
IEC60730_B_CM4_CM7_Library_UG_v4_3
IEC60730B Library User's Guide

NXP Semiconductors Document identifier: IEC60730BCM4CM7L43UG
User's Guide Rev. 0, 30 September 2022

Contents
Chapter 1 Core self-test library.. 3

Chapter 2 Analog Input/Output (IO) test.. 17

Chapter 3 Clock test.. 32

Chapter 4 Digital input/output test..37

Chapter 5 Invariable memory test..82

Chapter 6 CPU program counter test.. 91

Chapter 7 Variable memory test.. 95

Chapter 8 CPU register test...103

Chapter 9 Stack test.. 115

Chapter 10 TSI tests.. 118

Chapter 11 Watchdog test .. 128

NXP Semiconductors

IEC60730_B_CM4_CM7_Library_UG_v4_3, Rev. 0, 30 September 2022
User's Guide 2 / 136

Chapter 1
Core self-test library
The core self-test library provides functions performing the MCU core self-test. The library consists of independent functions
performing tests compliant with international standards (IEC 60730, IEC 60335, UL 60730, UL 1998). The library supports the IAR,
Keil, and MCUXpresso IDEs. The NXP core self-test library performs the following tests:

Core-dependent part

• CPU registers test

• CPU program counter test

• Variable memory test

• Invariable memory test

• Stack test

Peripheral-dependent part

• Clock test

• Digital input/output test

• Analog input/output test

• Watchdog test

• Touch-sensing interface test (only for the TSIv5 peripheral)

The test architecture, implementation, test, and validation of corresponding tests are comprehensively described in independent
sections for each test.

The library supports the MKV3x, MKV4x, MKV5x, MKE1xF, MK2xF, LPC54S0x, LPC540x, MIMXRT10xx, MIMXRT117x,
MIMXRT116x, MIMX8MNx, and MIMX8MMx families based on the Arm-CM4 or Arm-CM7 cores.

The core self-test library is distributed as an object code version. For the source code, contact an NXP representative.

1.1 Core self-test library – object code
The object code of the library is divided into two parts: the core-dependent part and the peripheral-dependent part with the
corresponding header file.

The following are the object files for the given IDEs:

Table 1. Library object code

IDE Part Object file

IAR Core • IEC60730B_M4_M7_IAR_v4_1.a

Peripheral • IEC60730B_M4_M7_COM_IAR_v4.3.a

Keil Core • IEC60730B_M4_M7_Keil_v4_1.lib

Peripheral • IEC60730B_M4_M7_COM_Keil_v4_3.lib

MCUX Core • libIEC60730B_M4_M7_MCUX_v4_1.a

Table continues on the next page...

NXP Semiconductors

IEC60730_B_CM4_CM7_Library_UG_v4_3, Rev. 0, 30 September 2022
User's Guide 3 / 136

Table 1. Library object code (continued)

IDE Part Object file

Peripheral • libIEC60730B_M4_M7_COM_MCUX_v4_3
.a

1.2 Core self-test library – source code
The library name is IEC60730B_CM4_CM7. The main header files are iec60730b.h and iec60730b_core.h. All the data types
necessary for the library are defined in the iec60730b_types.h file.

Each source file (*.c or *.S) has a corresponding header (*.h) file.

Table 2. List of library items

File name Test type Function name Functions size
[bytes]

Functions
duration
approximately
[µs]

iec60730b.h Library header file -

iec60730b_core.h Core-dependent
library header file

-

iec60730b_types.h Data types for the
library

-

asm_mac_common.h Common
assembler
directives

-

iec60730b_aio.c Analog I/O test FS_AIO_LimitCheck() 523 1,023

Analog I/O test FS_AIO_InputSet_A1() 906 1.416

Analog I/O test FS_AIO_InputSet_A23() 401 0,661

Analog I/O test FS_AIO_InputSet_A4() 403 0.893

Analog I/O test FS_AIO_InputSet_A7() 1142 1.882

Analog I/O test FS_AIO_InputSet_A5() 1127 19,087

Analog I/O test FS_AIO_InputSet_A6() 444 0,144

Analog I/O test FS_AIO_ReadResult_A23() 321 0,651

Analog I/O test FS_AIO_ReadResult_A4() 323 0,793

Analog I/O test FS_AIO_ReadResult_A7() 1362 0,552

Analog I/O test FS_AIO_ReadResult_A5() 487 14,427

Analog I/O test FS_AIO_ReadResult_A1() 446 1,696

Analog I/O test FS_AIO_ReadResult_A6() 1124 1,714

iec60730b_clock.c Clock test FS_CLK_Check() 441 0.511

Clock test FS_CLK_Init() 81 0.231

Table continues on the next page...

Core self-test library – source code

IEC60730_B_CM4_CM7_Library_UG_v4_3, Rev. 0, 30 September 2022
NXP Semiconductors 4

Table 2. List of library items (continued)

File name Test type Function name Functions size
[bytes]

Functions
duration
approximately
[µs]

Clock test FS_CLK_LPTMR() 121 1.681

Clock test FS_CLK_RTC() - -

Clock test FS_CLK_GPT() 124 2.164

Clock test FS_CLK_WKT_LPC() -

Clock test FS_CLK_CTIMER_LPC() - -

iec60730b_dio.c Digital I/O test FS_DIO_Input() - -

Digital I/O test FS_DIO_Output() 1261 17,4
(delay=100)1

Digital I/O test FS_DIO_Output_IMXRT() 1244 94,33
(delay=3500)4

Digital I/O test FS_DIO_Output_IMX8M() 1305 71,1
(delay=2000)5

Digital I/O test FS_DIO_Output_LPC() 1567 34,65
(delay=75)7

iec60730b_dio_ext.c Extended digital I/O
test

FS_DIO_InputExt() 2281 1,781

Extended digital I/O
test

FS_DIO_ShortToSupplySet() 1521 1,241

Extended digital I/O
test

FS_DIO_ShortToAdjSet() 2881 2,231

Extended digital I/O
test

FS_DIO_InputExt_IMXRT() 2784 0,864

Extended digital I/O
test

FS_DIO_ShortToSupplySet_IMXRT() 1304 2,004

Extended digital I/O
test

FS_DIO_ShortToAdjSet_IMXRT() 2324 1,764

Extended digital I/O
test

FS_DIO_InputExt_IMX8M() 2945 13,775

Extended digital I/O
test

FS_DIO_ShortToSupplySet_IMX8M() 1565 13,215

Extended digital I/O
test

FS_DIO_ShortToAdjSet_IMX8M() 2805 23,255

Extended digital I/O
test

FS_DIO_InputExt_LPC() 1807 21,047

Extended digital I/O
test

FS_DIO_ShortToSupplySet_LPC() 1307 21,797

Table continues on the next page...

Core self-test library – source code

IEC60730_B_CM4_CM7_Library_UG_v4_3, Rev. 0, 30 September 2022
NXP Semiconductors 5

Table 2. List of library items (continued)

File name Test type Function name Functions size
[bytes]

Functions
duration
approximately
[µs]

Extended digital I/O
test

FS_DIO_ShortToAdjSet_LPC() 2547 35,37

Extended digital I/O
test

FS_DIO_InputExt_RGPIO() - -

Extended digital I/O
test

FS_DIO_ShortToSupplySet_RGPIO() -

Extended digital I/O
test

FS_DIO_ShortToAdjSet_RGPIO() - -

iec60730b_tsi.c Touch-sensing
interface test

FS_TSI_InputInit() - -

Touch-sensing
interface test

FS_TSI_InputStimulate() - -

Touch-sensing
interface test

FS_TSI_InputRelease() - -

Touch-sensing
interface test

FS_TSI_InputCheckNONStimulated() - -

Touch-sensing
interface test

FS_TSI_InputCheckStimulated() - -

iec60730b_invariable_m
emory.c

Invariable memory
test (Flash)

FS_FLASH_C_HW16_K() See the function dedicated chapter

Invariable memory
test (Flash)

FS_FLASH_C_HW16_L() See the function dedicated chapter

iec60730b_cm4_cm7_fl
ash.S

Invariable memory
test (Flash)

FS_CM4_CM7_FLASH_HW16() See the function dedicated chapter

Invariable memory
test (Flash)

FS_CM4_CM7_FLASH_SW16() See the function dedicated chapter

Invariable memory
test (Flash)

FS_CM4_CM7_FLASH_SW32() See the function dedicated chapter

iec60730b_cm4_cm7_fl
ash_dcp.c

Invariable memory
test (Flash)

FS_CM4_CM7_FLASH_HW32_DCP() See the function dedicated chapter

iec60730b_cm4_cm7_p
c.S

Program counter
test

FS_CM4_CM7_PC_Test() See the function dedicated chapter

iec60730b_cm4_cm7_p
c_object.S

Program counter
test

FS_PC_Object() See the function dedicated chapter

iec60730b_cm4_cm7_ra
m.S

Variable memory
test (RAM)

FS_CM4_CM7_RAM_AfterReset() See the function dedicated chapter

Table continues on the next page...

Core self-test library – source code

IEC60730_B_CM4_CM7_Library_UG_v4_3, Rev. 0, 30 September 2022
NXP Semiconductors 6

Table 2. List of library items (continued)

File name Test type Function name Functions size
[bytes]

Functions
duration
approximately
[µs]

Variable memory
test (RAM)

FS_CM4_CM7_RAM_Runtime() See the function dedicated chapter

Variable memory
test (RAM)

FS_CM4_CM7_RAM_CopyToBackup() See the function dedicated chapter

Variable memory
test (RAM)

FS_CM4_CM7_RAM_CopyFromBacku
p()

See the function dedicated chapter

Variable memory
test (RAM)

FS_CM4_CM7_RAM_SegmentMarchC(
)

See the function dedicated chapter

Variable memory
test (RAM)

FS_CM4_CM7_RAM_SegmentMarchX(
)

See the function dedicated chapter

iec60730b_cm4_cm7_re
g.S

Register test FS_CM4_CM7_CPU_Register() See the function dedicated chapter

Register test FS_CM4_CM7_CPU_NonStackedRegis
ter()

See the function dedicated chapter

Register test FS_CM4_CM7_CPU_Primask() See the function dedicated chapter

Register test FS_CM4_CM7_CPU_SPmain() See the function dedicated chapter

Register test FS_CM4_CM7_CPU_SPprocess() See the function dedicated chapter

Register test FS_CM4_CM7_CPU_Control() See the function dedicated chapter

Register test FS_CM4_CM7_CPU_Special() See the function dedicated chapter

Register test FS_CM4_CM7_CPU_Special8PriorityLe
vels()

See the function dedicated chapter

iec60730b_cm4_cm7_re
g_fpu.S

Register test FS_CM4_CM7_CPU_ControlFpu() See the function dedicated chapter

Register test FS_CM4_CM7_CPU_Float1() See the function dedicated chapter

Register test FS_CM4_CM7_CPU_Float2() See the function dedicated chapter

iec60730b_cm4_cm7_st
ack.S

Stack test FS_CM4_CM7_STACK_Init() See the function dedicated chapter

Stack test FS_CM4_CM7_STACK_Test() See the function dedicated chapter

iec60730b_wdog.c Watchdog test FS_WDOG_Setup_LPTMR() 901 Duration time
depends on the
WDOG timeout

Watchdog test FS_WDOG_Setup_KE0XZ() - Duration time
depends on the
WDOG timeout

Table continues on the next page...

Core self-test library – source code

IEC60730_B_CM4_CM7_Library_UG_v4_3, Rev. 0, 30 September 2022
NXP Semiconductors 7

Table 2. List of library items (continued)

File name Test type Function name Functions size
[bytes]

Functions
duration
approximately
[µs]

Watchdog test FS_WDOG_Setup_IMX_GPT() 645 Duration time
depends on the
WDOG timeout

Watchdog test FS_WDOG_Setup_WWDT_LPC() - Duration time
depends on the
WDOG timeout

Watchdog test FS_WDOG_Setup_WWDT_LPC_mrt() - Duration time
depends on the
WDOG timeout

Watchdog test FS_WDOG_Check() 1881 1.21

Watchdog test FS_WDOG_Check_WWDT_LPC() - -

Watchdog test FS_WDOG_Check_WWDT_LPC55SX
X()

- -

1.2.1 MIMX8MMx dedicated functions
Table 3 shows the list of functions dedicated for the MIMX8M Mini device family.

Table 3. MIMX8MMx dedicated functions

File Suitable function

iec60730b_clock.c FS_CLK_Check()

FS_CLK_Init()

FS_CLK_GPT()

iec60730b_dio.c FS_DIO_Output_IMX8M()

iec60730b_dio_ext.c FS_DIO_InputExt_IMX8M()

FS_DIO_ShortToSupplySet_IMX8M()

FS_DIO_ShortToAdjSet_IMX8M()

iec60730b_wdog.c #unique_40 refresh_index = "FS_IMX8M"

FS_WDOG_Check() RegWide8b = "FS_WDOG_SRS_WIDE_32b"

iec60730b_cm4_cm7_flash.S FS_CM4_CM7_FLASH_SW16()

FS_CM4_CM7_FLASH_SW32()

iec60730b_cm4_cm7_pc.S Common for all CM4/CM7 devices

iec60730b_cm4_cm7_ram.S Common for all CM4/CM7 devices

iec60730b_cm4_cm7_reg.S Common for all CM4/CM7 devices

iec60730b_cm4_cm7_stack.S Common for all CM4/CM7 devices

Core self-test library – source code

IEC60730_B_CM4_CM7_Library_UG_v4_3, Rev. 0, 30 September 2022
NXP Semiconductors 8

1.2.2 MIMX8MNx dedicated functions
Table 4 shows the list of functions dedicated for the MIMX8M Nano device family.

Table 4. MIMX8MNx dedicated functions

File Suitable function

iec60730b_clock.c FS_CLK_Check()

FS_CLK_Init()

FS_CLK_GPT()

iec60730b_dio.c FS_DIO_Output_IMX8M()

iec60730b_dio_ext.c FS_DIO_InputExt_IMX8M()

FS_DIO_ShortToSupplySet_IMX8M()

FS_DIO_ShortToAdjSet_IMX8M()

iec60730b_wdog.c #unique_40 refresh_index = "FS_IMX8M"

FS_WDOG_Check() RegWide8b = "FS_WDOG_SRS_WIDE_32b"

iec60730b_cm4_cm7_flash.S FS_CM4_CM7_FLASH_SW16()

FS_CM4_CM7_FLASH_SW32()

iec60730b_cm4_cm7_pc.S Common for all CM4/CM7 devices

iec60730b_cm4_cm7_ram.S Common for all CM4/CM7 devices

iec60730b_cm4_cm7_reg.S Common for all CM4/CM7 devices

iec60730b_cm4_cm7_stack.S Common for all CM4/CM7 devices

1.2.3 MIMXRT10xx dedicated functions
Table 5 shows the list of functions dedicated for the MIMXRT10xx device family.

Table 5. MIMXRT10xx dedicated functions

File Suitable function

iec60730b_aio.c FS_AIO_LimitCheck()

FS_AIO_InputSet_A6()

FS_AIO_ReadResult_A6()

iec60730b_clock.c FS_CLK_Check()

FS_CLK_Init()

FS_CLK_GPT()

iec60730b_dio.c FS_DIO_Output_IMXRT()

iec60730b_dio_ext.c FS_DIO_InputExt_IMXRT()

FS_DIO_ShortToSupplySet_IMXRT()

FS_DIO_ShortToAdjSet_IMXRT()

Table continues on the next page...

Core self-test library – source code

IEC60730_B_CM4_CM7_Library_UG_v4_3, Rev. 0, 30 September 2022
NXP Semiconductors 9

Table 5. MIMXRT10xx dedicated functions (continued)

File Suitable function

iec60730b_wdog.c #unique_40 refresh_index = "FS_IMXRT"

FS_WDOG_Check() RegWide8b = "FS_WDOG_SRS_WIDE_32b"

iec60730b_cm4_cm7_flash.S FS_CM4_CM7_FLASH_HW32_DCP()

FS_CM4_CM7_FLASH_SW16()

FS_CM4_CM7_FLASH_SW32()

iec60730b_cm4_cm7_pc.S Common for all CM4/CM7 devices

iec60730b_cm4_cm7_ram.S Common for all CM4/CM7 devices

iec60730b_cm4_cm7_reg.S Common for all CM4/CM7 devices

iec60730b_cm4_cm7_stack.S Common for all CM4/CM7 devices

1.2.4 MIMXRT117x/116x dedicated functions
Table 6 shows the list of functions dedicated for the MIMXRT117x and MIMXRT116x device families.

Table 6. MIMXRT117x/116x dedicated functions

File Suitable function

iec60730b_aio.c FS_AIO_LimitCheck()

FS_AIO_InputSet_A1()

FS_AIO_ReadResult_A1()

iec60730b_clock.c FS_CLK_Check()

FS_CLK_Init()

FS_CLK_GPT()

iec60730b_dio.c FS_DIO_Output_IMXRT()

iec60730b_dio_ext.c FS_DIO_InputExt_IMXRT()

FS_DIO_ShortToSupplySet_IMXRT()

FS_DIO_ShortToAdjSet_IMXRT()

iec60730b_wdog.c #unique_40 refresh_index = "FS_IMXRTWDOG"

FS_WDOG_Check() RegWide8b = "FS_WDOG_SRS_WIDE_32b"

iec60730b_cm4_cm7_flash.S FS_CM4_CM7_FLASH_SW16()

FS_CM4_CM7_FLASH_SW32()

iec60730b_cm4_cm7_pc.S Common for all CM4/CM7 devices

iec60730b_cm4_cm7_ram.S Common for all CM4/CM7 devices

iec60730b_cm4_cm7_reg.S Common for all CM4/CM7 devices

iec60730b_cm4_cm7_stack.S Common for all CM4/CM7 devices

Core self-test library – source code

IEC60730_B_CM4_CM7_Library_UG_v4_3, Rev. 0, 30 September 2022
NXP Semiconductors 10

1.2.5 MK2xF dedicated functions
Table 7 shows the list of functions dedicated for the MK2xF device.

Table 7. MK2xF dedicated functions

File Suitable function

iec60730b_aio.c FS_AIO_LimitCheck()

FS_AIO_InputSet_A23()

FS_AIO_ReadResult_A23()

iec60730b_clock.c FS_CLK_Check()

FS_CLK_Init()

FS_CLK_LPTMR()

iec60730b_dio.c FS_DIO_Output()

iec60730b_dio_ext.c FS_DIO_InputExt()

FS_DIO_ShortToSupplySet()

FS_DIO_ShortToAdjSet()

iec60730b_wdog.c FS_WDOG_Setup_LPTMR() refresh_index = "FS_KINETIS_WDOG"

FS_WDOG_Check() RegWide8b = "FS_WDOG_SRS_WIDE_8b"

iec60730b_invariable_memory.c FS_FLASH_C_HW16_K()

iec60730b_cm4_cm7_flash.S FS_CM4_CM7_FLASH_HW16()

FS_CM4_CM7_FLASH_SW16()

FS_CM4_CM7_FLASH_SW32()

iec60730b_cm4_cm7_pc.S Common for all CM4/CM7 devices

iec60730b_cm4_cm7_ram.S Common for all CM4/CM7 devices

iec60730b_cm4_cm7_reg.S Common for all CM4/CM7 devices

iec60730b_cm4_cm7_stack.S Common for all CM4/CM7 devices

1.2.6 MKE1xF dedicated functions
Table 8 shows the list of functions dedicated for the MKE1xF device.

Table 8. MKE1xF dedicated functions

File Suitable function

iec60730b_aio.c FS_AIO_LimitCheck()

FS_AIO_InputSet_A4()

FS_AIO_ReadResult_A4()

iec60730b_clock.c FS_CLK_Check()

FS_CLK_Init()

Table continues on the next page...

Core self-test library – source code

IEC60730_B_CM4_CM7_Library_UG_v4_3, Rev. 0, 30 September 2022
NXP Semiconductors 11

Table 8. MKE1xF dedicated functions (continued)

File Suitable function

FS_CLK_LPTMR()

iec60730b_dio.c FS_DIO_Output()

iec60730b_dio_ext.c FS_DIO_InputExt()

FS_DIO_ShortToSupplySet()

FS_DIO_ShortToAdjSet()

iec60730b_wdog.c FS_WDOG_Setup_LPTMR() refresh_index = "FS_WDOG32"

FS_WDOG_Check() RegWide8b = "FS_WDOG_SRS_WIDE_32b"

iec60730b_invariable_memory.c FS_FLASH_C_HW16_K()

iec60730b_cm4_cm7_flash.S FS_CM4_CM7_FLASH_HW16()

FS_CM4_CM7_FLASH_SW16()

FS_CM4_CM7_FLASH_SW32()

iec60730b_cm4_cm7_pc.S Common for all CM4/CM7 devices

iec60730b_cm4_cm7_ram.S Common for all CM4/CM7 devices

iec60730b_cm4_cm7_reg.S Common for all CM4/CM7 devices

iec60730b_cm4_cm7_stack.S Common for all CM4/CM7 devices

1.2.7 MKV3x dedicated functions
Table 9 shows the list of functions dedicated for the MKV3x device.

Table 9. MKV3x dedicated functions

File Suitable function

iec60730b_aio.c FS_AIO_LimitCheck()

FS_AIO_InputSet_A23()

FS_AIO_ReadResult_A23()

iec60730b_clock.c FS_CLK_Check()

FS_CLK_Init()

FS_CLK_LPTMR()

iec60730b_dio.c FS_DIO_Output()

iec60730b_dio_ext.c FS_DIO_InputExt()

FS_DIO_ShortToSupplySet()

FS_DIO_ShortToAdjSet()

iec60730b_wdog.c FS_WDOG_Setup_LPTMR() refresh_index = "FS_KINETIS_WDOG"

FS_WDOG_Check() RegWide8b = "FS_WDOG_SRS_WIDE_8b"

Table continues on the next page...

Core self-test library – source code

IEC60730_B_CM4_CM7_Library_UG_v4_3, Rev. 0, 30 September 2022
NXP Semiconductors 12

Table 9. MKV3x dedicated functions (continued)

File Suitable function

iec60730b_invariable_memory.c FS_FLASH_C_HW16_K()

iec60730b_cm4_cm7_flash.S FS_CM4_CM7_FLASH_HW16()

FS_CM4_CM7_FLASH_SW16()

FS_CM4_CM7_FLASH_SW32()

iec60730b_cm4_cm7_pc.S Common for all CM4/CM7 devices

iec60730b_cm4_cm7_ram.S Common for all CM4/CM7 devices

iec60730b_cm4_cm7_reg.S Common for all CM4/CM7 devices

iec60730b_cm4_cm7_stack.S Common for all CM4/CM7 devices

1.2.8 MKV4x dedicated functions
Table 10 shows the list of functions dedicated for the MKV4x device.

Table 10. MKV4x dedicated functions

File Suitable function

iec60730b_aio.c FS_AIO_LimitCheck()

FS_AIO_InputSet_A7()

FS_AIO_ReadResult_A7()

iec60730b_clock.c FS_CLK_Check()

FS_CLK_Init()

FS_CLK_LPTMR()

iec60730b_dio.c FS_DIO_Output()

iec60730b_dio_ext.c FS_DIO_InputExt()

FS_DIO_ShortToSupplySet()

FS_DIO_ShortToAdjSet()

iec60730b_wdog.c FS_WDOG_Setup_LPTMR() refresh_index = "FS_KINETIS_WDOG"

FS_WDOG_Check() RegWide8b = "FS_WDOG_SRS_WIDE_8b"

iec60730b_invariable_memory.c FS_FLASH_C_HW16_K()

iec60730b_cm4_cm7_flash.S FS_CM4_CM7_FLASH_HW16()

FS_CM4_CM7_FLASH_SW16()

FS_CM4_CM7_FLASH_SW32()

iec60730b_cm4_cm7_pc.S Common for all CM4/CM7 devices

iec60730b_cm4_cm7_ram.S Common for all CM4/CM7 devices

iec60730b_cm4_cm7_reg.S Common for all CM4/CM7 devices

iec60730b_cm4_cm7_stack.S Common for all CM4/CM7 devices

Core self-test library – source code

IEC60730_B_CM4_CM7_Library_UG_v4_3, Rev. 0, 30 September 2022
NXP Semiconductors 13

1.2.9 MKV5x dedicated functions
Table 11 shows the list of functions dedicated for the MKV5x device.

Table 11. MKV5x dedicated functions

File Suitable function

iec60730b_aio.c FS_AIO_LimitCheck()

FS_AIO_InputSet_A23()

FS_AIO_ReadResult_A23()

iec60730b_clock.c FS_CLK_Check()

FS_CLK_Init()

FS_CLK_LPTMR()

iec60730b_dio.c FS_DIO_Output()

iec60730b_dio_ext.c FS_DIO_InputExt()

FS_DIO_ShortToSupplySet()

FS_DIO_ShortToAdjSet()

iec60730b_wdog.c FS_WDOG_Setup_LPTMR() refresh_index = "FS_KINETIS_WDOG"

FS_WDOG_Check() RegWide8b = "FS_WDOG_SRS_WIDE_8b"

iec60730b_invariable_memory.c FS_FLASH_C_HW16_K()

iec60730b_cm4_cm7_flash.S FS_CM4_CM7_FLASH_HW16()

FS_CM4_CM7_FLASH_SW16()

FS_CM4_CM7_FLASH_SW32()

iec60730b_cm4_cm7_pc.S Common for all CM4/CM7 devices

iec60730b_cm4_cm7_ram.S Common for all CM4/CM7 devices

iec60730b_cm4_cm7_reg.S Common for all CM4/CM7 devices

iec60730b_cm4_cm7_stack.S Common for all CM4/CM7 devices

1.2.10 LPC54S0x/LPC540x dedicated functions
Table 12 shows the list of functions dedicated for the LPC54S0x/LPC540x devices.

Table 12. LPC54S0x/LPC540x dedicated functions

File Suitable function

iec60730b_aio.c FS_AIO_LimitCheck()

FS_AIO_InputSet_A5()

FS_AIO_ReadResult_A5()

iec60730b_clock.c FS_CLK_Check()

FS_CLK_Init()

Table continues on the next page...

Core self-test library – source code

IEC60730_B_CM4_CM7_Library_UG_v4_3, Rev. 0, 30 September 2022
NXP Semiconductors 14

Table 12. LPC54S0x/LPC540x dedicated functions (continued)

File Suitable function

FS_CLK_CTIMER_LPC()

iec60730b_dio.c FS_DIO_Output_LPC()

iec60730b_dio_ext.c FS_DIO_InputExt_LPC()

FS_DIO_ShortToSupplySet_LPC()

FS_DIO_ShortToAdjSet_LPC()

iec60730b_wdog.c FS_WDOG_Setup_WWDT_LPC()

FS_WDOG_Check_WWDT_LPC()

iec60730b_cm4_cm7_flash.S FS_CM4_CM7_FLASH_SW16()

FS_CM4_CM7_FLASH_SW32()

iec60730b_invariable_memory.c FS_FLASH_C_HW16_L()

iec60730b_cm4_cm7_pc.S Common for all CM4/CM7 devices

iec60730b_cm4_cm7_ram.S Common for all CM4/CM7 devices

iec60730b_cm4_cm7_reg.S Common for all CM4/CM7 devices

iec60730b_cm4_cm7_stack.S Common for all CM4/CM7 devices

1.2.11 MK32L3 CM4 dedicated functions
Table 13 shows the list of functions dedicated for the MK32L3 CM4 core.

Table 13. MK32L3 dedicated functions for CM4 core

File Suitable function

iec60730b_aio.c FS_AIO_LimitCheck()

FS_AIO_InputSet_A1()

FS_AIO_ReadResult_A1()

iec60730b_clock.c FS_CLK_Check()

FS_CLK_Init()

FS_CLK_LPTMR()

iec60730b_dio.c FS_DIO_Output()

iec60730b_dio_ext.c FS_DIO_InputExt()

FS_DIO_ShortToSupplySet()

FS_DIO_ShortToAdjSet()

iec60730b_wdog.c FS_WDOG_Setup_LPTMR() refresh_index = "FS_KINETIS_WDOG"

FS_WDOG_Check() RegWide8b = "FS_WDOG_SRS_WIDE_32b"

iec60730b_cm4_cm7_flash.S Functions are described in dedicated chapter

Table continues on the next page...

Core self-test library – source code

IEC60730_B_CM4_CM7_Library_UG_v4_3, Rev. 0, 30 September 2022
NXP Semiconductors 15

Table 13. MK32L3 dedicated functions for CM4 core (continued)

File Suitable function

iec60730b_cm4_cm7_pc.S Functions are common for all CM4 CM7 devices

iec60730b_cm4_cm7_ram.S Functions are common for all CM4 CM7 devices

iec60730b_cm4_cm7_reg.S Functions are common for all CM4 CM7 devices

iec60730b_cm4_cm7_Stack.S Functions are common for all CM4 CM7 devices

1.3 Functions performance measurement
This section contains remarks about the functons' informative size and approximate time of execution. The numbers in the
following list are used as remark links from the corresponding sections:

1. The function parameter was measured on MKV31 with a clock frequency of 80 MHz.

2. The function parameter was measured on MKV46 with a clock frequency of 80 MHz.

3. The function parameter was measured on MKE18F with a clock frequency of 100 MHz.

4. The function parameter was measured on MIMXRT1050 with a clock frequency of 600 MHz.

5. The function parameter was measured on MIMX8MN with a clock frequency of 600 MHz.

6. The function parameter was measured on MIMXRT1170 with a clock frequency of 996 MHz.

7. The function parameter was measured on LPC54S018M with a clock frequency of 96 MHz.

Functions performance measurement

IEC60730_B_CM4_CM7_Library_UG_v4_3, Rev. 0, 30 September 2022
NXP Semiconductors 16

Chapter 2
Analog Input/Output (IO) test
The analog IO test procedure performs the plausibility check of the analog IO interface of the processor. The analog IO test can
be performed once after the MCU reset and also during runtime.

The identification of a safety error is ensured by the specific FAIL return if an analog IO error occurs. Compare the return value of
the test function with the expected value. If it is equal to the FAIL return, then a jump into the safety error handling function occurs.
The safety error handling function may be specific to the application and it is not a part of the library. The main purpose of this
function is to put the application into a safety state.

The principle of the analog IO test is based on sequence execution, where a certain analog level is connected to a defined analog
input. The test function checks whether the converted value is within the tolerance. The test must check the analog input interface
with three reference values: reference high, reference low, and bandgap voltage. See the device specification document to set
up the correct values. The block diagram for the analog IO test is shown in the following figure:

Figure 1. Block diagram for analog input test

The figure above shows the sequence of conversion and checks one channel. For the full ADC test, run this sequence with three
channels: reference high, reference low, and bandgap voltage. This sequence is handled on the user application side, all functions
from the library (with the FS_ prefix) are written as non-blocking.

2.1 Analog input/output test in compliance with IEC/UL standards
The performed overload test fulfils the safety requirements according to the IEC 60730-1, IEC 60335, UL 60730, and UL 1998
standards, as described in the following table:

NXP Semiconductors

IEC60730_B_CM4_CM7_Library_UG_v4_3, Rev. 0, 30 September 2022
User's Guide 17 / 136

Table 14. Analog input/output test in compliance with IEC and UL standards

Test Component Fault / Error Software / Hardware
Class

Acceptable Measures

Input/Output periphery 7. Input/Output
periphery (7.2 – A/D
conversion)

Abnormal operation B/R.1 Plausibility check

2.2 Analog input/output test implementation
The test functions for the analog IO test are in the iec60730b_aio.c file and written as "C" functions. The header file with the function
prototypes is iec60730b_aio.h. iec60730b.h and iec60730b_types.h are the common header files for the safety library.

All functions are written as non-blocking, each function checks if the state variable is set to the necessary state. If not, they
return immediately.

Throughout all supported devices, the ADC module has a slightly different arrangement of the registers that are involved in the
test. Therefore, a standalone function is created for each ADC module. See Core self-test library – source code version for the
function dedicated for your device. Also the corresponding data type must be used with this selected function.

The analog input test is based on a conversion of three analog inputs with known voltage values and it checks if the converted
values fit into the specified limits. Normally, the limits should be roughly 10 % around the desired reference values.

For easier implementation of the AIO test to the final aplication, the IAO test is divided to three independent cycles:

1. Conversion and check of low reference

2. Conversion and check of high reference

3. Conversion and check of bandgap reference (the middle range of voltage)

Each of this independent phase has its own "test instance" structure with the fs_aio_test_a<TYPE>_t data type. The defined types
which cover all supported devices are in the iec60730b_aio.h file. The selected type must correspond to the used device. The
description of each type is in the corresponding function description below.

The following functions are used to test the analog input:

• FS_AIO_InputSet_A1, FS_AIO_InputSet_A23, FS_AIO_InputSet_A4, FS_AIO_InputSet_A5, FS_AIO_InputSet_A6,
FS_AIO_InputSet_A7

• FS_AIO_ReadResult_A1, FS_AIO_ReadResult_A23, FS_AIO_ReadResult_A4, FS_AIO_ReadResult_A5,
FS_AIO_ReadResult_A6, FS_AIO_ReadResult_A7

• FS_AIO_LimitCheck

The FS_AIO_InputSet_A<xx> and FS_AIO_ReadResult_A<xx> functions are related directly to the used ADC module.

The FS_AIO_LimitCheck function works only with the AIO test instance structure and are not related to the ADC HW.

Each test instance structure has a "state" variable. This variable controls the code flow. You can use only a part of the ADC
check functions. For example, it is possible to use only "FS_AIO_LimitCheck()" and the HW part of the test must be done on the
application side. In this case, it is necessary to ensure that the state flow is correctly handled. Before calling FS_AIO_LimitCheck()
set the state to "FS_AIO_SCAN_COMPLETE" and fill the "RawResult" variable.

The whole state flow is as follows:

Analog input/output test implementation

IEC60730_B_CM4_CM7_Library_UG_v4_3, Rev. 0, 30 September 2022
NXP Semiconductors 18

Figure 2. ADC Test Code flow

At the start, set the state variable to "FS_AIO_INIT". Test the items with this state. It can be used in function
"FS_AIO_InputSet_A<xx>, which sets the correct channel and trigger conversion of the ADC. After this function, set the
variable to "FS_AIO_PROGRESS". In the progress state, call the "FS_AIO_ReadResult_A<xx>" function, which, in case that
the conversion is complete, stores the conversion to the RawResult variable in the test items structure and sets the state to
"FS_AIO_SCAN_COMPLETE". After this, call the FS_AIO_LimitCheck() function to check if RawResult is within Limits. This
function sets the state variable to FS_PASS or FS_FAIL.

Initialization of the test

In some *.c files, you must define a corresponding array variable:

Testing the instance variables definition

/***
 * *
 * STRUCTURE FOR AIO TEST *
 * *
 ***/
#define TESTED_ADC ADC0
#define ADC_RESOLUTION 12
#define ADC_REFERENCE 3.06
#define ADC_BANDGAP_LEVEL 1.7
#define ADC_DEVIATION_PERCENT 10
#define ADC_MAX ((1 << (ADC_RESOLUTION)) - 1)
#define ADC_BANDGAP_LEVEL_RAW (((ADC_BANDGAP_LEVEL) * (ADC_MAX)) / (ADC_REFERENCE))
#define ADC_MIN_LIMIT(val) (uint16_t)(((val) * (100 - ADC_DEVIATION_PERCENT)) /
100)
#define ADC_MAX_LIMIT(val) (uint16_t)(((val) * (100 + ADC_DEVIATION_PERCENT)) /
100)

fs_aio_test_a2346_t aio_safety_test_item_VL =
{
 .AdcChannel = 30,
 .Limits.low = (uint32_t)ADC_MIN_LIMIT(0),
 .Limits.high = (uint32_t)ADC_MAX_LIMIT(60),

Analog input/output test implementation

IEC60730_B_CM4_CM7_Library_UG_v4_3, Rev. 0, 30 September 2022
NXP Semiconductors 19

 .state = FS_AIO_INIT
};
fs_aio_test_a2346_t aio_safety_test_item_VH =
{
 .AdcChannel = 29,
 .Limits.low = (uint32_t)ADC_MIN_LIMIT(ADC_MAX),
 .Limits.high = (uint32_t)ADC_MAX_LIMIT(ADC_MAX),
 .state = FS_AIO_INIT
};
fs_aio_test_a2346_t aio_safety_test_item_BG =
{
 .AdcChannel = 27,
 .Limits.low = (uint32_t)ADC_MIN_LIMIT(ADC_BANDGAP_LEVEL_RAW),
 .Limits.high = (uint32_t)ADC_MAX_LIMIT(ADC_BANDGAP_LEVEL_RAW),
 .state = FS_AIO_INIT
};
/* NULL terminated array of pointers to fs_aio_test_a2346_t items for safety AIO test
*/
fs_aio_test_a2346_t *g_aio_safety_test_items[] = {&aio_safety_test_item_VL,
 &aio_safety_test_item_VH,
 &aio_safety_test_item_BG,
 NULL};

After the definition, all necessarry variables and initialization of ADC HW can be called as a function for the AIO test:

Test

for(uint8_t i=0;i<3;i++) /* 3 test items VL, VH and BG */
{
 static int index = 0; /* Iteration variable for going through all ADC test items */

 psSafetyCommon->AIO_test_result = FS_AIO_LimitCheck(g_aio_safety_test_items[index]-
>RawResult, &(g_aio_safety_test_items[index]->Limits),
&(g_aio_safety_test_items[index]->state));

 switch (psSafetyCommon->AIO_test_result)
 {
 case FS_AIO_INIT:
 FS_AIO_InputSet_A23(g_aio_safety_test_items[index], (fs_aio_a23_t *)TESTED_ADC);
 break;
 case FS_AIO_PROGRESS:
 FS_AIO_ReadResult_A23(g_aio_safety_test_items[index], (fs_aio_a23_t *)TESTED_ADC);
 break;
 case FS_PASS: /* successfull execution of test, call the trigger function again */
 if(g_aio_safety_test_items[++index] == NULL)
 {
 index = 0; /* again first channel*/
 }
 g_aio_safety_test_items[index]->state = FS_AIO_INIT;
 break;
 default:
 __asm("NOP");
 break;
 }
 /* Necessary delay for conversion time */
 for (uint8_t y = 0; y < 20; y++){ __asm("nop");}
}

Analog input/output test implementation

IEC60730_B_CM4_CM7_Library_UG_v4_3, Rev. 0, 30 September 2022
NXP Semiconductors 20

2.2.1 ADC type A1
The ADC type of the A1 covers at least the following device families: K32L3A6, LPC55xx, i.MX RT117x, and i.MX RT116x.

For this group of devices, the following functions are dedicated:

• FS_AIO_InputSet_A1

• FS_AIO_ReadResult_A1

• FS_AIO_LimitCheck

For this type of ADCs, it is necessary use these data types:

• fs_aio_test_a1_t - for the test instance

• fs_aio_a1_t - for a pointer to the ADC peripheral

fs_aio_a1_t

fs_aio_a1_t is data type for acessing ADC module registers. This data type is defined in the iec60730b_types.h file and supports
the device families mentioned above.

fs_aio_test_a1_t

This structure is the base structure of the ADC test. This data type is defined in the iec60730b_aio.h file.

Define this structure and fill it to use the ADC test.

typedef struct
{
 uint8_t AdcChannel;
 uint16_t commandBuffer;
 uint8_t SideSelect; /* 0 = A side, 1 = B side*/
 uint8_t softwareTriggerEvent;
 fs_aio_limits_t Limits;
 uint32_t RawResult;
 FS_RESULT state;
} fs_aio_test_a1_t;

• AdcChannel - the number of the ADC channel

• comandBuffer - the index of CommandBuffer

• SideSelect - 0 A side, 1 B side

• softwareTriggerEvent - the index of the software trigger

• Limits - a structure with low and high limits for AdcChannel

• RawResult - a raw result of the ADC conversion of "AdcChannel"

• state - a state variable, it can have the value of a macro: FS_PASS, FS_FAIL_AIO, FS_AIO_INIT, FS_AIO_PROGRESS,
FS_AIO_SCAN_COMPLETE

2.2.1.1 FS_AIO_InputSet_A1()
This function executes the first part of the AIO test sequence. This function sets up the ADC input channel and also triggers the
conversion. The state is changed to FS_AIO_PROGRESS. This function can be called when the ADC module is idle and ready
for the next conversion. The function has effect only when the input state is "FS_AIO_INIT". It has no effect in other states.

Function prototype:

FS_RESULT FS_AIO_InputSet_A1(fs_aio_test_a1_t *pObj, fs_aio_a1_t *pAdc);

Analog input/output test implementation

IEC60730_B_CM4_CM7_Library_UG_v4_3, Rev. 0, 30 September 2022
NXP Semiconductors 21

Function inputs:

*pObj - The input argument is the pointer to the analog test instance.

*pAdc - The input argument is the pointer to the analog converter.

Function output:

typedef uint32_t FS_RESULT;

• FS_AIO_PROGRESS - The required return value. It means that the input is set.

If any other value is returned, the function has no effect.

Function performance:

For information about the function performance, see Core self-test library – source code version.

2.2.1.2 FS_AIO_ReadResult_A1()
This function is tied to the ADC hardware. This function reads the converted analog value only if pObj->state ==
FS_AIO_PROGRESS. When the valule is read, it is stored to "pObj->RawResult" and the "pObj->State" variable is set to
"FS_AIO_SCAN_COMPLETE". The function uses a non-blocking approach.

Function prototype:

FS_RESULT FS_AIO_ReadResult_A1(fs_aio_test_a1_t *pObj, fs_aio_a1_t *pAdc);

Function inputs:

*pObj - The input argument is the pointer to the analog test instance.

*pAdc - The input argument is the pointer to the analog converter.

Function output:

typedef uint32_t FS_RESULT;

• FS_AIO_SCAN_COMPLETE - The conversion value was succesfully read and stored to the "RawResult" variable.

If any other value is returned, the function has no effect.

Function performance:

For information about the function performance, see Core self-test library – source code version.

2.2.2 ADC type A23
The ADC type A23 covers at least the following device families: KV1x, KV3x, KLxx, K32L2A, K32L2B, K22F, KW3x, and KE0x.

For this group of devices, the following functions are dedicated:

• FS_AIO_InputSet_A23

• FS_AIO_ReadResult_A23

• FS_AIO_LimitCheck

For this type of ADCs, it is necessary to use these data types:

• fs_aio_test_a2346_t - for the test instance

• fs_aio_a23_t - for a pointer to the ADC peripheral

fs_aio_a23_t

The "fs_aio_a23_t" data type serves for acessing ADC module registers. This data type is defined in the iec60730b_types.h file
and it supports the device families mentioned above.

Analog input/output test implementation

IEC60730_B_CM4_CM7_Library_UG_v4_3, Rev. 0, 30 September 2022
NXP Semiconductors 22

fs_aio_test_a2346_t

This structure is the base structure of the ADC test. This data type is defined in the iec60730b_aio.h file.

Define this structure and fill it to use the ADC test.

typedef struct
{
 uint8_t AdcChannel;
 fs_aio_limits_t Limits;
 uint32_t RawResult;
 FS_RESULT state;
} fs_aio_test_a2346_t;

• AdcChannel - the number of the ADC channel

• Limits - a structure with low and high limits for AdcChannel

• RawResult - a raw result of the ADC conversion of AdcChannel

• state - a state variable, it can have the value of a macro: FS_PASS, FS_FAIL_AIO, FS_AIO_INIT, FS_AIO_PROGRESS,
FS_AIO_SCAN_COMPLETE

2.2.2.1 FS_AIO_InputSet_A23()
This function executes the first part of the AIO test sequence. This function sets up the ADC input channel and also triggers the
conversion. The state is changed to FS_AIO_PROGRESS. This function can be called when the ADC module is idle and ready
for the next conversion. The function has effect only when the input state is "FS_AIO_INIT". It has no effect in other states.

Function prototype:

FS_RESULT FS_AIO_InputSet_A23(fs_aio_test_A2346_t *pObj, fs_aio_a23_t *pAdc);

Function inputs:

*pObj - The input argument is the pointer to the analog test instance.

*pAdc - The input argument is the pointer to the analog converter.

Function output:

typedef uint32_t FS_RESULT;

• FS_AIO_PROGRESS - The required return value. It means that the input is set.

If any other value is returned, the function has no effect.

Function performance:

For information about the function performance, see Core self-test library – source code version.

2.2.2.2 FS_AIO_ReadResult_A23()
This function is tied to the ADC hardware. This function reads the converted analog value only if "pObj->state ==
FS_AIO_PROGRESS". When the value is read, it is stored to "pObj->RawResult" and the "pObj->State" variable is set
to "FS_AIO_SCAN_COMPLETE".

Function prototype:

FS_RESULT FS_AIO_ReadResult_A23(fs_aio_test_a2346_t *pObj, fs_aio_a23_t *pAdc);

Function inputs:

*pObj - The input argument is the pointer to the analog test instance.

Analog input/output test implementation

IEC60730_B_CM4_CM7_Library_UG_v4_3, Rev. 0, 30 September 2022
NXP Semiconductors 23

*pAdc - The input argument is the pointer to the analog converter.

Function output:

typedef uint32_t FS_RESULT;

• FS_AIO_SCAN_COMPLETE - The conversion value was succesfully read and stored to the "RawResult" variable.

If any other value is returned, the function has no effect.

Function performance:

For information about the function performance, see Core self-test library – source code version.

2.2.3 ADC type A4
The ADC type A4 covers at least the following device families: KE1xZ and KE1xF.

For this group of devices, the following functions are dedicated:

• FS_AIO_InputSet_A4

• FS_AIO_ReadResult_A4

• FS_AIO_LimitCheck

For this type of ADCs, it is necessary to use these data types:

• fs_aio_test_a2346_t - for the test instance

• fs_aio_a4_t - for a pointer to the ADC peripheral

fs_aio_a4_t

The "fs_aio_a4_t" data type serves for acessing ADC module registers. This data type is defined in the iec60730b_types.h file and
it supports the device families mentioned above.

fs_aio_test_a2346_t

This structure is the base structure of the ADC test. This data type is defined in the iec60730b_aio.h file.

Define this structure and fill it to use the ADC test.

typedef struct
{
 uint8_t AdcChannel;
 fs_aio_limits_t Limits;
 uint32_t RawResult;
 FS_RESULT state;
} fs_aio_test_a2346_t;

• AdcChannel - the number of the ADC channel

• Limits - a structure with low and high limits for AdcChannel

• RawResult - a raw result of the ADC conversion of AdcChannel

• state - a state variable, it can have the value of a macro: FS_PASS, FS_FAIL_AIO, FS_AIO_INIT, FS_AIO_PROGRESS,
FS_AIO_SCAN_COMPLETE

Analog input/output test implementation

IEC60730_B_CM4_CM7_Library_UG_v4_3, Rev. 0, 30 September 2022
NXP Semiconductors 24

2.2.3.1 FS_AIO_InputSet_A4()
This function executes the first part of the AIO test sequence. This function sets up the ADC input channel and also triggers the
conversion. The state is changed to "FS_AIO_PROGRESS". This function can be called when the ADC module is idle and ready
for the next conversion. The function has effect only when the input state is "FS_AIO_INIT". It has no effect in other states.

Function prototype:

FS_RESULT FS_AIO_InputSet_A4(fs_aio_test_a2346_t *pObj, fs_aio_a4_t *pAdc);

Function inputs:

*pObj - The input argument is the pointer to the analog test instance.

*pAdc - The input argument is the pointer to the analog converter.

Function output:

typedef uint32_t FS_RESULT;

• FS_AIO_PROGRESS - The required return value. It means that the input is set.

If any other value is returned, the function has no effect.

Function performance:

For information about the function performance, see Core self-test library – source code version.

2.2.3.2 FS_AIO_ReadResult_A4()
This function is tied to the ADC hardware. This function reads the converted analog value only if "pObj->state ==
FS_AIO_PROGRESS". When the value is read, it is stored to "pObj->RawResult" and the "pObj->State" variable is set
to "FS_AIO_SCAN_COMPLETE".

Function prototype:

FS_RESULT FS_AIO_ReadResult_A4(fs_aio_test_a2346_t *pObj, fs_aio_a4_t *pAdc);

Function inputs:

*pObj - The input argument is the pointer to the analog test instance.

*pAdc - The input argument is the pointer to the analog converter.

Function output:

typedef uint32_t FS_RESULT;

• FS_AIO_SCAN_COMPLETE - The conversion value was succesfully read and stored to the "RawResult" variable.

If any other value is returned, the function has no effect.

Function performance:

For information about the function performance, see Core self-test library – source code version.

2.2.4 ADC type A6
The ADC type A6 covers at least the following device family: i.MXRT10xx.

For this group of devices, the following functions are dedicated:

• FS_AIO_InputSet_A6

• FS_AIO_ReadResult_A6

• FS_AIO_LimitCheck

For this type of ADCs, it is necessary to use these data types:

Analog input/output test implementation

IEC60730_B_CM4_CM7_Library_UG_v4_3, Rev. 0, 30 September 2022
NXP Semiconductors 25

• fs_aio_test_a2346_t - for test instance

• fs_aio_a6_t - for a pointer to the ADC peripheral

fs_aio_a6_t

The "fs_aio_a6_t" data type is used for acessing ADC module registers. This data type is defined in the iec60730b_types.h file and
it supports the device families mentioned above.

fs_aio_test_a2346_t

This structure is the base structure of the ADC test. This data type is defined in the iec60730b_aio.h file.

Define this structure and fill it to use the ADC test.

typedef struct
{
 uint8_t AdcChannel;
 fs_aio_limits_t Limits;
 uint32_t RawResult;
 FS_RESULT state;
} fs_aio_test_a2346_t;

• AdcChannel - the number of the ADC channel

• Limits - a structure with low and high limits for AdcChannel

• RawResult - a raw result of the ADC conversion of AdcChannel

• state - a state variable, it can have the value of a macro: FS_PASS, FS_FAIL_AIO, FS_AIO_INIT, FS_AIO_PROGRESS,
FS_AIO_SCAN_COMPLETE

2.2.4.1 FS_AIO_InputSet_A6()
This function executes the first part of the AIO test sequence. This function sets up the ADC input channel and also triggers the
conversion. The state is changed to FS_AIO_PROGRESS. This function can be called when the ADC module is idle and ready
for the next conversion. The function has effect only when the input state is "FS_AIO_INIT". It has no effect in other states.

Function prototype:

FS_RESULT FS_AIO_InputSet_A6(fs_aio_test_A2346_t *pObj, fs_aio_a6_t *pAdc);

Function inputs:

*pObj - The input argument is the pointer to the analog test instance.

*pAdc - The input argument is the pointer to the analog converter.

Function output:

typedef uint32_t FS_RESULT;

• FS_AIO_PROGRESS - The required return value. It means that the input is set.

If any other value is returned, the function has no effect.

Function performance:

For information about the function performance, see Core self-test library – source code version.

Analog input/output test implementation

IEC60730_B_CM4_CM7_Library_UG_v4_3, Rev. 0, 30 September 2022
NXP Semiconductors 26

2.2.4.2 FS_AIO_ReadResult_A6()
This function is tied to the ADC hardware. This function reads the converted analog value only if "pObj->state
== FS_AIO_PROGRESS". When valule is readed is stored to pObj->RawResult and variable pObj->State is set
to "FS_AIO_SCAN_COMPLETE"

Function prototype:

FS_RESULT FS_AIO_ReadResult_A6(fs_aio_test_a2346_t* pObj, fs_aio_a6_t *pAdc);

Function inputs:

*pObj - The input argument is the pointer to the analog test instance.

*pAdc - The input argument is the pointer to the analog converter.

Function output:

typedef uint32_t FS_RESULT;

• FS_AIO_SCAN_COMPLETE - The conversion value was succesfully read and stored to the "RawResult" variable.

If any other value is returned, the function has no effect.

Function performance:

For information about the function performance, see Core self-test library – source code version.

2.2.5 ADC type A5
The ADC type A5 covers at least the following device families: LPC51U68, LPC8xx, LPC540x, and LPC54S0x.

For this group of devices, the following functions are dedicated:

• FS_AIO_InputSet_A5

• FS_AIO_ReadResult_A5

• FS_AIO_LimitCheck

For this type of ADCs, it is necessary to use these data types:

• fs_aio_test_a5_t - for the test instance

• fs_aio_a5_t - for a pointer to the ADC peripheral

fs_aio_a5_t

The "fs_aio_a5_t" data type servesfor acessing ADC module registers. This data type is defined in the iec60730b_types.h file and
it supports the device families mentioned above.

fs_aio_test_a5_t

This structure is the base structure of the ADC test. This data type is defined in the iec60730b_aio.h file.

Define this structure and fill it to use the ADC test.

typedef struct
{
 uint8_t AdcChannel;
 uint8_t sequence;
 fs_aio_limits_t Limits;
 uint32_t RawResult;

Analog input/output test implementation

IEC60730_B_CM4_CM7_Library_UG_v4_3, Rev. 0, 30 September 2022
NXP Semiconductors 27

 FS_RESULT state;
} fs_aio_test_a5_t;

• AdcChannel - the number of the ADC channel

• sequence - the index of the used sequence

• Limits - a structure with low and high limits for AdcChannel

• RawResult - a raw result of the ADC conversion of AdcChannel

• state - a state variable, it can have the value of a macro: FS_PASS, FS_FAIL_AIO, FS_AIO_INIT, FS_AIO_PROGRESS,
FS_AIO_SCAN_COMPLETE

2.2.5.1 FS_AIO_InputSet_A5()
This function executes the first part of the AIO test sequence. This function sets up the ADC input channel and also triggers the
conversion. The state is changed to "FS_AIO_PROGRESS". This function can be called when the ADC module is idle and ready
for the next conversion. The function has effect only when the input state is "FS_AIO_INIT". It has no effect in other states.

Function prototype:

FS_RESULT FS_AIO_InputSet_A5(fs_aio_test_a5_t *pObj, fs_aio_a5_t *pAdc);

Function inputs:

*pObj - The input argument is the pointer to the analog test instance.

*pAdc - The input argument is the pointer to the analog converter.

Function output:

typedef uint32_t FS_RESULT;

• FS_AIO_PROGRESS - The required return value. It means that the input is set.

If any other value is returned, the function has no effect.

Function performance:

For information about the function performance, see Core self-test library – source code version.

2.2.5.2 FS_AIO_ReadResult_A5()
This function is tied to the ADC hardware. This function reads the converted analog value only if "pObj->state ==
FS_AIO_PROGRESS". When the value is read, it is stored to "pObj->RawResult" and the "pObj->State" variable is set
to "FS_AIO_SCAN_COMPLETE".

Function prototype:

FS_RESULT FS_AIO_ReadResult_A5(fs_aio_test_a5_t* pObj, fs_aio_a5_t *pAdc);

Function inputs:

*pObj - The input argument is the pointer to the analog test instance.

*pAdc - The input argument is the pointer to the analog converter.

Function output:

typedef uint32_t FS_RESULT;

• FS_AIO_SCAN_COMPLETE - The conversion value was succesfully read and stored to the "RawResult" variable.

If any other value is returned, the function has no effect.

Function performance:

For information about the function performance, see Core self-test library – source code version.

Analog input/output test implementation

IEC60730_B_CM4_CM7_Library_UG_v4_3, Rev. 0, 30 September 2022
NXP Semiconductors 28

2.2.6 ADC type A7
The ADC type A7 covers at least the following device family: KV4x.

For this group of devices, the following functions are dedicated:

• FS_AIO_InputSet_A7

• FS_AIO_ReadResult_A7

• FS_AIO_LimitCheck

For this type of ADCs, it is necessary to use these data types:

• fs_aio_test_a7_t - for the test instance

• fs_aio_a7_t - for a pointer to the ADC peripheral

fs_aio_a7_t

The "fs_aio_a7_t" data type is used for acessing ADC module registers. This data type is defined in the iec60730b_types.h file and
it supports the device families mentioned above.

fs_aio_test_a7_t

This structure is the base structure of the ADC test. This data type is defined in the iec60730b_aio.h file.

Define this structure and fill it to use the ADC test.

typedef struct
{
 uint8_t AdcChannel;
 uint8_t Sample;
 fs_aio_limits_t Limits;
 uint32_t RawResult;
 FS_RESULT state;
} fs_aio_test_a7_t;

• AdcChannel - the number of the ADC channel

• Sample - the number of the sample register

• Limits - a structure with low and high limits for AdcChannel

• RawResult - a raw result of the ADC conversion of AdcChannel

• state - a state variable, it can have the value of a macro: FS_PASS, FS_FAIL_AIO, FS_AIO_INIT, FS_AIO_PROGRESS,
FS_AIO_SCAN_COMPLETE

2.2.6.1 FS_AIO_InputSet_A7()
This function executes the first part of the AIO test sequence. This function sets up the ADC input channel and also triggers the
conversion. The state is changed to "FS_AIO_PROGRESS". This function can be called when the ADC module is idle and ready
for the next conversion. The function has effect only when the input state is "FS_AIO_INIT". It has no effect in other states.

Function prototype:

FS_RESULT FS_AIO_InputSet_A7(fs_aio_test_a7_t *pObj, fs_aio_a7_t *pAdc);

Function inputs:

*pObj - The input argument is the pointer to the analog test instance.

*pAdc - The input argument is the pointer to the analog converter.

Analog input/output test implementation

IEC60730_B_CM4_CM7_Library_UG_v4_3, Rev. 0, 30 September 2022
NXP Semiconductors 29

Function output:

typedef uint32_t FS_RESULT;

• FS_AIO_PROGRESS - The required return value. It means that the input is set.

If any other value is returned, the function has no effect.

Function performance:

For information about the function performance, see Core self-test library – source code version.

2.2.6.2 FS_AIO_ReadResult_A7()
This function is tied to the ADC hardware. This function reads the converted analog value only if "pObj->state ==
FS_AIO_PROGRESS". When the value is read, it is stored to "pObj->RawResult" and the "pObj->State" variable is set
to "FS_AIO_SCAN_COMPLETE".

Function prototype:

FS_RESULT FS_AIO_ReadResult_A7(fs_aio_test_a7_t *pObj, fs_aio_a7_t *pAdc);

Function inputs:

*pObj - The input argument is the pointer to the analog test instance.

*pAdc - The input argument is the pointer to the analog converter.

Function output:

typedef uint32_t FS_RESULT;

• FS_AIO_SCAN_COMPLETE - The conversion value was succesfully read and stored to the "RawResult" variable.

If any other value is returned, the function has no effect.

Function performance:

For information about the function performance, see Core self-test library – source code version.

2.2.7 FS_AIO_LimitCheck()
This function executes the last part of the AIO test sequence and it is common for all ADC types. If the state is
"FS_AIO_SCAN_COMPLETE", the function checks if value from the "RawResult" input parameter is within the limits from
the "pLimits" structure.

Function prototype:

FS_RESULT FS_AIO_LimitCheck(uint32_t RawResult, fs_aio_limits_t *pLimits, FS_RESULT *pState);

Function inputs:

uint32_t RawResult - The input argument is the "RawResult" of the ADC conversion.

*pLimits - The input argument is the pointer to the "fs_aio_limits_t" structure with conversion limits.

*pState - The input argument is the pointer to the "FS_RESULT" variable.

Function output:

typedef uint32_t FS_RESULT;

• FS_FAIL_AIO - The input "RawResult" is not within the borders defined in "Limits".

• FS_PASS - The input "RawResult" is in the border defined in "Limits".

If any other value is returned, the function has no effect.

Function call example:

Analog input/output test implementation

IEC60730_B_CM4_CM7_Library_UG_v4_3, Rev. 0, 30 September 2022
NXP Semiconductors 30

The example of the function call is provided in Analog input/output test implementation.

Function performance:

The information about the function performance is in Core self-test library – source code version.

Analog input/output test implementation

IEC60730_B_CM4_CM7_Library_UG_v4_3, Rev. 0, 30 September 2022
NXP Semiconductors 31

Chapter 3
Clock test
The clock test procedure tests the oscilators of the processor for the wrong frequency. The clock test can be performed once after
the MCU reset and also during runtime.

The identification of a safety error is ensured by the specific FAIL return in case of a clock fault. Assess the return value of the test
function. If it is equal to the FAIL return, then a jump into the safety error handling function should occur. The safety error handling
function is specific to the application and it is not a part of the library. The main purpose of this function is to put the application
into a safety state.

The clock test principle is based on the comparison of two independent clock sources. If the test routine detects a change in the
frequency ratio between the clock sources, a fail error code is returned. The test routine uses one timer and one periodical event
in the application. The periodical event could be also an interrupt from a different timer than that already involved.

The device supported by the library has many timer/counter modules. See Core self-test library – source code version for a
function suitable for your device.

The block diagram for the clock test is shown in Figure 3.

Figure 3. Block diagram for clock test

3.1 Clock test in compliance with IEC/UL standards
The performed overload test fulfils the safety requirements according to the EC 60730-1, IEC 60335, UL 60730, and UL 1998
standards, as described in the following table:

NXP Semiconductors

IEC60730_B_CM4_CM7_Library_UG_v4_3, Rev. 0, 30 September 2022
User's Guide 32 / 136

Table 15. Clock test in compliance with IEC and UL standards

Test Component Fault / Error Software / Hardware
Class

Acceptable Measures

Clock test 3.Clock Wrong frequency B / R.1 Frequency monitoring

3.2 Clock test implementation
The test functions for the clock test are in the iec60730b_clock.c file and they are written as "C" functions. The header file with the
function prototypes is iec60730b_clock.h. iec60730b.h and iec60730b_types.h are the common header files for the safety library.

The following functions are called to test the clock frequency:

• FS_CLK_Init()

• FS_CLK_LPTMR() / FS_CLK_RTC() / FS_CLK_GPT() / FS_CLK_WKT_LPC() / FS_CLK_CTIMER_LPC()

• FS_CLK_Check()

Configure the reference timer, choose an appropriate periodical event, and calculate the limit values. Declare the 32-bit global
variable for storing the content of the timer counter register. The clock source of the chosen timer must differ from the clock source
of the periodical event. The FS_CLK_Init() function is called once, usually before the while() loop. The FS_CLK_LPTMR() (to
choose the dedicated function for your device, see Core self-test library – source code version) function is then called within a
periodic event. The FS_CLK_Check() function for evaluation can be called at any given time. When the test is in the initialization
phase, the check function returns the “in progress” value. If the captured value from the reference counter is within the preset limits,
the check function returns a pass value. If not, a defined fail value is returned.

The example of the test implementation is as follows:

#include “iec60730b.h”
FS_RESULT st;
unsigned long clockTestContext;
#defineISR_FREQUENCY (100)
#define CLOCK_TEST_TOLERANCE (10)
#define REF_TIMER_CLOCK_FREQUENCY (32e03l)
RTC_SC = RTC_SC_RTCLKS(2)|RTC_SC_RTCPS(1);
SysTick->VAL = 0x0;
SysTick->LOAD = 100e6*0.01;
SysTick->CTRL = SysTick_CTRL_CLKSOURCE_Msk | SysTick_CTRL_ENABLE_Msk|
SysTick_CTRL_TICKINT_Msk;
SysTick->VAL = 0x0;

FS_CLK_Init(&clockTestContext);
 while(1) { st = FS_CLK_Check(clockTestContext, FS_CLK_FREQ_LIMIT_LO,
FS_CLK_FREQ_LIMIT_HI);
if (FS_FAIL_CLK == st) SafetyError();
}

void timer_isr(void)
{
 FS_CLK_RTC((uint32_t*)RTC_BASE_PTR, &clockTestContext);
}

3.2.1 FS_CLK_Init()
This function initializes one instance of the clock sync test. It sets the TestContext value to the “in progress” state.

Clock test implementation

IEC60730_B_CM4_CM7_Library_UG_v4_3, Rev. 0, 30 September 2022
NXP Semiconductors 33

Function prototype:

void FS_CLK_Init(uint32_t *pTestContext);

Function inputs:

*pTestContext - The pointer to the variable that holds the captured timer value.

Function output:

void

Function performance:

The information about the function performance is in Core self-test library – source code version.

3.2.2 FS_CLK_Check()
This function handles the clock test. It evaluates the captured value stored in the testContext variable with predefined limits. Until
the first execution of the respective Isr function, the check function returns FS_CLK_PROGRESS.

Function prototype:

FS_RESULT FS_CLK_Check(uint32_t testContext, uint32_t limitLow, uint32_t limitHigh);

Function inputs:

testContext - The captured value of the timer.

limitLow - The low limit.

limitHigh - The high limit.

Function output:

typedef uint32_t FS_RESULT;

• FS_PASS - The testContext fits into the limits.

• FS_FAIL_CLK - The testContext value does not fit into the limits.

• FS_CLK_PROGRESS - The reference counter value is not read yet.

Function performance:

The information about the function performance is in Core self-test library – source code version.

3.2.3 FS_CLK_LPTMR()
This function is used only with the LPTMR module. The function reads the counter value from the timer and saves it into the
TestContext variable. After that, the function starts the LPTMR again.

Function prototype:

void FS_CLK_LPTMR(fs_lptmr_t *pSafetyTmr, uint32_t *pTestContext);

Function inputs:

*pSafetyTmr - The timer module address.

*pTestContext - The pointer to the variable that holds the captured timer value.

Function output:

void

Function performance:

The information about the function performance is in Core self-test library – source code version.

Clock test implementation

IEC60730_B_CM4_CM7_Library_UG_v4_3, Rev. 0, 30 September 2022
NXP Semiconductors 34

3.2.4 FS_CLK_RTC()
This function is used only with the RTC module. This function reads the counter value from the timer and saves it into the
TestContext variable. After that, it starts the RTC again.

Function prototype:

void FS_CLK_RTC(fs_rtc_t *pSafetyTmr, uint32_t *pTestContext);

Function inputs:

*pSafetyTmr - The timer module address.

*pTestContext - The pointer to the variable that holds the captured timer value.

Function output:

void

Function performance:

The information about the function performance is in Core self-test library – source code version.

3.2.5 FS_CLK_GPT()
This function is used only with the GPT module. This function reads the counter value from the timer and saves it into the
TestContext variable. After that, it starts the GPT again.

Function prototype:

void FS_CLK_GPT(fs_gpt_t *pSafetyTmr, uint32_t *pTestContext);

Function inputs:

*pSafetyTmr - The timer module address.

*pTestContext - The pointer to the variable that holds the captured timer value.

Function output:

void

Function performance:

The information about the function performance is in Core self-test library – source code version.

3.2.6 FS_CLK_CTIMER_LPC()
This function is used only with the CTimer module. This function reads the counter value from the timer and saves it into the
TestContext variable. After that, it starts the CTimer again.

Function prototype:

void FS_CLK_CTIMER_LPC(fs_ctimer_t *pSafetyTmr, uint32_t *pTestContext);

Function inputs:

*pSafetyTmr - The timer module address.

*pTestContext - The pointer to the variable that holds the captured timer value.

Function output:

void

Function performance:

The information about the function performance is in Core self-test library – source code version.

Clock test implementation

IEC60730_B_CM4_CM7_Library_UG_v4_3, Rev. 0, 30 September 2022
NXP Semiconductors 35

3.2.7 FS_CLK_WKT_LPC()
This function is used only with the WKT module. This function reads the counter value from the timer and saves it into the
TestContext variable. After that, it starts the WKT again.

Function prototype:

void FS_CLK_WKT_LPC(fs_wkt_t *pSafetyTmr, uint32_t *pTestContext, uint32_t startValue);

Function inputs:

*pSafetyTmr - The timer module address.

*pTestContext - The pointer to the variable that holds the captured timer value.

startValue - The start value to decrease the WKT counter.

Function output:

void

Function performance:

The information about the function performance is in Core self-test library – source code version.

Clock test implementation

IEC60730_B_CM4_CM7_Library_UG_v4_3, Rev. 0, 30 September 2022
NXP Semiconductors 36

Chapter 4
Digital input/output test
The Digital Input/Output (DIO) test procedure performs the plausibility check of the processor's digital IO interface.

The identification of the safety error is ensured by the specific FAIL return in case of the digital IO error. Assess the return value
of the test function and if it is equal to the FAIL return, the move into the safety error handling function should occur. The safety
error handling function may be specific to the application and it is not a part of the library. The main purpose of this function is to
put the application into a safe state.

The DIO test functions are designed to check the digital input and output functionality and short circuit conditions between the
tested pin and the supply voltage, ground, or optional adjacent pin. The execution of the DIO tests must be adapted to the final
application. Be careful with the hardware connections and design. Be sure about which functions can be applied to a respective
pin. In most of cases, the tested (and sometimes also auxiliary) pin must be reconfigured during the application run. When testing
the digital output, reserve enough time between the test arrangement and the reading of results.

4.1 Digital input/output test in compliance with IEC/UL standards
The performed overload test fulfils the safety requirements according to the IEC 60730-1, IEC 60335, UL 60730, and UL 1998
standards, as described in Table 16.

Table 16. Digital input/output test in compliance with IEC and UL standards

Test Component Fault / Error Software / Hardware
Class

Acceptable Measures

Input/Output periphery 7. Input/Output
periphery (7.1 – Digital
I/O)

Abnormal operation B/R.1 Plausibility check

4.2 Digital input/output test implementation
The test functions for the digital IO test are placed in the iec60730b_dio.c and iec60730b_dio_ext.c files. The header files with the
function prototypes are iec60730b_dio.h and iec60730b_dio_ext.h. iec60730b.h and iec60730b_types.h are the common header
files for the safety library.

The digital input/output tests can be executed using the following functions properly:

• FS_DIO_Input()

• FS_DIO_Output() / FS_DIO_Output_IMXRT() / FS_DIO_Output_IMX8M() / FS_DIO_Output_LPC()

• FS_DIO_InputExt() / FS_DIO_InputExt_IMXRT() / FS_DIO_InputExt_IMX8M() / FS_DIO_InputExt_LPC()/
FS_DIO_InputExt_RGPIO()

• FS_DIO_ShortToSupplySet() / FS_DIO_ShortToSupplySet_IMXRT() / FS_DIO_ShortToSupplySet_IMX8M() /
FS_DIO_ShortToSupplySet_LPC()/ FS_DIO_ShortToSupplySet_RGPIO()

• FS_DIO_ShortToAdjSet() / FS_DIO_ShortToAdjSet_IMXRT() / FS_DIO_ShortToAdjSet_IMX8M() /
FS_DIO_ShortToAdjSet_LPC()/ FS_DIO_ShortToAdjSet_RGPIO()

The pointer to the "fs_dio_test_t" structure type is a parameter of each function. The structure is defined in the iec60730b_dio.h file.

 typedef struct
 {
 uint32_t pcr; /* Pin control register */
 uint32_t pddr; /* Port data direction register */

NXP Semiconductors

IEC60730_B_CM4_CM7_Library_UG_v4_3, Rev. 0, 30 September 2022
User's Guide 37 / 136

 uint32_t pdor; /* Port data output register */
 } fs_dio_backup_t;

 typedef struct
 {
 uint32_t gpio;
 fs_dio_backup_t pcr;
 uint8_t pinNum;
 uint8_t pinDir;
 uint8_t pinMux;
 fs_dio_backup_t sTestedPinBackup;
 } fs_dio_test_t;

These variables must be initialized before calling a test function. The following is an example of initialization:

fs_dio_test_t dio_safety_test_item_0 =
{
 .gpio = GPIOE_BASE,
 .pcr = PORTE_BASE,
 .pinNum = 24,
 .pinDir = PIN_DIRECTION_IN,
 .pinMux = PIN_MUX_GPIO,
};
fs_dio_test_t dio_safety_test_item_1 =
{
 .gpio = GPIOA_BASE,
 .pcr = PORTA_BASE,
 .pinNum = 2,
 .pinDir = PIN_DIRECTION_OUT,
 .pinMux = PIN_MUX_GPIO,
};
fs_dio_test_t *dio_safety_test_items[] = { &dio_safety_test_item_0,
&dio_safety_test_item_1, 0 };

if (dio_safety_test_item_0 .gpio == GPIOE_BASE)
 dio_safety_test_item_0 .pcr = PORTE_BASE;

if (dio_safety_test_item_1 .gpio == GPIOA_BASE)
 dio_safety_test_item_1 .pcr = PORTA_BASE;

4.2.1 FS_DIO_Input()
This function executes the digital input test. The test tests one digital pin. The pin is tested according to the block diagram in
Figure 4:

Digital input/output test implementation

IEC60730_B_CM4_CM7_Library_UG_v4_3, Rev. 0, 30 September 2022
NXP Semiconductors 38

Figure 4. Block diagram for digital input test

Function prototype:

FS_RESULT FS_DIO_Input(fs_dio_test_t *pTestedPin, bool_t expectedValue);

Function inputs:

*pTestedPin - The pointer to the tested pin structure.

expectedValue - The expected input value. Adjust this parameter correctly.

Function output:

typedef uint32_t FS_RESULT;

• FS_PASS

• FS_FAIL_DIO_INPUT- The pin is not set as the input.

• FS_FAIL_DIO_WRONG_VALUE - The pin does not have the expected value.

The function always returns the first detected error.

Example of function call:

fs_dio_input_test_result = FS_DIO_Input(&dio_safety_test_items[0], DIO_EXPECTED_VALUE);

Function performance:

The information about the function performance is in Core self-test library – source code version.

Digital input/output test implementation

IEC60730_B_CM4_CM7_Library_UG_v4_3, Rev. 0, 30 September 2022
NXP Semiconductors 39

Calling restrictions:

The tested pin must be configured as a GPIO with input direction.

4.2.2 FS_DIO_Output()
The digital output test tests the digital output functionality of the pin. The principle of the test is to set up and read both logical values
on the tested pin. Enter a suitable delay parameter. It must ensure a time interval that is long enough for the device to reach the
desired logical value on the pin. A very low delay parameter causes the fail return value of the function.

Digital input/output test implementation

IEC60730_B_CM4_CM7_Library_UG_v4_3, Rev. 0, 30 September 2022
NXP Semiconductors 40

Figure 5. Block diagram for digital output test

Digital input/output test implementation

IEC60730_B_CM4_CM7_Library_UG_v4_3, Rev. 0, 30 September 2022
NXP Semiconductors 41

Function prototype:

FS_RESULT FS_DIO_Output(fs_dio_test_t *pTestedPin, uint32_t delay);

Function inputs:

*pTestedPin - The pointer to the tested pin structure.

delay - The delay needed to recognize the value change on the tested pin.

Function output:

typedef uint32_t FS_RESULT;

• FS_PASS

• FS_FAIL_DIO_OUTPUT - The pin is not set as the output.

• FS_FAIL_DIO_NOT_SET - The pin cannot be set to logical 1.

• FS_FAIL_DIO_NOT_CLEAR - The pin cannot be cleared to logical 0.

The function always returns the first detected error.

Example of function call:

fs_dio_output_test_result = FS_DIO_Output(&dio_safety_test_items[1], DIO_WAIT_CYCLE);

Function performance:

For information about the function performance, see Core self-test library – source code version.

Calling restrictions:

The tested pin must be configured as the digital output. Define an appropriate delay for proper functionality.

4.2.3 FS_DIO_InputExt()
This is a modified version of the previously mentioned digital input test. It cannot be used with MKE0x devices. This version is a
get function for the "short-to" tests. The function is applied to the pin that is already configured as a GPIO input and you know what
logical level is expected at the time of the test. The logical level can result from the actual configuration in the application or it can
be initialized for the test (if possible). The block diagram of the FS_DIO_InputExt() function is shown in Figure 6. Two function input
parameters are related to an adjacent pin. For a simple input test functionality, these parameters are not important. Enter the same
inputs as for the tested pin (recommended). See the example code.

Digital input/output test implementation

IEC60730_B_CM4_CM7_Library_UG_v4_3, Rev. 0, 30 September 2022
NXP Semiconductors 42

Figure 6. Extended digital input test

Digital input/output test implementation

IEC60730_B_CM4_CM7_Library_UG_v4_3, Rev. 0, 30 September 2022
NXP Semiconductors 43

Function prototype:

FS_RESULT FS_DIO_InputExt(fs_dio_test_t *pTestedPin, fs_dio_test_t *pAdjPin, bool_t testedPinValue, bool_t backupEnable);

Function inputs:

*pTestedPin - The pointer to the tested pin structure.

*pAdjPin - The pointer to the adjacent pin structure.

testedPinValue - The expected value of the tested pin (logical 0 or logical 1). Adjust this parameter correctly.

backupEnable - The flag. If it is non-zero, the backup functionality is enable/active.

Function output:

typedef uint32_t FS_RESULT;

• FS_PASS

• FS_FAIL_DIO_INPUT - The pin is not set as the input.

• FS_FAIL_DIO_WRONG_VALUE - The pin does not have the expected value.

The function always returns the first detected error.

Example of function call:

fs_dio_input_test_result = FS_DIO_InputExt(&dio_safety_test_item_0, &dio_safety_test_item_0,
DIO_EXPECTED_VALUE, BACKUP_ENABLE);

Function performance:

The information about the function performance is in Core self-test library – source code version.

Calling restrictions:

The function cannot be used with MKE0x devices. The tested pin must be configured as a GPIO input before calling the function.
Even if no adjacent pin is involved in the test, specify the AdjacentPin parameter. It is recommended to enter the same input as
for the TestedPin.

4.2.4 FS_DIO_ShortToAdjSet()
This function ensures the required conditions for the short-to-adjacent pin test. The purpose of this function is to configure the
tested pin and the adjacent pin properly. The adjacent pin is an optional pin that can be theoretically shorted with the tested pin.
The function block diagram is shown in Figure 7. Similarly to the short-to-supply test, this test requires the use of two functions.
The second (get) function evaluates the test result. The FS_DIO_InputExt() function is described in the respective section. Specify
the tested pin and the adjacent pin for the input test function.

Digital input/output test implementation

IEC60730_B_CM4_CM7_Library_UG_v4_3, Rev. 0, 30 September 2022
NXP Semiconductors 44

Figure 7. Block diagram of FS_DIO_ShortToAdjSet() function

Digital input/output test implementation

IEC60730_B_CM4_CM7_Library_UG_v4_3, Rev. 0, 30 September 2022
NXP Semiconductors 45

Function prototype:

FS_RESULT FS_DIO_ShortToAdjSet(fs_dio_test_t *pTestedPin, fs_dio_test_t *pAdjPin, bool_t testedPinValue,
bool_t backupEnable);

Function inputs:

*pTestedPin - The pointer to the tested pin structure.

*pAdjPin - The pointer to the adjacent pin structure.

testedPinValue - The value to be set on the tested pin.

backupEnable - The flag. If it is non-zero, the backup functionality is enable/active.

Function output:

typedef uint32_t FS_RESULT;

• FS_PASS

• FS_FAIL_DIO_INPUT - The tested pin is not set as the input.

• FS_FAIL_DIO_OUTPUT - The adjacent pin is not set as the output.

Function always returns the first detected error.

Example of function call:

The following is the code example of the short-to-adjacent pin test:

#define BACKUP_ENABLE 1
#define LOGICAL_ONE 1
#define LOGICAL_ZERO 0
dio_short_to_adj_test_result = FS_DIO_ShortToAdjSet(&dio_safety_test_items[0],
&dio_safety_test_items[1], LOGICAL_ONE, BACKUP_ENABLE);

dio_short_to_adj_test_result =FS_DIO_InputExt(&dio_safety_test_items[0],
&dio_safety_test_items[1], LOGICAL_ONE, BACKUP_ENABLE);

Function performance:

For information about the function performance, see Core self-test library – source code version.

Calling restrictions:

The function cannot be used with MKE0x devices. The tested pin must be configured as a GPIO input and the adjacent pins
must be configured as GPIO outputs before calling the function. If the backup functionality is enabled, the function sets directions
for both pins. If not, configure the directions (the tested pin as the input, the adjacent pin as the output). After the end of the
function, the application cannot manipulate neither the tested nor the adjacent pins until the FS_DIO_InputExt() function is called
for these pins.

4.2.5 FS_DIO_ShortToSupplySet()
This function creates the first part of the short-to-supply test. It can be used to test the short circuit between the tested pin and
the hardware supply voltage (Vcc, Vdd) or between the tested pin and the hardware ground (GND). Its block diagram is shown
in Figure 8. The second part of the test (result evaluation) is ensured by the FS_DIO_InputExt() function that is described in the
respective section. The main purpose of the FS_DIO_InputExt() function is to set the pull-up (or pull-down) resistor connection on
the tested pin. It also ensures whether the pin is correctly configured and backs up its settings (if needed).

Digital input/output test implementation

IEC60730_B_CM4_CM7_Library_UG_v4_3, Rev. 0, 30 September 2022
NXP Semiconductors 46

Figure 8. Block diagram of FS_DIO_ShortToSupplySet function

Digital input/output test implementation

IEC60730_B_CM4_CM7_Library_UG_v4_3, Rev. 0, 30 September 2022
NXP Semiconductors 47

Function prototype:

FS_RESULT FS_DIO_ShortToSupplySet(fs_dio_test_t *pTestedPin, bool_t shortToVoltage, bool_t backupEnable);

Function inputs:

*pTestedPin - The pointer to the tested pin structure.

shortToVoltage - Specifies whether the pin is tested for the short against GND or Vdd. For GND, enter 1. For VDD, enter 0
or non-zero.

backupEnable - The flag. If it is non-zero, the backup functionality is enable/active.

Function output:

typedef uint32_t FS_RESULT;

• FS_PASS

• FS_FAIL_DIO_INPUT - The pin is not set as the input.

The function always returns the first detected error.

Example of function call:

The following is a code example of the test for both the short-to-GND and short-to-VDD cases. Note that the implementation
difference is only in one parameter. If the short-to-GND is tested, the parameter must have a non-zero value and the other
way around.

#define DIO_SHORT_TO_GND_TEST 1
#define DIO_SHORT_TO_VDD_TEST 0
dio_short_to_vcc_test_result = FS_DIO_ShortToSupplySet(&dio_safety_test_items[0],
DIO_SHORT_TO_GND_TEST, BACKUP_ENABLE);

dio_short_to_vcc_test_result = FS_DIO_InputExt(&dio_safety_test_items[0],
&dio_safety_test_items[0], DIO_SHORT_TO_GND_TEST, BACKUP_ENABLE);

dio_short_to_vcc_test_result = FS_DIO_ShortToSupplySet(&dio_safety_test_items[0],
DIO_SHORT_TO_VDD_TEST, BACKUP_ENABLE);

dio_short_to_vcc_test_result = FS_DIO_InputExt(&dio_safety_test_items[0],
&dio_safety_test_items[0], DIO_SHORT_TO_VDD_TEST, BACKUP_ENABLE);

Function performance:

For information about the function performance, see Core self-test library – source code version.

Calling restrictions:

The function cannot be used with MKE0x devices. The tested pin must be configured as a GPIO input before calling the function.
If the backup functionality is enabled, the function sets the input direction for the tested pin. If not, configure the input direction.
After the end of the function, the application cannot manipulate the tested pin until the FS_DIO_InputExt() function is called for the
tested pin.

4.2.6 FS_DIO_InputExt_IMX8M()
This is a modified version of the previously mentioned digital input test. Use this version as a get function for the "short-to" tests.
Apply the function to the pin that is already configured as a GPIO input and you know what logical level is expected at the time
of the test. The logical level results from the actual configuration in the application or it is initialized for the test (if possible). The
block diagram of the FS_DIO_InputExt_IMX8M() function is shown in Figure 9. Two function input parameters are related to an
adjacent pin. For a simple input test functionality, these parameters are not important. Enter the same inputs as for the tested pin
(recommended). See the example code.

Digital input/output test implementation

IEC60730_B_CM4_CM7_Library_UG_v4_3, Rev. 0, 30 September 2022
NXP Semiconductors 48

Figure 9. Extended digital input test for IMX8M

Digital input/output test implementation

IEC60730_B_CM4_CM7_Library_UG_v4_3, Rev. 0, 30 September 2022
NXP Semiconductors 49

Function prototype:

FS_RESULT FS_DIO_InputExt_IMX8M(fs_dio_test_imx_t *pTestedPin, fs_dio_test_imx_t *pAdjPin, bool_t testedPinValue,
bool_t backupEnable);

Function inputs:

*pTestedPin - The pointer to the tested pin structure.

*pAdjPin - The pointer to the adjacent pin structure.

testedPinValue - The expected value of the tested pin (logical 0 or logical 1). Adjust this parameter correctly.

backupEnable - The flag. If it is non-zero, the backup functionality is enable/active.

Function output:

typedef uint32_t FS_RESULT;

• FS_PASS

• FS_FAIL_DIO_INPUT - The pin is not set as the input.

• FS_FAIL_DIO_WRONG_VALUE - The pin does not have the expected value.

The function always returns the first detected error.

Example of function call:

fs_dio_input_test_result = FS_DIO_InputExt_IMX8M(&dio_safety_test_item_0, &dio_safety_test_item_0,
DIO_EXPECTED_VALUE, BACKUP_ENABLE);

Function performance:

For information about the function performance, see Core self-test library – source code version.

Calling restrictions:

The function can be used only for the i.MX8M devices. Configure the tested pin as a GPIO input before calling the function. Even
if no adjacent pins are involved in the test, specify the "AdjacentPin" parameter. It is recommended to enter the same input as
for "TestedPin".

4.2.7 FS_DIO_Output_IMX8M()
This test tests the digital output functionality of the pin. The principle of this test is to set up and read both logical values on the
tested pin. Enter a suitable delay parameter. It must ensure a time interval that is long enough for the device to reach the desired
logical value on the pin. A very low delay parameter causes the "fail" return value of the function.

Digital input/output test implementation

IEC60730_B_CM4_CM7_Library_UG_v4_3, Rev. 0, 30 September 2022
NXP Semiconductors 50

Figure 10. Block diagram for digital output test

Digital input/output test implementation

IEC60730_B_CM4_CM7_Library_UG_v4_3, Rev. 0, 30 September 2022
NXP Semiconductors 51

Function prototype:

FS_RESULT FS_DIO_Output_IMX8M(fs_dio_test_imx_t *pTestedPin, uint32_t delay);

Function inputs:

*pTestedPin - The pointer to the tested pin structure.

delay - The delay needed to recognize the value change on the tested pin.

Function output:

typedef uint32_t FS_RESULT;

• FS_PASS

• FS_FAIL_DIO_OUTPUT - The pin is not set as the output.

• FS_FAIL_DIO_NOT_SET - The pin cannot be set to logical 1.

• FS_FAIL_DIO_NOT_CLEAR - The pin cannot be cleared to logical 0.

The function always returns the first detected error.

Example of function call:

fs_dio_output_test_result = FS_DIO_Output_IMX8M(&dio_safety_test_items[1], DIO_WAIT_CYCLE);

Function performance:

For information about the function performance, see Core self-test library – source code version.

Calling restrictions:

The tested pin must be configured as a digital output. Define an appropriate delay for proper functionality.

4.2.8 FS_DIO_ShortToAdjSet_IMX8M()
This function ensures the required conditions for the short-to-adjacent pin test. The purpose of this function is to configure the
tested pin and the adjacent pin properly. The adjacent pin is an optional pin that can be theoretically shorted with the tested pin.
The function block diagram is shown in Figure 11. Similarly to the short-to-supply test, this test requires the use of two functions.
The second (get) function evaluates the test result. The FS_DIO_InputExt_IMX8M() function is described in the respective
chapter. Specify the tested pin and the adjacent pin for the input test function.

Digital input/output test implementation

IEC60730_B_CM4_CM7_Library_UG_v4_3, Rev. 0, 30 September 2022
NXP Semiconductors 52

Figure 11. Block diagram of FS_DIO_ShortToAdjSet_IMX8M() function

Digital input/output test implementation

IEC60730_B_CM4_CM7_Library_UG_v4_3, Rev. 0, 30 September 2022
NXP Semiconductors 53

Function prototype:

FS_RESULT FS_DIO_ShortToAdjSet_IMX8M(fs_dio_test_imx_t *pTestedPin, fs_dio_test_imx_t *pAdjPin, bool_t testedPinValue,
bool_t backupEnable);

Function inputs:

*pTestedPin - The pointer to the tested pin structure.

*pAdjPin - The pointer to the adjacent pin structure.

testedPinValue - The value that is set on the tested pin.

backupEnable - The flag. If it is non-zero, the backup functionality is enable/active.

Function output:

typedef uint32_t FS_RESULT;

• FS_PASS

• FS_FAIL_DIO_INPUT - The tested pin is not set as the input.

• FS_FAIL_DIO_OUTPUT - The adjacent pin is not set as the output.

The function always returns the first detected error.

Example of function call:

The following is a code example of the short-to-adjacent pin test:

#define BACKUP_ENABLE 1
#define LOGICAL_ONE 1
#define LOGICAL_ZERO 0
dio_short_to_adj_test_result = FS_DIO_ShortToAdjSet_IMX8M(&dio_safety_test_items[0],
&dio_safety_test_items[1], LOGICAL_ONE, BACKUP_ENABLE);

dio_short_to_adj_test_result =FS_DIO_InputExt_IMX8M(&dio_safety_test_items[0],
&dio_safety_test_items[1], LOGICAL_ONE, BACKUP_ENABLE);

Function performance:

The information about the function performance is in Core self-test library – source code version.

Calling restrictions:

The tested pin must be configured as a GPIO input and the adjacent pin must be configured as a GPIO output before calling the
function. If the backup functionality is enabled, the function sets the directions for both pins. If not, configure the directions (the
tested pin as the input, the adjacent pin as the output). After the end of the function, the application cannot manipulate neither the
tested pin nor the adjacent pin until the FS_DIO_InputExt_IMX8M() function is called for these pins.

4.2.8.1 FS_DIO_ShortToAdjSet_LPC()
This function ensures the required conditions for the short-to-adjacent pin test. The purpose of this function is to configure the
tested pin and the adjacent pin properly. The adjacent pin is an optional pin that can be theoretically shorted with the tested pin.
The function block diagram is shown in Figure 12. Similarly to the short-to-supply test, this test requires the use of two functions.
The second (get) function evaluates the test result. The FS_DIO_InputExt_LPC() function is described in the respective section.
Specify the tested pin and the adjacent pin for the input test function.

Digital input/output test implementation

IEC60730_B_CM4_CM7_Library_UG_v4_3, Rev. 0, 30 September 2022
NXP Semiconductors 54

Figure 12. Block diagram of FS_DIO_ShortToAdjSet_LPC() function

Digital input/output test implementation

IEC60730_B_CM4_CM7_Library_UG_v4_3, Rev. 0, 30 September 2022
NXP Semiconductors 55

Function prototype:

FS_RESULT FS_DIO_ShortToAdjSet_LPC(fs_dio_test_lpc_t *pTestedPin, fs_dio_test_lpc_t *pAdjPin, bool_t testedPinValue,
bool_t backupEnable);

Function inputs:

*pTestedPin - The pointer to the tested pin structure.

*pAdjPin - The pointer to the adjacent pin structure.

testedPinValue - The value that is set on the tested pin.

backupEnable - The flag. If it is non-zero, the backup functionality is enable/active.

Function output:

typedef uint32_t FS_RESULT;

• FS_PASS

• FS_FAIL_DIO_INPUT - The tested pin is not set as the input.

• FS_FAIL_DIO_OUTPUT - The adjacent pin is not set as the output.

• FS_FAIL_DIO_MODE - The tested or adjacent pins do not have the "digimode" set - only for specific LPC devices.

The function always returns the first detected error.

Example of function call:

The following is a code example of the short-to-adjacent pin test:

#define BACKUP_ENABLE 1
#define LOGICAL_ONE 1
#define LOGICAL_ZERO 0
dio_short_to_adj_test_result = FS_DIO_ShortToAdjSet_LPC(&dio_safety_test_items[0],
&dio_safety_test_items[1], LOGICAL_ONE, BACKUP_ENABLE);

dio_short_to_adj_test_result =FS_DIO_InputExt_LPC(&dio_safety_test_items[0],
&dio_safety_test_items[1], LOGICAL_ONE, BACKUP_ENABLE);

Function performance:

For information about the function performance, see Core self-test library – source code version.

Calling restrictions:

The tested pin must be configured as a GPIO input and the adjacent pins must be configured as GPIO outputs before calling the
function. If the backup functionality is enabled, the function sets the directions for both pins. If not, configure the directions (tested
pin as input, adjacent pin as output). After the end of the function, the application can manipulate neither the tested nor the adjacent
pins until the FS_DIO_InputExt_LPC() function is called for these pins.

4.2.9 FS_DIO_ShortToSupplySet_IMX8M()
This function creates the first part of the short-to-supply test. It can be used to test the short circuit between the tested pin and
the hardware supply voltage (VCC, VDD) or between the tested pin and the hardware ground (GND). Its block diagram is shown
in Figure 13. The second part of the test (result evaluation) is ensured by the FS_DIO_InputExt_IMX8M() function described in
the respective section. The main purpose of the FS_DIO_InputExt_IMX8M() function is to set the pull-up or pull-down resistor
connections on the tested pin. It also ensures whether the pin is correctly configured and makes a backup of its settings (if needed).

Digital input/output test implementation

IEC60730_B_CM4_CM7_Library_UG_v4_3, Rev. 0, 30 September 2022
NXP Semiconductors 56

Figure 13. Block diagram of FS_DIO_ShortToSupplySet_IMX8M() function

Digital input/output test implementation

IEC60730_B_CM4_CM7_Library_UG_v4_3, Rev. 0, 30 September 2022
NXP Semiconductors 57

Function prototype:

FS_RESULT FS_DIO_ShortToSupplySet_IMX8M(fs_dio_test_imx_t *pTestedPin, bool_t shortToVoltage, bool_t backupEnable);

Function inputs:

*pTestedPin - The pointer to the tested pin structure.

shortToVoltage - Specifies whether the pin is tested for a short against GND or VDD. For GND, enter 1. For VDD, enter 0
or non-zero.

backupEnable - The flag. If it is non-zero, the backup functionality is enable/active.

Function output:

typedef uint32_t FS_RESULT;

• FS_PASS

• FS_FAIL_DIO_INPUT - The pin is not set as the input.

The function always returns the first detected error.

Example of function call:

The following is a code example of the test for both the short-to-GND and short-to-VDD cases. Note that the implementation
difference is only in one parameter. If the short to the GND is tested, the parameter must have a non-zero value (and the other
way around).

#define DIO_SHORT_TO_GND_TEST 1
#define DIO_SHORT_TO_VDD_TEST 0
dio_short_to_vcc_test_result =
FS_DIO_ShortToSupplySet_IMX8M(&dio_safety_test_items[0], DIO_SHORT_TO_GND_TEST,
BACKUP_ENABLE);

dio_short_to_vcc_test_result = FS_DIO_InputExt_IMX8M(&dio_safety_test_items[0],
&dio_safety_test_items[0], DIO_SHORT_TO_GND_TEST, BACKUP_ENABLE);

dio_short_to_vcc_test_result =
FS_DIO_ShortToSupplySet_IMX8M(&dio_safety_test_items[0], DIO_SHORT_TO_VDD_TEST,
BACKUP_ENABLE);

dio_short_to_vcc_test_result = FS_DIO_InputExt_IMX8M(&dio_safety_test_items[0],
&dio_safety_test_items[0], DIO_SHORT_TO_VDD_TEST, BACKUP_ENABLE);

Function performance:

For information about the function performance, see Core self-test library – source code version.

Calling restrictions:

The tested pin must be configured as a GPIO input before calling the function. If the backup functionality is enabled, the function
sets the input direction for the tested pin. If not, configure the input direction. After the end of the function, the application cannot
manipulate the tested pin until the FS_DIO_InputExt_IMX8M() function is called for the tested pin.

4.2.10 FS_DIO_InputExt_IMXRT()
This is a modified version of the previously mentioned digital input test. Use this version as a get function for the "short-to" tests.
Apply the function to the pin that is already configured as a GPIO input and you know what logical level is expected at the time
of the test. The logical level results from the actual configuration in the application or it is initialized for the test (if possible). The
block diagram of the FS_DIO_InputExt_IMXRT() function is shown in Figure 14. Two function input parameters are related to an

Digital input/output test implementation

IEC60730_B_CM4_CM7_Library_UG_v4_3, Rev. 0, 30 September 2022
NXP Semiconductors 58

adjacent pin. For a simple input test functionality, these parameters are not important. Enter the same inputs as for the tested pin
(recommended). See the example code.

Digital input/output test implementation

IEC60730_B_CM4_CM7_Library_UG_v4_3, Rev. 0, 30 September 2022
NXP Semiconductors 59

Figure 14. Extended digital input test for IMXRT

Digital input/output test implementation

IEC60730_B_CM4_CM7_Library_UG_v4_3, Rev. 0, 30 September 2022
NXP Semiconductors 60

Function prototype:

FS_RESULT FS_DIO_InputExt_IMXRT(fs_dio_test_imx_t *pTestedPin, fs_dio_test_imx_t *pAdjPin, bool_t testedPinValue,
bool_t backupEnable);

Function inputs:

*pTestedPin - The pointer to the tested pin structure.

*pAdjPin - The pointer to the adjacent pin structure.

testedPinValue - The expected value of the tested pin (logical 0 or logical 1). Adjust this parameter correctly.

backupEnable - The flag. If it is non-zero, the backup functionality is enable/active.

Function output:

typedef uint32_t FS_RESULT;

• FS_PASS

• FS_FAIL_DIO_INPUT - The pin is not set as the input.

• FS_FAIL_DIO_WRONG_VALUE - The pin does not have the expected value.

The function always returns the first detected error.

Example of function call:

fs_dio_input_test_result = FS_DIO_InputExt_IMXRT(&dio_safety_test_item_0, &dio_safety_test_item_0,
DIO_EXPECTED_VALUE, BACKUP_ENABLE);

Function performance:

For information about the function performance, see Core self-test library – source code version.

Calling restrictions:

The function can be used only for the i.MX RT devices. Configure the tested pin as a GPIO input before calling the function. Even
if no adjacent pins are involved in the test, specify the "AdjacentPin" parameter. It is recommended to enter the same input as
for "TestedPin".

4.2.11 FS_DIO_Output_IMXRT()
This test tests the digital output functionality of the pin. The principle of this test is to set up and read both logical values on the
tested pin. Enter a suitable delay parameter. It must ensure a time interval that is long enough for the device to reach the desired
logical value on the pin. A very low delay parameter causes the "fail" return value of the function.

Digital input/output test implementation

IEC60730_B_CM4_CM7_Library_UG_v4_3, Rev. 0, 30 September 2022
NXP Semiconductors 61

Figure 15. Block diagram for digital output test

Digital input/output test implementation

IEC60730_B_CM4_CM7_Library_UG_v4_3, Rev. 0, 30 September 2022
NXP Semiconductors 62

Function prototype:

FS_RESULT FS_DIO_Output_IMXRT(fs_dio_test_imx_t *pTestedPin, uint32_t delay);

Function inputs:

*pTestedPin - The pointer to the tested pin structure.

delay - The delay needed to recognize the value change on the tested pin.

Function output:

typedef uint32_t FS_RESULT;

• FS_PASS

• FS_FAIL_DIO_OUTPUT - The pin is not set as the output.

• FS_FAIL_DIO_NOT_SET - The pin cannot be set to logical 1.

• FS_FAIL_DIO_NOT_CLEAR - The pin cannot be cleared to logical 0.

The function always returns the first detected error.

Example of function call:

fs_dio_output_test_result = FS_DIO_Output_IMXRT(&dio_safety_test_items[1], DIO_WAIT_CYCLE);

Function performance:

For information about the function performance, see Core self-test library – source code version.

Calling restrictions:

The tested pin must be configured as a digital output. Define an appropriate delay for proper functionality.

4.2.12 FS_DIO_ShortToAdjSet_IMXRT()
This function ensures the required conditions for the short-to-adjacent pin test. The purpose of this function is to configure the
tested pin and the adjacent pin properly. The adjacent pin is an optional pin that can be theoretically shorted with the tested pin.
The function block diagram is shown in Figure 16. Similarly to the short-to-supply test, this test requires the use of two functions.
The second (get) function evaluates the test result. The FS_DIO_InputExt_IMXRT() function is described in the respective chapter.
Specify the tested pin and the adjacent pin for the input test function.

Digital input/output test implementation

IEC60730_B_CM4_CM7_Library_UG_v4_3, Rev. 0, 30 September 2022
NXP Semiconductors 63

Figure 16. Block diagram of FS_DIO_ShortToAdjSet_IMXRT() function

Digital input/output test implementation

IEC60730_B_CM4_CM7_Library_UG_v4_3, Rev. 0, 30 September 2022
NXP Semiconductors 64

Function prototype:

FS_RESULT FS_DIO_ShortToAdjSet_IMXRT(fs_dio_test_imx_t *pTestedPin, fs_dio_test_imx_t *pAdjPin, bool_t testedPinValue,
bool_t backupEnable);

Function inputs:

*pTestedPin - The pointer to the tested pin structure.

*pAdjPin - The pointer to the adjacent pin structure.

testedPinValue - The value that is set on the tested pin.

backupEnable - The flag. If it is non-zero, the backup functionality is enable/active.

Function output:

typedef uint32_t FS_RESULT;

• FS_PASS

• FS_FAIL_DIO_INPUT - The tested pin is not set as the input.

• FS_FAIL_DIO_OUTPUT - The adjacent pin is not set as the output.

The function always returns the first detected error.

Example of function call:

The following is a code example of the short-to-adjacent pin test:

#define BACKUP_ENABLE 1
#define LOGICAL_ONE 1
#define LOGICAL_ZERO 0
dio_short_to_adj_test_result = FS_DIO_ShortToAdjSet_IMXRT(&dio_safety_test_items[0],
&dio_safety_test_items[1], LOGICAL_ONE, BACKUP_ENABLE);

dio_short_to_adj_test_result =FS_DIO_InputExt_IMXRT(&dio_safety_test_items[0],
&dio_safety_test_items[1], LOGICAL_ONE, BACKUP_ENABLE);

Function performance:

For information about the function performance, see Core self-test library – source code version.

Calling restrictions:

The tested pin must be configured as a GPIO input and the adjacent pin must be configured as a GPIO output before calling the
function. If the backup functionality is enabled, the function sets the directions for both pins. If not, configure the directions (tested
pin as input, adjacent pin as output). After the end of the function, the application cannot manipulate neither the tested pin nor the
adjacent pin until the FS_DIO_InputExt_IMXRT() function is called for these pins.

4.2.13 FS_DIO_ShortToSupplySet_IMXRT()
This function creates the first part of the short-to-supply test. It can be used to test the short circuit between the tested pin and
the hardware supply voltage (VCC, VDD) or between the tested pin and the hardware ground (GND). Its block diagram is shown
in Figure 17. The second part of the test (result evaluation) is ensured by the FS_DIO_InputExt_IMXRT() function described in
the respective section. The main purpose of the FS_DIO_InputExt_IMXRT() function is to set the pull-up or pull-down resistor
connections on the tested pin. It also ensures whether the pin is correctly configured and makes a backup of its settings (if needed).

Digital input/output test implementation

IEC60730_B_CM4_CM7_Library_UG_v4_3, Rev. 0, 30 September 2022
NXP Semiconductors 65

Figure 17. Block diagram of FS_DIO_ShortToSupplySet_IMXRT() function

Digital input/output test implementation

IEC60730_B_CM4_CM7_Library_UG_v4_3, Rev. 0, 30 September 2022
NXP Semiconductors 66

Function prototype:

FS_RESULT FS_DIO_ShortToSupplySet_IMXRT(fs_dio_test_imx_t *pTestedPin, bool_t shortToVoltage, bool_t backupEnable);

Function inputs:

*pTestedPin - The pointer to the tested pin structure.

shortToVoltage - Specifies whether the pin is tested for a short against GND or VDD. For GND, enter 1. For VDD, enter 0
or non-zero.

backupEnable - The flag. If it is non-zero, the backup functionality is enable/active.

Function output:

typedef uint32_t FS_RESULT;

• FS_PASS

• FS_FAIL_DIO_INPUT - The pin is not set as the input.

The function always returns the first detected error.

Example of function call:

The following is a code example of the test for both the short-to-GND and short-to-VDD cases. Note that the implementation
difference is only in one parameter. If the short to the GND is tested, the parameter must have a non-zero value (and the other
way around).

#define DIO_SHORT_TO_GND_TEST 1
#define DIO_SHORT_TO_VDD_TEST 0
dio_short_to_vcc_test_result =
FS_DIO_ShortToSupplySet_IMXRT(&dio_safety_test_items[0], DIO_SHORT_TO_GND_TEST,
BACKUP_ENABLE);

dio_short_to_vcc_test_result = FS_DIO_InputExt_IMXRT(&dio_safety_test_items[0],
&dio_safety_test_items[0], DIO_SHORT_TO_GND_TEST, BACKUP_ENABLE);

dio_short_to_vcc_test_result =
FS_DIO_ShortToSupplySet_IMXRT(&dio_safety_test_items[0], DIO_SHORT_TO_VDD_TEST,
BACKUP_ENABLE);

dio_short_to_vcc_test_result = FS_DIO_InputExt_IMXRT(&dio_safety_test_items[0],
&dio_safety_test_items[0], DIO_SHORT_TO_VDD_TEST, BACKUP_ENABLE);

Function performance:

For information about the function performance, see Core self-test library – source code version.

Calling restrictions:

The tested pin must be configured as the GPIO input before calling the function. If the backup functionality is enabled, the function
sets the input direction for the tested pin. If not, configure the input direction. After the end of the function, the application cannot
manipulate the tested pin until the FS_DIO_InputExt_IMXRT() function is called for the tested pin.

4.2.14 FS_DIO_InputExt_LPC()
This is a modified version of the previously mentioned digital input test. This version is used as a get function for the "short-to"
tests. Apply the function to the pin that is already configured as a GPIO input and you know what logical level is expected at the
time of the test. The logical level can either result from the actual configuration in the application or it can be initialized for the test
(if possible). The block diagram of the FS_DIO_InputExt_LPC() function is shown in Figure 18. Two function input parameters are

Digital input/output test implementation

IEC60730_B_CM4_CM7_Library_UG_v4_3, Rev. 0, 30 September 2022
NXP Semiconductors 67

related to an adjacent pin. For a simple input test functionality, these parameters are not important. Enter the same inputs as for
the tested pin (recommended). See the example code.

Figure 18. Extended digital input test for LPC devices

Function prototype:

Digital input/output test implementation

IEC60730_B_CM4_CM7_Library_UG_v4_3, Rev. 0, 30 September 2022
NXP Semiconductors 68

FS_RESULT FS_DIO_InputExt_LPC(fs_dio_test_lpc_t *pTestedPin, fs_dio_test_lpc_t *pAdjPin, bool_t testedPinValue,
bool_t backupEnable);

Function inputs:

*pTestedPin - The pointer to the tested pin structure.

*pAdjPin - The pointer to the adjacent pin structure.

testedPinValue - The expected value of the tested pin (logical 0 or logical 1). Adjust this parameter correctly.

backupEnable - The flag. If it is non-zero, the backup functionality is enable/active.

Function output:

typedef uint32_t FS_RESULT;

• FS_PASS

• FS_FAIL_DIO_INPUT - The pin is not set as the input.

• FS_FAIL_DIO_WRONG_VALUE - The pin does not have the expected value.

• FS_FAIL_DIO_MODE - The pin does not have the "digimode" set - only for a specific LPC device.

Function always returns the first detected error.

Example of function call:

fs_dio_input_test_result = FS_DIO_InputExt_LPC(&dio_safety_test_item_0, &dio_safety_test_item_0,
DIO_EXPECTED_VALUE, BACKUP_ENABLE);

Function performance:

The information about the function performance is in Core self-test library – source code version.

Calling restrictions:

Configure the tested pin as a GPIO input before the function call. Even if no adjacent pins are involved in the test, specify the
AdjacentPin parameter. It is recommended to enter the same input as for the TestedPin.

4.2.15 FS_DIO_Output_LPC()
This test tests the digital output functionality of the pin. The principle of the test is to set up and read both logical values on the
tested pin. A suitable delay parameter must be entered. It must ensure a time interval that is long enough for the device to reach
the desired logical value on the pin. A very low delay parameter causes the "fail" return value of the function.

Digital input/output test implementation

IEC60730_B_CM4_CM7_Library_UG_v4_3, Rev. 0, 30 September 2022
NXP Semiconductors 69

Figure 19. Block diagram for digital output test

Digital input/output test implementation

IEC60730_B_CM4_CM7_Library_UG_v4_3, Rev. 0, 30 September 2022
NXP Semiconductors 70

Function prototype:

FS_RESULT FS_DIO_Output_LPC(fs_dio_test_lpc_t *pTestedPin, uint32_t delay);

Function inputs:

*pTestedPin - The pointer to the tested pin structure.

delay - The delay needed to recognize the value change on the tested pin.

Function output:

typedef uint32_t FS_RESULT;

• FS_PASS

• FS_FAIL_DIO_OUTPUT - The pin is not set as the output.

• FS_FAIL_DIO_NOT_SET - The pin cannot be set to logical 1.

• FS_FAIL_DIO_NOT_CLEAR - The pin cannot be cleared to logical 0.

• FS_FAIL_DIO_MODE - The pin does not have the "digimode" set - only for specific LPC devices.

The function always returns the first detected error.

Example of function call:

fs_dio_output_test_result = FS_DIO_Output_LPC(&dio_safety_test_items[1], DIO_WAIT_CYCLE);

Function performance:

The information about the function performance is in Core self-test library – source code version.

Calling restrictions:

The tested pin must be configured as a digital output. Define an appropriate delay for proper functionality.

4.2.16 FS_DIO_ShortToAdjSet_LPC()
This function ensures the required conditions for the short-to-adjacent pin test. The purpose of this function is to configure the
tested pin and the adjacent pin properly. The adjacent pin is an optional pin that can be theoretically shorted with the tested pin.
The function block diagram is shown in Figure 20. Similarly to the short-to-supply test, this test requires the use of two functions.
The second (get) function evaluates the test result. The FS_DIO_InputExt_LPC() function is described in the respective section.
Specify the tested pin and the adjacent pin for the input test function.

Digital input/output test implementation

IEC60730_B_CM4_CM7_Library_UG_v4_3, Rev. 0, 30 September 2022
NXP Semiconductors 71

Figure 20. Block diagram of FS_DIO_ShortToAdjSet_LPC() function

Digital input/output test implementation

IEC60730_B_CM4_CM7_Library_UG_v4_3, Rev. 0, 30 September 2022
NXP Semiconductors 72

Function prototype:

FS_RESULT FS_DIO_ShortToAdjSet_LPC(fs_dio_test_lpc_t *pTestedPin, fs_dio_test_lpc_t *pAdjPin, bool_t testedPinValue,
bool_t backupEnable);

Function inputs:

*pTestedPin - The pointer to the tested pin structure.

*pAdjPin - The pointer to the adjacent pin structure.

testedPinValue - The value that is set on the tested pin.

backupEnable - The flag. If it is non-zero, the backup functionality is enable/active.

Function output:

typedef uint32_t FS_RESULT;

• FS_PASS

• FS_FAIL_DIO_INPUT - The tested pin is not set as the input.

• FS_FAIL_DIO_OUTPUT - The adjacent pin is not set as the output.

• FS_FAIL_DIO_MODE - The tested or adjacent pins do not have the "digimode" set - only for specific LPC devices.

The function always returns the first detected error.

Example of function call:

The following is a code example of the short-to-adjacent pin test:

#define BACKUP_ENABLE 1
#define LOGICAL_ONE 1
#define LOGICAL_ZERO 0
dio_short_to_adj_test_result = FS_DIO_ShortToAdjSet_LPC(&dio_safety_test_items[0],
&dio_safety_test_items[1], LOGICAL_ONE, BACKUP_ENABLE);

dio_short_to_adj_test_result =FS_DIO_InputExt_LPC(&dio_safety_test_items[0],
&dio_safety_test_items[1], LOGICAL_ONE, BACKUP_ENABLE);

Function performance:

For information about the function performance, see Core self-test library – source code version.

Calling restrictions:

The tested pin must be configured as a GPIO input and the adjacent pins must be configured as GPIO outputs before calling the
function. If the backup functionality is enabled, the function sets the directions for both pins. If not, configure the directions (tested
pin as input, adjacent pin as output). After the end of the function, the application can manipulate neither the tested nor the adjacent
pins until the FS_DIO_InputExt_LPC() function is called for these pins.

4.2.17 FS_DIO_ShortToSupplySet_LPC()
This function creates the first part of the short-to-supply test. It can be used to test the short circuit between the tested pin
and the hardware supply voltage (Vcc, Vdd) or between the tested pin and the hardware ground (GND). Its block diagram is
shown in Figure 21. The second part of the test (result evaluation) is ensured by the FS_DIO_InputExt_LPC() function described
in the respective section. The main purpose of the FS_DIO_InputExt_LPC() function is to set the pull-up or pull-down resistor
connections on the tested pin. It also tests whether the pin is correctly configured and makes a backup of its settings (if needed).

Digital input/output test implementation

IEC60730_B_CM4_CM7_Library_UG_v4_3, Rev. 0, 30 September 2022
NXP Semiconductors 73

Figure 21. Block diagram of FS_DIO_ShortToSupplySet_LPC function

Function prototype:

FS_RESULT FS_DIO_ShortToSupplySet_LPC(fs_dio_test_lpc_t *pTestedPin, bool_t shortToVoltage, bool_t backupEnable);

Function inputs:

*pTestedPin - The pointer to the tested pin structure.

Digital input/output test implementation

IEC60730_B_CM4_CM7_Library_UG_v4_3, Rev. 0, 30 September 2022
NXP Semiconductors 74

shortToVoltage - Specifies whether the pin is tested for a short against GND or VDD. For GND, enter 1. For VDD, enter 0
or non-zero.

backupEnable - The flag. If it is non-zero, the backup functionality is enable/active.

Function output:

typedef uint32_t FS_RESULT;

• FS_PASS

• FS_FAIL_DIO_INPUT - The pin is not set as the input.

• FS_FAIL_DIO_MODE - The pin does not have the "digimode" set, only for specific LPC devices.

The function always returns the first detected error.

Example of function call:

The following is a code example of the test for both the short-to-GND and short-to-VDD cases. Note that the implementation
difference is only in one parameter. If the short to GND is tested, the parameter must have a non-zero value (and the other
way around).

#define DIO_SHORT_TO_GND_TEST 1
#define DIO_SHORT_TO_VDD_TEST 0
dio_short_to_vcc_test_result = FS_DIO_ShortToSupplySet_LPC(&dio_safety_test_items[0],
DIO_SHORT_TO_GND_TEST, BACKUP_ENABLE);

dio_short_to_vcc_test_result = FS_DIO_InputExt_LPC(&dio_safety_test_items[0],
&dio_safety_test_items[0], DIO_SHORT_TO_GND_TEST, BACKUP_ENABLE);

dio_short_to_vcc_test_result = FS_DIO_ShortToSupplySet_LPC(&dio_safety_test_items[0],
DIO_SHORT_TO_VDD_TEST, BACKUP_ENABLE);

dio_short_to_vcc_test_result = FS_DIO_InputExt_LPC(&dio_safety_test_items[0],
&dio_safety_test_items[0], DIO_SHORT_TO_VDD_TEST, BACKUP_ENABLE);

Function performance:

For information about the function performance, see Core self-test library – source code version.

Calling restrictions:

The tested pin must be configured as a GPIO input before calling the function. If the backup functionality is enabled, the function
sets the input direction for the tested pin. If not, configure the input direction. After the end of the function, the application cannot
manipulate the tested pin until the FS_DIO_InputExt_LPC() function is called for the tested pin.

4.2.18 FS_DIO_InputExt_RGPIO()
This is a modified version of the previously mentioned digital input test. Use this version as a get function for the "short-to" tests.
Apply the function to the pin that is already configured as a RGPIO input and you know what logical level is expected at the time
of the test. The logical level results from the actual configuration in the application or it is initialized for the test (if possible). The
block diagram of the FS_DIO_InputExt_RGPIO() function is shown in Figure 22. Two function input parameters are related to an
adjacent pin. For a simple input test functionality, these parameters are not important. Enter the same inputs as for the tested pin
(recommended). See the example code.

Digital input/output test implementation

IEC60730_B_CM4_CM7_Library_UG_v4_3, Rev. 0, 30 September 2022
NXP Semiconductors 75

Figure 22. Extended digital input test for IMX RGPIO

Digital input/output test implementation

IEC60730_B_CM4_CM7_Library_UG_v4_3, Rev. 0, 30 September 2022
NXP Semiconductors 76

Function prototype:

FS_DIO_InputExt_RGPIO(fs_dio_test_rgpio_t *pTestedPin, fs_dio_test_rgpio_t *pAdjPin, bool_t testedPinValue,
bool_t backupEnable);

Function inputs:

*pTestedPin - The pointer to the tested pin structure.

*pAdjPin - The pointer to the adjacent pin structure.

testedPinValue - The expected value of the tested pin (logical 0 or logical 1). Adjust this parameter correctly.

backupEnable - The flag. If it is non-zero, the backup functionality is enable/active.

Function output:

typedef uint32_t FS_RESULT;

• FS_PASS

• FS_FAIL_DIO_INPUT - The pin is not set as the input.

• FS_FAIL_DIO_WRONG_VALUE - The pin does not have the expected value.

The function always returns the first detected error.

Example of function call:

fs_dio_input_test_result = FS_DIO_InputExt_RGPIO(&dio_safety_test_item_0, &dio_safety_test_item_0,
DIO_EXPECTED_VALUE, BACKUP_ENABLE);

Function performance:

For information about the function performance, see Core self-test library – source code version.

Calling restrictions:

The function can be used only for the devices with an RGPIO peripheral. Configure the tested pin as an RGPIO input before calling
the function. Even if no adjacent pins are involved in the test, specify the "AdjacentPin" parameter. It is recommended to enter the
same input as for "TestedPin".

4.2.19 FS_DIO_ShortToAdjSet_RGPIO()
This function ensures the required conditions for the short-to-adjacent pin test. The purpose of this function is to configure the
tested pin and the adjacent pin properly. The adjacent pin is an optional pin that can be theoretically shorted with the tested pin.
The function block diagram is shown in Figure 23. Similarly to the short-to-supply test, this test requires the use of two functions.
The second (get) function evaluates the test result. The FS_DIO_InputExt_RGPIO() function is described in the respective
chapter. Specify the tested pin and the adjacent pin for the input test function.

Digital input/output test implementation

IEC60730_B_CM4_CM7_Library_UG_v4_3, Rev. 0, 30 September 2022
NXP Semiconductors 77

Figure 23. Block diagram of FS_DIO_ShortToAdjSet_RGPIO() function

Digital input/output test implementation

IEC60730_B_CM4_CM7_Library_UG_v4_3, Rev. 0, 30 September 2022
NXP Semiconductors 78

Function prototype:

FS_RESULT FS_DIO_ShortToAdjSet_RGPIO(fs_dio_test_rgpio_t *pTestedPin, fs_dio_test_rgpio_t *pAdjPin, bool_t
testedPinValue, bool_t backupEnable);

Function inputs:

*pTestedPin - The pointer to the tested pin structure.

*pAdjPin - The pointer to the adjacent pin structure.

testedPinValue - The value that is set on the tested pin.

backupEnable - The flag. If it is non-zero, the backup functionality is enable/active.

Function output:

typedef uint32_t FS_RESULT;

• FS_PASS

• FS_FAIL_DIO_INPUT - The tested pin is not set as the input.

• FS_FAIL_DIO_OUTPUT - The adjacent pin is not set as the output.

The function always returns the first detected error.

Example of function call:

The following is a code example of the short-to-adjacent pin test:

#define BACKUP_ENABLE 1
#define LOGICAL_ONE 1
#define LOGICAL_ZERO 0
dio_short_to_adj_test_result = FS_DIO_ShortToAdjSet_RGPIO(&dio_safety_test_items[0],
&dio_safety_test_items[1], LOGICAL_ONE, BACKUP_ENABLE);

dio_short_to_adj_test_result = FS_DIO_InputExt_RGPIO(&dio_safety_test_items[0],
&dio_safety_test_items[1], LOGICAL_ONE, BACKUP_ENABLE);

Function performance:

For information about the function performance, see Core self-test library – source code version.

Calling restrictions:

The function can be used only for the devices with an RGPIO peripheral.

The tested pin must be configured as an RGPIO input and the adjacent pin must be configured as an RGPIO output before calling
the function. If the backup functionality is enabled, the function sets the directions for both pins. If not, configure the directions
(tested pin as input, adjacent pin as output). After the end of the function, the application cannot manipulate neither the tested pin
nor the adjacent pin until the FS_DIO_InputExt_RGPIO() function is called for these pins.

4.2.20 FS_DIO_ShortToSupplySet_RGPIO()
This function creates the first part of the short-to-supply test. It can be used to test the short circuit between the tested pin and
the hardware supply voltage (VCC, VDD) or between the tested pin and the hardware ground (GND). Its block diagram is shown
in Figure 24. The second part of the test (result evaluation) is ensured by the FS_DIO_InputExt_RGPIO() function described in
the respective section. The main purpose of the FS_DIO_InputExt_RGPIO() function is to set the pull-up or pull-down resistor
connections on the tested pin. It also ensures that the pin is correctly configured and makes a backup of its settings (if needed).

Digital input/output test implementation

IEC60730_B_CM4_CM7_Library_UG_v4_3, Rev. 0, 30 September 2022
NXP Semiconductors 79

Figure 24. Block diagram of FS_DIO_ShortToSupplySet_RGPIO() function

Digital input/output test implementation

IEC60730_B_CM4_CM7_Library_UG_v4_3, Rev. 0, 30 September 2022
NXP Semiconductors 80

Function prototype:

FS_RESULT FS_DIO_ShortToSupplySet_RGPIO(fs_dio_test_rgpio_t *pTestedPin, bool_t shortToVoltage,
bool_t backupEnable);

Function inputs:

*pTestedPin - The pointer to the tested pin structure.

shortToVoltage - Specifies whether the pin is tested for a short against GND or VDD. For GND, enter 1. For VDD, enter 0
or non-zero.

backupEnable - The flag. If it is non-zero, the backup functionality is enable/active.

Function output:

typedef uint32_t FS_RESULT;

• FS_PASS

• FS_FAIL_DIO_INPUT - The pin is not set as the input.

The function always returns the first detected error.

Example of function call:

The following is a code example of the test for both the short-to-GND and short-to-VDD cases. Note that the implementation
difference is only in one parameter. If the short to the GND is tested, the parameter must have a non-zero value (and the other
way around).

#define DIO_SHORT_TO_GND_TEST 1
#define DIO_SHORT_TO_VDD_TEST 0
dio_short_to_vcc_test_result =
FS_DIO_ShortToSupplySet_RGPIO(&dio_safety_test_items[0], DIO_SHORT_TO_GND_TEST,
BACKUP_ENABLE);

dio_short_to_vcc_test_result = FS_DIO_InputExt_RGPIO(&dio_safety_test_items[0],
&dio_safety_test_items[0], DIO_SHORT_TO_GND_TEST, BACKUP_ENABLE);

dio_short_to_vcc_test_result =
FS_DIO_ShortToSupplySet_RGPIO(&dio_safety_test_items[0], DIO_SHORT_TO_VDD_TEST,
BACKUP_ENABLE);

dio_short_to_vcc_test_result = FS_DIO_InputExt_RGPIO(&dio_safety_test_items[0],
&dio_safety_test_items[0], DIO_SHORT_TO_VDD_TEST, BACKUP_ENABLE);

Function performance:

For information about the function performance, see Core self-test library – source code version.

Calling restrictions:

The function can be used only for the devices with an RGPIO peripheral.

The tested pin must be configured as the RGPIO input before calling the function. If the backup functionality is enabled, the
function sets the input direction for the tested pin. If not, configure the input direction. After the end of the function, the application
cannot manipulate the tested pin until the FS_DIO_InputExt_RGPIO() function is called for the tested pin.

Digital input/output test implementation

IEC60730_B_CM4_CM7_Library_UG_v4_3, Rev. 0, 30 September 2022
NXP Semiconductors 81

Chapter 5
Invariable memory test
The invariable memory on the supported MCUs is the on-chip flash. The principle of the invariable memory test is to check
whether there is a change in the memory content during the application execution. Several checksum methods can be used for
this purpose. The checksum is an algorithm that calculates a signature of the data placed in the tested memory. The signature of
this memory block is then periodically calculated and compared with the original signature.

The signature for the assigned memory is calculated in the linking phase of an application. The signature must be saved into the
invariable memory, but in a different area than the one that the checksum is calculated for. In runtime and after the reset, the same
algorithm must be implemented in the application to calculate the checksum. The results are compared. If they are not equal, a
safety error state occurs.

The algorithm that calculates the checksum parameter (signature) in the post build phase must be the same as that used in runtime
(16-bit CRC polynomial (0x1021) for SW16 and HW16 or 0x04C11DB7 for HW32 and SW32) to generate a CRC code for error
detection. The same algorithm is implemented in the hardware CRC module. In the IAR IDE, you can calculate the CRC using
the linker. In other IDEs, you can use an external tool. For the Keil uVision IDE, see Calculating Post-Build CRC in Arm® Keil®

(document AN12520).

Some MCUs have a hardware CRC engine which provides an easy method of calculating the CRC of multiple bytes/words written
to it. Using hardware for the invariable memory test offers better performance levels. The software version of the test must be used
on devices without a CRC hardware module.

5.1 Invariable memory test in compliance with IEC/UL standards
The performed overload test fulfils the safety requirements according to the IEC 60730-1, IEC 60335, UL 60730, and UL 1998
standards, as described in Table 17.

Table 17. Invariable memory test in compliance with IEC and UL standards

Test Component Fault / Error Software / Hardware
Class

Acceptable Measures

Invariable memory 4.1 – Invariable
memory

All single bit faults B/R.1 Periodic modified
checksum

5.2 Invariable memory test implementation
The parts of test functions for the flash memory are placed in iec60730b_cm4_cm7_flash.S and they are written as assembler
functions. The header file with the definitions and function prototypes is iec60730b_cm4_cm7_flash.h. The rest of functions is
placed in iec60730b_invariable_memory.c with the corresponding header file and they are written in the C language. The test
functions use also the following header files: iec60730b.h, asm_mac_common.h, and iec60730b_types.h. They are the common
header files for the safety library.

The following functions are implemented in iec60730b_invariable_memory.c:

• FS_FLASH_C_HW16_K() / FS_FLASH_C_HW16_K()

The following functions are implemented in iec60730b_cm4_cm7_flash.S:

• FS_CM4_CM7_FLASH_HW16()

• FS_CM4_CM7_FLASH_SW16()

• FS_CM4_CM7_FLASH_SW32()

The following function is implemented in iec60730b_cm4_cm7_flash_dcp.c:

• FS_CM4_CM7_FLASH_HW32_DCP()

NXP Semiconductors

IEC60730_B_CM4_CM7_Library_UG_v4_3, Rev. 0, 30 September 2022
User's Guide 82 / 136

https://www.nxp.com/doc/AN12520

The hardware (*_HW) functions use the hardware CRC module that is included in the supported MCU. The software function
calculates the CRC value without hardware support, so it has longer execution time.

5.2.1 Computing of CRC value in linking phase of application
The checksum of a memory block must be calculated before it is written into the flash memory. A checksum calculation is best
done with a linker. However, this is not possible in all compilers. The following example is valid only for the IAR IDE. For further
details, refer to the IAR documentation. For using external tools in the Keil-uVision IDE, see Calculating Post-Build CRC in Arm®

Keil® (document AN12520).

The result of the CRC calculation must be stored in the flash memory. It must not be stored in the area where the checksum occurs.
A good method is to define a small block in the flash (ROM) memory where the result of the checksum is stored. To do this, the
linker configuration file must be modified. The path to the linker configuration file can be found in: Project > Options > Linker >
Config. The file name extension is *.icf. For this example, the "CHECKSUM" block with the ".checksum" section is defined.

define symbol __FlashCRC_start__ = 0x6FF0;
define symbol __FlashCRC_end__ = 0x6FFF;
define region CRC_region = mem:[from __FlashCRC_start__ to __FlashCRC_end__] ;
define block CHECKSUM { section .checksum };
place in CRC_region { block CHECKSUM };

The input parameters for the CRC calculation must be set up in the linker option tabs: Project > Options > Linker. There are two
options for setting up the calculation parameters. The first option is used to calculate the checksum for one block of memory in
your application. The parameters are filled in the "Checksum" subtab. For this example, the start and end addresses are 0x510
and 0x3000. The unused memory is filled with 0xFF. The checksum is stored with 16 bits. The checksum algorithm is CRC16 with
the standard 0x1021 polynomial. The initial seed is zero. The block size for a particular calculation is 8 bits. The variable for the
result is __checksum.

Invariable memory test implementation

IEC60730_B_CM4_CM7_Library_UG_v4_3, Rev. 0, 30 September 2022
NXP Semiconductors 83

https://www.nxp.com/doc/AN12520

Figure 25. Checksum settings for linker

The constant variable name (__checksum) must be written into Project > Options > Linker > Input > Keep symbols.

The following lines must be placed into the source code, to have the __checksum variable available in the application.

#pragma section = ".checksum"
#pragma location = ".checksum"
extern unsigned short const __checksum;

If you need a CRC calculation for more memory blocks, use the following approach. There must be enough space in the block
defined in the linker configuration file. For this example, the parameters for the calculations are the same as in the previous
example and the addresses of blocks are: (0x510 – 0x610, 0x620 – 0x720, 0x730 – 0x830). The variables are as follows:
(__checksum_first, __checksum_second, __checksum_third). In this case, the linker command line directives are used: Project >
Options > Linker > Extra Options. Use the command line options and enter the following lines there. Uncheck the options in the
"Checksum" subtab.

—fill 0xFF;0x510-0x610
—checksum __checksum_first:2,crc16,0x0;0x510-0x610
—place_holder __checksum_first,2,.checksum,4

—fill 0xFF;0x620-0x720
—checksum __checksum_second:2,crc16,0x0;0x620-0x720
—place_holder __checksum_second,2,.checksum,4

—fill 0xFF;0x730-0x830

Invariable memory test implementation

IEC60730_B_CM4_CM7_Library_UG_v4_3, Rev. 0, 30 September 2022
NXP Semiconductors 84

—checksum __checksum_third:2,crc16,0x0;0x730-0x830
—place_holder __checksum_third,2,.checksum,4

Project > Options > Linker > Input

Write the following to the "Keep symbols" block:

__checksum_first
__checksum_second
__checksum_third

Add the following lines to the source code, so that the __checksum_first, __checksum_second, and __checksum_third variables
are available in the application.

#pragma section = ".checksum"
#pragma location = ".checksum"
extern unsigned short const __checksum_first;
extern unsigned short const __checksum_second;
extern unsigned short const __checksum_third;

5.2.2 Test performed once after MCU reset
When implemented after the reset or when there is no restriction on the execution time, the function call can be as follows:

#include “iec60730b.h”
#pragma section = ".checksum"
#pragma location = ".checksum"
 extern uint16_t const __checksum;
if((uint16_t)__checksum != FS_CM4_CM7_FLASH_HW16(start_address, size,
CRC_BASE,start_seed))SafetyError();

Where:

• __checksum - The constant variable with the CRC value computed in the linking phase of the application.

• start_address - The initial address of the memory block to be tested.

• size - The size of the memory block to be tested (first address – end address + 1).

• CRC_BASE - The base address of the CRC module.

• start_seed - The start condition seed. It must be "0" for the algorithm used.

5.2.3 Runtime test
In the application runtime and with limited time for execution, the CRC is computed in a sequence. It means that the input
parameters have different meanings in comparison with the calling after reset. The implementation example is as follows:

#include “iec60730b.h”
#pragma section = ".checksum"
#pragma location = ".checksum"
 extern unsigned short const __checksum;

Invariable memory test implementation

IEC60730_B_CM4_CM7_Library_UG_v4_3, Rev. 0, 30 September 2022
NXP Semiconductors 85

flash_crc.part_crc = FS_CM4_CM7_FLASH_HW16(flash_crc.actual_address,
flash_crc.block_size, CRC_BASE, flash_crc.part_crc);
if (FS_FAIL_FLASH == SafetyFlashTestHandling(__checksum, &flash_crc))
SafetyError();

Where:

• __checksum - The constant variable with the CRC value computed in the post-build phase of the application.

• flash_crc.part_crc - The particular CRC result and seed parameter for the next iteration.

• flash_crc.actual_address - The actual address of the memory block to be tested.

• CRC_BASE - The base address of the CRC module.

• flash_crc.block_size - The size of the memory block to be tested.

The handling of the function must be carried out by the application developer. When the checksum of a block is calculated in more
iterations, the result from the first iteration (function call) is the seed value for the next function call. After the last part of the memory
is processed with the test function, the result is the final checksum of the whole tested memory block.

5.2.4 FS_FLASH_C_HW16_K()
This function generates the 16-bit CRC value using the hardware CRC module.

Function prototype:

FS_RESULT FS_FLASH_C_HW16_K(uint32_t startAddress, uint32_t size, FS_CRC_Type * moduleAddress, uint16_t * crcVal);

Function inputs:

startAddress - The first address of the tested memory.

size - The size of the tested memory. It must be divisible by 4.

moduleAddress - The address of the CRC module.

crcVal - Pointer to the variable for the result and start condition seed. For the first iteration, it is typically a user-defined value. For
the next iterations, it is the result from the previous function call (CRC-16-CCITT - normal 0x1021).

Function output:

FS_RESULT

• FS_FAIL_FLASH_NULL_POINTER_C - The moduleAddress or crcVal input parameters are NULL.

• FS_FAIL_FLASH_MODULO_C - The parameter size is not aligned to 4 bytes.

• FS_FAIL_FLASH_SIZE_C - The size input parameter is 0.

Function performance:

The function parameter was measured on LPC55S36 with a clock frequency of 150 MHz.

The function size is 96 B.

The function duration depends on the defined block size. Several examples are shown in Table 18:

Table 18. Duration of FS_FLASH_C_HW16_K() depending on tested block size

Block size (in bytes) Execution time (approximately)

0x10 1,6 µs

0x20 1,92 µs

0x100 6,68 µs

Invariable memory test implementation

IEC60730_B_CM4_CM7_Library_UG_v4_3, Rev. 0, 30 September 2022
NXP Semiconductors 86

Calling restrictions:

The function cannot be interrupted by a function that changes the content or setup of the hardware CRC module.

5.2.5 FS_FLASH_C_HW16_L()
This function generates the 16-bit CRC value using the hardware CRC module.

Function prototype:

FS_RESULT FS_FLASH_C_HW16_L(uint32_t startAddress, uint32_t size, FS_CRC_L_Type * moduleAddress, uint16_t * crcVal);

Function inputs:

startAddress - The first address of the tested memory.

size - The size of the tested memory.

moduleAddress - The address of the CRC module.

crcVal - Pointer to the variable for the result and start condition seed. For the first iteration, it is typically a user-defined value. For
the next iterations, it is the result from the previous function call (CRC-16-CCITT - normal 0x1021).

Function output:

FS_RESULT

• FS_FAIL_FLASH_NULL_POINTER_C - The moduleAddress or crcVal input parameters are NULL.

• FS_FAIL_FLASH_SIZE_C - The size input parameter is 0.

Function performance:

The function parameter was measured on LPC54S018M with a clock frequency of 96 MHz.

The function size is 66 B.

The function duration depends on the defined block size. Several examples are shown in Table 19:

Table 19. Duration of FS_FLASH_C_HW16_L() depending on tested block size

Block size (in bytes) Execution time (approximately)

0x10 14,36 µs

0x20 18,04 µs

0x100 44,12 µs

Calling restrictions:

The function cannot be interrupted by a function that changes the content or setup of the hardware CRC module.

5.2.6 FS_CM4_CM7_FLASH_HW16()
This function generates the 16-bit CRC value using the hardware CRC module.

Function prototype:

uint16_t FS_CM4_CM7_FLASH_HW16(uint32_t startAddress, uint32_t size, uint32_t moduleAddress, uint16_t crcVal);

Function inputs:

startAddress - The first address of the tested memory.

size - The size of the tested memory.

moduleAddress - The address of the CRC module.

Invariable memory test implementation

IEC60730_B_CM4_CM7_Library_UG_v4_3, Rev. 0, 30 September 2022
NXP Semiconductors 87

crcVal - The start condition seed. For the first iteration, it is typically a user-defined value. For the next iterations, it is the result
from the previous function call).

Function output:

uint16_t - The 16-bit CRC value of the memory range (CRC-16-CCITT - normal 0x1021).

Function performance:

Function size is 44 bytes.1

The function duration depends on defined block size. Several examples are shown in the following table.

Table 20. Duration of FS_CM4_CM7_FLASH_HW16() in dependence of tested block size

Block size (Bytes) Clock cycles Execution time (approximately)

0x10 208 2.6 µs

0x20 343 4.2 µs

0x50 745 9.3 µs

Calling restrictions:

The function cannot be interrupted with function that changes the content or setup of HW CRC module.

5.2.7 FS_CM4_CM7_FLASH_HW32_DCP()
This function generates the 32-bit CRC value using the hardware DCP module.

Function prototype:

void FS_CM4_CM7_FLASH_HW32_DCP(uint32_t startAddress, uint32_t size, uint32_t moduleAddress, uint32_t crcVal,
fs_flash_dcp_channels_t channel, fs_flash_dcp_state_t *psDCPState, uint32_t tag);

Function inputs:

startAddress - The first address of the tested memory.

size - The size of the tested memory.

moduleAddress - The address of the CRC module.

crcVal - The start condition seed. For the first iteration, it is typically a user-defined value. For the next iterations, it is the result
from the previous function call).

channel - DCP channel used for calculation.

psDCPState - State and result struct of each DCP channel.

tag - Differentiates calculation on the same channel.

Function output:

uint32_t - The 32-bit CRC value of the memory range (CRC-32/MPEG-2 - 0x04C11DB7).

Example of function call:

xxxxxxx

/* Start CRC calculation for a given block of Flash memory */
 FS_CM4_CM7_FLASH_HW32_DCP(psFlashCrc->actualAddress, psFlashCrc->blockSize,
(uint32_t)FLASH_USED_DCP,
 psFlashCrc->partCrc, g_dcpSafetyChannel,
psFlashDCPState, FLASH_DCP_TAG);

Invariable memory test implementation

IEC60730_B_CM4_CM7_Library_UG_v4_3, Rev. 0, 30 September 2022
NXP Semiconductors 88

 /* Check error. */
 if (psFlashDCPState->CH3State == FS_FAIL_FLASH_DCP)
 {
 psSafetyCommon->safetyErrors |= FLASH_TEST_ERROR;
 SafetyErrorHandling(psSafetyCommon);
 }
 /* Check if calculation finished */
 else if (psFlashDCPState->CH3State == FS_FLASH_DCP_AVAILABLE)
 {
 /* Store partial result */
 psFlashCrc->partCrc = psFlashDCPState->CH3Result;

Function performance:

Function size is 448 bytes.4

The function duration depends on defined block size. Several examples are shown in the following table.

Table 21. Duration of FS_CM4_CM7_FLASH_HW32_DCP() in dependence of tested block size

Block size (Bytes) Clock cycles Execution time (approximately)

0x10 57 2.375 µs

0x20 57 2.375 µs

0x50 67 2.791 µs

0x500 261 10.875 µs

Calling restrictions:

The function cannot be interrupted with function that changes the content or setup of HW DCP module.

Multiple calculations with different tag number on the same channel is supported but it must be placed in the same execution block
- for example channel 0 calculations in the Systick ISR, channel 1 calculations in the while loop.

Calculated data block must be aligned to 4 bytes.

5.2.8 FS_CM4_CM7_FLASH_SW16()
This function generates the 16-bit CRC value using software.

Function prototype:

uint16_t FS_CM4_CM7_FLASH_SW16(uint32_t startAddress, uint32_t size, uint32_t moduleAddress, uint16_t crcVal);

Function inputs:

startAddress - The first address of the tested memory.

size - The size of the tested memory.

moduleAddress - Has no effect. Just because of compatibility with HW function.

crcVal - The start condition seed. For the first iteration, it is typically a user-defined value. For the next iterations, it is the result
from the previous function call).

Function output:

uint16_t - The 16-bit CRC value of the memory range (CRC-16-CCITT - normal 0x1021).

Function performance:

Function size is 54 bytes.1

Invariable memory test implementation

IEC60730_B_CM4_CM7_Library_UG_v4_3, Rev. 0, 30 September 2022
NXP Semiconductors 89

The function duration depends on defined block size. Several examples are shown in the following table.

Table 22. Duration of FS_CM4_CM7_FLASH_SW16() in dependence of tested block size

Block size (Bytes) Clock cycles Execution time (approximately)

0x10 1934 24.175 µs

0x20 3936 49.2 µs

0x50 9758 121.975 µs

Calling restrictions:

None.

5.2.9 FS_CM4_CM7_FLASH_SW32()
This function generates the 32-bit CRC value using software.

Function prototype:

uint32_t FS_CM4_CM7_FLASH_SW32(uint32_t startAddress, uint32_t size, uint32_t moduleAddress, uint32_t crcVal);

Function inputs:

startAddress - The first address of the tested memory.

size - The size of the tested memory.

moduleAddress - Has no effect. Just because of compatibility with HW function.

crcVal - The start condition seed. For the first iteration, it is typically a user-defined value. For the next iterations, it is the result
from the previous function call).

Function output:

uint32_t - The 32-bit CRC value of the memory range (CRC-32/MPEG-2 - 0x04C11DB7).

Function performance:

Function size is 78 bytes.1

The function duration depends on defined block size. Several examples are shown in the following table.

Table 23. Duration of FS_CM4_CM7_FLASH_SW32() in dependence of tested block size

Block size (Bytes) Clock cycles Execution time (approximately)

0x10 1795 22.438 µs

0x20 3631 45.388 µs

0x50 9030 112.875 µs

Calling restrictions:

None.

Invariable memory test implementation

IEC60730_B_CM4_CM7_Library_UG_v4_3, Rev. 0, 30 September 2022
NXP Semiconductors 90

Chapter 6
CPU program counter test
The CPU program counter register test procedure tests the CPU program counter register for the stuck-at condition. The program
counter register test can be performed once after the MCU reset and also during runtime.

The identification of the safety error is ensured by the specific FAIL return if the CPU program counter register does not work
correctly. Assess the return value of the test function. If it is equal to the FAIL return, then the jump into the safety error handling
function occurs. The safety error handling function may be specific to the application and it is not a part of the library. The main
purpose of this function is to put the application into a safety state.

Contrary to the other CPU registers, the program counter cannot be simply filled with a test pattern. It is necessary to force the
CPU (program flow) to access the corresponding address that is testing the pattern to verify the program counter functionality.

The program counter test works without an initialization function. The short function (another object) is written in a separate file.
Place this object to an appropriate address in the flash memory by declaring it in the linker configuration file. The test function uses
the address of this routine and the appropriate address in the RAM memory to test the program counter.

The block diagrams for the program counter register tests are shown in this figure:

NXP Semiconductors

IEC60730_B_CM4_CM7_Library_UG_v4_3, Rev. 0, 30 September 2022
User's Guide 91 / 136

Figure 26. Block diagram for PC_Test

6.1 CPU program counter test in compliance with IEC/UL
standards

The performed overload test fulfils the safety requirements according to the IEC 60730-1, IEC 60335, UL 60730, and UL 1998
standards, as described in this table:

CPU program counter test in compliance with IEC/UL standards

IEC60730_B_CM4_CM7_Library_UG_v4_3, Rev. 0, 30 September 2022
NXP Semiconductors 92

Table 24. CPU program counter test in compliance with IEC/UL standards

Test Component Fault / Error Software / Hardware
Class

Acceptable Measures

CPU CPU (1.3 – Programme
Counter)

Stuck at B/R.1 Periodic self test

6.2 CPU program counter test implementation
The test functions for the CPU registers are placed in the iec60730b_cm4_cm7_pc.S file and they are written as assembler
functions. The header file with the test patterns and the function prototypes is iec60730b_cm4_cm7_pc.h. The iec60730b.h,
asm_mac_common.h, and iec60730b_types.h are the common header files for the safety library. For the second test type, the
iec60730b_cm4_cm7_pc_object.S file must be placed to an appropriate address in the flash memory.

Implementation example of the PC test:

The only function that is handled in the application is as follows:

FS_CM4_CM7_PC_Test()

Place an appropriate pattern as the first input. If needed, call the function more times in a sequence with different
patterns. Note that the test pattern must be a real address in the RAM and it must be even-numbered. Place the
iec60730b_cm4_cm7_pc_object.S file to an appropriate address in the flash memory.

The following is an example of the function call:

#include “iec60730b.h”
extern unsigned long PC_test_flag; /* from Linker configuration file */
const unsigned long Program_Counter_test_flag = (unsigned long)&PC_test_flag;
#define PC_TEST_FLAG ((unsigned long *) Program_Counter_test_flag)

fs_pc_test_result = FS_CM4_CM7_PC_Test(0x20000013, FS_PC_object, PC_TEST_FLAG);
if (FS_FAIL_PC == fs_pc_test_result)
 SafetyError();

6.2.1 FS_CM4_CM7_PC_Test()
The program counter register is tested according to Figure 26.

Function prototype:

FS_RESULT FS_CM4_CM7_PC_Test(uint32_t pattern1, tFcn_pc pObjectFunction, uint32_t *flag);

Function inputs:

pattern1 - The address from the RAM memory, adequate as a pattern for the program counter.

pObjectFunction - The address of the FS_PC_Object() function.

*pFlag - The address of the variable/place in memory used as a flag. If the flag is "0", the test is successful ("1" if it failed).

Function output:

typedef uint32_t FS_RESULT;

• FS_PASS

• FS_FAIL_PC - In the case of incorrect test execution, PC_flag has a value of "1".

Function performance:

The function takes approximately 92 cycles (1.15 µs).1

CPU program counter test implementation

IEC60730_B_CM4_CM7_Library_UG_v4_3, Rev. 0, 30 September 2022
NXP Semiconductors 93

The function size is 48 B.1

Calling restrictions:

This function cannot be interrupted.

6.2.2 FS_PC_Object()
This function is internally used by the FS_CM4_CM7_PC_Test() function. The function is used to perform the program counter
test. It should be called only by the FS_CM4_CM7_PC_Test() function. It should be placed at a reliable address (by editing the
linker file).

This example shows how to place the function to the desired address in the linker configuration file for the IAR IDE:

define symbol __PC_test_start__ = 0x00008FE0;

define symbol __PC_test_end__ = 0x00008FFF;

define region PC_region = mem:[from __PC_test_start__ to __PC_test_end__];

define block PC_TEST { section .text object iec60730b_cm4_cm7_pc_object.o};

place in PC_region { block PC_TEST};

Function prototype:

void FS_PC_Object(void);

Function inputs:

void

Function output:

void

Function performance:

The function duration is included in the duration of the FS_CM4_CM7_PC_Test() function. It's size is 16 bytes.

Calling restrictions:

This function is used to perform the PC test, it should be called only by the FS_CM4_CM7_PC_Test() function.

CPU program counter test implementation

IEC60730_B_CM4_CM7_Library_UG_v4_3, Rev. 0, 30 September 2022
NXP Semiconductors 94

Chapter 7
Variable memory test
The variable memory test for supported devices checks the on-chip RAM for DC faults. The application stack area can also be
tested. The March C and March X schemes are used as control mechanisms. Choose whether to use the March C or March X
scheme. The handling functions are different for the after-reset test and for the runtime test. Both functions must have a backup
area defined in the RAM and reserved by the developer. The size of this area must be at least the same as the size of the tested
block. The RAM test is considered destructive. This is because the data from the memory area with the variables, the stack area,
and the functions placed in the RAM is moved away, rewritten multiple times (with test patterns 0x55555555 and 0xAAAAAAAA),
and then moved back to the original memory area. The test procedure is very sensitive and cannot be interrupted. The block
diagrams for the RAM tests are shown in the following figures:

NXP Semiconductors

IEC60730_B_CM4_CM7_Library_UG_v4_3, Rev. 0, 30 September 2022
User's Guide 95 / 136

Figure 27. Block diagram for after-reset test of RAM

IEC60730_B_CM4_CM7_Library_UG_v4_3, Rev. 0, 30 September 2022
NXP Semiconductors 96

Figure 28. Block diagram for runtime test of RAM

7.1 Variable memory test in compliance with IEC/UL standards
The performed overload test fulfils the safety requirements according to the IEC 60730-1, IEC 60335, UL 60730, and UL 1998
standards, as described in the following table:

Variable memory test in compliance with IEC/UL standards

IEC60730_B_CM4_CM7_Library_UG_v4_3, Rev. 0, 30 September 2022
NXP Semiconductors 97

Table 25. Variable memory test in compliance with IEC and UL standards

Test Component Fault / Error Software / Hardware
Class

Acceptable Measures

Variable memory 4.2 – Variable memory DC fault B/R.1 Periodic self-test using
March test

7.2 Variable memory test implementation
The test functions for the variable memory (RAM) test are placed in the iec60730b_cm4_cm7_ram.S file and they are written as
assembler functions. The header file with return values and function prototypes is iec60730b_cm4_cm7_ram.h. The iec60730b.h,
asm_mac_common.h, and iec60730b_types.h are the common header files for the safety library.

The RAM test consists of these public functions:

• FS_CM4_CM7_RAM_AfterReset()

• FS_CM4_CM7_RAM_Runtime()

• FS_CM4_CM7_RAM_CopyToBackup()

• FS_CM4_CM7_RAM_CopyFromBackup()

• FS_CM4_CM7_RAM_SegmentMarchC()

• FS_CM4_CM7_RAM_SegmentMarchX()

The first two functions provide a complex RAM test. You do not have to work directly with the next functions.

7.2.1 FS_CM4_CM7_RAM_AfterReset()
The after-reset test is done by the FS_CM0_RAM_AfterReset() function. This function is called once after reset, when the
execution time is not critical. Reserve free memory space for the backup area. The block size parameter cannot be larger than
the size of the backup area. The function firstly checks the backup area. Then the loop begins. Blocks of memory are copied to
the backup area and their locations are checked with the respective March test. The data is copied back to the original memory
area and the actual address with the block size is updated. This is repeated until the last block of memory is tested. If a DC fault
is detected, the function returns a fail pattern. The block diagram is shown in .Figure 27

Here is an example of the function call:

#include “iec60730b.h”

if (FS_FAIL_RAM == FS_CM4_CM7_RAM_AfterReset(startAddress, endAddress, blockSize,
backupAddress, FS_CM4_CM7_RAM_SegmentMarchC))

SafetyError();

Function prototype:

FS_RESULT FS_CM4_CM7_RAM_AfterReset(uint32_t startAddress, uint32_t endAddress, uint32_t blockSize, uint32_t
backupAddress, tFcn pMarchType);

Function inputs:

startAddress - The first adress of the tested RAM area.

endAddress - The address of the first byte after the tested RAM area.

blockSize - The tested block size.

backupAddress - The address of the backup area.

*pMarchType - The address of the March function (March X or March C).

Variable memory test implementation

IEC60730_B_CM4_CM7_Library_UG_v4_3, Rev. 0, 30 September 2022
NXP Semiconductors 98

Function output:

typedef uint32_t FS_RESULT;

• FS_PASS

• FS_FAIL_RAM

Function performance:

The function size is 98 B.1

The execution time depends on the memory size. It also varies with different block sizes and the March method used.1

Table 26. FS_CM4_CM7_RAM_AfterReset duration

Memory size(Bytes) Block size(Bytes) Cycles - March X Cycles – March C

0x100 0x20 3831 5238

0x100 0x40 3842 5360

0x100 0x80 4095 5882

0x200 0x20 7310 9926

0x200 0x40 6839 9534

0x200 0x80 7346 10298

0x400 0x20 13791 18838

0x400 0x40 13574 18638

0x400 0x80 13095 18382

Calling restrictions:

This function is used once after the MCU reset, when the execution time is not critical.

It cannot be interrupted.

The backup area must be of at least the same size as the tested block size defined by the "block_size" parameter.

7.2.2 FS_CM4_CM7_RAM_Runtime()
The runtime test is done by the FS_CM4_CM7_RAM_Runtime() function. Reserve free memory space for the backup area. The
block size parameter cannot be larger than the size of the backup area. During the first call, the function checks the backup area.
After the call, blocks of memory are processed in a sequence. They are copied to the backup area and their locations are checked
using the respective March test. The data is copied back to the original memory area and the actual address and the block size
are updated. This is repeated until the last block of memory is tested. If a DC fault is detected, the function returns a fail pattern.
The block diagram is shown above. The example of a function call is as follows:

#include “iec60730_b.h”

if(FS_RAM_FAIL == FS_RESULT FS_CM4_CM7_RAM_Runtime(startAddress, endAddress, &actualAddress,
blockSize, backupAddress, FS_CM4_CM7_RAM_SegmentMarchX))

SafetyError();

Function prototype:

FS_RESULT FS_CM4_CM7_RAM_Runtime(uint32_t startAddress, uint32_t endAddress, uint32_t *pActualAddress, uint32_t
blockSize, uint32_t backupAddress, tFcn pMarchType);

Function inputs:

Variable memory test implementation

IEC60730_B_CM4_CM7_Library_UG_v4_3, Rev. 0, 30 September 2022
NXP Semiconductors 99

startAddress - The first adress of the tested RAM area.

endAddress - The address of the first byte after the tested RAM area.

*pActualAddress - The adress of the variable that holds the actual address value.

blockSize - The tested block size.

backupAddress - The address of the backup area.

*pMarchType - The address of the March function (March X or March C).

Function output:

typedef uint32_t FS_RESULT;

• FS_PASS

• FS_FAIL_RAM

Function performance:

The function size is 118 B.1

The execution time depends on the block size and it is different for the March C and March X methods. 1

Table 27. FS_CM4_CM7_RAM_Runtime duration

Block size(Bytes) Cycles - March X Cycles - March C

0x4 202 187

0x8 250 298

0x20 532 688

0x40 908 1208

Calling restrictions:

The function cannot be interrupted.

The backup area must have at least the same size as the tested block size defined by the block_size parameter.

The execution time depends on the block size.

7.2.3 FS_CM4_CM7_RAM_CopyFromBackup()
This function copies a block of memory from the backup area to the dedicated place.

Function prototype:

void FS_CM4_CM7_RAM_CopyFromBackup(uint32_t startAddress, uint32_t blockSize, uint32_t backupAddress);

Function inputs:

startAddress - The first adress of the destination.

blockSize - The size of the memory block.

backupAddress - The address of the backup area.

Function output:

void

Function performance:

The function size is 16 B.1

Variable memory test implementation

IEC60730_B_CM4_CM7_Library_UG_v4_3, Rev. 0, 30 September 2022
NXP Semiconductors 100

7.2.4 FS_CM4_CM7_RAM_CopyToBackup()
This function copies a block of memory to the dedicated backup area.

Function prototype:

void FS_CM4_CM7_RAM_CopyToBackup(uint32_t startAddress, uint32_t blockSize, uint32_t backupAddress);

Function inputs:

startAddress - The first address of the source.

blockSize - The size of the memory block.

backupAddress - The address of the backup area.

Function output:

void

Function performance:

The function size is 16 B.1

7.2.5 FS_CM4_CM7_RAM_SegmentMarchC()
This function performs a March C test of the memory block that is given by the start address and the block size. The content of
the tested memory remains changed after the execution of this function.

Function prototype:

FS_RESULT FS_CM4_CM7_RAM_SegmentMarchC(uint32_t startAddress, uint32_t blockSize);

Function inputs:

startAddress - The first adress of the tested memory block.

blockSize - The size of the tested memory block.

Function output:

typedef uint32_t FS_RESULT;

• FS_PASS

• FS_FAIL_RAM

Function performance:

The function size is 118 B.1

7.2.6 FS_CM4_CM7_RAM_SegmentMarchX()
This function performs a March X test of the memory block that is given by the start address and the block size. The content of
the tested memory remains changed after the execution of this function.

Function prototype:

FS_RESULT FS_CM4_CM7_RAM_SegmentMarchX(uint32_t startAddress, uint32_t blockSize);

Function inputs:

startAddress - The first adress of the tested memory block.

blockSize - The size of the tested memory block.

Function output:

typedef uint32_t FS_RESULT;

Variable memory test implementation

IEC60730_B_CM4_CM7_Library_UG_v4_3, Rev. 0, 30 September 2022
NXP Semiconductors 101

• FS_PASS

• FS_FAIL_RAM

Function performance:

The function size is 98 B.1

Variable memory test implementation

IEC60730_B_CM4_CM7_Library_UG_v4_3, Rev. 0, 30 September 2022
NXP Semiconductors 102

Chapter 8
CPU register test
The CPU register test procedure tests all of the CM4/CM7 CPU registers for the stuck-at condition (except for the program counter
register). The program counter test is implemented as a standalone safety routine. There is a set of tests performed once after
the MCU reset and also during runtime. This set of tests includes the test of the following registers:

General-purpose registers:

• R0-R12

Stack pointer registers:

• SP main

• SP process

Special registers:

• APSR

• CONTROL

• PRIMASK

• FAULTMASK

• BASEPRI

Link register:

• LR

FPU registers:

• FPSCR

• S0 – S31

The identification of safety errors is ensured by the specific FAIL return if some registers have the stuck-at fault. Assess the return
value of every function. If the value equals the FAIL return, then a jump into the safety error handling function should occur. The
safety error handling function may be specific to the application and it is not a part of the library. The main purpose of this function
is to put the application into a safe state.

In some special cases, the error is not reported by the FAIL return, because it would require the action of a corrupt register. In that
case, the function waits for reset in an endless loop.

The principle of the stuck-at error test of the CPU registers is to write and compare two test patterns in every register. The content
of the register is compared with the constant or with the value written into another register that was tested before. Most of the
time, R0, R1, and R2 are used as auxiliary registers. Patterns are defined to check the logical one and logical zero values in all
register bits.

For the PRIMASK and CONTROL and FAULTMASK and BASEPRI tests, the original content must be backed up. For the
SP_main and SP_process tests, the CONTROL register content must be backed up. In case of the FPU registers test, the content
of the FPSCR is backed up. The CPACR system register contains one bit for enabling the FPU. The block diagrams for the
respective registers are shown in the following figures:

NXP Semiconductors

IEC60730_B_CM4_CM7_Library_UG_v4_3, Rev. 0, 30 September 2022
User's Guide 103 / 136

Figure 29. Block diagram for R2 – R12 registers test

Figure 30. Block diagram for R0, R1, LR, APSR registers test

IEC60730_B_CM4_CM7_Library_UG_v4_3, Rev. 0, 30 September 2022
NXP Semiconductors 104

Figure 31. Block diagram for PRIMASK , FAULTMAST, BASEPRI and CONTROL registers test

IEC60730_B_CM4_CM7_Library_UG_v4_3, Rev. 0, 30 September 2022
NXP Semiconductors 105

Figure 32. Block diagram for SP_main and SP_process registers test

IEC60730_B_CM4_CM7_Library_UG_v4_3, Rev. 0, 30 September 2022
NXP Semiconductors 106

Figure 33. Block diagram for FPSCR register test

IEC60730_B_CM4_CM7_Library_UG_v4_3, Rev. 0, 30 September 2022
NXP Semiconductors 107

Figure 34. Block diagram for S0 - S31 registers test

8.1 CPU register test in compliance with IEC/UL standards
The performed overload test fulfils the safety requirements according to the IEC 60730-1, IEC 60335, UL 60730, and UL 1998
standards, as described in the following table:

Table 28. CPU register test in compliance with IEC and UL standards

Test Component Fault / Error Software / Hardware
Class

Acceptable Measures

CPU registers test CPU (1.1 – Registers) Stuck at B/R.1 Periodic self test

8.2 CPU register test implementation
The test functions for the CPU registers are in the iec60730b_cm4_cm7_reg.S file and they are written as assembler functions.
For devices containing the FPU, iec60730b_ cm4_cm7_reg_fpu.S is an additional file with the tests of FPU-related registers. The
header file with the return values and function prototypes is iec60730b_cm4_cm7_reg.h.

The iec60730b.h, asm_mac_common.h, and iec60730b_types.h are the common header files for the safety library.

The following functions are called to test the corresponding registers:

• FS_CM4_CM7_CPU_Register()

• FS_CM4_CM7_CPU_NonStackedRegister()

• FS_CM4_CM7_CPU_Primask()

• FS_CM4_CM7_CPU_SPmain()

• FS_CM4_CM7_CPU_SPprocess()

• FS_CM4_CM7_CPU_Control()

• FS_CM4_CM7_CPU_Special()

CPU register test in compliance with IEC/UL standards

IEC60730_B_CM4_CM7_Library_UG_v4_3, Rev. 0, 30 September 2022
NXP Semiconductors 108

• FS_CM4_CM7_CPU_Special8PriorityLevels()

When the device has an FPU, the following functions are placed in iec60730b_cm4_cm7_reg_fpu.S:

• FS_CM4_CM7_CPU_ControlFpu()

• FS_CM4_CM7_CPU_Float1()

• FS_CM4_CM7_CPU_Float2()

The error detection is recognized by the specific return value, as described in the following sections. There are several exceptions.
If some of the R0, R1, LR, APSR, and SP registers are corrupt, the application is in an endless loop instead of returning an
error value. If some of these registers are corrupt, the application cannot make standard operations to identify the safety error (to
compare something, to move out from the function, or to return a value).

The use of functions after the reset and during runtime is the same. Be careful when using functions during runtime, as described
in the following sections.

The following is an example of a function call:

#include “iec60730b.h”
if (FS_FAIL_CPU_REGISTER == FS_CM4_CM7_CPU_Register())
SafetyError();

8.2.1 FS_CM4_CM7_CPU_Control()
This function tests the CONTROL register according to the Figure 31.

Function prototype:

FS_RESULT FS_CM4_CM7_CPU_Control(void);

Test pattern:

CONTROL: 0x00000000, 0x00000002

Function inputs:

void

Function output:

typedef uint32_t FS_RESULT;

• FS_PASS

• FS_FAIL_CPU_CONTROL

Function performance:

The function takes approximately 30 cycles, including the result comparison (0.375 µs). 1

The function size is 48 B.1

Calling restrictions:

This function cannot be interrupted.

8.2.2 FS_CM4_CM7_CPU_ControlFpu()
This function tests the CONTROL register according to the Figure 31.

Function prototype:

FS_RESULT FS_CM4_CM7_CPU_ControlFpu(void);

CPU register test implementation

IEC60730_B_CM4_CM7_Library_UG_v4_3, Rev. 0, 30 September 2022
NXP Semiconductors 109

Test pattern:

CONTROL: 0x00000000, 0x00000002, 0x00000004

Function inputs:

void

Function output:

typedef uint32_t FS_RESULT;

• FS_PASS

• FS_FAIL_CPU_CONTROL

Function performance:

The function takes approximately 52 cycles, including the result comparison (0.65 µs). 1

The function size is 62 B.1

Calling restrictions:

This function cannot be interrupted.

This function should be used for devices with FPU, as a replace of the FS_CM4_CM7_CPU_Control() function.

8.2.3 FS_CM4_CM7_CPU_Float1()
This function checks the FPSCR and S0-S15 registers according to the Figure 33 and Figure 34. Within the function, the FPU is
enabled in the CPACR register. At the end of the function, the original content of CPACR is restored.

Function prototype:

FS_RESULT FS_CM4_CM7_CPU_Float1(void);

Test patterns for respective registers:

FPSCR: 0x55400015, 0xA280008A

S0-S15: 0x55555555, 0xAAAAAAAA

Function inputs:

void

Function output:

typedef uint32_t FS_RESULT;

• FS_PASS

• FS_FAIL_CPU_FLOAT_1

Function performance:

The function takes approximately 286 cycles (3.575 µs). 1

The function size is 476 B.1

Calling restrictions:

Only for devices with the Floating Point Unit (FPU).

8.2.4 FS_CM4_CM7_CPU_Float2()
This function checks the S16-S31 registers according to the Figure 34. Within the function, the FPU is enabled in the CPACR
register. At the end of the function, the original content of CPACR is restored.

Function prototype:

CPU register test implementation

IEC60730_B_CM4_CM7_Library_UG_v4_3, Rev. 0, 30 September 2022
NXP Semiconductors 110

FS_RESULT FS_CM4_CM7_CPU_Float2(void);

Test patterns for respective registers:

S0-S15: 0x55555555, 0xAAAAAAAA

Function inputs:

void

Function output:

typedef uint32_t FS_RESULT;

• FS_PASS

• FS_FAIL_CPU_FLOAT_2

Function performance:

The function takes approximately 270 cycles (3.375 µs). 1

The function size is 470 B.1

Calling restrictions:

Only for devices with the Floating Point Unit (FPU).

8.2.5 FS_CM4_CM7_CPU_NonStackedRegister()
This function tests the R8, R9, R10, and R11 CPU registers. Each register is tested according to the Figure 29.

Function prototype:

FS_RESULT FS_CM4_CM7_CPU_NonStackedRegister(void);

Test patterns for respective registers:

R8 – R11: 0x55555555, 0xAAAAAAAA

Function inputs:

void

Function output:

typedef uint32_t FS_RESULT;

• FS_PASS

• FS_FAIL_CPU_NONSTACKED_REGISTER

Function performance:

The function takes approximately 70 cycles, including the result comparison (0.875 µs). 1

The function size is 80 B.1

Calling restrictions:

None.

8.2.6 FS_CM4_CM7_CPU_Primask()
This function tests the PRIMASK register according to the Figure 31.

Function prototype:

FS_RESULT FS_CM4_CM7_CPU_Primask(void);

Test pattern:

CPU register test implementation

IEC60730_B_CM4_CM7_Library_UG_v4_3, Rev. 0, 30 September 2022
NXP Semiconductors 111

PRIMASK: 0x00000001, 0x00000000

Function inputs:

void

Function output:

typedef uint32_t FS_RESULT;

• FS_PASS

• FS_FAIL_CPU_PRIMASK

Function performance:

The function takes approximately 221 cycles, including the result comparison (2.763 µs). 1

The function size is 44 B.1

Calling restrictions:

This function cannot be interrupted by an interrupt where the global interrupts are disabled.

8.2.7 FS_CM4_CM7_CPU_Register()
This function tests the R0-R7, R12, LR, and APSR CPU registers in a sequence. Each register is tested according to the Figure
29 and Figure 30.

Function prototype:

FS_RESULT FS_CM4_CM7_CPU_Register(void);

Test patterns for respective registers:

R0 – R7, R12, LR: 0x55555555, 0xAAAAAAAA

APSR: 0x50000000, 0xA0000000

Function inputs:

void

Function output:

typedef uint32_t FS_RESULT;

• FS_PASS

• FS_FAIL_CPU_REGISTER

If the R0, R1, LR, or APSR registers are corrupted, the function is in an endless loop with the interrupts disabled. This state must
be observed by another safety mechanism (for example, watchdog).

Function performance:

Function duration is approximately 172 cycles including result comparison (2.15 µs) 1

Function size is 204 bytes.1

Calling restrictions:

None.

8.2.8 FS_CM4_CM7_CPU_Special()
This function tests the BASEPRI and FAULTMASK registers according to the Figure 31.

Function prototype:

FS_RESULT FS_CM4_CM7_CPU_Special(void);

CPU register test implementation

IEC60730_B_CM4_CM7_Library_UG_v4_3, Rev. 0, 30 September 2022
NXP Semiconductors 112

Test pattern:

BASEPRI: 0xA0, 0x50

FAULTMASK: 0x1, 0x0

Function inputs:

void

Function output:

typedef uint32_t FS_RESULT;

• FS_PASS

• FS_FAIL_CPU_SPECIAL

Function performance:

The function takes approximately 61 cycles (0.763 µs). 1

The function size is 104 B.1

Calling restrictions:

None.

8.2.9 FS_CM4_CM7_CPU_Special8PriorityLevels()
This function tests the BASEPRI and FAULTMASK registers according to the Figure 31.

Function prototype:

FS_RESULT FS_CM4_CM7_CPU_Special8PriorityLevels(void);

Test pattern:

BASEPRI: 0xA0, 0x40

FAULTMASK: 0x1, 0x0

Function inputs:

void

Function output:

typedef uint32_t FS_RESULT;

• FS_PASS

• FS_FAIL_CPU_SPECIAL

Function performance:

The function takes approximately 53 cycles (1.104 µs). 6

The function size is 84 B.x

Calling restrictions:

For devices with eight priority levels for interrupts.

8.2.10 FS_CM4_CM7_CPU_SPmain()
This function tests the SP_main register according to the Figure 32.

Function prototype:

FS_RESULT FS_CM4_CM7_CPU_SPmain(void);

CPU register test implementation

IEC60730_B_CM4_CM7_Library_UG_v4_3, Rev. 0, 30 September 2022
NXP Semiconductors 113

Test pattern:

SP_main: 0x55555554, 0xAAAAAAA8

Function inputs:

void

Function output:

typedef uint32_t FS_RESULT;

• FS_PASS

If SP_main is corrupted, the function is in an endless loop with the interrupts disabled. This state must be observed by another
safety mechanism (for example, watchdog).

Function performance:

The function takes approximately 59 cycles, including the result comparison (0.738 µs) 1

The function size is 58 B.1

Calling restrictions:

This function cannot be interrupted.

8.2.11 FS_CM4_CM7_CPU_SPprocess()
This function checks SP_process register according to the Figure 32.

Function prototype:

FS_RESULT FS_CM4_CM7_CPU_SPprocess(void);

Test pattern:

SP_process: 0x55555554, 0xAAAAAAA8

Function inputs:

void

Function output:

typedef uint32_t FS_RESULT;

• FS_PASS

If the SP_process is corrupted, the function is in an endless loop with interrupts disabled. This state must be observed by another
safety mechanism (for example, watchdog).

Function performance:

The function takes approximately 51 cycles, including the result comparison (0.638 µs) 1

The function size is 58 B.1

Calling restrictions:

This function cannot be interrupted.

CPU register test implementation

IEC60730_B_CM4_CM7_Library_UG_v4_3, Rev. 0, 30 September 2022
NXP Semiconductors 114

Chapter 9
Stack test
This test routine is used to test the overflow and underflow conditions of the application stack. The testing of the stuck-at faults in
the memory area occupied by the stack is covered by the variable memory test. The overflow or underflow of the stack can occur
if the stack is incorrectly controlled or by defining the "too-low" stack area for the given application.

The principle of the test is to fill the area below and above the stack with a known pattern. These areas must be defined in the linker
configuration file, together with the stack. The initialization function then fills these areas with your pattern. The pattern must have
a value that does not appear elsewhere in the application. The test is performed after the reset and during the application runtime
in the same way. The purpose is to check if the exact pattern is still written in these areas. If it is not, it is a sign of incorrect stack
behavior. If this occurs, then the FAIL return value from the test function must be processed as a safety error.

9.1 Stack test in compliance with IEC/UL standards
The stack test is an additional test, not directly specified in the IEC60730 annex H table.

9.2 Linker setup
The size and placement of the application stack is generally defined in the linker configuration file. Therefore, you must define the
areas below and under the stack here as well. There are other methods to achieve this, but only one example is shown here. The
size of the areas must be a multiple of 0x4. The minimal size is 0x4.

define symbol __ICFEDIT_region_RAM_start__ = 0x1FFFFC10;
define symbol __ICFEDIT_region_RAM_end__ = 0x20000000;
define symbol __region_RAM2_start__ = 0x20000000;
define symbol __region_RAM2_end__ = 0x200017FF;
define symbol __ICFEDIT_size_cstack__ = 512;
define exported symbol STACK_TEST_BLOCK_SIZE = 0x10;
define exported symbol STACK_TEST_P_4 = __region_RAM2_end__ - 0x3;
define exported symbol STACK_TEST_P_3 = STACK_TEST_P_4 - STACK_TEST_BLOCK_SIZE +0x4;
define exported symbol __BOOT_STACK_ADDRESS = STACK_TEST_P_3 - 0x4;
define exported symbol STACK_TEST_P_2 = __BOOT_STACK_ADDRESS - __ICFEDIT_size_cstack__
-0x4;
define exported symbol STACK_TEST_P_1 = STACK_TEST_P_2 - STACK_TEST_BLOCK_SIZE;
define region RAM_region = mem:[from __ICFEDIT_region_RAM_start__ to
__region_RAM2_end__] - mem:[from STACK_TEST_P_1 size 0x10] - mem:[from STACK_TEST_P_3
size 0x10];

// ____________
// |____________| --> STACK_TEST_P_1ADR
// |____________|ADR + 0x4
// |____________|ADR + 0x8
// |____________| --> STACK_TEST_P_2ADR + 0xC
// | |
// | |
// | |
// | STACK |
// | |
// | |
// | |
// | |
// |____________| --> __BOOT_STACK_ADDRESS
// |____________| --> STACK_TEST_P_3
// |____________|

NXP Semiconductors

IEC60730_B_CM4_CM7_Library_UG_v4_3, Rev. 0, 30 September 2022
User's Guide 115 / 136

// |____________|
// |____________| --> STACK_TEST_P_4

In the example, the size is set to 0x10. The STACK_TEST_P_2 and STACK_TEST_P_3 symbols define the first addresses under
and above the stack and they are defined as exported symbols. This means that they are also visible in the application. The areas
are not included in the RAM region, so the compiler cannot reserve this place for any variables or other parameters.

9.3 Stack test implementation
The test function for the stack and the initialization function are placed in the iec60730b_4_cm7_stack.S file and they are written
as assembler functions. The header file with the return values and the function prototypes is iec60730b_4_cm7_stack.h. The
iec60730b.h, asm_mac_common.h, and iec60730b_types.h are the common header files for the safety library. The following
sections show the example of the linker setup, process of initialization, and implementation.

9.3.1 FS_CM4_CM7_STACK_Init
The purpose of initialization is to fill the defined areas with a given pattern. The first thing is to put the values from the linker
configuration file into variables. Then, define the rest of the parameters needed for the initialization function.

Example of initialization:

#include "iec60730b.h"

extern unsigned long STACK_TEST_P_2;

extern unsigned long STACK_TEST_P_3;

const unsigned long stack_test_first_address = (unsigned long)&STACK_TEST_P_2;

const unsigned long stack_test_second_address = (unsigned long)&STACK_TEST_P_3;

const unsigned long stack_test_pattern = 0x77777777;

const unsigned long stack_test_block_size = 0x10;

Function prototype:

void FS_CM4_CM7_STACK_Init(uint32_t stackTestPattern, uint32_t firstAddress, uint32_t secondAddress, uint32_t blockSize);

Function inputs:

stackTestPattern - The pattern to be written into the areas (e.g. 0x77777777).

firstAddress - The first address of block under the stack area.

secondAddress - The first address of block above the stack area.

blockSize - The size of areas under and above the stack.

Function output:

void

Function performance:

The function takes approximately 86 cycles for a block size of 0x10. (1.075 µs)1

The function size is 26 B.1

Calling restrictions:

None.

Stack test implementation

IEC60730_B_CM4_CM7_Library_UG_v4_3, Rev. 0, 30 September 2022
NXP Semiconductors 116

9.3.2 FS_CM4_CM7_STACK_Test
The testing procedure is the same after reset and during runtime. The function checks if the areas are not rewritten with content
different from the defined pattern. The inputs for the testing functions must be the same as for the initialization functions.

Function prototype:

FS_RESULT FS_CM4_CM7_STACK_Test(uint32_t stackTestPattern, uint32_t firstAddress, uint32_t secondAddress,
uint32_t blockSize);

Function inputs:

stackTestPattern - The test pattern (e.g. 0x77777777).

firstAddress - The first address of block in front of stack.

secondAddress - The first address of block behind the stack.

blockSize - The block size.

Function output:

typedef uint32_t FS_RESULT;

• FS_PASS

• FS_FAIL_STACK

Function performance:

The function for block size 0x10 takes approximately 117 cycles (1.463 µs).1

The function size is 42 B.1

Calling restrictions:

None.

Stack test implementation

IEC60730_B_CM4_CM7_Library_UG_v4_3, Rev. 0, 30 September 2022
NXP Semiconductors 117

Chapter 10
TSI tests
The Touch Sensing Interface (TSI) provides touch sensing detection on capacitive touch sensors. The external capacitive touch
sensor is typically formed on PCB and the sensor's electrodes are connected to the TSI input channels through the I/O pins in
the device.

The following is a simplified block diagram of the I/O on the KE15z device:

Figure 35. I/O simplified block diagram

10.1 TSI signal shorts tests
Because the analog TSI channels are shared with the digital I/O pins and the analog or digital features can be easily selected
or switched by the software writing to the appropriate pin MUX control bits located in the Pin Control Register (PCR), the test
procedure can periodically switch the pin MUX between the TSI (analog) mode and the GPIO (digital) mode. It means that
switching to the GPIO mode can be helpful for testing the TSI signal trace shorts.

To test the TSI signal shorts, the following IEC60730 DIO short tests can be reused (see Digital input/output test):

• FS_DIO_ShortToSupplySet() / FS_DIO_InputExt() - to test the TSI trace short to the power supply VDD or GND.

• FS_DIO_ShortToAdjSet() / FS_DIO_InputExt() - to test the TSI trace short to the adjacent pins or traces.

10.2 TSI input test
This test is responsible for checking the typical conversion results of the individual TSI channels. When the touch-sensing
electrode is released (not touched), the typical conversion result is given by the intrinsic (parasitic) capacitance load connected
externally to the TSI channel. The intrinsic capacitance is given by physical aspects of the PCB board, such as the touch-sensing
electrodes and their type, size, shape, and signal trace length. When the electrode is touched, the total external capacitive load

NXP Semiconductors

IEC60730_B_CM4_CM7_Library_UG_v4_3, Rev. 0, 30 September 2022
User's Guide 118 / 136

increases, which changes the conversion result. When the electrode is expected as released, you get the typical TSI counter value
for the electrode.

10.2.1 TSI input electrode disconnected (open pin) tests
The TSI input test covers also issues caused by wrong (cold) soldering, corrosion, or improper PCB component placement during
the manufacturing, such as wrong SMD part values or a mismatch between the SMD components.

The detection method is based on tracking the typical signal (TSI counter) value. All of the sensor electrodes have their typical
signal baseline level stored in the internal flash memory (in a secure flash location, managed by the CRC) as constants that are
calibrated and stored during the production of the device. In the application, the actual (measured) TSI counter value is then
compared with the typical value for the individual sensors. If the actual value is lesser or much higher than the stored typical
value, a fault is detected. The thresholds must be properly tuned to avoid false fault indications, because of environmental drifts
and aging.

For example, two thresholds (high-watermark and low-watermark) can be selected, while expecting that the signal stays within
the tolerances in normal operation conditions, where the tolerance range can be selected like a +/- 25 % deviation from the
stored values.

Figure 36. TSI input test fault detection

NOTE: A fault occurs when the signal drops below the low watermark or rises above the high watermark.

If the abnormal signal level is measured during the production or factory calibration, it means that there may be something wrong in
the PCB manufacturing or assembly, like soldering, component placement, or mechanical assembling (shorted or bended spring
electrodes, and so on).

The signal suddenly drops below the normal level when the electrode connection is lost or the signal track is terminated between
the MCU pin and the electrode. It happens mostly because of cold electrode soldering or cold serial resistor soldering. The signal
may suddenly rise above the normal level because of the additional loading, which may indicate a short cut or stray conductance
because of long term oxidation.

10.3 Shorts or disconnection on guard sensors or shield electrode
The guard sensor is typically a hidden electrode connected to the dedicated TSI channel and physically surrounding the other
electrodes on the PCB. It is commonly used to detect the water flood on the touch control panel and to disable the other electrodes
when this issue happens. It can be used for the software offset compensation, increasing the robustness and safety. The guard
electrode signal path can be tested using all the methods described above.

Shorts or disconnection on guard sensors or shield electrode

IEC60730_B_CM4_CM7_Library_UG_v4_3, Rev. 0, 30 September 2022
NXP Semiconductors 119

The shield electrode is a copper plane actively driven (buffered) by a dedicated TSI channel to compensate the parasitic
capacitance and increase the sensitivity and immunity against the environmental changes (drift). The similar methods described
above can be used to test the shield electrode.

10.4 TSI input test architecture
The TSI IO test procedure performs the plausibility check of the digital IO interface of the processor. The TSI IO test can be
performed once after the MCU reset and during runtime.

The identification of a safety error is ensured by the specific FAIL return in the case of an TSI IO error. The application developer
must compare the return value of the test function with the expected value. If this is equal to the FAIL return, then the jump into
a safety-error-handling function must occur. The safety-error-handling function may be specific to the application and it is not a
part of the library. The main purpose of this function is to put the application into a safety state.

10.4.1 TSI input check with non-stimulated inputs
The TSI IO test is based on sequence execution, where a certain external capacity level is connected to a defined TSI input. The
test function checks whether the converted value is within the tolerance. The test covers the check of the TSI input interface and
checks the defined TSI input channel values.

The block diagram for the TSI IO test with non-stimulated input is shown in the following figure:

TSI input test architecture

IEC60730_B_CM4_CM7_Library_UG_v4_3, Rev. 0, 30 September 2022
NXP Semiconductors 120

Figure 37. Software program flow for TSI input test with non-stimulated inputs

10.4.2 TSI input check with stimulated inputs (signal delta check)
The GPIO pull-up/down device can be enabled on an individual TSI channel pin, while the TSI channel is actively scanned to
affect the analog conversion result by additional loading caused by the pull-resistor. This can be used for the stimulation of the
pin. This channel stimulation is used to emulate the TSI signal (counter value) change on the desired channel pin by software,
without the external touch event. By enabling of the internal pull-down or pull-up resistors on the appropriate DIO pin while the TSI
measurement is active, you add the load to the charging signal, resulting in a changed accumulated TSI counter number (signal
delta). Using this method, you can check the entire measurement chain from the TSI input pin to the TSI conversion counter,
including the internal analog multiplexer. You can stimulate the individual TSI channel inputs, check the individual conversion
results, and compare them with their typical signal delta values valid for the stimulated state. When disabling the pull device, the
TSI counter value must return to the typical level valid for the idle state.

TSI input test architecture

IEC60730_B_CM4_CM7_Library_UG_v4_3, Rev. 0, 30 September 2022
NXP Semiconductors 121

Figure 38. TSI channel stimulation principles

10.4.2.1 TSI input channel stimulation
In a normal state, during every external charging cycle (ph. 1), the charging current is completely used to charge the Cp up to a
certain level. When the pull-down resistor is enabled, it creates an additional signal path for the charging current, where a part of
the current leaks through the resistor to the GND. The Cp is charged to a smaller level (and the charge accumulated by the Cp
is smaller) when compared to the normal state with the pull-down resistor disabled.

During the internal charging cycle (ph. 2), the charge accumulated by the Cp is transferred to the reference internal capacitor Ci.
When the internal pull-up resistor is enabled, the charge steps are smaller. You need more charging steps to charge the Ci to the
appropriate level. More charging steps result in longer time and higher count accumulated in the TSI result counter.

Figure 39. TSI stimulated channel Delta check

TSI input test architecture

IEC60730_B_CM4_CM7_Library_UG_v4_3, Rev. 0, 30 September 2022
NXP Semiconductors 122

Figure 40. Software program flow for TSI input test with stimulated inputs

10.5 TSI test implementation
The test functions for the TSI IO test are in the iec60730b_tsi .c file and they are written as C functions. The header file with the
function prototypes is iec60730b_tsi .h. iec60730b.h and iec60730b_types.h are the common header files for the safety library.

The following functions are called to test the TSI input:

• FS_TSI_InputInit()

• FS_TSI_InputCheckNONStimulated()

• FS_TSI_InputCheckStimulated()

• FS_TSI_InputStimulate()

• FS_TSI_InputRelease()

10.5.1 TSI input test principles
The principle of the TSI input test is based on checking whether the converted analog value has the expected value. This test uses
the TSI inputs with known converted values and the checks whether the converted values fit within the defined limits. It should
normally be about +/- 25 % around the desired reference values.

TSI test implementation

IEC60730_B_CM4_CM7_Library_UG_v4_3, Rev. 0, 30 September 2022
NXP Semiconductors 123

The test is triggered by the first call of the FS_TSI_InputCheckNONStimulated () function. The test is divided into three parts (the
initialization, test execution, and end of test). This test also gathers TSI counter data in the normal (non-stimulated) state, which
are used as reference data for the TSI stimulated input test.

See TSI input test for more details about the test.

10.5.2 TSI stimulated input test principles
This test is responsible for a periodical check of the TSI counter delta change on the input stimulated by an internal pull-up. The
test is triggered by the FS_TSI_InputCheckStimulated() function call. When the channel measurement completes, the appropriate
pull resistor is disabled on the current input. The TSI counter value measured with the stimulated input is compared with the value
gathered previously without stimulation. This difference is called the TSI delta signal. The TSI input channel is working properly
when the delta signal is non-zero. It means that a significant counter change is measured while the input is stimulated. Depending
on the TSI sensing mode and the polarity of stimulation, the delta value may have positive or negative signs. This delta value is
then compared with the typical delta value experimentally measured and predefined in the configuration file. It means that the
typical delta values must be measured in advance during the calibration of a known and good device. See TSI input test for more
details about the test.

This test requires that the non-stimulated input test precedes the stimulated input test. The
FS_TSI_InputCheckNONStimulated() and FS_TSI_InputCheckStimulated() functions must be called sequentially
for the current TSI input channel. If the calling sequence is invalid, the function returns the
FS_TSI_INCORRECT_CALL fail code.

 NOTE

10.5.3 TSI test input function call example

uint32_t SafetyTsiChanelTest(safety_common_t *psSafetyCommon, fs_tsi_t* pObj)
{
 if(pObj->state == FS_TSI_PROGRESS_NONSTIM)
 {
 FS_TSI_InputCheckNONStimulated(pObj, (uint32_t *)TSI); /*Periodically call for result
check */
 }
 if ((pObj->state == FS_TSI_PASS_NONSTIM) || (pObj->state == FS_TSI_PROGRESS_STIM))
 { /*NON stimulated input check OK */
 FS_TSI_InputCheckStimulated(pObj, (uint32_t *)TSI);
 }
 if((pObj->state == FS_TSI_PASS) || (pObj->state == FS_TSI_INIT))
 { /*First call for this channel occur */
 if (pObj->input.tx_ch == SAFETY_SELFCAP_MODE) /*SET HW */
 { /* We want to test SELF CAP input*/
 Tsi0SetupSelfCap(); /* TSI HW init in Self mode */
 } else
 { /*HW to mutual cap*/
 Tsi0SetupMutualCap(); /* TSI HW init in Mutual mode */
 }
 FS_TSI_InputCheckNONStimulated(pObj, (uint32_t *)TSI);
 psSafetyCommon->TSI_test_result = FS_TSI_INPROGRESS;
 }
 if (pObj->state == FS_TSI_PASS_STIM) /*Second part of test done => set PASS to all */
 {
 psSafetyCommon->TSI_test_result = FS_PASS;
 }
 if (pObj->state == FS_FAIL_TSI)
 { /*TEST FAIL */
 psSafetyCommon->TSI_test_result = FS_FAIL_TSI;

TSI test implementation

IEC60730_B_CM4_CM7_Library_UG_v4_3, Rev. 0, 30 September 2022
NXP Semiconductors 124

 SafetyErrorHandling(psSafetyCommon);
 }
return 0;
}

10.5.4 FS_TSI_InputInit()
This function initializes the respective items in the defined "fs_tsi_t" structure and sets the state to "FS_TSI_INIT". It should be
called before the non-stimulated input test.

Function prototype:

void FS_TSI_InputInit(fs_tsi_t *pObj);

Function inputs:

*pObj - The input argument is the pointer to the TSI test instance.

Function output:

void

Function performance:

The information about the function performance is in Core self-test library – source code version.

10.5.5 FS_TSI_InputCheckNONStimulated()
This function executes the first part of the TSI test sequence with a non-stimulated input. It reads the TSI counter value and checks
whether the value fits into the predefined limits. It also gathers the TSI counter data for the normal (non-stimulated) state, which
are required for the further stimulated input test.

The test is finished when the function reports FS_TSI_PASS_NONSTIM or FS_FAIL_TSI.

Function prototype:

FS_RESULT FS_TSI_InputCheckNONStimulated(fs_tsi_t *pObj, uint32_t pTsi);

Function inputs:

*pObj - The input argument is the pointer to the TSI test instance.

pTsi - The input argument is the address of the TSI module.

Function output:

typedef uint32_t FS_RESULT;

• FS_TSI_PASS_NONSTIM

• FS_TSI_INCORRECT_CALL

• FS_FAIL_TSI

Function performance:

The information about the function performance is in Core self-test library – source code version.

10.5.6 FS_TSI_InputCheckStimulated()
This function executes the second part of the TSI test sequence with a stimulated input. It checks whether the TSI input stimulated
counter delta is in the expected range. The test function can be called only after passing the non-stimulated test. Otherwise,
FS_TSI_INCORRECT_CALL is returned.

TSI test implementation

IEC60730_B_CM4_CM7_Library_UG_v4_3, Rev. 0, 30 September 2022
NXP Semiconductors 125

Normally, the FS_TSI_InputCheckNONStimulated() call precedes the FS_TSI_InputCheckStimulated() call. It is
recommended to call both test functions in a close sequence.

 NOTE

The test is finished when this function reports FS_TSI_PASS_STIM or FS_FAIL_TSI.

Function prototype:

FS_RESULT FS_TSI_InputCheckStimulated(fs_tsi_t *pObj, uint32_t pTsi);

Function inputs:

*pObj - The input argument is the pointer to the TSI test instance.

pTsi - The input argument is the adress of the TSI module.

Function output:

typedef uint32_t FS_RESULT;

• FS_TSI_PASS_STIM

• FS_TSI_INCORRECT_CALL

• FS_FAIL_TSI

Function performance:

The information about the function performance is in Core self-test library – source code version.

10.5.7 FS_TSI_InputStimulate()
The function stimulates the appropriate TSI pin by the pull-resistor on the current TSI channel when the TSI input stimulation is
required. The pull-up/down polarity is given by the stim_polarity parameter in the fs_tsi_t struncture.

Function prototype:

FS_RESULT FS_TSI_InputStimulate(fs_tsi_t *pObj);

Function inputs:

*pObj - The input argument is the pointer to the TSI test instance.

Function output:

typedef uint32_t FS_RESULT;

• FS_PASS

• FS_FAIL_TSI

Function performance:

The information about the function performance is in Core self-test library – source code version.

10.5.8 FS_TSI_InputRelease()
This function disables the pull-resistor stimulation on the appropriate TSI channel. It is also called internally by the
FS_TSI_InputStimulate() function as soon as the stimulated input check completes.

Function prototype:

FS_RESULT FS_TSI_InputRelease(fs_tsi_t *pObj);

Function inputs:

*pObj - The input argument is the pointer to the TSI test instance.

Function output:

TSI test implementation

IEC60730_B_CM4_CM7_Library_UG_v4_3, Rev. 0, 30 September 2022
NXP Semiconductors 126

typedef uint32_t FS_RESULT;

• FS_PASS

• FS_FAIL_TSI

Function performance:

The information about the function performance is in Core self-test library – source code version.

TSI test implementation

IEC60730_B_CM4_CM7_Library_UG_v4_3, Rev. 0, 30 September 2022
NXP Semiconductors 127

Chapter 11
Watchdog test
The watchdog test provides the testing of the watchdog timer functionality. The test checks whether the watchdog timer can cause
a reset and whether the reset happens at the expected time. Before the start of the test, the watchdog must be configured for
use in the respective application. The next step before the test is the setup of the independent device timer, which is used for the
watchdog timeout comparison. The first function for watchdog testing is called after that. This function refreshes the watchdog
timer, activates the device timer, and captures the device timer counter value during an endless loop. This function should be
called only once after the Power-On Reset (POR). After the watchdog reset, the second function must be called. This function
should be called after every reset, except for the POR. This function checks whether the captured device timer counter value
corresponds to the expected watchdog timeout value. The next check is whether the number of watchdog resets does not exceed
the limit value. You can choose what action must be made after an incorrect result. Due to safety requirements, you have limited
options for choosing the clock source for the watchdog and the device timer. The first condition is that the watchdog timer clock
cannot be the same as the watchdog bus interface clock. Check the device reference manual for the watchdog timer clock source
options. The second condition is that the watchdog timer clock cannot be the same as the device timer clock.

11.1 Watchdog test in compliance with IEC/UL standards
The watchdog test is not directly specified in the IEC60730 - annex H table, but it partially fulfils the safety requirements according
to IEC 60730-1, IEC 60335, UL 60730, and UL 1998 standards, as described in Table 29.

Table 29. Watchdog test in compliance with the standards

Test Component Fault / Error Software / Hardware
Class

Acceptable Measures

Watchdog test 3. Clock Wrong frequency B/R.1 Frequency monitoring

Watchdog test 8. Monitoring devices
and comparators

Any output outside
the static and dynamic
functional specification

B/R.1 Tested monitoring

11.2 Watchdog test implementation
The test functions for the watchdog are placed in the iec60730b_wdog.c file. The header file is iec60730b_wdog.h. The
iec60730b.h, iec60730b.h, and iec60730b_types.h are the common header files for the safety library.

You must have available space, which is not corrupted after the non-POR in the RAM memory.

This memory is used for your variable of the fs_wdog_test_t type, which is a structure with three members. It is defined in the
iec60730b _wdog.h file.

It is important to configure the watchdog module and the device timer before starting the watchdog test.

The watchdog timer module is different for the supported devices. For a correct function for the corresponding device, see the
device implementation chapter.

Ensure the handling of the functions. To identify the source of the reset, use the reset control module. The common configuration
is that if an unwanted result is found by the check function, the program stays in an endless loop in the function. This causes the
application to stay in the loop of watchdog resets. By entering zero as the fourth input value of the check function, the endless loop
is not activated. In that case, ensure that the application is put into a safe state.

The following is an example of the watchdog test implementation (MKV1x):

#include “iec60730b.h”
#define WATCHDOG_ENABLED
#define Watchdog_refresh WDOG_REFRESH = 0xA602;WDOG_REFRESH = 0xB480

NXP Semiconductors

IEC60730_B_CM4_CM7_Library_UG_v4_3, Rev. 0, 30 September 2022
User's Guide 128 / 136

extern uint32_t WD_TEST_BACKUP; /* from Linker configuration file */
const uint32_t WD_backup_address = (uint32_t)&WD_TEST_BACKUP;

#define WATCHDOG_TEST_VARIABLES ((WD_Test_Str *) WD_backup_address)

#define WD_TEST_LIMIT_HIGH 3400
#define WD_TEST_LIMIT_LOW 3000
#define ENDLESS_LOOP_ENABLE 1 /* set 1 or 0 */
#define WATCHDOG_RESETS_LIMIT 1000
#define WATCHDOG_TIMEOUT_VALUE 100
#define REFRESH_INDEX FS_KINETIS_WDOG
#define REG_WIDE FS_WDOG_SRS_WIDE_8b
#define CLEAR_FLAG 0

MCG_C1 |= MCG_C1_IRCLKEN_MASK; /* MCGIRCLK active */
MCG_C2 &= (~MCG_C2_IRCS_MASK); /* slow reference clock selected */
SIM_SCGC5 |= SIM_SCGC5_LPTMR_MASK; /* enable clock gate to LPTMR */
LPTMR0_CSR = 0; /* time counter mode */
LPTMR0_CSR = LPTMR_CSR_TCF_MASK|LPTMR_CSR_TFC_MASK; /* CNR reset on overflow */
LPTMR0_PSR |= LPTMR_PSR_PBYP_MASK; /* prescaler bypassed, */
LPTMR0_PSR &= (~LPTMR_PSR_PCS_MASK); /* clear prescaler clock */
LPTMR0_PSR |= LPTMR_PSR_PCS(0); /* select the clock input */
LPTMR0_CMR = 0; /* clear the compare register */
LPTMR0_CSR |= LPTMR_CSR_TEN_MASK; /* enable timer */

WatchdogEnable();

 if (RCM_SRS0_POR_MASK==(RCM_SRS0_POR_MASK &RCM_SRS0)) /* if POR reset */
 {
 FS_WDOG_Setup(WATCHDOG_TEST_VARIABLES, REFRESH_INDEX);
 }

 if (RCM_SRS0_POR_MASK!=(RCM_SRS0_POR_MASK &RCM_SRS0)) /* if non-POR reset */
 {
 FS_WDOG_Check(WD_TEST_LIMIT_HIGH, WD_TEST_LIMIT_LOW, WATCHDOG_RESETS_LIMIT,
ENDLESS_LOOP_ENABLE, WATCHDOG_TEST_VARIABLES, CLEAR_FLAG, REG_WIDE);
 }

11.2.1 FS_WDOG_Setup_LPTMR()
This function clears the reset counter, which is a member of the fs_wdog_test_t structure. It refreshes the watchdog to start
counting from zero. It starts the LPTMR, which must be configured before the function call occurs. Within the waiting endless loop,
the value from the LPTMR is periodically stored in the reserved area in the RAM.

Function prototype:

void FS_WDOG_Setup_LPTMR(fs_wdog_test_t *pWatchdogBackup, uint8_t refresh_index)

Function inputs:

*pWatchdogBackup - The pointer to the structure with fs_wdog_test_t variables.

refresh_index- The index to select the WDOG refresh sequence. Use the following macros: FS_KINETIS_WDOG, FS_WDOG32,
or FS_COP_WDOG.

Function output:

void

Watchdog test implementation

IEC60730_B_CM4_CM7_Library_UG_v4_3, Rev. 0, 30 September 2022
NXP Semiconductors 129

Function performance:

For information about the function performance, see Core self-test library – source code version.

Calling restrictions:

The watchdog timer and the LPTMR must be configured correctly. A variable of the fs_wdog_test_t type must be declared and
placed into a reliable place. Interrupts should be disabled.

The "refresh_index" parameters must be filled corectly if your example application is set to a correct version. For other devices,
compare the reference manual of your device with Table 30 or with the reference device in the following table.

Table 30. Refresh sequence

Refresh Index parameter Refresh sequence Reference device

FS_KINETIS_WDOG • WdogBase->REFRESH =
0xA602U;

• WdogBase->REFRESH =
0xB480U;/* refresh sequence */

MKV11

FS_WDOG32 WdogBase->CNT = 0xB480A602U; /*
refresh sequence */

MK32L2A

FS_COP_WDOG • WdogBase->SRVCOP =
FS_SIM_KL2X_SRVCOP_SRVCO
P(0x55U);

• WdogBase->SRVCOP =
FS_SIM_KL2X_SRVCOP_SRVCO
P(0xAAU);

MKL26z

11.2.2 FS_WDOG_Setup_KE0XZ()
This function can be used for KE0xZ devices. This function clears the reset counter, which is a member of the fs_wdog_test_t
structure. It refreshes the watchdog to start counting from zero. It starts the RTC, which must be configured before the function
call occurs. Within the waiting endless loop, the value from the RTC is periodically stored in the reserved area in the RAM.

Function prototype:

void FS_WDOG_Setup_KE0XZ(fs_wdog_test_t *pWatchdogBackup);

Function inputs:

*pWatchdogBackup - The pointer to the structure with fs_wdog_test_t variables.

Function output:

void

Function performance:

For information about the function performance, see Core self-test library – source code version.

Calling restrictions:

Interrupts should be disabled. The watchdog timer and the RTC must be configured correctly. A variable of the fs_wdog_test_t
type must be declared and placed into the RAM area that is not overwritten during the application startup.

It is necessary to fill the following variables before calling the WDOG test:

fs_wdog_test_t * wdogBackup

• wdogBackup->pResetDetectRegister - The address of the "ResetDetect" register.

Watchdog test implementation

IEC60730_B_CM4_CM7_Library_UG_v4_3, Rev. 0, 30 September 2022
NXP Semiconductors 130

• wdogBackup->ResetDetectMask - The mask for the WDOG reset source (in the reset-detect register).

• wdogBackup->RefTimerBase - The base address of the RTC timer used.

• wdogBackup->WdogBase - The base address of the WDOG used.

11.2.3 FS_WDOG_Setup_IMX_GPT()
This function can be used for devices with the GPT timer and a supported WDOG. This function clears the reset counter, which
is a member of the "fs_wdog_test_t" structure. It refreshes the watchdog to start counting from zero. It starts the GPT, which must
be configured before the function call occurs. Within the endless waiting loop, the value from the GPT is periodically stored in the
reserved area in the RAM.

Function prototype:

void FS_WDOG_Setup_IMX_GPT(fs_wdog_test_t *pWatchdogBackup, uint8_t refresh_index)

Function inputs:

*pWatchdogBackup - The pointer to the structure with "fs_wdog_test_t" variables.

refresh_index - The index of the refresh sequence. It can be FS_IMXRT, FS_IMX8M.

Function output:

void

Function performance:

The duration of this function depends on the WDOG timeout, because the function waits in the WDOG reset. The size of the
function is TBD bytes.

Calling restrictions:

The watchdog timer and the GPT must be configured correctly. A variable of the fs_wdog_test_t type must be declared and placed
into the RAM area that is not overwritten during the application startup.

It is necessary to fill the following variables before calling the WDOG test:

fs_wdog_test_t * wdogBackup

• wdogBackup->pResetDetectRegister - The address of the "ResetDetect" register.

• wdogBackup->ResetDetectMask - The mask for the WDOG reset source (in the reset-detect register).

• wdogBackup->RefTimerBase - The base address of the GPT timer used.

• wdogBackup->WdogBase - The base address of the WDOG used.

The "refresh_index" parameter is used to choose the type of the WDOG used. The function supports two types of WDOG for
MIMX devices:

• FS_IMXRT - situated for example on IMXRT1050.

• FS_IMX8M - situated for example on MIMX8MM.

It is necessary to compare the register memory map for your device with these three used types and choose a corresponding
refresh sequence.

11.2.4 FS_WDOG_Check()
This function compares the captured value of the reference counter with precalculated limit values and checks whether the
watchdog reset counter overflows. If the function is called after a non-watchdog reset, "wd_test_uncomplete_flag" is set and a
corresponding return error returned. With the "endless_loop_enable" parameter, the endless loop within the function is enabled
or disabled (by setting it to 1 or 0). If the endless loop is disabled, the function returns a corresponding error under the
following condtions:

• Entering after non-watchdog or non-POR resets - FS_FAIL_WDOG_WRONG_RESET.

Watchdog test implementation

IEC60730_B_CM4_CM7_Library_UG_v4_3, Rev. 0, 30 September 2022
NXP Semiconductors 131

• The counter from the watchdog test does not fit within the limit values - FS_FAIL_WDOG_VALUE.

• The watchdog resets exceed the defined limit value - FS_FAIL_WDOG_OVER_RESET.

Function prototype:

uint32_t FS_WDOG_Check(uint32_t limitHigh, uint32_t limitLow, uint32_t limitResets, bool_t endlessLoopEnable, fs_wdog_test_t
*pWatchdogBackup, bool_t clear_flag, bool_t RegWide8b)

Function inputs:

limitHigh - The precalculated limit value for the reference counter.

limitLow - The precalculated limit value for the reference counter.

limitResets - The limit value for watchdog resets.

endlessLoopEnable - Enables or disables the endless loop within the function.

*pWatchdogBackup - The pointer to the structure with fs_wdog_test_t variables.

clear_flag - Boolean value. If it is TRUE, the WDOG reset flag from the reset-detection register is deleted.

RegWide8b - When it is TRUE, the reset-detection register is accesed as 8b (32b otherwise).

Function output:

The function can stay in an endless loop if the "endlessLoopEnable" parameter is set to 1 or if the return value is as follows:

FS_FAIL_WDOG_WRONG_RESET, FS_FAIL_WDOG_VALUE, FS_FAIL_WDOG_OVER_RESET, or FS_PASS.

Function performance:

For information about the function performance, see Core self-test library – source code version.

Calling restrictions:

The respective setup function must be executed first.

11.2.5 FS_WDOG_Setup_WWDT_LPC_mrt()
This function can be used for the LPC devices with WWDT and MRT. This function clears the reset counter, which is a member
of the fs_wdog_test_t structure. It refreshes the watchdog to start counting from zero. It starts the MRT, which must be configured
before the function call occurs. Within the waiting endless loop, the value from the MRT is periodically stored in the reserved area
in the RAM.

Function prototype:

void FS_WDOG_Setup_WWDT_LPC_mrt(fs_wdog_test_t *pWatchdogBackup, uint8_t channel);

Function inputs:

*pWatchdogBackup - The pointer to the structure with fs_wdog_test_t variables.

channel - The channel index of the MRT timer.

Function output:

void

Function performance:

For information about the function performance, see Core self-test library – source code version.

Calling restrictions:

The watchdog timer and the MRT must be configured correctly. A variable of the fs_wdog_test_t type must be declared and placed
into the RAM area that is not overwritten during application startup. Interrupts should be disabled.

It is necessary to fill the following variables before calling the WDOG test:

fs_wdog_test_t * wdogBackup

Watchdog test implementation

IEC60730_B_CM4_CM7_Library_UG_v4_3, Rev. 0, 30 September 2022
NXP Semiconductors 132

• wdogBackup->pResetDetectRegister - The address of the "ResetDetect" register.

• wdogBackup->ResetDetectMask - The mask for the WDOG reset source (in the reset-detect register).

• wdogBackup->RefTimerBase - The base address of the MRT timer used.

• wdogBackup->WdogBase - The base address of the WDOG used.

11.2.6 FS_WDOG_Setup_WWDT_LPC()
This function can be used for the LPC devices with WWDT. This function clears the reset counter, which is a member of the
fs_wdog_test_t structure. It refreshes the watchdog to start counting from zero. It starts the CTimer, which must be configured
before the function call occurs. Within the waiting endless loop, the value from the CTimer is periodically stored in the reserved
area in the RAM.

Function prototype:

void FS_WDOG_Setup_WWDT_LPC(fs_wdog_test_t *pWatchdogBackup);

Function inputs:

*pWatchdogBackup - The pointer to the structure with fs_wdog_test_t variables.

Function output:

void

Function performance:

The duration of this function depends on the WDOG timeout, because the function waits in the WDOG reset. The size of function
is 70 bytes.

Calling restrictions:

The watchdog timer and the Ctimer must be configured correctly. A variable of the fs_wdog_test_t type must be declared and
placed into the RAM area that is not overwritten during application startup. Interrupts should be disabled.

It is necessary to fill the following variables before calling the WDOG test:

fs_wdog_test_t * wdogBackup

• wdogBackup->pResetDetectRegister - The address of the "ResetDetect" register.

• wdogBackup->ResetDetectMask - The mask for the WDOG reset source (in the reset-detect register).

• wdogBackup->RefTimerBase - The base address of the CTIMER timer used.

• wdogBackup->WdogBase - The base address of the WDOG used.

11.2.7 FS_WDOG_Check_WWDT_LPC()
This function can be used for the devices with the WWDT watchdog. This function compares the captured value of the target
counter with precalculated limit values and checks whether the watchdog reset counter overflows. If the function is called after
a non-watchdog reset, "wd_test_uncomplete_flag" is set. The endless loop within the function is enabled or disabled with the
"endless_loop_enable" parameter (by setting it to 1 or 0). If the endless loop is disabled, the function returns the corresponding
error under the following condtions:

• Entering after non-watchdog or non-POR resets - FS_FAIL_WDOG_WRONG_RESET.

• The counter from the watchdog test does not fit within the limit values - FS_FAIL_WDOG_VALUE.

• The watchdog resets exceed the defined limit value - FS_FAIL_WDOG_OVER_RESET.

Function prototype:

uint32_t FS_WDOG_Check_WWDT_LPC(uint32_t limitHigh, uint32_t limitLow, uint32_t limitResets, bool_t endlessLoopEnable,
fs_wdog_test_t *pWatchdogBackup);

Watchdog test implementation

IEC60730_B_CM4_CM7_Library_UG_v4_3, Rev. 0, 30 September 2022
NXP Semiconductors 133

Function inputs:

limitHigh - The precalculated limit value for the reference counter.

limitLow - The precalculated limit value for the reference counter.

limitResets - The limit value for watchdog resets.

endlessLoopEnable - Enable or disable the endless loop within the function.

*pWatchdogBackup - The pointer to the structure with fs_wdog_test_t variables.

Function output:

The function can stay in the endless loop, if the "endlessLoopEnable" parameter is set to 1 or the return value:

FS_FAIL_WDOG_WRONG_RESET, FS_FAIL_WDOG_VALUE, FS_FAIL_WDOG_OVER_RESET or FS_PASS

Function performance:

For information about the function performance, see Core self-test library – source code version.

Calling restrictions:

The respective setup function must be executed first.

If necessary, fill these variables before calling the WDOG test:

fs_wdog_test_t * wdogBackup

• wdogBackup->pResetDetectRegister - The address of the "ResetDetect" register.

• wdogBackup->ResetDetectMask - The mask for the WDOG reset source (in the reset-detect register).

• wdogBackup->RefTimerBase - The base address of the timer used.

• wdogBackup->WdogBase - The base address of the WDOG used.

11.2.8 FS_WDOG_Check_WWDT_LPC55SXX()
This function can be used for LPC55Sxx devices. This function compares the captured value of the target counter with
precalculated limit values and checks whether the watchdog reset counter overflows. If the function is called after a non
watchdog reset, "wd_test_uncomplete_flag" is set. The endless loop within the function is enabled or disabled with the
"endless_loop_enable" parameter (by setting it to 1 or 0). If the endless loop is disabled, the function returns the corresponding
error under the following condtions:

• Entering after non-watchdog or non-POR resets - FS_FAIL_WDOG_WRONG_RESET.

• The counter from the watchdog test does not fit within the limit values - FS_FAIL_WDOG_VALUE.

• The watchdog resets exceed the defined limit value - FS_FAIL_WDOG_OVER_RESET.

Function prototype:

uint32_t FS_WDOG_Check_WWDT_LPC55SXX(uint32_t limitHigh, uint32_t limitLow, uint32_t limitResets, bool_t
endlessLoopEnable, fs_wdog_test_t *pWatchdogBackup);

Function inputs:

limitHigh - The precalculated limit value for the reference counter.

limitLow - The precalculated limit value for the reference counter.

limitResets - The limit value for watchdog resets.

endlessLoopEnable - Enable or disable the endless loop within the function.

*pWatchdogBackup - The pointer to the structure with fs_wdog_test_t variables.

Function output:

The function can stay in the endless loop - if the "endlessLoopEnable" parameter is set to 1 or the return value:

Watchdog test implementation

IEC60730_B_CM4_CM7_Library_UG_v4_3, Rev. 0, 30 September 2022
NXP Semiconductors 134

FS_FAIL_WDOG_WRONG_RESET, FS_FAIL_WDOG_VALUE, FS_FAIL_WDOG_OVER_RESET or FS_PASS

Function performance:

For information about the function performance, see Core self-test library – source code version.

Calling restrictions:

The respective setup function must be executed first.

It Is necessary to fill these variables before calling the WDOG test:

fs_wdog_test_t * wdogBackup

• wdogBackup->pResetDetectRegister - The address of the "ResetDetect" register.

• wdogBackup->ResetDetectMask - The mask for the WDOG reset source (in the reset-detect register).

• wdogBackup->RefTimerBase - The base address of the timer used.

• wdogBackup->WdogBase - The base address of the WDOG used.

Watchdog test implementation

IEC60730_B_CM4_CM7_Library_UG_v4_3, Rev. 0, 30 September 2022
NXP Semiconductors 135

How To Reach Us

Home Page:

nxp.com

Web Support:

nxp.com/support

Information in this document is provided solely to enable system and software implementers
to use NXP products. There are no express or implied copyright licenses granted hereunder
to design or fabricate any integrated circuits based on the information in this document. NXP
reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products
for any particular purpose, nor does NXP assume any liability arising out of the application
or use of any product or circuit, and specifically disclaims any and all liability, including
without limitation consequential or incidental damages. “Typical” parameters that may be
provided in NXP data sheets and/or specifications can and do vary in different applications,
and actual performance may vary over time. All operating parameters, including “typicals,”
must be validated for each customer application by customer's technical experts. NXP does
not convey any license under its patent rights nor the rights of others. NXP sells products
pursuant to standard terms and conditions of sale, which can be found at the following address:
nxp.com/SalesTermsandConditions.

While NXP has implemented advanced security features, all products may be subject to
unidentified vulnerabilities. Customers are responsible for the design and operation of their
applications and products to reduce the effect of these vulnerabilities on customer’s applications
and products, and NXP accepts no liability for any vulnerability that is discovered. Customers
should implement appropriate design and operating safeguards to minimize the risks associated
with their applications and products.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, COOLFLUX,
EMBRACE, GREENCHIP, HITAG, I2C BUS, ICODE, JCOP, LIFE VIBES, MIFARE, MIFARE
CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX, MANTIS, MIFARE ULTRALIGHT,
MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET,
TRENCHMOS, UCODE, Freescale, the Freescale logo, AltiVec, C‑5, CodeTEST, CodeWarrior,
ColdFire, ColdFire+, C‑Ware, the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV,
mobileGT, PEG, PowerQUICC, Processor Expert, QorIQ, QorIQ Qonverge, Ready Play,
SafeAssure, the SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit,
BeeStack, CoreNet, Flexis, MXC, Platform in a Package, QUICC Engine, SMARTMOS, Tower,
TurboLink, UMEMS, EdgeScale, EdgeLock, eIQ, and Immersive3D are trademarks of NXP
B.V. All other product or service names are the property of their respective owners. AMBA,
Arm, Arm7, Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE, Cordio, CoreLink, CoreSight, Cortex,
DesignStart, DynamIQ, Jazelle, Keil, Mali, Mbed, Mbed Enabled, NEON, POP, RealView,
SecurCore, Socrates, Thumb, TrustZone, ULINK, ULINK2, ULINK-ME, ULINK-PLUS, ULINKpro,
µVision, Versatile are trademarks or registered trademarks of Arm Limited (or its subsidiaries)
in the US and/or elsewhere. The related technology may be protected by any or all of patents,
copyrights, designs and trade secrets. All rights reserved. Oracle and Java are registered
trademarks of Oracle and/or its affiliates. The Power Architecture and Power.org word marks and
the Power and Power.org logos and related marks are trademarks and service marks licensed
by Power.org.

© NXP B.V. 2022. All rights reserved.

For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 30 September 2022
Document identifier: IEC60730BCM4CM7L43UG

http://www.nxp.com
http://www.nxp.com/support
http://www.nxp.com/SalesTermsandConditions

	Contents
	1 Core self-test library
	1.1 Core self-test library – object code
	1.2 Core self-test library – source code
	1.2.1 MIMX8MMx dedicated functions
	1.2.2 MIMX8MNx dedicated functions
	1.2.3 MIMXRT10xx dedicated functions
	1.2.4 MIMXRT117x/116x dedicated functions
	1.2.5 MK2xF dedicated functions
	1.2.6 MKE1xF dedicated functions
	1.2.7 MKV3x dedicated functions
	1.2.8 MKV4x dedicated functions
	1.2.9 MKV5x dedicated functions
	1.2.10 LPC54S0x/LPC540x dedicated functions
	1.2.11 MK32L3 CM4 dedicated functions

	1.3 Functions performance measurement

	2 Analog Input/Output (IO) test
	2.1 Analog input/output test in compliance with IEC/UL standards
	2.2 Analog input/output test implementation
	2.2.1 ADC type A1
	2.2.1.1 FS_AIO_InputSet_A1()
	2.2.1.2 FS_AIO_ReadResult_A1()

	2.2.2 ADC type A23
	2.2.2.1 FS_AIO_InputSet_A23()
	2.2.2.2 FS_AIO_ReadResult_A23()

	2.2.3 ADC type A4
	2.2.3.1 FS_AIO_InputSet_A4()
	2.2.3.2 FS_AIO_ReadResult_A4()

	2.2.4 ADC type A6
	2.2.4.1 FS_AIO_InputSet_A6()
	2.2.4.2 FS_AIO_ReadResult_A6()

	2.2.5 ADC type A5
	2.2.5.1 FS_AIO_InputSet_A5()
	2.2.5.2 FS_AIO_ReadResult_A5()

	2.2.6 ADC type A7
	2.2.6.1 FS_AIO_InputSet_A7()
	2.2.6.2 FS_AIO_ReadResult_A7()

	2.2.7 FS_AIO_LimitCheck()

	3 Clock test
	3.1 Clock test in compliance with IEC/UL standards
	3.2 Clock test implementation
	3.2.1 FS_CLK_Init()
	3.2.2 FS_CLK_Check()
	3.2.3 FS_CLK_LPTMR()
	3.2.4 FS_CLK_RTC()
	3.2.5 FS_CLK_GPT()
	3.2.6 FS_CLK_CTIMER_LPC()
	3.2.7 FS_CLK_WKT_LPC()

	4 Digital input/output test
	4.1 Digital input/output test in compliance with IEC/UL standards
	4.2 Digital input/output test implementation
	4.2.1 FS_DIO_Input()
	4.2.2 FS_DIO_Output()
	4.2.3 FS_DIO_InputExt()
	4.2.4 FS_DIO_ShortToAdjSet()
	4.2.5 FS_DIO_ShortToSupplySet()
	4.2.6 FS_DIO_InputExt_IMX8M()
	4.2.7 FS_DIO_Output_IMX8M()
	4.2.8 FS_DIO_ShortToAdjSet_IMX8M()
	4.2.8.1 FS_DIO_ShortToAdjSet_LPC()

	4.2.9 FS_DIO_ShortToSupplySet_IMX8M()
	4.2.10 FS_DIO_InputExt_IMXRT()
	4.2.11 FS_DIO_Output_IMXRT()
	4.2.12 FS_DIO_ShortToAdjSet_IMXRT()
	4.2.13 FS_DIO_ShortToSupplySet_IMXRT()
	4.2.14 FS_DIO_InputExt_LPC()
	4.2.15 FS_DIO_Output_LPC()
	4.2.16 FS_DIO_ShortToAdjSet_LPC()
	4.2.17 FS_DIO_ShortToSupplySet_LPC()
	4.2.18 FS_DIO_InputExt_RGPIO()
	4.2.19 FS_DIO_ShortToAdjSet_RGPIO()
	4.2.20 FS_DIO_ShortToSupplySet_RGPIO()

	5 Invariable memory test
	5.1 Invariable memory test in compliance with IEC/UL standards
	5.2 Invariable memory test implementation
	5.2.1 Computing of CRC value in linking phase of application
	5.2.2 Test performed once after MCU reset
	5.2.3 Runtime test
	5.2.4 FS_FLASH_C_HW16_K()
	5.2.5 FS_FLASH_C_HW16_L()
	5.2.6 FS_CM4_CM7_FLASH_HW16()
	5.2.7 FS_CM4_CM7_FLASH_HW32_DCP()
	5.2.8 FS_CM4_CM7_FLASH_SW16()
	5.2.9 FS_CM4_CM7_FLASH_SW32()

	6 CPU program counter test
	6.1 CPU program counter test in compliance with IEC/UL standards
	6.2 CPU program counter test implementation
	6.2.1 FS_CM4_CM7_PC_Test()
	6.2.2 FS_PC_Object()

	7 Variable memory test
	7.1 Variable memory test in compliance with IEC/UL standards
	7.2 Variable memory test implementation
	7.2.1 FS_CM4_CM7_RAM_AfterReset()
	7.2.2 FS_CM4_CM7_RAM_Runtime()
	7.2.3 FS_CM4_CM7_RAM_CopyFromBackup()
	7.2.4 FS_CM4_CM7_RAM_CopyToBackup()
	7.2.5 FS_CM4_CM7_RAM_SegmentMarchC()
	7.2.6 FS_CM4_CM7_RAM_SegmentMarchX()

	8 CPU register test
	8.1 CPU register test in compliance with IEC/UL standards
	8.2 CPU register test implementation
	8.2.1 FS_CM4_CM7_CPU_Control()
	8.2.2 FS_CM4_CM7_CPU_ControlFpu()
	8.2.3 FS_CM4_CM7_CPU_Float1()
	8.2.4 FS_CM4_CM7_CPU_Float2()
	8.2.5 FS_CM4_CM7_CPU_NonStackedRegister()
	8.2.6 FS_CM4_CM7_CPU_Primask()
	8.2.7 FS_CM4_CM7_CPU_Register()
	8.2.8 FS_CM4_CM7_CPU_Special()
	8.2.9 FS_CM4_CM7_CPU_Special8PriorityLevels()
	8.2.10 FS_CM4_CM7_CPU_SPmain()
	8.2.11 FS_CM4_CM7_CPU_SPprocess()

	9 Stack test
	9.1 Stack test in compliance with IEC/UL standards
	9.2 Linker setup
	9.3 Stack test implementation
	9.3.1 FS_CM4_CM7_STACK_Init
	9.3.2 FS_CM4_CM7_STACK_Test

	10 TSI tests
	10.1 TSI signal shorts tests
	10.2 TSI input test
	10.2.1 TSI input electrode disconnected (open pin) tests

	10.3 Shorts or disconnection on guard sensors or shield electrode
	10.4 TSI input test architecture
	10.4.1 TSI input check with non-stimulated inputs
	10.4.2 TSI input check with stimulated inputs (signal delta check)
	10.4.2.1 TSI input channel stimulation

	10.5 TSI test implementation
	10.5.1 TSI input test principles
	10.5.2 TSI stimulated input test principles
	10.5.3 TSI test input function call example
	10.5.4 FS_TSI_InputInit()
	10.5.5 FS_TSI_InputCheckNONStimulated()
	10.5.6 FS_TSI_InputCheckStimulated()
	10.5.7 FS_TSI_InputStimulate()
	10.5.8 FS_TSI_InputRelease()

	11 Watchdog test
	11.1 Watchdog test in compliance with IEC/UL standards
	11.2 Watchdog test implementation
	11.2.1 FS_WDOG_Setup_LPTMR()
	11.2.2 FS_WDOG_Setup_KE0XZ()
	11.2.3 FS_WDOG_Setup_IMX_GPT()
	11.2.4 FS_WDOG_Check()
	11.2.5 FS_WDOG_Setup_WWDT_LPC_mrt()
	11.2.6 FS_WDOG_Setup_WWDT_LPC()
	11.2.7 FS_WDOG_Check_WWDT_LPC()
	11.2.8 FS_WDOG_Check_WWDT_LPC55SXX()

