U

0 6 11 16 28 31

0 1 1 1 1 1 FRT RA RB 1 0 0 1 U 1 E 1 1 1 /

0 6 11 16 21 31
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Load Floating-Point Single

lfs FRT,D(RA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (D-mode, U=0)
lfsu FRT,D(RA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (D-mode, U=1)

lfse FRT,DES(RA). . . . . . . . . . . . . . . . . . . . . . . . . . .(DES-mode, U=0)
lfsue FRT,DES(RA). . . . . . . . . . . . . . . . . . . . . . . . . . .(DES-mode, U=1)

lfsx FRT,RA,RB . . . . . . . . . . . . . . . . . . . . . . . . . . (X-mode, E=0, U=0)
lfsux FRT,RA,RB . . . . . . . . . . . . . . . . . . . . . . . . . . (X-mode, E=0, U=1)
lfsxe FRT,RA,RB . . . . . . . . . . . . . . . . . . . . . . . . . (XE-mode, E=1, U=0)
lfsuxe FRT,RA,RB . . . . . . . . . . . . . . . . . . . . . . . . . (XE-mode, E=1, U=1)

if RA=0 then a ← 640 else a ← GPR(RA)
if D-mode   then EA ← 320 || (a + EXTS(D)) 32:63
if X-mode   then EA ← 320 || (a + GPR(RB)) 32:63
if DES-mode then EA ← a + EXTS(DES ||0b00)
if XE-mode  then EA ← a + GPR(RB)
FPR(FRT) ← DOUBLE(MEM(EA,4))
if U=1 then GPR(RA) ← EA

Let the effective address (EA) be calculated as follows:

• For lfs and lfsu, let EA be 32 0s concatenated with bits 32:63 of the sum of
the contents of GPR(RA), or 64 0s if RA=0, and the sign-extended value of the
D instruction field.

• For lfsx and lfsux, let EA be 32 0s concatenated with bits 32:63 of the sum of
the contents of GPR(RA), or 64 0s if RA=0, and the contents of GPR(RB).

• For lfse and lfsue, let EA be the sum of the contents of GPR(RA), or 64 0s if
RA=0, and the sign-extended value of the DES instruction fielfs concatenated
with 0b00.

• For lfsxe and lfsuxe, let EA be the sum of the contents of GPR(RA), or 64 0s if
RA=0, and the contents of GPR(RB).

The word in storage addressed by EA is interpreted as a floating-point single-pre-
cision operand. This word is converted to floating-point double format (see page
98) and placed into FPR(FRT).

If U=1 (‘with update’), EA is placed into register RA.

If U=1 (‘with update’) and RA=0, the instruction form is invalid.

An attempt to execute lfs[u][x][e] while MSRFP=0 will cause a Floating-Point
Unavailable interrupt.

Special Registers Altered:
None

1 1 0 0 0 U FRT RA D

0 6 11 16 31

1 1 1 1 1 0 FRT RA DES 0 1 0 U

0 6 11 16 28 31

0 1 1 1 1 1 FRT RA RB 1 0 0 0 U 1 E 1 1 1 /

0 6 11 16 21 31
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Load Halfword Algebraic [with Update] [Indexed] [Extended]

lha RT,D(RA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (D-mode, U=0)
lhau RT,D(RA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (D-mode, U=1)

lhae RT,DE(RA). . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(DE-mode, U=0)
lhaue RT,DE(RA). . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(DE-mode, U=1)

lhax RT,RA,RB . . . . . . . . . . . . . . . . . . . . . . . . . . . (X-mode, E=0, U=0)
lhaux RT,RA,RB . . . . . . . . . . . . . . . . . . . . . . . . . . . (X-mode, E=0, U=1)
lhaxe RT,RA,RB . . . . . . . . . . . . . . . . . . . . . . . . . . (XE-mode, E=1, U=0)
lhauxe RT,RA,RB . . . . . . . . . . . . . . . . . . . . . . . . . . (XE-mode, E=1, U=1)

if RA=0 then a ← 640 else a ← GPR(RA)
if D-mode  then EA ← 320 || (a + EXTS(D)) 32:63
if X-mode  then EA ← 320 || (a + GPR(RB)) 32:63
if DE-mode then EA ← a + EXTS(DE)
if XE-mode then EA ← a + GPR(RB)
GPR(RT) ← 320 || EXTS(MEM(EA,2)) 32:63
if U=1 then GPR(RA) ← EA

Let the effective address (EA) be calculated as follows:

• For lha and lhau, let EA be 32 0s concatenated with bits 32:63 of the sum of
the contents of GPR(RA), or 64 0s if RA=0, and the sign-extended value of the
D instruction field.

• For lhax and lhaux, let EA be 32 0s concatenated with bits 32:63 of the sum
of the contents of GPR(RA), or 64 0s if RA=0, and the contents of GPR(RB).

• For lhae and lhaue, let EA be the sum of the contents of GPR(RA), or 64 0s if
RA=0, and the sign-extended value of the DE instruction field.

• For lhaxe and lhauxe, let EA be the sum of the contents of GPR(RA), or 64 0s
if RA=0, and the contents of GPR(RB).

The halfword in storage addressed by EA is loaded into bits 48:63 of GPR(RT). Bits
32:47 of GPR(RT) are filled with a copy of bit 0 of the loaded halfword. Bits 0:31 of
GPR(RT) are set to 0.

If U=1 (‘with update’), EA is placed into GPR(RA).

If U=1 (‘with update’), and RA=0 or RA=RT, the instruction form is invalid.

Special Registers Altered:
None

1 0 1 0 1 U RT RA D

0 6 11 16 31

1 1 1 0 1 0 RT RA DE 0 1 0 U

0 6 11 16 28 31

0 1 1 1 1 1 RT RA RB 0 1 0 1 U 1 E 1 1 1 /

0 6 11 16 21 31
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Load Halfword Byte-Reverse Indexed [Extended]

lhbrx RT,RA,RB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (X-mode, E=0)
lhbrxe RT,RA,RB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (XE-mode, E=1)

if RA=0 then a ← 640 else a ← GPR(RA)
if X-mode  then EA ← 320 || (a + GPR(RB)) 32:63
if XE-mode then EA ← a + GPR(RB)
data 0:15 ← MEM(EA,2)
GPR(RT) ← 480 || data 8:15 || data 0:7

Let the effective address (EA) be calculated as follows:

• For lhbrx, let EA be 32 0s concatenated with bits 32:63 of the sum of the con-
tents of GPR(RA), or 64 0s if RA=0, and the contents of GPR(RB).

• For lhbrxe, let EA be the sum of the contents of GPR(RA), or 64 0s if RA=0,
and the contents of GPR(RB).

Bits 0:7 of the halfword in storage addressed by EA are loaded into bits 56:63 of
GPR(RT). Bits 8:15 of the halfword in storage addressed by EA are loaded into
bits 48:55 of GPR(RT). Bits 0:47 of GPR(RT) are set to 0.

Special Registers Altered:
None

0 1 1 1 1 1 RT RA RB 1 1 0 0 0 1 E 1 1 0 /

0 6 11 16 21 31

Programming Note
When EA references Big-Endian storage, these instructions have the effect of loading
data in Little-Endian byte order. Likewise, when EA references Little-Endian storage,
these instructions have the effect of loading data in Big-Endian byte order.

Programming Note
In some implementations, the Load Halfword Byte-Reverse Indexed instructions may
have greater latency than other Load instructions.
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Load Halfword and Zero [with Update] [Indexed] [Extended]

lhz RT,D(RA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (D-mode, U=0)
lhzu RT,D(RA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (D-mode, U=1)

lhze RT,DE(RA). . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(DE-mode, U=0)
lhzue RT,DE(RA). . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(DE-mode, U=1)

lhzx RT,RA,RB . . . . . . . . . . . . . . . . . . . . . . . . . . . (X-mode, E=0, U=0)
lhzux RT,RA,RB . . . . . . . . . . . . . . . . . . . . . . . . . . . (X-mode, E=0, U=1)
lhzxe RT,RA,RB . . . . . . . . . . . . . . . . . . . . . . . . . . (XE-mode, E=1, U=0)
lhzuxe RT,RA,RB . . . . . . . . . . . . . . . . . . . . . . . . . . (XE-mode, E=1, U=1)

if RA=0 then a ← 640 else a ← GPR(RA)
if D-mode  then EA ← 320 || (a + EXTS(D)) 32:63
if X-mode  then EA ← 320 || (a + GPR(RB)) 32:63
if DE-mode then EA ← a + EXTS(DE)
if XE-mode then EA ← a + GPR(RB)
GPR(RT) ← 480 || MEM(EA,2)
if U=1 then GPR(RA) ← EA

Let the effective address (EA) be calculated as follows:

• For lhz and lhzu, let EA be 32 0s concatenated with bits 32:63 of the sum of
the contents of GPR(RA), or 64 0s if RA=0, and the sign-extended value of the
D instruction field.

• For lhzx and lhzux, let EA be 32 0s concatenated with bits 32:63 of the sum
of the contents of GPR(RA), or 64 0s if RA=0, and the contents of GPR(RB).

• For lhze and lhzue, let EA be the sum of the contents of GPR(RA), or 64 0s if
RA=0, and the sign-extended value of the DE instruction field.

• For lhzxe and lhzuxe, let EA be the sum of the contents of GPR(RA), or 64 0s
if RA=0, and the contents of GPR(RB).

The halfword in storage addressed by EA is loaded into bits 48:63 of GPR(RT). Bits
0:47 of GPR(RT) are set to 0.

If U=1 (‘with update’), EA is placed into GPR(RA).

If U=1 (‘with update’), and RA=0 or RA=RT, the instruction form is invalid.

Special Registers Altered:
None

1 0 1 0 0 U RT RA D

0 6 11 16 31

1 1 1 0 1 0 RT RA DE 0 0 1 U

0 6 11 16 28 31

0 1 1 1 1 1 RT RA RB 0 1 0 0 U 1 E 1 1 1 /

0 6 11 16 21 31
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Load Multiple Word

lmw RT,D(RA)

if RA =0 then EA ← 320 || EXTS(D) 32:63
else         EA ← 320 || (GPR(RA)+EXTS(D)) 32:63
r ← RT
do while r ≤ 31

GPR(r) ← 320 || MEM(EA,4)
r ← r + 1
EA ← 320 || (EA+4) 32:63

Let the effective address (EA) be 32 0s concatenated with bits 32:63 of the sum of
the contents of GPR(RA), or 64 0s if RA=0, and the sign-extended value of the D
instruction field.

Let n=(32-RT). n consecutive words in storage starting at address EA are loaded
into bits 32:63 of registers GPR(RT) through GPR(31). Bits 0:31 of these GPRs are
set to zero.

EA must be a multiple of 4. If it is not, either an Alignment interrupt is invoked or
the results are boundedly undefined. If RA is in the range of registers to be loaded,
including the case in which RA=0, the instruction form is invalid.

Special Registers Altered:
None

1 0 1 1 1 0 RT RA D

0 6 11 16 31

Engineering Note
Causing an Alignment interrupt if an attempt is made to execute a Load Multiple
instruction having an incorrectly aligned effective address facilitates the debugging of
software.

Architecture Note
Extended addressing modes are not defined for Load Multiple. Doubleword forms of Load
Multiple are not defined.
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Load String Word (Immediate | Indexed)

lswi RT,RA,NB

lswx RT,RA,RB

if RA=0 then a ← 640 else a ← GPR(RA)
if ‘lswi’ then EA ← 320 ||  a 32:63
if ‘lswx’ then EA ← 320 || (a + GPR(RB)) 32:63
if ‘lswi’ & NB=0 then n ← 32
if ‘lswi’ & NB ≠0 then n ← NB
if ‘lswx’        then n ← XER57:63
r ← RT – 1
i ← 32
GPR(RT) ← undefined
do while n > 0

if i = 32 then
r ← r + 1 (mod 32)
GPR(r) ← 0

GPR(r) i:i+7 ← MEM(EA,1)
i ← i + 8
if i = 64 then i ← 32
EA ← 320 || (EA+1) 32:63
n ← n – 1

Let the effective address (EA) be calculated as follows:

• For lswi, let EA be 32 0s concatenated with the contents of bits 32:63 of
GPR(RA), or 32 0s if RA=0.

• For lswx, let EA be 32 0s concatenated with bits 32:63 of the sum of the con-
tents of GPR(RA), or 64 0s if RA=0, and the contents of GPR(RB).

If lswi then n=NB if NB≠0, n=32 if NB=0. If lswx then n=XER57:63. n is the num-
ber of bytes to load. Let nr=CEIL(n÷4): nr is the number of registers to receive
data.

If n>0, n consecutive bytes in storage starting at address EA are loaded into regis-
ters GPR(RT) through GPR(RT+nr–1). Data are loaded into the low-order four
bytes of each GPR; the high-order four bytes are set to 0.

Bytes are loaded left to right in each register. The sequence of registers wraps
around to GPR(0) if required. If the low-order four bytes of GPR(RT+nr–1) are only
partially filled, the unfilled low-order byte(s) of that register are set to 0.

If lswx and n=0, the contents of GPR(RT) are undefined.

If RA, or RB for lswx, is in the range of registers to be loaded, including the case
in which RA=0, either an Illegal Instruction type Program interrupt is invoked or
the results are boundedly undefined. If RT=RA, or RT=RB for lswx, the instruc-
tion form is invalid.

Special Registers Altered:
None

0 1 1 1 1 1 RT RA NB 1 0 0 1 0 1 0 1 0 1 /

0 6 11 16 21 31

0 1 1 1 1 1 RT RA RB 1 0 0 0 0 1 0 1 0 1 /

0 6 11 16 21 31
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Programming Note
The Load String Word instructions, in combination with the Store String Word instruc-
tions allow movement of data from storage to registers or from registers to storage
without concern for alignment. These instructions can be used for a short move between
arbitrary storage locations or to initiate a long move between unaligned storage fields.

Architecture Note
Extended addressing modes are not defined for the Load String Word instructions. Dou-
bleword forms of the Load String Word instructions are not defined.
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Load Word And Reserve Indexed [Extended]

lwarx RT,RA,RB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (X-mode)

lwarxe RT,RA,RB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (XE-mode)

if RA=0 then a ← 640 else a ← GPR(RA)
if X-mode  then EA ← 320 || (a + GPR(RB)) 32:63
if XE-mode then EA ← a + GPR(RB)
RESERVE← 1
RESERVE_ADDR← real_addr(EA)
GPR(RT) ← 320 || MEM(EA,4)

Let the effective address (EA) be calculated as follows:

• For lwarx, let EA be 32 0s concatenated with bits 32:63 of the sum of the
contents of GPR(RA), or 64 0s if RA=0, and the contents of GPR(RB).

• For lwarxe, let EA be the sum of the contents of GPR(RA), or 64 0s if RA=0,
and the contents of GPR(RB).

The word in storage addressed by EA is loaded into GPR(RT)32:63. GPR(RT)0:31 are
set to 0.

This instruction creates a reservation for use by a Store Word Conditional instruc-
tion. An address computed from the EA is associated with the reservation and
replaces any address previously associated with the reservation: the manner in
which the address to be associated with the reservation is computed from the EA
is described in Section 6.1.6.2 on page 117.

EA must be a multiple of 4. If it is not, either an Alignment interrupt is invoked or
the results are boundedly undefined.

Special Registers Altered:
None

0 1 1 1 1 1 RT RA RB 0 0 0 0 0 1 0 1 0 0 /

0 6 11 16 21 31

0 1 1 1 1 1 RT RA RB 0 0 0 1 1 1 1 1 1 0 /

0 6 11 16 21 31

Programming Note
lwarx, lwarxe, and ldarxe, in combination with stwcx., stwcxe., and stdcxe., permit
the programmer to write a sequence of instructions that appear to perform an atomic
update operation on a storage location. This operation depends upon a single reserva-
tion resource in each processor. At most one reservation exists on any given processor:
there are not separate reservations for words and for doublewords.

Programming Note
Because lwarx, lwarxe, and ldarxe have implementation dependencies (e.g., the gran-
ularity at which reservations are managed), they must be used with care. The operating
system should provide system library programs that use these instructions to imple-
ment the high-level synchronization functions (Test and Set, Compare and Swap, etc.)
needed by application programs. Application programs should use these library pro-
grams, rather than use lwarx, lwarxe, and ldarxe directly.

Architecture Note
lwarx, lwarxe, and ldarxe require the EA to be aligned. Software should not attempt to
emulate an unaligned lwarx, lwarxe, or ldarxe, because there is no correct way to
define the address associated with the reservation.
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Engineering Note
Causing an Alignment interrupt to be invoked if an attempt is made to execute a lwarx,
lwarxe, or ldarxe having an incorrectly aligned effective address facilitates the debug-
ging of software by signalling the exception when and where the exception occurs.

Programming Note
The granularity with which reservations are managed is implementation-dependent.
Therefore the storage to be accessed by lwarx, lwarxe, or ldarxe should be allocated by
a system library program. Additional information can be found in Section 6.1.6.2 on
page 117.
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Load Word Byte-Reverse Indexed [Extended]

lwbrx RT,RA,RB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (X-mode, E=0)
lwbrxe RT,RA,RB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (XE-mode, E=1)

if RA=0 then a ← 640 else a ← GPR(RA)
if X-mode  then EA ← 320 || (a + GPR(RB)) 32:63
if XE-mode then EA ← a + GPR(RB)
data 0:31 ← MEM(EA,4)
GPR(RT) ← 320 || data 24:31 || data 16:23 || data 8:15 || data 0:7

Let the effective address (EA) be calculated as follows:

• For lwbrx, let EA be 32 0s concatenated with bits 32:63 of the sum of the
contents of GPR(RA), or 64 0s if RA=0, and the contents of GPR(RB).

• For lwbrxe, let EA be the sum of the contents of GPR(RA), or 64 0s if RA=0,
and the contents of GPR(RB).

Bits 0:7 of the word in storage addressed by EA are loaded into bits 56:63 of
GPR(RT). Bits 8:15 of the word in storage addressed by EA are loaded into bits
48:55 of GPR(RT). Bits 16:23 of the word in storage addressed by EA are loaded
into bits 40:47 of GPR(RT). Bits 24:31 of the word in storage addressed by EA are
loaded into bits 32:39 of GPR(RT).  Bits 0:31 of GPR(RT) are set to 0.

Special Registers Altered:
None

0 1 1 1 1 1 RT RA RB 1 0 0 0 0 1 E 1 1 0 /

0 6 11 16 21 31

Programming Note
When EA references Big-Endian storage, these instructions have the effect of loading
data in Little-Endian byte order. Likewise, when EA references Little-Endian storage,
these instructions have the effect of loading data in Big-Endian byte order.

Programming Note
In some implementations, the Load Word Byte-Reverse instructions may have greater
latency than other Load instructions.
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Load Word and Zero [with Update] [Indexed] [Extended]

lwz RT,D(RA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (D-mode, U=0)
lwzu RT,D(RA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (D-mode, U=1)

lwze RT,DE(RA). . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(DE-mode, U=0)
lwzue RT,DE(RA). . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(DE-mode, U=1)

lwzx RT,RA,RB . . . . . . . . . . . . . . . . . . . . . . . . . . . (X-mode, E=0, U=0)
lwzux RT,RA,RB . . . . . . . . . . . . . . . . . . . . . . . . . . . (X-mode, E=0, U=1)
lwzxe RT,RA,RB . . . . . . . . . . . . . . . . . . . . . . . . . . (XE-mode, E=1, U=0)
lwzuxe RT,RA,RB . . . . . . . . . . . . . . . . . . . . . . . . . . (XE-mode, E=1, U=1)

if RA=0 then a ← 640 else a ← GPR(RA)
if D-mode  then EA ← 320 || (a + EXTS(D)) 32:63
if X-mode  then EA ← 320 || (a + GPR(RB)) 32:63
if DE-mode then EA ← a + EXTS(DE)
if XE-mode then EA ← a + GPR(RB)
GPR(RT) ← 320 || MEM(EA,4)
if U=1 then GPR(RA) ← EA

Let the effective address (EA) be calculated as follows:

• For lwz and lwzu, let EA be 32 0s concatenated with bits 32:63 of the sum of
the contents of GPR(RA), or 64 0s if RA=0, and the sign-extended value of the
D instruction field.

• For lwzx and lwzux, let EA be 32 0s concatenated with bits 32:63 of the sum
of the contents of GPR(RA), or 64 0s if RA=0, and the contents of GPR(RB).

• For lwze and lwzue, let EA be the sum of the contents of GPR(RA), or 64 0s if
RA=0, and the sign-extended value of the DE instruction field.

• For lwzxe and lwzuxe, let EA be the sum of the contents of GPR(RA), or 64 0s
if RA=0, and the contents of GPR(RB).

The word in storage addressed by the EA is loaded into bits 32:63 of GPR(RT). Bits
0:31 of GPR(RT) are set to 0.

If U=1 (‘with update’), EA is placed into GPR(RA).

If U=1 (‘with update’), and RA=0 or RA=RT, the instruction form is invalid.

Special Registers Altered:
None

1 0 0 0 0 U RT RA D

0 6 11 16 31

1 1 1 0 1 0 RT RA DE 0 1 1 U

0 6 11 16 28 31

0 1 1 1 1 1 RT RA RB 0 0 0 0 U 1 E 1 1 1 /

0 6 11 16 21 31
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Memory Barrier

mbar MO

When MO=0, the mbar instruction provides a storage ordering function for all
storage access instructions executed by the processor executing the mbar
instruction. Executing an mbar instruction ensures that all data storage accesses
caused by instructions preceding the mbar instruction have completed before any
data storage accesses caused by any instructions after the mbar instruction. This
order is seen by all mechanisms.

When MO≠0, an implementation may support the mbar instruction ordering a
particular subset of storage accesses. An implementation may also support multi-
ple, non-zero values of MO that each specify a different subset of storage accesses
that are ordered by the mbar instruction. Which subsets of storage accesses that
are ordered and which values of MO that specify these subsets is implementation-
dependent. See the User’s Manual for the implementation.

Special Registers Altered:
None

0 1 1 1 1 1 MO / / / 1 1 0 1 0 1 0 1 1 0 /

0 6 11 21 31

Programming Note
mbar is provided to implement a pipelined storage barrier. The following sequence illus-
trates one use of mbar in supporting shared data, ensuring the action is completed
prior to releasing the lock.

P1 P2
lock . . .
read & write . . .
mbar . . .
free lock . . .
. . . lock
. . . read & write
. . . mbar
. . . free lock

See also Appendix D on page 397.
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Move Condition Register Field

mcrf BF,BFA

CR4xBF+32:4xBF+35 ← CR4xBFA+32:4xBFA+35

The contents of field BFA (bits 4×BFA+32:4×BFA+35) of the Condition Register are
copied to field BF (bits 4×BF+32:4×BF+35) of the Condition Register.

Special Registers Altered:
CR

0 1 0 0 1 1 BF // BFA /// 0 0 0 0 0 0 0 0 0 0 /

0 6 9 11 14 21 31
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Move to Condition Register from Floating-Point Status and Control
Register

mcrfs BF,BFA

CRBF×4:BF ×4+3 ← FPSCRBFA×4:BFA ×4+3
FPSCRBFA×4:BFA ×4+3 ← 0b0000

The contents of Floating-Point Status and Control Register field BFA are copied to
Condition Register field BF. All exception bits copied are set to 0 in the Floating-
Point Status and Control Register. If the FX bit is copied, it is set to 0 in the Float-
ing-Point Status and Control Register.

An attempt to execute mcrfs while MSRFP=0 will cause a Floating-Point Unavail-
able interrupt.

Special Registers Altered:
CR field BF
FX  OX  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (if BFA=0)
UX ZX XX VXSNAN. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (if BFA=1)
VXISI VXIDI VXZDZ VXIMZ. . . . . . . . . . . . . . . . . . . . . . . . . . . . (if BFA=2)
VXVC  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (if BFA=3)
VXSOFT VXSQRT VXCVI. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (if BFA=5)

Move to Condition Register from Integer Exception Register

mcrxr BF

CR4×BF+32:4 ×BF+35 ← XER32:35
XER32:35 ← 0b0000

The contents of bits 32:35 of the Integer Exception Register are copied to Condi-
tion Register field BF. Bits 32:35 of the Integer Exception Register are set to zero.

Special Registers Altered:
CR XER32:35

Move to Condition Register from Integer Exception Register 64

mcrxr64 BF

CR4×BF+32:4 ×BF+35 ← XER0:3
XER0:3 ← 0b0000

The contents of bits 0:3 of the Integer Exception Register are copied to Condition
Register field BF. Bits 0:3 of the Integer Exception Register are set to zero.

Special Registers Altered:
CR XER0:3

1 1 1 1 1 1 BF // BFA /// 0 0 0 1 0 0 0 0 0 0 /

0 6 9 11 14 21 31

0 1 1 1 1 1 BF /// 1 0 0 0 0 0 0 0 0 0 /

0 6 9 21 31

0 1 1 1 1 1 BF /// 1 0 0 0 1 0 0 0 0 0 /

0 6 9 21 31
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Move From APID Indirect

mfapidi RT,RA

GPR(RT) ← implementation-dependent value based on GPR(RA)

The contents of GPR(RA) are provided to any auxiliary processing extensions that
may be present. A value, that is implementation-dependent and extension-depen-
dent, is placed in GPR(RT).

Special Registers Altered:
None

Move From Condition Register

mfcr RT

GPR(RT) ← 320 || CR

The contents of the Condition Register are placed into bits 32:63 of GPR(RT). Bits
0:31 of GPR(RT) are set to 0.

Special Registers Altered:
None

Move From Device Control Register

mfdcr RT,DCRN

DCRN ← dcrn 0:4 || dcrn 5:9
GPR(RT) ← DCREG(DCRN)

Let DCRN denote a Device Control Register (see User’s Manual for a list of the
Device Control Registers supported by the implemention).

The contents of the designated Device Control Register are placed into GPR(RT).
For 32-bit Device Control Registers, the contents of the Device Control Register
are placed into bits 32:63 of GPR(RT). Bits 0:31 of GPR(RT) are set to 0.

Execution of this instruction is privileged and restricted to supervisor mode only.

Special Registers Altered:
None

0 1 1 1 1 1 RT RA /// 0 1 0 0 0 1 0 0 1 1 /

0 6 11 16 21 31

Programming Note
This instruction is provided as a mechanism for software to query the presence and con-
figuration of one or more auxiliary processing extensions. See User’s Manual for the
implementation for details on the behavior of this instruction.

0 1 1 1 1 1 RT /// 0 0 0 0 0 1 0 0 1 1 /

0 6 11 21 31

0 1 1 1 1 1 RT dcrn5:9 dcrn0:4 0 1 0 1 0 0 0 0 1 1 /

0 6 11 16 21 31
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Move From Floating-Point Status and Control Register

mffs FRT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (Rc=0)
mffs. FRT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (Rc=1)

FPR(FRT) ← FPSCR

The contents of the Floating-Point Status and Control Register are placed into bits
32:63 of FPR(FRT). Bits 0:31 of FPR(FRT) are undefined.

An attempt to execute mffs[.] while MSRFP=0 will cause a Floating-Point Unavail-
able interrupt.

Special Registers Altered:
CR1 ← FX || FEX || VX || OX  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(if Rc=1)

Move From Machine State Register

mfmsr RT

GPR(RT) ← 320 || MSR

The contents of the MSR are placed into bits 32:63 of GPR(RT). Bits 0:31 of
GPR(RT) are set to 0.

Execution of this instruction is privileged and restricted to supervisor mode only.

Special Registers Altered:
None

1 1 1 1 1 1 FRT /// 1 0 0 1 0 0 0 1 1 1 Rc

0 6 11 16 21 31

0 1 1 1 1 1 RT /// 0 0 0 1 0 1 0 0 1 1 /

0 6 11 21 31
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Move From Special Purpose Register

mfspr RT,SPRN

SPRN ← sprn 0:4 || sprn 5:9
GPR(RT) ← SPREG(SPRN)

Let SPRN denote a Special Purpose Register (see Section B.1 for a list of Special
Purpose Registers defined by Book E, Section B.3 for a list of SPRN values
reserved by Book E, Section B.4 for a list of SPRN values allocated by Book E, and
Section B.2 for a list of Special Purpose Registers preserved by Book E).

The contents of the designated Special Purpose Register are placed into GPR(RT).
For 32-bit Special Purpose Registers, the contents of the Special Purpose Register
are placed into bits 32:63 of GPR(RT). Bits 0:31 of GPR(RT) are set to 0.

Execution of this instruction specifying a defined and privileged Special Purpose
Register (SPRN5=1) when MSRPR=1 will result in a Privileged Instruction exception
type Program interrupt.

Special Registers Altered:
None

0 1 1 1 1 1 RT sprn5:9 sprn0:4 0 1 0 1 0 1 0 0 1 1 /

0 6 11 16 21 31

SPRN5 MSRPR
SPRN
Class Result

0 1 defined if not implemented: Illegal Instruction exception
if implemented: as defined in Book E

0 1 allocated if not implemented: Illegal Instruction exception
if implemented: as defined in User’s Manual

0 1 preserved if not implemented: Illegal Instruction exception
if implemented: as defined in PowerPC Architecture

0 1 reserved Illegal Instruction exception

1 1 — Privileged exception

— 0 defined if not implemented: boundedly undefined
if implemented: as defined in Book E

— 0 allocated if not implemented: boundedly undefined
if implemented: as defined in User’s Manual

— 0 preserved if not implemented: boundedly undefined
if implemented: as defined in PowerPC Architecture

— 0 reserved boundedly undefined
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Memory Synchronize

msync

The msync instruction provides an ordering function for the effects of all instruc-
tions executed by the processor executing the msync instruction. Executing a
msync instruction ensures that all instructions preceding the msync instruction
have completed before the msync instruction completes, and that no subsequent
instructions are initiated until after the msync instruction completes. It also cre-
ates a memory barrier (see Section 6.1.6.1 on page 114), which orders the storage
accesses associated with these instructions.

The msync instruction may not complete before storage accesses associated with
instructions preceding the msync instruction have been performed.

This instruction is execution synchronizing (see Section 1.12.2 on page 38).

Special Registers Altered:
None

0 1 1 1 1 1 /// 1 0 0 1 0 1 0 1 1 0 /

0 6 21 31

Programming Note
The msync instruction can be used to ensure that all stores into a data structure,
caused by Store instructions executed in a ‘critical section’ of a program, will be per-
formed with respect to another processor before the store that releases the lock is
performed with respect to that processor.

The functions performed by the msync instruction may take a significant amount of
time to complete, so indiscriminate use of this instruction may adversely affect perfor-
mance. The Memory Barrier (mbar) instruction on page 304 may be more appropriate
than msync for many cases.

Engineering Note
Unlike a context synchronizing operation, msync need not discard prefetched
instructions.

Programming Note
msync replaces the PowerPC sync instruction. msync uses the same opcode as sync
such that PowerPC applications calling for a sync instruction will get the Book E msync
when executed on an Book E implementation. The functionality of msync is identical to
sync except that msync also does not complete until all previous storage accesses com-
plete. mbar is provided in the Book E for those occasions when only ordering of storage
accesses is required without execution synchronization.

See also Appendix D on page 397.
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Move To Condition Register Fields

mtcrf FXM,RS

i ← 0
do while i < 8

if FXM i =1 then CR 4×i+32:4 ×i+35 ← GPR(RS) 4×i+32:4 ×i+35
i ← i+1

The contents of bits 32:63 of GPR(RS) are placed into the Condition Register
under control of the field mask specified by FXM. The field mask identifies the 4-
bit fields affected. Let i be an integer in the range 0-7. If FXMi = 1 then CR field i
(CR bits 4×i+32 through 4×i+35) is set to the contents of the corresponding field of
bits 32:63 of GPR(RS).

Special Registers Altered:
CR fields selected by mask

Move To Device Control Register

mtdcr DCRN,RS

DCRN ← dcrn 0:4 || dcrn 5:9
DCREG(DCRN)← GPR(RS)

Let DCRN denote a Device Control Register (see User’s Manual for a list of the
Device Control Registers supported by the implemention).

The contents of GPR(RS) are placed into the designated Device Control Register.
For 32-bit Device Control Registers, the contents of bits 32:63 of GPR(RS) are
placed into the Device Control Register.

Execution of this instruction is privileged and restricted to supervisor mode only.

Special Registers Altered:
See the User’s Manual for the implementation

0 1 1 1 1 1 RS / FXM / 0 0 1 0 0 1 0 0 0 0 /

0 6 11 12 20 21 31

0 1 1 1 1 1 RS dcrn5:9 dcrn0:4 0 1 1 1 0 0 0 0 1 1 /

0 6 11 16 21 31
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Move To Floating-Point Status and Control Register Bit 0

mtfsb0 BT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (Rc=0)
mtfsb0. BT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (Rc=1)

FPSCRBT+32 ← 0b0

Bit BT+32 of the Floating-Point Status and Control Register is set to 0.

An attempt to execute mtfsb0[.] while MSRFP=0 will cause a Floating-Point
Unavailable interrupt.

Special Registers Altered:
FPSCR bit BT
CR1 ← FX || FEX || VX || OX  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(if Rc=1)

Move To Floating-Point Status and Control Register Bit 1

mtfsb1 BT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (Rc=0)
mtfsb1. BT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (Rc=1)

FPSCRBT+32 ← 0b1

Bit BT+32 of the Floating-Point Status and Control Register is set to 1.

An attempt to execute mtfsb1[.] while MSRFP=0 will cause a Floating-Point
Unavailable interrupt.

Special Registers Altered:
FPSCR bits BT and FX
CR1 ← FX || FEX || VX || OX  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(if Rc=1)

1 1 1 1 1 1 BT /// 0 0 0 1 0 0 0 1 1 0 Rc

0 6 11 21 31

Programming Note
Bits 33 and 34 (FEX and VX) cannot be explicitly reset.

1 1 1 1 1 1 BT /// 0 0 0 0 1 0 0 1 1 0 Rc

0 6 11 21 31

Programming Note
Bits 33 and 34 (FEX and VX) cannot be explicitly set.
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Move To Floating-Point Status and Control Register Fields

mtfsf FLM,FRB. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (Rc=0)
mtfsf. FLM,FRB. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (Rc=1)

i ← 0
do while i<8

if FLM i=1 then FPSCR 4×i+32:4 ×i+35 ← FPR(FRB) 4×i+32:4 ×i+35
i ← i+1

The contents of bits 32:63 of FPR(FRB) are placed into the Floating-Point Status
and Control Register under control of the field mask specified by FLM. The field
mask identifies the 4-bit fields affected. Let i be an integer in the range 0-7. If
FLMi=1 then Floating-Point Status and Control Register field i (FPSCR bits 4×i+32
through 4×i+35) is set to the contents of the corresponding field of the low-order
32 bits of FPR(FRB).

FPSCRFX is altered only if FLM0 = 1.

An attempt to execute mtfsf[.] while MSRFP=0 will cause a Floating-Point Unavail-
able interrupt.

Special Registers Altered:
FPSCR fields selected by mask
CR1 ← FX || FEX || VX || OX  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(if Rc=1)

1 1 1 1 1 1 / FLM / FRB 1 0 1 1 0 0 0 1 1 1 Rc

0 6 7 15 16 21 31

Programming Note
Updating fewer than all eight fields of the Floating-Point Status and Control Register
may have substantially poorer performance on some implementations than updating all
the fields.

Programming Note
When FPSCR32:35 is specified, bits 32 (FX) and 35 (OX) are set to the values of (FRB)32
and (FRB)35 (i.e., even if this instruction causes OX to change from 0 to 1, FX is set from
(FRB)32 and not by the usual rule that FX is set to 1 when an exception bit changes
from 0 to 1). Bits 33 and 34 (FEX and VX) are set according to the usual rule, given on
page 70, and not from (FRB)33:34.
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Move To Floating-Point Status and Control Register Field Immediate

mtfsfi BF,U . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (Rc=0)
mtfsfi. BF,U . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (Rc=1)

FPSCRBF×4+32:BF ×4+35 ← U

The value of the U field is placed into Floating-Point Status and Control Register
field BF.

FPSCRFX is altered only if BF = 0.

An attempt to execute mtfsfi[.] while MSRFP=0 will cause a Floating-Point
Unavailable interrupt.

Special Registers Altered:
FPSCR field BF
CR1 ← FX || FEX || VX || OX  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(if Rc=1)

1 1 1 1 1 1 BF /// U / 0 0 1 0 0 0 0 1 1 0 Rc

0 6 9 16 20 21 31

Programming Note
When FPSCR32:35 is specified, bits 32 (FX) and 35 (OX) are set to the values of U0 and
U3 (i.e., even if this instruction causes OX to change from 0 to 1, FX is set from U0 and
not by the usual rule that FX is set to 1 when an exception bit changes from 0 to 1). Bits
33 and 34 (FEX and VX) are set according to the usual rule, given on page 70, and not
from U1:2.
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Move To Machine State Register

mtmsr RS

MSR← GPR(RS)32:63

The contents of bits 32:63 of GPR(RS) are placed into the MSR.

Execution of this instruction is privileged and restricted to supervisor mode only.

Execution of this instruction is execution synchronizing.

In addition, alterations to the EE or CE bits are effective as soon as the instruc-
tion completes. Thus if MSREE=0 and an External interrupt is pending, executing
an mtmsr that sets MSREE to 1 will cause the External interrupt to be taken
before the next instruction is executed, if no higher priority exception exists. Like-
wise, if MSRCE=0 and a Critical Input interrupt is pending, executing an mtmsr
that sets MSRCE to 1 will cause the Critical Input interrupt to be taken before the
next instruction is executed if no higher priority exception exists. (See Section 7.9
on page 178).

Special Registers Altered:
MSR

0 1 1 1 1 1 RS /// 0 0 1 0 0 1 0 0 1 0 /

0 6 11 21 31

Programming Note
For a discussion of software synchronization requirements when altering certain MSR
bits please refer to Chapter 11, “Synchronization Requirements”, on page 225.
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Move To Special Purpose Register

mtspr SPRN,RS

SPRN ← sprn 0:4 || sprn 5:9
SPREG(SPRN) ← GPR(RS)

Let SPRN denote a Special Purpose Register (see Section B.1 for a list of Special
Purpose Registers defined by Book E, Section B.3 for a list of SPRN values
reserved by Book E, Section B.4 for a list of SPRN values allocated by Book E,
Section B.2 for a list of SPRN values preserved by Book E, and the User’s Manual
of the implementation for a list of all Special Purpose Registers that are imple-
mented).

The contents of GPR(RS) are placed into the designated Special Purpose Register.
For 32-bit Special Purpose Registers, the contents of bits 32:63 of GPR(RS) are
placed into the Special Purpose Register.

When MSRPR=1, specifying a Special Purpose Register that is not implemented
and is not privileged (SPRN5=0) results in an Illegal Instruction exception type
Program interrupt. When MSRPR=1, specifying a Special Purpose Register that is
privileged (SPRN5=1) results in a Privileged Instruction exception type Program
interrupt. When MSRPR=0, specifying a Special Purpose Register that is not imple-
mented is boundedly undefined.

Special Registers Altered:
See Table B-1 on page 376 or the User’s Manual for the implementation

0 1 1 1 1 1 RS sprn5:9 sprn0:4 0 1 1 1 0 1 0 0 1 1 /

0 6 11 16 21 31

Programming Note
For a discussion of software synchronization requirements when altering certain Special
Purpose Registers, please refer to Chapter 11, “Synchronization Requirements”, on
page 225.
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Multiply High Doubleword

mulhd RT,RA,RB

prod 0:127 ← GPR(RA) × GPR(RB)
GPR(RT) ← prod 0:63

Bits 0:63 of the 128-bit product of the contents of GPR(RA) and the contents of
GPR(RB) are placed into GPR(RT).

Both operands and the product are interpreted as signed integers.

Special Registers Altered:
None

Multiply High Doubleword Unsigned

mulhdu RT,RA,RB

prod 0:127 ← GPR(RA) × GPR(RB)
GPR(RT) ← prod 0:63

Bits 0:63 of the 128-bit product the contents of GPR(RA) and the contents of
GPR(RB) are placed into GPR(RT).

Both operands and the product are interpreted as unsigned integers.

Special Registers Altered:
None

0 1 1 1 1 1 RT RA RB / 0 0 1 0 0 1 0 0 1 /

0 6 11 16 21 22 31

0 1 1 1 1 1 RT RA RB / 0 0 0 0 0 1 0 0 1 /

0 6 11 16 21 22 31
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Multiply High Word

mulhw RT,RA,RB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (Rc=0)
mulhw. RT,RA,RB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (Rc=1)

prod 0:63 ← GPR(RA) 32:63 × GPR(RB) 32:63
if Rc=1 then do

LT ← prod 0:31  < 0
GT ← prod 0:31  > 0
EQ ← prod 0:31  = 0
CR0 ← LT || GT || EQ || SO

GPR(RT)32:63 ← prod 0:31
GPR(RT)0:31 ← undefined

Bits 0:31 of the 64-bit product of the contents of bits 32:63 of GPR(RA) and the
contents of bits 32:63 of GPR(RB) are placed into bits 32:63 of GPR(RT). Bits 0:31
of GPR(RT) are undefined.

Both operands and the product are interpreted as signed integers.

Special Registers Altered:
CR0  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(if Rc=1)

Multiply High Word Unsigned

mulhwu RT,RA,RB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (Rc=0)
mulhwu. RT,RA,RB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (Rc=1)

prod 0:63 ← GPR(RA) 32:63 × GPR(RB) 32:63
if Rc=1 then do

LT ← prod 0:31  < 0
GT ← prod 0:31  > 0
EQ ← prod 0:31  = 0
CR0 ← LT || GT || EQ || SO

GPR(RT)32:63 ← prod 0:31
GPR(RT)0:31 ← undefined

Bits 0:31 of the 64-bit product the contents of bits 32:63 of GPR(RA) and the con-
tents of bits 32:63 of GPR(RB) are placed into bits 32:63 of GPR(RT). Bits 0:31 of
GPR(RT) are undefined.

Both operands and the product are interpreted as unsigned integers, except that
if Rc=1 the first three bits of CR Field 0 are set by signed comparison of the result
to zero.

Special Registers Altered:
CR0  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(if Rc=1)

0 1 1 1 1 1 RT RA RB / 0 0 1 0 0 1 0 1 1 Rc

0 6 11 16 21 22 31

0 1 1 1 1 1 RT RA RB / 0 0 0 0 0 1 0 1 1 Rc

0 6 11 16 21 22 31
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Multiply Low Doubleword

mulld RT,RA,RB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(OE=0)
mulldo RT,RA,RB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(OE=1)

prod 0:127 ← GPR(RA) × GPR(RB)
if OE=1 then do
   OV64 ← (prod 0:64 ≠ 650) & (prod 0:64 ≠ 651)
   SO64 ← SO64 | OV64
GPR(RT) ← prod 64:127

Bits 64:127 of the 128-bit product of the contents of GPR(RA) and the contents of
GPR(RB) are placed into GPR(RT).

If OE=1 then OV64 is set to 1 if the product cannot be represented in 64 bits.

Both operands and the product are interpreted as signed integers.

Special Registers Altered:
SO64 OV64. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (if OE=1)

Multiply Low Immediate

mulli RT,RA,SI

prod 0:127 ← GPR(RA) × EXTS(SI)
GPR(RT) ← prod 64:127

Bits 64:127 of the 128-bit product of the contents of GPR(RA) and the sign-
extended value of the SI field are placed into GPR(RT).

Both operands and the product are interpreted as signed integers.

Special Registers Altered:
None

0 1 1 1 1 1 RT RA RB OE 0 1 1 1 0 1 0 0 1 /

0 6 11 16 21 31

Programming Note
The Multiply instructions that set the XER may execute faster on some implementations
if GPR(RB) contains the operand having the smaller absolute value.

0 0 0 1 1 1 RT RA SI

0 5 6 11 16 31
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Multiply Low Word

mullw RT,RA,RB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (OE=0, Rc=0)
mullw. RT,RA,RB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (OE=0, Rc=1)
mullwo RT,RA,RB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (OE=1, Rc=0)
mullwo. RT,RA,RB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (OE=1, Rc=1)

prod 0:63 ← GPR(RA) 32:63 × GPR(RB) 32:63
if OE=1 then do
   OV ← (prod 0:32 ≠ 330) & (prod 0:32 ≠ 331)
   SO ← SO | OV
if Rc=1 then do

LT ← prod 32:63  < 0
GT ← prod 32:63  > 0
EQ ← prod 32:63  = 0
CR0 ← LT || GT || EQ || SO

GPR(RT) ← prod 0:63

The 64-bit product of the contents of bits 32:63 of GPR(RA) and the contents of
bits 32:63 of GPR(RB) is placed into GPR(RT).

If OE=1 then OV is set to 1 if the product cannot be represented in 32 bits.

Both operands and the product are interpreted as signed integers.

Special Registers Altered:
CR0  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(if Rc=1)
SO OV. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (if OE=1)

0 1 1 1 1 1 RT RA RB OE 0 1 1 1 0 1 0 1 1 Rc

0 6 11 16 21 31

Programming Note
For mulli and mulld, the low-order 64 bits of the product are independent of whether
the operands are regarded as signed or unsigned 64-bit integers.

For mulli and mullw, bits 32:63 of the product are independent of whether the oper-
ands are regarded as signed or unsigned 32-bit integers.
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NAND

nand RA,RS,RB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (Rc=0)
nand. RA,RS,RB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (Rc=1)

result 0:63 ← ¬(GPR(RS) & GPR(RB))
if Rc=1 then do

LT ← result 32:63  < 0
GT ← result 32:63  > 0
EQ ← result 32:63  = 0
CR0 ← LT || GT || EQ || SO

GPR(RA) ← result

The contents of GPR(RS) are ANDed with the contents of GPR(RB) and the one’s
complement of the result is placed into GPR(RA).

Special Registers Altered:
CR0  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(if Rc=1)

0 1 1 1 1 1 RS RA RB 0 1 1 1 0 1 1 1 0 0 Rc

0 6 11 16 21 31
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Negate

neg RT,RA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (OE=0, Rc=0)
neg. RT,RA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (OE=0, Rc=1)
nego RT,RA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (OE=1, Rc=0)
nego. RT,RA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (OE=1, Rc=1)

carry 0:63 ← Carry( ¬GPR(RA) + 1)
sum0:63 ← ¬GPR(RA) + 1
if OE=1 then do

OV ← carry 32 ⊕ carry 33
SO ← SO | (carry 32 ⊕ carry 33)
OV64 ← carry 0 ⊕ carry 1
SO64 ← SO64 | (carry 0 ⊕ carry 1)

if Rc=1 then do
LT ← sum 32:63  < 0
GT ← sum 32:63  > 0
EQ ← sum 32:63  = 0
CR0 ← LT || GT || EQ || SO

GPR(RT) ← sum

The sum of the one’s complement of the contents of GPR(RA) and 1 is placed into
GPR(RT).

If GPR(RA) contains the most negative 64-bit number (0x8000_0000_0000_0000),
the result is the most negative number and, if OE=1, OV64 is set to 1. Similarly, if
bits 32:63 of GPR(RA) contain the most negative 32-bit number (0x8000_0000),
bits 32:63 of the result contain the most negative 32-bit number and, if OE=1, OV
is set to 1.

Special Registers Altered:
CR0  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(if Rc=1)
SO OV SO64 OV64 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (if OE=1)

0 1 1 1 1 1 RT RA /// OE 0 0 1 1 0 1 0 0 0 Rc

0 6 11 16 21 31
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NOR

nor RA,RS,RB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (Rc=0)
nor. RA,RS,RB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (Rc=1)

result 0:63 ← ¬(GPR(RS) | GPR(RB))
if Rc=1 then do

LT ← result 32:63  < 0
GT ← result 32:63  > 0
EQ ← result 32:63  = 0
CR0 ← LT || GT || EQ || SO

GPR(RA) ← result

The contents of GPR(RS) are ORed with the contents of GPR(RB) and the one’s
complement of the result is placed into GPR(RA).

Special Registers Altered:
CR0  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(if Rc=1)

0 1 1 1 1 1 RS RA RB 0 0 0 1 1 1 1 1 0 0 Rc

0 6 11 16 21 31
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OR [ Immediate [Shifted] | with Complement]

or RA,RS,RB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (Rc=0)
or. RA,RS,RB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (Rc=1)

ori RA,RS,UI. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (S=0, Rc=0)
oris RA,RS,UI. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (S=1, Rc=0)

orc RA,RS,RB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (Rc=0)
orc. RA,RS,RB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (Rc=1)

if ‘ori’    then b ← 480 || UI
if ‘oris’   then b ← 320 || UI || 160
if ‘or[.]’  then b ← GPR(RB)
if ‘orc[.]’ then b ← ¬GPR(RB)
result 0:63 ← GPR(RS) | b
if Rc=1 then do

LT ← result 32:63  < 0
GT ← result 32:63  > 0
EQ ← result 32:63  = 0
CR0 ← LT || GT || EQ || SO

GPR(RA) ← result

For ori, the contents of GPR(RS) are ORed with 480 || UI.

For oris, the contents of GPR(RS) are ORed with 320 || UI || 160.

For or[.], the contents of GPR(RS) are ORed with the contents of GPR(RB).

For orc[.], the contents of GPR(RS) are ORed with the one’s complement of the
contents of GPR(RB).

The result is placed into GPR(RA).

The preferred ‘no-op’ (an instruction that does nothing) is:

     ori  0,0,0

Special Registers Altered:
CR0  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(if Rc=1)

0 1 1 1 1 1 RS RA RB 0 1 1 0 1 1 1 1 0 0 Rc

0 6 11 16 21 31

0 1 1 0 0 S RS RA UI

0 5 6 11 16 31

0 1 1 1 1 1 RS RA RB 0 1 1 0 0 1 1 1 0 0 Rc

0 6 11 16 21 31

Engineering Note
It is desirable for implementations to make the preferred form of no-op execute quickly,
since this form should be used by compilers.
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Return From Critical Interrupt

rfci

MSR← CSRR1
NIA ← CSRR00:61 || 0b00

The rfci instruction is used to return from a critical class interrupt, or as a means
of establishing a new context and synchronizing on that new context simulta-
neously.

The contents of Critical Save/Restore Register 1 are placed into the Machine State
Register. If the new Machine State Register value does not enable any pending
exceptions, then the next instruction is fetched, under control of the new Machine
State Register value, from the address CSRR00:61||0b00. If the new Machine State
Register value enables one or more pending exceptions, the interrupt associated
with the highest priority pending exception is generated; in this case the value
placed into Save/Restore Register 0 or Critical Save/Restore Register 0 by the
interrupt processing mechanism (see Section 7.5 on page 151) is the address of
the instruction that would have been executed next had the interrupt not
occurred (i.e. the address in Critical Save/Restore Register 0 at the time of the
execution of the rfci).

Execution of this instruction is privileged and restricted to supervisor mode only.

Execution of this instruction is context synchronizing.

Special Registers Altered:
MSR

0 1 0 0 1 1 /// 0 0 0 0 1 1 0 0 1 1 /

0 6 21 31

Programming Note
In addition to Branch to Link Register (bclr[e][l]) and Branch to Count Register (bcctr[e][l])
instructions, rfi and rfci allow software to branch to any valid 64-bit address by using
the respective 64-bit Save/Restore Register 0 and Critical Save/Restore Register 0.
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Return From Interrupt

rfi

MSR← SRR1
NIA ← SRR00:61 || 0b00

The rfi instruction is used to return from a non-critical class interrupt, or as a
means of simultaneously establishing a new context and synchronizing on that
new context.

The contents of Save/Restore Register 1 are placed into the Machine State Regis-
ter. If the new Machine State Register value does not enable any pending excep-
tions, then the next instruction is fetched, under control of the new Machine State
Register value, from the address SRR00:61||0b00. If the new Machine State Regis-
ter value enables one or more pending exceptions, the interrupt associated with
the highest priority pending exception is generated; in this case the value placed
into Save/Restore Register 0 or Critical Save/Restore Register 0 by the interrupt
processing mechanism (see Section 7.5 on page 151) is the address of the instruc-
tion that would have been executed next had the interrupt not occurred (i.e. the
address in Save/Restore Register 0 at the time of the execution of the rfi).

Execution of this instruction is privileged and restricted to supervisor mode only.

Execution of this instruction is context synchronizing.

Special Registers Altered:
MSR

0 1 0 0 1 1 /// 0 0 0 0 1 1 0 0 1 0 /

0 6 21 31
326 Book E: Enhanced PowerPC Architecture Version 1.0 07 May 02



Rotate Left Doubleword [Immediate] then Clear Left

rldcl RA,RS,RB,mb

rldicl RA,RS,sh,mb

if ‘rldcl’ then n ← GPR(RB) 58:63
else            n ← sh 0 || sh 1:5
b ← mb 0 || mb 1:5
r ← ROTL64(GPR(RS),n)
m ← MASK(b,63)
GPR(RA) ← r & m

If rldcl, let the shift count n be the contents of bits 58:63 of GPR(RB).

If rldicl, let the shift count n be the value sh.

The contents of GPR(RS) are rotated64 left n bits. A mask is generated having ‘1’
bits from bit mb through bit 63 and ‘0’ bits elsewhere. The rotated data are ANDed
with the generated mask and the result is placed into GPR(RA).

Special Registers Altered:
None

0 1 1 1 1 0 RS RA RB mb1:5 mb0 1 0 0 0 /

0 6 11 16 21 26 27 31

0 1 1 1 1 0 RS RA sh1:5 mb1:5 mb0 0 0 0 sh0 /

0 6 11 16 21 26 27 30 31

Programming Note

Uses for rldcl[.]:

• Can be used to extract a k-bit field that starts at
variable bit position j in GPR(RS), right-justified into
GPR(RA) (clearing the remaining 64-k bits of
GPR(RA)), by setting GPR(RB)58:63=j+k and mb=64–k.

Uses for rldicl:

• Can be used to extract a k-bit field that starts at bit
position j in GPR(RS), right-justified into GPR(RA)
(clearing the remaining 64-k bits of GPR(RA)), by set-
ting sh=j+k and mb=64-k.

• Can be used to rotate the contents of a register left
by variable k bits, by setting GPR(RB)58:63=k and
mb=0.

• Can be used to rotate the contents of a register left
by k bits, by setting sh=k and mb=0.

• Can be used to rotate the contents of a register right
by variable k bits, by setting GPR(RB)58:63=64–k and
mb=0.

• Can be used to rotate the contents of a register right
by k bits, by setting sh=64–k and mb=0.

• Can be used to shift the contents of a register right
by k bits, by setting sh=64-k and mb=k.

• Can be used to clear the high-order k bits of a regis-
ter, by setting sh=0 and mb=k.
07 May 02 Chapter 12 Instruction Set 327



Rotate Left Doubleword [Immediate] then Clear Right

rldcr RA,RS,RB,me

rldicr RA,RS,sh,me

if ‘rldcr’ then n ← GPR(RB) 58:63
else            n ← sh 0 || sh 1:5
e ← me 0 || me 1:5
r ← ROTL64(GPR(RS),n)
m ← MASK(0,e)
GPR(RA) ← r & m

If rldcr, let the shift count n be the contents of bits 58:63 of GPR(RB).

If rldicr, let the shift count n be the value sh.

The contents of GPR(RS) are rotated64 left n bits. A mask is generated having ‘1’
bits from bit 0 through bit me and ‘0’ bits elsewhere. The rotated data are ANDed
with the generated mask and the result is placed into GPR(RA).

Special Registers Altered:
None

0 1 1 1 1 0 RS RA RB me1:5 me0 1 0 0 1 /

0 6 11 16 21 26 27 31

0 1 1 1 1 0 RS RA sh1:5 me1:5 me0 0 0 1 sh0 /

0 6 11 16 21 26 27 30 31

Programming Note

Uses for rldcr:

• Can be used to extract a k-bit field that starts at
variable bit position j in GPR(RS), left-justified into
GPR(RA) (clearing the remaining 64-k bits of
GPR(RA)), by setting GPR(RB)58:63=j and me=k-1.

Uses for rldicr:

• Can be used to extract a k-bit field that starts at bit
position j in GPR(RS), left-justified into GPR(RA)
(clearing the remaining 64-k bits of GPR(RA)), by set-
ting sh=j and me=k-1.

• Can be used to rotate the contents of a register left
by variable k bits, by setting GPR(RB)58:63=k and
me=63.

• Can be used to rotate the contents of a register left
by k bits, by setting sh=k and me=63.

• Can be used to rotate the contents of a register right
by variable k bits, by setting GPR(RB)58:63=64-k and
me=63.

• Can be used to rotate the contents of a register right
by k bits, by setting sh=64–k and me=63.

• Can be used to shift the contents of a register left by
k bits, by setting sh=k and me=63-k.

• Can be used to clear the low-order k bits of a regis-
ter, by setting sh=0 and me=63-k.
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Rotate Left Doubleword Immediate then Clear

rldic RA,RS,sh,mb

n ← sh 0 || sh 1:5
b ← mb 0 || mb 1:5
r ← ROTL64(GPR(RS),n)
m ← MASK(b, ¬n)
GPR(RA) ← r & m

Let the shift count n be the value sh.

The contents of GPR(RS) are rotated64 left n bits. A mask is generated having ‘1’
bits from bit mb through bit 63-sh and ‘0’ bits elsewhere. The rotated data are
ANDed with the generated mask and the result is placed into GPR(RA).

Special Registers Altered:
None

0 1 1 1 1 0 RS RA sh1:5 mb1:5 mb0 0 1 0 sh0 /

0 6 11 16 21 26 27 30 31

Programming Note

Uses for rldic:

• Can be used to clear the high-order j bits of the contents of a register and then shift
the result left by k bits, by setting sh=k and mb=j–k.

• Can be used to clear the high-order k bits of a register, by setting sh=0 and mb=k.
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Rotate Left Doubleword Immediate then Mask Insert

rldimi RA,RS,sh,mb

n ← sh 0 || sh 1:5
b ← mb 0 || mb 1:5
r ← ROTL64(GPR(RS),n)
m ← MASK(b, ¬n)
GPR(RA) ← r&m | GPR(RA)& ¬m

Let the shift count n be the value sh.

The contents of GPR(RS) are rotated64 left n bits. A mask is generated having ‘1’
bits from bit mb through bit 63-sh and ‘0’ bits elsewhere. The rotated data are
inserted into GPR(RA) under control of the generated mask (if a mask bit is 1 the
associated bit of the rotated data is placed into the target register, and if the mask
bit is 0 the associated bit in the target register remains unchanged).

Special Registers Altered:
None

0 1 1 1 1 0 RS RA sh1:5 mb1:5 mb0 0 1 1 sh0 /

0 6 11 16 21 26 27 30 31

Programming Note
rldimi can be used to insert a k-bit field that is right-justified in GPR(RS), into GPR(RA)
starting at bit position j, by setting sh=64-(j+k) and mb=j.
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Rotate Left Word Immediate then Mask Insert

rlwimi RA,RS,SH,MB,ME . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (Rc=0)
rlwimi. RA,RS,SH,MB,ME . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (Rc=1)

n ← SH
b ← MB+32
e ← ME+32
r ← ROTL32(GPR(RS) 32:63 ,n)
m ← MASK(b,e)
result 0:63 ← r&m | GPR(RA)& ¬m
if Rc=1 then do

LT ← result 32:63  < 0
GT ← result 32:63  > 0
EQ ← result 32:63  = 0
CR0 ← LT || GT || EQ || SO

GPR(RA) ← result 0:63

Let the shift count n be the value SH.

The contents of GPR(RS) are rotated32 left n bits. A mask is generated having ‘1’
bits from bit MB+32 through bit ME+32 and ‘0’ bits elsewhere. The rotated data
are inserted into GPR(RA) under control of the generated mask (if a mask bit is 1
the associated bit of the rotated data is placed into the target register, and if the
mask bit is 0 the associated bit in the target register remains unchanged).

Special Registers Altered:
CR0  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(if Rc=1)

0 1 0 1 0 0 RS RA SH MB ME Rc

0 6 11 16 21 26 31

Programming Note

Uses for rlwimi[.]:

• Can be used to insert a k-bit field that is left-justified in bits 32:63 of GPR(RS), into
bits 32:63 of GPR(RA) starting at bit position j, by setting SH=64-j, MB=j-32, and
ME=(j+k)-33.

• Can be used to insert an k-bit field that is right-justified in bits 32:63 of GPR(RS),
into bits 32:63 of GPR(RA) starting at bit position j, by setting SH=64-(j+k), MB=j-32,
and ME=(j+k)-33.
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Rotate Left Word [Immediate] then AND with Mask

rlwnm RA,RS,RB,MB,ME . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (Rc=0)
rlwnm. RA,RS,RB,MB,ME . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (Rc=1)

rlwinm RA,RS,SH,MB,ME . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (Rc=0)
rlwinm. RA,RS,SH,MB,ME . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (Rc=1)

if ‘rlwnm[.]’ then n ← GPR(RB) 59:63
else               n ← SH
b ← MB+32
e ← ME+32
r ← ROTL32(GPR(RS) 32:63 ,n)
m ← MASK(b,e)
result 0:63 ← r & m
if Rc=1 then do

LT ← result 32:63  < 0
GT ← result 32:63  > 0
EQ ← result 32:63  = 0
CR0 ← LT || GT || EQ || SO

GPR(RA) ← result 0:63

If rlwnm[.], let the shift count n be the contents of bits 59:63 of GPR(RB).

If rlwinm[.], let the shift count n be SH.

The contents of GPR(RS) are rotated32 left n bits. A mask is generated having ‘1’
bits from bit MB+32 through bit ME+32 and ‘0’ bits elsewhere. The rotated data
are ANDed with the generated mask and the result is placed into GPR(RA).

Special Registers Altered:
CR0  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(if Rc=1)

0 1 0 1 1 1 RS RA RB MB ME Rc

0 6 11 16 21 26 31

0 1 0 1 0 1 RS RA SH MB ME Rc

0 6 11 16 21 26 31
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Programming Note

Uses for rlwnm[.]:

• Can be used to extract a k-bit field that starts at
variable bit position j in bits 32:63 of GPR(RS), right-
justified into bits 32:63 of GPR(RA) (clearing the
remaining 32–k bits of bits 32:63 of GPR(RA)), by
setting GPR(RB)59:63=j+k-32, MB=32–k, and ME=31.

Uses for rlwinm[.]

• Can be used to extract a k-bit field that starts at bit
position j in bits 32:63 of GPR(RS), right-justified
into bits 32:63 of GPR(RA) (clearing the remaining
32–k bits of bits 32:63 of GPR(RA)), by setting
SH=j+k-32, MB=32–k, and ME=31.

• Can be used to extract a k-bit field that starts at
variable bit position j in bits 32:63 of GPR(RS), left-
justified into bits 32:63 of GPR(RA) (clearing the
remaining 32–k bits of bits 32:63 of GPR(RA)), by
setting GPR(RB)59:63=j-32, MB=0, and ME=k–1.

• Can be used to extract a k-bit field that starts at bit
position j in bits 32:63 of GPR(RS), left-justified into
bits 32:63 of GPR(RA) (clearing the remaining 32–k
bits of bits 32:63 of GPR(RA)), by setting SH=j-32,
MB=0, and ME=k–1.

• Can be used to rotate the contents of bits 32:63 of a
register left by variable k bits, by setting
GPR(RB)59:63=k, MB=0, and ME=31.

• Can be used to rotate the contents of bits 32:63 of a
register right by variable k bits, by setting
GPR(RB)59:63=32–k, MB=0, and ME=31.

• Can be used to rotate the contents of bits 32:63 of a
register left by k bits, by setting SH=k, MB=0, and
ME=31.

• Can be used to rotate the contents of bits 32:63 of a
register right by k bits, by setting SH=32–k, MB=0,
and ME=31.

• Can be used to shift the contents of bits 32:63 of a
register right by k bits, by setting SH=32–k, MB=k,
and ME=31.

• Can be used to clear the high-order j bits of the con-
tents of bits 32:63 of a register and then shift the
result left by k bits, by setting SH=k, MB=j–k and
ME=31–k.

• Can be used to clear the low-order k bits of bits
32:63 of a register, by setting SH=0, MB=0, and
ME=31–k.

For all the uses given above, bits 0:31 of GPR(RA) are cleared.
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System Call

sc

SRR1 ← MSR
SRR0 ← CIA+4
NIA ← EVPR0:47 || IVOR8 48:59 || 0b0000
MSRWE,EE,PR,IS,DS,FP,FE0,FE1 ← 0b0000_0000

sc is used to request a system service. A System Call interrupt is generated. The
contents of the Machine State Register are copied into Save/Restore Register 1
and the address of the instruction after the sc instruction is placed into Save/
Restore Register 0.

MSRWE,EE,PR,IS,DS,FP,FE0,FE1 are set to 0.

The interrupt causes the next instruction to be fetched from the address

IVPR0:47||IVOR848:59||0b0000

This instruction is context synchronizing.

Special Registers Altered:
SRR0 SRR1 MSRWE,EE,PR,IS,DS,FP,FE0,FE1

0 1 0 0 0 1 /// 1 /

0 6 30 31
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Shift Left Doubleword

sld RA,RS,RB

n ← GPR(RB) 58:63
r ← ROTL64(GPR(RS),n)
if GPR(RB) 57=0 then m ← MASK(0,63-n)
else         m ← 640
GPR(RA) ← r & m

Let the shift count n be the value specified by the contents of bits 57:63 of
GPR(RB).

The contents of GPR(RS) are shifted left n bits. Bits shifted out of position 0 are
lost. Zeros are supplied to the vacated positions on the right. The result is placed
into GPR(RA).

Shift amounts from 64 to 127 give a zero result.

Special Registers Altered:
None

0 1 1 1 1 1 RS RA RB 0 0 0 0 0 1 1 0 1 1 /

0 6 11 16 21 31
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Shift Left Word

slw RA,RS,RB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (Rc=0)
slw. RA,RS,RB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (Rc=1)

n ← GPR(RB) 59:63
r ← ROTL32(GPR(RS) 32:63 ,n)
if GPR(RB) 58=0 then m ← MASK(32,63-n)
else            m ← 640
result 0:63 ← r & m
if Rc=1 then do

LT ← result 32:63  < 0
GT ← result 32:63  > 0
EQ ← result 32:63  = 0
CR0 ← LT || GT || EQ || SO

GPR(RA) ← result 0:63

Let the shift count n be the value specified by the contents of bits 58:63 of
GPR(RB).

The contents of bits 32:63 of GPR(RS) are shifted left n bits. Bits shifted out of
position 32 are lost. Zeros are supplied to the vacated positions on the right. The
32-bit result is placed into bits 32:63 of GPR(RA). Bits 0:31 of GPR(RA) are set to
zero.

Shift amounts from 32 to 63 give a zero result.

Special Registers Altered:
CR0  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(if Rc=1)

0 1 1 1 1 1 RS RA RB 0 0 0 0 0 1 1 0 0 0 Rc

0 6 11 16 21 31
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Shift Right Algebraic Doubleword [Immediate]

srad RA,RS,RB

sradi RA,RS,sh

if ‘srad’ then n ← GPR(RB) 58:63
else           n ← sh 0 || sh 1:5
r ← ROTL64(GPR(RS),64-n)
if ‘srad’ & GPR(RB) 57=1 then m ← 640
else         m ← MASK(n,63)
s ← GPR(RS) 0
GPR(RA) ← r&m | ( 64s)& ¬m
CA64 ← s & ((r& ¬m)≠0)

If srad, let the shift count n be the contents of bits 57:63 of GPR(RB).

If sradi, let the shift count n be sh.

The contents of GPR(RS) are shifted right n bits. Bits shifted out of position 63 are
lost. Bit 0 of the contents of GPR(RS) is replicated to fill the vacated positions on
the left. The result is placed into GPR(RA).

CA64 is set to 1 if GPR(RS) contains a negative value and any ‘1’ bits are shifted
out of bit position 63; otherwise CA is set to 0.

A shift amount of zero causes GPR(RA) to be set equal to the contents of GPR(RS),
and CA64 to be set to 0. For srad shift amounts from 64 to 127 give a result of 64
sign bits in GPR(RA), and cause CA64 to receive bit 0 of the contents of GPR(RS)
(i.e. the sign bit of GPR(RS)).

Special Registers Altered:
CA64

0 1 1 1 1 1 RS RA RB 1 1 0 0 0 1 1 0 1 0 /

0 6 11 16 21 31

0 1 1 1 1 1 RS RA sh1:5 1 1 0 0 1 1 1 0 1 sh0 /

0 6 11 16 21 30 31
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Shift Right Algebraic Word [Immediate]

sraw RA,RS,RB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (Rc=0)
sraw. RA,RS,RB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (Rc=1)

srawi RA,RS,SH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (Rc=0)
srawi. RA,RS,SH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (Rc=1)

if ‘sraw[.]’ then n ← GPR(RB) 59:63
else              n ← SH
r ← ROTL32(GPR(RS) 32:63 ,64-n)
if ‘sraw[.]’ & GPR(RB) 58=1 then m ← 640
else         m ← MASK(n+32,63)
s ← GPR(RS) 32
result 0:63 ← r&m | ( 64s)& ¬m
if Rc=1 then do

LT ← result 32:63  < 0
GT ← result 32:63  > 0
EQ ← result 32:63  = 0
CR0 ← LT || GT || EQ || SO

GPR(RA) ← result 0:63
CA ← s & ((r& ¬m)32:63 ≠0)

If sraw[.], let the shift count n be the contents of bits 58:63 of GPR(RB).

If srawi[.], let the shift count n be the value of the SH field.

The contents of bits 32:63 of GPR(RS) are shifted right n bits. Bits shifted out of
position 63 are lost. Bit 32 of RS is replicated to fill the vacated positions on the
left. The 32-bit result is placed into bits 32:63 of GPR(RA). Bit 32 of the contents
of GPR(RS) is replicated to fill bits 0:31 of GPR(RA).

CA is set to 1 if bits 32:63 of GPR(RS) contain a negative value and any ‘1’ bits are
shifted out of bit position 63; otherwise CA is set to 0.

A shift amount of zero causes GPR(RA) to receive EXTS(GPR(RS)32:63), and CA to
be set to 0. For sraw[.] shift amounts from 32 to 63 give a result of 64 sign bits,
and cause CA to receive bit 32 of the contents of GPR(RS) (i.e. sign bit of
GPR(RS)32:63).

Special Registers Altered:
CA
CR0  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(if Rc=1)

0 1 1 1 1 1 RS RA RB 1 1 0 0 0 1 1 0 0 0 Rc

0 6 11 16 21 31

0 1 1 1 1 1 RS RA SH 1 1 0 0 1 1 1 0 0 0 Rc

0 6 11 16 21 31
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Shift Right Doubleword

srd RA,RS,RB

n ← GPR(RB) 58:63
r ← ROTL64(GPR(RS),64-n)
if GPR(RB) 57=0 then m ← MASK(n,63)
else            m ← 640
GPR(RA) ← r & m

Let the shift count n be the value specified by the contents of bits 57:63 of
GPR(RB).

The contents of GPR(RS) are shifted right n bits. Bits shifted out of position 63 are
lost. Zeros are supplied to the vacated positions on the left. The result is placed
into GPR(RA).

Shift amounts from 64 to 127 give a zero result.

Special Registers Altered:
None

0 1 1 1 1 1 RS RA RB 1 0 0 0 0 1 1 0 1 1 /

0 6 11 16 21 31
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Shift Right Word

srw RA,RS,RB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (Rc=0)
srw. RA,RS,RB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (Rc=1)

n ← GPR(RB) 59:63
r ← ROTL32(GPR(RS) 32:63 ,64-n)
if GPR(RB) 58=0 then m ← MASK(n+32,63)
else            m ← 640
result 0:63 ← r & m
if Rc=1 then do

LT ← result 32:63  < 0
GT ← result 32:63  > 0
EQ ← result 32:63  = 0
CR0 ← LT || GT || EQ || SO

GPR(RA) ← result 0:63

Let the shift count n be the value specified by the contents of bits 58:63 of
GPR(RB).

The contents of bits 32:63 of GPR(RS) are shifted right n bits. Bits shifted out of
position 63 are lost. Zeros are supplied to the vacated positions on the left. The
32-bit result is placed into bits 32:63 of GPR(RA). Bits 0:31 of GPR(RA) are set to
zero.

Shift amounts from 32 to 63 give a zero result.

Special Registers Altered:
CR0  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(if Rc=1)

0 1 1 1 1 1 RS RA RB 1 0 0 0 0 1 1 0 0 0 Rc

0 6 11 16 21 31
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Store Byte [with Update] [Indexed] [Extended]

stb RS,D(RA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (D-mode, U=0)
stbu RS,D(RA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (D-mode, U=1)

stbe RS,DE(RA). . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(DE-mode, U=0)
stbue RS,DE(RA). . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(DE-mode, U=1)

stbx RS,RA,RB . . . . . . . . . . . . . . . . . . . . . . . . . . . (X-mode, E=0, U=0)
stbux RS,RA,RB . . . . . . . . . . . . . . . . . . . . . . . . . . . (X-mode, E=0, U=1)
stbxe RS,RA,RB . . . . . . . . . . . . . . . . . . . . . . . . . . (XE-mode, E=1, U=0)
stbuxe RS,RA,RB . . . . . . . . . . . . . . . . . . . . . . . . . . (XE-mode, E=1, U=1)

if RA=0 then a ← 640 else a ← GPR(RA)
if D-mode  then EA ← 320 || (a + EXTS(D)) 32:63
if X-mode  then EA ← 320 || (a + GPR(RB)) 32:63
if DE-mode then EA ← a + EXTS(DE)
if XE-mode then EA ← a + GPR(RB)
MEM(EA,1) ← GPR(RS) 56:63
if U=1 then GPR(RA) ← EA

Let the effective address (EA) be calculated as follows:

• For stb and stbu, let EA be 32 0s concatenated with bits 32:63 of the sum of
the contents of GPR(RA), or 64 0s if RA=0, and the sign-extended value of the
D instruction field.

• For stbx and stbux, let EA be 32 0s concatenated with bits 32:63 of the sum
of the contents of GPR(RA), or 64 0s if RA=0, and the contents of GPR(RB).

• For stbe and stbue, let EA be the sum of the contents of GPR(RA), or 64 0s if
RA=0, and the sign-extended value of the DE instruction field.

• For stbxe and stbuxe, let EA be the sum of the contents of GPR(RA), or 64 0s
if RA=0, and the contents of GPR(RB).

The contents of bits 56:63 of GPR(RS) are stored into the byte in storage
addressed by EA.

If U=1 (‘with update’), EA is placed into GPR(RA).

If U=1 (‘with update’) and RA=0, the instruction form is invalid.

Special Registers Altered:
None

1 0 0 1 1 U RS RA D

0 6 11 16 31

1 1 1 0 1 0 RS RA DE 1 0 0 U

0 6 11 16 28 31

0 1 1 1 1 1 RS RA RB 0 0 1 1 U 1 E 1 1 1 /

0 6 11 16 21 31
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Store Doubleword Conditional Indexed Extended

stdcxe. RS,RA,RB

if RA =0 then EA ← GPR(RB)
if RA ≠0 then EA ← GPR(RA) + GPR(RB)
if RESERVE then do

if RESERVE_ADDR = real_addr(EA) then
MEM(EA,8) ← GPR(RS)
CR0 ← 0b00 || 0b1 || XERSO

else
u ← undefined 1-bit value
if u then MEM(EA,8) ← GPR(RS)
CR0 ← 0b00 || u || XERSO

RESERVE← 0
else

CR0 ← 0b00 || 0b0 || XERSO

Let the effective address (EA) be 32 0s concatenated with bits 32:63 of the sum of
the contents of GPR(RA), or 64 0s if RA=0, and the contents of GPR(RB).

If a reservation exists and the storage address specified by the stdcxe. is the same
as that specified by the ldarxe instruction that established the reservation, the
contents of GPR(RS) is stored into the doubleword in storage addressed by EA and
the reservation is cleared.

If a reservation exists but the storage address specified by the stdcxe. is not the
same as that specified by the ldarxe instruction that established the reservation,
the reservation is cleared, and it is undefined whether the instruction completes
without altering storage.

If a reservation does not exist, the instruction completes without altering storage.

CR Field 0 is set to reflect whether the store operation was performed, as follows.

CR0LT GT EQ SO  = 0b00 || store_performed || XERSO

EA must be a multiple of 8. If it is not, either an Alignment interrupt is invoked or
the results are boundedly undefined.

Special Registers Altered:
CR0

0 1 1 1 1 1 RS RA RB 0 1 1 1 1 1 1 1 1 1 1

0 6 11 16 21 31
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Store Doubleword [with Update] [Indexed] Extended

stde RS,DES(RA). . . . . . . . . . . . . . . . . . . . . . . . . . . .(DES-mode, U=0)
stdue RS,DES(RA). . . . . . . . . . . . . . . . . . . . . . . . . . . .(DES-mode, U=1)

stdxe RS,RA,RB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (XE-mode, U=0)
stduxe RS,RA,RB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (XE-mode, U=1)

if RA=0 then a ← 640 else a ← GPR(RA)
if DES-mode then EA ← a + EXTS(DES ||0b00)
if XE-mode  then EA ← a + GPR(RB)
MEM(EA,8) ← GPR(RS)
if U=1 then GPR(RA) ← EA

Let the effective address (EA) be calculated as follows:

• For stde and stdue, let EA be the sum of the contents of GPR(RA), or 64 0s if
RA=0, and the sign-extended value of the DES instruction field concatenated
with 0b00.

• For stdxe and stduxe, let EA be the sum of the contents of GPR(RA), or 64 0s
if RA=0, and the contents of GPR(RB).

The contents of GPR(RS) are stored into the doubleword in storage addressed by
EA.

If U=1 (‘with update’), EA is placed into GPR(RA).

If U=1 (‘with update’) and RA=0, the instruction form is invalid.

Special Registers Altered:
None

1 1 1 1 1 0 RS RA DES 1 0 0 U

0 6 11 16 28 31

0 1 1 1 1 1 RS RA RB 1 1 1 0 U 1 1 1 1 1 /

0 6 11 16 21 31
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Store Floating-Point Double [with Update] [Indexed] [Extended]

stfd FRS,D(RA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (D-mode, U=0)
stfdu FRS,D(RA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (D-mode, U=1)

stfde FRS,DES(RA). . . . . . . . . . . . . . . . . . . . . . . . . . .(DES-mode, U=0)
stfdue FRS,DES(RA). . . . . . . . . . . . . . . . . . . . . . . . . . .(DES-mode, U=1)

stfdx FRS,RA,RB . . . . . . . . . . . . . . . . . . . . . . . . . . (X-mode, E=0, U=0)
stfdux FRS,RA,RB . . . . . . . . . . . . . . . . . . . . . . . . . . (X-mode, E=0, U=1)
stfdxe FRS,RA,RB . . . . . . . . . . . . . . . . . . . . . . . . . (XE-mode, E=1, U=0)
stfduxe FRS,RA,RB . . . . . . . . . . . . . . . . . . . . . . . . . (XE-mode, E=1, U=1)

if RA=0 then a ← 640 else a ← GPR(RA)
if D-mode   then EA ← 320 || (a + EXTS(D)) 32:63
if X-mode   then EA ← 320 || (a + GPR(RB)) 32:63
if DES-mode then EA ← a + EXTS(DES ||0b00)
if XE-mode  then EA ← a + GPR(RB)
MEM(EA,8) ← FPR(FRS)
if U=1 then GPR(RA) ← EA

Let the effective address (EA) be calculated as follows:

• For stfd and stfdu, let EA be 32 0s concatenated with bits 32:63 of the sum
of the contents of GPR(RA), or 64 0s if RA=0, and the sign-extended value of
the D instruction field.

• For stfdx and stfdux, let EA be 32 0s concatenated with bits 32:63 of the
sum of the contents of GPR(RA), or 64 0s if RA=0, and the contents of
GPR(RB).

• For stfde and stfdue, let EA be the sum of the contents of GPR(RA), or 64 0s
if RA=0, and the sign-extended value of the DES instruction field concate-
nated with 0b00.

• For stfdxe and stfduxe, let EA be the sum of the contents of GPR(RA), or 64
0s if RA=0, and the contents of GPR(RB).

The contents of FPR(FRS) are stored into the doubleword in storage addressed by
EA.

If U=1 (‘with update’), EA is placed into GPR(RA).

If U=1 (‘with update’) and RA=0, the instruction form is invalid.

An attempt to execute stfd[u][x][e] while MSRFP=0 will cause a Floating-Point
Unavailable interrupt.

Special Registers Altered:
None

1 1 0 1 1 U FRS RA D

0 6 11 16 31

1 1 1 1 1 0 FRS RA DES 1 1 1 U

0 6 11 16 28 31

0 1 1 1 1 1 FRS RA RB 1 0 1 1 U 1 E 1 1 1 /

0 6 11 16 21 31
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Store Floating-Point as Integer Word Indexed [Extended]

stfiwx FRS,RA,RB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (X-mode, E=0)
stfiwxe FRS,RA,RB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (XE-mode, E=1)

if RA=0 then a ← 640 else a ← GPR(RA)
if X-mode   then EA ← 320 || (a + GPR(RB)) 32:63
if XE-mode  then EA ← a + GPR(RB)
MEM(EA,4) ← FPR(FRS) 32:63

Let the effective address (EA) be calculated as follows:

• For stfiwx, let EA be 32 0s concatenated with bits 32:63 of the sum of the
contents of GPR(RA), or 64 0s if RA=0, and the contents of GPR(RB).

• For stfiwxe, let EA be the sum of the contents of GPR(RA), or 64 0s if RA=0,
and the contents of GPR(RB).

The contents of bits 32:63 of FPR(FRS) are stored, without conversion, into the
word in storage addressed by EA.

If the contents of FPR(FRS) were produced, either directly or indirectly, by a Load
Floating-Point Single instruction, a single-precision Arithmetic instruction, or frsp,
then the value stored is undefined. (The contents of FPR(FRS) are produced
directly by such an instruction if FPR(FRS) is the target register for the instruc-
tion. The contents of FPR(FRS) are produced indirectly by such an instruction if
FPR(FRS) is the final target register of a sequence of one or more Floating-Point
Move instructions, with the input to the sequence having been produced directly
by such an instruction.)

An attempt to execute stfiwx[e] while MSRFP=0 will cause a Floating-Point
Unavailable interrupt.

Special Registers Altered:
None

0 1 1 1 1 1 FRS RA RB 1 1 1 1 0 1 E 1 1 1 /

0 6 11 16 21 31
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Store Floating-Point Single [with Update] [Indexed] [Extended]

stfs FRS,D(RA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (D-mode, U=0)
stfsu FRS,D(RA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (D-mode, U=1)

stfse FRS,DES(RA). . . . . . . . . . . . . . . . . . . . . . . . . . .(DES-mode, U=0)
stfsue FRS,DES(RA). . . . . . . . . . . . . . . . . . . . . . . . . . .(DES-mode, U=1)

stfsx FRS,RA,RB . . . . . . . . . . . . . . . . . . . . . . . . . . (X-mode, E=0, U=0)
stfsux FRS,RA,RB . . . . . . . . . . . . . . . . . . . . . . . . . . (X-mode, E=0, U=1)
stfsxe FRS,RA,RB . . . . . . . . . . . . . . . . . . . . . . . . . (XE-mode, E=1, U=0)
stfsuxe FRS,RA,RB . . . . . . . . . . . . . . . . . . . . . . . . . (XE-mode, E=1, U=1)

if RA=0 then a ← 640 else a ← GPR(RA)
if D-mode   then EA ← 320 || (a + EXTS(D)) 32:63
if X-mode   then EA ← 320 || (a + GPR(RB)) 32:63
if DES-mode then EA ← a + EXTS(DES ||0b00)
if XE-mode  then EA ← a + GPR(RB)
MEM(EA,4) ← SINGLE(FPR(FRS))
if U=1 then GPR(RA) ← EA

Let the effective address (EA) be calculated as follows:

• For stfs and stfsu, let EA be 32 0s concatenated with bits 32:63 of the sum of
the contents of GPR(RA), or 64 0s if RA=0, and the sign-extended value of the
D instruction field.

• For stfsx and stfsux, let EA be 32 0s concatenated with bits 32:63 of the sum
of the contents of GPR(RA), or 64 0s if RA=0, and the contents of GPR(RB).

• For stfse and stfsue, let EA be the sum of the contents of GPR(RA), or 64 0s if
RA=0, and the sign-extended value of the DES instruction field concatenated
with 0b00.

• For stfsxe and stfsuxe, let EA be the sum of the contents of GPR(RA), or 64
0s if RA=0, and the contents of GPR(RB).

The contents of FPR(FRS) are converted to single format (see page 100) and stored
into the word in storage addressed by EA.

If  U=1 (‘with update’), EA is placed into GPR(RA).

If U=1 (‘with update’) and RA=0, the instruction form is invalid.

An attempt to execute stfs[u][x][e] while MSRFP=0 will cause a Floating-Point
Unavailable interrupt.

Special Registers Altered:
None

1 1 0 1 0 U FRS RA D

0 6 11 16 31

1 1 1 1 1 0 FRS RA DES 1 1 0 U

0 6 11 16 28 31

0 1 1 1 1 1 FRS RA RB 1 0 1 0 U 1 E 1 1 1 /

0 6 11 16 21 31
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Store Halfword [with Update] [Indexed] [Extended]

sth RS,D(RA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (D-mode, U=0)
sthu RS,D(RA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (D-mode, U=1)

sthe RS,DE(RA). . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(DE-mode, U=0)
sthue RS,DE(RA). . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(DE-mode, U=1)

sthx RS,RA,RB . . . . . . . . . . . . . . . . . . . . . . . . . . . (X-mode, E=0, U=0)
sthux RS,RA,RB . . . . . . . . . . . . . . . . . . . . . . . . . . . (X-mode, E=0, U=1)
sthxe RS,RA,RB . . . . . . . . . . . . . . . . . . . . . . . . . . (XE-mode, E=1, U=0)
sthuxe RS,RA,RB . . . . . . . . . . . . . . . . . . . . . . . . . . (XE-mode, E=1, U=1)

if RA=0 then a ← 640 else a ← GPR(RA)
if D-mode  then EA ← 320 || (a + EXTS(D)) 32:63
if X-mode  then EA ← 320 || (a + GPR(RB)) 32:63
if DE-mode then EA ← a + EXTS(DE)
if XE-mode then EA ← a + GPR(RB)
MEM(EA,2) ← GPR(RS) 48:63
if U=1 then GPR(RA) ← EA

Let the effective address (EA) be calculated as follows:

• For sth and sthu, let EA be 32 0s concatenated with bits 32:63 of the sum of
the contents of GPR(RA), or 64 0s if RA=0, and the sign-extended value of the
D instruction field.

• For sthx and sthux, let EA be 32 0s concatenated with bits 32:63 of the sum
of the contents of GPR(RA), or 64 0s if RA=0, and the contents of GPR(RB).

• For sthe and sthue, let EA be the sum of the contents of GPR(RA), or 64 0s if
RA=0, and the sign-extended value of the DE instruction field.

• For sthxe and sthuxe, let EA be the sum of the contents of GPR(RA), or 64 0s
if RA=0, and the contents of GPR(RB).

The contents of bits 48:63 of GPR(RS) are stored into the halfword in storage
addressed by EA.

If U=1 (‘with update’), EA is placed into GPR(RA).

If U=1 (‘with update’) and RA=0, the instruction form is invalid.

Special Registers Altered:
None

1 0 1 1 0 U RS RA D

0 6 11 16 31

1 1 1 0 1 0 RS RA DE 1 0 1 U

0 6 11 16 28 31

0 1 1 1 1 1 RS RA RB 0 1 1 0 U 1 E 1 1 1 /

0 6 11 16 21 31
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Store Halfword Byte-Reverse [Extended]

sthbrx RS,RA,RB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (X-mode, E=0)
sthbrxe RS,RA,RB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (XE-mode, E=1)

if RA=0 then a ← 640 else a ← GPR(RA)
if X-mode  then EA ← 320 || (a + GPR(RB)) 32:63
if XE-mode then EA ← a + GPR(RB)
MEM(EA,2) ← GPR(RS) 56:63 || GPR(RS) 48:55

Let the effective address (EA) be calculated as follows:

• For sthbrx, let EA be 32 0s concatenated with bits 32:63 of the sum of the
contents of GPR(RA), or 64 0s if RA=0, and the contents of GPR(RB).

• For sthbrxe, let EA be the sum of the contents of GPR(RA), or 64 0s if RA=0,
and the contents of GPR(RB).

Bits 56:63 of GPR(RS) are stored into bits 0:7 of the halfword in storage addressed
by EA. Bits 48:55 of GPR(RS) are stored into bits 8:15 of the halfword in storage
addressed by EA.

Special Registers Altered:
None

0 1 1 1 1 1 RS RA RB 1 1 1 0 0 1 E 1 1 0 /

0 6 11 16 21 31

Programming Note
When EA references Big-Endian storage, these instructions have the effect of storing
data in Little-Endian byte order. Likewise, when EA references Little-Endian storage,
these instructions have the effect of storing data in Big-Endian byte order.
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Store Multiple Word

stmw RS,D(RA)

if RA =0 then EA ← 320 || EXTS(D) 32:63
else         EA ← 320 || (GPR(RA)+EXTS(D)) 32:63
r ← RS
do while r ≤ 31

MEM(EA,4) ← GPR(r) 32:63
r ← r + 1
EA ← 320 || (EA+4) 32:63

Let the effective address (EA) be 32 0s concatenated with bits 32:63 of the sum of
the contents of GPR(RA), or 64 0s if RA=0, and the sign-extended value of the D
instruction field.

Let n=(32-RT). Bits 32:63 of registers GPR(RS) through GPR(31) are stored into n
consecutive words in storage starting at address EA.

EA must be a multiple of 4. If it is not, either an Alignment interrupt is invoked or
the results are boundedly undefined.

Special Registers Altered:
None

1 0 1 1 1 1 RS RA D

0 6 11 16 31

Engineering Note
Causing an Alignment interrupt if attempt is made to execute a Store Multiple instruc-
tion having an incorrectly aligned effective address facilitates the debugging of software.

Architecture Note
Extended addressing modes are not defined for Store Multiple. Doubleword forms of Store
Multiple are not defined.
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Store String Word (Immediate | Indexed)

stswi RS,RA,NB

stswx RS,RA,RB

if RA=0 then a ← 640 else a ← GPR(RA)
if ‘stswi’ then EA ← 320 ||  a 32:63
if ‘stswx’ then EA ← 320 || (a + GPR(RB)) 32:63
if ‘stswi’ & NB=0 then n ← 32
if ‘stswi’ & NB ≠0 then n ← NB
if ‘stswx’        then n ← XER57:63
r ← RS - 1
i ← 32
do while n > 0

if i=32 then r ← r + 1 (mod 32)
MEM(EA,1) ← GPR(r) i:i+7
i ← i + 8
if i = 64 then i ← 32
EA ← 320 || (EA+1) 32:63
n ← n - 1

Let the effective address (EA) be calculated as follows:

• For stswi, let EA be 32 0s concatenated with the contents of bits 32:63 of
GPR(RA), or 32 0s if RA=0.

• For stswx, let EA be 32 0s concatenated with bits 32:63 of the sum of the
contents of GPR(RA), or 64 0s if RA=0, and the contents of GPR(RB).

If stswi then let n=NB if NB≠0, n=32 if NB=0. If stswx then let n=XER57:63. n is
the number of bytes to store. Let nr=CEIL(n÷4): nr is the number of registers to
supply data.

Registers GPR(RS) through GPR(RS+nr-1) are stored into n consecutive bytes in
storage starting at address EA. Data are stored from the low-order four bytes of
each GPR.

Bytes are stored left to right from each register. The sequence of registers wraps
around to GPR(0) if required.

If stswx and n=0, no bytes are stored.

Special Registers Altered:
None

0 1 1 1 1 1 RS RA NB 1 0 1 1 0 1 0 1 0 1 /

0 6 11 16 21 31

0 1 1 1 1 1 RS RA RB 1 0 1 0 0 1 0 1 0 1 /

0 6 11 16 21 31

Programming Note
The Store String Word instructions, in combination with the Load String Word instruc-
tions allow movement of data from storage to registers or from registers to storage
without concern for alignment. These instructions can be used for a short move between
arbitrary storage locations or to initiate a long move between unaligned storage fields.

Architecture Note
Extended addressing modes are not defined for the Store String Word instructions. Dou-
bleword forms of the Store String Word instructions are not defined.
350 Book E: Enhanced PowerPC Architecture Version 1.0 07 May 02



Store Word [with Update] [Indexed] [Extended]

stw RS,D(RA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (D-mode, U=0)
stwu RS,D(RA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (D-mode, U=1)

stwe RS,DE(RA). . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(DE-mode, U=0)
stwue RS,DE(RA). . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(DE-mode, U=1)

stwx RS,RA,RB . . . . . . . . . . . . . . . . . . . . . . . . . . . (X-mode, E=0, U=0)
stwux RS,RA,RB . . . . . . . . . . . . . . . . . . . . . . . . . . . (X-mode, E=0, U=1)
stwxe RS,RA,RB . . . . . . . . . . . . . . . . . . . . . . . . . . (XE-mode, E=1, U=0)
stwuxe RS,RA,RB . . . . . . . . . . . . . . . . . . . . . . . . . . (XE-mode, E=1, U=1)

if RA=0 then a ← 640 else a ← GPR(RA)
if D-mode  then EA ← 320 || (a + EXTS(D)) 32:63
if X-mode  then EA ← 320 || (a + GPR(RB)) 32:63
if DE-mode then EA ← a + EXTS(DE)
if XE-mode then EA ← a + GPR(RB)
MEM(EA,4) ← GPR(RS) 32:63
if U=1 then GPR(RA) ← EA

Let the effective address (EA) be calculated as follows:

• For stw and stwu, let EA be 32 0s concatenated with bits 32:63 of the sum of
the contents of GPR(RA), or 64 0s if RA=0, and the sign-extended value of the
D instruction field.

• For stwx and stwux, let EA be 32 0s concatenated with bits 32:63 of the sum
of the contents of GPR(RA), or 64 0s if RA=0, and the contents of GPR(RB).

• For stwe and stwue, let EA be the sum of the contents of GPR(RA), or 64 0s if
RA=0, and the sign-extended value of the DE instruction field.

• For stwxe and stwuxe, let EA be the sum of the contents of GPR(RA), or 64
0s if RA=0, and the contents of GPR(RB).

The contents of bits 32:63 of GPR(RS) are stored into the word in storage
addressed by EA.

If U=1 (‘with update’), EA is placed into GPR(RA).

If U=1 (‘with update’) and RA=0, the instruction form is invalid.

Special Registers Altered:
None

1 0 0 1 0 U RS RA D

0 6 11 16 31

1 1 1 0 1 0 RS RA DE 1 1 1 U

0 6 11 16 28 31

0 1 1 1 1 1 RS RA RB 0 0 1 0 U 1 E 1 1 1 /

0 6 11 16 21 31
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Store Word Byte-Reverse [Extended]

stwbrx RS,RA,RB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (X-mode, E=0)
stwbrxe RS,RA,RB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (XE-mode, E=1)

if RA=0 then a ← 640 else a ← GPR(RA)
if X-mode  then EA ← 320 || (a + GPR(RB)) 32:63
if XE-mode then EA ← a + GPR(RB)
MEM(EA,4) ← GPR(RS) 56:63 || GPR(RS) 48:55 || GPR(RS) 40:47 || GPR(RS) 32:39

Let the effective address (EA) be calculated as follows:

• For stwbrx, let EA be 32 0s concatenated with bits 32:63 of the sum of the
contents of GPR(RA), or 64 0s if RA=0, and the contents of GPR(RB).

• For stwbrxe, let EA be the sum of the contents of GPR(RA), or 64 0s if RA=0,
and the contents of GPR(RB).

Bits 56:63 of GPR(RS) are stored into bits 0:7 of the word in storage addressed by
EA. Bits 48:55 of GPR(RS) are stored into bits 8:15 of the word in storage
addressed by EA. Bits 40:47 of GPR(RS) are stored into bits 16:23 of the word in
storage addressed by EA. Bits 32:39 of GPR(RS) are stored into bits 24:31 of the
word in storage addressed by EA.

Special Registers Altered:
None

0 1 1 1 1 1 RS RA RB 1 0 1 0 0 1 E 1 1 0 /

0 6 11 16 21 31

Programming Note
When EA references Big-Endian storage, these instructions have the effect of storing
data in Little-Endian byte order. Likewise, when EA references Little-Endian storage,
these instructions have the effect of storing data in Big-Endian byte order.
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Store Word Conditional Indexed [Extended]

stwcx. RS,RA,RB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (X-mode, E=0)
stwcxe. RS,RA,RB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (XE-mode, E=1)

if RA=0 then a ← 640 else a ← GPR(RA)
if X-mode  then EA ← 320 || (a + GPR(RB)) 32:63
if XE-mode then EA ← a + GPR(RB)
if RESERVE then

if RESERVE_ADDR = real_addr(EA) then
MEM(EA,4) ← GPR(RS) 32:63
CR0 ← 0b00 || 0b1 || XERSO

else
u ← undefined 1-bit value
if u then MEM(EA,4) ← GPR(RS) 32:63
CR0 ← 0b00 || u || XERSO

RESERVE← 0
else

CR0 ← 0b00 || 0b0 || XERSO

Let the effective address (EA) be calculated as follows:

• For stwcx., let EA be 32 0s concatenated with bits 32:63 of the sum of the
contents of GPR(RA), or 64 0s if RA=0, and the contents of GPR(RB).

• For stwcxe., let EA be the sum of the contents of GPR(RA), or 64 0s if RA=0,
and the contents of GPR(RB).

If a reservation exists and the storage address specified by the stwcx. or stwcxe.
is the same as that specified by the lwarx or lwarxe instruction that established
the reservation, the contents of bits 32:63 of GPR(RS) are stored into the word in
storage addressed by EA and the reservation is cleared.

If a reservation exists but the storage address specified by the stwcx. or stwcxe.
is not the same as that specified by the Load and Reserve instruction that estab-
lished the reservation, the reservation is cleared, and it is undefined whether the
instruction completes without altering storage.

If a reservation does not exist, the instruction completes without altering storage.

CR Field 0 is set to reflect whether the store operation was performed, as follows.

CR0LT GT EQ SO  = 0b00 || store_performed || XERSO

EA must be a multiple of 4. If it is not, either an Alignment interrupt is invoked or
the results are boundedly undefined.

Special Registers Altered:
CR0

0 1 1 1 1 1 RS RA RB 0 0 1 0 0 1 E 1 1 0 1

0 6 11 16 21 31

Programming Note
stwcx., stwcxe., and stdcxe., in combination with lwarx, lwarxe, and ldarxe, permit
the programmer to write a sequence of instructions that appear to perform an atomic
update operation on a storage location. This operation depends upon a single reserva-
tion resource in each processor. At most one reservation exists on any given processor:
there are not separate reservations for words and for doublewords.
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Programming Note
Because stwcx., stwcxe., and stdcxe. have implementation dependencies (e.g., the
granularity at which reservations are managed), they must be used with care. The oper-
ating system should provide system library programs that use these instructions to
implement the high-level synchronization functions (Test and Set, Compare and Swap,
etc.) needed by application programs. Application programs should use these library
programs, rather than use stwcx., stwcxe., and stdcxe. directly.

Architecture Note
stwcx., stwcxe., and stdcxe. require the EA to be aligned. Software should not attempt
to emulate an unaligned stwcx., stwcxe., or stdcxe., because there is no correct way to
define the address associated with the reservation.

Engineering Note
Causing an Alignment interrupt to be invoked if an attempt is made to execute a stwcx.,
stwcxe., or stdcxe. having an incorrectly aligned effective address facilitates the debug-
ging of software by signalling the exception when and where the exception occurs.

Engineering Note
If a Store Conditional instruction produces an effective address for which a normal Store
would cause a Data Storage, Alignment, or Data TLB Error interrupt, but the processor
does not have the reservation from a Load and Reserve instruction, then it is implemen-
tation-dependent whether a Data Storage, Alignment, or Data TLB Error interrupt
occurs. See User’s Manual for the implementation.

Programming Note
The granularity with which reservations are managed is implementation-dependent.
Therefore the storage to be accessed by stwcx., stwcxe., or stdcxe. should be allocated
by a system library program. Additional information can be found in Section 6.1.6.2 on
page 117.

Programming Note
When correctly used, the Load And Reserve and Store Conditional instructions can pro-
vide an atomic update function for a single aligned word (Load Word And Reserve and
Store Word Conditional) or doubleword (Load Doubleword And Reserve and Store Double-
word Conditional) of storage.

In general, correct use requires that Load Word And Reserve be paired with Store Word
Conditional, and Load Doubleword And Reserve with Store Doubleword Conditional, with
the same storage address specified by both instructions of the pair. The only exception
is that an unpaired Store Word Conditional or Store Doubleword Conditional instruction
to any (scratch) effective address can be used to clear any reservation held by the pro-
cessor. Examples of correct uses of these instructions to emulate primitives such as
‘Fetch and Add’, ‘Test and Set’, and ‘Compare and Swap’ can be found in Section 11 on
page 225.

A reservation is cleared if any of the following events occurs.

• The processor holding the reservation executes another Load And Reserve instruc-
tion; this clears the first reservation and establishes a new one.

• The processor holding the reservation executes a Store Conditional instruction to any
address.

• Another processor executes any Store instruction to the address associated with the
reservation.

• Any mechanism, other than the processor holding the reservation, stores to the
address associated with the reservation.

See Section 6.1.6.2 on page 117, for additional information.
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Subtract From

subf RT,RA,RB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (OE=0, Rc=0)
subf. RT,RA,RB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (OE=0, Rc=1)
subfo RT,RA,RB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (OE=1, Rc=0)
subfo. RT,RA,RB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (OE=1, Rc=1)

carry 0:63 ← Carry( ¬GPR(RA) + GPR(RB) + 1)
sum0:63 ← ¬GPR(RA) + GPR(RB) + 1
if OE=1 then do

OV ← carry 32 ⊕ carry 33
SO ← SO | (carry 32 ⊕ carry 33)
OV64 ← carry 0 ⊕ carry 1
SO64 ← SO64 | (carry 0 ⊕ carry 1)

if Rc=1 then do
LT ← sum 32:63  < 0
GT ← sum 32:63  > 0
EQ ← sum 32:63  = 0
CR0 ← LT || GT || EQ || SO

GPR(RT) ← sum

The sum of the one’s complement of the contents of GPR(RA), the contents of
GPR(RB), and 1 is placed into GPR(RT).

Special Registers Altered:
CR0  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(if Rc=1)
SO OV SO64 OV64 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (if OE=1)

0 1 1 1 1 1 RT RA RB OE 0 0 0 1 0 1 0 0 0 Rc

0 6 11 16 21 31
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Subtract From Carrying

subfc RT,RA,RB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (OE=0, Rc=0)
subfc. RT,RA,RB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (OE=0, Rc=1)
subfco RT,RA,RB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (OE=1, Rc=0)
subfco. RT,RA,RB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (OE=1, Rc=1)

carry 0:63 ← Carry( ¬GPR(RA) + GPR(RB) + 1)
sum0:63 ← ¬GPR(RA) + GPR(RB) + 1
if OE=1 then do

OV ← carry 32 ⊕ carry 33
SO ← SO | (carry 32 ⊕ carry 33)
OV64 ← carry 0 ⊕ carry 1
SO64 ← SO64 | (carry 0 ⊕ carry 1)

if Rc=1 then do
LT ← sum 32:63  < 0
GT ← sum 32:63  > 0
EQ ← sum 32:63  = 0
CR0 ← LT || GT || EQ || SO

GPR(RT) ← sum
CA ← carry 32
CA64 ← carry 0

The sum of the one’s complement of the contents of GPR(RA), the contents of
GPR(RB), and 1 is placed into GPR(RT).

Special Registers Altered:
CA CA64
CR0  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(if Rc=1)
SO OV SO64 OV64 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (if OE=1)

0 1 1 1 1 1 RT RA RB OE 0 0 0 0 0 1 0 0 0 Rc

0 6 11 16 21 31
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Subtract From Extended

subfe RT,RA,RB . . . . . . . . . . . . . . . . . . . . . . . . . . . . (E=0, OE=0, Rc=0)
subfe. RT,RA,RB . . . . . . . . . . . . . . . . . . . . . . . . . . . . (E=0, OE=0, Rc=1)
subfeo RT,RA,RB . . . . . . . . . . . . . . . . . . . . . . . . . . . . (E=0, OE=1, Rc=0)
subfeo. RT,RA,RB . . . . . . . . . . . . . . . . . . . . . . . . . . . . (E=0, OE=1, Rc=1)
subfe64 RT,RA,RB . . . . . . . . . . . . . . . . . . . . . . . . . . . . (E=1, OE=0, Rc=0)
subfe64o RT,RA,RB . . . . . . . . . . . . . . . . . . . . . . . . . . . . (E=1, OE=1, Rc=0)

if E=0 then Cin ← CA else Cin ← CA64
carry 0:63 ← Carry( ¬GPR(RA) + GPR(RB) + Cin)
sum0:63 ← ¬GPR(RA) + GPR(RB) + Cin
if OE=1 then do

OV ← carry 32 ⊕ carry 33
SO ← SO | (carry 32 ⊕ carry 33)
OV64 ← carry 0 ⊕ carry 1
SO64 ← SO64 | (carry 0 ⊕ carry 1)

if Rc=1 then do
LT ← sum 32:63  < 0
GT ← sum 32:63  > 0
EQ ← sum 32:63  = 0
CR0 ← LT || GT || EQ || SO

GPR(RT) ← sum
CA ← carry 32
CA64 ← carry 0

For subfe[o][.], the sum of the one’s complement of the contents of GPR(RA), the
contents of GPR(RB), and CA is placed into GPR(RT).

For subfe64[o], the sum of the one’s complement of the contents of GPR(RA), the
contents of GPR(RB), and CA64 is placed into GPR(RT).

For subfe64[o], if Rc=1 the instruction form is invalid.

Special Registers Altered:
CA CA64
CR0  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(if Rc=1)
SO OV SO64 OV64 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (if OE=1)

0 1 1 1 1 1 RT RA RB OE E 1 0 0 0 1 0 0 0 Rc

0 6 11 16 21 31
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Subtract From Immediate Carrying

subfic RT,RA,SI

carry 0:63 ← Carry( ¬GPR(RA) + EXTS(SI) + 1)
sum0:63 ← ¬GPR(RA) + EXTS(SI) + 1
GPR(RT) ← sum
CA ← carry 32
CA64 ← carry 0

The sum of the one’s complement of the contents of GPR(RA), the sign-extended
value of the SI field, and 1 is placed into GPR(RT).

Special Registers Altered:
CA CA64

0 0 1 0 0 0 RT RA SI

0 6 11 16 31
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Subtract From Minus One Extended

subfme RT,RA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (E=0, OE=0, Rc=0)
subfme. RT,RA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (E=0, OE=0, Rc=1)
subfmeo RT,RA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (E=0, OE=1, Rc=0)
subfmeo. RT,RA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (E=0, OE=1, Rc=1)
subfme64 RT,RA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (E=1, OE=0, Rc=0)
subfme64o RT,RA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (E=1, OE=1, Rc=0)

if E=0 then Cin ← CA else Cin ← CA64
carry 0:63 ← Carry( ¬GPR(RA) + Cin + 0xFFFF_FFFF_FFFF_FFFF)
sum0:63 ← ¬GPR(RA) + Cin + 0xFFFF_FFFF_FFFF_FFFF
if OE=1 then do

OV ← carry 32 ⊕ carry 33
SO ← SO | (carry 32 ⊕ carry 33)
OV64 ← carry 0 ⊕ carry 1
SO64 ← SO64 | (carry 0 ⊕ carry 1)

if Rc=1 then do
LT ← sum 32:63  < 0
GT ← sum 32:63  > 0
EQ ← sum 32:63  = 0
CR0 ← LT || GT || EQ || SO

GPR(RT) ← sum
CA ← carry 32
CA64 ← carry 0

For subfme[o][.], the sum of the one’s complement of the contents of GPR(RA), CA,
and 641 is placed into GPR(RT).

For subfme64[o], the sum of the one’s complement of the contents of GPR(RA),
CA64, and 641 is placed into GPR(RT).

For subfme64[o], if Rc=1 the instruction form is invalid.

Special Registers Altered:
CA CA64
CR0  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(if Rc=1)
SO OV SO64 OV64 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (if OE=1)

0 1 1 1 1 1 RT RA /// OE E 1 1 1 0 1 0 0 0 Rc

0 6 11 16 21 31
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Subtract From Zero Extended

subfze RT,RA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (E=0, OE=0, Rc=0)
subfze. RT,RA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (E=0, OE=0, Rc=1)
subfzeo RT,RA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (E=0, OE=1, Rc=0)
subfzeo. RT,RA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (E=0, OE=1, Rc=1)
subfze64 RT,RA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (E=1, OE=0, Rc=0)
subfze64o RT,RA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (E=1, OE=1, Rc=0)

if E=0 then Cin ← CA else Cin ← CA64
carry 0:63 ← Carry( ¬GPR(RA) + Cin)
sum0:63 ← ¬GPR(RA) + Cin
if OE=1 then do

OV ← carry 32 ⊕ carry 33
SO ← SO | (carry 32 ⊕ carry 33)
OV64 ← carry 0 ⊕ carry 1
SO64 ← SO64 | (carry 0 ⊕ carry 1)

if Rc=1 then do
LT ← sum 32:63  < 0
GT ← sum 32:63  > 0
EQ ← sum 32:63  = 0
CR0 ← LT || GT || EQ || SO

GPR(RT) ← sum
CA ← carry 32
CA64 ← carry 0

For subfze[o][.], the sum of the one’s complement of the contents of GPR(RA) and
CA is placed into GPR(RT).

For subfze64[o], the sum of the one’s complement of the contents of GPR(RA) and
CA64 is placed into GPR(RT).

For subfze64[o], if Rc=1 the instruction form is invalid.

Special Registers Altered:
CA CA64
CR0  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(if Rc=1)
SO OV SO64 OV64 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (if OE=1)

0 1 1 1 1 1 RT RA /// OE E 1 1 0 0 1 0 0 0 Rc

0 6 11 16 21 31
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Trap Doubleword [Immediate]

td TO,RA,RB

tdi TO,RA,SI

a ← GPR(RA)
if ‘td’  then b ← GPR(RB)
if ‘tdi’ then b ← EXTS(SI)
if (a <  b) & TO 0 then TRAP
if (a >  b) & TO 1 then TRAP
if (a =  b) & TO 2 then TRAP
if (a < u b) & TO 3 then TRAP
if (a > u b) & TO 4 then TRAP

If td, the contents of GPR(RA) are compared with the contents of GPR(RB).

If tdi, the contents of GPR(RA) are compared with the sign-extended value of the
SI field.

If any bit in the TO field is set to 1 and its corresponding condition is met by the
result of the comparison, then the system trap handler is invoked.

Special Registers Altered:
None

0 1 1 1 1 1 TO RA RB 0 0 0 1 0 0 0 1 0 0 /

0 6 11 16 21 31

0 0 0 0 1 0 TO RA SI

0 6 11 16 31
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TLB Invalidate Virtual Address Indexed [Extended]

tlbivax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (X-mode, E=0)
tlbivaxe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (XE-mode, E=1)

if RA=0 then a ← 640 else a ← GPR(RA)
if E=0 then EA ← 320 || (a + GPR(RB)) 32:63
if E=1 then EA ← a + GPR(RB)
AS ← implementation-dependent value
ProcessID ← implementation-dependent value
VA ← AS || ProcessID || EA
InvalidateTLB(VA)

Let the effective address (EA) be calculated as follows:

Addressing Mode EA for RA=0 EA for RA≠0
X-mode 320 || GPR(RB)32:63

320 || (GPR(RA)+GPR(RB))32:63
XE-mode GPR(RB) GPR(RA)+GPR(RB)

Let address space (AS) be defined as implementation-dependent (e.g. could be
MSRDS or a bit from an implementation-dependent SPR).

Let the ProcessID be defined as implementation-dependent (e.g. could be from the
PID Register or from an implementation-dependent SPR).

Let the virtual address (VA) be the value AS || ProcessID || EA. See Figure 6-2 on
page 128.

If the Translation Lookaside Buffer (TLB) contains an entry corresponding to VA,
that entry is made invalid (i.e. removed from the TLB). This instruction causes the
target TLB entry to be invalidated in all processors.

The operation performed by this instruction is ordered by the mbar (or msync)
instruction with respect to a subsequent tlbsync instruction executed by the pro-
cessor executing the tlbivax[e] instruction. The operations caused by tlbivax[e]
and tlbsync are ordered by mbar as a set of operations which is independent of
the other sets that mbar orders.

Execution of this instruction is privileged and restricted to supervisor mode only.

Special Registers Altered:
None

0 1 1 1 1 1 /// RA RB 1 1 0 0 0 1 0 0 1 E /

0 6 11 16 21 31

Programming Note
The effects of the invalidation are not guaranteed to be visible to the programming model
until the completion of a context synchronizing operation (see Section 1.12.1 on
page 38).

Programming & Engineering Note
Care must be taken not to invalidate any TLB entry that contains the mapping for any
interrupt vector.
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TLB Read Entry

tlbre

Bits 6:20 of the instruction encoding are allocated for implementation-dependent
use, and may be used to specify the source TLB entry, the source portion of the
source TLB entry, and the target resource that the result is placed into.

The implementation-dependent-specified TLB entry is read, and the implementa-
tion-dependent-specified portion of the TLB entry is extracted and placed into an
implementation-dependent target resource.

If the instruction specifies a TLB entry that does not exist, the results are unde-
fined.

Execution of this instruction may cause other implementation-dependent effects.
See User’s Manual for the implementation.

Execution of this instruction is privileged and restricted to supervisor mode only.

Special Registers Altered:
Implementation-dependent

0 1 1 1 1 1 ??? 1 1 1 0 1 1 0 0 1 0 /

0 6 21 31
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TLB Search Indexed [Extended]

tlbsx RA,RB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (X-mode, E=0)
tlbsxe RA,RB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (XE-mode, E=1)

if RA=0 then a ← 640 else a ← GPR(RA)
if X-mode  then EA ← 320 || (a + GPR(RB)) 32:63
if XE-mode then EA ← a + GPR(RB)
ProcessID ← implementation-dependent value
AS ← implementation-dependent value
VA ← AS || ProcessID || EA
if Valid_TLB_matching_entry_exists( VA )
   then result ← Implementation-dependent value
   else result ← Undefined
implementation-dependent target resource ← result

Let the effective address (EA) be calculated as follows:

Addressing Mode EA for RA=0 EA for RA≠0
X-mode 320 || GPR(RB)32:63

320 || (GPR(RA)+GPR(RB))32:63
XE-mode GPR(RB) GPR(RA)+GPR(RB)

Let the address space (AS) be defined as implementation-dependent (e.g. AS could
be MSRDS or a bit from an implementation-dependent SPR).

Let the ProcessID be defined as implementation-dependent (e.g. could be from the
PID register or from an implementation-dependent SPR).

Let the virtual address (VA) be the value AS || ProcessID || EA. See Figure 6-2 on
page 128.

Bits 6:10 of the instruction encoding are allocated for implementation-dependent
use, and may be used to specify the target resource that the result of the instruc-
tion is placed into.

If the Translation Lookaside Buffer (TLB) contains an entry corresponding to VA,
an implementation-dependent value is placed into an implementation-dependent-
specified target. Otherwise the contents of the implementation-dependent-speci-
fied target are left undefined.

Bit 31 of the instruction encoding is allocated for implementation-dependent use.
For example, bit 31 may be interpreted as an ‘Rc’ bit, used to enable recording the
success or failure of the search operation.

Execution of this instruction is privileged and restricted to supervisor mode only.

Special Registers Altered:
Implementation-dependent

0 1 1 1 1 1 ??? RA RB 1 1 1 0 0 1 0 0 1 E ?

0 6 11 16 21 31
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TLB Synchronize

tlbsync

The tlbsync instruction provides an ordering function for the effects of all
tlbivax[e] instructions executed by the processor executing the tlbsync instruc-
tion, with respect to the memory barrier created by a subsequent msync instruc-
tion executed by the same processor. Executing a tlbsync instruction ensures
that all of the following will occur.

• All TLB invalidations caused by tlbivax[e] instructions preceding the tlbsync
instruction will have completed on any other processor before any storage
accesses associated with data accesses caused by instructions following the
msync instruction are performed with respect to that processor.

• All storage accesses by other processors for which the address was translated
using the translations being invalidated, will have been performed with
respect to the processor executing the msync instruction, to the extent
required by the associated Memory Coherence Required attributes, before the
mbar or msync instruction’s memory barrier is created.

The operation performed by this instruction is ordered by the mbar and msync
instructions with respect to preceding tlbivax[e] instructions executed by the pro-
cessor executing the tlbsync instruction. The operations caused by tlbivax[e] and
tlbsync are ordered by mbar as a set of operations, which is independent of the
other sets that mbar orders.

The tlbsync instruction may complete before operations caused by tlbivax[e]
instructions preceding the tlbsync instruction have been performed.

Execution of this instruction is privileged and restricted to supervisor mode only.

Special Registers Altered:
None

0 1 1 1 1 1 /// 1 0 0 0 1 1 0 1 1 0 /

0 6 21 31
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TLB Write Entry

tlbwe

Bits 6:20 of the instruction encoding are allocated for implementation-dependent
use, and may be used to specify the target TLB entry, the target portion of the tar-
get TLB entry, and the source of the value that is to be written into the TLB.

The contents of the implementation-dependent-specified source are written into
the implementation-dependent-specified portion of the implementation-depen-
dent-specified TLB entry.

If the instruction specifies a TLB entry that does not exist, the results are unde-
fined.

Execution of this instruction may cause other implementation-dependent effects.
See User’s Manual for the implementation.

Execution of this instruction is privileged and restricted to supervisor mode only.

Special Registers Altered:
None

0 1 1 1 1 1 ??? 1 1 1 1 0 1 0 0 1 0 /

0 6 21 31

Programming Notes
The effects of the update are not guaranteed to be visible to the programming model
until the completion of a context synchronizing operation. See Section 1.12.1 on
page 38.

Programming & Engineering Note
Care must be taken not to invalidate any TLB entry that contains the mapping for any
interrupt vector.
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Trap Word [Immediate]

tw TO,RA,RB

twi TO,RA,SI

a ← EXTS(GPR(RA) 32:63 )
if ‘tw’  then b ← EXTS(GPR(RB) 32:63 )
if ‘twi’ then b ← EXTS(SI)
if (a <  b) & TO 0 then TRAP
if (a >  b) & TO 1 then TRAP
if (a =  b) & TO 2 then TRAP
if (a < u b) & TO 3 then TRAP
if (a > u b) & TO 4 then TRAP

For tw, the contents of bits 32:63 of GPR(RA) are compared with the contents of
bits 32:63 of GPR(RB).

For twi, the contents of bits 32:63 of GPR(RA) are compared with the sign-
extended value of the SI field.

If any bit in the TO field is set to 1 and its corresponding condition is met by the
result of the comparison, then the system trap handler is invoked.

Special Registers Altered:
None

0 1 1 1 1 1 TO RA RB 0 0 0 0 0 0 0 1 0 0 /

0 6 11 16 21 31

0 0 0 0 1 1 TO RA SI

0 6 11 16 31
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Write MSR External Enable [Immediate]

wrtee RS

wrteei E

if ‘wrtee’  then MSR EE ← GPR(RS)48
if ‘wrteei’ then MSR EE ← E

For wrtee, bit 48 of the contents of GPR(RS) is placed into MSREE.

For wrteei, the value specified in the E field is placed into MSREE.

Execution of this instruction is privileged and restricted to supervisor mode only.

In addition, alteration of the MSREE bit is effective as soon as the instruction com-
pletes. Thus if MSREE=0 and an External interrupt is pending, executing an
wrtee or wrteei that sets MSREE to 1 will cause the External interrupt to be
taken before the next instruction is executed, if no higher priority exception
exists. (See Section 7.9 on page 178).

Special Registers Altered:
MSR

0 1 1 1 1 1 RS /// 0 0 1 0 0 0 0 0 1 1 /

0 6 11 21 31

0 1 1 1 1 1 /// E /// 0 0 1 0 1 0 0 0 1 1 /

0 6 16 17 21 31

Programming Note
wrtee and wrteei are used to provide atomic update of MSREE. Typical usage is:

mfmsr Rn #save EE in GPR(Rn) 48
wrteei 0 #turn off EE
  : : :
  : : #code with EE disabled
  : : :
wrtee Rn #restore EE without altering other MSR bits that

#may have changed
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XOR [ Immediate [Shifted] ]

xor RA,RS,RB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (Rc=0)
xor. RA,RS,RB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (Rc=1)

xori RA,RS,UI. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (S=0, Rc=0)
xoris RA,RS,UI. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (S=1, Rc=0)

if ‘xori’   then b ← 480 || UI
if ‘xoris’  then b ← 320 || UI || 160
if ‘xor[.]’ then b ← GPR(RB)
result 0:63 ← GPR(RS) ⊕ b
if Rc=1 then do

LT ← result 32:63  < 0
GT ← result 32:63  > 0
EQ ← result 32:63  = 0
CR0 ← LT || GT || EQ || SO

GPR(RA) ← result

For xori, the contents of GPR(RS) are XORed with 480 || UI.

For xoris, the contents of GPR(RS) are XORed with 320 || UI || 160.

For xor[.], the contents of GPR(RS) are XORed with the contents of GPR(RB).

The result is placed into GPR(RA).

Special Registers Altered:
CR0  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(if Rc=1)

0 1 1 1 1 1 RS RA RB 0 1 0 0 1 1 1 1 0 0 Rc

0 6 11 16 21 31

0 1 1 0 1 S RS RA UI

0 5 6 11 16 31
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Appendix A Guidelines for 32-bit Book E

A.1 32-bit Book E Implementation Guidelines

A.1.1 64-bit-Specific Book E Instructions

There is a subset of Book E instructions that are considered restricted only to 64-
bit Book E processing. A 32-bit Book E implementation need not implement any
of the following instructions. Likewise, neither should 32-bit Book E applications
utilize any of these instructions. All other Book E instructions shall either be sup-
ported directly by the implementation, or sufficient infrastructure will be provided
to enable software emulation of the instructions.

64-bit integer arithmetic, compare, shift and rotate instructions
adde64[o], addme64[o], addze64[o],
subfe64[o], subfme64[o], subfze64[o],
mulhd, mulhdu, mulld[o], divd, divdu, extsw,
cmp (L=1), cmpi (L=1), cmpl (L=1), cmpli (L=1),
rldcl, rldcr, rldic, rldicl, rldicr, rldimi, sld, srad, sradi, srd,
cntlzd, td, tdi

64-bit extended addressing branch instructions
bcctre[l], bce[l][a], bclre[l], be[l][a]

64-bit extended addressing cache management instructions
dcbae, dcbfe, dcbie, dcbste, dcbte, dcbtste, dcbze, icbie, icbte

64-bit extended addressing load instructions
lbze, lbzue, lbzxe, lbzuxe, ldarxe, lde, ldue, ldxe, lduxe, lfde, lfdue, lfdxe,
lfduxe, lfse, lfsue, lfsxe, lfsuxe, lhae, lhaue, lhaxe, lhauxe, lhbrxe, lhze,
lhzue, lhzxe, lhzuxe, lwarxe, lwbrxe, lwze, lwzue, lwzxe, lwzuxe

64-bit extended addressing store instructions
stbe, stbue, stbxe, stbuxe, stdcxe., stde, stdue, stdxe, stduxe, stfde,
stfdue, stfdxe, stfduxe, stfiwxe, stfse, stfsue, stfsxe, stfsuxe, sthbrxe,
sthe, sthue, sthxe, sthuxe, stwbrxe, stwcxe., stwe, stwue, stwxe, stwuxe
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A.1.2 Registers on 32-bit Book E Implementations

Book E provides 32-bit and 64-bits registers. All 32-bit registers shall be sup-
ported as defined in the Book E specification. However, except for the 64-bit FPRs,
only bits 32:63 of Book E’s 64-bit registers are required to be implemented in
hardware in a 32-bit Book E implementation. Such 64-bit registers include the
LR, the CTR, the 32 GPRs, SRR0 and CSRR0. Book E remains silent on imple-
menting a subset of the 64-bit floating-point architecture.

Likewise, other than floating-point instructions, all instructions which are defined
to return a 64-bit result shall return only bits 32:63 of the result on a 32-bit Book
E implementation.

A.1.3 Addressing on 32-bit Book E Implementations

Only bits 32:63 of the 64-bit Book E instruction and data storage effective
addresses need to be calculated and presented to main storage. Given the only
branch and data storage access instructions that are not included in Section A.1
are defined to prepend 32 0s to bits 32:63 of the effective address computation, a
32-bit implementation can simply bypass the prepending of the 32 0s when
implementing these instructions. For Branch to Link Register and Branch to Count
Register instructions, given the LR and CTR are implemented only as 32-bit regis-
ters, only concatenating 2 0s to the right of bits 32:61 of these registers is neces-
sary to form the 32-bit branch target address.

For next sequential instruction address computation, the simplest implementa-
tion would suggest allowing the effective address computations to wrap from
0xFFFF_FFFC to 0x0000_0000. This wrapping is the required behavior of Pow-
erPC implementations. For 32-bit Book E applications, there appears little if any
benefit to allowing this wrapping behavior. Book E specifies that the situation
where the computation of the next sequential instruction address after address
0xFFFF_FFFC is undefined (note that the next sequential instruction address
after address 0xFFFF_FFFC on a 64-bit Book E implementation is
0x0000_0001_0000_0000).

A.1.4 TLB Fields on 32-bit Book E Implementations

32-bit Book E implementations should support bits 32:53 of the Effective Page
Number (EPN) field in the TLB. This size provides support for a 32-bit effective
address, which PowerPC ABIs may have come to expect to be available. 32-bit
Book E implementations may support greater than 32-bit real addresses by sup-
porting more than bits 32:53 of the Real Page Number (RPN) field in the TLB.

A.2 32-bit Book E Software Guidelines

A.2.1 32-bit Instruction Selection

Any Book E software that uses any of the instructions listed in Section A.1.1 shall
be considered 64-bit Book E software, and correct execution cannot be guaran-
teed on 32-bit Book E implementations. Generally speaking, 32-bit software
should avoid using any instruction or instructions that depend on any particular
setting of bits 0:31 of any 64-bit application-accessible system register, including
General Purpose Registers, for producing the correct 32-bit results. Context
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switching may or may not preserve the upper 32 bits of application-accessible 64-
bit system registers and insertion of arbitrary settings of those upper 32 bits at
arbitrary times during the execution of the 32-bit application must not affect the
final result.

A.2.2 32-bit Addressing

Book E provides a complete set of data storage access instructions that perform a
modulo 232 on the computed effective address and then prepend 32 0s to produce
the full 64-bit address. Book E also provides a complete set of branch instructions
that perform a modulo 232 on the computed branch target effective address and
then prepend 32 0s to produce the full 64-bit branch target address. On a 32-bit
Book E implementation, these instructions are executed as defined, but without
prepending the 32 0s (only the low-order 32 bits of the address are calculated). On
a 64-bit implementation, executing these instructions as defined provides the
effect of restricting the application to lowest 32-bit address space.

However, there is one exception. Next sequential instruction address computa-
tions (not a taken branch) are not defined for 32-bit Book E applications when the
current instruction address is 0xFFFF_FFFC. On a 32-bit Book E implementation,
the instruction address could simply wrap to 0x0000_0000, providing the same
effect that is required in the PowerPC Architecture. However, when the 32-bit
Book E application is executed on a 64-bit Book E implementation, the next
sequential instruction address calculated will be 0x0000_0001_0000_0000 and
not 0x0000_0000_0000_0000. To avoid this problem the 32-bit Book E applica-
tion must either avoid this situation by not allowing code to span this address
boundary, or requiring a Branch Absolute to address 0 be placed at address
0xFFFF_FFFC to emulate the wrap. Either of these approaches will allow the
application to execute on 32-bit and 64-bit Book E implementations.
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Appendix B Special Purpose Registers Index

Special Purpose Registers (SPRs) are on-chip registers that are architecturally
part of the processor core. They are accessed with the mtspr (page 316) and
mfspr (page 309) instructions. Encodings not listed are reserved for future use or
for use as implementation-specific registers.

In Table B-1, the column ‘SPRN’ (SPR number) lists register numbers, which are
used in the instruction mnemonics.

Special purpose registers control the use of the debug facilities, the timers, the
interrupts, the memory management unit, and other architected processor
resources.
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B.1 Defined Special Purpose Registers

Table B-1 provides a summary of all Special Purpose Registers defined in the
Book E.

Table B-1. Defined Special Purpose Registers

Defined
SPR

Defined SPR Name

Defined SPRN

Access

P
ri

v
il

eg
ed

Page

Decimal Binary

CSRR0 Critical Save/Restore Register 0 58 00001 1 1010 Read/Write Yes 144

CSRR1 Critical Save/Restore Register 1 59 00001 1 1011 Read/Write Yes 145

CTR Count Register 9 00000 0 1001 Read/Write No 48

DAC1 Data Address Compare 1 316 01001 1 1100 Read/Write Yes 218

DAC2 Data Address Compare 2 317 01001 1 1101

DBCR0 Debug Control Register 0 308 01001 1 0100 Read/Write Yes 210

DBCR1 Debug Control Register 1 309 01001 1 0101 Read/Write Yes 212

DBCR2 Debug Control Register 2 310 01001 1 0110 Read/Write Yes 215

DBSR Debug Status Register 304 01001 1 0000 Read/Clear1 Yes 217

DEAR Data Exception Address Register 61 00001 1 1101 Read/Write Yes 145

DEC Decrementer 22 00000 1 0110 Read/Write Yes 194

DECAR Decrementer Auto-Reload 54 00001 1 0110 Write-only

DVC1 Data Value Compare 1 318 01001 1 1110 Read/Write Yes 219

DVC2 Data Value Compare 2 319 01001 1 1111

ESR Exception Syndrome Register 62 00001 1 1110 Read/Write Yes 146

IVPR Interrupt Vector Prefix Register 63 00001 1 1111 Read/Write Yes 145

IAC1 Instruction Address Compare 1 312 01001 1 1000 Read/Write Yes 218

IAC2 Instruction Address Compare 2 313 01001 1 1001

IAC3 Instruction Address Compare 3 314 01001 1 1010

IAC4 Instruction Address Compare 4 315 01001 1 1011

IVOR0 Interrupt Vector Offset Register 0 400 01100 1 0000 Read/Write Yes 147

IVOR1 Interrupt Vector Offset Register 1 401 01100 1 0001

IVOR2 Interrupt Vector Offset Register 2 402 01100 1 0010

IVOR3 Interrupt Vector Offset Register 3 403 01100 1 0011

IVOR4 Interrupt Vector Offset Register 4 404 01100 1 0100

IVOR5 Interrupt Vector Offset Register 5 405 01100 1 0101

IVOR6 Interrupt Vector Offset Register 6 406 01100 1 0110

IVOR7 Interrupt Vector Offset Register 7 407 01100 1 0111

IVOR8 Interrupt Vector Offset Register 8 408 01100 1 1000

IVOR9 Interrupt Vector Offset Register 9 409 01100 1 1001

IVOR10 Interrupt Vector Offset Register 10 410 01100 1 1010

IVOR11 Interrupt Vector Offset Register 11 411 01100 1 1011

IVOR12 Interrupt Vector Offset Register 12 412 01100 1 1100

IVOR13 Interrupt Vector Offset Register 13 413 01100 1 1101

IVOR14 Interrupt Vector Offset Register 14 414 01100 1 1110

IVOR15 Interrupt Vector Offset Register 15 415 01100 1 1111

LR Link Register 8 00000 0 1000 Read/Write No 48

PID Process ID Register2 48 00001 1 0000 Read/Write Yes 121

PIR Processor ID Register 286 01000 1 1110 Read-only Yes 41

PVR Processor Version Register 287 01000 1 1111 Read-only Yes 41
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SPRG0 SPR General 0 272 01000 1 0000 Read/Write Yes 42

SPRG1 SPR General 1 273 01000 1 0001 Read/Write Yes

SPRG2 SPR General 2 274 01000 1 0010 Read/Write Yes

SPRG3 SPR General 3 259 01000 0 0011 Read-only No3

275 01000 1 0011 Read/Write Yes

SPRG4 SPR General 4 260 01000 0 0100 Read-only No

276 01000 1 0100 Read/Write Yes

SPRG5 SPR General 5 261 01000 0 0101 Read-only No

277 01000 1 0101 Read/Write Yes

SPRG6 SPR General 6 262 01000 0 0110 Read-only No

278 01000 1 0110 Read/Write Yes

SPRG7 SPR General 7 263 01000 0 0111 Read-only No

279 01000 1 0111 Read/Write Yes

USPRG0 User SPR General 04 256 01000 0 0000 Read/Write No 42

SRR0 Save/Restore Register 0 26 00000 1 1010 Read/Write Yes 144

SRR1 Save/Restore Register 1 27 00000 1 1011 Read/Write Yes 144

TBL Time Base Lower 268 01000 0 1100 Read-only No 189

284 01000 1 1100 Write-only Yes

TBU Time Base Upper 269 01000 0 1101 Read-only No

285 01000 1 1101 Write-only Yes

TCR Timer Control Register 340 01010 1 0100 Read/Write Yes 186

TSR Timer Status Register 336 01010 1 0000 Read/Clear5 Yes 188

XER Integer Exception Register 1 00000 0 0001 Read/Write No 53

1. The Debug Status Register can be read using mfspr RT,DBSR. The Debug Status Register cannot be directly written to.
Instead, bits in the Debug Status Register corresponding to 1 bits in GPR(RS) can be cleared using mtspr DBSR,RS.

2. Implementations may support more than one Process ID register. SPR numbers 49-55 are reserved for implementations
that support more than one Process ID register. See the User’s Manual for the implementation.

3. User-mode read access to SPRG3 is implementation-dependent. See the User’s Manual for the implementation.
4. USPRG0 is a separate physical register from SPRG0.
5. The Timer Status Register can be read using mfspr RT,TSR. The Timer Status Register cannot be directly written to.

Instead, bits in the Timer Status Register corresponding to 1 bits in GPR(RS) can be cleared using mtspr TSR,RS.

Defined
SPR

Defined SPR Name

Defined SPRN

Access

P
ri

v
il

eg
ed

Page

Decimal Binary
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B.2 Preserved Special Purpose Registers

Preserved SPRNs are SPRNs that otherwise would be classified as reserved, but
have legacy use which requires their deployment in the Book E to be deferred as
long as possible in order to allow legacy hardware and software to migrate these
legacy Special Purpose Registers to Book E allocated SPRN space.

Table B-2. Preserved Special Purpose Registers

B.3 Reserved Special Purpose Registers

Any SPRN in the range 0x000-0x1FF (0-511) that is not Defined (see Table B-1)
and is not Preserved (see Table B-2) is Reserved.

B.4 Allocated Special Purpose Registers

SPRNs that are allocated for implementation-dependent use are 0x200-0x3FF
(512-1023).

Preserved SPR
Preserved SPRN

Decimal Binary
PowerPC DSISR
PowerPC DAR
PowerPC SDR1

18
19
25

00000 1 0010
00000 1 0011
00000 1 1001

8xx EIE
8xx EID
8xx NRE

80
81
82

00010 1 0000
00010 1 0001
00010 1 0010

5xx,8xx CMPA
5xx,8xx CMPB
5xx,8xx CMPC
5xx,8xx CMPD
5xx,8xx ICR
5xx,8xx DER
5xx,8xx COUNTA
5xx,8xx COUNTB
5xx,8xx CMPE
5xx,8xx CMPF
5xx,8xx CMPG
5xx,8xx CMPH
5xx,8xx LCTRL1
5xx,8xx LCTRL2
5xx,8xx ICTRL
5xx,8xx BAR

144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159

00100 1 0000
00100 1 0001
00100 1 0010
00100 1 0011
00100 1 0100
00100 1 0101
00100 1 0110
00100 1 0111
00100 1 1000
00100 1 1001
00100 1 1010
00100 1 1011
00100 1 1100
00100 1 1101
00100 1 1110
00100 1 1111

PowerPC ASR
PowerPC EAR

280
282

01000 1 1000
01000 1 1010
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Appendix C Programming Examples

C.1 Synchronization

This section gives examples of how the Storage Synchronization instructions can
be used to emulate various synchronization primitives and to provide more com-
plex forms of synchronization.

These examples have a common form. After possible initialization, there is a ‘con-
ditional sequence’ that begins with a Load And Reserve instruction, which may be
followed by memory accesses and/or computation that include neither a Load
And Reserve nor a Store Conditional, and ends with a Store Conditional instruction
with the same target address as the initial Load And Reserve. In most of the exam-
ples, failure of the Store Conditional causes a branch back to the Load And
Reserve for a repeated attempt. On the assumption that contention is low, the
conditional branch in the examples is optimized for the case in which the Store
Conditional succeeds, by setting the branch-prediction bit appropriately. These
examples focus on techniques for the correct modification of shared storage loca-
tions: see Note 4 in Section C.1.4, “Notes”, on page 386 for a discussion of how the
retry strategy can affect performance.

The Load And Reserve and Store Conditional instructions depend on the coher-
ence mechanism of the system. Stores to a given location are coherent if they are
serialized in some order, and no processor is able to observe a subset of those
stores as occurring in a conflicting order. See Section 6.1.6.1, “Storage Access
Ordering”, on page 114 , for additional details.

Each load operation, whether ordinary or Load And Reserve, returns a value that
has a well-defined source. The source can be the Store or Store Conditional
instruction that wrote the value, an operation by some other mechanism that
accesses storage (e.g., an I/O device), or the initial state of storage.

The function of an atomic read/modify/write operation is to read a location and
write its next value, possibly as a function of its current value, all as a single
atomic operation. We assume that locations accessed by read/modify/write oper-
ations are accessed coherently, so the concept of a value being the next in the
sequence of values for a location is well defined. The conditional sequence, as
defined above, provides the effect of an atomic read/modify/write operation, but
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not with a single atomic instruction. Let addr be the location that is the common
target of the Load And Reserve and Store Conditional instructions. Then the guar-
antee the architecture makes for the successful execution of the conditional
sequence is that no store into addr by another processor or mechanism has inter-
vened between the source of the Load And Reserve and the Store Conditional.

For each of these examples, it is assumed that a similar sequence of instructions
is used by all processes requiring synchronization on the accessed data.

The examples deal with words: they can be used for doublewords by changing all
lwarx instructions to ldarxe, all stwcx. instructions to stdcxe., all stw instruc-
tions to std, and all cmp[i] instructions with L=0 to cmp[i] with L=1. lwarx-
stwcx. pairs can also be substituted with lwarxe-stwcxe. pairs.

Programming Note
Because the Storage Synchronization instructions have implementation dependencies
(e.g., the granularity at which reservations are managed), they must be used with care.
The operating system should provide system library programs that use these instruc-
tions to implement the high-level synchronization functions (Test and Set, Compare and
Swap, etc.) needed by application programs. Application programs should use these
library programs, rather than use the Storage Synchronization instructions directly.
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C.1.1 Synchronization Primitives

The following examples show how the lwarx and stwcx. instructions can be used
to implement various synchronization primitives.

The sequences used to emulate the various primitives consist primarily of a loop
using lwarx and stwcx.. No additional synchronization is necessary, because the
stwcx. will fail, setting the EQ bit to 0, if the word loaded by lwarx has changed
before the stwcx. is executed: see Section 6.1.6.2, “Atomic Update Primitives”, on
page 117 for more detail.

Fetch and No-op

The ‘Fetch and No-op’ primitive atomically loads the current value in a word in
storage.

In this example it is assumed that the address of the word to be loaded is in
GPR(3) and the data loaded are returned in GPR(4).

loop: lwarx  r4,0,r3      #load and reserve
      stwcx. r4,0,r3      #store old value if
                          #  still reserved
      bc     4,2,loop     #loop if lost reservation

Note:

1. The stwcx., if it succeeds, stores to the target location the same value that
was loaded by the preceding lwarx. While the store is redundant with respect
to the value in the location, its success ensures that the value loaded by the
lwarx was the current value, i.e., that the source of the value loaded by the
lwarx was the last store to the location that preceded the stwcx. in the
coherence order for the location.

Fetch and Store

The ‘Fetch and Store’ primitive atomically loads and replaces a word in storage.

In this example it is assumed that the address of the word to be loaded and
replaced is in GPR(3), the new value is in GPR(GPR(4), and the old value is
returned in GPR(5).

loop: lwarx  r5,0,r3      #load and reserve
      stwcx. r4,0,r3      #store new value if
                          #  still reserved
      bc     4,2,loop     #loop if lost reservation
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Fetch and Add

The ‘Fetch and Add’ primitive atomically increments a word in storage.

In this example it is assumed that the address of the word to be incremented is in
GPR(3), the increment is in GPR(4), and the old value is returned in GPR(5).

loop: lwarx  r5,0,r3      #load and reserve
      add    r0,r4,r5     #increment word
      stwcx. r0,0,r3      #store new value if
                          #  still reserved
      bc     4,2,loop     #loop if lost reservation

Fetch and AND

The ‘Fetch and AND’ primitive atomically ANDs a value into a word in storage.

In this example it is assumed that the address of the word to be ANDed is in
GPR(3), the value to AND into it is in GPR(4), and the old value is returned in
GPR(5).

loop: lwarx  r5,0,r3      #load and reserve
      and    r0,r4,r5     #AND word
      stwcx. r0,0,r3      #store new value if
                          #  still reserved
      bc     4,2,loop     #loop if lost reservation

Note:

1. The sequence given above can be changed to perform another Boolean
operation atomically on a word in storage, simply by changing the and
instruction to the desired Boolean instruction (or, xor, etc.).

Test and Set

This version of the ‘Test and Set’ primitive atomically loads a word from storage,
sets the word in storage to a nonzero value if the value loaded is zero, and sets the
EQ bit of CR Field 0 to indicate whether the value loaded is zero.

In this example it is assumed that the address of the word to be tested is in
GPR(3), the new value (nonzero) is in GPR(4), and the old value is returned in
GPR(5).

loop: lwarx  r5,0,r3      #load and reserve
      cmpwi  r5,0         #done if word
      bc     4,2,done     #  not equal to 0
      stwcx. r4,0,r3      #try to store non-0
      bc     4,2,loop     #loop if lost reservation
done:
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Compare and Swap

The ‘Compare and Swap’ primitive atomically compares a value in a register with
a word in storage, if they are equal stores the value from a second register into the
word in storage, if they are unequal loads the word from storage into the first reg-
ister, and sets the EQ bit of CR Field 0 to indicate the result of the comparison.

In this example it is assumed that the address of the word to be tested is in
GPR(3), the comparand is in GPR(4) and the old value is returned there, and the
new value is in GPR(5).

loop: lwarx  r6,0,r3      #load and reserve
      cmpw   r4,r6        #1st 2 operands equal?
      bc     4,2,exit     #skip if not
      stwcx. r5,0,r3      #store new value if
                          #  still reserved
      bc     4,2,loop     #loop if lost reservation
exit: or     r4,r6,r6     #return value from storage

Notes:

1. The semantics given for ‘Compare and Swap’ above are based on those of the
IBM System/370 Compare and Swap instruction. Other architectures may
define a Compare and Swap instruction differently.

2. ‘Compare and Swap’ is shown primarily for pedagogical reasons. It is useful
on machines that lack the better synchronization facilities provided by lwarx
and stwcx.. A major weakness of a System/370-style Compare and Swap
instruction is that, although the instruction itself is atomic, it checks only
that the old and current values of the word being tested are equal, with the
result that programs that use such a Compare and Swap to control a shared
resource can err if the word has been modified and the old value subse-
quently restored. The sequence shown above has the same weakness.

3. In some applications the second bc instruction and/or the or instruction can
be omitted. The bc is needed only if the application requires that if the EQ bit
of CR Field 0 on exit indicates ‘not equal’ then GPR(r4) and GPR(r6) are in fact
not equal. The or is needed only if the application requires that if the com-
parands are not equal then the word from storage is loaded into the register
with which it was compared (rather than into a third register). If either or both
of these instructions is omitted, the resulting Compare and Swap does not
obey System/370 semantics.
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C.1.2 Lock Acquisition and Release

This example gives an algorithm for locking that demonstrates the use of synchro-
nization with an atomic read/modify/write operation. A shared storage location,
the address of which is an argument of the ‘lock’ and ‘unlock’ procedures, given
by GPR(3), is used as a lock, to control access to some shared resource such as a
shared data structure. The lock is open when its value is 0 and closed (locked)
when its value is 1. Before accessing the shared resource the program executes
the ‘lock’ procedure, which sets the lock by changing its value from 0 to 1. To do
this, the ‘lock’ procedure calls test_and_set, which executes the code sequence
shown in the ‘Test and Set’ example of Section C.1.1, “Synchronization Primi-
tives”, on page 381, thereby atomically loading the old value of the lock, writing to
the lock the new value (1) given in GPR(4), returning the old value in GPR(5) (not
used below), and setting the EQ bit of CR Field 0 according to whether the value
loaded is 0. The ‘lock’ procedure repeats the test_and_set until it succeeds in
changing the value of the lock from 0 to 1.

Because the shared resource must not be accessed until the lock has been set,
the ‘lock’ procedure contains an isync instruction after the bc that checks for the
success of test_and_set. The isync instruction delays all subsequent instructions
until all preceding instructions have completed.

lock: mfspr  r6,LR        #save Link Register
      addi   r4,r0,1      #obtain lock:
loop: bl     test_and_set #  test-and-set
      bc     4,2,loop     #  retry til old = 0
# Delay subsequent inst'ns til prior instructions finish
      isync
      mtspr  LR,r6        #restore Link Register
      blr                 #return

The ‘unlock’ procedure stores a 0 to the lock location. Most applications that use
locking require, for correctness, that if the access to the shared resource includes
stores, the program must execute a msync instruction before releasing the lock.
The msync instruction ensures that the program's modifications will be per-
formed with respect to other processors before the store that releases the lock is
performed with respect to those processors. In this example, the ‘unlock’ proce-
dure begins with a msync for this purpose.

unlock: msync           #order prior stores
        addi r1,r0,0    #  before lock release
        stw  r1,0(r3)   #store 0 to lock location
        blr             #return
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C.1.3 List Insertion

This example shows how the lwarx and stwcx. instructions can be used to imple-
ment simple insertion into a singly linked list. (Complicated list insertion, in
which multiple values must be changed atomically, or in which the correct order
of insertion depends on the contents of the elements, cannot be implemented in
the manner shown below and requires a more complicated strategy such as using
locks.)

The ‘next element pointer’ from the list element after which the new element is to
be inserted, here called the ‘parent element’, is stored into the new element, so
that the new element points to the next element in the list: this store is performed
unconditionally. Then the address of the new element is conditionally stored into
the parent element, thereby adding the new element to the list.

In this example it is assumed that the address of the parent element is in GPR(3),
the address of the new element is in GPR(4), and the next element pointer is at off-
set 0 from the start of the element. It is also assumed that the next element
pointer of each list element is in a ‘reservation granule’ separate from that of the
next element pointer of all other list elements: see Section 6.1.6.2, “Atomic Update
Primitives”, on page 117.

loop: lwarx  r2,0,r3    #get next pointer
      stw    r2,0(r4)   #store in new element
      msync             #order stw before stwcx.
                        #  (can omit if not MP)
      stwcx. r4,0,r3    #add new element to list
      bc     4,2,loop   #loop if stwcx. failed

In the preceding example, if two list elements have next element pointers in the
same reservation granule then, in a multiprocessor, ‘livelock’ can occur. (Livelock
is a state in which processors interact in a way such that no processor makes
progress.)

If it is not possible to allocate list elements such that each element's next element
pointer is in a different reservation granule, then livelock can be avoided by using
the following, more complicated, sequence.

       lwz    r2,0(r3)   #get next pointer
loop1: or     r5,r2,r2   #keep a copy
       stw    r2,0(r4)   #store in new element
       msync             #order stw before stwcx.
loop2: lwarx  r2,0,r3    #get it again
       cmpw   r2,r5      #loop if changed (someone
       bc     4,2,loop1  #  else progressed)
       stwcx. r4,0,r3    #add new element to list
       bc     4,2,loop   #loop if failed
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C.1.4 Notes

1. In general, lwarx and stwcx. instructions should be paired, with the same
effective address used for both. The only exception is that an unpaired stwcx.
to any (scratch) effective address can be used to clear any reservation held by
the processor.

2. It is acceptable to execute a lwarx instruction for which no stwcx. instruc-
tion is executed. For example, this occurs in the ‘Test and Set’ sequence
shown above if the value loaded is not zero.

3. To increase the likelihood that forward progress is made, it is important that
looping on lwarx/stwcx. pairs be minimized. For example, in the sequence
shown above for ‘Test and Set’, this is achieved by testing the old value before
attempting the store: were the order reversed, more stwcx. instructions might
be executed, and reservations might more often be lost between the lwarx
and the stwcx..

4. The manner in which lwarx and stwcx. are communicated to other proces-
sors and mechanisms, and between levels of the storage subsystem within a
given processor (see Section 6.1.6.2, “Atomic Update Primitives”, on
page 117), is implementation-dependent. In some implementations perfor-
mance may be improved by minimizing looping on a lwarx instruction that
fails to return a desired value. For example, in the ‘Test and Set’ example
shown above, if the programmer wishes to stay in the loop until the word
loaded is zero, he could change the ‘bne- $+12’ to ‘bne- loop’. However, in some
implementations better performance may be obtained by using an ordinary
Load instruction to do the initial checking of the value, as follows.

loop: lwz    r5,0(r3)   #load the word
      cmpi   cr0,0,r5,0 #loop back if word
      bc     4,2,loop   #  not equal to 0
      lwarx  r5,0,r3    #try again, reserving
      cmpi   cr0,0,r5,0 #  (likely to succeed)
      bc     4,2,loop
      stwcx. r4,0,r3    #try to store non-0
      bc     4,2,loop   #loop if lost reservation

5. In a multiprocessor, livelock is possible if a loop containing a lwarx/stwcx.
pair also contains an ordinary Store instruction for which any byte of the
affected storage area is in the reservation granule: see Section 6.1.6.2,
“Atomic Update Primitives”, on page 117. For example, the first code sequence
shown in Section C.1.3, “List Insertion”, on page 385 can cause livelock if two
list elements have next element pointers in the same reservation granule.
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C.2 Multiple-Precision Shifts

This section gives examples of how multiple-precision shifts can be programmed.

A multiple-precision shift is defined to be a shift of an N-doubleword quantity (64-
bit implementations) or an N-word quantity (32-bit implementations), where N>1.
The quantity to be shifted is contained in N registers. The shift amount is specified
either by an immediate value in the instruction or by a value in a register.

The examples shown below distinguish between the cases N=2 and N>2. If N=2,
the shift amount may be in the range 0 through 127 (64-bit implementations) or 0
through 63 (32-bit implementations), which are the maximum ranges supported
by the Shift instructions used. However if N>2, the shift amount must be in the
range 0 through 63 (64-bit implementations) or 0 through 31 (32-bit implementa-
tions), in order for the examples to yield the desired result. The specific instance
shown for N>2 is N=3: extending those code sequences to larger N is straightfor-
ward, as is reducing them to the case N=2 when the more stringent restriction on
shift amount is met. For shifts with immediate shift amounts only the case N=3 is
shown, because the more stringent restriction on shift amount is always met.

In the examples it is assumed that GPRs 2 and 3 (and 4) contain the quantity to
be shifted, and that the result is to be placed into the same registers, except for
the immediate left shifts in 64-bit implementations, for which the result is placed
into GPRs 3, 4, and 5. In all cases, for both input and result, the lowest-numbered
register contains the highest-order part of the data and highest-numbered register
contains the lowest-order part. For non-immediate shifts, the shift amount is
assumed to be in GPR(6. For immediate shifts, the shift amount is assumed to be
greater than 0. GPRs 0 and 31 are used as scratch registers.

For N>2, the number of instructions required is 2N–1 (immediate shifts) or 3N–1
(non-immediate shifts).

64-bit implementations 32-bit implementations

Shift Left Immediate, N=3 (shift amount < 64)
rldicr     r5,r4,sh,63-sh
rldimi     r4,r3,0,sh
rldicl     r4,r4,sh,0
rldimi     r3,r2,0,sh
rldicl     r3,r3,sh,0

Shift Left Immediate, N=3 (shift amount < 32)
rlwinm     r2,r2,sh,0,31-sh
rlwimi     r2,r3,sh,32-sh,31
rlwinm     r3,r3,sh,0,31-sh
rlwimi     r3,r4,sh,32-sh,31
rlwinm     r4,r4,sh,0,31-sh

Shift Left, N=2 (shift amount < 128)
subfic     r31,r6,64
sld        r2,r2,r6
srd        r0,r3,r31
or         r2,r2,r0
addi       r31,r6,-64
sld        r0,r3,r31
or         r2,r2,r0
sld        r3,r3,r6

Shift Left, N=2 (shift amount < 64)
subfic     r31,r6,32
slw        r2,r2,r6
srw        r0,r3,r31
or         r2,r2,r0
addi       r31,r6,-32
slw        r0,r3,r31
or         r2,r2,r0
slw        r3,r3,r6

Shift Left, N=3 (shift amount < 64)
subfic     r31,r6,64
sld        r2,r2,r6
srd        r0,r3,r31
or         r2,r2,r0
sld        r3,r3,r6
srd        r0,r4,r31
or         r3,r3,r0
sld        r4,r4,r6

Shift Left, N=3 (shift amount < 32)
subfic     r31,r6,32
slw        r2,r2,r6
srw        r0,r3,r31
or         r2,r2,r0
slw        r3,r3,r6
srw        r0,r4,r31
or         r3,r3,r0
slw        r4,r4,r6
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Shift Right Immediate, N=3 (shift amount < 64)
rldimi     r4,r3,0,64-sh
rldicl     r4,r4,64-sh,0
rldimi     r3,r2,0,64-sh
rldicl     r3,r3,64-sh,0
rldicl     r2,r2,64-sh,sh

Shift Right Immediate, N=3 (shift amount < 32)
rlwinm     r4,r4,32-sh,sh,31
rlwimi     r4,r3,32-sh,0,sh-1
rlwinm     r3,r3,32-sh,sh,31
rlwimi     r3,r2,32-sh,0,sh-1
rlwinm     r2,r2,32-sh,sh,31

Shift Right, N=2 (shift amount < 128)
subfic     r31,r6,64
srd        r3,r3,r6
sld        r0,r2,r31
or         r3,r3,r0
addi       r31,r6,-64
srd        r0,r2,r31
or         r3,r3,r0
srd        r2,r2,r6

Shift Right, N=2 (shift amount < 64)
subfic     r31,r6,32
srw        r3,r3,r6
slw        r0,r2,r31
or         r3,r3,r0
addi       r31,r6,-32
srw        r0,r2,r31
or         r3,r3,r0
srw        r2,r2,r6

Shift Right, N=3 (shift amount < 64)
subfic     r31,r6,64
srd        r4,r4,r6
sld        r0,r3,r31
or         r4,r4,r0
srd        r3,r3,r6
sld        r0,r2,r31
or         r3,r3,r0
srd        r2,r2,r6

Shift Right, N=3 (shift amount < 32)
subfic     r31,r6,32
srw        r4,r4,r6
slw        r0,r3,r31
or         r4,r4,r0
srw        r3,r3,r6
slw        r0,r2,r31
or         r3,r3,r0
srw        r2,r2,r6

Shift Right Algebraic Immediate, N=3 (shift amnt
< 64)

rldimi     r4,r3,0,64-sh
rldicl     r4,r4,64-sh,0
rldimi     r3,r2,0,64-sh
rldicl     r3,r3,64-sh,0
sradi      r2,r2,sh

Shift Right Algebraic Immediate, N=3 (shift amnt
< 32)

rlwinm     r4,r4,32-sh,sh,31
rlwimi     r4,r3,32-sh,0,sh-1
rlwinm     r3,r3,32-sh,sh,31
rlwimi     r3,r2,32-sh,0,sh-1
srawi      r2,r2,sh

Shift Right Algebraic, N=2 (shift amount < 128)
subfic     r31,r6,64
srd        r3,r3,r6
sld        r0,r2,r31
or         r3,r3,r0
addic.     r31,r6,-64
srad       r0,r2,r31
bc         4,1,$+8
ori        r3,r0,0
srad       r2,r2,r6

Shift Right Algebraic, N=2 (shift amount < 64)
subfic     r31,r6,32
srw        r3,r3,r6
slw        r0,r2,r31
or         r3,r3,r0
addic.     r31,r6,-32
sraw       r0,r2,r31
bc         4,1,$+8
ori        r3,r0,0
sraw       r2,r2,r6

Shift Right Algebraic, N=3 (shift amount < 64)
subfic     r31,r6,64
srd        r4,r4,r6
sld        r0,r3,r31
or         r4,r4,r0
srd        r3,r3,r6
sld        r0,r2,r31
or         r3,r3,r0
srad       r2,r2,r6

Shift Right Algebraic, N=3 (shift amount < 32)
subfic     r31,r6,32
srw        r4,r4,r6
slw        r0,r3,r31
or         r4,r4,r0
srw        r3,r3,r6
slw        r0,r2,r31
or         r3,r3,r0
sraw       r2,r2,r6

64-bit implementations 32-bit implementations
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C.3 Floating-Point Conversions

This section gives examples of how the Floating-Point Conversion instructions can
be used to perform various conversions.

Warning: Some of the examples use the optional fsel instruction. Care must be
taken in using fsel if IEEE compatibility is required, or if the values being tested
can be NaNs or infinities: see Section C.4.4, “Notes”, on page 396.

C.3.1 Conversion from Floating-Point Number to
Floating-Point Integer

The full convert to floating-point integer function can be implemented with the
sequence shown below, assuming the floating-point value to be converted is in
FPR(1) and the result is returned in FPR(3).

    mtfsb0   23            #clear VXCVI
    fctid[z] f3,f1         #convert to integer
    fcfid    f3,f3         #convert back again
    mcrfs    7,5           #VXCVI to CR
    bc       4,31,continue #skip if VXCVI was 0
    fmr      f3,f1         #input was fp integer
continue:

C.3.2 Conversion from Floating-Point Number to
Signed Integer Doubleword

In a 64-bit implementation

The full convert to signed integer doubleword function can be implemented with
the sequence shown below, assuming the floating-point value to be converted is in
FPR(1), the result is returned in GPR(3), and a doubleword at displacement ‘disp’
from the address in GPR(1) can be used as scratch space.

    fctid[z] f2,f1         #convert to doubleword integer
    stfd     f2,disp(r1)   #store float
    ld       r3,disp(r1)   #load doubleword
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In a 32-bit implementation

The full convert to signed integer doubleword function can be implemented with
the sequence shown below, assuming the floating-point value to be converted is in
FPR(1), bits 0:31 of the result are returned in GPR(3), bits 32:63 of the result are
returned in GPR(4), and a doubleword at displacement ‘disp’ from the address in
GPR(1) can be used as scratch space.

    fctid[z] f2,f1         #convert to doubleword integer
    stfd     f2,disp(r1)   #store float
    lwz      r3,disp(r1)   #load upper half of doubleword

C.3.3 Conversion from Floating-Point Number to
Unsigned Integer Doubleword

In a 64-bit implementation

The full convert to unsigned integer doubleword function can be implemented with
the sequence shown below, assuming the floating-point value to be converted is in
FPR(1), the value 0 is in FPR(0, the value 264–2048 is in FPR(3), the value 263 is in
FPR(4) and GPR(4), the result is returned in GPR(3), and a doubleword at dis-
placement ‘disp’ from the address in GPR(1) can be used as scratch space.

    fsel     f2,f1,f1,f0   #use 0 if < 0
    fsub     f5,f3,f1      #use max if > max
    fsel     f2,f5,f2,f3
    fsub     f5,f2,f4      #subtract 2 63

    fcmpu    cr2,f2,f4     #use diff if ≥ 2 63

    fsel     f2,f5,f5,f2
    fctid[z] f2,f2         #convert to integer
    stfd     f2,disp(r1)   #store float
    ld       r3,disp(r1)   #load doubleword
    bc       12,8,$+8      #add 2 63 if input
    add      r3,r3,r4      #  was ≥ 2 63

In a 32-bit implementation

C.3.4 Conversion from Floating-Point Number to
Signed Integer Word

The full convert to signed integer word function can be implemented with the
sequence shown below, assuming the floating-point value to be converted is in
FPR(1), the result is returned in GPR(3), and a doubleword at displacement ‘disp’
from the address in GPR(1) can be used as scratch space.

    fctiw[z] f2,f1         #convert to integer
    stfd     f2,disp(r1)   #store float
    lwa      r3,disp+4(r1) #load word algebraic
                           #(use lwz on a 32-bit
                           #implementation)

Editors' Note
To be supplied.
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C.3.5 Conversion from Floating-Point Number to
Unsigned Integer Word

In a 64-bit implementation

The full convert to unsigned integer word function can be implemented with the
sequence shown below, assuming the floating-point value to be converted is in
FPR(1), the value 0 is in FPR(0, the value 232–1 is in FPR(3), the result is returned
in GPR(3), and a doubleword at displacement ‘disp’ from the address in GPR(1)
can be used as scratch space.

    fsel     f2,f1,f1,f0   #use 0 if < 0
    fsub     f4,f3,f1      #use max if > max
    fsel     f2,f4,f2,f3
    fctid[z] f2,f2         #convert to integer
    stfd     f2,disp(r1)   #store float
    lwz      r3,disp+4(r1) #load word and zero

In a 32-bit implementation

The full convert to unsigned integer word function can be implemented with the
sequence shown below, assuming the floating-point value to be converted is in
FPR(1), the value 0 is in FPR(0, the value 232–1 is in FPR(3), the value 231 is in
FPR(4), the result is returned in GPR(3), and a doubleword at displacement ‘disp’
from the address in GPR(1) can be used as scratch space.

    fsel     f2,f1,f1,f0   #use 0 if < 0
    fsub     f5,f3,f1      #use max if > max
    fsel     f2,f5,f2,f3
    fsub     f5,f2,f4      #subtract 2 31

    fcmpu    cr2,f2,f4     #use diff if ≥ 2 31

    fsel     f2,f5,f5,f2
    fctiw[z] f2,f2         #convert to integer
    stfd     f2,disp(r1)   #store float
    lwz      r3,disp+4(r1) #load word
    bc       12,8,$+8      #add 2 31 if input
    xoris    r3,r3,0x8000  #  was ≥ 2 31

C.3.6 Conversion from Signed Integer Doubleword to
Floating-Point Number

The full convert from signed integer doubleword function, using the rounding
mode specified by FPSCRRN, can be implemented with the sequence shown below,
assuming the integer value to be converted is in GPR(3), the result is returned in
FPR(1), and a doubleword at displacement ‘disp’ from the address in GPR(1) can
be used as scratch space.

    std      r3,disp(r1)   #store doubleword
    lfd      f1,disp(r1)   #load float
    fcfid    f1,f1         #convert to fp integer
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C.3.7 Conversion from Unsigned Integer Doubleword to
Floating-Point Number

In a 64-bit implementation

The full convert from unsigned integer doubleword function, using the rounding
mode specified by FPSCRRN, can be implemented with the sequence shown below,
assuming the integer value to be converted is in GPR(3), the value 232 is in FPR(4),
the result is returned in FPR(1), and two doublewords at displacement ‘disp’ from
the address in GPR(1) can be used as scratch space.

    rldicl   r2,r3,32,32   #isolate high half
    rldicl   r0,r3,0,32    #isolate low half
    std      r2,disp(r1)   #store doubleword both
    std      r0,disp+8(r1)
    lfd      f2,disp(r1)   #load float both
    lfd      f1,disp+8(r1)
    fcfid    f2,f2         #convert each half to
    fcfid    f1,f1         #  fp integer (exact result)
    fmadd    f1,f4,f2,f1   #(2 32)*high + low

An alternative, shorter, sequence can be used if rounding according to FSCPRRN
is desired and FPSCRRN specifies Round toward +Infinity or Round toward -Infin-
ity, or if it is acceptable for the rounded answer to be either of the two represent-
able floating-point integers nearest to the given integer integer. In this case the
full convert from unsigned integer doubleword function can be implemented with
the sequence shown below, assuming the value 264 is in FPR(2).

    std      r3,disp(r1)   #store doubleword
    lfd      f1,disp(r1)   #load float
    fcfid    f1,f1         #convert to fp integer
    fadd     f4,f1,f2      #add 2 64

    fsel     f1,f1,f1,f4   #  if r3 < 0

In a 32-bit implementation

The full convert from unsigned integer doubleword function, using the rounding
mode specified by FPSCRRN, can be implemented with the sequence shown below,
assuming bits 0:31 of the doubleword integer value to be converted is in GPR(2),
bits 32:63 of the doubleword integer value to be converted is in GPR(3), the value
0 is in GPR(0), the value 232 is in FPR(4), the result is returned in FPR(1), and two
doublewords at displacement ‘disp’ from the address in GPR(1) can be used as
scratch space.

    stw      r0,disp(r1)    #pad with 0s
    stw      r2,disp+4(r1)  #store upper half of doubleword
    stw      r0,disp+8(r1)  #pad with 0s
    stw      r3,disp+12(r1) #store lower half of doubleword
    lfd      f2,disp(r1)    #load float both
    lfd      f1,disp+8(r1)
    fcfid    f2,f2          #convert each half to
    fcfid    f1,f1          #  fp integer (exact result)
    fmadd    f1,f4,f2,f1    #(2 32)*high + low

An alternative, shorter, sequence can be used if rounding according to FSCPRRN
is desired and FPSCRRN specifies Round toward +Infinity or Round toward -Infin-
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ity, or if it is acceptable for the rounded answer to be either of the two represent-
able floating-point integers nearest to the given integer integer. In this case the
full convert from unsigned integer doubleword function can be implemented with
the sequence shown below, assuming the value 264 is in FPR(2).

    stw      r2,disp(r1)    #store upper half of doubleword
    stw      r3,disp+4(r1)  #store lower half of doubleword
    lfd      f1,disp(r1)   #load float
    fcfid    f1,f1         #convert to fp integer
    fadd     f4,f1,f2      #add 2 64

    fsel     f1,f1,f1,f4   #  if r3 < 0

C.3.8 Conversion from Signed Integer Word to Floating-
Point Number

In a 64-bit implementation

The full convert from signed integer word function can be implemented with the
sequence shown below, assuming the integer value to be converted is in GPR(3),
the result is returned in FPR(1), and a doubleword at displacement ‘disp’ from the
address in GPR(1) can be used as scratch space. (The result is exact.)

    extsw    r3,r3         #extend sign
    std      r3,disp(r1)   #store doubleword
    lfd      f1,disp(r1)   #load float
    fcfid    f1,f1         #convert to fp integer

In a 32-bit implementation

The full convert from signed integer word function can be implemented with the
sequence shown below, assuming the integer value to be converted is in GPR(3),
the result is returned in FPR(1), and a doubleword at displacement ‘disp’ from the
address in GPR(1) can be used as scratch space. (The result is exact.)

    sraw     r4,r3,32      #extract sign
stw r4,disp(r1) #store sign bits in upper half of dblword

    stw      r3,disp+4(r1) #store lower half of doubleword
    lfd      f1,disp(r1)   #load float
    fcfid    f1,f1         #convert to fp integer
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C.3.9 Conversion from Unsigned Integer Word to
Floating-Point Number

In a 64-bit implementation

The full convert from unsigned integer word function can be implemented with the
sequence shown below, assuming the integer value to be converted is in GPR(3),
the result is returned in FPR(1), and a doubleword at displacement ‘disp’ from the
address in GPR(1) can be used as scratch space. (The result is exact.)

    rldicl   r0,r3,0,32    #zero-extend
    std      r0,disp(r1)   #store doubleword
    lfd      f1,disp(r1)   #load float
    fcfid    f1,f1         #convert to fp integer

In a 32-bit implementation

The full convert from unsigned integer word function can be implemented with the
sequence shown below, assuming the integer value to be converted is in GPR(3), a
value of 0 is in GPR(0), the result is returned in FPR(1), and a doubleword at dis-
placement ‘disp’ from the address in GPR(1) can be used as scratch space. (The
result is exact.)

    stw      r0,disp(r1)   #pad upper half of doubleword with 0s
    stw      r2,disp(r1)   #store lower half of doubleword
    lfd      f1,disp(r1)   #load float
    fcfid    f1,f1         #convert to fp integer
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C.4 Floating-Point Selection

This section gives examples of how the optional Floating Select instruction can be
used to implement floating-point minimum and maximum functions, and certain
simple forms of if-then-else constructions, without branching.

The examples show program fragments in an imaginary, C-like, high-level pro-
gramming language, and the corresponding program fragment using fsel and
other Book E instructions. In the examples, a, b, x, y, and z are floating-point vari-
ables, which are assumed to be in FPRs fa, fb, fx, fy, and fz. FPR fs is assumed to
be available for scratch space.

Additional examples can be found in Section C.3, “Floating-Point Conversions”, on
page 389.

Warning: Care must be taken in using fsel if IEEE compatibility is required, or if
the values being tested can be NaNs or infinities: see Section C.4.4, “Notes”, on
page 396.

C.4.1 Comparison to Zero

C.4.2 Minimum and Maximum

C.4.3 Simple if-then-else Constructions

High-level language: Book E: Notes

if a ≥ 0.0 then x ← y
           else x ← z

fsel  fx,fa,fy,fz (1)

if a > 0.0 then x ← y
           else x ← z

fneg  fs,fa
fsel  fx,fs,fz,fy

(1,2)

if a = 0.0 then x ← y
           else x ← z

fsel  fx,fa,fy,fz
fneg  fs,fa
fsel  fx,fs,fx,fz

(1)

High-level language: Book E: Notes

x ← min(a,b) fsub  fs,fa,fb
fsel  fx,fs,fb,fa

(3,4,5)

x ← max(a,b) fsub  fs,fa,fb
fsel  fx,fs,fa,fb

(3,4,5)

High-level language: Book E: Notes

if a ≥ b then x ← y
         else x ← z

fsub  fs,fa,fb
fsel  fx,fs,fy,fz

(4,5)

if a > b then x ← y
         else x ← z

fsub  fs,fb,fa
fsel  fx,fs,fz,fy

(3,4,5)

if a = b then x ← y
         else x ← z

fsub  fs,fa,fb
fsel  fx,fs,fy,fz
fneg  fs,fs
fsel  fx,fs,fx,fz

(4,5)
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C.4.4 Notes

The following Notes apply to the preceding examples and to the corresponding
cases using the other three arithmetic relations (<, ≤, and ≠). They should also be
considered when any other use of fsel is contemplated.

In these Notes, the ‘optimized program’ is the Book E program shown, and the
‘unoptimized program’ (not shown) is the corresponding Book E program that
uses fcmpu and Branch Conditional instructions instead of fsel.

1. The unoptimized program affects the VXSNAN bit of the FPSCR, and therefore
may cause the system error handler to be invoked if the corresponding
exception is enabled, while the optimized program does not affect this bit.
This property of the optimized program is incompatible with the IEEE
standard.

2. The optimized program gives the incorrect result if a is a NaN.

3. The optimized program gives the incorrect result if a and/or b is a NaN
(except that it may give the correct result in some cases for the minimum and
maximum functions, depending on how those functions are defined to oper-
ate on NaNs).

4. The optimized program gives the incorrect result if a and b are infinities of the
same sign. (Here it is assumed that Invalid Operation Exceptions are dis-
abled, in which case the result of the subtraction is a NaN. The analysis is
more complicated if Invalid Operation Exceptions are enabled, because in that
case the target register of the subtraction is unchanged.)

5. The optimized program affects the OX, UX, XX, and VXISI bits of the FPSCR,
and therefore may cause the system error handler to be invoked if the corre-
sponding exceptions are enabled, while the unoptimized program does not
affect these bits. This property of the optimized program is incompatible with
the IEEE standard.
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Appendix D Controlling Storage Access
Ordering

This appendix gives examples of how dependencies and the msync and mbar
instructions can be used to control storage access ordering when storage is
shared between programs.

D.1 Lock Acquisition and Import Barriers

An ‘import barrier’ is an instruction or sequence of instructions that prevents
storage accesses caused by instructions following the barrier from being per-
formed before storage accesses that acquire a lock have been performed. An
import barrier can be used to ensure that a shared data structure protected by a
lock is not accessed until the lock has been acquired. An msync instruction can
always be used as an import barrier, but the approaches shown below will gener-
ally yield better performance because they order only the relevant storage
accesses.
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D.1.1 Acquire Lock and Import Shared Storage

If lwarx[e] or ldarxe, and stwcx[e]. or stdcxe. instructions are used to obtain the
lock, an import barrier can be constructed by placing an isync instruction imme-
diately following the loop containing the lwarx[e] or ldarxe, and stwcx[e]. or std-
cxe.. The following example uses the ‘Compare and Swap’ primitive (see the
section entitled ‘Synchronization Primitives’ in Section I) to acquire the lock.

In this example it is assumed that the address of the lock is in GPR 3, the value
indicating that the lock is free is in GPR 4, the value to which the lock should be
set is in GPR 5, the old value of the lock is returned in GPR 6, and the address of
the shared data structure is in GPR 9.

loop: lwarx  r6,0,r3        # load lock and reserve
      cmp    cr0,0,r4,r6    # skip ahead if
      bc     4,2,wait       #   lock not free
      stwcx. r5,0,r3        # try to set lock
      bc     4,2,loop       # loop if lost reservation
      isync                 # import barrier
      lwz    r7,data1(r9)   # load shared data
      .
      .
wait: ...                   # wait for lock to free

The second bc does not complete until CR0 has been set by the stwcx[e]. or std-
cxe.. The stwcx[e]. or stdcxe. does not set CR0 until it has completed (success-
fully or unsuccessfully). The lock is acquired when the stwcx[e]. or stdcxe.
completes successfully. Together, the second bc and the subsequent isync create
an import barrier that prevents the load from ‘data1’ from being performed until
the branch has been resolved not to be taken.

D.1.2 Obtain Pointer and Import Shared Storage

If lwarx[e] or ldarxe and stwcx[e]. or stdcxe. instructions are used to obtain a
pointer into a shared data structure, an import barrier is not needed if all the
accesses to the shared data structure depend on the value obtained for the
pointer. The following example uses the ‘Fetch and Add’ primitive (see the section
entitled ‘Synchronization Primitives’ in Section I) to obtain and increment the
pointer.

In this example it is assumed that the address of the pointer is in GPR 3, the
value to be added to the pointer is in GPR 4, and the old value of the pointer is
returned in GPR 5.

loop: lwarx  r5,0,r3        # load pointer and reserve
      add    r0,r4,r5       # increment the pointer
      stwcx. r0,0,r3        # try to store new value
      bc     4,2,loop       # loop if lost reservation
      lwz    r7,data1(r5)   # load shared data

The load from ‘data1’ cannot be performed until the pointer value has been loaded
into GPR 5 by the lwarx[e] or ldarxe. The load from ‘data1’ may be performed
out-of-order before the stwcx[e]. or stdcxe.. But if the stwcx[e]. or stdcxe. fails,
the branch is taken and the value returned by the load from ‘data1’ is discarded.
If the stwcx[e]. or stdcxe. succeeds, the value returned by the load from ‘data1’ is
valid even if the load is performed out-of-order, because the load uses the pointer
value returned by the instance of the lwarx[e] or ldarxe that created the reserva-
tion used by the successful stwcx[e]. or stdcxe..
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An isync could be placed between the bne- and the subsequent lwz, but no isync
is needed if all accesses to the shared data structure depend on the value
returned by the lwarx[e] or ldarxe.

D.2 Lock Release and Export Barriers

An ‘export barrier’ is an instruction or sequence of instructions that prevents the
store that releases a lock from being performed before stores caused by instruc-
tions preceding the barrier have been performed. An export barrier can be used to
ensure that all stores to a shared data structure protected by a lock will be per-
formed with respect to any other processor (to the extent required by the associ-
ated Memory Coherence Required attributes) before the store that releases the
lock is performed with respect to that processor.

D.2.1 Export Shared Storage and Release Lock

An msync instruction can always be used as an export barrier, independent of the
storage control attributes (e.g., presence or absence of the Caching Inhibited
attribute) of the storage containing the lock and the shared data structure. Unless
both the lock and the shared data structure are in storage that is neither Caching
Inhibited nor Write Through Required, an msync instruction must be used as the
export barrier.

In this example it is assumed that the lock is in storage that is Caching Inhibited,
the shared data structure is in storage that is not Caching Inhibited, the address
of the lock is in GPR 3, the value indicating that the lock is free is in GPR 4, and
the address of the shared data structure is in GPR 9.

      stw   r7,data1(r9)   # store shared data (last)
      msync                # export barrier
      stw   r4,lock(r3)    # release lock

The msync ensures that the store that releases the lock will not be performed
with respect to any other processor until all stores caused by instructions preced-
ing the msync have been performed with respect to that processor.

D.2.2 Export Shared Storage and Release Lock using
mbar

If both the lock and the shared data structure are in storage that is neither Cach-
ing Inhibited nor Write Through Required, an mbar instruction can be used as
the export barrier. Using mbar rather than msync will yield better performance in
most systems.

In this example it is assumed that both the lock and the shared data structure are
in storage that is neither Caching Inhibited nor Write Through Required, the
address of the lock is in GPR 3, the value indicating that the lock is free is in GPR
4, and the address of the shared data structure is in GPR 9.

      stw   r7,data1(r9)   #store shared data (last)
      mbar                 #export barrier
      stw   r4,lock(r3)    #release lock
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The mbar ensures that the store that releases the lock will not be performed with
respect to any other processor until all stores caused by instructions preceding
the mbar have been performed with respect to that processor.

Recall that, for storage that is neither Caching Inhibited nor Write Through
Required, mbar orders only stores and has no effect on loads. If the portion of the
program preceding the mbar contains loads from the shared data structure and
the stores to the shared data structure do not depend on the values returned by
those loads, the store that releases the lock could be performed before those
loads. If it is necessary to ensure that those loads are performed before the store
that releases the lock, the programmer can either use the msync instruction as in
Section D.2.1 or use the technique described in Section D.3.

D.3 Safe Fetch

If a load must be performed before a subsequent store (e.g., the store that releases
a lock protecting a shared data structure), a technique similar to the following can
be used.

In this example it is assumed that the address of the storage operand to be loaded
is in GPR 3, the contents of the storage operand are returned in GPR 4, and the
address of the storage operand to be stored is in GPR 5.

      lwz    r4,0(r3)      #load shared data
      cmp    cr0,0,r4,r4   #set CR0 to ‘equal’
      bc     4,2,$-8       #branch never taken
      stw    r7,0(r5)      #store other shared data

Alternatively, a technique similar to that described in Section D.1.2 can be used,
by causing the stw to depend on the value returned by the lwz and omitting the
cmp and bc. The dependency could be created by ANDing the value returned by
the lwz with zero and then adding the result to the value to be stored by the stw.
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Appendix E Processor Simplifications for
Uniprocessor Designs

Microprocessor designs that will not be used in symmetric multiprocessor (SMP)
systems may adopt optimizations to avoid cost and design effort implementing
functions that will never be used. Further optimizations may be adopted if the
design will never be used in conjunction with an L2 cache.

The following list identifies the areas in which these optimizations can be made.

1. Receipt of TLB entry invalidate requests from other processors. Since the
design will not be used in SMP systems, this function is not required.

2. Communication of msync to external mechanisms. The function provided by
the msync instruction can be completed by the processor with no need to
communicate with external mechanisms.

a) Does the design of any storage subsystem require notification that an
msync is being executed?

b) Does the design of any graphics subsystem require notification that an
msync is being executed?

c) Does the design of any I/O subsystem require notification that an msync
is being executed?

3. Communication of mbar to external mechanisms. The function provided by
the mbar instruction can be completed by the processor with no need to com-
municate with external mechanisms. It is assumed that no L2 cache is used
or that its operation is totally transparent, and that all other mechanisms per-
form storage operations in the order that they are received.

4. Communication of cache management operations to external caches. It is
assumed that no L2 cache is used or that its operation is totally transparent.
The function of these instructions can be completed in the processor with no
need to communicate with external mechanisms.

5. Communication of TLB invalidates to external mechanisms. Graphics sub-
system device drivers that use the move virtual storage instructions may
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require notification of a TLB invalidation.

Architecture Note
There is a pending proposal for these functions, so this requirement is dependent on
the resolution of that proposal.
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Appendix F Reserved, Preserved, and
Allocated Instructions

F.1 Preserved Instructions

Preserved instructions are provided by Book E to allow implementations to con-
tinue supporting PowerPC legacy software. Book E does not require these instruc-
tions be implemented but, instead, preserves the architectural resources that
these instructions employed in the PowerPC Architecture. If they are not imple-
mented, these instructions are treated the same as Reserved instructions.
Opcodes for current preserved instructions will be among the last to be assigned a
meaning in Book E. Preserved opcodes are listed in Table F-1.

Table F-1. Preserved Instructions

Primary
Opcode

Extended Opcodes

0 No preserved extended opcodes

4 No preserved extended opcodes

19 No preserved extended opcodes

31 Extended opcodes (bits 21:30)
  210  0b00110_10010 (mtsr)
  242  0b00111_10010 (mtsrin)
  370  0b01011_10010 (tlbia)
  306  0b01001_10010 (tlbie)

  371  0b01011_10011 (mftb)
  595  0b10010_10011 (mfsr)
  659  0b10100_10011 (mfsrin)

  310  0b01001_10110 (eciwx)
  438 0b01101_10110 (ecowx)

59 No preserved extended opcodes

63 No preserved extended opcodes
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F.2 Allocated Instructions

Book E sets aside a set of Allocated opcodes for implementation-dependent use
that is outside the scope of the architecture. The following blocks of opcodes are
Allocated for implementation-dependent use. Some Allocated opcodes show exam-
ple of current usage.

Table F-2. Allocated Instructions

F.3 Reserved Instructions

With the exception of the instruction consisting entirely of binary 0s, the reserved
instructions are available for future extensions to Book E: that is, some future
version of Book E may define any of these instructions to perform new functions.
There are two form of reserved instructions, reserved-nop and reserved-illegal
instructions.

F.3.1 Reserved-Nop Instructions

Reserved-nop instructions are provided in the architecture to anticipate the even-
tual adoption of performance hint type instructions to the architecture. For these
type of instructions, which cause no visible change to architected state, employing
a reserved-nop opcode will allow software to use this new capability on new imple-
mentations that support it while remaining compatible with existing implementa-
tions that may not support the new function.

When an attempt is made to execute a reserved-nop instruction, either no opera-
tion or effect occurs, or an Illegal Instruction exception type Program interrupt
occurs. However, Book E strongly recommends the former rather than the latter
implementation for reserved-nop instructions. Reserved-nop instructions include
the following extended opcodes under primary opcode 31: 530, 562, 594, 626,
658, 690, 722, and 754.

Primary
Opcode

Extended Opcodes

0 All instruction encodings (bits 6:31) except 0x0000_0000 a

a. Instruction encoding 0x0000_0000  is and always will be reserved-illegal.

4 All instruction encodings (bits 6:31)

19 Extended opcodes (bits 21:30)
  --- 0buuuuu_0u11u

31 Extended opcodes (bits 21:30)
  --- 0buuuuu_0u11u

  342  0b01010_10110 (VMX dst)
  374  0b01011_10110 (VMX dstst)
  822  0b11001_10110 (VMX dss)

59 Extended opcodes (bits 21:30)
  --- 0buuuuu_0u10u

63 Extended opcodes (bits 21:30)
  --- 0buuuuu_0u10u (except 0x00000_01100 frsp)
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F.3.2 Reserved-Illegal Instructions

Primary opcodes 1, 5, 6, 56, 57, 60, and 61 and extended opcodes under primary
opcodes 19, 30, 31, 58, 59, 62, and 63 that are not classified as defined (listed in
Section H, “Instruction Index”, on page 419), reserved-nop (listed in
Section F.3.1), preserved (listed in Section F.1) nor allocated (listed in Section F.2)
are considered reserved-illegal by the architecture.

Also, an instruction consisting entirely of binary 0s is reserved-illegal, and is
guaranteed to be reserved-illegal in all future versions of this architecture.
Attempt to execute this instruction or any other reserved-illegal instruction will
cause an Illegal Instruction exception type Program interrupt.
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Appendix G Opcode Maps

This section contains tables showing the Defined primary and extended opcodes
in all members of the Book E family.

For all opcode tables, each cell is in the following format.

‘Applicable Machines’ identifies the Book E family members that recognize the
opcode, encoded as follows:

E Book E only
P PowerPC Architecture ‘classic’ (retained in Book E1)

When instruction names and/or mnemonics differ among the family members,
Book E terminology is used.

Shaded boxes labeled as ‘<allocated>’, ‘<preserved>’, and ‘<nop>’ represent allo-
cated, preserved, and reserved-nop opcodes, respectively. Shaded boxes that are
otherwise not labeled other than indicating the opcodes’ numerical value repre-
sent reserved-illegal opcodes.

Opcode in
Decimal

Opcode in
Hexadecimal

Instruction
Mnemonic

Applicable
Machines

Instruction
Format

1. PowerPC Architecture "classic" instructions not retained in Book E are considered preserved.
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Table G-1. Primary opcodes (instruction bits 0:5)

0 00 1 01 3 03 2 02 <Allocated for implementation-dependent use>

<allocated>
twi tdi <Reserved>

Trap Word Immediate
P D P D Trap Doubleword Immediate

4 04 5 05 7 07 6 06 <Allocated for implementation-dependent use>

<allocated>
mulli <Reserved>

Multiply Low Immediate
P D <Reserved>

12 0C 13 0D 15 0F 14 0E Add Immediate Carrying
addic addic. addis addi Add Immediate Carrying and Record

Add Immediate Shifted
P D P D P D P D Add Immediate
8 08 9 09 11 0B 10 0A Subtract From Immediate Carrying

subfic bce[l][a] cmpi cmpli Branch Conditional Extended [& Link] [Absolute]
Compare Immediate

P D E B P D P D Compare Logical Immediate

24 18 25 19 27 1B 26 1A OR Immediate
ori oris xoris xori OR Immediate Shifted

XOR Immediate Shifted
P D P D P D P XOR Immediate
28 1C 29 1D 31 1F 30 1E AND Immediate

andi andis Integer
Extended

Dwd Rotate
Extended

AND Immediate Shifted
See Table G-6 on page 413

P D P D P E See Table G-2 on page 409
20 14 21 15 23 17 22 16 Rotate Left Word Imm. then Mask Insert

rlwimi rlwinm rlwnm be[l][a] Rotate Left Word Imm. then AND with Mask
Rotate Left Word then AND with Mask

P M P M P M E I Branch Extended [& Link] [Absolute]
16 10 17 11 19 13 18 12 Branch Conditional [& Link] [Absolute]

bc[l][a] sc Branch
Extended

b[l][a] System Call
See Table G-5 on page 410

P B P SC P XL P I Branch [& Link] [Absolute]

48 30 49 31 51 33 50 32 Load Floating-Point Single
lfs lfsu lfdu lfd Load Floating-Point Single with Update

Load Floating-Point Double with Update
P D P D P D P D Load Floating-Point Double
52 34 53 35 55 37 54 36 Store Floating-Point Single

stfs stfsu stfdu stfd Store Floating-Point Single with Update
Store Floating-Point Double with Update

P D P D P D P D Store Floating-Point Double
60 3C 61 3D 63 3F 62 3E <Reserved>

DP FP
Extended

Load/Store
Extended

<Reserved>
See Table G-8 on page 417

P A/X E DS See Table G-4 on page 409
56 38 57 39 59 3B 58 3A <Reserved>

SP FP
Extended

Load/Store
Extended

<Reserved>
See Table G-7 on page 415

P A/X E DS See Table G-3 on page 409

40 28 41 29 43 2B 42 2A Load Half and Zero
lhz lhzu lhau lha Load Half and Zero with Update

Load Half Algebraic with Update
P D P D P D P D Load Half Algebraic
44 2C 45 2D 47 2F 46 2E Store Half

sth sthu stmw lmw Store Half with Update
Store Multiple Word

P D P D P D P D Load Multiple Word
36 24 37 25 39 27 38 26 Store Word

stw stwu stbu stb Store Word with Update
Store Byte with Update

P D P D P D P D Store Byte
32 20 33 21 35 23 34 22 Load Word and Zero

lwz lwzu lbzu lbz Load Word and Zero with Update
Load Byte and Zero with Update

P D P D P D P D Load Byte and Zero
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Table G-2. Extended opcodes for primary opcode 30 (instruction bits 27:30)

Table G-3. Extended opcodes for primary opcode 58 (instruction bits 28:31)

Table G-4. Extended opcodes for primary opcode 62 (instruction bits 28:31)

0-1 00-01 2-3 02-03 Rotate Left Doubleword Immediate then Clear Left
rldicl rldicr <Reserved>

Rotate Left Doubleword Immediate then Clear Right
P MD P MD <Reserved>
4-5 04-05 6-7 06-07 Rotate Left Doubleword Immediate then Clear

rldic rldimi <Reserved>
Rotate Left Doubleword Immediate then Mask Insert

P P <Reserved>
8 08 9 09 10 0A 11 0B Rotate Left Doubleword then Clear Left

rldcl rldcr Rotate Left Doubleword then Clear Right
<Reserved>

P MD P MD <Reserved>
12 0C 13 0D 14 0E 15 0F <Reserved>

<Reserved>
<Reserved>
<Reserved>

0 00 1 01 3 03 2 02 Load Byte and Zero Extended
lbze lbzue lhzue lhze Load Byte and Zero with Update Extended

Load Halfword and Zero with Update Extended
E DS E DS E DS E DS Load Halfword and Zero Extended
4 04 5 05 7 07 6 06 Load Halfword Algebraic Extended

lhae lhaue lwzue lwze Load Halfword Algebraic with Update Extended
Load Word and Zero with Update Extended

E DS E DS E DS E DS Load Word and Zero Extended
12 0C 13 0D 15 0F 14 0E <Reserved>

stwue stwe <Reserved>
Store Word with Update Extended

E DS E DS Store Word Extended
8 08 9 09 11 0B 10 0A Store Byte Extended

stbe stbue sthue sthe Store Byte with Update Extended
Store Halfword with Update Extended

E DS E DS E DS E DS Store Halfword Extended

0 00 1 01 3 03 2 02 Load Doubleword Extended
lde ldue Load Doubleword with Update Extended

<Reserved>
E DS E DS <Reserved>
4 04 5 05 7 07 6 06 Load Float Single-precision Extended

lfse lfsue lfdue lfde Load Float Single-precision with Update Extended
Load Float Double-precision with Update Extended

E DS E DS E DS E DS Load Float Double-precision Extended
12 0C 13 0D 15 0F 14 0E Store Float Single-precision Extended

stfse stfsue stfdue stfde Store Float Single-precision with Update Extended
Store Float Double-precision with Update Extended

E DS E DS E DS E DS Store Float Double-precision Extended
8 08 9 09 11 0B 10 0A Store Doubleword Extended

stde stdue Store Doubleword Extended with Update
<Reserved>

E DS E DS <Reserved>
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Table G-5. Extended opcodes for primary opcode 19 (instruction bits 21:30) (part 1 of 2)

00000 00001 00011 00010 00110 00111 00101 00100 01100 01101 01111 01110 01010 01011 01001 01000

00
00

0 0 000 1 001 3 003 2 002 6 006 7 007 5 005 4 004 12 00C 13 00D 15 00F 14 00E 10 00A 11 00B 9 009 8 008
mcrf <allocated> <allocated> <allocated> <allocated>

P XL

00
00

1 32 020 33 021 35 023 34 022 38 026 39 027 37 025 36 024 44 02C 45 02D 47 02F 46 02E 42 02A 43 02B 41 029 40 028
crnor <allocated> <allocated> <allocated> <allocated>

P XL

00
01

1 96 060 97 061 99 063 98 062 102 066 103 067 101 065 100 064 108 06C 109 06D 111 06F 110 06E 106 06A 107 06B 105 069 104 068

<allocated> <allocated> <allocated> <allocated>

00
01

0 64 040 65 041 67 043 66 042 70 046 71 047 69 045 68 044 76 04C 77 04D 79 04F 78 04E 74 04A 75 04B 73 049 72 048

<allocated> <allocated> <allocated> <allocated>

00
11

0 192 0C0 193 0C1 195 0C3 194 0C2 198 0C6 199 0C7 197 0C5 196 0C4 204 0CC 205 0CD 207 0CF 206 0CE 202 0CA 203 0CB 201 0C9 200 0C8
crxor <allocated> <allocated> <allocated> <allocated>

P XL

00
11

1 224 0E0 225 0E1 227 0E3 226 0E2 230 0E6 231 0E7 229 0E5 228 0E4 236 0EC 237 0ED 239 0EF 238 0EE 234 0EA 235 0EB 233 0E9 232 0E8
crnand <allocated> <allocated> <allocated> <allocated>

P XL

00
10

1 160 0A0 161 0A1 163 0A3 162 0A2 166 0A6 167 0A7 165 0A5 164 0A4 172 0AC 173 0AD 175 0AF 174 0AE 170 0AA 171 0AB 169 0A9 168 0A8

<allocated> <allocated> <allocated> <allocated>

00
10

0 128 080 129 081 131 083 130 082 134 086 135 087 133 085 132 084 140 08C 141 08D 143 08F 142 08E 138 08A 139 08B 137 089 136 088
crandc <allocated> <allocated> <allocated> <allocated>

P XL

01
10

0 384 180 385 181 387 183 386 182 390 186 391 187 389 185 388 184 396 18C 397 18D 399 18F 398 18E 394 18A 395 18B 393 189 392 188

<allocated> <allocated> <allocated> <allocated>

01
10

1 416 1A0 417 1A1 419 1A3 418 1A2 422 1A6 423 1A7 421 1A5 420 1A4 428 1AC 429 1AD 431 1AF 430 1AE 426 1AA 427 1AB 425 1A9 424 1A8
crorc <allocated> <allocated> <allocated> <allocated>

P XL

01
11

1 480 1E0 481 1E1 483 1E3 482 1E2 486 1E6 487 1E7 485 1E5 484 1E4 492 1EC 493 1ED 495 1EF 494 1EE 490 1EA 491 1EB 489 1E9 488 1E8

<allocated> <allocated> <allocated> <allocated>

01
11

0 448 1C0 449 1C1 451 1C3 450 1C2 454 1C6 455 1C7 453 1C5 452 1C4 460 1CC 461 1CD 463 1CF 462 1CE 458 1CA 459 1CB 457 1C9 456 1C8
cror <allocated> <allocated> <allocated> <allocated>

P XL

01
01

0 320 140 321 141 323 143 322 142 326 146 327 147 325 145 324 144 332 14C 333 14D 335 14F 334 14E 330 14A 331 14B 329 149 328 148

<allocated> <allocated> <allocated> <allocated>

01
01

1 352 160 353 161 355 163 354 162 358 166 359 167 357 165 356 164 364 16C 365 16D 367 16F 366 16E 362 16A 363 16B 361 169 360 168

<allocated> <allocated> <allocated> <allocated>

01
00

1 288 120 289 121 291 123 290 122 294 126 295 127 293 125 292 124 300 12C 301 12D 303 12F 302 12E 298 12A 299 12B 297 129 296 128
creqv <allocated> <allocated> <allocated> <allocated>

P XL

01
00

0 256 100 257 101 259 103 258 102 262 106 263 107 261 105 260 104 268 10C 269 10D 271 10F 270 10E 266 10A 267 10B 265 109 264 108
crand <allocated> <allocated> <allocated> <allocated>

P XL

11
00

0 768 300 769 301 771 303 770 302 774 306 775 307 773 305 772 304 780 30C 781 30D 783 30F 782 30E 778 30A 779 30B 777 309 776 308

<allocated> <allocated> <allocated> <allocated>

11
00

1 800 320 801 321 803 323 802 322 806 326 807 327 805 325 804 324 812 32C 813 32D 815 32F 814 32E 810 32A 811 32B 809 329 808 328

<allocated> <allocated> <allocated> <allocated>

11
01

1 864 360 865 361 867 363 866 362 870 366 871 367 869 365 868 364 876 36C 877 36D 879 36F 878 36E 874 36A 875 36B 873 369 872 368

<allocated> <allocated> <allocated> <allocated>

11
01

0 832 340 833 341 835 343 834 342 838 346 839 347 837 345 836 344 844 34C 845 34D 847 34F 846 34E 842 34A 843 34B 841 349 840 348

<allocated> <allocated> <allocated> <allocated>

11
11

0 960 3C0 961 3C1 963 3C3 962 3C2 966 3C6 967 3C7 965 3C5 964 3C4 972 3CC 973 3CD 975 3CF 974 3CE 970 3CA 971 3CB 969 3C9 968 3C8

<allocated> <allocated> <allocated> <allocated>

11
11

1 992 3E0 993 3E1 995 3E3 994 3E2 998 3E6 999 3E7 997 3E5 996 3E4 1004 3EC 1005 3ED 1007 3EF 1006 3EE 1002 3EA 1003 3EB 1001 3E9 1000 3E8

<allocated> <allocated> <allocated> <allocated>

11
10

1 928 3A0 929 3A1 931 3A3 930 3A2 934 3A6 935 3A7 933 3A5 932 3A4 940 3AC 941 3AD 943 3AF 942 3AE 938 3AA 939 3AB 937 3A9 936 3A8

<allocated> <allocated> <allocated> <allocated>

11
10

0 896 380 897 381 899 383 798 382 902 386 903 387 901 385 900 384 908 38C 909 38D 911 38F 910 38E 906 38A 907 38B 905 389 904 388

<allocated> <allocated> <allocated> <allocated>

10
10

0 640 280 641 281 643 283 642 282 646 286 647 287 645 285 644 284 652 28C 653 28D 655 28F 654 28E 650 28A 651 28B 649 289 648 288

<allocated> <allocated> <allocated> <allocated>

10
10

1 672 2A0 673 2A1 675 2A3 674 2A2 678 2A6 679 2A7 677 2A5 676 2A4 684 2AC 685 2AD 687 2AF 686 2AE 682 2AA 683 2AB 681 2A9 680 2A8

<allocated> <allocated> <allocated> <allocated>

10
11

1 736 2E0 737 2E1 739 2E3 738 2E2 742 2E6 743 2E7 741 2E5 740 2E4 748 2EC 749 2ED 751 2EF 750 2EE 746 2EA 747 2EB 745 2E9 744 2E8

<allocated> <allocated> <allocated> <allocated>

10
11

0 704 2C0 705 2C1 707 2C3 706 2C2 710 2C6 711 2C7 709 2C5 708 2C4 716 2CC 717 2CD 719 2CF 718 2CE 714 2CA 715 2CB 713 2C9 712 2C8

<allocated> <allocated> <allocated> <allocated>

10
01

0 576 240 577 241 579 243 578 242 582 246 583 247 581 245 580 244 588 24C 589 24D 591 24F 590 24E 586 24A 587 24B 585 249 584 248

<allocated> <allocated> <allocated> <allocated>

10
01

1 608 260 609 261 611 263 610 262 614 266 615 267 613 265 612 264 620 26C 621 26D 623 26F 622 26E 618 26A 619 26B 617 269 616 268

<allocated> <allocated> <allocated> <allocated>

10
00

1 544 220 545 221 547 223 546 222 550 226 551 227 549 225 548 224 556 22C 557 22D 559 22F 558 22E 554 22A 555 22B 553 229 552 228

<allocated> <allocated> <allocated> <allocated>

10
00

0 512 200 513 201 515 203 514 202 518 206 519 207 517 205 516 204 524 20C 525 20D 527 20F 526 20E 522 20A 523 20B 521 209 520 208

<allocated> <allocated> <allocated> <allocated>
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Table G-5. Extended opcodes for primary opcode 19 (instruction bits 21:30) (part 2 of 2)

11000 11001 11011 11010 11110 11111 11101 11100 10100 10101 10111 10110 10010 10011 10001 10000

24 018 25 019 27 01B 26 01A 30 01E 31 01F 29 01D 28 01C 20 014 21 015 23 017 22 016 18 012 19 013 17 011 16 010

00
00

0

bclre bclr
E XL P XL

56 038 57 039 59 03B 58 03A 62 03E 63 03F 61 03D 60 03C 52 034 53 035 55 037 54 036 50 032 51 033 49 031 48 030

00
00

1

rfi rfci
P XL E XL

120 078 121 079 123 07B 122 07A 126 07E 127 07F 125 07D 124 07C 116 074 117 075 119 077 118 076 114 072 115 073 113 071 112 070

00
01

1

88 058 89 059 91 05B 90 05A 94 05E 95 05F 93 05D 92 05C 84 054 85 055 87 057 86 056 82 052 83 053 81 051 80 050

00
01

0

216 0D8 217 0D9 219 0DB 218 0DA 222 0DE 223 0DF 221 0DD 220 0DC 212 0D4 213 0D5 215 0D7 214 0D6 210 0D2 211 0D3 209 0D1 208 0D0

00
11

0

248 0F8 249 0F9 251 0FB 250 0FA 254 0FE 255 0FF 253 0FD 252 0FC 244 0F4 245 0F5 247 0F7 246 0F6 242 0F2 243 0F3 241 0F1 240 0F0

00
11

1

184 0B8 185 0B9 187 0BB 186 0BA 190 0BE 191 0BF 189 0BD 188 0BC 180 0B4 181 0B5 183 0B7 182 0B6 178 0B2 179 0B3 177 0B1 176 0B0

00
10

1

152 098 153 099 155 09B 154 09A 158 09E 159 09F 157 09D 156 09C 148 094 149 095 151 097 150 096 146 092 147 093 145 091 144 090

00
10

0

isync
P XL

408 198 409 199 411 19B 410 19A 414 19E 415 19F 413 19D 412 19C 404 194 405 195 407 197 406 196 402 192 403 193 401 191 400 190

01
10

0

450 1B8 451 1B9 453 1BB 452 1BA 456 1BE 457 1BF 455 1BD 454 1BC 436 1B4 437 1B5 439 1B7 438 1B6 434 1B2 435 1B3 433 1B1 432 1B0

01
10

1

504 1F8 505 1F9 507 1FB 506 1FA 510 1FE 511 1FF 509 1FD 508 1FC 500 1F4 501 1F5 503 1F7 502 1F6 498 1F2 499 1F3 497 1F1 496 1F0

01
11

1

472 1D8 473 1D9 475 1DB 474 1DA 478 1DE 479 1DF 477 1DD 476 1DC 468 1D4 469 1D5 471 1D7 470 1D6 466 1D2 467 1D3 465 1D1 464 1D0

01
11

0

344 158 345 159 347 15B 346 15A 350 15E 351 15F 349 15D 348 15C 340 154 341 155 343 157 342 156 338 152 339 153 337 151 336 150

01
01

0

376 178 377 179 379 17B 378 17A 382 17E 383 17F 381 17D 380 17C 372 174 373 175 375 177 374 176 370 172 371 173 369 171 368 170

01
01

1

312 138 313 139 315 13B 314 13A 318 13E 319 13F 317 13D 316 13C 308 134 309 135 311 137 310 136 306 132 307 133 305 131 304 130

01
00

1

280 118 281 119 283 11B 282 11A 286 11E 287 11F 285 11D 284 11C 276 114 277 115 279 117 278 116 274 112 275 113 273 111 272 110

01
00

0

792 318 793 319 795 31B 794 31A 798 31E 799 31F 797 31D 796 31C 788 314 789 315 791 317 790 316 786 312 787 313 785 311 784 310

11
00

0

824 338 825 339 827 33B 826 33A 830 33E 831 33F 829 33D 828 33C 820 334 821 335 823 337 822 336 818 332 819 333 817 331 816 330

11
00

1

888 378 889 379 891 37B 890 37A 894 37E 895 37F 893 37D 892 37C 884 374 885 375 887 377 886 376 882 372 883 373 881 371 880 370

11
01

1

856 358 857 359 859 35B 858 35A 862 35E 863 35F 861 35D 860 35C 852 354 853 355 855 357 854 356 850 352 851 353 849 351 848 350

11
01

0

984 3D8 985 3D9 987 3DB 986 3DA 990 3DE 991 3DF 989 3DD 988 3DC 980 3D4 981 3D5 983 3D7 982 3D6 978 3D2 979 3D3 977 3D1 976 3D0

11
11

0

1016 3F8 1017 3F9 1019 3FB 1018 3FA 1022 3FE 1023 3FF 1021 3FD 1020 3FC 1012 3F4 1013 3F5 1015 3F7 1014 3F6 1010 3F2 1011 3F3 1009 3F1 1008 3F0

11
11

1

952 3B8 953 3B9 955 3BB 954 3BA 958 3BE 959 3BF 957 3BD 956 3BC 948 3B4 949 3B5 951 3B7 950 3B6 946 3B2 947 3B3 945 3B1 944 3B0

11
10

1
920 398 921 399 923 39B 922 39A 926 39E 927 39F 925 39D 924 39C 916 394 917 395 919 397 918 396 914 392 915 393 913 391 912 390

11
10

0

664 298 665 299 667 29B 666 29A 670 29E 671 29F 669 29D 668 29C 660 294 661 295 663 297 662 296 658 292 659 293 657 291 656 290

10
10

0

696 2B8 697 2B9 699 2BB 698 2BA 702 2BE 703 2BF 701 2BD 700 2BC 692 2B4 693 2B5 695 2B7 694 2B6 690 2B2 691 2B3 689 2B1 688 2B0

10
10

1

P A
760 2F8 761 2F9 763 2FB 762 2FA 766 2FE 767 2FF 765 2FD 764 2FC 756 2F4 757 2F5 759 2F7 758 2F6 754 2F2 755 2F3 753 2F1 752 2F0

10
11

1

728 2D8 729 2D9 731 2DB 730 2DA 734 2DE 735 2DF 733 2DD 732 2DC 724 2D4 725 2D5 727 2D7 726 2D6 722 2D2 723 2D3 721 2D1 720 2D0

10
11

0

600 258 601 259 603 25B 602 25A 606 25E 607 25F 605 25D 604 25C 596 254 597 255 599 257 598 256 594 252 595 253 593 251 592 250

10
01

0

632 278 633 279 635 27B 634 27A 638 27E 639 27F 637 27D 636 27C 628 274 629 275 631 277 630 276 626 272 627 273 625 271 624 270

10
01

1

568 238 569 239 571 23B 570 23A 574 23E 575 23F 573 23D 572 23C 564 234 565 235 567 237 566 236 562 232 563 233 561 231 560 230

10
00

1

536 218 537 219 539 21B 538 21A 542 21E 543 21F 541 21D 540 21C 532 214 533 215 535 217 534 216 530 212 531 213 529 211 528 210

10
00

0

bcctre bcctr
E XL P XL
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Table G-6. Extended opcodes for primary opcode 31 (instruction bits 21:30) (part 1 of 2)

00000 00001 00011 00010 00110 00111 00101 00100 01100 01101 01111 01110 01010 01011 01001 01000

00
00

0 0 000 1 001 3 003 2 002 6 006 7 007 5 005 4 004 12 00C 13 00D 15 00F 14 00E 10 00A 11 00B 9 009 8 008
cmp <allocated> <allocated> tw <allocated> <allocated> addc mulhwu mulhdu subfc

P X P X P X P X P X P X

00
00

1 32 020 33 021 35 023 34 022 38 026 39 027 37 025 36 024 44 02C 45 02D 47 02F 46 02E 42 02A 43 02B 41 029 40 028
cmpl <allocated> <allocated> <allocated> <allocated> subf

P X P X

00
01

1 96 060 97 061 99 063 98 062 102 066 103 067 101 065 100 064 108 06C 109 06D 111 06F 110 06E 106 06A 107 06B 105 069 104 068

<allocated> <allocated> <allocated> <allocated> neg
P X

00
01

0 64 040 65 041 67 043 66 042 70 046 71 047 69 045 68 044 76 04C 77 04D 79 04F 78 04E 74 04A 75 04B 73 049 72 048

<allocated> <allocated> td <allocated> <allocated> mulhw mulhd
P X P X P X

00
11

0 192 0C0 193 0C1 195 0C3 194 0C2 198 0C6 199 0C7 197 0C5 196 0C4 204 0CC 205 0CD 207 0CF 206 0CE 202 0CA 203 0CB 201 0C9 200 0C8

<allocated> <allocated> <allocated> <allocated> addze subfze
P X P X

00
11

1 224 0E0 225 0E1 227 0E3 226 0E2 230 0E6 231 0E7 229 0E5 228 0E4 236 0EC 237 0ED 239 0EF 238 0EE 234 0EA 235 0EB 233 0E9 232 0E8

<allocated> <allocated> <allocated> <allocated> addme mullw mulld subfme
P X P X P X P X

00
10

1 160 0A0 161 0A1 163 0A3 162 0A2 166 0A6 167 0A7 165 0A5 164 0A4 172 0AC 173 0AD 175 0AF 174 0AE 170 0AA 171 0AB 169 0A9 168 0A8
wrteei <allocated> <allocated> <allocated> <allocated>

E X

00
10

0 128 080 129 081 131 083 130 082 134 086 135 087 133 085 132 084 140 08C 141 08D 143 08F 142 08E 138 08A 139 08B 137 089 136 088
wrtee <allocated> <allocated> <allocated> <allocated> adde subfe

E X P X P X

01
10

0 384 180 385 181 387 183 386 182 390 186 391 187 389 185 388 184 396 18C 397 18D 399 18F 398 18E 394 18A 395 18B 393 189 392 188

<allocated> <allocated> <allocated> <allocated> adde64 subfe64
E X E X

01
10

1 416 1A0 417 1A1 419 1A3 418 1A2 422 1A6 423 1A7 421 1A5 420 1A4 428 1AC 429 1AD 431 1AF 430 1AE 426 1AA 427 1AB 425 1A9 424 1A8

<allocated> <allocated> <allocated> <allocated>

01
11

1 480 1E0 481 1E1 483 1E3 482 1E2 486 1E6 487 1E7 485 1E5 484 1E4 492 1EC 493 1ED 495 1EF 494 1EE 490 1EA 491 1EB 489 1E9 488 1E8

<allocated> <allocated> <allocated> <allocated> addme64 divw divd subfme64
E X P X P X E X

01
11

0 448 1C0 449 1C1 451 1C3 450 1C2 454 1C6 455 1C7 453 1C5 452 1C4 460 1CC 461 1CD 463 1CF 462 1CE 458 1CA 459 1CB 457 1C9 456 1C8
mtdcr <allocated> <allocated> <allocated> <allocated> addze64 divwu divdu subfze64

E X E X P X P X E X

01
01

0 320 140 321 141 323 143 322 142 326 146 327 147 325 145 324 144 332 14C 333 14D 335 14F 334 14E 330 14A 331 14B 329 149 328 148
mfdcr <allocated> <allocated> <allocated> <allocated>

E X

01
01

1 352 160 353 161 355 163 354 162 358 166 359 167 357 165 356 164 364 16C 365 16D 367 16F 366 16E 362 16A 363 16B 361 169 360 168

<allocated> <allocated> <allocated> <allocated>

01
00

1 288 120 289 121 291 123 290 122 294 126 295 127 293 125 292 124 300 12C 301 12D 303 12F 302 12E 298 12A 299 12B 297 129 296 128

<allocated> <allocated> <allocated> <allocated>

01
00

0 256 100 257 101 259 103 258 102 262 106 263 107 261 105 260 104 268 10C 269 10D 271 10F 270 10E 266 10A 267 10B 265 109 264 108

<allocated> <allocated> <allocated> <allocated> add
P X

11
00

0 768 300 769 301 771 303 770 302 774 306 775 307 773 305 772 304 780 30C 781 30D 783 30F 782 30E 778 30A 779 30B 777 309 776 308

<allocated> <allocated> <allocated> <allocated> addo
P X

11
00

1 800 320 801 321 803 323 802 322 806 326 807 327 805 325 804 324 812 32C 813 32D 815 32F 814 32E 810 32A 811 32B 809 329 808 328

<allocated> <allocated> <allocated> <allocated>

11
01

1 864 360 865 361 867 363 866 362 870 366 871 367 869 365 868 364 876 36C 877 36D 879 36F 878 36E 874 36A 875 36B 873 369 872 368

<allocated> <allocated> <allocated> <allocated>

11
01

0 832 340 833 341 835 343 834 342 838 346 839 347 837 345 836 344 844 34C 845 34D 847 34F 846 34E 842 34A 843 34B 841 349 840 348

<allocated> <allocated> <allocated> <allocated>

11
11

0 960 3C0 961 3C1 963 3C3 962 3C2 966 3C6 967 3C7 965 3C5 964 3C4 972 3CC 973 3CD 975 3CF 974 3CE 970 3CA 971 3CB 969 3C9 968 3C8

<allocated> <allocated> <allocated> <allocated> addze64o divwuo divduo subfze64o
E X P X P X E X

11
11

1 992 3E0 993 3E1 995 3E3 994 3E2 998 3E6 999 3E7 997 3E5 996 3E4 1004 3EC 1005 3ED 1007 3EF 1006 3EE 1002 3EA 1003 3EB 1001 3E9 1000 3E8

<allocated> <allocated> <allocated> <allocated> addme64o divwo divdo subfme64o
E X P X P X E X

11
10

1 928 3A0 929 3A1 931 3A3 930 3A2 934 3A6 935 3A7 933 3A5 932 3A4 940 3AC 941 3AD 943 3AF 942 3AE 938 3AA 939 3AB 937 3A9 936 3A8

<allocated> <allocated> <allocated> <allocated>

11
10

0 896 380 897 381 899 383 798 382 902 386 903 387 901 385 900 384 908 38C 909 38D 911 38F 910 38E 906 38A 907 38B 905 389 904 388

<allocated> <allocated> <allocated> <allocated> adde64o subfe64o
E X E X

10
10

0 640 280 641 281 643 283 642 282 646 286 647 287 645 285 644 284 652 28C 653 28D 655 28F 654 28E 650 28A 651 28B 649 289 648 288

<allocated> <allocated> <allocated> <allocated> addeo subfeo
P X P X

10
10

1 672 2A0 673 2A1 675 2A3 674 2A2 678 2A6 679 2A7 677 2A5 676 2A4 684 2AC 685 2AD 687 2AF 686 2AE 682 2AA 683 2AB 681 2A9 680 2A8

<allocated> <allocated> <allocated> <allocated>

10
11

1 736 2E0 737 2E1 739 2E3 738 2E2 742 2E6 743 2E7 741 2E5 740 2E4 748 2EC 749 2ED 751 2EF 750 2EE 746 2EA 747 2EB 745 2E9 744 2E8

<allocated> <allocated> <allocated> <allocated> addmeo mullwo mulldo subfmeo
P X P X P X P X

10
11

0 704 2C0 705 2C1 707 2C3 706 2C2 710 2C6 711 2C7 709 2C5 708 2C4 716 2CC 717 2CD 719 2CF 718 2CE 714 2CA 715 2CB 713 2C9 712 2C8

<allocated> <allocated> <allocated> <allocated> addzeo subfzeo
P X P X

10
01

0 576 240 577 241 579 243 578 242 582 246 583 247 581 245 580 244 588 24C 589 24D 591 24F 590 24E 586 24A 587 24B 585 249 584 248

<allocated> <allocated> <allocated> <allocated> /// ///
P X P X

10
01

1 608 260 609 261 611 263 610 262 614 266 615 267 613 265 612 264 620 26C 621 26D 623 26F 622 26E 618 26A 619 26B 617 269 616 268

<allocated> <allocated> <allocated> <allocated> nego
P X

10
00

1 544 220 545 221 547 223 546 222 550 226 551 227 549 225 548 224 556 22C 557 22D 559 22F 558 22E 554 22A 555 22B 553 229 552 228
mcrxr64 <allocated> <allocated> <allocated> <allocated> subfo

E X P X

10
00

0 512 200 513 201 515 203 514 202 518 206 519 207 517 205 516 204 524 20C 525 20D 527 20F 526 20E 522 20A 523 20B 521 209 520 208
mcrxr <allocated> <allocated> <allocated> <allocated> addco /// /// subfco

P X P X P X P X P X
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Table G-6. Extended opcodes for primary opcode 31 (instruction bits 21:30) (part 2 of 2)

11000 11001 11011 11010 11110 11111 11101 11100 10100 10101 10111 10110 10010 10011 10001 10000

24 018 25 019 27 01B 26 01A 30 01E 31 01F 29 01D 28 01C 20 014 21 015 23 017 22 016 18 012 19 013 17 011 16 010

00
00

0

slw sld cntlzw icbte lwzxe and lwarx lwzx icbt mfcr
P X P X P X E X E X P X P X P X E X P X
56 038 57 039 59 03B 58 03A 62 03E 63 03F 61 03D 60 03C 52 034 53 035 55 037 54 036 50 032 51 033 49 031 48 030

00
00

1

cntlzd dcbste lwzuxe andc lwzux dcbst
P X E X E X P X P X P X

120 078 121 079 123 07B 122 07A 126 07E 127 07F 125 07D 124 07C 116 074 117 075 119 077 118 076 114 072 115 073 113 071 112 070

00
01

1

lwarxe lbzuxe nor lbzux
E X E X P X P X

88 058 89 059 91 05B 90 05A 94 05E 95 05F 93 05D 92 05C 84 054 85 055 87 057 86 056 82 052 83 053 81 051 80 050

00
01

0

dcbfe lbzxe lbzx dcbf mfmsr
E X E X P X P X P X

216 0D8 217 0D9 219 0DB 218 0DA 222 0DE 223 0DF 221 0DD 220 0DC 212 0D4 213 0D5 215 0D7 214 0D6 210 0D2 211 0D3 209 0D1 208 0D0

00
11

0

stbxe stbx (preserved)
E X P X

248 0F8 249 0F9 251 0FB 250 0FA 254 0FE 255 0FF 253 0FD 252 0FC 244 0F4 245 0F5 247 0F7 246 0F6 242 0F2 243 0F3 241 0F1 240 0F0

00
11

1

dcbtste stbuxe stbux dcbtst (preserved)
E X E X P X P X

184 0B8 185 0B9 187 0BB 186 0BA 190 0BE 191 0BF 189 0BD 188 0BC 180 0B4 181 0B5 183 0B7 182 0B6 178 0B2 179 0B3 177 0B1 176 0B0

00
10

1

stwuxe stwux
E X P X

152 098 153 099 155 09B 154 09A 158 09E 159 09F 157 09D 156 09C 148 094 149 095 151 097 150 096 146 092 147 093 145 091 144 090

00
10

0

stwcxe. stwxe stwx stwcx. mtmsr mtcrf
E X E X P X P X P X P X

408 198 409 199 411 19B 410 19A 414 19E 415 19F 413 19D 412 19C 404 194 405 195 407 197 406 196 402 192 403 193 401 191 400 190

01
10

0

sthxe orc sthx
E X P X P X

450 1B8 451 1B9 453 1BB 452 1BA 456 1BE 457 1BF 455 1BD 454 1BC 436 1B4 437 1B5 439 1B7 438 1B6 434 1B2 435 1B3 433 1B1 432 1B0

01
10

1

sthuxe or sthux (preserved)
E X P X P X

504 1F8 505 1F9 507 1FB 506 1FA 510 1FE 511 1FF 509 1FD 508 1FC 500 1F4 501 1F5 503 1F7 502 1F6 498 1F2 499 1F3 497 1F1 496 1F0

01
11

1

stdcxe.
E X

472 1D8 473 1D9 475 1DB 474 1DA 478 1DE 479 1DF 477 1DD 476 1DC 468 1D4 469 1D5 471 1D7 470 1D6 466 1D2 467 1D3 465 1D1 464 1D0

01
11

0

dcbie ldarxe nand dcbi mtspr
E X E X P X X P X

344 158 345 159 347 15B 346 15A 350 15E 351 15F 349 15D 348 15C 340 154 341 155 343 157 342 156 338 152 339 153 337 151 336 150

01
01

0

lhaxe lhax (allocated) mfspr
E X P X P X

376 178 377 179 379 17B 378 17A 382 17E 383 17F 381 17D 380 17C 372 174 373 175 375 177 374 176 370 172 371 173 369 171 368 170

01
01

1

lhauxe lhaux (allocated) (preserved) (preserved)
E X P X

312 138 313 139 315 13B 314 13A 318 13E 319 13F 317 13D 316 13C 308 134 309 135 311 137 310 136 306 132 307 133 305 131 304 130

01
00

1

lhzuxe xor lhzux (preserved) (preserved)
E X P X P X

280 118 281 119 283 11B 282 11A 286 11E 287 11F 285 11D 284 11C 276 114 277 115 279 117 278 116 274 112 275 113 273 111 272 110

01
00

0

dcbte lhzxe eqv lhzx dcbt mfapidi
E X E X P X P X P X E X

792 318 793 319 795 31B 794 31A 798 31E 799 31F 797 31D 796 31C 788 314 789 315 791 317 790 316 786 312 787 313 785 311 784 310

11
00

0

sraw srad lhbrxe ldxe lhbrx tlbivax tlbivaxe
P X P X E X E X P X E X E X
824 338 825 339 827 33B 826 33A 830 33E 831 33F 829 33D 828 33C 820 334 821 335 823 337 822 336 818 332 819 333 817 331 816 330

11
00

1

srawi sradi lduxe (allocated)
P X P XS E X
888 378 889 379 891 37B 890 37A 894 37E 895 37F 893 37D 892 37C 884 374 885 375 887 377 886 376 882 372 883 373 881 371 880 370

11
01

1

856 358 857 359 859 35B 858 35A 862 35E 863 35F 861 35D 860 35C 852 354 853 355 855 357 854 356 850 352 851 353 849 351 848 350

11
01

0

mbar
P X

984 3D8 985 3D9 987 3DB 986 3DA 990 3DE 991 3DF 989 3DD 988 3DC 980 3D4 981 3D5 983 3D7 982 3D6 978 3D2 979 3D3 977 3D1 976 3D0

11
11

0

extsw icbie stfiwxe stfiwx icbi tlbwe
P X E X E X P X P X E X

1016 3F8 1017 3F9 1019 3FB 1018 3FA 1022 3FE 1023 3FF 1021 3FD 1020 3FC 1012 3F4 1013 3F5 1015 3F7 1014 3F6 1010 3F2 1011 3F3 1009 3F1 1008 3F0

11
11

1

dcbze dcbz
E X P X

952 3B8 953 3B9 955 3BB 954 3BA 958 3BE 959 3BF 957 3BD 956 3BC 948 3B4 949 3B5 951 3B7 950 3B6 946 3B2 947 3B3 945 3B1 944 3B0

11
10

1
extsb stduxe tlbre

P X E X E X
920 398 921 399 923 39B 922 39A 926 39E 927 39F 925 39D 924 39C 916 394 917 395 919 397 918 396 914 392 915 393 913 391 912 390

11
10

0

extsh sthbrxe stdxe sthbrx tlbsx tlbsxe
P X E X E X P X E X E X

664 298 665 299 667 29B 666 29A 670 29E 671 29F 669 29D 668 29C 660 294 661 295 663 297 662 296 658 292 659 293 657 291 656 290

10
10

0

stwbrxe stfsxe stswx stfsx stwbrx (nop) (preserved)E X E X P X P X P X
696 2B8 697 2B9 699 2BB 698 2BA 702 2BE 703 2BF 701 2BD 700 2BC 692 2B4 693 2B5 695 2B7 694 2B6 690 2B2 691 2B3 689 2B1 688 2B0

10
10

1

stfsuxe stfsux (nop)E X P X
760 2F8 761 2F9 763 2FB 762 2FA 766 2FE 767 2FF 765 2FD 764 2FC 756 2F4 757 2F5 759 2F7 758 2F6 754 2F2 755 2F3 753 2F1 752 2F0

10
11

1

dcbae stfduxe stfdux dcba (nop)E X E X P X P X
728 2D8 729 2D9 731 2DB 730 2DA 734 2DE 735 2DF 733 2DD 732 2DC 724 2D4 725 2D5 727 2D7 726 2D6 722 2D2 723 2D3 721 2D1 720 2D0

10
11

0

stfdxe stswi stfdx (nop)E X P X P X

600 258 601 259 603 25B 602 25A 606 25E 607 25F 605 25D 604 25C 596 254 597 255 599 257 598 256 594 252 595 253 593 251 592 250

10
01

0

lfdxe lswi lfdx msync (nop) (preserved)
E X P X P X P X

632 278 633 279 635 27B 634 27A 638 27E 639 27F 637 27D 636 27C 628 274 629 275 631 277 630 276 626 272 627 273 625 271 624 270

10
01

1

lfduxe lfdux (nop)
E X P X

568 238 569 239 571 23B 570 23A 574 23E 575 23F 573 23D 572 23C 564 234 565 235 567 237 566 236 562 232 563 233 561 231 560 230

10
00

1

lfsuxe lfsux tlbsync (nop)
E X P X P X

536 218 537 219 539 21B 538 21A 542 21E 543 21F 541 21D 540 21C 532 214 533 215 535 217 534 216 530 212 531 213 529 211 528 210

10
00

0

srw srd lwbrxe lfsxe lswx lfsx lwbrx (nop)
P X P X E X E X P X P X P X
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Table G-7. Extended opcodes for primary opcode 59 (instruction bits 21:30) (part 1 of 2)

00000 00001 00011 00010 00110 00111 00101 00100 01100 01101 01111 01110 01010 01011 01001 01000

00
00

0 0 000 1 001 3 003 2 002 6 006 7 007 5 005 4 004 12 00C 13 00D 15 00F 14 00E 10 00A 11 00B 9 009 8 008

<allocated> <allocated> <allocated> <allocated>

00
00

1 32 020 33 021 35 023 34 022 38 026 39 027 37 025 36 024 44 02C 45 02D 47 02F 46 02E 42 02A 43 02B 41 029 40 028

<allocated> <allocated> <allocated> <allocated>

00
01

1 96 060 97 061 99 063 98 062 102 066 103 067 101 065 100 064 108 06C 109 06D 111 06F 110 06E 106 06A 107 06B 105 069 104 068

<allocated> <allocated> <allocated> <allocated>

00
01

0 64 040 65 041 67 043 66 042 70 046 71 047 69 045 68 044 76 04C 77 04D 79 04F 78 04E 74 04A 75 04B 73 049 72 048

<allocated> <allocated> <allocated> <allocated>

00
11

0 192 0C0 193 0C1 195 0C3 194 0C2 198 0C6 199 0C7 197 0C5 196 0C4 204 0CC 205 0CD 207 0CF 206 0CE 202 0CA 203 0CB 201 0C9 200 0C8

<allocated> <allocated> <allocated> <allocated>

00
11

1 224 0E0 225 0E1 227 0E3 226 0E2 230 0E6 231 0E7 229 0E5 228 0E4 236 0EC 237 0ED 239 0EF 238 0EE 234 0EA 235 0EB 233 0E9 232 0E8

<allocated> <allocated> <allocated> <allocated>

00
10

1 160 0A0 161 0A1 163 0A3 162 0A2 166 0A6 167 0A7 165 0A5 164 0A4 172 0AC 173 0AD 175 0AF 174 0AE 170 0AA 171 0AB 169 0A9 168 0A8

<allocated> <allocated> <allocated> <allocated>

00
10

0 128 080 129 081 131 083 130 082 134 086 135 087 133 085 132 084 140 08C 141 08D 143 08F 142 08E 138 08A 139 08B 137 089 136 088

<allocated> <allocated> <allocated> <allocated>

01
10

0 384 180 385 181 387 183 386 182 390 186 391 187 389 185 388 184 396 18C 397 18D 399 18F 398 18E 394 18A 395 18B 393 189 392 188

<allocated> <allocated> <allocated> <allocated>

01
10

1 416 1A0 417 1A1 419 1A3 418 1A2 422 1A6 423 1A7 421 1A5 420 1A4 428 1AC 429 1AD 431 1AF 430 1AE 426 1AA 427 1AB 425 1A9 424 1A8

<allocated> <allocated> <allocated> <allocated>

01
11

1 480 1E0 481 1E1 483 1E3 482 1E2 486 1E6 487 1E7 485 1E5 484 1E4 492 1EC 493 1ED 495 1EF 494 1EE 490 1EA 491 1EB 489 1E9 488 1E8

<allocated> <allocated> <allocated> <allocated>

01
11

0 448 1C0 449 1C1 451 1C3 450 1C2 454 1C6 455 1C7 453 1C5 452 1C4 460 1CC 461 1CD 463 1CF 462 1CE 458 1CA 459 1CB 457 1C9 456 1C8

<allocated> <allocated> <allocated> <allocated>

01
01

0 320 140 321 141 323 143 322 142 326 146 327 147 325 145 324 144 332 14C 333 14D 335 14F 334 14E 330 14A 331 14B 329 149 328 148

<allocated> <allocated> <allocated> <allocated>

01
01

1 352 160 353 161 355 163 354 162 358 166 359 167 357 165 356 164 364 16C 365 16D 367 16F 366 16E 362 16A 363 16B 361 169 360 168

<allocated> <allocated> <allocated> <allocated>

01
00

1 288 120 289 121 291 123 290 122 294 126 295 127 293 125 292 124 300 12C 301 12D 303 12F 302 12E 298 12A 299 12B 297 129 296 128

<allocated> <allocated> <allocated> <allocated>

01
00

0 256 100 257 101 259 103 258 102 262 106 263 107 261 105 260 104 268 10C 269 10D 271 10F 270 10E 266 10A 267 10B 265 109 264 108

<allocated> <allocated> <allocated> <allocated>

11
00

0 768 300 769 301 771 303 770 302 774 306 775 307 773 305 772 304 780 30C 781 30D 783 30F 782 30E 778 30A 779 30B 777 309 776 308

<allocated> <allocated> <allocated> <allocated>

11
00

1 800 320 801 321 803 323 802 322 806 326 807 327 805 325 804 324 812 32C 813 32D 815 32F 814 32E 810 32A 811 32B 809 329 808 328

<allocated> <allocated> <allocated> <allocated>

11
01

1 864 360 865 361 867 363 866 362 870 366 871 367 869 365 868 364 876 36C 877 36D 879 36F 878 36E 874 36A 875 36B 873 369 872 368

<allocated> <allocated> <allocated> <allocated>

11
01

0 832 340 833 341 835 343 834 342 838 346 839 347 837 345 836 344 844 34C 845 34D 847 34F 846 34E 842 34A 843 34B 841 349 840 348

<allocated> <allocated> <allocated> <allocated>

11
11

0 960 3C0 961 3C1 963 3C3 962 3C2 966 3C6 967 3C7 965 3C5 964 3C4 972 3CC 973 3CD 975 3CF 974 3CE 970 3CA 971 3CB 969 3C9 968 3C8

<allocated> <allocated> <allocated> <allocated>

11
11

1 992 3E0 993 3E1 995 3E3 994 3E2 998 3E6 999 3E7 997 3E5 996 3E4 1004 3EC 1005 3ED 1007 3EF 1006 3EE 1002 3EA 1003 3EB 1001 3E9 1000 3E8

<allocated> <allocated> <allocated> <allocated>

11
10

1 928 3A0 929 3A1 931 3A3 930 3A2 934 3A6 935 3A7 933 3A5 932 3A4 940 3AC 941 3AD 943 3AF 942 3AE 938 3AA 939 3AB 937 3A9 936 3A8

<allocated> <allocated> <allocated> <allocated>

11
10

0 896 380 897 381 899 383 798 382 902 386 903 387 901 385 900 384 908 38C 909 38D 911 38F 910 38E 906 38A 907 38B 905 389 904 388

<allocated> <allocated> <allocated> <allocated>

10
10

0 640 280 641 281 643 283 642 282 646 286 647 287 645 285 644 284 652 28C 653 28D 655 28F 654 28E 650 28A 651 28B 649 289 648 288

<allocated> <allocated> <allocated> <allocated>

10
10

1 672 2A0 673 2A1 675 2A3 674 2A2 678 2A6 679 2A7 677 2A5 676 2A4 684 2AC 685 2AD 687 2AF 686 2AE 682 2AA 683 2AB 681 2A9 680 2A8

<allocated> <allocated> <allocated> <allocated>

10
11

1 736 2E0 737 2E1 739 2E3 738 2E2 742 2E6 743 2E7 741 2E5 740 2E4 748 2EC 749 2ED 751 2EF 750 2EE 746 2EA 747 2EB 745 2E9 744 2E8

<allocated> <allocated> <allocated> <allocated>

10
11

0 704 2C0 705 2C1 707 2C3 706 2C2 710 2C6 711 2C7 709 2C5 708 2C4 716 2CC 717 2CD 719 2CF 718 2CE 714 2CA 715 2CB 713 2C9 712 2C8

<allocated> <allocated> <allocated> <allocated>

10
01

0 576 240 577 241 579 243 578 242 582 246 583 247 581 245 580 244 588 24C 589 24D 591 24F 590 24E 586 24A 587 24B 585 249 584 248

<allocated> <allocated> <allocated> <allocated>

10
01

1 608 260 609 261 611 263 610 262 614 266 615 267 613 265 612 264 620 26C 621 26D 623 26F 622 26E 618 26A 619 26B 617 269 616 268

<allocated> <allocated> <allocated> <allocated>

10
00

1 544 220 545 221 547 223 546 222 550 226 551 227 549 225 548 224 556 22C 557 22D 559 22F 558 22E 554 22A 555 22B 553 229 552 228

<allocated> <allocated> <allocated> <allocated>

10
00

0 512 200 513 201 515 203 514 202 518 206 519 207 517 205 516 204 524 20C 525 20D 527 20F 526 20E 522 20A 523 20B 521 209 520 208

<allocated> <allocated> <allocated> <allocated>
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Table G-7. Extended opcodes for primary opcode 59 (instruction bits 21:30) (part 2 of 2)

11000 11001 11011 11010 11110 11111 11101 11100 10100 10101 10111 10110 10010 10011 10001 10000

24 018 25 019 27 01B 26 01A 30 01E 31 01F 29 01D 28 01C 20 014 21 015 23 017 22 016 18 012 19 013 17 011 16 010

00
00

0

fres fmuls fnmsubs fnmadds fmadds fmsubs fsubs fadds fsqrts fdivs
P A P A P A P A P A P A P A P A P A P A

59 03B 58 03A 55 037 51 033 49 031 48 030

00
00

1

123 07B 122 07A 119 077 115 073 113 071 112 070

00
01

1

91 05B 90 05A 87 057 83 053 81 051 80 050

00
01

0

219 0DB 218 0DA 215 0D7 211 0D3 209 0D1 208 0D0

00
11

0

251 0FB 250 0FA 247 0F7 243 0F3 241 0F1 240 0F0

00
11

1

187 0BB 186 0BA 183 0B7 179 0B3 177 0B1 176 0B0

00
10

1

155 09B 154 09A 151 097 147 093 145 091 144 090

00
10

0

411 19B 410 19A 407 197 403 193 401 191 400 190

01
10

0

453 1BB 452 1BA 439 1B7 435 1B3 433 1B1 432 1B0

01
10

1

507 1FB 506 1FA 503 1F7 499 1F3 497 1F1 496 1F0

01
11

1

475 1DB 474 1DA 471 1D7 467 1D3 465 1D1 464 1D0

01
11

0

347 15B 346 15A 343 157 339 153 337 151 336 150

01
01

0

379 17B 378 17A 375 177 371 173 369 171 368 170

01
01

1

315 13B 314 13A 311 137 307 133 305 131 304 130

01
00

1

283 11B 282 11A 279 117 275 113 273 111 272 110

01
00

0

795 31B 794 31A 791 317 787 313 785 311 784 310

11
00

0

827 33B 826 33A 823 337 819 333 817 331 816 330

11
00

1

891 37B 890 37A 887 377 883 373 881 371 880 370

11
01

1

859 35B 858 35A 855 357 851 353 849 351 848 350

11
01

0

987 3DB 986 3DA 983 3D7 979 3D3 977 3D1 976 3D0

11
11

0

1019 3FB 1018 3FA 1015 3F7 1011 3F3 1009 3F1 1008 3F0

11
11

1

955 3BB 954 3BA 951 3B7 947 3B3 945 3B1 944 3B0

11
10

1
923 39B 922 39A 919 397 915 393 913 391 912 390

11
10

0

667 29B 666 29A 663 297 659 293 657 291 656 290

10
10

0

699 2BB 698 2BA 695 2B7 691 2B3 689 2B1 688 2B0

10
10

1

763 2FB 762 2FA 759 2F7 755 2F3 753 2F1 752 2F0

10
11

1

731 2DB 730 2DA 727 2D7 723 2D3 721 2D1 720 2D0

10
11

0

603 25B 602 25A 599 257 595 253 593 251 592 250

10
01

0

635 27B 634 27A 631 277 627 273 625 271 624 270

10
01

1

571 23B 570 23A 567 237 563 233 561 231 560 230

10
00

1

539 21B 538 21A 535 217 531 213 529 211 528 210

10
00

0
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Table G-8. Extended opcodes for primary opcode 63 (instruction bits 21:30) (part 1 of 2)

00000 00001 00011 00010 00110 00111 00101 00100 01100 01101 01111 01110 01010 01011 01001 01000

00
00

0 0 000 1 001 3 003 2 002 6 006 7 007 5 005 4 004 12 00C 13 00D 15 00F 14 00E 10 00A 11 00B 9 009 8 008
fcmpu <allocated> <allocated> frsp <allocated> fctiwz fctiw

P X P X P X P X

00
00

1 32 020 33 021 35 023 34 022 38 026 39 027 37 025 36 024 44 02C 45 02D 47 02F 46 02E 42 02A 43 02B 41 029 40 028
fcmpo mtfsb1 <allocated> <allocated> <allocated> <allocated> fneg

P X P X P X

00
01

1 96 060 97 061 99 063 98 062 102 066 103 067 101 065 100 064 108 06C 109 06D 111 06F 110 06E 106 06A 107 06B 105 069 104 068

<allocated> <allocated> <allocated> <allocated>

00
01

0 64 040 65 041 67 043 66 042 70 046 71 047 69 045 68 044 76 04C 77 04D 79 04F 78 04E 74 04A 75 04B 73 049 72 048
mcrfs mtfsb0 <allocated> <allocated> <allocated> <allocated> fmr

P X P X P X

00
11

0 192 0C0 193 0C1 195 0C3 194 0C2 198 0C6 199 0C7 197 0C5 196 0C4 204 0CC 205 0CD 207 0CF 206 0CE 202 0CA 203 0CB 201 0C9 200 0C8

<allocated> <allocated> <allocated> <allocated>

00
11

1 224 0E0 225 0E1 227 0E3 226 0E2 230 0E6 231 0E7 229 0E5 228 0E4 236 0EC 237 0ED 239 0EF 238 0EE 234 0EA 235 0EB 233 0E9 232 0E8

<allocated> <allocated> <allocated> <allocated>

00
10

1 160 0A0 161 0A1 163 0A3 162 0A2 166 0A6 167 0A7 165 0A5 164 0A4 172 0AC 173 0AD 175 0AF 174 0AE 170 0AA 171 0AB 169 0A9 168 0A8

<allocated> <allocated> <allocated> <allocated>

00
10

0 128 080 129 081 131 083 130 082 134 086 135 087 133 085 132 084 140 08C 141 08D 143 08F 142 08E 138 08A 139 08B 137 089 136 088
mtfsfi <allocated> <allocated> <allocated> <allocated> fnabs

P X P X

01
10

0 384 180 385 181 387 183 386 182 390 186 391 187 389 185 388 184 396 18C 397 18D 399 18F 398 18E 394 18A 395 18B 393 189 392 188

<allocated> <allocated> <allocated> <allocated>

01
10

1 416 1A0 417 1A1 419 1A3 418 1A2 422 1A6 423 1A7 421 1A5 420 1A4 428 1AC 429 1AD 431 1AF 430 1AE 426 1AA 427 1AB 425 1A9 424 1A8

<allocated> <allocated> <allocated> <allocated>

01
11

1 480 1E0 481 1E1 483 1E3 482 1E2 486 1E6 487 1E7 485 1E5 484 1E4 492 1EC 493 1ED 495 1EF 494 1EE 490 1EA 491 1EB 489 1E9 488 1E8

<allocated> <allocated> <allocated> <allocated>

01
11

0 448 1C0 449 1C1 451 1C3 450 1C2 454 1C6 455 1C7 453 1C5 452 1C4 460 1CC 461 1CD 463 1CF 462 1CE 458 1CA 459 1CB 457 1C9 456 1C8

<allocated> <allocated> <allocated> <allocated>

01
01

0 320 140 321 141 323 143 322 142 326 146 327 147 325 145 324 144 332 14C 333 14D 335 14F 334 14E 330 14A 331 14B 329 149 328 148

<allocated> <allocated> <allocated> <allocated>

01
01

1 352 160 353 161 355 163 354 162 358 166 359 167 357 165 356 164 364 16C 365 16D 367 16F 366 16E 362 16A 363 16B 361 169 360 168

<allocated> <allocated> <allocated> <allocated>

01
00

1 288 120 289 121 291 123 290 122 294 126 295 127 293 125 292 124 300 12C 301 12D 303 12F 302 12E 298 12A 299 12B 297 129 296 128

<allocated> <allocated> <allocated> <allocated>

01
00

0 256 100 257 101 259 103 258 102 262 106 263 107 261 105 260 104 268 10C 269 10D 271 10F 270 10E 266 10A 267 10B 265 109 264 108

<allocated> <allocated> <allocated> <allocated> fabs
P X

11
00

0 768 300 769 301 771 303 770 302 774 306 775 307 773 305 772 304 780 30C 781 30D 783 30F 782 30E 778 30A 779 30B 777 309 776 308

<allocated> <allocated> <allocated> <allocated>

11
00

1 800 320 801 321 803 323 802 322 806 326 807 327 805 325 804 324 812 32C 813 32D 815 32F 814 32E 810 32A 811 32B 809 329 808 328

<allocated> <allocated> <allocated> <allocated> fctidz fctid
P X P X

11
01

1 864 360 865 361 867 363 866 362 870 366 871 367 869 365 868 364 876 36C 877 36D 879 36F 878 36E 874 36A 875 36B 873 369 872 368

<allocated> <allocated> <allocated> <allocated>

11
01

0 832 340 833 341 835 343 834 342 838 346 839 347 837 345 836 344 844 34C 845 34D 847 34F 846 34E 842 34A 843 34B 841 349 840 348

<allocated> <allocated> <allocated> <allocated> fcfid
P X

11
11

0 960 3C0 961 3C1 963 3C3 962 3C2 966 3C6 967 3C7 965 3C5 964 3C4 972 3CC 973 3CD 975 3CF 974 3CE 970 3CA 971 3CB 969 3C9 968 3C8

<allocated> <allocated> <allocated> <allocated>

11
11

1 992 3E0 993 3E1 995 3E3 994 3E2 998 3E6 999 3E7 997 3E5 996 3E4 1004 3EC 1005 3ED 1007 3EF 1006 3EE 1002 3EA 1003 3EB 1001 3E9 1000 3E8

<allocated> <allocated> <allocated> <allocated>

11
10

1 928 3A0 929 3A1 931 3A3 930 3A2 934 3A6 935 3A7 933 3A5 932 3A4 940 3AC 941 3AD 943 3AF 942 3AE 938 3AA 939 3AB 937 3A9 936 3A8

<allocated> <allocated> <allocated> <allocated>

11
10

0 896 380 897 381 899 383 798 382 902 386 903 387 901 385 900 384 908 38C 909 38D 911 38F 910 38E 906 38A 907 38B 905 389 904 388

<allocated> <allocated> <allocated> <allocated>

10
10

0 640 280 641 281 643 283 642 282 646 286 647 287 645 285 644 284 652 28C 653 28D 655 28F 654 28E 650 28A 651 28B 649 289 648 288

<allocated> <allocated> <allocated> <allocated>

10
10

1 672 2A0 673 2A1 675 2A3 674 2A2 678 2A6 679 2A7 677 2A5 676 2A4 684 2AC 685 2AD 687 2AF 686 2AE 682 2AA 683 2AB 681 2A9 680 2A8

<allocated> <allocated> <allocated> <allocated>

10
11

1 736 2E0 737 2E1 739 2E3 738 2E2 742 2E6 743 2E7 741 2E5 740 2E4 748 2EC 749 2ED 751 2EF 750 2EE 746 2EA 747 2EB 745 2E9 744 2E8

<allocated> <allocated> <allocated> <allocated>

10
11

0 704 2C0 705 2C1 707 2C3 706 2C2 710 2C6 711 2C7 709 2C5 708 2C4 716 2CC 717 2CD 719 2CF 718 2CE 714 2CA 715 2CB 713 2C9 712 2C8
mtfsf <allocated> <allocated> <allocated> <allocated>

P XFL

10
01

0 576 240 577 241 579 243 578 242 582 246 583 247 581 245 580 244 588 24C 589 24D 591 24F 590 24E 586 24A 587 24B 585 249 584 248
mffs <allocated> <allocated> <allocated> <allocated>

P X

10
01

1 608 260 609 261 611 263 610 262 614 266 615 267 613 265 612 264 620 26C 621 26D 623 26F 622 26E 618 26A 619 26B 617 269 616 268

<allocated> <allocated> <allocated> <allocated>

10
00

1 544 220 545 221 547 223 546 222 550 226 551 227 549 225 548 224 556 22C 557 22D 559 22F 558 22E 554 22A 555 22B 553 229 552 228

<allocated> <allocated> <allocated> <allocated>

10
00

0 512 200 513 201 515 203 514 202 518 206 519 207 517 205 516 204 524 20C 525 20D 527 20F 526 20E 522 20A 523 20B 521 209 520 208

<allocated> <allocated> <allocated> <allocated>
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Table G-8. Extended opcodes for primary opcode 63 (instruction bits 21:30) (part 2 of 2)

11000 11001 11011 11010 11110 11111 11101 11100 10100 10101 10111 10110 10010 10011 10001 10000

24 018 25 019 27 01B 26 01A 30 01E 31 01F 29 01D 28 01C 20 014 21 015 23 017 22 016 18 012 19 013 17 011 16 010

00
00

0

fmul frsqrte fnmsub fnmadd fmadd fmsub fsub fadd fsel fsqrt fdiv
P A P A P A P A P A P A P A P A P A P A P A

56 038 59 03B 51 033 49 031 48 030

00
00

1

120 078 123 07B 115 073 113 071 112 070

00
01

1

88 058 91 05B 83 053 81 051 80 050

00
01

0

216 0D8 219 0DB 211 0D3 209 0D1 208 0D0

00
11

0

248 0F8 251 0FB 243 0F3 241 0F1 240 0F0

00
11

1

184 0B8 187 0BB 179 0B3 177 0B1 176 0B0

00
10

1

152 098 155 09B 147 093 145 091 144 090

00
10

0

408 198 411 19B 403 193 401 191 400 190

01
10

0

450 1B8 453 1BB 435 1B3 433 1B1 432 1B0

01
10

1

504 1F8 507 1FB 499 1F3 497 1F1 496 1F0

01
11

1

472 1D8 475 1DB 467 1D3 465 1D1 464 1D0

01
11

0

344 158 347 15B 339 153 337 151 336 150

01
01

0

376 178 379 17B 371 173 369 171 368 170

01
01

1

312 138 315 13B 307 133 305 131 304 130

01
00

1

280 118 283 11B 275 113 273 111 272 110

01
00

0

792 318 795 31B 787 313 785 311 784 310

11
00

0

824 338 827 33B 819 333 817 331 816 330

11
00

1

888 378 891 37B 883 373 881 371 880 370

11
01

1

856 358 859 35B 851 353 849 351 848 350

11
01

0

984 3D8 987 3DB 979 3D3 977 3D1 976 3D0

11
11

0

1016 3F8 1019 3FB 1011 3F3 1009 3F1 1008 3F0

11
11

1

952 3B8 955 3BB 947 3B3 945 3B1 944 3B0

11
10

1
920 398 923 39B 915 393 913 391 912 390

11
10

0

664 298 667 29B 659 293 657 291 656 290

10
10

0

696 2B8 699 2BB 691 2B3 689 2B1 688 2B0

10
10

1

760 2F8 763 2FB 755 2F3 753 2F1 752 2F0

10
11

1

728 2D8 731 2DB 723 2D3 721 2D1 720 2D0

10
11

0

600 258 603 25B 595 253 593 251 592 250

10
01

0

632 278 635 27B 627 273 625 271 624 270

10
01

1

568 238 571 23B 563 233 561 231 560 230

10
00

1

536 218 539 21B 531 213 529 211 528 210

10
00

0
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Appendix H Instruction Index

H.1 Instruction Index Sorted by Opcode

This appendix lists all the instructions in Book E, in order by opcode.

F
o
rm

at Opcode

Mnemonic Instruction

P
ag

e

Primary
(Inst0:5)

Extended
(Inst21:31)

D 000010 ----- ----- - tdi Trap Doubleword Immediate 361

D 000011 ----- ----- - twi Trap Word Immediate 367

D 000111 ----- ----- - mulli Multiply Low Immediate 319

D 001000 ----- ----- - subfic Subtract From Immediate Carrying 358

B 001001 ----- ----0 0 bce Branch Conditional Extended 238

B 001001 ----- ----0 1 bcel Branch Conditional Extended & Link 238

B 001001 ----- ----1 0 bcea Branch Conditional Extended Absolute 238

B 001001 ----- ----1 1 bcela Branch Conditional Extended & Link Absolute 238

D 001010 ----- ----- - cmpli Compare Logical Immediate 242

D 001011 ----- ----- - cmpi Compare Immediate 241

D 001100 ----- ----- - addic Add Immediate Carrying 233

D 001101 ----- ----- - addic. Add Immediate Carrying & record CR 233

D 001110 ----- ----- - addi Add Immediate 232

D 001111 ----- ----- - addis Add Immediate Shifted 232

B 010000 ----- ----0 0 bc Branch Conditional 238

B 010000 ----- ----0 1 bcl Branch Conditional & Link 238

B 010000 ----- ----1 0 bca Branch Conditional Absolute 238

B 010000 ----- ----1 1 bcla Branch Conditional & Link Absolute 238

SC 010001 ///// ////1 / sc System Call 334

I 010010 ----- ----0 0 b Branch 237

I 010010 ----- ----0 1 bl Branch & Link 237

I 010010 ----- ----1 0 ba Branch Absolute 237
Legend:
- Don’t care, usually part of an operand field
/ Reserved bit, invalid instruction form if encoded as 1
? Allocated for implementation-dependent use. See User’ Manual for the implementation
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I 010010 ----- ----1 1 bla Branch & Link Absolute 237

XL 010011 00000 00000 / mcrf Move Condition Register Field 305

XL 010011 00000 10000 0 bclr Branch Conditional to Link Register 240

XL 010011 00000 10000 1 bclrl Branch Conditional to Link Register & Link 240

XL 010011 00000 10001 0 bclre Branch Conditional to Link Register Extended 240

XL 010011 00000 10001 1 bclrel Branch Conditional to Link Register Extended & Link 240

XL 010011 00001 00001 / crnor Condition Register NOR 245

XL 010011 00001 10010 / rfi Return From Interrupt 326

XL 010011 00001 10011 / rfci Return From Critical Interrupt 325

XL 010011 00100 00001 / crandc Condition Register AND with Complement 244

XL 010011 00100 10110 / isync Instruction Synchronize 288

XL 010011 00110 00001 / crxor Condition Register XOR 246

XL 010011 00111 00001 / crnand Condition Register NAND 245

XL 010011 01000 00001 / crand Condition Register AND 244

XL 010011 01001 00001 / creqv Condition Register Equivalent 244

XL 010011 01101 00001 / crorc Condition Register OR with Complement 246

XL 010011 01110 00001 / cror Condition Register OR 245

XL 010011 10000 10000 0 bcctr Branch Conditional to Count Register 239

XL 010011 10000 10000 1 bcctrl Branch Conditional to Count Register & Link 239

XL 010011 10000 10001 0 bcctre Branch Conditional to Count Register Extended 239

XL 010011 10000 10001 1 bcctrel Branch Conditional to Count Register Extended & Link 239

M 010100 ----- ----- 0 rlwimi Rotate Left Word Immed then Mask Insert 331

M 010100 ----- ----- 1 rlwimi. Rotate Left Word Immed then Mask Insert & record CR 331

M 010101 ----- ----- 0 rlwinm Rotate Left Word Immed then AND with Mask 332

M 010101 ----- ----- 1 rlwinm. Rotate Left Word Immed then AND with Mask & record CR 332

I 010110 ----- ----0 0 be Branch Extended 238

I 010110 ----- ----0 1 bel Branch Extended & Link 238

I 010110 ----- ----1 0 bea Branch Extended Absolute 238

I 010110 ----- ----1 1 bela Branch Extended & Link Absolute 238

M 010111 ----- ----- 0 rlwnm Rotate Left Word then AND with Mask 332

M 010111 ----- ----- 1 rlwnm. Rotate Left Word then AND with Mask & record CR 332

D 011000 ----- ----- - ori OR Immediate 324

D 011001 ----- ----- - oris OR Immediate Shifted 324

D 011010 ----- ----- - xori XOR Immediate 369

D 011011 ----- ----- - xoris XOR Immediate Shifted 369

D 011100 ----- ----- - andi. AND Immediate & record CR 236

D 011101 ----- ----- - andis. AND Immediate Shifted & record CR 236

MD 011110 ----- -000- / rldicl Rotate Left Doubleword Immediate then Clear Left 327

MD 011110 ----- -001- / rldicr Rotate Left Doubleword Immediate then Clear Right 328

MD 011110 ----- -010- / rldic Rotate Left Doubleword Immediate then Clear 329

MD 011110 ----- -011- / rldimi Rotate Left Doubleword Immediate then Mask Insert 330

MDS 011110 ----- -1000 / rldcl Rotate Left Doubleword then Clear Left 327

MDS 011110 ----- -1001 / rldcr Rotate Left Doubleword then Clear Right 328

X 011111 00000 00000 / cmp Compare 241

X 011111 00000 00100 / tw Trap Word 367

X 011111 00000 01000 0 subfc Subtract From Carrying 356

X 011111 00000 01000 1 subfc. Subtract From Carrying & record CR 356

F
o
rm

at Opcode

Mnemonic Instruction

P
ag

e

Primary
(Inst0:5)

Extended
(Inst21:31)

Legend:
- Don’t care, usually part of an operand field
/ Reserved bit, invalid instruction form if encoded as 1
? Allocated for implementation-dependent use. See User’ Manual for the implementation
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X 011111 /0000 01001 / mulhdu Multiply High Doubleword Unsigned 317

X 011111 00000 01010 0 addc Add Carrying 230

X 011111 00000 01010 1 addc. Add Carrying & record CR 230

X 011111 /0000 01011 0 mulhwu Multiply High Word Unsigned 318

X 011111 /0000 01011 1 mulhwu. Multiply High Word Unsigned & record CR 318

X 011111 00000 10011 / mfcr Move From Condition Register 307

X 011111 00000 10100 / lwarx Load Word  &  Reserve Indexed 300

X 011111 00000 10110 / icbt Instruction Cache Block Touch Indexed 287

X 011111 00000 10111 / lwzx Load Word & Zero Indexed 303

X 011111 00000 11000 0 slw Shift Left Word 336

X 011111 00000 11000 1 slw. Shift Left Word & record CR 336

X 011111 00000 11010 0 cntlzw Count Leading Zeros Word 243

X 011111 00000 11010 1 cntlzw. Count Leading Zeros Word & record CR 243

X 011111 00000 11011 / sld Shift Left Doubleword 335

X 011111 00000 11100 0 and AND 236

X 011111 00000 11100 1 and. AND & record CR 236

X 011111 00000 11110 / icbte Instruction Cache Block Touch Indexed Extended 287

X 011111 00000 11111 / lwzxe Load Word & Zero Indexed Extended 303

X 011111 00001 00000 / cmpl Compare Logical 242

X 011111 00001 01000 0 subf Subtract From 355

X 011111 00001 01000 1 subf. Subtract From & record CR 355

X 011111 00001 10110 / dcbst Data Cache Block Store Indexed 251

X 011111 00001 10111 / lwzux Load Word & Zero with Update Indexed 303

X 011111 00001 11010 / cntlzd Count Leading Zeros Doubleword 243

X 011111 00001 11100 0 andc AND with Complement 236

X 011111 00001 11100 1 andc. AND with Complement & record CR 236

X 011111 00001 11110 / dcbste Data Cache Block Store Indexed Extended 251

X 011111 00001 11111 / lwzuxe Load Word & Zero with Update Indexed Extended 303

X 011111 00010 00100 / td Trap Doubleword 361

X 011111 /0010 01001 / mulhd Multiply High Doubleword 317

X 011111 /0010 01011 0 mulhw Multiply High Word 318

X 011111 /0010 01011 1 mulhw. Multiply High Word & record CR 318

X 011111 00010 10011 / mfmsr Move From Machine State Register 308

X 011111 00010 10110 / dcbf Data Cache Block Flush Indexed 248

X 011111 00010 10111 / lbzx Load Byte & Zero Indexed 289

X 011111 00010 11110 / dcbfe Data Cache Block Flush Indexed Extended 248

X 011111 00010 11111 / lbzxe Load Byte & Zero Indexed Extended 289

X 011111 00011 01000 0 neg Negate 322

X 011111 00011 01000 1 neg. Negate & record CR 322

X 011111 00011 10111 / lbzux Load Byte & Zero with Update Indexed 289

X 011111 00011 11100 0 nor NOR 323

X 011111 00011 11100 1 nor. NOR & record CR 323

X 011111 00011 11110 / lwarxe Load Word  &  Reserve Indexed Extended 300

X 011111 00011 11111 / lbzuxe Load Byte & Zero with Update Indexed Extended 289

X 011111 00100 00011 / wrtee Write External Enable 368

X 011111 00100 01000 0 subfe Subtract From Extended with CA 357

X 011111 00100 01000 1 subfe. Subtract From Extended with CA & record CR 357

F
o
rm

at Opcode

Mnemonic Instruction

P
ag

e

Primary
(Inst0:5)

Extended
(Inst21:31)

Legend:
- Don’t care, usually part of an operand field
/ Reserved bit, invalid instruction form if encoded as 1
? Allocated for implementation-dependent use. See User’ Manual for the implementation
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X 011111 00100 01010 0 adde Add Extended with CA 231

X 011111 00100 01010 1 adde. Add Extended with CA & record CR 231

XFX 011111 00100 10000 / mtcrf Move To Condition Register Fields 311

X 011111 00100 10010 / mtmsr Move To Machine State Register 315

X 011111 00100 10110 1 stwcx. Store Word Conditional Indexed & record CR 353

X 011111 00100 10111 / stwx Store Word Indexed 351

X 011111 00100 11110 1 stwcxe. Store Word Conditional Indexed Extended & record CR 353

X 011111 00100 11111 / stwxe Store Word Indexed Extended 351

X 011111 00101 00011 / wrteei Write External Enable Immediate 368

X 011111 00101 10111 / stwux Store Word with Update Indexed 351

X 011111 00101 11111 / stwuxe Store Word with Update Indexed Extended 351

X 011111 00110 01000 0 subfze Subtract From Zero Extended with CA 360

X 011111 00110 01000 1 subfze. Subtract From Zero Extended with CA & record CR 360

X 011111 00110 01010 0 addze Add to Zero Extended with CA 235

X 011111 00110 01010 1 addze. Add to Zero Extended with CA & record CR 235

X 011111 00110 10111 / stbx Store Byte Indexed 341

X 011111 00110 11111 / stbxe Store Byte Indexed Extended 341

X 011111 00111 01000 0 subfme Subtract From Minus One Extended with CA 359

X 011111 00111 01000 1 subfme. Subtract From Minus One Extended with CA & record CR 359

X 011111 00111 01001 / mulld Multiply Low Doubleword 319

X 011111 00111 01010 0 addme Add to Minus One Extended with CA 234

X 011111 00111 01010 1 addme. Add to Minus One Extended with CA & record CR 234

X 011111 00111 01011 0 mullw Multiply Low Word 320

X 011111 00111 01011 1 mullw. Multiply Low Word & record CR 320

X 011111 00111 10110 / dcbtst Data Cache Block Touch for Store Indexed 253

X 011111 00111 10111 / stbux Store Byte with Update Indexed 341

X 011111 00111 11110 / dcbtste Data Cache Block Touch for Store Indexed Extended 253

X 011111 00111 11111 / stbuxe Store Byte with Update Indexed Extended 341

X 011111 01000 01010 0 add Add 229

X 011111 01000 01010 1 add. Add & record CR 229

X 011111 01000 10011 / mfapidi Move From APID Indirect 307

X 011111 01000 10110 / dcbt Data Cache Block Touch Indexed 252

X 011111 01000 10111 / lhzx Load Halfword & Zero Indexed 296

X 011111 01000 11100 0 eqv Equivalent 259

X 011111 01000 11100 1 eqv. Equivalent & record CR 259

X 011111 01000 11110 / dcbte Data Cache Block Touch Indexed Extended 252

X 011111 01000 11111 / lhzxe Load Halfword & Zero Indexed Extended 296

X 011111 01001 10111 / lhzux Load Halfword & Zero with Update Indexed 296

X 011111 01001 11100 0 xor XOR 369

X 011111 01001 11100 1 xor. XOR & record CR 369

X 011111 01001 11111 / lhzuxe Load Halfword & Zero with Update Indexed Extended 296

XFX 011111 01010 00011 / mfdcr Move From Device Control Register 307

XFX 011111 01010 10011 / mfspr Move From Special Purpose Register 309

X 011111 01010 10111 / lhax Load Halfword Algebraic Indexed 294

X 011111 01010 11111 / lhaxe Load Halfword Algebraic Indexed Extended 294

X 011111 01011 10111 / lhaux Load Halfword Algebraic with Update Indexed 294

X 011111 01011 11111 / lhauxe Load Halfword Algebraic with Update Indexed Extended 294

F
o
rm

at Opcode

Mnemonic Instruction

P
ag

e

Primary
(Inst0:5)

Extended
(Inst21:31)

Legend:
- Don’t care, usually part of an operand field
/ Reserved bit, invalid instruction form if encoded as 1
? Allocated for implementation-dependent use. See User’ Manual for the implementation
422 Book E: Enhanced PowerPC Architecture Version 1.0 07 May 02



X 011111 01100 01000 / subfe64 Subtract From Extended with CA64 357

X 011111 01100 01010 / adde64 Add Extended with CA64 231

X 011111 01100 10111 / sthx Store Halfword Indexed 347

X 011111 01100 11100 0 orc OR with Complement 324

X 011111 01100 11100 1 orc. OR with Complement & record CR 324

X 011111 01100 11111 / sthxe Store Halfword Indexed Extended 347

X 011111 01101 10111 / sthux Store Halfword with Update Indexed 347

X 011111 01101 11100 0 or OR 324

X 011111 01101 11100 1 or. OR & record CR 324

X 011111 01101 11111 / sthuxe Store Halfword with Update Indexed Extended 347

XFX 011111 01110 00011 / mtdcr Move To Device Control Register 311

X 011111 01110 01000 / subfze64 Subtract From Zero Extended with CA64 360

X 011111 01110 01001 / divdu Divide Doubleword Unsigned 256

X 011111 01110 01010 / addze64 Add to Zero Extended with CA64 235

X 011111 01110 01011 0 divwu Divide Word Unsigned 258

X 011111 01110 01011 1 divwu. Divide Word Unsigned & record CR 258

XFX 011111 01110 10011 / mtspr Move To Special Purpose Register 316

X 011111 01110 10110 / dcbi Data Cache Block Invalidate Indexed 249

X 011111 01110 11100 0 nand NAND 321

X 011111 01110 11100 1 nand. NAND & record CR 321

X 011111 01110 11110 / dcbie Data Cache Block Invalidate Indexed Extended 249

X 011111 01110 11111 / ldarxe Load Doubleword & Reserve Indexed Extended 290

X 011111 01111 01000 / subfme64 Subtract From Minus One Extended with CA64 359

X 011111 01111 01001 / divd Divide Doubleword 255

X 011111 01111 01010 / addme64 Add to Minus One Extended with CA64 234

X 011111 01111 01011 0 divw Divide Word 257

X 011111 01111 01011 1 divw. Divide Word & record CR 257

X 011111 01111 11111 1 stdcxe. Store Doubleword Conditional Indexed Extended 342

X 011111 10000 00000 / mcrxr Move to Condition Register from XER 306

X 011111 10000 01000 0 subfco Subtract From Carrying & record OV 356

X 011111 10000 01000 1 subfco. Subtract From Carrying & record OV & CR 356

X 011111 10000 01010 0 addco Add Carrying & record OV 230

X 011111 10000 01010 1 addco. Add Carrying & record OV & CR 230

X 011111 10000 10101 / lswx Load String Word Indexed 298

X 011111 10000 10110 / lwbrx Load Word Byte-Reverse Indexed 302

X 011111 10000 10111 / lfsx Load Floating-Point Single Indexed 293

X 011111 10000 11000 0 srw Shift Right Word 340

X 011111 10000 11000 1 srw. Shift Right Word & record CR 340

X 011111 10000 11011 / srd Shift Right Doubleword 339

X 011111 10000 11110 / lwbrxe Load Word Byte-Reverse Indexed Extended 302

X 011111 10000 11111 / lfsxe Load Floating-Point Single Indexed Extended 293

X 011111 10001 00000 / mcrxr64 Move to Condition Register from XER64 306

X 011111 10001 01000 0 subfo Subtract From & record OV 355

X 011111 10001 01000 1 subfo. Subtract From & record OV & CR 355

X 011111 10001 10110 / tlbsync TLB Synchronize 365

X 011111 10001 10111 / lfsux Load Floating-Point Single with Update Indexed 293

X 011111 10001 11111 / lfsuxe Load Floating-Point Single with Update Indexed Extended 293
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X 011111 10010 10101 / lswi Load String Word Immediate 298

X 011111 10010 10110 / msync Memory Synchronize 310

X 011111 10010 10111 / lfdx Load Floating-Point Double Indexed 292

X 011111 10010 11111 / lfdxe Load Floating-Point Double Indexed Extended 292

X 011111 10011 01000 0 nego Negate & record OV 322

X 011111 10011 01000 1 nego. Negate & record OV & record CR 322

X 011111 10011 10111 / lfdux Load Floating-Point Double with Update Indexed 292

X 011111 10011 11111 / lfduxe Load Floating-Point Double with Update Indexed Extended 292

X 011111 10100 01000 0 subfeo Subtract From Extended with CA & record OV 357

X 011111 10100 01000 1 subfeo. Subtract From Extended with CA & record OV & CR 357

X 011111 10100 01010 0 addeo Add Extended with CA & record OV 231

X 011111 10100 01010 1 addeo. Add Extended with CA & record OV & CR 231

X 011111 10100 10101 / stswx Store String Word Indexed 350

X 011111 10100 10110 / stwbrx Store Word Byte-Reverse Indexed 352

X 011111 10100 10111 / stfsx Store Floating-Point Single Indexed 346

X 011111 10100 11110 / stwbrxe Store Word Byte-Reverse Indexed Extended 352

X 011111 10100 11111 / stfsxe Store Floating-Point Single Indexed Extended 346

X 011111 10101 10111 / stfsux Store Floating-Point Single with Update Indexed 346

X 011111 10101 11111 / stfsuxe Store Floating-Point Single with Update Indexed Extended 346

X 011111 10110 01000 0 subfzeo Subtract From Zero Extended with CA & record OV 360

X 011111 10110 01000 1 subfzeo. Subtract From Zero Extended with CA & record OV & CR 360

X 011111 10110 01010 0 addzeo Add to Zero Extended with CA & record OV 235

X 011111 10110 01010 1 addzeo. Add to Zero Extended with CA & record OV & CR 235

X 011111 10110 10101 / stswi Store String Word Immediate 350

X 011111 10110 10111 / stfdx Store Floating-Point Double Indexed 344

X 011111 10110 11111 / stfdxe Store Floating-Point Double Indexed Extended 344

X 011111 10111 01000 0 subfmeo Subtract From Minus One Extended with CA & record OV 359

X 011111 10111 01000 1 subfmeo. Subtract From Minus One Extended with CA & record OV & CR 359

X 011111 10111 01001 / mulldo Multiply Low Doubleword & record OV 319

X 011111 10111 01010 0 addmeo Add to Minus One Extended with CA & record OV 234

X 011111 10111 01010 1 addmeo. Add to Minus One Extended with CA & record OV & CR 234

X 011111 10111 01011 0 mullwo Multiply Low Word & record OV 320

X 011111 10111 01011 1 mullwo. Multiply Low Word & record OV & CR 320

X 011111 10111 10110 / dcba Data Cache Block Allocate Indexed 247

X 011111 10111 10111 / stfdux Store Floating-Point Double with Update Indexed 344

X 011111 10111 11110 / dcbae Data Cache Block Allocate Indexed Extended 247

X 011111 10111 11111 / stfduxe Store Floating-Point Double with Update Indexed Extended 344

X 011111 11000 01010 0 addo Add & record OV 229

X 011111 11000 01010 1 addo. Add & record OV & CR 229

X 011111 11000 10010 / tlbivax TLB Invalidate Virtual Address Indexed 362

X 011111 11000 10011 / tlbivaxe TLB Invalidate Virtual Address Indexed Extended 362

X 011111 11000 10110 / lhbrx Load Halfword Byte-Reverse Indexed 295

X 011111 11000 11000 0 sraw Shift Right Algebraic Word 338

X 011111 11000 11000 1 sraw. Shift Right Algebraic Word & record CR 338

X 011111 11000 11010 / srad Shift Right Algebraic Doubleword 337

X 011111 11000 11110 / lhbrxe Load Halfword Byte-Reverse Indexed Extended 295

X 011111 11000 11111 / ldxe Load Doubleword Indexed Extended 291
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X 011111 11001 11000 0 srawi Shift Right Algebraic Word Immediate 338

X 011111 11001 11000 1 srawi. Shift Right Algebraic Word Immediate & record CR 338

XS 011111 11001 1101- / sradi Shift Right Algebraic Doubleword Immediate 337

X 011111 11001 11111 / lduxe Load Doubleword with Update Indexed Extended 291

X 011111 11010 10110 / mbar Memory Barrier 304

X 011111 11100 01000 / subfe64o Subtract From Extended with CA64 & record OV 357

X 011111 11100 01010 / adde64o Add Extended with CA64 & record OV 231

X 011111 11100 10010 ? tlbsx TLB Search Indexed 364

X 011111 11100 10011 ? tlbsxe TLB Search Indexed Extended 364

X 011111 11100 10110 / sthbrx Store Halfword Byte-Reverse Indexed 348

X 011111 11100 11010 0 extsh Extend Sign Halfword 260

X 011111 11100 11010 1 extsh. Extend Sign Halfword & record CR 260

X 011111 11100 11110 / sthbrxe Store Halfword Byte-Reverse Indexed Extended 348

X 011111 11100 11111 / stdxe Store Doubleword Indexed Extended 343

X 011111 11101 10010 / tlbre TLB Read Entry 363

X 011111 11101 11010 0 extsb Extend Sign Byte 260

X 011111 11101 11010 1 extsb. Extend Sign Byte & record CR 260

X 011111 11101 11111 / stduxe Store Doubleword with Update Indexed Extended 343

X 011111 11110 01000 / subfze64o Subtract From Zero Extended with CA64 & record OV 360

X 011111 11110 01001 / divduo Divide Doubleword Unsigned & record OV 256

X 011111 11110 01010 / addze64o Add to Zero Extended with CA64 & record OV 235

X 011111 11110 01011 0 divwuo Divide Word Unsigned & record OV 258

X 011111 11110 01011 1 divwuo. Divide Word Unsigned & record OV & CR 258

X 011111 11110 10010 / tlbwe TLB Write Entry 366

X 011111 11110 10110 / icbi Instruction Cache Block Invalidate Indexed 286

X 011111 11110 10111 / stfiwx Store Floating-Point as Int Word Indexed 345

X 011111 11110 11010 / extsw Extend Sign Word 260

X 011111 11110 11110 / icbie Instruction Cache Block Invalidate Indexed Extended 286

X 011111 11110 11111 / stfiwxe Store Floating-Point as Int Word Indexed Extended 345

X 011111 11111 01000 / subfme64o Subtract From Minus One Extended with CA64 & record OV 359

X 011111 11111 01001 / divdo Divide Doubleword & record OV 255

X 011111 11111 01010 / addme64o Add to Minus One Extended with CA64 & record OV 234

X 011111 11111 01011 0 divwo Divide Word & record OV 257

X 011111 11111 01011 1 divwo. Divide Word & record OV & CR 257

X 011111 11111 10110 / dcbz Data Cache Block set to Zero Indexed 254

X 011111 11111 11110 / dcbze Data Cache Block set to Zero Indexed Extended 254

D 100000 ----- ----- - lwz Load Word & Zero 303

D 100001 ----- ----- - lwzu Load Word & Zero with Update 303

D 100010 ----- ----- - lbz Load Byte & Zero 289

D 100011 ----- ----- - lbzu Load Byte & Zero with Update 289

D 100100 ----- ----- - stw Store Word 351

D 100101 ----- ----- - stwu Store Word with Update 351

D 100110 ----- ----- - stb Store Byte 341

D 100111 ----- ----- - stbu Store Byte with Update 341

D 101000 ----- ----- - lhz Load Halfword & Zero 296

D 101001 ----- ----- - lhzu Load Halfword & Zero with Update 296

D 101010 ----- ----- - lha Load Halfword Algebraic 294
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D 101011 ----- ----- - lhau Load Halfword Algebraic with Update 294

D 101100 ----- ----- - sth Store Halfword 347

D 101101 ----- ----- - sthu Store Halfword with Update 347

D 101110 ----- ----- - lmw Load Multiple Word 297

D 101111 ----- ----- - stmw Store Multiple Word 349

D 110000 ----- ----- - lfs Load Floating-Point Single 293

D 110001 ----- ----- - lfsu Load Floating-Point Single with Update 293

D 110010 ----- ----- - lfd Load Floating-Point Double 292

D 110011 ----- ----- - lfdu Load Floating-Point Double with Update 292

D 110100 ----- ----- - stfs Store Floating-Point Single 346

D 110101 ----- ----- - stfsu Store Floating-Point Single with Update 346

D 110110 ----- ----- - stfd Store Floating-Point Double 344

D 110111 ----- ----- - stfdu Store Floating-Point Double with Update 344

DE 111010 ----- --000 0 lbze Load Byte & Zero Extended 289

DE 111010 ----- --000 1 lbzue Load Byte & Zero with Update Extended 289

DE 111010 ----- --001 0 lhze Load Halfword & Zero Extended 296

DE 111010 ----- --001 1 lhzue Load Halfword & Zero with Update Extended 296

DE 111010 ----- --010 0 lhae Load Halfword Algebraic Extended 294

DE 111010 ----- --010 1 lhaue Load Halfword Algebraic with Update Extended 294

DE 111010 ----- --011 0 lwze Load Word & Zero Extended 303

DE 111010 ----- --011 1 lwzue Load Word & Zero with Update Extended 303

DE 111010 ----- --100 0 stbe Store Byte Extended 341

DE 111010 ----- --100 1 stbue Store Byte with Update Extended 341

DE 111010 ----- --101 0 sthe Store Halfword Extended 347

DE 111010 ----- --101 1 sthue Store Halfword with Update Extended 347

DE 111010 ----- --111 0 stwe Store Word Extended 351

DE 111010 ----- --111 1 stwue Store Word with Update Extended 351

A 111011 ----- 10010 0 fdivs Floating Divide Single 270

A 111011 ----- 10010 1 fdivs. Floating Divide Single & record CR 270

A 111011 ----- 10100 0 fsubs Floating Subtract Single 285

A 111011 ----- 10100 1 fsubs. Floating Subtract Single & record CR 285

A 111011 ----- 10101 0 fadds Floating Add Single 262

A 111011 ----- 10101 1 fadds. Floating Add Single & record CR 262

A 111011 ----- 10110 0 fsqrts Floating Square Root Single 284

A 111011 ----- 10110 1 fsqrts. Floating Square Root Single & record CR 284

A 111011 ----- 11000 0 fres Floating Reciprocal Estimate Single 278

A 111011 ----- 11000 1 fres. Floating Reciprocal Estimate Single & record CR 278

A 111011 ----- 11001 0 fmuls Floating Multiply Single 274

A 111011 ----- 11001 1 fmuls. Floating Multiply Single & record CR 274

A 111011 ----- 11100 0 fmsubs Floating Multiply-Subtract Single 273

A 111011 ----- 11100 1 fmsubs. Floating Multiply-Subtract Single & record CR 273

A 111011 ----- 11101 0 fmadds Floating Multiply-Add Single 271

A 111011 ----- 11101 1 fmadds. Floating Multiply-Add Single & record CR 271

A 111011 ----- 11110 0 fnmsubs Floating Negative Multiply-Subtract Single 277

A 111011 ----- 11110 1 fnmsubs. Floating Negative Multiply-Subtract Single & record CR 277

A 111011 ----- 11111 0 fnmadds Floating Negative Multiply-Add Single 276

A 111011 ----- 11111 1 fnmadds. Floating Negative Multiply-Add Single & record CR 276
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DES 111110 ----- --000 0 lde Load Doubleword Extended 291

DES 111110 ----- --000 1 ldue Load Doubleword with Update Extended 291

DES 111110 ----- --010 0 lfse Load Floating-Point Single Extended 293

DES 111110 ----- --010 1 lfsue Load Floating-Point Single with Update Extended 293

DES 111110 ----- --011 0 lfde Load Floating-Point Double Extended 292

DES 111110 ----- --011 1 lfdue Load Floating-Point Double with Update Extended 292

DES 111110 ----- --100 0 stde Store Doubleword Extended 343

DES 111110 ----- --100 1 stdue Store Doubleword with Update Extended 343

DES 111110 ----- --110 0 stfse Store Floating-Point Single Extended 346

DES 111110 ----- --110 1 stfsue Store Floating-Point Single with Update Extended 346

DES 111110 ----- --111 0 stfde Store Floating-Point Double Extended 344

DES 111110 ----- --111 1 stfdue Store Floating-Point Double with Update Extended 344

A 111111 ----- 10010 0 fdiv Floating Divide 270

A 111111 ----- 10010 1 fdiv. Floating Divide & record CR 270

A 111111 ----- 10100 0 fsub Floating Subtract 285

A 111111 ----- 10100 1 fsub. Floating Subtract & record CR 285

A 111111 ----- 10101 0 fadd Floating Add 262

A 111111 ----- 10101 1 fadd. Floating Add & record CR 262

A 111111 ----- 10110 0 fsqrt Floating Square Root 284

A 111111 ----- 10110 1 fsqrt. Floating Square Root & record CR 284

A 111111 ----- 10111 0 fsel Floating Select 283

A 111111 ----- 10111 1 fsel. Floating Select & record CR 283

A 111111 ----- 11001 0 fmul Floating Multiply 274

A 111111 ----- 11001 1 fmul. Floating Multiply & record CR 274

A 111111 ----- 11010 0 frsqrte Floating Reciprocal Square Root Estimate 282

A 111111 ----- 11010 1 frsqrte. Floating Reciprocal Square Root Estimate & record CR 282

A 111111 ----- 11100 0 fmsub Floating Multiply-Subtract 273

A 111111 ----- 11100 1 fmsub. Floating Multiply-Subtract & record CR 273

A 111111 ----- 11101 0 fmadd Floating Multiply-Add 271

A 111111 ----- 11101 1 fmadd. Floating Multiply-Add & record CR 271

A 111111 ----- 11110 0 fnmsub Floating Negative Multiply-Subtract 277

A 111111 ----- 11110 1 fnmsub. Floating Negative Multiply-Subtract & record CR 277

A 111111 ----- 11111 0 fnmadd Floating Negative Multiply-Add 276

A 111111 ----- 11111 1 fnmadd. Floating Negative Multiply-Add & record CR 276

X 111111 00000 00000 / fcmpu Floating Compare Unordered 265

X 111111 00000 01100 0 frsp Floating Round to Single-Precision 279

X 111111 00000 01100 1 frsp. Floating Round to Single-Precision & record CR 279

X 111111 00000 01110 0 fctiw Floating Convert To Int Word 268

X 111111 00000 01110 1 fctiw. Floating Convert To Int Word & record CR 268

X 111111 00000 01111 0 fctiwz Floating Convert To Int Word with round to Zero 268

X 111111 00000 01111 1 fctiwz. Floating Convert To Int Word with round to Zero & record CR 268

X 111111 00001 00000 / fcmpo Floating Compare Ordered 265

X 111111 00001 00110 0 mtfsb1 Move To FPSCR Bit 1 312

X 111111 00001 00110 1 mtfsb1. Move To FPSCR Bit 1 & record CR 312

X 111111 00001 01000 0 fneg Floating Negate 275

X 111111 00001 01000 1 fneg. Floating Negate & record CR 275

X 111111 00010 00000 / mcrfs Move to Condition Register from FPSCR 306
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X 111111 00010 00110 0 mtfsb0 Move To FPSCR Bit 0 312

X 111111 00010 00110 1 mtfsb0. Move To FPSCR Bit 0 & record CR 312

X 111111 00010 01000 0 fmr Floating Move Register 272

X 111111 00010 01000 1 fmr. Floating Move Register & record CR 272

X 111111 00100 00110 0 mtfsfi Move To FPSCR Field Immediate 314

X 111111 00100 00110 1 mtfsfi. Move To FPSCR Field Immediate & record CR 314

X 111111 00100 01000 0 fnabs Floating Negative Absolute Value 275

X 111111 00100 01000 1 fnabs. Floating Negative Absolute Value & record CR 275

X 111111 01000 01000 0 fabs Floating Absolute Value 261

X 111111 01000 01000 1 fabs. Floating Absolute Value & record CR 261

X 111111 10010 00111 0 mffs Move From FPSCR 308

X 111111 10010 00111 1 mffs. Move From FPSCR & record CR 308

XFL 111111 10110 00111 0 mtfsf Move To FPSCR Fields 313

XFL 111111 10110 00111 1 mtfsf. Move To FPSCR Fields & record CR 313

X 111111 11001 01110 / fctid Floating Convert To Int Doubleword 266

X 111111 11001 01111 / fctidz Floating Convert To Int Doubleword with round to Zero 266

X 111111 11010 01110 / fcfid Floating Convert From Int Doubleword 263
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H.2 Instruction Index Sorted by Mnemonic

This appendix lists all the instructions in the Book E, in order by mnemonic.
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X 011111 01000 01010 0 add Add 229

X 011111 01000 01010 1 add. Add & record CR 229

X 011111 00000 01010 0 addc Add Carrying 230

X 011111 00000 01010 1 addc. Add Carrying & record CR 230

X 011111 10000 01010 0 addco Add Carrying & record OV 230

X 011111 10000 01010 1 addco. Add Carrying & record OV & CR 230

X 011111 00100 01010 0 adde Add Extended with CA 231

X 011111 00100 01010 1 adde. Add Extended with CA & record CR 231

X 011111 01100 01010 / adde64 Add Extended with CA64 231

X 011111 11100 01010 / adde64o Add Extended with CA64 & record OV 231

X 011111 10100 01010 0 addeo Add Extended with CA & record OV 231

X 011111 10100 01010 1 addeo. Add Extended with CA & record OV & CR 231

D 001110 ----- ----- - addi Add Immediate 232

D 001100 ----- ----- - addic Add Immediate Carrying 233

D 001101 ----- ----- - addic. Add Immediate Carrying & record CR 233

D 001111 ----- ----- - addis Add Immediate Shifted 232

X 011111 00111 01010 0 addme Add to Minus One Extended with CA 234

X 011111 00111 01010 1 addme. Add to Minus One Extended with CA & record CR 234

X 011111 01111 01010 / addme64 Add to Minus One Extended with CA64 234

X 011111 11111 01010 / addme64o Add to Minus One Extended with CA64 & record OV 234

X 011111 10111 01010 0 addmeo Add to Minus One Extended with CA & record OV 234

X 011111 10111 01010 1 addmeo. Add to Minus One Extended with CA & record OV & CR 234

X 011111 11000 01010 0 addo Add & record OV 229

X 011111 11000 01010 1 addo. Add & record OV & CR 229

X 011111 00110 01010 0 addze Add to Zero Extended with CA 235

X 011111 00110 01010 1 addze. Add to Zero Extended with CA & record CR 235

X 011111 01110 01010 / addze64 Add to Zero Extended with CA64 235

X 011111 11110 01010 / addze64o Add to Zero Extended with CA64 & record OV 235

X 011111 10110 01010 0 addzeo Add to Zero Extended with CA & record OV 235

X 011111 10110 01010 1 addzeo. Add to Zero Extended with CA & record OV & CR 235

X 011111 00000 11100 0 and AND 236

X 011111 00000 11100 1 and. AND & record CR 236

X 011111 00001 11100 0 andc AND with Complement 236

X 011111 00001 11100 1 andc. AND with Complement & record CR 236

D 011100 ----- ----- - andi. AND Immediate & record CR 236

D 011101 ----- ----- - andis. AND Immediate Shifted & record CR 236

I 010010 ----- ----0 0 b Branch 237

I 010010 ----- ----1 0 ba Branch Absolute 237

B 010000 ----- ----0 0 bc Branch Conditional 238

B 010000 ----- ----1 0 bca Branch Conditional Absolute 238

XL 010011 10000 10000 0 bcctr Branch Conditional to Count Register 239

XL 010011 10000 10001 0 bcctre Branch Conditional to Count Register Extended 239
Legend:
- Don’t care, usually part of an operand field
/ Reserved bit, invalid instruction form if encoded as 1
? Allocated for implementation-dependent use. See User’ Manual for the implementation
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XL 010011 10000 10001 1 bcctrel Branch Conditional to Count Register Extended & Link 239

XL 010011 10000 10000 1 bcctrl Branch Conditional to Count Register & Link 239

B 001001 ----- ----0 0 bce Branch Conditional Extended 238

B 001001 ----- ----1 0 bcea Branch Conditional Extended Absolute 238

B 001001 ----- ----0 1 bcel Branch Conditional Extended & Link 238

B 001001 ----- ----1 1 bcela Branch Conditional Extended & Link Absolute 238

B 010000 ----- ----0 1 bcl Branch Conditional & Link 238

B 010000 ----- ----1 1 bcla Branch Conditional & Link Absolute 238

XL 010011 00000 10000 0 bclr Branch Conditional to Link Register 240

XL 010011 00000 10001 0 bclre Branch Conditional to Link Register Extended 240

XL 010011 00000 10001 1 bclrel Branch Conditional to Link Register Extended & Link 240

XL 010011 00000 10000 1 bclrl Branch Conditional to Link Register & Link 240

I 010110 ----- ----0 0 be Branch Extended 238

I 010110 ----- ----1 0 bea Branch Extended Absolute 238

I 010110 ----- ----0 1 bel Branch Extended & Link 238

I 010110 ----- ----1 1 bela Branch Extended & Link Absolute 238

I 010010 ----- ----0 1 bl Branch & Link 237

I 010010 ----- ----1 1 bla Branch & Link Absolute 237

X 011111 00000 00000 / cmp Compare 241

D 001011 ----- ----- - cmpi Compare Immediate 241

X 011111 00001 00000 / cmpl Compare Logical 242

D 001010 ----- ----- - cmpli Compare Logical Immediate 242

X 011111 00001 11010 / cntlzd Count Leading Zeros Doubleword 243

X 011111 00000 11010 0 cntlzw Count Leading Zeros Word 243

X 011111 00000 11010 1 cntlzw. Count Leading Zeros Word & record CR 243

XL 010011 01000 00001 / crand Condition Register AND 244

XL 010011 00100 00001 / crandc Condition Register AND with Complement 244

XL 010011 01001 00001 / creqv Condition Register Equivalent 244

XL 010011 00111 00001 / crnand Condition Register NAND 245

XL 010011 00001 00001 / crnor Condition Register NOR 245

XL 010011 01110 00001 / cror Condition Register OR 245

XL 010011 01101 00001 / crorc Condition Register OR with Complement 246

XL 010011 00110 00001 / crxor Condition Register XOR 246

X 011111 10111 10110 / dcba Data Cache Block Allocate Indexed 247

X 011111 10111 11110 / dcbae Data Cache Block Allocate Indexed Extended 247

X 011111 00010 10110 / dcbf Data Cache Block Flush Indexed 248

X 011111 00010 11110 / dcbfe Data Cache Block Flush Indexed Extended 248

X 011111 01110 10110 / dcbi Data Cache Block Invalidate Indexed 249

X 011111 01110 11110 / dcbie Data Cache Block Invalidate Indexed Extended 249

X 011111 00001 10110 / dcbst Data Cache Block Store Indexed 251

X 011111 00001 11110 / dcbste Data Cache Block Store Indexed Extended 251

X 011111 01000 10110 / dcbt Data Cache Block Touch Indexed 252

X 011111 01000 11110 / dcbte Data Cache Block Touch Indexed Extended 252

X 011111 00111 10110 / dcbtst Data Cache Block Touch for Store Indexed 253

X 011111 00111 11110 / dcbtste Data Cache Block Touch for Store Indexed Extended 253

X 011111 11111 10110 / dcbz Data Cache Block set to Zero Indexed 254

X 011111 11111 11110 / dcbze Data Cache Block set to Zero Indexed Extended 254
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X 011111 01111 01001 / divd Divide Doubleword 255

X 011111 11111 01001 / divdo Divide Doubleword & record OV 255

X 011111 01110 01001 / divdu Divide Doubleword Unsigned 256

X 011111 11110 01001 / divduo Divide Doubleword Unsigned & record OV 256

X 011111 01111 01011 0 divw Divide Word 257

X 011111 01111 01011 1 divw. Divide Word & record CR 257

X 011111 11111 01011 0 divwo Divide Word & record OV 257

X 011111 11111 01011 1 divwo. Divide Word & record OV & CR 257

X 011111 01110 01011 0 divwu Divide Word Unsigned 258

X 011111 01110 01011 1 divwu. Divide Word Unsigned & record CR 258

X 011111 11110 01011 0 divwuo Divide Word Unsigned & record OV 258

X 011111 11110 01011 1 divwuo. Divide Word Unsigned & record OV & CR 258

X 011111 01000 11100 0 eqv Equivalent 259

X 011111 01000 11100 1 eqv. Equivalent & record CR 259

X 011111 11101 11010 0 extsb Extend Sign Byte 260

X 011111 11101 11010 1 extsb. Extend Sign Byte & record CR 260

X 011111 11100 11010 0 extsh Extend Sign Halfword 260

X 011111 11100 11010 1 extsh. Extend Sign Halfword & record CR 260

X 011111 11110 11010 / extsw Extend Sign Word 260

X 111111 01000 01000 0 fabs Floating Absolute Value 261

X 111111 01000 01000 1 fabs. Floating Absolute Value & record CR 261

A 111111 ----- 10101 0 fadd Floating Add 262

A 111111 ----- 10101 1 fadd. Floating Add & record CR 262

A 111011 ----- 10101 0 fadds Floating Add Single 262

A 111011 ----- 10101 1 fadds. Floating Add Single & record CR 262

X 111111 11010 01110 / fcfid Floating Convert From Int Doubleword 263

X 111111 00001 00000 / fcmpo Floating Compare Ordered 265

X 111111 00000 00000 / fcmpu Floating Compare Unordered 265

X 111111 11001 01110 / fctid Floating Convert To Int Doubleword 266

X 111111 11001 01111 / fctidz Floating Convert To Int Doubleword with round to Zero 266

X 111111 00000 01110 0 fctiw Floating Convert To Int Word 268

X 111111 00000 01110 1 fctiw. Floating Convert To Int Word & record CR 268

X 111111 00000 01111 0 fctiwz Floating Convert To Int Word with round to Zero 268

X 111111 00000 01111 1 fctiwz. Floating Convert To Int Word with round to Zero & record CR 268

A 111111 ----- 10010 0 fdiv Floating Divide 270

A 111111 ----- 10010 1 fdiv. Floating Divide & record CR 270

A 111011 ----- 10010 0 fdivs Floating Divide Single 270

A 111011 ----- 10010 1 fdivs. Floating Divide Single & record CR 270

A 111111 ----- 11101 0 fmadd Floating Multiply-Add 271

A 111111 ----- 11101 1 fmadd. Floating Multiply-Add & record CR 271

A 111011 ----- 11101 0 fmadds Floating Multiply-Add Single 271

A 111011 ----- 11101 1 fmadds. Floating Multiply-Add Single & record CR 271

X 111111 00010 01000 0 fmr Floating Move Register 272

X 111111 00010 01000 1 fmr. Floating Move Register & record CR 272

A 111111 ----- 11100 0 fmsub Floating Multiply-Subtract 273

A 111111 ----- 11100 1 fmsub. Floating Multiply-Subtract & record CR 273

A 111011 ----- 11100 0 fmsubs Floating Multiply-Subtract Single 273
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A 111011 ----- 11100 1 fmsubs. Floating Multiply-Subtract Single & record CR 273

A 111111 ----- 11001 0 fmul Floating Multiply 274

A 111111 ----- 11001 1 fmul. Floating Multiply & record CR 274

A 111011 ----- 11001 0 fmuls Floating Multiply Single 274

A 111011 ----- 11001 1 fmuls. Floating Multiply Single & record CR 274

X 111111 00100 01000 0 fnabs Floating Negative Absolute Value 275

X 111111 00100 01000 1 fnabs. Floating Negative Absolute Value & record CR 275

X 111111 00001 01000 0 fneg Floating Negate 275

X 111111 00001 01000 1 fneg. Floating Negate & record CR 275

A 111111 ----- 11111 0 fnmadd Floating Negative Multiply-Add 276

A 111111 ----- 11111 1 fnmadd. Floating Negative Multiply-Add & record CR 276

A 111011 ----- 11111 0 fnmadds Floating Negative Multiply-Add Single 276

A 111011 ----- 11111 1 fnmadds. Floating Negative Multiply-Add Single & record CR 276

A 111111 ----- 11110 0 fnmsub Floating Negative Multiply-Subtract 277

A 111111 ----- 11110 1 fnmsub. Floating Negative Multiply-Subtract & record CR 277

A 111011 ----- 11110 0 fnmsubs Floating Negative Multiply-Subtract Single 277

A 111011 ----- 11110 1 fnmsubs. Floating Negative Multiply-Subtract Single & record CR 277

A 111011 ----- 11000 0 fres Floating Reciprocal Estimate Single 278

A 111011 ----- 11000 1 fres. Floating Reciprocal Estimate Single & record CR 278

X 111111 00000 01100 0 frsp Floating Round to Single-Precision 279

X 111111 00000 01100 1 frsp. Floating Round to Single-Precision & record CR 279

A 111111 ----- 11010 0 frsqrte Floating Reciprocal Square Root Estimate 282

A 111111 ----- 11010 1 frsqrte. Floating Reciprocal Square Root Estimate & record CR 282

A 111111 ----- 10111 0 fsel Floating Select 283

A 111111 ----- 10111 1 fsel. Floating Select & record CR 283

A 111111 ----- 10110 0 fsqrt Floating Square Root 284

A 111111 ----- 10110 1 fsqrt. Floating Square Root & record CR 284

A 111011 ----- 10110 0 fsqrts Floating Square Root Single 284

A 111011 ----- 10110 1 fsqrts. Floating Square Root Single & record CR 284

A 111111 ----- 10100 0 fsub Floating Subtract 285

A 111111 ----- 10100 1 fsub. Floating Subtract & record CR 285

A 111011 ----- 10100 0 fsubs Floating Subtract Single 285

A 111011 ----- 10100 1 fsubs. Floating Subtract Single & record CR 285

X 011111 11110 10110 / icbi Instruction Cache Block Invalidate Indexed 286

X 011111 11110 11110 / icbie Instruction Cache Block Invalidate Indexed Extended 286

X 011111 00000 10110 / icbt Instruction Cache Block Touch Indexed 287

X 011111 00000 11110 / icbte Instruction Cache Block Touch Indexed Extended 287

XL 010011 00100 10110 / isync Instruction Synchronize 288

D 100010 ----- ----- - lbz Load Byte & Zero 289

DE 111010 ----- --000 0 lbze Load Byte & Zero Extended 289

D 100011 ----- ----- - lbzu Load Byte & Zero with Update 289

DE 111010 ----- --000 1 lbzue Load Byte & Zero with Update Extended 289

X 011111 00011 10111 / lbzux Load Byte & Zero with Update Indexed 289

X 011111 00011 11111 / lbzuxe Load Byte & Zero with Update Indexed Extended 289

X 011111 00010 10111 / lbzx Load Byte & Zero Indexed 289

X 011111 00010 11111 / lbzxe Load Byte & Zero Indexed Extended 289

X 011111 01110 11111 / ldarxe Load Doubleword & Reserve Indexed Extended 290

F
o
rm

at Opcode

Mnemonic Instruction

P
ag

e

Primary
(Inst0:5)

Extended
(Inst21:31)

Legend:
- Don’t care, usually part of an operand field
/ Reserved bit, invalid instruction form if encoded as 1
? Allocated for implementation-dependent use. See User’ Manual for the implementation
432 Book E: Enhanced PowerPC Architecture Version 1.0 07 May 02



DES 111110 ----- --000 0 lde Load Doubleword Extended 291

DES 111110 ----- --000 1 ldue Load Doubleword with Update Extended 291

X 011111 11001 11111 / lduxe Load Doubleword with Update Indexed Extended 291

X 011111 11000 11111 / ldxe Load Doubleword Indexed Extended 291

D 110010 ----- ----- - lfd Load Floating-Point Double 292

DES 111110 ----- --011 0 lfde Load Floating-Point Double Extended 292

D 110011 ----- ----- - lfdu Load Floating-Point Double with Update 292

DES 111110 ----- --011 1 lfdue Load Floating-Point Double with Update Extended 292

X 011111 10011 10111 / lfdux Load Floating-Point Double with Update Indexed 292

X 011111 10011 11111 / lfduxe Load Floating-Point Double with Update Indexed Extended 292

X 011111 10010 10111 / lfdx Load Floating-Point Double Indexed 292

X 011111 10010 11111 / lfdxe Load Floating-Point Double Indexed Extended 292

D 110000 ----- ----- - lfs Load Floating-Point Single 293

DES 111110 ----- --010 0 lfse Load Floating-Point Single Extended 293

D 110001 ----- ----- - lfsu Load Floating-Point Single with Update 293

DES 111110 ----- --010 1 lfsue Load Floating-Point Single with Update Extended 293

X 011111 10001 10111 / lfsux Load Floating-Point Single with Update Indexed 293

X 011111 10001 11111 / lfsuxe Load Floating-Point Single with Update Indexed Extended 293

X 011111 10000 10111 / lfsx Load Floating-Point Single Indexed 293

X 011111 10000 11111 / lfsxe Load Floating-Point Single Indexed Extended 293

D 101010 ----- ----- - lha Load Halfword Algebraic 294

DE 111010 ----- --010 0 lhae Load Halfword Algebraic Extended 294

D 101011 ----- ----- - lhau Load Halfword Algebraic with Update 294

DE 111010 ----- --010 1 lhaue Load Halfword Algebraic with Update Extended 294

X 011111 01011 10111 / lhaux Load Halfword Algebraic with Update Indexed 294

X 011111 01011 11111 / lhauxe Load Halfword Algebraic with Update Indexed Extended 294

X 011111 01010 10111 / lhax Load Halfword Algebraic Indexed 294

X 011111 01010 11111 / lhaxe Load Halfword Algebraic Indexed Extended 294

X 011111 11000 10110 / lhbrx Load Halfword Byte-Reverse Indexed 295

X 011111 11000 11110 / lhbrxe Load Halfword Byte-Reverse Indexed Extended 295

D 101000 ----- ----- - lhz Load Halfword & Zero 296

DE 111010 ----- --001 0 lhze Load Halfword & Zero Extended 296

D 101001 ----- ----- - lhzu Load Halfword & Zero with Update 296

DE 111010 ----- --001 1 lhzue Load Halfword & Zero with Update Extended 296

X 011111 01001 10111 / lhzux Load Halfword & Zero with Update Indexed 296

X 011111 01001 11111 / lhzuxe Load Halfword & Zero with Update Indexed Extended 296

X 011111 01000 10111 / lhzx Load Halfword & Zero Indexed 296

X 011111 01000 11111 / lhzxe Load Halfword & Zero Indexed Extended 296

D 101110 ----- ----- - lmw Load Multiple Word 297

X 011111 10010 10101 / lswi Load String Word Immediate 298

X 011111 10000 10101 / lswx Load String Word Indexed 298

X 011111 00000 10100 / lwarx Load Word  &  Reserve Indexed 300

X 011111 00011 11110 / lwarxe Load Word  &  Reserve Indexed Extended 300

X 011111 10000 10110 / lwbrx Load Word Byte-Reverse Indexed 302

X 011111 10000 11110 / lwbrxe Load Word Byte-Reverse Indexed Extended 302

D 100000 ----- ----- - lwz Load Word & Zero 303

DE 111010 ----- --011 0 lwze Load Word & Zero Extended 303
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D 100001 ----- ----- - lwzu Load Word & Zero with Update 303

DE 111010 ----- --011 1 lwzue Load Word & Zero with Update Extended 303

X 011111 00001 10111 / lwzux Load Word & Zero with Update Indexed 303

X 011111 00001 11111 / lwzuxe Load Word & Zero with Update Indexed Extended 303

X 011111 00000 10111 / lwzx Load Word & Zero Indexed 303

X 011111 00000 11111 / lwzxe Load Word & Zero Indexed Extended 303

X 011111 11010 10110 / mbar Memory Barrier 304

XL 010011 00000 00000 / mcrf Move Condition Register Field 305

X 111111 00010 00000 / mcrfs Move to Condition Register from FPSCR 306

X 011111 10000 00000 / mcrxr Move to Condition Register from XER 306

X 011111 10001 00000 / mcrxr64 Move to Condition Register from XER64 306

X 011111 01000 10011 / mfapidi Move From APID Indirect 307

X 011111 00000 10011 / mfcr Move From Condition Register 307

XFX 011111 01010 00011 / mfdcr Move From Device Control Register 307

X 111111 10010 00111 0 mffs Move From FPSCR 308

X 111111 10010 00111 1 mffs. Move From FPSCR & record CR 308

X 011111 00010 10011 / mfmsr Move From Machine State Register 308

XFX 011111 01010 10011 / mfspr Move From Special Purpose Register 309

X 011111 10010 10110 / msync Memory Synchronize 310

XFX 011111 00100 10000 / mtcrf Move To Condition Register Fields 311

XFX 011111 01110 00011 / mtdcr Move To Device Control Register 311

X 111111 00010 00110 0 mtfsb0 Move To FPSCR Bit 0 312

X 111111 00010 00110 1 mtfsb0. Move To FPSCR Bit 0 & record CR 312

X 111111 00001 00110 0 mtfsb1 Move To FPSCR Bit 1 312

X 111111 00001 00110 1 mtfsb1. Move To FPSCR Bit 1 & record CR 312

XFL 111111 10110 00111 0 mtfsf Move To FPSCR Fields 313

XFL 111111 10110 00111 1 mtfsf. Move To FPSCR Fields & record CR 313

X 111111 00100 00110 0 mtfsfi Move To FPSCR Field Immediate 314

X 111111 00100 00110 1 mtfsfi. Move To FPSCR Field Immediate & record CR 314

X 011111 00100 10010 / mtmsr Move To Machine State Register 315

XFX 011111 01110 10011 / mtspr Move To Special Purpose Register 316

X 011111 /0010 01001 / mulhd Multiply High Doubleword 317

X 011111 /0000 01001 / mulhdu Multiply High Doubleword Unsigned 317

X 011111 /0010 01011 0 mulhw Multiply High Word 318

X 011111 /0010 01011 1 mulhw. Multiply High Word & record CR 318

X 011111 /0000 01011 0 mulhwu Multiply High Word Unsigned 318

X 011111 /0000 01011 1 mulhwu. Multiply High Word Unsigned & record CR 318

X 011111 00111 01001 / mulld Multiply Low Doubleword 319

X 011111 10111 01001 / mulldo Multiply Low Doubleword & record OV 319

D 000111 ----- ----- - mulli Multiply Low Immediate 319

X 011111 00111 01011 0 mullw Multiply Low Word 320

X 011111 00111 01011 1 mullw. Multiply Low Word & record CR 320

X 011111 10111 01011 0 mullwo Multiply Low Word & record OV 320

X 011111 10111 01011 1 mullwo. Multiply Low Word & record OV & CR 320

X 011111 01110 11100 0 nand NAND 321

X 011111 01110 11100 1 nand. NAND & record CR 321

X 011111 00011 01000 0 neg Negate 322
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X 011111 00011 01000 1 neg. Negate & record CR 322

X 011111 10011 01000 0 nego Negate & record OV 322

X 011111 10011 01000 1 nego. Negate & record OV & record CR 322

X 011111 00011 11100 0 nor NOR 323

X 011111 00011 11100 1 nor. NOR & record CR 323

X 011111 01101 11100 0 or OR 324

X 011111 01101 11100 1 or. OR & record CR 324

X 011111 01100 11100 0 orc OR with Complement 324

X 011111 01100 11100 1 orc. OR with Complement & record CR 324

D 011000 ----- ----- - ori OR Immediate 324

D 011001 ----- ----- - oris OR Immediate Shifted 324

XL 010011 00001 10011 / rfci Return From Critical Interrupt 325

XL 010011 00001 10010 / rfi Return From Interrupt 326

MDS 011110 ----- -1000 / rldcl Rotate Left Doubleword then Clear Left 327

MDS 011110 ----- -1001 / rldcr Rotate Left Doubleword then Clear Right 328

MD 011110 ----- -010- / rldic Rotate Left Doubleword Immediate then Clear 329

MD 011110 ----- -000- / rldicl Rotate Left Doubleword Immediate then Clear Left 327

MD 011110 ----- -001- / rldicr Rotate Left Doubleword Immediate then Clear Right 328

MD 011110 ----- -011- / rldimi Rotate Left Doubleword Immediate then Mask Insert 330

M 010100 ----- ----- 0 rlwimi Rotate Left Word Immed then Mask Insert 331

M 010100 ----- ----- 1 rlwimi. Rotate Left Word Immed then Mask Insert & record CR 331

M 010101 ----- ----- 0 rlwinm Rotate Left Word Immed then AND with Mask 332

M 010101 ----- ----- 1 rlwinm. Rotate Left Word Immed then AND with Mask & record CR 332

M 010111 ----- ----- 0 rlwnm Rotate Left Word then AND with Mask 332

M 010111 ----- ----- 1 rlwnm. Rotate Left Word then AND with Mask & record CR 332

SC 010001 ///// ////1 / sc System Call 334

X 011111 00000 11011 / sld Shift Left Doubleword 335

X 011111 00000 11000 0 slw Shift Left Word 336

X 011111 00000 11000 1 slw. Shift Left Word & record CR 336

X 011111 11000 11010 / srad Shift Right Algebraic Doubleword 337

XS 011111 11001 1101- / sradi Shift Right Algebraic Doubleword Immediate 337

X 011111 11000 11000 0 sraw Shift Right Algebraic Word 338

X 011111 11000 11000 1 sraw. Shift Right Algebraic Word & record CR 338

X 011111 11001 11000 0 srawi Shift Right Algebraic Word Immediate 338

X 011111 11001 11000 1 srawi. Shift Right Algebraic Word Immediate & record CR 338

X 011111 10000 11011 / srd Shift Right Doubleword 339

X 011111 10000 11000 0 srw Shift Right Word 340

X 011111 10000 11000 1 srw. Shift Right Word & record CR 340

D 100110 ----- ----- - stb Store Byte 341

DE 111010 ----- --100 0 stbe Store Byte Extended 341

DE 111010 ----- --100 1 stbue Store Byte with Update Extended 341

D 100111 ----- ----- - stbu Store Byte with Update 341

X 011111 00111 10111 / stbux Store Byte with Update Indexed 341

X 011111 00111 11111 / stbuxe Store Byte with Update Indexed Extended 341

X 011111 00110 10111 / stbx Store Byte Indexed 341

X 011111 00110 11111 / stbxe Store Byte Indexed Extended 341

X 011111 01111 11111 1 stdcxe. Store Doubleword Conditional Indexed Extended 342
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DES 111110 ----- --100 0 stde Store Doubleword Extended 343

DES 111110 ----- --100 1 stdue Store Doubleword with Update Extended 343

X 011111 11101 11111 / stduxe Store Doubleword with Update Indexed Extended 343

X 011111 11100 11111 / stdxe Store Doubleword Indexed Extended 343

D 110110 ----- ----- - stfd Store Floating-Point Double 344

DES 111110 ----- --111 0 stfde Store Floating-Point Double Extended 344

D 110111 ----- ----- - stfdu Store Floating-Point Double with Update 344

DES 111110 ----- --111 1 stfdue Store Floating-Point Double with Update Extended 344

X 011111 10111 10111 / stfdux Store Floating-Point Double with Update Indexed 344

X 011111 10111 11111 / stfduxe Store Floating-Point Double with Update Indexed Extended 344

X 011111 10110 10111 / stfdx Store Floating-Point Double Indexed 344

X 011111 10110 11111 / stfdxe Store Floating-Point Double Indexed Extended 344

X 011111 11110 10111 / stfiwx Store Floating-Point as Int Word Indexed 345

X 011111 11110 11111 / stfiwxe Store Floating-Point as Int Word Indexed Extended 345

D 110100 ----- ----- - stfs Store Floating-Point Single 346

DES 111110 ----- --110 0 stfse Store Floating-Point Single Extended 346

D 110101 ----- ----- - stfsu Store Floating-Point Single with Update 346

DES 111110 ----- --110 1 stfsue Store Floating-Point Single with Update Extended 346

X 011111 10101 10111 / stfsux Store Floating-Point Single with Update Indexed 346

X 011111 10101 11111 / stfsuxe Store Floating-Point Single with Update Indexed Extended 346

X 011111 10100 10111 / stfsx Store Floating-Point Single Indexed 346

X 011111 10100 11111 / stfsxe Store Floating-Point Single Indexed Extended 346

D 101100 ----- ----- - sth Store Halfword 347

X 011111 11100 10110 / sthbrx Store Halfword Byte-Reverse Indexed 348

X 011111 11100 11110 / sthbrxe Store Halfword Byte-Reverse Indexed Extended 348

DE 111010 ----- --101 0 sthe Store Halfword Extended 347

D 101101 ----- ----- - sthu Store Halfword with Update 347

DE 111010 ----- --101 1 sthue Store Halfword with Update Extended 347

X 011111 01101 10111 / sthux Store Halfword with Update Indexed 347

X 011111 01101 11111 / sthuxe Store Halfword with Update Indexed Extended 347

X 011111 01100 10111 / sthx Store Halfword Indexed 347

X 011111 01100 11111 / sthxe Store Halfword Indexed Extended 347

D 101111 ----- ----- - stmw Store Multiple Word 349

X 011111 10110 10101 / stswi Store String Word Immediate 350

X 011111 10100 10101 / stswx Store String Word Indexed 350

D 100100 ----- ----- - stw Store Word 351

X 011111 10100 10110 / stwbrx Store Word Byte-Reverse Indexed 352

X 011111 10100 11110 / stwbrxe Store Word Byte-Reverse Indexed Extended 352

X 011111 00100 10110 1 stwcx. Store Word Conditional Indexed & record CR 353

X 011111 00100 11110 1 stwcxe. Store Word Conditional Indexed Extended & record CR 353

DE 111010 ----- --111 0 stwe Store Word Extended 351

D 100101 ----- ----- - stwu Store Word with Update 351

DE 111010 ----- --111 1 stwue Store Word with Update Extended 351

X 011111 00101 10111 / stwux Store Word with Update Indexed 351

X 011111 00101 11111 / stwuxe Store Word with Update Indexed Extended 351

X 011111 00100 10111 / stwx Store Word Indexed 351

X 011111 00100 11111 / stwxe Store Word Indexed Extended 351
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X 011111 00001 01000 0 subf Subtract From 355

X 011111 00001 01000 1 subf. Subtract From & record CR 355

X 011111 00000 01000 0 subfc Subtract From Carrying 356

X 011111 00000 01000 1 subfc. Subtract From Carrying & record CR 356

X 011111 10000 01000 0 subfco Subtract From Carrying & record OV 356

X 011111 10000 01000 1 subfco. Subtract From Carrying & record OV & CR 356

X 011111 00100 01000 0 subfe Subtract From Extended with CA 357

X 011111 00100 01000 1 subfe. Subtract From Extended with CA & record CR 357

X 011111 01100 01000 / subfe64 Subtract From Extended with CA64 357

X 011111 11100 01000 / subfe64o Subtract From Extended with CA64 & record OV 357

X 011111 10100 01000 0 subfeo Subtract From Extended with CA & record OV 357

X 011111 10100 01000 1 subfeo. Subtract From Extended with CA & record OV & CR 357

D 001000 ----- ----- - subfic Subtract From Immediate Carrying 358

X 011111 00111 01000 0 subfme Subtract From Minus One Extended with CA 359

X 011111 00111 01000 1 subfme. Subtract From Minus One Extended with CA & record CR 359

X 011111 01111 01000 / subfme64 Subtract From Minus One Extended with CA64 359

X 011111 11111 01000 / subfme64o Subtract From Minus One Extended with CA64 & record OV 359

X 011111 10111 01000 0 subfmeo Subtract From Minus One Extended with CA & record OV 359

X 011111 10111 01000 1 subfmeo. Subtract From Minus One Extended with CA & record OV & CR 359

X 011111 10001 01000 0 subfo Subtract From & record OV 355

X 011111 10001 01000 1 subfo. Subtract From & record OV & CR 355

X 011111 00110 01000 0 subfze Subtract From Zero Extended with CA 360

X 011111 00110 01000 1 subfze. Subtract From Zero Extended with CA & record CR 360

X 011111 01110 01000 / subfze64 Subtract From Zero Extended with CA64 360

X 011111 11110 01000 / subfze64o Subtract From Zero Extended with CA64 & record OV 360

X 011111 10110 01000 0 subfzeo Subtract From Zero Extended with CA & record OV 360

X 011111 10110 01000 1 subfzeo. Subtract From Zero Extended with CA & record OV & CR 360

X 011111 00010 00100 / td Trap Doubleword 361

D 000010 ----- ----- - tdi Trap Doubleword Immediate 361

X 011111 11000 10010 / tlbivax TLB Invalidate Virtual Address Indexed 362

X 011111 11000 10011 / tlbivaxe TLB Invalidate Virtual Address Indexed Extended 362

X 011111 11101 10010 / tlbre TLB Read Entry 363

X 011111 11100 10010 ? tlbsx TLB Search Indexed 364

X 011111 11100 10011 ? tlbsxe TLB Search Indexed Extended 364

X 011111 10001 10110 / tlbsync TLB Synchronize 365

X 011111 11110 10010 / tlbwe TLB Write Entry 366

X 011111 00000 00100 / tw Trap Word 367

D 000011 ----- ----- - twi Trap Word Immediate 367

X 011111 00100 00011 / wrtee Write External Enable 368

X 011111 00101 00011 / wrteei Write External Enable Immediate 368

X 011111 01001 11100 0 xor XOR 369

X 011111 01001 11100 1 xor. XOR & record CR 369

D 011010 ----- ----- - xori XOR Immediate 369

D 011011 ----- ----- - xoris XOR Immediate Shifted 369
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