Contents

<table>
<thead>
<tr>
<th>Section number</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Chapter 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Library</td>
<td></td>
</tr>
<tr>
<td>1.1</td>
<td>Introduction</td>
<td>5</td>
</tr>
<tr>
<td>1.2</td>
<td>Library integration into project (CodeWarrior™ Development Studio)</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>Chapter 2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Algorithms in detail</td>
<td></td>
</tr>
<tr>
<td>2.1</td>
<td>GFLIB_Sin</td>
<td>17</td>
</tr>
<tr>
<td>2.2</td>
<td>GFLIB_Cos</td>
<td>19</td>
</tr>
<tr>
<td>2.3</td>
<td>GFLIB_Tan</td>
<td>20</td>
</tr>
<tr>
<td>2.4</td>
<td>GFLIB_Asin</td>
<td>22</td>
</tr>
<tr>
<td>2.5</td>
<td>GFLIB_Acos</td>
<td>24</td>
</tr>
<tr>
<td>2.6</td>
<td>GFLIB_Atan</td>
<td>26</td>
</tr>
<tr>
<td>2.7</td>
<td>GFLIB_AtanYX</td>
<td>28</td>
</tr>
<tr>
<td>2.8</td>
<td>GFLIB_Sqrt</td>
<td>31</td>
</tr>
<tr>
<td>2.9</td>
<td>GFLIB_Limit</td>
<td>32</td>
</tr>
<tr>
<td>2.10</td>
<td>GFLIB_LowerLimit</td>
<td>33</td>
</tr>
<tr>
<td>2.11</td>
<td>GFLIB_UpperLimit</td>
<td>35</td>
</tr>
<tr>
<td>2.12</td>
<td>GFLIB_VectorLimit</td>
<td>36</td>
</tr>
<tr>
<td>2.13</td>
<td>GFLIB_VectorLimit1</td>
<td>39</td>
</tr>
<tr>
<td>2.14</td>
<td>GFLIB_Hyst</td>
<td>42</td>
</tr>
<tr>
<td>2.15</td>
<td>GFLIB_Lut1D</td>
<td>44</td>
</tr>
<tr>
<td>2.16</td>
<td>GFLIB_LutPer1D</td>
<td>47</td>
</tr>
<tr>
<td>2.17</td>
<td>GFLIB_Ramp</td>
<td>49</td>
</tr>
<tr>
<td>2.18</td>
<td>GFLIB_DRamp</td>
<td>52</td>
</tr>
<tr>
<td>2.19</td>
<td>GFLIB_FlexRamp</td>
<td>56</td>
</tr>
<tr>
<td>2.20</td>
<td>GFLIB_DFlexRamp</td>
<td>61</td>
</tr>
<tr>
<td>2.21</td>
<td>GFLIB_FlexSRamp</td>
<td>66</td>
</tr>
<tr>
<td>2.22</td>
<td>GFLIB_Integrator</td>
<td>76</td>
</tr>
<tr>
<td>Section number</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>----------------</td>
<td>---------------------------------</td>
<td>------</td>
</tr>
<tr>
<td>2.23</td>
<td>GFLIB_CtrlBetaPpAW</td>
<td>79</td>
</tr>
<tr>
<td>2.24</td>
<td>GFLIB_CtrlBetaPDpAW</td>
<td>84</td>
</tr>
<tr>
<td>2.25</td>
<td>GFLIB_CtrlPpAW</td>
<td>91</td>
</tr>
<tr>
<td>2.26</td>
<td>GFLIB_CtrlPIDpAW</td>
<td>95</td>
</tr>
</tbody>
</table>
Chapter 1
Library

1.1 Introduction

1.1.1 Overview
This user's guide describes the General Functions Library (GFLIB) for the family of DSP56800EX core-based digital signal controllers. This library contains optimized functions.

1.1.2 Data types
GFLIB supports several data types: (un)signed integer, fractional, and accumulator. The integer data types are useful for general-purpose computation; they are familiar to the MPU and MCU programmers. The fractional data types enable powerful numeric and digital-signal-processing algorithms to be implemented. The accumulator data type is a combination of both; that means it has the integer and fractional portions.

The following list shows the integer types defined in the libraries:

- Unsigned 16-bit integer —<0 ; 65535> with the minimum resolution of 1
- Signed 16-bit integer —<-32768 ; 32767> with the minimum resolution of 1
- Unsigned 32-bit integer —<0 ; 4294967295> with the minimum resolution of 1
- Signed 32-bit integer —<-2147483648 ; 2147483647> with the minimum resolution of 1

The following list shows the fractional types defined in the libraries:

- Fixed-point 16-bit fractional —<-1 ; 1 - 2^{15}> with the minimum resolution of 2^{-15}
- Fixed-point 32-bit fractional —<-1 ; 1 - 2^{31}> with the minimum resolution of 2^{-31}
The following list shows the accumulator types defined in the libraries:

- **Fixed-point 16-bit accumulator** —\([-256.0 ; 256.0 - 2^{-7}\rangle\) with the minimum resolution of \(2^{-7}\)
- **Fixed-point 32-bit accumulator** —\([-65536.0 ; 65536.0 - 2^{-15}\rangle\) with the minimum resolution of \(2^{-15}\)

1.1.3 API definition

GFLIB uses the types mentioned in the previous section. To enable simple usage of the algorithms, their names use set prefixes and postfixes to distinguish the functions' versions. See the following example:

```c
f32Result = MLIB_Mac_F32lss(f32Accum, f16Mult1, f16Mult2);
```

where the function is compiled from four parts:

- **MLIB**—this is the library prefix
- **Mac**—the function name—Multiply-Accumulate
- **F32**—the function output type
- **lss**—the types of the function inputs; if all the inputs have the same type as the output, the inputs are not marked

The input and output types are described in the following table:

<table>
<thead>
<tr>
<th>Type</th>
<th>Output</th>
<th>Input</th>
</tr>
</thead>
<tbody>
<tr>
<td>frac16_t</td>
<td>F16</td>
<td>s</td>
</tr>
<tr>
<td>frac32_t</td>
<td>F32</td>
<td>l</td>
</tr>
<tr>
<td>acc32_t</td>
<td>A32</td>
<td>a</td>
</tr>
</tbody>
</table>

1.1.4 Supported compilers

GFLIB for the DSP56800EX core is written in assembly language with C-callable interface. The library is built and tested using the following compilers:

- CodeWarrior™ Development Studio

For the CodeWarrior™ Development Studio, the library is delivered in the `gflib.lib` file.
The interfaces to the algorithms included in this library are combined into a single public interface include file, *gflib.h*. This is done to lower the number of files required to be included in your application.

1.1.5 Library configuration

1.1.6 Special issues

1. The equations describing the algorithms are symbolic. If there is positive 1, the number is the closest number to 1 that the resolution of the used fractional type allows. If there are maximum or minimum values mentioned, check the range allowed by the type of the particular function version.
2. The library functions require the core saturation mode to be turned off, otherwise the results can be incorrect. Several specific library functions are immune to the setting of the saturation mode.
3. The library functions round the result (the API contains Rnd) to the nearest (two's complement rounding) or to the nearest even number (convergent round). The mode used depends on the core option mode register (OMR) setting. See the core manual for details.
4. All non-inline functions are implemented without storing any of the volatile registers (refer to the compiler manual) used by the respective routine. Only the non-volatile registers (C10, D10, R5) are saved by pushing the registers on the stack. Therefore, if the particular registers initialized before the library function call are to be used after the function call, it is necessary to save them manually.

1.2 Library integration into project (CodeWarrior™ Development Studio)

This section provides a step-by-step guide to quickly and easily integrate the GFLIB into an empty project using CodeWarrior™ Development Studio. This example uses the MC56F84789 part, and the default installation path (C:\NXP\RTCESL\DSP56800EX_RTCESL_4.5) is supposed. If you have a different installation path, you must use that path instead.
1.2.1 New project

To start working on an application, create a new project. If the project already exists and is open, skip to the next section. Follow the steps given below to create a new project.

2. Choose File > New > Bareboard Project, so that the "New Bareboard Project" dialog appears.
3. Type a name of the project, for example, MyProject01.
4. If you don't use the default location, untick the “Use default location” checkbox, and type the path where you want to create the project folder; for example, C:\CWProjects\MyProject01, and click Next. See Figure 1-1.

![Figure 1-1. Project name and location](image)

5. Expand the tree by clicking the 56800/E (DSC) and MC56F84789. Select the Application option and click Next. See Figure 1-2.
6. Now select the connection that will be used to download and debug the application. In this case, select the option P&E USB MultiLink Universal[FX] / USB MultiLink and Freescale USB TAP, and click Next. See Figure 1-3.

7. From the options given, select the Simple Mixed Assembly and C language, and click Finish. See Figure 1-4.
The new project is now visible in the left-hand part of CodeWarrior™ Development Studio. See Figure 1-5.

![Figure 1-5. Project folder](image)

1.2.2 Library path variable

To make the library integration easier, create a variable that will hold the information about the library path.

1. Right-click the MyProject01 node in the left-hand part and click Properties, or select Project > Properties from the menu. The project properties dialog appears.
2. Expand the Resource node and click Linked Resources. See Figure 1-6.
3. Click the 'New…' button on the right-hand side.
4. In the dialog that appears (see Figure 1-7), type this variable name into the Name box: RTCESL_LOC
5. Select the library parent folder by clicking 'Folder…' or just typing the following path into the Location box: C:\NXP\RTCESL\DSP56800EX_RTCESL_4.5_CW and click OK.
6. Click OK in the previous dialog.
1.2.3 Library folder addition

To use the library, add it into the CodeWarrior Project tree dialog.

1. Right-click the MyProject01 node in the left-hand part and click New > Folder, or select File > New > Folder from the menu. A dialog appears.
2. Click Advanced to show the advanced options.
3. To link the library source, select the third option—Link to alternate location (Linked Folder).
4. Click Variables…, and select the RTCESL_LOC variable in the dialog that appears, click OK, and/or type the variable name into the box. See Figure 1-8.
5. Click Finish, and you will see the library folder linked in the project. See Figure 1-9.
1.2.4 Library path setup

GFLIB requires MLIB to be included too. Therefore, the following steps show the inclusion of all dependent modules.

1. Right-click the MyProject01 node in the left-hand part and click Properties, or select Project > Properties from the menu. A dialog with the project properties appears.
2. Expand the C/C++ Build node, and click Settings.
3. In the right-hand tree, expand the DSC Linker node, and click Input. See Figure 1-11.
4. In the third dialog Additional Libraries, click the 'Add…' icon, and a dialog appears.
5. Look for the RTCESL_LOC variable by clicking Variables…, and then finish the path in the box by adding one of the following:
 - ${RTCESL_LOC}\MLIB\mlib\lib_SDM.lib—for small data model projects
 - ${RTCESL_LOC}\MLIB\mlib\lib_LDM.lib—for large data model projects
6. Tick the box Relative To, and select RTCESL_LOC next to the box. See Figure 1-9. Click OK.
7. Click the 'Add…' icon in the third dialog Additional Libraries.
8. Look for the RTCESL_LOC variable by clicking Variables…, and then finish the path in the box by adding one of the following:
 - ${RTCESL_LOC}\GFLIB\gflib\lib_SDM.lib—for small data model projects
 - ${RTCESL_LOC}\GFLIB\gflib\lib_LDM.lib—for large data model projects
9. Tick the box Relative To, and select RTCESL_LOC next to the box. Click OK.
10. Now, you will see the libraries added in the box. See Figure 1-11.

![Add file path dialog](image)

Figure 1-10. Library file inclusion
11. In the tree under the DSC Compiler node, click Access Paths.
12. In the Search User Paths dialog (#include “…”), click the 'Add…' icon, and a dialog will appear.
13. Look for the RTCESL_LOC variable by clicking Variables…, and then finish the path in the box to be: ${RTCESL_LOC}\MLIB\include.
14. Tick the box Relative To, and select RTCESL_LOC next to the box. See Figure 1-12. Click OK.
15. Click the 'Add…' icon in the Search User Paths dialog (#include “…”).
16. Look for the RTCESL_LOC variable by clicking Variables…, and then finish the path in the box to be: ${RTCESL_LOC}\GFLIB\include.
17. Tick the box Relative To, and select RTCESL_LOC next to the box. Click OK.
18. Now you will see the paths added in the box. See Figure 1-13. Click OK.
The final step is typing the #include syntax into the code. Include the library into the main.c file. In the left-hand dialog, open the Sources folder of the project, and double-click the main.c file. After the main.c file opens up, include the following lines into the #include section:

```
#include "mlib.h"
#include "gflib.h"
```

When you click the Build icon (hammer), the project will be compiled without errors.
Chapter 2
Algorithms in detail

2.1 GFLIB_Sin

The GFLIB_Sin function implements the polynomial approximation of the sine function. It provides a computational method for the calculation of a standard trigonometric sine function \(\sin(x) \), using the 9th order Taylor polynomial approximation. The Taylor polynomial approximation of a sine function is expressed as follows:

\[
\sin(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \frac{x^9}{9!}
\]

Equation 1.

\[
\sin(x) = x(d_1 + x^2(d_3 + x^2(d_5 + x^2(d_7 + x^2d_9))))
\]

Equation 2.

where the constants are:

\[
\begin{align*}
d_1 &= 1 \\
d_3 &= -\frac{1}{3} \\
d_5 &= \frac{1}{3!} \\
d_7 &= -\frac{1}{5} \\
d_9 &= \frac{1}{9!}
\end{align*}
\]

The fractional arithmetic is limited to the range \((-1; 1\)), so the input argument can only be within this range. The input argument is the multiplier of \(\pi \): \(\sin(\pi \cdot x) \), where the user passes the \(x \) argument. Example: if the input is -0.5, it corresponds to \(-0.5\pi\).

The fractional function \(\sin(\pi \cdot x) \) is expressed using the 9th order Taylor polynomial as follows:

\[
\sin(\pi x) = x(c_1 + x^2(c_3 + x^2(c_5 + x^2(c_7 + x^2c_9))))
\]

Equation 3.

where:
2.1.1 Available versions

The function is available in the following versions:

- Fractional output - the output is the fractional portion of the result; the result is within the range <-1 ; 1). The result may saturate.

The available versions of the GFLIB_Sin function are shown in the following table:

<table>
<thead>
<tr>
<th>Function name</th>
<th>Input type</th>
<th>Result type</th>
<th>Description</th>
</tr>
</thead>
</table>
| GFLIB_Sin_F16 | frac16_t | frac16_t | Calculation of the sin(π · x), where the input argument is a 16-bit fractional value normalized to the range <-1 ; 1) that represents an angle in radians <-π; π). The output is a 16-bit fractional value within the range <-1 ; 1).

2.1.2 Declaration

The available GFLIB_Sin functions have the following declarations:

```c
frac16_t GFLIB_Sin_F16(frac16_t f16Angle)
```

2.1.3 Function use

The use of the GFLIB_Sin function is shown in the following examples:

Fixed-point version:

```c
#include "gflib.h"

static frac16_t f16Result;
static frac16_t f16Angle;

void main(void)
{
    f16Angle = FRAC16(0.333333);       /* f16Angle = 0.333333 [60°] */
```
2.2 GFLIB_Cos

The GFLIB_Cos function implements the polynomial approximation of the cosine function. This function computes the \(\cos(x) \) using the ninth-order Taylor polynomial approximation of the sine function, and its equation is as follows:

\[
\cos(x) = \sin\left(\frac{\pi}{2} + x\right)
\]

Equation 4.

Because the fractional arithmetic is limited to the range <-1 ; 1), the input argument can only be within this range. The input argument is the multiplier of \(\pi \): \(\cos(\pi \cdot x) \), where the user passes the \(x \) argument. For example, if the input is -0.5, it corresponds to -0.5\(\pi \).

2.2.1 Available versions

This function is available in the following versions:

- Fractional output - the output is the fractional portion of the result; the result is within the range <-1 ; 1). The result may saturate.

The available versions of the GFLIB_Cos function are shown in the following table:

<table>
<thead>
<tr>
<th>Function name</th>
<th>Input type</th>
<th>Result type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>GFLIB_Cos_F16</td>
<td>frac16_t</td>
<td>frac16_t</td>
<td>Calculation of (\cos(\pi \cdot x)), where the input argument is a 16-bit fractional value, normalized to the range <-1 ; 1) that represents an angle in radians within the range <- (\pi); (\pi). The output is a 16-bit fractional value within the range <-1 ; 1).</td>
</tr>
</tbody>
</table>

2.2.2 Declaration

The available GFLIB_Cos functions have the following declarations:

\[
\text{frac16_t GFLIB_Cos_F16(frac16_t f16Angle)}
\]
2.2.3 Function use

The use of the GFLIB_Cos function is shown in the following examples:

Fixed-point version:

```c
#include "gflib.h"

static frac16_t f16Result;
static frac16_t f16Angle;

void main(void)
{
    f16Angle = FRAC16(0.333333);         /* f16Angle = 0.333333 [60°] */
    /* f16Result = cos(f16Angle); f16Angle[rad] = deg * (π / 180) */
    f16Result = GFLIB_Cos_F16(f16Angle);
}
```

2.3 GFLIB_Tan

The GFLIB_Tan function provides a computational method for calculation of a standard trigonometric tangent function tan(x), using the piece-wise polynomial approximation. Function tan(x) takes an angle and returns the ratio of two sides of a right-angled triangle. The ratio is the length of the side opposite the angle divided by the length of the side adjacent to the angle.

\[
\tan(x) = \frac{\sin(x)}{\cos(x)}
\]

Equation 5.

Because both sin(x) and cos(x) are defined in interval \((-\pi ; \pi\), the function tan(x) is equal to zero when sin(x)=0 and is equal to infinity when cos(x)=0. The graph of tan(x) is shown in the following figure:
The fractional arithmetic is limited to the range $<-1 ; 1)$ so the input argument can only be within this range. The input argument is the multiplier of π: $\tan(\pi \cdot x)$ where you pass the x argument. Example: if the input is -0.5, it corresponds to -0.5π. The output of the function is limited to the range $<-1 ; 1)$ for the fractional arithmetic. For the points where the function is not defined, the output is fractional -1.

2.3.1 Available versions

The function is available in the following versions:

- Fractional output - the output is the fractional portion of the result; the result is within the range $<-1 ; 1)$. The result may saturate.

The available versions of the GFLIB_Tan function are shown in the following table:

<table>
<thead>
<tr>
<th>Function name</th>
<th>Input type</th>
<th>Result type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>GFLIB_Tan_F16</td>
<td>frac16_t</td>
<td>frac16_t</td>
<td>Calculation of the $\tan(\pi \cdot x)$ where the input argument is a 16-bit fractional value normalized to the range $<-1 ; 1)$ that represents an angle in radians within the range $<-\pi ; \pi)$. The output is a 16-bit fractional value within the range $<-1 ; 1)$.</td>
</tr>
</tbody>
</table>

Figure 2-1. Course of the function GFLIB_Tan

![Graph of GFLIB_Tan function](image)
2.3.2 Declaration

The available GFLIB_Tan functions have the following declarations:

```c
frac16_t GFLIB_Tan_F16(frac16_t f16Angle)
```

2.3.3 Function use

The use of the GFLIB_Tan function is shown in the following examples:

Fixed-point version:

```c
#include "gflib.h"

static frac16_t f16Result;
static frac16_t f16Angle;

void main(void)
{
    f16Angle = FRAC16(0.1); /* f16Angle = 0.1 [18°] */
    /* f16Result = tan(f16Angle); (π * f16Angle[rad]) = deg * (π / 180) */
    f16Result = GFLIB_Tan_F16(f16Angle);
}
```

2.4 GFLIB_Asin

The GFLIB_Asin function provides a computational method for calculation of a standard inverse trigonometric arcsine function arcsin(x), using the piece-wise polynomial approximation. Function arcsin(x) takes the ratio of the length of the opposite side to the length of the hypotenuse and returns the angle.
The fractional arithmetic is limited by the range <-1;1) so the output can only be within this range. This range corresponds to the angle <-1;1). Example: if the output is -0.5 it corresponds to -0.5\pi.

2.4.1 Available versions

The function is available in the following versions:

- Fractional output - the output is the fractional portion of the result; the result is within the range <-1;1). The result may saturate.

The available versions of the **GFLIB_Asin** function are shown in the following table:

<table>
<thead>
<tr>
<th>Function name</th>
<th>Input type</th>
<th>Result type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>GFLIB_Asin_F16</td>
<td>frac16_t</td>
<td>frac16_t</td>
<td>Calculation of the arcsin(x) / \pi where the input argument is a 16-bit fractional within the range <-1;1). The output is a 16-bit fractional value within the range <-1;1) that represents an angle in radians within the range <-\pi;\pi).</td>
</tr>
</tbody>
</table>
2.4.2 Declaration

The available GFLIB_As in functions have the following declarations:

\[
\text{frac16_t GFLIB_As in F16(frac16_t f16Val)}
\]

2.4.3 Function use

The use of the GFLIB_As in function is shown in the following examples:

Fixed-point version:

```c
#include "gflib.h"

static frac16_t f16Result;
static frac16_t f16Value;

void main(void)
{
    f16Value = FRAC16(0.5); /* f16Value = 0.5 */
    f16Result = GFLIB_As in_F16(f16Value);
}
```

2.5 GFLIB_Acos

The GFLIB_Acos function provides a computational method for calculation of a standard inverse trigonometric arccosine function arccos(x), using the piece-wise polynomial approximation. Function arccos(x) takes the ratio of the length of the adjacent side to the length of the hypotenuse and returns the angle.
Figure 2-3. Course of the function GFLIB_Acos

The fractional arithmetic is limited by the range <-1;1) so the output can only be within this range. This range corresponds to the angle <-1;1). Example: if the output is -0.5 it corresponds to -0.5π.

2.5.1 Available versions

The function is available in the following versions:

- Fractional output - the output is the fractional portion of the result; the result is within the range <-1;1). The result may saturate.

The available versions of the GFLIB_Acos function are shown in the following table:

<table>
<thead>
<tr>
<th>Function name</th>
<th>Input type</th>
<th>Result type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>GFLIB_Acos_F16</td>
<td>frac16_t</td>
<td>frac16_t</td>
<td>Calculation of the arccos(x) / π where the input argument is a 16-bit fractional within the range <-1;1). The output is a 16-bit fractional value within the range <-1;1) that represents an angle in radians within the range <-π;π).</td>
</tr>
</tbody>
</table>
2.5.2 Declaration

The available GFLIB_Acos functions have the following declarations:

\[
\text{frac16_t GFLIB_Acos_F16(frac16_t f16Val)}
\]

2.5.3 Function use

The use of the GFLIB_Acos function is shown in the following examples:

Fixed-point version:

```c
#include "gflib.h"

static frac16_t f16Result;
static frac16_t f16Value;

void main(void)
{
    f16Value = FRAC16(0.5); /* f16Value = 0.5 */
    f16Result = GFLIB_Acos_F16(f16Value);
}
```

2.6 GFLIB_Atan

The GFLIB_Atan function implements the polynomial approximation of the arctangent function. It provides a computational method for calculating the standard trigonometric arctangent function arctan(x), using the piece-wise minimax polynomial approximation. Function arctan(x) takes a ratio, and returns the angle of two sides of a right-angled triangle. The ratio is the length of the side opposite to the angle divided by the length of the side adjacent to the angle. The graph of the arctan(x) is shown in the following figure:
The fractional arithmetic version of the GFLIB_Atan function is limited to a certain range of inputs \([-1 ; 1\)) because the arctangent values are the same, with just an opposite sign for the input ranges \([-1 ; 0)\) and \(<0 ; 1\)), the approximation of the arctangent function over the entire defined range of input ratios can be simplified to the approximation for a ratio in the range \(<0 ; 1\)). After that, the result will be negated, depending on the input ratio.

2.6.1 Available versions

The function is available in the following versions:

- Fractional output - the output is the fractional portion of the result; the result is within the range \(<-0.25 ; 0.25\)), which corresponds to the angle \(<-\pi / 4 ; \pi / 4\)).

The available versions of the GFLIB_Atan function are shown in the following table:

<table>
<thead>
<tr>
<th>Function name</th>
<th>Input type</th>
<th>Result type</th>
<th>Description</th>
</tr>
</thead>
</table>
| GFLIB_Atan_F16 | frac16_t | frac16_t | Input argument is a 16-bit fractional value within the range \([-1 ; 1\)). The output is the arctangent of the input as a 16-bit fractional value, normalized within the range \(<-0.25 ; 0.25\)), which represents an angle (in radians) in the range \(<-\pi / 4 ; \pi / 4\) \(<-45^\circ ; 45^\circ\)).
2.6.2 Declaration

The available GFLIB_Atan functions have the following declarations:

\[
\text{frac16_t GFLIB_Atan_F16(frac16_t f16Val)}
\]

2.6.3 Function use

The use of the GFLIB_Atan function is shown in the following examples:

Fixed-point version:

```c
#include "gflib.h"

static frac16_t f16Result;
static frac16_t f16Val;

void main(void)
{
    f16Val = FRAC16(0.1666666); /* f16Val = 0.1666666 (30°) */
    /* f16Result = atan(f16Val); f16Result * 180 => angle[degree] */
    f16Result = GFLIB_Atan_F16(f16Val);
}
```

2.7 GFLIB_AtanYX

The GFLIB_AtanYX function computes the angle, where its tangent is \(y / x \) (see the figure below). This calculation is based on the input argument division (\(y \) divided by \(x \)), and the piece-wise polynomial approximation.
Figure 2-5. Course of the GFLIB_AtanYX function

The first parameter \(Y \) is the ordinate (the x coordinate), and the second parameter \(X \) is the abscissa (the x coordinate). The counter-clockwise direction is assumed to be positive, and thus a positive angle is computed if the provided ordinate \((Y)\) is positive. Similarly, a negative angle is computed for the negative ordinate. The calculations are performed in several steps. In the first step, the angle is positioned within the correct half-quarter of the circumference of a circle by dividing the angle into two parts: the integral multiple of \(45^\circ\) (half-quarter), and the remaining offset within the \(45^\circ\) range. Simple geometric properties of the Cartesian coordinate system are used to calculate the coordinates of the vector with the calculated angle offset. In the second step, the vector ordinate is divided by the vector abscissa \((y / x)\) to obtain the tangent value of the angle offset. The angle offset is computed by applying the GFLIB_Atan function. The sum of the integral multiple of half-quarters and the angle offset within a single halfquarter form the angle is computed.
The function returns 0 if both input arguments equal 0, and sets the output error flag; in other cases, the output flag is cleared. When compared to the GFLIB_Atan function, the GFLIB_AtanYX function places the calculated angle correctly within the fractional range \((-\pi; \pi]\).

In the fractional arithmetic, both input parameters are assumed to be in the fractional range \((-1; 1]\). The output is within the range \((-1; 1]\), which corresponds to the real range \((-\pi; \pi]\).

2.7.1 Available versions

This function is available in the following versions:

- Fractional output - the output is the fractional portion of the result; the result is within the range \((-1; 1]\), which corresponds to the angle \((-\pi; \pi]\).

The available versions of the GFLIB_AtanYX function are shown in the following table:

<table>
<thead>
<tr>
<th>Function name</th>
<th>Input type</th>
<th>Output type</th>
<th>Result type</th>
</tr>
</thead>
<tbody>
<tr>
<td>GFLIB_AtanYX_F16</td>
<td>frac16_t</td>
<td>frac16_t</td>
<td>bool_t *</td>
</tr>
</tbody>
</table>

The first input argument is a 16-bit fractional value that contains the ordinate of the input vector (y coordinate). The second input argument is a 16-bit fractional value that contains the abscissa of the input vector (x coordinate). The result is the arctangent of the input arguments as a 16-bit fractional value within the range \((-1; 1]\), which corresponds to the real angle range \((-\pi; \pi]\). The function sets the boolean error flag pointed to by the output parameter if both inputs are zero; in other cases, the output flag is cleared.

2.7.2 Declaration

The available GFLIB_AtanYX functions have the following declarations:

```c
frac16_t GFLIB_AtanYX_F16(frac16_t f16Y, frac16_t f16X, bool_t *pbErrFlag)
```

2.7.3 Function use

The use of the GFLIB_AtanYX function is shown in the following examples:

Fixed-point version:


```c
#include "gflib.h"

static frac16_t f16Result;
static frac16_t f16Y, f16X;
static bool_t bErrFlag;

void main(void)
{
    f16Y = FRAC16(0.9);          /* f16Y = 0.9 */
    f16X = FRAC16(0.3);          /* f16X = 0.3 */

    /* f16Result =  atan(f16Y / f16X); f16Result * 180 => angle [degree] */
    f16Result = GFLIB_AtanYX_F16(f16Y, f16X, &bErrFlag);
}
```

2.8 GFLIB_Sqrt

The GFLIB_Sqrt function returns the square root of the input value. The input must be a non-negative number, otherwise the function returns undefined results. See the following equation:

\[
GFLIB_Sqrt(x) = \begin{cases}
\sqrt{x}, & x \geq 0 \\
\text{undefined}, & x < 0
\end{cases}
\]

Equation 6. Algorithm formula

2.8.1 Available versions

This function is available in the following versions:

- Fractional output - the output is the fractional portion of the result; the result is within the range \(<0 ; 1) \). The function is only defined for non-negative inputs. The function returns undefined results out of this condition.

The available versions of the GFLIB_Sqrt function are shown in the following table:

<table>
<thead>
<tr>
<th>Function name</th>
<th>Input type</th>
<th>Result type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>GFLIB_Sqrt_F16</td>
<td>frac16_t</td>
<td>frac16_t</td>
<td>The input value is a 16-bit fractional value, limited to the range (<0 ; 1)). The function is not defined out of this range. The output is a 16-bit fractional value within the range (<0 ; 1)).</td>
</tr>
<tr>
<td>GFLIB_Sqrt_F16l</td>
<td>frac32_t</td>
<td>frac16_t</td>
<td>The input value is a 32-bit fractional value, limited to the range (<0 ; 1)). The function is not defined out of this range. The output is a 16-bit fractional value within the range (<0 ; 1)).</td>
</tr>
</tbody>
</table>
2.8.2 Declaration

The available **GFLIB_Sqrt** functions have the following declarations:

```c
frac16_t GFLIB_Sqrt_F16(frac16_t f16Val)
frac16_t GFLIB_Sqrt_F16l(frac32_t f32Val)
```

2.8.3 Function use

The use of the **GFLIB_Sqrt** function is shown in the following examples:

Fixed-point version:

```c
#include "gflib.h"

static frac16_t f16Result;
static frac16_t f16Val;

void main(void)
{
    f16Val = FRAC16(0.5); /* f16Val = 0.5 */
    /* f16Result = sqrt(f16Val) */
    f16Result = GFLIB_Sqrt_F16(f16Val);
}
```

2.9 GFLIB_Limit

The **GFLIB_Limit** function returns the value limited by the upper and lower limits. See the following equation:

$$
GFLIB_Limit(x, min, max) = \begin{cases}
min, & x < min \\
max, & x > max \\
x, & \text{else}
\end{cases}
$$

Equation 7. Algorithm formula

2.9.1 Available versions

This function is available in the following versions:

- Fractional output - the output is the fractional portion of the result; the result is within the range <-1 ; 1). The result may saturate.
The available versions of the **GFLIB_Limit** functions are shown in the following table:

Table 2-9. Function versions

<table>
<thead>
<tr>
<th>Function name</th>
<th>Input type</th>
<th>Result type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>GFLIB_Limit_F16</td>
<td>frac16_t</td>
<td>frac16_t</td>
<td>The inputs are 16-bit fractional values within the range (-1 ; 1). The function returns a 16-bit fractional value in the range (f16LLim ; f16ULim).</td>
</tr>
<tr>
<td>GFLIB_Limit_F32</td>
<td>frac32_t</td>
<td>frac32_t</td>
<td>The inputs are 32-bit fractional values within the range (-1 ; 1). The function returns a 32-bit fractional value in the range (f32LLim ; f32ULim).</td>
</tr>
</tbody>
</table>

2.9.2 Declaration

The available **GFLIB_Limit** functions have the following declarations:

```c
frac16_t GFLIB_Limit_F16(frac16_t f16Val, frac16_t f16LLim, frac16_t f16ULim)
frac32_t GFLIB_Limit_F32(frac32_t f32Val, frac32_t f32LLim, frac32_t f32ULim)
```

2.9.3 Function use

The use of the **GFLIB_Limit** function is shown in the following examples:

Fixed-point version:

```c
#include "gflib.h"
static frac16_t f16Val, f16ULim, f16LLim, f16Result;
void main(void)
{
    f16ULim = FRAC16(0.8);
    f16LLim = FRAC16(-0.3);
    f16Val = FRAC16(0.9);

    f16Result = GFLIB_Limit_F16(f16Val, f16LLim, f16ULim);
}
```

2.10 GFLIB_LowerLimit

The **GFLIB_LowerLimit** function returns the value limited by the lower limit. See the following equation:
2.10.1 Available versions

This function is available in the following versions:

- Fractional output - the output is the fractional portion of the result; the result is within the range <-1 ; 1). The result may saturate.

The available versions of the GFLIB_LowerLimit functions are shown in the following table:

<table>
<thead>
<tr>
<th>Function name</th>
<th>Input type</th>
<th>Result type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GFLIB_LowerLimit_F16</td>
<td>frac16_t</td>
<td>frac16_t</td>
<td>The inputs are 16-bit fractional values within the range <-1 ; 1). The function returns a 16-bit fractional value in the range <f16LLim ; 1).</td>
</tr>
<tr>
<td>GFLIB_LowerLimit_F32</td>
<td>frac32_t</td>
<td>frac32_t</td>
<td>The inputs are 32-bit fractional values within the range <-1 ; 1). The function returns a 32-bit fractional value in the range <f32LLim ; 1).</td>
</tr>
</tbody>
</table>

2.10.2 Declaration

The available GFLIB_LowerLimit functions have the following declarations:

```c
frac16_t GFLIB_LowerLimit_F16(frac16_t f16Val, frac16_t f16LLim)
frac32_t GFLIB_LowerLimit_F32(frac32_t f32Val, frac32_t f32LLim)
```

2.10.3 Function use

The use of the GFLIB_LowerLimit function is shown in the following examples:

Fixed-point version:

```c
#include "gflib.h"
static frac16_t f16Val, f16LLim, f16Result;
void main(void)
```
2.11 GFLIB_UpperLimit

The GFLIB_UpperLimit function returns the value limited by the upper limit. See the following equation:

\[
GFLIB_UpperLimit(x, max) = \begin{cases}
 \text{max}, & x > \text{max} \\
 x, & \text{else}
\end{cases}
\]

Equation 9. Algorithm formula

2.11.1 Available versions

This function is available in the following versions:

- Fractional output - the output is the fractional portion of the result; the result is within the range <-1 ; 1). The result may saturate.

The available versions of the GFLIB_UpperLimit functions are shown in the following table:

<table>
<thead>
<tr>
<th>Function name</th>
<th>Input type</th>
<th>Result type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>GFLIB_UpperLimit_F16</td>
<td>frac16_t</td>
<td>frac16_t</td>
<td>The inputs are 16-bit fractional values within the range <-1 ; 1). The function returns a 16-bit fractional value in the range <-1 ; f16ULim>.</td>
</tr>
<tr>
<td>GFLIB_UpperLimit_F32</td>
<td>frac32_t</td>
<td>frac32_t</td>
<td>The inputs are 32-bit fractional values within the range <-1 ; 1). The function returns a 32-bit fractional value in the range <-1 ; f32ULim>.</td>
</tr>
</tbody>
</table>

2.11.2 Declaration

The available GFLIB_UpperLimit functions have the following declarations:

```c
frac16_t GFLIB_UpperLimit_F16(frac16_t f16Val, frac16_t f16ULim)
frac32_t GFLIB_UpperLimit_F32(frac32_t f32Val, frac32_t f32ULim)
```
2.11.3 Function use

The use of the GFLIB_UpperLimit function is shown in the following examples:

Fixed-point version:

```c
#include "glib.h"

static frac16_t f16Val, f16ULim, f16Result;

void main(void)
{
    f16ULim = FRAC16(0.3);
    f16Val = FRAC16(0.9);

    f16Result = GFLIB_UpperLimit_F16(f16Val, f16ULim);
}
```

2.12 GFLIB_VectorLimit

The GFLIB_VectorLimit function returns the limited vector by an amplitude. This limitation is calculated to achieve the zero angle error.
The GFLIB_VectorLimit function limits the amplitude of the input vector. The input vector a, b components, are passed into the function as the input arguments. The resulting limited vector is transformed back into the a, b components. The limitation is performed according to the following equations:

\[
\alpha^* = \begin{cases}
 a, & \sqrt{a^2+b^2} \leq \text{lim} \\
 \frac{a \cdot \text{lim}}{\sqrt{a^2+b^2}}, & \text{else}
\end{cases}
\]

\[
b^* = \begin{cases}
 b, & \sqrt{a^2+b^2} \leq \text{lim} \\
 \frac{b \cdot \text{lim}}{\sqrt{a^2+b^2}}, & \text{else}
\end{cases}
\]

Equation 10. Algorithm formulas

where:
- a, b are the vector coordinates
- a^*, b^* are the vector coordinates after limitation
- lim is the maximum amplitude

The relationship between the input and limited output vectors is obvious from Figure 2-6.
If the amplitude of the input vector is greater than the input Lim value, the function calculates the new coordinates from the Lim value; otherwise the function copies the input values to the output.

2.12.1 Available versions

The function is available in the following versions:

- Fractional output - the output is the fractional portion of the result; the result is within the range <-1;1). The result may saturate.

The available versions of the `GFLIB_VectorLimit` functions are shown in the following table:

Table 2-12. Function versions

<table>
<thead>
<tr>
<th>Function name</th>
<th>Input type</th>
<th>Output type</th>
<th>Result type</th>
</tr>
</thead>
<tbody>
<tr>
<td>GFLIB_VectorLimit_F16</td>
<td>GFLIB_VECTORLIMIT_T_F16 *</td>
<td>frac16_t</td>
<td>void</td>
</tr>
</tbody>
</table>

| Limitation of a two-component 16-bit fractional vector within the range <-1;1) with a 16-bit fractional limitation amplitude. The function returns a two-component 16-bit fractional vector. |

2.12.2 GFLIB_VECTORLIMIT_T_F16 type description

<table>
<thead>
<tr>
<th>Variable name</th>
<th>Input type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>f16A</td>
<td>frac16_t</td>
<td>A-component; 16-bit fractional type</td>
</tr>
<tr>
<td>f16B</td>
<td>frac16_t</td>
<td>B-component; 16-bit fractional type</td>
</tr>
</tbody>
</table>

2.12.3 Declaration

The available `GFLIB_VectorLimit` functions have the following declarations:

```c
frac16_t GFLIB_VectorLimit_F16(const GFLIB_VECTORLIMIT_T_F16 *psVectorIn, frac16_t f16Lim, GFLIB_VECTORLIMIT_T_F16 *psVectorOut)
```
2.12.4 Function use

The use of the **GFLIB_VectorLimit** function is shown in the following examples:

Fixed-point version:

```c
#include "gflib.h"

static GFLIB_VECTORLIMIT_T_F16 sVector, sResult;
static frac16_t f16MaxAmpl;

void main(void)
{
    f16MaxAmpl = FRAC16(0.8);
    sVector.f16A = FRAC16(-0.79);
    sVector.f16B = FRAC16(0.86);

    GFLIB_VectorLimit_F16(&sVector, f16MaxAmpl, &sResult);
}
```

2.13 **GFLIB_VectorLimit1**

The **GFLIB_VectorLimit1** function returns the limited vector by an amplitude. This limitation is calculated to achieve that the first component remains unchanged (if the limitation factor allows).
The GFLIB_VectorLimit1 function limits the amplitude of the input vector. The input vector \(a, b \) components are passed to the function as the input arguments. The resulting limited vector is transformed back into the \(a, b \) components. The limitation is performed according to the following equations:

\[
\begin{align*}
 a^* &= \begin{cases}
 a, & |a| \leq \text{lim} \\
 \text{lim} \cdot \text{sgn}(a), & \text{else}
 \end{cases} \\
 b^* &= \begin{cases}
 b, & |b| \leq \sqrt{\text{lim}^2 - a^*^2} \\
 \sqrt{\text{lim}^2 - a^*^2} \cdot \text{sgn}(b), & \text{else}
 \end{cases}
\end{align*}
\]

Equation 12

Equation 13

where:

- \(a, b \) are the vector coordinates
- \(a^*, b^* \) are the vector coordinates after limitation
- \(\text{lim} \) is the maximum amplitude

The relationship between the input and limited output vectors is shown in Figure 2-7.
If the amplitude of the input vector is greater than the input Lim value, the function calculates the new coordinates from the Lim value; otherwise the function copies the input values to the output.

2.13.1 Available versions

The function is available in the following versions:

- Fractional output - the output is the fractional portion of the result; the result is within the range \(-1 ; 1\). The result may saturate.

The available versions of the `GFLIB_VectorLimit1` function are shown in the following table:

<table>
<thead>
<tr>
<th>Function name</th>
<th>Input type</th>
<th>Output type</th>
<th>Result type</th>
</tr>
</thead>
<tbody>
<tr>
<td>GFLIB_VectorLimit1_F16</td>
<td>GFLIBVECTORLIMIT_T_F16 *</td>
<td>frac16_t</td>
<td>GFLIBVECTORLIMIT_T_F16 *</td>
</tr>
</tbody>
</table>

Limitation of a two-component 16-bit fractional vector within the range \(-1; 1\) with a 16-bit fractional limitation amplitude. The function returns a two-component 16-bit fractional vector.

2.13.2 GFLIB_VECTORLIMIT_T_F16 type description

<table>
<thead>
<tr>
<th>Variable name</th>
<th>Input type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>f16A</td>
<td>frac16_t</td>
<td>A-component; 16-bit fractional type.</td>
</tr>
<tr>
<td>f16B</td>
<td>frac16_t</td>
<td>B-component; 16-bit fractional type.</td>
</tr>
</tbody>
</table>

2.13.3 Declaration

The available `GFLIB_VectorLimit1` functions have the following declarations:

```c
frac16_t GFLIB_VectorLimit1_F16(const GFLIBVECTORLIMIT_T_F16 *psVectorIn, frac16_t f16Lim, GFLIBVECTORLIMIT_T_F16 *psVectorOut)
```
2.13.4 Function use

The use of the GFLIB_VectorLimit1 function is shown in the following examples:

Fixed-point version:

```c
#include "gflib.h"

static GFLIB_VECTORLIMIT_T_F16 sVector, sResult;
static frac16_t f16MaxAmpl;

void main(void)
{
    f16MaxAmpl = FRAC16(0.5);
    sVector.f16A = FRAC16(-0.4);
    sVector.f16B = FRAC16(0.2);

    GFLIB_VectorLimit1_F16(&sVector, f16MaxAmpl, &sResult);
}
```

2.14 GFLIB_Hyst

The GFLIB_Hyst function represents a hysteresis (relay) function. The function switches the output between two predefined values. When the input is higher than the upper threshold, the output is high; when the input is lower than the lower threshold, the output is low. When the input is between the two thresholds, the output retains its value. See the following figure:

![Figure 2-8. GFLIB_Hyst functionality](image)

The four points in the figure are to be set up in the parameters structure of the function. For a proper functionality, the HystOn point must be greater than the HystOff point.
2.14.1 Available versions

This function is available in the following versions:

- Fractional output - the output is the fractional portion of the result, and the result is within the range -1 ; 1).

The available versions of the GFLIB_Hyst function are shown in the following table.

<table>
<thead>
<tr>
<th>Function name</th>
<th>Input type</th>
<th>Parameters</th>
<th>Result type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>GFLIB_Hyst_F16</td>
<td>frac16_t</td>
<td>GFLIB_HYST_T_F16 *</td>
<td>frac16_t</td>
<td>The input is a 16-bit fractional value within the range -1 ; 1). The output is a two-state 16-bit fractional value.</td>
</tr>
</tbody>
</table>

2.14.2 GFLIB_HYST_T_F16

<table>
<thead>
<tr>
<th>Variable name</th>
<th>Input type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>f16HystOn</td>
<td>frac16_t</td>
<td>The point where the output sets the output to the f16OutValOn value when the input rises. Set by the user.</td>
</tr>
<tr>
<td>f16HystOff</td>
<td>frac16_t</td>
<td>The point where the output sets the output to the f16OutValOff value when the input falls. Set by the user.</td>
</tr>
<tr>
<td>f16OutValOn</td>
<td>frac16_t</td>
<td>The ON value. Set by the user.</td>
</tr>
<tr>
<td>f16OutValOff</td>
<td>frac16_t</td>
<td>The OFF value. Set by the user.</td>
</tr>
<tr>
<td>f16OutState</td>
<td>frac16_t</td>
<td>The output state. Set by the algorithm. Must be initialized by the user.</td>
</tr>
</tbody>
</table>

2.14.3 Declaration

The available GFLIB_Hyst functions have the following declarations:

\[
\text{frac16_t GFLIB_Hyst_F16(frac16_t f16Val, GFLIB_HYST_T_F16 *psParam)}
\]

2.14.4 Function use

The use of the GFLIB_Hyst function is shown in the following examples:
Fixed-point version:

```c
#include "glib.h"

static frac16_t f16Result, f16InVal;
static GFLIB_HYST_T_F16 sParam;

void main(void)
{
    f16InVal = FRAC16(-0.11);
    sParam.f16HystOn = FRAC16(0.5);
    sParam.f16HystOff = FRAC16(-0.1);
    sParam.f16OutValOn = FRAC16(0.7);
    sParam.f16OutValOff = FRAC16(0.3);
    sParam.f16OutState = FRAC16(0.0);

    f16Result = GFLIB_Hyst_F16(f16InVal, &sParam);
}
```

2.15 GFLIB_Lut1D

The GFLIB_Lut1D function implements the one-dimensional look-up table.

\[
y = y_1 + \frac{y_2 - y_1}{x_2 - x_1}(x - x_1)
\]

Equation 14.

where:

- y is the interpolated value
- \(y_1\) and \(y_2\) are the ordinate values at the beginning and end of the interpolating interval, respectively
- \(x_1\) and \(x_2\) are the abscissa values at the beginning and end of the interpolating interval, respectively
- x is the input value provided to the function in the X input argument
The GFLIB_Lut1D function fuses a table of the precalculated function points. These points are selected with a fixed step.

The fractional version of the algorithm has a defined interval of inputs within the range <-1 ; 1>. The last table point is intended for the real value of 1, not the value of 1 from the fraction numbers, which is lower than the real value of 1. The calculations are based on the same intervals among the table points. The number of points must be $2^n + 1$, where n can range from 1 through to 15.

The function finds two nearest precalculated points of the input argument, and calculates the output value using the linear interpolation between these two points.

2.15.1 Available versions

This function is available in the following versions:

- Fractional output - the output is the fractional portion of the result; the result is within the range <-1 ; 1>).
The available versions of the **GFLIB_Lut1D** function are shown in the following table:

Table 2-15. Function versions

<table>
<thead>
<tr>
<th>Function name</th>
<th>Input type</th>
<th>Parameters</th>
<th>Result type</th>
</tr>
</thead>
<tbody>
<tr>
<td>GFLIB_Lut1D_F16</td>
<td>frac16_t</td>
<td>frac16_t * uint16_t</td>
<td>frac16_t</td>
</tr>
<tr>
<td>GFLIB_Lut1D_F32</td>
<td>frac32_t</td>
<td>frac32_t * uint16_t</td>
<td>frac32_t</td>
</tr>
</tbody>
</table>

The input arguments are the 16-bit fractional value that contains the abscissa for which the 1-D interpolation is performed, the pointer to a table which contains the 16-bit fractional values of the look-up table, and the size of the look-up table. The table size parameter can be in the range $<1; 15>$ (that means the parameter is \log_2 of the number of points + 1). The output is the interpolated 16-bit fractional value computed from the look-up table.

The input arguments are the 32-bit fractional value that contains the abscissa for which the 1-D interpolation is performed, the pointer to a table which contains the 32-bit fractional values of the look-up table, and the size of the look-up table. The table size parameter can be in the range $<1; 15>$ (that means the parameter is \log_2 of the number of points + 1). The output is the interpolated 32-bit fractional value computed from the look-up table.

2.15.2 Declaration

The available **GFLIB_Lut1D** functions have the following declarations:

```c
frac16_t GFLIB_Lut1D_F16(frac16_t f16X, const frac16_t *pf16Table, uint16_t u16TableSize)
```

2.15.3 Function use

The use of the **GFLIB_Lut1D** function is shown in the following examples:

Fixed-point version:

```c
#include "gflib.h"

static frac16_t f16Result, f16X;
static uint16_t u16TableSize;
static frac16_t f16Table[9] = {FRAC16(0.8), FRAC16(0.1), FRAC16(-0.2), FRAC16(0.7),
                              FRAC16(0.2), FRAC16(-0.3), FRAC16(-0.8), FRAC16(0.91), FRAC16(0.99)};

void main(void)
{
    u16TableSize = 3;                            /* size of table = 2 ^ 3 + 1 */
    f16X = FRAC16(0.625);                        /* f16X = 0.625 */

    /* f16Result = value from look-up table between 7th and 8th position */
    f16Result = GFLIB_Lut1D_F16(f16X, f16Table, u16TableSize);
} 
```
2.16 GFLIB_LutPer1D

The GFLIB_LutPer1D function approximates the one-dimensional arbitrary user function using the interpolation look-up method. It is periodic.

\[y = y_1 + \frac{y_2 - y_1}{x_2 - x_1}(x - x_1) \]

Equation 15.

where:
- \(y \) is the interpolated value
- \(y_1 \) and \(y_2 \) are the ordinate values at the beginning and end of the interpolating interval, respectively
- \(x_1 \) and \(x_2 \) are the abscissa values at the beginning and end of the interpolating interval, respectively
- \(x \) is the input value provided to the function in the X input argument

Figure 2-10. Algorithm diagram - fractional version

The GFLIB_LutPer1D fuses a table of the pre-calculated function points. These points are selected with a fixed step.

The fractional version of the algorithm has a defined interval of inputs within the range \((-1 ; 1)\). The last table point is intended for the real value of 1 not the value of 1 from the fraction numbers, which is lower than the real value of 1. The calculations are based on the same intervals among the table points. The floating-point version of the algorithm has
a defined interval of inputs within the range \(<\text{min} ; \text{max}> \), where the min and max values are the parameters of the algorithms. The number of points is within the range \(<2 ; 65535> \), where the first point lies at the min position, and the last point lies at the max position.

The function finds two nearest precalculated points of the input argument, and calculates the output value using the linear interpolation between these two points. This algorithm serves for periodical functions. That means that when the input argument lies behind the last pre-calculated point of the function, the interpolation is calculated between the last and first points of the table.

2.16.1 Available versions

This function is available in the following versions:

- Fractional output - the output is the fractional portion of the result; the result is within the range \(<-1 ; 1> \).

The available versions of the GFLIB_LutPer1D function are shown in the following table:

<table>
<thead>
<tr>
<th>Function name</th>
<th>Input type</th>
<th>Parameters</th>
<th>Result type</th>
</tr>
</thead>
<tbody>
<tr>
<td>GFLIB_LutPer1D_F16</td>
<td>frac16_t</td>
<td>frac16_t *</td>
<td>uint16_t</td>
</tr>
<tr>
<td>GFLIB_LutPer1D_F32</td>
<td>frac32_t</td>
<td>frac32_t *</td>
<td>uint16_t</td>
</tr>
</tbody>
</table>

The input arguments are the 16-bit fractional value that contains the abscissa for which the 1-D interpolation is performed, the pointer to a structure which contains the 16-bit fractional values of the periodic look-up table, and the size of the look-up table. The table size parameter can be in the range \(<1 ; 15> \) (that means the parameter is \(\log_2 \) of the number of points). The output is the interpolated 16-bit fractional value computed from the periodic look-up table.

The input arguments are the 32-bit fractional value that contains the abscissa for which the 1-D interpolation is performed, the pointer to a table which contains the 32-bit fractional values of the periodic look-up table, and the size of the periodic look-up table. The table size parameter can be in the range \(<1 ; 15> \) (that means the parameter is \(\log_2 \) of the number of points). The output is the interpolated 32-bit fractional value computed from the periodic look-up table.

2.16.2 Declaration

The available GFLIB_LutPer1D functions have the following declarations:

```c
frac16_t GFLIB_LutPer1D_F16(frac16_t f16X, const frac16_t *pf16Table, uint16_t u16TableSize)
```

```c
frac32_t GFLIB_LutPer1D_F32(frac32_t f32X, const frac32_t *pf32Table, uint16_t u16TableSize)
```
2.16.3 Function use

The use of the **GFLIB_LutPer1D** function is shown in the following examples:

Fixed-point version:

```c
#include "gflib.h"

static frac16_t f16Result, f16X;
static uint16_t u16TableSize;
static frac16_t f16Table[8] = {FRAC16(0.8), FRAC16(0.1), FRAC16(-0.2), FRAC16(0.7), FRAC16(0.2), FRAC16(-0.3), FRAC16(-0.8), FRAC16(0.91)};

void main(void)
{
    u16TableSize = 3;                    /* size of table = 2 ^ 3 */
    f16X = FRAC16(0.25);                  /* f16X = 0.25 */

    /* f16Result = value from periodic look-up table at 6th position */
    f16Result = GFLIB_LutPer1D_F16(f16X, f16Table, u16TableSize);
}
```

2.17 GFLIB_Ramp

The **GFLIB_Ramp** function calculates the up / down ramp with the defined fixed-step increment / decrement. These two parameters must be set by the user.

For a proper use, it is recommended that the algorithm is initialized by the **GFLIB_RampInit** function, before using the **GFLIB_Ramp** function. The **GFLIB_RampInit** function initializes the internal state variable of the **GFLIB_Ramp** algorithm with a defined value. You must call the init function when you want the ramp to be initialized.

The use of the **GFLIB_Ramp** function is as follows: If the target value is greater than the ramp state value, the function adds the ramp-up value to the state output value. The output will not trespass the target value, that means it will stop at the target value. If the target value is lower than the state value, the function subtracts the ramp-down value from the state value. The output is limited to the target value, that means it will stop at the target value. This function returns the actual ramp output value. As time passes, it is approaching the target value by step increments defined in the algorithm parameters' structure. The functionality of the implemented ramp algorithm is explained in the next figure:
2.17.1 Available versions

This function is available in the following versions:

- Fractional output - the output is the fractional portion of the result; the result is within the range $<-1 ; 1)$. The result may saturate.

The available versions of the GFLIB_RampInit functions are shown in the following table:

<table>
<thead>
<tr>
<th>Function name</th>
<th>Input type</th>
<th>Parameters</th>
<th>Result type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>GFLIB_RampInit_F16</td>
<td>frac16_t</td>
<td>GFLIB_RAMP_T_F16 *</td>
<td>void</td>
<td>Input argument is a 16-bit fractional value that represents the initialization value. The parameters' structure is pointed to by a pointer. The input data value is in the range $<-1 ; 1)$.</td>
</tr>
<tr>
<td>GFLIB_RampInit_F32</td>
<td>frac32_t</td>
<td>GFLIB_RAMP_T_F32 *</td>
<td>void</td>
<td>Input argument is a 32-bit fractional value that represents the initialization value. The parameters' structure is pointed to by a pointer. The input data value is in the range $<-1 ; 1)$.</td>
</tr>
</tbody>
</table>
The available versions of the GFLIB_Ramp functions are shown in the following table:

<table>
<thead>
<tr>
<th>Function name</th>
<th>Input type</th>
<th>Parameters</th>
<th>Result type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>GFLIB_Ramp_F16</td>
<td>frac16_t</td>
<td>GFLIB_RAMP_T_F16 *</td>
<td>frac16_t</td>
<td>Input argument is a 16-bit fractional value that represents the target output value. The parameters' structure is pointed to by a pointer. The function returns a 16-bit fractional value, which represents the actual ramp output value. The input data value is in the range <-1 ; 1), and the output data value is in the range <-1 ; 1).</td>
</tr>
<tr>
<td>GFLIB_Ramp_F32</td>
<td>frac32_t</td>
<td>GFLIB_RAMP_T_F32 *</td>
<td>frac32_t</td>
<td>Input argument is a 32-bit fractional value that represents the target output value. The parameters' structure is pointed to by a pointer. The function returns a 32-bit fractional value, which represents the actual ramp output value. The input data value is in the range <-1 ; 1), and the output data value is in the range <-1 ; 1).</td>
</tr>
</tbody>
</table>

2.17.2 GFLIB_RAMP_T_F16

<table>
<thead>
<tr>
<th>Variable name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>f16State</td>
<td>frac16_t</td>
<td>Actual value - controlled by the algorithm.</td>
</tr>
<tr>
<td>f16RampUp</td>
<td>frac16_t</td>
<td>Value of the ramp-up increment. The data value is in the range <0 ; 1). Set by the user.</td>
</tr>
<tr>
<td>f16RampDown</td>
<td>frac16_t</td>
<td>Value of the ramp-down increment. The data value is in the range <0 ; 1). Set by the user.</td>
</tr>
</tbody>
</table>

2.17.3 GFLIB_RAMP_T_F32

<table>
<thead>
<tr>
<th>Variable name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>f32State</td>
<td>frac32_t</td>
<td>Actual value - controlled by the algorithm.</td>
</tr>
<tr>
<td>f32RampUp</td>
<td>frac32_t</td>
<td>Value of the ramp-up increment. The data value is in the range <0 ; 1). Set by the user.</td>
</tr>
<tr>
<td>f32RampDown</td>
<td>frac32_t</td>
<td>Value of the ramp-down increment. The data value is in the range <0 ; 1). Set by the user.</td>
</tr>
</tbody>
</table>

2.17.4 Declaration

The available GFLIB_RampInit functions have the following declarations:

```c
void GFLIB_RampInit_F16(frac16_t f16InitVal, GFLIB_RAMP_T_F16 *psParam)
void GFLIB_RampInit_F32(frac32_t f32InitVal, GFLIB_RAMP_T_F32 *psParam)
```
The available GFLIB_Ramp functions have the following declarations:

\[
\text{\texttt{frac16_t\ GFLIB_Ramp_F16(frac16_t\ f16Target,\ GFLIB_RAMP_T_F16\ *psParam)}}
\]

\[
\text{\texttt{frac32_t\ GFLIB_Ramp_F32(frac32_t\ f32Target,\ GFLIB_RAMP_T_F32\ *psParam)}}
\]

2.17.5 Function use

The use of the GFLIB_RampInit and GFLIB_Ramp functions is shown in the following examples:

Fixed-point version:

```c
#include "gflib.h"

static frac16_t f16InitVal;
static GFLIB_RAMP_T_F16 sParam;
static frac16_t f16Target, f16Result;

void Isr(void);

void main(void)
{
    sParam.f16RampUp = FRAC16(0.1);
    sParam.f16RampDown = FRAC16(0.02);
    f16Target = FRAC16(0.75);
    f16InitVal = FRAC16(0.9);
    GFLIB_RampInit_F16(f16InitVal, &sParam);
}

/* periodically called function */
void Isr()
{
    f16Result = GFLIB_Ramp_F16(f16Target, &sParam);
}
```

2.18 GFLIB_DRamp

The GFLIB_DRamp function calculates the up / down ramp with the defined step increment / decrement. The algorithm approaches the target value when the stop flag is not set, and/or returns to the instant value when the stop flag is set.
For a proper use, it is recommended that the algorithm is initialized by the GFLIB_DRampInit function, before using the GFLIB_DRamp function. This function initializes the internal state variable of GFLIB_DRamp algorithm with the defined value. You must call this function when you want the ramp to be initialized.

The GFLIB_DRamp function calculates a ramp with a different set of up / down parameters, depending on the state of the stop flag. If the stop flag is cleared, the function calculates the ramp of the actual state value towards the target value, using the up or down increments contained in the parameters’ structure. If the stop flag is set, the function calculates the ramp towards the instant value, using the up or down saturation increments.

If the target value is greater than the state value, the function adds the ramp-up value to the state value. The output cannot be greater than the target value (case of the stop flag being cleared), nor lower than the instant value (case of the stop flag being set).

If the target value is lower than the state value, the function subtracts the ramp-down value from the state value. The output cannot be lower than the target value (case of the stop flag being cleared), nor greater than the instant value (case of the stop flag being set).

If the actual internal state reaches the target value, the reach flag is set.
2.18.1 Available versions

The function is available in the following versions:

- Fractional output - the output is the fractional portion of the result; the result is within the range <-1 ; 1). The result may saturate.

The available versions of the GFLIB_DRampInit function are shown in the following table:

<table>
<thead>
<tr>
<th>Function name</th>
<th>Input type</th>
<th>Parameters</th>
<th>Result type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>GFLIB_DRampInit_F16</td>
<td>frac16_t</td>
<td>GFLIB_DRAMP_T_F16 *</td>
<td>void</td>
<td>Input argument is a 16-bit fractional value that represents the initialization value. The parameters' structure is pointed to by a pointer. The input data value is in the range <-1 ; 1).</td>
</tr>
<tr>
<td>GFLIB_DRampInit_F32</td>
<td>frac32_t</td>
<td>GFLIB_DRAMP_T_F32 *</td>
<td>void</td>
<td>Input argument is a 32-bit fractional value that represents the initialization value. The parameters' structure is pointed to by a pointer. The input data value is in the range <-1 ; 1).</td>
</tr>
</tbody>
</table>

The available versions of the GFLIB_DRamp function are shown in the following table:

<table>
<thead>
<tr>
<th>Function name</th>
<th>Input type</th>
<th>Parameters</th>
<th>Result type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>GFLIB_DRamp_F16</td>
<td>frac16_t</td>
<td>frac16_t</td>
<td>GFLIB_DRAMP_T_F16 *</td>
<td>frac16_t</td>
</tr>
<tr>
<td>GFLIB_DRamp_F32</td>
<td>frac32_t</td>
<td>frac32_t</td>
<td>GFLIB_DRAMP_T_F32 *</td>
<td>frac32_t</td>
</tr>
</tbody>
</table>
2.18.2 GFLIB_DRAMP_T_F16

<table>
<thead>
<tr>
<th>Variable name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>f16State</td>
<td>frac16_t</td>
<td>Actual value - controlled by the algorithm.</td>
</tr>
<tr>
<td>f16RampUp</td>
<td>frac16_t</td>
<td>Value of non-saturation ramp-up increment. The data value is in the range $<0; 1)$. Set by the user.</td>
</tr>
<tr>
<td>f16RampDown</td>
<td>frac16_t</td>
<td>Value of non-saturation ramp-down increment. The data value is in the range $<0; 1)$. Set by the user.</td>
</tr>
<tr>
<td>f16RampUpSat</td>
<td>frac16_t</td>
<td>Value of saturation ramp-up increment. The data value is in the range $<0; 1)$. Set by the user.</td>
</tr>
<tr>
<td>f16RampDownSat</td>
<td>frac16_t</td>
<td>Value of saturation ramp-down increment. The data value is in the range $<0; 1)$. Set by the user.</td>
</tr>
<tr>
<td>bReachFlag</td>
<td>bool_t</td>
<td>If the actual state value reaches the target value, this flag is set, otherwise, it is cleared. Set by the algorithm.</td>
</tr>
</tbody>
</table>

2.18.3 GFLIB_DRAMP_T_F32

<table>
<thead>
<tr>
<th>Variable name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>f32State</td>
<td>frac32_t</td>
<td>Actual value - controlled by the algorithm.</td>
</tr>
<tr>
<td>f32RampUp</td>
<td>frac32_t</td>
<td>Value of non-saturation ramp-up increment. The data value is in the range $<0; 1)$. Set by the user.</td>
</tr>
<tr>
<td>f32RampDown</td>
<td>frac32_t</td>
<td>Value of non-saturation ramp-down increment. The data value is in the range $<0; 1)$. Set by the user.</td>
</tr>
<tr>
<td>f32RampUpSat</td>
<td>frac32_t</td>
<td>Value of saturation ramp-up increment. The data value is in the range $<0; 1)$. Set by the user.</td>
</tr>
<tr>
<td>f32RampDownSat</td>
<td>frac32_t</td>
<td>Value of saturation ramp-down increment. The data value is in the range $<0; 1)$. Set by the user.</td>
</tr>
<tr>
<td>bReachFlag</td>
<td>bool_t</td>
<td>If the actual state value reaches the target value, this flag is set, otherwise, it is cleared. Set by the algorithm.</td>
</tr>
</tbody>
</table>

2.18.4 Declaration

The available GFLIB_DRampInit functions have the following declarations:

```c
void GFLIB_DRampInit_F16(frac16_t f16InitVal, GFLIB_DRAMP_T_F16 *psParam)
void GFLIB_DRampInit_F32(frac32_t f32InitVal, GFLIB_DRAMP_T_F32 *psParam)
```

The available GFLIB_DRamp functions have the following declarations:

```c
frac16_t GFLIB_DRamp_F16(frac16_t f16Target, frac16_t f16Instant, const bool_t *pbStopFlag, GFLIB_DRAMP_T_F16 *psParam)
frac32_t GFLIB_DRamp_F32(frac32_t f32Target, frac32_t f32Instant, const bool_t *pbStopFlag,
```
2.18.5 Function use

The use of the GFLIB_DRamapInit and GFLIB_DRamp functions is shown in the following examples:

Fixed-point version:

```c
#include "gflib.h"

static frac16_t f16InitVal, f16Target, f16Instant, f16Result;
static GFLIB_DRAMP_T_F16 sParam;
static bool_t bStopFlag;

void Isr(void);

void main(void)
{
    sParam.f16RampUp = FRAC16(0.05);
    sParam.f16RampDown = FRAC16(0.02);
    sParam.f16RampUpSat = FRAC16(0.025);
    sParam.f16RampDownSat = FRAC16(0.01);
    f16Target = FRAC16(0.7);
    f16InitVal = FRAC16(0.3);
    f16Instant = FRAC16(0.6);
    bStopFlag = FALSE;
    GFLIB_DRampInit_F16(f16InitVal, &sParam);
}
/* periodically called function */
void Isr()
{
    f16Result = GFLIB_DRamp_F16(f16Target, f16Instant, &bStopFlag, &sParam);
}
```

2.19 GFLIB_FlexRamp

The GFLIB_FlexRamp function calculates the up/down ramp with a fixed-step increment that is calculated according to the required speed change per a defined duration. These parameters must be set by the user.

The GFLIB_FlexRamp algorithm consists of three functions that must be used for a proper functionality of the algorithm:

- GFLIB_FlexRampInit - this function initializes the state variable with a defined value and clears the reach flag
- GFLIB_FlexRampCalcIncr - this function calculates the increment and clears the reach flag
- GFLIB_FlexRamp - this function calculates the ramp in the periodically called loop

For a proper use, it is recommended to initialize the algorithm by the GFLIB_FlexRampInit function. The GFLIB_FlexRampInit function initializes the internal state variable of the algorithm with a defined value and clears the reach flag. Call the init function when you want to initialize the ramp.

To calculate the increment, use the GFLIB_FlexRampCalcIncr function. This function is called at the point when you want to change the ramp output value. This function's inputs are the target value and duration. The target value is the destination value that you want to get to. The duration is the time required to change the ramp output from the actual state to the target value. To be able to calculate the ramp increment, fill the control structure with the sample time, that means the period of the loop where the GFLIB_FlexRamp function is called. The structure also contains a variable which determines the maximum value of the increment. It is necessary to set it up too. The equation for the increment calculation is as follows:

\[I = \frac{V_t - V_s}{T_s} \cdot T_s \]

where:

- \(I \) is the increment
- \(V_t \) is the target value
- \(V_s \) is the state (actual) value (in the structure)
- \(T \) is the duration of the ramp (to reach the target value starting at the state value)
- \(T_s \) is the sample time, that means the period of the loop where the ramp algorithm is called (set in the structure)

If the increment is greater than the maximum increment (set in the structure), the increment uses the maximum increment value.

As soon as the new increment is calculated, call the GFLIB_FlexRamp algorithm in the periodical control loop. The function works as follows: The function adds the increment to the state value (from the previous step), which results in a new state. The new state is returned by the function. As the time passes, the algorithm is approaching the target value. If the new state trespasses the target value, that new state is limited to the target value and the reach flag is set. The functionality of the implemented algorithm is shown in this figure:
This function is available in the following versions:

- Fractional output - the output is the fractional portion of the result; the result is within the range <-1 ; 1). The input parameters are the fractional and accumulator types.

The available versions of the GFLIB_FlexRampInit function are shown in the following table:

<table>
<thead>
<tr>
<th>Function name</th>
<th>Input type</th>
<th>Parameters</th>
<th>Result type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>GFLIB_FlexRampInit_F16</td>
<td>frac16_t</td>
<td>GFLIB_FLEXRAMP_T_F32 *</td>
<td>void</td>
<td>The input argument is a 16-bit fractional value that represents the initialization value. The parameters' structure is pointed to by a pointer. The input data value is in the range <-1 ; 1).</td>
</tr>
</tbody>
</table>
The available versions of the GFLIB_FlexRamp function are shown in the following table:

Table 2-22. Increment calculation function versions

<table>
<thead>
<tr>
<th>Function name</th>
<th>Input type</th>
<th>Parameters</th>
<th>Result type</th>
</tr>
</thead>
<tbody>
<tr>
<td>GFLIB_FlexRampCalcIncr_F16</td>
<td>frac16_t</td>
<td>acc32_t, GFLIB_FLEXRAMP_T_F32 *</td>
<td>void</td>
</tr>
</tbody>
</table>

The input arguments are a 16-bit fractional value in the range <-1 ; 1) that represents the target output value and a 32-bit accumulator value in the range (0 ; 65536.0) that represents the duration of the ramp (in seconds) to reach the target value. The parameters' structure is pointed to by a pointer.

Table 2-23. Function versions

<table>
<thead>
<tr>
<th>Function name</th>
<th>Parameters</th>
<th>Result type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>GFLIB_FlexRamp_F16</td>
<td>GFLIB_FLEXRAMP_T_F32 *</td>
<td>frac16_t</td>
<td>The parameters' structure is pointed to by a pointer. The function returns a 16-bit fractional value, which represents the actual ramp output value. The output data value is in the range <-1 ; 1).</td>
</tr>
</tbody>
</table>

2.19.2 GFLIB_FLEXRAMP_T_F32

<table>
<thead>
<tr>
<th>Variable name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>f32State</td>
<td>frac32_t</td>
<td>The actual value. Controlled by the GFLIB_FlexRampInit_F16 and GFLIB_FlexRamp_F16 algorithms.</td>
</tr>
<tr>
<td>f32Incr</td>
<td>frac32_t</td>
<td>The value of the flex ramp increment. Controlled by the GFLIB_FlexRampCalcIncr_F16 algorithm.</td>
</tr>
<tr>
<td>f32Target</td>
<td>frac32_t</td>
<td>The target value of the flex ramp algorithm. Controlled by the GFLIB_FlexRampCalcIncr_F16 algorithm.</td>
</tr>
<tr>
<td>f32Ts</td>
<td>frac32_t</td>
<td>The sample time, that means the period of the loop where the GFLIB_FlexRamp_F16 algorithms are periodically called. The data value (in seconds) is in the range (0 ; 1). Set by the user.</td>
</tr>
<tr>
<td>f32IncrMax</td>
<td>frac32_t</td>
<td>The maximum value of the flex ramp increment. The data value is in the range (0 ; 1). Set by the user.</td>
</tr>
<tr>
<td>bReachFlag</td>
<td>bool_t</td>
<td>The reach flag. This flag is controlled by the GFLIB_FlexRamp_F16 algorithm. It is cleared by the GFLIB_FlexRampInit_F16 and GFLIB_FlexRampCalcIncr_F16 algorithms.</td>
</tr>
</tbody>
</table>

2.19.3 Declaration

The available GFLIB_FlexRampInit functions have the following declarations:
void GFLIB_FlexRampInit_F16(frac16_t f16InitVal, GFLIB_FLEXRAMP_T_F32 *psParam)

The available GFLIB_FlexRampCalcIncr functions have the following declarations:

void GFLIB_FlexRampCalcIncr_F16(frac16_t f16Target, acc32_t a32Duration, GFLIB_FLEXRAMP_T_F32 *psParam)

The available GFLIB_FlexRamp functions have the following declarations:

frac16_t GFLIB_FlexRamp_F16(GFLIB_FLEXRAMP_T_F32 *psParam)

2.19.4 Function use

The use of the GFLIB_FlexRampInit, GFLIB_FlexRampCalcIncr, and GFLIB_FlexRamp functions is shown in the following examples:

Fixed-point version:

```c
#include "gflib.h"

static frac16_t f16InitVal;
static GFLIB_FLEXRAMP_T_F32 sFlexRamp;
static frac16_t f16Target, f16RampResult;
static acc32_t a32RampDuration;

void Isr(void);

void main(void)
{
    /* Control loop period is 0.002 s; maximum increment value is 0.15 */
    sFlexRamp.f32Ts = FRAC32(0.002);
    sFlexRamp.f32IncrMax = FRAC32(0.15);

    /* Initial value to 0 */
    f16InitVal = FRAC16(0.0);

    /* Flex ramp initialization */
    GFLIB_FlexRampInit_F16(f16InitVal, &sFlexRamp);

    /* Target value is 0.7 in duration of 5.3 s */
    f16Target = FRAC16(0.7);
    a32RampDuration = ACC32(5.3);

    /* Flex ramp increment calculation */
    GFLIB_FlexRampCalcIncr_F16(f16Target, a32RampDuration, &sFlexRamp);
}
/* periodically called control loop with a period of 2 ms */
```
2.20 GFLIB_DFlexRamp

The GFLIB_DFlexRamp function calculates the up/down ramp with a fixed-step increment that is calculated according to the required speed change per a defined duration. These parameters must be set by the user. The algorithm has stop flags. If none of them is set, the ramp behaves normally. If one of them is set, the ramp can run in the opposite direction.

The GFLIB_DFlexRamp algorithm consists of three functions that must be used for a proper functionality of the algorithm:

- **GFLIB_DFlexRampInit** - this function initializes the state variable with a defined value and clears the reach flag
- **GFLIB_DFlexRampCalcIncr** - this function calculates the increment and clears the reach flag
- **GFLIB_DFlexRamp** - this function calculates the ramp in the periodically called loop

For a proper use, initialize the algorithm by the GFLIB_DFlexRampInit function. The GFLIB_DFlexRampInit function initializes the internal state variable of the algorithm with a defined value and clears the reach flag. Call the init function when you want to initialize the ramp.

To calculate the increment, use the GFLIB_DFlexRampCalcIncr function. Call this function when you want to change the ramp output value. This function's inputs are the target value and duration, and the ramp increments for motoring and generating saturation modes. The target value is the destination value that you want to get to. The duration is the time required to change the ramp output from the actual state to the target value. To calculate the ramp increment, fill the control structure with the sample time, that means the period of the loop where the GFLIB_DFlexRamp function is called. The structure also contains a variable which determines the maximum value of the increment. It is necessary to set it up too. The equation for the increment calculation is as follows:

\[I = \frac{V_t - V_s}{T} \cdot T_s \]

Equation 17.

where:

- I is the increment
- V_t is the target value
- V_s is the state (actual) value (in the structure)
- T is the duration of the ramp (to reach the target value starting at the state value)
- T_s is the sample time, that means the period of the loop where the ramp algorithm is called (set in the structure)

If the increment is greater than the maximum increment (set in the structure), the increment uses the maximum increment value.

The state, target, and instant values must have the same sign, otherwise the saturation modes don't work properly.

As soon as the new increment is calculated, you can call the GFLIB_DFlexRamp algorithm in the periodical control loop. If none of the stop flags is set, the function works as follows: The function adds the increment to the state value (from the previous step), which results in a new state. The new state is returned by the function. As time passes, the algorithm is approaching the target value. If the new state trespasses the target value that new state is limited to, the target value and the reach flag are set. The functionality of the implemented algorithm is shown in the following figure:

![Figure 2-14. GFLIB_DFlexRamp functionality](image)

If the motoring mode stop flag is set and the absolute value of the target value is greater than the absolute value of the state value, the function uses the increment for the motoring saturation mode to return to the instant value. Use case: when the application is
in the saturation mode and cannot supply more power to increase the speed, then a saturation (motoring mode) flag is generated. To get out of the saturation, the ramp output value is being reduced.

If the generating mode stop flag is set and the absolute value of the target value is lower than the absolute value of the state value, the funcion uses the increment for the generating saturation mode to return to the instant value. Use case: when the application is braking a motor and voltage increases on the DC-bus capacitor, then a saturation (generating mode) flag is generated. To avoid trespassing the DC-bus safe voltage limit, the speed requirement is increasing to disipate the energy of the capacitor.

2.20.1 Available versions

This function is available in the following versions:

- Fractional output - the output is the fractional portion of the result; the result is within the range <-1 ; 1). The input parameters are the fractional and accumulator types.

The available versions of the GFLIB_DFlexRampInit functions are shown in the following table:

<table>
<thead>
<tr>
<th>Function name</th>
<th>Input type</th>
<th>Parameters</th>
<th>Result type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>GFLIB_FlexRampInit_F16</td>
<td>frac16_t</td>
<td>GFLIB_DFLEXRAMP_T_F32 *</td>
<td>void</td>
<td>The input argument is a 16-bit fractional value that represents the initialization value. The parameters' structure is pointed to by a pointer. The input data value is in the range <-1 ; 1).</td>
</tr>
</tbody>
</table>

The available versions of the GFLIB_DFlexRamp functions are shown in the following table:

<table>
<thead>
<tr>
<th>Function name</th>
<th>Input type</th>
<th>Parameters</th>
<th>Result type</th>
</tr>
</thead>
<tbody>
<tr>
<td>GFLIB_DFlexRampCalcIncr_F16</td>
<td>frac16_t</td>
<td>acc32_t frac32_t frac32_t</td>
<td>void</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Target</th>
<th>Duration</th>
<th>Incr. satur. mot</th>
<th>Incr. satur. gen</th>
</tr>
</thead>
<tbody>
<tr>
<td>frac16_t</td>
<td>acc32_t</td>
<td>frac32_t</td>
<td>frac32_t</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Result type</th>
</tr>
</thead>
<tbody>
<tr>
<td>GFLIB_DFLEXRAMP_T_F32 *</td>
<td>void</td>
</tr>
</tbody>
</table>

Table continues on the next page...
Table 2-25. Increment calculation function versions (continued)

<table>
<thead>
<tr>
<th>Function name</th>
<th>Input type</th>
<th>Parameters</th>
<th>Result type</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Function name</th>
<th>Input type</th>
<th>Parameters</th>
<th>Result type</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The input arguments are 16-bit fractional values in the range <-1 ; 1) that represent the target output value and a 32-bit accumulator value in the range (0 ; 65536.0) that represents the duration (in seconds) of the ramp to reach the target value. The other two arguments are increments for the saturation mode when in the motoring and generating modes. The parameters' structure is pointed to by a pointer.

Table 2-26. Function versions

<table>
<thead>
<tr>
<th>Function name</th>
<th>Input type</th>
<th>Parameters</th>
<th>Result type</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Function name</th>
<th>Input type</th>
<th>Parameters</th>
<th>Result type</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The input argument is a 16-bit fractional value in the range <-1 ; 1) that represents the measured instant value. The stop flags are pointers to the bool_t types. The parameters' structure is pointed to by a pointer. The function returns a 16-bit fractional value, which represents the actual ramp output value. The output data value is in the range <-1 ; 1).

2.20.2 GFLIB_DFLEXRAMP_T_F32

<table>
<thead>
<tr>
<th>Variable name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>f32State</td>
<td>frac32_t</td>
<td>The actual value. Controlled by the GFLIB_FlexRampInit_F16 and GFLIB_FlexRamp_F16 algorithms.</td>
</tr>
<tr>
<td>f32Incr</td>
<td>frac32_t</td>
<td>The value of the dyn. flex ramp increment. Controlled by the GFLIB_FlexRampCalcIncr_F16 algorithm.</td>
</tr>
<tr>
<td>f32IncrSatMot</td>
<td>frac32_t</td>
<td>The value of the dyn. flex ramp increment when in the motoring saturation mode. Controlled by the GFLIB_DFlexRampCalcIncr_F16 algorithm.</td>
</tr>
<tr>
<td>f32IncrSatGen</td>
<td>frac32_t</td>
<td>The value of the dyn. flex ramp increment when in the generating saturation mode. Controlled by the GFLIB_DFlexRampCalcIncr_F16 algorithm.</td>
</tr>
<tr>
<td>f32Target</td>
<td>frac32_t</td>
<td>The target value of the flex ramp algorithm. Controlled by the GFLIB_DFlexRampCalcIncr_F16 algorithm.</td>
</tr>
<tr>
<td>f32Ts</td>
<td>frac32_t</td>
<td>The sample time, that means the period of the loop where the GFLIB_DFlexRamp_F16 algorithm is periodically called. The data value (in seconds) is in the range (0 ; 1). Set by the user.</td>
</tr>
<tr>
<td>f32IncrMax</td>
<td>frac32_t</td>
<td>The maximum value of the flex ramp increment. The data value is in the range (0 ; 1). Set by the user.</td>
</tr>
<tr>
<td>bReachFlag</td>
<td>bool_t</td>
<td>Reach flag. This flag is controlled by the GFLIB_DFlexRamp_F16 algorithm. It is cleared by the GFLIB_DFlexRampCalcIncr_F16 algorithms.</td>
</tr>
</tbody>
</table>
2.20.3 Declaration

The available GFLIB_DFlexRampInit functions have the following declarations:

```c
void GFLIB_DFlexRampInit_F16(frac16_t f16InitVal, GFLIB_DFLEXRAMP_T_F32 *psParam)
```

The available GFLIB_DFlexRampCalcIncr functions have the following declarations:

```c
void GFLIB_DFlexRampCalcIncr_F16(frac16_t f16Target, acc32_t a32Duration, frac32_t f32IncrSatMot, frac32_t f32IncrSatGen, GFLIB_DFLEXRAMP_T_F32 *psParam)
```

The available GFLIB_DFlexRamp functions have the following declarations:

```c
frac16_t GFLIB_DFlexRamp_F16(frac16_t f16Instant, const bool_t *pbStopFlagMot, const bool_t *pbStopFlagGen, GFLIB_DFLEXRAMP_T_F32 *psParam)
```

2.20.4 Function use

The use of the GFLIB_DFlexRampInit, GFLIB_DFlexRampCalcIncr, and GFLIB_DFlexRamp functions is shown in the following examples:

Fixed-point version:

```c
#include "gflib.h"

static frac16_t f16InitVal;
static GFLIB_DFLEXRAMP_T_F32 sDFlexRamp;
static frac16_t f16Target, f16RampResult, f16Instant;
static acc32_t a32RampDuration;
static frac32_t f32IncrSatMotMode, f32IncrSatGenMode;
static bool_t bSatMot, bSatGen;

void Isr(void);

void main(void)
{
    /* Control loop period is 0.002 s; maximum increment value is 0.15 */
    sDFlexRamp.f32Ts = FRAC32(0.002);
    sDFlexRamp.f32IncrMax = FRAC32(0.15);

    /* Initial value to 0 */
    f16InitVal = FRAC16(0.0);

    /* Dyn. flex ramp initialization */
    GFLIB_FlexRampInit_F16(f16InitVal, &sDFlexRamp);

    /* Target value is 0.7 in duration of 5.3 s */
    f16Target = FRAC16(0.7);
    a32RampDuration = ACC32(5.3);
```
2.21 GFLIB_FlexSRamp

The GFLIB_FlexSRamp function calculates the up/down ramp with a variable increment that is calculated according to the required speed change per a defined duration. These parameters must be set by the user. The variable increment is profiled to reach the S-profile of the resulting ramp.

The GFLIB_FlexSRamp algorithm consists of three functions that must be used for a proper functionality of the algorithm:

- **GFLIB_FlexSRampInit** - this function initializes the state variable with a defined value, resets the acceleration increment to zero, sets the acceleration state to zero, and clears the reach flag
- **GFLIB_FlexSRampCalcIncr** - this function calculates the desired acceleration, two points of the speed where the acceleration changes from a variable to a constant and vice-versa, acceleration (derivative) increment, resets the increment to zero, sets the acceleration state to zero, and clears the reach flag
- **GFLIB_FlexSRamp** - this function calculates the ramp in the periodically called loop

For a proper use, initialize the algorithm by the GFLIB_FlexSRampInit function. The GFLIB_FlexSRampInit function initializes the internal state variable of the algorithm with a defined value, resets the acceleration increment to zero, sets the acceleration state to zero, and clears the reach flag. This function does not affect the other parameters of the ramp. Call the init function to initialize the ramp.

To calculate the profile of the ramp, use the GFLIB_FlexSRampCalcIncr function. This function is called when you want to change the ramp output value. This function's inputs are the target value and duration. The target value is the destination value that you want to get to. The duration is the time required to change the ramp output from the actual state
to the target value. To calculate the ramp increment, fill the control structure with the sample time, that means the period of the loop where the GFLIB_FlexSRamp function is called. Set up the desirable acceleration derivative that is necessary for the acceleration and deceleration states. The structure also contains a variable that determines the maximum value of the increment (acceleration). It is necessary to set it up too. The equations for the ramp calculation are derived from the following figure:

![Figure 2-15. GFLIB_FlexSRamp profile](image)

For the ramp output change in each state, these equations apply:

\[\Delta x_1 = x(T_1) - x(0) \]

Equation 18.

\[\Delta x_2 = x(T_2) - x(T_1) \]

Equation 19.

\[\Delta x_3 = \Delta x_1 \]

Equation 20.

where:

- \(x \) is the ramp output
- \(\Delta x_1 \) is the ramp change in state 0
• Δx₂ is the ramp change in state 1
• Δx₃ is the ramp change in state 2
• T₁ is the instant when the desired acceleration is reached and becomes constant
• T₂ is the instant when the desired acceleration starts to decrease

To get the full ramp change between the actual state value and the target value, this equation applies:

\[
\Delta x = \Delta x_1 + \Delta x_2 + \Delta x_3 = 2 \cdot \Delta x_1 + \Delta x_2
\]

Equation 21.

The value of the desired acceleration that is reached by the integration of the acceleration derivative along the time within state 0 is:

\[
a_{des} = a(T_1) = \int_0^{T_1} dA \cdot dt = dA \cdot T_1
\]

Equation 22.

where:

- \(a_{des} \) is the desired acceleration
- \(dA \) is the derivative of the acceleration

Similarly, the \(\Delta x_1 \) and \(\Delta x_2 \) values are given by integrating the acceleration in time:

\[
\Delta x_1 = \int_0^{T_1} dA \cdot t \cdot dt = \frac{1}{2} dA \cdot T_1^2
\]

Equation 23.

\[
\Delta x_2 = \int_{T_1}^{T_2} a_{des} \cdot dt = a_{des} \cdot (T_2 - T_1)
\]

Equation 24.

Because the ramp is symmetrical, time \(T_2 \) is expressed as:

\[
T_2 = T - T_1
\]

Equation 25.

where:

- \(T \) is the duration of the ramp

Using the equations for \(a_{des} \) and \(T_2 \), **Equation 24 on page 68** is rewritten as:
\[\Delta x_2 = dA \cdot T_1 (T - 2T_1) \]

Equation 26.

Putting Equation 26 on page 69 and Equation 26 on page 69 into Equation 21 on page 68, the following equation is reached:

\[\Delta x = 2 \cdot \frac{1}{2} \cdot dA \cdot T_1^2 + dA \cdot T_1 (T - 2T_1) = -dA \cdot T_1^2 + dA \cdot T \cdot T_1 \]

Equation 27.

Having normalized the previous equation, a quadrature equation is reached:

\[T_1^2 - T \cdot T_1 + \frac{\Delta x}{dA} = 0 \]

Equation 28.

One root of this quadrature equation is \(T_1 \):

\[T_1 = \frac{T - \sqrt{T^2 - 4 \cdot \frac{\Delta x}{dA}}}{2} \]

Equation 29.

Using Equation 22 on page 68, the desired acceleration is expressed as:

\[a_{des} = \frac{dA \cdot T - \sqrt{dA^2 \cdot T^2 - 4 \cdot dA \cdot \Delta x}}{2} \]

Equation 30.

This equation has a solution within the range of real numbers only if the square root argument is not negative, so this condition must be met:

\[dA^2 \cdot T^2 \geq 4 \cdot dA \cdot \Delta x \]

Equation 31.

If this condition is met and the desired acceleration is not greater than the maximum increment (set in the structure), the ramp is achievable within the defined duration and the function’s output flag is \(TRUE \). If the acceleration is greater than the maximum increment, the function uses the maximum increment value and then the ramp is not achieved on time, the output flag is \(FALSE \).

If the condition given by Equation 31 on page 69 is not met, the ramp is not achievable within the defined duration and the function returns the flag \(FALSE \). In such case, the ramp skips state 1 (where the acceleration is constant) and goes directly from state 0 to state 2. The following figure shows the ramp profile:
This ramp takes longer time than desirable duration. In this case, Δx_1 is exactly a half of the full ramp change output. The T_1 instant is derived from Equation 23 on page 68 as:

$$T_1 = \sqrt{\frac{2 \cdot \Delta x_1}{dA}} = \sqrt{\frac{Ax}{dA}}$$

Equation 32.

The desired acceleration is given by Equation 22 on page 68 as:

$$a_{des} = dA \cdot \sqrt{\frac{Ax}{dA}} = \sqrt{Ax \cdot dA}$$

Equation 33.

Similarly to the previous case (when the ramp is achievable within the desired time), the desired acceleration cannot be greater than the maximum increment, otherwise the function uses the maximum increment value. If the desired acceleration is trimmed, the ramp is in state 1 with a constant acceleration.

In both cases, the desired acceleration could have been reduced to the maximum increment value, therefore it is necessary to adjust the T_1 value using Equation 22 on page 68.
Equation 34.

\[T_1 = \frac{a_{\text{des}}}{dA} \]

where:

- \(a_{\text{des}} \) can be changed to the maximum increment

By putting \(T_1 \) into Equation 23 on page 68, the \(\Delta x_1 \) value is given as:

\[\Delta x_1 = \frac{1}{2} dA \cdot \left(\frac{a_{\text{des}}}{dA} \right)^2 = \frac{1}{2} \frac{a_{\text{des}}^2}{dA} \]

Equation 35.

Because the ramp output profile is now symmetrical, the ramp output value in time \(T_1 \) is given by adding (or subtracting) the \(\Delta x_1 \) value to the state value. Similarly, the ramp output value in time \(T_2 \) is given by subtracting (or adding) the \(\Delta x_1 \) value from the target value. These two values are returned within the function structure together with the desired acceleration value.

Another parameter that must be calculated is the acceleration increment. The increment uses the derivative of acceleration \(dA \) and the sample time of the application. This must apply:

\[dA = \frac{da}{dt} = \frac{d^2x}{dt^2} \approx \frac{A_{\text{incr}}}{T_s^2} \]

Equation 36.

where:

- \(A_{\text{incr}} \) is the acceleration increment
- \(T_s \) is the sample time

The acceleration increment needed for the algorithm is:

\[A_{\text{incr}} = T_s^2 \cdot dA \]

Equation 37.

As soon as the necessary parameters are calculated, call the GFLIB_FlexSRamp algorithm in the periodical control loop. The function works in these three states:

- State 0 - acceleration rises from 0 towards the desired acceleration
- State 1 - acceleration is constant
- State 2 - acceleration is falling from the desired acceleration towards zero
In state 0, the function adds the acceleration increment to the increment. In the first step, it only adds half of the acceleration increment (to form the trapezoidal integration). The resulting increment is added to or subtracted from the state value (from the previous step), which results in a new state. The new state is returned by the function. After the $X(T_1)$ value is reached, the function switches to state 1. At the same time, the function checks whether the condition $X(T_2)$ value is reached. In such case, the function goes directly to state 2.

In state 1, the function does not change the increment; it stays constant from the last value in state 0. The increment is added to or subtracted from the state value (from the previous step), which results in a new state. The new state is returned by the function. When the $X(T_2)$ value is reached, the function switches to state 2.

In state 2, the function subtracts the acceleration increment from the increment. The resulting increment is added to or subtracted from the state value (from the previous step), which results in a new state. The new state is returned by the function. If the new state trespasses the target value, it is trimmed to the target value. It can happen that the function output does not reach the target value before the increment returns to zero. If the increment is zero before reaching the target value, the output stops before the target value. This can happen because the function does not work with the continuous time. The incrementation depends on the sampling time and the arithmetic accuracy used. To ensure that the function always reaches the target value, the function checks if the increment is not lower than the half of the acceleration increment. If the resulting increment is lower than half of the acceleration increment, the increment is set to a half of the acceleration increment. Using this approach, the function always reaches the target value. As soon as the target value is reached, the reach flag is set.

The functionality of the implemented algorithm is shown in this figure:
2.21.1 Available versions

This function is available in the following versions:

- Fractional output - the output is the fractional portion of the result; the result is within the range $<-1; 1)$. The input parameters are the fractional and accumulator types.

The available versions of the GFLIB_FlexSRampInit function are shown in the following table:

<table>
<thead>
<tr>
<th>Function name</th>
<th>Input type</th>
<th>Parameters</th>
<th>Result type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>GFLIB_FlexSRampInit_F16</td>
<td>frac16_t</td>
<td>GFLIB_FLEXSRAMP_T_F32 *</td>
<td>void</td>
<td>The input argument is a 16-bit fractional value that represents the initialization value. The parameters' structure is pointed to by a pointer. The input data value is in the range $<-1; 1)$.</td>
</tr>
</tbody>
</table>
The available versions of the **GFLIB_FlexSRamp** function are shown in the following table:

Table 2-28. Increment calculation function versions

<table>
<thead>
<tr>
<th>Function name</th>
<th>Input type</th>
<th>Parameters</th>
<th>Result type</th>
</tr>
</thead>
<tbody>
<tr>
<td>GFLIB_FlexSRampCalcIncr_F16</td>
<td>frac16_t</td>
<td>acc32_t</td>
<td>bool_t</td>
</tr>
</tbody>
</table>

The input arguments are a 16-bit fractional value in the range \((-1 ; 1)\) that represents the target output value and a 32-bit accumulator value in the range \((0 ; 1/f16DA)\) that represents the duration of the ramp (in seconds) to reach the target value. The parameters' structure is pointed to by a pointer. The function returns TRUE if the ramp is achievable within the defined duration; if it is not achievable, it returns FALSE. The parameters are calculated, but the ramp takes longer.

Table 2-29. Function versions

<table>
<thead>
<tr>
<th>Function name</th>
<th>Parameters</th>
<th>Result type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>GFLIB_FlexSRamp_F16</td>
<td>GFLIB_FLEXSRAMP_T_F32 *</td>
<td>frac16_t</td>
<td>The parameters' structure is pointed to by a pointer. The function returns a 16-bit fractional value, which represents the actual ramp output value. The output data value is in the range ((-1 ; 1)).</td>
</tr>
</tbody>
</table>

2.21.2 GFLIB_FLEXSRAMP_T_F32

<table>
<thead>
<tr>
<th>Variable name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>f32State</td>
<td>frac32_t</td>
<td>The actual value. Controlled by the GFLIB_FlexSRampInit_F16 and GFLIB_FlexSRamp_F16 algorithms.</td>
</tr>
<tr>
<td>f32Incr</td>
<td>frac32_t</td>
<td>The value of the flex s-ramp increment. Controlled by the GFLIB_FlexSRamp_F16 algorithm. It is reset to zero by the GFLIB_FlexSRampInit_F16 and GFLIB_FlexSRampCalcIncr_F16 algorithms.</td>
</tr>
<tr>
<td>f32AIncr</td>
<td>frac32_t</td>
<td>The value of the flex s-ramp acceleration increment. Controlled by the GFLIB_FlexSRampCalcIncr_F16 algorithm.</td>
</tr>
<tr>
<td>f32ADes</td>
<td>frac32_t</td>
<td>The value of the flex s-ramp desired acceleration. Controlled by the GFLIB_FlexSRampCalcIncr_F16 algorithm.</td>
</tr>
<tr>
<td>f32Target</td>
<td>frac32_t</td>
<td>The target value of the flex s-ramp algorithm. Controlled by the GFLIB_FlexSRampCalcIncr_F16 algorithm.</td>
</tr>
<tr>
<td>f32Ts</td>
<td>frac32_t</td>
<td>The sample time, that means the period of the loop where the GFLIB_FlexSRamp_F16 algorithms are periodically called. The data value (in seconds) is in the range ((0 ; 1)). Set by the user.</td>
</tr>
<tr>
<td>f32IncrMax</td>
<td>frac32_t</td>
<td>The maximum value of the flex s-ramp increment. The data value is in the range ((0 ; 1)). Set by the user.</td>
</tr>
<tr>
<td>f32XT1</td>
<td>frac32_t</td>
<td>The flex s-ramp value of the point where the increment must stop incrementing. Controlled by the GFLIB_FlexSRampCalcIncr_F16 algorithm.</td>
</tr>
</tbody>
</table>

Table continues on the next page...
2.21.3 Declaration

The available GFLIB_FlexSRampInit functions have the following declarations:

```c
void GFLIB_FlexSRampInit_F16(frac16_t f16InitVal, GFLIB_FLEXSRAMP_T_F32 *psParam)
```

The available GFLIB_FlexSRampCalcIncr functions have the following declarations:

```c
bool_t GFLIB_FlexSRampCalcIncr_F16(frac16_t f16Target, acc32_t a32Duration,
GFLIB_FLEXSRAMP_T_F32 *psParam)
```

The available GFLIB_FlexSRamp functions have the following declarations:

```c
frac16_t GFLIB_FlexSRamp_F16(GFLIB_FLEXSRAMP_T_F32 *psParam)
```

2.21.4 Function use

The use of the GFLIB_FlexSRampInit, GFLIB_FlexRampSCalcIncr, and GFLIB_FlexSRamp functions is shown in the following examples:

A ramp with a profile as in Figure 2-15 is generated. The ramp must change the speed from 100 RPM to 900 RPM in 20 s. The speed scale is 5000 RPM. The ramp must change the speed in 20 s. The acceleration derivative is 15 RPM / s². The sample time is 0.1 s. The maximum acceleraion is 50 RPM / s.

Fixed-point version:

```c
#include "gflib.h"

static frac16_t f16InitVal;
static GFLIB_FLEXSRAMP_T_F32 sFlexSRamp;
static frac16_t f16Target, f16RampResult;
```
```c
static acc32_t a32RampDuration;
static bool_t bFlexSRampFlag;

void Isr(void);

void main(void)
{
    /* Control loop period is 0.1 s */
    sFlexSRamp.f32Ts = FRAC32(0.1);

    /* Maximum increment value is 50 RPM / s */
    sFlexSRamp.f32IncrMax = FRAC32(50.0 / 5000.0 * 0.1);

    /* Desired acceleration derivative 15 RPM / s^2 */
    sFlexSRamp.f16DA = FRAC16(15.0 / 5000.0);

    /* Initial value to 100 RPM */
    f16InitVal = FRAC16(100.0 / 5000.0);

    /* Flex ramp initialization */
    GFLIB_FlexSRampInit_F16(f16InitVal, &sFlexSRamp);

    /* Target value is 900 RPM in duration of 20 s */
    f16Target = FRAC16(900.0 / 5000.0);
    a32RampDuration = ACC32(20.0);

    /* Flex s-ramp parameters calculation */
    bFlexSRampFlag = GFLIB_FlexSRampCalcIncr_F16(f16Target, a32RampDuration, &sFlexSRamp);
}

/* periodically called control loop with a period of 100 ms */
void Isr()
{
    f16RampResult = GFLIB_FlexSRamp_F16(&sFlexSRamp);
}
```

2.22 GFLIB_Integrator

The **GFLIB_Integrator** function calculates a discrete implementation of the integrator (sum), discretized using a trapezoidal rule in Tustin’s method (bi-linear transformation).

The continuous time domain representation of the integrator is defined as follows:

$$ u(t) = \int e(t) dt $$

Equation 38.

In a continuous time domain, the transfer function for this integrator is described using the Laplace transformation as follows:

$$ H(s) = \frac{U(s)}{E(s)} = \frac{1}{s} $$

Equation 39.

Transforming the above equation into a digital time domain using the bi-linear transformation leads to the following transfer function:
where T_s is the sampling period of the system. The discrete implementation of the digital transfer function in the above equation is expressed as follows:

$$u(k) = u(k-1) + e(k)\frac{T_s}{2} + e(k-1)\frac{T_s}{2}$$

Equation 41.

Considering integrator gain K_I, the transfer function leads to the following equation:

$$u_I(k) = u_I(k-1) + e(k)\frac{K_IT_s}{2} + e(k-1)\frac{K_IT_s}{2}$$

Equation 42.

where:

- $u_I(k)$ is the integrator's output in the actual step
- $u_I(k - 1)$ is the integrator's output from the previous step
- $e(k)$ is the integrator's input in the actual step
- $e(k - 1)$ is the integrator's input from the previous step
- K_I is the integrator's gain coefficient
- T_s is the sampling period of the system

Equation 42 on page 77 can be used in the fractional arithmetic as follows:

$$u_{Isc}(k)\cdot u_{\text{max}} = u_{Isc}(k-1)\cdot u_{\text{max}} + K_I T_s \cdot \frac{e_{sc}(k) + e_{sc}(k-1)}{2}, e_{\text{max}}$$

Equation 43.

where:

- u_{max} is the integrator output scale
- $u_{Isc}(k)$ is the scaled integrator output in the actual step
- $u_{Isc}(k - 1)$ is the scaled integrator output from the previous step
- e_{max} is the integrator input scale
- $e_{sc}(k)$ is the scaled integrator input in the actual step
- $e_{sc}(k - 1)$ is the scaled integrator input in the previous step

For a proper use of this function, it is recommended to initialize the function's data by the GFLIB_IntegratorInit functions, before using the GFLIB_Integrator function. You must call the init function when you want the integrator to be initialized.
2.22.1 Available versions

This function is available in the following versions:

- Fractional output - the output is the fractional portion of the result, the result is within the range <-1 ; 1), and it may overflow from one limit to the other. The parameters use the accumulator types.

The available versions of the GFLIB_IntegratorInit function are shown in the following table:

<table>
<thead>
<tr>
<th>Function name</th>
<th>Input type</th>
<th>Parameters</th>
<th>Result type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>GFLIB_IntegratorInit_F16</td>
<td>frac16_t</td>
<td>GFLIB_INTEGRATOR_T_A32 *</td>
<td>void</td>
<td>The inputs are a 16-bit fractional initial value and a pointer to the integrator parameters' structure.</td>
</tr>
</tbody>
</table>

The available versions of the GFLIB_Integrator function are shown in the following table:

<table>
<thead>
<tr>
<th>Function name</th>
<th>Input type</th>
<th>Parameters</th>
<th>Result type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>GFLIB_Integrator_F16</td>
<td>frac16_t</td>
<td>GFLIB_INTEGRATOR_T_A32 *</td>
<td>frac16_t</td>
<td>The inputs are a 16-bit fractional value to be integrated and a pointer to the integrator parameters' structure. The output is limited to range <-1 ; 1>. When the integrator reaches the limit, it overflows to the other limit.</td>
</tr>
</tbody>
</table>

2.22.2 GFLIB_INTEGRATOR_T_A32

<table>
<thead>
<tr>
<th>Variable name</th>
<th>Input type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>a32Gain</td>
<td>acc32_t</td>
<td>Integrator gain is set up according to Equation 43 on page 77 as follows: $K_iT_s \frac{e_{\text{max}}}{U_{\text{max}}}$ The parameter is a 32-bit accumulator type within the range <-65536.0 ; 65536.0). Set by the user.</td>
</tr>
<tr>
<td>f32IAccK_1</td>
<td>frac32_t</td>
<td>Integral portion in the step k - 1. Controlled by the algorithm.</td>
</tr>
<tr>
<td>f16InValK_1</td>
<td>frac16_t</td>
<td>Input value in the step k - 1. Controlled by the algorithm.</td>
</tr>
</tbody>
</table>
2.22.3 Declaration

The available GFLIB_IntegratorInit functions have the following declarations:

```c
void GFLIB_IntegratorInit_F16(frac16_t f16InitVal, GFLIB_INTEGRATOR_T_A32 *psParam)
```

The available **GFLIB_Integrator** functions have the following declarations:

```c
frac16_t GFLIB_Integrator_F16(frac16_t f16InVal, GFLIB_INTEGRATOR_T_A32 *psParam)
```

2.22.4 Function use

The use of the GFLIB_IntegratorInit and **GFLIB_Integrator** functions is shown in the following examples:

Fixed-point version:

```c
#include "gflib.h"

static frac16_t f16Result, f16InVal, f16InitVal;
static GFLIB_INTEGRATOR_T_A32 sParam;

void Isr(void);

void main(void)
{
    f16InVal = FRAC16(-0.4);
    sParam.a32Gain = ACC32(0.1);

    f16InitVal = FRAC16(0.1);

    GFLIB_IntegratorInit_F16(f16InitVal, &sParam);
}

/* periodically called function */
void Isr()
{
    f16Result = GFLIB_Integrator_F16(f16InVal, &sParam);
}
```

2.23 GFLIB_CtrlBetaIPpAW

The **GFLIB_CtrlBetaIPpAW** function calculates the parallel form of the Beta-Integral-Proportional (Beta-IP) controller with an implemented integral anti-windup functionality. The Beta-IP controller is an extended PI controller, which enables to separate the responses from the setpoint change and the load change (if $\beta = 1$, the Beta-IP controller has the same response as the PI controller). Therefore the Beta-IP controller allows for
reducing the overshoot caused by the change of the setpoint without affecting the load change response. The B parameter can be set in the range from zero to one, where zero means the maximal overshoot limitation and one means no limitation.

The Beta-IP controller attempts to correct the error between the measured process variable (feedback) and the desired set-point by calculating a corrective action that can adjust the process accordingly. The GFLIB_CtrlBetaIPpAW function calculates the Beta-IP algorithm according to the equations below. The Beta-IP algorithm is implemented in the parallel (non-interacting) form, enabling you to define the P, I, and β parameters independently and without interaction. The controller output is limited and the limit values (the upper limit and the lower limit) are defined by the user.

The Beta-IP controller algorithm also returns a limitation flag, which indicates that the controller's output is at the limit. If the Beta-IP controller output reaches the upper or lower limits, the limit flag is set to one. Otherwise, it is zero (integer values).

An anti-windup strategy is implemented by limiting the integral portion. The integral state is limited by the controller limits in the same way as the controller output. The integration can be stopped by a flag that is pointed to by the function's API.

The Beta-IP algorithm in the continuous time domain can be expressed as follows:

\[
 u(t) = K_P \cdot [\beta \cdot w(t) \cdot y(t)] + K_I \int [w(t) \cdot y(t)] \cdot dt
\]

\textbf{Equation 44.}

where:

- \(u(t) \) is the controller output in the continuous time domain
- \(w(t) \) is the required value in the continuous time domain
- \(y(t) \) is the measured value (feedback) in the continuous time domain
- \(K_P \) is the proportional gain
- \(K_I \) is the integral gain
- \(\beta \) is the beta gain (overshoot reduction gain in the range from zero to one)

\textbf{Equation 44 on page 80} can be expressed using the Laplace transformation as follows:

\[
 U(s) = K_P \cdot [\beta \cdot W(s) \cdot Y(s)] + K_I \cdot \frac{W(s) \cdot Y(s)}{s}
\]

\textbf{Equation 45.}

The proportional part \(u_P \) of \textbf{Equation 44 on page 80} is transformed into the discrete time domain as follows:

\[
 u_P(k) = K_P \cdot [\beta \cdot w(k) \cdot y(k)]
\]

\textbf{Equation 46.}
where:

- \(u_P(k) \) is the proportional action in the actual step
- \(w(k) \) is the required value in the actual step
- \(y(k) \) is the measured value in the actual step
- \(K_P \) is the proportional gain coefficient
- \(\beta \) is the beta gain coefficient

Equation 46 on page 80 can be used in the fractional arithmetic as follows:

\[
 u_{Psc}(k) \cdot u_{\text{max}} = K_P \cdot \left[\beta \cdot w_{\text{sc}}(k) - y_{\text{sc}}(k) \right] \cdot e_{\text{max}}
\]

Equation 47.

where:

- \(u_{\text{max}} \) is the action output scale
- \(u_{Psc}(k) \) is the scaled proportional action in the actual step
- \(e_{\text{max}} \) is the error input scale
- \(w_{\text{sc}}(k) \) is the scale required value in the actual step
- \(y_{\text{sc}}(k) \) is the scale measured value in the actual step

Transforming the integral part (\(u_I \)) of Equation 44 on page 80 into a discrete time domain using the bi-linear method (also known as the trapezoidal approximation) is as follows:

\[
 u_I(k) = u_I(k-1) + \left[w(k) - y(k) \right] \cdot \frac{K_I T_s}{2} + e(k-1) \cdot \frac{K_I T_s}{2}
\]

Equation 48.

where:

- \(u_I(k) \) is the integral action in the actual step
- \(u_I(k-1) \) is the integral action from the previous step
- \(w(k) \) is the required value in the actual step
- \(y(k) \) is the measured value in the actual step
- \(e(k-1) \) is the error in the previous step
- \(T_s \) is the sampling period of the system
- \(K_I \) is the integral gain coefficient

Equation 48 on page 81 can be used in the fractional arithmetic as follows:

\[
 u_{Isc} \cdot u_{\text{max}} = u_{Isc}(k-1) \cdot u_{\text{max}} + K_I T_s \cdot \frac{e_{\text{sc}}(k) + e_{\text{sc}}(k-1)}{2} \cdot e_{\text{max}}
\]

Equation 49.

where:

- \(u_{\text{max}} \) is the action output scale
The output signal limitation is implemented in this controller. The actual output $u(k)$ is bounded not to exceed the given limit values UpperLimit and LowerLimit. This is either due to the bounded power of the actuator or due to the physical constraints of the plant.

$$
\begin{align*}
 u(k) &= \begin{cases}
 \text{UpperLimit} & u(k) \geq \text{UpperLimit} \\
 \text{LowerLimit} & u(k) \leq \text{LowerLimit} \\
 u(k) & \text{else}
 \end{cases}
\end{align*}
$$

Equation 50.

The bounds are described by a limitation element, as shown in Equation 50 on page 82. When the bounds are exceeded, the non-linear saturation characteristic takes effect and influences the dynamic behavior. The described limitation is implemented on the integral part accumulator (limitation during the calculation) and the overall controller output. Therefore, if the limitation occurs, the controller output is clipped to its bounds, and the wind-up occurrence of the accumulator portion is avoided by saturating the actual sum.

For a proper use of this function, it is recommended to initialize the function data by the GFLIB_CtrlBetaIPpAWInit function, before using the GFLIB_CtrlBetaIPpAW function.

2.23.1 Available versions

This function is available in the following versions:

- Fractional output - the output is the fractional portion of the result; the result is within the range <-1; 1). The parameters use the accumulator types.

The available versions of the GFLIB_CtrlBetaIPpAWInit function are shown in the following table:

<table>
<thead>
<tr>
<th>Function name</th>
<th>Input type</th>
<th>Parameters</th>
<th>Result type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>GFLIB_CtrlBetaIPpAWInit_F16</td>
<td>frac16_t</td>
<td>GFLIB_CTRL_BETA_IP_P_AW_T_A_32 *</td>
<td>void</td>
<td>The inputs are a 16-bit fractional initial value and a pointer to the controller's parameters structure.</td>
</tr>
</tbody>
</table>
The available versions of the GFLIB_CtrlBetaIPpAW function are shown in the following table:

Table 2-33. Function versions

<table>
<thead>
<tr>
<th>Function name</th>
<th>Input type</th>
<th>Parameters</th>
<th>Result type</th>
</tr>
</thead>
<tbody>
<tr>
<td>GFLIB_CtrlBetaIPpAW_F16</td>
<td>frac16_t</td>
<td>bool_t *</td>
<td>frac16_t</td>
</tr>
<tr>
<td></td>
<td>frac16_t</td>
<td>GFLIB_CTRL_BETA_IP_P_AW_T_A32 *</td>
<td></td>
</tr>
</tbody>
</table>

The required value input is a 16-bit fractional value within the range \(<-1 ; 1\). The measured value input is a 16-bit fractional value within the range \(<-1 ; 1\). The integration of the Beta-IP controller is suspended if the stop flag is set. When it is cleared, the integration continues. The parameters are pointed to by an input pointer. The function returns a 16-bit fractional value in the range \(<f16LowerLim ; f16UpperLim>\).

2.23.2 GFLIB_CTRL_BETA_IP_P_AW_T_A32

<table>
<thead>
<tr>
<th>Variable name</th>
<th>Input type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>a32PGain</td>
<td>acc32_t</td>
<td>The proportional gain is set up according to Equation 47 on page 81 as follows: $K_p \cdot \frac{e_{\text{max}}}{u_{\text{max}}}$ The parameter is a 32-bit accumulator type within the range (<0 ; 65536.0). Set by the user.</td>
</tr>
<tr>
<td>a32IGain</td>
<td>acc32_t</td>
<td>The integral gain is set up according to Equation 49 on page 81 as follows: $K_i T_s \cdot \frac{e_{\text{max}}}{u_{\text{max}}}$ The parameter is a 32-bit accumulator type within the range (<0 ; 65536.0). Set by the user.</td>
</tr>
<tr>
<td>f32IAccK_1</td>
<td>frac32_t</td>
<td>State variable of the internal accumulator (integrator). Controlled by the algorithm.</td>
</tr>
<tr>
<td>f16InErrK_1</td>
<td>frac16_t</td>
<td>Input error at the step k - 1. Controlled by the algorithm.</td>
</tr>
<tr>
<td>f16UpperLim</td>
<td>frac16_t</td>
<td>Upper limit of the controller's output and the internal accumulator (integrator). This parameter must be greater than f16LowerLim. Set by the user.</td>
</tr>
<tr>
<td>f16LowerLim</td>
<td>frac16_t</td>
<td>Lower limit of the controller's output and the internal accumulator (integrator). This parameter must be lower than f16UpperLim. Set by the user.</td>
</tr>
<tr>
<td>f16BetaGain</td>
<td>frac16_t</td>
<td>The beta gain is a fraction 16-bit type in the range ([0 ; 1)). The beta gain defines the reduction overshoot when the required value is changed. Set by the user.</td>
</tr>
<tr>
<td>bLimFlag</td>
<td>bool_t</td>
<td>Limitation flag which identifies that the controller's output reached the limits. 1 - the limit is reached; 0 - the output is within the limits. Controlled by the application.</td>
</tr>
</tbody>
</table>

2.23.3 Declaration

The available GFLIB_CtrlBetaIPpAWInit functions have the following declarations:
void GFLIB_CtrlBetaIPpAWInit_F16(frac16_t f16InitVal, GFLIB_CTRL_BETA_IP_P_AW_T_A32 *psParam)

The available **GFLIB_CtrlBetaIPpAW** functions have the following declarations:

```c
frac16_t GFLIB_CtrlBetaIPpAW_F16(frac16_t f16InReq, frac16_t f16In, const bool_t *pbStopIntegFlag, GFLIB_CTRL_BETA_IP_P_AW_T_A32 *psParam)
```

2.23.4 Function use

The use of the **GFLIB_CtrlBetaIPpAWInit** and **GFLIB_CtrlBetaIPpAW** functions is shown in the following examples:

Fixed-point version:

```c
#include "gflib.h"

static frac16_t f16Result, f16InitVal, f16InReq, f16In;
static bool_t bStopIntegFlag;
static GFLIB_CTRL_BETA_IP_P_AW_T_A32 sParam;

void Isr(void);

void main(void)
{
    f16InReq = FRAC16(-0.3);
    f16In = FRAC16(-0.4);
    sParam.a32PGain = ACC32(0.1);
    sParam.a32IGain = ACC32(0.2);
    sParam.f16UpperLim = FRAC16(0.9);
    sParam.f16LowerLim = FRAC16(-0.9);
    sParam.f16BetaGain = FRAC16(0.5);
    bStopIntegFlag = FALSE;
    f16InitVal = FRAC16(0.0);
    GFLIB_CtrlBetaIPpAWInit_F16(f16InitVal, &sParam);
}

/* periodically called function */
void Isr()
{
    f16Result = GFLIB_CtrlBetaIPpAW_F16(f16InReq, f16In, &bStopIntegFlag, &sParam);
}
```

2.24 **GFLIB_CtrlBetaIPDpAW**

The **GFLIB_CtrlBetaIPDpAW** function calculates the parallel form of the Beta-Integral-Proportional-Derivative (Beta-IPD) controller with the implemented integral anti-windup functionality. The Beta-IPD controller is an extended PID controller, which enables to
separate the responses from the setpoint change and the load change (if \(\beta = 1 \) then the Beta-IPD controller has the same response as the PID controller). Therefore, the Beta-IPD controller enables to reduce the overshoot caused by a change of the setpoint without affecting the load change response. The \(\beta \) parameter can be set in a range from zero to one, where zero means the maximal overshoot limitation and one means no limitation.

The Beta-IPD controller attempts to correct the error between the measured process variable and the desired set-point by calculating a corrective action that can adjust the process accordingly. The GFLIB_CtrlBetaIPDpAW function calculates the Beta-IPD algorithm according to the equations below. The Beta-IPD algorithm is implemented in the parallel (non-interacting) form, enabling you to define the P, I, D, and \(\beta \) parameters independently and without interaction. The controller output is limited, and the limit values (upper limit and lower limit) are defined by the user.

The algorithm has an error input for the D portion calculation. This enables you to apply different filters for the D error input and for the required and measured value inputs.

The Beta-IPD controller algorithm also returns a limitation flag, which indicates that the controller's output is at the limit. If the Beta-IPD controller output reaches the upper or lower limit, then the limit flag is set to one. Otherwise, it is zero (integer values).

An anti-windup strategy is implemented by limiting the integral portion. The integral state is limited by the controller limits in the same way as the controller output. The integration can be stopped by a flag, which is pointed to by the function's API.

The Beta-IPD algorithm in the continuous time domain can be expressed as follows:

\[
 u(t) = K_P \cdot [\beta \cdot w(t) - y(t)] + K_I \int \left[w(t) - y(t) \right] \cdot dt + K_D \frac{d}{dt} e_D(t)
\]

Equation 51.

where:

- \(u(t) \) is the controller output in the continuous time domain
- \(w(t) \) is the required value in the continuous time domain
- \(y(t) \) is the measured value (feedback) in the continuous time domain
- \(e_D(t) \) is the input error for the derivative calculation in the continuous time domain
- \(K_P \) is the proportional gain
- \(K_I \) is the integral gain
- \(K_D \) is the derivative gain
- \(\beta \) is the beta gain (overshoot reduction gain in the range from zero to one)

Equation 51 on page 85 can be expressed using the Laplace transformation as follows:
Equation 52.

The proportional part \(u_P \) of Equation 51 on page 85 is transformed into the discrete time domain as follows:

\[
U(s) = K_P \cdot [\beta \cdot W(s) \cdot Y(s)] + K_I \cdot \frac{W(s) \cdot Y(s)}{s} + K_D \cdot e_D \cdot s
\]

\text{Equation 52.}

where:

- \(u_P(k) \) is the proportional action in the actual step
- \(w(k) \) is the required value in the actual step
- \(y(k) \) is the measured value in the actual step
- \(K_P \) is the proportional gain coefficient
- \(\beta \) is the beta gain coefficient

Equation 53 on page 86 can be used in the fractional arithmetic as follows:

\[
u_{Psc}(k) = u_{P}(k) \cdot u_{\text{max}} = K_P \cdot [\beta \cdot w_{sc}(k) \cdot y_{sc}(k)] \cdot e_{\text{max}}
\]

\text{Equation 54.}

where:

- \(u_{\text{max}} \) is the action output scale
- \(u_{Psc}(k) \) is the scaled proportional action in the actual step
- \(e_{\text{max}} \) is the error input scale
- \(w_{sc}(k) \) is the scale required value in the actual step
- \(y_{sc}(k) \) is the scale measured value in the actual step

Transforming the integral part \(u_I \) of Equation 51 on page 85 into a discrete time domain using the bi-linear method (also known as the trapezoidal approximation) is as follows:

\[
u_I(k) = u_I(k - 1) + \left[w(k) \cdot y(k) \right] \cdot K_i T_s + e(k - 1) \frac{K_i T_s}{2}
\]

\text{Equation 55.}

where:

- \(u_I(k) \) is the integral action in the actual step
- \(u_I(k - 1) \) is the integral action from the previous step
- \(w(k) \) is the required value in the actual step
- \(y(k) \) is the measured value in the actual step
- \(e(k - 1) \) is the error in the previous step
- T_s is the sampling period of the system
- K_I is the integral gain coefficient

Equation 55 on page 86 can be used in the fractional arithmetic as follows:

$$u_{Isc}(k) = u_{max} = u_{Isc}(k - 1) \cdot u_{max} + K_I T_s \cdot \frac{e_{sc}(k) + e_{sc}(k - 1)}{2} \cdot e_{max}$$

Equation 56.

where:
- u_{max} is the action output scale
- $u_{Isc}(k)$ is the scaled integral action in the actual step
- $u_{Isc}(k - 1)$ is the scaled integral action from the previous step
- e_{max} is the error input scale
- $e_{sc}(k)$ is the scaled error in the actual step
- $e_{sc}(k - 1)$ is the scaled error in the previous step

The derivative part (u_D) of Equation 51 on page 85 is transformed into the discrete time domain as follows:

$$u_D(k) = \frac{K_D}{T_s} \cdot [e_D(k) - e_D(k-1)]$$

Equation 57.

where:
- $u_D(k)$ is the proportional action in the actual step
- $e_D(k)$ is the error used for the derivative input in the actual step
- $e_D(k - 1)$ is the error used for the derivative input in the previous step
- K_D is the proportional gain coefficient

Equation 53 on page 86 can be used in the fractional arithmetic as follows:

$$u_{Dsc}(k) \cdot u_{max} = \frac{K_D}{T_s} \cdot [e_{Dsc}(k) - e_{Dsc}(k-1)] \cdot e_{max}$$

Equation 58.

where:
- u_{max} is the action output scale
- $u_{Dsc}(k)$ is the scaled derivative action in the actual step
- e_{max} is the error input scale
- $e_{Dsc}(k)$ is the scaled error for the derivative input in the actual step
- $e_{Dsc}(k - 1)$ is the scaled error for the derivative input in the previous step
The output signal limitation is implemented in this controller. The actual output \(u(k) \) is bounded to not exceed the given limit values - UpperLimit and LowerLimit. This is either due to the bounded power of the actuator, or due to the physical constraints of the plant.

\[
\begin{align*}
\text{UpperLimit} & \quad u(k) \geq \text{UpperLimit} \\
\text{LowerLimit} & \quad u(k) \leq \text{LowerLimit} \\
\text{else} & \quad u(k)
\end{align*}
\]

Equation 59.

The bounds are described by a limitation element, as shown in Equation 59 on page 88. When the bounds are exceeded, the non-linear saturation characteristic takes place and influences the dynamic behavior. The described limitation is implemented in the integral part accumulator (limitation during the calculation) and in the overall controller output. Therefore, if the limitation occurs, the controller output is clipped to its bounds, and the wind-up occurrence of the accumulator portion is avoided by saturating the actual sum.

For a proper use of this function, it is recommended to initialize the function data by the GFLIB_CtrlBetaIPDpAWInit functions, before using the GFLIB_CtrlBetaIPDpAW function.

2.24.1 Available versions

This function is available in the following versions:

- Fractional output - the output is the fractional portion of the result; the result is within the range \(-1 ; 1\). The parameters use the accumulator types.

The available versions of the GFLIB_CtrlBetaIPDpAWInit function are shown in the following table:

<table>
<thead>
<tr>
<th>Function name</th>
<th>Input type</th>
<th>Parameters</th>
<th>Result type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>GFLIB_CtrlBetaIPDpAWInit_F16</td>
<td>frac16_t</td>
<td>GFLIB_CTRL_BETA_IPD_P_AW_T_A32 *</td>
<td>void</td>
<td>The inputs are a 16-bit fractional initial value and a pointer to the controller's parameters structure.</td>
</tr>
</tbody>
</table>
The available versions of the GFLIB_CtrlBetaIPDpAW function are shown in the following table:

Table 2-35. Function versions

<table>
<thead>
<tr>
<th>Function name</th>
<th>Input type</th>
<th>Parameters</th>
<th>Result type</th>
</tr>
</thead>
<tbody>
<tr>
<td>GFLIB_CtrlBetaIPDpAW_F16</td>
<td>frac16_t, frac16_t, frac16_t, bool_t *</td>
<td>GFLIB_CTRL_BETA_IPD_P_AW_T_A32 *</td>
<td>frac16_t</td>
</tr>
</tbody>
</table>

The required value input is a 16-bit fractional value within the range <-1 ; 1). The measured value input is a 16-bit fractional value within the range <-1 ; 1). The D error input is a 16-bit fractional value within the range <-1 ; 1). The integration of the Beta-IPD controller is suspended if the stop flag is set. When it is cleared, the integration continues. The parameters are pointed to by an input pointer. The function returns a 16-bit fractional value in the range <f16LowerLim ; f16UpperLim>.

2.24.2 GFLIB_CTRL_BETA_IPD_P_AW_T_A32

<table>
<thead>
<tr>
<th>Variable name</th>
<th>Input type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>a32PGain</td>
<td>acc32_t</td>
<td>The proportional gain is set up according to Equation 54 on page 86 as follows:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$K_P \cdot \frac{e_{max}}{u_{max}}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The parameter is a 32-bit accumulator type within the range <0 ; 65536.0). Set by the user.</td>
</tr>
<tr>
<td>a32IGain</td>
<td>acc32_t</td>
<td>The integral gain is set up according to Equation 56 on page 87 as follows:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$K_I \cdot T_s \cdot \frac{e_{max}}{u_{max}}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The parameter is a 32-bit accumulator type within the range <0 ; 65536.0). Set by the user.</td>
</tr>
<tr>
<td>a32DGain</td>
<td>acc32_t</td>
<td>The derivative gain is set up according to Equation 58 on page 87 as follows:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$K_D \cdot \frac{e_{max}}{T_s \cdot u_{max}}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The parameter is a 32-bit accumulator type within the range <0 ; 65536.0). Set by the user.</td>
</tr>
<tr>
<td>f32IAccK_1</td>
<td>frac32_t</td>
<td>State variable of the internal accumulator (integrator). Controlled by the algorithm.</td>
</tr>
<tr>
<td>f16InErrK_1</td>
<td>frac16_t</td>
<td>Input error in the step k - 1. Controlled by the algorithm.</td>
</tr>
<tr>
<td>f16UpperLim</td>
<td>frac16_t</td>
<td>Upper limit of the controller’s output and the internal accumulator (integrator). This parameter must be greater than f16LowerLim. Set by the user.</td>
</tr>
<tr>
<td>f16LowerLim</td>
<td>frac16_t</td>
<td>Lower limit of the controller’s output and the internal accumulator (integrator). This parameter must be lower than f16UpperLim. Set by the user.</td>
</tr>
<tr>
<td>f16InErrDK_1</td>
<td>frac16_t</td>
<td>Input error for the derivative calculation in the step k - 1. Controlled by the algorithm.</td>
</tr>
<tr>
<td>f16BetaGain</td>
<td>frac16_t</td>
<td>The beta gain is a fraction 16-bit type in the range [0 ; 1). The beta gain defines the reduction overshot when the required value is changed. Set by the user.</td>
</tr>
<tr>
<td>bLimFlag</td>
<td>bool_t</td>
<td>The limitation flag which identifies that the controller’s output reached the limits. 1 - the limit is reached; 0 - the output is within the limits. Controlled by the application.</td>
</tr>
</tbody>
</table>
2.24.3 Declaration

The available GFLIB_CtrlBetaIPDpAWInit functions have the following declarations:

```c
void GFLIB_CtrlBetaIPDpAWInit_F16(frac16_t f16InitVal, GFLIB_CTRL_BETA_IPD_P_AW_T_A32 *psParam)
```

The available **GFLIB_CtrlBetaIPDpAW** functions have the following declarations:

```c
frac16_t GFLIB_CtrlBetaIPDpAW_F16(frac16_t f16InReq, frac16_t f16In, frac16_t f16InErrD, const bool_t *pbStopIntegFlag, GFLIB_CTRL_BETA_IPD_P_AW_T_A32 *psParam)
```

2.24.4 Function use

The use of the GFLIB_CtrlBetaIPDpAWInit and **GFLIB_CtrlBetaIPDpAW** functions is shown in the following examples:

Fixed-point version:

```c
#include "gflib.h"

static frac16_t f16Result, f16InitVal, f16InReq, f16In, f16InErrD;
static bool_t bStopIntegFlag;
static GFLIB_CTRL_BETA_IPD_P_AW_T_A32 sParam;

void Isr(void);

void main(void)
{
    f16InReq = FRAC16(-0.3);
    f16In = FRAC16(-0.4);
    f16InErrD = FRAC16(-0.7);
    sParam.a32PGain = ACC32(0.1);
    sParam.a32IGain = ACC32(0.2);
    sParam.a32DGain = ACC32(0.001);
    sParam.f16UpperLim = FRAC16(0.9);
    sParam.f16LowerLim = FRAC16(-0.9);
    sParam.f16BetaGain = FRAC16(0.5);
    bStopIntegFlag = FALSE;

    f16InitVal = FRAC16(0.0);

    GFLIB_CtrlBetaIPDpAWInit_F16(f16InitVal, &sParam);

    /* periodically called function */
    void Isr()
    {
    }
```
2.25 GFLIB_CtrlPIpAW

The GFLIB_CtrlPIpAW function calculates the parallel form of the Proportional-Integral (PI) controller with implemented integral anti-windup functionality.

The PI controller attempts to correct the error between the measured process variable and the desired set-point by calculating a corrective action that can adjust the process accordingly. The GFLIB_CtrlPIpAW function calculates the PI algorithm according to the equations below. The PI algorithm is implemented in the parallel (non-interacting) form, allowing the user to define the P and I parameters independently and without interaction. The controller output is limited and the limit values (upper limit and lower limit) are defined by the user.

The PI controller algorithm also returns a limitation flag, which indicates that the controller's output is at the limit. If the PI controller output reaches the upper or lower limit, then the limit flag is set to 1, otherwise it is 0 (integer values).

An anti-windup strategy is implemented by limiting the integral portion. The integral state is limited by the controller limits in the same way as the controller output. The integration can be stopped by a flag that is pointed to by the function's API.

The PI algorithm in the continuous time domain can be expressed as follows:

\[u(t) = e(t) \cdot K_p + K_i \int e(t) dt \]

Equation 60.

where:

- \(u(t) \) is the controller output in the continuous time domain
- \(e(t) \) is the input error in the continuous time domain
- \(K_p \) is the proportional gain
- \(K_i \) is the integral gain

Equation 60 on page 91 can be expressed using the Laplace transformation as follows:

\[H(s) = \frac{U(s)}{E(s)} = K_p + \frac{K_i}{s} \]

Equation 61.
The proportional part \(u_P \) of Equation 60 on page 91 is transformed into the discrete time domain as follows:

\[
 u_p(k) = K_P \cdot e(k)
\]

Equation 62.

where:

- \(u_p(k) \) is the proportional action in the actual step
- \(e(k) \) is the error in the actual step
- \(K_P \) is the proportional gain coefficient

Equation 62 on page 92 can be used in the fractional arithmetic as follows:

\[
 u_{Psc}(k) \cdot u_{max} = K_P \cdot e_{sc}(k) \cdot e_{max}
\]

Equation 63.

where:

- \(u_{max} \) is the action output scale
- \(u_{Psc}(k) \) is the scaled proportional action in the actual step
- \(e_{max} \) is the error input scale
- \(e_{sc}(k) \) is the scale error in the actual step

Transforming the integral part \(u_I \) of Equation 60 on page 91 into a discrete time domain using the bi-linear method, also known as the trapezoidal approximation, is as follows:

\[
 u_I(k) = u_I(k - 1) + e(k) \left(\frac{K_I T_s}{2} + e(k - 1) \frac{K_I T_s}{2} \right)
\]

Equation 64.

where:

- \(u_I(k) \) is the integral action in the actual step
- \(u_I(k - 1) \) is the integral action from the previous step
- \(e(k) \) is the error in the actual step
- \(e(k - 1) \) is the error in the previous step
- \(T_s \) is the sampling period of the system
- \(K_I \) is the integral gain coefficient

Equation 64 on page 92 can be used in the fractional arithmetic as follows:

\[
 u_{Isc}(k) \cdot u_{max} = u_{Isc}(k - 1) \cdot u_{max} + K_I T_s \cdot e_{sc}(k) \cdot e_{max}
\]

Equation 65.

where:
• u_{max} is the action output scale
• $u_{\text{Isc}}(k)$ is the scaled integral action in the actual step
• $u_{\text{Isc}}(k - 1)$ is the scaled integral action from the previous step
• e_{max} is the error input scale
• $e_{\text{sc}}(k)$ is the scaled error in the actual step
• $e_{\text{sc}}(k - 1)$ is the scaled error in the previous step

The output signal limitation is implemented in this controller. The actual output $u(k)$ is bounded not to exceed the given limit values UpperLimit and LowerLimit. This is due to either the bounded power of the actuator or due to the physical constraints of the plant.

$$u(k) = \begin{cases} \text{UpperLimit} & u(k) \geq \text{UpperLimit} \\ \text{LowerLimit} & u(k) \leq \text{LowerLimit} \\ u(k) & \text{else} \end{cases}$$

Equation 66.

The bounds are described by a limitation element, as shown in Equation 66 on page 93. When the bounds are exceeded, the nonlinear saturation characteristic will take effect and influence the dynamic behavior. The described limitation is implemented on the integral part accumulator (limitation during the calculation) and on the overall controller output. Therefore, if the limitation occurs, the controller output is clipped to its bounds, and the wind-up occurrence of the accumulator portion is avoided by saturating the actual sum.

For a proper use of this function, it is recommended to initialize the function data by the GFLIB_CtrlPIpAWInit functions, before using the GFLIB_CtrlPIpAW function. You must call this function when you want the PI controller to be initialized.

2.25.1 Available versions

This function is available in the following versions:

- Fractional output - the output is the fractional portion of the result; the result is within the range $<-1;1)$. The parameters use the accumulator types.

The available versions of the GFLIB_CtrlPIpAWInit function are shown in the following table:

<table>
<thead>
<tr>
<th>Function name</th>
<th>Input type</th>
<th>Parameters</th>
<th>Result type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>GFLIB_CtrlPIpAWInit_F16</td>
<td>frac16_t</td>
<td>GFLIB_CTRL_PI_P_AW_T_A32 *</td>
<td>void</td>
<td>The inputs are a 16-bit fractional initial value and a pointer to the controller's parameters structure.</td>
</tr>
</tbody>
</table>
The available versions of the `GFLIB_CtrlPIpAW` function are shown in the following table:

Table 2-37. Function versions

<table>
<thead>
<tr>
<th>Function name</th>
<th>Input type</th>
<th>Parameters</th>
<th>Result type</th>
</tr>
</thead>
<tbody>
<tr>
<td>GFLIB_CtrlPIpAW_F16</td>
<td>frac16_t</td>
<td>bool_t *</td>
<td>frac16_t</td>
</tr>
</tbody>
</table>

The error input is a 16-bit fractional value within the range <-1 ; 1). The integration of the PI controller is suspended if the stop flag is set. When it is cleared, the integration continues. The parameters are pointed to by an input pointer. The function returns a 16-bit fractional value in the range <f16LowerLim ; f16UpperLim>.

2.25.2 GFLIB_CTRL_PI_P_AW_T_A32

<table>
<thead>
<tr>
<th>Variable name</th>
<th>Input type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>a32PGain</td>
<td>acc32_t</td>
<td>Proportional gain is set up according to Equation 63 on page 92 as follows:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$K_p \frac{e_{max}}{u_{max}}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The parameter is a 32-bit accumulator type within the range <0 ; 65536.0). Set by the user.</td>
</tr>
<tr>
<td>a32IGain</td>
<td>acc32_t</td>
<td>Integral gain is set up according to Equation 65 on page 92 as follows:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$K_i T_s \frac{e_{max}}{u_{max}}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The parameter is a 32-bit accumulator type within the range <0 ; 65536.0). Set by the user.</td>
</tr>
<tr>
<td>f32IAccK_1</td>
<td>frac32_t</td>
<td>State variable of the internal accumulator (integrator). Controlled by the algorithm.</td>
</tr>
<tr>
<td>f16InErrK_1</td>
<td>frac16_t</td>
<td>Input error at the step k - 1. Controlled by the algorithm.</td>
</tr>
<tr>
<td>f16UpperLim</td>
<td>frac16_t</td>
<td>Upper limit of the controller's output and the internal accumulator (integrator). This parameter must be greater than f16LowerLim. Set by the user.</td>
</tr>
<tr>
<td>f16LowerLim</td>
<td>frac16_t</td>
<td>Lower limit of the controller's output and the internal accumulator (integrator). This parameter must be lower than f16UpperLim. Set by the user.</td>
</tr>
<tr>
<td>bLimFlag</td>
<td>bool_t</td>
<td>Limitation flag, which identifies that the controller's output reached the limits. 1 - the limit is reached; 0 - the output is within the limits. Controlled by the application.</td>
</tr>
</tbody>
</table>

2.25.3 Declaration

The available `GFLIB_CtrlPIpAWInit` functions have the following declarations:

```c
void GFLIB_CtrlPIpAWInit_F16(frac16_t f16InitVal, GFLIB_CTRL_PI_P_AW_T_A32 *psParam)
```
The available GFLIB_CtrlPIpAW functions have the following declarations:

```c
frac16_t GFLIB_CtrlPIpAW_F16(frac16_t f16InErr, const bool_t *pbStopIntegFlag, GFLIB_CTRL_PI_P_AW_T_A32 *psParam)
```

2.25.4 Function use

The use of the GFLIB_CtrlPIpAWInit and GFLIB_CtrlPIpAW functions is shown in the following examples:

Fixed-point version:

```c
#include "gflib.h"

static frac16_t f16Result, f16InitVal, f16InErr;
static bool_t bStopIntegFlag;
static GFLIB_CTRL_PI_P_AW_T_A32 sParam;

void Isr(void);

void main(void)
{
    f16InErr = FRAC16(-0.4);
    sParam.a32PGain = ACC32(0.1);
    sParam.a32IGain = ACC32(0.2);
    sParam.f16UpperLim = FRAC16(0.9);
    sParam.f16LowerLim = FRAC16(-0.9);
    bStopIntegFlag = FALSE;
    f16InitVal = FRAC16(0.0);
    GFLIB_CtrlPIpAWInit_F16(f16InitVal, &sParam);
}

/* periodically called function */
void Isr()
{
    f16Result = GFLIB_CtrlPIpAW_F16(f16InErr, &bStopIntegFlag, &sParam);
}
```

2.26 GFLIB_CtrlPIDpAW

The GFLIB_CtrlPIDpAW function calculates the parallel form of the Proportional-Integral-Derivative (PID) controller with implemented integral anti-windup functionality.

The PID controller attempts to correct the error between the measured process variable and the desired set-point by calculating a corrective action that can adjust the process accordingly. The GFLIB_CtrlPIDpAW function calculates the PID algorithm according
to the equations below. The PID algorithm is implemented in the parallel (non-interacting) form, allowing the user to define the P, I, and D parameters independently and without interaction. The controller output is limited, and the limit values (upper limit and lower limit) are defined by the user.

The algorithm has two error inputs: one for the P and I calculation, and the other for the D calculation. This allows the user to apply different filters on both inputs.

The PID controller algorithm also returns a limitation flag, which indicates that the controller's output is at the limit. If the PID controller output reaches the upper or lower limit, then the limit flag is set to 1, otherwise it is 0 (integer values).

An anti-windup strategy is implemented by limiting the integral portion. The integral state is limited by the controller limits in the same way as the controller output. The integration can be stopped by a flag, which is pointed to by the function's API.

The PID algorithm in the continuous time domain can be expressed as follows:

\[u(t) = e(t) \cdot K_P + K_I \int e(t) dt + K_D \frac{d}{dt} e(t) \]

Equation 67.

where

- \(u(t) \) is the controller output in the continuous time domain
- \(e(t) \) is the input error for the proportional and integral calculation in the continuous time domain
- \(e_D(t) \) is the input error for the derivative calculation in the continuous time domain
- \(K_P \) is the proportional gain
- \(K_I \) is the integral gain
- \(K_D \) is the derivative gain

Equation 67 on page 96 can be expressed using the Laplace transformation as follows:

\[H(s) = \frac{U(s)}{E(s)} = K_P + \frac{K_I}{s} + K_D \cdot s \]

Equation 68.

The proportional part (\(u_P \)) of **Equation 68 on page 96** is transformed into the discrete time domain as follows:

\[u_P(k) = K_P \cdot e(k) \]

Equation 69.

where:
• $u_p(k)$ is the proportional action in the actual step
• $e(k)$ is the error in the actual step
• K_P is the proportional gain coefficient

Equation 69 on page 96 can be used in the fractional arithmetic as follows:

$$u_{p\text{sc}}(k) \cdot u_{\text{max}} = K_P \cdot e_{\text{sc}}(k) \cdot e_{\text{max}}$$

Equation 70.

where:

• u_{max} is the action output scale
• $u_{p\text{sc}}(k)$ is the scaled proportional action in the actual step
• e_{max} is the error input scale
• $e_{\text{sc}}(k)$ is the scale error in the actual step

Transforming the integral part (u_I) of Equation 68 on page 96 into a discrete time domain using the bi-linear method, also known as the trapezoidal approximation, is as follows:

$$u_I(k) = u_I(k - 1) + e(k) \frac{K_IT_s}{2} + e(k - 1) \frac{K_IT_s}{2}$$

Equation 71.

where:

• $u_I(k)$ is the integral action in the actual step
• $u_I(k - 1)$ is the integral action from the previous step
• $e(k)$ is the error in the actual step
• $e(k - 1)$ is the error in the previous step
• T_s is the sampling period of the system
• K_I is the integral gain coefficient

Equation 71 on page 97 can be used in the fractional arithmetic as follows:

$$u_{I\text{sc}}(k) \cdot u_{\text{max}} = u_{I\text{sc}}(k - 1) \cdot u_{\text{max}} + K_I T_s \frac{e_{\text{sc}}(k) + e_{\text{sc}}(k - 1)}{2} \cdot e_{\text{max}}$$

Equation 72.

where:

• u_{max} is the action output scale
• $u_{I\text{sc}}(k)$ is the scaled integral action in the actual step
• $u_{I\text{sc}}(k - 1)$ is the scaled integral action from the previous step
• e_{max} is the error input scale
• $e_{\text{sc}}(k)$ is the scaled error in the actual step
• $e_{\text{sc}}(k - 1)$ is the scaled error in the previous step
The derivative part \((u_D)\) of Equation 67 on page 96 is transformed into the discrete time domain as follows:

\[u_D(k) = \frac{K_D}{T_s} [e_D(k) - e_D(k-1)] \]

Equation 73.

where:

- \(u_D(k)\) is the proportional action in the actual step
- \(e_D(k)\) is the error used for the derivative input in the actual step
- \(e_D(k - 1)\) is the error used for the derivative input in the previous step
- \(K_D\) is the proportional gain coefficient

Equation 69 on page 96 can be used in the fractional arithmetic as follows:

\[u_{Dsc}(k) = \frac{K_D}{T_s} [e_{Dsc}(k) - e_{Dsc}(k-1)] \cdot e_{max} \]

Equation 74.

where:

- \(u_{max}\) is the action output scale
- \(u_{Dsc}(k)\) is the scaled derivative action in the actual step
- \(e_{max}\) is the error input scale
- \(e_{Dsc}(k)\) is the scaled error for the derivative input in the actual step
- \(e_{Dsc}(k - 1)\) is the scaled error for the derivative input in the previous step

The output signal limitation is implemented in this controller. The actual output \(u(k)\) is bounded to not exceed the given limit values - UpperLimit and LowerLimit. This is due to either the bounded power of the actuator, or due to the physical constraints of the plant.

\[
u(k) = \begin{cases}
\text{UpperLimit} & u(k) \geq \text{UpperLimit} \\
\text{LowerLimit} & u(k) \leq \text{LowerLimit} \\
\text{else} &
\end{cases}
\]

Equation 75.

The bounds are described by a limitation element, as shown in Equation 75 on page 98. When the bounds are exceeded, the non-linear saturation characteristic will take effect, and influence the dynamic behavior. The described limitation is implemented in the integral part accumulator (limitation during the calculation) and in the overall controller output. Therefore, if the limitation occurs, the controller output is clipped to its bounds, and the wind-up occurrence of the accumulator portion is avoided by saturating the actual sum.
For a proper use of this function, it is recommended to initialize the function data by the `GFLIB_CtrlPIDpAWInit` functions, before using the `GFLIB_CtrlPIDpAW` function. You must call this function, when you want the PID controller to be initialized.

2.26.1 Available versions

This function is available in the following versions:

- Fractional output - the output is the fractional portion of the result; the result is within the range $<-1; 1)$. The parameters use the accumulator types.

The available versions of the `GFLIB_CtrlPIDpAWInit` function are shown in the following table:

<table>
<thead>
<tr>
<th>Function name</th>
<th>Input type</th>
<th>Parameters</th>
<th>Result type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>GFLIB_CtrlPIDpAWInit_F16</td>
<td>frac16_t</td>
<td>GFLIB_CTRL_PID_P_AW_T_A32 *</td>
<td>void</td>
<td>The inputs are a 16-bit fractional initial value and a pointer to the controller’s parameters structure.</td>
</tr>
</tbody>
</table>

The available versions of the `GFLIB_CtrlPIDpAW` function are shown in the following table:

<table>
<thead>
<tr>
<th>Function name</th>
<th>PI error</th>
<th>D error</th>
<th>Stop flag</th>
<th>Parameters</th>
<th>Result type</th>
</tr>
</thead>
<tbody>
<tr>
<td>GFLIB_CtrlPIDpAW_F16</td>
<td>frac16_t</td>
<td>frac16_t</td>
<td>bool_t</td>
<td>GFLIB_CTRL_PID_P_AW_T_A32 *</td>
<td>frac16_t</td>
</tr>
</tbody>
</table>

The error inputs are 16-bit fractional values within the range $<-1; 1)$. The integration of the PID controller is suspended if the stop flag is set. When it is cleared, the integration continues. The parameters are pointed to by an input pointer. The function returns a 16-bit fractional value in the range $<f16LowerLim; f16UpperLim>$.

2.26.2 GFLIB_CTRL_PID_P_AW_T_A32

<table>
<thead>
<tr>
<th>Variable name</th>
<th>Input type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>a32PGain</td>
<td>acc32_t</td>
<td>Proportional gain is set up according to Equation 70 on page 97 as follows:</td>
</tr>
</tbody>
</table>

$K_P \frac{u_{max}}{u}$

Table continues on the next page...
2.26.3 Declaration

The available GFLIB_CtrlPIDpAWInit functions have the following declarations:

```c
void GFLIB_CtrlPIDpAWInit_F16(frac16_t f16InitVal, GFLIB_CTRL_PID_P_AW_T_A32 *psParam)
```

The available GFLIB_CtrlPIDpAW functions have the following declarations:

```c
frac16_t GFLIB_CtrlPIDpAW_F16(frac16_t f16InErr, frac16_t f16InErrD, const bool_t *pbStopIntegFlag, GFLIB_CTRL_PID_P_AW_T_A32 *psParam)
```

2.26.4 Function use

The use of the GFLIB_CtrlPIDpAWInit and GFLIB_CtrlPIDpAW functions is shown in the following examples:

Fixed-point version:

```c
#include "gflib.h"
```
static frac16_t f16Result, f16InitVal, f16InErr, f16InErrD;
static bool_t bStopIntegFlag;
static GFLIB_CTRL_PID_P_AW_T_A32 sParam;

void Isr(void);

void main(void)
{
 f16InErr = FRAC16(-0.4);
 f16InErr = f16InErrD;
 sParam.a32PGain = ACC32(0.1);
 sParam.a32IGain = ACC32(0.2);
 sParam.a32DGain = ACC32(0.001);
 sParam.f16UpperLim = FRAC16(0.9);
 sParam.f16LowerLim = FRAC16(-0.9);
 bStopIntegFlag = FALSE;

 f16InitVal = FRAC16(0.0);

 GFLIB_CtrlPIDpAWInit_F16(f16InitVal, &sParam);
}

/* periodically called function */
void Isr()
{
 f16Result = GFLIB_CtrlPIDpAW_F16(f16InErr, f16InErrD, &bStopIntegFlag, &sParam);
}
Appendix A
Library types

A.1 bool_t

The bool_t type is a logical 16-bit type. It is able to store the boolean variables with two states: TRUE (1) or FALSE (0). Its definition is as follows:

typedef unsigned short bool_t;

The following figure shows the way in which the data is stored by this type:

<table>
<thead>
<tr>
<th>Value</th>
<th>Unused</th>
<th>Logical</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRUE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>FALSE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

To store a logical value as bool_t, use the FALSE or TRUE macros.

A.2 uint8_t

The uint8_t type is an unsigned 8-bit integer type. It is able to store the variables within the range <0 ; 255>. Its definition is as follows:

typedef unsigned char uint8_t;

The following figure shows the way in which the data is stored by this type:
Table A-2. Data storage

<table>
<thead>
<tr>
<th>Value</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>255</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>F</td>
<td></td>
<td></td>
<td></td>
<td>F</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>124</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>159</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

A.3 uint16_t

The **uint16_t** type is an unsigned 16-bit integer type. It is able to store the variables within the range <0 ; 65535>. Its definition is as follows:

```c
typedef unsigned short uint16_t;
```

The following figure shows the way in which the data is stored by this type:

Table A-3. Data storage

<table>
<thead>
<tr>
<th>Value</th>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>65535</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>F</td>
<td></td>
<td>F</td>
<td></td>
<td>F</td>
<td></td>
<td></td>
<td>F</td>
<td></td>
<td></td>
<td>F</td>
<td></td>
<td></td>
<td>F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>15518</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td>40768</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>F</td>
</tr>
</tbody>
</table>

A.4 uint32_t
The `uint32_t` type is an unsigned 32-bit integer type. It is able to store the variables within the range `<0 ; 4294967295>`. Its definition is as follows:

```c
typedef unsigned long uint32_t;
```

The following figure shows the way in which the data is stored by this type:

Table A-4. Data storage

<table>
<thead>
<tr>
<th>Value</th>
<th>31</th>
<th>24 23</th>
<th>16 15</th>
<th>8 7</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>4294967295</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>2147483648</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>55977296</td>
<td>0</td>
<td>3</td>
<td>5</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>3451051828</td>
<td>C</td>
<td>D</td>
<td>B</td>
<td>2</td>
<td>D</td>
</tr>
</tbody>
</table>

A.5 int8_t

The `int8_t` type is a signed 8-bit integer type. It is able to store the variables within the range `<-128 ; 127>`. Its definition is as follows:

```c
typedef char int8_t;
```

The following figure shows the way in which the data is stored by this type:

Table A-5. Data storage

<table>
<thead>
<tr>
<th>Value</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>127</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>-128</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>60</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>-97</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
A.6 int16_t

The int16_t type is a signed 16-bit integer type. It is able to store the variables within the range <-32768 ; 32767>. Its definition is as follows:

typedef short int16_t;

The following figure shows the way in which the data is stored by this type:

Table A-6. Data storage

<table>
<thead>
<tr>
<th>Value</th>
<th>15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0</th>
<th>Integer</th>
</tr>
</thead>
<tbody>
<tr>
<td>32767</td>
<td>-32768</td>
<td>15518</td>
</tr>
<tr>
<td>7 F F F F F F F F</td>
<td>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td>
<td>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td>
</tr>
</tbody>
</table>

A.7 int32_t

The int32_t type is a signed 32-bit integer type. It is able to store the variables within the range <-2147483648 ; 2147483647>. Its definition is as follows:

typedef long int32_t;

The following figure shows the way in which the data is stored by this type:

Table A-7. Data storage

<table>
<thead>
<tr>
<th>Value</th>
<th>31 24 23 16 15 8 7 0</th>
<th>Integer</th>
</tr>
</thead>
<tbody>
<tr>
<td>2147483647</td>
<td>8 0 0 0 0 0 0 0</td>
<td>7 F F F F F F</td>
</tr>
<tr>
<td>-2147483648</td>
<td>0 3 5 6 2 5 3 4</td>
<td>8 0 0 0 0 0 0 0</td>
</tr>
<tr>
<td>55977296</td>
<td>0 3 5 6 2 5 3 4</td>
<td>8 0 0 0 0 0 0 0</td>
</tr>
<tr>
<td>-843915468</td>
<td>0 3 5 6 2 5 3 4</td>
<td>8 0 0 0 0 0 0 0</td>
</tr>
</tbody>
</table>
A.8 frac8_t

The frac8_t type is a signed 8-bit fractional type. It is able to store the variables within the range <-1 ; 1). Its definition is as follows:

```
typedef char frac8_t;
```

The following figure shows the way in which the data is stored by this type:

Table A-8. Data storage

<table>
<thead>
<tr>
<th>Value</th>
<th>Sign</th>
<th>Fractional</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.99219</td>
<td>0</td>
<td>1 1 1 1 1 1 1 1</td>
</tr>
<tr>
<td>-1.0</td>
<td>1</td>
<td>0 0 0 0 0 0 0 0</td>
</tr>
<tr>
<td>0.46875</td>
<td>0</td>
<td>0 1 1 1 1 1 0 0</td>
</tr>
<tr>
<td>-0.75781</td>
<td>1</td>
<td>0 0 1 1 1 1 1 1</td>
</tr>
</tbody>
</table>

To store a real number as frac8_t, use the FRAC8 macro.

A.9 frac16_t

The frac16_t type is a signed 16-bit fractional type. It is able to store the variables within the range <-1 ; 1). Its definition is as follows:

```
typedef short frac16_t;
```

The following figure shows the way in which the data is stored by this type:

Table A-9. Data storage

<table>
<thead>
<tr>
<th>Value</th>
<th>Sign</th>
<th>Fractional</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.99997</td>
<td>0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</td>
<td></td>
</tr>
<tr>
<td>-1.0</td>
<td>1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td>
<td></td>
</tr>
</tbody>
</table>

Table continues on the next page...
To store a real number as \texttt{frac16_t}, use the \texttt{FRAC16} macro.

A.10 \texttt{frac32_t}

The \texttt{frac32_t} type is a signed 32-bit fractional type. It is able to store the variables within the range \(-1 ; 1\). Its definition is as follows:

\begin{verbatim}
typedef long frac32_t;
\end{verbatim}

The following figure shows the way in which the data is stored by this type:

\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|c|c|}
\hline
31 & 24 & 23 & 16 & 15 \\
\hline
0.9999999995 & 7 & F & F & F \\
-1.0 & 8 & 0 & 0 & 0 \\
0.02606645970 & 0 & 3 & 5 & 6 \\
-0.3929787632 & C & D & B & 2 \\
\hline
\end{tabular}
\end{table}

To store a real number as \texttt{frac32_t}, use the \texttt{FRAC32} macro.

A.11 \texttt{acc16_t}

The \texttt{acc16_t} type is a signed 16-bit fractional type. It is able to store the variables within the range \((-256 ; 256\). Its definition is as follows:

\begin{verbatim}
typedef short acc16_t;
\end{verbatim}

The following figure shows the way in which the data is stored by this type:
Table A-11. Data storage

<table>
<thead>
<tr>
<th>Value</th>
<th>Sign</th>
<th>Integer</th>
<th>Fractional</th>
</tr>
</thead>
<tbody>
<tr>
<td>255.9921875</td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>-256.0</td>
<td></td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1.0</td>
<td></td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>-1.0</td>
<td></td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>13.7890625</td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>-89.71875</td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

To store a real number as `acc16_t`, use the `ACC16` macro.

A.12 acc32_t

The `acc32_t` type is a signed 32-bit accumulator type. It is able to store the variables within the range <-65536; 65536). Its definition is as follows:

```c
typedef long acc32_t;
```

The following figure shows the way in which the data is stored by this type:

Table A-12. Data storage

<table>
<thead>
<tr>
<th>Value</th>
<th>S</th>
<th>Integer</th>
<th>Fractional</th>
</tr>
</thead>
<tbody>
<tr>
<td>65535.999969</td>
<td>7</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>-65536.0</td>
<td>8</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1.0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>-1.0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>23.789734</td>
<td>F</td>
<td>0</td>
<td>B</td>
</tr>
<tr>
<td>-1171.306793</td>
<td>F</td>
<td>D</td>
<td>B</td>
</tr>
</tbody>
</table>

To store a real number as `acc32_t`, use the `ACC32` macro.
A.13 FALSE

The FALSE macro serves to write a correct value standing for the logical FALSE value of the bool_t type. Its definition is as follows:

```c
#define FALSE    ((bool_t)0)
```

```c
#include "mlib.h"
static bool_t bVal;
void main(void)
{
    bVal = FALSE;               /* bVal = FALSE */
}
```

A.14 TRUE

The TRUE macro serves to write a correct value standing for the logical TRUE value of the bool_t type. Its definition is as follows:

```c
#define TRUE     ((bool_t)1)
```

```c
#include "mlib.h"
static bool_t bVal;
void main(void)
{
    bVal = TRUE;               /* bVal = TRUE */
}
```

A.15 FRAC8

The FRAC8 macro serves to convert a real number to the frac8_t type. Its definition is as follows:

```c
#define FRAC8(x) ((frac8_t)((x) < 0.9921875 ? ((x) >= -1 ? (x)*0x80 : 0x80) : 0x7F))
```

The input is multiplied by 128 (=2^7). The output is limited to the range <0x80 ; 0x7F>, which corresponds to <-1.0 ; 1.0-2^-7>.
#include "mlib.h"
static frac8_t f8Val;

void main(void)
{
 f8Val = FRAC8(0.187); /* f8Val = 0.187 */
}

A.16 FRAC16

The FRAC16 macro serves to convert a real number to the frac16_t type. Its definition is as follows:

#define FRAC16(x) ((frac16_t)((x) < 0.999969482421875 ? ((x) >= -1 ? (x)*0x8000 : 0x8000) : 0x7FFF))

The input is multiplied by 32768 (=2^{15}). The output is limited to the range <0x8000 ; 0x7FFF>, which corresponds to <1.0 ; 1.0-2^{-15}>.

#include "mlib.h"
static frac16_t f16Val;

void main(void)
{
 f16Val = FRAC16(0.736); /* f16Val = 0.736 */
}

A.17 FRAC32

The FRAC32 macro serves to convert a real number to the frac32_t type. Its definition is as follows:

#define FRAC32(x) ((frac32_t)((x) < 1 ? ((x) >= -1 ? (x)*0x80000000 : 0x80000000) : 0x7FFFFFFF))

The input is multiplied by 2147483648 (=2^{31}). The output is limited to the range <0x80000000 ; 0x7FFFFFFF>, which corresponds to <1.0 ; 1.0-2^{-31}>.

#include "mlib.h"
static frac32_t f32Val;

void main(void)
{
 f32Val = FRAC32(-0.1735667); /* f32Val = -0.1735667 */
}
A.18 ACC16

The ACC16 macro serves to convert a real number to the acc16_t type. Its definition is as follows:

#define ACC16(x) ((acc16_t)((x) < 255.9921875 ? ((x) >= -256 ? (x)*0x80 : 0x8000) : 0x7FFF))

The input is multiplied by 128 (=2^7). The output is limited to the range <0x8000 ; 0x7FFF> that corresponds to <-256.0 ; 255.9921875>.

#include "mlib.h"
static acc16_t a16Val;
void main(void)
{
 a16Val = ACC16(19.45627); /* a16Val = 19.45627 */
}

A.19 ACC32

The ACC32 macro serves to convert a real number to the acc32_t type. Its definition is as follows:

#define ACC32(x) ((acc32_t)((x) < 65535.999969482421875 ? ((x) >= -65536 ? (x)*0x8000 : 0x80000000) : 0x7FFFFFFF))

The input is multiplied by 32768 (=2^15). The output is limited to the range <0x80000000 ; 0x7FFFFFFF>, which corresponds to <-65536.0 ; 65536.0-2^-15>.

#include "mlib.h"
static acc32_t a32Val;
void main(void)
{
 a32Val = ACC32(-13.654437); /* a32Val = -13.654437 */
}