

CodeWarrior

™

Development Studio
for PowerPC

®

 ISA,
Linux

®

 Application/
Platform Edition

Targeting Manual

 Revised: 23 March 2005

EPPCLinux.book Page 1 Wednesday, March 23, 2005 6:34 PM

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Metrowerks, the Metrowerks logo, and CodeWarrior are trademarks or registered trademarks of Metrowerks Corpora-
tion in the United States and/or other countries. All other trade names and trademarks are the property of their respective
owners.

Copyright © 2004-2005 by Metrowerks, a Freescale Semiconductor company. All rights reserved.

No portion of this document may be reproduced or transmitted in any form or by any means, electronic or me-
chanical, without prior written permission from Metrowerks. Use of this document and related materials are
governed by the license agreement that accompanied the product to which this manual pertains. This document
may be printed for non-commercial personal use only in accordance with the aforementioned license agreement.
If you do not have a copy of the license agreement, contact your Metrowerks representative or call 1-800-377-
5416 (if outside the U.S., call +1-512-996-5300).

Metrowerks reserves the right to make changes to any product described or referred to in this document without further
notice. Metrowerks makes no warranty, representation or guarantee regarding the merchantability or fitness of its prod-
ucts for any particular purpose, nor does Metrowerks assume any liability arising out of the application or use of any
product described herein and specifically disclaims any and all liability.

Metrowerks software is not authorized for
and has not been designed, tested, manufactured, or intended for use in developing applications where the fail-
ure, malfunction, or any inaccuracy of the application carries a risk of death, serious bodily injury, or damage
to tangible property, including, but not limited to, use in factory control systems, medical devices or facilities,
nuclear facilities, aircraft navigation or communication, emergency systems, or other applications with a similar
degree of potential hazard.

How to Contact Metrowerks

Corporate Headquarters

Metrowerks Corporation

7700 West Parmer Lane

Austin, TX 78729

U.S.A.

World Wide Web

http://www.metrowerks.com

Sales

United States Voice: 800-377-5416

United States Fax: 512-996-4910

International Voice: +1-512-996-5300

e-mail:

sales@metrowerks.com

Technical Support

United States Voice: 800-377-5416

International Voice: +1-512-996-5300

e-mail:

support@metrowerks.com

EPPCLinux.book Page 2 Wednesday, March 23, 2005 6:34 PM

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

3

Targeting Embedded PowerPC Linux

Table of Contents

1 Introduction 9

Read the Release Notes. 9

Features . 10

About This Manual . 10

Conventions Used in This Manual . 12

Documentation Overview . 12

Adobe Acrobat PDF Files . 12

CodeWarrior Online Help . 13

Other Resources . 13

2 Getting Started 15

Licensing. 15

CodeWarrior Development Tools . 16

Overview of the CodeWarrior IDE . 16

Cross Compilers, Linkers, and Related Tools . 17

CodeWarrior Debugger . 17

Metrowerks Target Resident Kernel . 17

CodeWarrior Development Process . 18

Projects . 18

Editing Source Code . 19

Compiling . 19

Linking . 19

Debugging . 20

Viewing Preprocessor Output . 20

Checking Syntax . 20

Disassembling . 20

3 Application Tutorial 21

Create the Project . 21

Create a New Project . 21

Remove the Place-holder File . 25

Add a New Source File to the Project . 25

EPPCLinux.book Page 3 Wednesday, March 23, 2005 6:34 PM

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Table of Contents

4

Targeting Embedded PowerPC Linux

Compile and Run the Project .28

Select the Appropriate Linker .29

Set Up Remote Debugging .29

Build the Application. .29

Fix the Error. .30

Debug the Application. .31

4 Target Settings 33

Overview .33

Target Settings Panels .34

Target Settings .35

GNU Target .37

GNU Assembler. .40

GNU Disassembler .40

GNU Compiler. .42

GNU Post Linker .43

GNU Linker .44

GNU Environment .45

GNU Tools .46

Debugger Settings .48

Console I/O Settings .51

Debugger Signals. .53

5 Common Application Debugging Features 55

Remote Target Debugging - An Overview .55

Using MetroTRK. .56

MetroTRK Overview. .56

Customizing MetroTRK .56

Installing MetroTRK on the Remote Target .57

Remote Debugging Setup .57

Create a Remote Connection .58

Specify Remote Debugging Options .60

Start MetroTRK on the Remote Target .61

Start the Debugger .63

Shared Library Debugging .63

EPPCLinux.book Page 4 Wednesday, March 23, 2005 6:34 PM

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Table of Contents

5

Targeting Embedded PowerPC Linux

Build the Project . 68

Configure the Executable Build Target . 68

Configure the Library Build Target . 76

Debug the Shared Library . 79

Multi-threaded Debugging . 81

Debugging Binary Files With No Source Code . 92

Using the Attach to Process Feature . 94

Debugging Applications that use fork() and exec() System Calls 98

Viewing Multiple Processes and Threads . 110

Viewing Process Information . 113

6 Other Common Features 117

Creating New Projects From Makefiles . 117

Stripping Binary Files . 120

Creating Stripped Binary Files . 120

Downloading Stripped Files . 123

Using the Shell Tool Post Linker . 123

7 Target Platform-Specific Features 125

Supported Target Processors . 126

Supported Debug Agents . 126

Supported Remote Connections . 127

PowerTAP PRO Connection . 127

Remote Connections for Kernel-level Debugging . 128

Configuring a PowerTAP PRO JTAG Remote Connection. 128

Configuring a PowerTAP PRO DPI Remote Connection 130

Target-Platform-Specific Debugging Features . 132

Debugging u-boot . 132

Kernel Debugging . 136

Kernel Module Debugging . 157

Boa Server Application Debugging. 163

Target Platform-Specific Target Settings Panels . 165

EPPC Debugger Settings. 165

Debugger PIC Settings . 167

EPPC Exceptions. 168

EPPCLinux.book Page 5 Wednesday, March 23, 2005 6:34 PM

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Table of Contents

6

Targeting Embedded PowerPC Linux

Linux Kernel Boot Parameters .170

Linux Kernel Debug Settings .171

Linux Kernel Residual Data .173

Source Folder Mapping .175

Target Platform-Specific Information .176

Cross Compiler Tools Location .176

MetroTRK Project and Binary File Location .176

MetroTRK Project - Build Targets .177

Sample Projects Location .177

Debug Initialization Files .179

Using Debug Initialization Files .179

Debug Initialization File Commands. .180

Memory Configuration Files .187

Command Syntax. .187

Memory Configuration File Commands .188

Using Hardware Tools .189

Flash Programmer .189

Hardware Diagnostics .191

A Third Party Cross Compiler Tools 193

B Using PCS to Build Kernel 195

Platform Creation Suite - Overview .195

Build the Kernel Using PCS .195

Create a Project .196

Build the Project .200

Debug the Kernel .200

C Frequently Asked Questions 203

Settings FAQs .203

Debugging FAQs .204

The CodeWarrior IDE FAQs .205

Kernel Debugging FAQs .206

Kernel Module Debugging FAQs .207

EPPCLinux.book Page 6 Wednesday, March 23, 2005 6:34 PM

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Table of Contents

7

Targeting Embedded PowerPC Linux

Index 209

EPPCLinux.book Page 7 Wednesday, March 23, 2005 6:34 PM

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Table of Contents

8

Targeting Embedded PowerPC Linux

EPPCLinux.book Page 8 Wednesday, March 23, 2005 6:34 PM

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

9

Targeting Embedded PowerPC Linux

1

Introduction

This manual explains how to use the CodeWarrior™ Integrated Development
Environment (IDE) to develop software for the embedded Linux

®

 operating system. The
CodeWarrior™ IDE software supports the embedded Linux operating system on specific
target platforms, such as PowerPC

™

, ARM

®

, and ColdFire

®

.

NOTE

You can use the CodeWarrior

™

 Development Studio for Embedded Linux
software on a computer running the Linux Operating System (OS). For system
requirements, refer the

Quick Start

 document located in the CodeWarrior
installation directory.
For a list of target platforms supported by this product, see “Supported Target

Processors” on page 126.

This chapter has these sections:

• Read the Release Notes

• Features

• About This Manual

• Conventions Used in This Manual

• Documentation Overview

Read the Release Notes

Before using the CodeWarrior™ IDE, read the release notes. The release notes contain
important information about last minute changes, bug fixes, incompatible elements, or
topics that may not be included in the documentation.

Release notes are located here:

CWInstall

/CodeWarriorIDE/

If you are new to the CodeWarrior™ IDE, read this chapter and the “Getting Started” on
page 15 chapter carefully. This chapter provides references to resources of interest to new
users. The Getting Started chapter provides an overview of the CodeWarrior development
tool.

EPPCLinux.book Page 9 Wednesday, March 23, 2005 6:34 PM

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Introduction

Features

10

Targeting Embedded PowerPC Linux

NOTE

The release notes for specific components of the CodeWarrior™ IDE are
located at this location:

CWInstall

/CodeWarriorIDE/Release_Notes

Features

This CodeWarrior product has the following features:

• Newer version of the CodeWarrior™ IDE.

• Support for creating and debugging applications, shared library, and static library.

• Support for debugging multiple applications, threads, and processes at the same time.

• Support for debugging the Linux kernel. For more information, see “Kernel
Debugging” on page 136.

• Support for loading and debugging the kernel modules. For more information, see
“Kernel Module Debugging” on page 157.

• Support for debugging Linux kernel using custom target platform or board support
packages (BSP). For more information, see “Debugging Kernel Using Custom
Target Platform/BSP” on page 155.

• XML files with pre-configured settings for debugging the Linux kernel on supported
target platforms/board support packages (BSP’s).

• Support for debugging bootloader (u-boot). For more information, see “Debugging
u-boot” on page 132.

• Sample projects for debugging applications and kernel modules.

• Integrated version control system. For details, refer the

IDE User’s Guide

.

NOTE

The CodeWarrior Development Studio for Embedded Linux product targeting
the ColdFire

®

 target platforms currently does not support shared library and

multi-thread debugging.

About This Manual

Table 1.1 describes the contents of this manual.

EPPCLinux.book Page 10 Wednesday, March 23, 2005 6:34 PM

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Introduction

About This Manual

11

Targeting Embedded PowerPC Linux

Table 1.1 Manual Contents

Chapter / Appendix Description

Introduction a general description of the development tools, where
to find the product-specific release notes and release
notes for specific CodeWarrior IDE components,
product features, contents of this manual, and where to
go next and the documentation formats available with
the product

Getting Started detailed description of the various features of the
development tool and how to obtain a license for the
product

Application Tutorial a tutorial teaching how to write and debug programs
using the CodeWarrior IDE

Target Settings detailed information on project target settings common
across all the target platforms supported by the
CodeWarrior™ Development Studio for Embedded
Linux

Common Application
Debugging Features

detailed description of the application debugging
features that are common across all the target
platforms supported by the CodeWarrior™
Development Studio for Embedded Linux.

This chapter also describes how to set up remote
debugging and how to use MetroTRK to debug
embedded Linux projects with the CodeWarrior IDE

Other Common Features describes how to: generate new makefile projects using
the Makefile Importer Wizard, strip binary files using
the Post Linker Stripper utility, and use the Shell Tool
Post Linker utility to add and open shell scripts after the
project is built

Target Platform-Specific
Features

describes the debugging features specific to PowerPC-
based target platforms. This chapter also lists
supported target processors, and describes the files
and settings that you may require for running your
application successfully on an PowerPC-based target
platform.

Third Party Cross Compiler
Tools

describes the settings that you need to change before
building your project using customized cross compiler
tools

EPPCLinux.book Page 11 Wednesday, March 23, 2005 6:34 PM

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Introduction

Conventions Used in This Manual

12

Targeting Embedded PowerPC Linux

Conventions Used in This Manual

Table 1.2 describes the notation conventions in the targeting manual.

Documentation Overview

As part of CodeWarrior installation, we provide documentation in the following formats:

• Adobe Acrobat PDF Files

• CodeWarrior Online Help

Adobe Acrobat PDF Files

The CodeWarrior documentation is available as PDF documents in:

Using PCS to Build Kernel overview of the Platform Creation Suite (PCS) tool and
steps on how to build your Linux kernel using the PCS
tool

Frequently Asked Questions frequently asked questions about the CodeWarrior IDE

Table 1.2 Notation Conventions in This Manual

Notations Description

Bold text

used to indicate the name of GUI elements, such as screens,
dialog boxes, and commands

Italics

used to highlight or emphasize a specific term or a manual

Hyperlinks indicates references to chapter titles or section titles in the
manual

Program Code

used to indicate program code, file name, file path, and directory
structure

Menu Command

On Linux: a menu sequence displayed as

GNOME
Menu > System Tools > Terminal

 can be interpreted as, to
launch the

command line

, you must first click

GNOME Menu

,
then select System Tools and then click

Terminal

Table 1.1 Manual Contents (

continued

)

Chapter / Appendix Description

EPPCLinux.book Page 12 Wednesday, March 23, 2005 6:34 PM

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Introduction

Other Resources

13

Targeting Embedded PowerPC Linux

CWInstall

/CodeWarriorIDE/CodeWarrior/Help/PDF

To view these documents, you must have the Adobe

®

 Acrobat

®

 Reader™ software. You
can download this software from:

http://www.adobe.com/acrobat

CodeWarrior Online Help

On Linux systems, the CodeWarrior manuals are provided as HTML files in the folder:

CWInstall

/CodeWarriotIDE/CodeWarrior/Help

For help with questions about using the CodeWarrior™ IDE and error messages, use the
CodeWarrior online help,

To view these documents, start the CodeWarrior™

IDE and select

Help > CodeWarrior
Help

.

Other Resources

• See the

IDE User’s Guide

 for complete information about the CodeWarrior
Integrated Development Environment and debugger.

• Read “CodeWarrior Development Tools” on page 16 for an overview of how the
CodeWarrior™ IDE is used to develop software for embedded Linux running on a
supported-target platform.

• See “Application Tutorial” on page 21 for a tutorial showing how to use the
CodeWarrior™ IDE to create software for embedded Linux running on a supported-
target platform.

• Look for the CodeWarrior tutorials projects on your product CD-ROM.

• To learn how to write device drivers for Linux systems, see

http://
www.xml.com/ldd/chapter/book/

.

EPPCLinux.book Page 13 Wednesday, March 23, 2005 6:34 PM

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Introduction

Other Resources

14 Targeting Embedded PowerPC Linux

EPPCLinux.book Page 14 Wednesday, March 23, 2005 6:34 PM

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

15Targeting Embedded PowerPC Linux

2
Getting Started

This chapter provides an overview of the CodeWarrior™ development tool.

This chapter has these sections:

• Licensing

• CodeWarrior Development Tools

• CodeWarrior Development Process

NOTE For system requirements information, refer the Quick Start Guide located in
the CD-ROM root.

Licensing

Web-based licensing is available. It is a server licensing solution that generates FlexLM
v8 or later based license keys automatically over the world wide web through a
registration/activation process. You can register and activate permanent, node-locked
license keys. Metrowerks products are shipped to customers with registration cards that
contain a unique registration number. Products that ship with a one year annual support
certificate will also have a unique registration number.

During product installation you will be instructed to register at http://
www.metrowerks.com/mw/register. You can also reach the registration website by
selecting the Help > Register Product menu command from the IDE main menu.
Registration from the website collects the registration code and verifies it against the
correct product and gathers contact information. An email will be sent to you with the
License Authorization Code and instructions.

In the IDE you can select Help > License Authorization to display the License
Authorization dialog box. Enter the License Authorization Code and select an ethernet
address from the Node lock ID for license dropdown list, if one exists. After entering the
authorization code, the CodeWarrior IDE will make an HTTP call to the Metrowerks
licensing server with the activation code and generate the permanent

license keys. If necessary, enter your Proxy Settings to connect to the internet. The
resulting license keys are automatically updated into the license.dat text file of the
CodeWarrior product executing the authorization. You can also manually edit the
license.dat file per instructions provided in the License_Install.txt file in the root

EPPCLinux.book Page 15 Wednesday, March 23, 2005 6:34 PM

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Getting Started
CodeWarrior Development Tools

16 Targeting Embedded PowerPC Linux

folder of your CodeWarrior installation path. If the IDE evaluation period expires prior to
activation, you will have to manually edit the license.dat file.

CodeWarrior Development Tools
Programming for embedded Linux® on a supported target platform is much like
programming for any other target platform in CodeWarrior™ IDE. If you have never used
the CodeWarrior™ IDE, then you should read these sections:

• Overview of the CodeWarrior IDE

• Cross Compilers, Linkers, and Related Tools

• CodeWarrior Debugger

• Metrowerks Target Resident Kernel

Overview of the CodeWarrior IDE
The CodeWarrior™ IDE lets you write, compile, and debug your software. The
CodeWarrior IDE has a project manager, source code editor, compilers and linkers, and a
debugger.

The project manager may be new to those more familiar with command-line development
tools. All files and settings related to your project are organized in the project manager.
The project manager lets you see your project at a glance, and eases the organization of
and navigation among your source code files. The CodeWarrior IDE also manages all
build dependencies.

A project may contain multiple build targets. A build target is a separate build (with its
own settings) that uses some or all of the files of the project. For example, you can have a
debug version and a release version of your software as separate build targets in the same
project.

For more information about how the CodeWarrior™ IDE compares to a command-line
environment, see “CodeWarrior Development Process” on page 18. That short section
discusses how various parts of the CodeWarrior IDE implement the features of a
command-line development system based on makefiles.

The CodeWarrior™ IDE has an extensible architecture that uses plug-in compilers and
linkers to target various operating systems and microprocessors.

For more information about the CodeWarrior™ IDE, read the CodeWarrior IDE User’s
Guide.

EPPCLinux.book Page 16 Wednesday, March 23, 2005 6:34 PM

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Getting Started
CodeWarrior Development Tools

17Targeting Embedded PowerPC Linux

Cross Compilers, Linkers, and Related
Tools
The CodeWarrior™ IDE uses the cross compiler tools created using GNU Compiler
Collection (GCC) sources to generate code that runs on the embedded Linux platform.

The CodeWarrior IDE setup program installs the proper cross GCC components. GCC
components are cross compiler tools that let you build your project files on a Linux host
PC. See “Cross Compiler Tools Location” on page 176 for information on locating the
cross compiler tools executable binaries for your target platform.

The GNU Tools settings panel lets you select the cross compilers and linkers used by the
CodeWarrior IDE. For more information on this settings panel, see “GNU Tools” on page
46.

“Target Settings” on page 35 describes the various embedded Linux linker and compiler
settings.

CodeWarrior Debugger
The CodeWarrior™ debugger controls the execution of your program and allows you to
see what is happening internally as your program runs.

You use the debugger to find problems in your program. The debugger can execute your
program one statement at a time, and suspend execution when control reaches a specified
point. When the debugger stops a program, you can view the chain of function calls,
examine and change the values of variables and registers.

For general information about the debugger, including all of its common features and its
visual interface, you should read the CodeWarrior IDE User’s Guide.

For more information about debugging software for CodeWarrior™ Development Studio
for Embedded Linux for different target platforms, see “Common Application Debugging
Features” on page 55.

Metrowerks Target Resident Kernel
Metrowerks Target Resident Kernel (MetroTRK) is a highly-modular, reusable debug
server that resides on the target system and communicates with the CodeWarrior
debugger.

On embedded Linux systems, MetroTRK is packaged as a regular Linux application for
use with the CodeWarrior debugger.

The MetroTRK source code is provided to you so that you can modify it to work in
custom situations.

For more information on MetroTRK, see “Using MetroTRK” on page 56.

EPPCLinux.book Page 17 Wednesday, March 23, 2005 6:34 PM

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Getting Started
CodeWarrior Development Process

18 Targeting Embedded PowerPC Linux

CodeWarrior Development Process
While working with the CodeWarrior™ IDE, you will proceed through the development
stages familiar to all programmers: writing code, compiling and linking, and debugging.
For complete information on performing tasks like editing, compiling, debugging, and
linking, refer to the CodeWarrior IDE User’s Guide.

The difference between the CodeWarrior™ IDE and traditional command-line
environments is in how the software helps you manage your work more efficiently. If you
are unfamiliar with an integrated environment in general, or with the CodeWarrior IDE in
particular, you may find the topics in this section helpful. Each topic explains how one
component of the CodeWarrior™ IDE relates to a traditional command-line environment.

• Projects

• Editing Source Code

• Compiling

• Linking

• Debugging

• Viewing Preprocessor Output

• Checking Syntax

• Disassembling

Projects
The CodeWarrior project is analogous to a makefile, or a collection of makefiles. A
CodeWarrior project can contain multiple build targets. For example, a project might be
configured to build both a debug version and a release version of your executable file.

A major difference between the CodeWarrior™ IDE and make is that make works
backwards from object files to source code files (backward chaining). In contrast, the
CodeWarrior™ IDE works forward from source code files to object files (forward
chaining).

Another major difference is that make defines each step of the build process (such as
source to object, object to library, library to executable file) and there may be an arbitrary
number of steps during a build. By contrast, the CodeWarrior™ IDE uses a fixed build
model for each target: build sub-targets, precompile, compile, pre-link, link, and post-link.

The CodeWarrior IDE lists all the project’s files in the project window. The input files
include source code files, third-party object code files, libraries, scripts and sub-project
files. Header files and documentation files are sometimes included in a project for the
convenience of having all files listed in one place; but these files are ignored during the
build process.

EPPCLinux.book Page 18 Wednesday, March 23, 2005 6:34 PM

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Getting Started
CodeWarrior Development Process

19Targeting Embedded PowerPC Linux

The CodeWarrior™ IDE also lets you add source code files with unsupported file
extensions to your project. You can use the CodeWarrior IDE to associate the unsupported
file extensions to a CodeWarrior plug-in compiler. For details, refer to the CodeWarrior
IDE User’s Guide.

You can add or remove files easily. You can assign files to one or more different targets
within the project, so files common to multiple targets can be managed simply.

The CodeWarrior IDE manages all the dependencies between files automatically, and
tracks which files have been changed since the last build. When you rebuild, only those
files that have changed are recompiled.

Editing Source Code
The CodeWarrior™ IDE provides an integral text editor. It reads and writes text files in
UNIX, Mac OS, Linux, and MS-DOS/Windows formats.

To edit a source code file, or any other text file that is in a project, just double-click the
file’s name in the project window to open the file.

The editor window has excellent navigational (code browsing) features that let you switch
between related files, locate a particular function, mark a location within a file, or go to a
specific line of code.

Compiling
To compile a source code file, it must be among the files that are part of the current build
target. If it is, you simply select it in the project window and select Project > Compile.

To compile all the files in the current build target that have been modified since they were
last compiled, select Project > Bring Up To Date.

In Linux, and other command-line environments, object code compiled from a source
code file is stored in a binary file. The CodeWarrior IDE stores and manages object files
transparently.

Linking
To link object code into a final binary file, select Project > Make. This command brings
the current project up to date, then links the resulting object code into a final output file.

You control the linker through the CodeWarrior IDE. There is no need to specify a list of
object files. The CodeWarrior IDE keeps track of all object files automatically. Use the
CodeWarrior IDE project window Link Order view to control link order by arranging
files in the order in which you want them to be linked.

Use the GNU Target settings panel to set the name of the final output file. See “GNU
Target” on page 37. and “GNU Linker” on page 44 for more information.

EPPCLinux.book Page 19 Wednesday, March 23, 2005 6:34 PM

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Getting Started
CodeWarrior Development Process

20 Targeting Embedded PowerPC Linux

Debugging
To debug a project, make sure that the source file you want to debug has a debug mark
next to it in the debugging column of the project window.

When debugging code on remote target systems you will need to make sure that the Use
third party debugger option is disabled, and that compiler optimizations is set to 0.

To debug applications on the remote target, make sure that you have set up a remote
connection, specified remote debugging options, and launched MetroTRK on the target.

For details, see:

• “Create a Remote Connection” on page 58

• “Specify Remote Debugging Options” on page 60

• “Start MetroTRK on the Remote Target” on page 61.

Viewing Preprocessor Output
To view preprocessor output, select the file in the project window and select
Project > Preprocess. A new window appears that shows you how your preprocessed
file looks like. You can use this feature to track down bugs caused by macro expansion or
other subtleties of the preprocessor.

Checking Syntax
To check the syntax of a file in your project, select the file in the project window and
select Project > Check Syntax. If syntax or compilation errors are detected in the
selected file, a message window appears and displays the information about the errors.

Disassembling
To disassemble a compiled file in your project, select the file in the project window and
select Project > Disassemble. After disassembling a file, the CodeWarrior IDE creates
a.dump file that contains the disassembled file’s object code in stabs format. The.dump
file appears in a new window.

EPPCLinux.book Page 20 Wednesday, March 23, 2005 6:34 PM

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

21Targeting Embedded PowerPC Linux

3
Application Tutorial

The sections in this tutorial take you step-by-step through the CodeWarrior™ IDE
programming environment. This tutorial does not teach you programming. It teaches you
how to use the CodeWarrior™ IDE to write and debug applications for a target platform.

The program in this tutorial is a simple application that displays a text message in the
current terminal window. The project used to build the program is based on the
CodeWarrior C/C++ project stationery.

The tutorial has these sections:

• Create the Project

• Compile and Run the Project

• Debug the Application

Create the Project
This section shows you how to create a CodeWarrior project using the EPPC New Project
Wizard and how to set up the project to make a standalone application. The
CodeWarrior™ Development Studio for PowerPC ISA, Linux® Application/Platform
Edition v2.0 software allows you to develop applications for both hardware floating point
and software floating point. During installation, all the settings (cross tools and libraries)
required for creating an application are automatically copied to the correct location.

The steps required to do this are:

1. Create a New Project

2. Remove the Place-holder File

3. Add a New Source File to the Project

Create a New Project
To create a new project using the CodeWarrior™ IDE:

EPPCLinux.book Page 21 Wednesday, March 23, 2005 6:34 PM

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Application Tutorial
Create the Project

22 Targeting Embedded PowerPC Linux

1. Start the CodeWarrior IDE.

a. Navigate to CWInstall/CodeWarriorIDE/.

b. Double-click the cwide script file to start the CodeWarrior™ IDE. A message box
appears asking you to confirm whether to run the application or to display the
contents of the script file.

NOTE Alternatively, type ./cwide or navigate to CWInstall/
CodeWarriorIDE/CodeWarrior/ and type sudo ./CodeWarrior_IDE
in the terminal window to start CodeWarrior IDE.

c. Click Run. The CodeWarrior window (Figure 3.1) appears as a floating toolbar on

the Linux® desktop.

Figure 3.1 CodeWarrior Window

2. Create a new project using the EPPC New Project Wizard.

TIP Before you start creating a new project, we recommend you to add a remote
connection in the Remote Connections panel using Edit > Preferences. For
more information, see “Create a Remote Connection” on page 58.

a. Select File > New. The New dialog box appears.

b. Select EPPC New Project Wizard.

NOTE The default location for a new project is the same name as the Project name in
the drive where the CodeWarrior IDE is installed. For example, if the Project
name is test then the default location of this project will be
{Your_Home_Area}/test, where {Your_Home_Area} is the your home
directory.

For this tutorial we will create the tutorial project in a location other than the
default location.

c. Click Set to change the location of the new project. The Create New Project
dialog box appears.

d. Enter the project name in the File name text box. For example, test.

e. Navigate to the directory where you want to store the project.

EPPCLinux.book Page 22 Wednesday, March 23, 2005 6:34 PM

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Application Tutorial
Create the Project

23Targeting Embedded PowerPC Linux

f. Ensure that the Create Folder checkbox at the bottom of the Create New Project
dialog box is checked. The CodeWarrior IDE lets you create your own project
folder that will hold all your project files.

g. Click Save to return to the New dialog box. The name of the project you specified
now appears in the Project name text box (Figure 3.2).

Figure 3.2 The New Dialog Box

h. Click OK to continue. The first page of the EPPC New Project Wizard appears.

3. Select the stationery for which you want to create a project.

a. Select the Application level debug option in the stationery type list.

NOTE For creating a kernel module project from the stationery, select the Kernel
module level debug option in the stationery type list.

b. Click Next. The second page of the EPPC New Project Wizard appears.

4. Select the output type and the programming language of the stationery.

a. Select the Application, Shared Library, Static Library options in the output
type list to display the C/C++ project stationery choices. For this tutorial, let us
select the Application item in the output type list and the CPP item in the
languages list (CPP stands for C++).

NOTE This wizard page does not appear, if you have selected the Kernel module
level debug option from the stationery type list.

b. Click Next. The third page of the EPPC New Project Wizard appears.

5. Select the target platform and the target processor.

EPPCLinux.book Page 23 Wednesday, March 23, 2005 6:34 PM

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Application Tutorial
Create the Project

24 Targeting Embedded PowerPC Linux

a. Select the board type for which you are creating the stationery from the board type
list (left pane). For this tutorial, let us select the 85xx item.

b. Select the corresponding target processor for the selected board type from the
processors list. For this tutorial. let us select the PowerPC 8560 item.

c. Click Next. The fourth page of the EPPC New Project Wizard appears.

6. Specify a remote connection for this project.

NOTE This page displays all those remote connection names that you added using the
Remote Connections panel. See “Create a Remote Connection” on page 58
for steps on how to create a remote connection for your project.
The page display is empty, if you do not have a remote connection set in the
Remote Connections panel.

a. Select a MetroTRK-based (EPPC Linux MetroTRK) remote connection.

b. Click Next. The fifth page of the EPPC New Project Wizard appears.

7. Specify the path on the target platform where you want the executable binary to be
downloaded during the debugging process.

a. Enter /home/sample in the text box.

NOTE This tutorial assumes that you have an account named sample on the target
platform running the embedded Linux operating system.
Ensure that the specified remote path exists and contains read/write
permissions.

b. Click Finish. The CodeWarrior IDE creates the new C++ project (Figure 3.3).

Figure 3.3 The Project Window

When generating the new project, the CodeWarrior IDE creates these items in the
tutorial folder:

EPPCLinux.book Page 24 Wednesday, March 23, 2005 6:34 PM

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Application Tutorial
Create the Project

25Targeting Embedded PowerPC Linux

• test.mcp—The project file

• Source— A folder that contains the generic (place-holder) source file
(main.cpp). The place-holder filename may vary depending on the language
you selected in the wizard.

• test_Data—The project data folder

• bin—A folder that will contain the executable binary after the project is built
successfully

NOTE The project data folder has files that contain information about the project file,
various Target Settings, and object code. If the contents of this folder are
changed, the CodeWarrior IDE may lose project settings. Do not change the
contents of this folder.

Remove the Place-holder File
Part of the stationery used to create your new project is the place-holder source file. For
example, main.cpp.

Normally, you might use this file as a starting point to write your program. But, as part of
this tutorial, you will need to remove the place-holder file from the project and create your
own source file.

Select the place-holder file in the project window by clicking it once. With the file
selected, select Edit > Remove. The CodeWarrior IDE asks you if you are sure you want
to remove the file from the project. Click OK to confirm removal. The place-holder file is
no longer visible in the project window.

NOTE The place-holder file is removed from the project and does not appear in the
project window. However, this file is not deleted from the project folder. You
may leave the file in the project folder or remove it without affecting your
project.

Add a New Source File to the Project
After removing the place-holder file from the project you can create your own source file
in place of the place-holder file you removed. You also need to add the new source file to
the project you created so that the source code in the new source file is compiled with the
rest of the project.

NOTE Before you add a new text file to your project window, ensure that the Source
item in the project window is selected.

EPPCLinux.book Page 25 Wednesday, March 23, 2005 6:34 PM

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Application Tutorial
Create the Project

26 Targeting Embedded PowerPC Linux

1. Create a new text file.

a. Select File > New. The New dialog box appears.

b. Click the File tab in the New dialog box. The File page (Figure 3.4) appears.

Figure 3.4 The File Page

c. Select the Text File item.

NOTE You may also select File > New Text File to create a new text file.

d. Type MyHello.cpp as the file name of the text file in the File name text box. The
.cpp extension enables the CodeWarrior IDE to recognize this file as a source
code file.

NOTE If your project is a C project, you must specify .c as the extension of your file
name.

NOTE The File Mappings settings panel lets you associate file name extensions with
a CodeWarrior plug-in compiler. For details, refer to the CodeWarrior IDE
User’s Guide.

e. The Location text box displays the path of the project folder you created. The
MyHello.cpp file is stored in this location.

2. Add the source file to the project.

EPPCLinux.book Page 26 Wednesday, March 23, 2005 6:34 PM

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Application Tutorial
Create the Project

27Targeting Embedded PowerPC Linux

a. Check the Add to Project checkbox. The Project list box (Figure 3.5) becomes
available and the Targets box displays the names of the build targets available for
this project.

Figure 3.5 Adding Source File to the Project

b. Select test.mcp from the Project list box.

3. Select build targets to which the file should be added.

a. Check the Application Debug checkbox, if not checked.

b. Click OK to continue. The CodeWarrior IDE adds the file to the project and
displays the file in the project window.

NOTE If you do not see the MyHello.cpp file, the Source group may be closed.
Click the plus sign to the left of folder icon to open the group.

Additionally, the MyHello.cpp editor window (Figure 3.6) is displayed.

EPPCLinux.book Page 27 Wednesday, March 23, 2005 6:34 PM

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Application Tutorial
Compile and Run the Project

28 Targeting Embedded PowerPC Linux

Figure 3.6 Editor Window

4. Enter the source code.

Enter the source code of Listing 3.1 into the editor window.

Listing 3.1 New application source code

#include <iostream.h>

int main(int argc, char**argv) {

 cout << "My first CodeWarrior application!" << endl << endl;
 return to system; // a deliberate syntax error

}

5. Save the new source file.

To save your source file, select File > Save.

You are now ready to compile and run and debug the project using the CodeWarrior™
IDE.

Compile and Run the Project
Before continuing, you need to set up the project for debugging. This section shows you
how to launch the debugger from within the CodeWarrior™ IDE. This section covers the
following topics:

• Select the Appropriate Linker

• Set Up Remote Debugging

• Build the Application

• Fix the Error

EPPCLinux.book Page 28 Wednesday, March 23, 2005 6:34 PM

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Application Tutorial
Compile and Run the Project

29Targeting Embedded PowerPC Linux

Select the Appropriate Linker
NOTE By default, the project stationery used to create this project is set up to use the

linker specific to the target platform for which you are writing the application.

To check target settings:

1. Select Edit > Target Settings (where Target is the name of the current build target
displayed in the project window) to open the Target Settings window.

2. Select Target Settings from the Target Settings Panels list. The Target Settings
panel appears. For more information about the Target Settings panel, see “Target
Settings” on page 35.

3. Select the appropriate linker from the Linker list box.

4. Click Save to save the new linker setting and close the Target Settings window.

The build target is now set up to use the selected linker.

NOTE This change only applies to the current build target. Before using another build
target, you must switch to the appropriate linker in that build target as well.

Set Up Remote Debugging
The CodeWarrior™ IDE lets you debug code on the remote target. The CodeWarrior
debugger uses a Linux program called Metrowerks Target Resident Kernel (MetroTRK)
to control the debug session on the remote system. MetroTRK allows the CodeWarrior
IDE to connect to a remote system via serial connections or ethernet connections.

Before you can debug a project remotely, you need to:

• Set up the target board

• Create a remote connection for debugging

• Specify remote debugging options

• Launch MetroTRK on the target board

“Remote Debugging Setup” on page 57 provides detailed information on creating a
remote connection, specifying remote debugging options, and launching MetroTRK on
the remote target.

Build the Application
Select Project > Make. The CodeWarrior IDE calls the GCC cross compiler tools to
compile and link your code into the finished application.

EPPCLinux.book Page 29 Wednesday, March 23, 2005 6:34 PM

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Application Tutorial
Compile and Run the Project

30 Targeting Embedded PowerPC Linux

While the CodeWarrior IDE is building your project, the check marks to the left of the
files in the project window are erased. This indicates that the files no longer need to be
built. In the Code column, the number of bytes of code is updated.

The CodeWarrior IDE displays any errors it finds during the make process in the Errors
& Warnings window. Syntax errors are usually the result of typos, incorrect variable
definitions, or incorrect class information. The tutorial code has one deliberate error,
which is discussed in the next section.

Fix the Error
The Errors & Warnings window (Figure 3.7) displays a list of errors the compiler found
when the CodeWarrior IDE tried to make the project. In this case, there is only one error.

The source view of the Errors & Warnings window is editable. You can edit and save
your code directly from this window. There is no need to open up the source file and try to
find the error manually. This is a great time saver if you have many errors.

Figure 3.7 The Errors & Warnings Window

The line of code shown in Listing 3.2 contains a syntax error. Fix this line and recompile
the project.

Listing 3.2 Syntax error

return to system; // a deliberate syntax error

1. Correct the problem line.

a. Change the problem line to:

 return 0; // fixed!

2. Save the corrected code.

a. Select File > Save to save the file. Close the Errors & Warnings window.

3. Build the project again.

EPPCLinux.book Page 30 Wednesday, March 23, 2005 6:34 PM

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Application Tutorial
Debug the Application

31Targeting Embedded PowerPC Linux

a. Select Project > Make to build the project again. The project should build
without errors this time.

Debug the Application
This section explains you how to test whether the application actually runs as expected.

1. Launch the Debugger.

a. Select Project > Debug. The CodeWarrior IDE launches the debugger, passing it
the application generated by the build, and hides any open editor windows. The
debugger then displays the debugger window (Figure 3.8).

NOTE To be able to successfully debug regular applications, the following library file
ld.so.1 must exist unstripped on the target platform. If the above library is a
symbolic link then the file it points to must be unstripped.

Figure 3.8 Debugger Window

EPPCLinux.book Page 31 Wednesday, March 23, 2005 6:34 PM

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Application Tutorial
Debug the Application

32 Targeting Embedded PowerPC Linux

NOTE For a detailed description of all of the components of CodeWarrior debugger
window, see the CodeWarrior IDE User’s Guide.

2. Select Debug > Step Over.

3. Step through the rest of the application until you get to the end of the program.

4. Select Debug > Kill.

You have successfully completed your first application by using the CodeWarrior IDE.

EPPCLinux.book Page 32 Wednesday, March 23, 2005 6:34 PM

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

33Targeting Embedded PowerPC Linux

4
Target Settings

The CodeWarrior™ IDE uses target settings to determine how it compiles, links, edits,
and debugs your project's build targets. This chapter discusses those target settings panels
that are specific to embedded Linux® programming. See the CodeWarrior IDE User’s
Guide for information about other settings panels.

NOTE For details on Linux kernel debugging target settings panels, see “Target
Platform-Specific Target Settings Panels” on page 165.

This chapter has these topics:

• Overview

• Target Settings Panels

Overview
Target settings are organized into panels that you can display in the CodeWarrior IDE
Target Settings window. Target is the name of the current build target displayed in the
project window. Different settings panels control various properties of a build target.
Figure 4.1 shows a sample Target Settings panel for a target platform supported by the
CodeWarrior™ Development Studio for Embedded Linux.

NOTE The Linker option may vary depending on the target platform for which you
are writing the application using the CodeWarrior™ Development Studio for
Embedded Linux.

EPPCLinux.book Page 33 Wednesday, March 23, 2005 6:34 PM

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Target Settings
Target Settings Panels

34 Targeting Embedded PowerPC Linux

Figure 4.1 Target Settings Window

Target Settings Panels
This section discusses only those target settings panels that are specific to embedded
Linux programming. These target settings panels are:

• Target Settings

• GNU Target

• GNU Assembler

• GNU Disassembler

• GNU Compiler

• GNU Post Linker

• GNU Linker

• GNU Environment

• GNU Tools

• Debugger Settings

• Console I/O Settings

• Debugger Signals

EPPCLinux.book Page 34 Wednesday, March 23, 2005 6:34 PM

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Target Settings
Target Settings Panels

35Targeting Embedded PowerPC Linux

Target Settings
The Target Settings panel is the most critical panel in the CodeWarrior™ IDE. Figure 4.2
shows two Target Settings panels for two different target platforms supported by the
CodeWarrior™ Development Studio for Embedded Linux.

Figure 4.2 Target Settings Panels for Different Target Platforms

This is the panel where you select the operating system and the microprocessor your
project runs on. You specify the name of the build target, as well as which linker to use for
the target platform. Also, you may select the post linker you want to use for stripping the
final output file size. For more information on post linker, see “Stripping Binary Files” on
page 120.

When you select a linker, you are specifying the target operating system or CPU. The
other panels change to reflect your choice.

The visibility of other related panels is affected by the linker you select. Therefore, you
must first select a linker before you can specify other target platform-specific options.

NOTE The Linker and the Post-linker options may vary depending on the target
platform for which you are writing the application using the CodeWarrior™
Development Studio for Embedded Linux.

EPPCLinux.book Page 35 Wednesday, March 23, 2005 6:34 PM

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Target Settings
Target Settings Panels

36 Targeting Embedded PowerPC Linux

This settings panel contains the following options:

Target Name
Enter a name (26 or fewer characters) for the selected build target in this text box. The
target name you specify here appears in the build target list box in the project window.
The CodeWarrior™ IDE assigns a default target name based on the stationery you select
in the EPPC New Project Wizard. For example, Application Debug, where Application is
the output type (application), and Debug is the debug version.

NOTE The CodeWarrior Embedded Linux targeting ARM and ColdFire target
platforms has cpp_app_debug as the default target name, where cpp is the
C++ language type, app is the output type (application), and debug is the debug
version.

Linker
The Linker list box lets you select the linker to use on the current build target. The linkers
displayed in this list box vary depending on the target platform for which you are writing
your application. For example, if you are writing an application for a PowerPC™-based
target platform, the list box displays EPPC Linux GNU Linker as choice.

Pre-linker
The Pre-linker list box lets you select the pre-linker to use on the current build target.
This is currently not implemented for any of the target platforms supported by the
CodeWarrior™ Development Studio for Embedded Linux.

Post-linker
The Post-linker list box lets you select the post linker to use on the current build target.
You can select two types of post linkers:

• GNU Post Linker - Stripper: Used by the linker to generate a stripped version of the
binary.

• Shell Tool Post Linker: Used by the linker to display the contents of the shell script
file included in the project. For more information, see “Using the Shell Tool Post
Linker” on page 123.

NOTE The post linker name may vary depending on the target platform for which you
are writing the application using the CodeWarrior™ Development Studio for
Embedded Linux.

EPPCLinux.book Page 36 Wednesday, March 23, 2005 6:34 PM

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Target Settings
Target Settings Panels

37Targeting Embedded PowerPC Linux

Output Directory
The Output Directory text box displays the selected location where the CodeWarrior™
IDE places the final compiled and linked output file. The default location is the directory
that contains the project file ({Project}). Click Choose to change the location. Click
Clear to remove the current location.

NOTE All relative paths specified using “.” or “..” are relative to the output
directory.

Save project entries using relative paths
To place the output file in a location other than the output directory, you can specify a
relative path after checking the Save project entries using relative paths checkbox.

The Save project entries using relative paths checkbox causes the CodeWarrior IDE to
store the location of a file using a relative path from one of the access paths. The settings
include:

• checked—The CodeWarrior IDE stores extra location information to distinctly
identify different source files with the same name. The CodeWarrior IDE remembers
the location even if it needs to search again for files in the access paths.

• clear—The CodeWarrior IDE remembers project entries only by name. This setting
can cause unexpected results if two or more files share the same name. In this case,
searching again for files could cause the CodeWarrior IDE to find the project entry in
a different access path.

GNU Target
Use the GNU Target settings panel (Figure 4.3) to specify these items:

• the project type

• the output file name

• the library SONAME

NOTE This settings panel is similar across all the target platforms supported by the
CodeWarrior™ Development Studio for Embedded Linux.

EPPCLinux.book Page 37 Wednesday, March 23, 2005 6:34 PM

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Target Settings
Target Settings Panels

38 Targeting Embedded PowerPC Linux

Figure 4.3 GNU Target Settings Panel

This settings panel contains the following options:

Project Type
Use the Project Type list box to select the project type for the build target. This list box
displays Application, Shared Library, and Library.

Table 4.1 defines each project type.

Table 4.1 Project Types

Project Type Description

Application A standalone application (such as cw.elf)

Shared Library A library that can be shared by multiple processes (such as
libcw.so) or dynamically loaded into a process (such as
CodeWarrior plug-ins)

Library A static library (such as staticlib.a)

EPPCLinux.book Page 38 Wednesday, March 23, 2005 6:34 PM

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Target Settings
Target Settings Panels

39Targeting Embedded PowerPC Linux

NOTE You can also create Linux kernel modules that can be loaded into the kernel at
runtime (such as printdriver.o).

Output File Name
Enter the name of the final output file for the build target in this text box.

The CodeWarrior IDE creates this file in the Output Directory. You can place the file
somewhere other than the default output directory by specifying a relative path in this
field.

Table 4.2 shows the default output file names for different types of projects.

SONAME
The SONAME list box is only available for shared library projects. For detailed
information on shared library, see “Shared Library Debugging” on page 63. SONAME
stands for shared object name. This list box lets you specify how the SONAME file will
be named. The SONAME you specify is used by the Linux dynamic loader to locate the
shared library on the target platform at runtime.

The options you can select from this list box are:

• None — does not assign a SONAME

• Default — assigns the name of the final output file as SONAME

• Custom — assigns a custom SONAME as specified in the Custom SONAME text
box

NOTE If you specify a custom SONAME, the shared object loader searches for the
custom SONAME file on the target while launching the application that uses a

Table 4.2 Default File Names

Project Type Default Output File Name

Application cw_dbg.elf and cw_rel.elf

Shared Library libexample_dbg.so and lbexample_rel.so

Library libexample_dbg.a and libexample_rel.a

Loadable
Module

module_dbg.o and module_rel.o

EPPCLinux.book Page 39 Wednesday, March 23, 2005 6:34 PM

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Target Settings
Target Settings Panels

40 Targeting Embedded PowerPC Linux

shared library. Make sure that the SONAME file exists on the target system
and is symbolically linked to the output file.

GNU Assembler
The GNU Assembler settings panel (Figure 4.4) lets you specify additional command line
options that are passed to the assembler when it is invoked by the CodeWarrior IDE.

Figure 4.4 GNU Assembler Settings Panel

You can enter the command line arguments for the GCC assembler in the Command Line
Arguments text box. The contents of this text box are passed to the gcc command line for
each file in your project as they are assembled.

NOTE This settings panel is similar across all the target platforms supported by the
CodeWarrior™ Development Studio for Embedded Linux.

GNU Disassembler
The GNU Disassembler settings panel (Figure 4.5) lets you display the assembly output
of the compiler while disassembling the source. Additionally, this panel lets you display
the archiver contents at the time of disassembly.

EPPCLinux.book Page 40 Wednesday, March 23, 2005 6:34 PM

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Target Settings
Target Settings Panels

41Targeting Embedded PowerPC Linux

Figure 4.5 GNU Disassembler Settings Panel

NOTE This settings panel is similar across all the target platforms supported by the
CodeWarrior™ Development Studio for Embedded Linux.

This settings panel contains the following options:

Command Line Arguments
You can specify the command line arguments for the GCC disassembler in the Command
Line Arguments text box. The contents of this text box are passed to the command line
disassembler tool for each file in your project as they are disassembled.

Show assembly output of compiler, when
disassembling source
Check this checkbox to use the compiler to disassemble source files. You will also be able
to view the assembly output of compiler, while it disassembles the source file.

If this checkbox is cleared, the CodeWarrior IDE uses the disassembler tool to
disassemble source files. Additionally, the command line arguments you specify in the
Command Line Arguments text box are passed to the command line disassembler tool.

EPPCLinux.book Page 41 Wednesday, March 23, 2005 6:34 PM

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Target Settings
Target Settings Panels

42 Targeting Embedded PowerPC Linux

Display content of archive at the time of
disassembly
Check this checkbox to use the archiver while disassembling libraries. You will be able to
view the list of objects archived in the library while it is being disassembled.

If this checkbox is cleared, the CodeWarrior IDE uses the disassembler tool. Additionally,
the command line arguments you specify in the Command Line Arguments text box are
passed to the command line disassembler tool.

GNU Compiler
The GNU Compiler settings panel (Figure 4.6) lets you specify command line arguments,
prefix file settings, and the format for generating debugging information.

Figure 4.6 GNU Compiler Settings Panel

NOTE This settings panel is similar across all the target platforms supported by the
CodeWarrior™ Development Studio for Embedded Linux.

This settings panel contains the following options:

EPPCLinux.book Page 42 Wednesday, March 23, 2005 6:34 PM

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Target Settings
Target Settings Panels

43Targeting Embedded PowerPC Linux

Command Line Arguments
You can specify the command line arguments for the GCC compiler in the Command
Line Arguments text box. The contents of this text box are inserted in the gcc command
line for each file in your project as they are compiled.

Prefix File
The file listed in the Prefix File text box corresponds directly to the -include
parameter of the GCC compiler. The CodeWarrior IDE includes the prefix file before each
source file in your project.

Use Custom Debug Format
Check the Use Custom Debug Format checkbox to let the compiler use a particular
format for generating debugging information.

The format in which you want to generate debugging information is specified in the
Debug Option text box. The CodeWarrior™ debugger uses the -gstabs or - Debug
With Arbitrary Record Format (DWARF2) custom debug format. This format is passed to
the GCC cross compiler tools.

If the Use Custom Debug Format checkbox is cleared, debugging information is
generated in the default format (-g).

GNU Post Linker
The GNU Post Linker settings panel (Figure 4.7) lets you specify additional command
line option that is passed to the post linker adaptor for generating a binary stripped of the
debug section. For detailed information on the post linker stripper feature, see “Stripping
Binary Files” on page 120.

NOTE This settings panel is similar across all the target platforms supported by the
CodeWarrior™ Development Studio for Embedded Linux.

EPPCLinux.book Page 43 Wednesday, March 23, 2005 6:34 PM

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Target Settings
Target Settings Panels

44 Targeting Embedded PowerPC Linux

Figure 4.7 GNU Post Linker Settings Panel

Enter the command line argument in the Command Line Arguments text box.

WARNING! Ensure that the command line arguments you specify strips only the
debug section from the binary file. For example, if you specify
command line argument that removes ELF Symbol Table from the
binary file, you may not be able to debug the stripped file on the target
platform because the ELF Symbol Table data is required by the
MetroTRK for debugging purpose.

GNU Linker
The GNU Linker settings panel (Figure 4.8) lets you specify additional command line
options that are passed to the GCC linker when it is invoked by the CodeWarrior IDE.

EPPCLinux.book Page 44 Wednesday, March 23, 2005 6:34 PM

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Target Settings
Target Settings Panels

45Targeting Embedded PowerPC Linux

Figure 4.8 GNU Linker Settings Panel

You can enter the command line arguments for the GCC linker in the Linker Flags and
Libraries text boxes. The contents of this text box are passed to the gcc command line
for each file in your project as they are linked.

NOTE This settings panel is similar across all the target platforms supported by the
CodeWarrior™ Development Studio for Embedded Linux.

GNU Environment
The GNU Environment settings panel (Figure 4.9) lets you specify environment
variables that are passed to the external compiler, linker, assembler, and other build tool
processes when they are invoked by the CodeWarrior IDE.

EPPCLinux.book Page 45 Wednesday, March 23, 2005 6:34 PM

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Target Settings
Target Settings Panels

46 Targeting Embedded PowerPC Linux

Figure 4.9 GNU Environment Settings Panel

The variables specified in this settings panel are passed to the GCC cross compiler tools.
For information on the environment variables, refer to the documentation supplied with
the external tools.

NOTE This settings panel is similar across all the target platforms supported by the
CodeWarrior™ Development Studio for Embedded Linux.

GNU Tools
The GNU Tools settings panel contains settings for the cross compiler tool path and
executable files that compile, assemble, link, disassemble, archive projects, and report the
code and data size of project files. This panel also allows you to specify the executable file
used by the post linker. For more information on post linker, see “Stripping Binary Files”
on page 120.

Figure 4.10 shows GNU Tools settings panel containing different cross compiler tools for
two different target platforms.

NOTE The cross compiler tool path and the names of the executable files may vary
depending on the target platform for which you are writing the application
using the CodeWarrior™ Development Studio for Embedded Linux.

EPPCLinux.book Page 46 Wednesday, March 23, 2005 6:34 PM

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Target Settings
Target Settings Panels

47Targeting Embedded PowerPC Linux

Figure 4.10 GNU Tools Settings Panel

This settings panel contains the following options:

Use Custom Tool Commands
Check the Use Custom Tool Commands checkbox to let the CodeWarrior IDE use the
GCC cross compiler tools you generated.

Tool Path
The Tool Path text box displays the path where cross compiler tools exist on your
computer. Click Choose to specify the location of the cross compiler tools to be used by
the CodeWarrior IDE. The Choose button is available only if you check the Use Custom
Tool Commands checkbox.

NOTE The cross compiler tools path may vary depending on the cross compiler tools
you are using. For cross compiler tools path information, see “Cross Compiler
Tools Location” on page 176.

Commands Area
The descriptions of the text boxes in the Commands Area are as follows:

• In the Compiler text box, specify the name of the compiler executable file from the
cross compiler tools.

EPPCLinux.book Page 47 Wednesday, March 23, 2005 6:34 PM

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Target Settings
Target Settings Panels

48 Targeting Embedded PowerPC Linux

• In the Linker text box, specify the name of the linker executable file from the cross
compiler tools.

• In the Archiver text box, specify the name of the cross compiler tools executable file
used for building static libraries.

• In the Size Reporter text box, specify the name of the cross compiler tools
executable file used for reporting the code and data size of the files in your project
after they are compiled. The code and data size of files are displayed in the project
window.

• In the Disassembler text box, specify the name of the cross compiler tools
executable file used for disassembling binary files, libraries, or object files.

• In the Assembler text box, specify the name of the cross compiler tools executable
file used for assembling the files in your project.

• In the Post Linker text box, specify the name of the cross compiler tool executable
file used for stripping debug information from the final output file. The file size of
the stripped file is reduced. For example, the cross compiler tool executable used
across all the target platforms supported by the CodeWarrior™ Development Studio
for Embedded Linux is strip.exe. For more information, see “Stripping Binary
Files” on page 120.

Display generated command lines
Check the Display generated command lines checkbox to view command line messages
while the project is being built.

Debugger Settings
The Debugger Settings panel (Figure 4.11) lets you configure activity logs, data-update
intervals, console encoding options, and other debugger-related options.

EPPCLinux.book Page 48 Wednesday, March 23, 2005 6:34 PM

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Target Settings
Target Settings Panels

49Targeting Embedded PowerPC Linux

Figure 4.11 Debugger Settings Panel

NOTE This settings panel is similar across all the target platforms supported by the
CodeWarrior™ Development Studio for Embedded Linux.

This settings panel contains the following options:

Location of Relocated Libraries and Code
Resources
In this text box, type the path of code resources or relocated libraries required for
debugging the project. Alternatively, click Choose to select the required files.

Stop on application launch
Check the Stop on application launch checkbox to halt program execution at the
beginning of a debugging session. You can halt program execution at these entry points:

• Program entry point — Select the Program entry point option button to halt
program execution upon entering the program

EPPCLinux.book Page 49 Wednesday, March 23, 2005 6:34 PM

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Target Settings
Target Settings Panels

50 Targeting Embedded PowerPC Linux

• Default language entry point — Select the Default language entry point option
button to halt program execution upon entering a default point defined by the
programming language

• User specified entry point— Select the User specified option button to halt
program execution at a specified function. Type the desired function name in the
corresponding text box.

Auto-target Libraries
Check the Auto-target Libraries checkbox to debug dynamically linked libraries (DLLs)
loaded by the target application.

Cache symbolics between runs
Checking the Cache symbolics between runs checkbox lets the CodeWarrior IDE save
the symbolics information it generates for a project. If you are debugging an application a
number of times, checking this checkbox lets the debug sessions start faster.

If this checkbox is cleared, the CodeWarrior IDE discards the symbolics information after
each debugging session ends.

NOTE Make sure that the Cache symbolics between runs checkbox is checked.
Otherwise, the console window will close when the debug session ends.

Log System Messages
Not supported in this release.

Stop at Watchpoints
Not supported in this release.

Update data every n seconds
Type the number of seconds (n) to wait before updating the data displayed in debugging-
session windows.

Console Encoding
The Console Encoding list box lets you specify the Japanese language encoding for
displaying the output of a program in the MetroTRK console window.

The encoding methods you can select are:

EPPCLinux.book Page 50 Wednesday, March 23, 2005 6:34 PM

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Target Settings
Target Settings Panels

51Targeting Embedded PowerPC Linux

• Shift - Japanese Industrial Standard (Shift-JIS)

• Extended Unix Code - Japanese (EUC-JP).

For more information on Japanese encoding methods, see this web site:

http://www.tlug.jp

Console I/O Settings
The Console I/O Settings panel (Figure 4.12) lets you specify where to redirect standard
input, standard output, and error messages while an application is being debugged.

NOTE This settings panel is similar across all the target platforms supported by the
CodeWarrior™ Development Studio for Embedded Linux.

Figure 4.12 Console I/O Settings Panel

You can redirect standard input, standard output, and error messages to:

• a file on the target system

• the debugger console window

• the console window from where you launched MetroTRK.

EPPCLinux.book Page 51 Wednesday, March 23, 2005 6:34 PM

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Target Settings
Target Settings Panels

52 Targeting Embedded PowerPC Linux

NOTE Standard input, standard output, and error messages cannot be redirected to the
debugger console window when you run an application without the debugger.

If you wish to redirect standard input, standard output, and error messages to a file on the
target system, you need to specify the full target-side path of the file. However, if the
target-side location of the file is the same as that of MetroTRK, you only need to specify
the file name.

This settings panel contains the following options:

Stdin List Box
Use the Stdin list box to specify from where you want the CodeWarrior IDE to read
standard input.

• Select the File option to read standard input from a file.

• Select the Debugger option to read standard input from the debugger console
window

• Select the Console I/O option to read standard input from the console window from
where you launched MetroTRK.

Stdout List Box
Use the Stdout list box to specify where you want the CodeWarrior IDE to write standard
output.

• Select the File option to write standard output to a file.

• Select the Debugger option to write standard output to the debugger console window

• Select the Console I/O option to write standard output to the console window from
where you launched MetroTRK.

Stderr List Box
Use the Stderr list box to specify where you want the CodeWarrior IDE to send standard
error messages.

• Select the File option to send standard error messages to a file.

• Select the Debugger option to send standard error messages to the debugger console
window

• Select the Console I/O option to send standard error messages to the console
window from where you launched MetroTRK.

EPPCLinux.book Page 52 Wednesday, March 23, 2005 6:34 PM

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Target Settings
Target Settings Panels

53Targeting Embedded PowerPC Linux

Debugger Signals
The Debugger Signals settings panel (Figure 4.13) is used to specify which signals the
CodeWarrior™ debugger should catch and/or pass on to the process being debugged. The
settings in this panel are passed to MetroTRK at the beginning of a debug session.

NOTE The Debugger Signals settings panel will not be visible in the target settings
window unless you create a remote connection to the target platform. For
details on creating a remote connection, see “Create a Remote Connection” on
page 58.

Figure 4.13 Debugger Signals Settings Panel

NOTE This settings panel is similar across all the target platforms supported by the
CodeWarrior™ Development Studio for Embedded Linux.

If the checkbox in the C (catch) column is checked, and a corresponding debugger signal
is raised in a process being debugged, MetroTRK sends an event to the CodeWarrior (or
host) debugger. Otherwise no event is sent. If the checkbox in the P (pass on) column is
checked, and the program is continued (either immediately or as a result of a debug
command), MetroTRK passes the signal on to the process being debugged.

EPPCLinux.book Page 53 Wednesday, March 23, 2005 6:34 PM

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Target Settings
Target Settings Panels

54 Targeting Embedded PowerPC Linux

NOTE Make sure to set the Debugger Signals settings panel to factory default by
clicking the Factory Settings button (not shown in Figure 4.13).

To ensure that the CodeWarrior IDE functions properly and the debugger is able to control
the process, make sure that these signals are set to be caught (factory setting):

• SIGINT(2)

• SIGILL(4)

• SIGTRAP(5)

• SIGURG(23)

Not catching these signals may cause certain features of the CodeWarrior IDE to function
improperly or to become unavailable.

EPPCLinux.book Page 54 Wednesday, March 23, 2005 6:34 PM

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

55Targeting Embedded PowerPC Linux

5
Common Application
Debugging Features

This chapter describes how to use the CodeWarrior™ IDE to debug code on the remote
target. The debugging features discussed in this chapter are common across all the target
platforms supported by the CodeWarrior™ Development Studio for Embedded Linux®.

This chapter has these topics:

• Remote Target Debugging - An Overview

• Using MetroTRK

• Remote Debugging Setup

• Shared Library Debugging

• Multi-threaded Debugging

• Debugging Binary Files With No Source Code

• Using the Attach to Process Feature

• Debugging Applications that use fork() and exec() System Calls

• Viewing Multiple Processes and Threads

• Viewing Process Information

Remote Target Debugging - An Overview
The CodeWarrior™ IDE lets you debug code on the remote target system. The
CodeWarrior debugger uses a Linux program called Metrowerks Target Resident Kernel
(MetroTRK) to control the debug session on the remote target system. MetroTRK allows
the CodeWarrior IDE to connect to a remote target system via serial or ethernet
connections.

Before you can debug a project remotely, you must also set up certain settings in the IDE
Preference panels and target settings panels. “Remote Debugging Setup” on page 57
provides information on how to set a project for remote debugging.

EPPCLinux.book Page 55 Wednesday, March 23, 2005 6:34 PM

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Common Application Debugging Features
Using MetroTRK

56 Targeting Embedded PowerPC Linux

Using MetroTRK
This section describes MetroTRK and provides information related to using MetroTRK
with the CodeWarrior™ IDE.

This section contains these topics:

• MetroTRK Overview

• Customizing MetroTRK

• Installing MetroTRK on the Remote Target

MetroTRK Overview
MetroTRK is a user-level application for use with the CodeWarrior debugger. You use
MetroTRK to download and debug applications built with the CodeWarrior™ IDE.
MetroTRK on the remote target system connects with the host computer via an ethernet
link or serial port by using the CodeWarrior IDE remote debugging feature. Refer to
“Remote Debugging Setup” on page 57 for an example of how the process works.
Detailed information on the remote debugging features of the CodeWarrior™ IDE is
available in the CodeWarrior IDE User’s Guide.

On embedded Linux systems, MetroTRK is packaged as a regular Linux application.
MetroTRK resides on the remote target system with the program you are debugging to
provide debug services to the CodeWarrior™ debugger.

NOTE The CodeWarrior IDE installation installs the source files for the MetroTRK
application. To know the path where the target-specific versions of the
MetroTRK source files are located in the CodeWarrior installation directory,
see “MetroTRK Project and Binary File Location” on page 176.

Customizing MetroTRK
You may customize the MetroTRK source code and recreate the MetroTRK binary for
your specific needs. To know the path where the target platform-specific version of the
MetroTRK project file is located in the CodeWarrior installation directory, see
“MetroTRK Project and Binary File Location” on page 176.

You can either make a copy of the project (and its associated source files) or directly edit
the original source.

To build the MetroTRK project successfully, make sure that these libraries are linked to
the project:

• libthread_db.so

• libutil.so

EPPCLinux.book Page 56 Wednesday, March 23, 2005 6:34 PM

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Common Application Debugging Features
Remote Debugging Setup

57Targeting Embedded PowerPC Linux

The MetroTRK project has build targets for:

• building a debug version of MetroTRK

• building a release version of MetroTRK

• building all the versions of MetroTRK one after another

NOTE For information on MetroTRK target names, see “MetroTRK Project - Build
Targets” on page 177.While we recommend that you build the MetroTRK
binary as explained in this section, you can also use the pre-built MetroTRK
binary available in your CodeWarrior installation directory. For location
information, see “MetroTRK Project and Binary File Location” on page 176.

Installing MetroTRK on the Remote Target
To use MetroTRK for debugging, you must install and launch it on the remote target
system.

After you have launched MetroTRK on the remote target, you can use the CodeWarrior
debugger to upload your application to the remote target system and debug the
application.

To install MetroTRK on the remote target system, you need to download the MetroTRK
binary file to a suitable location on the root file system of the remote target system.

You can use any of the available network utilities, such as File Transfer Protocol (FTP), to
transfer the MetroTRK binary from the host computer to the root file system of the remote
target system.

The procedure for launching MetroTRK is covered in “Start MetroTRK on the Remote
Target” on page 61.

Remote Debugging Setup
In order to debug a remote executable file, you must have a CodeWarrior project open in
the CodeWarrior™ IDE on the local computer. The project you are using on the local
computer must be the same project used to create the executable file that is running on the
remote target system.

Perform these steps to debug remote executable files:

• Create a Remote Connection

• Specify Remote Debugging Options

• Start MetroTRK on the Remote Target

• Start the Debugger

EPPCLinux.book Page 57 Wednesday, March 23, 2005 6:34 PM

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Common Application Debugging Features
Remote Debugging Setup

58 Targeting Embedded PowerPC Linux

Create a Remote Connection
First, you need to define the characteristics of the remote connection so that the
CodeWarrior IDE can connect to the remote machine. This example explains how to
specify the settings for a remote TCP/IP connection.

NOTE For more detailed information on the Remote Connections preference panel,
refer to the CodeWarrior IDE User’s Guide.

The steps to define a remote connection are as follows:

1. Display the Remote Connections panel.

a. Select Edit > Preferences. The IDE Preferences window appears.

b. Select Remote Connections from the IDE Preference Panels list to display the
Remote Connections panel (Figure 5.1).

Figure 5.1 Remote Connections Preference Panel

2. Add a new remote connection.

a. Click Add. The New Connection dialog box appears. This dialog box is where
you specify all information about the remote connection.

NOTE The New Connection dialog box displays the options for creating a serial
connection by default. For example, if you want to use a serial connection for
debugging, specify the connection name in the Name text box and select COM2,

EPPCLinux.book Page 58 Wednesday, March 23, 2005 6:34 PM

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Common Application Debugging Features
Remote Debugging Setup

59Targeting Embedded PowerPC Linux

115200, 8, None, 1, and None from the Port, Rate, Data Bits, Parity, Stop
Bits, and Flow Control list boxes.

b. Select TCP/IP from the Connection Type list box. The New Connection dialog
box (Figure 5.2) display changes.

Figure 5.2 New TCP/IP Connection

c. Type the remote connection name in the Name text box. The remote connection
name is used to identify the remote connection in other CodeWarrior IDE windows
and dialog boxes.

NOTE The Debugger list box displays the target platform-specific MetroTRK name.
For example, EPPC Linux MetroTRK for PowerPC™-based target platform
or ARM Linux MetroTRK for ARM®-based target platform.

d. In the IP Address text box, type the IP address of the remote target system and the
TCP/IP port number used for connecting to MetroTRK. For example, if the IP
address is 127.0.0.1 and the port number is 6969, type 127.0.0.1:6969.

NOTE Specifying a descriptive remote connection name is helpful. For example, you
might use the name “PPC Linux - 127.0.0.1:6969”, where PPC Linux is the
name of the target platform you are using. By specifying a descriptive name it
gives an indication of how the remote connection is to be used and the IP
address and port used by the connection.

e. Save the new remote connection.

f. Click OK. The system saves the remote connection and closes the New
Connection dialog box.

EPPCLinux.book Page 59 Wednesday, March 23, 2005 6:34 PM

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Common Application Debugging Features
Remote Debugging Setup

60 Targeting Embedded PowerPC Linux

g. Click Save.

h. Close the IDE Preferences window.

Specify Remote Debugging Options
Once the remote connection is set up, you must specify remote debugging options for the
build target.

1. Verify source code file debug settings.

Ensure that the source code files you want to debug have a mark next to their names in
the debug column of the project window.

2. Switch to the debug build target.

If the project has a debug build target, switch to the debug build target. Select the
target name from the build target list box in the project window.

3. Select a remote connection.

a. Open the Target Settings window by choosing Edit > Target Settings, where
Target is the name of the debug build target displayed in the project window.

b. Select Remote Debugging from the list of settings panels. The Remote
Debugging settings panel (Figure 5.3) appears.

Figure 5.3 Remote Debugging Settings Panel

EPPCLinux.book Page 60 Wednesday, March 23, 2005 6:34 PM

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Common Application Debugging Features
Remote Debugging Setup

61Targeting Embedded PowerPC Linux

c. Select the remote connection by using the Connection list box. The remote
connection you select here is the same remote connection you specified in “Create
a Remote Connection” on page 58.

NOTE Perform step 3(d) only if you have skipped step 4(a) in Section “Create a New
Project” on page 21 in the Application Tutorial chapter.

d. In the Remote download path text box, specify the location where the executable
binary is to reside on the remote target system. MetroTRK transfers the executable
binary to this location immediately before starting the debugger.

NOTE The Download OS checkbox lets you specify the location of the compressed
kernel image that should be downloaded to the target platform for a specific
remote connection. For more information, see “Download and Boot the
Kernel” on page 150.

4. Ensure that external debugging is disabled.

Ensure that the Use External Debugger checkbox in the Build Extras settings panel
is cleared.

Start MetroTRK on the Remote Target
MetroTRK must be running on the remote target system before the debugger can connect
to the remote target system. The steps to launch MetroTRK on a remote target system
depend on the type of remote connection you are using.

Starting MetroTRK by Using TCP/IP Connection
To launch MetroTRK through a TCP/IP connection:

1. Connect to the remote target system.

a. Start the Terminal application.

b. At the command prompt, type telnet IP address, where IP
address is the IP address of the remote target system, and press Enter. Your
computer connects to the remote target.

2. Navigate to the target-system directory that contains the MetroTRK binary.

Type cd /Directory Name, where Directory Name is the name of
the target-system directory where you downloaded the MetroTRK binary, and press
Enter. The current directory changes.

EPPCLinux.book Page 61 Wednesday, March 23, 2005 6:34 PM

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Common Application Debugging Features
Remote Debugging Setup

62 Targeting Embedded PowerPC Linux

3. Launch MetroTRK on the remote target system.

Type./MetroTRK binary name.elf :port number, where MetroTRK
binary name is the name of the target-specific MetroTRK binary and port
number is the TCP/IP port number you specified while creating a remote
connection. For example, type ./AppTRK.elf :6969.

4. Press Enter. MetroTRK starts on the remote target system.

NOTE To reuse the console, you may start MetroTRK as a background process. For
example, if you want to start MetroTRK as a background process on the TCP/
IP port number 6969, the syntax is as follows: ./MetroTRK binary
name.elf :6969&.

Starting MetroTRK by Using Serial Connection
It is recommended that your computer have two serial ports if you want to debug
applications through a serial connection. This is because one serial port (for example,
COM1) of the host is connected to the first serial port (S0) of the target board while setting
up the target board. This connection is used for startup and console log messages from the
target board. You need to use another serial port (for example, COM2) of the host for
connecting to the second serial port (S1) of the target. This connection will be used by the
CodeWarrior™ debugger to communicate with MetroTRK.

To launch MetroTRK on the remote target by using a serial connection:

1. Connect a serial cable between the host computer serial port COM(x) and the second
serial port (S1) of the board. Here, x is the port number.

2. Launch the Terminal application with these settings: 115200, 8, N, 1, N.

3. Navigate to the target-system directory where you downloaded the prebuilt MetroTRK
binary.

In the Terminal serial connection console, type cd /Directory Name , where
Directory Name is the name of the target-system directory where the prebuilt
MetroTRK binary exists, and press Enter. The current directory changes.

4. Configure the serial port (S1) on which MetroTRK is to be launched.

The substeps that follow, enable you to configure the second serial port S1 of the
board as per the serial port settings of the host that you specified while creating a new
serial connection in the CodeWarrior IDE.

a. Type stty -F /dev/ttyS1 raw command in Terminal window and press
Enter. The serial connection is configured for raw mode of operation. If raw mode

EPPCLinux.book Page 62 Wednesday, March 23, 2005 6:34 PM

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Common Application Debugging Features
Shared Library Debugging

63Targeting Embedded PowerPC Linux

is not selected, the special characters sent as part of packet will be interpreted
(dropped) causing the connection to break.

b. Type stty -F /dev/ttyS1 ispeed 15200 command in Terminal window
and press Enter. The serial input speed is set to 115200-bauds.

c. Type stty -F /dev/ttyS1 ospeed 15200 command in Terminal window
and press Enter. The serial output speed is set to 115200-bauds.

d. Type stty -F /dev/ttyS1 crtscts command in Terminal Window and
press Enter. Handshake is enabled to make the serial connection more reliable.

e. Type stty -a -F /dev/ttyS1 to verify the current device settings.

5. Launch MetroTRK on the remote target platform.

Type ./MetroTRK binary name.elf/dev/ttyS1 command in the Terminal
window and press Enter. MetroTRK launches on the remote target board.

Start the Debugger
Select Project > Debug to start the CodeWarrior™ debugger. When you start the
debugger, the CodeWarrior IDE:

1. builds the target

2. connects to the remote MetroTRK process

3. transfers the executable file to the remote system

4. launches the executable file

5. starts the debugger

Shared Library Debugging
The CodeWarrior™ IDE allows source-level debugging of non-executable files, such as
shared libraries. When you debug an executable file with which a shared library interacts,
you can step into the shared library code.

The tutorial that follows demonstrates the shared library debugging feature for an
implicitly linked shared library.

In this tutorial, you will do the following:

• Create and build an example shared library

• Create and build an example application that implicitly links the example shared
library and debug the application

EPPCLinux.book Page 63 Wednesday, March 23, 2005 6:34 PM

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Common Application Debugging Features
Shared Library Debugging

64 Targeting Embedded PowerPC Linux

1. As a first step, create a project using the EPPC New Project Wizard and create two
new build targets with the following settings (Table 5.1):

NOTE For detailed information on how to create or remove build targets, refer the
IDE User’s Guide.

2. Remove the default main.c file and add the source files (SharedLibImplicit.c
and Library_Examples.c) to your project. The project window appears as shown
in Figure 5.4. For detailed information on how to add a new source file, see “Add a
New Source File to the Project” on page 25.

Table 5.1 Shared Library Project Settings

Project Name: SharedLibrary_Example

Project Location: /home/usr1/SharedSample

Languages: C

Build Targets: - Lib_Example_debug (generates a shared
library)

- Application_debug (generates an
executable binary)

Lib_Example_debug Build
Target -

- Output Type:

- Output File:

- Output File Location:

Shared Library

LibExample.so (implements the add_example
function)

/home/usr1/SharedSample/Output

Application_debug Build Target -

- Output Type:

- Output File:

- Output File Location:

Application

SharedLib_Application.elf (makes a call to the
add_example function routine)

/home/usr1/SharedSample/Output

EPPCLinux.book Page 64 Wednesday, March 23, 2005 6:34 PM

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Common Application Debugging Features
Shared Library Debugging

65Targeting Embedded PowerPC Linux

Figure 5.4 Source Files Added to the SharedLibrary_Example.mcp Project

3. Create two header files; LibExample.h and CWExample.h in your project directory.

4. Enter the source code of Listing 5.1 into the editor window of LibExample.h file.

Listing 5.1 Source Code for LibExample.h

/* LibExample.h */
int add_example(int x,int y);
int add_example_local(int x,int y)

5. Enter the source code of Listing 5.2 into the editor window of CWExample.h file.

Listing 5.2 Source Code for CWExample.h

/* CWExample.h */
 #define INFINITE_LOOP while(1);

6. Enter the source code of Listing 5.3 into the editor window of
SharedLibImplicit.c file.

Listing 5.3 Source Code for SharedLibImplicit.c

/* SharedlibImplicit.c */
/* Demonstrates implicit linking.*/
/*-----------------------------
User Include files
-----------------------------*/

#include “LibExample.h”
#include “CWExample.h”

EPPCLinux.book Page 65 Wednesday, March 23, 2005 6:34 PM

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Common Application Debugging Features
Shared Library Debugging

66 Targeting Embedded PowerPC Linux

/*---------------------------------
Function Prototype Declaration
---------------------------------*/

int temp(int, int);

/*---------------------------------
Main Program
---------------------------------*/
int main()
{
 int ret;
 int a,b;
 a= 10;
 b= 20;
 ret = temp(a,b);
 ret = add_example(a,b);//Step In here
 return ret;
}

int temp(int i,int j)
{
 return i+j;
}

7. Enter the source code of Listing 5.4 into the editor window of
Library_Examples.c file.

Listing 5.4 Source Code for Library_Examples.c

/* LibExample.c */

/*---------------------------
User Include files
---------------------------*/

#include "LibExample.h"

/*---------------------------
Functions Definitions
---------------------------*/
 int add_example(int x,int y)
{
 int p,q;
 p=100;
 q=p+200;
 add_example_local(2,3);//Step In here
 return x+y+q;

EPPCLinux.book Page 66 Wednesday, March 23, 2005 6:34 PM

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Common Application Debugging Features
Shared Library Debugging

67Targeting Embedded PowerPC Linux

}
 int add_example_local(int x,int y)
{
 int p,q;
 p=100;
 q=p+200;
 return x+y+q;
}

8. Add the pathname of the header files (CWExamples.h and LibExample.h) to both
the build targets.

a. Select the Lib_Example_debug build target from the build target list box in the
project window.

b. Click Target Settings button in the project window. The Target Settings window
appears.

c. Click Access Paths in the Target Settings Panels list. The Access Paths settings
panel appears, which displays the current search paths for locating and accessing
the build target’s system and header files.

d. Click in the User Paths list to select it.

e. Click Add. A file navigation dialog box appears.

f. Search for the location where the header files (CWExample.h and
LibExample.h) are stored in the project folder.

g. Select both the header files.

h. Click “Select <project folder>” in the file navigation dialog box. The header files
path location gets added to the User Paths list.

i. Repeat steps b to g for the Application_debug build target also.

NOTE Make sure that your project is using the correct cross compiler tools. To verify
or change the cross compiler tools path, click the System Paths option button
in the Access Paths settings panel.

Now, let us generate the shared library application and debug it. The following sections
describe how to debug a shared library:

• Build the Project

• Configure the Executable Build Target

• Configure the Library Build Target

• Debug the Shared Library

EPPCLinux.book Page 67 Wednesday, March 23, 2005 6:34 PM

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Common Application Debugging Features
Shared Library Debugging

68 Targeting Embedded PowerPC Linux

Build the Project
You first need to build the project to generate the shared library file and the executable
binary.

1. Build the SharedLibrary_Example.mcp project

a. Select the Lib_Example_debug build target from the build target list box in the
project window.

b. Select Project > Make. The CodeWarrior IDE builds the project and stores the
output file LibExample.so in the Output directory within the project directory.

c. Now, select the Application_debug build target from the build target list box in
the project window.

d. Select Project > Make. The CodeWarrior IDE builds the project and stores the
final output file SharedLib_Application.elf in the Output directory within
the project directory.

Configure the Executable Build Target
You need to set up the Application_debug build target by:

• verifying the final output file name

• adding LibExample.so to the Application_debug build target

• specifying the linker settings

• specifying the remote download path of the final executable file

• specifying the host-side location and the remote download path of the shared library

• specifying the environment variable that enables the shared object loader to locate
the shared library on the remote target at runtime

1. Make the Application_debug build target in the project window active, if it not
already active.

2. Verify the final output file name.

a. Select Edit > Target Settings, where Target is the name of the build target. The
Target Settings window appears.

b. Click GNU Target in the Target Settings Panels list. The GNU Target settings
panel (Figure 5.5) appears.

EPPCLinux.book Page 68 Wednesday, March 23, 2005 6:34 PM

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Common Application Debugging Features
Shared Library Debugging

69Targeting Embedded PowerPC Linux

Figure 5.5 GNU Target Settings Panel

c. Make sure that the Output File Name text box displays the name of the final
executable binary as SharedLib_Application.elf.

3. Add LibExample.so file to the Application_debug build target.

NOTE Before you add the LibExample.so file to the build target, make sure that the
File Mapping settings panel contains an entry for .so file type. If it is not
there, you need to add it to your shared library project. To add the
LibExample.so file your project, click Choose in the File Mapping panel
and navigate to the location where the LibExample.so file is located in your
computer. Select the file. The file gets added to the list. Select EPPC GNU
Obj Importer from the Compiler list box. Click Save to save the settings.

a. Right-click on the project window and select Add Files from the contextual menu.

b. Navigate to the directory where you have stored the LibExample.so file in your
project folder. For this tutorial it is:
/home/usr1/SharedSample/Output.

c. Select the LibExample.so file and click Open. The Add Files dialog box
(Figure 5.6) appears.

EPPCLinux.book Page 69 Wednesday, March 23, 2005 6:34 PM

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Common Application Debugging Features
Shared Library Debugging

70 Targeting Embedded PowerPC Linux

Figure 5.6 Add Files Dialog Box

d. Clear the checkmark adjacent to the Lib_Example_debug build target. This will
ensure that the LibExample.so file is not added to the Lib_Example_debug
build target.

e. Click OK. The LibExample.so file gets added to the Application_debug build
target (Figure 5.7).

Figure 5.7 LibExample.so Added to the Application_debug Build Target

4. Specify the linker settings.

EPPCLinux.book Page 70 Wednesday, March 23, 2005 6:34 PM

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Common Application Debugging Features
Shared Library Debugging

71Targeting Embedded PowerPC Linux

a. Click GNU Linker in the Target Settings Panels list. The GNU Linker settings
panel (Figure 5.8) appears.

Figure 5.8 GNU Linker Settings Panel

b. Type these command line arguments in the Libraries text box:

-lexample_dbg

NOTE The -lexample_dbg linker command line argument enables the
CodeWarrior™ IDE linker to locate the shared library LibExample.so. For
detailed information on other linker command line arguments, refer GNU
linker manuals. The manuals can be found at www.gnu.org.

5. Specify the remote download path of the final executable file.

EPPCLinux.book Page 71 Wednesday, March 23, 2005 6:34 PM

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Common Application Debugging Features
Shared Library Debugging

72 Targeting Embedded PowerPC Linux

a. Click Remote Debugging in the Target Settings Panels list. The Remote
Debugging settings panel (Figure 5.9) appears.

Figure 5.9 Remote Debugging Settings Panel

b. Make sure that the correct remote connection name is selected in the Connection
list box of the Remote Debugging settings panel.

c. Type /home/sample in the Remote Download Path text box. This specifies that
the final executable file will be downloaded to this location on the target platform
for debugging.

NOTE For this tutorial, the remote download path is specified as /home/sample. If
you wish, you may specify an alternate remote download path for the
executable file.

6. Specify the host-side location and the remote download path of the shared library.

a. Click Other Executables in the Target Settings Panels list. The Other
Executables settings panel (Figure 5.10) appears.

NOTE The Other Executables settings panel is displayed in the Target Settings
Panels list only when you select a MetroTRK-based remote connection from
the Connection list box in the Remote Connection settings panel.

EPPCLinux.book Page 72 Wednesday, March 23, 2005 6:34 PM

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Common Application Debugging Features
Shared Library Debugging

73Targeting Embedded PowerPC Linux

Figure 5.10 Other Executables Settings Panel

b. Click Add. The Debug Additional Executable dialog box (Figure 5.11) appears.

EPPCLinux.book Page 73 Wednesday, March 23, 2005 6:34 PM

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Common Application Debugging Features
Shared Library Debugging

74 Targeting Embedded PowerPC Linux

Figure 5.11 Debug Additional Executable Dialog Box

c. Click Choose in the File Location area. The Choose an Executable to Debug
dialog box appears.

d. Navigate to the location where you have stored the LibExample.so file in your
project directory. For this tutorial it is:
/home/usr1/SharedSample/Output.

e. Select the LibExample.so filename.

f. In Relative To list box, select Project.

g. Click Open. The host-side location of the shared library appears in the File
location text box.

h. Check the Download file during remote debugging checkbox.

NOTE If you do not want to download the selected file on the target platform, do not
check the Download file during remote debugging checkbox.

i. Type /home/sample in the Remote download path text box. The shared library
will be downloaded at this location when you debug or run the executable file.

The default location of shared libraries on the embedded Linux operating system is
/usr/lib. For this tutorial, the remote download location of LibExample.so is
/home/sample.

EPPCLinux.book Page 74 Wednesday, March 23, 2005 6:34 PM

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Common Application Debugging Features
Shared Library Debugging

75Targeting Embedded PowerPC Linux

j. Click OK. The settings are saved.

NOTE For detailed description of the Other Executables panel options, see the IDE
User’s Guide.

7. Specify the environment variable that enables the shared object loader to locate the
shared library on the remote target at runtime.

At runtime, the shared object loader first searches for a shared library in the path
specified by the LD_LIBRARY_PATH environment variable’s value. In this case, the
value of this environment variable will be /home/sample, which is the remote
download path for the shared library you specified in the Debug Additional
Executable dialog box. If you have not specified the environment variable or have
assigned an incorrect value, the shared object loader searches for the shared library in
the default location /usr/lib.

a. Click Runtime Settings in the Target Settings Panels list. The Runtime Settings
panel appears.

b. In the Environment Settings area, type LD_LIBRARY_PATH in the Variable text
box (Figure 5.12).

c. Type /home/sample in the Value text box.

Figure 5.12 Runtime Settings Panel

EPPCLinux.book Page 75 Wednesday, March 23, 2005 6:34 PM

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Common Application Debugging Features
Shared Library Debugging

76 Targeting Embedded PowerPC Linux

NOTE Make sure you type the same remote download path in the Value text box that
you specified in the Debug Additional Executable dialog box.

d. Click Add. The environment variable is added to the build target.

e. Click Save. The target settings are saved.

f. Close the Runtime Settings panel.

8. Build the project.

Select Project > Make. The final executable is built with new target settings.

Configure the Library Build Target
You need to configure the Lib_Example_debug build target by:

• verifying the final output file name

• specifying the host-side location of the executable file to be used for debugging the
shared library

• specifying remote debugging options

1. Make the Lib_Example_debug build target in the project window active.

2. Verify the final output file name.

a. Select Edit > Target Settings, where Target is the name of the build target. The
Target Settings window appears.

b. Click GNU Target in the Target Settings Panels list. The GNU Target settings
panel (Figure 5.13) appears.

EPPCLinux.book Page 76 Wednesday, March 23, 2005 6:34 PM

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Common Application Debugging Features
Shared Library Debugging

77Targeting Embedded PowerPC Linux

Figure 5.13 GNU Target Settings Panel

c. Make sure that the Output File Name text box displays the name of the final
executable as LibExample.so.

3. Specify the host-side location of the executable file to be used for debugging the
shared library.

a. Click Runtime Settings in the Target Settings Panels list. The Runtime Settings
panel appears.

b. Click Choose in the Host Application for Libraries & Code Resources section.
The Choose the Host Application dialog box appears.

c. Navigate to the location where you have stored the
SharedLib_Application.elf file in your project directory. For this tutorial it
is: /home/usr1/SharedSample/Output.

d. Select the SharedLib_Application.elf filename.

NOTE If the contents of the Output folder are not visible in the Choose the Host
Application dialog box, select All Files from the Files of Type list box.

e. Click Open. The location of the final executable file appears in the Host
Application for Libraries & Code Resources text box (Figure 5.14).

EPPCLinux.book Page 77 Wednesday, March 23, 2005 6:34 PM

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Common Application Debugging Features
Shared Library Debugging

78 Targeting Embedded PowerPC Linux

Figure 5.14 SharedLib_Application.elf Selected

f. In the Environment Settings area, type LD_LIBRARY_PATH in the Variable text
box.

g. Type /home/sample in the Value text box.

h. Click Add. The environment variable is added to the build target.

4. Specify remote debugging options.

a. Click Remote Debugging in the Target Settings Panels list. The Remote
Debugging settings panel appears.

b. Make sure that the correct remote connection name is selected in the Connection
list box of the Remote Debugging settings panel.

c. Type /home/sample in the Remote download path text box. This is the location
where the shared library will be downloaded on the target for debugging.

d. Check the Launch remote host application checkbox.

e. Type /home/sample/SharedLib_Application.elf in the text box below
the Launch remote host application checkbox.

f. Click Save to save the target settings.

g. Close the Remote Debugging settings panel.

5. Build the project.

Select Project > Make. The library is built with the new settings.

EPPCLinux.book Page 78 Wednesday, March 23, 2005 6:34 PM

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Common Application Debugging Features
Shared Library Debugging

79Targeting Embedded PowerPC Linux

Debug the Shared Library
In the steps that follow, you will launch the debugger. Next, you will step through the
code of the executable file SharedLib_Application.elf until you reach the code
that makes a call to the add_example function implemented in the shared library. At this
point, you will step into the code of the add_example function to debug it.

1. Make the Application_debug build target in the project window active.

2. Select Project > Debug. The debugger starts and downloads the
SharedLib_Application.elf and LibExample.so files to the specified
location on the remote target, one after another. The debugger (Figure 5.15) and
symbolics (Figure 5.16) windows appear.

Figure 5.15 Debugger Window

NOTE The Thread ID (TID) and Process ID (PID) format may vary across different
target platforms supported by the CodeWarrior™ Development Studio for
Embedded Linux.

EPPCLinux.book Page 79 Wednesday, March 23, 2005 6:34 PM

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Common Application Debugging Features
Shared Library Debugging

80 Targeting Embedded PowerPC Linux

Figure 5.16 Symbolics Window

NOTE For detailed information on symbolics window, see the IDE User’s Guide.

3. Step Over the code.

Click the Step Over button in the debugger window until you reach this line of code:
ret=add_example(a,b);.

4. Step into the code of the add_example function.

In the debugger window, click the Step Into button a couple of times to step into the
code of the add_example function. The debugger steps into the source code of the
add_example function in the Library_Examples.c file (Figure 5.17).

EPPCLinux.book Page 80 Wednesday, March 23, 2005 6:34 PM

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Common Application Debugging Features
Multi-threaded Debugging

81Targeting Embedded PowerPC Linux

Figure 5.17 Source Code of Library_Examples.c File

5. Step through rest of the code.

After stepping in, you can step through the rest of the code.

6. Run the rest of the application.

Click the Run button. The rest of the code is executed and the output appears in the
MetroTRK Console window.

You may also use the sample shared library project available in the CodeWarrior
installation directory. For location information, see “Sample Projects Location” on page
177.

Multi-threaded Debugging
In multi-threaded debugging, the breakpoints you set in the parent code are valid for all
the threads generated by the parent code. Execution of all the generated threads stops at
the breakpoint set in the parent code.

EPPCLinux.book Page 81 Wednesday, March 23, 2005 6:34 PM

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Common Application Debugging Features
Multi-threaded Debugging

82 Targeting Embedded PowerPC Linux

You can also set a thread-specific breakpoint (thread point), which is only valid for a
particular thread ID. The procedure for setting a thread point is similar to that of setting
any other eventpoint. Refer the IDE User’s Guide for details.

While debugging programs that have multiple threads, the CodeWarrior™ debugger
enables you to view separate debug windows for each thread being debugged. Each thread
debug window displays its own stack crawl, source, and variable views.

NOTE The CodeWarrior™ debugger also allows you to show all the threads being
debugged in a single thread window. For details, see “Viewing Multiple
Processes and Threads” on page 110.

The tutorial that follows, demonstrates multi-threaded debugging.

1. Create a new project with the following settings (Table 5.2):

The above step creates two build targets: c_app_debug and c_app_release. Since this
tutorial relates to debugging, only the first target is relevant.

2. Enter the source code of Listing 5.5 into the editor window of main.c file.

Listing 5.5 Source Code for main.c File

/* main.c */
/*---------------------------
System Include files
-----------------------*/
#include <pthread.h>
#include <stdio.h>
/*------------------------
User Include files
------------------------*/
#include "CWExample.h"
/*----------------------

Table 5.2 Multithread Project Settings

Project Name: multithread

Project Location: /home/usr1/multithread

Languages: C

Output Type: Application

Output File Name: Multithread_Example.elf

Location of the Output File: /home/usr1/multithread/Output

EPPCLinux.book Page 82 Wednesday, March 23, 2005 6:34 PM

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Common Application Debugging Features
Multi-threaded Debugging

83Targeting Embedded PowerPC Linux

Constants and Globals
------------------------*/
#define MAX_NUM_OF_THREADS 3
int sum; /* this data is shared by the thread(s) */
/*-------------------------
Function Prototypes
-------------------------*/
void *thread(void); // Thread routine
/*------------------------
Main Program
------------------------*/
int main(int argc, char *argv[])
{
 pthread_t tid[MAX_NUM_OF_THREADS]; /* the thread identifier */
 pthread_attr_t attr[MAX_NUM_OF_THREADS];/*set of thread attributes*/
 int i;
 if (argc != 2)
 {
 fprintf(stderr, “Please enter the number of threads you want
 to create!!\n");
 exit();
 }
 if ((atoi(argv[1]) < 0) || (atoi(argv[1]) > MAX_NUM_OF_THREADS))
 {
 fprintf(stderr,"The number of threads(%d) must be > 0 OR < %d
 \n atoi(argv[1]),MAX_NUM_OF_THREADS);
 exit();
 }
 printf("Number of threads to be created are :%d",atoi(argv[1]));
 fflush(stdout);
 /* get the default attributes */
 for (i=0;i<atoi(argv[1]);i++)
 pthread_attr_init(&attr[i]);
 /* create threads */
 for (i=0;i<atoi(argv[1]);i++)
 pthread_create(&tid[i], &attr[i],(void*)thread,NULL);
 /* now wait for the thread to exit */
 INFINITE_LOOP
 pthread_join(tid[i-1],NULL);
 printf("sum = %d\n", sum);
 fflush(stdout);
 return 0;
}
 /* The thread will begin control in this function */
 void *thread(void)
 {
 int i,j;
 sum=0;

EPPCLinux.book Page 83 Wednesday, March 23, 2005 6:34 PM

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Common Application Debugging Features
Multi-threaded Debugging

84 Targeting Embedded PowerPC Linux

 i++; // Set Thread BreakPoint Here
 j++; // Set Thread BreakPoint Here
 sum = i+j;
 INFINITE_LOOP
 pthread_exit(0);
 }

NOTE Make sure that you include the CWExamples.h file in your project. You can
do this using the Access Paths settings panel.

3. Set a breakpoint in the thread code.

a. Double-click the main.c filename in the project window. The source code of the
main.c file is displayed in the editor window (Figure 5.18).

Figure 5.18 Editor Window

b. Set a breakpoint at the following line in the editor window:

 i++; // Set Thread BreakPoint Here

NOTE Setting breakpoints may affect the performance of the debugger. Care should
be taken while setting them.

c. Close the editor window.

EPPCLinux.book Page 84 Wednesday, March 23, 2005 6:34 PM

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Common Application Debugging Features
Multi-threaded Debugging

85Targeting Embedded PowerPC Linux

4. Specify program arguments.

a. Open the Runtime Settings panel.

b. Type 2 as value in the Program Arguments text box under the General Settings
group.

c. Click Save to save the settings.

d. Close the Runtime Settings panel.

5. Specify the linker settings.

a. Open the GNU Linker settings panel.

b. Type -lpthread in the Libraries text box.

c. Click Save to save the settings.

d. Close the GNU Linker settings panel.

6. Build the project.

Select Project > Make. The final output file Multithread_Example.elf is
generated and is placed in the project folder.

7. Start the debugger.

Select Project > Debug. The debugger window (Figure 5.19) appears.

NOTE To be able to successfully debug multithreaded applications, the following
library file libpthread.so.0 must exist unstripped on the target platform. If
the above library is a symbolic link then the file it points to must be unstripped.

EPPCLinux.book Page 85 Wednesday, March 23, 2005 6:34 PM

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Common Application Debugging Features
Multi-threaded Debugging

86 Targeting Embedded PowerPC Linux

Figure 5.19 Debugger Window

The thread window displays the Process ID (PID) and Thread ID (TID) for the
currently running process. In this case, the PID is 1110 and the TID is 0.

NOTE The Thread ID (TID) and Process ID (PID) format may vary across different
target platforms supported by the CodeWarrior™ Development Studio for
Embedded Linux.

In the following steps, you will create multiple threads for the same process.

NOTE The Thread ID (TID) on the thread window is the ID assigned by the debugger/
MetroTRK to a particular thread. The debugger uses this ID to identify a
thread.

P

T

EPPCLinux.book Page 86 Wednesday, March 23, 2005 6:34 PM

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Common Application Debugging Features
Multi-threaded Debugging

87Targeting Embedded PowerPC Linux

8. Create the first thread.

Step through the code by clicking the Step Over button. When the following code is
executed, the first thread is created, thread execution stops at the breakpoint, and the
first thread window (Figure 5.20) appears. This thread window has the same PID, but a
new TID (2):

for (i=0;i<atoi(argv[1]);i++)
 pthread_create(&tid[i], &attr[i],(void*)thread,NULL);

Figure 5.20 First Thread Window

Once the thread window appears, you can step through the thread code.

9. Create the second thread.

Step through the code in the parent debugger window once. When the for loop code is
executed again, the second thread is created, thread execution stops at the breakpoint,
and the second thread window (Figure 5.21) appears.

EPPCLinux.book Page 87 Wednesday, March 23, 2005 6:34 PM

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Common Application Debugging Features
Multi-threaded Debugging

88 Targeting Embedded PowerPC Linux

Figure 5.21 Second Thread Window

10. Set a breakpoint, which is specific for the second thread.

a. Set a breakpoint at this line of code in the parent debugger window:

 j++; // Set Thread BreakPoint Here

b. Select Window > Breakpoints Window. The Breakpoints window (Figure
5.22) appears. For more information, refer the IDE User’s Guide.

EPPCLinux.book Page 88 Wednesday, March 23, 2005 6:34 PM

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Common Application Debugging Features
Multi-threaded Debugging

89Targeting Embedded PowerPC Linux

Figure 5.22 Breakpoints Window

c. Double-click the Condition field corresponding to the breakpoint you have set in
the parent debugger window. A cursor appears in the condition field. For this
example, it is line 96.

d. Type this condition:

 mwThreadID == 3.

This condition specifies that the breakpoint is valid for the second thread, which
has the thread ID 3.

NOTE The thread ID appears on the title bar of the thread window.

e. Close the Breakpoints window. A breakpoint specific to the second thread is set.

11. Set a breakpoint just after the conditional breakpoint.

This breakpoint lets you verify that the conditional breakpoint is only valid for the
second thread.

12. Execute the first thread.

Click the Run button in the first thread window. The debugger ignores the conditional
breakpoint; thread execution stops at the breakpoint just after the conditional
breakpoint (Figure 5.23).

EPPCLinux.book Page 89 Wednesday, March 23, 2005 6:34 PM

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Common Application Debugging Features
Multi-threaded Debugging

90 Targeting Embedded PowerPC Linux

Figure 5.23 First Thread Ignores Conditional Breakpoint

13. Execute the second thread.

Click Run in the second thread window. The thread execution stops at the conditional
breakpoint (Figure 5.24) set at the following line of code: j++; // Set Thread
BreakPoint Here.

EPPCLinux.book Page 90 Wednesday, March 23, 2005 6:34 PM

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Common Application Debugging Features
Multi-threaded Debugging

91Targeting Embedded PowerPC Linux

Figure 5.24 Execution of Second Thread Stopped at Conditional Breakpoint

14. While debugging, if you wish to view the list of threads associated with a process,
select Window > System Windows. The System Browser window (Figure 5.25)
appears. For more information on the System Browser window, see IDE User’s
Guide.

EPPCLinux.book Page 91 Wednesday, March 23, 2005 6:34 PM

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Common Application Debugging Features
Debugging Binary Files With No Source Code

92 Targeting Embedded PowerPC Linux

Figure 5.25 Example of Multi-thread Processes Window

You may also use the sample multithreading project available in the CodeWarrior
installation directory. For location information, see “Sample Projects Location” on page
177.

Debugging Binary Files With No Source
Code

The CodeWarrior™ IDE lets you download and run on the target platform, a binary file
(.elf or .so) whose source code is not available to you. When you open a binary file
into the CodeWarrior™ IDE window, the CodeWarrior IDE creates a dummy project for
the binary file. You can specify the runtime settings and remote debugging options in the
dummy project and download and run the binary file on the target platform.

NOTE For debugging a shared library (.so) file on the target platform, you must
associate a host file with the shared library.

To download and run on the target platform, an executable file (.elf) whose source code is
not available to you, follow these steps:

EPPCLinux.book Page 92 Wednesday, March 23, 2005 6:34 PM

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Common Application Debugging Features
Debugging Binary Files With No Source Code

93Targeting Embedded PowerPC Linux

1. Create a dummy project.

a. Select File > Open to open the executable file (.elf) for which there is no source
code available into the CodeWarrior IDE window. A file mapping dialog box
appears asking you to map the source files.

b. Map the source files and click OK.

The CodeWarrior™ IDE creates a dummy project with the same name as the file
name of the elf file. For example, if the elf filename is cw_elf_drop.elf, the
dummy project created will be cw_elf_drop.mcp.

2. Change the default output file name to the name of the file you want to run.

a. Select Edit > Target Settings. The target settings window appears.

b. Click GNU Target in the Target Settings Panels list. The GNU Target Settings
panel appears.

c. Type the name of the executable file in the Output File Name text box.

NOTE If the executable file uses a shared library, you need to specify the host-side
location and remote download path of the shared library in the Other
Executables settings panel. Additionally, you need to specify the
LD_LIBRARY_PATH environment variable in the Runtime Settings panel to
enable the shared object loader to locate the shared library on the target system.

3. Specify the remote download path of the executable file.

a. Click Remote Debugging in the Target Settings Panels list. The Remote
Debugging settings panel appears.

b. Select the remote connection name by using the Connection list box.

c. Type the remote download path of the executable file in the Remote Download
Path text box.

d. Click Save in the Remote Debugging settings panel. The target settings are saved.

e. Close the Remote Debugging settings panel.

4. Run the executable file.

Click Run in the project window. The executable file is downloaded to the specified
location on the target and executed.

NOTE If the executable file you want to run was compiled with the debug build target
selected, you may step through the assembly language code of the executable
file by clicking Debug.

EPPCLinux.book Page 93 Wednesday, March 23, 2005 6:34 PM

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Common Application Debugging Features
Using the Attach to Process Feature

94 Targeting Embedded PowerPC Linux

Using the Attach to Process Feature
The attach to process feature lets you debug a process that is already running on the target
system. For example, you may find some problems in a process running on the target
system and may want to debug the process. To debug the process, you need not kill the
process and start it again. Instead, you can directly attach the debugger to the running
process and debug.

In the steps that follow, you will create a sample project where the code causes a process
to run in an infinite loop on the target platform. Next, you will attach the debugger to the
running process, halt the process, and debug it.

Before you start the tutorial, make sure you have:

• created a TCP/IP connection between the host computer and the remote target

• checked the Show in processes list checkbox in the New Connection dialog box
while creating the new connection

• specified remote debugging options in the Remote Debugging settings panel

• launched MetroTRK on the remote target

1. Create a new project using the EPPC New Project Wizard with the following settings:

The above step creates two targets: c_app_debug and c_app_release. Since this tutorial
relates to debugging, only the first target is relevant.

2. Enter the source code of Listing 5.6 into the editor window of main.c file.

Listing 5.6 Source Code for main.c File

#include <stdio.h>

int main(int argc, char **argv)
{

Table 5.3 Attach to Process Project Settings

Project Name: ProcessAttach

Location of the Project: /home/usr1/ProcessAttach

Languages: C

Output Type: Application

Output File Name: AttachToProcess.elf

Location of the Output File: /home/usr1/ProcessAttach/Output

EPPCLinux.book Page 94 Wednesday, March 23, 2005 6:34 PM

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Common Application Debugging Features
Using the Attach to Process Feature

95Targeting Embedded PowerPC Linux

 int pid;
 int x;
 int i = 10;

 printf("This is a message from the AttachToProcess.elf");
 x=0;

 while(1)
 {
 x++;
 if(x > 500000)
 {
 x=0;
 }
 }
 return 0;
}

3. Build the project.

a. Select the c_app_debug build target from the build target list box in the project
window, if not selected.

b. Select Project > Make. The final output file AttachToProcess.elf is
generated and is placed in the specified location in the project folder.

4. Execute the project.

Select Project > Run. The process starts to run in an infinite loop on the target
Platform.

5. Establish a connection between the CodeWarrior™ debugger and the remote target
system.

a. Select Debug > Connect. The connection window appears.

NOTE The Connect command is available only if a project is open. The CodeWarrior
IDE uses the current connection selected in the Remote Debugging panel, to
make a connection to the target system.

b. Select Window > System Windows. The System Browser window (Figure
5.26) appears.

NOTE The System Browser window view is not continuously refreshed. Any
processes that are started immediately after the connection has been
established will not be visible in this window. The System Browser window
view is updated only when there is a change in the state of the process being
debugged.

EPPCLinux.book Page 95 Wednesday, March 23, 2005 6:34 PM

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Common Application Debugging Features
Using the Attach to Process Feature

96 Targeting Embedded PowerPC Linux

Figure 5.26 System Browser Window

The Processes list in the left pane of the System Browser window displays the
names of the processes running on the selected target system. Clicking a process
name in the Processes list displays the threads associated with the process.

TIP You can also view the list of processes on another target system by selecting the
corresponding connection name from the System Windows submenu. However,
the debugger should be connected to the other target system on which you want to
view the processes.

c. In the Processes list, select the name of the process you want the debugger to
attach to. For this tutorial, click the AttachToProcess process. The Attach to
Process button is activated in the System Browser window (Figure 5.27).

EPPCLinux.book Page 96 Wednesday, March 23, 2005 6:34 PM

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Common Application Debugging Features
Using the Attach to Process Feature

97Targeting Embedded PowerPC Linux

Figure 5.27 System Browser Window - Attach to Process Button Enabled

d. Click the Attach to Process button. The Choose Executable dialog box appears.
This dialog box displays the names of the executable files available for the
currently open project.

e. Select the AttachToProcess.elf option button.

NOTE If you want to manually search for the executable file, select the Browse option
button and click OK.

f. Click OK. The debugger and symbolics windows appear.

If you click the Cancel button, a thread window appears with the pointer at the
location where the process stopped when the debugger attached to the process.
Also, symbolic information is not displayed because no ELF is associated on the
host computer. In addition, you can not debug the code in the assembly mode.

NOTE If the debugger is attached to an already running process on the target platform,
the console messages appear in the same console window open for the running
process.

CAUTION Make sure that you select the correct executable file you want your
process to attach to, in the Choose Executable dialog box. Otherwise,
incorrect symbolics data will be associated with the process.

Attach To Process Button

EPPCLinux.book Page 97 Wednesday, March 23, 2005 6:34 PM

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Common Application Debugging Features
Debugging Applications that use fork() and exec() System Calls

98 Targeting Embedded PowerPC Linux

6. Debug the running process.

Click the Break button in the debugger window. The execution of thread stops and the
source code is displayed. You can now perform all the routine debugging operations.

7. Close the Debugger session.

Select Debug > Kill to close the debugger session.

Debugging Applications that use fork() and
exec() System Calls

The CodeWarrior™ debugger lets you debug a program that contains fork() and
exec() system calls. Table 5.4 summarizes the descriptions of these system calls.

For debugging applications that use the fork() system call, the fork() system call is
overridden by the clone() system call. The clone() system call is called with the flag
CLONE_PTRACE instead of the fork() system call. Calling the clone() system call
with the flag CLONE_PTRACE causes:

• the operating system to attach MetroTRK to the child process.

• the child process to stop with a SIGTRAP on return from the clone() system call.

To call the clone() system call transparently while debugging programs that contain the
fork() system call, you need to add a static library to your project. The source code for
building the static library is described later in this section.

NOTE The static library necessary for debugging programs that contain the fork()
system call must be added to the project.

Table 5.4 fork() and exec() description

System Call Description

fork() The fork() system call is used as a generic call on Linux systems
to create a new process. The fork() call creates a new process,
which is the exact replica of the process that creates it. The only
difference is in the PID (Process ID) returned by the fork system call.
The value of PID returned in the parent process is the PID of the
child, whereas in the child process the PID value returned is zero.

exec() The exec() system call launches a new executable in an already
running process. The debugger destroys the instance of the
previous executable loaded into that address space and a new
instance is created.

EPPCLinux.book Page 98 Wednesday, March 23, 2005 6:34 PM

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Common Application Debugging Features
Debugging Applications that use fork() and exec() System Calls

99Targeting Embedded PowerPC Linux

Before you start the tutorial, make sure you have:

• created a TCP/IP connection between the host computer and the remote target

• checked the Show in processes list checkbox in the New Connection dialog box
while creating the new connection

• checked the checkbox in the C (catch) column corresponding to the SIGCHLD
debugger signal in the Debugger Signals settings panel

• launched MetroTRK on the remote target

The tutorial that follows demonstrates the functionality for debugging programs that
contain fork() and exec() system calls:

1. As a first step, create a static library project with the following settings (Table 5.5).

The above step creates two targets: c_lib_static_debug and c_lib_static_release.
Since this tutorial relates to debugging, only the first target is relevant.

a. Remove the default main.c file from the project.

b. Add a new Libstaticfork.c file to the project. For instructions on how to add
a new source file, see “Add a New Source File to the Project” on page 25.

a. Enter the source code of Listing 5.7 into the editor window of Libstaticfork.c
file.

Listing 5.7 Source Code for Libstaticfork.c

/*--------------------------
User Include files
--------------------------*/

#include "db_fork.h"

/*-------------------------
Main Program

Table 5.5 Static Library Project Settings

Project Name: ForkToCloneLib.mcp

Location of the Project: /home/usr1/Fork&Exec

Languages: C

Output Type: Static Library

Output File Name: fork2cloneLib.a

Location of the Output File: /home/usr1/Fork&Exec/Output

EPPCLinux.book Page 99 Wednesday, March 23, 2005 6:34 PM

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Common Application Debugging Features
Debugging Applications that use fork() and exec() System Calls

100 Targeting Embedded PowerPC Linux

-------------------------*/
 int __libc_fork(void)
 {
 return(__db_fork());
 }
 extern __typeof (__libc_fork) __fork __attribute__ ((weak, alias
 ("__libc_fork")));
 extern __typeof (__libc_fork) fork __attribute__ ((weak, alias
 ("__libc_fork")));

b. Create a header file db_fork.h in your project directory and add the code in
Listing 5.8 into the header file.

Listing 5.8 Source Code for db_fork.h

#include <asm/unistd.h>
#include <errno.h>
#include <signal.h>
#include <sched.h>
#define __NR___db_clone__NR_clone
_syscall2(int, __db_clone, int, flags, int, stack);

c. Make the c_lib_static_debug build target active.

d. Open the Access Paths settings panel and add the pathname of the header file
(db_fork.h) to the project.

e. Build the ForkToCloneLib.mcp project by choosing Project > Make. The
CodeWarrior IDE builds the project and stores the output file fork2cloneLib.a
in the Output directory within the project directory.

2. Create another project; Fork&ExecExample.mcp and create two new build targets
with the following settings (Table 5.6):

Table 5.6 Fork and Exec Example Project Settings

Project Name: Fork&ExecExample

Location of the Project /home/usr1/Fork&Exec

Languages: C

Output Type: Application

Build Targets: - Parent_debug

- ChildA_debug

- ChildB_debug

EPPCLinux.book Page 100 Wednesday, March 23, 2005 6:34 PM

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Common Application Debugging Features
Debugging Applications that use fork() and exec() System Calls

101Targeting Embedded PowerPC Linux

3. Add the source files fork.c, ChildA.c, and ChildB.c to the
Fork&ExecExample.mcp project.

• fork.c — will contain the code of the parent process

• ChildA.c — will generate the executable file Child-A.elf

• ChildB.c — will generate the executable file Child-B.elf

The code of the parent process creates a forked process (child process) when the
__db_fork function executes. The debugger opens a separate thread window for the
child process. When the child process finishes executing, the debugger closes the
thread window. To debug the code of the child process, you need to set a breakpoint in
the child process code or stop the execution of the child process by clicking the Break
button. You can debug the code of the child process the same way you debug code of
any other process.

The code of both child and parent processes contain exec() function calls that
execute the Child-A.elf and Child-B.elf files, respectively.

As you step through the code of the child process, the exec() function call executes
and a separate debugger window for the Child-A.elf appears. You can perform
normal debug operations in this window. Similarly, you step through the code of the
parent process to execute the exec() system call. The debugger destroys the instance
of the previous file (Parent.elf) and creates a new instance for the Child-B.elf
file.

Parent_debug Build Target -

- Output Type:

- Output File:

- Output File Location:

Application

Parent.elf

/home/usr1/Fork&Exec/Output

Child_A_debug Build Target
-

- Output Type:

- Output File:

- Output File Location:

Application

Child-A.elf

/home/usr1/Fork&Exec/Output

Child_B_debug Build Target
-

- Output Type:

- Output File:

- Output File Location:

Application

Child-B.elf

/home/usr1/Fork&Exec/Output

Table 5.6 Fork and Exec Example Project Settings (continued)

EPPCLinux.book Page 101 Wednesday, March 23, 2005 6:34 PM

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Common Application Debugging Features
Debugging Applications that use fork() and exec() System Calls

102 Targeting Embedded PowerPC Linux

4. Enter the source code of Listing 5.9 into the editor window of fork.c file.

Listing 5.9 Source Code for fork.c

/*-------------------------
System Include files
-------------------------*/
#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>
#include <sys/ptrace.h>
#include <sys/errno.h>
#include <sys/types.h>
#include <signal.h>
#include <sched.h>
#include <fcntl.h>
#include <dlfcn.h>
/*-----------------------------
User Include files
-----------------------------*/
#include "CWExample.h"

/*--------------------------------
Function Prototypes
------------------------------*/
int fn1(int j);
int fn2(int i);

/*-------------------------------
Globals and Constants
-------------------------------*/
int gint;
#define CHILDA_DBG "/home/sample/Child-A.elf"
#define CHILDB_DBG "/home/sample/Child-B.elf"
/*-------------------------------
Main Program
-------------------------------*/
int main(void)
{
 int pid,x;
 int shared_local;
 char *argv[5];
 printf("Fork Testing!\r\n");
 fflush(stdout);
 gint = 5;
 shared_local =5;
 pid = fork();
 if(pid == 0)

EPPCLinux.book Page 102 Wednesday, March 23, 2005 6:34 PM

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Common Application Debugging Features
Debugging Applications that use fork() and exec() System Calls

103Targeting Embedded PowerPC Linux

 {
 x=0;
 gint = 10;
 shared_local =10;
 printf("I am the child,my process ID is %d\n",getpid());
 printf("The child's parent process ID is %d\n",getppid());
 argv[0] = CHILDA_DBG;
 argv[1] = NULL;
 execv(argv[0],argv);
 }
 else
 {
 x=0;
 gint = 12;
 shared_local =12;
 printf("I am the parent,my process ID is %d\n",getpid());
 printf("The parent's parent process ID is %d\n",getppid());
 argv[0] = CHILDB_DBG;
 argv[1] = NULL;
 execv(argv[0],argv);
 }
 return 0;
}

NOTE Make sure that you include the CWExamples.h file in your project. You can
do this using the Access Paths settings panel.

5. Enter the source code of Listing 5.10 into the editor window of ChildA.c file.

Listing 5.10 Source Code for ChildA.c

/*-------------------------------
System Include files
-------------------------------*/
#include <stdio.h>

/*-------------------------------
Main Program
-------------------------------*/
int main(int argc, char **argv)
{
 printf("This is a message from the child-A.elf\n");
 return 0;
}

6. Enter the source code of Listing 5.11 into the editor window of ChildB.c file.

EPPCLinux.book Page 103 Wednesday, March 23, 2005 6:34 PM

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Common Application Debugging Features
Debugging Applications that use fork() and exec() System Calls

104 Targeting Embedded PowerPC Linux

Listing 5.11 Source code for ChildB.c

/*-----------------------------------
System Include files
-----------------------------------*/
#include <stdio.h>

/*-----------------------------------
Main Program
-----------------------------------*/
int main(int argc, char **argv)
{
 printf("This is a message from the child-B.elf\n");
 return 0;
}

7. Add fork2cloneLib.a file to the Fork&ExecExample.mcp project.

a. Right-click on the project window and select Add Files from the context menu.

b. Navigate to the directory where you have stored the fork2cloneLib.a file in
your project folder. For this tutorial it is:
/home/usr1/Fork&Exec/Output.

c. Select the fork2cloneLib.a file and click Open. The Add Files dialog box
appears.

d. Click OK. The fork2cloneLib.a file gets added to the project (Figure 5.28).

Figure 5.28 Fork&ExecExample.mcp Project Window

8. Build Fork&ExecExample.mcp project.

a. Select the Parent_debug build target from the build target list box in the project
window, if not selected.

EPPCLinux.book Page 104 Wednesday, March 23, 2005 6:34 PM

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Common Application Debugging Features
Debugging Applications that use fork() and exec() System Calls

105Targeting Embedded PowerPC Linux

b. Select Project > Make. The CodeWarrior IDE generates the Parent.elf,
Child-A.elf, and Child-B.elf executable files and places them in the project
folder. For this tutorial it is:
/home/usr1/Fork&ExecExample/Output.

9. Specify the host-side location and remote download path of the executable files to be
launched by the exec() system call.

a. Select Edit > Parent_debug Settings. The Parent_debug Settings window
appears.

b. Click Other Executables in the Target Settings Panels list. The Other
Executables settings panel appears.

c. Click Add in the Other Executables settings panel. The Debug Additional
Executable dialog box appears.

d. Click Choose in the Debug Additional Executable dialog box. The Choose an
Executable to Debug dialog box appears.

e. Navigate to the project directory (the /home/usr1/Fork&ExecExample/
Output directory)

f. Select Child-A.elf.

g. Click Open. The path of the selected file appears in the File Location text box.

h. Check the Download file during remote debugging checkbox.

i. In the Remote Download Path text box, type the path where you want to
download the executable. For example, you may specify /home/sample.

j. Click OK. The File list in the Other Executable settings panel shows the path of
the selected executable file.

k. Repeat steps c through e.

l. Select ChildB.elf.

m. Repeat steps g through j.

10. Specify remote debugging options.

a. Click Remote Debugging from the list of settings panels. The Remote Debugging
settings panel appears.

b. Select the remote connection name by using the Connection list box.

c. In the Remote download path text box, specify the location where the executable
file Parent.elf is to reside on the remote target. For example, you may specify /
home/sample.

11. Set breakpoints in the child and parent processes.

EPPCLinux.book Page 105 Wednesday, March 23, 2005 6:34 PM

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Common Application Debugging Features
Debugging Applications that use fork() and exec() System Calls

106 Targeting Embedded PowerPC Linux

a. Double-click the fork.c filename in the project window. The editor window
(Figure 5.29) appears.

Figure 5.29 Source Code of fork.c File

b. Set a breakpoint in the code of the child process at this line: x=0;.

c. Set a breakpoint in the code of the parent process.

d. Close the fork.c file.

12. Start the debugger.

Select Project > Debug. The debugger window (Figure 5.30) appears. The debugger
downloads the Parent.elf, Child-A.elf, and Child-B.elf executable files to
the specified location on the remote target one by one.

EPPCLinux.book Page 106 Wednesday, March 23, 2005 6:34 PM

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Common Application Debugging Features
Debugging Applications that use fork() and exec() System Calls

107Targeting Embedded PowerPC Linux

Figure 5.30 Debugger Window for Parent Process

13. Step over the code until you reach the line of code that calls the fork() system call:
pid = fork ();

When the fork() system call is called, the child process debugger window (Figure
5.31) appears. You can now perform normal debugging operations in this window.

EPPCLinux.book Page 107 Wednesday, March 23, 2005 6:34 PM

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Common Application Debugging Features
Debugging Applications that use fork() and exec() System Calls

108 Targeting Embedded PowerPC Linux

Figure 5.31 Debugger Window for Child Process

14. Step over the code in the child process debugger window a couple of times. When the
exec() function call in the child process code executes, a new debugger window
(Figure 5.32) appears. This window displays the code of the Child-A.elf
executable file. You can now perform normal debugging operations in this window.

EPPCLinux.book Page 108 Wednesday, March 23, 2005 6:34 PM

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Common Application Debugging Features
Debugging Applications that use fork() and exec() System Calls

109Targeting Embedded PowerPC Linux

Figure 5.32 Debugger Window for File Executed by Child Process

15. Next, step over the code in the parent process debugger window a couple of times.
When the exec() function call in the parent process code executes, the debugger
destroys the instance of the previous executable file (Parent.elf) and creates a new
instance for the Child-B.elf file (Figure 5.33). You can now perform normal
debugging operations in this window.

EPPCLinux.book Page 109 Wednesday, March 23, 2005 6:34 PM

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Common Application Debugging Features
Viewing Multiple Processes and Threads

110 Targeting Embedded PowerPC Linux

Figure 5.33 Debugger Window for File Executed by Parent Process

NOTE The console window of the parent process is shared by the child process.

You may also use the sample fork and exec projects available in the CodeWarrior
installation directory. For location information, see “Sample Projects Location” on page
177.

Viewing Multiple Processes and Threads
Whenever an application which forks a new process is debugged a new thread window is
created and is displayed in the debugger window. If you debug an application that creates
many new processes, a number of thread windows appear in the CodeWarrior™ IDE
window. Making the CodeWarrior IDE window cluttered with thread windows leading to
a lot of confusion about which thread window to debug.

EPPCLinux.book Page 110 Wednesday, March 23, 2005 6:34 PM

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Common Application Debugging Features
Viewing Multiple Processes and Threads

111Targeting Embedded PowerPC Linux

To overcome this problem, a new option is added in the IDE Preferences panel that
allows you to specify whether you want to display the new processes and associated
threads in separate thread windows or in a single thread window.

NOTE You can display all the processes in a single thread window for a given remote
connection only.

The steps to do this are as follows:

1. Open the Display Settings panel.

a. From the project window, select Edit > Preferences. The IDE Preferences
window appears.

b. Click Display Settings in the list of settings panels in the left pane. The Display
Settings panel appears in the right pane.

2. Specify the settings to show all the processes and threads in a single debugger window.

a. Ensure that the Show processes in separate window and Show threads in
separate window checkboxes is cleared in the Display Settings panel (Figure
5.34).

NOTE If you check the Show processes in separate window and Show threads in
separate window checkboxes, each process and its associated thread will be
displayed in a separate thread window.

Figure 5.34 Display Settings Panel

b. Click Save to save the settings.

EPPCLinux.book Page 111 Wednesday, March 23, 2005 6:34 PM

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Common Application Debugging Features
Viewing Multiple Processes and Threads

112 Targeting Embedded PowerPC Linux

c. Close the IDE Preferences panel.

3. Start the debugger.

a. Select Project > Debug. The thread window (Figure 5.35) for
Multithread_Example.elf appears.

Figure 5.35 Thread Window for Multithread_Example.elf

The thread window shows two list boxes that display the name of the currently
debugged process (Multithread_Example.elf), the Process ID (PID) of the
current process, and the Thread ID (TID) of the current thread. The thread window
title bar shows the remote connection name used for debugging the current process.
In this example it is Sample_Connection_TCP/IP.

b. Click the Kill button of the currently active thread window to kill that process.

If you click the (X) button at the top right hand corner of the thread window, a
message box (Figure 5.36) appears.

Process Selection List Thread Selection List Remote Connection

EPPCLinux.book Page 112 Wednesday, March 23, 2005 6:34 PM

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Common Application Debugging Features
Viewing Process Information

113Targeting Embedded PowerPC Linux

Figure 5.36 Metrowerks CodeWarrior Message Box

This message box informs you that currently processes are running on remote
connection machine and waits for your instruction. You can perform the following
actions:

• Click Kill to stop all the currently running processes in the thread window.

• Click Resume to close the current debug session and resume it later. All thread
windows that are currently open are closed. The project window remains open.

• Click Cancel to cancel the action. The thread window remains open and the
currently running processes are not affected.

NOTE If you debug a multi-threaded application, any new thread created is listed in
the Thread Selection list box (Figure 5.37).

Figure 5.37 Multi threaded Application - Multiple Threads in Same Thread Window

Viewing Process Information
When you open a debug session (Project > Debug) or connect to the target platform
(Debug > Connect), the CodeWarrior IDE displays the Linux Info menu that you may
use to view details about the processes running on your target platform.

The Linux Info menu (Figure 5.38) contains commands that enable you to view and
refresh the processes running on the target platform.

EPPCLinux.book Page 113 Wednesday, March 23, 2005 6:34 PM

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Common Application Debugging Features
Viewing Process Information

114 Targeting Embedded PowerPC Linux

Figure 5.38 Linux Info Menu

Table 5.7 describes the menu commands provided by the Linux Info menu.

NOTE The Linux Info menu disappears when you close the debugging session.

To view details of the currently running process, the steps are:

1. Start a debug session.

2. Select Linux Info > Process Info. The Process Information Window (Figure 5.39)
appears.

Table 5.7 Linux Info Menu - Description of Commands

Commands Description

Process Info Displays the list of currently running processes on the target
platform with a detailed description about each process

Refresh Info Refreshes the processes list

EPPCLinux.book Page 114 Wednesday, March 23, 2005 6:34 PM

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Common Application Debugging Features
Viewing Process Information

115Targeting Embedded PowerPC Linux

Figure 5.39 Process Information Window

The Process Information Window displays the currently running processes in the
left-hand side of the window.

3. Select the process for which you want to view the details from the processes list.

The left-hand side of the window displays the details for the selected process, such as
environment settings, process status, and address mappings.

NOTE You may not be able to view information for processes for which you do not
have read/write permissions on /proc files for that particular process. For
example, the environ (environment) details for a process might not be
displayed, if the AppTRK owner on the target platform does not have read/right
permissions on the /proc files for that process.

4. Select Linux Info > Refresh Info to refresh the current state of the processes.

5. Close the Process Information Window.

Process Process Details

EPPCLinux.book Page 115 Wednesday, March 23, 2005 6:34 PM

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Common Application Debugging Features
Viewing Process Information

116 Targeting Embedded PowerPC Linux

EPPCLinux.book Page 116 Wednesday, March 23, 2005 6:34 PM

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

117Targeting Embedded PowerPC Linux

6
Other Common Features

The previous chapter described how to use the debugging features that are common across
all the target platforms supported by the CodeWarrior™ Development Studio for
Embedded Linux®. This chapter describes the other non-debugging features that you can
use across all the target platforms supported by the CodeWarrior™ Development Studio
for Embedded Linux.

This chapter describes the:

• Makefile Importer Wizard used for generating new projects using the makefile

• Post Linker Stripper feature used for generating a stripped version of the executable
binary

• Shell Tool Post Linker feature used for displaying the contents of the shell script file
included in a project

This chapter has these sections:

• Creating New Projects From Makefiles

• Stripping Binary Files

• Using the Shell Tool Post Linker

Creating New Projects From Makefiles
The CodeWarrior™ IDE allows you to convert most GNU makefiles into projects by
using the Makefile Importer wizard. The wizard performs the following tasks:

• Parses the makefile to determine source files and build targets

• Creates a project

• Adds the source files and build targets determined during parsing

• Matches makefile information, such as output name, output directory, and access
paths, with the newly created build targets.

• Selects a project linker

The steps to use the Makefile Importer Wizard to convert a makefile into a project are as
follows:

1. Select File > New. The New dialog box appears.

2. Select Makefile Importer Wizard.

EPPCLinux.book Page 117 Wednesday, March 23, 2005 6:34 PM

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Other Common Features
Creating New Projects From Makefiles

118 Targeting Embedded PowerPC Linux

3. Enter a project name (include the .mcp extension) in the Project name field.

4. Set the location for the new project in the Location text box. Alternatively, you may
click the Set button to change the location of the new project.

5. Click OK. The Makefile Importer Wizard dialog box appears.

6. Enter the path to the makefile in the Makefile Location text box (Figure 6.1).

Alternatively, you may click Set to navigate to the makefile.

Figure 6.1 Makefile Importer Wizard Dialog Box

7. Select the tool set used for makefile conversion and linker selection.

Select Standard UNIX MAKE from the Tool Set Used In Makefile list box under
the Settings group (Figure 6.1).

The Metrowerks Tool Set list box under the Settings group displays the default linker
to be used with the converted project. The linker name may vary depending on the
CodeWarrior™ Development Studio for Embedded Linux product you are using.

NOTE The Tool Set Used In Makefile list box allows to select the tool set whose
build rules form the basis of the makefile. The Metrowerks Tool Set list box
allows to select the linker tool set to use with the generated project.

8. Select the desired diagnostic settings.

EPPCLinux.book Page 118 Wednesday, March 23, 2005 6:34 PM

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Other Common Features
Creating New Projects From Makefiles

119Targeting Embedded PowerPC Linux

a. Check the Log Targets Bypassed checkbox in the Diagnostic Settings group to
log information about makefile build targets that the CodeWarrior IDE fails to
convert to project build targets.

b. Check the Log Build Rules Discarded checkbox in the Diagnostic Settings group
to log information about makefile rules that the CodeWarrior IDE discards during
conversion.

c. Check the Log All Statements Bypassed checkbox in the Diagnostic Settings
group to log targets bypassed, build rules discarded, and other makefile items that
the CodeWarrior IDE fails to convert.

9. Click Finish. The Summary dialog box (Figure 6.2) appears, which lists the targets
that will be created for the new project.

Figure 6.2 Summary Dialog Box

10. Click Generate. The Makefile Importer Wizard performs the conversion process
and displays the project window for the new project.

NOTE When the new project is generated using the Makefile Importer Wizard, the
new project contains the default settings defined in the

EPPCLinux.book Page 119 Wednesday, March 23, 2005 6:34 PM

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Other Common Features
Stripping Binary Files

120 Targeting Embedded PowerPC Linux

GCCImporterStationery.mcp project file. You may customize the settings
by modifying the GCCImporterStationery.mcp file and than generating
the project once again using the Makefile Importer Wizard. The generated
project will now contain the settings specified by you.

You may also use the sample makefile available at this location in your CodeWarrior
installation directory:

CWInstall/CodeWarriorIDE/Examples/Makefiles

Stripping Binary Files
One of the important features of CodeWarrior Development Studio for Embedded Linux
products is the Post Linker Stripper feature. The Post Linker Stripper feature enables you
to reduce the file size of an application executable binary (.elf) or a shared library (.so) by
removing the data not required by the target platform to run the application, such as the
sections related to debugging and much of the symbolics data. This results in faster
download of the binary on the target platform.

NOTE The file size reduction varies depending on the debug format used.

You need to select the target platform-specific Post Linker - Stripper option in the
Target Settings panel to perform this task. target platform-specific denotes the target
platform for which you are writing the application. For example, ARM® or PowerPC™-
based target platforms. Then, the post linker adaptor is passed the following information:

• pathname of the binary (.elf or .so) that need to be stripped of the debug information

• options specified in the GNU Post Linker settings panel

• command line utility name

When the project is linked, the post linker adaptor calls the command line utility
(strip.exe) specified in the GNU Tools settings panel and passes the pathname of the
binary to be stripped of debug information. After a stripped version of the binary is
created, the binary can be downloaded on the target platform.

Creating Stripped Binary Files
The steps to create a stripped version of an executable binary (.elf) are as follows:

1. Create a project that can successfully generate a full-size executable binary (.elf).

2. Make the post linker stripper settings.

EPPCLinux.book Page 120 Wednesday, March 23, 2005 6:34 PM

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Other Common Features
Stripping Binary Files

121Targeting Embedded PowerPC Linux

a. From the project window, open the Target Settings panel.

b. Select target platform-specific Post Linker - Stripper from the Post-linker list
box. Here, target platform-specific denotes the target platform for which you are

writing the application. For example, ColdFire®, ARM®, or PowerPC™-based
target platforms. Figure 6.3 shows the Post-linker option.

Figure 6.3 Selecting target platform-specific Post Linker - Stripper Option

When you select target platform-specific Post Linker - Stripper option, a new
item; GNU Post Linker is added to the Target Settings Panels tree structure
under the Linker tree (Figure 6.3).

3. Specify command-line arguments to be passed to the command line utility.

a. Open the GNU Post Linker panel.

b. Type -s in the Command Line Arguments text box (Figure 6.4).

EPPCLinux.book Page 121 Wednesday, March 23, 2005 6:34 PM

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Other Common Features
Stripping Binary Files

122 Targeting Embedded PowerPC Linux

Figure 6.4 Specifying Command Line Arguments

4. Specify the name of the post linker command line utility.

a. Open the GNU Tools panel.

b. Type strip in the Post Linker text box.

NOTE The post linker stripper executable filename may vary depending on the cross
compiler tools you are using.

5. Save the settings and compile the project.

a. Click Save to save the post linker settings.

b. Close the GNU Tools panel.

c. Select Project > Make. The project is compiled and a new file named
<original-name>.elf.strip or <original-name>.so.strip is created
in the project folder where <original-name>.elf or <original-name>.so
is the name of the original executable binary file.

NOTE The executable files are generated in the project folder irrespective of whether
you use the target platform-specific Post Linker - Stripper option or not.

EPPCLinux.book Page 122 Wednesday, March 23, 2005 6:34 PM

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Other Common Features
Using the Shell Tool Post Linker

123Targeting Embedded PowerPC Linux

NOTE The file extension of the stripped version of the executable binary generated is
.strip by default and cannot be changed.

If you compare the file size of the original and stripped files, the later is smaller in
size. This reduces the download time of the executable binary on the target
platform.

NOTE The file size of the stripped file may vary for different debug formats used for
different target platforms. For all the target platforms supported by the
CodeWarrior™ Development Studio for Embedded Linux, the debug format
used in STABS or DWARF 2.

Downloading Stripped Files
While downloading executable binary (.elf) or shared library files (.so) on the target
platform, the debugger first searches for the stripped version of the files mentioned in
the:

• Output Target text box in the GNU Target panel

• Other Executables panel

• Runtime Settings panel

If a stripped version of the .elf or .so files exists and is the latest file available, than
the debugger downloads the stripped file on the target platform. Otherwise, the
original .elf or .so file is downloaded on the target.

NOTE In case you want to download the stripped version of the files mentioned in the
Other Executables or Runtime Settings panel, make sure that you built these
files using the target platform-specific GNU Post Linker - Stripper option in
their respective projects. This will ensure that the debugger finds a stripped
version of these files and downloads it on the target platform.

Using the Shell Tool Post Linker
The Shell Tool Post Linker displays the contents of the shell script file included in your
project after the build process is complete.

To use the Shell Tool Post Linker, the steps are:

1. Open a project.

2. Make the shell tool post linker settings.

EPPCLinux.book Page 123 Wednesday, March 23, 2005 6:34 PM

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Other Common Features
Using the Shell Tool Post Linker

124 Targeting Embedded PowerPC Linux

a. From the project window, open the Target Settings panel.

b. Select Shell Tool Post Linker from the Post-linker list box (Figure 6.5).

Figure 6.5 Shell Tool Post Linker Option

3. Create a shell script (.sh) file.

4. Add an entry for the shell script (.sh) file in the File Mappings settings panel.

a. Open the File Mappings panel.

b. In the Mapping Info section, click Choose to navigate to the shell script file
location and select it.

When you select the shell script, the .sh extension is automatically added to the
Extension text box in the File Mappings panel.

c. Select Shell Tool from the Compiler list box.

d. Click Save to save the settings and close the File Mappings settings panel.

5. Build the project.

a. Select Project > Make. The project gets built and a log window appears which
displays the contents of the shell script file.

EPPCLinux.book Page 124 Wednesday, March 23, 2005 6:34 PM

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

125Targeting Embedded PowerPC Linux

7
Target Platform-Specific
Features

This chapter describes the debugging features that are unique to programming for Linux
on a PowerPC™-based target platform. The CodeWarrior™ Development Studio for
PowerPC ISA, Linux® Application/Platform Edition v2.0 allows you to debug the Linux
kernel and the kernel modules on PowerPC®-based target platforms. This product also
allows the PowerPC bareboard application developers to develop applications using the
GNU bareboard tools. This chapter describes the hardware debug agents and devices
supported by the CodeWarrior™ Development Studio for PowerPC ISA, Linux®
Application/Platform Edition v2.0 for debugging the Linux kernel on a PowerPC-based
target platform.
This chapter also describes the steps to configure a remote connection using these debug
agents. Additionally, this chapter describes the target settings panels that are unique to
CodeWarrior™ Development Studio for PowerPC ISA, Linux® Application/Platform
Edition v2.0. Finally, the chapter lists the location where you can find the target platform-
specific cross compiler tools, MetroTRK project file and binaries, sample projects for
debugging purpose, and debug/memory initialization file commands.

This chapter has these topics:

• Supported Target Processors

• Supported Debug Agents

• Supported Remote Connections

• Remote Connections for Kernel-level Debugging

• Target-Platform-Specific Debugging Features

• Target Platform-Specific Target Settings Panels

• Target Platform-Specific Information

• Debug Initialization Files

• Memory Configuration Files

• Using Hardware Tools

EPPCLinux.book Page 125 Wednesday, March 23, 2005 6:34 PM

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Target Platform-Specific Features
Supported Target Processors

126 Targeting Embedded PowerPC Linux

Supported Target Processors
This section describes the PowerPC™-based target processors supported by
CodeWarrior™ Development Studio for PowerPC ISA, Linux® Application/Platform
Edition v2.0.

Table 7.1 lists the supported target processors and their manufacturers.

Supported Debug Agents
A debug agent performs the actions requested by the debugger, such as:

• setting breakpoints

• reading from and writing to memory

• reading and writing registers

The debug agent is not the program that you are debugging or the debugger itself. It is a
software or hardware that processes commands and responses exchanged between the
debugger and the target platform.

The debug agents supported by the CodeWarrior™ Development Studio for PowerPC
ISA, Linux® Application/Platform Edition v2.0 are:

• Metrowerks Target Resident Kernel (MetroTRK) protocol from Metrowerks®

• PowerTAP® PRO JTAG hardware JTAG debug device from Metrowerks.

Table 7.1 Supported Target Processors

Manufacturer Processors

Motorola
®

PowerQUICC I
™

 - MPC885, MPC880, MPC875, MPC870,
MPC866, MPC862, MPC859T, MPC852T

PowerQUICC II
™

 - HIP7 - MPC8272, MPC8271, MPC8248,
MPC8247, MPC8280, MPC8275, MPC8270

PowerQUICC II - MPC8266, MPC8265, MPC8264, MPC8250,
MPC8255, MPC8260

PowerQUICC III
™

 - MPC8560, MPC8540

Integrated Host Processors - MPC8245, MPC8241, MPC8240

MobileGT Processor - MPC5200

EPPCLinux.book Page 126 Wednesday, March 23, 2005 6:34 PM

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Target Platform-Specific Features
Supported Remote Connections

127Targeting Embedded PowerPC Linux

• PowerTAP PRO DPI hardware JTAG debug device from Metrowerks.

• PowerTAP Command Converter Server (CCS) protocol from Metrowerks.

Supported Remote Connections
The CodeWarrior™ debugger can connect to a PowerPC-based target platform using one
of the following kinds of remote debugging connections:

• Metrowerks Target Resident Kernel (MetroTRK)—Used for application-level
debugging only.

• EPPC PowerTAP PRO JTAG—Used for kernel, kernel module, and bareboard
debugging only. For steps on how to configure this connection, see “Configuring a
PowerTAP PRO JTAG Remote Connection” on page 128.

• EPPC PowerTAP PRO DPI—Used for kernel, kernel module, and bareboard
debugging only. For steps on how to configure this connection, see “Configuring a
PowerTAP PRO DPI Remote Connection” on page 130.

• EPPC CCS Protocol Plug-in—Used for kernel, kernel module, and bareboard
debugging only. This remote connection is similar to the EPPC PowerTAP PRO
JTAG connection.

NOTE For more information on MetroTRK and how to configure a MetroTRK remote
connection, see “Using MetroTRK” on page 56.

PowerTAP PRO Connection
The PowerTAP® PRO hardware JTAG debug device enables software developers to:

• control and observe program execution on the target platform

• download program at high-speed to the target platform.

Figure 7.1 depicts graphically how the CodeWarrior™ Development Studio for PowerPC
ISA, Linux® Application/Platform Edition v2.0 software communicates with a PowerPC
target platform using the PowerTAP PRO hardware debug device.

EPPCLinux.book Page 127 Wednesday, March 23, 2005 6:34 PM

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Target Platform-Specific Features
Remote Connections for Kernel-level Debugging

128 Targeting Embedded PowerPC Linux

Figure 7.1 CodeWarrior IDE, PowerTAP Pro, andd Target Platform Communication

For more details on PowerTAP® PRO device, see information provided at the following
URL:

http://www.metrowerks.com

Remote Connections for Kernel-level
Debugging

The CodeWarrior™ IDE can connect the debugger with the debug image on a remote
target. The default remote connections for kernel-level debugging included with the
CodeWarrior™ Development Studio for PowerPC ISA, Linux® Application/Platform
Edition v2.0 are:

• PowerTAP PRO JTAG

• PowerTAP PRO DPI

• PowerTAP PRO CCS

The sections that follow describe the steps to configure these remote connections.

Configuring a PowerTAP PRO JTAG
Remote Connection
To configure a PowerTAP PRO JTAG remote connection:

Linux-hosted computer with
CodeWarrior™ Development Studio

for PowerPC ISA, Linux® Application/
Platform Edition v2.0 software
installed

Ethernet

PowerTAP®
PRO Hardware

PowerPC architecture-based
target platform

EJTAG

EPPCLinux.book Page 128 Wednesday, March 23, 2005 6:34 PM

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Target Platform-Specific Features
Remote Connections for Kernel-level Debugging

129Targeting Embedded PowerPC Linux

1. Display the Remote Connections panel.

a. Select Edit > Preferences. The IDE Preferences window appears.

b. Select Remote Connections from the IDE Preference Panels list to display the
Remote Connections panel.

2. Add a new remote connection.

a. Click Add. The New Connection dialog box appears.

b. In the Name text box, type a name that will identify this connection, such as
NewPowerTAPPRO JTAG Connection.

c. Select the remote connection type, that is, EPPC - PowerTAP PRO JTAG from
the Debugger list box. The New Connection dialog box display changes to reflect
options related to the PowerTAP PRO JTAG connection.

Figure 7.2 New Connection Dialog Box - PowerTAP PRO JTAG Preferences

Type the host name or IP address that you assigned to the PowerTAP PRO device
during the setup in the Hostname text box. For steps on how to set up the
PowerTAP PRO device, refer the PowerTAP PRO documentation that came with
your PowerTAP PRO device.

EPPCLinux.book Page 129 Wednesday, March 23, 2005 6:34 PM

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Target Platform-Specific Features
Remote Connections for Kernel-level Debugging

130 Targeting Embedded PowerPC Linux

d. Use the Interface Clock Frequency list box to select the clock frequency for the
PowerTAP PRO device. This is the speed at which the data is read and written to
the target platform. Higher the frequency, faster will be the speed. Differences in
target platform design may affect the maximum reliable device clock rate. The
recommended clock frequency is 16 MHz.

e. Use the Mem Read Delay text box to specify the number of additional processor
cycles inserted as a delay for completion of read memory operations. The range of
values that can be entered is 0-65024 cycles. Use the default delay of 350 cycles.

f. Use the Mem Write Delay text box to specify the number of additional processor
cycles inserted as a delay for memory write operations. The range of values that
can be entered is 0-65024 cycles. Use the default delay of 350 cycles.

g. Check the Reset Target on Launch checkbox to send a reset signal to the target
platform when you launch the debugger.

h. Check the Force shell download on connect checkbox if you wish to reload the
PowerTAP PRO shell at each debugger connection.

i. Check the 32-Bit Data Bus checkbox, if you wish to use the 32-bit data bus.

j. Check the Enable Logging checkbox to have the CodeWarrior IDE display a log
of all the debug translations. If this checkbox is checked, a protocol logging
window appears when the debugger connects to the target platform. If you set the
AMCTAP_LOG_FILE environment variable, the IDE directs log messages to the
specified file.

k. Click Save.

The CodeWarrior IDE saves the connection information that you specified and
closes the New Connection dialog box. The debugger uses these settings when
you select this connection in the Remote Debugging settings panel.

NOTE The EPPC CCS Protocol Plugin and the EPPC PowerTAP PRO JTAG
remote connection panels are similar.

Configuring a PowerTAP PRO DPI Remote
Connection
To configure a PowerTAP PRO DPI remote connection:

1. Display the Remote Connections panel.

2. Add a new remote connection.

a. Click Add. The New Connection dialog box appears.

b. In the Name text field, type a name that will identify this connection, such as
NewPowerTAP PRO DPI Connection.

EPPCLinux.book Page 130 Wednesday, March 23, 2005 6:34 PM

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Target Platform-Specific Features
Remote Connections for Kernel-level Debugging

131Targeting Embedded PowerPC Linux

c. Select EPPC - PowerTAP PRO DPI from the Debugger list box,. The New
Connection dialog box display changes to reflect options related to an PowerTAP
PRO connection (Figure 7.3).

Figure 7.3 New Connection Dialog Box - PowerTAP PRO DPI Preferences

d. Type the host name or IP address that you assigned to the PowerTAP PRO device
during the setup in the Hostname text box.

e. Use the Interface Clock Frequency list box to select the clock frequency for the
PowerTAP PRO device. This is the speed at which the data is read and written to
the target platform. Higher the frequency, faster will be the speed. Differences in
target platform design may affect the maximum reliable device clock rate. The
recommended setting is 3.65 MHz.

f. Use the Show Inst Cycles list box to select which show cycles are performed (All,
Flow or Indirect, None).

g. Check the Reset Target on Launch checkbox to send a reset signal to the target
platform when you launch the debugger.

EPPCLinux.book Page 131 Wednesday, March 23, 2005 6:34 PM

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Target Platform-Specific Features
Target-Platform-Specific Debugging Features

132 Targeting Embedded PowerPC Linux

h. Check the Force shell download on connect checkbox if you wish to reload the
PowerTAP PRO shell at each debugger connection.

i. Check the Serialize instruction execution checkbox if you wish to serialize
instruction execution.

j. Check the Enable Logging checkbox to have the CodeWarrior IDE display a log
of all the debug translations. If this checkbox is checked, a protocol logging
window appears when the debugger connects to the target platform.

k. Click Save.

The CodeWarrior IDE saves the connection information that you specified and closes the
New Connection dialog box. The debugger uses these settings when you select this
connection in the Remote Debugging settings panel.

Target-Platform-Specific Debugging
Features

This section describes the debugging features that are unique to CodeWarrior™
Development Studio for PowerPC ISA, Linux® Application/Platform Edition v2.0. These
debugging features include:

• Debugging u-boot

• Kernel Debugging

• Kernel Module Debugging

• Boa Server Application Debugging

Debugging u-boot
NOTE Before you start debugging u-boot on your target platform, you must install the

board support package (BSP) for the target platform. Also, you need to
recompile the u-boot with -g2 flag for debug information using the
Metrowerks® Platform Creation Suite (PCS).

The steps to debug u-boot using the CodeWarrior IDE are:

1. Flash program the u-boot.srec file from BSP.

2. Select File > Open to open the u-boot binary (u-boot) in the CodeWarrior IDE
window. A warning message box appears asking you whether you want to continue.
Click OK. A file mapping dialog box (Figure 7.4) appears asking you to map the
required source file with a matching file in your project folder.

EPPCLinux.book Page 132 Wednesday, March 23, 2005 6:34 PM

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Target Platform-Specific Features
Target-Platform-Specific Debugging Features

133Targeting Embedded PowerPC Linux

Figure 7.4 u-boot Source Files Mapping

The CodeWarrior IDE creates a dummy project with the filename of the binary, that is
u-boot.mcp.

A progress bar appears showing the status of the source files imported into the project.
After the import process is complete, all the u-boot source files appear in your project
window (Figure 7.5).

EPPCLinux.book Page 133 Wednesday, March 23, 2005 6:34 PM

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Target Platform-Specific Features
Target-Platform-Specific Debugging Features

134 Targeting Embedded PowerPC Linux

Figure 7.5 u-boot Project Window

3. Click Remote Debugging in the Target Settings Panels list. The Remote Debugging
settings panel appears.

a. Make sure that the correct remote connection name (PowerTAP PRO DPI,
PowerTAP PRO JTAG, or PowerTAP PRO CCS-based) is selected in the
Connection list box of the Remote Debugging settings panel.

NOTE Make sure that you have specified the IP address of the PowerTAP PRO
hardware debug device in the remote connection panel.

b. Click Save to save the settings.

4. Click EPPC Debugger Settings in the Target Settings Panels list. The EPPC
Debugger Settings panel appears.

a. Select the PowerPC processor architecture that you are targeting from the Target
Processor list box.

b. Select Bareboard from the Target OS list box.

c. Check the Use Target Initialization File checkbox and click the Browse button to
select the appropriate target initialization file.

EPPCLinux.book Page 134 Wednesday, March 23, 2005 6:34 PM

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Target Platform-Specific Features
Target-Platform-Specific Debugging Features

135Targeting Embedded PowerPC Linux

NOTE Check the Reset Target on Launch checkbox in the PowerTAP PRO-based
remote connection panel.

5. Select Debug > Connect. The debugger connects to the target platform and displays
a thread window (Figure 7.6).

Figure 7.6 u-boot Thread Window

You can now debug the u-boot application like any other application.

NOTE To debug the relocated section of the u-boot in RAM, you need to specify the
RAM address of the relocated code in the Alternate Load Address text box in
the Debugger PIC Settings panel.
To find out the RAM address, you need to build u-boot (bootloader) with
DEBUG option and look at the runtime messages. Note that, for each debug
session, you can debug on source only the RAM sections or the ROM sections
depending on whether the Debugger PIC settings is enabled or not. Because

EPPCLinux.book Page 135 Wednesday, March 23, 2005 6:34 PM

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Target Platform-Specific Features
Target-Platform-Specific Debugging Features

136 Targeting Embedded PowerPC Linux

when checking the alternate load address, the CodeWarrior IDE assumes that
all sections from the elf file are relocated.

Kernel Debugging
The CodeWarrior IDE allows you to debug the Linux kernel on your host computer
running Linux OS.

Linux Kernel - An Introduction
The Linux operating system (OS) operates in two modes—kernel mode (kernel space) and
user mode (user space). The kernel works at the top level where it performs the function of
a mediator for all the currently running programs and the hardware. The kernel manages
the memory for all the programs (processes) currently running, and ensures that each
program gets a fair share of the available memory. In addition, the kernel also provides a
portable interface for programs to talk to the hardware.

The User mode (user space) works at the lowest level or the application level where you
do not have the permission to directly access the memory or the hardware. You can access
the hardware resources through the system calls.

Kernel Debugging Using CodeWarrior IDE - The
Prerequisites
Before you can debug the kernel using the CodeWarrior™ IDE, you must ensure that a
remote connection is already created for the hardware debug agent (PowerTAP PRO
JTAG®, PowerTAP PRO DPI, or PowerTAP PRO CCS) that you are using for connecting
to the target platform.

Figure 7.7 graphically illustrates the setup environment used by CodeWarrior™
Development Studio for PowerPC ISA, Linux® Application/Platform Edition v2.0 to
debug the kernel on a PowerPC-based target platform.

EPPCLinux.book Page 136 Wednesday, March 23, 2005 6:34 PM

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Target Platform-Specific Features
Target-Platform-Specific Debugging Features

137Targeting Embedded PowerPC Linux

Figure 7.7 Setup for Kernel Debugging Using the CodeWarrior IDE

Kernel Debugging - the Methods
There are three methods for debugging the Linux kernel:

• Using CodeWarrior IDE Target Initialization File - Download and start the kernel
using the CodeWarrior IDE based on the initialization done by CodeWarrior IDE.
This method depends only on the initialization file and does not require a bootloader
to be present in the flash at the reset address.

• Using u-boot Initialization - Download and start the kernel using CodeWarrior IDE
based on the initialization done by the u-boot on the target platform.

• Attaching to the Running Kernel - Start the kernel using any of the above methods
and attach to the running kernel.

Using CodeWarrior IDE Target Initialization File
To debug the kernel using this method, you need to perform the following steps:

• Build the Kernel

• Create a CodeWarrior Project for the Kernel

• Set Up the Kernel Project for Debugging

Host Computer Requirements: Red Hat Linux 8.0/9.0,

Metrowerks® Board Support Package (BSP) 2.95.3 or Arabella
BSP 2.95.3

Procedure: Build the kernel and open the kernel image in the
CodeWarrior™ IDE to create a project and edit the project
settings

PowerPC-based
Target Platform

Hardware Debug Agents/Devices
connected to the target platform

Download and debug the kernel image
on the target platform using the
CodeWarrior™ IDE

EPPCLinux.book Page 137 Wednesday, March 23, 2005 6:34 PM

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Target Platform-Specific Features
Target-Platform-Specific Debugging Features

138 Targeting Embedded PowerPC Linux

• Download and Boot the Kernel

Build the Kernel
The first step is to build the kernel using the CodeWarrior patch available in your
CodeWarrior installation directory. When you build the kernel, the kernel image (vmlinux)
is generated and placed in the base directory where the kernel source files are located on
your computer. Usually, when you build the kernel, two kernel images are generated—a
compressed image and a full image. You can find the full kernel image in the following
folder of the base directory on your computer:

{Linux_Install_Dir}\My_dir

where, My_dir is the directory where your kernel sources reside.

You can find the compressed kernel image at the following location on your computer:

{Linux_Install_Dir}\My_dir\arch\ppc\boot\compressed

Create a CodeWarrior Project for the Kernel
The next step is to create a project for the kernel in your CodeWarrior™ IDE.

The steps to create a kernel project are:

1. Select File > Open to open the uncompressed kernel image file (vmlinux) built with
full debug information in the CodeWarrior™ IDE window. A warning message box
appears asking you whether you want to continue. Click OK.

The CodeWarrior IDE creates a dummy project with the filename of the image file,
that is vmlinux.mcp. A file mapping dialog box (Figure 7.8) appears asking you to
map the required source file with a matching file in your project folder on your host
computer.

NOTE The CodeWarrior IDE requires an uncompressed kernel image having the
debug symbolics information to create a project.

EPPCLinux.book Page 138 Wednesday, March 23, 2005 6:34 PM

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Target Platform-Specific Features
Target-Platform-Specific Debugging Features

139Targeting Embedded PowerPC Linux

Figure 7.8 Kernel Source Mapping

NOTE The title bar of the file mapping dialog box displays the build path of the file
sources that CodeWarrior™ IDE is trying to locate on your computer.

2. Type or browse to the location where you have the source files for this project located
in your project directory on your host computer.

3. Click Open. After you specify the relative path for the first source file, the same
relative path is applied to the rest of the source files.

NOTE After you select a file, the CodeWarrior IDE sets up a mapping between the
build location and the current source location on your computer. The mapping
is automatically stored in the Source Folder Mapping settings panel and you
may edit it if either source folder (build or current) location changes. For
example, if the directory was mapped to d: when project was created, but is
now mapped to e:, you can specify the new directory settings.

A progress bar appears showing the status of the source files imported into the project.

After the import process is complete, all the kernel source files appear in your project
window (Figure 7.9).

EPPCLinux.book Page 139 Wednesday, March 23, 2005 6:34 PM

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Target Platform-Specific Features
Target-Platform-Specific Debugging Features

140 Targeting Embedded PowerPC Linux

Figure 7.9 Linux Kernel Project

NOTE You cannot re-build the kernel in the CodeWarrior™ IDE. The kernel can only
be re-built on your Linux computer where the kernel source files are located.
The ELF drop feature creates the new kernel project with Build - Never
settings.

After you have created a kernel project in the CodeWarrior™ IDE, the next step is to set
up the project for debugging. There are some settings that you need to specify for
debugging the kernel.

EPPCLinux.book Page 140 Wednesday, March 23, 2005 6:34 PM

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Target Platform-Specific Features
Target-Platform-Specific Debugging Features

141Targeting Embedded PowerPC Linux

Set Up the Kernel Project for Debugging

NOTE For quick start steps on how to set up your kernel project for debugging on a
PowerQUICC III™ MPC8560 ADS target platform, refer the kernel debug
quick start guide.

1. Set a program entry point in the kernel code.

a. Select Edit > Target Settings (where Target is the name of the current build
target displayed in the project window) to open the Target Settings window.

b. Select Debugger Settings from the Target Settings Panels list. The Debugger
Settings panel appears.

c. Check the Stop on application launch checkbox to activate its options.

d. Click the Program entry point radio button to instruct the debugger to stop
program execution upon entering the program.

NOTE You can also set your own program entry point where you want the debugger
to stop the program execution. For example, you can specify the debugger to
stop program execution on entering the setup_arch() function in the kernel
code. For doing this, click the user specified option and type setup_arch()
in the text box.

e. Click Save to save the settings.

2. Specify the remote download options for the kernel image.

a. Click Remote Debugging in the Target Settings Panels list. The Remote
Debugging settings panel appears.

b. Make sure that the correct remote connection name (PowerTAP PRO JTAG,
PowerTAP PRO DPI, or PowerTAP PRO CCS-based) is selected in the
Connection list box of the Remote Debugging settings panel.

NOTE If you wish to modify the remote connection preferences, select a connection
name from the Connection list box and click Edit Connection.

NOTE You do not have to specify the remote target path for downloading the kernel
because the kernel is downloaded to target platform RAM.

c. Click Download OS checkbox to activate the compressed kernel image download
options.

EPPCLinux.book Page 141 Wednesday, March 23, 2005 6:34 PM

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Target Platform-Specific Features
Target-Platform-Specific Debugging Features

142 Targeting Embedded PowerPC Linux

NOTE If you change from a MetroTRK-based remote connection to PowerTAP PRO
JTAG, PowerTAP PRO DPI, or PowerTAP PRO CCS-based remote
connection, you must click Save to view the Download OS checkbox.

d. Select the correct remote connection for downloading the compressed kernel
image to the target platform from the Connection list box.

NOTE Make sure that the Connection specified in the Download OS section and the
Communication Settings section are same.

e. Enter or click Choose to specify the host-side path of the compressed kernel image
to be downloaded to the target platform (Figure 7.10).

Figure 7.10 Specifying Kernel Download Options

f. Click Save to save the settings.

NOTE When you check the Download OS checkbox, make sure that you also check
the Set residual data after decompress checkbox in the Linux Kernel
Residual Data settings panel. For details, see “Linux Kernel Residual Data” on
page 173.

3. Specify a target processor, operating system, and an initialization file for the debugger.

EPPCLinux.book Page 142 Wednesday, March 23, 2005 6:34 PM

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Target Platform-Specific Features
Target-Platform-Specific Debugging Features

143Targeting Embedded PowerPC Linux

a. Click EPPC Debugger Settings in the Target Settings Panels list. The EPPC
Debugger Settings panel appears.

NOTE The EPPC Debugger Settings panel is displayed in the Target Settings
Panels list only when you select an PowerTAP PRO JTAG, PowerTAP PRO
DPI, or PowerTAP PRO CCS -based remote connection from the Remote
Connections settings panel.
An xml file with pre-configured settings for this panel is provided for the target
platforms/BSP’s supported by CodeWarrior™ Development Studio for
PowerPC ISA, Linux® Application/Platform Edition v2.0. Import the XML
file settings for the target platform/BSP you are using by clicking the Import
Panel button at the bottom of this panel and selecting the desired XML file
from this location on your CodeWarrior installation directory:
CodeWarriorIDE/CodeWarrior/PowerPC_EABI_Tools/
KernelDebug_Settings/<target_platform_name>
where <target_platform_name> can be MPC8560ADS,
MPC8260ADS,MPC5200Lite, PC8280FADS-ZU, and MPC860FADS.

b. Select the PowerPC processor architecture that you are targeting from the Target
Processor list box.

c. Select Linux from the Target OS list box.

NOTE Ensure that Bareboard is selected in the Target OS list box when you are
performing application-level debugging on the target platform. Otherwise, the
debugger will not be able to debug your applications.

d. Check the Use Target Initialization File checkbox and specify the filename in the
text box, if you want the debugger to execute an initialization file before
downloading the kernel image to the platform target (Figure 7.11).

A set of standard initialization files is available in the following directory of your
CodeWarrior installation directory:

CodeWarriorIDE/CodeWarrior/PowerPC_EABI_Support/
Initialization_Files/

NOTE For more information, see “Debug Initialization Files” on page 179 and
“Memory Configuration Files” on page 187.

EPPCLinux.book Page 143 Wednesday, March 23, 2005 6:34 PM

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Target Platform-Specific Features
Target-Platform-Specific Debugging Features

144 Targeting Embedded PowerPC Linux

Figure 7.11 EPPC Debugger Settings - Target Processor and OS Preferences

TIP You must customize the supplied initialization file to debug the Linux kernel on
your custom target platform/board support package. For more information, see
“Debugging Kernel Using Custom Target Platform/BSP” on page 155.

e. Check the Executable, Constant Data, Initialized Data, and Uninitialized Data
checkboxes under the Program Download Options section to specify what
portions of the project to download on the initial launch of debugger and
successive launches. For example, you can download the entire executable or only
certain sections of the program to the target platform.

For a complete description of the EPPC Debugger Settings panel, see “EPPC
Debugger Settings” on page 165.

f. Click Save to save the settings.

4. Specify the kernel boot parameters and the RAM disk parameters.

a. Click Linux Kernel Boot Parameters in the Target Settings Panels list. The
Linux Kernel Boot Parameters settings panel appears (Figure 7.12).

NOTE The Linux Kernel Boot Parameters settings panel is displayed in the Target
Settings Panels list only when you select a PowerTAP PRO JTAG, PowerTAP
PRO DPI, or PowerTAP PRO CCS -based remote connection from the Remote
Connections settings panel.

EPPCLinux.book Page 144 Wednesday, March 23, 2005 6:34 PM

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Target Platform-Specific Features
Target-Platform-Specific Debugging Features

145Targeting Embedded PowerPC Linux

It is recommended that you use the XML file which contains pre-configured
settings for this panel for your target platform/BSP.

b. Check the Enable Command Line Settings checkbox to set the command line
and base address options.

c. You can modify the command line parameters that you have specified during
building the kernel by entering a new set of parameters in the Command Line text
box. These parameters are passed to the kernel during the booting of kernel.

NOTE The Command Line text box does not display the values that were set while
building the kernel. You can view these values in your Terminal window.

d. Enter the address in the Base Address text box where you want the command line
parameters to be written in the memory. For examples, 0x100000 for
PowerQUICC II MPC8260 target platform and 0x400000 for PowerQUICC III
target platforms.

e. Check the Enable Initial RAM Disk Settings checkbox to enable the initial RAM
Disk support in the kernel (Figure 7.12).

Figure 7.12 Linux Kernel Boot Parameters - Command Line and initrd Settings

f. Enter or browse for the location on the host computer from where the debugger
should pick up the initial RAM disk (initrd) file. After you navigate to the

EPPCLinux.book Page 145 Wednesday, March 23, 2005 6:34 PM

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Target Platform-Specific Features
Target-Platform-Specific Debugging Features

146 Targeting Embedded PowerPC Linux

directory where the RAM disk file (.gz) exists, you need to manually enter the file
name in the File Path text box.

Sample RAM Disk parameters:

"root=/dev/ram rw"

Sample NFS parameters:

"root=/dev/nfs ip=10.171.77.26
nfsaddr=10.171.77.26:10.171.77.21 nfsroot=/tftpboot/
10.171.77.26"

"root=/dev/nfs rw nfsroot=10.171.77.21:/tftpboot/
10.171.77.26
ip=10.171.77.26:10.171.77.21:10.171.77.254:255.255.255.0:82
80x:eth0:off"

where,

10.171.77.21 is the IP address of the NFS server and 10.171.77.26
is the IP address of the target platform.

"/tftpboot/10.171.77.26" is a directory on the host computer where
the target platform file system is located.

"8280x" is the host name.

Sample flash parameters:

root=/dev/mtdblock0 or root=/dev/mtdblock2 (depending on
your configuration)

For more information on NFS root, see Documentation/nfsroot.txt.

For more information on intial RAM Disk, see Documentation/ramdisk.txt
file in your kernel sources.

g. Enter the address in the Address text box where you want the RAM disk to be
written in the memory.

CAUTION Make sure that the address you specify does not overwrite the kernel in
memory with the RAM disk.

h. Enter the size of the RAM Disk file in the Size text box.

NOTE To copy all the contents of the RAM disk file, enter 0 in the Size text box.

i. Check the Download to target checkbox to download the RAM Disk file to the
target platform.

EPPCLinux.book Page 146 Wednesday, March 23, 2005 6:34 PM

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Target Platform-Specific Features
Target-Platform-Specific Debugging Features

147Targeting Embedded PowerPC Linux

NOTE When you enable the RAM disk support, the debugger copies the initial RAM
disk to the target platform only when the Download to target checkbox is
checked.

j. Click Save to save the settings.

For a complete description of the Linux Kernel Boot Parameters settings panel,
see “Linux Kernel Boot Parameters” on page 170.

5. Specify the settings for debugging the kernel on the target platform.

a. Click Linux Kernel Debug Settings in the Target Settings Panels list. The
Linux Kernel Debug Settings panel (Figure 7.13) appears.

NOTE The Linux Kernel Debug Settings panel is displayed in the Target Settings
Panels list only when you select a PowerTAP PRO JTAG, PowerTAP PRO
DPI, or PowerTAP PRO CCS -based remote connection from the Remote
Connections settings panel.
It is recommended that you use the XML file which contains pre-configured
settings for this panel for your target platform/BSP.

Figure 7.13 Linux Kernel Debug Settings

b. Check the Enable Memory Translation checkbox to enable the memory
translation. The debugger maps the physical base memory and virtual base
memory.

EPPCLinux.book Page 147 Wednesday, March 23, 2005 6:34 PM

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Target Platform-Specific Features
Target-Platform-Specific Debugging Features

148 Targeting Embedded PowerPC Linux

c. Enter the physical base address for memory translation in the Physical Base
Address text box.

d. Enter the virtual base address for memory translation in the Virtual Base Address
text box.

e. Check the Enable Threaded Debugging Support checkbox, if not checked
already to enable multithreading support in the debugger so that you can view and
debug multiple kernel threads on the target platform. For more information, see
“Kernel Thread Debugging” on page 155.

f. Check the Enable Delayed Software Breakpoint Support checkbox, if not
checked already to delay the setting of software breakpoints till the MMU is
enabled.

NOTE For a complete description of the Linux Kernel Debug Settings panel, see
“Linux Kernel Debug Settings” on page 171.

g. Click Save to save the settings.

6. Set a structure for the Linux kernel in the memory.

WARNING! If you want to boot the kernel successfully using the CodeWarrior IDE,
you must set the bd_info structure for the kernel in the memory. The
kernel searches this structure to retrieve information on location of
DRAM, SRAM, FLASH memory, IMMPR base, IP address to use, bus
speed, and ethernet MAC addresses for the target platform ports.

a. Click Linux Kernel Residual Data in the Target Settings Panels list. The Linux
Kernel Residual Data panel (Figure 7.14) appears.

NOTE The Linux Kernel Residual Data panel is displayed in the Target Settings
Panels list only when you select a PowerTAP PRO JTAG, PowerTAP PRO
DPI, or PowerTAP PRO CCS -based remote connection from the Remote
Connections settings panel.
It is recommended that you use the XML file which contains pre-configured
settings for this panel for your target platform/BSP.

EPPCLinux.book Page 148 Wednesday, March 23, 2005 6:34 PM

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Target Platform-Specific Features
Target-Platform-Specific Debugging Features

149Targeting Embedded PowerPC Linux

Figure 7.14 Linux Kernel Residual Data

b. Check the Enable Residual Data Settings checkbox to set a structure for the
kernel in memory.

c. Enter the structure name in the Base Type Name text box. In this case, bd_info.

d. Enter the physical address in the Base Address text box, which will be the starting
point of the structure.

e. Enter the structure members name and value in the Element Settings group.

f. Check the Set Residual Data after decompress checkbox to download the
structure again after the kernel image is decompressed on the target platform. This
option is necessary only if you have checked the Download OS checkbox in the
Remote Debugging panel.

NOTE For a complete description of the Linux Kernel Residual Data panel, see
“Linux Kernel Residual Data” on page 173.

g. Click Save to save the settings.

NOTE You can also set the residual data by typing bdinfo in the u-boot console. This
displays the required parameters that you can use for filling the Linux Kernel
Residual Data panel.

7. Verify the mapping of kernel sources on the Linux-hosted computer to your host
computer.

EPPCLinux.book Page 149 Wednesday, March 23, 2005 6:34 PM

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Target Platform-Specific Features
Target-Platform-Specific Debugging Features

150 Targeting Embedded PowerPC Linux

a. Click Source Folder Mapping in the Target Settings Panels list. The Source
Folder Mapping settings panel (Figure 7.15) appears.

If you have already mapped the kernel sources on the Linux-hosted computer to a
folder on your host computer, the current mapping is displayed in the Source
Folder Mapping settings panel. You may also edit the current settings.

Figure 7.15 Source Folder Mapping

b. Click Save to save the settings.

c. Close the Target Settings window.

8. Configure the build settings for the kernel.

a. Select Edit > Preferences to open the IDE Preferences window.

b. Click Build Settings in the IDE Preference Panels list. The Build Settings panel
appears.

c. Select Never in the Build before running list box in the Settings section.

d. Click Save to save the settings

e. Close the IDE Preferences window.

Download and Boot the Kernel
After you have specified the settings for debugging the kernel on the target platform, you
can now download the kernel to the target platform and boot it. To do this:

EPPCLinux.book Page 150 Wednesday, March 23, 2005 6:34 PM

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Target Platform-Specific Features
Target-Platform-Specific Debugging Features

151Targeting Embedded PowerPC Linux

1. Launch the debugger.

NOTE Before you download the kernel image to the target platform, make sure that
you switch off and then switch on the target platform. Otherwise, the kernel
image does not get downloaded to the target platform.

CAUTION Do not allow the kernel flashed on the target platform (if any) to boot
from the bootloader. To stop the kernel flashed on the target platform
from booting, press any special key on the keyboard, like the Spacebar
key.

a. Select Project > Debug.

The CodeWarrior IDE launches the debugger and the kernel image (vmlinux) is
downloaded to the target platform. The debugger then displays the debugger
window (Figure 7.16).

NOTE When you download the kernel image to the target platform, two progress bars
appear, one after the other, which display the progress of the kernel image
download to the target platform and the name of the initialization file that you
specified in the EPPC Debugger Settings panel.

EPPCLinux.book Page 151 Wednesday, March 23, 2005 6:34 PM

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Target Platform-Specific Features
Target-Platform-Specific Debugging Features

152 Targeting Embedded PowerPC Linux

Figure 7.16 Kernel Debugger Window

b. Click Run. The debugger stops execution of the program at setup_arch() only
if a breakpoint is set in this function (Figure 7.17).

If you checked the Enable Delayed Software Breakpoint Support checkbox, the
debugger sets a hardware breakpoint (Resolver Eventpoint) at { in the
start_kernel() (Figure 7.17).

When the debugger encounters this Resolver Eventpoint, all the subsequent
software breakpoints you have set are enabled. For more information on Resolver
Eventpoint, see IDE User’s Guide.

EPPCLinux.book Page 152 Wednesday, March 23, 2005 6:34 PM

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Target Platform-Specific Features
Target-Platform-Specific Debugging Features

153Targeting Embedded PowerPC Linux

Figure 7.17 Program Entry Point in Kernel Code

c. Run through the rest of the code until the kernel starts booting. When the kernel
boots up you can see the bootup messages in your Terminal window (Figure 7.18).

Resolver Eventpoint set by the debugger

EPPCLinux.book Page 153 Wednesday, March 23, 2005 6:34 PM

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Target Platform-Specific Features
Target-Platform-Specific Debugging Features

154 Targeting Embedded PowerPC Linux

Figure 7.18 Terminal Window Showing the Kernel Bootup Messages

Using u-boot Initialization
Use a u-boot-based initialization file in the kernel project and follow the steps in the
previous section.

Use u-boot to Start Linux/Debug Boot Stage
To use u-boot to start Linux, the steps are:

1. Start u-boot.

2. Attach your kernel project to u-boot using Debug > Attach. For detailed steps on
how to attach to a process, see “Using the Attach to Process Feature” on page 94.

3. Start the boot process from the bootloader console

Attaching to the Running Kernel
To debug the kernel using this method, perform the following steps:

EPPCLinux.book Page 154 Wednesday, March 23, 2005 6:34 PM

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Target Platform-Specific Features
Target-Platform-Specific Debugging Features

155Targeting Embedded PowerPC Linux

1. Start the kernel on your target platform using any of the above mentioned methods.

2. Attach to the running kernel.

CAUTION Ensure that the ELF file corresponding to the running kernel is present on
the target platform.

After the kernel is booted on the target platform, you can now install, load, and debug the
kernel modules. See “Kernel Module Debugging” on page 157.

Debugging Kernel Using Custom Target
Platform/BSP
You can customize the CodeWarrior IDE to debug kernel using a target platform or board
support package (BSP) not supported by CodeWarrior™ Development Studio for
PowerPC ISA, Linux® Application/Platform Edition v2.0. For doing this, you must make
the minimum changes to the supplied initialization files (also called minimal
initialization) allowing u-boot to make the initial initialization (by resetting the board,
letting u-boot run for a while, and stop) than just specify the MMR Base in order to make
CodeWarrior IDE capable to read memory mapped registers. For initialization commands
and their description, see “Initialization File Commands” on page 181. Modify the
initialization files located at: CodeWarriorIDE/CodeWarrior/
PowerPC_EABI_Support/Initialization_Files/ in your CodeWarrior
installation directory according to your target platform requirements. This directory
contains initialization files for bareboard and Linux kernel download and debug. Select
the initialization file that best suits your requirements.

The initialization file sets up your target platform for downloading and booting the kernel.
The Linux Kernel Residual Data panel provides the kernel with boot-time dynamic
configuration parameters (the bd_info structure). For more information on Linux
Kernel Residual Data panel, see “Linux Kernel Residual Data” on page 173.

Kernel Thread Debugging
The CodeWarrior debugger enables you to view kernel threads in separate thread
windows. Each kernel thread debug window displays its own stack crawl, source, and
variable views.

The steps to open multiple kernel thread windows for debugging are:

1. From the kernel debugger window, select Window > System Windows. The
System Browser window (Figure 7.19) appears. The System Browser window

EPPCLinux.book Page 155 Wednesday, March 23, 2005 6:34 PM

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Target Platform-Specific Features
Target-Platform-Specific Debugging Features

156 Targeting Embedded PowerPC Linux

displays the currently running processes and the tasks for a particular remote
connection.

Figure 7.19 System Browser Window - Process and Tasks Display

2. Select any of the task that you want to debug for a particular process from the list.

3. Double-click the selected task. A new thread window appears displaying the
symbolics for the selected task.

You can open multiple tasks in separate thread windows.

NOTE Multiple tasks can be displayed in separate thread windows only when the
Show threads in separate window checkbox is checked in the Display
Settings panel. For more information, see “Viewing Multiple Processes and
Threads” on page 110.

NOTE You may open multiple thread windows for multiple tasks simultaneously, but
you can perform debug operations only in the main thread window.

You can view the register values for the open thread windows. Select
Window > Registers Window to open the Registers window. The Registers window
shown in Figure 7.20 displays the register values for thread windows.

EPPCLinux.book Page 156 Wednesday, March 23, 2005 6:34 PM

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Target Platform-Specific Features
Target-Platform-Specific Debugging Features

157Targeting Embedded PowerPC Linux

Figure 7.20 Registers Window Displaying the Currently Open Thread Windows

Kernel Module Debugging
This section describes the steps for debugging the kernel modules on your Linux
computer.

Linux Kernel Modules - An Introduction
The Linux kernel is a monolithic kernel, that is, a single large program where all the
functional components of the kernel have access to all of its internal data structures and
routines. Alternatively, you may have a micro kernel structure where the functional
components of the kernel are broken into pieces with a set communication mechanism
between them. This makes adding new components into the kernel using the configuration
process very difficult and time consuming. One of the most reliable and robust way is to
dynamically load and unload the components of the operating system using Linux kernel
modules.

The Linux kernel modules are pieces of codes, which can be dynamically linked to the
kernel according to your requirements. You may unlink and remove the Linux kernel

EPPCLinux.book Page 157 Wednesday, March 23, 2005 6:34 PM

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Target Platform-Specific Features
Target-Platform-Specific Debugging Features

158 Targeting Embedded PowerPC Linux

modules from the kernel when you no longer need them. The Linux kernel modules are
used for device drivers or pseudo-device drivers such as network drivers or file system.

When a kernel module is loaded, it becomes a part of the kernel as the normal kernel code
and functionality and it posses the same rights and responsibilities as the kernel code.

The tutorial that follows demonstrates the kernel module debugging feature. The steps to
debug a kernel module are:

• Create a kernel module project

• Build the project

• Physically upload the kernel module binary to the target platform

• Install the binary into the booted kernel

• Display the kernel modules that are loaded in the kernel

• Load the symbolics for the kernel module you want to debug

The first step is to create a kernel module project using the EPPC New Project Wizard.

1. Create a project using the EPPC New Project Wizard with the following settings:

NOTE You must select the Kernel module level debug item in the EPPC New Project
Wizard.

After you create a kernel module project, let us now generate the kernel module
application and debug it. The following sections describe how to debug a kernel module.

2. Build the project.

a. Select Project > Make. The kernel module binary (hello.o) is built in the
specified location in your project directory.

3. Upload the kernel module (hello.o) to the target platform.

After you build the project, you must physically upload the kernel module binary
(hello.o) to the target platform using any of the following methods (FTP, NFS

Table 7.2 Kernel Module Project Settings

Project Name: MyKernel_Module.mcp

Project Location: /home/usr1/KernelModule

Build Target (Loadable Module
Debug)

- Output File:

- Output File Location:

hello.o

/home/usr1/KernelModule/Output

EPPCLinux.book Page 158 Wednesday, March 23, 2005 6:34 PM

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Target Platform-Specific Features
Target-Platform-Specific Debugging Features

159Targeting Embedded PowerPC Linux

mount, or copy on the RAM disk image depending on how the file system was
mounted).

The next step is to install the kernel module into the kernel.

NOTE Before you install the kernel module into kernel, make sure that the kernel is
booted up on the target platform.

4. Install the Kernel Module (hello.o) into the running kernel.

Type insmod -f <hello.o> in your Terminal window. The kernel module
(hello.o) is successfully installed into the booted kernel.

To verify whether the kernel module was successfully installed, you can type lsmod
command in your Terminal window. This displays a list of kernel modules currently
installed into the kernel.

Display the Kernel Modules List
You can view a list of kernel modules that are currently installed into the kernel by using
the CodeWarrior™ IDE. The CodeWarrior IDE provides the Linux menu that allows you
display the kernel modules that are currently installed.

NOTE The Linux menu appears only if you are connected to the target platform. For a
complete description of the Linux menu, see “The Linux Menu” on page 162.

CAUTION To view a list of kernel modules currently installed into the kernel, you
must first stop the booted kernel by selecting Debug > Stop.
To display the kernel modules list on non-PowerQUICC III target
platforms, you need to stop the kernel at a place where MMU is enabled.
To do this, set a breakpoint at if (current->need_resched) in
idle.c and run the program until the program hits this breakpoint.

To display a list of kernel modules currently installed into the kernel:

EPPCLinux.book Page 159 Wednesday, March 23, 2005 6:34 PM

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Target Platform-Specific Features
Target-Platform-Specific Debugging Features

160 Targeting Embedded PowerPC Linux

1. Select Linux > Display Modules. The Linux Modules window appears (Figure
7.21), which displays all the kernel modules (in the left pane) that are currently
installed in the kernel.

Figure 7.21 Linux Modules Window - List of Kernel Modules Installed

The Linux Modules window displays the module name, file size, and flags set for the
selected kernel module. For example, if you select hello.o the details of this kernel
module is displayed in the right pane.

NOTE The kernel module list is displayed only when the kernel is built with debug
symbols. The debug symbols are required by the debugger to read the kernel
module list.

Load the Symbolics of the Module
After you select the kernel module that you want to debug, the next step is to load the
symbolics for the selected kernel module.

To load the symbolics for a kernel module (hello.o):

1. Select Linux > Load Symbolics. The Choose File dialog box appears.

NOTE Before you load the symbolics for a kernel module, make sure that the
symbolics are not already loaded for the kernel module.

Kernel modules list Details for the selected kernel module

EPPCLinux.book Page 160 Wednesday, March 23, 2005 6:34 PM

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Target Platform-Specific Features
Target-Platform-Specific Debugging Features

161Targeting Embedded PowerPC Linux

2. Select the kernel module file (.o) for which you want to view the symbolics in the
Choose File dialog box (Figure 7.22).

Figure 7.22 Choose File Dialog Box

3. Click Open in the Choose File dialog box. The symbolics for the selected kernel
module are displayed in the Symbolics Window (Figure 7.23).

EPPCLinux.book Page 161 Wednesday, March 23, 2005 6:34 PM

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Target Platform-Specific Features
Target-Platform-Specific Debugging Features

162 Targeting Embedded PowerPC Linux

Figure 7.23 Symbolics Window - Symbolics for the Loaded Kernel Module

NOTE For detailed information on Symbolics Window, see the IDE User’s Guide.

4. Now, you can perform the regular debugging operations in the Symbolics window.

If you want to unload the symbolics information for the currently loaded kernel
module, select Linux > Unload Symbolics.

If you want to remove the kernel module, type rmmod in your Terminal window.

To verify whether the kernel module is uninstalled, select Linux > Refresh Module
List. The kernel module is not displayed in the Linux Modules window.

The Linux Menu
The CodeWarrior™ Development Studio for PowerPC ISA, Linux® Application/Platform
Edition v2.0 contains a menu item on the menu bar called Linux. The Linux menu
contains commands that enables you to view and refresh the currently loaded kernel
modules. This menu also has commands to load and unload symbolic information for a

Instance

EPPCLinux.book Page 162 Wednesday, March 23, 2005 6:34 PM

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Target Platform-Specific Features
Target-Platform-Specific Debugging Features

163Targeting Embedded PowerPC Linux

kernel module during a debugging session. Clicking the Linux menu (Figure 7.24)
heading displays a pull-down menu containing the menu commands.

Figure 7.24 Linux Menu

Table 7.3 describes the menu commands provided by the Linux menu.

Boa Server Application Debugging
The Boa Server is a high performance HTTP Server for computers running the UNIX
operating system. For more information on Boa Server, see boa.html located at the
following location in the CodeWarrior installation directory:
/CodeWarriorIDE/Examples/ppc/Target-Specific/boa-0.94.12/docs.

For the updated copy of this documentation, see

http://www.boa.org.

Boa Server Debugging Example
The example in this section debugs a Boa Server project called boa.mcp.

NOTE Before you start debugging the Boa Server sample program, make sure that
you create mime.types and boa directories on your target platform. The full
path for creating these directories is: /etc/mime.types

Table 7.3 Linux Menu - Description of Commands

Commands Description

Display Modules Displays the list of currently loaded kernel modules

Load Symbolics Loads the symbolics information for the currently loaded kernel
module

Unload Symbolics Unloads the symbolics information for the currently loaded
kernel module

Refresh Module List Refreshes the kernel modules list and displays the updated list
of currently loaded kernel modules

EPPCLinux.book Page 163 Wednesday, March 23, 2005 6:34 PM

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Target Platform-Specific Features
Target-Platform-Specific Debugging Features

164 Targeting Embedded PowerPC Linux

and /var/log/boa. Additionally, you need to copy the boa.conf file
located at: Examples/boa-0.94.12 to the /tmp folder on the target
platform. For steps on downloading the files to the target board, see “Installing
MetroTRK on the Remote Target” on page 57.

Follow these steps:

1. Open the boa.mcp project.

a. Select File > Open.

The File Selection dialog box appears.

b. Navigate to the following directory in the CodeWarrior installation directory:

CodeWarriorIDE/Examples/boa-0.94.12

c. Select boa.mcp.

d. Click the Open button.

The project window (Figure 7.25) appears.

Figure 7.25 Project Window - boa.mcp

The Debug Build target is the default build target selected in the build target list box.

NOTE For this sample application, all the required preference panel settings have
already been set to successfully compile, link, and debug the application.

2. Select Project > Make to build the application.

The boa_debug.elf file is created in the project folder.

3. Debug the application.

EPPCLinux.book Page 164 Wednesday, March 23, 2005 6:34 PM

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Target Platform-Specific Features
Target Platform-Specific Target Settings Panels

165Targeting Embedded PowerPC Linux

a. Choose Project > Debug to start the debugger. The boa_debug.elf file is
downloaded to the target platform and the initial thread window appears.

You can set breakpoints, step through the code and perform other routine
debugging operations in this window.

4. Select Debug > Kill to close the debugger session.

Target Platform-Specific Target Settings
Panels

This section discusses only those target settings panels that are unique for CodeWarrior™
Development Studio for PowerPC ISA, Linux® Application/Platform Edition v2.0. These
target settings panels are:

• EPPC Debugger Settings

• Debugger PIC Settings

• EPPC Exceptions

• Linux Kernel Boot Parameters

• Linux Kernel Debug Settings

• Linux Kernel Residual Data

• Source Folder Mapping

EPPC Debugger Settings
The EPPC Debugger Settings panel (Figure 7.26) allows you to specify the target
platform processor, target operating system, initialization file, and a memory
configuration file. You may also configure other debugger-related options for your
projects.

An .xml file with pre-configured settings for this panel is provided for the target platforms/
BSP’s supported by CodeWarrior™ Development Studio for PowerPC ISA, Linux®
Application/Platform Edition v2.0. The XML files are located in the following
CodeWarrior installation directory: CodeWarriorIDE/CodeWarrior/
PowerPC_EABI_Tools/KernelDebug_Settings/<target_platform_name>,
where <target_platform_name> is the target platform name.

EPPCLinux.book Page 165 Wednesday, March 23, 2005 6:34 PM

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Target Platform-Specific Features
Target Platform-Specific Target Settings Panels

166 Targeting Embedded PowerPC Linux

Figure 7.26 EPPC Debugger Settings Panel

This settings panel contains the following options:

Target Processor
Use the Target Processor list box to select the processor architecture that you are
targeting. This option instructs the debugger to display the appropriate register views.

Target OS
Use the Target OS list box to specify the operating system running on your target
platform. For kernel debugging, you must select the Linux option from the list box. For
debugging Linux applications, you must select the Bareboard option from the list box.

Use Target Initialization File
Check the Use Target Initialization File check box, if you want the debugger to execute
an initialization file before downloading the kernel image to the target platform. If you
check this option, specify the filename in the text box. Some standard initialization files
are available at this location:

CWInstall/CodeWarriorIDE/CodeWarrior/PowerPC_EABI_Support/
Initialization_Files/

EPPCLinux.book Page 166 Wednesday, March 23, 2005 6:34 PM

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Target Platform-Specific Features
Target Platform-Specific Target Settings Panels

167Targeting Embedded PowerPC Linux

For initialization commands and their syntax, see “Debug Initialization Files” on page
179.

Use Memory Configuration File
Check the Use Memory Configuration File check box, if you want to use a configuration
file. This file contains information about the location of read-only and read/write memory
regions in the target platform. If you check this option, specify the filename in the text
box. If you do not provide memory configuration information, the debugger assumes that
all memory locations are accessible.

For memory configuration commands and their syntax, see “Memory Configuration Files”
on page 187.

Program Download Options
These options specify what portions of the project to download on the initial launch of the
debugger and successive launches. When debugging code in ROM, this download can be
turned off and only the symbols will be loaded.

There are four section types listed in the Program Download Options section of this
panel:

• Executable—The executable code and text sections of the program.

• Constant Data—The constant data sections of the program.

• Initialized Data—The initialized data sections of the program.

• Uninitialized Data—The uninitialized data sections of the program that are usually
initialized by the runtime code included with CodeWarrior IDE.

Verify Memory Writes
Check the Verify Memory Writes check box to instruct the debugger to verify the
memory writes that are performed during the download process.

Debugger PIC Settings
Use the Debugger PIC Settings panel (Figure 7.27) to specify an alternate address where
you want your ELF image loaded on the target.

EPPCLinux.book Page 167 Wednesday, March 23, 2005 6:34 PM

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Target Platform-Specific Features
Target Platform-Specific Target Settings Panels

168 Targeting Embedded PowerPC Linux

Figure 7.27 Debugger PIC Settings Panel

Usually, Position Independent Code (PIC) is linked in such a way so that the entire image
starts at address 0x00000000. The Debugger PIC Settings panel lets you specify the
alternate address where you want to load the PIC module on the target.

To specify the alternate load address, check the Alternate Load Address checkbox and
enter the address in the associated text box. The debugger loads your ELF file on the
target at the new address.

The debugger does not verify whether your code can execute at the new address. Instead,
correctly setting any base registers and performing any needed relocations are handled by
the PIC generation settings of the compiler and linker and the startup routines of your
code.

NOTE You need to set this panel before you debug programs that relocate themselves,
such as u-boot.

EPPC Exceptions
The EPPC Exceptions settings panel (Figure 7.28) lists all the exceptions that the
debugger is able to catch.

EPPCLinux.book Page 168 Wednesday, March 23, 2005 6:34 PM

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Target Platform-Specific Features
Target Platform-Specific Target Settings Panels

169Targeting Embedded PowerPC Linux

NOTE It is recommended you use the supplied pre-configured XML file for
configuring the settings in this panel for your BDM target platforms, such as,
MPC860FADS.

Figure 7.28 EPPC Exceptions Panel

NOTE The EPPC Exceptions panel is available for just the 5xx and 8xx processors.

Check the checkboxes of all the options in this panel if you want the debugger to catch all
the exceptions. Leave the checkboxes cleared for those exceptions, which you prefer to
handle. This panel is used to determine the value to which the Debug Enable Register
(DER) sets the debugger. The DER controls which exceptions are caught or missed by the
Background Debug Mode (BDM). Consult the user’s guide of your processor for more
information on the DER.

To ensure that the debugger performs properly, always select these exceptions:

• 0x00800000 Program — for software breakpoints on some boards

• 0x00020000 Trace — for single stepping

• 0x00004000 Software Emulation — for software breakpoints on some boards

• 0x00000001 Development Port — for halting the target processor.

EPPCLinux.book Page 169 Wednesday, March 23, 2005 6:34 PM

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Target Platform-Specific Features
Target Platform-Specific Target Settings Panels

170 Targeting Embedded PowerPC Linux

Linux Kernel Boot Parameters
The Linux Kernel Boot Parameters settings panel (Figure 7.29) allows you to specify or
edit the command line parameter required for booting the kernel.

NOTE It is recommended you use the supplied pre-configured XML file for
configuring the settings in this panel for your target platform/BSP.

Figure 7.29 Linux Kernel Boot Parameters Settings Panel

This settings panel contains the following options:

Enable Command Line Settings
Check the Enable Command Line Settings checkbox to enable passing of command line
parameters to the kernel while the kernel boots up.

The Command Line text box allows you to specify the command line strings that you
want to pass to the kernel.

Enter the address in the Base Address text box where you want the command line
parameters to be written in the memory.

EPPCLinux.book Page 170 Wednesday, March 23, 2005 6:34 PM

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Target Platform-Specific Features
Target Platform-Specific Target Settings Panels

171Targeting Embedded PowerPC Linux

Enable Initial RAM Disk Settings
Check the Enable Initial RAM Disk Settings checkbox to enable the initial RAM Disk
settings.

Enter or click Browse to specify the host-side path of the initial RAM disk image (initrd)
to be downloaded to the target platform. If you build the kernel using the RAM file
system, the RAM file system must be downloaded to the target platform along with the
kernel image.

NOTE It is not mandatory to use a RAM file system for debugging the kernel. A
kernel built using the NFS file system or any other file system can also be
debugged in a similar manner.

Enter the memory address in the Address text box where you want the initrd file
contents to be written in the memory.

Enter the size of the initrd file in the Size text box.

Check the Download to target checkbox if you want to download the initial RAM disk
image to the target platform.

NOTE For more information on NFS root, see Documentation/nfsroot.txt.
For more information on intial RAM Disk, see Documentation/
ramdisk.txt file in your kernel sources.
For more information on kernel boot parameters, see the bootcmd man pages.

Linux Kernel Debug Settings
The Linux Kernel Debug Settings panel (Figure 7.30) allows you to enable:

• memory translation so that the debugger can map the physical address and the virtual
address.

• support for debugging multiple kernel threads on the target platform.

• support for delaying setting of software breakpoints in the kernel code.

NOTE It is recommended you use the supplied pre-configured XML file for
configuring the settings in this panel for your target platform/BSP.

EPPCLinux.book Page 171 Wednesday, March 23, 2005 6:34 PM

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Target Platform-Specific Features
Target Platform-Specific Target Settings Panels

172 Targeting Embedded PowerPC Linux

Figure 7.30 Linux Kernel Debug Settings Panel

This settings panel contains the following options:

Enable Memory Translation
Check the Enable Memory Translation checkbox to enable memory translation so that
the debugger can map the physical base memory and the virtual base memory.

Enter the physical base address for memory translation in the Physical Base Address text
box.

Enter the virtual base address for memory translation in the Virtual Base Address text
box.

Enable Threaded Debugging Support
Check the Enable Threaded Debugging Support checkbox if you want to debug
multiple kernel threads in separate thread windows. If you uncheck this checkbox, you
will not be able to view newly created kernel threads in a separate thread window. Also,
the Process window will not display any kernel tasks in the Task list

NOTE To view kernel threads in separate thread windows, the Show threads in
separate window checkbox must be checked in the Display Settings panel.

EPPCLinux.book Page 172 Wednesday, March 23, 2005 6:34 PM

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Target Platform-Specific Features
Target Platform-Specific Target Settings Panels

173Targeting Embedded PowerPC Linux

Enable Delayed Software Breakpoint Support
Check the Enable Delayed Software Breakpoint Support checkbox if you want to delay
setting of software breakpoints until the MMU is enabled. When the debugger stops at {
in the start_kernel()(hardware breakpoint), the debugger sets all the delayed
software breakpoints, which were set at virtual address locations.

Linux Kernel Residual Data
The Linux Kernel Residual Data settings panel (Figure 7.31) allows you to set a
structure for a executable binary with symbolics in the memory. If the Enable Residual
Data Settings checkbox is checked and you download the binary to the target platform,
the CodeWarrior debugger searches for the structure details in the symbolics for the
structure specified in the Base Type Name text box. The members of this structure can be
set in the memory with values relative to the base address specified in the Base Address
text box. If the structure name or member name specified in the Linux Kernel Residual
Data panel does not match with the structure details in the executable binary symbolics,
they are ignored.

You must set the bd_t (bd_info) structure for the kernel in the memory to boot the kernel
successfully. When you run the kernel, the debugger searches for the bd_t structure in the
symbolics to retrieve information on location of DRAM, SRAM, FLASH memory,
IMMPR base, IP address to use, bus speed, and ethernet MAC addresses for the board
ports.

NOTE It is recommended you use the supplied pre-configured XML file for
configuring the settings in this panel for your target platform/BSP.

EPPCLinux.book Page 173 Wednesday, March 23, 2005 6:34 PM

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Target Platform-Specific Features
Target Platform-Specific Target Settings Panels

174 Targeting Embedded PowerPC Linux

Figure 7.31 Linux Kernel Residual Data Settings Panel

This settings panel contains the following options:

Enable Residual Data Settings
Check the Enable Residual Data Settings checkbox to enable setting the structure in
memory after the kernel is downloaded on the target platform.

Base Type Name
Enter the structure name you want to set in the Base Type Name text box. For example,
bd_t (bd_info).

Base Address
Enter the physical base address in the Base Address text box. This is the starting point for
the structure.

Element Settings
Enter the structure members name to be set in the Name text box under the Element
Settings group.

Enter the structure members value in the Value text box under the Element Settings
group.

EPPCLinux.book Page 174 Wednesday, March 23, 2005 6:34 PM

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Target Platform-Specific Features
Target Platform-Specific Target Settings Panels

175Targeting Embedded PowerPC Linux

Set Residual Data after decompress
Check the Set Residual Data after decompress checkbox to download the structure
again after the kernel image is decompressed on the target platform. This option is
necessary, if you have checked the Download OS checkbox in the Remote Debugging
settings panel.

Source Folder Mapping
The Source Folder Mappings settings panel (Figure 7.32) allows you to map the location
of the kernel source files on a Linux computer. If you using a kernel built on another
Linux computer, you must map the location of the kernel sources in that computer to the a
folder in your Linux computer

If you have already done the mapping, the Source Folder Mapping settings panel
displays the current mapping.

Figure 7.32 Source Folder Mappings Settings Panel

This settings panel contains the following options:

Build Folder
Enter or browse for the location path of the folder on the Linux computer, which contains
the kernel sources used for building the kernel.

EPPCLinux.book Page 175 Wednesday, March 23, 2005 6:34 PM

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Target Platform-Specific Features
Target Platform-Specific Information

176 Targeting Embedded PowerPC Linux

Current Folder
Enter or browse for the location path of the folder on your computer, which you want to
map to the folder containing kernel sources on the another Linux computer.

Target Platform-Specific Information
This section has these topics:

• Cross Compiler Tools Location

• MetroTRK Project and Binary File Location

• MetroTRK Project - Build Targets

• Sample Projects Location

Cross Compiler Tools Location
The CodeWarrior™ Development Studio for PowerPC ISA, Linux® Application/Platform
Edition v2.0 packages the cross compiler tools for all the supported target platforms.

Table 7.4 lists the location where you can find the target platform-specific cross compiler
tools.

MetroTRK Project and Binary File Location
Table 7.5 lists the location where you can find the MetroTRK project and binary files
applicable for your target platform.

Table 7.4 Cross Compiler Tools and Their Locations

Cross Compiler Tools For Available at

EPPC Target Platforms CWInstall/CodeWarriorIDE/CodeWarrior/
Cross_Tools/binary/Metrowerks/ppc/tools

EPPCLinux.book Page 176 Wednesday, March 23, 2005 6:34 PM

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Target Platform-Specific Features
Target Platform-Specific Information

177Targeting Embedded PowerPC Linux

MetroTRK Project - Build Targets
Table 7.6 lists the build targets available in the MetroTRK project.

Sample Projects Location
CodeWarrior™ IDE provides ready-made projects, which contain all the required settings
for running it successfully on a PowerPC-based target platform. The sample projects will
help you to understand the features and capabilities of the CodeWarrior™ Development
Studio for PowerPC ISA, Linux® Application/Platform Edition v2.0 software. Figure 7.33
shows the directory structure of the Examples folder.

Table 7.5 MetroTRK Project and Binary File Location

Type Available at

MetroTR
K
binaries

CWInstall/CodeWarriorIDE/CodeWarrior/PowerPC_EABI_Tools/
MetroTRK/Os/unix/linux/ppc/Bin

MetroTR
K project

CWInstall/CodeWarriorIDE/CodeWarrior/PowerPC_EABI_Tools/
MetroTRK/Os/unix/linux/ppc/trk_linux_ppc.mcp

Table 7.6 MetroTRK Project Build Targets

Build Target Name Description

Linux AppTRK for e500 Builds release version of MetroTRK for e500 target
platforms

Linux AppTRK for e500 (Debug) Builds debug version of MetroTRK for e500 target
platforms

Linux AppTRK for e603 Builds release version of MetroTRK for e603 target
platforms

Linux AppTRK for e603 (Debug) Builds debug version of MetroTRK for e603 target
platforms

Build All Builds all versions of the MetroTRK one after
another

EPPCLinux.book Page 177 Wednesday, March 23, 2005 6:34 PM

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Target Platform-Specific Features
Target Platform-Specific Information

178 Targeting Embedded PowerPC Linux

Figure 7.33 Examples Directory Structure

Each top-level directory has a Readme.txt file that explains the intent of each example
in that directory.

To use any of the examples, the following are required:

1. An account on the Linux target system with user name sample

2. All the executables must be downloaded to the /home/sample directory

3. The MetroTRK should be executed by the user sample

4. Appropriate settings in the Remote Debugging settings panel (for remote connection).

A list of some of the sample application projects and the kernel module project available
in your CodeWarrior installation directory is listed in Table 7.7.

Contains sample makefile
(.mak) for PowerPC-based
target platforms

Contains application-level and PowerPC-
specific example projects. For example,
multi threaded debugging

Contains sources files, header files, and notes that are
referred to and are common for the application-level
example projects

EPPCLinux.book Page 178 Wednesday, March 23, 2005 6:34 PM

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Target Platform-Specific Features
Debug Initialization Files

179Targeting Embedded PowerPC Linux

Table 7.8 lists the location where you can find the header and source files for the above
mentioned sample Linux application projects.

NOTE For information on how to work with the sample projects, see the project notes
located at: Examples/Common/{Notes}.

Debug Initialization Files
A debug initialization file is used to initialize the target platform before the debugger
downloads the code. The main purpose is to ensure that the target platform is initialized
properly before being accessed.

This section has these topics:

• Using Debug Initialization Files

• Debug Initialization File Commands

Using Debug Initialization Files
A debug initialization file is a command file processed and executed each time the
debugger is invoked. It is usually necessary to include an initialization file when

Table 7.7 Example Projects and Their Location

Project File
Name

Available at Description

SharedLibrary.mcp Examples/ppc/Basic/Projects Shared library sample project

THREAD.mcp Examples/ppc/Basic/Projects Multithreading sample project

ForkAndExec.mcp Examples/ppc/Advanced/
Projects

Fork() and Exec() sample
project

module.mcp Examples/ppc/Basic/Module Kernel module sample
project

Table 7.8 Header and Source Files for Sample Projects

Source files Examples/Common/Sources

Header files Examples/Common/Includes

EPPCLinux.book Page 179 Wednesday, March 23, 2005 6:34 PM

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Target Platform-Specific Features
Debug Initialization Files

180 Targeting Embedded PowerPC Linux

debugging via JTAG to ensure that the target platform is initialized correctly and that any
register values that need to be set for debugging purposes are set correctly. You specify
whether or not to use an initialization file and which file to use in the EPPC Debugger
Settings panel.

NOTE You do not need to use an initialization file when debugging with MetroTRK.

Several examples of initialization files are provided for the supported target platforms and
can be found at this location of the CodeWarrior installation directory:

/CodeWarriorIDE/CodeWarrior/PowerPC_EABI_Support/
Initialization_Files/

Debug Initialization File Commands
This section explains debug initialization file commands, including:

• Debug initialization file command syntax

• Description and examples of individual commands

Each section explains these individual command lists:

• The command name

• A brief description of the command

• Command usage (prototype)

• Command examples

• Hardware debug device supporting the command

• Any important notes about the command

Debug Initialization File Command Syntax
The following list shows the rules for the syntax of debug initialization file commands.

• Any white spaces and tabs are ignored.

• Character case is ignored in all commands.

• You can enter a number in hex, octal, or decimal.

– Hex - preceded by 0x (0x00002222 0xA 0xCAfeBeaD)

– Octal - preceded by 0 (0123 0456)

– Dec - starts with 1-9 (12 126 823643)

• Comments start with a “;” or “#”, and go till the end of the line.

EPPCLinux.book Page 180 Wednesday, March 23, 2005 6:34 PM

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Target Platform-Specific Features
Debug Initialization Files

181Targeting Embedded PowerPC Linux

Initialization File Commands
The following commands are found in configuration files:

• alternatePC

• ANDMem.I

• ANDmmr

• InCormmr

• ORMem.I

• reset

• run

• setMMRBaseAddr

• sleep

• stop

• writemem.b

• writemem.w

• writemem.l

• writemmr

• writereg

• writespr

• writeupma

• writeupmb

alternatePC

Table 7.9 alternatePC

Descriptio
n

Sets the PC register to the specified value. Can be used when program
entry point differs from elf image entry point.

Usage alternatePC <value>

Example alternatePC 0xc28737a3

EPPCLinux.book Page 181 Wednesday, March 23, 2005 6:34 PM

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Target Platform-Specific Features
Debug Initialization Files

182 Targeting Embedded PowerPC Linux

ANDMem.I

ANDmmr

InCormmr

ORMem.I

Table 7.10 ANDMem.I

Descriptio
n

Reads 4 bytes starting with address, makes a bit AND of this value with
32bitMASK and writes it back at the same address.

Usage ANDMem.I address 32bitMASK

Table 7.11 ANDmmr

Descriptio
n

Reads the value of the MMR register on which executes an AND with
the specified value. The result is the written back into the same
register.

Usage ANDmmr <registerName> <value>

Example ANDmmr ACFG 0x00002000

Table 7.12 InCormmr

Description Reads the value of the MMR register on which executes an OR with
the specified value. The result is the written back into the same
register.

Usage IncORmmr <registerName> <value>

Example IncOrmmr ACFG 0x00002000

Table 7.13 ORMem.l

Description Reads 4 bytes starting with address, makes a bit OR of this value with
32bitMASK and writes it back at the same address. Does not perform
read/write/verify.

Usage ORMem.I address 32bitMASK

EPPCLinux.book Page 182 Wednesday, March 23, 2005 6:34 PM

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Target Platform-Specific Features
Debug Initialization Files

183Targeting Embedded PowerPC Linux

reset
The reset command is specific to debugging through the CCS protocol.

run

setMMRBaseAddr
The setMMRBaseAddr command works only with target platforms that use the 825x/
826x processors.

Table 7.14 reset

Descripti
on

This command determines a target reset depending on its parameter.

Usage reset <value>, where <value> can be 0 or 1. Value 0
determines a reset to user and value 1 determines a
reset to debug.

Example reset 0

Table 7.15 run

Description Causes the processor to enter in running
mode.

Usage Run

Example Run

Table 7.16 setMMRBaseAddr

Descripti
on

The debugger requires the base address of the memory mapped
registers on the 825x/826x since this register is memory mapped itself.
This command must be in all debug initialization files for the 825x/826x
processors. This command informs the debugger plug-in of the base
address, which allows you to send any writemmr commands from the
debug initialization file, as well as read the memory mapped registers for
the register views.

EPPCLinux.book Page 183 Wednesday, March 23, 2005 6:34 PM

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Target Platform-Specific Features
Debug Initialization Files

184 Targeting Embedded PowerPC Linux

sleep

stop

writemem.b

Usage setMMRBaseAddr<value>, where <value> is the base
address for the memory mapped registers.

Example setMMRBaseAddr 0x0f00000

Table 7.17 sleeep

Descriptio
n

Causes the processor to wait the specified number of milliseconds
before continuing to the next command.

Usage sleep <value>

Example sleep 10 # sleep for 10 milliseconds

Table 7.18 stop

Description Causes the processor to enter in suspend
mode.

Usage Stop

Example Stop

Table 7.19 writemem.b

Descripti
on

Writes data to a memory location using a byte as the size of the write.

Usage writemem.b <address> <value>, where:

• <address> — the hex, octal, or decimal address in memory
to modify

• <value> — the hex, octal, or decimal value to write at the
address

Example writemem.b 0x0001FF00 0xFF # Write 1 byte to memory

Table 7.16 setMMRBaseAddr (continued)

EPPCLinux.book Page 184 Wednesday, March 23, 2005 6:34 PM

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Target Platform-Specific Features
Debug Initialization Files

185Targeting Embedded PowerPC Linux

writemem.w

writemem.l

writemmr

Table 7.20 writemem.w

Descripti
on

Writes data to a memory location using a word as the size of the write.

Usage writemem.w <address> <value>, where:

• <address> — the hex, octal, or decimal address in memory
to modify

• <value> — the hex, octal, or decimal value to write at the
address

Example writemem.w 0x0001FF00 0x1234 # Write 2 bytes to
memory

Table 7.21 writemeem.l

Descripti
on

Writes data to a memory location using a long as the size of the write.

Usage writemem.l <address> <value>, where:

• <address> — the hex, octal, or decimal address in memory
to modify

• <value> — the hex, octal, or decimal value to write at the
address

Example writemem.l 0x00010000 0x00000000 # Write 4 bytes to
memory

Table 7.22 writemmr

Descriptio
n

Writes a value to the specified MMR (Memory Mapped Register). All
memory mapped register names for the supported processors should be
accepted by this command. If any registers are found to not be
supported, writemem commands can be used to accomplish the register
modification.

EPPCLinux.book Page 185 Wednesday, March 23, 2005 6:34 PM

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Target Platform-Specific Features
Debug Initialization Files

186 Targeting Embedded PowerPC Linux

writereg

writespr

Usage writemmr < register name> <value>

Example writemmr SYPCR 0xffffffc3

writemmr RMR 0x0001

writemmr MPTPR 0x3200

Table 7.23 writereg

Descripti
on

Writes data to the specified register on the target. All register names that
are part of the core processor are supported including GPRs and SPRs.

Usage writereg <registerName> <value>

Example writereg MSR 0x00001002

Table 7.24 wrritespr

Descriptio
n

Writes the value to the SPR with number regNumber, which is the same
as writereg SPRxxxx but allows you to enter the SPR number in other
bases (hex/octal/decimal).

Usage writespr <regNumber> <value>, where:

• <regNumber> — a hex/octal/decimal SPR number (0-1023)

• <value> — a hex/octal/decimal value to write to SPR

Example writespr 638 0x02200000

Table 7.22 writemmr (continued)

EPPCLinux.book Page 186 Wednesday, March 23, 2005 6:34 PM

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Target Platform-Specific Features
Memory Configuration Files

187Targeting Embedded PowerPC Linux

writeupma

writeupmb

Memory Configuration Files
A memory configuration file contains commands that define the accessible areas of
memory for your specific target platform.

This section has these topics:

• Command Syntax

• Memory Configuration File Commands

Command Syntax
The list of rules for syntax of commands in a configuration file is as follows:

• All syntax is case insensitive

• Any white spaces and tabs are ignored

Table 7.25 writeupma

Descripti
on

Maps the user-programmable machine (UPM) registers to define
characteristics of the memory array.

Usage writeupma <offset> <ram_word>, where:

• <offset> — 0-3F, as defined in the UPM transaction type
table in the Memory Controller section of the Motorola manual

• <ram_word> — UPM RAM word for that offset

Example writeupma 0x08 0xffffcc24

Table 7.26 writeupmb

Descripti
on

Maps the user-programmable machine (UPM) registers to define
characteristics of the memory array.

Usage writeupma <offset> <ram_word>, where:

• <offset> — 0-3F, as defined in the UPM transaction type
table in the Memory Controller section of the Motorola manual

• <ram_word> — UPM RAM word for that offset

Example writeupma 0x08 0xffffcc24

EPPCLinux.book Page 187 Wednesday, March 23, 2005 6:34 PM

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Target Platform-Specific Features
Memory Configuration Files

188 Targeting Embedded PowerPC Linux

• Comments can be standard C or C++ style comments

• A number may be entered in hexadecimal, octal, or decimal:

– Hexadecimal—preceded by 0x (0x00002222, 0xA, 0xCAfeBeaD)

– Octal—preceded by 0 (0123, 0456)

– Decimal—starts with 1-9 (12, 96, 823643)

Memory Configuration File Commands
This section lists the command name, its usage, a brief explanation of the command,
examples of how the command may appear in the configuration files, and any important
notes about the command.

The following commands are found in the memory configuration files:

• range

• reserved

• reservedchar

range

Table 7.27 range

Descripti
on

Allows you to specify a memory range for reading and/or writing, and its
attributes.

Usage range <loAddr> <hiAddr> <sizeCode> <access>, where:

• <loAddr> — start of memory range to be defined

• <hiAddr> — ending address in the memory range to be
defined

• <sizeCode> — specifies the size, in bytes, to be used for
memory accesses by the debug monitor or emulator.

• <access> — can be Read, Write, or ReadWrite.
This parameter allows you to make certain areas of your
memory map read-only, write-only, or read/write only to the
debugger.

Example range 0xFF000000 0xFF0000FF 4 Read

range 0xFF000100 0xFF0001FF 2 Write

range 0xFF000200 0xFFFFFFFF 1 ReadWrite

EPPCLinux.book Page 188 Wednesday, March 23, 2005 6:34 PM

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Target Platform-Specific Features
Using Hardware Tools

189Targeting Embedded PowerPC Linux

reserved

reservedchar

Using Hardware Tools
This section explains the CodeWarrior IDE hardware tools. Use these tools for board
bring-up, test, and analysis.

Flash Programmer
The CodeWarrior flash programmer can program the flash memory of the target board
with code from any CodeWarrior IDE project or from any individual executable files. The
CodeWarrior flash programmer provides features such as:

Table 7.28 reserved

Descripti
on

Allows you to specify a reserved range of memory. Any time the
debugger tries to read from this location, the memory buffer is filled with
the reservedchar. Any time the debugger tries to write to any of the
locations in this range, no write will take place.

Usage reserved <loAddr> <hiAddr>, where:

• <loAddr> — start of memory range to be defined
• <hiAddr> — ending address in memory range to be defined

Example reserved 0xFF000024 0xFF00002F

Table 7.29 reservedchar

Descripti
on

Allows you to specify a reserved character for the memory configuration
file. This character is seen when you try to read from an invalid address.
When an invalid read occurs, the debugger fills the memory buffer with
this reserved character.

Usage reservedchar <char>, where <char> can be any character (one
byte).

Example reservedchar 0xBA

EPPCLinux.book Page 189 Wednesday, March 23, 2005 6:34 PM

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Target Platform-Specific Features
Using Hardware Tools

190 Targeting Embedded PowerPC Linux

• Program

• Erase

• BlankCheck

• Verify

• Checksum

NOTE Certain flash programming features, such as view/modify, memory/register, or
save memory content to a file, are provided by the CodeWarrior debugger.
Therefore, these features are not a part of the CodeWarrior flash programmer.

The CodeWarrior flash programmer uses the CodeWarrior Debugger Protocol API to
communicate with the target boards. The CodeWarrior flash programmer runs as a
CodeWarrior plug-in.

The CodeWarrior flash programmer lets you use the same IDE to program the flash of any
of the embedded target boards.

The Flash Programmer window (Figure 7.34) lists global options for the flash
programmer hardware tool. These preferences apply to every open project file.

Figure 7.34 Flash Programmer Window

EPPCLinux.book Page 190 Wednesday, March 23, 2005 6:34 PM

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Target Platform-Specific Features
Using Hardware Tools

191Targeting Embedded PowerPC Linux

To open the Flash Programmer window, click Tools > Flash Programmer. The left
pane of the Flash Programmer window shows a tree structure of panels. Click a panel
name to display that panel in the right pane of the Flash Programmer window.

Refer to the IDE User’s Guide for information on each panel in the Flash Programmer
window.

Hardware Diagnostics
The Hardware Diagnostics window (Figure 7.35) lists global options for the hardware
diagnostic tools. These preferences apply to every open project file. Select Tools >
Hardware Diagnostics to display the Hardware Diagnostics window.

Figure 7.35 Hardware Diagnostics Window

The left pane of the Hardware Diagnostics window shows a tree structure of panels.
Click a panel name to display that panel in the right pane of the Hardware Diagnostics
window.

Refer to the IDE User’s Guide for information on each panel in the Hardware
Diagnostics window.

EPPCLinux.book Page 191 Wednesday, March 23, 2005 6:34 PM

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Target Platform-Specific Features
Using Hardware Tools

192 Targeting Embedded PowerPC Linux

EPPCLinux.book Page 192 Wednesday, March 23, 2005 6:34 PM

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

193Targeting Embedded PowerPC Linux

A
Third Party Cross Compiler
Tools

You may want to use/build cross compiler tools from other sources that are not installed
during CodeWarrior™ IDE installation. This appendix describes how to use these third
party cross compiler tools to build your project.

NOTE This Appendix assumes that you already have a CodeWarrior project open.
Ensure that the source files for the cross compiler tools are available in your
host computer.

You need to rebuild the CodeWarrior project with the new third party cross compiler
tools. Before you rebuild the project, you need to make changes in the GNU Tools and
Access Paths setting panels. The steps are:

1. Select Edit > Target Settings. The Target Settings panel appears. Target is the build
target name.

2. Select Target Settings from the Target Settings Panels list. The Target Settings
panel appears.

3. Select the appropriate linker from Linker list box.

4. Click Save to save the settings.

5. Specify the path where the third party cross compiler tools are installed/copied.

a. Select GNU Tools from the Target Settings Panels list. The GNU Tools settings
panel appears.

b. Check the Use Custom Tool Commands checkbox to specify new third party
cross compiler tools.

c. Specify the path where cross compiler tools exist on your computer in the Tool
Path text box. For example, if the third party cross compiler tools are located at /
usr/local/ppc, then the Tool Path will be at /usr/local/ppc/bin

d. Update the Commands section with the commands. These commands are located
at third party cross compiler tools installation directory. For example, Compiler
gcc, Linker gcc, Archiver ar, Size Reporter size, Disassembler objdump,
Assembler as, and Post Linker strip.

EPPCLinux.book Page 193 Wednesday, March 23, 2005 6:34 PM

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Third Party Cross Compiler Tools

194 Targeting Embedded PowerPC Linux

6. Change the access path settings for kernel and gcc-lib include files in the Access Paths
settings panel.

a. Select Access Paths from the Target Settings Panels list. The Access Paths
settings panel appears.

b. Click Change to modify the access path settings for kernel and gcc-lib-specific
include files. A file mapping dialog box appears.

c. Select the kernel include files from the list and click Select “directory_name”,
where “directory_name” is the directory where the kernel source files are located.

d. Similarly, select gcc-lib include files from the list.

e. Click Save to save the settings.

f. Close the Target Settings panel.

Now, you are ready to rebuild your project using the third party cross compiler
tools.

NOTE If you want to use third party cross compiler tools to build your projects/build
targets, you must perform the above steps for each project/build target.

EPPCLinux.book Page 194 Wednesday, March 23, 2005 6:34 PM

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

195Targeting Embedded PowerPC Linux

B
Using PCS to Build Kernel

This appendix describes how to build kernel using the Platform Creation Suite (PCS).

This appendix has these sections:

• Platform Creation Suite - Overview

• Build the Kernel Using PCS

Platform Creation Suite - Overview
Metrowerks® Platform Creation Suite for Linux® OS provides a complete development
environment supporting each step of an embedded product’s development cycle from
concept to market. The Platform Creation Suite (PCS) consists of three core components:

• Target Wizard Tools— used to manage, configure, extend, build and deploy Linux
software elements

• CodeWarrior IDE—used to project manage, create, build and debug your value
added software which sits on top of the open source elements

• Board Support Package(s)—includes all of the host and target elements that are
required to build and deploy the operating system, device drivers and applications to
specific target hardware

Build the Kernel Using PCS

NOTE It is assumed that Target Wizard is installed and loaded on your system with
Lite500.

Target Wizard (Figure B.1) uses projects to organize your work.

EPPCLinux.book Page 195 Wednesday, March 23, 2005 6:34 PM

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Using PCS to Build Kernel
Build the Kernel Using PCS

196 Targeting Embedded PowerPC Linux

Figure B.1 Metrowerks Target Wizard Opening Screen

Each project is stored in its own directory, which contains a number of files and
subdirectories.

• Create a Project

• Build the Project

• Debug the Kernel

Create a Project
To create a project, first ensure that Target Wizard is running and that no project is open.
Then use the following procedure.

NOTE Start Target Wizard by entering the command tw at command prompt, before
beginning with the Target Wizard.

EPPCLinux.book Page 196 Wednesday, March 23, 2005 6:34 PM

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Using PCS to Build Kernel
Build the Kernel Using PCS

197Targeting Embedded PowerPC Linux

1. From the Target Wizard interface, select Project > New. Page 1 of the Target Wizard
(Figure B.2)) appears.

Figure B.2 Target Wizard - Page 1

2. Enter project base directory location in Project Base Directory text box.

3. Enter project name in Project Name text box.

4. Click Next. Page 2 of the Target Wizard (Figure B.3) appears.

EPPCLinux.book Page 197 Wednesday, March 23, 2005 6:34 PM

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Using PCS to Build Kernel
Build the Kernel Using PCS

198 Targeting Embedded PowerPC Linux

Figure B.3 Target Wizard - Page 2

5. Check Build with conflicts checkbox to allow build to continue when conflicts exist.

6. Check Continue building when errors occur, if you want to continue build when
errors occur.

7. Select type of log file from Build Log File Options.

8. Click Next. Page 3 of the Target Wizard (Figure B.4) appears.

EPPCLinux.book Page 198 Wednesday, March 23, 2005 6:34 PM

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Using PCS to Build Kernel
Build the Kernel Using PCS

199Targeting Embedded PowerPC Linux

Figure B.4 Target Wizard - Page 3

9. Select Current Project Target Platform from the list box of board support package
(BSP) options. For this tutorial, it is Metrowerks MPC5200 Lite.

NOTE The options provided in the drop-down list will vary depending on which BSPs
you have installed.

10. Click Finish. Target Wizard interface screen (Figure B.5) appears.

EPPCLinux.book Page 199 Wednesday, March 23, 2005 6:34 PM

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Using PCS to Build Kernel
Build the Kernel Using PCS

200 Targeting Embedded PowerPC Linux

Figure B.5 Target Wizard Interface

Build the Project
1. If your project of choice doesn’t open by default, from the menu bar, choose Project >

Open Recent or Project > Open and browse for and select the project.

2. Select either Build > Build or Build > Force Rebuild from menu bar.

NOTE It is recommended to use Force build. This will build all packages (regardless
of whether or not they have changed since the last build) and will include Build
Options that are enabled.

Debug the Kernel
To debug PCS kernel, the steps are.

1. Compile kernel with "-O0 -ggdb" or -O1 -ggdb” options. Change the Makefile.

2. If you want to pass command line parameters to kernel, open the Linux Kernel Boot
Parameters panel and check the Enable Command Line Settings checkbox. Set the
command line parameters and Base Address. For more information, see “Set Up the
Kernel Project for Debugging” on page 141.

3. Rebuild the kernel.

EPPCLinux.book Page 200 Wednesday, March 23, 2005 6:34 PM

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Using PCS to Build Kernel
Build the Kernel Using PCS

201Targeting Embedded PowerPC Linux

4. The next step is to create a project for the kernel in your CodeWarrior™ IDE. See
“Create a CodeWarrior Project for the Kernel” on page 138.

EPPCLinux.book Page 201 Wednesday, March 23, 2005 6:34 PM

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Using PCS to Build Kernel
Build the Kernel Using PCS

202 Targeting Embedded PowerPC Linux

EPPCLinux.book Page 202 Wednesday, March 23, 2005 6:34 PM

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

203Targeting Embedded PowerPC Linux

C
Frequently Asked
Questions

This appendix discusses the frequently asked questions about the CodeWarrior™
Development Studio for PowerPC ISA, Linux® Application/Platform Edition v2.0.

This appendix has these topics:

• Settings FAQs

• Debugging FAQs

• The CodeWarrior IDE FAQs

• Kernel Debugging FAQs

• Kernel Module Debugging FAQs

Settings FAQs
Question: What is the purpose of the Cache symbolics
between runs setting in the Debugger Settings Panel?

Answer: If you check this option, the debugger keeps the symbolics data loaded across
debug sessions. Hence, the debugger will not need to load the symbolic data every time in
repeat debug sessions provided the symbolic data has not changed. Also, the Console
Window will not close between runs.

Question: I have specified the location of a shared library in
the Access Paths. But it is not working. Why?

Answer: The path to a shared library needs to be specified in the Libraries settings in the
GNU Linker settings panel using the -L option. The access paths specified in the Access
Paths settings panel are not applicable for shared libraries.

EPPCLinux.book Page 203 Wednesday, March 23, 2005 6:34 PM

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Frequently Asked Questions
Debugging FAQs

204 Targeting Embedded PowerPC Linux

Debugging FAQs
Question: The CodeWarrior debugger does not stop at a Log
Point set up in a function but stops at a Pause Point. Is this
correct?

Answer: The CodeWarrior™ debugger does not stop at a Log Point unless you check the
Stop in Debugger setting when setting the Log Point. A Pause Point suspends program
execution just long enough to refresh debugger data.

Question: How do I load an executable for exec() system call?

Answer: You need to specify the name of the executable file in the Other Executables
settings panel. Then, the executable will be downloaded to the target platform and
debugged.

However, if the executable is already present on the target platform and its project is not
open in the CodeWarrior IDE, you can still use it by selecting it in the Choose
Executables dialog box that appears when the exec() system call is executed.

Question: What will happen if the executable specified in the
exec() system call is not present on the target platform?

Answer: The CodeWarrior debugger will ignore the exec() system call if the
corresponding executable in not present on the target platform. You need to build the
required sanity checking and messaging in your application.

Question: I am unable to launch an executable using exec()
system call from a thread program. The debugger displays the
'MetroTrkProtocolPlugin: Failed to continue thread' message
on running my application.

Answer: This issue has been fixed with one limitation that the exec() system call must be
in the main thread only.

Question: I am debugging a shared library and pressed F5 to
continue inside the shared library code. CodeWarrior IDE
crashes. How do I work around it?

Answer: You can avoid the situation as follows:

EPPCLinux.book Page 204 Wednesday, March 23, 2005 6:34 PM

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Frequently Asked Questions
The CodeWarrior IDE FAQs

205Targeting Embedded PowerPC Linux

1. You have the project for the shared library.

Check the Cache symbolics between runs option in the Debugger Settings panel.
This setting must be done for all build targets being debugged by the process.

Also, make sure that you do not close the Symbolics Window till the debugging
session is complete.

2. You do not have the project for the shared library and it is specified from the Other
Executables settings panel.

Make sure that you do not close the Symbolics Window till the debugging session is
complete.

The CodeWarrior IDE FAQs
Question: While attaching to a process, why does the System
Browser window show the threads as separate processes?

Answer: This is a known limitation of the Linux™ operating system, as the thread
information is not available till the debugger attaches to it and reads the Thread Data
structures. For a multi-threaded application, you need to separately attach to each thread to
debug the threads in the process. This is because the threads are implemented through a
user library (Pthreads), and threads run actually as lightweight processes on the system.

Question: Why does a thread creation call fails after a fork()
system call?

Answer: When a fork() is called from a thread, the process is created with a single thread.
The new process contains a replica of the calling thread and its entire address space,
possibly including the states of mutexes and other resources. Consequently, the child
process may only execute async-signal-safe operations until exec() is called. Therefore, a
thread creation call will fail after a fork() system call.

Question: Sometimes, the console messages are not flushed
to stdout. Why?

Answer: This may occur as the proper permissions may not be present for tty* device.
You can either provide work permission for tty* device or ensure that you login into the
Linux target platform with "su" or root privileges. This is required to exploit the correct
functionality of Console I/O, in absence of which you require external fflush() call to
display the output on the console window and input echo will not take place.

EPPCLinux.book Page 205 Wednesday, March 23, 2005 6:34 PM

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Frequently Asked Questions
Kernel Debugging FAQs

206 Targeting Embedded PowerPC Linux

Question: Why cannot I step out after stepping into a function
without symbolic info?

Answer: This is not a bug but is the expected behavior.

Question: Do I need to do anything with AppTRK while
restarting the CodeWarrior IDE after a crash?

Answer: When the CodeWarrior IDE crashes due to any reason, we recommend that you
restart the AppTRK session on the target platform before restarting the CodeWarrior IDE.

Kernel Debugging FAQs
Question: I want to create kernel project using the ELF drop
feature of the CodeWarrior IDE. I have an uncompressed and a
compressed kernel image. Which image of the kernel should I
drag and drop into the CodeWarrior IDE?

Answer: The uncompressed kernel image because the ELF drop feature of CodeWarrior
IDE requires an uncompressed kernel image having the debug symbolics information to
create a project.

Question: I have modified the kernel sources on my host
computer. Can I rebuild the kernel using the CodeWarrior
IDE?

Answer: No. You can rebuild the kernel only on a Linux-hosted computer.

Question: I want to configure the settings for my kernel
project in the CodeWarrior IDE. But, the EPPC Debugger
Settings panel, Linux Kernel Boot Parameters, and Linux
Kernel Debug Settings panel are not displayed in the Target
Settings Panels list. What should I do?

Answer: Make sure that you have selected an PowerTAP PRO JTAG or PowerTAP PRO
DPI or PowerTAP PRO CCS-based remote connection in the Remote Debugging settings
panel.

EPPCLinux.book Page 206 Wednesday, March 23, 2005 6:34 PM

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Frequently Asked Questions
Kernel Module Debugging FAQs

207Targeting Embedded PowerPC Linux

Question: I created a kernel project using the ELF drop
feature. I want to open a file in the kernel project directory. I
type the name of the file in the Find and Open file dialog box.
But, the CodeWarrior IDE opens a file with a similar name
existing in some other architecture subdirectory.

Answer: Make sure that you check the Save project entries using relative path
checkbox in the Target Settings panel before you add any new files to the kernel project
directory.

Kernel Module Debugging FAQs
Question: I have created a kernel module project with two
build targets - one generates an executable binary and the
other generates a kernel module file. I want to download and
install the kernel module on the target platform. When I select
Project > Run, the kernel module does not get download and
installed. Why?

Answer: The reasons may be:

• The kernel module project that you created is not using a MetroTRK-based remote
connection to connect to the target platform

• The kernel is not booted on the target platform

• The host-side location of the kernel module is not specified in the Other
Executables settings panel

Question: The Other Executables settings panel is not
appearing in the Target Settings Panels list. What shall I do?

Answer: You may have selected a PowerTAP PRO JTAG or PowerTAP PRO DPI, or
PowerTAP PRO CCS-based connection in the Remote Debugging settings panel. You
must select a MetroTRK-based connection for displaying the Other Executables settings
panel.

EPPCLinux.book Page 207 Wednesday, March 23, 2005 6:34 PM

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

Frequently Asked Questions
Kernel Module Debugging FAQs

208 Targeting Embedded PowerPC Linux

EPPCLinux.book Page 208 Wednesday, March 23, 2005 6:34 PM

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

209Targeting Embedded PowerPC Linux

Index

Symbols
.xml file 143

A
alternatePC 181
ANDMem.I 182
Andmmr 182
attach to process 94–98

B
binary files with no source code 92–93
build target 16
building projects using third party cross compiler

tools 193

C
checking syntax 20
CodeTAP remote connection 127
CodeWarrior

checking syntax 20
compared to command line 18
compiler description 17
components 16–17
debugging 20
development process 18–20
disassembling 20
editing source code 19
IDE defined 16
linking 19
preprocessing 20
project manager defined 16
project window 18
projects compared to Makefiles 18
tools listed 16
tutorials 13

CodeWarrior IDE
Linux Info menu 113
Linux menu 162
release notes 9

command-line
and CodeWarrior compared 18

common application debugging features 55–115
compiler

description 17
compiling 19
configuring a PowerTAP PRO DPI remote

connection 130
configuring a PowerTAP PRO JTAG remote

connection 128
configuring the kernel project 141–150
Console I/O Settings panel 51

D
debug agent, definition 126
debug agents, supported 126
debug initialization file commands 181
debug initialization files 179

commands
alternatePC 181
ANDMem.I 182
Andmmr 182
InCormmr 182
ORMem.I 182
reset 183
run 183
setMMRBaseAddr 183
sleep 184
stop 184
writemem.b 184
writemem.l 185
writemem.w 185
writemmr 185
writereg 186
writespr 186
writeupma 187
writeupmb 187

Debugger PIC Settings panel 167
Debugger Settings panel 48
Debugger Signals settings panel 53
debugging 20

attach to process 94–98
Boa Server application 163–165
elf files 92–93

EPPCLinux.book Page 209 Wednesday, March 23, 2005 6:34 PM

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

210 Targeting Embedded PowerPC Linux

fork() and exec() system calls 98–110
kernel modules 157–162
kernel threads 155
Linux kernel 136–157
Linux kernel using custom target platform or

BSP 155
MetroTRK 56
multithreaded 81–92
shared library 63–81

debugging features, target-platform-specific 132
debugging u-boot 132
development tools 16–17
disassembling 20
displaying multiple processes and threads in a

single thread window 110
documentation

IDE User’s Guide 13
download and boot kernel 150

E
editing source code 19
EPPC Debugger Settings panel 165
EPPC Exceptions settings panel 168
error messages 13

F
FAQs 203

on CodeWarrior IDE 205
on debugging 204
on kernel debugging 206
on kernel module debugging 207
on settings 203
shared libraries 203, 204
stepping 206

features
common application debugging features 55
other common features 117
target platform-specific features 125

frequently asked questions 203

G
GCC defined 17
GNU Assembler settings panel 40

GNU Compiler settings panel 42
GNU Disassembler settings panel 40
GNU Environment settings panel 45
GNU Linker settings panel 44
GNU Post Linker settings panel 43
GNU Target settings panel 37
GNU Tools settings panel 46

H
Hardware tools

flash programmer 189–191
hardware diagnostics 191

I
IDE Preferences panel

Show processes in separate window
checkbox 111

Show threads in separate window
checkbox 111

IDE User’s Guide 13
importing panels settings from XML files 143
InCormmr 182
initialization file commands 181
installing kernel modules 159
Integrated Development Environment (IDE) 18

K
kernel debugging 136–157
kernel debugging using custom target platform or

BSP 155
kernel debugging, remote connections

supported 128
kernel module debugging 157–162
kernel modules 157

L
linking 19
Linux kernel

introduction 136
Linux Kernel Boot Parameters settings panel 170
Linux Kernel Debug Settings panel 171
Linux kernel modules

introduction 157

EPPCLinux.book Page 210 Wednesday, March 23, 2005 6:34 PM

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

211Targeting Embedded PowerPC Linux

Linux Kernel Residual Data settings panel 173
Linux menu 162
loadable kernel modules 157
loading symbolics for kernel modules 160

M
Makefile Importer Wizard 117
memory configuration file commands 188
memory configuration files 187
MetroTRK

installing on remote target 57
launching on remote target 61
using MetroTRK 56
debug monitor 56, 57
definition 56
overview 56
remote debugging 29, 55

multithreaded debugging 81–92

O
options

Console I/O 51
Debugger PIC Settings 167
Debugger Settings 48
Debugger Signals 53
EPPC Debugger Settings 165
EPPC Exceptions 168
GNU Assembler 40
GNU Compiler 42
GNU Disassembler 40
GNU Environment 45
GNU Linker 44
GNU Post Linker 43
GNU Target 37
GNU Tools 46
Linux Kernel Boot Parameters 170
Linux Kernel Debug Settings 171
Linux Kernel Residual Data 173
Source Folder Mapping 175
Target Settings 35

ORMem.I 182
other common features 117
overview, PCS 195

P
PCS tools, overview 195
Platform Creation Suite (PCS) 195
Post Linker Stripper

definition 120
post linker stripper feature 120
Post-linker list box, (target-specific) GNU Post

Linker - Stripper option 121
PowerTAP PRO DPI remote connection

configure 130
PowerTAP PRO JTAG remote connection

configure 128
preprocessing 20
process details 113
Process Information Window 113
product FAQs 203
project data folder 25
project window, CodeWarrior IDE 19

R
release notes 9
remote connection

PowerTAP PRO 127
remote connection types, supported 127
remote connections for kernel debugging 128
remote debugging 57–63

with MetroTRK 29, 55
reset 183
run 183

S
setMMRBaseAddr 183
settings panels

Console I/O 51
Debugger PIC Settings 167
Debugger Settings 48
Debugger Signals 53
EPPC Debugger Settings 165
EPPC Exceptions 168
GNU Assembler 40
GNU Compiler 42
GNU Disassembler 40
GNU Environment 45

EPPCLinux.book Page 211 Wednesday, March 23, 2005 6:34 PM

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

212 Targeting Embedded PowerPC Linux

GNU Linker 44
GNU Post Linker 43
GNU Target 37
GNU Tools 46
Linux Kernel Boot Parameters 170
Linux Kernel Debug Settings 171
Linux Kernel Residual Data 173
Source Folder Mapping 175
Target Settings 35

Shell Tool Post Linker 123
Shell Tool Post Linker feature 123
sleep 184
Source Folder Mapping settings panel 175
stabs format, viewing 20
stop 184

T
target platform-specific features 125–191
target platform-specific information

cross-compiler tools location 176
MetroTRK project and binary file

location 176
MetroTRK project-build targets 177
sample project location 177

target processors supported 126
Target Settings panel 35
target settings panels 34–54
third party cross compiler tools 193
tutorial

compiling 28
creating a new project 21
debugging 31
description 21
Errors & Warnings window 30
fixing syntax errors 30

U
u-boot debugging 132
uploading kernel modules 158
using PCS to build kernel 195
using pre-configured settings for Linux kernel

debugging 143
Using the Makefile Importer Wizard 117
using third party cross compiler tools 193

V
viewing kernel modules 159
viewing multiple processes and threads in a single

thread window feature 110
viewing process details 113

W
writemem.b 184
writemem.l 185
writemem.w 185
writemmr 185
writereg 186
writespr 186
writeupma 187
writeupmb 187

X
XML file location 143

EPPCLinux.book Page 212 Wednesday, March 23, 2005 6:34 PM

Freescale Semiconductor, Inc.

For More Information: www.freescale.com

