
CodeWarrior Development Studio for
Advanced Packet Processing

Targeting Manual

Document Number: CWAPPTM
Rev. 10.2, 01/2016

CodeWarrior Development Studio for Advanced Packet Processing Targeting Manual, Rev. 10.2, 01/2016

2 Freescale Semiconductor, Inc.

Contents

Section number Title Page

Chapter 1
Introduction

1.1 Release notes...11

1.2 Accompanying documentation... 11

1.3 CodeWarrior development tools... 12

1.3.1 Eclipse IDE.. 12

1.3.2 C/C++ compiler..13

1.3.3 Standalone assembler...13

1.3.4 Linker... 14

1.3.5 Debugger..14

1.3.6 CodeWarrior profiling and analysis tools.. 15

1.4 CodeWarrior development process...15

1.4.1 Project files.. 15

1.4.2 Compiling...16

1.4.3 Linking... 16

1.4.4 Editing code... 17

1.4.5 Debugging..17

Chapter 2
Working with Projects

2.1 CodeWarrior bareboard project wizard.. 19

2.1.1 Create a CodeWarrior Bareboard Project page..20

2.1.2 Processor page..21

2.1.3 Debug Target Settings page... 22

2.1.4 Build Settings page.. 23

2.1.5 Configurations page... 24

2.1.6 Software Analysis page..25

2.2 Creating projects... 26

2.2.1 Creating CodeWarrior bareboard application project..27

CodeWarrior Development Studio for Advanced Packet Processing Targeting Manual, Rev. 10.2, 01/2016

Freescale Semiconductor, Inc. 3

Section number Title Page

2.2.2 Creating CodeWarrior bareboard library project... 30

2.3 Building projects...31

2.3.1 Manual-build mode.. 32

2.3.2 Auto-build mode.. 32

2.4 Debugging projects... 32

2.5 Deleting project...33

Chapter 3
Debug Configuration

3.1 Using CodeWarrior debug configuration tabs.. 35

3.1.1 Main... 36

3.1.2 Arguments..39

3.1.3 Debugger..40

3.1.3.1 Debug... 41

3.1.3.2 Download... 43

3.1.3.3 PIC... 45

3.1.3.4 System Call Services..46

3.1.3.5 Other Executables.. 47

3.1.3.6 Symbolics...49

3.1.3.7 OS Awareness.. 50

3.1.4 Trace and Profile..52

3.1.5 Source...53

3.1.6 Environment...54

3.1.7 Common...55

3.2 Customizing debug configurations... 57

3.3 Reverting debug configuration settings.. 58

Chapter 4
Build Properties

4.1 Changing build properties...59

4.2 Restoring build properties...60

CodeWarrior Development Studio for Advanced Packet Processing Targeting Manual, Rev. 10.2, 01/2016

4 Freescale Semiconductor, Inc.

Section number Title Page

4.3 Build properties for APP...60

4.3.1 CPU..61

4.3.2 Debugging..62

4.3.3 Messages.. 63

4.3.4 Linker... 63

4.3.4.1 Input... 64

4.3.4.2 Link Order..65

4.3.4.3 General... 65

4.3.4.4 Output...66

4.3.5 Compiler...68

4.3.5.1 Preprocessor... 69

4.3.5.2 Input... 69

4.3.5.3 Warnings.. 71

4.3.5.4 Optimization...72

4.3.5.5 Processor.. 73

4.3.5.6 C/C++ Language.. 75

4.3.6 Assembler...77

4.3.6.1 Input... 77

4.3.6.2 General... 78

4.3.7 Disassembler.. 79

4.3.7.1 Disassembler Settings.. 79

4.3.8 Preprocessor... 80

4.3.8.1 Preprocessor Settings... 80

Chapter 5
Working with AIOP Debugger

5.1 AIOP debug model... 83

5.1.1 Overview..84

5.1.2 AIOP global halt.. 84

5.1.3 AIOP running...84

CodeWarrior Development Studio for Advanced Packet Processing Targeting Manual, Rev. 10.2, 01/2016

Freescale Semiconductor, Inc. 5

Section number Title Page

5.1.4 AIOP debug perspective.. 85

5.1.4.1 Task centric perspective...85

5.1.4.2 Core centric perspective...86

5.1.5 Task stepping mode... 87

5.2 AIOP task aware debugging... 87

5.2.1 Activating task awareness services.. 88

5.2.2 Viewing AIOP tasks...89

5.2.3 Viewing non-idle tasks only.. 90

5.2.4 Adding task memory location columns in System Browser.. 91

5.2.5 Viewing task entry point and OSM data in System Browser.. 93

5.2.6 Targeting AIOP tasks...94

5.2.7 Performing run control operations... 95

5.3 Standard debugging features...97

5.3.1 Connection types..97

5.3.1.1 CCSSIM2 ISS.. 98

5.3.1.2 CodeWarrior TAP.. 99

5.3.2 Editing system configuration... 101

5.3.2.1 Initialization... 101

5.3.2.2 Memory..102

5.3.3 CodeWarrior command-line debugger...103

5.3.4 Memory configuration file... 105

5.3.5 Displaying memory contents... 106

5.3.6 Displaying register contents...108

5.3.6.1 Adding register group.. 108

5.3.6.2 Editing register group...110

5.3.6.3 Removing register group..110

5.3.6.4 Changing register bit value.. 110

5.3.7 Using register details window..111

5.3.7.1 Bit Fields.. 112

CodeWarrior Development Studio for Advanced Packet Processing Targeting Manual, Rev. 10.2, 01/2016

6 Freescale Semiconductor, Inc.

Section number Title Page

5.3.7.2 Actions... 113

5.3.7.3 Description... 113

5.3.7.4 Viewing register details... 114

5.3.7.5 Changing bit field...116

5.3.8 Setting watchpoints.. 117

5.3.8.1 Adding watchpoints... 118

5.3.8.2 Removing watchpoints...120

5.3.9 Setting breakpoints...120

5.3.9.1 AIOP task specific breakpoints..123

5.3.9.2 Setting hardware breakpoints...124

5.3.9.2.1 Setting hardware breakpoint using editor view.. 124

5.3.9.2.2 Setting hardware breakpoint using debugger shell... 124

5.3.9.3 Removing breakpoints... 125

5.3.9.3.1 Removing breakpoint using marker bar..125

5.3.9.3.2 Removing breakpoint using Breakpoints view...125

5.3.9.4 Removing hardware breakpoints... 126

5.3.9.4.1 Removing hardware breakpoint using editor view... 126

5.3.9.4.2 Removing hardware breakpoint using Debugger Shell.. 126

5.3.10 Setting stack depth... 127

5.3.11 Changing program counter value...127

5.3.12 Hard resetting...127

5.3.13 Loading and saving memory..128

5.3.14 Filling memory...130

5.3.15 Controlling cross triggering... 130

5.4 CodeWarrior Executable Importer wizard..131

5.4.1 Import a CodeWarrior Executable file page.. 132

5.4.2 Import C/C++/Assembler Executable Files page...132

5.4.3 Processor page..133

5.4.4 Debug Target Settings page... 133

CodeWarrior Development Studio for Advanced Packet Processing Targeting Manual, Rev. 10.2, 01/2016

Freescale Semiconductor, Inc. 7

Section number Title Page

5.4.5 Configurations page... 134

5.5 Debugging externally built executable file... 134

5.6 Multi-core operations..139

5.6.1 Multi-core operations in IDE... 139

5.6.2 Multi-core operations in Debugger Shell...140

Chapter 6
Working with hardware tools

6.1 Working with hardware diagnostics... 143

6.1.1 Creating new hardware diagnostics task..143

6.1.2 Executing hardware diagnostics task... 146

6.1.3 Editing hardware diagnostics task..146

6.1.4 Hardware Diagnostics Action editor ...148

6.2 Manipulating target memory...148

6.2.1 Creating target task to manipulate memory... 149

6.2.2 Editing import/export/fill memory task... 150

6.2.3 Import/Export/Fill Memory Action editor .. 151

Chapter 7
JTAG configuration files

7.1 JTAG configuration file syntax.. 153

7.2 Using JTAG configuration file to override RCW...154

7.3 Using JTAG configuration file to specify multiple linked devices on a JTAG chain.. 155

7.4 Setting remote system to use JTAG configuration file...157

Chapter 8
Target initialization files

8.1 Using target initialization files..159

8.2 Target initialization file commands.. 161

8.2.1 Access to named registers from within scripts...162

8.2.2 Cfg target initialization commands.. 162

8.2.2.1 alternatePC... 163

8.2.2.2 ANDmem.l...163

CodeWarrior Development Studio for Advanced Packet Processing Targeting Manual, Rev. 10.2, 01/2016

8 Freescale Semiconductor, Inc.

Section number Title Page

8.2.2.3 ANDmmr... 164

8.2.2.4 IncorMMR... 165

8.2.2.5 ORmem.l.. 166

8.2.2.6 reset.. 167

8.2.2.7 run.. 167

8.2.2.8 setCoreID... 168

8.2.2.9 resetCoreID.. 168

8.2.2.10 sleep... 169

8.2.2.11 stop... 169

8.2.2.12 writemem.b.. 169

8.2.2.13 writemem.w..170

8.2.2.14 writemem.l... 171

8.2.2.15 writemmr..172

8.2.2.16 writereg.. 172

8.2.2.17 writereg64.. 173

8.2.2.18 writereg128.. 174

8.2.2.19 writereg192.. 175

8.2.2.20 writespr...176

8.3 Target initialization using Tcl script...177

Chapter 9
Memory configuration files

9.1 Using memory configuration files.. 179

9.2 Memory configuration file commands..180

9.2.1 autoEnableTranslations..181

9.2.2 range...182

9.2.3 reserved.. 183

9.2.4 reservedchar... 183

9.2.5 translate.. 184

Chapter 10

CodeWarrior Development Studio for Advanced Packet Processing Targeting Manual, Rev. 10.2, 01/2016

Freescale Semiconductor, Inc. 9

Section number Title Page

Debugger limitations and workarounds

10.1 MC/AIOP cores.. 187

CodeWarrior Development Studio for Advanced Packet Processing Targeting Manual, Rev. 10.2, 01/2016

10 Freescale Semiconductor, Inc.

Chapter 1
Introduction

This manual explains how to use the CodeWarrior Development Studio tool set to
develop software for bareboard applications running on Freescale processors. This
chapter presents an overview of this manual and introduces you to the CodeWarrior
development tools and development process.

1.1 Release notes

It is recommended that you should read the release notes before using the CodeWarrior
IDE. The release notes include information about new features, last-minute changes, bug
fixes, incompatible elements, or other sections that may not be included in this manual.

NOTE
The release notes for specific components of the CodeWarrior
IDE are located in the Release_Notes folder in the CodeWarrior
installation directory.

1.2 Accompanying documentation

The Documentation page describes the documentation included in this version of
CodeWarrior Development Studio for Advanced Packet Processing. You can access the
Documentation page by:

• Using a shortcut link on the Desktop created by your CodeWarrior installer.
• Opening the START_HERE.html file available in the <CWInstallDir>\CW_APP\LS\Help folder,

where <CWInstallDir> is the path where you have installed your CodeWarrior software.

CodeWarrior Development Studio for Advanced Packet Processing Targeting Manual, Rev. 10.2, 01/2016

Freescale Semiconductor, Inc. 11

1.3 CodeWarrior development tools

The programming for advanced packet processing (APP) processors is similar to the
programming for any other CodeWarrior platform target. If you have not used the
CodeWarrior tools before, you can start by understanding the Eclipse IDE, that is used to
host the tools. More information on the Eclipse IDE is available in the next section.

If you are an experienced CodeWarrior user, note that the CodeWarrior Development
Studio for Advanced Packet Processing v10.x environment uses the Eclipse IDE, whose
user interface is substantially different from the classic CodeWarrior IDE. For more
details on these interface differences, see CodeWarrior Common Features Guide
available in the <CWInstallDir>\CW_APP\LS\Help\PDF\ folder, where <CWInstallDir> is the path
where you have installed your CodeWarrior software.

If you have not used the CodeWarrior IDE before, then you have to become familiar with
following tools:

• Eclipse IDE
• C/C++ compiler
• Standalone assembler
• Linker
• Debugger
• CodeWarrior profiling and analysis tools

1.3.1 Eclipse IDE

The Eclipse integrated development environment (IDE) is an open-source development
environment that lets you develop and debug your software. It controls the project
manager, the source code editor, the class browser, the compilers and linkers, and the
debugger.

If you are more familiar with command-line development tools, you may find the concept
of a CodeWarrior project new. The Eclipse Workspace organizes all files related to your
project. This allows you to see your project at a glance and eases the organization and
navigation between the source code files.

CodeWarrior development tools

CodeWarrior Development Studio for Advanced Packet Processing Targeting Manual, Rev. 10.2, 01/2016

12 Freescale Semiconductor, Inc.

The Eclipse IDE has an extensible architecture that uses the plug-in compilers and linkers
to target the various operating systems and microprocessors. The IDE is hosted on the
Microsoft Windows, x86 Linux, and other platforms. There are many development tools
available for the IDE, including C, C++, and Java compilers for the Desktop and
embedded processors.

For more information about the Eclipse IDE, read the Eclipse documentation at:

http://www.eclipse.org/documentation/

1.3.2 C/C++ compiler

The CodeWarrior C/C++ compiler is an ANSI-compliant compiler. It compiles the C and
C++ statements and assembles the inline assembly language statements. You can
generate the applications and libraries by using the CodeWarrior compiler in conjunction
with the CodeWarrior linker for APP processors.

The IDE manages the execution of the compiler. It runs the compiler in the following
conditions:

• When you change a source file and issue the make command.
• When you select a source file in your project and issue the compile, preprocess, or

precompile command.

For more information about the CodeWarrior C/C++ compiler and its inline assembler,
see CodeWarrior Development Studio for Advanced Packet Processing Build Tools
Reference Manual available in the <CWInstallDir>\CW_APP\LS\Help\PDF\ folder, where
<CWInstallDir> is the path where you have installed your CodeWarrior software.

1.3.3 Standalone assembler

The CodeWarrior assembler is a standalone assembler that translates the assembly-
language source code to the machine-language object files or executable programs.

For more information about the CodeWarrior assembler, see CodeWarrior Development
Studio for Advanced Packet Processing Build Tools Reference Manual available in the
<CWInstallDir>\CW_APP\LS\Help\PDF\ folder, where <CWInstallDir> is the path where you have
installed your CodeWarrior software.

Chapter 1 Introduction

CodeWarrior Development Studio for Advanced Packet Processing Targeting Manual, Rev. 10.2, 01/2016

Freescale Semiconductor, Inc. 13

http://www.eclipse.org/documentation/

1.3.4 Linker

The CodeWarrior linker generates the binaries that conform to the embedded application
binary interface (EABI). The linker combines the object modules created by the compiler
and assembler with the modules in the static libraries to produce a binary file in the
executable and linkable (ELF) format.

The CodeWarrior linker provides the following key features, that enables you to:

• use the absolute addressing
• create the multiple user-defined sections
• generate the S-Record files
• generate the PIC/PID binary files

The IDE runs the linker each time you build your project.

For more information about the CodeWarrior linker, see CodeWarrior Development
Studio for Advanced Packet Processing Build Tools Reference Manual available in the
<CWInstallDir>\CW_APP\LS\Help\PDF\ folder, where <CWInstallDir> is the path where you have
installed your CodeWarrior software.

1.3.5 Debugger

The CodeWarrior debugger controls the execution of your program and allows you to see
what is happening internally as the program runs. You can use the debugger to identifiy
the problems in your program.

You can use the debugger to execute your program one statement at a time and suspend
the execution when control reaches a specified point. When the debugger stops a
program, you can view the chain of the function calls, examine and change the values of
the variables, and inspect the content of the registers.

The debugger communicates with the board through a hardware probe (such as the
CodeWarrior TAP).

For general information about the debugger, including all of its common features and its
visual interface, see Working with the Debugger chapter of the CodeWarrior Common
Features Guide available in the <CWInstallDir>\CW_APP\LS\Help\PDF\ folder, where
<CWInstallDir> is the path where you have installed your CodeWarrior software.

CodeWarrior development tools

CodeWarrior Development Studio for Advanced Packet Processing Targeting Manual, Rev. 10.2, 01/2016

14 Freescale Semiconductor, Inc.

1.3.6 CodeWarrior profiling and analysis tools

The CodeWarrior profiling and analysis tools provide the visibility to an application that
runs on the simulator and hardware. This visibility can help you understand how your
application runs, as well as to identify the operational problems.

1.4 CodeWarrior development process

While working with the CodeWarrior IDE, you will proceed through the development
stages familiar to all programmers, such as writing code, compiling and linking, and
debugging. For complete information on the tasks such as editing, compiling, and linking
and basic information on debugging, see CodeWarrior Common Features Guide.

In comparison to the traditional command-line environments, the CodeWarrior IDE helps
you manage your work more effectively.

If you are unfamiliar with an integrated environment in general, or with the Eclipse IDE
in particular, you may find the below listed topics in this section helpful. Each topic
explains how one component of the CodeWarrior tools relates to a traditional command-
line environment.

• Project files
• Compiling
• Linking
• Editing code
• Debugging

1.4.1 Project files

Chapter 1 Introduction

CodeWarrior Development Studio for Advanced Packet Processing Targeting Manual, Rev. 10.2, 01/2016

Freescale Semiconductor, Inc. 15

A CodeWarrior project is analogous to a set of make files, as a project can have multiple
settings that are applied when building the program. For example, you can have one
project that has both a debug version and a release version of your program. You can
build one or the other, or both as per your requirement. The different settings that are
used to launch your program within a single project are called launch configurations.

The IDE uses the CodeWarrior Project view to list all the files in a project that includes
source code files and libraries.

You can easily add or remove the files. You can also assign the files to one or more
different build configurations within the project, to manage the files common within the
multiple build configurations.

The IDE manages all the interdependencies between the files automatically and tracks the
files that are changed since the last build.

The IDE also stores the settings for the compiler and linker options for each build
configuration. You can modify these settings using the IDE, or with #pragma statements in
your code.

1.4.2 Compiling

To compile a source code file, it must be among the files that are the part of the current
launch configuration. If the file is in the configuration, select it in the CodeWarrior
Projects view and select Project > Build Project from the CodeWarrior IDE menu bar.

To automatically compile all the files in the current launch configuration after you
modify them, select Project > Build Automatically from the CodeWarrior IDE menu
bar.

1.4.3 Linking

Select Project > Build Project from the CodeWarrior IDE menu bar to link an object
code to a final binary file. The Build Project command updates the selected project, then
links the resulting object code into a final output file.

You can control the linker through the IDE. There is no need to specify a list of object
files. The Workspace tracks all the object files automatically.

CodeWarrior development process

CodeWarrior Development Studio for Advanced Packet Processing Targeting Manual, Rev. 10.2, 01/2016

16 Freescale Semiconductor, Inc.

You can also modify the build configuration settings to specify the name of the final
output file.

1.4.4 Editing code

The CodeWarrior IDE has an integral text editor designed for programmers. It supports
the text files in ASCII, Microsoft® Windows®, and UNIX® formats.

To edit a file in a project, double-click the file name in the CodeWarrior Projects view.
The CodeWarrior IDE opens the file in the editor associated with the file type.

The editor view has excellent navigational features that allow you to switch between
related files, locate any particular function, mark any location within a file, or go to a
specific line of code.

1.4.5 Debugging

Select Run > Debug from the CodeWarrior IDE menu bar to debug your project. This
command downloads the current project's executable to the target board and starts a
debug session.

NOTE
Before you start debugging your project, you must configure
the debugger settings for the launch configuration by selecting
Run > Debug Configurations from the CodeWarrior IDE
menu bar. The CodeWarrior IDE uses the settings in the launch
configuration to generate the debugging information and
initiates the communication with the target board.

You can now use the debugger to step through the code of the program, view and change
the value of variables, set breakpoints, and much more. For more information, see
Working with the Debugger chapter of the CodeWarrior Common Features Guide
available in the <CWInstallDir>\CW_APP\LS\Help\PDF\ folder, where <CWInstallDir> is the path
where you have installed your CodeWarrior software.

Chapter 1 Introduction

CodeWarrior Development Studio for Advanced Packet Processing Targeting Manual, Rev. 10.2, 01/2016

Freescale Semiconductor, Inc. 17

CodeWarrior development process

CodeWarrior Development Studio for Advanced Packet Processing Targeting Manual, Rev. 10.2, 01/2016

18 Freescale Semiconductor, Inc.

Chapter 2
Working with Projects

This chapter explains how to create, build and debug projects for the boards that are
supported by the current release of CodeWarrior Development Studio for Advanced
Packet Processing.

• CodeWarrior bareboard project wizard
• Creating projects
• Building projects
• Debugging projects
• Deleting project

2.1 CodeWarrior bareboard project wizard

The CodeWarrior Bareboard Project Wizard presents a series of pages that prompt
you for the features and settings to be used for creating your program. This wizard also
helps you specify other settings, such as whether the program executes on a simulator
rather than actual hardware.

This topic describes the various pages that the CodeWarrior Bareboard Project
Wizard displays as it assists you in creating a bareboard project.

NOTE
The pages that the wizard presents can differ, based on the
project type or execution target you selected.

The pages of the CodeWarrior Bareboard Project Wizard are as follows:

• Create a CodeWarrior Bareboard Project page
• Processor page
• Debug Target Settings page
• Build Settings page

CodeWarrior Development Studio for Advanced Packet Processing Targeting Manual, Rev. 10.2, 01/2016

Freescale Semiconductor, Inc. 19

• Configurations page
• Software Analysis page

2.1.1 Create a CodeWarrior Bareboard Project page

Use this page to specify the project name and the directory where the project files are
located. This figure shows the Create a CodeWarrior Bareboard Project page.

Figure 2-1. Create a CodeWarrior Bareboard Project page

The table below lists and describes the various options available on the Create a
CodeWarrior Bareboard Project page.

Table 2-1. Create a CodeWarrior Bareboard Project page settings

Option Description

Project name Enter the name for the project in this text box.

Use default location Select to choose the directory to store the files required to
build the program. Use the Location option to select the
desired directory.

Location Specifies the directory that contains the project files. Use the
Browse button to navigate to the desired directory. This
option is only available when Use default location is cleared.
Ensure that you append the path with the name of the project
to create a new location for your project.

CodeWarrior bareboard project wizard

CodeWarrior Development Studio for Advanced Packet Processing Targeting Manual, Rev. 10.2, 01/2016

20 Freescale Semiconductor, Inc.

2.1.2 Processor page

This page displays the processors supported by the current installation. Use this page to
specify the type of processor and the output for the new project. The figure listed below
shows the Processor page.

Figure 2-2. Processor page

The table below describes the various options available on the Processor page.

Table 2-2. Processor Page Settings

Option Description

Processor Expand the processor family tree and select a supported
target. The toolchain uses this choice to generate code that
makes use of processor-specific features, such as multiple
cores.

Project Output Select any one of the following supported project output:
• Application-Select to create an application with

" .elf" extension, that includes information related to
the debug over a board.

• Static Library-Select to create a library with " .a"
extension, that can be included in other projects. Library
files created using this option do not include board
specific details.

Chapter 2 Working with Projects

CodeWarrior Development Studio for Advanced Packet Processing Targeting Manual, Rev. 10.2, 01/2016

Freescale Semiconductor, Inc. 21

2.1.3 Debug Target Settings page

This page displays the debugger connection types supported by the current installation.
Use this page to specify the connection type and the launch configurations created for the
new project.

NOTE
This wizard page may prompt you to either create a new remote
system configuration or select an existing one.

A remote system is a system configuration that defines
connection, initialization, and target parameters. The remote
system explorer provides data models and frameworks to
configure and manage remote systems, their connections, and
their services. For more information, see CodeWarrior
Common Features Guide available in the <CWInstallDir>\CW_APP
\LS\Help\PDF\ folder, where <CWInstallDir> is the path where you
have installed your CodeWarrior software.

Figure 2-3. Debug Target Settings page

CodeWarrior bareboard project wizard

CodeWarrior Development Studio for Advanced Packet Processing Targeting Manual, Rev. 10.2, 01/2016

22 Freescale Semiconductor, Inc.

The table below describes the various options available on the Debug Target Settings
page.

Table 2-3. Debug Target Settings page settings

Option Description

Debugger Connection Types Specifies the target on which the program executes on.
• Hardware - Select to execute the program on a

hardware board.
• Simulator - Select to execute the program on a

software simulator.

Board Specifies the hardware supported by the selected processor.

Launch Specifies the launch configurations and the corresponding
connection, supported by the selected processor.

Connection Type Specifies the interface to communicate with the target.

TAP address Specify the IP address of the selected TAP device. This
option is disabled and not supported in the current release.

2.1.4 Build Settings page

This page displays the toolchains supported by the current installation. Use this page to
specify the toolchain and the output project type for the new project. The figure listed
below shows the Build Settings page.

Chapter 2 Working with Projects

CodeWarrior Development Studio for Advanced Packet Processing Targeting Manual, Rev. 10.2, 01/2016

Freescale Semiconductor, Inc. 23

Figure 2-4. Build Settings page

The table below describes the various options available on the Build Settings page.

Table 2-4. Build Settings page setting

Option Description

Language Specifies the programming language used by the new project.
The current installation supports the following languages:

• C - Select to generate ANSI C-compliant startup code,
and initializes global variables.

Toolchain Specifies the toolchains supported by the current installation.
Selected toolchain sets up the default compiler, linker, and
libraries used to build the new project. Each toolchain
generates code targeted for a specific platform.

Floating Point Specifies how the compiler handles floating-point operations,
encountered in the source code.

2.1.5 Configurations page

Use this page to specify the processing model and the processor core that executes the
project. The figure listed below shows the Configurations page.

CodeWarrior bareboard project wizard

CodeWarrior Development Studio for Advanced Packet Processing Targeting Manual, Rev. 10.2, 01/2016

24 Freescale Semiconductor, Inc.

Figure 2-5. Configurations page

The table below describes the various options available on the Configurations page.

Table 2-5. Configurations page setting

Option Description

Processing Model The current installation supports the following processing
models:

• SMP - Select this option to generate a single project for
the selected cores. The cores share the same interrupt
vector, text, data sections and heap memory. Each core
has its own, dedicated stack. A single initialization file
should be executed for each core.

NOTE: The SMP option is disabled and not available for
selection in the current release.

• AMP (one project per core) - Select this option to
generate a separate project for each selected core. The
option will also set the core index for each project
based on the core selection.

• AMP (one build configuration per core) - Select this
option to generate one project with multiple targets,
each containing an lcf file for the specified core.

Core index Select the processor core that executes the project.

Chapter 2 Working with Projects

CodeWarrior Development Studio for Advanced Packet Processing Targeting Manual, Rev. 10.2, 01/2016

Freescale Semiconductor, Inc. 25

2.1.6 Software Analysis page

Use this page to enable the GNU coverage support to analyze the source code that runs
on the AIOP or MC cores, or to enable the stack usage estimation at the linker level. The
figure listed below shows the Software Analysis page.

Figure 2-6. Software Analysis page

The table below describes the various options available on the Software Analysis page.

Table 2-6. Software Analysis page setting

Option Description

Enable Coverage Support Controls the Trace and profile analysis tool. For more details,
refer Tracing and Profile Analysis.

Enable Stack Usage Estimation at Linker Level Controls the generation of stack usage information in the
linker map file.

Enable Point to Point Profiler Controls performance gathering. For more details, refer Point
to Point Profiler.

2.2 Creating projects

Creating projects

CodeWarrior Development Studio for Advanced Packet Processing Targeting Manual, Rev. 10.2, 01/2016

26 Freescale Semiconductor, Inc.

This section explains how to use the CodeWarrior Bareboard Project Wizard to
quickly create new projects with default settings (build and launch configurations).

This chapter explains the following topics:

• Creating CodeWarrior bareboard application project
• Creating CodeWarrior bareboard library project

2.2.1 Creating CodeWarrior bareboard application project

To create an application project using the CodeWarrior Bareboard Project Wizard,
perform these steps:

1. Select Start > All Programs > Freescale CodeWarrior > CW4NET vnumber >
CodeWarrior for APP, where number is the version number of your product.

The Workspace Launcher dialog appears, prompting you to select a workspace to
use.

NOTE
Click Browse to change the default location for workspace
folder. You can also select the Use this as the default and
do not ask again checkbox to set default or selected path
as the default location for storing all your projects.

2. Click OK.

The default workspace is accepted. The CodeWarrior IDE launches and the
Welcome page appears.

NOTE
The Welcome page appears only if the CodeWarrior IDE
or the selected Workspace is opened for the first time.
Otherwise, the Workbench window appears.

3. Click Go to Workbench, on the Welcome page.

The Workbench window appears.

4. Select File > New > CodeWarrior Bareboard Project Wizard, from the
CodeWarrior IDE menu bar.

The CodeWarrior Bareboard Project Wizard launches and the Create a
CodeWarrior Bareboard Project page appears.

Chapter 2 Working with Projects

CodeWarrior Development Studio for Advanced Packet Processing Targeting Manual, Rev. 10.2, 01/2016

Freescale Semiconductor, Inc. 27

5. Specify a name for the new project in the Project name text box.

For example, enter the project name as application_project.

6. If you do not want to create your project in the default workspace:
a. Clear the Use default location checkbox.
b. Click Browse and select the desired location from the Browse For Folder

dialog box.
c. In the Location text box, append the location with the name of the directory in

which you want to create your project.

NOTE
An existing directory cannot be specified for the
project location.

7. Click Next.

The Processor page appears.

8. Select the target processor for the new project, from the Processor list.
9. Select Application from the Project Output group, to create an application

with .elf extension, that includes information required to debug the project.
10. Click Next.

The Debug Target Settings page appears.

11. Select a supported connection type, from the Debugger Connection Types group.
Your selection determines the launch configurations that you can include in your
project.

12. Select the hardware or simulator, you plan to use, from the Board drop-down list.

NOTE
Hardware or simulators that supports the target processor
you selected on the Processor page, are only available for
selection.

13. Select the launch configurations, that you want to include in your project and the
corresponding connection.

14. Select the interface to communicate with the hardware, from the Connection Type
dropdown.

15. Specify the IP address of the TAP device in the TAP address text box.

NOTE
This option is disabled and cannot be edited for
CodeWarrior TAP (over USB) option.

16. Click Next.

Creating projects

CodeWarrior Development Studio for Advanced Packet Processing Targeting Manual, Rev. 10.2, 01/2016

28 Freescale Semiconductor, Inc.

The Build Settings page appears.

17. Select the programming language, you want to use, from the Language group.

The language you select determines the libraries that are linked with your program
and the contents of the main source file that the wizard generates.

18. Select a toolchain from the Toolchain group.

Selected toolchain sets up the default compiler, linker, and libraries used to build the
new project. Each toolchain generates code targeted for a specific platform.

19. Select an option from the Floating Point drop-down list, to prompt the compiler to
handle the floating-point operations by generating instructions for the selected
floating-point unit.

20. Click Next.

The Configurations page appears.

21. Select a processing model option from the Processing Model group.

NOTE
The SMP option is disabled and cannot be selected in the
current release.

• Select AMP (One project per core) to generate a separate project for each
selected core. The option will also set the core index for each project based on
the core selection.

• Select AMP (One build configuration per core) to generate one project with
multiple targets, each containing an .lcf file for the specified core.

22. Select the processor core that executes the project, from the Core index list.
23. Click Next.

The Software Analysis page appears.

24. If you plan to analyze the source code, select Enable Coverage Support .
25. If you plan to generate stack usage information in the linker map file, select Enable

Stack Usage Estimation at Linker Level.
26. Select Enable Point to Point Profiler, if you plan to enable performance gathering.
27. Click Finish.

The wizard creates an application project according to your specifications. You can
access the project from the CodeWarrior Projects view.

The new project is ready for use. You can now customize the project by adding your own
source code files, changing debugger settings and adding libraries.

Chapter 2 Working with Projects

CodeWarrior Development Studio for Advanced Packet Processing Targeting Manual, Rev. 10.2, 01/2016

Freescale Semiconductor, Inc. 29

2.2.2 Creating CodeWarrior bareboard library project

To create a library project using the CodeWarrior Bareboard Project Wizard, perform
these steps:

1. Select Start > All Programs > Freescale CodeWarrior > CW4NET vnumber >
CodeWarrior for APP, where number is the version number of your product.

The Workspace Launcher dialog appears, prompting you to select a workspace to
use.

NOTE
Click Browse to change the default location for workspace
folder. You can also select the Use this as the default and
do not ask again checkbox to set default or selected path
as the default location for storing all your projects.

2. Click OK.

The default workspace is accepted. The CodeWarrior IDE launches and the
Welcome page appears.

NOTE
The Welcome page appears only if the CodeWarrior IDE
or the selected Workspace is opened for the first time.
Otherwise, the Workbench window appears.

3. Click Go to Workbench, on the Welcome page.

The Workbench window appears.

4. Select File > New > CodeWarrior Bareboard Project Wizard, from the
CodeWarrior IDE menu bar.

The IDE launches the wizard and the Create a CodeWarrior Bareboard Project
page appears.

5. Specify a name for the new project in the Project name text box.

For example, enter the project name as application_project.

6. If you do not want to create your project in the default workspace:
a. Clear the Use default location checkbox.
b. Click Browse and select the desired location from the Browse For Folder

dialog box.

Creating projects

CodeWarrior Development Studio for Advanced Packet Processing Targeting Manual, Rev. 10.2, 01/2016

30 Freescale Semiconductor, Inc.

c. In the Location text box, append the location with the name of the directory in
which you want to create your project.

NOTE
An existing directory cannot be specified for the
project location.

7. Click Next.

The Processor page appears.

8. Select the target processor for the new project, from the Processor list.
9. Select Static Library from the Project Output group, to create a library with .a

extension, that can be included in other projects. Library files created using this
option do not include board specific details.

10. Click Next.

The Build Settings page appears.

11. Select the programming language, you want to use, from the Language group.

The language you select determines the libraries that are linked with your program
and the contents of the main source file that the wizard generates.

12. Select the architecture type used by the new project, from the Build Tools
Architecture group. This option may not be available for some target processors
selected on the Processor page.

13. Select a toolchain from the Toolchain group.

Selected toolchain sets up the default compiler, linker, and libraries used to build the
new project. Each toolchain generates code targeted for a specific platform.

14. Select an option from the Floating Point drop-down list, to prompt the compiler to
handle the floating-point operations by generating instructions for the selected
floating-point unit.

15. Click Finish.

The wizard creates a library project according to your specifications. You can access
the project from the CodeWarrior Projects view.

The new library project is ready for use. You can now customize the project to match
your requirements.

2.3 Building projects

Chapter 2 Working with Projects

CodeWarrior Development Studio for Advanced Packet Processing Targeting Manual, Rev. 10.2, 01/2016

Freescale Semiconductor, Inc. 31

The CodeWarrior IDE supports two modes of building projects:

• Manual-build mode
• Auto-build mode

2.3.1 Manual-build mode

In the large workspaces, building the entire workspace can take a long time if users make
changes with a significant impact on dependent projects. Often there are only a few
projects that really matter to a user at a given time.

To build only the selected projects, and any prerequisite projects that need to be built in,
select Project > Build Project from the CodeWarrior IDE menu bar. Alternatively,
right-click on the selected project in the CodeWarrior Projects view and select Build
Project from the context menu.

To build the entire workspace, select Project > Build All from the IDE menu bar.

2.3.2 Auto-build mode

You can configure the CodeWarrior IDE to compie the source files automatically. When
auto-build is enabled, builds will occur automatically in the background every time you
make changes to the files. To automatically build all the projects in a workspace, select
Project > Build Automatically from the CodeWarrior IDE menu bar.

If auto-build needs to be disabled then select Project > Build Automatically from the
CodeWarrior IDE menu bar.

NOTE
It is advised that you do not use the Build Automatically
option for C/C++ development. Using this option results in
building the entire project whenever you save a change to the
makefile or source files. This can take a significant amount of
time for very large projects.

2.4 Debugging projects

Debugging projects

CodeWarrior Development Studio for Advanced Packet Processing Targeting Manual, Rev. 10.2, 01/2016

32 Freescale Semiconductor, Inc.

The CodeWarrior Bareboard Project Wizard sets the debugger settings of the project's
launch configurations to default values. You can change these default values based on
your requirements.

To modify the debugger settings and start debugging a CodeWarrior project, perform
these steps:

1. Launch the CodeWarrior IDE.
2. From the CodeWarrior IDE menu bar, select Run > Debug Configurations.

CodeWarrior IDE uses the settings in the launch configuration to generate debugging
information and initiate communications with the target board.

The Debug Configurations dialog appears. The left side of this dialog box has a list
of debug configurations that apply to the current application.

3. Expand the CodeWarrior configuration.
4. From the expanded list, select the debug configuration that you want to modify.
5. Select a predefined debug session type or custom type for maximum flexibility.
6. From the Target settings group, select AIOP-0 for targeting AIOP.
7. Click Apply to save the new settings.

Tip
You can click Revert to undo any of the unsaved changes.
CodeWarrior IDE restores the last set of saved settings to
all pages of the Debug Configurations dialog. Also, the
IDE disables revert until you make new pending changes.

8. Click Debug to start the debugging session.

The Debug perspective appears.

You just modified the debugger settings and initialized a debugging session.

2.5 Deleting project

To delete a project, follow these steps:

1. Select the project you want to delete in the CodeWarrior Projects view.
2. Select Edit > Delete.

The Delete Resources dialog appears.

Chapter 2 Working with Projects

CodeWarrior Development Studio for Advanced Packet Processing Targeting Manual, Rev. 10.2, 01/2016

Freescale Semiconductor, Inc. 33

NOTE
Alternatively, you can also select Delete from the context
menu that appears when you right-click the project.

3. Check Delete project contents on disk (cannot be undone) option to delete the
project contents permanently.

4. Click OK.

You just finished deleting a project using the CodeWarrior IDE.

Deleting project

CodeWarrior Development Studio for Advanced Packet Processing Targeting Manual, Rev. 10.2, 01/2016

34 Freescale Semiconductor, Inc.

Chapter 3
Debug Configuration

A CodeWarrior project can have multiple associated debug configurations. A debug
configuration is a named collection of settings that the CodeWarrior tools use.

Debug configurations let you specify settings, such as:

• the files that belong to the debug configuration
• behavior of the debugger and the related debugging tools

This chapter explains:

• Using CodeWarrior debug configuration tabs
• Customizing debug configurations
• Reverting debug configuration settings

3.1 Using CodeWarrior debug configuration tabs

This section lists the debugger settings specific to developing software using
CodeWarrior Development Studio for Advanced Packet Processing.

NOTE
As you modify a debug configuration's debugger settings, you
create pending, or unsaved, changes to that debug
configuration. To save the pending changes, you must click the
Apply button of the Debug Configurations dialog box, or
click Close button and then the Yes button.

The following table lists the various debugger setting panels.

CodeWarrior Development Studio for Advanced Packet Processing Targeting Manual, Rev. 10.2, 01/2016

Freescale Semiconductor, Inc. 35

Table 3-1. Debug configuration tabs

Main

Arguments

Debugger Debug

Download

PIC

System Call Services

Other Executables

Symbolics

OS Awareness

Trace and Profile

Source

Environment

Common

3.1.1 Main

Use this tab to specify the project and the application you want to run or debug.

You also specify a remote system configuration on this tab. The remote system
configuration is separated into connection and system configurations allowing you to
define a single system configuration that can be referred to by multiple connection
configurations. The launch configurations refer to a connection configuration, which in
turn refers to a system configuration.

NOTE
The options displayed on the Main tab varies depending on the
selected debug session type.

Using CodeWarrior debug configuration tabs

CodeWarrior Development Studio for Advanced Packet Processing Targeting Manual, Rev. 10.2, 01/2016

36 Freescale Semiconductor, Inc.

Figure 3-1. Debug Configurations - Main tab

The table below lists the various options available on the Main tab page.

Table 3-2. Main tab options

Option Description

Debug session type Specifies the options to initiate a debug session using pre-
configured debug configurations. The options include:

• Download - Resets the target if the debug configuration
specifies the action. Further, the command stops the
target, (optionally) runs an initialization script,
downloads the specified ELF file, and modifies the
program counter(PC).

• Attach - Assumes that code is already running on the
board and therefore does not run a target initialization
file. The state of the running program is undisturbed.
The debugger loads symbolic debugging information for
the current build target's executable. The result is that
you have the same source-level debugging facilities you
have in a normal debug session (the ability to view
source code and variables, and so on). The function
does not reset the target, even if the launch
configuration specifies this action. Further, the
command loads symbolics, does not stop the target, run
an initialization script, download an ELF file, or modify
the program counter (PC).

NOTE: The debugger does not support restarting
debugging sessions that you start by attaching the
debugger to a process.

• Connect - Runs the target initialization file specified in
the RSE configuration to set up the board before
connecting to it. The Connect debug session type does

Table continues on the next page...

Chapter 3 Debug Configuration

CodeWarrior Development Studio for Advanced Packet Processing Targeting Manual, Rev. 10.2, 01/2016

Freescale Semiconductor, Inc. 37

Table 3-2. Main tab options (continued)

Option Description

not load any symbolic debugging information for the
current build target's executable thereby, denying
access to source-level debugging and variable display.
The Connect command resets the target if the launch
configuration specifies this action. Further, the
command stops the target, (optionally) runs an
initialization script, does not load symbolics, download
an ELF file, or modify the program counter(PC).

NOTE: The default debugger configuration causes the
debugger to cache symbolics between sessions.
However, selecting the Connect option invalidates this
cache. If you must preserve the contents of the
symbolics cache, and you plan to use the Connect
option, clear the Cache Symbolics Between Sessions
check box in the Symbolics tab page.

• Custom - Provides user an advantage to create a
custom debug configuration.

C/C++ application Specifies the settings for the C/C++ application. The options
include:

• Project - Specifies the name of the project associated
with the selected debug launch configuration. Click
Browse to select a different project.

• Application - Specifies the name of the C or C++
application executable.

NOTE: This option is disabled when Connect debug
session type is selected.

• Search Project - Click to open the Program Selection
dialog box and select a binary.

NOTE: This option is disabled when Connect debug
session type is selected.

• Variables - Click to open the Select build variable
dialog box and select the build variables to be
associated with the program.

NOTE: The dialog box displays an aggregation of
multiple variable databases and not all these variables
are suitable to be used from a build environment. Given
below are the variables that should be used:

ProjDirPath - returns the absolute path of the current
project location in the file system

${ProjDirPath}/Source/main.c"

workspace_loc - returns the absolute path of a
workspace resource in the file system, or the location of
the workspace if no argument is specified

${workspace_loc:/ProjectName/Source main.c"$
{workspace_loc}

Gnu_Make_Install_Dir - returns the absolute path of the
GNU make.exe tool

${Gnu_Make_Install_Dir}\make.exe

Table continues on the next page...

Using CodeWarrior debug configuration tabs

CodeWarrior Development Studio for Advanced Packet Processing Targeting Manual, Rev. 10.2, 01/2016

38 Freescale Semiconductor, Inc.

Table 3-2. Main tab options (continued)

Option Description

NOTE: This option is disabled when Connect debug
session type is selected.

Build (if required) before launching Controls how auto build is configured for the launch
configuration. Changing this setting overrides the global
workspace setting and can provide some speed
improvements. NOTE: These options are set to default and
collapsed when Connect debug session type is selected. The
options include:

• Build configuration - Specifies the build configuration
either explicitly or use the current active configuration.

• Select configuration using `C/C++ Application' -
Select/clear to enable/disable automatic selection of the
configuration to be built, based on the path to the
program.

• Enable auto build - Enables auto build for the debug
configuration which can slow down launch performance.

• Disable auto build - Disables auto build for the debug
configuration which may improve launch performance.
No build action will be performed before starting the
debug session. You have to rebuild the project
manually.

• Use workspace settings - Uses the global auto build
settings.

• Configure Workspace Settings - Opens the
Launching preference panel where you can change
the workspace settings. It will affect all projects that do
not have project specific settings.

Target settings Specifies the connection and other settings for the target. The
options include:

• Connection - Specifies the applicable Remote System
configuration.

• Edit - Click to edit the selected Remote System
configuration.

• New - Click to create a new Remote System
configuration for the selected project and application.

• Execute reset sequence - Select to apply reset
settings, specified in the target configuration, when
attaching to a target. Alternatively, clear the option to
ignore reset settings.

NOTE: This option is not avaialble when Connect
debug session type is selected.

• Execute initialization script(s) - Select to execute the
initialization script(s), specified in the target
configuration, when attaching to a target. Alternatively,
clear the option to ignore the initialization script(s).

NOTE: This option is not available when Connect
debug session type is selected.

• Target - Select the target core.

Chapter 3 Debug Configuration

CodeWarrior Development Studio for Advanced Packet Processing Targeting Manual, Rev. 10.2, 01/2016

Freescale Semiconductor, Inc. 39

3.1.2 Arguments

Use this tab to specify the program arguments that an application uses and the working
directory for a run or debug configuration.

Figure 3-2. Debug Configurations - Arguments tab

The table below lists the various options available on the Arguments tab page.

Table 3-3. Arguments tab options

Option Description

Program arguments Specifies the arguments passed on the command line.

Variables Click to select variables by name to include in the program
arguments list.

Working directory Specifies the run/debug configuration working directory.

Use default Select to specify the local directory or clear to specify a
different workspace, a file system location, or variable.

Workspace Click to specify the path of, or browse to, a workspace relative
working directory.

File System Click to specify the path of, or browse to, a file system
directory.

Variables Click to specify variables by name to include in the working
directory.

3.1.3 Debugger

Use this tab to configure debugger settings. The Debugger tab presents various debugger
configuration options.

Using CodeWarrior debug configuration tabs

CodeWarrior Development Studio for Advanced Packet Processing Targeting Manual, Rev. 10.2, 01/2016

40 Freescale Semiconductor, Inc.

NOTE
The content in the Debugger tab page changes, depending on
the Debug session type selected on the Main tab page.

Figure 3-3. Debug Configurations - Debugger tab

The table below lists the various options available on the Debugger tab page.

Table 3-4. Debugger tab options

Option Description

Debugger Options Displays configuration options specific to the selected
debugger type. Refer to the following sections for more
details:

• Debug
• Download
• PIC
• System Call Services
• Other Executables
• Symbolics
• OS Awareness

3.1.3.1 Debug

Use this page to specify the program execution options, breakpoint and watchpoint
options, and target access behavior.

Chapter 3 Debug Configuration

CodeWarrior Development Studio for Advanced Packet Processing Targeting Manual, Rev. 10.2, 01/2016

Freescale Semiconductor, Inc. 41

Figure 3-4. Debugger options - Debug page

The table below lists the various options available on the Debug page.

NOTE
The options displayed on the Debug tab varies depending on
the Debug session type selection on the Main tab page.

Table 3-5. Debug page options

Option Description

Initialize program counter at Controls the initialization of program counter.
• Program entry point - Select to initialize the program

counter at a specified program entry pont.
• User specified - Select to initialize the program counter

at a user-specified function. The default location is
main.

NOTE: Disabling this option will also disable the Resume
program and Stop on startup at options.

Resume program Select to resume the execution after the program counter is
initialized. NOTE: Disabling this option will also disable the
Stop on startup at option.

Stop on startup at Stops program at specified location. When cleared, the
program runs until you interrupt it manually, or until it hits a
breakpoint.

• Program entry point - Select to stop the debugger at a
specified program entry pont.

• User specified - Select to stop the debugger at a user-
specified function. The default location is main.

Table continues on the next page...

Using CodeWarrior debug configuration tabs

CodeWarrior Development Studio for Advanced Packet Processing Targeting Manual, Rev. 10.2, 01/2016

42 Freescale Semiconductor, Inc.

Table 3-5. Debug page options (continued)

Option Description

Stop on exit Check this option to have the debugger set a breakpoint at
the code's exit point. For multicore projects, when you set this
option for one project on one core, it is set for projects on the
other cores. Clear this option to prevent the debugger from
setting a breakpoint at the code's exit point.

Install regular breakpoints as Check this option to install breakpoints as either:
• Regular
• Hardware
• Software

Clear this option to install breakpoints as Regular breakpoints.

Restore watchpoints Check this option to restore previous watchpoints.

Disable display of variable values by default Check this option to disable the display of variable
valuesClear this option to enable the display of variable
values

Disable display of register values by default Check this option to disable the display of register
valuesClear this option to enable the display of register values

Refresh while running period (seconds) Specifies the refresh period used when a view is configured to
refresh, while the application is running.

3.1.3.2 Download

Use this page to specify which executable code sections the debugger downloads to the
target, and whether the debugger should read back those sections and verify them.

NOTE
Selecting all options in the Perform standard download group
significantly increases the download time.

The First options apply to the first debugging session. The Subsequent runs options
apply to subsequent debugging sessions. The Download options control whether the
debugger downloads the specified Program Section data type to the target hardware.
The Verify options control whether the debugger reads the specified program section
data type from the target hardware and compares the read data against the data written to
the device.

Chapter 3 Debug Configuration

CodeWarrior Development Studio for Advanced Packet Processing Targeting Manual, Rev. 10.2, 01/2016

Freescale Semiconductor, Inc. 43

Figure 3-5. Debugger options - Download page

The table below lists the various options available on the Download page.

Table 3-6. Download page options

Option Description

Perform standard download Controls download of the target application using memory
write command

Executable Controls downloading and verification for executable sections.
Check appropriate check boxes to specify downloading and
verifications, for initial launch and for subsequent runs

Constant Data Controls downloading and verification for constant-data
sections. Check appropriate check boxes to specify
downloading and verifications, for initial launch and for
subsequent runs

Initialized Data Controls downloading and verification for initialized-data
sections. Check appropriate check boxes to specify
downloading and verifications, for initial launch and for
subsequent runs

Uninitialized Data Controls downloading and verification for uninitialized-data
sections. Check appropriate check boxes to specify
downloading and verifications, for initial launch and for
subsequent runs

Execute Tasks Enables the execution of target tasks

Name For target tasks, this is the name of the target task as seen in
the Target Task view. For Debugger Shell scripts, this is the
path to the CLDE script

Task Type Contains either Debugger Shell scripts or target tasks (such
as Flash Programmer)

Add Adds a download task that can be either a target task or
Debugger shell script

Remove Removes the selected target task or debugger shell script

Up Moves the selected task up the list

Table continues on the next page...

Using CodeWarrior debug configuration tabs

CodeWarrior Development Studio for Advanced Packet Processing Targeting Manual, Rev. 10.2, 01/2016

44 Freescale Semiconductor, Inc.

Table 3-6. Download page options (continued)

Option Description

Down Moves the selected task down the list

3.1.3.3 PIC

Use this page to specify an alternate address at which the debugger loads the position
independent code (PIC) module onto target memory. Usually, PIC is linked in such a way
that the entire image starts at address 0x00000000.

Figure 3-6. Debugger options - PIC page

The table below lists the various options available on the PIC page.

Table 3-7. PIC page options

Option Description

Alternate Load Address Specify the starting address at which the debugger loads your
program. You can also use this setting when you have an
application which is built with ROM addresses and then
relocates itself to RAM (such as U-Boot). Specifying a
relocation address lets the debugger map the symbolic
debugging information contained in the original ELF file (built
for ROM addresses) to the relocated application image in
RAM. Clear the check box to have the debugger load your
program at a default starting address.

Chapter 3 Debug Configuration

CodeWarrior Development Studio for Advanced Packet Processing Targeting Manual, Rev. 10.2, 01/2016

Freescale Semiconductor, Inc. 45

NOTE
The debugger does not verify whether your code can execute at
the specified address. As a result, the PIC generation settings of
the compiler, linker and your program's startup routines must
correctly set any base registers and perform any required
relocations.

3.1.3.4 System Call Services

Use this page to activate the debugger's support for system calls and to select options that
define how the debugger handles system calls. The CodeWarrior debugger provides
system call support over JTAG. System call support lets bareboard applications use the
functions of host OS service routines. This feature is useful if you do not have a board
support package (BSP) for your target board.

The host debugger implements these services. Therefore, the host OS service routines are
available only when you are debugging a program on a target board or simulator.

NOTE
The OS service routines provided must comply with an
industry-accepted standard. The definitions of the system
service functions provided are a subset of Single UNIX
Specification (SUS).

Figure 3-7. Debugger options -System Call Services page

Using CodeWarrior debug configuration tabs

CodeWarrior Development Studio for Advanced Packet Processing Targeting Manual, Rev. 10.2, 01/2016

46 Freescale Semiconductor, Inc.

The table below lists the various options available on the System Call Services page.

Table 3-8. System Call Services page options

Option Description

Activate Support for System Services Check this option to enable support for system services. All
the other options on the System Call Services panel are
enabled only if you check this check box.

stdout/stderr By default, the output written to stdout and stderr appears in a
CodeWarrior IDE "console" window. To redirect console
output to a file, check the stdout/stderr check box.Click
Browse to display a dialog box and specify the path and name
of this file.

Use shared console window Check this option if you wish to share the same console
window between different debug targets. This setting is useful
in multi-core or multi-target debugging.

Trace level Use this drop-down list to specify the system call trace level.
The place where the debugger displays the traced system
service requests is determined by the Trace check box.The
system call trace level options available are:

• No Trace - system calls are not traced
• Summary - the requests for system services are

displayed
• Detailed - the requests for system services are

displayed along with the arguments/parameters of the
request

Trace By default, traced system service requests appear in a
CodeWarrior IDE "console" window.To log traced system
service requests to a file, check the Trace check box. Click
Browse to display a dialog box and define the path and name
of this file.In a project created through the CodeWarrior
Bareboard Project wizard, use the library syscall.a rather than
a UART library for handling the output.

Root folder The directory on the host system which contains the OS
routines that the bareboard program uses for system calls.

3.1.3.5 Other Executables

Use this page to specify additional ELF files to download or debug in addition to the
main executable file associated with the launch configuration.

Chapter 3 Debug Configuration

CodeWarrior Development Studio for Advanced Packet Processing Targeting Manual, Rev. 10.2, 01/2016

Freescale Semiconductor, Inc. 47

Figure 3-8. Debugger options - Other Executables page

The table below lists the various options available on the Other Executables page.

Table 3-9. Other Executables page options

Option Description

File Shows files and projects that the debugger uses during each

debug session. The Debug column () - If this option is
checked the debugger loads symbolics for the file. If you clear
this option, the IDE does not load symbolics for the file. The

Download column () - If this option is checked the
debugger downloads the file to the target device. If you clear
this option, the debugger does not download the file to the
target device.

Add Click to open the Debug Other Executable dialog box. Use
the dialog box to specify the following settings:

• Specify the location of the additional executable - Enter
the path to the executable file that the debugger
controls in addition to the current project's executable
file. Alternatively, click the Workspace, File System or
Variables button to specify the file path.

• Load Symbols - Check this option to have the debugger
load symbols for the specified file. Clear to prevent the
debugger from loading the symbols. The Debug column
of the File list corresponds to this setting.

• Download to Device - Check this option to have the
debugger download the specified file to the target
device. Specify the path of the file in the Specify the
remote download path text box. Clear this option to
prevent the debugger from downloading the file to the
device. The Download column of the File list
corresponds to this setting.

• OK - Click to add the information that you specify in the
Debug Other Executable dialog box to the File list.

Table continues on the next page...

Using CodeWarrior debug configuration tabs

CodeWarrior Development Studio for Advanced Packet Processing Targeting Manual, Rev. 10.2, 01/2016

48 Freescale Semiconductor, Inc.

Table 3-9. Other Executables page options (continued)

Option Description

Change Click to open the Debug Other Executable dialog box. The
dialog box shows the current settings for selected executable
file in the File list column.Change this information as required
and click the OK button to update the entry in the File list.

Remove Click to remove the entry currently selected in the File list.

3.1.3.6 Symbolics

Use this page to specify whether the debugger keeps symbolics in memory. Symbolics
represent an application's debugging and symbolic information. Keeping symbolics in
memory, known as caching symbolics, is beneficial when you debug a large-size
application.

Consider a situation in which the debugger loads symbolics for a large application, but
does not download content to a hardware device and the project uses custom makefiles
with several build steps to generate this application. In such a situation, caching
symbolics helps speed up the debugging process. The debugger uses the readily available
cached symbolics during subsequent debugging sessions. Otherwise, the debugger spends
significant time creating an in-memory representation of symbolics during subsequent
debugging sessions.

NOTE
Caching symbolics provides significant benefit for large
applications, where doing so speeds up application-launch time.
If you debug a small application, caching symbolics does not
significantly improve the launch time.

Chapter 3 Debug Configuration

CodeWarrior Development Studio for Advanced Packet Processing Targeting Manual, Rev. 10.2, 01/2016

Freescale Semiconductor, Inc. 49

Figure 3-9. Debugger options - Symbolics page

The table below lists the various options available on the Symbolics page.

Table 3-10. Symbolics page options

Option Description

Cache Symbolics Between Sessions Check this option to have the debugger cache symbolics
between debugging sessions. If you check this check box and
clear the Create and Use Copy of Executable check box, the
executable file remains locked after the debugging session
ends. In the Debug view, right-click the locked file and select
Un-target Executables to have the debugger delete its
symbolics cache and release the file lock. The IDE enables
this menu command when there are currently unused cached
symbolics that it can purge.Clear this option so that the
debugger does not cache symbolics between debugging
sessions.

Create and Use Copy of Executable Check this option to have the debugger create and use a
copy of the executable file. Using the copy helps avoid file-
locking issues with the build system. If you check this check
box, the IDE can build the executable file in the background
during a debugging session.Clear this option so that the
debugger does not create and use a copy of the executable
file.

3.1.3.7 OS Awareness

Use this page to specify the operating system (OS) that resides on the target device.

Using CodeWarrior debug configuration tabs

CodeWarrior Development Studio for Advanced Packet Processing Targeting Manual, Rev. 10.2, 01/2016

50 Freescale Semiconductor, Inc.

Figure 3-10. Debugger options - OS Awareness page

The table below lists the options available on the OS Awareness page.

Table 3-11. OS Awareness page options

Option Description

Target OS Use the Target OS list box to specify the operating system that runs on the target
device. For details on activating the AIOP task awareness services, refer to the
AIOP task aware debugging section.

Enable AIOP task-specific breakpoints Controls support for AIOP task-specific breakpoint types such as per TaskX Global
Halt or task level.

Add task memory location columns in
System Browser

Controls the possibility of defining and selecting up to eight memory locations that
can be displayed as columns in the System Browser view. For more details, refer
Adding task memory location columns in System Browser.

Entry Controls if the column should be enabled and displayed in
the System Browser view.

Name Specifies the column name. The text specified should be
unique and can be alphanumeric.

Address Specifies the start memory location address. The specified
address can be of hex (FF00 or 0xFF0 or decimal formats.

Size Specifies the size, in bytes, to read. The specified size can
be of hex (FF00 or 0xFF) or decimal formats in the range of
1 - 1024.

Visible Controls the visibility of the column in the System Browser
view.

Show task information in System
Browser

Controls display of AIOP task information in System Browser view. For more
details, refer Viewing task entry point and OSM data in System Browser.

Show task entry point
in System Browser

Controls creation of custom column in the System Browser
view to display task entry point.

Show task OSM data
in System Browser

Controls display of Order scope manager (OSM) data of
each task in the System Browser view.

Table continues on the next page...

Chapter 3 Debug Configuration

CodeWarrior Development Studio for Advanced Packet Processing Targeting Manual, Rev. 10.2, 01/2016

Freescale Semiconductor, Inc. 51

Table 3-11. OS Awareness page options (continued)

Option Description

Retrieve information
only for non-idle
tasks

Controls retrieval of information about the active tasks only.
Select this option to improve System Browser
performance.

3.1.4 Trace and Profile

Use this tab to configure the hardware trace collection.

NOTE
Hardware trace collection is currently supported only by
projects configured to work with hardware emulators. The page
may appear different for projects created to work on simulator
targets.

Figure 3-11. Debug Configurations - Trace and Profile tab

The table below lists the various options available on the Trace and Profile tab page.

Table 3-12. Trace and Profile tab options

Option Description

Overview Provides an overview of the Hardware trace support in
CodeWarrior.

Table continues on the next page...

Using CodeWarrior debug configuration tabs

CodeWarrior Development Studio for Advanced Packet Processing Targeting Manual, Rev. 10.2, 01/2016

52 Freescale Semiconductor, Inc.

Table 3-12. Trace and Profile tab options (continued)

Option Description

Basic

Enable Trace and Profile Check to enable collection of hardware trace.

New Click to create a new platform configuration. Upon clicking,
the New Platform Configuration dialog appears.

Enter a name for the new platform configuration, select the
hardware and click OK to create a new platform
configuration.

Rename Click to rename the selected platform configuration. Upon
clicking, the Rename Platform Configuration dialog
appears.

Enter a new name for the selected platform configuration
and click OK to rename an existing platform configuration.

Edit Click to edit the trace platform configuration. Upon clicking,
the Software Analysis Configuration dialog appears.

Enable trace on individual AIOP and MC cores, select a
trace scenario and configure trace location and debug the
target to collect hardware trace.

Enable Point to Point Profiler Check to enable performance gathering.

Enable Code Coverage Check to enable trace collection.

Advanced settings Specifies the advanced setiings to configure the
communication settings, communication port number, and
processing scenerio for the simulator, CodeWarrior, or
compatibility mode.

3.1.5 Source

Use this tab to specify the location of source files used when debugging a C or C++
application. By default, this information is taken from the build path of your project.

Chapter 3 Debug Configuration

CodeWarrior Development Studio for Advanced Packet Processing Targeting Manual, Rev. 10.2, 01/2016

Freescale Semiconductor, Inc. 53

Figure 3-12. Debug Configurations - Source tab

The table below lists the various options available on the Source tab page.

Table 3-13. Source tab options

Option Description

Source Lookup Path Lists the source paths used to load an image after connecting
the debugger to the target.

Add Click to add new source containers to the Source Lookup
Path search list.

Edit Click to modify the content of the selected source container.

Remove Click to remove selected items from the Source Lookup
Path list.

Up Click to move selected items up the Source Lookup Path
list.

Down Click to move selected items down the Source Lookup Path
list.

Restore Default Click to restore the default source search list.

Search for duplicate source files on the path Select to search for files with the same name on a selected
path.

3.1.6 Environment

Use this tab to specify the environment variables and values to use when an application
runs.

Using CodeWarrior debug configuration tabs

CodeWarrior Development Studio for Advanced Packet Processing Targeting Manual, Rev. 10.2, 01/2016

54 Freescale Semiconductor, Inc.

Figure 3-13. Debug Configurations - Environment tab

The table below lists the various options available on the Environment tab page.

Table 3-14. Environment tab options

Option Description

Environment variables to set Lists the environment variable name and its value.

New Click to create a new environment variable.

Select Click to select an existing environment variable.

Edit Click to modify the name and value of a selected environment
variable.

Remove Click to remove selected environment variables from the list.

Append environment to native environment Select to append the listed environment variables to the
current native environment.

Replace native environment with specified environment Select to replace the current native environment with the
specified environment set.

3.1.7 Common

Use this tab to specify the location to store your run configuration, standard input and
output, and background launch options.

Chapter 3 Debug Configuration

CodeWarrior Development Studio for Advanced Packet Processing Targeting Manual, Rev. 10.2, 01/2016

Freescale Semiconductor, Inc. 55

Figure 3-14. Debug Configurations - Common tab

The table below lists the various options available on the Common tab page.

Table 3-15. Common tab options

Option Description

Local file Select to save the launch configuration locally.

Shared file Select to specify the path of, or browse to, a workspace to
store the launch configuration file, and be able to commit it to
a repository.

Display in favorites menu Select to add the configuration name to Run or Debug menus
for easy selection.

Encoding Select an encoding scheme to use for console output.

Allocate console (necessary for input) Select to assign a console view to receive the output.

File Specify the file name to save output.

Workspace Specifies the path of, or browse to, a workspace to store the
output file.

File System Specifies the path of, or browse to, a file system directory to
store the output file.

Variables Select variables by name to include in the output file.

Append Select to append output. Clear to recreate file each time.

Port Select to redirect standard output (stdout, stderr) of a
process being debugged to a user specified socket. Note:
You can also use the redirectcommand in debugger shell
to redirect standard output streams to a socket.

Act as Server Select to redirect the output from the current process to a
local server socket bound to the specified port.

Hostname/IP Address Select to redirect the output from the current process to a
server socket located on the specified host and bound to the
specified port. The debugger will connect and write to this
server socket via a client socket created on an ephemeral
port

Launch in background Select to launch configuration in background mode.

Using CodeWarrior debug configuration tabs

CodeWarrior Development Studio for Advanced Packet Processing Targeting Manual, Rev. 10.2, 01/2016

56 Freescale Semiconductor, Inc.

3.2 Customizing debug configurations

When you use the CodeWarrior wizard to create a new project, the wizard sets the
project's launch configurations to default values. You can change these default values
based on your program's requirements.

To modify the debug configurations:

1. Start the CodeWarrior IDE.
2. From the IDE menu bar, select Run > Debug Configurations.

The Debug Configurations dialog appears.

3. Expand the CodeWarrior debug configuration.
4. Select an option from the Debug session type group to specify the debug

configuration that you want to modify.

The figure below shows the CodeWarrior Debug Configuration dialog with the
settings for the debug session type you selected.

Figure 3-15. CodeWarrior Debug Configurations - Main tab
5. Change the settings on the debug configuration page as per your requirements. See

Using CodeWarrior debug configuration tabs section for details on the various
settings of this page.

Chapter 3 Debug Configuration

CodeWarrior Development Studio for Advanced Packet Processing Targeting Manual, Rev. 10.2, 01/2016

Freescale Semiconductor, Inc. 57

6. Click Apply to save the new settings.

NOTE
Click Debug to start a new debugging session, or click Close to
save your changes and close the Debug Configurations dialog.

3.3 Reverting debug configuration settings

As you modify a debug configuration's settings, you create pending, or unsaved, changes
to that launch configuration. To save the pending changes, you must click the Apply
button of the Debug Configurations dialog, or click the Close button and then the Yes
button.

Click Revert, to restore the last set of saved settings to all pages of the Debug
Configurations dialog. The IDE disables the Revert button until you make new pending
changes.

Reverting debug configuration settings

CodeWarrior Development Studio for Advanced Packet Processing Targeting Manual, Rev. 10.2, 01/2016

58 Freescale Semiconductor, Inc.

Chapter 4
Build Properties

A build configuration is a named collection of build tools options. The set of options in a
given build configuration causes the build tools to generate a final binary with specific
characteristics. For example, the binary produced by a "Debug" build configuration might
contain symbolic debugging information and have no optimizations, while the binary
product by a "Release" build configuration might contain no symbolics and be highly
optimized.

NOTE
The settings of the CodeWarrior IDE's build and launch
configuration correspond to an object called a target made by
the classic CodeWarrior IDE.

This chapter explains:

• Changing build properties
• Restoring build properties
• Build properties for APP

4.1 Changing build properties

You can modify the build properties of a project to better suit your needs. To change
build properties:

1. Start the CodeWarrior IDE.
2. In the CodeWarrior Projects view, select the project for which you want to modify

the build properties.
3. Select Project > Properties from the IDE menu bar.

The Properties for <project> dialog appears. The left panel of this dialog shows the
build properties that apply to the current project.

CodeWarrior Development Studio for Advanced Packet Processing Targeting Manual, Rev. 10.2, 01/2016

Freescale Semiconductor, Inc. 59

4. From the left panel, select C/C++ Build > Settings.
5. Use the Configuration drop-down list in the right panel to specify the launch

configuration for which you want to modify the build properties.
6. Click the Tool Settings tab. The corresponding page appears.
7. From the list of tools on the Tool Settings page, select the tool for which you want to

modify the properties.
8. Change the settings that appear in the page.
9. Click Apply.

The IDE saves your new settings. You can select other tool pages and modify their
settings.

10. Click OK.

The IDE saves your changes and closes the Properties for <project> dialog.

4.2 Restoring build properties

If you modify a build configuration of a project and might choose to restore the build
properties in order to have a factory-default configuration, or to revert to a last-known
working build configuration. To undo your modifications to build properties, click the
Restore Defaults button at the bottom of the Properties window.

This changes the values of the options to the absolute default of the toolchain. By default,
the toolchain options are blank.

For example, when a bareboard project is created the Linker panel has some values set,
which are specific to the project. By selecting the Restore Defaults button the default
values of settings will return to blank state of the toolchain.

4.3 Build properties for APP

The build tools used in a project depend upon the processor and the build toolchain that is
selected while creating a project. The table below lists the CodeWarrior build tool
settings specific to developing software for APP.

NOTE
For more details on CodeWarrior build tools, see CodeWarrior
Development Studio for Advanced Packet Processing Build

Restoring build properties

CodeWarrior Development Studio for Advanced Packet Processing Targeting Manual, Rev. 10.2, 01/2016

60 Freescale Semiconductor, Inc.

Tools Reference Manual available in the <CWInstallDir>\LS\Help
\PDF\ folder, where <CWInstallDir> is the path where you have
installed your CodeWarrior software.

Table 4-1. CodeWarrior build tool settings for QorIQ LS Series processor family

Build Tool Build Properties Panels

CPU

Debugging

Messages

Linker Input

Link Order

General

Output

Compiler Preprocessor

Input

Warnings

Optimization

Processor

C/C++ Language

Assembler Input

General

Disassembler Disassembler Settings

Preprocessor Preprocessor Settings

4.3.1 CPU

Use the CPU panel to specify the APP processor family for the project. The properties
specified on this page are also used by the build tools (compiler, linker, and assembler).

The table below lists and describes the various options available on the CPU panel.

Table 4-2. CodeWarrior build tool settings - CPU options

Option Explanation

Processor Generates and links object code for a specific processor. This
setting is equivalent to specifying the -proc[essor]
keyword command-line option.

Floating Point Controls floating-point code generation. This setting is
equivalent to specifying the -fp keyword command-line
option.

Table continues on the next page...

Chapter 4 Build Properties

CodeWarrior Development Studio for Advanced Packet Processing Targeting Manual, Rev. 10.2, 01/2016

Freescale Semiconductor, Inc. 61

Table 4-2. CodeWarrior build tool settings - CPU options (continued)

Option Explanation

Byte Ordering Generates object code and links an executable image to use
the specified data format. This setting is equivalent to
specifying the -big or -little command-line options.

Code Model Specifies the addressing mode that the linker uses when
resolving references. This setting is equivalent to specifying
the -model keyword command-line option.

ABI Chooses which ABI (Application Binary Interface) to conform
to. This setting is equivalent to specifying the -abi keyword
command-line option.

Tune Relocations Ensures that references made by the linker conform to the
EABI (Embedded Application Binary Interface) or position-
independent ABI (Application Binary Interface). Use this
option only when you select EABI or SDA PIC/PID from the
ABI drop-down list, to ensure that references in the
executable image conform to these ABIs. To conform to both
of these ABIs, the linker will modify relocations that do not
reach the desired executable code. The linker first converts
near branch instructions to far branch instructions. Then it will
convert absolute branches to PC-relative branches. For
branches that cannot be converted to far or PC-relative
addressing, the linker will generate branch islands. To
conform to the SDA PIC/PID ABI, the linker will generate the
appropriate style of addressing. This setting is equivalent to
specifying the -tune_relocations command-line option.

Compress for AIOP VLE Specifies compression of the VLE (Variable Length Encoding)
code by shortening the gaps between the functions. NOTE:
For processors that do not have the VLE capability, this
option is disabled and cannot be selected.

Small Data Limits the size of the largest objects in the small data section.
This setting is equivalent to specifying the -
sdata[threshold] size command-line option. The size
value specifies the maximum size, in bytes, of all objects in
the small data section (.sdata). The default value for size is
8. The linker places objects that are greater than this size in
the data section (.data) instead.

Small Data2 Limits the size of the largest objects in the small constant data
section. This setting is equivalent to specifying the -
sdata2[threshold] size command-line option. The size
value specifies the maximum size, in bytes, of all objects in
the small constant data section (.sdata2). The default value
for size is 8. The linker places constant objects that are
greater than this size in the constant data section (.rodata)
instead.

4.3.2 Debugging

Use the Debugging panel to specify the global debugging options for the project.

Build properties for APP

CodeWarrior Development Studio for Advanced Packet Processing Targeting Manual, Rev. 10.2, 01/2016

62 Freescale Semiconductor, Inc.

The table below lists and describes the various options available on the Debugging panel.

Table 4-3. CodeWarrior build tool settings - Debugging options

Option Explanation

Generate DWARF Information Generates DWARF 2.x conforming debugging information.
This setting is equivalent to specifying the -sym dwarf-2
command-line option.

Store Full Paths To Source Files Stores absolute paths of the source files instead of relative
paths. This setting is equivalent to specifying the -sym
full[path] command-line option.

4.3.3 Messages

Use the Messages panel to specify the error and warning message options for the project.

Table 4-4 lists and describes the various options available on the Messages panel.

Table 4-4. CodeWarrior build tool settings - Messages options

Option Explanation

Message Style Controls the style used to show error and warning messages.
This setting is equivalent to specifying the -msgstyle
keyword command-line option.

Maximum Number of Errors Specifies the maximum number of errors messages to show.
This setting is equivalent to specifying the -maxerrors
number command-line option.

Maximum Number of Warnings Specifies the maximum number of warning messages to
show. This setting is equivalent to specifying the -
maxwarnings number command-line option.

4.3.4 Linker

Use the Linker panel to specify the CodeWarrior linker options that are specific to APP
software development.

NOTE
The list of tools presented on the Tool Settings page can differ,
based upon the toolchain used by the project.

Chapter 4 Build Properties

CodeWarrior Development Studio for Advanced Packet Processing Targeting Manual, Rev. 10.2, 01/2016

Freescale Semiconductor, Inc. 63

The table below lists and describes the various options available on the Linker panel.

Table 4-5. CodeWarrior build tool settings - Linker options

Option Explanation

Command Specifies the location of the linker executable file.

All options Specifies the actual command line, the linker will be called
with.

Command line pattern Specifies the expert settings command line parameters.

4.3.4.1 Input

Use the Input panel to specify the path to the linker command file and the libraries.

The table below lists and describes the various options available on the Input panel.

Table 4-6. CodeWarrior build tool settings - Input options

Option Explanation

No Standard Library Uses standard system library access paths as specified by the environment variable %MWLibraries%
to add system libraries as specified by the environment variable %MWLibraryFiles% at the end of link
order. This setting is equivalent to specifying the -nostdlib command-line option.

Link Command File
(.lcf)

Specifies the path of the linker-command file that the linker reads to determine how to build the output
file. Alternatively, click Browse, then use the resulting dialog box to specify the linker command file.
This setting is equivalent to specifying the -lcf filename command-line option.

Code Address Sets the run-time address of the executable code. This setting is equivalent to specifying the -
codeaddr addr command-line option. The addr value is an address, in decimal or hexadecimal
format. Hexadecimal values must begin with 0x. The default is 65536. This option is disabled and
cannot be selected if you have specified the .lcf file in the Link Command File (.lcf) text box.

Data Address Sets the loading address of the data. This setting is equivalent to specifying the -dataaddr addr
command-line option. The addr value is an address, in decimal or hexadecimal format. Hexadecimal
values must begin with 0x. The default is the address after the code and large constant sections. This
option is disabled and cannot be selected if you have specified the .lcf file in the Link Command
File (.lcf) text box.

Small Data Address Sets the loading address of small data. This setting is equivalent to specifying the -sdataaddr addr
command-line option. The addr value is an address, in decimal or hexadecimal format. Hexadecimal
values must begin with 0x. The default is the address after the large data section. This option is
disabled and cannot be selected if you have specified the .lcf file in the Link Command File (.lcf)
text box.

Small Data 2
Address

Sets the loading address of small constant data. This setting is equivalent to specifying the -
sdata2addr addr command-line option. The addr value is an address, in decimal or hexadecimal
format. Hexadecimal values must begin with 0x. The default is the address after the small data section.
This option is disabled and cannot be selected if you have specified the .lcf file in the Link
Command File (.lcf) text box.

Entry Point Specifies the main entry point for the executable image. This setting is equivalent to specifying the -
m[ain] symbol command-line option. The maximum length of symbol is 63 characters. The default
is __start.

Table continues on the next page...

Build properties for APP

CodeWarrior Development Studio for Advanced Packet Processing Targeting Manual, Rev. 10.2, 01/2016

64 Freescale Semiconductor, Inc.

Table 4-6. CodeWarrior build tool settings - Input options (continued)

Option Explanation

Library Search
Paths

Use this panel to specify multiple paths that the linker searches for libraries. The linker searches the
paths in the order shown in this list. Table 4-7 lists and describes the toolbar buttons that help work
with the library search paths.

Library Files Lists paths to libraries that the linker uses. The linker uses the libraries in the order shown in this list.
Table 4-7 lists and describes the toolbar buttons that help work with the library file search paths.

The table below lists and describes the toolbar buttons that help work with the library
search paths.

Table 4-7. CodeWarrior build tool settings - Input toolbar buttons

Button Tooltip Description

Add Click to open the Add file path or the Add directory path dialog box and create a file or directory
path.

Delete Click to delete the selected file or directory. To confirm deletion, click Yes in the Confirm Delete
dialog box.

Edit Click to open the Edit file path or Edit directory path dialog box and update the selected file or
directory.

Move up Click to move the selected file search path one position higher in the list.

Move down Click to move the selected file search path one position lower in the list.

4.3.4.2 Link Order

Use the Link Order panel to control the link input order.

The table below lists and describes the various options available on the Link Order
panel.

Table 4-8. CodeWarrior build tool settings - Link Order options

Option Explanation

Customize linker input
order

Allows to change the default link input order. Selecting this option enables the Link Order panel,
allowing you to change the default link input order by using the Move Up and Move Down buttons on
the Link Order panel toolbar.

Link Order Shows the default link input order that you can change by selecting a link input and clicking the Move
Up or Move Down button on the Link Order panel toolbar.

Chapter 4 Build Properties

CodeWarrior Development Studio for Advanced Packet Processing Targeting Manual, Rev. 10.2, 01/2016

Freescale Semiconductor, Inc. 65

4.3.4.3 General

Use the General panel to specify the linker performance and optimization parameters.

The table below lists and describes the various options available on the General panel.

Table 4-9. CodeWarrior build tool settings - General options

Option Explanation

Link Mode Controls the performance of the linker. The default options are:
• Normal - Uses little memory but may take more processing time.
• Use Less RAM - Uses medium amount of memory for medium processing time.
• Use More RAM - Uses lots of memory to improve processing time.

This setting is equivalent to specifying the -linkmode keywordcommand-line option.

Code Merging Code merging reduces the size of object code by removing identical functions. The default options are:
• All Functions - Controls code merging for all identical functions.
• Safe Functions - Controls code merging for weak functions.

This setting is equivalent to specifying the -code_merging all | safe command-line option.

Aggresive Merging The code merging optimization will not remove an identical copy of a function if your program refers to its
address. In this case, the compiler keeps this copied function but replaces its executable code with a
branch instruction to the original function. To ignore references to function addresses, use aggressive
code merging. This setting is equivalent to specifying the -code_merging all,aggressive or -
code_merging safe,aggressive command-line options.

Merges FP
Constants

Compiler pools strings of a file, when the option is checked. Clear this option to keep individual the
strings of each file. (This permits deadstripping of unused strings.) This setting is equivalent to specifying
the #pragma fp_constants merge pragma.

Other Flags Specify linker flags.

4.3.4.4 Output

Use the Output panel to specify the configuration of your final output file.

The table below lists and describes the various options available on the Output panel.

Table 4-10. CodeWarrior build tool settings - Output options

Option Explanation

Output Type Specifies the generated output type. The default options are:
• Application
• Static Library
• Partial Link

This setting is equivalent to specifying the -application, -library, -partial command-line
options.

Table continues on the next page...

Build properties for APP

CodeWarrior Development Studio for Advanced Packet Processing Targeting Manual, Rev. 10.2, 01/2016

66 Freescale Semiconductor, Inc.

Table 4-10. CodeWarrior build tool settings - Output options (continued)

Option Explanation

Optimize Partial Link Specifies the use of a linker command file, create tables for C++ static constructors, C++ static
destructors, and C++ exceptions. This option also configures the linker to build an executable image,
even if some symbols cannot be resolved. NOTE: Select Partial Link from the Output Type list box,
to enable this option. This setting is equivalent to specifying the -opt_partial command-line
option.

Deadstrip Unused
Symbols

Removes unreferenced objects on a partially linked image. NOTE: Select Partial Link from the
Output Type list box, to enable this option. This setting is equivalent to specifying the -
strip_partial command-line option.

Require Resolved
Symbols

Finishes a partial link operation and issues error messages for unresolved symbols. NOTE: Select
Partial Link from the Output Type list box, to enable this option. This setting is equivalent to
specifying the -resolved_partial command-line option.

Heap Size (k) Sets the run-time size of the heap, in kilobytes. This setting is equivalent to specifying the -heapsize
sizecommand-line option.

Stack Size (k) Sets the run-time size of the stack, in kilobytes. This setting is equivalent to specifying the -
stacksize sizecommand-line option.

Interpreter Specifies the interpreter file used by the linker.

Generate Link Map Generates a text file that describes the contents of the linker's output file. This setting is equivalent to
specifying the -map [filename]command-line option.

List Closure Controls the appearance of symbol closures in the linker map file. This setting is equivalent to
specifying the -listclosure command-line option.

List Unused Objects Controls the appearance of a list of unused symbols in the linker map file. This setting is equivalent to
specifying the -mapunused command-line option.

List DWARF Objects Controls the appearance of DWARF debugging information in the linker map file. This setting is
equivalent to specifying the -listdwarf command-line option.

List Estimated Stack
Usage

Controls the generation of stack usage information in the linker map file.

Root Function This is the function at which the analysis is performed. Normally this would be main(), but in the case
of AIOP, it could be any entry point function. By default, the root_function is set to allfor iterating
through all the entry point functions (identified by __declspec(entry_point)) and performing the
analysis for each entry point. This setting is equivalent to specifying the -estimate_stack_usage
command-line option.

Workspace Size Allows the user to specify the workspace size in bytes. The default is 2048 (2Kb). This linker option is
optional. Using this option affects the stack usage calculations.

Recursion Depth Controls level of recursion reporting in the map file report. This option is only activated if List
Estimated Stack Usage option is selected. By default, the value is set to 1 if not specified. This
setting is equivalent to specifying the -recursion_depth command-line option.

Sort Root Function Sorts root function reports and outputs the results of the Stack Estimator in descending sorted order
according to the cumulative stack usage of the root function. This setting is equivalent to specifying -
root_sort command-line option.

Generate Binary File Controls generation of the binary files. The default options are:
• None - Generates no binary file even if S-record generation is on. This is the default option.
• One - Generates a single binary file with all the loadable code and data, even if S-record

generation is off.
• Multiple - Generates separate binary files for each MEMORY directive, even if S-record

generation is off.

This setting is equivalent to specifying the -genbinary keywordcommand-line option.

Table continues on the next page...

Chapter 4 Build Properties

CodeWarrior Development Studio for Advanced Packet Processing Targeting Manual, Rev. 10.2, 01/2016

Freescale Semiconductor, Inc. 67

Table 4-10. CodeWarrior build tool settings - Output options (continued)

Option Explanation

Generate S-Record
File

Generates an S-record file. This setting is equivalent to specifying the -srec command-line option.

Sort S-Record Sorts the records, in ascending order, in an S-record file. NOTE: Select Generate S-Record File, to
enable this option. This setting is equivalent to specifying the -sortsrec command-line option.

Max S-Record
Length

Specifies the length of S-records. You can select a value from 8 to 255. The default is 26. NOTE:
Select Generate S-Record File, to enable this option. This setting is equivalent to specifying the -
sreclength command-line option.

EOL Character Specifies the end-of-line style to use in an S-record file. The default options are:
• Mac - Use Mac OS®-style end-of-line format.
• DOS - Use Microsoft® Windows®-style end-of-line format. This is the default choice.
• UNIX - Use a UNIX-style end-of-line format.

NOTE: Select Generate S-Record File, to enable this option. This setting is equivalent to specifying
the -sreceol keywordcommand-line option.

Generate Warning
Messages

Turns on most warning messages issued by the build tools. This setting is equivalent to specifying the
-w on command-line option.

Heap Address Sets the run-time address of the heap. The specified address must be in decimal or hexadecimal
format. Hexadecimal values must begin with 0x. The default is stack_address - (heap_size +
stack_size) where stack_address is the address of the stack, heap_size is the size of the
heap, and stack_size is the size of the stack. This setting is equivalent to specifying the -
heapaddr addresscommand-line option.

Stack Address Sets the run-time address of the stack. The specified address must be in decimal or hexadecimal
format. Hexadecimal values must begin with 0x. This setting is equivalent to specifying the -
stackaddr addresscommand-line option.

Generate ROM
Image

Enables generation of a program image that may be stored in and started from ROM.

ROM Image Address Generates a ROM image and specifies the image's starting address at run time. NOTE: Select
Generate ROM Image, to enable this option. This setting is equivalent to specifying the -romaddr
addresscommand-line option.

RAM Buffer Address
of ROM Image

Specifies a run-time address in which to store the executable image in RAM so that it may be
transferred to flash memory. NOTE: Select Generate ROM Image, to enable this option. This option
specifies information for a legacy flashing tool. This tool required that the executable image must first
be loaded to an area in RAM before being transferred to ROM. NOTE: Do not use this option if your
flash memory tool does not follow this behavior. This setting is equivalent to specifying the -
rombuffer addresscommand-line option.

4.3.5 Compiler

Use the Compiler panel to specify the compiler options that are specific to APP software
development.

Build properties for APP

CodeWarrior Development Studio for Advanced Packet Processing Targeting Manual, Rev. 10.2, 01/2016

68 Freescale Semiconductor, Inc.

The table below lists and describes the various options available on the Compiler panel.

Table 4-11. CodeWarrior build tool settings - Compiler options

Option Explanation

Command Specifies the location of the compiler executable file that will
be used to build the project.

All Options the actual command line the compiler will be called with.

Command line pattern Shows the expert settings command line parameters.

4.3.5.1 Preprocessor

Use the Preprocessor panel to specify the preprocessor behavior by providing details of
the file, whose contents can be used as prefix to all source files.

The table below lists and describes the various options available on the Preprocessor
panel.

Table 4-12. CodeWarrior build tool settings - Preprocessor options

Option Explanation

Source encoding Specifies the default source encoding used by the compiler.
The compiler automatically detects UTF-8 (Unicode
Transformation Format) header or UCS-2/UCS-4 (Uniform
Communications Standard) encodings regardless of setting.
The default setting is ascii. This setting is equivalent to
specifying the -enc[oding] keywordcommand-line option.

Prefix Files Adds contents of a text file or precompiled header as a prefix
to all source files. This setting is equivalent to specifying the -
prefix filecommand-line option.

Defined Macros (-D) Defines a specified symbol name. This setting is equivalent to
specifying the -Dname command-line option, where name is
the symbol name to define.

Undefined Macros (-U) Undefines the specified symbol name. This setting is
equivalent to specifying the -U name command-line option,
where name is the symbol name to undefine.

4.3.5.2 Input

Use the Input panel to specify the path and search order of the #include files.

Chapter 4 Build Properties

CodeWarrior Development Studio for Advanced Packet Processing Targeting Manual, Rev. 10.2, 01/2016

Freescale Semiconductor, Inc. 69

The table below lists and describes the various options available on the Input panel.

Table 4-13. CodeWarrior build tool settings - Input options

Option Explanation

Compile Only, Do Not
Link

Instructs the compiler to compile but not invoke the linker to link the object code. This setting is
equivalent to specifying the -c command-line option.

Do not use MWCIncludes
variable

Restricts usage of standard system include paths as specified by the environment variable
%MWCIncludes%. This setting is equivalent to specifying the -nostdinc command-line option.

Always Search User
Paths

Performs a search of both the user and system paths, treating #include statements of the form
#include <xyz> the same as the form #include "xyz". This setting is equivalent to
specifying the -nosyspath command-line option.

User Path (-i) Use this panel to specify multiple user paths and the order in which to search those paths. Table
4-14 lists and describes the toolbar buttons that help work with the file search paths. This setting
is equivalent to specifying the -i command-line option.

User Recursive Path (-ir) Appends a recursive access path to the current User Path list. Table 4-14 lists and describes the
toolbar buttons that help work with the file search paths. This setting is equivalent to specifying the
-ir path command-line option.

System Path (-I- -I) Changes the build target's search order of access paths to start with the system paths list. Table
4-14 lists and describes the toolbar buttons that help work with the file search paths.

• The compiler can search #include files in several different ways. Use this panel to set the
search order as follows:

• For include statements of the form #include "xyz", the compiler first searches user
paths, then the system paths

• For include statements of the form #include <xyz>, the compiler searches only system
paths

This setting is equivalent to specifying the -I- -I path command-line option.

System Recursive Path (-
I- -ir)

Appends a recursive access path to the current System Path list. Table 4-14 lists and describes
the toolbar buttons that help work with the file search paths. This setting is equivalent to specifying
the -I- -ir command-line option.

Disable CW Extensions Controls deadstripping files. Not all third-party linkers require checking this option.

The table below lists and describes the toolbar buttons that help work with the Input
panel.

Table 4-14. CodeWarrior build tool settings - Input toolbar buttons

Button Tooltip Description

Add Click to open the Add file path or the
Add directory path dialog box and
create a file or directory path.

Delete Click to delete the selected file or
directory. To confirm deletion, click Yes
in the Confirm Delete dialog box.

Edit Click to open the Edit file path or Edit
directory path dialog box and update
the selected file or directory.

Move up Click to move the selected file search
path one position higher in the list.

Move down Click to move the selected file search
path one position lower in the list.

Build properties for APP

CodeWarrior Development Studio for Advanced Packet Processing Targeting Manual, Rev. 10.2, 01/2016

70 Freescale Semiconductor, Inc.

4.3.5.3 Warnings

Use the Warnings panel to control how the compiler reports the error and warning
messages.

The table below lists and describes the various options available on the Warnings panel.

Table 4-15. CodeWarrior build tool settings - Warnings options

Option Explanation

Treat All Warnings As
Errors

Select to make all warnings into hard errors. Source code which triggers warnings will be
rejected.

Illegal Pragmas Select to issue a warning message if the compiler encounters an unrecognized pragma. This
setting is equivalent to specifying the pragma warn_illpragma pragma and the -warnings
illpragmas command-line option.

Possible Errors Select to issue warning messages for common, usually-unintended logical errors: in conditional
statements, using the assignment (=) operator instead of the equality comparison (==) operator,
in expression statements, using the == operator instead of the = operator, placing a semicolon (;)
immediately after a do, while, if, or for statement. This setting is equivalent to specifying the
warn_possunwant pragma and the -warnings possible command-line option.

Extended Error Checking Select to issue warning messages for common programming errors: mis-matched return type in
a function's definition and the return statement in the function's body, mismatched assignments
to variables of enumerated types. This setting is equivalent to specifying the
extended_errorcheck pragma and the -warnings extended command-line option.

Hidden virtual functions Select to issue warning messages if you declare a non-virtual member function that prevents a
virtual function, that was defined in a superclass, from being called. This setting is equivalent to
specifying the warn_hidevirtual pragma and the -warnings hidevirtual command-line
option.

Implicit Arithmetic
Conversions

Select to issue warning messages when the compiler applies implicit conversions that may not
give results you intend: assignments where the destination is not large enough to hold the result
of the conversion, a signed value converted to an unsigned value, an integer or floating-point
value is converted to a floating-point or integer value, respectively. This setting is equivalent to
specifying the warn_implicitconv pragma and the -warnings implicitconv command-
line option.

Implicit Integer To Float
Conversions

Select to issue warning messages for implicit conversions from integer to floating-point values.
This setting is equivalent to specifying the warn_impl_i2f_conv pragma and the -warnings
impl_int2float command-line option.

Implicit Float To Integer
Conversions

Select to issue warning messages for implicit conversions from floating point values to integer
values. This setting is equivalent to specifying the warn_impl_f2i_conv pragma and the -
warnings impl_float2int command-line option.

Implicit Signed/Unsigned
Conversions

Select to issue warning messages for implicit conversions from a signed or unsigned integer
value to an unsigned or signed value, respectively. This setting is equivalent to specifying the
warn_impl_s2u_conv pragma and the -warnings signedunsigned command-line option.

Pointer/Integral
Conversions

Select to issue warning messages for implicit conversions from pointer values to integer values
and from integer values to pointer values. This setting is equivalent to specifying the
warn_any_ptr_int_conv and warn_ptr_int_conv pragmas and the -warnings
ptrintconv, anyptrinvconv command-line option.

Table continues on the next page...

Chapter 4 Build Properties

CodeWarrior Development Studio for Advanced Packet Processing Targeting Manual, Rev. 10.2, 01/2016

Freescale Semiconductor, Inc. 71

Table 4-15. CodeWarrior build tool settings - Warnings options (continued)

Option Explanation

Unused Arguments Select to issue warning messages for function arguments that are not referred to in a function.
This setting is equivalent to specifying the warn_unusedarg pragma and the -warnings
unusedarg command-line option.

Unused Variables Select to issue warning messages for local variables that are not referred to in a function. This
setting is equivalent to specifying the warn_unusedvar pragma and the -warnings
unusedvar command-line option.

Missing `return' Statement Select to issue warning messages, if a function that is defined to return a value has no return
statement. This setting is equivalent to specifying the warn_missingreturn pragma and the -
warnings missingreturn command-line option.

Expression Has No Side
Effect

Select to issue warning messages if a statement does not change the program's state. This
setting is equivalent to specifying the warn_no_side_effect pragma and the -warnings
unusedexpr command-line option.

Extra Commas Select to issue a warning messages if a list in an enumeration terminates with a comma. The
compiler ignores terminating commas in enumerations when compiling source code that
conforms to the ISO/IEC 9899-1999 ("C99") standard. This setting is equivalent to specifying the
warn_extracomma pragma and the -warnings extracomma command-line option.

Empty Declarations Select to issue warning messages if a declaration has no variable name. This setting is
equivalent to specifying the warn_emptydecl pragma and the -warnings emptydecl
command-line option.

Inconsistent `class' / 'struct'
Usage

Select to issue warning messages if the class and struct keywords are used interchangeably in
the definition and declaration of the same identifier in C++ source code. This setting is equivalent
to specifying the warn_structclass pragma and the -warnings structclass command-
line option.

Include File Capitalization Select to issue warning messages if the name of the file specified in a #include file directive
uses different letter case from a file on disk. This setting is equivalent to specifying the
warn_filenamecaps pragma and the -warnings filecaps command-line option.

Check System Includes Select to issue warning messages if the name of the file specified in a #include file directive
uses different letter case from a file on disk. This setting is equivalent to specifying the
warn_filenamecaps_system pragma and the -warnings sysfilecaps command-line
option.

Pad Bytes Added Select to issue warning messages when the compiler adjusts the alignment of components in a
data structure. This setting is equivalent to specifying the warn_padding pragma and the -
warnings padding command-line option.

Undefined Macro in #if Select to issue warning messages if an undefined macro appears in #if and #elif directives.
This setting is equivalent to specifying the warn_undefmacro pragma and the -warnings
undefmacro command-line option.

Non-Inlined Functions Select to issue warning messages if a call to a function defined with the inline, __inline__,
or __inline keywords could not be replaced with the function body. This setting is equivalent to
specifying the warn_notinlined pragma and the -warnings notinlined command-line
option.

4.3.5.4 Optimization

Use the Optimization panel to control the code optimization settings.

Build properties for APP

CodeWarrior Development Studio for Advanced Packet Processing Targeting Manual, Rev. 10.2, 01/2016

72 Freescale Semiconductor, Inc.

The table below lists and describes the various options available on the Optimization
panel.

Table 4-16. CodeWarrior build tool settings - Optimization options

Option Explanation

Optimization Level Specifies code optimization options to apply to object code. This setting is equivalent to specifying the -
opt keyword command-line option.

Speed vs. Size Specifies code optimization for speed or size. This setting is equivalent to specifying the
optimize_for_size on or optimize_for_size off pragmas and -opt speed or -opt size
command-line option.

Inlining Specifies inline options. Default settings are:
• Smart - The compiler considers the functions declared with inline.
• Auto Inline - The compiler also inlines C++ functions declared inline and member functions

defined within a class declaration.

This setting is equivalent to specifying the -inline, -inline auto command-line option.

Bottom-up Inlining Select to instruct the compiler to inline functions from the last function called to the first function in a chain
of function calls. This setting is equivalent to specifying the inline_bottom_up pragma and -inline
bottomup command-line option.

4.3.5.5 Processor

Use the Processor panel to control the processor-dependent code-generation settings.

The table below lists and describes the various options available on the Processor panel.

Table 4-17. CodeWarrior build tool settings - Processor options

Option Explanation

Struct Alignment Specifies structure and array alignment. The default options are:
• AIOP - Use conventional Power Architecture alignment. This choice is the default.
• 68K - Use conventional Mac OS® 68K alignment.
• 68K 4-Byte - Use Mac OS® 68K 4-byte alignment.

This setting is equivalent to specifying the -align keyword command-line option.

Function Alignment Specifies alignment of functions in executable code. The default alignment is 4. However, at an
optimization level 4, the alignment changes to 16. If you are using -func_align 4 (or none) and if
you are compiling for VLE, then the linker will compress gaps between VLE functions:

• if those functions are not called by a Classic AIOP function
• the function has an alignment greater than 4.

NOTE: Compression of the gaps will only happen on files compiled by the CodeWarrior compiler. This
setting is equivalent to specifying the -func_align command-line option.

Relax HW IEEE Controls the use of relaxed IEEE floating point operations. This setting is equivalent to specifying the -
relax_ieee command-line option.

Use Fused Mult-
Add/Sub

Controls the use of fused multiply-addition instructions. This setting is equivalent to specifying the -maf
on | off command-line option.

Table continues on the next page...

Chapter 4 Build Properties

CodeWarrior Development Studio for Advanced Packet Processing Targeting Manual, Rev. 10.2, 01/2016

Freescale Semiconductor, Inc. 73

Table 4-17. CodeWarrior build tool settings - Processor options (continued)

Option Explanation

Generate FSEL
Instructions

Controls the use of FSEL instructions. NOTE: Do not turn on this option, if the processor of your target
platform does not have hardware floating-point capabilities, that includes fsel. This option only has an
effect if Relax HW IEEE option or -relax_ieee command-line option is also specified. The default is
off. This setting is equivalent to specifying the -gen_fsel command-line option.

Assume Ordered
Compares

Controls the assumption of no unordered values in comparisons. This setting is equivalent to specifying
the -ordered-fp-compares, -no-ordered-fp-compares command-line options.

Vector Support Specifies supported vector options. Default settings are:
• SPE - Enables the SPE vector support. This option needs to be enabled when the floating point is

set to SPFP or DPFP as both SPFP and DPFP require support from the SPE vector unit. If the
option is not turned on, the compiler generates a warning and automatically enables the SPE
vector generation.

• AltiVec - Enables the Altivec vector support and generate AltiVec vectors and related
instructions.

This setting is equivalent to specifying the -spe_vector and -vector keyword command-line
options.

Make Strings
ReadOnly

Places string constants in a read-only section. This setting is equivalent to specifying the -
readonlystrings command-line option.

Merges Strings
Constant

Merges the string constants. This setting is equivalent to specifying the -flag no-pool_strings
command-line option.

Pool Data Controls the grouping of similar-sized data objects. Use this option to reduce the size of executable
object code in functions that refer to many object of the same size. These similar-sized objects do not
need to be of the same type. The compiler only applies this option to a function if the function refers to
at least 3 similar-sized objects. The objects must be global or static. At the beginning of the function, the
compiler generates instructions to load the address of the first similar-sized object. The compiler then
uses this address to generate 1 instruction for each subsequent reference to other similar-sized objects
instead of the usual 2 instructions for loading an object using absolute addressing. This setting is
equivalent to specifying the pool_data pragma and -pool[data] command-line option.

Use Common
Section

Moves uninitialized data into a common section. The default is off. This setting is equivalent to
specifying the -common command-line option.

Use LMW STMW Controls the use of multiple load and store instructions for function prologues and epilogues. The
default is off. NOTE: This option is only available for big-endian processors. This option is not available
for big-endian e500v1 and e500v2 architectures when vector and double-precision floating-point
instructions are used. This setting is equivalent to specifying the -use_lmw_stmw command-line
option.

Inlined Assembler is
Volatile

Controls whether or not inline assembly statements will be optimized. This setting is equivalent to
specifying the -volatileasm, -novolatileasm command-line options.

Instruction
Scheduling

Controls the rearrangement of instructions to reduce the effects of instruction latency. The default is off.
This setting is equivalent to specifying the -schedule command-line option.

Peephole
Optimization

Specifies peephole optimization. This setting is equivalent to specifying the peephole pragma and the
-opt peep[hole] command-line option.

Profiler Information Controls the appearance of calls to a profiler library at the entry and exit points of each function. The
default is off. This setting is equivalent to specifying the -profile command-line option.

Generate ISEL
Instructions

Controls the use of isel instructions. The default is off. NOTE: If the processor of your target platform
does not implement the Freescale ISEL APU, this option appears disabled and cannot be selected. This
setting is equivalent to specifying the -use-isel command-line option.

Table continues on the next page...

Build properties for APP

CodeWarrior Development Studio for Advanced Packet Processing Targeting Manual, Rev. 10.2, 01/2016

74 Freescale Semiconductor, Inc.

Table 4-17. CodeWarrior build tool settings - Processor options (continued)

Option Explanation

Generate Code
Coverage Files

Enables coverage to verify if the code meets a specified code coverage acceptance criteria. This setting
is equivalent to specifying the -fcoverage command line option. Compiling a program file with this
option generates a .gcno file. The file contains information about basic block, control flow and line of
source that was compiled. The basic format of the file is: File:
<uint32>MAGIC:<uint32>VERSION:<uint32>STAMP RECORD*

Translate Asm to
VLE Asm

Controls VLE code generation for inline assembly statements. NOTE: If the processor of your target
platform does not have the VLE capability, this option appears disabled and cannot be selected. This
setting is equivalent to specifying the -ppc_asm_to_vle command-line option.

Generate AIOP
code extensions

Controls code generation of AIOP extension instructions. The default is off. This setting is equivalent to
specifying the -aiop command-line option.

Disable AIOP
e_ldw/e_stdw code
generation

Controls code generation of e_ldw and e_stdw instructions for AIOP. This setting is equivalent to
specifying the -nogen_ld_std command-line option.

Enable user-defined
performance
markers

Controls performance marker functionality. Enable this option to generate performance marker symbols
used by the Point to Point Profiler. Performance markers are specially names symbols in an ELF which
the Point to Point Profiler uses to identify regions of code to profile.

4.3.5.6 C/C++ Language

Use the C/C++ Language panel to control compiler language features and some object
code storage features for the current build target.

The table below lists and describes the various options available on the C/C++ Language
panel.

Table 4-18. CodeWarrior build tool settings - C/C++ Language options

Option Explanation

Force C++ Compilation Translates all C source files as C++ source code. This setting is equivalent to specifying the
cplusplus pragma and -lang c++ command-line option.

ISO C++ Template Parser Enforces the use of ISO/IEC 14882-1998 standard for C++ to translate templates, and more
careful use of the typename and template keywords. The compiler also follows stricter
rules for resolving names during declaration and instantiation. This setting is equivalent to
specifying the parse_func_templ pragma and -iso_templates command-line option.

Use Instance Manager Reduces compile time by generating any instance of a C++ template (or non-inlined inline)
function only once. This setting is equivalent to specifying the -instmgr command-line
option.

Enable C++ Exceptions Generates executable code for C++ exceptions. Enable this option, if you use the try,
throw, and catch statements specified in the ISO/IEC 14882-1998 C++ standard.
Otherwise, disable this setting to generate smaller and faster code. This setting is equivalent
to specifying the -cpp_exceptions command-line option.

Enable RTTI Allows the use of the C++ run-time type information (RTTI) capabilities, including the
dynamic_cast and typeid operators. This setting is equivalent to specifying the -RTTI
command-line option.

Table continues on the next page...

Chapter 4 Build Properties

CodeWarrior Development Studio for Advanced Packet Processing Targeting Manual, Rev. 10.2, 01/2016

Freescale Semiconductor, Inc. 75

Table 4-18. CodeWarrior build tool settings - C/C++ Language options (continued)

Option Explanation

Enable C++ `bool' type, `true'
and `false' Constants

Instructs the C++ compiler to recognize the bool type and its true and false values specified in
the ISO/IEC 14882-1998 C++ standard. This setting is equivalent to specifying the -bool
command-line option.

Enable wchar_t Support Instructs the C++ compiler to recognize the wchar_t data type specified in the ISO/IEC
14882-1998 C++ standard. This setting is equivalent to specifying the -wchar_t command-
line option.

EC++ Compatibility Mode Verifies C++ source code files for Embedded C++ source code. This setting is equivalent to
specifying the -dialect ec++ command-line option.

ANSI Strict Recognizes source code that conforms to the ISO/IEC 9899-1990 standard for C. This setting
is equivalent to specifying the -ansi strict command-line option.

ANSI Keywords Only Generates an error message for all non-standard keywords. NOTE: Enable this setting only if
the source code strictly adheres to the ISO standard. This setting is equivalent to specifying
the -stdkeywords command-line option.

Expand Trigraphs Specifies compiler to recognize trigraph sequences. clear this option to use many common
characters, that look like trigraph sequences, without including escape characters. This setting
is equivalent to specifying the -trigraphs command-line option.

Legacy for-scoping Generates an error message when the compiler encounters a variable scope usage that the
ISO/IEC 14882-1998 C++ standard disallows, but is allowed in the C++ language specified in
The Annotated C++ Reference Manual ("ARM"). This setting is equivalent to specifying the -
for_scoping command-line option.

Require Prototypes Specifies compiler to enforce the requirement of function prototypes. NOTE: The compiler
generates an error message, if you define a previously referenced function that does not have
a prototype. The compiler generates a warning message, if you define the function before it is
referenced but do not give it a prototype. This setting is equivalent to specifying the -
requireprotos command-line option.

Enable C99 Extensions Specifies compiler to recognize ISO/IEC 9899-1999 ("C99") language features. This setting is
equivalent to specifying the -dialect c99 command-line option.

Enable GCC Extensions Specifies compiler to recognize language features of the GNU Compiler Collection (GCC) C
compiler that are supported by CodeWarrior compilers. This setting is equivalent to specifying
the -gcc_extensions command-line option.

Enum Always Int Specifies compiler to use signed integers to represent enumerated constants. This setting is
equivalent to specifying the -enum command-line option.

Use Unsigned Chars Specifies compiler to treat char declarations as unsigned char declarations. This setting is
equivalent to specifying the -char unsigned command-line option.

Pool Strings Specifies compiler to collect all string constants into a single data section in the object code, it
generates. This setting is equivalent to specifying the -strings pool command-line option.

Reuse Specifies compiler to store only one copy of identical string literals. This setting is equivalent to
specifying the -string reuse command-line option.

IPA Specifies the Interprocedural Analysis (IPA) policy. The default values are:
• Off - No interprocedural analysis, but still performs function-level optimization.

Equivalent to the "no deferred inlining" compilation policy of older compilers.
• File - Completely parse each translation unit before generating any code or data.

Equivalent to the "deferred inlining" option of older compilers. Also performs an early
dead code and dead data analysis in this mode. Objects with unreferenced internal
linkages will be dead-stripped in the compiler rather than in the linker.

This setting is equivalent to specifying the -ipa command-line option.

Other flags Specify compiler flags.

Build properties for APP

CodeWarrior Development Studio for Advanced Packet Processing Targeting Manual, Rev. 10.2, 01/2016

76 Freescale Semiconductor, Inc.

4.3.6 Assembler

Use the Assembler panel to determine the format used for the assembly source files and
the code generated by the assembler.

The table below lists and describes the various options available on the Assembler panel.

Table 4-19. CodeWarrior build tool settings - Assembler options

Option Explanation

Command Shows the location of the assembler executable file.

All Options Shows the actual command line the assembler will be called
with.

Command line pattern Shows the expert settings command line parameters.

4.3.6.1 Input

Use the Input panel to specify the path and search order of the #include files.

The table below lists and describes the various options available on the Input panel.

Table 4-20. CodeWarrior build tool settings - Input options

Option Description

Always Search user
Paths

Performs a search of both the user and system paths, treating #include statements of the form
#include <xyz>, the same as the form #include "xyz". This setting is equivalent to
specifying the -nosyspath command-line option.

User Path (-i) Use this panel to specify multiple user paths and the order in which to search those paths. Table
4-21 lists and describes the toolbar buttons that help work with the file search paths. This s etting is
equivalent to specifying the -i command-line option.

User Recursive Path (-
ir)

Appends a recursive access path to the current User Path list. Table 4-21 lists and describes the
toolbar buttons that help work with the file search paths. This setting is equivalent to specifying the
-ir path command-line option.

System Path (-I- -I) Changes the build target's search order of access paths to start with the system paths list. Table
4-21 lists and describes the toolbar buttons that help work with the file search paths. This setting is
equivalent to specifying the -I- -I path command-line option.

System Recursive Path
(-I- -ir)

Appends a recursive access path to the current System Path list. Table 4-21 lists and describes
the toolbar buttons that help work with the file search paths. This setting is equivalent to specifying
the -I- -ir command-line option.

Chapter 4 Build Properties

CodeWarrior Development Studio for Advanced Packet Processing Targeting Manual, Rev. 10.2, 01/2016

Freescale Semiconductor, Inc. 77

The table below lists and describes the toolbar buttons that help work with the Input
panel.

Table 4-21. CodeWarrior build tool settings - Input toolbar buttons

Button Tooltip Description

Add Click to open the Add file path or the Add directory path dialog box and create a file or directory
path.

Delete Click to delete the selected file or directory. To confirm deletion, click Yes in the Confirm Delete
dialog box.

Edit Click to open the Edit file path or Edit directory path dialog box and update the selected file or
directory.

Move up Click to move the selected file search path one position higher in the list.

Move down Click to move the selected file search path one position lower in the list.

4.3.6.2 General

Use the General panel to specify the assembler options that are specific to APP software
development.

The table below lists and describes the various options available on the General panel.

Table 4-22. CodeWarrior build tool settings - General options

Option Explanation

Labels Must End With
':'

Specifies whether labels must end with a colon (:). Clear this option to omit the ending colon from
label names that start in the first column. This setting is equivalent to specifying the .option colon
off | on | reset assembler control option.

Directives Begin With
'.'

Controls period usage for directives. Check this option to ensure that each directive must start with a
period. This setting is equivalent to specifying the .option period off | on | reset
assembler control option.

Case Sensitive
Identifier

Specifies case sensitivity for identifiers. This setting is equivalent to specifying the .option case
off | on | reset assembler control option.

Allow Space In
Operand Field

Controls spaces in operand fields. Clear this option, if a space in an operand field starts with a
comment. This setting is equivalent to specifying the .option space off | on | reset
assembler control option.

GNU Compatible
Syntax

CodeWarrior Assembler supports several GNU-format assembly language extensions. Check this
option to control GNU's assembler format conflicts with that of the CodeWarrior assembler.

Generate Listing File Controls generation of a listing file that includes files source, line numbers, relocation information, and
macro expansions. Clear this option, if no listing file is specified.

Other Flags Specify assembler flags.

Build properties for APP

CodeWarrior Development Studio for Advanced Packet Processing Targeting Manual, Rev. 10.2, 01/2016

78 Freescale Semiconductor, Inc.

4.3.7 Disassembler

Use the Disassembler panel to specify the command, options, and expert settings related
to the disassembler.

The table below lists and describes the various options available on the Disassembler
panel.

Table 4-23. CodeWarrior build tool settings - Disassembler options

Option Explanation

Command Shows the location of the disassembler executable file.

All options Shows the actual command line the disassembler will be
called with.

Command line pattern Shows the expert settings command line parameters .

4.3.7.1 Disassembler Settings

Use the Disassembler Settings panel to specify the disassembler options that are specific
to APP software development.

The table below lists and describes the various options available on the Disassembler
panel.

Table 4-24. CodeWarrior build tool settings - Disassembler options

Option Explanation

Show Headers Controls display of object header information This setting is equivalent to specifying the -show
headers | noheaders command-line option.

Show Symbol and String
Tables

Controls display of character string and symbol tables. This setting is equivalent to specifying the -
show tables | notables command-line option.

Show Core Modules Controls display of executable code sections. This setting is equivalent to specifying the -show
code | nocode command-line option.

Show Extended
Mnemonics

Controls display of extended mnemonics. This setting is equivalent to specifying the -show
extended | noextended command-line option.

Show Source Code Interleaves the code disassembly with C or C++ source code. This setting is equivalent to
specifying the -show source | nosource command-line option.

Only Show Operands
and mnemonics

Controls display of address and op-code values. This setting is equivalent to specifying the -show
binary | nobinary command-line option.

Show Data Modules Controls display of data sections. This setting is equivalent to specifying the -show data |
nodata command-line option.

Table continues on the next page...

Chapter 4 Build Properties

CodeWarrior Development Studio for Advanced Packet Processing Targeting Manual, Rev. 10.2, 01/2016

Freescale Semiconductor, Inc. 79

Table 4-24. CodeWarrior build tool settings - Disassembler options (continued)

Option Explanation

Disassemble Exception
Tables

Controls display of C++ exception tables. This setting is equivalent to specifying the -show
xtab[les] | noxtab[les] or -show exceptions | noexceptions command-line option.

Show DWARF Info Controls display of debugging information. This setting is equivalent to specifying the -show
debug | nodebug or -show dwarf | nodwarf command-line option.

Verbose Controls display of extra information. This setting is equivalent to specifying the -
show detail | nodetail command-line option.

4.3.8 Preprocessor

Use the Preprocessor panel to specify the command, options, and expert settings related
to the preprocessor.

The table below lists and describes the various options available on the Preprocessor
panel.

Table 4-25. CodeWarrior build tool settings - Preprocessor options

Option Explanation

Command Shows the location of the preprocessor executable file.

All options Shows the actual command line the preprocessor will be
called with.

Command line pattern Shows the expert settings command line parameters.

4.3.8.1 Preprocessor Settings

Use the Preprocessor Settings panel to specify the preprocessor options that are specific
to APP software development.

The table below lists and describes the various options available on the Preprocessor
panel.

Table 4-26. CodeWarrior build tool settings - Preprocessor options

Option Explanation

Mode Specifies the tool to preprocess source files. This setting is equivalent to specifying the -E command-line
option.

Table continues on the next page...

Build properties for APP

CodeWarrior Development Studio for Advanced Packet Processing Targeting Manual, Rev. 10.2, 01/2016

80 Freescale Semiconductor, Inc.

Table 4-26. CodeWarrior build tool settings - Preprocessor options (continued)

Option Explanation

Emit file change Controls generation of file and line breaks. This setting is equivalent to specifying the -ppopt
[no]breakcommand-line option.

Emit #pragmas Controls generation of #pragma directives. This setting is equivalent to specifying the -ppopt
[no]pragmacommand-line option.

Show full path Controls generation of full paths or just the base file name. This setting is equivalent to specifying the -
ppopt [no]full[path] command-line option.

Keep comment Controls generation of comments. This setting is equivalent to specifying the -ppopt [no]comment
command-line option.

Use #line Controls generation of #line directives. This setting is equivalent to specifying the -ppopt [no]line
command-line option.

Keep whitespace Controls generation of white spaces. This setting is equivalent to specifying the -ppopt [no]space
command-line option.

Chapter 4 Build Properties

CodeWarrior Development Studio for Advanced Packet Processing Targeting Manual, Rev. 10.2, 01/2016

Freescale Semiconductor, Inc. 81

Build properties for APP

CodeWarrior Development Studio for Advanced Packet Processing Targeting Manual, Rev. 10.2, 01/2016

82 Freescale Semiconductor, Inc.

Chapter 5
Working with AIOP Debugger

This chapter explains debugger features that are specific to the CodeWarrior Developer
Studio for Advanced Packet Processing.

NOTE
For more information on debugger features that are in all
CodeWarrior products, see CodeWarrior Common Features
Guide available in the <CWInstallDir>\LS\Help\PDF\ folder, where
<CWInstallDir> is the path where you have installed your
CodeWarrior software.

This chapter explains:

• AIOP debug model
• AIOP task aware debugging
• Standard debugging features
• CodeWarrior Executable Importer wizard
• Debugging externally built executable file
• Multi-core operations

5.1 AIOP debug model
This chapter describes how the various AIOP specific notions and components are
represented and handled in CodeWarrior debugger.

• Overview
• AIOP task specific breakpoints
• AIOP global halt
• AIOP running
• AIOP debug perspective
• Task stepping mode

CodeWarrior Development Studio for Advanced Packet Processing Targeting Manual, Rev. 10.2, 01/2016

Freescale Semiconductor, Inc. 83

5.1.1 Overview

AIOP is a C programmable processor comprised of a variable number of cores which are
further grouped into “core clusters” as an implementation artifact. The table below lists
and describes various AIOP specific components.

Table 5-1. AIOP specific components

Component Description

AIOP Core An AIOP core is an instance of an e200 core comprising the AIOP.

AIOP Cluster A core cluster consists of four cores, each with their own I-cache, workspace RAM, and a Shared IRAM
(Instruction RAM). The AIOP clusters are not represented in any way in the debugger GUI but the user
should be aware that the debugger does handle the AIOP clusters internally by downloading code or
setting software breakpoints in all AIOP clusters comprising the AIOP.

AIOP The totality of AIOP cores comprising an AIOP instance is also referred to as the AIOP. The debugger
offers run control commands at the AIOP level.

AIOP SMP
Architecture

CodeWarrior debugger for AIOP supports Symmetric Multi_Processing (SMP) and is capable of
debugging the same executable (or set of executables) on the whole number of cores comprising the
AIOP.

AIOP Tasks The fundamental unit of operation in an AIOP is the task. Tasks are created and terminated by the
hardware. A finite number of tasks (maximum of 256) can exist and execute simultaneously inside the
AIOP.

5.1.2 AIOP global halt

Global halt represents a state in which all the AIOP cores comprising the AIOP are
suspended for debug purposes (not to be confused with AIOP tasks not being scheduled
for execution by the task scheduler).

The AIOP can be put in global halt state by user command or by one of its cores hitting a
breakpoint type that induces the global halt state. By default, AIOP breakpoints induce
the global halt state when hit, the cores being linked together using the hardware cross-
triggering mechanism.

Figure 5-1. AIOP global halt

AIOP debug model

CodeWarrior Development Studio for Advanced Packet Processing Targeting Manual, Rev. 10.2, 01/2016

84 Freescale Semiconductor, Inc.

5.1.3 AIOP running

AIOP running represents a state in which all the AIOP cores comprising the AIOP are in
running mode (that is, not suspended for debug purposes). AIOP running state describes
only the state of the AIOP cores and not of the tasks. During AIOP running state, a
various number of tasks could be suspended for debug purposes but the cores on which
they are scheduled are still running other tasks.

Figure 5-2. AIOP running

5.1.4 AIOP debug perspective

CodeWarrior debugger offers two different perspectives of the AIOP:

• Task centric perspective
• Core centric perspective

5.1.4.1 Task centric perspective

This is the default and recommended debug perspective. Most of AIOP specific debug
features are available only in this perspective. CodeWarrior debugger operates in task
centric perspective only when task awareness services are activated. For more details on
how to activate task awareness, refer Activating task awareness services section.

In the task centric perspective, the debugger offers user introspection and control only for
the AIOP and for individual AIOP tasks. The AIOP cores are completely abstracted to
the user in this perspective.

User can inspect the scheduling state of the tasks in the AIOP from the System Browser
view.

Chapter 5 Working with AIOP Debugger

CodeWarrior Development Studio for Advanced Packet Processing Targeting Manual, Rev. 10.2, 01/2016

Freescale Semiconductor, Inc. 85

Figure 5-3. System Browser-AIOP Tasks

Double-click a task in the System Browser view to present it as a process with one
thread in the Debug view. The task and core IDs are described in the label of the process.
Workspace memory, variables and registers associated with the task can also be inspected
by double-clicking the task in the System Browser view.

Figure 5-4. Stack crawls for two AIOP tasks

The figure above presents the stack crawls for two AIOP tasks: task 0x0 on core 0 and task
0xff on core 15.

You can perform run control commands both on the AIOP as a whole or on individual
tasks (but not on individual cores). Typically, single core run control commands operate
at task level and multicore run control commands operate at AIOP level.

5.1.4.2 Core centric perspective

When core centric perspective is used, the CodeWarrior debugger is agnostic of the AIOP
Core Task Scheduler which is responsible of AIOP task management. In this case, the
debugger becomes a typical core level baremetal tool. Most of AIOP specific debug
features are not available in this perspective.

AIOP debug model

CodeWarrior Development Studio for Advanced Packet Processing Targeting Manual, Rev. 10.2, 01/2016

86 Freescale Semiconductor, Inc.

You will get a multicore AIOP debugger that can be successfully used for debugging the
active task on each of the cores of the AIOP. You can also perform run control operations
at the AIOP level and also at an individual core level.

The figure below displays the stack crawls of active tasks on the first three AIOP cores.
Typically, in core centric perspective, all AIOP cores are presented in the Debug view at
all time during debugging.

Figure 5-5. Stack crawls of active tasks on the first three AIOP cores

5.1.5 Task stepping mode

Stepping over a line of code from a task will always return in the same task. During
stepping the whole AIOP will run and the step will return when the task from where the
stepping was originated is an active task again and it has reach at the end of the stepping
scope.

Stepping on the AIOP can be done at either task level or at AIOP level.

• Task level stepping leaving AIOP running: At the end of the stepping scope the
AIOP is in running. In other words, only the stepped task is suspended after stepping
completes.

• Task level stepping with global halt: At the end of the stepping scope the AIOP is in
global halt. In other words, the stepped task and the whole AIOP is suspended after
stepping completes.

NOTE
You can click the Task Stepping Mode button in the Debug
view to enable the AIOP task stepping mode while the AIOP is
either running or halted.

Chapter 5 Working with AIOP Debugger

CodeWarrior Development Studio for Advanced Packet Processing Targeting Manual, Rev. 10.2, 01/2016

Freescale Semiconductor, Inc. 87

5.2 AIOP task aware debugging

Activating AIOP task awareness services help in tracking and debugging tasks, running
inside an AIOP core. The fundamental unit of operation in an AIOP instance is the task.
Tasks are created and terminated by the hardware. A finite number of tasks (maximum of
256) can exist and execute simultaneously inside of an AIOP core.

While debugging AIOP core with task awareness services activated:

• cross-triggering is enabled by default.
• stopping an AIOP core stops all AIOP cores.
• resuming a task will put the AIOP, it is allocated to, in a running state.
• terminating the first process, ends the entire session.
• performing any run operations, would terminate all processes except the first process

and the one on which the action was perfomed. The first process that hits the
breakpoint will be targeted.

This chapter explains:

• Activating task awareness services
• Viewing AIOP tasks
• Adding task memory location columns in System Browser
• Viewing task entry point and OSM data in System Browser
• Targeting AIOP tasks
• Performing run control operations

5.2.1 Activating task awareness services

To activate the task awareness services:

1. Select an existing AIOP project from the CodeWarrior Projects view.
2. From the main menu bar of the IDE, select Run > Debug Configurations.

The Debug Configurations dialog box appears.

3. Expand the CodeWarrior debug configuration.
4. Select the debug configuration that you want to modify.
5. Click Main and select AIOP from the list of cores.
6. Click Debugger and select the OS Awareness tab.
7. From the Target OS dropdown list, select AIOP.
8. Click Apply to save the new settings.

AIOP task aware debugging

CodeWarrior Development Studio for Advanced Packet Processing Targeting Manual, Rev. 10.2, 01/2016

88 Freescale Semiconductor, Inc.

The task awareness services are activated.

5.2.2 Viewing AIOP tasks

The System Browser view provides details of all the tasks running inside the AIOP
cores. To open the System Browser view:

1. Start a debugging session.
2. Choose Window > Show View > Other from the IDE menu bar.

The Show View dialog appears.

3. Expand the Debug group and select System Browser.
4. Click OK.

The System Browser view appears.

5. Select the AIOP Tasks tab to view the details for each task running inside the AIOP
cores. The table below describes the columns that appear in the view.

Table 5-2. AIOP Tasks column
details

Column

Task ID Displays the AIOP task id number. This column cannot be hidden from the view.

Core Displays the core number that the task belongs to.

PC Displays the current program counter of the task.

Status Displays the status of the task. Following is the list of supported values:
• Idle
• Allocated
• Ready to execute
• Executing
• Accelerator job requested
• Executing on accelerator
• Ready to execute, inhibited
• Accelerator job requested, inhibited
• Executing on accelerator, inhibited

Accel ID Displays the accelerator id number (if available) of a task called

OSM Displays the order scope information (if available) for a task. Ordering is about keeping a
single task in executing a part of code and the other waiting in line to get exclusive
execution. Task can enter in one or more (up to 4) scopes. Following is a list of information
displayed:

• STATE - Specifies the order scope state. The supported values are:
• Execution concurrent (XC)
• Execution exclusive (XX)
• Waiting for transition (WT)
• Waiting for exclusivity (WX)

Table continues on the next page...

Chapter 5 Working with AIOP Debugger

CodeWarrior Development Studio for Advanced Packet Processing Targeting Manual, Rev. 10.2, 01/2016

Freescale Semiconductor, Inc. 89

Table 5-2. AIOP Tasks column details
(continued)

Column

• XPOS - Specifies the order scope exclusivity position. The information is valid only
when STATE is WX and scope is valid. The supported values are:

• 0 - Next in line to be granted exclusivity
• >0 - Waiting for exclusivity

• TPOS - Specifies the order scope transition position. The information is valid only
when scope is valid and is used when the STATE is WT, to determine the scope exit
order.

• 0 - First in line to exit scope
• >0 - Not first in line to exit

• SCOPE_ID - Specifies the outermost order scope identifier.

For more details on how to add and view OSM details in the System Browser view, refer
Viewing task entry point and OSM data in System Browser.

Entry Point Displays the entry point address and optionally the name that a task currently executes.

For more details on how to add and view Entry point details in the System Browser view,
refer Viewing task entry point and OSM data in System Browser.

Custom
memory
location
columns

Displays the user-defined memory locations. A maximum of eight memory locations can be
displayed.

For more details on how to add and view custom memory locations in the System Browser
view, refer Adding task memory location columns in System Browser.

5.2.3 Viewing non-idle tasks only
The System Browser view provides an option to filter out the idle tasks. To view the
non-idle tasks only, perform the following steps:

1. Start a debugging session.
2. Select Window > Show View > Other from the IDE menu bar.

The Show View dialog appears.

3. Expand the Debug group and select System Browser.
4. Click OK.

The System Browser view appears.

5. Click the Show Non-Idle Tasks Only button from the System Browser view toolbar
menu, as the Figure 5-6 shows.

The System Browser view filters out the idle tasks and displays only the non-idle
tasks in the view.

Figure 5-6 shows the System Browser view with filtered non-idle tasks.

AIOP task aware debugging

CodeWarrior Development Studio for Advanced Packet Processing Targeting Manual, Rev. 10.2, 01/2016

90 Freescale Semiconductor, Inc.

Figure 5-6. System Browser view - Viewing non-idle tasks

5.2.4 Adding task memory location columns in System Browser

The debugger supports defining and selecting a maximum of eight memory locations as
columns in the System Browser view. The new user defined columns will be placed in
the System Browser after the existing pre-defined columns.

To define custom memory locations and add them to the System Browser view:

1. Select an existing AIOP project from the CodeWarrior Projects view.
2. Select Run > Debug Configurations.

The Debug Configurations dialog box appears.

3. Expand the CodeWarrior debug configuration.
4. Select the debug configuration that you want to modify.
5. Click Main and select AIOP from the list of cores.
6. Click Debugger and select the OS Awareness tab.
7. From the Target OS dropdown list, select AIOP.
8. Select Add task memory location column in System Browser.
9. Check the Entry checkbox. The Entry column controls the enablement of the column

in the System Browser view.
10. Specify an unique alphanumieric column name.
11. Specify the start memory location address. The specified value can be of hex or

decimal formats.
12. Specify the size, in bytes, to read. The specified value can be of hex or decimal

formats. If specified in decimal formats, the number should be within the range of 1 -
1024.

Chapter 5 Working with AIOP Debugger

CodeWarrior Development Studio for Advanced Packet Processing Targeting Manual, Rev. 10.2, 01/2016

Freescale Semiconductor, Inc. 91

NOTE
Input errors are highlighted in red on the OS Awareness
tab page.

13. Specify the visibility of the column on the System Browser view by selecting an
appropriate value from the Visible column.

14. Click Apply to save the new settings.

The custom memory locations are defined.

15. Click Debug.
16. Select Window > Show View > System Browser.

The System Browser view appears. The custom task memory location columns are
displayed in the System Browser view. The new column header contains details like
tthe name, start address and read size (in bytes).

Figure 5-7. System Browser-AIOP Tasks
17. To control the appearance of the columns, right-click on the System Browser view

and select Add/Remove columns.
A list of pre-defined and custom memory location columns, even the ones that are
marked hidden on the OS Awareness tab, appears.

NOTE
All columns except the Task ID column can be selected
from the context menu that appears. Selecting a hidden
column on the list also updates its Entry value on the OS
Awareness tab.

AIOP task aware debugging

CodeWarrior Development Studio for Advanced Packet Processing Targeting Manual, Rev. 10.2, 01/2016

92 Freescale Semiconductor, Inc.

18. Uncheck a column to hide its details. Alternatively, check a column to view its
details in the System Browser view.

NOTE
Click the Refresh button on the System Browser view to
retrieve the data from memory if a ? character appears in
the column.

19. Terminate the debug session.

5.2.5 Viewing task entry point and OSM data in System Browser

The debugger supports viewing the task entry point and order scope manager (OSM) data
details as columns in the System Browser view. These columns will be placed in the
System Browser after the existing pre-defined columns.

To view the task information in the System Browser view:

1. Select an existing AIOP project from the CodeWarrior Projects view.
2. Select Run > Debug Configurations.

The Debug Configurations dialog box appears.

3. Expand the CodeWarrior debug configuration.
4. Select the debug configuration that you want to modify.
5. Click Main and select AIOP from the list of cores.
6. Click Debugger and select the OS Awareness tab.
7. From the Target OS dropdown list, select AIOP.
8. Select Show task entry point in System Browser.
9. Select Show task OSM data in System Browser.

10. Select Retrieve information only for non-idle tasks. Selecting this option will
improve performance by retrieving information about the active tasks only.

11. Click Apply to save the new settings.
12. Click Debug.
13. Select Window > Show View > System Browser.

The System Browser view appears. The OSM and Entry Point columns are
displayed in the System Browser view.

Chapter 5 Working with AIOP Debugger

CodeWarrior Development Studio for Advanced Packet Processing Targeting Manual, Rev. 10.2, 01/2016

Freescale Semiconductor, Inc. 93

Figure 5-8. System Browser-AIOP Tasks

5.2.6 Targeting AIOP tasks

While debugging AIOP with task awareness services activated, following targeting
actions can be performed on the tasks:

Read/Write Registers
1. In the Debug view, click Resume.
2. Click Terminate.
3. Open System Browser.
4. Target another process from the System Browser.
5. Perform some read/write operations on the private task registers (including the entire

GRP set) from the Register view.

Observe different GPR set for each process.

Read/Write Memory
1. In the Debug view, click Resume.
2. Click Terminate.
3. Open System Browser.
4. Target another process from the System Browser.
5. Open Memory View.
6. Perform some read/write operations on the private memory zones and on shared

memory zones.

Observe that a write in private zones would not affect the same addresses for other
processes.

Per-Task Global Variables

AIOP task aware debugging

CodeWarrior Development Studio for Advanced Packet Processing Targeting Manual, Rev. 10.2, 01/2016

94 Freescale Semiconductor, Inc.

1. In the Debug view, click Resume.
2. Click Terminate.
3. Open System Browser.
4. Target another process from the System Browser.
5. For both the processes, open the Variables view and add a global variable that has

been declared as per-task variable, using __declspec(section ".tdata").

Observe that the variables have the same virtual address but they point to different
physical addresses and in consequence have different values.

5.2.7 Performing run control operations

While debugging AIOP with task awareness services activated, following run control
operations can be performed on the tasks:

AIOP multicore run/stop
1. Debug AIOP with task awareness services activated.
2. In the Debug view, click Multicore Resume or Resume.

All AIOP cores start executing. If any, the tasks are removed from debug inhibited
for scheduling state.

3. In the Debug view, click Multicore Suspend.

All AIOP cores enter the debug mode.

AIOP cross-triggering
1. Debug AIOP with task awareness services activated.
2. In the Debug view, select the first process.
3. In the Debug view, click Multicore Resume.

All AIOP cores start executing.

4. In the Debug view, click Multicore Suspend. to suspend the first process.

Observe that all AIOP cores enter the debug mode.

NOTE
Cross-Trigering is activated by default.

AIOP run task X
1. Debug AIOP with task awareness services activated.

Chapter 5 Working with AIOP Debugger

CodeWarrior Development Studio for Advanced Packet Processing Targeting Manual, Rev. 10.2, 01/2016

Freescale Semiconductor, Inc. 95

2. Target a task, that is allocated on core X, from the System Browser view.
3. Select the targeted process.
4. In the Debug view, select the targeted process and click Resume.

Observe that the task is resumed if the AIOP is already running. Otherwise if the
system is in global halt mode the entire AIOP is resumed. If any, the tasks are
removed from debug inhibited for scheduling state.

AIOP run task using breakpoints
1. Debug AIOP with task awareness services activated.
2. In the Debug view, select the first process.
3. Set a breakpoint.
4. In the Debug view, click Resume.

The task that hit the breakpoint, will be targeted, if it is not already targeted. At this
instance, all cores are stopped.

5. In the Debug view, click Multicore Resume.

The processes that hit the breakpoint is targeted in the Debug View.

Advanced run/control
1. Debug AIOP with task awareness services activated.
2. In the Debug view, select a process.
3. Set a breakpoint.
4. In the Debug view, click Resume.

The task that hit the breakpoint, will be targeted, if it is not already targeted. At this
instance, all cores are stopped.

5. In the Debug view, click Step Over.

The current task will be killed (not if it is the first process) and will be targeted again,
upon the execution of the next statement.

6. In the Debug view, click Step Into.

The task will be killed and targeted again, upon a successful step into operation.

AIOP run control commands

Table 5-3 lists and describes the run control commands in the CodeWarrior IDE.

AIOP task aware debugging

CodeWarrior Development Studio for Advanced Packet Processing Targeting Manual, Rev. 10.2, 01/2016

96 Freescale Semiconductor, Inc.

Table 5-3. AIOP run control commands

Command Icon Description

AIOP running AIOP halted (Suspended)

Single-core commands

Resume Resumes the suspended task Resumes the whole AIOP

Suspend Suspends the AIOP Not applicable

Multi-core commands

Multicore Resume Resumes all debug inhibited
tasks

Resumes the whole AIOP

Multicore Suspend Suspends the AIOP Not applicable

5.3 Standard debugging features

This section describes debugging features that apply to bareboard debugging:

• Connection types
• Editing system configuration
• CodeWarrior command-line debugger
• Memory configuration file
• Displaying memory contents
• Displaying register contents
• Using register details window
• Setting watchpoints
• Setting breakpoints
• Setting stack depth
• Changing program counter value
• Hard resetting
• Loading and saving memory
• Filling memory

5.3.1 Connection types

The debugger supports configuring the following connection types for connecting the
target board with a computer:

Chapter 5 Working with AIOP Debugger

CodeWarrior Development Studio for Advanced Packet Processing Targeting Manual, Rev. 10.2, 01/2016

Freescale Semiconductor, Inc. 97

• CCSSIM2 ISS
• CodeWarrior TAP

5.3.1.1 CCSSIM2 ISS

Select this connection type to connect to simulators based on ccssim2 interface. To
configure the settings of a CCSSIM2 ISS connection type:

1. Select Run > Debug Configurations.

The Debug Configurations window appears.

2. In the Connection group, click Edit.

The Properties for <connection launch configuration> window appears.

3. Select CCSSIM2 ISS from the Connection type dropdown.

The Connection tab and the Advanced tab appears with the respective settings of a
connection type.

The table below describes various options available on the Connection tab page.

Table 5-4. CCSSIM2 ISS - Connection Tab Options

Option Description

CCS server Automatic launch Select to automatically launch the specified CCS server on the specified
port.

Server port number Specifies the port number to launch the CCS server on.

CCS executable Click to specify the path of, or browse to, the executable file of the CCS
server.

Manual launch Select to manually launch the specified CCS server on the specified port.

Server hostname/IP Specifies hostname or the IP address of the CCS server.

Server port number Specifies the port number to launch the CCS server on.

Connect server to TAP Check to have the CCS server connect to the TAP.

The table below describes the various options available on the Advanced tab page.

Table 5-5. CCSSIM2 ISS - Advanced Tab Options

Option Description

Target connection lost
settings

Try to reconnect If this option is selected, the lost CCS connection between the target and
host is reset. Check the Timeout check box to specify the time interval (in
seconds) after which the connection will be lost.

Table continues on the next page...

Standard debugging features

CodeWarrior Development Studio for Advanced Packet Processing Targeting Manual, Rev. 10.2, 01/2016

98 Freescale Semiconductor, Inc.

Table 5-5. CCSSIM2 ISS - Advanced Tab Options (continued)

Option Description

Terminate the debug
session

If this option is selected, the debug session is terminated and the lost
connection between JTAG and CCS server is not reset.

Ask me This is the default setting. If the CCS connection is lost between the target
and host, the user is asked if the connection needs to be reset or
terminated.

Advanced CCS
settings

CCS timeout Specifies the CCS timeout period. If the target does not respond in the
provided time-interval, you receive a CCS timeout error.

Enable logging Check to display protocol logging in console.

5.3.1.2 CodeWarrior TAP

Select this connection type when either the CodeWarrior TAP is used as interface to
communicate with the hardware device. To configure the settings of a CodeWarrior
TAP connection type:

1. Select Run > Debug Configurations.

The Debug Configurations window appears.

2. In the Connection group, click Edit.

The Properties for <connection launch configuration> window appears.

3. Select the CodeWarrior TAP from the Connection type drop-down list.

The Connection tab and the Advanced tab appears with the respective settings of a
connection type.

The table below describes various options available on the Connection tab page.

Table 5-6. CodeWarrior TAP - Connection Tab Options

Option Description

CodeWarrior
TAP

Hardware Connection Specifies CodeWarrior TAP interface to communicate with the hardware device.
CodeWarrior TAP supports both USB and Ethernet network interfaces.

Hostname/IP Specifies hostname or the IP address of the TAP.

Serial Number Check and specify the USB serial number of the USB TAP; required only if using
multiple CodeWarrior USB TAPs.

JTAG settings JTAG clock speed
(kHz)

Specifies the JTAG clock speed. By default, set to 10230 kHz.

CCS server Automatic launch Select to automatically launch the specified CCS server on the specified port.

Table continues on the next page...

Chapter 5 Working with AIOP Debugger

CodeWarrior Development Studio for Advanced Packet Processing Targeting Manual, Rev. 10.2, 01/2016

Freescale Semiconductor, Inc. 99

Table 5-6. CodeWarrior TAP - Connection Tab Options (continued)

Option Description

Server port number Specifies the port number to launch the CCS server on.

CCS executable Click to specify the path of, or browse to, the executable file of the CCS server.

Manual launch Select to manually launch the specified CCS server on the specified port.

Server hostname/IP Specifies hostname or the IP address of the CCS server.

Server port number Specifies the port number to launch the CCS server on.

Connect server to
TAP

Check to have the CCS server connect to the CodeWarrior TAP.

The table below describes the various options available on the Advanced tab page.

Table 5-7. CodeWarrior TAP - Advanced Tab Options

Option Description

Target connection lost
settings

Try to reconnect If this option is selected, the lost CCS connection between the target and host is
reset. Check the Timeout check box to specify the time interval (in seconds)
after which the connection will be lost.

Terminate the
debug session

If this option is selected, the debug session is terminated and the lost
connection between JTAG and CCS server is not reset.

Ask me This is the default setting. If the CCS connection is lost between the target and
host, the user is asked if the connection needs to be reset or terminated.

Advanced CCS
settings

CCS timeout Specifies the CCS timeout period. If the target does not respond in the provided
time-interval, you receive a CCS timeout error.

Enable logging Check to display protocol logging in console.

JTAG config file This panel displays the JTAG configuration file being used. This panel is
populated only if you select a JTAG configuration file from the System type
drop-down list. If a JTAG configuration file is not selected, this panel displays a
None value. For more details on JTAG configuration files, refer to the chapter.

Advanced TAP
settings

Force shell
download

Check to force a reload of the TAP shell software.

Disable fast
download

Check to disable fast download.

NOTE: This option is not available for e500mc, e5500, e6500 core based
targets.

Advanced TAP
settings

Enable JTAG
diagnostics

When checked, the option enables performing advanced diagnostics of the
JTAG connection to be used during custom board bring-up. After the
connection to the probe has been established the debugger performs the JTAG
diagnostics tests (Power at probe, IR scan check, Bypass (DR) scan check,
Arbitrary TAP state move, IDCODE scan check) and the result of the tests are
printed to the console log and in case of an error, a CodeWarrior Alert box
appears. When this option is not checked, the CodeWarrior debugger only
performs a limited test while configuring the JTAG chain. It checks if the PWR
pin is correctly connected and displays a Cable disconnected error if not
connected properly. The connection details are provided in the CCS protocol
log along with the JTAG ID and in case of an error, a CodeWarrior Alert box
appears.

Table continues on the next page...

Standard debugging features

CodeWarrior Development Studio for Advanced Packet Processing Targeting Manual, Rev. 10.2, 01/2016

100 Freescale Semiconductor, Inc.

Table 5-7. CodeWarrior TAP - Advanced Tab Options (continued)

Option Description

Secure debug key Check to enable the debugger to unlock the secured board with the secure
debug key provided in the associated text box. If this option is not checked, you
will receive a secure debug violation error when you try to debug on the locked
board.

NOTE: If you provide a wrong key and an unlock sequence is run by the
debugger with the erroneous key, the associated part will be locked until a rest
occurs and you will need to reset the target to connect again.

Reset Delay (ms) Configures the time in milliseconds to delay after PoR is deasserted but before
PoD is deasserted; it defaults to 200ms. The delay should be increased for
supporting SPI/SD boot scenarios in which the PBL is used to perform boot
image manipulation (for example, copying u-boot from SPI flash to internal
cache/SRAM during reset) that does not complete in the default reset timeout
window. Reset Delay is supported for processors based on GPP cores.

5.3.2 Editing system configuration

The Remote System Configuration model defines the connection and system
configurations where you can define a single system configuration that can be referred to
by multiple connection configurations. To edit the system configuration:

1. Select Run > Debug Configurations.

The Debug Configurations window appears.

2. In the Connection panel, click Edit.

The Properties for <connection launch configuration> window appears.

3. Click the Edit button next to the Target dropdown.

The Properties for <system launch configuration> window appears.

4. Select the appropriate system type from the Target type drop-down list.
5. Make the respective settings in the Initialization and Memory tabs.
6. Click OK to save the settings.
7. Click OK to close the Properties window.

5.3.2.1 Initialization

Use this tab to specify target initialization file for various cores.

Chapter 5 Working with AIOP Debugger

CodeWarrior Development Studio for Advanced Packet Processing Targeting Manual, Rev. 10.2, 01/2016

Freescale Semiconductor, Inc. 101

The figure below shows the Initialization tab page.

Figure 5-9. Hardware or Simulator Target connection type-Initialization tab

The table below lists the various options available on the Initialization tab page.

Table 5-8. Initialization Tab Options

Option Description

Execute target reset Check to execute target system reset.

Run out of reset Check to include the respective core for run out of reset
operation.

Initialize target Click to specify a target initialization file for the respective
core.

Initialize target script Lists the path to a Debugger Shell Tcl script that runs when
launching a debug session for the respective core. To edit,
select a cell, then click Click the Ellipsis button to open the
Target InitializationFile dialog box. The settings for a group
of cores can be changed all at once by editing the cell of a
common ancestor node in the Target hierarchy.

5.3.2.2 Memory

Use this tab to specify memory configuration file for various cores.

The figure below shows the Memory tab page.

Standard debugging features

CodeWarrior Development Studio for Advanced Packet Processing Targeting Manual, Rev. 10.2, 01/2016

102 Freescale Semiconductor, Inc.

Figure 5-10. Hardware or simulator target connection type - Memory tab

The table below lists the various options available on the Memory tab page.

Table 5-9. Memory tab options

Option Description

Target Lists the targets and the supported cores.

Memory configuration Click to specify a memory configuration file for the respective
core.

Memory configuration file Lists the path to the memory configuration file for the
respective core. To edit, select a cell, then click the Ellipsis
button to open the Memory Configuration File dialog box.
The settings for a group of cores can be changed all at once
by editing the cell of a common ancestor node in the Target
hierarchy.

5.3.3 CodeWarrior command-line debugger

CodeWarrior supports a command-line interface for some of its features including the
debugger. You can use the command-line interface together with various scripting
engines, such as the Microsoft® Visual Basic® script engine, the Java™ script engine,
TCL, Python, and Perl. You can even issue a command that saves your command-line
activity to a log file.

Chapter 5 Working with AIOP Debugger

CodeWarrior Development Studio for Advanced Packet Processing Targeting Manual, Rev. 10.2, 01/2016

Freescale Semiconductor, Inc. 103

You use the Debugger Shell window to issue command lines to the IDE. For example,
you enter the command debug in this window to start a debugging session. The window
displays the standard output and standard error streams of command-line activity.

To open the Debugger Shell window, follow these steps:

1. Switch the IDE to the Debugger perspective and start a debugging session.
2. Select Window > Show View > Other.

The Show View dialog box appears.

3. Expand the Debug tree.
4. Select Debugger Shell.
5. Click OK.

The Debugger Shell view appears in the view stack at the bottom of the IDE.

To issue a command-line command, type the desired command at the command prompt
(%>) in the Debugger Shell window, then press Enter or Return. The command-line
debugger executes the specified command.

NOTE
To display a list of the commands the command-line debugger
supports, type help at the command prompt and press Enter.
The help command lists each supported command along with a
brief description of each command.

Figure 5-11. Debugger Shell Window

Standard debugging features

CodeWarrior Development Studio for Advanced Packet Processing Targeting Manual, Rev. 10.2, 01/2016

104 Freescale Semiconductor, Inc.

If you work with hardware as part of your project, you can use the command-line
debugger to issue commands to the debugger while the hardware is running.

Tip
To view page-wise listing of the debugger shell commands,
right-click in the Debugger Shell view and select Paging from
the context menu. Alternatively, click the Enable Paging icon

 from the view toolbar.

The table below lists the instructions for common command-line debugging tasks.

Table 5-10. Common Command-Line Debugging Tasks

Task Instruction Comments

Open the Debugger Shell Select Windows > Show View > Others >
Debugger Shell

The Debugger Shell view appears.

Use the help command 1. On the Debugger shell command prompt (%>),
type help.

2. Press Enter.

The command list for CodeWarrior
appears.

Enter a command 1. On the Debugger shell, type a command
followed by a space.

2. Type any valid command-line options, separating
each with a space.

3. Press Enter.

You can use shortcuts instead of complete
command names, such as k for kill.

View debug command
hints

Type alias followed by a space The syntax for the rest of the command
appears.

Review previous
commands

Press Up Arrow and Down Arrow keys

Clear command from the
command line

Press the Esc key

Stop an executing script Press the Esc key

Toggle between insert/
overwrite mode

Press the Insert key

Scroll up/ down a page Press Page Up or Page Down key

Scroll left/right one column Press Ctrl-Left Arrow or Ctrl-Right Arrow keys

Scroll to beginning or end
of buffer

Press Ctrl-Home or Ctrl-End keys

5.3.4 Memory configuration file

Chapter 5 Working with AIOP Debugger

CodeWarrior Development Studio for Advanced Packet Processing Targeting Manual, Rev. 10.2, 01/2016

Freescale Semiconductor, Inc. 105

When debugging a bareboard system, the memory configuration file instructs the
debugger about non 1:1 MMU translations. The file is also required for the 36-bit
physical addresses because of the 32-bit virtual address space to 36-bit physical address
space translation.

In general, a processor core has virtual memory support for 232 bytes of effective address
space and real memory support for 236 bytes of physical address space. Therefore, only
the physical address space is 36-bit wide, while the effective address space remains 32-bit
wide.

The processor executes in the effective address space. Therefore, to have the processor
utilize the entire 36-bit physical address space, you define a Memory Management Unit
(MMU) to translate 32-bit effective addresses to 36-bit real addresses.

Tip
A memory configuration file must not be related directly/only
to the 36-bit addressing features.

For more information on memory configuration files, refer to the appendix.

5.3.5 Displaying memory contents

The debugger allocates multiple memory spaces in the IDE for flexible control over the
memory access. The number of supported memory spaces and their properties depends
upon the debugged processor.

You can display and access the supported memory spaces for a target in the Memory and
Memory Browser Views, in the Import/Export/Fill Memory Action Task View or in the
Debugger Shell using the designated memory space prefix. Use the mem -ms command to
list the supported memory spaces for a processor.

To display the Memory view, select Window > Show View > Other... > Debug >
Memory. Figure 5-12 shows a Memory view displaying physical memory address space.

Standard debugging features

CodeWarrior Development Studio for Advanced Packet Processing Targeting Manual, Rev. 10.2, 01/2016

106 Freescale Semiconductor, Inc.

Figure 5-12. Memory View

NOTE
The Memory view seamlessly displays 32-bit and 36-bit
addresses depending upon the selected memory space and the
target processor currently under debug process.

To display the supported memory spaces for a target in the Memory view, perform the
following steps:

1. In the Memory view, click the Add Memory Monitor icon .

The Monitor Memory dialog box appears.

2. Specify the address in the Enter address or expression to monitor drop-down list.
3. Select one of the supported memory spaces from the Memory space drop-down list.

• SoC Internal Address Space (s)

Select to directly access LS SoC Internal Address Map in an external mode (not
through MC or AIOP core). The SoC Internal Address Map refers the SoC
internal address space directly accessible by an internal transaction source such
as a general purpose processor core.

• Virtual (v)

Select to indicate that the specified address space is same as the address space in
which the processor executes. When you select the Virtual option, the debugger
performs virtual to physical translations based on the translate directives
specified in the memory configuration file (for bare-board debugging) or the
kernel awareness plug-in (for Linux debugging). In addition, the Virtual memory
space is the one that is relevant for the Program Counter (PC) and the Stack

Chapter 5 Working with AIOP Debugger

CodeWarrior Development Studio for Advanced Packet Processing Targeting Manual, Rev. 10.2, 01/2016

Freescale Semiconductor, Inc. 107

Pointer (SP) registers. The width of the Virtual memory space is determined by
the target processor's effective address size. For MC and AIOP cores the width
of the Virtual memory space is 32-bit. For 6500 cores, the width of the Virtual
memory is 64-bit. Note that the Virtual memory space is the default memory
space in the Disassembly view.

5.3.6 Displaying register contents

Use the Registers view to display and modify the contents of the registers of the
processor on your target board. To display this view, select Window > Show View >
Other... > Debug > Registers.

The Registers view displays categories of registers in a tree format. To display the
contents of a particular category of registers, expand the tree element of the register
category of interest. Figure 5-13 shows the Registers view with the General Purpose
Registers tree element expanded.

Tip
You can also view and update registers by issuing the reg,
change, and display commands in the CodeWarrior Debugger
Shell window.

Figure 5-13. Registers View

Standard debugging features

CodeWarrior Development Studio for Advanced Packet Processing Targeting Manual, Rev. 10.2, 01/2016

108 Freescale Semiconductor, Inc.

5.3.6.1 Adding register group

The default display of the Registers view groups related registers into a tree structure.You
can add a custom group of registers to the default tree structure. To add a new register
group:

1. Right-click in the Registers view.

A context menu appears.

2. Select Add Register Group from the context menu.

The Register Group dialog box appears (Figure 5-14).

Figure 5-14. Register Group Dialog Box
3. Enter in the Group Name text box a descriptive name for the new group.
4. Check the check box next to each register you want to appear in the new group.

Tip
Click Select All to check all of the check boxes. Click
Deselect All to clear all of the check boxes.

5. Click OK.

Chapter 5 Working with AIOP Debugger

CodeWarrior Development Studio for Advanced Packet Processing Targeting Manual, Rev. 10.2, 01/2016

Freescale Semiconductor, Inc. 109

The Register Group dialog box closes. The new group name appears in the Registers
view.

5.3.6.2 Editing register group

In the Registers view, you can edit both the default register groups and the groups that
you add. To do so:

1. In the Register view, right-click the name of the register group you want to edit.

A context menu appears.

2. Select Edit Register Group from the context menu.

The Register Group dialog box appears (Adding register group).

3. If you wish, enter in the Group Name text box a new name for the group.
4. Check the check box next to each register you want to appear in the group.

Tip
Click Select All to check all of the check boxes. Click
Deselect All to clear all of the check boxes.

5. Click OK.

The Register Group dialog box closes. The new group name appears in the Registers
view.

5.3.6.3 Removing register group

In the Registers view, you can remove register groups. To remove a register group:

1. In the Registers view, right-click the name of register group that you wish to remove.

A context menu appears.

2. Select Remove Register Group from the context menu.

The selected register group disappears from the Registers view.

Standard debugging features

CodeWarrior Development Studio for Advanced Packet Processing Targeting Manual, Rev. 10.2, 01/2016

110 Freescale Semiconductor, Inc.

5.3.6.4 Changing register bit value

To change a bit value in a register, first switch the IDE to the Debugger perspective and
start a debugging session. Now proceed as follows:

1. Open the Registers view by selecting Window > Show View > Other > Debug >
Registers.

2. In the Registers view, expand the register group that contains the register with the bit
value that you want to change.

3. Click on the register's current bit value in the view's Value column.

The value becomes editable.

4. Type in the new value.
5. Press the Enter key.

The debugger updates the bit value. The bit value in the Value column changes to
reflect your modification.

5.3.7 Using register details window

The default state of the Registers view is to provide details on the processor's registers.
The following figure shows the Register view with detailed information.

Figure 5-15. Register view with detailed information

Chapter 5 Working with AIOP Debugger

CodeWarrior Development Studio for Advanced Packet Processing Targeting Manual, Rev. 10.2, 01/2016

Freescale Semiconductor, Inc. 111

The Registers view displays several types of register details:

• Bit Fields
• Actions
• Description
• Viewing register details
• Changing bit field

NOTE
You have to expand the view then click-and-drag the areas
at the bottom of the Registers view to reveal the Bit Field,
Actions, and Description portions of the view.

5.3.7.1 Bit Fields

The Bit Fields group of the Registers view shows a graphical representation of the
selected register's bit values. This graphical representation shows how the register
organizes bits. You can use this representation to select and change the register's bit
values. Hover the cursor over each part of the graphical representation in order to see
additional information.

Figure 5-16. Register Details, Bit Fields Group

Tip
You can also view register details by issuing the reg command
in the Debugger Shell window.

A bit field is either a single bit or a collection of bits within a register. Each bit field has a
mnemonic name that identifies it. You can use the Field list box to view and select a
particular bit field of the selected register. The list box shows the mnemonic name and
bit-value range of each bit field. In the Bit Fields graphical representation, a box
surrounds each bit field. A red box surrounds the bit field shown in the Field list box.

After you use the Field list box to select a particular bit field, you see its current value in
the = text box. If you change the value shown in the text box, the Registers view shows
the new bit-field value.

Standard debugging features

CodeWarrior Development Studio for Advanced Packet Processing Targeting Manual, Rev. 10.2, 01/2016

112 Freescale Semiconductor, Inc.

5.3.7.2 Actions

Use the Actions group of the Registers view to perform various operations on the selected
register's bit-field values.

Figure 5-17. Register View, Actions Group

This table lists each item in the Actions group and explains the purpose of each.

Table 5-11. Actions Group Items

Item Description

Revert Discard your changes to the current bit-field value and restore
the original value. The debugger disables this button if you
have not made any changes to the bit-field value.

Write Save your changes to the current bit-field value and write
those changes into the register's bit field. The debugger
disables this button after writing the new bit-field value, or if
you have not made any changes to that value.

Reset Change each bit of the bit-field value to its register-reset
value. The register takes on this value after a target-device
reset occurs. To confirm the bit-field change, click the Write
button. To cancel the change, click the Revert button.

Summary Display Description group content in a pop-up window. Press
the Esc key to close the pop-up window.

Format Specify the data format of the displayed bit-field values.

5.3.7.3 Description

The Description group of the Registers view shows explanatory information for the
selected register.

Chapter 5 Working with AIOP Debugger

CodeWarrior Development Studio for Advanced Packet Processing Targeting Manual, Rev. 10.2, 01/2016

Freescale Semiconductor, Inc. 113

Figure 5-18. Register View, Description Group

The information covers the register's:

• Name
• Current Value
• Description
• Bit field explanations and values

Some registers have multiple modes (meaning that the register's bits can have multiple
meanings, depending on the current mode). If the register you examine has multiple
modes, you must select the appropriate mode.

5.3.7.4 Viewing register details

To open the Registers view, you must first start a debugging session.

To see the registers and their descriptions:

1. In the Debug perspective, click the Registers tab.

The Registers view appears (Figure 5-19).

Standard debugging features

CodeWarrior Development Studio for Advanced Packet Processing Targeting Manual, Rev. 10.2, 01/2016

114 Freescale Semiconductor, Inc.

Figure 5-19. Registers view - Register details
2. Click the toolbar's menu button (the inverted triangle).
3. Select Layout > Vertical or Layout > Horizontal to see the register details.

NOTE
Selecting Layout > Registers View Only hides the register
details.

4. Expand a register group to see individual registers.
5. Select a specific register by clicking on it.

The debugger enables the appropriate buttons in the Actions group of the Registers
view.

NOTE
Use the Format list box to specify the format of data that
appears in the Registers view.

6. Use the Register view to examine register details.

For example, examine register details in these ways:

• Expand the Bit Fields group to see a graphical representation of the selected
register's bit fields. You can use this graphical representation to select specific
bits or bit fields.

• Expand the Description group to see an explanation of the selected register, bit
field, or bit value.

Tip
To enlarge the Registers view, click the Maximize
button of the view's toolbar. After you finish looking at

Chapter 5 Working with AIOP Debugger

CodeWarrior Development Studio for Advanced Packet Processing Targeting Manual, Rev. 10.2, 01/2016

Freescale Semiconductor, Inc. 115

the register details, click the Restore button of the
view's toolbar to return the view to its previous size.
Alternatively, right-click the Registers tab and select
Detached. The Registers view becomes a floating
window that you can resize. After you finish looking at
the register details, right-click the Registers tab of the
floating window and select Detached again. You can
rearrange the re-attached view by dragging its tab to a
different collection of view tabs.

5.3.7.5 Changing bit field

To change a bit field in a register, you must first start a debugging session, then open the
Registers view.

To change a bit field:

1. In the Registers view, view register details.
2. Expand the register group that contains the bit field you want to change.
3. Expand the Bit Field and Description groups.

The register details appear (Figure 5-20) in the Registers view.

Standard debugging features

CodeWarrior Development Studio for Advanced Packet Processing Targeting Manual, Rev. 10.2, 01/2016

116 Freescale Semiconductor, Inc.

Figure 5-20. Registers view - Register details
4. From the expanded register group above the register details, select the name of the

register that contains the bit field that you want to change.

The Bit Fields group displays a graphical representation of the selected bit field. The
Description group displays explanatory information about the selected bit field and
parent register.

5. In the Bit Fields group, click the bit field that you want to change. Alternatively, use
the Field list box to specify the bit field that you want to change.

6. In the = text box, type the new value that you want to assign to the bit field.
7. In the Action group, click Write.

The debugger updates the bit-field value. The bit values in the Value column and the
Bit Fields group change to reflect your modification.

NOTE
Click Revert to discard your changes and restore the
original bit-field value.

5.3.8 Setting watchpoints

Chapter 5 Working with AIOP Debugger

CodeWarrior Development Studio for Advanced Packet Processing Targeting Manual, Rev. 10.2, 01/2016

Freescale Semiconductor, Inc. 117

A watchpoint is another name for a data breakpoint. The debugger halts execution each
time the watchpoint location is read, written, or accessed (read or written). The debugger
lets you set a watchpoint on an address or range of addresses in memory. You can set the
watchpoint from the:

• Add Watchpoint dialog box
• Breakpoints view
• Memory view
• Variables view

Setting the watchpoint type defines the conditions under which the debugger halts
execution.

The debugger handles both watchpoints and breakpoints in a similar way. You use the
Breakpoints view to manage both types. For example, you use the Breakpoints view to
add, remove, enable, and disable both watchpoints and breakpoints. The debugger
attempts to set the watchpoint if a session is in progress based on the active debugging
context (the active context is the selected project in the Debug view).

If the debugger sets the watchpoint when no debugging session is in progress, or when re-
starting a debugging session, the debugger attempts to set the watchpoint at startup as it
does for breakpoints. The Problems view displays error messages when the debugger
fails to set a watchpoint. For example, if you set watchpoints on overlapping memory
ranges, or if a watchpoint falls out of execution scope, an error message appears in the
Problems view. You can use this view to see additional information about the error.

5.3.8.1 Adding watchpoints

Use the Add Watchpoint dialog box to create a watchpoint for a memory range. You can
specify these parameters for a watchpoint:

• an address (including memory space)
• an expression that evaluates to an address
• a memory range
• an access type on which to trigger

To open the Add Watchpoint dialog box:

1. Open the Debug perspective.
2. Click one of these tabs:

• Breakpoints
• Memory
• Variables

Standard debugging features

CodeWarrior Development Studio for Advanced Packet Processing Targeting Manual, Rev. 10.2, 01/2016

118 Freescale Semiconductor, Inc.

The corresponding view comes forward.

3. Right-click the appropriate content inside the view. The table below describes the
various options available on the Add Watchpoint dialog box.

Table 5-12. Opening the Add Watchpoint Dialog
Box

In the View... Right-Click...

Breakpoints an empty area inside the view.

Memory the cell or range of cells on which you want to set the
watchpoint.

Variables a global variable. Note that the debugger does not
support setting a watchpoint on a stack variable or a
register variable.

4. Select Add Watchpoint (C/C++) from the context menu that appears.

The Add Watchpoint dialog box appears (Figure 5-21). The debugger sets the
watchpoint according to the settings that you specify in the Add Watchpoint dialog
box. The Breakpoints view shows information about the newly set watchpoint. The
Problems view shows error messages when the debugger fails to set the watchpoint.

Figure 5-21. Add Watchpoint Dialog Box

Table 5-13 describes the Add Watchpoint dialog box options.

Table 5-13. Add Watchpoint Dialog Box Options

Option Description

Expression to watch Enter an expression that evaluates to an address on the
target device. The debugger displays an error message when
the specified expression evaluates to an invalid address. You
can enter these types of expressions:

Table continues on the next page...

Chapter 5 Working with AIOP Debugger

CodeWarrior Development Studio for Advanced Packet Processing Targeting Manual, Rev. 10.2, 01/2016

Freescale Semiconductor, Inc. 119

Table 5-13. Add Watchpoint Dialog Box Options (continued)

Option Description

• An r-value, such as &variable
• A register-based expression. Use the $ character to

denote register names. For example, enter $SP-12 to
have the debugger set a watchpoint on the stack
pointer address minus 12 bytes.

The Add Watchpoint dialog box does not support entering
expressions that evaluate to registers.

Memory space Check this option to specify an address, including memory
space, at which to set the watchpoint. Use the text box to
specify the address or address range on which to set the
watchpoint. If a debugging session is not active, the text/list
box is empty, but you can still type an address or address
range.

Units Enter the number of addressable units that the watchpoint
monitors.

Write Check this option to enable the watchpoint to monitor write
activity on the specified memory space and address range.
Clear this option if you do not want the watchpoint to monitor
write activity.

Read Check this option to enable the watchpoint to monitor read
activity on the specified memory space and address range.
Clear this option if you do not want the watchpoint to monitor
read activity.

5.3.8.2 Removing watchpoints

To remove a watchpoint:

1. Open the Breakpoints view if it is not already open by choosing Window > Show
View > Breakpoints.

The Breakpoints view appears, displaying a list of watchpoints.

2. Right-click on the watchpoint you wish to remove and pick Remove from the menu
that appears.

The selected watchpoint is removed, and it disappears from the list in the
Breakpoints view.

5.3.9 Setting breakpoints

Standard debugging features

CodeWarrior Development Studio for Advanced Packet Processing Targeting Manual, Rev. 10.2, 01/2016

120 Freescale Semiconductor, Inc.

The different breakpoint types that you can set are listed below:

• Software

The debugger sets a software breakpoint into target memory. When program
execution reaches the breakpoint, the processor stops and activates the debugger. The
breakpoint remains in the target memory until the user removes it.

The breakpoint can only be set in writable memory like SRAM or DDR. You cannot
use this type of breakpoints in ROM.

• Hardware

Selecting the Hardware menu option causes the debugger to use the internal
processor breakpoints. These breakpoints are usually very few and can be used with
all types of memories (ROM/RAM) because they are implemented by using
processor registers.

Tip
You can also set breakpoint types by issuing the bp
command in the CodeWarrior Debugger Shell.

To set a breakpoint:

1. In the IDE's Debug perspective, click the Debug tab.

The Debug view appears (Figure 5-22).

2. Right clicking on a code line will set a breakpoint.

Figure 5-22. Debug view
3. Expand the Thread group.
4. Under the Thread group, select the thread that has the main() function.

Chapter 5 Working with AIOP Debugger

CodeWarrior Development Studio for Advanced Packet Processing Targeting Manual, Rev. 10.2, 01/2016

Freescale Semiconductor, Inc. 121

The source code appears in an editor view (Figure 5-23). The small blue arrow to the
left of the source code indicates which code statement the processor's program
counter is set to execute next.

Figure 5-23. Editor view
5. In the editor view, place the cursor on the line that has this statement: printf("Welcome

to CodeWarrior!\r\n");

6. Select Run > Toggle Line Breakpoint.
7. A blue dot appears in the marker bar to the left of the line (Figure 5-24). This dot

indicates an enabled breakpoint. After the debugger installs the breakpoint, a blue
checkmark appears beside the dot. The debugger installs a breakpoint by loading into
the Java™ virtual machine the code in which you set that breakpoint.

Tip
An alternate way to set a breakpoint is to double-click the
marker bar to the left of any source-code line. If you set the
breakpoint on a line that does not have an executable
statement, the debugger moves the breakpoint to the closest
subsequent line that has an executable statement. The
marker bar shows the installed breakpoint location. If you
want to set a hardware breakpoint instead of a software
breakpoint, use the bp command in the Debugger Shell.
You can also right-click on the marker bar to the left of any
source-code line, and select Set Special Breakpoint from
the context menu that appears.

Standard debugging features

CodeWarrior Development Studio for Advanced Packet Processing Targeting Manual, Rev. 10.2, 01/2016

122 Freescale Semiconductor, Inc.

Figure 5-24. Editor view after setting breakpoints
8. From the menu bar, select Run > Resume.

The debugger executes all lines up to, but not including, the line at which you set the
breakpoint. The editor view highlights the line at which the debugger suspended
execution (Figure 5-25). Note also that the program counter (blue arrow) is
positioned here.

Figure 5-25. Editor view after reaching breakpoint

5.3.9.1 AIOP task specific breakpoints

AIOP is intended to be a programmable highly efficient engine targeted at packet
processing applications. The fundamental unit of operation in an AIOP instance is the
task. Tasks are created and terminated by the hardware. A finite number of tasks can exist
and execute simultaneously inside an AIOP. The life cycle of an AIOP task is usually
very short, and at any given point of time, on a core, we can have tasks from different
sources and different networking protocols. AIOP specific breakpoints provide a
mechanism for debugging only the selected tasks, without affecting other tasks.

Chapter 5 Working with AIOP Debugger

CodeWarrior Development Studio for Advanced Packet Processing Targeting Manual, Rev. 10.2, 01/2016

Freescale Semiconductor, Inc. 123

The table below lists the AIOP task specific breakpoint variants supported by the current
CodeWarrior release.

Table 5-14. AIOP task specific breakpoint variants

Type Scope Effect Description

AIOP, Any Task,
Global Halt, Software

Any Task Global Halt Any task may hit the breakpoint and when it does it
triggers the AIOP global halt.

AIOP, Any Task,
Global Halt, Hardware

Any Task Global Halt Any task may hit the breakpoint and when it does it
triggers the AIOP global halt. This method uses a
hardware breakpoint.

AIOP, Any Task, Task
Halt, Software

Any Task Task Halt Any task may hit the breakpoint and when it does it
is suspended from execution.

AIOP, One Task,
Global Halt, Software

Current Task Global Halt Only current task may hit the breakpoint and when
it does it triggers the AIOP global.

AIOP, One Task, Task
Halt, Software

Current Task Task Halt Only current task may hit the breakpoint and when
it does it is placed in debug inhibited for
scheduling.

5.3.9.2 Setting hardware breakpoints

There are two ways to set hardware breakpoints:

• Setting hardware breakpoint using editor view
• Setting hardware breakpoint using debugger shell

5.3.9.2.1 Setting hardware breakpoint using editor view

In either the C/C++ perspective or the Debug perspective, select the source line in the
Editor view where you want to place the breakpoint. Go to the marker bar on the left side
of the Editor view. Right-click on it to display a menu. Choose Set Special Breakpoint >
Hardware to set a hardware breakpoint.

5.3.9.2.2 Setting hardware breakpoint using debugger shell

To set hardware breakpoints using the Debugger Shell:

1. Open the debugger shell.
2. Begin the command line with the text: bp -hw
3. Complete the command line by specifying the function, address, or file at which you

want to set the hardware breakpoint.

Standard debugging features

CodeWarrior Development Studio for Advanced Packet Processing Targeting Manual, Rev. 10.2, 01/2016

124 Freescale Semiconductor, Inc.

4. Press the Enter key.

The debugger shell executes the command and sets the hardware breakpoint.

Tip
Enter help bp at the command-line prompt to see examples
of the bp command syntax and usage.

5.3.9.3 Removing breakpoints

To remove a breakpoint from your program, you have two options:

• Removing breakpoint using marker bar
• Removing breakpoint using Breakpoints view

NOTE
For more information on removing hardware breakpoints,
see Removing hardware breakpoints.

5.3.9.3.1 Removing breakpoint using marker bar

To remove an existing breakpoint using the marker bar:

1. Right-click on the existing breakpoint in the marker bar.
2. Select Toggle Breakpoint from the menu that appears.

5.3.9.3.2 Removing breakpoint using Breakpoints view

To remove an existing breakpoint using the Breakpoints view:

1. Open the Breakpoints view if it is not already open by choosing Window > Show
View > Breakpoints.

The Breakpoint view appears, displaying a list of breakpoints.

2. Right-click on the breakpoint you wish to remove and pick Remove from the menu
that appears.

The selected breakpoint is removed, and it disappears from the both the marker bar
and the list in the view.

Chapter 5 Working with AIOP Debugger

CodeWarrior Development Studio for Advanced Packet Processing Targeting Manual, Rev. 10.2, 01/2016

Freescale Semiconductor, Inc. 125

NOTE
To remove all of the breakpoints from the program at once,
select Remove All from the menu.

5.3.9.4 Removing hardware breakpoints

There are two ways to remove existing hardware breakpoints:

• Removing hardware breakpoint using editor view
• Removing hardware breakpoint using Debugger Shell.

5.3.9.4.1 Removing hardware breakpoint using editor view

To remove a hardware breakpoint using the editor view:

1. Right-click on the existing breakpoint in the marker bar.
2. Select Toggle Breakpoint from the menu that appears.

Alternatively, to remove the breakpoint from the Breakpoint view:

1. Open the Breakpoints view if it is not already open by choosing Window > Show
View > Breakpoints.

The Breakpoint view appears, displaying a list of breakpoints.

2. Right-click on the hardware breakpoint you wish to remove and pick Remove from
the menu that appears.

The selected breakpoint is removed, and it disappears from the both the marker bar
and the list in the view.

5.3.9.4.2 Removing hardware breakpoint using Debugger Shell

To remove a hardware breakpoint using the Debugger Shell:

1. Open the debugger shell.
2. Begin the command line with the text: bp -hw
3. Complete the command line by specifying the function, address, or file at which you

want to remove the hardware breakpoint.

Standard debugging features

CodeWarrior Development Studio for Advanced Packet Processing Targeting Manual, Rev. 10.2, 01/2016

126 Freescale Semiconductor, Inc.

For example, to remove a breakpoint at line 6 in your program, type:

bp -hw 6 off

4. Press the Enter key.

The debugger shell executes the command and removes the hardware breakpoint.

5.3.10 Setting stack depth

Select Window > Preferences > C/C++ > Debug > Maximum Stack crawl depth
command to set the depth of the stack to read and display. Showing all levels of calls
when you are examining function calls several levels deep can sometimes make stepping
through code more time-consuming. Therefore, you can use this menu option to reduce
the depth of calls that the debugger displays.

5.3.11 Changing program counter value

To change the program-counter value:

1. Start a debugging session.
2. In the Editor view, place the cursor on the line that you want the debugger to execute

next.
3. Right-click in the Editor view.

A context menu appears.

4. From the context menu, select Move To Line.

CodeWarrior IDE modifies the program counter to the specified location. The Editor
view shows the new location.

5.3.12 Hard resetting

Use the reset hard command in the Debugger Shell to send a hard reset signal to the
target processor.

Chapter 5 Working with AIOP Debugger

CodeWarrior Development Studio for Advanced Packet Processing Targeting Manual, Rev. 10.2, 01/2016

Freescale Semiconductor, Inc. 127

NOTE
The Hard Reset command is enabled only if the debug
hardware you are using supports it.

Tip
You can also perform a hard reset by clicking the Multicore

Reset () button from the Debug perspective toolbar.

5.3.13 Loading and saving memory

The Load/Save Memory command:

• Loads the specified amount of data from a binary or S-Record file on the host and
writes this data to the target board's memory starting at the specified address.

• Reads the specified amount of data from the specified address of the target board's
memory and saves this data in a binary file on the host.

To load/save memory:

1. Select Window > Show View > Other

The Show View dialog box appears.

2. From the Debug group, select Target Tasks.

The Target Tasks view appears (Figure 5-26) at the bottom-right of the IDE
window.

Figure 5-26. Target Tasks view
3. Right-click in the Target Tasks view and select New Task from the context menu that

appears.

Standard debugging features

CodeWarrior Development Studio for Advanced Packet Processing Targeting Manual, Rev. 10.2, 01/2016

128 Freescale Semiconductor, Inc.

The Create New Target Task dialog box appears (Figure 5-27).

4. From the Task Type drop-down list box, select Import/Export/Fill Memory.

Figure 5-27. Create New Target Task dialog
5. Click Finish.

The new task appears in the Tasks panel.

6. Select the Fill Memory with a data pattern option from this window to fill memory.

Tip
You can also load and save memory by issuing the restore
and save commands in the CodeWarrior Debugger Shell.

If you load an S-Record file, the loader behaves as follows:

• The loader uses the offset field to shift the address contained in each S-Record to a
lower or higher address. The sign of the offset field determines the direction of the
shift.

Chapter 5 Working with AIOP Debugger

CodeWarrior Development Studio for Advanced Packet Processing Targeting Manual, Rev. 10.2, 01/2016

Freescale Semiconductor, Inc. 129

• The address produced by this shift is the memory address at which the loader starts
writing the S-Record data.

• The loader uses the address and size fields as a filter. The loader applies these fields
to the initial S-Record (not to its shifted version) to make sure that only the zone
defined by these fields is actually written to.

5.3.14 Filling memory

Use this command to fill a particular memory location with data of particular size and
type. This command lets you write a set of characters to a particular memory location on
the target by repeatedly copying the characters until the specified fill size has been
reached.

NOTE
For more information, see Import/Export/Fill Memory section
in the Debugger chapter of the CodeWarrior Common Features
Guide available in the <CWInstallDir>\LS\Help\PDF\ folder, where
<CWInstallDir> is the path where you have installed your
CodeWarrior software.

5.3.15 Controlling cross triggering

The AIOP core debugging can be performed by enabling or disabling the debug halt
cross-triggering. You can configure the cross-triggering using the Disable Halt Groups
button under Multicore Groups from the Debug view.

To enable or disable the cross-triggering between AIOP cores:
1. Open the Debug view.

a. Select Window > Show View > Other.

The Show View dialog appears.

b. Select Debug from the Debug group.
c. Click OK.

The Debug view appears.

d. Open the Multicore Groups drop-down menu from the toolbar menu.
e. Select to check/clear the Disable Halt Groups. Figure 5-28 shows Debug Halt

Group option.

Standard debugging features

CodeWarrior Development Studio for Advanced Packet Processing Targeting Manual, Rev. 10.2, 01/2016

130 Freescale Semiconductor, Inc.

Figure 5-28. Debug view - Debug Halt Groups option

NOTE
In case you have selected AIOP in the OS Awareness
tab, the cross-triggering will be enabled by default
while performing task-debugging.

The CodeWarrior IDE disables or enables the cross-triggering between AIOP
cores.

5.4 CodeWarrior Executable Importer wizard

You can use the CodeWarrior debugger to debug an executable (.elf) file that has no
associated CodeWarrior project using the CodeWarrior Executable Importer wizard.

To use the Import a CodeWarrior Executable file wizard:

1. Start the CodeWarrior IDE.
2. From the main menu bar, select File > Import.

The Import wizard launches and the Select page appears.

3. Expand the CodeWarrior group.
4. Select the CodeWarrior Executable Importer option to debug a executable .elf

file.
5. Click Next.

Chapter 5 Working with AIOP Debugger

CodeWarrior Development Studio for Advanced Packet Processing Targeting Manual, Rev. 10.2, 01/2016

Freescale Semiconductor, Inc. 131

The wizard name changes to Import a CodeWarrior Executable file and the
Import a CodeWarrior Executable file page appears. For more information, see
Import a CodeWarrior Executable file page.

This section describes the various pages that the wizard displays as it assists you in
debugging an executable (.elf) file.

• Import a CodeWarrior Executable file page
• Import C/C++/Assembler Executable Files page
• Processor page
• Debug Target Settings page
• Configurations page

5.4.1 Import a CodeWarrior Executable file page

Use this page to select an executable file or a folder to search for the executable files.

The table below describes the options available on the page.

Table 5-15. Import a CodeWarrior Executable file page settings

Option Description

Project name Specify the name of the project. The specified name identifies the project created for debugging (but not
building) the executable file.

Use default
location

Check this option to store the project in the default location. Clear this option to specify the location for the
imported project.

Location Specifies the location to save the imported project file. Click Browse to navigate to the specified folder
location. Ensure that you append the path with the name of the project to create a new location for your
project.

5.4.2 Import C/C++/Assembler Executable Files page

Use this page to select the elf file to import.

CodeWarrior Executable Importer wizard

CodeWarrior Development Studio for Advanced Packet Processing Targeting Manual, Rev. 10.2, 01/2016

132 Freescale Semiconductor, Inc.

The table below lists the options available on the page.

Table 5-16. Import C/C++/Assembler Executable page settings

Option Description

File to import Specifies the C/C++/Assembler executable file. Click Browse
to choose an executable file.

Copy the selected file to the current project folder Check this option to copy the selected executable file to an
already existing project folder.

5.4.3 Processor page

Use this page to specify the processor family for the imported executable file and specify
the toolchain to be used.

The table below describes the options available on the page.

Table 5-17. Processor page settings

Option Description

Processor Expand the processor family and select the specific target from this pull-down menu. The toolchain uses this
choice to generate code that makes use of processor-specific features, such as multiple cores. Note: You
can also use type filter text box as a shortcut to specify a processor. Start typing the processor name into
the text box.

Toolchain Chooses the compiler, linker, and libraries used to build the program. Each toolchain generates code
targeted for a specific platform. These are:

• Bareboard Application-Targets a hardware board without an operating system.

Target OS Specify the operating system that runs on the target device. This option is applicable only for Bareboard
Application projects.

5.4.4 Debug Target Settings page

This page displays the debugger connection types supported by the current installation.
Use this page to specify connection type and launch configurations created for the new
project.

Chapter 5 Working with AIOP Debugger

CodeWarrior Development Studio for Advanced Packet Processing Targeting Manual, Rev. 10.2, 01/2016

Freescale Semiconductor, Inc. 133

The table below describes the options available on the page.

Table 5-18. Debug Target Settings page settings

Option Description

Debugger Connection
Types

Specifies what target the program executes on.
• Simulator - Select to execute the program on a software simulator.

Board Specifies the hardware supported by the selected processor.

Launch Specifies the launch configurations and corresponding connection, supported by the selected
processor.

Connection Type Specifies the interface to communicate with the hardware.

TAP address Specify the IP address of the selected TAP device.

Simulator remote IP Specify the IP address of the remote Linux 64-bit machine, the simulator is started on.

Simulator port number Specify the port number that the debugger will use to communicate with the simulator launched on
the remote Linux host.

NOTE
The Debug Target Settings page may prompt you to either
create a new remote system configuration or select an existing
one.

A remote system is a system configuration that defines
connection, initialization, and target parameters. The remote
system explorer provides data models and frameworks to
configure and manage remote systems, their connections, and
their services. For more information, refer to the CodeWarrior
Development Studio Common Features Guide available in the
<CodeWarrior-Install-Dir>\LS\Help\PDF\ folder.

5.4.5 Configurations page

Use this page to select the processor core that executes the project.

The table below lists the options available on the page.

Table 5-19. Configurations page

Options Description

Core Index Select the processor core that executes the project.

Debugging externally built executable file

CodeWarrior Development Studio for Advanced Packet Processing Targeting Manual, Rev. 10.2, 01/2016

134 Freescale Semiconductor, Inc.

5.5 Debugging externally built executable file

You can use the CodeWarrior Executable Importer wizard to debug an executable
(.elf) file that has no associated CodeWarrior project. For example, you can debug
an .elf file that a different IDE generated. To debug these externally built executable
files:

1. Specifying the Executable File - Specify the externally built executable file that you
want to debug in the CodeWarrior IDE. The IDE imports the executable file into a
new project.

To specify the executable file:

a. Launch the CodeWarrior IDE.
b. From the main menu bar, select File > Import.

The Import wizard appears.

c. Expand the CodeWarrior group.
d. Select CodeWarrior Executable Importer.
e. Click Next.

The Import a CodeWarrior Executable file page appears.

f. In the Project Name text box specify a name for the imported project.
g. Click Next.

The Import C/C++/Assembler Executable files page appears.

h. Click Browse to select the elf file to import.
i. The Select file dialog box appears.
j. Use the dialog box to navigate to the executable file that you want to debug.
k. Click Open.

The Select file dialog box closes. The path to the executable file appears in the
File to Import text box.

Tip
You can also drag and drop an elf file in the
CodeWarrior Eclipse IDE. When you drop the .elf file
in the IDE, the Import a CodeWarrior Executable
file wizard appears with the .elf file already specified
in the Project Name and File to Import text box.

Chapter 5 Working with AIOP Debugger

CodeWarrior Development Studio for Advanced Packet Processing Targeting Manual, Rev. 10.2, 01/2016

Freescale Semiconductor, Inc. 135

2. Creating a Project for the Executable File - Create a new CodeWarrior project that
you use to debug the executable file. Use the project's associated launch
configuration to specify debugging parameters for the executable file.

If you want to use an already existing project work space for the imported executable
file, check the Copy the selected file to current project folder check box.

a. Click Next.

The Processor page appears.

b. Select the processor family for the executable file.
c. Select a toolchain from the Toolchain group.

Selected toolchain sets up the default compiler, linker, and libraries used to build
the new project. Each toolchain generates code targeted for a specific platform.

d. Select if the board runs no operation system or imports a linux kernel project to
be executed on the board. The Target OS options are applicable only for
Bareboard Application projects.

e. Click Next.

The Debug Target Settings page appears.

f. Select a supported connection type, from the Debugger Connection Types group.
Your selection determines the launch configurations that you can include in your
project.

g. Select the hardware or simulator, you plan to use, from the Board drop-down
list.

NOTE
Hardware or Simulators that supports the target
processor selected on the Processors page are only
available for selection.

h. Select the launch configurations, that you want to include in your project and the
corresponding connection.

i. Select the interface to communicate with the hardware, from the Connection
Type drop-down list.

j. Enter the IP address of the TAP device in the TAP address text box. This option
is disabled and cannot be edited, if you select USB TAP from the Connection
Type drop-down list.

k. Click Next.

The Configurations page appears.

l. Select the processor core that executes the project, from the Core index list.

Debugging externally built executable file

CodeWarrior Development Studio for Advanced Packet Processing Targeting Manual, Rev. 10.2, 01/2016

136 Freescale Semiconductor, Inc.

m. Click Finish.

The Import a CodeWarrior Executable file wizard ends. The project for the
imported .elf file appears in the CodeWarrior Projects view.You can now open
the Debug Configurations window by selecting Run > Debug Configurations.
The Debug Configurations window shows the current settings for the launch
configuration that you just created. A remote system is created with details of all
the connection, initialization, and target parameters you had set while importing
the elf file.

3. Editing the Launch Configuration - Modify the default settings of the launch
configuration. Specify the appropriate debugger, target processor, initialization files,
connection protocol, and other debugger-related options for the executable file.

If you want to change the settings for the launch configuration from what you had set
during importing the elf file, you can do it through the various tabs available in the
Debug Configurations window.

To edit the launch configuration for your executable file:

a. On the Main tab, click Edit in the Connection panel.

The corresponding Connection page appears.

b. Use the Connection type list box to modify the current connection type.
c. Configure the various connection options as appropriate for your executable file

by using the various tabs available on the Connection page.

For example, specify the appropriate target processor, any initialization files, and
connection protocol.

d. Click OK to close the Connection page.

NOTE
For more information on how to modify settings using
the remote system explorer, refer to the CodeWarrior
Common Features Guide from the <CodeWarrior-
Install-Dir>\LS\Help\PDF\ folder.

4. Specifying a Source Lookup Path - Specify the source lookup path in terms of the
compilation path and the local file-system path. The CodeWarrior debugger uses
both of these paths to debug the executable file.

The compilation path is the path to the original project that built the executable file.
If the original project is from an IDE on a different computer, you specify the
compilation path in terms of the file system on that computer.

Chapter 5 Working with AIOP Debugger

CodeWarrior Development Studio for Advanced Packet Processing Targeting Manual, Rev. 10.2, 01/2016

Freescale Semiconductor, Inc. 137

The local file-system path is the path to the project that the CodeWarrior IDE creates
in order to debug the executable file.

Before you specify a source lookup path, make sure that you edit the launch
configuration for the executable file.

To specify a source lookup path for your executable file:

a. Click the Source tab of the Debug Configurations window.

The corresponding page appears.

b. Click Add.

The Add Source dialog box appears.

c. Select Path Mapping from the available list of sources.
d. Click OK.

The Add Source dialog box closes. The Path Mappings dialog box appears.

e. In the Name text box, enter the name of the new path mapping.
f. Click Add.

The cursor blinks in the Compilation path column.

g. In the Compilation path column, enter the path to the parent project of the
executable file, relative to the computer that generated the file.

Suppose the computer on which you debug the executable file is not the same
computer that generated that executable file. On the computer that generated the
executable file, the path to the parent project is D:\workspace\originalproject. Enter
this path in the Compilation path text box.

Tip
You can use the IDE to discover the path to the parent
project of the executable file, relative to the computer
that generated the file. In the C/C++ Projects view of
the C/C++ perspective, expand the project that contains
the executable file that you want to debug. Next,
expand the group that has the name of the executable
file itself. A list of paths appears, relative to the
computer that generated the file. Search this list for the
names of source files used to build the executable file.
The path to the parent project of one of these source
files is the path you should enter in the Compilation
path column.

Debugging externally built executable file

CodeWarrior Development Studio for Advanced Packet Processing Targeting Manual, Rev. 10.2, 01/2016

138 Freescale Semiconductor, Inc.

h. In the Local file system path text box, enter the path to the parent project of the
executable file, relative to your computer. Click the ellipsis button to specify the
parent project.

Suppose the computer on which you debug the executable file is not the same
computer that generated that executable file. On your current computer, the path
to the parent project of the executable file is C:\projects\thisproject. Enter this
path in the Local file system path text box.

i. Click OK.

The Path Mapping dialog box closes. The mapping information now appears
under the path mapping shown in the Source Lookup Path list of the Source
page.

j. If needed, change the order in which the IDE searches the paths.

The IDE searches the paths in the order shown in the Source Lookup Path list,
stopping at the first match. To change this order, select a path, then click the Up
or Down button to change its position in the list.

k. Click Apply.

The IDE saves your changes.

5. Debugging the Executable File-Use the CodeWarrior debugger to debug the
externally built executable file. To debug the executable file, click the Debug button
of the Debug Configurations window.

5.6 Multi-core operations

This sections explains the various features available to you when debugging a multi-core
processor.

• Multi-core operations in IDE
• Multi-core operations in Debugger Shell

5.6.1 Multi-core operations in IDE

Chapter 5 Working with AIOP Debugger

CodeWarrior Development Studio for Advanced Packet Processing Targeting Manual, Rev. 10.2, 01/2016

Freescale Semiconductor, Inc. 139

When you start a multi-core debug session, multi-core commands are enabled on the
IDE's Run menu. These commands, when issued, affect all cores simultaneously. Table
5-20 describes each menu choice. For more information on these commands, refer to the
Debugger chapter in CodeWarrior Common Features Guide from the <CodeWarrior-
Install-Dir>\LS\Help\PDF\ folder.

Table 5-20. Multi-Core Commands

Command Description

Multicore Resume Starts all cores of a multi-core system running simultaneously.

Multicore Suspend Stops execution of all cores of a multi-core system
simultaneously.

Multicore Restart Restarts all the debug sessions for all cores of a multi-core
system.

Multicore Terminate Kills all the debug sessions for all cores of a multi-core
system.

To use the multi-core commands from the Debugger perspective:

1. Start a debugging session by selecting the appropriately configured launch
configurations.

2. Click the Debug tab of the Debug perspective.
3. If necessary, expand the desired core's list of active threads by clicking on the tree

control.
4. Click on the thread you want to use with multi-core operations.

NOTE
Selecting a thread uses the Multicore Group the core is part
of in the multicore operation. For more information on the
Multicore Groups feature, refer to the CodeWarrior
Common Features Guide from the <CodeWarrior-Install-Dir>
\LS\Help\PDF\ folder.

5. From the Run menu, specify the multi-core operation to perform on the thread.

NOTE
The keyboard shortcut for the Multi-core Resume operation
is Shift-F8.

5.6.2 Multi-core operations in Debugger Shell

Multi-core operations

CodeWarrior Development Studio for Advanced Packet Processing Targeting Manual, Rev. 10.2, 01/2016

140 Freescale Semiconductor, Inc.

In addition to the multicore-specific toolbar buttons and menu commands available in the
Debugger view, the Debugger Shell has multi-core specific commands that can control
the operation of one or more processor cores at the same time. Like the menu commands,
the multi-core Debugger Shell commands allow you to select, start, and stop a specific
core. You can also restart or kill sessions executing on a particular core. Table 5-21 lists
the commands and their purpose.

Table 5-21. Multi-core Commands for the Debugger Shell

Category Multi-core Operation Analogous Single-core Operation

run control mc::go go

mc::stop stop

session control mc::restart restart

mc::kill kill

NOTE
For more information on Debugger Shell, see CodeWarrior
Common Features Guide available in the <CWInstallDir>\LS\Help
\PDF\ folder, where <CWInstallDir> is the path where you have
installed your CodeWarrior software.

Chapter 5 Working with AIOP Debugger

CodeWarrior Development Studio for Advanced Packet Processing Targeting Manual, Rev. 10.2, 01/2016

Freescale Semiconductor, Inc. 141

Multi-core operations

CodeWarrior Development Studio for Advanced Packet Processing Targeting Manual, Rev. 10.2, 01/2016

142 Freescale Semiconductor, Inc.

Chapter 6
Working with hardware tools

This chapter explains how to use the CodeWarrior hardware tools. Use these tools for
board bring-up, test, and analysis.

This chapter explains:

• Working with hardware diagnostics
• Manipulating target memory

6.1 Working with hardware diagnostics

Use the hardware-diagnostic tools of the CodeWarrior IDE to run one or more generic
memory operations on a target device. For example, you can run an individual read or
write operation to or from a memory location. Also, you can run a number of algorithms
based access operations on a chunk of memory. After you run the memory operations,
you can observe whether the operation succeeded and view log information for additional
details.

Following sections will help you with more details on working with hardware-diagnostic
tools:

• Creating new hardware diagnostics task
• Executing hardware diagnostics task
• Editing hardware diagnostics task
• Hardware Diagnostics Action editor

6.1.1 Creating new hardware diagnostics task

CodeWarrior Development Studio for Advanced Packet Processing Targeting Manual, Rev. 10.2, 01/2016

Freescale Semiconductor, Inc. 143

In order to run a hardware-diagnostic or memory operation, you must first open the
Target Tasks view. To open the view, follow these steps:

1. Select Window > Show View > Other.

The Show View dialog box appears.

2. Expand the Debug group.
3. Select Target Tasks.
4. Click OK.

The Target Tasks view appears in the Debug perspective.

Figure 6-1. Target Task View
5. Click the Create a new Target Task toolbar button of the Target Tasks view.

Alternatively, right-click the left-hand list of tasks and select New Task from the
context menu that appears.

The Create a New Target Task dialog box appears.

Working with hardware diagnostics

CodeWarrior Development Studio for Advanced Packet Processing Targeting Manual, Rev. 10.2, 01/2016

144 Freescale Semiconductor, Inc.

Figure 6-2. Create New Target Task Dialog Box
6. Specify a name to the new task in the Target Name text box.
7. Specify the configuration that the task launches and uses to connect to the target from

the Run Configuration drop-down list.
8. Select Hardware Diagnostic from the Task Type list box.

NOTE
Select Active Debug Context from the Run Configuration
drop-down list, if you want to use flash programmer over
an active debugger session, else select any of the specified
debug context from the list.

The Hardware Diagnostics users can choose a Download or
a Connect debug context from the Run Configuration
drop-down list because the Active Debug Context will not
be valid in this case as the licenses to use the same are
limited. The debug contexts are automatically created when
creating a new project using the New Project Wizard. It is
mandatory to select a debug context.

9. Click Finish.

Chapter 6 Working with hardware tools

CodeWarrior Development Studio for Advanced Packet Processing Targeting Manual, Rev. 10.2, 01/2016

Freescale Semiconductor, Inc. 145

A new hardware-diagnostic task is created in the Target Tasks view.

6.1.2 Executing hardware diagnostics task

To execute a pre-defined hardware diagnostic task, follow these steps:

1. Open the Target Tasks view.
2. Click Arrange By: <Type> to display the appropriate list of tasks.

The Target Tasks View shows display options in the Debug perspective.

Figure 6-3. Target Task View - Display Options
3. Right-click the task and select Execute from the context menu. Alternatively, click

the the Execute icon on the Target Task view toolbar to execute the selected task.

The hardware diagnostic task is executed. The Executing Target Task dialog box
displays the progress of execution of the task. Upon completion, the Hardware
Diagnostics action editor for setting the task specific configuration settings is
displayed.

6.1.3 Editing hardware diagnostics task

To edit a Hardware Diagnostics task, follow these steps:

Working with hardware diagnostics

CodeWarrior Development Studio for Advanced Packet Processing Targeting Manual, Rev. 10.2, 01/2016

146 Freescale Semiconductor, Inc.

1. Double click a hardware-diagnostic task in the Target Tasks view to edit it.
Alternatively, right-click on the task and select Edit Task Configuration from the
context menu.

The Hardware Diagnostics Action editor appears.

Figure 6-4. Hardware Diagnostics Action Editor
2. Select the type of the task you want to perform from the Action Type. You may

perform the following hardware diagnostic tasks:
• Memory read/write: Performs a read/write action on the target of the selected

size to the selected address. Selecting this, enables the Memory Access group.
• Scope loop: Performs read or write action of the selected size at the selected

address unit until you stop the task. (Press Cancel in the Task Monitor to stop the
Task). Selecting this, enables the Memory Access and Loop Speed group.

• Memory Test: Performs a number of tests on the target at the selected memory
range: Memory starting from Target Address and of a size equal to Test area
size. These tests are Walking 1's, Bus Noise, and Address. These can be

Chapter 6 Working with hardware tools

CodeWarrior Development Studio for Advanced Packet Processing Targeting Manual, Rev. 10.2, 01/2016

Freescale Semiconductor, Inc. 147

executed number of times equal to Number of Passes. Selecting this task enables
the Access Size and Target Address from the Memory Access group and the
Memory Tests group.

6.1.4 Hardware Diagnostics Action editor

The table below lists and defines all the User Interface (UI) options present within
Hardware Diagnostics Action editor.

Table 6-1. Hardware Diagnostics Action Editor - Options

Action Type Description

Target Address The address on the target that we want to test. It is used in all
3 of test types

Access Type Specify the access type to test: reading or writing to memory.

Value Specify a value to write to the Target Address

Access Size Specify the number of bytes which are going to be read or
written by one access to the memory: 1 Byte, 2 Byte, 4 Byte

Loop Speed Specify the time between two consecutive memory accesses

Test Area Size Specify the size of memory to test. This setting along with
Target Address defines the memory range to test.

Number of passes Specify the number of times a test is to be executed.

Tests to Run Specify the tests to be executed: Walking 1's, Bus Noise,
Address

Use Target CPU Check: Do the tests directly on the target by downloading a
test driver to the memory specified by Download algorithm to
address preference. Unchecked: Do the tests by accessing
the memory from the host by means of the protocol.

Download Algorithm to Address Specify the address where the test driver is downloaded in
case the Use Target CPU activated.

6.2 Manipulating target memory

You can manipulate the target's memory by exporting memory contents to a file or
importing data from a file into the memory. The Import/Export/Fill Memory utility also
lets you fill a specified memory range with user provided data pattern.

Following section will help you with more details on manipulating target memory:

• Creating target task to manipulate memory

Manipulating target memory

CodeWarrior Development Studio for Advanced Packet Processing Targeting Manual, Rev. 10.2, 01/2016

148 Freescale Semiconductor, Inc.

• Editing import/export/fill memory task
• Import/Export/Fill Memory Action editor

6.2.1 Creating target task to manipulate memory

Follow these steps to create a target task to manipulate memory:

1. Select Window > Show View > Other.

The Show View dialog box appears.

2. From the Debug group, select Target Tasks.

The Target Tasks view appears.

Figure 6-5. Target Task View
3. Click the Create a new Target Task toolbar button of the Target Tasks view.

Alternatively, right-click the left-hand list of tasks and select New Task from the
context menu that appears.

The Create a New Target Task dialog box appears.

Chapter 6 Working with hardware tools

CodeWarrior Development Studio for Advanced Packet Processing Targeting Manual, Rev. 10.2, 01/2016

Freescale Semiconductor, Inc. 149

Figure 6-6. Create New Target Task Dialog Box
4. Specify a name to the new task in the Target Name text box.
5. Specify the configuration that the task launches and uses to connect to the target from

the Run Configuration drop-down list.
6. Select Import/Export/Fill Memory from the Task Type list box.
7. Click Finish.

A new memory task is created in the Target Tasks view.

6.2.2 Editing import/export/fill memory task

To edit a memory task, follow these steps:

1. Double click a memory task in the Target Tasks view to edit it. Alternatively, right-
click on the task and select Edit Task Configuration from the context menu.

The Import/Export/Fill Memory Action editor appears.

Manipulating target memory

CodeWarrior Development Studio for Advanced Packet Processing Targeting Manual, Rev. 10.2, 01/2016

150 Freescale Semiconductor, Inc.

Figure 6-7. Import/Export/Fill Memory Action Editor
2. Select the type of the task you want to perform from the Action Type. You may

perform the following tasks:
• Import memory: Enables reading encoded data from a user specified file,

decoding it, and copying it into a user specified memory range.
• Export memory: Enables reading data from a user specified memory range,

encoding it in a user specified format, and store this encoded data in a user
specified output file.

• Fill memory: Enables filling a user specified memory range with an user
specified data pattern.

6.2.3 Import/Export/Fill Memory Action editor

Chapter 6 Working with hardware tools

CodeWarrior Development Studio for Advanced Packet Processing Targeting Manual, Rev. 10.2, 01/2016

Freescale Semiconductor, Inc. 151

The table below lists and defines all the User Interface (UI) options present within
Import/Export/Fill Memory Action editor.

Table 6-2. Import/Export/Fill Memory Action Editor - Options

Item Description

Import memory Select the option to read the encoded data from a user
specified file, decode it, and copy it into a user specified
memory range.

Export memory Select the option to read data from a user specified memory
range, encode it in a user specified format, and store this
encoded data in an output file.

Fill memory Select the option to fill a selected memory range with
specified data pattern.

Memory space and address Enter the literal address and memory space on which the data
transfer is performed. The Literal address field allows only
decimal and hexadecimal values.

Expression Enter the memory address or expression at which the data
transfer starts.

Access Size Denotes the number of addressable units of memory that the
debugger accesses in transferring one data element. The
default values shown are 1, 2, 4, and 8 units. When target
information is available, this list shall be filtered to display the
access sizes that are supported by the target.

Select File Enter the path of the file to export data. or the path to the file
that contains the data to be imported. Click the Workspace
button to select a file from the current project workspace.
Click the System button to select a file from the file system
the standard File Open dialog box. Click the Variables button
to select a build variable.

File Type Defines the format in which encoded data is exported. By
default, the following file types are supported:

• Annotated Hex
• Hex Text
• Motorola S-Record
• Raw Binary
• Signed decimal Text
• Unsigned decimal Text

Fill pattern Denotes the sequence of bytes, ordered from low to high
memory mirrored in the target. The field accept only
hexadecimal values. If the width of the pattern exceeds the
access size, an error message.

Number of Elements Enter the total number of elements to be transferred.

Verify Memory Writes Check the option to verify success of each data write to the
memory.

Manipulating target memory

CodeWarrior Development Studio for Advanced Packet Processing Targeting Manual, Rev. 10.2, 01/2016

152 Freescale Semiconductor, Inc.

Chapter 7
JTAG configuration files

This appendix explains about JTAG configuration files that pass specific configuration
settings to the debugger and support chaining of multiple devices. A JTAG configuration
file is a text file, specific to the CodeWarrior debugger, which describes a custom JTAG
scan chain. You can specify the file in the remote system settings.

This appendix explains:

• JTAG configuration file syntax
• Using JTAG configuration file to override RCW
• Using JTAG configuration file to specify multiple linked devices on a JTAG chain
• Setting remote system to use JTAG configuration file

7.1 JTAG configuration file syntax

You can create a JTAG configuration file that specifies the type, the chain order, and
various settings for the devices you want to debug. The listing below shows the complete
syntax for a JTAG configuration file.

Listing 7-1. JTAG Configuration File Syntax

cfgfile:
 '\n'

 '#' 'any other characters until end of line'

 line

 cfgfile line

line:

 target

 target filter_list_or_params

target:

CodeWarrior Development Studio for Advanced Packet Processing Targeting Manual, Rev. 10.2, 01/2016

Freescale Semiconductor, Inc. 153

 TARGET_NAME

 TARGET_NAME = TARGET_ID

 'Generic' NUMBER NUMBER NUMBER

filter_list_or_params:

 filter_list_entity

 filter_list_or_params filter_list_entity

filter_list_entity:

 '(' NUMBER NUMBER ')'

 FILTER_NAME

 %

NOTE
Use the name of the processor as TARGET_NAME, such as
P1010, P2020, P4080 and so on.

7.2 Using JTAG configuration file to override RCW

You can use JTAG configuration files to override Reset Configuration Word (RCW) for
P4080 and other derivatives. The JTAG configuration files are used in the following
situations for:

• target boards that do not have RCW already programmed
• new board bring-up
• recovering boards with blank or damaged flash

NOTE
For more information on RCW, see the Reference Manual
for your processor.

The CodeWarrior IDE includes examples of JTAG configuration files that can be used
for overriding the RCW (Listing 7-2 on page 154). The JTAG Configuration files are
available at the following location:

<CWInstallDir>\CW_APP\LS\AIOP_Support\Initialization_Files\jtag_chains

Listing 7-2. Sample JTAG Configuration File for Overriding RCW
Example file to allow overriding the whole RCW or only parts of it
#
Syntax:
P4080 (2 RCW_option) (RCWn value) ...
#
where:
RCW_option = 0 [RCW Override disabled]

Using JTAG configuration file to override RCW

CodeWarrior Development Studio for Advanced Packet Processing Targeting Manual, Rev. 10.2, 01/2016

154 Freescale Semiconductor, Inc.

1 [RCW Override enabled]
2 [Reset previous RCW Override parts]
0x80000001 [RCW Override + PLL Override]
NOTE: Enabling PLL Override could lead to hanging the chip
#
RCWn = 21000+n (n = 1 .. 16; index of RCW value)
#
value = 32bit value

The JTAG configuration files, as specified in Listing 7-2 on page 154, can be used to
override a portion or the complete RCW for P4080, by specifying (index, value) pairs, for
some (or all) of the 16 x (32bit words) of the RCW.

NOTE
You can use the Pre-Boot Loader (PBL) tool to configure the
various settings that make up the RCW and output the RCW in
multiple formats, including CodeWarrior JTAG configuration
files. For more information on the PBL tool, see the
documentation provided with the BSP as the PBL tool is a part
of the BSP.

7.3 Using JTAG configuration file to specify multiple linked
devices on a JTAG chain

The listing and figure below shows a sample JTAG initialization file with a single core.

Listing 7-3. Sample JTAG Initialization File for P2020 Processor

A single device in the chain
P2020

Figure 7-1. A Single Device in a JTAG Chain

The listing and figure below shows a sample JTAG initialization file with two devices in
one JTAG chain.

Listing 7-4. Sample JTAG Initialization File for P2010 and P2020 Processors

Two devices in one JTAG chain
P1023

Chapter 7 JTAG configuration files

CodeWarrior Development Studio for Advanced Packet Processing Targeting Manual, Rev. 10.2, 01/2016

Freescale Semiconductor, Inc. 155

P2020

Figure 7-2. Two Devices in a JTAG Chain

NOTE
The devices are enumerated in the direction starting from TDO
output to TDI input.

The listing and figure below shows two devices connected in one JTAG chain.
Configuration data is passed to the first processor. Configuration data indexes and values
are CCS-template specific and dependent on the type of core/processor.

Listing 7-5. Sample JTAG Initialization File for P4080 and P4040 Processors

Two devices in one JTAG chain
P1010 (0x80000000 1)

P4080 (2 1) (210005 0x90404000)(210010 0x00000000)

Figure 7-3. Two Devices in a JTAG Chain

The listing and figure below show two devices connected in one JTAG chain with a filter
applied for the second device.

Listing 7-6. Sample JTAG Initialization File for Two Devices with Filter for Second
Device

Two devices in one JTAG chain
P2010 (0x80000000 1)

P4080 log

Using JTAG configuration file to specify multiple linked devices on a JTAG chain

CodeWarrior Development Studio for Advanced Packet Processing Targeting Manual, Rev. 10.2, 01/2016

156 Freescale Semiconductor, Inc.

Figure 7-4. Two Devices in a JTAG Chain with Filter Applied to Second Device

7.4 Setting remote system to use JTAG configuration file

To connect to a JTAG chain, specify these settings in the launch configurations:

1. Create a JTAG initialization file that describes the items on the JTAG chain. For
more information on how to create a JTAG initialization file, see JTAG
configuration file syntax and Using JTAG configuration file to specify multiple
linked devices on a JTAG chain.

2. Open the CodeWarrior project you want to debug.
3. Select Run > Debug Configurations.

The Debug Configurations dialog box appears with a list of debug configurations that
apply to the current application.

4. Expand the CodeWarrior tree control.
5. From the expanded list, select the debug configuration for which you want to modify

the debugger settings.

The Debug view shows the settings for the selected configuration.

6. Select a remote system from the Connection drop-down list.
7. Select a core from the Target list.
8. In the Connection group, click the Edit button.

The Properties for <project>window appears.

9. Click Edit next to the Target list.

The Properties for <remote system>window appears.

Chapter 7 JTAG configuration files

CodeWarrior Development Studio for Advanced Packet Processing Targeting Manual, Rev. 10.2, 01/2016

Freescale Semiconductor, Inc. 157

10. Click Edit next to the Target type drop-down list.

The Target Types dialog box appears.

11. Click Import.
12. The Import Target Type dialog box appears.
13. Select the JTAG initialization file that describes the items on the JTAG chain from

this location: <CWInstallDir>\CW_APP\LS\AIOP_Support\Initialization_Files\jtag_chains
14. Click OK.

The items on the JTAG chain described in the file appear in the Target Types dialog
box.

15. Click OK.

The selected JTAG configuration file appears on the Advanced tab (Figure 7-5).

Figure 7-5. Advanced Tab Showing the JTAG Configuration File
16. Click OK.
17. Click the Debugger tab.

The Debugger page appears.

18. Ensure that Stop on startup at check box is checked and main is specified in the User
specified text box.

19. Click Apply to save the changes.

You have successfully configured a debug configuration.

Setting remote system to use JTAG configuration file

CodeWarrior Development Studio for Advanced Packet Processing Targeting Manual, Rev. 10.2, 01/2016

158 Freescale Semiconductor, Inc.

Chapter 8
Target initialization files

A target initialization file is a file that contains commands that initialize registers,
memory locations, and other components on a target board.

The most common use case is to have the CodeWarrior debugger execute a target
initialization file immediately before the debugger downloads a bareboard binary to a
target board. The commands in a target initialization file put a board in the state required
to debug a bareboard program.

NOTE
The target board can be initialized either by the debugger (by
using an initialization file), or by an external bootloader or OS
(U-Boot, Linux). In both cases, the extra use of an initialization
file is necessary for debugger-specific settings (for example,
silicon workarounds needed for the debug features).

This appendix explains:

• Using target initialization files
• Target initialization file commands
• Target initialization using Tcl script

8.1 Using target initialization files

A target initialization file is a command file that the CodeWarrior debugger executes
each time the launch configuration to which the initialization file is assigned is debugged.
You can use the target initialization file for all launch configuration types (Attach,
Connect and Download). The target initialization file is executed after the connection to
the target is established, but before the download operation takes place.

CodeWarrior Development Studio for Advanced Packet Processing Targeting Manual, Rev. 10.2, 01/2016

Freescale Semiconductor, Inc. 159

The debugger executes the commands in the target initialization file using the target
connection protocol, such as a JTAG run-control device.

NOTE
You do not need to use an initialization file if you debug using
the CodeWarrior TRK debug protocol.

To instruct the CodeWarrior debugger to use a target initialization file:

1. Start the CodeWarrior IDE.
2. Open a bareboard project.
3. Select one of this project's build targets.
4. Select Run > Debug Configurations.

The Debug Configurations window appears.

5. Select the appropriate launch configuration from the left panel.
6. In the Main tab, from the Connection panel click the Edit button next to the

Connection drop-down list.

The Properties for <Launch Configuration Name> window appears.

7. Click Edit next to the Target drop-down list.

The Properties for <remote system> window appears.

8. In the Initialization tab, check the appropriate cores check boxes from the Initialize
target column as seen in Figure 8-1.

Figure 8-1. Initialization Tab

Using target initialization files

CodeWarrior Development Studio for Advanced Packet Processing Targeting Manual, Rev. 10.2, 01/2016

160 Freescale Semiconductor, Inc.

9. In the Initialize target script column, click the Ellipsis button as seen in Figure 8-1.

Tip
Single-click in the specified cell of the Initialize target
script column for the Ellipsis button to appear.

The Target Initialization File dialog box appears as seen in Figure 8-2.

Figure 8-2. Target Initialization File Dialog Box
10. Select the target initialization file by using the buttons provided in the dialog box and

Click OK.

The target initialization files are available at the following path:

 CWInstallDir\CW_APP|LS\AIOP_Support\Initialization_Files\

You can also write your own target initialization files. The next section documents the
commands that can appear in such files.

8.2 Target initialization file commands

The syntax of target initialization file commands follows these rules:

• Spaces and tabs (white space) are ignored
• Character case is ignored
• Unless otherwise noted, values may be specified in hexadecimal, octal, or decimal:

• Hexadecimal values are preceded by 0x (for example, 0xDEADBEEF)

Chapter 8 Target initialization files

CodeWarrior Development Studio for Advanced Packet Processing Targeting Manual, Rev. 10.2, 01/2016

Freescale Semiconductor, Inc. 161

• Octal values are preceded by 0 (for example, 01234567)
• Decimal values start with a non-zero numeric character (for example, 1234)

• Comments start with a semicolon (;) or pound sign (#), and continue to the end of
the line

Following sections will help you with more details on the target initialization file
commands:

• Access to named registers from within scripts
• Cfg target initialization commands

8.2.1 Access to named registers from within scripts

Some commands described in the Cfg target initialization commands section (below)
allow access to memory-mapped register by name as well as address. Based on the
processor selection in the debugger settings, these commands will accept the register
names shown in the debugger's Registers window. There are also commands to access
built-in registers of a processor core, for example, 'writereg'. The names of these registers
follow the architectural description for the respective processor core for general purpose
and special purpose registers. Note that these names (for example, GPR5) might be
different from names used in assembly language (for example, r5). You can identify the
registers names by looking at the debugger's Registers window.

8.2.2 Cfg target initialization commands

Target initialization files are of two types: .cfg files and .tcl files. This section discusses
the commands that are used in the cfg target initialization files.

NOTE
The tcl file format offers some advantages over the cfg file
format, for example, it implements a better memory
management approach and allows you to use memory address
ranges higher than 32-bit and use flow control statements. The
tcl file format is the recommended target initialization file
format. The tcl file format is described in Target initialization
using Tcl script.

Target initialization file commands

CodeWarrior Development Studio for Advanced Packet Processing Targeting Manual, Rev. 10.2, 01/2016

162 Freescale Semiconductor, Inc.

For each command, the section provides a brief statement of what the command does, the
command's syntax, a definition of each argument that can be passed to the command, and
examples showing how to use the command.

Table 8-1 lists each command that can appear in a target initialization file.

Table 8-1. Target Initialization File Commands

alternatePC reset stop writemem.b

ANDmmr resetCoreID writemem.l writemem.w

ANDmem.l run writemmr writereg

IncorMMR setCoreID writereg64 writereg128

ORmem.l sleep writereg192

8.2.2.1 alternatePC

Sets the initial program counter (PC) register to the specified value, disregarding any
entry point value read from the ELF application being debugged.

Syntax

 alternatePC
 address

Arguments

address

The 32-bit address to assign to the program counter register.

This address may be specified in hexadecimal (for example, 0xABCD0000), octal (for
example, 025363200000), or decimal (for example, 2882338816).

Example

This command assigns the address 0xc28737a4 to the program counter register:

 alternatePC 0xc28737a4

Chapter 8 Target initialization files

CodeWarrior Development Studio for Advanced Packet Processing Targeting Manual, Rev. 10.2, 01/2016

Freescale Semiconductor, Inc. 163

8.2.2.2 ANDmem.l

Performs a bit AND using the 32-bit value at the specified memory address and the
supplied 32-bit mask and writes the result back to the specified address.

No read/write verify is performed.

Syntax

 ANDmem.l
 address
 mask

Arguments

address

The address of the 32-bit value upon which to perform the bit AND operation.

This address may be specified in hexadecimal (for example, 0xABCD0000), octal (for
example, 025363200000), or decimal (for example, 2882338816).

mask

32-bit mask to use in the bit AND operation.

Example

The command below performs a bit AND operation using the 32-bit value at memory
location 0xC30A0004 and the 32-bit mask 0xFFFFFFFF. The command then writes the result
back to memory location 0xC30A0004.

 ANDmem.l 0xC30A0004 0xFFFFFEFF

8.2.2.3 ANDmmr

Performs a bit AND using the contents of the specified memory-mapped register (MMR)
and the supplied 32-bit mask and writes the result back to the specified register.

Syntax

 ANDmmr
 regName

Target initialization file commands

CodeWarrior Development Studio for Advanced Packet Processing Targeting Manual, Rev. 10.2, 01/2016

164 Freescale Semiconductor, Inc.

 mask

Arguments

regName

The name of the memory-mapped register upon which to perform a bit AND.

NOTE
For more information on the memory-mapped register names
accepted by this command, refer to Access to named registers
from within scripts.

mask

32-bit mask to use in the bit AND operation.

Example

This command bit ANDs the contents of the ACFG register with the value 0x00002000:

 ANDmmr ACFG 0x00002000

8.2.2.4 IncorMMR

Performs a bitwise OR using the contents of the specified memory-mapped register
(MMR) and the supplied 32-bit mask and writes the result back to the specified register.

Syntax

 incorMMR
 regName
 mask

Arguments

regName

The name of the MMR register upon which to perform a bit OR.

Chapter 8 Target initialization files

CodeWarrior Development Studio for Advanced Packet Processing Targeting Manual, Rev. 10.2, 01/2016

Freescale Semiconductor, Inc. 165

NOTE
For more information on the memory-mapped register names
accepted by this command, refer to Access to named registers
from within scripts.

mask

32-bit mask to use in the bit inclusive OR operation.

Example

This command bit ORs the contents of the ACFG register with the value 0x00002000:

 incorMMR ACFG 0x00002000

8.2.2.5 ORmem.l

Performs a bit OR using the 32-bit value at the specified memory address and the
supplied 32-bit mask and writes the result back to the specified address.

No read/write verify is performed.

Syntax

 ORmem.l
 address
 mask

Arguments

address

The address of the 32-bit value upon which to perform the bit OR operation.

This address may be specified in hexadecimal (for example, 0xABCD0000), octal (for
example, 025363200000), or decimal (for example, 2882338816).

mask

32-bit mask to use in the bit OR operation.

Example

Target initialization file commands

CodeWarrior Development Studio for Advanced Packet Processing Targeting Manual, Rev. 10.2, 01/2016

166 Freescale Semiconductor, Inc.

The command below performs a bit OR operation using the 32-bit value at memory
location 0xC30A0008 and the 32-bit mask 0x01000800. The command then writes the result
back to memory location 0xC30A0004.

 ORmem.l 0xC30A0008 0x01000800

8.2.2.6 reset

Resets the processor on the target board.

Syntax

 reset
 code

Arguments

code

Number that defines what the debugger does after it resets the processor on the target
board.

Table 8-2 describes the Post Reset Actions. Use any one of the values specified.

Table 8-2. Post Reset Actions

Value Description

0 reset the target processor, then run

1 reset the target processor, then stop

8.2.2.7 run

Starts program execution at the current program counter (PC) address.

Syntax

 run

Chapter 8 Target initialization files

CodeWarrior Development Studio for Advanced Packet Processing Targeting Manual, Rev. 10.2, 01/2016

Freescale Semiconductor, Inc. 167

8.2.2.8 setCoreID

Tells the debugger to issue all subsequent commands on the specified core index,
disregarding the actual core index on which the initialization is executed.

NOTE
Please make sure to reset the core index after the sequence of
commands intended to execute on the other core is finished.
Refer to the resetCoreID command.

Tip
This command can be useful in cases where you need to
execute a command sequence on other cores than the current
one, for example in a SMP initialization scenario.

Syntax

 setCoreID core

Arguments

core

The core index on which to execute.

Example

This command tells the debugger to issue all subsequent commands on the core index 1:

setCoreID 1

8.2.2.9 resetCoreID

Tells the debugger to revert to executing commands on the current core, thus cancelling
the effect of a previous setCoreID command.

Syntax

 resetCoreID

Target initialization file commands

CodeWarrior Development Studio for Advanced Packet Processing Targeting Manual, Rev. 10.2, 01/2016

168 Freescale Semiconductor, Inc.

8.2.2.10 sleep

Causes the debugger to pause the specified number of milliseconds before executing the
next instruction.

Syntax

 sleep
 milliseconds

Arguments

milliseconds

The number of milliseconds (in decimal) to pause the debugger.

Example

This command pauses the debugger for 10 milliseconds:

 sleep 10

8.2.2.11 stop

Stops program execution and halts the processor on the target board.

Syntax

 stop

8.2.2.12 writemem.b

Writes a byte (8 bits) of data to the specified memory address.

Syntax

Chapter 8 Target initialization files

CodeWarrior Development Studio for Advanced Packet Processing Targeting Manual, Rev. 10.2, 01/2016

Freescale Semiconductor, Inc. 169

 writemem.b
 address
 value

Arguments

address

The 32-bit memory address to which to assign the supplied 8-bit value.

This address may be specified in hexadecimal (for example, 0xABCD), octal ((for example,
0125715), or decimal (43981).

value

The 8-bit value to write to the specified memory address.

This value may be specified in hexadecimal (for example, 0xFF), octal (for example, 0377),
or decimal (for example, 255).

Example

This command writes the byte 0x1A to the memory location 0x0001FF00:

 writemem.b 0x0001FF00 0x1A

8.2.2.13 writemem.w

Writes a word (16 bits) of data to the specified memory address.

Syntax

 writemem.w
 address
 value

Arguments

address

The 32-bit memory address to which to assign the supplied 16-bit value.

This address may be specified in hexadecimal (for example, 0xABCD0000), octal (for
example, 025363200000), or decimal (for example, 2882338816).

Target initialization file commands

CodeWarrior Development Studio for Advanced Packet Processing Targeting Manual, Rev. 10.2, 01/2016

170 Freescale Semiconductor, Inc.

value

The 16-bit value to write to the specified memory address.

This value may be specified in hexadecimal (for example, 0xFFFF), octal (for example,
0177777), or decimal (for example, 65535).

Example

This command writes the word 0x1234 to memory location 0x0001FF00:

 writemem.w 0x0001FF00 0x1234

8.2.2.14 writemem.l

Writes a long integer (32 bits) of data to the specified memory location.

Syntax

 writemem.l
 address
 value

Arguments

address

The 32-bit memory address to which to assign the supplied 32-bit value.

This address may be specified in hexadecimal (for example, 0xABCD0000), octal (for
example, 025363200000), or decimal (for example, 2882338816).

value

The 32-bit value to write to the specified memory address.

This value may be specified in hexadecimal (for example, 0xFFFFABCD), octal (for example,
037777725715), or decimal (for example, 4294945741).

Example

This command writes the long integer 0x12345678 to the memory location 0x0001FF00:

 writemem.w 0x0001FF00 0x12345678

Chapter 8 Target initialization files

CodeWarrior Development Studio for Advanced Packet Processing Targeting Manual, Rev. 10.2, 01/2016

Freescale Semiconductor, Inc. 171

8.2.2.15 writemmr

Writes a value to the specified memory-mapped register (MMR).

Syntax

 writemmr regName value

Arguments

regName

The name of the memory-mapped register to which to assign the supplied value.

NOTE
This command accepts most of the processor memory-mapped
register names. For more information on the memory-mapped
register names accepted by this command, refer to Access to
named registers from within scripts.

value

The value to write to the specified memory-mapped register.

This value may be specified in hexadecimal (for example, 0xFFFFABCD), octal (for example,
037777725715), or decimal (for example, 4294945741).

Example

This command writes the value 0xffffffc3 to the SYPCR register:

 writemmr SYPCR 0xffffffc3

This command writes the value 0x0001 to the RMR register:

 writemmr RMR 0x0001

This command writes the value 0x3200 to the MPTPR register:

 writemmr MPTPR 0x3200

8.2.2.16 writereg

Target initialization file commands

CodeWarrior Development Studio for Advanced Packet Processing Targeting Manual, Rev. 10.2, 01/2016

172 Freescale Semiconductor, Inc.

Writes the supplied data to the specified register.

Syntax

 writereg
 regName value

Parameters

regName

The name of the register to which to assign the supplied value.

value

The value to write to the specified register.

This value may be specified in hexadecimal (for example, 0xFFFFABCD), octal (for example,
037777725715), or decimal (for example, 4294945741).

Example

This command writes the value 0x00001002 to the MSR register:

 writereg MSR 0x00001002

8.2.2.17 writereg64

Writes the supplied 32-bit values to the specified 64-bit register.

NOTE
This command is applicable only to 64-bit Book E cores like
the e5500.

Syntax

 writereg regName value1 value2

Arguments

regName

The name of the 64-bit register to which to assign the supplied value.

Chapter 8 Target initialization files

CodeWarrior Development Studio for Advanced Packet Processing Targeting Manual, Rev. 10.2, 01/2016

Freescale Semiconductor, Inc. 173

value1, value2

The two 32-bit values that together make up the 64-bit value to assign to the specified
register.

Each value may be specified in hexadecimal (for example, 0xFFFFABCD), octal

(for example, 037777725715), or decimal (for example, 4294945741).

Example

This command writes the 64-bit value 0x0123456789ABCDEF to the 64-bit GPR5
register:

 writereg64 GPR5 0x01234567 0x89ABCDEF

8.2.2.18 writereg128

Writes the supplied 32-bit values to the specified TLB register.

NOTE
This command is applicable only to Book E cores like the e500
or e500mc variants.

Syntax

 writereg128
 regName value1 value2 value3 value4

Arguments

regName

The name (or number) of the TLB register to which to assign the specified values.

Tip
Valid TLB0 register names range from L2MMU_TLB0 through
L2MMU_TLB255 (L2MMU_TLB511 for e500v2 and e500mc).

Tip
Valid TLB1 register names range from L2MMU_CAM0 through
L2MMU_CAM15, and L2MMU_CAM63 for e500mc.

value1, value2, value3, value4

Target initialization file commands

CodeWarrior Development Studio for Advanced Packet Processing Targeting Manual, Rev. 10.2, 01/2016

174 Freescale Semiconductor, Inc.

The four 32-bit values that together make up the 128-bit value to assign to the specified
TLB register.

Each value must be specified in hexadecimal (for example, 0xFFFFABCD).

Example

This command writes the values 0xA1002, 0xB1003, 0xC1004, and 0xD1005 to the L2MMU_CAM0
TLB register:

 writereg128 L2MMU_CAM1 0x7000000A 0x1C080000 0xFE000000 0xFE000001

8.2.2.19 writereg192

Writes the supplied 32-bit values to the specified TLB register.

NOTE
This command is applicable only to 64-bit Book E cores like
the e5500 variant.

Syntax

 writereg192
 regName value1 value2 value3 value4 value5 value6

Arguments

regName

The name (or number) of the TLB register to which to assign the specified values.

Tip
Valid TLB0 register names range from L2MMU_TLB0 through
L2MMU_TLB511.

Tip
Valid TLB1 register names range from L2MMU_CAM0 through
L2MMU_CAM63.

value1, value2, value3, value4, value5, value6

The six 32-bit values that together make up the 192-bit value to assign to the specified
TLB register.

Chapter 8 Target initialization files

CodeWarrior Development Studio for Advanced Packet Processing Targeting Manual, Rev. 10.2, 01/2016

Freescale Semiconductor, Inc. 175

Each value must be specified in hexadecimal (for example, 0xFFFFABCD).

Example

This command writes the values 0x7000000A 0x1C080000 0x00000000 0xFE000000
0x00000000 0xFE000001 to the L2MMU_CAM1 TLB register:

 writereg192 L2MMU_CAM1 0x7000000A 0x1C080000 0x00000000 0xFE000000
 0x00000000 0xFE000001

8.2.2.20 writespr

Writes the specified value to the specified SPR register.

NOTE
This command is similar to the writereg SPRxxx command,
except that writespr lets you specify the SPR register to modify
by number (in hexadecimal, octal, or decimal).

Syntax

writespr regNumber value

Arguments

regNumber

The number of the SPR register to which to assign the supplied value.

This value may be specified in hexadecimal (for example, 0x27E), octal (for example,
01176), or decimal (for example, 638).

value

The value to write to the specified SPR register.

This value may be specified in hexadecimal (for example, 0xFFFFABCD), octal (for example,
037777725715), or decimal (for example, 4294945741).

Example

This command writes the value 0x0220000 to SPR register 638:

 writespr 638 0x0220000

Target initialization file commands

CodeWarrior Development Studio for Advanced Packet Processing Targeting Manual, Rev. 10.2, 01/2016

176 Freescale Semiconductor, Inc.

8.3 Target initialization using Tcl script

The CodeWarrior debugger allows you to specify a Tcl-based script to be run instead of
a .cfg initialization file. Similar to a .cfg initialization file, the Tcl-based initialization file
can contain target-specific initialization, processor core initialization, or debugger-
specific initialization.

NOTE
The current releases do not include .cfg files. But the .cfg files
continue to be supported to provide backward compatibility.

The debugger automatically executes the Tcl script when you debug the launch
configuration. You can also execute the script manually at any time from the Debugger
Shell, by using the source command. The Tcl-based target initialization is basically a
debugger shell script and implicitly supports all debugger shell commands. For more
details on the debugger shell commands, refer to the CodeWarrior Common Features
manual.

Table 8-3 lists the equivalent Debugger Shell commands that you can include in a Tcl
script for target initialization.

Table 8-3. Tcl Commands for Target Initialization

Target Initialization Commands Debugger Shell Equivalent

writereg, writereg64, writereg128,
writereg192

reg or change

writespr reg or change (partial equivalence - uses the
register name instead of the spr number)

writemem.l mem 32bit or change 32bit

writemem.w mem 16bit or change 16bit

writemem.b mem 8bit or change 8bit

sleep wait

writemmr reg or change

IncOrmmr change regName [format %x [expr [reg regName
%d -np] | [expr mask]]] or reg regName = [format
%x [expr [reg regName %d -np] | [expr mask]]]

ANDmmr change regName [format %x [expr [reg
regName %d -np] & [expr mask]]] or reg regName
= [format %x [expr [reg regName %d -np] | [expr mask]]]

setCoreID aiop::setcoreid

resetCoreID aiop::setcoreid default

run go

Table continues on the next page...

Chapter 8 Target initialization files

CodeWarrior Development Studio for Advanced Packet Processing Targeting Manual, Rev. 10.2, 01/2016

Freescale Semiconductor, Inc. 177

Table 8-3. Tcl Commands for Target Initialization (continued)

Target Initialization Commands Debugger Shell Equivalent

stop stop

reset reset

ANDmem.l change address [format %x [expr [mem
address %d -np] & [expr mask]]] or mem address
= [format %x [expr [mem address %d -np] & [expr mask]]]

ORmem.l change address [format %x [expr [mem
address %d -np] | [expr mask]]] or mem address
= [format %x [expr [mem address %d -np] & [expr mask]]]

alternatePC N/A

Tip
When accessing registers, for best performance you can add the
register group name followed by '/' before the name of the
register, for example:

reg "e500mc Special Purpose Registers"/MSR =0x00002000

Target initialization using Tcl script

CodeWarrior Development Studio for Advanced Packet Processing Targeting Manual, Rev. 10.2, 01/2016

178 Freescale Semiconductor, Inc.

Chapter 9
Memory configuration files

A memory configuration file contains commands that define the rules the debugger
follows when accessing a target board's memory.

NOTE
Memory configuration files do not define the memory map for
the target. Instead, they define how the debugger should treat
the memory map the target has already established. The actual
memory map is initialized either by a target resident boot loader
or by a target initialization file. For more information, refer to .

If necessary, you can have the CodeWarrior debugger execute a memory configuration
file immediately before the debugger downloads a bareboard binary to a target board. The
memory configuration file defines the memory access rules (restrictions, translations)
used each time the debugger needs to access memory on the target board.

NOTE
Assign a memory configuration file to bareboard build targets
only. The memory of a board that boots embedded Linux® is
already set up properly. A memory configuration file defines
memory access rules for the debugger; the file has nothing to do
with the OS running on a board. If needed, a memory
configuration file should be in place at all times. The Linux
Kernel Aware Plugin performs memory translations
automatically, relieving the user from specifying them in the
memory configuration file.

This appendix explains:

• Using memory configuration files
• Memory configuration file commands

CodeWarrior Development Studio for Advanced Packet Processing Targeting Manual, Rev. 10.2, 01/2016

Freescale Semiconductor, Inc. 179

9.1 Using memory configuration files

A memory configuration file is a command file that contains memory access rules that
the CodeWarrior debugger uses each time the build target to which the configuration file
is assigned is debugged.

You specify a memory configuration file in the Memory tab of the remote system
configuration.

Figure 9-1. Specifying a memory configuration file

You can also write your own memory configuration files. The next section documents the
commands that can appear in such files.

9.2 Memory configuration file commands

In general, the syntax of memory configuration file commands follows these rules:

• Spaces and tabs (white space) are ignored
• Character case is ignored
• Unless otherwise noted, values may be specified in hexadecimal, octal, or decimal:

• hexadecimal values are preceded by 0x (for example, 0xDEADBEEF)

Memory configuration file commands

CodeWarrior Development Studio for Advanced Packet Processing Targeting Manual, Rev. 10.2, 01/2016

180 Freescale Semiconductor, Inc.

• octal values are preceded by 0 (for example, 01234567)
• decimal values start with a non-zero numeric character (for example, 1234)

• Addresses are values that might be prefixed with the memory space command line
prefix: [<MemSP>:]<value>. For example: p:0x80000004 or 0x80000004.

• Comments start with standard C and C++ comment characters, and continue to the
end of the line

The table below lists each command that can appear in a memory configuration file. For
each command, the section provides a brief statement of what the command does, the
command's syntax, a definition of each argument that can be passed to the command, and
examples showing how to use the command.

Table 9-1. Memory Configuration Commands

autoEnableTranslations range

reserved reservedchar

translate

9.2.1 autoEnableTranslations

The autoEnableTranslations command configures if the translate commands are
considered by the debugger or not.

Syntax

 autoEnableTranslations enableFlag

Arguments

enableFlag

Pass true to instruct the debugger to consider the translate commands.

If this command is not present, the translations will not be considered, so this command
should usually be present and have a "true" argument.

Examples

This command enables the debugger to consider the translate commands:

 AutoEnableTranslations true

Chapter 9 Memory configuration files

CodeWarrior Development Studio for Advanced Packet Processing Targeting Manual, Rev. 10.2, 01/2016

Freescale Semiconductor, Inc. 181

9.2.2 range

This command sets debugger access to a block of memory. Note that the range command
must have both the loAddress and hiAddress in the same memory space.

Syntax

 range
 loAddress hiAddress size access

Arguments

loAddress

the starting address of the memory range

hiAddress

the ending address of the memory range

size

the size, in bytes, the debug monitor or emulator uses for memory accesses

access

controls what type of access the debugger has to the memory block - supply one of: Read,
Write, or ReadWrite

Examples

To set memory locations 0xFF000000 through 0xFF0000FF to read-only with a size of 4 bytes:

 range 0xFF000000 0xFF0000FF 4 Read

To set memory locations 0xFF0001000 through 0xFF0001FF to write-only with a size of 2
bytes:

 range 0xFF000100 0xFF0001FF 2 Write

To set memory locations 0xFF0002000 through 0xFFFFFFFF to read and write with a size of 1
byte:

Memory configuration file commands

CodeWarrior Development Studio for Advanced Packet Processing Targeting Manual, Rev. 10.2, 01/2016

182 Freescale Semiconductor, Inc.

 range 0xFF000200 0xFFFFFFFF 1 ReadWrite

9.2.3 reserved

This command allows you to specify a reserved range of memory. If the debugger
attempts to read reserved memory, the resulting buffer is filled with the reserved
character. If the debugger attempts to write to reserved memory, no write takes place.
Note that the reserved command must have both the loAddress and hiAddress in the same
memory space.

NOTE
For information showing how to set the reserved character,
refer to reservedchar.

Syntax

 reserved
 loAddress hiAddress

Arguments

loAddress

the starting address of the memory range

hiAddress

the ending address of the memory range

Examples

To reserve memory starting at 0xFF000024 and ending at 0xFF00002F:

 reserved 0xFF000024 0xFF00002F

9.2.4 reservedchar

Chapter 9 Memory configuration files

CodeWarrior Development Studio for Advanced Packet Processing Targeting Manual, Rev. 10.2, 01/2016

Freescale Semiconductor, Inc. 183

This command sets the reserved character for the memory configuration file. When the
debugger attempts to read a reserved or invalid memory location, it fills the buffer with
this character.

Syntax

 reservedchar rChar

Arguments

rChar

the one-byte character the debugger uses when it accesses reserved or invalid memory

Example

To set the reserved character to "×":

 reservedchar 0x78

9.2.5 translate

This command lets you configure how the debugger performs virtual-to-physical memory
address translations. Typically, you use address translations to debug programs that use a
memory management unit (MMU) that performs block address translations.

Syntax

 translate
 virtualAddress
 physicalAddress
 numBytes

Arguments

virtualAddress

the address of the first byte of the virtual address range to translate

physicalAddress

the address of the first byte of the physical address range to which the debugger translates
virtual addresses

Memory configuration file commands

CodeWarrior Development Studio for Advanced Packet Processing Targeting Manual, Rev. 10.2, 01/2016

184 Freescale Semiconductor, Inc.

numBytes

the size (in bytes) of the address range to translate

Example

The following translate command:

• defines a one-megabyte address range (0x100000 bytes is one megabyte)
• instructs the debugger to convert a virtual address in the range 0xC0000000 to 0xC0100000

to the corresponding physical address in the range 0x00000000 to 0x00100000

 translate v:0xC0000000 p:0x00000000 0x100000

Chapter 9 Memory configuration files

CodeWarrior Development Studio for Advanced Packet Processing Targeting Manual, Rev. 10.2, 01/2016

Freescale Semiconductor, Inc. 185

Memory configuration file commands

CodeWarrior Development Studio for Advanced Packet Processing Targeting Manual, Rev. 10.2, 01/2016

186 Freescale Semiconductor, Inc.

Chapter 10
Debugger limitations and workarounds

This appendix documents processor-specific CodeWarrior debugger limitations and
workarounds.

10.1 MC/AIOP cores

Limit for the number of MC/AIOP cores

Using a JTAG configuration file, limitations on the number of MC or AIOP cores can be
specified in order to be able to limit debugging to a specific number of cores (regardless
the actual target but limited to the actual hardware resources).

A JTAG configuration file that can be used to specify restrictions must respect the
following syntax:

<TargetName> (<LimitationID> <ActualLimitation>) and a new line at the end

Where <LimitationId> must be:
• 0xAB0FF11B – limitation for the number of AIOP cores
• 0xAB0FF11A – limitation for the number of MC cores

Following is an example of JTAG config file specifying a restriction:

LS2085AFM (0xAB0FF11B 4)

The above example instructs CodeWarrior to debug only 4 cores out of 16 (available for
LS2085AFM) for the AIOP

Working with Software Breakpoints

For MC/AIOP cores, the debugger implements software breakpoints by using the
dedicated debug notify halt (dnh) instruction. When the dnh opcode is encountered, the
target stops without taking an exception.

CodeWarrior Development Studio for Advanced Packet Processing Targeting Manual, Rev. 10.2, 01/2016

Freescale Semiconductor, Inc. 187

Working with Watchpoints

The MC cores implement four and the AIOP cores implement two data address compare
registers. The CodeWarrior debugger uses these registers to place a single watchpoint on
any variable or memory range. The variable or memory range is 1-byte aligned.

As opposed to hardware, simulators are not usually limited by the available comparator
resources and allow a much higher number of watchpoints (1024).

Working with Hardware Breakpoints

The MC cores implement eight and the AIOP cores implement four address compare
registers that can be used in a debug session.

As opposed to hardware, simulators are not usually limited by the available comparator
resources and allow a much higher number of hardware breakpoints(1024).

Working with Uninitialized Stack

Debugging while the stack is not initialized can cause uninitialized memory accesses
errors. This situation occurs when the debugger tries to construct the stack trace.

To avoid this problem, stop the debugger from constructing a stack trace by adding a
command to your target initialization file that sets the stack pointer (SP) register to an
unaligned address.

For example, you could put this command in your target initialization file:

reg SP = 0x3

MC/AIOP cores

CodeWarrior Development Studio for Advanced Packet Processing Targeting Manual, Rev. 10.2, 01/2016

188 Freescale Semiconductor, Inc.

Index

A

Access to Named Registers from within Scripts 162
Accompanying Documentation 11
Actions 113
Activating task awareness services 88
Adding a Register Group 109
Add Watchpoint Dialog Box 118
AIOP Cores 187
AIOP Target OS 88
alternatePC 163
ANDmem.l 164
ANDmmr 164
Arguments 40
Assembler 77
Auto-Build Mode 32
autoEnableTranslations 181

B

Bit Fields 112
Building Projects 31
Build Properties 59
Build Properties for APP 60
Build Settings Page 23

C

C/C++ Compiler 13
C/C++ Language 75
CCSSIM2 ISS 98
Cfg Target Initialization Commands 162
Changing a Bit Field 116
Changing a Register's Bit Value 111
Changing Build Properties 59
Changing Program Counter Value 127
CodeWarrior Bareboard Project Wizard 19
CodeWarrior Command-Line Debugger 103
CodeWarrior Development Process 15
CodeWarrior Development Tools 12
CodeWarrior Executable Importer Wizard 131
CodeWarrior Profiling and Analysis Tools 15
CodeWarrior TAP 99
Common 55
Compiler 68
Compiling 16
Configurations Page 24, 134
Connection Types 97
Coverage Analysis Page 26
CPU 61
Create a CodeWarrior Bareboard Project Page 20
Creating CodeWarrior Bareboard Application
Project 27

Creating CodeWarrior Bareboard Library Project 30
Creating New Hardware Diagnostics Task 143
Creating Projects 26
Creating Target Task to Manipulate Memory 149
Customizing Debug Configurations 57
Custom Memory Locations 91

D

Debug 41
Debug Configuration 35
Debugger 14, 40
Debugger Limitations and Workarounds 187
Debugging 17, 62
Debugging an Externally Built Executable File 135
Debugging Projects 32
Debug Target Settings Page 22, 133
Deleting a Project 33
Description 113
Disassembler 79
Disassembler Settings 79
Displaying Memory Contents 106
Displaying Register Contents 108
Download 43

E

Eclipse IDE 12
Editing a Register Group 110
Editing Code 17
Editing Hardware Diagnostics Task 146
Editing Import/Export/Fill Memory Task 150
Editing System Configuration 101
Environment 54
Executing Hardware Diagnostics Task 146

F

Filling Memory 130

G

GCov Analysis 52
General 66, 78

H

Hard Resetting 127
Hardware Diagnostics Action Editor 148

Index

CodeWarrior Development Studio for Advanced Packet Processing Targeting Manual

Freescale Semiconductor, Inc. 189

I

Import/Export/Fill Memory Action Editor 151
Import a CodeWarrior Executable file Page 132
Import C/C++/Assembler Executable Files 132
IncorMMR 165
Initialization 101
Input 64, 69, 77
Introduction 11

J

JTAG Configuration Files 153
JTAG Configuration File Syntax 153

L

Linker 14, 63
Linking 16
Link Order 65
Loading and Saving Memory 128

M

Main 36
Manipulating Target Memory 148
Manual-Build Mode 32
MC Cores 187
Memory 102
Memory Configuration File 105
Memory Configuration File Commands 180
Memory Configuration Files 179
Messages 63
Multi-Core Operations 139
Multi-Core Operations in the Debugger Shell 140
Multi-Core Operations in the IDE 139

O

Optimization 72
ORmem.l 166
OS Awareness 50
Other Executables 47
Output 66

P

Performing run control operations 95
PIC 45
Preprocessor 69, 80
Preprocessor Settings 80
Processor 73
Processor Page 21, 133
Project Files 15

R

range 182
Release Notes 11
Remove Breakpoint Using Breakpoints View 125
Remove Breakpoint Using Marker Bar 125
Remove Hardware Breakpoint Using Debugger
Shell 126
Remove Hardware Breakpoint Using IDE 126
Removing a Register Group 110
Removing Breakpoints 125
Removing Hardware Breakpoints 126
Removing Watchpoints 120
reserved 183
reservedchar 183
reset 167
resetCoreID 168
Restoring Build Properties 60
Reverting Debug Configuration Settings 58
run 167

S

setCoreID 168
Setting a Remote System to Use a JTAG
Configuration File 157
Setting Breakpoints 120
Setting Hardware Breakpoints 124
Setting the Stack Depth 127
Setting Watchpoints 117
sleep 169
Source 53
Standalone Assembler 13
Standard Debugging Features 97
stop 169
Symbolics 49
System Browser 91
System Call Services 46

T

Targeting AIOP tasks 94
Target Initialization File Commands 161
Target Initialization Files 159
Target Initialization Using a Tcl Script 177
translate 184

U

Use the Debugger Shell to Set a Hardware
Breakpoint 124
Use the IDE to Set a Hardware Breakpoint 124
Using CodeWarrior Debug Configuration Tabs 35
Using JTAG Configuration File to Override RCW
154
Using JTAG Configuration File to Specify Multiple
Linked Devices on a JTAG Chain 155

Index

CodeWarrior Development Studio for Advanced Packet Processing Targeting Manual

190 Freescale Semiconductor, Inc.

Using Memory Configuration Files 180
Using Target Initialization Files 159
Using the Register Details Window 111

V

Viewing AIOP tasks 89
Viewing order scope manager data 93
Viewing Register Details 114
Viewing task entry point data 93

W

Warnings 71
Working with Hardware Diagnostics 143
Working with Hardware Tools 143
Working with Projects 19
Working with the Debugger 83
writemem.b 169
writemem.l 171
writemem.w 170
writemmr 172
writereg 172
writereg128 174
writereg192 175
writereg64 173
writespr 176

Index

CodeWarrior Development Studio for Advanced Packet Processing Targeting Manual

Freescale Semiconductor, Inc. 191

Index

CodeWarrior Development Studio for Advanced Packet Processing Targeting Manual

192 Freescale Semiconductor, Inc.

How to Reach Us:

Home Page:
freescale.com

Web Support:
freescale.com/support

Information in this document is provided solely to enable system and
software implementers to use Freescale products. There are no express
or implied copyright licenses granted hereunder to design or fabricate
any integrated circuits based on the information in this document.
Freescale reserves the right to make changes without further notice to
any products herein.

Freescale makes no warranty, representation, or guarantee regarding
the suitability of its products for any particular purpose, nor does
Freescale assume any liability arising out of the application or use of
any product or circuit, and specifically disclaims any and all liability,
including without limitation consequential or incidental damages.
“Typical” parameters that may be provided in Freescale data sheets
and/or specifications can and do vary in different applications, and
actual performance may vary over time. All operating parameters,
including “typicals,” must be validated for each customer application by
customer's technical experts. Freescale does not convey any license
under its patent rights nor the rights of others. Freescale sells products
pursuant to standard terms and conditions of sale, which can be found
at the following address: freescale.com/SalesTermsandConditions.

Freescale, the Freescale logo, and CodeWarrior are trademarks of
Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. QorIQ is
trademark of Freescale Semiconductor, Inc. All other product or service
names are the property of their respective owners. ARM, Cortex,
Cortex-A53, Cortex-A57, and TrustZone are registered trademarks of
ARM Limited (or its subsidiaries) in the EU and/or elsewhere. All rights
reserved.

© 2013–2016 Freescale Semiconductor, Inc. All rights reserved.

Document Number CWAPPTM
Revision 10.2, 01/2016

http://www.freescale.com
http://www.freescale.com/support
http://freescale.com/SalesTermsandConditions

	Chapter 1​: Introduction
	Release notes
	Accompanying documentation
	CodeWarrior development tools
	Eclipse IDE
	C/C++ compiler
	Standalone assembler
	Linker
	Debugger
	CodeWarrior profiling and analysis tools

	CodeWarrior development process
	Project files
	Compiling
	Linking
	Editing code
	Debugging

	Chapter 2​: Working with Projects
	CodeWarrior bareboard project wizard
	Create a CodeWarrior Bareboard Project page
	Processor page
	Debug Target Settings page
	Build Settings page
	Configurations page
	Software Analysis page

	Creating projects
	Creating CodeWarrior bareboard application project
	Creating CodeWarrior bareboard library project

	Building projects
	Manual-build mode
	Auto-build mode

	Debugging projects
	Deleting project

	Chapter 3​: Debug Configuration
	Using CodeWarrior debug configuration tabs
	Main
	Arguments
	Debugger
	Debug
	Download
	PIC
	System Call Services
	Other Executables
	Symbolics
	OS Awareness

	Trace and Profile
	Source
	Environment
	Common

	Customizing debug configurations
	Reverting debug configuration settings

	Chapter 4​: Build Properties
	Changing build properties
	Restoring build properties
	Build properties for APP
	CPU
	Debugging
	Messages
	Linker
	Input
	Link Order
	General
	Output

	Compiler
	Preprocessor
	Input
	Warnings
	Optimization
	Processor
	C/C++ Language

	Assembler
	Input
	General

	Disassembler
	Disassembler Settings

	Preprocessor
	Preprocessor Settings

	Chapter 5​: Working with AIOP Debugger
	AIOP debug model
	Overview
	AIOP global halt
	AIOP running
	AIOP debug perspective
	Task centric perspective
	Core centric perspective

	Task stepping mode

	AIOP task aware debugging
	Activating task awareness services
	Viewing AIOP tasks
	Viewing non-idle tasks only
	Adding task memory location columns in System Browser
	Viewing task entry point and OSM data in System Browser
	Targeting AIOP tasks
	Performing run control operations

	Standard debugging features
	Connection types
	CCSSIM2 ISS
	CodeWarrior TAP

	Editing system configuration
	Initialization
	Memory

	CodeWarrior command-line debugger
	Memory configuration file
	Displaying memory contents
	Displaying register contents
	Adding register group
	Editing register group
	Removing register group
	Changing register bit value

	Using register details window
	Bit Fields
	Actions
	Description
	Viewing register details
	Changing bit field

	Setting watchpoints
	Adding watchpoints
	Removing watchpoints

	Setting breakpoints
	AIOP task specific breakpoints
	Setting hardware breakpoints
	Setting hardware breakpoint using editor view
	Setting hardware breakpoint using debugger shell

	Removing breakpoints
	Removing breakpoint using marker bar
	Removing breakpoint using Breakpoints view

	Removing hardware breakpoints
	Removing hardware breakpoint using editor view
	Removing hardware breakpoint using Debugger Shell

	Setting stack depth
	Changing program counter value
	Hard resetting
	Loading and saving memory
	Filling memory
	Controlling cross triggering

	CodeWarrior Executable Importer wizard
	Import a CodeWarrior Executable file page
	Import C/C++/Assembler Executable Files page
	Processor page
	Debug Target Settings page
	Configurations page

	Debugging externally built executable file
	Multi-core operations
	Multi-core operations in IDE
	Multi-core operations in Debugger Shell

	Chapter 6​: Working with hardware tools
	Working with hardware diagnostics
	Creating new hardware diagnostics task
	Executing hardware diagnostics task
	Editing hardware diagnostics task
	Hardware Diagnostics Action editor

	Manipulating target memory
	Creating target task to manipulate memory
	Editing import/export/fill memory task
	Import/Export/Fill Memory Action editor

	Chapter 7​: JTAG configuration files
	JTAG configuration file syntax
	Using JTAG configuration file to override RCW
	Using JTAG configuration file to specify multiple linked devices on a JTAG chain
	Setting remote system to use JTAG configuration file

	Chapter 8​: Target initialization files
	Using target initialization files
	Target initialization file commands
	Access to named registers from within scripts
	Cfg target initialization commands
	alternatePC
	ANDmem.l
	ANDmmr
	IncorMMR
	ORmem.l
	reset
	run
	setCoreID
	resetCoreID
	sleep
	stop
	writemem.b
	writemem.w
	writemem.l
	writemmr
	writereg
	writereg64
	writereg128
	writereg192
	writespr

	Target initialization using Tcl script

	Chapter 9​: Memory configuration files
	Using memory configuration files
	Memory configuration file commands
	autoEnableTranslations
	range
	reserved
	reservedchar
	translate

	Chapter 10​: Debugger limitations and workarounds
	MC/AIOP cores

	Index

