
JenOS
User Guide

JN-UG-3075

Revision 1.8

25 August 2016

JenOS
User Guide

2 © NXP Laboratories UK 2016 JN-UG-3075 v1.8

 JenOS
User Guide
Contents

Preface 9
Organisation 9

Conventions 10

Acronyms and Abbreviations 10

Related Documents 11

Support Resources 11

Trademarks 11

Chip Compatibility 11

Part I: Concept and Operational Information

1. Introduction 15
1.1 Modules and Architecture 15

1.1.1 JenOS Modules 15

1.1.2 Software Architecture 16

1.2 Resources 17

2. Real-time Operating System (RTOS) 19
2.1 RTOS Fundamentals 19

2.2 Introduction to the JenOS RTOS 20

2.3 RTOS Configuration 20

2.4 RTOS Concepts and Features 21
2.4.1 User Tasks 21

2.4.2 Interrupt Service Routines (ISRs) 22

2.4.3 Priorities and Scheduling 22

2.4.4 Task/ISR States 23

2.4.5 State Transitions 24

2.4.6 Activity Scheduling (using Software Timers) 25

2.4.7 Mutual Exclusion (Mutex) 27

2.4.8 Inter-task Communication (using Messages) 28

2.5 OS Error Callback Function 30
2.5.1 Strict Error Checks 30

2.5.2 Handling OS Errors 30
JN-UG-3075 v1.8 © NXP Laboratories UK 2016 3

Contents
3. Persistent Data Manager (PDM) for Flash Memory 33
3.1 Overview 33

3.2 Initialising the PDM 34

3.3 Data Storage in NVM 35

3.4 Recovering Data from NVM 36

3.5 Saving Data to NVM 37

3.6 Deleting Data in NVM 37

3.7 Mutexes in PDM 38

3.8 Ensuring Consistency of PDM Records 38

4. Persistent Data Manager (PDM) for EEPROM 39
4.1 Overview 39

4.2 Initialising the PDM and Building a File System 40

4.3 Managing Data in EEPROM 41
4.3.1 Saving Data to EEPROM 42

4.3.2 Recovering Data from EEPROM 43

4.3.3 Deleting Data in EEPROM 43

4.4 Storing Counters in EEPROM 44
4.4.1 Creating a Counter 44

4.4.2 Incrementing a Counter 44

4.4.3 Reading a Counter 44

4.4.4 Deleting a Counter 45

4.5 PDM Features 45
4.5.1 Mutex in PDM 45

4.5.2 Event and Error Handler for EEPROM 45

4.5.3 EEPROM Capacity 46

4.5.4 EEPROM Wear Count 46

4.5.5 Ensuring Consistency of PDM Records 47

5. Power Manager (PWRM) 49
5.1 Low-Power Modes 49

5.1.1 Doze Mode 49

5.1.2 Sleep Mode with Memory Held 49

5.1.3 Sleep Mode without Memory Held 50

5.1.4 Deep Sleep Mode 50

5.2 Callback Functions for Power Manager 51
5.2.1 Essential Callback Function 51

5.2.2 Pre-sleep and Post-sleep Callback Functions 51

5.2.3 Wake Timer Callback Function 52

5.3 Initialising and Starting the Power Manager 52

5.4 Enabling Power-Saving 53
4 © NXP Laboratories UK 2016 JN-UG-3075 v1.8

 JenOS
User Guide
5.5 Non-interruptible Activities 53

5.6 Terminating Low-Power Mode 54

5.7 Scheduling Wake Events 55

5.8 Doze Mode 55
5.8.1 Circumstances that Lead to Doze Mode 56

5.8.2 Doze Mode Monitoring During Development 57

6. Protocol Data Unit Manager (PDUM) 59
6.1 Message Assembly and Disassembly 59

6.2 Preparing the PDU Manager 60

6.3 Inserting Data into Outgoing Message 61

6.4 Extracting Data from Incoming Message 62

7. Debug (DBG) Module 63
7.1 Overview 63

7.2 Enabling the Debug Module 64

7.3 Initialising and Configuring the Debug Module 64
7.3.1 Using JN516x UART Input/Output 64

7.3.2 Using Alternative Serial Output 65

7.4 Debug Configuration Flags 66

7.5 Example Diagnostic Code 67

Part II: Reference Information

8. RTOS API 71
8.1 RTOS Macros 71

OS_TASK 72

OS_ISR 73

OS_SWTIMER_CALLBACK 74

OS_HWCOUNTER_ENABLE_CALLBACK 75

OS_HWCOUNTER_DISABLE_CALLBACK 76

OS_HWCOUNTER_SET_CALLBACK 77

OS_HWCOUNTER_GET_CALLBACK 78

8.2 RTOS Functions 79
8.2.1 Initialisation Functions 79

OS_vStart 80

OS_vRestart 81

8.2.2 User Task Functions 82

OS_eActivateTask 83

OS_eGetCurrentTask 84
JN-UG-3075 v1.8 © NXP Laboratories UK 2016 5

Contents
8.2.3 Interrupt Functions 85

OS_eDisableAllInterrupts 86

OS_eEnableAllInterrupts 87

OS_eSuspendOSInterrupts 88

OS_eResumeOSInterrupts 89

8.2.4 Mutex Functions 90

OS_eEnterCriticalSection 91

OS_eExitCriticalSection 92

8.2.5 Messaging Functions 93

OS_ePostMessage 94

OS_eCollectMessage 95

OS_eGetMessageStatus 96

8.2.6 Software Timer Functions 97

OS_eStartSWTimer 98

OS_eStopSWTimer 99

OS_eExpireSWTimers 100

OS_eContinueSWTimer 101

OS_eGetSWTimerStatus 102

9. PDM API for Flash Memory 103
PDM_vInit 104

PDM_vSPIFlashConfig 106

PDM_eLoadRecord 107

PDM_vSaveRecord 109

PDM_vSave 110

PDM_vDeleteRecord 111

PDM_vDelete 112

PDM_vWarmInitHw 113

PDM_ vRegisterSystemCallback 114

10. PDM API for EEPROM 115
10.1 EEPROM PDM Functions 116

PDM_eInitialise 117

PDM_eSaveRecordData 118

PDM_eReadDataFromRecord 119

PDM_eDeleteData 120

PDM_eDeleteAllData 121

PDM_u8GetSegmentCapacity 122

PDM_u8GetSegmentOccupancy 123

PDM_bDoesDataExist 124

10.2 EEPROM PDM Bitmap Counter Functions 125
PDM_eCreateBitmap 126

PDM_eIncrementBitmap 127

PDM_eGetBitmap 128

PDM_eDeleteBitmap 129
6 © NXP Laboratories UK 2016 JN-UG-3075 v1.8

 JenOS
User Guide
10.3 EEPROM PDM Miscellaneous Functions 130
PDM_vRegisterSystemCallback 131

PDM_vSetWearCountTriggerLevel 132

PDM_eGetSegmentWearCount 133

11.PWRM API 135
11.1 Core Functions 135

PWRM_vInit 136

PWRM_eStartActivity 137

PWRM_eFinishActivity 138

PWRM_u16GetActivityCount 139

PWRM_eScheduleActivity 140

PWRM_vManagePower 141

11.2 Callback Set-up Functions 142
vAppMain 143

PWRM_vRegisterPreSleepCallback 144

PWRM_vRegisterWakeupCallback 145

vAppRegisterPWRMCallbacks 146

PWRM_vWakeInterruptCallback 147

11.3 Debugging Function 148
PWRM_vSetupDozeMonitor 149

12.PDUM API 151
PDUM_vInit 152

PDUM_hAPduAllocateAPduInstance 153

PDUM_eAPduFreeAPduInstance 154

PDUM_u16APduInstanceReadNBO 155

PDUM_u16APduInstanceWriteNBO 156

PDUM_u16APduInstanceWriteStrNBO 157

PDUM_u16SizeNBO 158

PDUM_u16APduGetSize 159

PDUM_pvAPduInstanceGetPayload 160

PDUM_u16APduInstanceGetPayloadSize 161

PDUM_eAPduInstanceSetPayloadSize 162

PDUM_vDBGPrintAPduInstance 163

13.DBG API 165
DBG_vInit 166

DBG_vUartInit 167

DBG_vPrintf 168

DBG_vAssert 169

DBG_vDumpStack 170

DBG_vFlush 171

DBG_iGetChar 172
JN-UG-3075 v1.8 © NXP Laboratories UK 2016 7

Contents
14.JenOS Structures 173
14.1 PDM_tsHwFncTable 173

14.2 tSPIflashFncTable 174

14.3 PWRM_teSleepMode 176

14.4 DBG_tsFunctionTbl 176

14.5 tsReg128 177

14.6 PDM_tpfvSystemEventCallback 177

14.7 PDM_eSystemEventCode 177

14.8 PDM_teStatus 180

14.9 OS_teStatus 182

Part III: Configuration Information

15.JenOS Configuration 187
15.1 CPU Stack and Heap Sizes 187

15.2 Configuration Principles 187

15.3 Configuring JenOS Resources 189

Part IV: Appendices

A. Hardware Counter Details 193
A.1 Hardware Counter Operation 193
A.2 Use of Tick Timer as Hardware Counter 194

B. Clearing Interrupts 195
8 © NXP Laboratories UK 2016 JN-UG-3075 v1.8

 JenOS
User Guide
Preface

This manual provides a single point of reference for information relating to the Jennic
Operating System, referred to as JenOS. The manual provides both conceptual and
practical information concerning JenOS, and provides guidance on use of the JenOS
Application Programming Interfaces (APIs). The API resources (functions and
structures) are fully detailed.

JenOS is designed to be used with the NXP ZigBee PRO stack on the NXP JN516x
wireless microcontrollers. This manual should be used throughout ZigBee PRO
wireless network application development, along with the ZigBee PRO Stack User
Guide (JN-UG-3048 or JN-UG-3101).

Organisation

This manual is divided into four parts:

 Part I: Concept and Operational Information comprises seven chapters:

 Chapter 1 introduces JenOS, including its five modules and APIs

 Chapter 2 describes how to use the Real-time Operating System (RTOS)

 Chapter 3 describes how to use the Persistent Data Manager (PDM) for
Flash memory

 Chapter 4 describes how to use the Persistent Data Manager (PDM) for
EEPROM

 Chapter 5 describes how to use the Power Manager (PWRM)

 Chapter 6 describes how to use the Protocol Data Unit Manager (PDUM)

 Chapter 7 describes how to use the Debug (DBG) module

 Part II: Reference Information comprises seven chapters:

 Chapter 8 describes the functions of the RTOS API

 Chapter 9 describes the functions of the PDM API for Flash memory

 Chapter 10 describes the functions of the PDM API for EEPROM

 Chapter 11 describes the functions of the PWRM API

 Chapter 12 describes the functions of the PDUM API

 Chapter 13 describes the functions of the DBG API

 Chapter 14 details the structures used by the JenOS APIs

 Part III: Configuration Information comprises one chapter:

 Chapter 15 outlines the static configuration required to use JenOS and its
resources

 Part IV: Appendices comprises two appendices that describe the use of
hardware counters and clearing interrupts.
JN-UG-3075 v1.8 © NXP Laboratories UK 2016 9

Preface
Conventions

Files, folders, functions and parameter types are represented in bold type.

Function parameters are represented in italics type.

Code fragments are represented in the Courier New typeface.

Acronyms and Abbreviations

APDU Application Protocol Data Unit

API Application Programming Interface

DBG Debug

EEPROM Electrically Erasable Programmable Read-Only Memory

ISR Interrupt Service Routine

JenOS Jennic Operating System

MAC Media Access Control

PAN Personal Area Network

NPDU Network Protocol Data Unit

NVM Non-Volatile Memory

OS Operating System

PDU Protocol Data Unit

PDUM Protocol Data Unit Manager

PDM Persistent Data Manager

This is a Tip. It indicates useful or practical information.

This is a Note. It highlights important additional
information.

This is a Caution. It warns of situations that may result
in equipment malfunction or damage.
10 © NXP Laboratories UK 2016 JN-UG-3075 v1.8

 JenOS
User Guide
PIC Programmable Interrupt Controller

PWRM Power Manager

RTOS Real-Time Operating System

SDK Software Developer’s Kit

UART Universal Asynchronous Receiver-Transmitter

ZPS ZigBee PRO Stack

Related Documents

JN-UG-3048 ZigBee PRO Stack User Guide (for SE)

JN-UG-3101 ZigBee PRO Stack User Guide (for ZLL and HA)

JN-UG-3087 JN516x Integrated Peripherals API User Guide

JN-AN-1135 ZigBee Smart Energy HAN Solutions Application Note

JN-AN-1171 ZigBee Light Link Solution Application Note

JN-AN-1189 ZigBee Home Automation Demonstration Application Note

JN-DS-JN516x JN516x Data Sheet (for JN5168, JN5164 and JN5161)

JN5169 JN5169 Data Sheet

Support Resources

To access online support resources such as SDKs, Application Notes and User
Guides, visit the Wireless Connectivity area of the NXP web site:

www.nxp.com/products/interface-and-connectivity/wireless-connectivity

ZigBee resources can be accessed from the ZigBee page, which can be reached via
the short-cut www.nxp.com/zigbee.

All NXP resources referred to in this manual can be found at the above addresses,
unless otherwise stated.

Trademarks

All trademarks are the property of their respective owners.

Chip Compatibility

The software described in this manual can be used on the NXP JN516x family of
wireless microcontrollers with the exception of JN5161 device. However, the
supported devices will be referred to as JN516x.
JN-UG-3075 v1.8 © NXP Laboratories UK 2016 11

Preface
12 © NXP Laboratories UK 2016 JN-UG-3075 v1.8

 JenOS
User Guide
Part I:
Concept and Operational

Information
JN-UG-3075 v1.8 © NXP Laboratories UK 2016 13

14 © NXP Laboratories UK 2016 JN-UG-3075 v1.8

 JenOS
User Guide
1. Introduction

The Jennic Operating System (JenOS) is designed for use in wireless network
applications for the NXP JN516x device, providing an interface which simplifies the
programming of a range of operations that are not specific to wireless networking.

JenOS is primarily intended for use with the NXP ZigBee PRO stack in order to
develop wireless network applications based on the ZigBee standard. Therefore, this
manual should be studied in conjunction with the ZigBee PRO Stack User Guide
(JN-UG-3048 or JN-UG-3101) - other reference resources are detailed in Section 1.2.

1.1 Modules and Architecture

JenOS is organised into five modules, each with a dedicated Application Programming
Interface (API) to facilitate easy interaction between the application and the JenOS
module. Each API consists of a set of C functions and associated resources.

In addition, a configuration editor is provided which allows the graphical configuration
of the JenOS resources used by the application. This tool is known as the JenOS
Configuration Editor and is a plug-in for the Eclipse IDE (Integrated Development
Environment) - the tool is described in Chapter 15 and Chapter 14.

1.1.1 JenOS Modules

The JenOS modules are briefly described below:

 Real-time Operating System (RTOS): This module provides a mechanism for
reacting to real-time events in a way that optimises the efficiency and reliability
of the system. The RTOS module is described in Chapter 2.

 Persistent Data Manager (PDM): This module handles the storage of context
and application data in Non-Volatile Memory (NVM), and the retrieval of this
data. It provides a mechanism by which the JN516x device can resume
operation without loss of continuity following a power loss. The PDM module is
available in two editions - one for external SPI Flash memory, described in
Chapter 3, and another for JN516x internal EEPROM, described in Chapter 4.

 Power Manager (PWRM): This module manages the transitions of the JN516x
device into and out of low-power modes, such as sleep mode. The PWRM
module is described in Chapter 5.

 Protocol Data Unit Manager (PDUM): This module is concerned with
managing memory, as well as inserting data into messages to be transmitted
and extracting data from messages that have been received. The PDUM
module is described in Chapter 6.

 Debug module (DBG): This module allows diagnostic messages to be output
when the application runs, as an aid to debugging the application code. The
DBG module is described in Chapter 7.
JN-UG-3075 v1.8 © NXP Laboratories UK 2016 15

Chapter 1
Introduction

1.1.2 Software Architecture

On a JN516x-based node in a ZigBee PRO wireless network, JenOS interacts with the
following software blocks:

 User application (through use of the JenOS APIs in the application code)

 ZigBee PRO stack

 JN516x integrated peripherals

JenOS can be envisaged as sitting alongside the ZigBee PRO stack and the JN516x
Integrated Peripherals API, as depicted in the diagram below.

Figure 1: Basic Software Architecture

JenOS

Integrated
Peripherals

API

ZigBee PRO Stack

Application

RTOS

PDM

PWRM

PDUM

DBG
16 © NXP Laboratories UK 2016 JN-UG-3075 v1.8

 JenOS
User Guide
1.2 Resources

JenOS and related components are supplied in the NXP Software Developer’s Kit
(SDK) installers, as follows:

 JenOS is installed as part of the ‘JN516x SDK Libraries’ for the ZigBee
application profiles (ZigBee Light Link, Home Automation, Smart Energy).

 The JenOS Configuration Editor (NXP plug-in for the Eclipse IDE) is also
provided in these installers.

In addition to this manual, a number of other reference resources are available from
the Wireless Connectivity area of the NXP web site (see “Support Resources” on
page 11) to aid the development of application code which uses JenOS:

 ZigBee PRO Stack User Guide (JN-UG-3048 or JN-UG-3101) provides some
guidance on the use of JenOS API functions in ZigBee PRO application code.

 Application Notes which provide example code for different ZigBee PRO
application profiles:

 JN-AN-1135 for Smart Energy

 JN-AN-1171 for ZigBee Light Link

 JN-AN-1189 for Home Automation
JN-UG-3075 v1.8 © NXP Laboratories UK 2016 17

Chapter 1
Introduction

18 © NXP Laboratories UK 2016 JN-UG-3075 v1.8

 JenOS
User Guide
2. Real-time Operating System (RTOS)

This chapter introduces the concept of a Real-time Operating System (RTOS) and
introduces the main features of the RTOS which is a module of JenOS.

An RTOS allows the host system to react to multiple real-time events and schedule
processing to meet the deadlines of these events. For example:

 An application that controls a set of traffic lights at a crossroads, where
pedestrians can press buttons to request crossing any of the roads

 An application that handles data sampling, compression and storage in a digital
sound-recording system

The above applications each have a number of tasks with different urgencies
competing for CPU time.

2.1 RTOS Fundamentals

An operating system reacts to events, such as interrupts, and allocates CPU usage to
the processing of tasks that arise from these events. The simplest operating system
works on a ‘first come, first served’ basis. Thus, the tasks are handled in the order that
they occur and the processing for one task is allowed to finish before processing for
the next task starts.

Most operating systems allow multiple tasks to seemingly run concurrently. In fact, the
CPU may be able to process only one task at a time, but shares its time between the
tasks by switching between them, giving the illusion of concurrency - this is called
multi-tasking. A conventional operating system may use a simple scheduling algorithm
to allocate CPU time to multiple tasks. A common scheduler is the round-robin
algorithm, which allocates a time-slice to each task in cyclic order. In such a ‘time
slicing’ scheme, all tasks are allocated equal slices of time.

In a real-time application, some tasks may have strict deadlines and must not be
delayed by other tasks. For example, in a digital sound-recording application, a
sampling task must be completed within a certain time of it starting. This task will be
more important than a simultaneous task to compress the previous sample. This
suggests the need for precedence to ensure that the sampling task is allowed to meet
its deadline.

An RTOS accommodates this idea of precedence, as follows:

 Uses priorities assigned to the different tasks to be performed

 Schedules CPU usage such that higher priority tasks are handled before lower
priority tasks

 May allow the processing of a task to be temporarily suspended while a newer,
higher priority task is handled (pre-emptive RTOS only)

Therefore, an RTOS multi-tasks without time-slicing, but instead allocates CPU time
according to the priorities of the current tasks.
JN-UG-3075 v1.8 © NXP Laboratories UK 2016 19

Chapter 2
Real-time Operating System (RTOS)

2.2 Introduction to the JenOS RTOS

The RTOS within JenOS offers both immediacy and flexibility in scheduling real-time
tasks with different priorities. It is a pre-emptive RTOS, so switches CPU usage to the
highest priority task, but also provides a ‘mutex’ feature that allows execution of a
critical section of the currently running task to be completed before any switch occurs.

The RTOS identifies the following set of high-level priorities which apply to four
general classes of event:

1. Uncontrolled interrupts corresponding to events external to the operating
system (not handled by RTOS)

2. Operating system housekeeping tasks

3. Controlled interrupts corresponding to events internal to the operating system
(handled by RTOS)

4. User tasks (handled by RTOS)

Therefore, use of the RTOS in the user application is only concerned with the last two
categories - controlled interrupts and user tasks. There is a separate set of user-
defined priorities within each of these categories, but a controlled interrupt will always
take priority over a user task.

The JenOS RTOS provides an ‘idle task’, which is executed when there are no other
tasks to be run.

The RTOS is started using the function OS_vStart(). Following a warm start with
memory held, it can be re-started using the function OS_vRestart().

2.3 RTOS Configuration

The JenOS RTOS is configured at build time. This ensures that provision can be made
for all types of application.

RTOS configuration is performed during application development using the JenOS
Configuration Editor. This tool allows OS resources to be easily assigned and
configured through a graphical interface. The tool then generates the necessary OS
configuration files to feed into the application build process. The JenOS Configuration
Editor and the build process are outlined in Chapter 15 before a more detailed account
of the JenOS Configuration Editor is presented in Chapter 14.
20 © NXP Laboratories UK 2016 JN-UG-3075 v1.8

 JenOS
User Guide
2.4 RTOS Concepts and Features

This section details the following concepts and features of the JenOS RTOS:

 User tasks: The user application must be divided into user tasks, described in
Section 2.4.1.

 Interrupt Service Routines (ISRs): The user application must define ISRs to
deal with controlled interrupts (those handled by the RTOS) - see Section 2.4.2.

 Priorities and scheduling: Priorities must be assigned to tasks and ISRs
statically by the system developer, using the method described in Section
2.4.3.

 States and transitions: The possible states of user tasks and ISRs, and the
transitions between these states, are described in Section 2.4.5.

 Scheduled activities: Individual activities within tasks/ISRs can be scheduled
to start at certain times, as described in Section 2.4.6.

 Mutually exclusive access (mutex): The mutex feature allows the priority
system to be effectively over-ridden when tasks are competing for a shared
resource and task switching should be avoided - see Section 2.4.7.

 Inter-task communication: Communications between tasks can be managed
using message queues, as described in Section 2.4.8.

2.4.1 User Tasks

A user application can be conveniently subdivided into sections that are executed
according to their real-time requirements. These sections can be implemented as
tasks, where a task provides the framework for the execution of functions. The JenOS
RTOS defines a task as consisting of a main C function and all its sub-functions. The
main function of a task can only be invoked by the operating system (no user function
is allowed to call it).

A task is defined using the RTOS macro OS_TASK(). The task must be given a
reference handle, which is assigned in the RTOS configuration. The handle of the
currently running task can be obtained using the function OS_eGetCurrentTask().

The set of tasks in an application must be assigned priorities, used to determine the
allocation of CPU time in a multi-tasking environment. This is described further in
Section 2.4.3.

Caution: To allow the RTOS to operate correctly, user
tasks must be designed so that they do not block.
JN-UG-3075 v1.8 © NXP Laboratories UK 2016 21

Chapter 2
Real-time Operating System (RTOS)

2.4.2 Interrupt Service Routines (ISRs)

The user application may define Interrupt Service Routines (ISRs) to handle controlled
interrupts. These are interrupts that are managed by the RTOS via its control
mechanisms (e.g. mutex) and API calls. Each interrupt is assigned an ISR, which is
invoked by the operating system when the interrupt occurs.

An ISR is defined using the RTOS macro OS_ISR(). The ISR must be given a
reference handle, which is assigned in the RTOS configuration.

The set of ISRs in an application must be assigned priorities, used to determine the
allocation of CPU time when multiple interrupts are pending. This is described further
in Section 2.4.3.

2.4.3 Priorities and Scheduling

The user tasks and ISRs can both be prioritised for CPU allocation, each being
assigned its own set of priorities. These priorities are statically set in the RTOS
configuration by the system developer at build time. The sections below describe the
priority system and the related topic of CPU scheduling.

Assigning Priorities

Within each of the two task categories (user task and ISR), the following method
should be used to assign priorities:

1. Rank the tasks in order of importance with respect to their deadlines
(i.e. deadline-monotonic analysis).

2. Assign priorities to the tasks as integer values, starting with 1 for the lowest
priority task and incrementing the assigned value until all tasks have a priority.

Therefore, the assigned priorities are 1, 2,... n, where the higher the value, the higher
the priority. The priority assigned to an ISR is referred to as its Interrupt Priority Level
(IPL).

Note 1: The RTOS API contains functions to enable/
disable interrupts. You can enable/disable all interrupts
or just the controlled interrupts that the RTOS handles.
For details of these functions, refer to Section 8.2.3.

Note 2: The RTOS cannot clear interrupts and it is the
responsibility of the application to do this - refer to
Appendix B.

Caution: The RTOS uses the Programmable Interrupt
Controller (PIC) of the JN516x device. When using the
RTOS, you must therefore not use the PIC directly.
22 © NXP Laboratories UK 2016 JN-UG-3075 v1.8

 JenOS
User Guide
CPU Scheduling

In terms of scheduling, among the user tasks/ISRs waiting for CPU time, the one with
the highest priority will be handled next. However, an ISR will always take precedence
over a user task (the lowest ISR priority takes precedence over the highest user task
priority). If an event then occurs which has a corresponding user task/ISR with higher
priority than the one currently being executed, processing will switch to the higher
priority process, with the existing process being temporarily suspended. In this case,
the higher priority process is said to pre-empt the lower priority process.

Co-operative Tasks

Tasks can be grouped as co-operative tasks. A task in a Co-operative Task Group will
not pre-empt another task from the same group, irrespective of their relative priorities.
A running co-operative task temporarily takes the highest priority level assigned to the
members of its group. However, any task from within the group can pre-empt or be
pre-empted by a task from outside the group.

2.4.4 Task/ISR States

At any one time, a user task or ISR can be in one of three states:

 Running: In the running state, the CPU is executing the functions/instructions
that make up the task/ISR. Only one task/ISR can be in this state at any one
time.

 Pending: In the pending state, the task/ISR has been activated (and may have
been previously run), and is waiting to become the highest priority task/ISR.
When it does, it will be switched into the running state.

 Dormant: In the dormant state, a task/ISR is awaiting activation (which will put
it in the pending state) or has already been run.

Transitions between these states are further described in Section 2.4.5.

A user task can be activated (moved from the dormant state to pending state) in the
application code. The task is subsequently managed automatically by the RTOS.
Activation of a user task is performed using the OS_eActivateTask() function. When
this function is called, the activation counter for the task is incremented. It is possible
to call this function even when the user task is already in the pending state - the
activation counter keeps a record of the number of times the user task must be run
before it can return to the dormant state.

An ISR is automatically activated when the corresponding interrupt is generated.

Once activated, a user task/ISR will be executed when it becomes the highest priority
pending user task/ISR - see Section 2.4.3.

Note: A user task must initially be activated from the
main task but, once in the running state, can activate
itself using OS_eActivateTask(), in which case its
activation counter will be incremented.
JN-UG-3075 v1.8 © NXP Laboratories UK 2016 23

Chapter 2
Real-time Operating System (RTOS)

2.4.5 State Transitions

As detailed in Section 2.4.4, at any one time, a user task or ISR can be in the running,
pending or dormant state. The possible transitions between these states are
described below.

1. Activate: A user task must first be activated (using eOS_ActivateTask()) to
move it from the dormant state to the pending state. Note that ISRs do not
need to be explicitly activated.

2. Start: When a pending task/ISR becomes the highest priority task/ISR, it is
automatically started by the RTOS, which moves it to the running state.

3. Pre-empt: A running task/ISR can be pre-empted by a higher priority task/ISR
by suspending execution and moving it back to the pending state. Here it will
stay until it becomes the highest priority task/ISR again. It will then be moved
back in the running state and execution will be resumed from where it left off.

4. Complete: Once execution of a task/ISR has completed, it is automatically
moved from the running state to the dormant state.

The possible state transitions are illustrated in the figure below.

Figure 2: State Transitions for User Task or ISR

Note: An ISR always takes precedence over a user
task. Therefore, a user task can never pre-empt an ISR.

Running

Pending Dormant Activate

 S
ta

rt

 P
re

-e
m

pt
 C

om
plete
24 © NXP Laboratories UK 2016 JN-UG-3075 v1.8

 JenOS
User Guide
2.4.6 Activity Scheduling (using Software Timers)

Within a user task or ISR, it may be necessary to schedule an activity to occur in the
future or on a regular basis (i.e. periodically). For example, during a ‘button detect’
task, we may need to sample the state of a button every 10 ms. For such scheduled
activities, the RTOS provides software timers and a number of timer functions.

A software timer is derived from a source counter, which can be either of:

 A hardware timer, such as the on-chip tick timer or an external timer

 Another software timer

The software timers and source counter required by the application are pre-defined in
the RTOS configuration using the JenOS Configuration Editor. Each software timer
has a handle, which is also assigned in the RTOS configuration.

A software timer is started using the function OS_eStartSWTimer(). As part of this
function call, you must specify the number of ticks (of the source counter) before the
software timer expires. This value is entered into a ‘compare register’ for the source
counter. The counter increments and when the count reaches the value in the
compare register, an interrupt may be generated and an ISR invoked, where this ISR
is pre-defined in the RTOS configuration for the application. Data for this ISR can be
specified through the function OS_eStartSWTimer(). The ISR must call the function
OS_ExpireSWTimers().

The function OS_ExpireSWTimers() sets the software timer status to ‘expired’ and
checks whether there are any other pending software timers for the same source
counter:

 If there are no pending software timers, the function disables the source
counter.

 If there is at least one pending software timer, the function updates the source
counter’s compare register with the required number of ticks (until the next
software timer expires).

When a software timer expires, if the same timer is to be re-started immediately
(possibly with a different timed period), the function OS_eContinueSWTimer() can be
used to re-start the timer without loss of continuity - there will be no break between the
last expiry point and the new timer run, provided that this function is called before the
next counter period starts.

Note: Several software timers may be based on the
same source counter. Their different expiration times
are handled in a relay, by passing ownership of the
source counter from one timer to the next - when one
timer expires, the source counter’s compare register is
updated with the number of ticks until the next timer
expires, and so on.
JN-UG-3075 v1.8 © NXP Laboratories UK 2016 25

Chapter 2
Real-time Operating System (RTOS)

Once started, a software timer can be prematurely stopped at any time using the
function OS_eStopSWTimer().

Callback Functions and Macros

The software timer functions mentioned above use callback functions that are user-
defined, e.g. to enable/disable the hardware counter. The callback functions must be
defined using macros provided in the RTOS module. These software timer functions
are listed below with their associated callback functions and macros:

 OS_eStartSWTimer():

 Calls the user-defined ‘hardware counter enable’ callback function, defined
using the macro OS_HWCOUNTER_ENABLE_CALLBACK()

 Calls the user-defined ‘hardware counter get’ callback function, defined
using the macro OS_HWCOUNTER_GET_CALLBACK()

 Calls the user-defined ‘hardware counter set’ callback function, defined
using the macro OS_HWCOUNTER_SET_CALLBACK()

 OS_eStopSWTimer():

 Calls the user-defined ‘hardware counter disable’ callback function,
defined using the macro OS_HWCOUNTER_DISABLE_CALLBACK()

 OS_eContinueSWTimer():

 Calls the user-defined ‘hardware counter set’ callback function, defined
using the macro OS_HWCOUNTER_SET_CALLBACK()

 OS_eExpireSWTimers():

 Calls the user-defined ‘software timer expired’ callback function, defined
using the macro OS_SWTIMER_CALLBACK()

 Calls the user-defined ‘hardware counter set’ callback function, defined
using the macro OS_HWCOUNTER_SET_CALLBACK()

Note: If the tick timer is used as the source counter and
the maximum count of the tick timer is T (before the tick
timer wraps around), there must be no more than T/2
ticks between consecutive software timer expiry events
(e.g. if the tick timer wraps around every 60 seconds, a
software timer must expire every 30 seconds or less).

Caution: To allow the JN516x device to enter sleep
mode, no software timers should be active. Any running
software timers must first be stopped and any expired
timers must be de-activated. Both can be achieved
using the function OS_eStopSWTimer(), which must be
called individually for each running and expired timer.
26 © NXP Laboratories UK 2016 JN-UG-3075 v1.8

 JenOS
User Guide
For full details of the above macros and callback functions, refer to Chapter 8.

2.4.7 Mutual Exclusion (Mutex)

The pre-emptive task scheduling of an RTOS can be problematic when two competing
tasks need to access the same resource. In this case, switching the running task to a
higher priority task, where both tasks can control a shared resource, may lead to
undesirable results. For example, if both tasks need to access the same memory block
and the running task is already writing data to memory, it is not desirable for this
process to be suspended and for another task to start writing to the memory block. In
such circumstances, it is important to allow the (lower priority) running task to
complete its access before the higher priority task starts.

The JenOS RTOS provides a mutual exclusion (mutex) feature to prevent task
switching during execution of a critical part of a user task or ISR. The critical section
of code within the user task/ISR must be delimited with the functions
OS_eEnterCriticalSection() and OS_eExitCriticalSection().

For this feature, RTOS implements a Priority Inheritance Protocol, which works by
temporarily raising the priority of the running task during the critical section of code
(the task’s priority is returned to its normal value outside the critical section). A running
task and pending task can only be managed in this way if they belong to the same
mutex group. Each mutex group is given a unique handle and the user tasks/ISRs in
a given mutex group are pre-defined in the RTOS configuration for the application.
During execution of the critical section, the priority of the running task is changed to
the highest possible priority of the tasks within the same mutex group.

Use of the mutex feature in handling a critical section of code is illustrated in Figure 3.

Figure 3: Mutex Handling of Critical Section

Task1

Task2

Time

Running

RunningPending

Pending

Task2 is
activated

Running: Critical Section

Task2 is
started

Task1 leaves
critical section and

is pre-empted
by Task2

Task1 enters
critical section and

cannot be pre-empted
by Task2

Priority of Task1 < Priority of Task2 (in same mutex group)

Dormant

Task2 is
activated and started

RunningPending

Running

Task1 is
pre-empted
by Task2
JN-UG-3075 v1.8 © NXP Laboratories UK 2016 27

Chapter 2
Real-time Operating System (RTOS)

2.4.8 Inter-task Communication (using Messages)

A user task may often need to communicate with another user task, or an ISR may
need to communicate with a user task. This communication can be implemented using
messages. The message types required by the application are pre-defined in the
header file os_msg_types.h. The identity of the destination task or ISR for a message
type, and whether the message type is queued, are specified in the RTOS
configuration for the application.

The function OS_ePostMessage() is used to send a message from a user task/ISR.
While this user task/ISR is running, the destination task will be dormant or pending,
and the message cannot be delivered immediately.

 If the message has associated user data, the message can be placed in a
queue - this queue is specifically associated with the message type and the
destination task, and is set up in the RTOS configuration. Alternatively, the
message may be unqueued.

 If the message has no associated user data, the message is not queued.

If a message is not queued, it replaces any previous message of the same type that
was waiting to be delivered to the destination task.

The destination task will run as soon as it becomes the highest priority task. Other
messages may arrive in the message queue before the task runs. Once run, the task
will collect the messages waiting in its queue. A message is collected using the
function OS_eCollectMessage(), which can be called repeatedly until the queue is
empty.

The function OS_eGetMessageStatus() is also provided which allows the destination
task to determine if there are valid messages in its queue.

The above process of message sending and collection, for a queued message type,
is illustrated in Figure 4 below.
28 © NXP Laboratories UK 2016 JN-UG-3075 v1.8

 JenOS
User Guide
When sending a message of a given type using OS_ePostMessage(), two alternative
options are available:

 Invoke a callback function which performs user actions

 Activate the associated destination task through a notification - that is, to
increment the task’s activation counter and, if the task is not already pending,
move it from the dormant to pending state.

The required send option is set in the RTOS configuration.

Data structures are generated at compile time detailing message senders, receivers
and queue sizes, to ensure only the minimum resources necessary are allocated.
Each task lists the message types that it can transmit and receive.

Figure 4: Message Queuing

Note: The above messaging system is used by the NXP
ZigBee PRO software to send and receive responses,
notifications and events. These messages are
automatically generated and sent by the stack software,
but the application is responsible for collecting them
using OS_eCollectMessage().

Task/ISR
(Running)

Destination
Task

(Dormant or Pending)

Message Queue
Post message

Task/ISR
(Running)

Destination
Task

(Dormant or Pending)

Message Queue

Task/ISR
(Dormant)

Destination
Task

(Running)

Message Queue
Collect message

Notification
M

M

Task/ISR
(Running)

Destination
Task

(Pending)

Message Queue

M

M

1.

2.

3.

4.
JN-UG-3075 v1.8 © NXP Laboratories UK 2016 29

Chapter 2
Real-time Operating System (RTOS)

2.5 OS Error Callback Function

Errors can be detected by testing the return codes from the calls to OS functions.
However, this requires application code to test the return code from every OS call.

Registering an error callback function provides a robust alternative to checking the
return codes. This function is invoked whenever an OS function returns an error. The
function is registered as a parameter of OS_vStart(). The error callback option must
also be enabled in the JenOS Configuration Editor.

Many OS errors leave the scheduler in an undefined state. For example, nesting a
mutex by calling OS_eEnterCriticalSection() twice before calling
OS_eExitCriticalSection() causes a OS_E_BAD_NESTING error. Once an error of
this nature has occurred, the OS scheduler is in an undefined state.

2.5.1 Strict Error Checks

The OS scheduler will enter an undefined state if there are inconsistencies between
the OS configuration diagram (in the JenOS Configuration Editor) and the application
code. A strict error check option can be enabled in the JenOS Configuration Editor to
check for inconsistencies between the OS configuration diagram and the software.
The strict mode has a slight overhead in code space and execution time but it is good
practice to enable strict checking where possible. For example, calling
OS_eEnterCriticalSection() from a task which is not in the group for the mutex will
generate OS_E_CURRENT_TASK_NOT_A_MUTEX_MEMBER with strict checking
enabled. If strict checks were not enabled, the scheduler operation would be
undefined and the system may become unstable.

2.5.2 Handling OS Errors

During testing, an application’s error callback function should stop the application with
a stack dump and the error should be fixed. The OS passes two parameters to the
error callback - the status code of the error and a pointer to the handle which caused
the error. These parameters should be printed out to help determine the cause of the
error.

In production code, the device must be re-started from cold by calling
vAHI_SwReset(). Data in the PDM module does not normally need to be erased, so
the device can rejoin a ZigBee PRO network with existing security material.

Caution: Errors affecting the OS can cause system
instability. It is recommended that all applications
register an OS error handler and enable strict error
checks.
30 © NXP Laboratories UK 2016 JN-UG-3075 v1.8

 JenOS
User Guide
The error callback function will be called on some non-fatal errors. Depending on the
application design, the following errors can be ignored by the error callback function:

 OS_E_QUEUE_EMPTY

 OS_E_SWTIMER_STOPPED

 OS_E_SWTIMER_EXPIRED

 OS_E_SWTIMER_RUNNING
JN-UG-3075 v1.8 © NXP Laboratories UK 2016 31

Chapter 2
Real-time Operating System (RTOS)

32 © NXP Laboratories UK 2016 JN-UG-3075 v1.8

 JenOS
User Guide
3. Persistent Data Manager (PDM) for Flash Memory

This chapter describes the Persistent Data Manager (PDM) module which handles the
storage of stack context and application data in Flash memory which is external to the
JN516x device. This edition of the PDM is supplied in the JN516x ZigBee Smart
Energy SDK (JN-SW-4064).

For the later edition of the PDM (supplied in other SDKs) that supports JN516x internal
EEPROM, refer to Chapter 4.

3.1 Overview

Data needed for the operation of a network node is normally stored in on-chip RAM.
This includes data that may evolve during node operation, e.g. context data for the
network stack and application data. This data is only maintained in memory while the
node is powered and will be lost during an interruption to the power supply (e.g. power
failure or battery replacement).

In order for the node to recover from a power interruption with continuity of service,
provision must be made for storing a back-up of the operational data in NVM, such as
Flash memory. This data can then be recovered during a re-boot following power loss,
allowing the node to resume its role in the network.

The storage and recovery of operational data can be handled using the Persistent
Data Manager (PDM) module, as described in the rest of this chapter. The NVM
device used by the PDM is expected to be external SPI-connected Flash memory.

An overview of the use of the PDM API functions in application code is presented in
Figure 5 below.

Tip 1: In this chapter, the storage medium for persisted
data is referred to as Non-Volatile Memory (NVM) but in
practice it is SPI-connected external Flash memory.

Tip 2: In this chapter, a cold start refers to either a first-
time start or a re-start without memory (RAM) held. A
warm start refers to a re-start with memory held (for
example following sleep with memory held).

Caution: When using the PDM, do not use the JN516x
Integrated Peripherals API to interact with the Flash
memory device connected to the JN516x chip.
JN-UG-3075 v1.8 © NXP Laboratories UK 2016 33

Chapter 3
Persistent Data Manager (PDM) for Flash

3.2 Initialising the PDM

The initialisation of the PDM depends on the type of NVM device used. For a cold start
(a first-time start or a re-start following power loss), the initialisation is as follows:

1. If NVM is a custom device, call the function PDM_vSPIFlashConfig(). This
function requires you to specify a pointer to a set of custom functions that will
be used by the PDM to interact with the NVM device (e.g. read and write
functions). There is no need to call this function if using a supported NVM
device.

2. Call the function PDM_vInit(). If using a supported NVM device, this function
will auto-detect the device type. If required, optional mutexes can be specified
through this function - for information on these mutexes, refer to Section 3.7. A
security key can also be specified which will be used by the PDM module to
encrypt data saved to NVM and to decrypt the data when read from NVM (the
key can be specified by the application or obtained from eFuse) - this security
will be automatically applied to stack context data but must be explicitly
enabled for application data (see Section 3.4).

Figure 5: PDM Overview

PDM_vSPIFlashConfig()

PDM_vInit()

PDM_vLoadRecord()

PDM_vSaveRecord()
or

PDM_vSave()

Program
main loop

Warm
Start

Cold
Start Re-boot

due to
power loss

First-time boot

Only relevant if using
custom Flash device

Re-start
following
sleep

PDM_vWarmInitHW()
34 © NXP Laboratories UK 2016 JN-UG-3075 v1.8

 JenOS
User Guide
Both of the above functions require you to identify and specify the size of the NVM
sectors to be managed by the PDM.

For a warm start (following sleep), there is no need to call PDM_vSPIFlashConfig()
or PDM_vInit() but the function PDM_vWarmInitHW() must be called.

3.3 Data Storage in NVM

Data is stored in NVM in terms of ‘records’, where a record is an area of NVM used to
store data and associated housekeeping information. Each NVM record corresponds
to a data buffer in RAM, where the NVM record is used to back up the RAM buffer.
Any number of NVM records of different lengths can be created, provided that they do
not exceed the NVM capacity.

NVM records are created automatically for stack context data and by the application
(as indicated in Section 3.4) for application data.

The stack context data which is stored in NVM includes the following:

 Application layer data:

 AIB members, such as the EPID and ZDO state

 Group Address table

 Binding table

 Application key-pair descriptor

 Trust Centre device table

 Network layer data:

 NIB members, such as PAN ID and radio channel

 Neighbour table

 Network keys

 Address Map table

The PDM manages a Cyclic Redundancy Code (CRC) for each record and writes the
CRC only on a complete record write. Therefore, if the CRC is not present then the
data will not be recoverable.
JN-UG-3075 v1.8 © NXP Laboratories UK 2016 35

Chapter 3
Persistent Data Manager (PDM) for Flash

3.4 Recovering Data from NVM

Application data and stack context data are loaded from NVM to RAM as described
below.

Application Data

During a cold start, after the PDM module has been initialised (see Section 3.2), the
function PDM_eLoadRecord() must be called for each record of application data in
NVM and its corresponding data buffer in RAM. This function requires a descriptor to
be specified for the NVM record, where this record descriptor is held in RAM.

Depending on the type of cold start, PDM_eLoadRecord() will do one of two things:

 During a first-time cold start, the function creates an NVM record that
corresponds to the specified record descriptor (but stores no data in NVM).
This NVM record will be used to back up application data from the specified
buffer in RAM (see Section 3.5). Initial data values must be provided in this
RAM buffer.

 During any subsequent cold start, the function loads data from the specified
NVM record to the associated RAM buffer, thus recovering application data
previously saved to NVM.

PDM_eLoadRecord() also allows security to be enabled for the application data
record. If security is enabled, data saved to the NVM record will be encrypted using
the key specified through PDM_vInit() and will therefore be decrypted using the same
key when read from the record.

Stack Context Data

The function PDM_eLoadRecord(), described above, is not used for records of stack
context data. Loading this data from NVM to RAM is handled automatically by the
stack (provided that the PDM has been initialised). When saved to NVM, the stack
context data is automatically encrypted using the security key specified through
PDM_vInit() and is therefore decrypted using the same key when read from NVM.

Note: The function PDM_eLoadRecord() must be
called before calling any function which automatically
saves application data to NVM - for example, before
calling ZPS_eAplAfInit() to initialise the ZigBee PRO
stack and ZPS_vAplSecSetInitialSecurityState() to
initialise the ZigBee security state on the node.

Caution: PDM_eLoadRecord() must not be called
during a warm start, otherwise data held in RAM will be
overwritten by possibly older data from NVM.
36 © NXP Laboratories UK 2016 JN-UG-3075 v1.8

 JenOS
User Guide
3.5 Saving Data to NVM

Application data and stack context data are saved from RAM to NVM as described
below.

Application Data

Once you have application data in RAM to be backed up, you can save the RAM data
associated with an individual record in NVM using the function PDM_vSaveRecord().
Alternatively, you can save the RAM data corresponding to all records in NVM using
the function PDM_vSave(). In both cases, the saved application data will be
encrypted if security was enabled for the corresponding NVM record through the
function PDM_eLoadRecord() (see Section 3.4). You should save data to NVM when
important changes have been made to the data in RAM.

Stack Context Data

The function PDM_vSave() can be used to save all records of stack context data as
well as all records of application data. The saved stack context data is encrypted using
the security key specified when the PDM module was initialised using PDM_vInit()
(see Section 3.2). Note that the NXP ZigBee PRO stack automatically saves its own
context data from RAM to NVM (encrypted as detailed above) when certain data items
change.

3.6 Deleting Data in NVM

An individual record of application data in NVM can be deleted using the function
PDM_vDeleteRecord(). Alternatively, all records (application data and stack context
data) in NVM can be deleted using the function PDM_vDelete(). Note that when a
record is deleted in NVM, the corresponding data buffer in RAM is not deleted.

Note: If, during a data save, NVM needs to be
defragmented and purged, this will be performed
automatically resulting in all records being re-saved.

Caution: You are not recommended to delete records of
ZigBee PRO stack context data by calling
PDM_vDelete() before a rejoin of the same secured
network. If these records are deleted, data sent by the
node after the rejoin will be rejected by the destination
node since the frame counter has been reset on the
source node. For more information and advice, refer to
the “Application Design Notes” appendix in the
ZigBee PRO Stack User Guide (JN-UG-3048 or
JN-UG-3101).
JN-UG-3075 v1.8 © NXP Laboratories UK 2016 37

Chapter 3
Persistent Data Manager (PDM) for Flash

3.7 Mutexes in PDM

The PDM module can use optional mutexes, as follows:

 PDM functions are not re-entrant and a mutex can be optionally used to
prevent concurrent PDM function calls - if enabled, the mutex is applied
automatically during a PDM function call.

 External NVM is accessed via the SPI bus of the JN516x device, but this bus
may also be used to access other resources. The PDM module can optionally
use a mutex to prevent concurrent accesses to the SPI bus - if enabled, the
mutex is applied automatically during a PDM access to NVM.

If required, the above mutexes can be specified when the PDM module is initialised
using the function PDM_vInit() - see Section 3.2. The user task must also be linked to
the relevant mutex in the JenOS Configuration Editor - see Section 14.7.

The principles of a mutex are described in Section 2.4.7. All tasks that use a mutex
must be connected to the mutex in the OS configuration diagram. The ZigBee PRO
stack makes PDM calls. Therefore, any task that makes ZigBee PRO function calls
must be connected to the PDM mutexes.

3.8 Ensuring Consistency of PDM Records

The data in the PDM may differ in structure from that expected by the application. The
structures stored by the ZigBee PRO libraries can change due to altering table sizes
in the ZPS Configuration Editor, as well as between releases of the ZigBee PRO stack
libraries, and inconsistency can occur.

When an Over-The-Air (OTA) software update is performed, the PDM data is not
erased. This is normally a benefit because it allows the application to rejoin the
network. However, if any of the PDM structures change, a factory reset must be
performed by calling PDM_vDelete().

Applications normally contain a way to perform a factory reset of the PDM module -
for example, by calling PDM_vDelete() if a button is held down during reset.

The application can automatically check for PDM consistency by storing an
application-specific ‘magic number’ in a record. A new magic number should be used
if the application software or ZigBee PRO libraries PDM usage is inconsistent with the
previous version of the software. Immediately after calling PDM_vInit(), the
application should call PDM_eLoadRecord(). If the magic number does not match,
the application should call PDM_vDelete() to erase all records before attempting to
start the ZigBee PRO stack. If the call to PDM_eLoadRecord() indicates that the
record has not been found, the application should also call PDM_vDelete() because
another application may have been running that does not use the same record ID but
has written inconsistent ZigBee PRO records to the PDM module.
38 © NXP Laboratories UK 2016 JN-UG-3075 v1.8

 JenOS
User Guide
4. Persistent Data Manager (PDM) for EEPROM

This chapter describes the Persistent Data Manager (PDM) module which handles the
storage of stack context data and application data in JN516x internal EEPROM. This
edition of the PDM is supplied in the following SDKs:

 JN-SW-4168: JN516x ZigBee Light Link and Home Automation SDK

 JN-SW-4165: JN516x JenNet-IP SDK

 JN-SW-4163: JN516x IEEE802.15.4 SDK

For the earlier edition of the PDM (supplied in other SDKs) that supports external
Flash memory devices, refer to Chapter 3.

4.1 Overview

If the data needed for the operation of a network node is stored only in on-chip RAM,
this data is maintained in memory only while the node is powered and will be lost
during an interruption to the power supply (e.g. power failure or battery replacement).
This data includes context data for the network stack and application data.

In order for the node to recover from a power interruption with continuity of service,
provision must be made for storing essential operational data in Non-Volatile Memory
(NVM), such as EEPROM. This data can then be recovered during a re-boot following
power loss, allowing the node to resume its role in the network.

The storage and recovery of operational data in JN516x EEPROM can be handled
using the Persistent Data Manager (PDM) module, as described in the rest of this
chapter, which covers the following topics:

 Initialising the PDM module - see Section 4.2

 Managing data in EEPROM - see Section 4.3

 Storing counters in EEPROM - see Section 4.4

 PDM features including mutexes, EEPROM wear counts and event handling -
see Section 4.5

Section 4.2 also provides information on using the PDM without the JenOS RTOS.

Note : The PDM functions referenced in this chapter are
detailed in Chapter 10.

Tip: In this chapter, a cold start refers to either a first-
time start or a re-start without memory (RAM) held. A
warm start refers to a re-start with memory held (for
example following sleep with memory held).
JN-UG-3075 v1.8 © NXP Laboratories UK 2016 39

Chapter 4
Persistent Data Manager (PDM) for EEPROM

4.2 Initialising the PDM and Building a File System

The PDM module must be initialised by the application following a cold or warm start,
irrespective of the PDM functionality used (e.g. context data storage or counter
implementation). PDM initialisation is performed using the function PDM_eInitialise().

This function requires the following information to be specified:

 The number of EEPROM segments to be used by PDM (a zero value means
use all segments)

 An optional mutex in order to serialise PDM function calls and prevent
concurrent calls - for information on this mutex, refer to Section 4.5

Once the PDM_eInitialise() function has been called, the PDM module builds a file
system in RAM containing information about the segments that it manages in
EEPROM. The PDM reads the header data from each EEPROM segment and builds
the file system.

The file system allows the PDM to perform efficient searches when operating on data,
track the occupation of all the segments in the EEPROM and keep track of the number
of segments available for data allocation at any time. It also helps to even out the wear
across EEPROM segments - for more information on EEPROM segment wear, refer
to Section 4.5.4.

Using PDM without the JenOS RTOS (IEEE802.15.4 and JenNet-IP only)

The JenOS RTOS is not used in IEEE802.15.4 and JenNet-IP applications, but the
PDM module can still be used.

IEEE802.15.4

To use the PDM in applications developed using the IEEE802.15.4 SDK
(JN-SW-4163), the flag PDM_NO_RTOS must be defined in the makefile, as follows:

CFLAGS += -DPDM_NO_RTOS

The serialisation mutex cannot be used in this case and the relevant parameter is
removed from the PDM_eInitialise() function.

JenNet-IP

When the PDM is used in applications developed using the JenNet-IP SDK
(JN-SW-4165), no makefile modifications need to be made. However, the serialisation
mutex is always implemented and a non-zero value must be passed to the relevant
parameter in the PDM_eInitialise() function.

Note: Unlike the earlier version of the PDM (described
in Chapter 3), this version does not base storage
records on descriptors. The removal of descriptors
simplifies the operation of the PDM and reduces the
EEPROM space needed to hold a given amount of data.
40 © NXP Laboratories UK 2016 JN-UG-3075 v1.8

 JenOS
User Guide
4.3 Managing Data in EEPROM

This section describes use of the PDM module to persist data in EEPROM in order to
provide continuity of service when the JN516x device resumes operation after a cold
start or a warm start without memory held.

Data is stored in EEPROM in terms of ‘records’. A record occupies at least one
EEPROM segment but may be larger than a segment and occupy multiple segments.
Any number of records of different lengths can be created, provided that they do not
exceed the EEPROM capacity. The records are created automatically for stack
context data and by the application (as indicated in Section 4.3.1) for application data.
Each record is identified by a unique 16-bit value which is assigned when the record
is created - for application data, this identifier is user-defined.

The stack context data which is stored in EEPROM includes the following:

 Application layer data:

 AIB members, such as the EPID and ZDO state

 Group Address table

 Binding table

 Application key-pair descriptor

 Trust Centre device table

 Network layer data:

 NIB members, such as PAN ID and radio channel

 Neighbour table

 Network keys

 Address Map table

On performing a JN516x cold start or warm start without RAM held, the PDM must be
initialised in the application as described in Section 4.2.

 If this is the first ever cold start, there will be no stack context data or
application data preserved in the EEPROM.

 If it is a cold or warm start following previous use (such as after a reset), there
should be stack context data and application data preserved in the EEPROM.

On start-up, the PDM builds a file system in RAM and scans the EEPROM for valid
data. If any data is found, it is incorporated in the file system.

The PDM saves a Cyclic Redundancy Code (CRC) for each segment of a record. Any
failure will result in the data being unrecoverable and the record becoming invalid.

Saving, recovering and deleting application data in EEPROM are described in the sub-
sections below.
JN-UG-3075 v1.8 © NXP Laboratories UK 2016 41

Chapter 4
Persistent Data Manager (PDM) for EEPROM

4.3.1 Saving Data to EEPROM

Application data and stack context data are saved from RAM to EEPROM as
described below.

Application Data

You should save application data to EEPROM when important changes have been
made to the data in RAM. Application data in RAM can be saved to an individual
record in EEPROM using the function PDM_eSaveRecordData(). A buffer of data in
RAM is saved to a single record in EEPROM (a record may span multiple EEPROM
segments).

The first time that a record is saved using PDM_eSaveRecordData(), the record is
created and the data is written in its entirety, provided there are enough free EEPROM
segments to hold the data (you can first find out how many segments are available
using the function PDM_u8GetSegmentCapacity()). When a record is first created, a
unique 16-bit identifier must be assigned to the record by the application - this identifier
is subsequently used to reference the record. The value used must not clash with
those used by the NXP libraries - the ZigBee PRO stack libraries use values above
0x8000 and the JenNet-IP libraries use values between 0x3000 and 0x3007.

Subsequently, in performing a re-save to the same record (specified by its 16-bit
identifier), the original EEPROM segments associated with the record will be over-
written but only the segment(s) containing data changes will be altered (if no data has
changed, no write will be performed). This method of only making incremental saves
improves the occupancy level of the size-restricted EEPROM.

If a save fails, the function PDM_eSaveRecordData() will return the code
PDM_E_STATUS_NOT_SAVED. Alternatively, the callback event
E_PDM_SYSTEM_EVENT_DESCRIPTOR_SAVE_FAILED can be used to notify the
application of a save failure - this requires a PDM callback function to have been
registered using the function PDM_vRegisterSystemCallback(), as described in
Section 4.5.2.

Stack Context Data

The NXP ZigBee PRO stack automatically saves its own context data from RAM to
EEPROM when certain data items change. This data will not be encrypted.

Note: During a data save, if the EEPROM needs to be
defragmented and purged, this will be performed
automatically resulting in all records being re-saved.
42 © NXP Laboratories UK 2016 JN-UG-3075 v1.8

 JenOS
User Guide
4.3.2 Recovering Data from EEPROM

Application data and stack context data are loaded from the EEPROM to RAM as
described below.

Application Data

Application data records in EEPROM can be read by the application using the function
PDM_eReadDataFromRecord(). The record to be read is specified using its 16-bit
identifier and a data buffer in RAM must also be specified in which the read data will
be stored.

Before calling PDM_eReadDataFromRecord(), it may be useful to call the function
PDM_bDoesDataExist() in order to determine whether a record with the specified
identifier exists in the EEPROM and, if it does, to obtain its size and therefore the
length of the required RAM buffer.

During a cold start or a warm start without memory held, once the PDM module has
been initialised (see Section 4.2), PDM_eReadDataFromRecord() must be called for
each record of application data in EEPROM that needs to be copied to RAM.

Stack Context Data

The function PDM_eReadDataFromRecord(), described above, is not used for
records of stack context data. Loading this data from the EEPROM to RAM is handled
automatically by the stack (provided that the PDM has been initialised).

4.3.3 Deleting Data in EEPROM

An individual record of application data in the EEPROM can be deleted using the
function PDM_eDeleteData() - the record to be deleted is specified using its 16-bit
identifier. Alternatively, all records (application data and stack context data) in the
EEPROM can be deleted using the function PDM_eDeleteAllData().

Caution: You are not recommended to delete records of
ZigBee PRO stack context data by calling
PDM_eDeleteAllData() before a rejoin of the same
secured network. If these records are deleted, data sent
by the node after the rejoin will be rejected by the
destination node since the frame counter has been reset
on the source node. For more information and advice,
refer to the “Application Design Notes” appendix in the
ZigBee PRO Stack User Guide (JN-UG-3101).
JN-UG-3075 v1.8 © NXP Laboratories UK 2016 43

Chapter 4
Persistent Data Manager (PDM) for EEPROM

4.4 Storing Counters in EEPROM

The PDM provides a means of using the JN516x EEPROM to store counters, such as
frame counters and acknowledgement sequences, as found in many communications
protocols. A counter is implemented within a single EEPROM segment as follows:

 Start value which is held in pure binary form inside the counter’s header

 Incremental value (over the start value) which is represented as a bitmap

Each bit of the bitmap represents an increment (by one) of the counter and is set when
the corresponding increment occurs. There is a maximum incremental value that can
be represented in one segment. When this value is reached, the counter is silently
moved to a new segment in which the start value (in the header) is increased
appropriately and the bitmap is reset to zero. To avoid increasing the segment wear
count, the old bitmap segment is not formally deleted when a new segment is started.
This process continues while there are segments free in the EEPROM.

The sub-sections below describe how to manage a counter in EEPROM using the
PDM functions.

4.4.1 Creating a Counter

The function PDM_eCreateBitmap() can be used to create a counter in the EEPROM.
In this function call, the new counter must be given a user-defined 16-bit identifier and
a start value (these values will be stored in the counter’s header).

4.4.2 Incrementing a Counter

The application can increment the counter by calling the function
PDM_eIncrementBitmap(). When an increment results in the counter filling the
current bitmap/segment, the function will indicate this by returning
PDM_E_STATUS_SATURATED_OK. The next time the function is called, the
counter will automatically be moved to a new bitmap/segment (as described above).
However, if there is no free segment available, the function will be unable to perform
the increment and will return PDM_E_STATUS_USER_PDM_FULL.

4.4.3 Reading a Counter

A counter in EEPROM can be read using the function PDM_eGetBitmap(). This
function obtains the start value (stored in the counter’s header) and the incremental
value from the bitmap. The current value of the counter is then the sum of these two
results.

The above function should be called when the JN516x device comes up from a cold
start, to check whether a counter is present in EEPROM.
44 © NXP Laboratories UK 2016 JN-UG-3075 v1.8

 JenOS
User Guide
4.4.4 Deleting a Counter

Once a counter is no longer required, it can be removed from EEPROM using the
function PDM_eDeleteBitmap(). This clears the current segment and all the older
(expired) segments for the counter. This deleton increments the wear counts for these
segments (see Section 4.5.4) and should be done only if absolutely necessary, as
expired bitmap segments can be re-used directly via the PDM without formal deletion.

4.5 PDM Features

4.5.1 Mutex in PDM

PDM functions are not re-entrant and a mutex can be optionally used to prevent
concurrent PDM function calls - if enabled, the mutex is applied automatically during
a PDM function call.

If required, a mutex can be specified when the PDM module is initialised using the
function PDM_eInitialise() - see Section 4.2. If the mutex is used with the JenOS
RTOS in a ZigBee application, the user task must be linked to the relevant mutex in
the JenOS Configuration Editor - see Section 14.7.

The principles of a mutex are described in Section 2.4.7. All tasks that use a mutex
must be connected to the mutex in the OS configuration diagram. The ZigBee PRO
stack makes PDM calls. Therefore, any task that makes ZigBee PRO function calls
must be connected to the PDM mutexes.

4.5.2 Event and Error Handler for EEPROM

The internal PDM library allows a handler to be called to alert the application of events
and error conditions in the JN516x internal EEPROM. This callback function is
registered by calling the function PDM_vRegisterSystemCallback(). The PDM
events/error conditions are listed and described in Section 14.7.

An application must trap E_PDM_SYSTEM_EVENT_PDM_NOT_ENOUGH_SPACE
and E_PDM_SYSTEM_EVENT_DESCRIPTOR_SAVE_FAILED callback errors

Note: The mutex does not remain optional when the
PDM is used without the JenOS RTOS in IEEE802.15.4
and JenNet-IP applications. In applications developed
using the IEEE802.15.4 SDK (JN-SW-4163), the mutex
is not available and the relevant parameter is removed
from PDM_eInitialise(). In applications developed using
the JenNet-IP SDK (JN-SW-4165), the mutex is always
implemented and a non-zero value must be passed to
the relevant parameter of PDM_eInitialise(). For more
information, refer to Section 4.2.
JN-UG-3075 v1.8 © NXP Laboratories UK 2016 45

Chapter 4
Persistent Data Manager (PDM) for EEPROM

during testing. The ZigBee PRO stack uses multiple records. Once an ‘out of space’
error has occurred, the records will be in an inconsistent state. The software must be
altered to use smaller record sizes or an external SPI Flash device. The PDM record
sizes for the ZigBee PRO stack are dependent on table sizes set in the ZPS
Configuration Editor.

The registered callback function may also be designed to handle a Wear Count event
E_PDM_SYSTEM_EVENT_WEAR_COUNT_TRIGGER_VALUE_REACHED which
indicates that the Wear Count for an EEPROM segment has reached the configured
trigger level (see Section 4.5.4).

4.5.3 EEPROM Capacity

The JN516x internal EEPROM consists of multiple small segments. On the JN5168
and JN5169 devices, there are 63 segments of 64 bytes each. The internal PDM
library can store no more than one data record in each segment, although a large
record may be stored across multiple segments. The PDM library needs to store some
system information in each segment, so in practice each segment can hold only up to
56 bytes of record data. This means that a PDM record that has a single byte of
information will need the same space as a 56-byte record and that a 57-byte record
will need two segments (the same as a 112-byte record).

The function PDM_u8GetSegmentCapacity() returns the number of segments that
are free for PDM. The function PDM_u8GetSegmentOccupancy() returns the
number of segments that are in use. One of these functions may be called after all the
records have been created and saved (including records in the ZigBee PRO stack).
When updating a record, the PDM saves the new data before deleting the old data (to
ensure that data is retained over any unexpected power cycles). Therefore, there must
be sufficient capacity in the EEPROM to store another copy of a record before the old
copy is deleted. To allow for the worst-case scenario, the value returned by
PDM_u8GetSegmentCapacity() must be greater than the number of segments
required to store the largest record.

4.5.4 EEPROM Wear Count

An EEPROM device supports a limited number of data writes to each byte before the
storage medium begins to fail. For the JN516x EEPROM, at least 100000 writes are
guaranteed and a million writes should be typically possible. For each EEPROM
segment, a record is kept of the number of writes made to the segment so far. This is
the ‘Wear Count’, which is stored and maintained in the segment header. The PDM
manages the use of EEPROM segments in a way that minimises wear and attempts
to spread the wear evenly across the segments.

The function PDM_eGetSegmentWearCount() allows the current value of the Wear
Count of a particular segment to be obtained. It is also possible to set up the
generation of an event when the Wear Count of any segment reaches a certain trigger
level. This trigger level can be configured (for all segments) using the function
PDM_vSetWearCountTriggerLevel(). The Wear Count event is
E_PDM_SYSTEM_EVENT_WEAR_COUNT_TRIGGER_VALUE_REACHED and
46 © NXP Laboratories UK 2016 JN-UG-3075 v1.8

 JenOS
User Guide
the user-defined PDM callback function (see Section 4.5.2) should be designed to
process this Wear Count event.

4.5.5 Ensuring Consistency of PDM Records

The data in the PDM may differ in structure from that expected by the application. The
structures stored by the ZigBee PRO libraries can change due to altering table sizes
in the ZPS Configuration Editor, as well as between releases of the ZigBee PRO stack
libraries. Inconsistency can occur under the following circumstances:

 The internal EEPROM on a JN516x device is not erased when programming an
application with the JN51xx Flash Programmer. If multiple applications are run
on the same hardware, it is unlikely that the structures will be consistent
between the applications.

 When a ZigBee Over-The-Air (OTA) software update is performed, the PDM
data is not erased. This is normally a benefit because it allows the application
to rejoin the network. However, if any of the PDM structures change, a factory
reset must be performed by calling PDM_eDeleteAllData()

Applications normally contain a way to perform a factory reset of the PDM module -
for example, by calling PDM_eDeleteAllData() if a button is held down during reset.

The application can automatically check for PDM consistency by storing an
application-specific ‘magic number’ in a record. A new magic number should be used
if the application software or ZigBee PRO libraries PDM usage is inconsistent with the
previous version of the software. Immediately after calling PDM_eInitialise(), the
application should call PDM_eReadDataFromRecord(). If the magic number does
not match, the application should call PDM_eDeleteAllData() to erase all records
before attempting to start the ZigBee PRO stack. If the call to
PDM_eReadDataFromRecord() indicates that the record has not been found, the
application should also call PDM_eDeleteAllData() because another application may
have been running that does not use the same record ID but has written inconsistent
ZigBee PRO records to the PDM module.
JN-UG-3075 v1.8 © NXP Laboratories UK 2016 47

Chapter 4
Persistent Data Manager (PDM) for EEPROM

48 © NXP Laboratories UK 2016 JN-UG-3075 v1.8

 JenOS
User Guide
5. Power Manager (PWRM)

This chapter describes the Power Manager (PWRM) module, which manages the
transitions of the JN516x device into and out of low-power modes.

Low-power modes are typically used to prolong the battery life of a node by reducing
the power consumption of the device during periods when the node does not need to
receive, transmit or perform any other activities. Thus, low-power modes only apply to
End Devices, as the Co-ordinator and Routers always need to remain fully alert for
routing purposes.

5.1 Low-Power Modes

A number of low-power modes are available on the JN516x device. In descending
order of power consumption, the modes are:

 Doze mode

 Sleep modes:

 Sleep with memory held

 Sleep without memory held

 Deep Sleep mode

When the node is inactive, the Power Manager will put the device into the lowest
power mode possible.

The above low-power modes are described in the sub-sections below. For further
information on the low-power modes of the JN516x device, refer to the JN516x Data
Sheet (JN-DS-JN516x).

5.1.1 Doze Mode

In Doze mode, the CPU of the chip pauses (the CPU clock is stopped) but all other
parts of the JN516x device continue to run. Any interrupt will cause Doze mode to
terminate and the application program will continue running from the next instruction.
To prevent the Watchdog firing when in Doze mode, the application should ensure that
a timer is running at a higher frequency than the Watchdog expiry period.

5.1.2 Sleep Mode with Memory Held

During Sleep with memory held, the contents of on-chip RAM are maintained,
including stack context data and application data. Thus, on waking, the device can
recover from sleep very quickly to continue normal operation from the next instruction.

In this mode, all power domains are powered down except those for the on-chip RAM
and VDD supply. In addition, the 32-kHz on-chip oscillator can optionally be left
running, which allows the device to be woken from sleep using wake timers.
JN-UG-3075 v1.8 © NXP Laboratories UK 2016 49

Chapter 5
Power Manager (PWRM)

Otherwise, the device can only be woken by changes on the DIO pins or the
comparator input, or by a pulse counter expiry.

Although the contents of memory are held, on waking it is still necessary to re-
configure the IEEE 802.15.4 stack layers and to re-initialise most of the on-chip
peripherals. Wake callback functions can be registered for this purpose:

 You DO NOT have to re-initialise the DIOs, wake timers and comparator.

 You DO have to re-initialise everything else, including all other on-chip
peripherals, the IEEE 802.15.4 MAC layer and, if using callbacks, the
Programmable Interrupt Controller (PIC) - the callback functions must be re-
registered. On the JN516x device, the SPI hardware must also be re-initialised.

5.1.3 Sleep Mode without Memory Held

During Sleep without memory held, on-chip RAM is powered down, and therefore
stack context data and application data are not preserved on-chip. Normally, this data
must be saved to external NVM (Non-Volatile Memory) before the chip enters sleep
mode, and then recovered from NVM on waking (see Chapter 3).

In this mode, all power domains are powered down except the VDD power supply
domain. Again, the 32-kHz on-chip oscillator can optionally be left running, which
allows the device to be woken from sleep using wake timers. Otherwise, the device
can only be woken by changes on the DIO pins or the comparator input, or by a pulse
counter expiry.

On waking, the application program must be re-loaded from external NVM before the
node can resume operation. All variables and peripherals must be re-initialised,
except those used as wake sources and the DIO lines.

5.1.4 Deep Sleep Mode

In Deep Sleep mode, all switchable power domains are powered down and the 32-kHz
oscillator is stopped. The device can be woken from deep sleep either via a hardware
reset (by taking the RESETN pin low or by power cycling the device) or a change on
the DIO pins.

On waking, the application program must be re-loaded from external NVM before the
node can resume operation. All variables and peripherals must be re-initialised,
including the DIO lines.
50 © NXP Laboratories UK 2016 JN-UG-3075 v1.8

 JenOS
User Guide
5.2 Callback Functions for Power Manager

If you intend to use the Power Manager, a number of callback functions must be
available for the Power Manager to call in order to:

 start the application (see Section 5.2.1)

 perform housekeeping tasks when entering and leaving low-power mode (see
Section 5.2.2)

 handle interrupts from Wake Timer 1 (see Section 5.2.3)

5.2.1 Essential Callback Function

When your application uses the Power Manager, you must define and use the callback
function vAppMain() in your code. The main task of your application must be included
in this function (which must never return).

5.2.2 Pre-sleep and Post-sleep Callback Functions

In order to implement low-power modes, you must provide the Power Manager with
user-defined callback functions to perform housekeeping tasks when the node enters
and leaves low-power mode. Registration functions are provided for these callback
functions, where the registration functions must be called in the user-defined callback
function vAppRegisterPWRMCallbacks().

 The pre-sleep callback function is called by the Power Manager just before
putting the device into low-power mode. This callback function is registered in
your code through the API function PWRM_vRegisterPreSleepCallback().

 The post-sleep callback function is called by the Power Manager just after the
device leaves low-power mode (irrespective of how the device was woken from
sleep). This callback function is registered in your code through the API
function PWRM_vRegisterWakeupCallback().

vAppRegisterPWRMCallbacks() is called by the stack as part of a cold start.

The pre- and post-sleep callback function themselves must each be declared in the
code using the macro

PWRM_CALLBACK(fn_name)

where fn_name is the name of the callback function.

Each of these callback functions must also have a descriptor. This is a structure that
is used in the above registering functions to specify the callback function to register.

The callback descriptor must be declared using the macro

PWRM_DECLARE_CALLBACK_DESCRIPTOR(desc_name, fn_name)

where desc_name is the descriptor name and fn_name is the callback function name.
JN-UG-3075 v1.8 © NXP Laboratories UK 2016 51

Chapter 5
Power Manager (PWRM)

For example:

PWRM_CALLBACK(vPreSleepCB1);

PWRM_DECLARE_CALLBACK_DESCRIPTOR(pscb1_desc, vPreSleepCB1);

5.2.3 Wake Timer Callback Function

If you intend to use wake events, derived from Wake Timer 1, your interrupt handler
must call the pre-defined callback function PWRM_WakeInterruptCallback(). This
function maintains the list of scheduled wake events - if required, it will re-start the
wake timer for the next wake point. It also calls the user-defined callback function
specified through PWRM_vScheduleActivity().

For further information on waking the device using scheduled wake events, refer to
Section 5.6.

5.3 Initialising and Starting the Power Manager

The Power Manager is initialised and started using the function PWRM_vInit(). This
function requires one of five possible low-power configurations to be specified:

 Sleep with 32-kHz oscillator running and memory held

 Sleep with 32-kHz oscillator running and memory not held

 Sleep with 32-kHz oscillator not running and memory held

 Sleep with 32-kHz oscillator not running and memory not held

 Deep sleep (oscillator not running and memory not held)

The specified configuration is the low-power mode in which the Power Manager will
attempt to put the device during inactive periods. Note that Doze mode cannot be
explicitly specified, but the Power Manager may put the device into Doze mode at
times when the specified mode cannot be entered (see Section 5.8.1).

The criteria for selecting a sleep mode are as follows:

 Oscillator setting:

 If the 32-kHz oscillator is left running during sleep, a wake point can be
scheduled using PWRM_vScheduleActivity() - see Section 5.6.

 Otherwise, the device must be woken by an external event (a change on a
DIO line or comparator input, a pulse counter expiry or a reset).

 Memory setting:

 If memory is held during sleep, stack context data and application data will
be preserved in memory, allowing the device to quickly resume operation
through a warm re-start following sleep.

 Sleep without memory held provides a greater power saving. However,
stack context data and application data must be saved to external NVM
(Non-Volatile Memory) before entering sleep mode and restored into on-
chip memory during a cold re-start on exiting sleep (see Chapter 3).
52 © NXP Laboratories UK 2016 JN-UG-3075 v1.8

 JenOS
User Guide
5.4 Enabling Power-Saving

To enable the Power Manager to put the JN516x device into low-power mode at
appropriate times, you must call the function PWRM_vManagePower(), normally
called from the OS idle task. Once this function has been called, the Power Manager
will, whenever possible, put the JN516x device into the sleep mode specified through
PWRM_vInit() (or, alternatively, into Doze mode - see Section 5.8.1).

5.5 Non-interruptible Activities

In order to enter sleep mode, no activities must be running that must not be interrupted
by sleep. This condition for entering sleep mode is monitored using an activity counter
- sleep mode can only be entered when this counter is zero. The application is
responsible for maintaining the activity counter, as follows:

 Whenever an activity is started that must not be interrupted by sleep, the
application must notify the Power Manager using the function
PWRM_eStartActivity(), which increments the activity counter.

 Whenever such an activity is completed, the application must notify the Power
Manager using the function PWRM_eFinishActivity(), which decrements the
activity counter.

You can obtain the current value of the activity counter using the function
PWRM_u16GetActivityCount().

Note: Sleep mode cannot be entered while there are
software timers active (in running or expired states). You
must therefore de-activate any such timers to allow the
Power Manager to put the JN516x device into sleep
mode - refer to the Caution in Section 2.4.6.

Caution: PWRM_eFinishActivity() must only be called
by an application following a matching call to
PWRM_eStartActivity(). The OS and ZigBee PRO
stack both use the activity counter, so calling
PWRM_eFinishActivity() inappropriately can leave the
OS or ZigBee PRO stack in an inconsistent state.
JN-UG-3075 v1.8 © NXP Laboratories UK 2016 53

Chapter 5
Power Manager (PWRM)

5.6 Terminating Low-Power Mode

Low-power modes can be terminated in a number of ways:

 Any Interrupt: When in Doze mode, the device can be woken by any interrupt.

 Wake Timer: When in Sleep mode in which the 32-kHz oscillator runs, the
device can be woken by a scheduled wake event configured using the function
PWRM_vScheduleActivity(). For more information on scheduled wake
events, refer to Section 5.6.

 External Wake Event: The following external wake events are available:

 DIO: When in Sleep and Deep Sleep modes, the device can be woken by
a change of state of a DIO line.

 Comparator input: When in Sleep mode, the device can be woken by a
change of state of the comparator input.

 Pulse counter: When in Sleep mode, the device can be woken on expiry
of the pulse counter, which counts pulses on an external input.

The above external wake events can be controlled by functions of the JN516x
Integrated Peripherals API, described in the JN516x Integrated Peripherals API
User Guide (JN-UG-3087). In addition, the applicable external wake events must
be configured in the RTOS configuration for the application.

 Hardware Reset: When in Deep Sleep mode, the device can be woken by a
hardware reset.

The valid wake sources for the different low-power modes are summarised in Table 1
below.

On leaving low-power mode, the Power Manager will call the user-defined callback
function that has been registered using PWRM_vRegisterWakeupCallback().

Low-Power Mode

Wake Source

Any
Interrupt

Wake
Timer

DIO Comparator
Pulse

Counter
Hardware

Reset

Doze mode

Sleep mode with oscillator
running and memory held

Other Sleep modes

Deep Sleep mode

Table 1: Valid Wake Sources for Low-Power Modes
54 © NXP Laboratories UK 2016 JN-UG-3075 v1.8

 JenOS
User Guide
5.7 Scheduling Wake Events

In PWRM_vInit(), if you have selected the Sleep mode with the 32-kHz oscillator
running and memory held, you can schedule wake events which ensure that the
device will be awake at certain times - that is, if the device is sleeping, it will be woken
at the scheduled time. This scheduling uses Wake Timer 1 of the JN516x device,
which operates at 32 kHz.

A wake event can be scheduled using the function PWRM_eScheduleActivity(). This
function requires you to specify the number of ticks of the wake timer until the wake
event. You must also specify the user-defined callback function that must be called
when the wake event occurs.

When the wake timer expires for a scheduled wake event, an interrupt is generated.
The application’s interrupt handler then calls the pre-defined callback function
PWRM_WakeInterruptCallback(). This function maintains the list of scheduled wake
events and, if necessary, re-starts the wake timer for the next scheduled wake event.
The function also calls the user-defined callback function specified through
PWRM_eScheduleActivity().

5.8 Doze Mode

Doze mode is a lighter power-saving mode than the sleep modes, as all elements of
the JN516x device remain powered but the CPU is paused (CPU clock is stopped).

This low-power mode cannot be explicitly selected in PWRM_vInit(). The Power
Manager will put the JN516x device into Doze mode only in certain circumstances,
described in Section 5.8.1 below. However, to enter Doze mode, the Power Manager
must have been initialised using PWRM_vInit() and the power-saving modes must
have been enabled using PWRM_vManagePower().

Note: This section is only applicable to the sleep mode
in which the 32-kHz oscillator is left running and memory
is held.

Note: In addition, when the device wakes from sleep,
the user-defined callback function registered through
PWRM_vRegisterWakeupCallback() will also be
called. However, this is a general-purpose wake-up
function which is called irrespective of how the device
was woken (it is not unique to scheduled wake events,
but also called for external wake events).
JN-UG-3075 v1.8 © NXP Laboratories UK 2016 55

Chapter 5
Power Manager (PWRM)

5.8.1 Circumstances that Lead to Doze Mode

Although Sleep and Deep Sleep modes cannot be entered while there are activities
running that must not be interrupted by sleep (see Section 5.5), the Power Manager
can put the device into Doze mode while the activity counter is non-zero.

Even when the activity counter is zero, if a sleep mode has been configured with the
32-kHz oscillator running (see Section 5.3) but no wake event has been scheduled
(see Section 5.6), the Power Manager will put the device into Doze mode instead of
Sleep mode.

The decision to put a device into a Sleep mode or Doze mode is illustrated in the
flowchart in Figure 6 below.

Figure 6: Flowchart of Decision to Enter Doze Mode

Start

Activity
counter = 0

32-kHz
oscillator on

Wake
scheduled

SLEEP

DOZE

Y

N

Y

N

Y

N

SLEEP
56 © NXP Laboratories UK 2016 JN-UG-3075 v1.8

 JenOS
User Guide
5.8.2 Doze Mode Monitoring During Development

Depending on the circumstances described in Section 5.8.1, the JN516x device may
spend a significant proportion of its time in Doze mode. The Power Manager API
provides a function that allows you to investigate the fraction of time that the JN516x
device typically spends in Doze mode for a given application. The function provides a
doze monitoring output on the DIO1 pin of the JN516x device. This functionality can
be used when the application is running in debug mode.

The function PWRM_vSetupDozeMonitor() must be called to start a monitoring
session. The state of the DIO1 pin will then reflect the doze state of the device,
allowing you to make doze state measurements using external equipment. The
fraction of time that the JN516x device spends in Doze mode can then be estimated
as (see Figure 7): Total time in Doze mode during session / Elapsed time of session

To obtain sensible results, doze monitoring should be allowed to run for a significant
period of time.

Figure 7: Doze Monitoring

Doze Doze Doze Doze

Doze monitoring session
started using

PWRM_vSetupDozeMode()

Calculate total time spent in
Doze mode during session

Calculate elapsed time since
session started
JN-UG-3075 v1.8 © NXP Laboratories UK 2016 57

Chapter 5
Power Manager (PWRM)

58 © NXP Laboratories UK 2016 JN-UG-3075 v1.8

 JenOS
User Guide
6. Protocol Data Unit Manager (PDUM)

Communication between nodes in a wireless network is implemented using messages
which contain application data. The part of a message which contains this data is
called the Application Protocol Data Unit (APDU). The Protocol Data Unit Manager
(PDUM) is concerned with APDU memory management, and assembling and
disassembling APDUs - that is, inserting data into APDUs to be transmitted and
extracting data from received APDUs.

6.1 Message Assembly and Disassembly

A message travels over a wireless network as a packet (usually an 802.15.4 packet)
containing application data surrounded by header and footer information relating to
the different layers of the protocol stack.

A message to be sent is prepared at the application level, at the top of the protocol
stack, by creating an Application Protocol Data Unit (APDU) containing the application
data to be included in the message. This APDU is then passed down the layers of the
stack, with each layer adding its own protocol information to the header and footer. On
reaching the ‘physical’ layer at the bottom of the stack, the message is complete and
ready to be transmitted.

For transmission, the message is converted to an NPDU (Network Protocol Data Unit).
If the length of the message is greater than the packet size used in network
communication (e.g. 802.15.4 packet size), the message is divided up and
transmitted in multiple NPDUs (Network Protocol Data Units). You will need to be
aware of this if using a sniffer to detect transmitted packets.

A received message is passed up the protocol stack, with each stack layer stripping
out the corresponding protocol information from the header and footer. On reaching
the application level, only the APDU remains. The application data can then be
extracted from this APDU.

The assembly and disassembly of a message, described above, are illustrated in the
figure below, in which the lower stack layers (MAC and Physical) are provided by the
IEEE 802.15.4 protocol.

Note: Data is stored in memory in the JN516x device in
big-endian byte order but is transmitted over the
network in little-endian byte order.
JN-UG-3075 v1.8 © NXP Laboratories UK 2016 59

Chapter 6
Protocol Data Unit Manager (PDUM)

6.2 Preparing the PDU Manager

In order to use the PDU Manager:

 You must statically define the required APDUs using the ZPS Configuration
Editor (described in the ZigBee PRO Stack User Guide (JN-UG-3048 or
JN-UG-3101)). Each APDU is given a unique handle. While the data payload of
an APDU can be of arbitrary length, a maximum length is set for an APDU.

 Before calling any other PDUM functions in your code, you must call the
function PDUM_vInit() to initialise the PDU Manager.

Figure 8: Message Assembly and Disassembly

Application Data

Physical layer

MAC layer

Network layer

Application level

Application Data

APDU APDU

Message transmitted in NPDU

Data inserted in APDU Data extracted from APDU

NPDU NPDU NPDU

Transmitting Node Receiving Node

If message is larger than packet size, it will be divided up
and transmitted as a sequence of NPDUs
60 © NXP Laboratories UK 2016 JN-UG-3075 v1.8

 JenOS
User Guide
6.3 Inserting Data into Outgoing Message

When sending a message to another node, you must first create an APDU containing
the application data to be sent. To do this, first allocate an APDU instance by calling
the function PDUM_hAPduAllocateAPduInstance() and then populate the APDU
instance with data using PDUM_u16APduInstanceWriteNBO(), in which you must
specify:

 the handle of the APDU instance in which data is to be inserted (this is the
handle returned by PDUM_hAPduAllocateAPduInstance())

 the starting position of the data in the APDU - that is, the position of the least
significant data byte

 the format of the data payload - the data can be made up of a sequence of data
values of different types

 the data values to be inserted in the data payload

Alternatively, the function PDUM_u16APduInstanceWriteStrNBO() can be used to
populate the APDU instance - this function allows a data structure to be inserted into
the APDU.

You must then use the relevant ZigBee PRO API function to send the message - refer
to the ZigBee PRO Stack User Guide (JN-UG-3048 or JN-UG-3101). Once the
message has been sent, the ZigBee PRO stack automatically de-allocates the
memory-space used for the APDU instance.

Note that PDUM_u16APduInstanceWriteNBO() performs the necessary data
conversion from big-endian byte order to little-endian byte order for transmission.

Alternatively, you can produce your own code to insert data into the payload of an
APDU. To help you, two functions are provided:

 PDUM_pvAPduInstanceGetPayload(): This function returns a pointer to the
start of the payload section of the APDU instance.

 PDUM_eAPduInstanceSetPayloadSize(): This function sets the size, in
bytes, of the data payload.

Caution: Data must be stored in memory in big-endian
order but is transmitted over the network in little-endian
byte order. Therefore, if you use your own code to insert
data into an APDU, you must reverse the byte order of
the data before inserting it. Failure to change the
endianness of the data will result in an alignment
exception.
JN-UG-3075 v1.8 © NXP Laboratories UK 2016 61

Chapter 6
Protocol Data Unit Manager (PDUM)

6.4 Extracting Data from Incoming Message

The function PDUM_u16APduInstanceReadNBO() provides an easy way of
extracting the data payload from an incoming message, which is received using the
RTOS function OS_eCollectMessage() - refer to Section 2.4.8. The
PDUM_u16APduInstanceReadNBO() function requires the following to be specified:

 the handle of the APDU instance containing the data to be extracted (this is the
handle contained in the ZPS_EVENT_AF_DATA_INDICATION stack event
which notified the application of the arrival of the data message)

 the starting position of the data in the APDU - that is, the position of the least
significant data byte

 the format of the data payload - the data can be made up of a sequence of data
values of different types

 a pointer to a structure in which the extracted data will be stored

Once the data has been extracted, you should de-allocate the memory space used for
the APDU instance by calling the function PDUM_eAPduFreeAPduInstance().

Note that PDUM_u16APduInstanceReadNBO() performs the necessary data
conversion from little-endian byte order to big-endian byte order for storage.

Alternatively, you can produce your own code to extract the payload data from an
APDU. To help you, two functions are provided:

 PDUM_pvAPduInstanceGetPayload(): This function returns a pointer to the
start of the payload data in the APDU instance.

 PDUM_u16APduInstanceGetPayloadSize(): This function returns the size, in
bytes, of the data payload.

Caution: Data is received from the network in little-
endian byte order, but must be stored in memory in big-
endian order. Therefore, if you use your own code to
extract data from an APDU, you must reverse the byte
order of the data before storing it. Failure to change the
endianness of the data will result in an alignment
exception.
62 © NXP Laboratories UK 2016 JN-UG-3075 v1.8

 JenOS
User Guide
7. Debug (DBG) Module

This chapter describes the Debug (DBG) module which allows application code to be
debugged by means of diagnostic messages that are output to a display device.

7.1 Overview

The Debug module comprises an API containing diagnostic functions that can be
embedded in your application code. Application debugging using the Debug module
requires the JN516x device to be connected to a display device (such as a PC) via an
IO interface, such as one of the on-chip UARTs. The display device must provide a
dumb terminal through which output from the JN516x device can be viewed. A typical
implementation is illustrated in the figure below.

The API provides the essential printf- and assert-style debug functions, which can be
strategically placed in your code:

 DBG_vPrintf() is used to output formatted strings and data values at an
appropriate point during program execution, in order to indicate progress.

 DBG_vAssert() is used to test a logical condition, and to stop program
execution if the test fails (condition is FALSE).

User-specified callback functions are used by the Debug module to control the IO
interface (see Section 7.3).

The terminal on the PC can also supply input to the JN516x UART. The function
DBG_iGetChar() can be used by the application to obtain a character from this input
source. This input can then be handled by the JN516x application.

Figure 9: Typical Hardware Set-Up for Debugging

Application

PC

Terminal
Window

UART
Serial Connection

JN516x

Debug Module

Callbacks

printf() assert() GetChar()
JN-UG-3075 v1.8 © NXP Laboratories UK 2016 63

Chapter 7
Debug (DBG) Module

7.2 Enabling the Debug Module

The Debug module API is defined in the header file DBG.h, which must be included
in your code.

In order to use the Debug module, it must be explicitly enabled at build time by defining
DBG_ENABLE in the build - for example, by adding -DDBG_ENABLE to the compiler.
If the module is not enabled in this way, all the Debug functions embedded in your
code will be ignored.

In addition, the functions DBG_vPrintf() and DBG_vAssert() each include a Boolean
parameter which can be used to enable/disable individual instances of these
functions. Two or more instances of these functions can be grouped to form a ‘stream’
for which this Boolean parameter is a common constant used to enable/disable the
whole function group. This constant can be set at build time (see Section 7.5).

7.3 Initialising and Configuring the Debug Module

The way that the Debug module is configured and initialised depends on the serial IO
interface which is to be used to output debug information from the JN516x device to
the attached PC:

 If a JN516x UART is to be used for output, the required initialisation/
configuration is as described in Section 7.3.1. This option will be taken by most
users.

 If any other serial IO interface is to be used for output, the required initialisation/
configuration is as described in Section 7.3.2.

Flags are provided in the global variable DBG_u32Flags for configuring certain
aspects of the Debug module - for details, refer to Section 7.4.

7.3.1 Using JN516x UART Input/Output

When a JN516x UART is to be used for the input/output of debug information, the
configuration and initialisation of the Debug module is accomplished with a single call
to the function DBG_vUartInit(), which allows selection of the UART (0 or 1) and the
baud-rate to be used. This function is used both during a cold start of the JN516x
device and during a warm start (where the latter is a device re-start with memory
contents retained).

Tip: By default, the Debug module will display each
‘printf line’ as passed. However, if DBG_VERBOSE is
defined at build time then each line displayed will be
prefixed with the file name and line number of the debug
statement.
64 © NXP Laboratories UK 2016 JN-UG-3075 v1.8

 JenOS
User Guide
7.3.2 Using Alternative Serial Output

When an alternative to an on-chip UART is to be used for the output of debug
information, the required IO interface must first be configured and enabled (using the
relevant functions from the JN516x Integrated Peripherals API).

The Debug module must then be initialised using the function DBG_vInit(). This
function is used both during a cold start of the JN516x device and during a warm start
(where the latter is a device re-start with memory contents retained). The function
takes as input a structure which contains pointers to four callback functions needed
for debugging:

 typedef struct

 {

 void (*prInitHardwareCb)(void);

 void (*prPutchCb) (char c);

 void (*prFlushCb) (void);

 void (*prFailedAssertCb)(void);

 } tsDBG_FunctionTbl;

The callback functions are user-defined and are described in the table below.

Pointer Callback Function

*prInitHardwareCb Function which re-initialises the IO interface after a warm
start, e.g. when JN516x device wakes from sleep.

*prPutchCb Function used by DBG_vPrintf() to output a single character
to the IO interface.

*prFlushCb Function used by DBG_vPrintf() to flush the IO interface
buffer to allow buffered output characters to be displayed. If
the output is unbuffered, this function should do nothing or
wait for the last character output using the putch() function to
be made available. Note that the function should not append
a newline character, as this should be handled by the format-
ting string passed to DBG_vPrintf().

*prFailedAssertCb Function which is called when DBG_vAssert() fails. The
function should stop execution and may reset the device.

Table 2: Callback Functions Specified in DBG_vInit()
JN-UG-3075 v1.8 © NXP Laboratories UK 2016 65

Chapter 7
Debug (DBG) Module

7.4 Debug Configuration Flags

The Debug module has a global variable DBG_u32Flags which is a bitmap containing
configuration flags. The bits/flags are enumerated, and are listed and described in the
table below.

Flag/Enumeration Description (if flag is set)

DBG_FLAG_NONE None of the flags are set

DBG_FLAG_OUTGOING_NL_CRNL Every \n character in the outgoing string is sent as \r\n.
This is for compatibility with certain terminal programs.

DBG_FLAG_AUTO_FLUSH DBG_vFlush() is called at the end of each DBG_vPrintf()
invocation. The application may instead choose to flush
the outgoing characters in idle time rather than at the end
of each outputted string.

DBG_FLAG_FLUSH_WHEN_FULL If the DBG back-end buffers outgoing characters then it
will automatically flush the buffer when full. Otherwise,
characters that do not fit in the buffer may be lost.

Table 3: Debug Configuration Flags

Note: The flags DBG_FLAG_OUTGOING_NL_CRNL
and DBG_FLAG_AUTO_FLUSH are set by default.
66 © NXP Laboratories UK 2016 JN-UG-3075 v1.8

 JenOS
User Guide
7.5 Example Diagnostic Code

The following code fragment illustrates use of the Debug module API. The JN516x
UART 0 is used. Two debug ‘streams’ (1 and 2) are used to separately enable/disable
two groups of debug lines.

#include <jendefs.h>

#include "DBG.h"

#include "DBG_Uart.h"

#ifndef DBG_STREAM_1

#define DBG_STREAM_1 FALSE

#endif

#ifndef DBG_STREAM_2

#define DBG_STREAM_2 FALSE

#endif

void appColdStart(void)

{

int i = 0;

/* Initialise the standard UART hardware */

DBG_vUartInit(DBG_E_UART_0, DBG_E_UART_BAUD_RATE_115200);

/* Now we can use DBG_vPrintf() and DBG_vAssert() to output characters

 to the UART device */

DBG_vPrintf(DBG_STREAM_1, "Printing to stream 1\n");

DBG_vPrintf(DBG_STREAM_2, "Printing an integer %i to stream 2\n", 10);

DBG_vAssert(DBG_STREAM_1, i == 1);

}

When building this application, you have following options:

 Debug disabled (the default)

 Debug enabled only for stream 1 - build with:

 -DDBG_ENABLE -DDBG_STREAM_1=TRUE

 Debug enabled only for stream 2 - build with:

 -DDBG_ENABLE -DDBG_STREAM_2=TRUE

 DBG enabled for both streams - build with:

 -DDBG_ENABLE -DDBG_STREAM_1=TRUE -DDBG_STREAM_2=TRUE
JN-UG-3075 v1.8 © NXP Laboratories UK 2016 67

Chapter 7
Debug (DBG) Module

68 © NXP Laboratories UK 2016 JN-UG-3075 v1.8

 JenOS
User Guide
Part II:
Reference Information
JN-UG-3075 v1.8 © NXP Laboratories UK 2016 69

70 © NXP Laboratories UK 2016 JN-UG-3075 v1.8

 JenOS
User Guide
8. RTOS API

The chapter contains descriptions of the macros and functions of the JenOS RTOS
(Real-Time Operating System) API. The API is defined in the header files os.h and
os_lib.h.

 The RTOS macros are described in Section 8.1

 The RTOS functions are described in Section 8.2

8.1 RTOS Macros

The section contains descriptions of the macros of the RTOS API. These macros are
used to define user tasks, ISRs (Interrupt Service Routines) and callback functions
(related to the hardware counter and associated software timers), and are listed
below.

Macro Page

OS_TASK 72

OS_ISR 73

OS_SWTIMER_CALLBACK 74

OS_HWCOUNTER_ENABLE_CALLBACK 75

OS_HWCOUNTER_DISABLE_CALLBACK 76

OS_HWCOUNTER_SET_CALLBACK 77

OS_HWCOUNTER_GET_CALLBACK 78

Caution: To control interrupts, you should only use the
functions supplied as part of the RTOS.
JN-UG-3075 v1.8 © NXP Laboratories UK 2016 71

Chapter 8
RTOS API

OS_TASK

Description

This macro is used in the application code to define a user task. The name of the user
task must be specified, where this task name has been declared in advance using
the JenOS Configuration Editor (see Section 14.4.1).

The macro is followed by the task body, as illustrated in the code fragment below:

OS_TASK(TaskA) {

 task body …

}

OS_TASK(TaskB) {

 task body …

}

Parameters

taskname Name of user task

OS_TASK(taskname)
72 © NXP Laboratories UK 2016 JN-UG-3075 v1.8

 JenOS
User Guide
OS_ISR

Description

This macro is used in the application code to define an ISR (Interrupt Service
Routine) which will be invoked when the corresponding interrupt occurs. The name
of the ISR must be specified, where this ISR name has been declared in advance
using the JenOS Configuration Editor (see Section 14.4.2). The association between
this ISR and an interrupt source is also configured in this file.

The macro is followed by the ISR body, as illustrated in the code fragment below:

OS_ISR(TickTimerISR) {

 ISR body …

}

Parameters

ISRname Name of ISR

OS_ISR(ISRname)
JN-UG-3075 v1.8 © NXP Laboratories UK 2016 73

Chapter 8
RTOS API

OS_SWTIMER_CALLBACK

Description

This macro is used to define a ‘software timer expiry’ callback function. This user-
defined function will be automatically invoked when a software timer expires which
has been started using the function OS_eStartSWTimer() - that is, when the timer
reaches the number of ticks specified in the start function. The callback function is
called by the function OS_eExpireSWTimers() (as an alternative to activating a user
task on expiry of the software timer).

The name of the callback function must be specified in the macro, where this name
has been declared in advance using the JenOS Configuration Editor (see Section
14.5.1). A pointer to a buffer can optionally be specified, where this buffer will contain
any data to be processed by the callback function. This data is passed to the callback
function through a parameter of OS_eStartSWTimer().

The macro is followed by the callback function definition, as illustrated in the code
fragment below:

OS_SWTIMER_CALLBACK(MyCallback, pvMyData)

{

 Callback definition...

}

Parameters

CBname Name of callback function

pData Pointer to buffer containing data to be used by callback
function (if no data is needed, specify a valid dummy pointer)

OS_SWTIMER_CALLBACK(CBname, pData)
74 © NXP Laboratories UK 2016 JN-UG-3075 v1.8

 JenOS
User Guide
OS_HWCOUNTER_ENABLE_CALLBACK

Description

This macro is used to define a callback function to enable and start the hardware
counter which may be used to drive one or more software timers. This user-defined
function will be automatically invoked when a software timer is started using the
function OS_eStartSWTimer(), provided that there are no other software timers
already active that use the hardware counter.

The name of the callback function must be specified in the macro, where this name
has been declared in advance using the JenOS Configuration Editor (see Section
14.5.1).

The macro is followed by the callback function definition, as illustrated in the code
fragment below:

OS_HWCOUNTER_ENABLE_CALLBACK(EnableTickTimer)

{

 Callback definition...

}

Parameters

CBname Name of callback function

OS_HWCOUNTER_ENABLE_CALLBACK(CBname)
JN-UG-3075 v1.8 © NXP Laboratories UK 2016 75

Chapter 8
RTOS API

OS_HWCOUNTER_DISABLE_CALLBACK

Description

This macro is used to define a callback function to stop and disable the hardware
counter which may be used to drive one or more software timers. This user-defined
function will be automatically invoked:

 when a software timer is stopped using the function OS_eStopSWTimer()

 by the function OS_eExpireSWTimers() when a software timer expires

provided that there are no other software timers still active that use the hardware
counter.

The name of the callback function must be specified in the macro, where this name
has been declared in advance using the JenOS Configuration Editor (see Section
14.5.1).

The macro is followed by the callback function definition, as illustrated in the code
fragment below:

OS_HWCOUNTER_DISABLE_CALLBACK(DisableTickTimer)

{

 Callback definition...

}

Parameters

CBname Name of callback function

OS_HWCOUNTER_DISABLE_CALLBACK(CBname)
76 © NXP Laboratories UK 2016 JN-UG-3075 v1.8

 JenOS
User Guide
OS_HWCOUNTER_SET_CALLBACK

Description

This macro is used to define a callback function to set the value in the compare
register for the hardware counter which may be used to drive one or more software
timers. The compare register contains a value with which the incrementing counter
value can be compared - action may be taken when the two values match.

This user-defined callback function is normally used to set a compare register value
for the next software timer expiry point. Since the hardware counter increments
continuously (and loops around), the compare register must be set to a value equal
to the current counter value plus the number of ticks until the next expiry point.

The callback function will be automatically invoked when a software timer is started
using the function OS_eStartSWTimer() or re-started using the function
OS_eContinueSWTimer(). It is also called by OS_eExpireSWTimers() when a
software timer expires and the compare register must be updated for the next
software timer to expire (if any).

The name of the callback function must be specified in the macro, where this name
has been declared in advance using the JenOS Configuration Editor (see Section
14.5.1). The required compare register value must also be specified.

The callback definition should follow the format below:

OS_HWCOUNTER_SET_CALLBACK(SetTickTimerCompare, u32CompVal)

{

 if (u32CompVal is in the future) {

 /* set the tick timer compare register */

 return TRUE;

 } else { /* compare value is in the past */

 /* expire timer immediately */

 return FALSE;

 }

}

Parameters

CBname Name of callback function

CompValue Value to set in the compare register for the hardware counter

OS_HWCOUNTER_SET_CALLBACK(CBname, CompValue)
JN-UG-3075 v1.8 © NXP Laboratories UK 2016 77

Chapter 8
RTOS API

OS_HWCOUNTER_GET_CALLBACK

Description

This macro is used to define a callback function to obtain the current value of the
hardware counter which may be used to drive one or more software timers. The
function must return a uint32 containing the hardware counter value.

The name of the callback function must be specified in the macro, where this name
has been declared in advance using the JenOS Configuration Editor (see Section
14.5.1).

The macro is followed by the callback function definition, as illustrated in the code
fragment below:

OS_HWCOUNTER_GET_CALLBACK(GetCurrentCount)

{

 Callback definition...

}

Parameters

CBname Name of callback function

OS_HWCOUNTER_GET_CALLBACK(CBname)
78 © NXP Laboratories UK 2016 JN-UG-3075 v1.8

 JenOS
User Guide
8.2 RTOS Functions

This section contains descriptions of the functions of the RTOS API. The API functions
are sub-divided into the following areas, which are covered in separate sub-sections:

8.2.1 Initialisation Functions

This section describes the RTOS initialisation functions.

The functions are listed below, along with their page references:

Function Page

OS_vStart 80

OS_vRestart 81

Functional Area Section Reference

Initialisation Section 8.2.1

User Tasks Section 8.2.2

Interrupts Section 8.2.3

Mutex Section 8.2.4

Messaging Section 8.2.5

Software Timers Section 8.2.6
JN-UG-3075 v1.8 © NXP Laboratories UK 2016 79

Chapter 8
RTOS API

OS_vStart

Description

This function is used to start the RTOS.

Three optional user-defined functions can be specified:

 An initialisation function for the hardware and user application, e.g. initialises CPU
peripherals and enables interrupt generation flags. This function is called with all
controlled interrupts disabled. On completion of this function, all controlled interrupts
are enabled.

 A function to capture any unclaimed interrupts that occur but do not have an ISR
configured for them.

 A function to handle OS errors, as described in Section 2.5.

On returning from OS_vStart(), the idle task is entered.

Parameters

*prvInitFunction Optional pointer to a user-defined initialisation function. If not
used, this parameter must be set to NULL.

*prvUnclaimedIRQ Optional pointer to user-defined function to capture unclaimed
interrupts. If not used, this parameter must be set to NULL.

*prvErrorHook Optional pointer to user-defined callback function to handle
OS errors. Only required if error hook is set to true in the
JenOS configuration editor.

Returns

None

void OS_vStart(
void (*prvInitFunction)(void),
void (*prvUnclaimedIRQ)(void),
void (*prvErrorHook)(OS_teStatus, void *osHandle));

Caution: The user-defined initialisation function must not
perform any operations that require the use of interrupts,
since interrupts are not enabled until the RTOS has started,
which occurs just before the function OS_vStart() returns.
80 © NXP Laboratories UK 2016 JN-UG-3075 v1.8

 JenOS
User Guide
OS_vRestart

Description

This function is used to restart the RTOS following a warm start with memory held.
The function re-initiates the interrupt hardware.

Parameters

None

Returns

None

void OS_vRestart(void);
JN-UG-3075 v1.8 © NXP Laboratories UK 2016 81

Chapter 8
RTOS API

8.2.2 User Task Functions

This section provides descriptions of the RTOS API functions concerned with user
tasks.

The functions are listed below, along with their page references:

Function Page

OS_eActivateTask 83

OS_eGetCurrentTask 84
82 © NXP Laboratories UK 2016 JN-UG-3075 v1.8

 JenOS
User Guide
OS_eActivateTask

Description

This function is used to activate the specified user task - that is, to move the task from
the dormant state to the pending state (i.e. ready to run). When it becomes the
highest priority pending task, it will then execute.

If the task is already pending then its activation count is incremented. The activation
count keeps track of the number of times the task must be executed. Once the task
has been executed, the activation count is decremented. If this count reaches zero,
the task is moved back to the dormant state, otherwise the task returns to the
pending state.

A handle for the task is pre-defined using the JenOS Configuration Editor.

Parameters

hTask Handle of the user task to be activated

Returns

OS_E_OK (successful)

OS_E_BADTASK (invalid task handle used)

OS_E_OVERACTIVATION (maximum number of activations exceeded: 65535)

OS_teStatus OS_eActivateTask(OS_thTask hTask);
JN-UG-3075 v1.8 © NXP Laboratories UK 2016 83

Chapter 8
RTOS API

OS_eGetCurrentTask

Description

This function is used to obtain the handle of the user task that is currently in the
running state.

Parameters

*phTask Pointer to place to store task handle obtained

Returns

OS_E_OK (successful)

OS_BADVALUE (invalid pointer specified)

OS_teStatus OS_eGetCurrentTask(OS_thTask *phTask);
84 © NXP Laboratories UK 2016 JN-UG-3075 v1.8

 JenOS
User Guide
8.2.3 Interrupt Functions

This section provides descriptions of the RTOS API functions concerned with
interrupts.

The functions are listed below, along with their page references:

Function Page

OS_eDisableAllInterrupts 86

OS_eEnableAllInterrupts 87

OS_eSuspendOSInterrupts 88

OS_eResumeOSInterrupts 89

Caution: These interrupt functions must not be called
from within an Interrupt Service Routine (ISR).

Note: The RTOS cannot clear interrupts and it is the
responsibility of the application to do this - refer to
Appendix B.
JN-UG-3075 v1.8 © NXP Laboratories UK 2016 85

Chapter 8
RTOS API

OS_eDisableAllInterrupts

Description

This function is used to disable all CPU interrupts - that is, both controlled and
uncontrolled interrupts.

Note that nested calls to this function are not permitted and that the function cannot
be called in an ISR.

These interrupts can be re-enabled using the function OS_eEnableAllInterrupts().

Parameters

None

Returns

OS_E_OK (successful)

OS_teStatus OS_eDisableAllInterrupts(void);
86 © NXP Laboratories UK 2016 JN-UG-3075 v1.8

 JenOS
User Guide
OS_eEnableAllInterrupts

Description

This function is used to enable all CPU interrupts - that is, both controlled and
uncontrolled interrupts.

Note that nested calls to this function are not permitted and that the function cannot
be called in an ISR.

These interrupts can be disabled using the function OS_eDisableAllInterrupts().

Parameters

None

Returns

OS_E_OK (successful)

OS_teStatus OS_eEnableAllInterrupts(void);
JN-UG-3075 v1.8 © NXP Laboratories UK 2016 87

Chapter 8
RTOS API

OS_eSuspendOSInterrupts

Description

This function is used to disable interrupts managed by the RTOS - that is, controlled
interrupts.

Note that nested calls to this function are permitted.

These interrupts can be subsequently re-enabled using the function
OS_eResumeOSInterrupts().

Parameters

None

Returns

OS_E_OK (successful)

OS_E_OSINTOVERFLOW (maximum nesting level exceeded: 0xFFFFFFFFF)

OS_teStatus OS_eSuspendOSInterrupts(void);
88 © NXP Laboratories UK 2016 JN-UG-3075 v1.8

 JenOS
User Guide
OS_eResumeOSInterrupts

Description

This function is used to re-enable interrupts managed by the RTOS - that is,
controlled interrupts.

Note that nested calls to this function are permitted.

These interrupts can be disabled using the function eSuspendOSInterrupts().

Parameters

None

Returns

OS_E_OK (successful)

OS_E_OSINTUNDERFLOW (too many resumes - unbalanced suspend/resumes)

OS_teStatus OS_eResumeOSInterrupts(void)
JN-UG-3075 v1.8 © NXP Laboratories UK 2016 89

Chapter 8
RTOS API

8.2.4 Mutex Functions

This section provides descriptions of the RTOS API functions concerned with the
mutex (Mutually Exclusive Activities) feature.

The functions are listed below, along with their page references:

Function Page

OS_eEnterCriticalSection 91

OS_eExitCriticalSection 92
90 © NXP Laboratories UK 2016 JN-UG-3075 v1.8

 JenOS
User Guide
OS_eEnterCriticalSection

Description

This function is used at the start of a critical section of code, during which the
currently running user task or ISR must not be pre-empted by another user task/ISR
within the same “mutex” group (see below).

The function is paired with the function OS_eExitCriticalSection(), which is placed
at the end of the critical section. Execution of the critical section will be allowed to
complete before processing is switched to a higher priority task/ISR that may be
pending within the same “mutex” group.

This mechanism, known as a “mutex”, applies to a group of user tasks or ISRs.
Effectively, the mutex feature allows pre-set user task/ISR priorities to be over-ridden
by temporarily assigning the highest priority in the mutex group to the task/ISR
containing the critical section. The mutex feature is useful in allowing exclusive
access to shared resources (e.g. hardware peripherals and shared memory). It
allows the currently running user task/ISR to finish accessing a shared resource
before processing is switched to a higher priority user task/ISR (from the same mutex
group) that also needs to access the resource. In this way, access to a shared
resource can be serialised.

Function calls to enter/exit the same critical section should not be nested. Nested
calls to enter/exit different critical sections must be strictly nested. The critical section
must be exited before termination of the task that uses it.

A handle for the mutex group is pre-defined using the JenOS Configuration Editor.

Parameters

hMutex Handle of mutex group for critical section of code

Returns

OS_E_OK (successful)

OS_E_BADMUTEX (invalid mutex handle used)

OS_E_BAD_NESTING (bad nesting)

OS_teStatus OS_eEnterCriticalSection(OS_thMutex hMutex);
JN-UG-3075 v1.8 © NXP Laboratories UK 2016 91

Chapter 8
RTOS API

OS_eExitCriticalSection

Description

This function must be used at the end of a critical section of code during which the
current user task or ISR cannot be pre-empted by another user task/ISR from the
same mutex group.

The function is paired with the function OS_eEnterCriticalSection(), which is placed
at the start of the critical section. Execution of the critical section will be allowed to
complete before processing is switched to a higher priority user task/ISR that may be
pending within the same mutex group.

The handle of the mutex group to which the critical section belongs must be specified
in this function and must be the same as the handle used in the matching call to
OS_eEnterCriticalSection().

Function calls to enter/exit the same critical section should not be nested. Nested
calls to enter/exit different critical sections must be strictly nested. The critical section
must be exited before termination of the task that uses it.

Parameters

hMutex Handle of mutex group for critical section of code

Returns

OS_E_OK (successful)

OS_E_BADMUTEX (invalid mutex handle used)

OS_E_BAD_NESTING (bad nesting)

OS_teStatus OS_eExitCriticalSection(OS_thMutex hMutex);
92 © NXP Laboratories UK 2016 JN-UG-3075 v1.8

 JenOS
User Guide
8.2.5 Messaging Functions

This section provides descriptions of the RTOS API functions concerned with sending
and collecting inter-task messages.

The functions are listed below, along with their page references:

Function Page

OS_ePostMessage 94

OS_eCollectMessage 95

OS_eGetMessageStatus 96
JN-UG-3075 v1.8 © NXP Laboratories UK 2016 93

Chapter 8
RTOS API

OS_ePostMessage

Description

This function sends a message of the specified type, possibly containing user data,
to another user task or ISR.

The message type must be defined in the header file os_msg_types.h. The identity
of the destination task or ISR, and whether the message type is queued, are pre-
configured using the JenOS Configuration Editor (see Section 14.6.2). The data
content for a message type can be of arbitrary size, including zero length (no data).

 If the data content has non-zero length, the sent message may possibly be queued with
other messages of the same type (depending on how the message type has been
configured).

 If the data content has zero length, the sent message is not queued (regardless of how
the message type has been configured).

If a sent message is not queued, the message overwrites any previous, uncollected
message of the same type.

This function supports one-to-one and many-to-one communications, but does not
support many-to-many communications.

Messages posted with this function are collected by the destination task using the
function OS_eCollectMessage().

Parameters

hMessage Handle of message type

*pvData Pointer to data to be sent in message. Set to NULL for a
message with no data

Returns

OS_E_OK (successful)

OS_E_BADMESSAGE (invalid message type handle specified)

OS_E_QUEUE_FULL (message queue is full)

OS_teStatus OS_ePostMessage(OS_thMessage hMessage,
void *pvData);

Note: A message sent with this function can alternatively
activate the destination task or invoke a callback function to
perform user actions. These options are configured using the
JenOS Configuration Editor.
94 © NXP Laboratories UK 2016 JN-UG-3075 v1.8

 JenOS
User Guide
OS_eCollectMessage

Description

This function is used to collect a posted message of the specified message type. Any
extracted message data is placed in the specified location.

The function is used to collect a message sent using the function
OS_ePostMessage().

If the message is unqueued, it will always be successfully collected.

Parameters

hMessage Handle of message type of message to collect

*pvData Pointer to place where extracted message data will be stored.
Set to NULL for a message with no data

Returns

OS_E_OK (successful)

OS_E_BADMESSAGE (invalid message handle specified)

OS_E_BADVALUE (invalid data pointer specified)

OS_E_QUEUE_EMPTY (message queue contains no messages)

OS_teStatus OS_eCollectMessage(
OS_thMessage hMessage,
void *pvData);
JN-UG-3075 v1.8 © NXP Laboratories UK 2016 95

Chapter 8
RTOS API

OS_eGetMessageStatus

Description

This function is used to obtain the status of the incoming data message queue for the
specified message type. The returned value indicates whether the queue contains
messages or is empty.

Parameters

hMessage Handle of message type for message queue to check

Returns

OS_E_BADMESSAGE (invalid message handle specified)

OS_E_QUEUE_EMPTY (message queue contains no messages)

OS_E_QUEUE_FULL (message queue contains uncollected messages)

OS_E_UNQUEUED (message type is not queued)

OS_teStatus OS_eGetMessageStatus(
OS_thMessage hMessage);
96 © NXP Laboratories UK 2016 JN-UG-3075 v1.8

 JenOS
User Guide
8.2.6 Software Timer Functions

This section provides descriptions of the RTOS API functions concerned with the
software timers that can be used to schedule the start of an activity within a user task
or ISR.

The functions are listed below, along with their page references:

Function Page

OS_eStartSWTimer 98

OS_eStopSWTimer 99

OS_eExpireSWTimers 100

OS_eContinueSWTimer 101

OS_eGetSWTimerStatus 102

Note 1: Some of the above software timer functions call
user-defined callback functions that must be defined
using macros described in Section 8.1. The required
callback functions and associated macros are
mentioned in the function descriptions in this section.

Note 2: If the tick timer is used as the source counter
and the maximum count of the tick timer is T (before the
tick timer wraps around), there must be no more than
T/2 ticks between consecutive software timer expiry
events (e.g. if the tick timer wraps around every 60
seconds, a software timer must expire every 30 seconds
or less).

Caution: To allow the JN516x device to enter sleep
mode, no software timers should be active. Any running
software timers must first be stopped and any expired
timers must be de-activated. Both can be achieved
using the function OS_eStopSWTimer(), which must be
called individually for each running and expired timer.
JN-UG-3075 v1.8 © NXP Laboratories UK 2016 97

Chapter 8
RTOS API

OS_eStartSWTimer

Description

This function is used to start the specified software timer and configure it to expire
after the specified number of ticks. The software timer is defined and given a handle
using the JenOS Configuration Editor (see Section 14.5.2). It is derived from a source
counter - this could be a hardware counter, such as the on-chip tick timer, or another
software timer. The source counter used determines the tick period and therefore the
timed period.

In this function, you must specify the number of ticks of the source counter until the
software timer expires. If the on-chip tick timer is used as the source counter, the
specified value must not be greater than half the maximum count of the tick timer
(when the tick timer wraps around) - since the tick timer is a 32-bit counter, you must
not specify a value greater than 2147483647 ticks (0x7FFFFFFF ticks).

Using the JenOS Configuration Editor, it is possible to configure a task or callback
function to be executed on expiry of the software timer. A parameter is provided
which allows a pointer to data to be specified, which will be used by a callback
function on expiry of the timer.

This function calls the user-defined ‘hardware counter enable’ callback function,
defined using the macro OS_HWCOUNTER_ENABLE_CALLBACK(), provided
that there are no other software timers already active that use the hardware counter.
The function also calls the following user-defined callback functions:

 ‘hardware counter get’ function, defined using the macro
OS_HWCOUNTER_GET_CALLBACK(), which obtains the current value of the
hardware counter

 ‘hardware counter set’ function, defined using the macro
OS_HWCOUNTER_SET_CALLBACK(), which sets the hardware counter’s compare
register to the appropriate value for the timed duration (equal to the specified number of
ticks added to the current value of the hardware counter previously obtained)

Parameters

hSWTimer Handle of software timer to start

u32Ticks The number of ticks before software timer expires
(if using on-chip tick timer, refer to above description)

*pvData Pointer to data to be passed to optional callback function on
expiry of timer (NULL if not required). Ignored for tasks

Returns

OS_E_OK (successful)

OS_E_BADSWTIMER (invalid software timer handle)

OS_E_SWTIMER_RUNNING (software timer already running)

OS_teStatus OS_eStartSWTimer(OS_thSWTimer hSWTimer,
uint32 u32Ticks,
void *pvData);
98 © NXP Laboratories UK 2016 JN-UG-3075 v1.8

 JenOS
User Guide
OS_eStopSWTimer

Description

This function is used to de-activate the specified software timer - this can be a
running timer or an expired timer.

This function calls the user-defined ‘hardware counter disable’ callback function,
defined using the macro OS_HWCOUNTER_DISABLE_CALLBACK(), provided
that there are no other software timers still active that use the hardware counter.

Parameters

hSWTimer Handle of software timer to de-activate

Returns

OS_E_OK (successful)

OS_E_BADSWTIMER (invalid software timer handle)

OS_E_SWTIMER_STOPPED (software timer already de-activated)

OS_teStatus OS_eStopSWTimer(OS_thSWTimer hSWTimer);
JN-UG-3075 v1.8 © NXP Laboratories UK 2016 99

Chapter 8
RTOS API

OS_eExpireSWTimers

Description

This function is used to expire scheduled software timers associated with the
specified source counter, where these timers have previously reached their target
counts (source counter has matched the value in the counter’s compare register).

The function should be called in the source counter’s ISR that is invoked when the
above match occurs. The function:

 sets the status of the software timer to ‘expired’ by calling the user-defined callback
function that is defined using the macro OS_SWTIMER_CALLBACK()

 checks whether there are any other pending software timers and:

 if there is at least one pending software timer, the function updates the source
counter’s compare register with the required number of ticks (until the next
software timer expires) by calling the user-defined callback function that is defined
using the macro OS_HWCOUNTER_SET_CALLBACK()

 if there are no pending software timers, the function does nothing to the source
counter (leaves it running)

Before this function returns, it deals with any software timers that expire in quick
succession (without the need to re-call the function for the individual software timers).

For more information on the software timers, refer to Section 2.4.6.

Parameters

hHWCounter Handle of counter

Returns

OS_E_OK (successful)

OS_E_BADHWCOUNTER (invalid counter handle)

OS_E_NOTHINGTOEXPIRE (no software timers to expire)

OS_E_OVERACTIVATION (associated task activated too many times)

OS_E_BADTASK (invalid task handle used)

OS_E_HWCOUNTERIDLE (no active timers)

OS_teStatus OS_eExpireSWTimers(
OS_thHWCounter hHWCounter);
100 © NXP Laboratories UK 2016 JN-UG-3075 v1.8

 JenOS
User Guide
OS_eContinueSWTimer

Description

This function is used to re-start the specified software timer, if it has previously
expired, and configure it to expire again after the specified number of ticks. The timer
will be re-started without any discontinuity between the previous expiry point and the
new run, provided that the function is executed before the next timer cycle is
complete.

The function is designed to be used immediately following the expiry of the timer. It
should not be called a long time after the previous expiry (0x7FFFFFFF ticks).
OS_eStartSWTimer() should be used in these circumstances.

In this function, you must specify the number of ticks of the source counter until the
software timer expires. If the on-chip tick timer is used as the source counter, the
specified value must not be greater than half the maximum count of the tick timer
(when the tick timer wraps around) - since the tick timer is a 32-bit counter, you must
not specify a value greater than 2147483647 ticks (0x7FFFFFFF ticks).

It is possible to specify a pointer to data which will be used if the timer is configured
to invoke a callback function on expiry (the callback function is specified using the
JenOS Configuration Editor).

If the specified software timer will be the next to expire, this function calls the user-
defined ‘hardware counter set’ callback function, defined using the macro
OS_HWCOUNTER_SET_CALLBACK(), which sets the hardware counter’s
compare register to the appropriate value for the remainder of the timed duration.

Parameters

hSWTimer Handle of software timer to re-start

u32Ticks The number of ticks before software timer expires

*pvData Pointer to data to be passed to optional callback function on
expiry of timer (NULL if not required)

Returns

OS_E_OK (successful)

OS_E_BADSWTIMER (invalid software timer handle)

OS_E_SWTIMER_RUNNING (software timer already running)

OS_teStatus OS_eContinueSWTimer(
OS_thSWTimer hSWTimer,
uint32 u32Ticks,
void *pvData);
JN-UG-3075 v1.8 © NXP Laboratories UK 2016 101

Chapter 8
RTOS API

OS_eGetSWTimerStatus

Description

This function is used to obtain the status of the specified software timer. The timer is
reported as running, stopped or expired.

Parameters

hSWTimer Handle of software timer

Returns

OS_E_BADSWTIMER (invalid software timer handle)

OS_E_SWTIMER_RUNNING (software timer is running)

OS_E_SWTIMER_STOPPED (software timer has been stopped)

OS_E_SWTIMER_EXPIRED (software timer has expired)

OS_teStatus OS_eGetSWTimerStatus(
OS_thSWTimer hSWTimer);
102 © NXP Laboratories UK 2016 JN-UG-3075 v1.8

 JenOS
User Guide
9. PDM API for Flash Memory

This chapter describes the functions of the JenOS Persistent Data Manager (PDM)
API that supports context data and application data saving in Flash memory which is
external to the JN516x device. This edition of the PDM is supplied in the JN516x
ZigBee Smart Energy SDK (JN-SW-4064).

For the later edition of the PDM (supplied in other SDKs) that supports JN516x internal
EEPROM, refer to Chapter 10.

The API is defined in the header file pdm.h.

The PDM API functions are listed below, along with their page references:

Function Page

PDM_vInit 104

PDM_vSPIFlashConfig 106

PDM_eLoadRecord 107

PDM_vSaveRecord 109

PDM_vSave 110

PDM_vDeleteRecord 111

PDM_vDelete 112

PDM_vWarmInitHw 113

PDM_ vRegisterSystemCallback 114

Tip: In this chapter, the storage medium for persisted
data is referred to as Non-Volatile Memory (NVM) but in
practice it is SPI-connected external Flash memory.

Caution: When using the PDM, do not use the JN516x
Integrated Peripherals API to interact with the Flash
memory device connected to the JN516x chip.
JN-UG-3075 v1.8 © NXP Laboratories UK 2016 103

Chapter 9
PDM API for Flash Memory

PDM_vInit

Description

This function initialises the PDM module, and must be called during a cold start.

The function takes as input details of the sectors of the NVM (Non-Volatile Memory)
device to be managed by the module, as well as a set of functions that the PDM will
use to interact with the NVM device. These functions are specified in the structure
detailed in Section 14.1.

Optional mutexes can be specified in order to:

 Serialise PDM function calls - if specified, this mutex is automatically applied during a
PDM function call to prevent concurrent PDM function calls

 Serialise SPI bus access - if specified, this mutex is automatically applied during an
access to NVM via the SPI bus to prevent concurrent accesses to the SPI bus
(useful if other resources are also accessible via the SPI bus)

If a mutex is used, the user task must be linked to the relevant mutex in the JenOS
Configuration Editor - refer to Section 14.7.

The function also allows you to specify a key to be used by the PDM module to
encrypt and decrypt saved data. An option is available to use a key stored in eFuse.
Security based on this encryption key is applied to the context data that is
automatically stored/restored by the stack, but security must be enabled for
individual application data records when PDM_eLoadRecord() is called.

PDM_vInit() will auto-detect the NVM device type (manufacturer/model), unless you
have already called PDM_vSPIFlashConfig() which allows you to specify a specific
or custom SPI Flash device type. Note that if you have specified a set of NVM device
functions in a call to PDM_vSPIFlashConfig(), you can set a NULL pointer to these
functions in PDM_vInit().

Parameters

u8StartSector Number of the first sector of NVM to be managed by PDM
module

u8NumSectors Number of contiguous sectors of NVM to be managed by
PDM module

u32SectorSize Size of each sector, in bytes

hPdmMutex Optional handle of the mutex to be used to serialise PDM
function calls

hPdmMediaMutex Optional handle of the mutex to be used to serialise access to
NVM via the SPI bus.

void PDM_vInit(uint8 u8StartSector,
uint8 u8NumSectors,
uint32 u32SectorSize,

 OS_thMutex hPdmMutex,
OS_thMutex hPdmMediaMutex,
PDM_tsHwFncTable *psHwFuncTable,
const tsReg128 *psKey);
104 © NXP Laboratories UK 2016 JN-UG-3075 v1.8

 JenOS
User Guide
*psHwFuncTable Pointer to set of custom functions to be used with NVM device
(see Section 14.1). Set to NULL if not needed

*psKey Pointer to structure containing the 128-bit encryption key to be
used by the PDM module (see Section 14.5). A NULL pointer
indicates that a key stored in eFuse is to be used (if no key is
stored, a zero value will be used).

Returns

None
JN-UG-3075 v1.8 © NXP Laboratories UK 2016 105

Chapter 9
PDM API for Flash Memory

PDM_vSPIFlashConfig

Description

This function should be used if the NVM device is an SPI Flash device and you do
not wish to auto-detect the type of Flash device (manufacturer/model) - for example,
if you are using an unsupported or custom Flash device.

If you wish to auto-detect the device type, you do not need to call this function, as
auto-detection is implemented by default.

If required, this function must be called before PDM_vInit().

The function requires you to specify the Flash device type. If a custom Flash device
is selected (E_FL_CHIP_CUSTOM), you also need to specify a table of custom
functions for the device. The structure through which these functions are specified
are described in Section 14.2.

Parameters

eFlashType Flash device type, one of:

E_FL_CHIP_ST_M25P10_A

E_FL_CHIP_SST_25VF010

E_FL_CHIP_ATMEL_AT25F512

E_FL_CHIP_CUSTOM

E_FL_CHIP_AUTO

*psFlashFuncTable Pointer to custom function table (see Section 14.2), for case
when a custom Flash device has been selected
(E_FL_CHIP_CUSTOM). If a supported device has been
selected, set this pointer to NULL.

Returns

None

void PDM_vSPIFlashConfig(
teFlashChipType eFlashType,
tSPIflashFncTable *psFlashFuncTable);
106 © NXP Laboratories UK 2016 JN-UG-3075 v1.8

 JenOS
User Guide
PDM_eLoadRecord

Description

This function is used during a cold start to load an individual record of application
data from NVM into RAM, or to create an application data record in NVM:

 During a first-time cold start, the function defines a record to be created in NVM.

 During any subsequent cold start, the function restores (into RAM) application data
previously stored in the NVM record.

The function must be called before calling any function which automatically saves
application data to NVM - for example, before calling ZPS_eAplAfInit() to initialise
the ZigBee PRO stack and before calling ZPS_vAplSecSetInitialSecurityState() to
initialise the ZigBee security state on the node.

A pointer to a record descriptor and a unique ID value for the record must be
specified. In addition, a pointer must be provided to the start of the corresponding
data buffer in RAM and the data size must also be specified.

When called, the function first checks whether the specified record already exists in
NVM.

 If the record does exist, the data from the NVM record is loaded into RAM.

 If the record does not exist, the record will be created in NVM the next time
PDM_vSaveRecord() or PDM_vSave() is called. In this case, the specified RAM buffer
contents remain unchanged and are saved to the NVM record.

The function also allows the record to be secured when saving to external SPI Flash
memory. If this option is enabled, data saved to the NVM record will be encrypted
using the key specified in PDM_vInit() and the data will be decrypted using the same
key when it is read from the record.

Note that this function must not be called after PDM_vSaveRecord() or
PDM_vSave(), and must not be called during a warm start (for example, following
sleep with memory held). Otherwise, the latest data in RAM will be overwritten.

PDM_teStatus PDM_eLoadRecord(
PDM_tsRecordDescriptor *psDesc,
uint16 u16IdValue,
void *pvData,
uint32 u32DataSize,
bool_t bSecure);

Caution: The application software must not use record
identifier values that would clash with those used by the NXP
libraries used with the application. The ZigBee PRO stack
libraries use values above 0x8000.
JN-UG-3075 v1.8 © NXP Laboratories UK 2016 107

Chapter 9
PDM API for Flash Memory

Parameters

*psDesc Pointer to record descriptor (you do not need to be concerned
with the contents of this descriptor)

u16IdValue Unique 16-bit record identifier (see Caution above)

*pvData Pointer to start of RAM buffer in which to store data (in the
case of record creation, initial data must be provided in the
buffer)

u32DataSize Size of record, in bytes

bSecure Enable/disable data encryption for record:
 TRUE: Enable encryption
 FALSE: Disable encryption

Returns

PDM_E_STATUS_OK (success)

PDM_E_STATUS_INVLD_PARAM (an invalid parameter value was supplied)
108 © NXP Laboratories UK 2016 JN-UG-3075 v1.8

 JenOS
User Guide
PDM_vSaveRecord

Description

This function saves the specified application data record from RAM to NVM.

Following a cold start, the function should only be called after all records have been
created or loaded using PDM_eLoadRecord().

The application data will be saved encrypted if security was enabled for the NVM
record when the function PDM_eLoadRecord() was called.

Alternatively, you can save all records in RAM to NVM using the function
PDM_vSave().

Parameters

*psDesc Pointer to descriptor of record to be saved to NVM

Returns

None

void PDM_vSaveRecord(PDM_tsRecordDescriptor *psDesc);
JN-UG-3075 v1.8 © NXP Laboratories UK 2016 109

Chapter 9
PDM API for Flash Memory

PDM_vSave

Description

This function saves all records, including both application data and stack context
data, from RAM to NVM.

Following a cold start, the function should only be called after all application data
records have been created or loaded using PDM_eLoadRecord().

The stack context data is saved encrypted using the security key specified when
PDM_vInit() was called. The application data will be saved encrypted using this key
only if security was enabled for the corresponding NVM record when
PDM_eLoadRecord() was called.

Alternatively, an individual application data record can be saved to NVM using the
function PDM_vSaveRecord().

Parameters

None

Returns

None

void PDM_vSave(void);
110 © NXP Laboratories UK 2016 JN-UG-3075 v1.8

 JenOS
User Guide
PDM_vDeleteRecord

Description

This function deletes the specified record of application data in NVM.

Alternatively, all records in NVM can be deleted using the function PDM_vDelete().

Parameters

*psDesc Pointer to descriptor of record to be deleted

Returns

None

void PDM_vDeleteRecord(
PDM_tsRecordDescriptor *psDesc);
JN-UG-3075 v1.8 © NXP Laboratories UK 2016 111

Chapter 9
PDM API for Flash Memory

PDM_vDelete

Description

This function deletes all records in NVM, including both application data and stack
context data.

Alternatively, an individual record of application data can be deleted using the
function PDM_vDeleteRecord().

Parameters

None

Returns

None

void PDM_vDelete(void);

Caution: You are not recommended to delete records of
stack context data before a rejoin of the same secured
network. If these records are deleted, data sent by the node
after the rejoin will be rejected by the destination node since
the frame counter has been reset on the source node. For
more details, refer to “Application Design Notes” appendix
in the ZigBee PRO Stack User Guide (JN-UG-3048 or
JN-UG-3101).
112 © NXP Laboratories UK 2016 JN-UG-3075 v1.8

 JenOS
User Guide
PDM_vWarmInitHw

Description

This function initialises the SPI Flash device following a warm start. The function
must be called immediately following a warm start, before calling OS_vRestart().
Otherwise the ZigBee PRO stack may attempt to save records before the SPI
hardware is ready.

Parameters

None

Returns

None

void PDM_vWarmHwInit(void);
JN-UG-3075 v1.8 © NXP Laboratories UK 2016 113

Chapter 9
PDM API for Flash Memory

PDM_ vRegisterSystemCallback

Description

This function registers a user-defined callback function to handle PDM errors and
events.

Parameters

fpvPDM_SystemEventCallback Pointer to the application callback function. The
function type PDM_tpfvSystemEventCallback
is documented in Section 14.6. The events
generated by the PDM library are documented in
Section 14.7

Returns

None

void PDM_vRegisterSystemCallback(
PDM_tpfvSystemEventCallback

 fpvPDM_SystemEventCallback);
114 © NXP Laboratories UK 2016 JN-UG-3075 v1.8

 JenOS
User Guide
10. PDM API for EEPROM

This chapter details the functions of the JenOS Persistent Data Manager (PDM) API
that supports context data and application data saving in JN516x EEPROM, and is
supplied in the following SDKs:

 JN-SW-4168: JN516x ZigBee Light Link and Home Automation SDK

 JN-SW-4165: JN516x JenNet-IP SDK

 JN-SW-4163: JN516x IEEE802.15.4 SDK

For the earlier edition of the PDM (supplied in other SDKs) that only supports external
Flash memory devices, refer to Chapter 12.

The API is defined in the header file pdm.h and is divided into the following categories:

 EEPROM PDM functions - see Section 10.1

 EEPROM PDM Bitmap Counter functions - see Section 10.2

 EEPROM PDM miscellaneous functions - see Section 10.3

Note: For more information on how to use the functions
described in this chapter, refer to Chapter 4.
JN-UG-3075 v1.8 © NXP Laboratories UK 2016 115

Chapter 10
PDM API for EEPROM

10.1 EEPROM PDM Functions

The EEPROM PDM functions are listed below, along with their page references:

Function Page

PDM_eInitialise 117

PDM_eSaveRecordData 118

PDM_eReadDataFromRecord 119

PDM_eDeleteData 120

PDM_eDeleteAllData 121

PDM_u8GetSegmentCapacity 122

PDM_u8GetSegmentOccupancy 123

PDM_bDoesDataExist 124

Note 1: For a description of how to use these functions,
refer to Section 4.3.

Note 2: Unlike the earlier PDM module detailed in
Chapter 9, the PDM module detailed in this section does
not use descriptor-based records for data storage. This
results in more efficient use of storage space and
quicker operation.
116 © NXP Laboratories UK 2016 JN-UG-3075 v1.8

 JenOS
User Guide
PDM_eInitialise

Description

This function initialises the PDM module and registers the required PDM functions. It
must be called during both a warm start and a cold start.

The function initialises the PDM environment and builds the underlying EEPROM file
system. A RAM-based file system is created to allow the PDM to map data to/from
the EEPROM. The EEPROM sectors are scanned for evidence of any valid user
data, which is mapped into the RAM file system. This routine handles any write errors
that may have occurred if the EEPROM was powered down whilst data was being
written to the PDM system. Once the file system has been constructed, you can then
write data to and read data from the EEPROM via PDM.

The PDM can operate within any number of EEPROM segments, as specified
through the parameter u8NumberOfEEPROMsegments. However, if a zero value is
specified for this parameter, the function will auto-configure the PDM by interrogating
the JN516x chip to obtain the variant and scaling the PDM accordingly, giving the
application access to the full EEPROM.

An optional mutex can be specified in order to serialise PDM function calls. If
specified, this mutex is automatically applied during a PDM function call to prevent
concurrent calls. If the mutex is used with the JenOS RTOS in a ZigBee application,
the user task must be linked to the relevant mutex in the JenOS Configuration Editor
- refer to Section 14.7. Note that when using the PDM without the JenOS RTOS:

 The mutex is not available when using the PDM in applications developed with the
IEEE802.15.4 SDK (JN-SW-4163), in which case the flag PDM_NO_RTOS must be
defined in the makefile - the function parameter hPdmMutex is then disabled.

 The mutex is always implemented when using the PDM in applications developed with
the JenNet-IP SDK (JN-SW-4165), in which case the function parameter hPdmMutex
must be set to a non-zero value.

For more information on using the PDM without the RTOS, refer to Section 4.2.

Parameters

u8NumberOfEEPROMsegments

Number of contiguous EEPROM sectors to be managed. A
zero value indicates that the full EEPROM should be used.

hPdmMutex Optional handle of the mutex to be used to serialise PDM calls

Returns

PDM_E_STATUS_OK

PDM_E_STATUS_INTERNAL_ERROR

PDM_teStatus PDM_eInitialise(
uint8 u8NumberOfEEPROMsegments

#ifndef PDM_NO_RTOS
,
OS_thMutex hPdmMutex

#endif);
JN-UG-3075 v1.8 © NXP Laboratories UK 2016 117

Chapter 10
PDM API for EEPROM

PDM_eSaveRecordData

Description

This function saves the specified application data from RAM to the specified record
in EEPROM. The record is identified by means of a 16-bit user-defined value.

When a data record is saved to the EEPROM for the first time, the data is written
provided there are enough EEPROM segments available to hold the data. Upon
subsequent save requests, if there has been a change between the RAM-based and
EEPROM-based data buffers then the PDM will attempt to re-save only the
segments that have changed (if no data has changed, no save will be performed).
This is advantageous due to the restricted size of the EEPROM and the constraint
that old data must be preserved while saving changed data to the EEPROM.

Provided that you have registered a callback function with the PDM (see Section
10.3), the callback mechanism will signal when a save has failed. Upon failure, the
callback function will be invoked and pass the event
E_PDM_SYSTEM_EVENT_DESCRIPTOR_SAVE_FAILED to the application.

Parameters

u16IdValue User-defined ID of the record to be saved (see Caution above)

*pu8DataBuffer Pointer to data buffer to be saved in the record in EEPROM

u16Datalength Length of data to be saved, in bytes

Returns

PDM_E_STATUS_OK (success)

PDM_E_STATUS_INVLD_PARAM (specified record ID is invalid)

PDM_E_STATUS_NOT_SAVED (save to EEPROM failed)

PDM_teStatus PDM_eSaveRecordData(
uint16 u16IdValue,
uint8 *pu8DataBuffer,
uint16 u16Datalength);

Caution: The application software must not use record
identifier values that would clash with those used by the NXP
libraries used with the application. The ZigBee PRO stack
libraries use values above 0x8000. The JenNet-IP libraries
use values between 0x3000 and 0x3007.
118 © NXP Laboratories UK 2016 JN-UG-3075 v1.8

 JenOS
User Guide
PDM_eReadDataFromRecord

Description

This function reads the specified record of application data from the EEPROM and
stores the read data in the supplied data buffer in RAM. The record is specified using
its unique 16-bit identifier.

Before calling this function, it may be useful to call PDM_bDoesDataExist() in order
to determine whether a record with the specified identifier exists in the EEPROM and,
if it does, to obtain its size.

Parameters

u16IdValue User-defined ID of the record to be read

*pvDataBuffer Pointer to the data buffer in RAM where the read data is to
be stored

u16DataBufferLength Length of the data buffer, in bytes

*pu16DataBytesRead Pointer to a location to receive the number of data bytes
read

Returns

PDM_E_STATUS_OK (success)

PDM_E_STATUS_INVLD_PARAM (specified record ID is invalid)

PDM_teStatus PDM_eReadDataFromRecord(
uint16 u16IdValue,
void *pvDataBuffer,
uint16 u16DataBufferLength,
uint16 *pu16DataBytesRead);
JN-UG-3075 v1.8 © NXP Laboratories UK 2016 119

Chapter 10
PDM API for EEPROM

PDM_eDeleteData

Description

This function deletes the specified record of application data in EEPROM.

Alternatively, all records in EEPROM can be deleted using the function
PDM_eDeleteAllData().

Parameters

u16IdValue User-defined ID of the record to be deleted

Returns

PDM_E_STATUS_OK (success)

PDM_E_STATUS_INVLD_PARAM (specified record ID is invalid)

PDM_teStatus PDM_eDeleteData(uint16 u16IdValue);
120 © NXP Laboratories UK 2016 JN-UG-3075 v1.8

 JenOS
User Guide
PDM_eDeleteAllData

Description

This function deletes all records in EEPROM, including both application data and
stack context data, resulting in an empty PDM file system. The EEPROM segment
Wear Count values are preserved (and incremented) throughout this function call.

Alternatively, an individual record of application data can be deleted using the
function PDM_eDeleteData().

Parameters

None

Returns

None

PDM_teStatus PDM_eDeleteAllData(void);

Caution: You are not recommended to delete records of
stack context data before a rejoin of the same secured
network. If these records are deleted, data sent by the node
after the rejoin will be rejected by the destination node since
the frame counter has been reset on the source node. For
more details, refer to “Application Design Notes” appendix
in the ZigBee PRO Stack User Guide (JN-UG-3101).
JN-UG-3075 v1.8 © NXP Laboratories UK 2016 121

Chapter 10
PDM API for EEPROM

PDM_u8GetSegmentCapacity

Description

This function returns the number of unused segments that remain in the EEPROM.

Parameters

None

Returns

Number of EEPROM segments free

uint8 PDM_u8GetSegmentCapacity(void);
122 © NXP Laboratories UK 2016 JN-UG-3075 v1.8

 JenOS
User Guide
PDM_u8GetSegmentOccupancy

Description

This function returns the number of used segments in the EEPROM.

Parameters

None

Returns

Number of EEPROM segments used

uint8 PDM_u8GetSegmentOccupancy(void);
JN-UG-3075 v1.8 © NXP Laboratories UK 2016 123

Chapter 10
PDM API for EEPROM

PDM_bDoesDataExist

Description

This function checks whether data associated with thd specified record ID exists in
the EEPROM. If the data record exists, the function returns the data length, in bytes,
in a location to which a pointer must be provided.

Parameters

u16IdValue User-defined ID of the record to be found

*pu16DataLength Pointer to location to receive length, in bytes, of data record (if
any) associated with specified record ID

Returns

TRUE if data record found, FALSE otherwise

bool_t PDM_bDoesDataExist(uint16 u16IdValue,
uint16 *pu16DataLength);
124 © NXP Laboratories UK 2016 JN-UG-3075 v1.8

 JenOS
User Guide
10.2 EEPROM PDM Bitmap Counter Functions

The EEPROM PDM Bitmap Counter functions are listed below, along with their page
references:

Function Page

PDM_eCreateBitmap 126

PDM_eIncrementBitmap 127

PDM_eGetBitmap 128

PDM_eDeleteBitmap 129

Note: For a description of how to use these functions,
refer to Section 4.4.
JN-UG-3075 v1.8 © NXP Laboratories UK 2016 125

Chapter 10
PDM API for EEPROM

PDM_eCreateBitmap

Description

The function creates a bitmap structure for a counter in a segment of the EEPROM.
A user-defined ID and a start value for the bitmap counter must be specified.

The start value is stored in the counter’s header. A bitmap is created to store the
incremental value of the counter (over the start value). This bitmap can subsequently
be incremented (by one) by calling the function PDM_eIncrementBitmap(). The
incremental value stored in the bitmap and the start value stored in the header can
be read at any time using the function PDM_eGetBitmap().

If the specified ID value has already been used or the specified start value is NULL,
the function returns PDM_E_STATUS_INVLD_PARAM. If the EEPROM has no free
segments, the function returns PDM_E_STATUS_USER_PDM_FULL.

Parameters

u16IdValue User-defined ID for bitmap counter to be created

u32InitialValue Initial 32-bit value of bitmap counter

Returns

PDM_E_STATUS_OK (success)

PDM_E_STATUS_INVLD_PARAM (an invalid parameter value was supplied)

PDM_E_STATUS_PDM_FULL (there is no space to store this bitmap)

PDM_teStatus PDM_eCreateBitmap(uint16 u16IdValue,
uint32 u32InitialValue);
126 © NXP Laboratories UK 2016 JN-UG-3075 v1.8

 JenOS
User Guide
PDM_eIncrementBitmap

Description

The function increments the bitmap value of the specified counter in the EEPROM.
The counter must be identified using the user-defined ID value assigned when the
counter was created using the function PDM_eCreateBitmap().

The bitmap can be incremented within an EEPROM segment until its value saturates
(contains all 1s). At this point, the function returns the code
PDM_E_STATUS_SATURATED_OK. The next time that this function is called, the
counter is automatically moved to a new segment (provided that one is available),
the start value in its header is increased appropriately and the bitmap is reset to zero.
To avoid increasing the segment Wear Count, the old segment is not formally deleted
before a new segment is started. If the EEPROM has no free segments when the
above overflow occurs, the function returns the code
PDM_E_STATUS_USER_PDM_FULL.

If the specified ID value has already been used, the function returns
PDM_E_STATUS_INVLD_PARAM.

Parameters

u16IdValue User-defined ID of counter to be incremented

Returns

PDM_E_STATUS_OK (success)

PDM_E_STATUS_INVLD_PARAM (an invalid parameter value was supplied)

PDM_E_STATUS_PDM_FULL (no further EEPROM segments for the bitmap)

PDM_E_STATUS_BITMAP_SATURATED_OK (increment made but segment now
saturated)

PDM_teStatus PDM_eIncrementBitmap(uint16 u16IdValue);
JN-UG-3075 v1.8 © NXP Laboratories UK 2016 127

Chapter 10
PDM API for EEPROM

PDM_eGetBitmap

Description

The function reads the specified counter value from the EEPROM. The counter must
be identified using the user-defined ID value assigned when the counter was created
using the function PDM_eCreateBitmap(). The function returns the counter’s start
value (from the counter’s header) and incremental value (from the counter’s bitmap).

The counter value is calculated as:

Start Value + Incremental Value

or in terms of the function parameters:

*pu32InitialValue + *pu32BitmapValue

Note that the start value may be different from the one specified when the counter
was created, as the start value is updated each time the counter outgrows a segment
and the bitmap is reset to zero.

This function should be called when the device comes up from a cold start, to check
whether a bitmap counter is present in EEPROM.

If the specified ID value has already been used or a NULL pointer is provided for the
received values, the function returns PDM_E_STATUS_INVLD_PARAM.

Parameters

u16IdValue User-defined ID for bitmap counter to be accessed

*pu32InitialValue Pointer to location to receive the start value of the counter

*pu32BitmapValue Pointer to location to receive the incremetal value of the
counter

Returns

PDM_E_STATUS_OK (success)

PDM_E_STATUS_INVLD_PARAM (an invalid parameter value was supplied)

PDM_teStatus PDM_eGetBitmap(uint16 u16IdValue,
uint32 *pu32InitialValue,
uint32 *pu32BitmapValue);
128 © NXP Laboratories UK 2016 JN-UG-3075 v1.8

 JenOS
User Guide
PDM_eDeleteBitmap

Description

This function deletes the specified counter in the EEPROM. The counter must be
identified using the user-defined ID value assigned when the bitmap was created
using the function PDM_eCreateBitmap().

The function can be used to formally delete a counter. It clears the current segment
occupied by the counter and also all the older (expired) segments used for the
counter. This deletion increments the Wear Counts for these segments and should
be done only if absolutely necessary, as the expired segments can be re-used
directly via the PDM without formal deletion.

If the specified ID value does not exist in the PDM, the function returns
PDM_E_STATUS_INVLD_PARAM.

Parameters

u16IdValue User-defined ID for bitmap counter to be deleted

Returns

PDM_E_STATUS_OK (success)

PDM_E_STATUS_INVLD_PARAM (an invalid parameter value was supplied)

PDM_teStatus PDM_eDeleteBitmap(uint16 u16IdValue);
JN-UG-3075 v1.8 © NXP Laboratories UK 2016 129

Chapter 10
PDM API for EEPROM

10.3 EEPROM PDM Miscellaneous Functions

The EEPROM PDM miscellaneous functions include a function for registering a user-
defined PDM system callback function and functions related to the Wear Counts of
EEPROM segments. The functions are listed below, along with their page references:

Function Page

PDM_vRegisterSystemCallback 131

PDM_vSetWearCountTriggerLevel 132

PDM_eGetSegmentWearCount 133

Note: For a description of how to use these functions,
refer to Section 4.5.2 and Section 4.5.4.
130 © NXP Laboratories UK 2016 JN-UG-3075 v1.8

 JenOS
User Guide
PDM_vRegisterSystemCallback

Description

This function registers a user-defined callback function to handle PDM events and
errors.

Parameters

fpvPDM_SystemEventCallback Pointer to the application callback function. The
function type PDM_tpfvSystemEventCallback
is documented in Section 14.6. The events
generated by the PDM library are documented in
Section 14.7

Returns

None

void PDM_vRegisterSystemCallback(
PDM_tpfvSystemEventCallback

 fpvPDM_SystemEventCallback);
JN-UG-3075 v1.8 © NXP Laboratories UK 2016 131

Chapter 10
PDM API for EEPROM

PDM_vSetWearCountTriggerLevel

Description

This function sets the Wear Count value of an EEPROM segment at which a Wear
Count event will be triggered and the PDM callback function will be activated. The
invoked callback function is user-defined and is registered using the function
PDM_vRegisterSystemCallback().

The callback function will only be invoked once for a particular segment, when the
specified Wear Count value occurs (it will not be invoked for every occurrence
afterwards when the segment Wear Count exceeds the trigger value).

Parameters

u32WearCountTriggerLevel Wear Count value that triggers a Wear Count event

Returns

None

void PDM_vSetWearCountTriggerLevel(
uint32 u32WearCountTriggerLevel);
132 © NXP Laboratories UK 2016 JN-UG-3075 v1.8

 JenOS
User Guide
PDM_eGetSegmentWearCount

Description

This function obtains the current Wear Count value of the specified EEPROM
segment.

Parameters

u8SegmentIndex Index of EEPROM segment for which Wear Count needed

pu32WearCount Pointer to location to receive obtained Wear Count value

Returns

PDM_E_STATUS_OK (success)

PDM_E_STATUS_INVLD_PARAM (an invalid parameter value was supplied)

PDM_teStatus PDM_eGetSegmentWearCount(
uint8 u8SegmentIndex,
uint32 *pu32WearCount);
JN-UG-3075 v1.8 © NXP Laboratories UK 2016 133

Chapter 10
PDM API for EEPROM

134 © NXP Laboratories UK 2016 JN-UG-3075 v1.8

 JenOS
User Guide
11. PWRM API

This chapter describes the functions of the JenOS Power Manager (PWRM) API. The
API is defined in the header file pwrm.h.

The PWRM API functions are divided into the following categories:

 ‘Core’ functions, described in Section 11.1

 ‘Callback Set-up’ functions, described in Section 11.2

 ‘Debugging’ functions, described in Section 11.3

11.1 Core Functions

The PWRM core functions are listed below, along with their page references:

Function Page

PWRM_vInit 136

PWRM_eStartActivity 137

PWRM_eFinishActivity 138

PWRM_u16GetActivityCount 139

PWRM_eScheduleActivity 140

PWRM_vManagePower 141

Caution: The Power Manager uses Wake Timer 1 of
the JN516x device if scheduled wake events are
configured. In this case, do not use this wake timer for
any other purpose in your application.
JN-UG-3075 v1.8 © NXP Laboratories UK 2016 135

Chapter 11
PWRM API

PWRM_vInit

Description

This function is used to initialise the Power Manager and specify the low-power mode
in which the JN516x device should be put when inactive.

There are five possible low-power modes that can be specified:

 Sleep with 32-kHz oscillator running and memory held

 Sleep with 32-kHz oscillator running and memory not held

 Sleep with 32-kHz oscillator not running and memory held

 Sleep with 32-kHz oscillator not running and memory not held

 Deep Sleep (32-kHz oscillator not running and memory not held)

The enumerations for the above power modes are listed below and described in
Section 14.3. For further information on these low-power modes and how to wake
from them, refer to Section 5.1.

Note that if the Power Manager is unable to put the JN516x device into the specified
low-power mode, it will put the device into Doze mode instead - see description of
PWRM_vManagePower().

If the 32-kHz oscillator is run, the JN516x device’s Wake Timer 1 is calibrated and
made available (and then must not be used for any other purpose).

Parameters

ePowerMode The power mode to be used during sleep, one of:
PWRM_E_SLEEP_OSCON_RAMON
PWRM_E_SLEEP_OSCON_RAMOFF
PWRM_E_SLEEP_OSCOFF_RAMON
PWRM_E_SLEEP_OSCOFF_RAMOFF
PWRM_E_SLEEP_DEEP

Returns

None

void PWRM_vInit(PWRM_tePowerMode ePowerMode);
136 © NXP Laboratories UK 2016 JN-UG-3075 v1.8

 JenOS
User Guide
PWRM_eStartActivity

Description

This function is used to notify the Power Manager that an activity has been started
which must not be interrupted by sleep. Thus, while such an activity is running, the
JN516x device will not enter sleep mode.

The function PWRM_eFinishActivity() must then be called when the activity has
completed. However, if PWRM_eStartActivity() has also been called for other
activities that have not yet finished, the device will not be able to enter sleep mode
until PWRM_eFinishActivity() has been called for all such activities.

The activity for which PWRM_eStartActivity() is called does not need to be
identified, since the function simply increments a counter of running activities that
must not be interrupted by sleep. There is an upper limit of 64K to the value of this
counter. If this limit is exceeded, an overflow error is returned.

Parameters

None

Returns

PWRM_E_OK (success)

PWRM_E_ACTIVITY_OVERFLOW (activity counter limit exceeded)

PWRM_teStatus PWRM_eStartActivity(void);
JN-UG-3075 v1.8 © NXP Laboratories UK 2016 137

Chapter 11
PWRM API

PWRM_eFinishActivity

Description

This function is used to notify the Power Manager that an activity has completed
which was not to be interrupted by sleep.

The function call must be paired with a previous call to PWRM_eStartActivity().
Sleep mode cannot be entered until PWRM_eFinishActivity() has been called for
all activities for which PWRM_eStartActivity() has been previously called.

The activity for which PWRM_eFinishActivity() is called does not need to be
identified, since the function simply decrements a counter of running activities that
must not be interrupted by sleep. Sleep mode must not be entered until this counter
reaches zero. If this function is called when the counter is already zero, an underflow
error is returned.

Parameters

None

Returns

PWRM_E_OK (success)

PWRM_E_ACTIVITY_UNDERFLOW (activity counter already zero)

PWRM_teStatus PWRM_eFinishActivity(void);
138 © NXP Laboratories UK 2016 JN-UG-3075 v1.8

 JenOS
User Guide
PWRM_u16GetActivityCount

Description

This function obtains the current value of the activity counter which indicates the
number of activities currently running that must not be interrupted by sleep. Sleep
mode cannot be entered until the value of this counter is zero.

Parameters

None

Returns

Current value of activity counter

uint16 PWRM_u16GetActivityCount(void);
JN-UG-3075 v1.8 © NXP Laboratories UK 2016 139

Chapter 11
PWRM API

PWRM_eScheduleActivity

Description

This function can be used to add a wake point and associated callback function to a
list of scheduled wake points and callbacks. The new wake point is linked to an
exclusive 32-kHz software wake timer, through the specified structure.

The function takes as input the number of ticks of the wake timer until the scheduled
wake point. When the wake timer expires, the JN516x device will be woken from
sleep and the specified callback function will be called.

To use this function, the Power Manager must be configured through PWRM_vInit()
to implement a low-power mode in which the 32-kHz oscillator is running and
memory is held (otherwise, the list of scheduled wake points will be lost when the
device enters sleep mode).

The function will return an error (see below) if the 32-kHz oscillator has not been
configured to run during sleep or the software wake timer is already running for
another wake point.

Parameters

*psWake Pointer to a structure to be populated with the wake point and
callback function (see below)

u32Ticks The number of ticks of the 32-kHz wake timer until wake point

*prCallbackfn Pointer to callback function associated with wake point

Returns

PWRM_E_OK (wake timer started successfully)

PWRM_E_TIMER_RUNNING (wake timer already running for another wake point)

PWRM_E_TIMER_INVALID (oscillator not configured to run during sleep)

PWRM_teStatus PWRM_eScheduleActivity(
pwrm_tsWakeTimerEvent *psWake,
uint32 u32Ticks,
void (*prCallbackfn)(void));
140 © NXP Laboratories UK 2016 JN-UG-3075 v1.8

 JenOS
User Guide
PWRM_vManagePower

Description

This function instructs the Power Manager to manage the power state of the JN516x
device. The device must be idle when this function is called, i.e. the function is
typically called from the OS idle task.

Once this function has been called, whenever appropriate, the Power Manager will
put the device into the low-power mode specified through the function
PWRM_vInit(). To allow the device to enter sleep mode:

 No activities that are uninterruptable by sleep must be running - that is, the activity
counter must be zero.

 If the 32-kHz oscillator will run during sleep, a wake point must have been scheduled
using PWRM_vScheduleActivity() (this condition does not apply when the oscillator is
not used)

If the above two conditions are not satisfied, the function will put the device into Doze
mode instead of sleep mode. Doze mode simply pauses the on-chip CPU, leaving all
components powered (e.g. radio), and requires an interrupt to be configured to wake
the device.

Before putting the device into sleep mode, this function calls any user-defined
callback functions that have been registered using the function
PWRM_vRegisterPreSleepCallback().

Parameters

None

Returns

None

void PWRM_vManagePower(void);
JN-UG-3075 v1.8 © NXP Laboratories UK 2016 141

Chapter 11
PWRM API

11.2 Callback Set-up Functions

The PWRM callback set-up functions are used to introduce user-defined callback
functions that must be defined when using the Power Manager.

The functions are listed below, along with their page references:

Function Page

vAppMain 143

PWRM_vRegisterPreSleepCallback 144

PWRM_vRegisterWakeupCallback 145

vAppRegisterPWRMCallbacks 146

PWRM_vWakeInterruptCallback 147
142 © NXP Laboratories UK 2016 JN-UG-3075 v1.8

 JenOS
User Guide
vAppMain

Description

This is a user-defined callback function which is the application entry point when
using the Power Manager. This function should never return.

Parameters

None

Returns

None

void vAppMain(void);
JN-UG-3075 v1.8 © NXP Laboratories UK 2016 143

Chapter 11
PWRM API

PWRM_vRegisterPreSleepCallback

Description

This function is used to register a user-defined callback function that will be called by
the Power Manager before the JN516x device enters sleep mode. You must specify
a pointer to a structure containing a descriptor for your callback function.

The callback function must have been declared using the macro
PWRM_CALLBACK(fn_name), where fn_name is the name of the callback function.

The callback descriptor must have been declared using the macro
PWRM_DECLARE_CALLBACK_DESCRIPTOR(desc_name, fn_name), where
desc_name is the descriptor name and fn_name is the callback function name.

For example:

PWRM_CALLBACK(vPreSleepCB1);

PWRM_DECLARE_CALLBACK_DESCRIPTOR(pscb1_desc, vPreSleepCB1);

The callback function should perform any housekeeping tasks that are necessary
before the device enters sleep mode.

Note that this registration function is normally called within the user-defined function
vAppRegisterPWRMCallbacks(). This ensures that the callback is registered
during a cold start.

Parameters

*psCBDesc Pointer to callback descriptor structure

Returns

None

void PWRM_vRegisterPreSleepCallback(
tsCallbackDescriptor *psCBDesc);
144 © NXP Laboratories UK 2016 JN-UG-3075 v1.8

 JenOS
User Guide
PWRM_vRegisterWakeupCallback

Description

This function is used to register a user-defined callback function that will be called by
the Power Manager when the JN516x device wakes from sleep (this may be due to
a change on a DIO line or comparator input, or the expiry of a wake timer). You must
specify a pointer to a structure containing a descriptor for your callback function.

The callback function must have been declared using the macro
PWRM_CALLBACK(fn_name), where fn_name is the name of the callback function.

The callback descriptor must have been declared using the macro
PWRM_DECLARE_CALLBACK_DESCRIPTOR(desc_name, fn_name), where
desc_name is the descriptor name and fn_name is the callback function name.

For example:

PWRM_CALLBACK(vWakeUpCB1);

PWRM_DECLARE_CALLBACK_DESCRIPTOR(wucb1_desc, vWakeUpCB1);

The callback function should perform any housekeeping tasks that are necessary
after the device wakes from sleep.

Note that this registration function is normally called within the user-defined function
vAppRegisterPWRMCallbacks(). This ensures that the callback is registered
during a cold start.

Parameters

*psCBDesc Pointer to callback descriptor structure

Returns

None

void PWRM_vRegisterWakeupCallback(
tsCallbackDescriptor *psCBDesc);
JN-UG-3075 v1.8 © NXP Laboratories UK 2016 145

Chapter 11
PWRM API

vAppRegisterPWRMCallbacks

Description

This is a user-defined function to register pre- and post-sleep callback functions, if
required.

The function definition must itself use PWRM_vRegisterPreSleepCallback() and
PWRM_vRegisterWakeupCallback() to register the required callbacks.

Parameters

None

Returns

None

void vAppRegisterPWRMCallbacks(void);
146 © NXP Laboratories UK 2016 JN-UG-3075 v1.8

 JenOS
User Guide
PWRM_vWakeInterruptCallback

Description

This function is a pre-defined callback function which must be called from the
application’s interrupt handler to deal with interrupts from Wake Timer 1 on the
JN516x device.

The function is needed to maintain the scheduled wake points list, by restarting the
wake timer for the next wake-up event (if any) when the previous one has just
completed. The function also calls the user-defined callback function specified
through PWRM_vScheduleActivity().

Parameters

None

Returns

None

void PWRM_vWakeInterruptCallback(void);
JN-UG-3075 v1.8 © NXP Laboratories UK 2016 147

Chapter 11
PWRM API

11.3 Debugging Function

The PWRM debugging function can be used to investigate how long the JN516x
device spends in Doze mode. The Doze state is output on the JN516x DIO1 pin for
external monitoring, allowing you to calculate the proportion of time that the device
typically spends in Doze mode for a given application.

The function is listed below, along with its page reference:

Function Page

PWRM_vSetupDozeMonitor 149
148 © NXP Laboratories UK 2016 JN-UG-3075 v1.8

 JenOS
User Guide
PWRM_vSetupDozeMonitor

Description

This function can be used during debug to start a Doze mode monitoring session on
the JN516x device - that is, to investigate the proportion of the time that the device
typically spends in Doze mode.

The Doze state of the device is output on the pin DIO1. This allows the times spent
in and out of Doze mode to be measured externally.

Parameters

bUseIO Always set to TRUE

Returns

None

void PWRM_vSetupDozeMonitor(bool_t bUseIO);
JN-UG-3075 v1.8 © NXP Laboratories UK 2016 149

Chapter 11
PWRM API

150 © NXP Laboratories UK 2016 JN-UG-3075 v1.8

 JenOS
User Guide
12. PDUM API

This chapter describes the functions of the JenOS Protocol Data Unit Manager
(PDUM) API. The API is defined in the header file pdum.h.

The PDUM API functions are listed below, along with their page references:

Function Page

PDUM_vInit 152

PDUM_hAPduAllocateAPduInstance 153

PDUM_eAPduFreeAPduInstance 154

PDUM_u16APduInstanceReadNBO 155

PDUM_u16APduInstanceWriteNBO 156

PDUM_u16APduInstanceWriteStrNBO 157

PDUM_u16SizeNBO 158

PDUM_u16APduGetSize 159

PDUM_pvAPduInstanceGetPayload 160

PDUM_u16APduInstanceGetPayloadSize 161

PDUM_eAPduInstanceSetPayloadSize 162

PDUM_vDBGPrintAPduInstance 163

Note: In ZigBee PRO, the APDUs used by the
application must be pre-defined (before building the
application) using the ZPS Configuration Editor. This
tool is detailed in the ZigBee PRO Stack User Guide
(JN-UG-3048 or JN-UG-3101).
JN-UG-3075 v1.8 © NXP Laboratories UK 2016 151

Chapter 12
PDUM API

PDUM_vInit

Description

This function initialises the PDU Manager and must therefore be the first PDUM
function called.

Parameters

None

Returns

None

void PDUM_vInit();
152 © NXP Laboratories UK 2016 JN-UG-3075 v1.8

 JenOS
User Guide
PDUM_hAPduAllocateAPduInstance

Description

This function allocates an instance of an Application Protocol Data Unit (APDU) - that
is, memory space is allocated to the APDU instance.

The available APDUs (types and their handles) are pre-defined using the ZPS
Configuration Editor (refer to the ZigBee PRO Stack User Guide (JN-UG-3048 or
JN-UG-3101)).

The allocated APDU instance can subsequently be populated with data and sent to
another node.

Parameters

hAPdu Handle of APDU (type)

Returns

Handle of allocated APDU instance

PDUM_INVALID_HANDLE if no APDU instances free

PDUM_thAPduInstance
PDUM_hAPduAllocateAPduInstance(

PDUM_thAPdu hAPdu);
JN-UG-3075 v1.8 © NXP Laboratories UK 2016 153

Chapter 12
PDUM API

PDUM_eAPduFreeAPduInstance

Description

This function de-allocates the specified APDU instance, thus freeing the associated
memory space.

Parameters

hAPduInstance Handle of APDU instance

Returns

PDUM_E_INTERNAL_ERROR

PDUM_teStatus PDUM_eAPduFreeAPduInstance(
PDUM_thAPduInstance hAPduInst);
154 © NXP Laboratories UK 2016 JN-UG-3075 v1.8

 JenOS
User Guide
PDUM_u16APduInstanceReadNBO

Description

This function reads data from the specified APDU instance and inserts the data into
a C structure. The byte position of the start (least significant byte) of the data in the
APDU instance must be specified, as well as the format of the data.

Data is read from the APDU instance in packed network byte order (little-endian) and
translated into unpacked host byte order for the C structure (big-endian for the
JN516x device).

Parameters

hAPduInst Handle of APDU instance to read the data from

u32Pos The starting position (least significant byte) of the data within
the APDU

*szFormat Format string of the data:

b 8-bit byte

h 16-bit half-word (short integer)

w 32-bit word

l 64-bit long-word (long integer)

a\xnn nn (hex) bytes of data (array)

p\xnn nn (hex) bytes of packing

*pvStruct Pointer to C structure to receive the data

Note that the compiler will not correctly interpret the format string “a\xnnb” for a data
array followed by a single byte, e.g. “a\x0ab”. In this case, to ensure that the ‘b’ (for
byte) is not interpreted as a hex value, use the format “a\xnn” “b”, e.g. “a\x0a” “b”.

Returns

Total number of data bytes read from the APDU instance

uint16 PDUM_u16APduInstanceReadNBO(
PDUM_thAPduInstance hAPduInst,
uint16 u16Pos,
const char *szFormat,
void *pvStruct);
JN-UG-3075 v1.8 © NXP Laboratories UK 2016 155

Chapter 12
PDUM API

PDUM_u16APduInstanceWriteNBO

Description

This function writes the specified data values into the specified APDU instance. The
byte position of the start of the data (least significant byte) in the APDU instance must
be specified, as well as the format of the data.

The data values are written into the APDU instance at the specified position in
packed network byte order (little-endian). The input data values should be in host
byte order (big-endian for the JN516x device).

Parameters

hAPduInst Handle of the APDU instance to write the data into

u32Pos The starting position (least significant byte) of the data within
the APDU instance

*szFormat Format string of the data:

b 8-bit byte

h 16-bit half-word (short integer)

w 32-bit word

l 64-bit long-word (long integer)

a\xnn nn (hex) bytes of data (array)

p\xnnnn (hex) bytes of packing

... Variable list of data values described by the format string

Note that the compiler will not correctly interpret the format string “a\xnnb” for a data
array followed by a single byte, e.g. “a\x0ab”. In this case, to ensure that the ‘b’ (for
byte) is not interpreted as a hex value, use the format “a\xnn” “b”, e.g. “a\x0a” “b”.

Returns

Total number of bytes written to the APDU instance

uint16 PDUM_u16APduInstanceWriteNBO(
PDUM_thAPduInstance hAPduInst,
uint16 u16Pos,
const char *szFormat, ...);
156 © NXP Laboratories UK 2016 JN-UG-3075 v1.8

 JenOS
User Guide
PDUM_u16APduInstanceWriteStrNBO

Description

This function writes data from the specified structure into the specified APDU
instance. The byte position of the start of the data (least significant byte) in the APDU
instance must be specified, as well as the format of the data.

The data values are written into the APDU instance at the specified position in
packed network byte order (little-endian). The input data values should be in host
byte order (big-endian for the JN516x device).

Parameters

hAPduInst Handle of the APDU instance to write the data into

u32Pos The starting position (least significant byte) of the data within
the APDU instance

*szFormat Format string of the data:

b 8-bit byte

h 16-bit half-word (short integer)

w 32-bit word

l 64-bit long-word (long integer)

a\xnn nn (hex) bytes of data (array)

p\xnnnn (hex) bytes of packing

*pvStruct Pointer to C structure to containing data

Note that the compiler will not correctly interpret the format string “a\xnnb” for a data
array followed by a single byte, e.g. “a\x0ab”. In this case, to ensure that the ‘b’ (for
byte) is not interpreted as a hex value, use the format “a\xnn” “b”, e.g. “a\x0a” “b”.

Returns

Total number of bytes written to the APDU instance

uint16 PDUM_u16APduInstanceWriteStrNBO(
PDUM_thAPduInstance hAPduInst,
uint16 u16Pos,
const char *szFormat,
void *pvStruct);
JN-UG-3075 v1.8 © NXP Laboratories UK 2016 157

Chapter 12
PDUM API

PDUM_u16SizeNBO

Description

This function obtains the size, in bytes, of an APDU data payload, given the format
of the data.

Parameters

*szFormat Format string of the data:

b 8-bit byte

h 16-bit half-word (short integer)

w 32-bit word

l 64-bit long-word (long integer)

a\xnn nn (hex) bytes of data (array)

p\xnnnn (hex) bytes of packing

Note that the compiler will not correctly interpret the format string “a\xnnb” for a data
array followed by a single byte, e.g. “a\x0ab”. In this case, to ensure that the ‘b’ (for
byte) is not interpreted as a hex value, use the format “a\xnn” “b”, e.g. “a\x0a” “b”.

Returns

Number of bytes in data payload

uint16 PDUM_u16SizeNBO(const char *szFormat);
158 © NXP Laboratories UK 2016 JN-UG-3075 v1.8

 JenOS
User Guide
PDUM_u16APduGetSize

Description

This function obtains the maximum size, in bytes, of the specified APDU (type).

Parameters

hAPdu Handle of APDU

Returns

Number of bytes in APDU

uint16 PDUM_u16APduGetSize(PDUM_thAPdu hAPdu);
JN-UG-3075 v1.8 © NXP Laboratories UK 2016 159

Chapter 12
PDUM API

PDUM_pvAPduInstanceGetPayload

Description

This function obtains a pointer to the payload data of the specified APDU instance.

Parameters

hAPduInst Handle of APDU instance to access

Returns

Pointer to data as an array of bytes

void * PDUM_pvAPduInstanceGetPayload(
PDUM_thAPduInstance hAPduInst);
160 © NXP Laboratories UK 2016 JN-UG-3075 v1.8

 JenOS
User Guide
PDUM_u16APduInstanceGetPayloadSize

Description

This function obtains the size, in bytes, of the payload data of the specified APDU
instance.

Parameters

hAPduInst Handle of APDU instance to access

Returns

Size of the payload data, in bytes

uint16 PDUM_u16APduInstanceGetPayloadSize(
PDUM_thAPduInstance hAPduInst);
JN-UG-3075 v1.8 © NXP Laboratories UK 2016 161

Chapter 12
PDUM API

PDUM_eAPduInstanceSetPayloadSize

Description

This function sets the size, in bytes, of the payload of the specified APDU instance.

Parameters

hAPduInst Handle of APDU instance

u16Size Size of payload to set, in bytes

Returns

PDUM_OK

PDUM_E_APDU_INSTANCE_TOO_BIG

PDUM_teStatus PDUM_eAPduInstanceSetPayloadSize(
PDUM_thAPduInstance hAPduInst,
uint16 u16Size);
162 © NXP Laboratories UK 2016 JN-UG-3075 v1.8

 JenOS
User Guide
PDUM_vDBGPrintAPduInstance

Description

This function can be used to output the specified APDU instance via the Debug
(DBG) module.

For details of the DBG functions, refer to Chapter 12.

Parameters

hAPdu Handle of APDU instance to output

Returns

None

void PDUM_vDBGPrintAPduInstance(
PDUM_thAPduInstance hAPduInst);
JN-UG-3075 v1.8 © NXP Laboratories UK 2016 163

Chapter 12
PDUM API

164 © NXP Laboratories UK 2016 JN-UG-3075 v1.8

 JenOS
User Guide
13. DBG API

The chapter describes the functions of the JenOS Debug (DBG) module API. The API
is defined in the header file dbg.h.

To use the Debug module, it must be enabled at build-time by defining DBG_ENABLE
in the build - for example, by adding the -DDBG_ENABLE option to the compiler.

By default, the Debug module will just display each line as passed. However, if
DBG_VERBOSE is defined at build-time then each line displayed will be prefixed with
the file name and line number of the debug statement.

The DBG API functions are listed below, along with their page references:

Function Page

DBG_vInit 166

DBG_vUartInit 167

DBG_vPrintf 168

DBG_vAssert 169

DBG_vDumpStack 170

DBG_vFlush 171

DBG_iGetChar 172

Note: Compiling with the DBG option results in a larger
application size, requiring a lot more space in RAM.
JN-UG-3075 v1.8 © NXP Laboratories UK 2016 165

Chapter 13
DBG API

DBG_vInit

Description

This function is used to initialise the Debug module.

The function can be used during a cold start or a warm start (with memory held). Its
parameter accepts a structure containing pointers to four user-defined callback
functions concerned with the output interface:

 typedef struct

 {

 void (*prInitHardwareCb)(void);

 void (*prPutchCb) (char c);

 void (*prFlushCb) (void);

 void (*prFailedAssertCb)(void);

 } tsDBG_FunctionTbl;

The callback functions pointed to by this structure are as follows:

*prInitHardwareCb Points to function which re-initialises the interface after a
warm start, e.g. when JN516x device wakes from sleep

*prPutchCb Points to function used by DBG_vPrintf() to output a single
character to the interface

*prFlushCb Points to function used by DBG_vPrintf() to flush the
interface buffer to allow buffered output characters to be
displayed. If the output is unbuffered, this function should do
nothing or wait for the last character output using the putch()
function to be made available. Note that the function should
not append a newline character, as this should be handled by
the formatting string passed to DBG_vPrintf()

*prAssertFailedCb Points to function which is called when DBG_vAssert() fails.
The function should stop execution and may reset the device

Parameters

*psFunctionTbl Pointer to structure containing list of callback functions.

Returns

None

void DBG_vInit(tsDBG_FunctionTbl *psFunctionTbl);

Note: If a JN516x UART is to be used as the debug output
interface, DBG_vUartInit() must be called instead. Thus,
DBG_vInit() will not be needed by most users, since a UART
will normally be used for debug output.
166 © NXP Laboratories UK 2016 JN-UG-3075 v1.8

 JenOS
User Guide
DBG_vUartInit

Description

This function is used to initialise the Debug module when one of the JN516x on-chip
UARTs is to be used as the output interface. In this case, this function should be
called instead of DBG_vInit(). This will be the case for most users, as a UART will
normally be used for debug output.

The function can be used during a cold start or a warm start (with memory held). It is
necessary to specify the UART (0 or 1) and the required baud rate.

Note that the callback functions required by DBG_vInit() are not needed for
DBG_vUartInit(), since they are pre-defined by NXP for the on-chip UARTs.

Parameters

eUart UART to use as output interface, one of:
DBG_E_UART_0 (UART0)
DBG_E_UART_1 (UART1)

eBaudRate Baud rate of UART, one of:
DBG_E_UART_BAUD_RATE_4800 (4800 bps)
DBG_E_UART_BAUD_RATE_9600 (9600 bps)
DBG_E_UART_BAUD_RATE_19200 (19200 bps)
DBG_E_UART_BAUD_RATE_38400 (38400 bps)
DBG_E_UART_BAUD_RATE_76800 (76800 bps)
DBG_E_UART_BAUD_RATE_115200 (115200 bps)

Returns

None

void DBG_vUartInit(DBG_teUart eUart,
DBG_teUartBaudRate eBaudRate);
JN-UG-3075 v1.8 © NXP Laboratories UK 2016 167

Chapter 13
DBG API

DBG_vPrintf

Description

This function is an adapted printf() function, allowing a formatted string to be output
(e.g. via the UART) for display.

The function contains a parameter which allows the output of the string to be enabled
or disabled - the value of this Boolean parameter must be a literal. If disabled, the
compiler will optimise out this function, but its parameters will still be evaluated.

Parameters

bStreamEnabled Boolean which determines whether string will be output:
 TRUE: Output string
 FALSE: Do not output string (compile out function)

*pcFormat Pointer to printf-style formatting string

... As for the standard printf() function

Returns

None

void DBG_vPrintf(bool_t bStreamEnabled,
const char *pcFormat, ...);
168 © NXP Laboratories UK 2016 JN-UG-3075 v1.8

 JenOS
User Guide
DBG_vAssert

Description

This function is an adapted assert() function, allowing a Boolean condition to be
tested.

The function contains a parameter which allows the test to be enabled or disabled -
the value of this Boolean parameter must be a literal. If disabled, the compiler will
optimise out this function.

The Boolean condition to be tested is specified as a parameter:

 If the condition is TRUE, program execution continues.

 If the condition is FALSE, an error message is output and execution is passed to a
callback function, which stops execution. This callback function is specified when
DGB_vInit() is called for a cold start.

Parameters

bStreamEnabled Boolean which determines whether test will be performed:
 TRUE: Perform test
 FALSE: Do not perform test

bAssertion Boolean expression to be tested

Returns

None

void DBG_vAssert(bool_t bStreamEnabled,
bool_t bAssertion);
JN-UG-3075 v1.8 © NXP Laboratories UK 2016 169

Chapter 13
DBG API

DBG_vDumpStack

Description

This function outputs the contents of the CPU stack (e.g. via the UART) for display.

Parameters

None

Returns

None

void DBG_vDumpStack(void);
170 © NXP Laboratories UK 2016 JN-UG-3075 v1.8

 JenOS
User Guide
DBG_vFlush

Description

This function flushes buffered characters from the JN516x device to the display
device. If the JN516x UART is used for debug, this function flushes the UART buffer.

Parameters

None

Returns

None

void DBG_vFlush(void);
JN-UG-3075 v1.8 © NXP Laboratories UK 2016 171

Chapter 13
DBG API

DBG_iGetChar

Description

This function can be used to obtain a character from an input device (such as a serial
terminal connected to the JN516x UART).

Parameters

None

Returns

ASCII value of obtained character, or -1 if no character available

int DBG_iGetChar(void);
172 © NXP Laboratories UK 2016 JN-UG-3075 v1.8

 JenOS
User Guide
14. JenOS Structures

This chapter describes the structures used by the JenOS APIs.

The structures are listed below along with their page references.

Structure Page

PDM_tsHwFncTable 173

tSPIflashFncTable 174

PWRM_teSleepMode 176

DBG_tsFunctionTbl 176

tsReg128 177

PDM_tpfvSystemEventCallback 177

PDM_eSystemEventCode 177

OS_teStatus 182

14.1 PDM_tsHwFncTable

This structure is used in the function PDM_vInit() to specify a set of user-defined
functions used to interact with a custom NVM device.

typedef struct

{

 /* This function is called after a cold or warm start */

 void (*prInitHwCb)(void);

 /* This function is called to erase the given sector */

 void (*prEraseCb) (uint8 u8Sector);

 /*This function is called to write data to an address

 * within a given sector. Address zero is the start of the

 * given sector */

 void (*prWriteCb) (uint8 u8Sector,

 uint16 u16Addr,

 uint16 u16Len,

 uint8 *pu8Data);

 /* This function is called to read data from an address

 * within a given sector. Address zero is the start of the

 * given sector */

 void (*prReadCb) (uint8 u8Sector,

 uint16 u16Addr,

 uint16 u16Len,

 uint8 *pu8Data);

} PDM_tsHwFncTable;
JN-UG-3075 v1.8 © NXP Laboratories UK 2016 173

Chapter 14
JenOS Structures

14.2 tSPIflashFncTable

This structure is used in the function PDM_vSPIFlashConfig() to specify a set of user-
defined functions used to interact with a custom SPI Flash device.

typedef struct tagSPIflashFncTable {

 uint32 u32Signature; //always set to 0x1234678

 uint16 u16FlashId; //(u8ManufactureId<<8)|u8DeviceId

 uint16 u16Reserved; //Reserved

 tpfvZSPIflashInit vZSPIflashInit; //see below

 tpfvZSPIflashSetSlaveSel vZSPIflashSetSlaveSel; //see below

 tpfvZSPIflashWREN vZSPIflashWREN; //see below

 tpfvZSPIflashEWRSR vZSPIflashEWRSR; //see below

 tpfu8ZSPIflashRDSR u8ZSPIflashRDSR; //see below

 tpfu16ZSPIflashRDID u16ZSPIflashRDID; //see below

 tpfvZSPIflashWRSR vZSPIflashWRSR; //see below

 tpfvZSPIflashPP vZSPIflashPP; //see below

 tpfvZSPIflashRead vZSPIflashRead; //see below

 tpfvZSPIflashBE vZSPIflashBE; //see below

 tpfvZSPIflashSE vZSPIflashSE; //see below

} tSPIflashFncTable;

The custom functions specified in this structure are outlined in Table 1 below.
174 © NXP Laboratories UK 2016 JN-UG-3075 v1.8

 JenOS
User Guide
Function Prototype Description

void vZSPIflashInit(int iDivisor, uint8 u8SlaveSel); Initialises variables for Flash access.

• iDivisor Clock divisor

• u8SlaveSel Byte used for slave select

void vZSPIflashSetSlaveSel(uint8 u8SlaveSel);

void vZSPIflashWREN(void); Enables writes to Flash. Called before erasing or pro-
gramming Flash.

vZSPIflashEWRSR(void); Enables writes to Flash Status Register. Called before
writing to the Flash Status Register.

uint8 u8ZSPIflashRDSR(void); Reads Flash Status Register and returns Status Regis-
ter data

uint16 u16ZSPIflashRDID(void); Reads Flash ID Register and returns ID Register data,
0 on error or 2 bytes [ManufacturerId, DeviceId]

void vZSPIflashWRSR(uint8 u8Data); Writes data to Flash Status Register

• u8Data Status Register data

void vZSPIflashPP(
 uint32 u32Addr,
 uint16 u16Len,
 uint8* pu8Data);

Writes data to Flash.

• u32Addr Address

• u16Len Length, in bytes

• pu8Data Data to write

void vZSPIflashRead(
 uint32 u32Addr,
 uint16 u16Len,
 uint8* pu8Data);

Reads data from Flash.

• u32Addr Address

• u16Len Length, in bytes

• pu8Data Data read

void vZSPIflashBE(void); Performs a bulk erase of Flash

void vZSPIflashSE(uint8 u8Sector); Performs a sector erase of Flash

• u8Sector Sector number

Table 1: Functions of tSPIflashFncTable Structure
JN-UG-3075 v1.8 © NXP Laboratories UK 2016 175

Chapter 14
JenOS Structures

14.3 PWRM_teSleepMode

This structure contains the enumerations used to set the power mode of the JN516x
device during sleep.

typedef enum

{

 PWRM_E_SLEEP_OSCON_RAMON, /*32-kHz Osc on and RAM on*/

 PWRM_E_SLEEP_OSCON_RAMOFF, /*32-kHz Osc on and RAM off*/

 PWRM_E_SLEEP_OSCOFF_RAMON, /*32-kHz Osc off and RAM on*/

 PWRM_E_SLEEP_OSCOFF_RAMOFF, /*32-kHz Osc off and RAM off*/

 PWRM_E_SLEEP_DEEP, /*Deep Sleep*/

} PWRM_teSleepMode;

14.4 DBG_tsFunctionTbl

This structure contains callback functions used by the Debug (DBG) module to interact
with the output interface.

typedef struct

 {

 void (*prInitHardwareCb)(void);

 void (*prPutchCb) (char c);

 void (*prFlushCb) (void);

 void (*prFailedAssertCb)(void);

 } DBG_tsFunctionTbl;

For details of the callback functions, refer to the description of DBG_vInit on page 166.
176 © NXP Laboratories UK 2016 JN-UG-3075 v1.8

 JenOS
User Guide
14.5 tsReg128

This is a constant structure which contains a 128-bit encryption key used by the PDM
module - the key is passed into the module via the PDM_vInit() function.

typedef struct

{

 uint32 u32register0;

 uint32 u32register1;

 uint32 u32register2;

 uint32 u32register3;

} tsReg128;

In the above structure, u32register0 contains the 32 least signifacant bits and
u32register3 contains the 32 most significant bits of the key.

14.6 PDM_tpfvSystemEventCallback

This type defines the callback function that receives PDM events.

typedef void (*PDM_tpfvSystemEventCallback) (

 uint32 u32eventNumber,

 PDM_eSystemEventCode eSystemEventCode);

where:

 u32eventNumber gives further information about the event depending on the
event code, as detailed in Section 14.7

 eSystemEventCode identifies the type of event that triggered the callback.

14.7 PDM_eSystemEventCode

This structure contains enumerations for the events generated by the PDM library.
There are two versions of this structure:

 One for the PDM for external Flash memory, used by ZigBee Smart Energy
(and described in Chapter 3 and Chapter 12)

 One for the PDM for internal EEPROM, used by ZigBee Home Automation,
ZigBee Light Link and JenNet-IP (and described in Chapter 4 and Chapter 10)
JN-UG-3075 v1.8 © NXP Laboratories UK 2016 177

Chapter 14
JenOS Structures

PDM for External Flash Memory

typedef enum

{

 E_PDM_SYSTEM_EVENT_WEAR_COUNT_TRIGGER_VALUE_REACHED=0,

 E_PDM_SYSTEM_EVENT_DESCRIPTOR_SAVE_FAILED,

 E_PDM_SYSTEM_EVENT_PDM_NOT_ENOUGH_SPACE,

 E_PDM_SYSTEM_EVENT_EEPROM_SEGMENT_HEADER_REPAIRED,

 E_PDM_SYSTEM_EVENT_SYSTEM_INTERNAL_BUFFER_WEAR_COUNT_SWAP,

 E_PDM_SYSTEM_EVENT_SYSTEM_DUPLICATE_FILE_SEGMENT_DETECTED

} PDM_eSystemEventCode;

The events are outlined in Table 2 below.

Event Enumeration Description

E_PDM_SYSTEM_EVENT_WEAR_
COUNT_TRIGGER_VALUE_REACHED

This code can be ignored by the application software
and only needs to be logged if requested by NXP Tech-
nical Support.

E_PDM_SYSTEM_EVENT_
DESCRIPTOR_SAVE_FAILED

A save has failed. u32eventNumber contains the
u16IdValue of the record that failed to save. This is a
fatal error as the ZigBee PRO stack records may be
inconsistent. Test software should log this error and
halt. Production software may need to perform a factory
reset.

E_PDM_SYSTEM_EVENT_PDM_NOT_
ENOUGH_SPACE

There is not enough space to hold all the PDM records.
u32eventNumber contains the u16IdValue of the
record that was being processed. This is a fatal error as
the ZigBee PRO stack records may be inconsistent.
Test software should log this error and halt. Production
software may need to perform a factory reset.

E_PDM_SYSTEM_EVENT_EEPROM_
SEGMENT_HEADER_REPAIRED

This code can be ignored by the application software
and only needs to be logged if requested by NXP Tech-
nical Support.

E_PDM_SYSTEM_EVENT_SYSTEM_
INTERNAL_BUFFER_WEAR_COUNT_
SWAP

This code can be ignored by the application software
and only needs to be logged if requested by NXP Tech-
nical Support.

E_PDM_SYSTEM_EVENT_SYSTEM_
DUPLICATE_FILE_SEGMENT_
DETECTED

This code can be ignored by the application software
and only needs to be logged if requested by NXP Tech-
nical Support.

Table 2: PDM Event Codes (Flash Memory)
178 © NXP Laboratories UK 2016 JN-UG-3075 v1.8

 JenOS
User Guide
PDM for Internal EEPROM

typedef enum

{

 E_PDM_SYSTEM_EVENT_WEAR_COUNT_TRIGGER_VALUE_REACHED=0,

 E_PDM_SYSTEM_EVENT_SAVE_FAILED,

 E_PDM_SYSTEM_EVENT_PDM_NOT_ENOUGH_SPACE,

 E_PDM_SYSTEM_EVENT_LARGEST_RECORD_FULL_SAVE_NO_LONGER_POSSIBLE,

 E_PDM_SYSTEM_EVENT_SEGMENT_DATA_CHECKSUM_FAIL,

 // Debug event codes

 E_PDM_SYSTEM_EVENT_EEPROM_SEGMENT_HEADER_REPAIRED,

 E_PDM_SYSTEM_EVENT_SYSTEM_INTERNAL_BUFFER_WEAR_COUNT_SWAP,

 E_PDM_SYSTEM_EVENT_SYSTEM_DUPLICATE_FILE_SEGMENT_DETECTED,

 E_PDM_SYSTEM_EVENT_SYSTEM_ERROR,

} PDM_eSystemEventCode;

The events are outlined in Table 3 below.

Event Enumeration Description

E_PDM_SYSTEM_EVENT_WEAR_
COUNT_TRIGGER_VALUE_REACHED

An EEPROM segment has reached a set Wear Count
(set by the user or left at the manufacturer stated maxi-
mum value). u32EventNumber carries the EEPROM
segment number.

E_PDM_SYSTEM_EVENT_SAVE_
FAILED

A save has failed. u32eventNumber contains the
u16IdValue of the record that failed to save. This is a
fatal error as the stack records may be inconsistent.
Test software should log this error and halt. Production
software may need to perform a factory reset.

E_PDM_SYSTEM_EVENT_PDM_NOT_
ENOUGH_SPACE

There is not enough space to hold all the PDM records.
u32eventNumber contains the u16IdValue of the
record that was being processed. This is a fatal error as
the stack records may be inconsistent. Test software
should log this error and halt. Production software may
need to perform a factory reset.

E_PDM_SYSTEM_EVENT_LARGEST_
RECORD_FULL_SAVE_NO_LONGER_
POSSIBLE

The EEPROM occupancy is such that the largest
record in the PDM can no longer be fully saved.
u32EventNumber carries the u16IdValue of the
record that was being processed.

E_PDM_SYSTEM_EVENT_SEGMENT_
DATA_CHECKSUM_FAIL

The calculated checksum for the data in an EEPROM
segment does not match the stored checksum value.
u32EventNumber carries the number of the segment.

E_PDM_SYSTEM_EVENT_EEPROM_
SEGMENT_HEADER_REPAIRED

This code can be ignored by the application software
and only needs to be logged if requested by NXP Tech-
nical Support.

Table 3: PDM Event Codes (EEPROM)
JN-UG-3075 v1.8 © NXP Laboratories UK 2016 179

Chapter 14
JenOS Structures

14.8 PDM_teStatus

This structure contains enumerations for the status codes generated by the PDM
module.

typedef enum

{

 PDM_E_STATUS_OK,

 PDM_E_STATUS_INVLD_PARAM,

 // EEPROM based PDM codes

 PDM_E_STATUS_PDM_FULL,

 PDM_E_STATUS_NOT_SAVED,

 PDM_E_STATUS_RECOVERED,

 PDM_E_STATUS_PDM_RECOVERED_NOT_SAVED,

 PDM_E_STATUS_USER_BUFFER_SIZE,

 PDM_E_STATUS_BITMAP_SATURATED_NO_INCREMENT,

 PDM_E_STATUS_BITMAP_SATURATED_OK,

 PDM_E_STATUS_IMAGE_BITMAP_COMPLETE,

 PDM_E_STATUS_IMAGE_BITMAP_INCOMPLETE,

 PDM_E_STATUS_INTERNAL_ERROR

} PDM_teStatus;

The status codes are described in Table 4 below.

E_PDM_SYSTEM_EVENT_SYSTEM_
INTERNAL_BUFFER_WEAR_COUNT_
SWAP

This code can be ignored by the application software
and only needs to be logged if requested by NXP Tech-
nical Support.

E_PDM_SYSTEM_EVENT_SYSTEM_
DUPLICATE_FILE_SEGMENT_
DETECTED

This code can be ignored by the application software
and only needs to be logged if requested by NXP Tech-
nical Support.

E_PDM_SYSTEM_EVENT_SYSTEM_
ERROR

This code can be ignored by the application software
and only needs to be logged if requested by NXP Tech-
nical Support.

Event Enumeration Description

Table 3: PDM Event Codes (EEPROM)
180 © NXP Laboratories UK 2016 JN-UG-3075 v1.8

 JenOS
User Guide

Event Enumeration Description

PDM_E_STATUS_OK The function completed without error.

PDM_E_STATUS_INVLD_PARAM An invalid parameter value was supplied.

PDM_E_STATUS_PDM_FULL There is no available EEPROM space for PDM.

PDM_E_STATUS_NOT_SAVED A PDM save to EEPROM failed.

PDM_E_STATUS_RECOVERED The record was recovered from a previous save to
NVM.

PDM_E_STATUS_PDM_RECOVERED_NOT_SAVED The record was not recovered from a previous
save to NVM.

PDM_E_STATUS_USER_BUFFER_SIZE Not used.

PDM_E_STATUS_BITMAP_SATURATED_NO_INCREMENT Counter increment not made because the
EEPROM segment is saturated.

PDM_E_STATUS_BITMAP_SATURATED_OK Counter increment made but the EEPROM seg-
ment is now saturated.

PDM_E_STATUS_IMAGE_BITMAP_COMPLETE For internal use.

PDM_E_STATUS_IMAGE_BITMAP_INCOMPLETE For internal use.

PDM_E_STATUS_INTERNAL_ERROR An unspecified internal PDM error has occurred.

Table 4: PDM Status Codes
JN-UG-3075 v1.8 © NXP Laboratories UK 2016 181

Chapter 14
JenOS Structures

14.9 OS_teStatus

This structure contains enumerations for the JenOS status codes generated by the
core OS library.

typedef enum {

 OS_E_OK = 0,

 OS_E_BADTASK = 1,

 OS_E_BADMUTEX = 2,

 OS_E_BADMESSAGE = 3,

 OS_E_BADVALUE = 4,

 OS_E_OVERACTIVATION = 5,

 OS_E_QUEUE_EMPTY = 6,

 OS_E_QUEUE_FULL = 7,

 OS_E_UNQUEUED = 8,

 OS_E_OSINTOVERFLOW = 9,

 OS_E_OSINTUNDERFLOW = 10,

 OS_E_BADSWTIMER = 11,

 OS_E_BADHWCOUNTER = 12,

 OS_E_SWTIMER_STOPPED = 13,

 OS_E_SWTIMER_EXPIRED = 14,

 OS_E_SWTIMER_RUNNING = 15,

 OS_E_HWCOUNTERIDLE = 16,

 OS_E_NOTHINGTOEXPIRE = 17,

 OS_E_PRIORITY_ERROR = 18,

 OS_E_BAD_NESTING = 19,

 OS_E_TICKS_TOO_BIG = 20,

 OS_E_CURRENT_TASK_NOT_A_MUTEX_MEMBER = 21,

 OS_E_TASK_NOT_A_MESSAGE_POSTER = 22,

 OS_E_TASK_NOT_A_MESSAGE_COLLECTOR = 23

} OS_teStatus;

The status codes are described in Table 5 below. Fatal errors must be handled using
the mechanism described in Section 2.5.
182 © NXP Laboratories UK 2016 JN-UG-3075 v1.8

 JenOS
User Guide

Event Enumeration Description

OS_E_OK The function completed without error.

OS_E_BADTASK A bad task handle has been passed to a function. This
is a fatal error.

OS_E_BADMUTEX A bad mutex handle has been passed to a function.
This is a fatal error.

OS_E_BADMESSAGE A bad message handle has been passed to a function.
This is a fatal error.

OS_E_BADVALUE An out-of-range value has been passed to a function.
This is a fatal error.

OS_E_OVERACTIVATION A task has been activated too many times. This is a
fatal error.

OS_E_QUEUE_EMPTY An attempt has been made to read from an empty
queue.

OS_E_QUEUE_FULL An attempt has been made to post to a queue that is
full. Whist the OS can recover from this situation, this
error should normally be treated as fatal. If a ZigBee
PRO stack queue overflows, the stack can be left in an
inconsistent state.

OS_E_UNQUEUED Returned by OS_eGetMessageStatus when the
queue is not empty or full.

OS_E_OSINTOVERFLOW There have been too many nested interrupts. This is a
fatal error.

OS_E_OSINTUNDERFLOW A resume from interrupts has failed due to there being
no matching interrupt. This is a fatal error.

OS_E_BADSWTIMER A bad timer handle has been passed to a function. This
is a fatal error.

OS_E_BADHWCOUNTER A bad hardware counter handle has been passed to a
function. This is a fatal error.

OS_E_SWTIMER_STOPPED An attempt has been made to stop a timer that is
already stopped. This is not necessarily a fatal error.

OS_E_SWTIMER_EXPIRED The software timer has expired. This is not a fatal error.

OS_E_SWTIMER_RUNNING The software timer is running. This is not normally a
fatal error. However, when calling
OS_eContinueSWTimer() on a timer that is already
running, the expiry time of the timer will remain at the
time previously set and will not be changed by this call.

OS_E_HWCOUNTERIDLE A code used internally that is not presented to applica-
tion software.

OS_E_NOTHINGTOEXPIRE The hardware timer has expired but no software timers
are due to expire. This is a fatal error.

Table 5: OS Status Codes
JN-UG-3075 v1.8 © NXP Laboratories UK 2016 183

Chapter 14
JenOS Structures

OS_E_PRIORITY_ERROR The priority levels internal to the OS are not consistent.
This is a fatal error.

OS_E_BAD_NESTING There have been two calls to enter a critical section
without a leave call. This is a fatal error.

OS_E_TICKS_TOO_BIG An attempt has been made to start a timer too far into
the future. This is a fatal error.

OS_E_CURRENT_TASK_NOT_A_
MUTEX_MEMBER

A task has attempted to take a mutex when the task is
not in the mutex group in the OS configuration diagram.
This is a fatal error.

OS_E_TASK_NOT_A_MESSAGE_
POSTER

A task has attempted to post a message to a queue
when the task is not connected to the queue in the OS
configuration diagram. This is a fatal error.

OS_E_TASK_NOT_A_MESSAGE_
COLLECTOR

A task has attempted to collect a message from a
queue when the task is not connected to the queue in
the OS configuration diagram. This is a fatal error.

Event Enumeration Description

Table 5: OS Status Codes
184 © NXP Laboratories UK 2016 JN-UG-3075 v1.8

 JenOS
User Guide
Part III:
Configuration Information
JN-UG-3075 v1.8 © NXP Laboratories UK 2016 185

186 © NXP Laboratories UK 2016 JN-UG-3075 v1.8

 JenOS
User Guide
15. JenOS Configuration

The use of certain JenOS resources must be statically configured before building an
application, particularly resources relating to the RTOS and PDU Manager, such as
timers, mutexes and ISRs. This chapter introduces the JenOS Configuration Editor,
the graphical tool used to perform this configuration.

The JenOS Configuration Editor is an NXP-devised plug-in for the Eclipse IDE and is
therefore also compatible with ‘BeyondStudio for NXP’. In developing a ZigBee PRO
application, ZigBee network parameters must be pre-configured using the ZPS
Configuration Editor, which is also an NXP-devised plug-in for Eclipse/BeyondStudio.

The Eclipse or BeyondStudio platform is provided as part of the JN516x toolchain,
JN-SW-4041 or JN-SW-4141 respectively. Both of the above plug-ins are provided in
the JN516x SDKs for the ZigBee application profiles (SE, HA, ZLL).

The principles of the build-time configuration for a ZigBee PRO application are
described in Section 15.2. The ZPS Configuration Editor is described in the ZigBee
PRO Stack User Guide (JN-UG-3048 or JN-UG-3101).

15.1 CPU Stack and Heap Sizes

For ZigBee PRO, the CPU stack and heap sizes are respectively set to 5000 bytes
and 2000 bytes, by default. If you wish to change these sizes, you can over-ride the
default values in your application makefile using __stack_size and
__minimum_heap_size.

For example:

__stack_size = 6000;

__minimum_heap_size = 2500;

You should increase the stack size when including the ZigBee OTA Upgrade feature.

15.2 Configuration Principles

The build process for a ZigBee PRO application takes a number of configuration files,
in addition to the application source file and header file. The following files are
generated from Eclipse to feed into the build process:

 ZigBee PRO Stack files:

 zps_gen.c

 zps_gen.h

 PDU Manager files:

 pdum_gen.c

 pdum_gen.h
JN-UG-3075 v1.8 © NXP Laboratories UK 2016 187

Chapter 15
JenOS Configuration

 RTOS files:

 os_gen.c

 os_gen.h

 os_irq.s

All of the above files are produced according to the same basic principles. The NXP
plug-ins in Eclipse are used to edit the configuration data and output this data as XML
files (the XML files can be coded manually, outside of Eclipse, but this is not
recommended). As part of the build process, the application's makefile invokes
command line utilities that use the XML files to generate the files listed above.

The full build process is illustrated in Figure 1.

Figure 1: Application Build Process

Eclipse

JenOS
Configuration

Editor

zps_gen.c

zps_gen.h

pdum_gen.c

pdum_gen.h

os_gen.c

os_gen.h

os_irq.s

Compiler

user_app.c

user_app.h

Application
(unlinked)

Linker

user_app.bin

ZigBee
Libraries

ZPS
Configuration

Editor
XML

XML

XML

File
generation

by
command
line utilities
188 © NXP Laboratories UK 2016 JN-UG-3075 v1.8

 JenOS
User Guide
15.3 Configuring JenOS Resources

The JenOS configuration is closely linked to application coding and can be performed
before, during or after coding. This configuration is largely concerned with the
management of task/ISR execution and scheduling. Typical settings include:

 The execution priorities of individual user tasks and ISRs

 A user task’s membership of a particular mutex group

 The interrupt which ‘stimulates’ execution of a particular ISR

 The software timers derived from a particular hardware counter

 The callback functions associated with a particular hardware counter

 The user task that is activated when a particular software timer expires

 The message types that can be sent and received by a particular user task

 The length of a user task’s message queue for a particular message type

This information is represented in the editor in graphical form. The editor’s graphical
window is divided into separate regions for the application, ZigBee PRO stack and
CPU exceptions. An example of this window is shown below.

Figure 2: Graphical Configuration Window
JN-UG-3075 v1.8 © NXP Laboratories UK 2016 189

Chapter 15
JenOS Configuration

Generally, the stack region of the diagram is the same for all applications and can be
taken from the examples provided in the Application Notes listed in Section 1.2. Thus,
most of the new configuration is required in the application region of the diagram.

In the diagram, the following objects are represented by colour-coded boxes:

 Task (blue)

 ISR (light blue)

 Callback (yellow)

 Message queue (green)

 Mutex group (red)

 Interrupt source (purple)

 Hardware counter (brown)

 Software timer (orange)

For example, the following box represents a task:

The blue banner indicates a user task and the name of the task is included in quotes
(“APP_UpdateDisplayTask” here). The white area of the box contains configurable
attributes of the task (here, the execution priority and autostart status).

Relationships between the objects are indicated using colour-coded lines that run
between them. For example:

 A red line between a task/ISR and a mutex group indicates that the task/ISR
belongs to the mutex group.

 A dark-green arrowed line between a task and a message queue indicates that
the task is allowed to post messages in the queue.

 A light-green arrowed line between a task and a message queue indicates that
the task is allowed to collect messages from the queue.

 A blue arrowed line between a software timer and a task indicates that expiry of
the timer will activate the task.

 A purple arrowed line shows the interrupt source that stimulates a certain ISR.

The graphic below defines “TickTimerException” as the interrupt source that triggers
execution of the ISR “TickInterrupt”.
190 © NXP Laboratories UK 2016 JN-UG-3075 v1.8

 JenOS
User Guide
Part IV:
Appendices
JN-UG-3075 v1.8 © NXP Laboratories UK 2016 191

192 © NXP Laboratories UK 2016 JN-UG-3075 v1.8

 JenOS
User Guide
A. Hardware Counter Details

A hardware counter is an abstract device used as a source of timing events to drive a
number of software timers which are associated with it (see Section 2.4.6). It requires
four user-defined callback functions to implement the following set of operations:
Enable and Disable the timer, Get the current count value, Set the compare value.
These callback functions are used by JenOS to manage the software timers and are
defined using JenOS macros (detailed in Section 8.1).

A.1 Hardware Counter Operation

JenOS maintains the expiry times of the software timers associated with a hardware
counter as a list of delta values - in other words, the number of ticks between now and
the point at which the software timer is to expire. When a software timer is started, an
entry in this list is created for its expiry time, the delta time being calculated relative to
its closest earlier neighbour. The nearest timer later than the one inserted will have its
delta value adjusted so that its expiry time is now relative to the newly inserted entry.
Timers expiring later than the adjusted timer entry will not need their delta values
changing since they are still measured relative to the adjusted timer event.

This can be more easily understood with the following example. Timer A is set to
expire 25 ms from now (time 0), Timer B is set to expire 50 ms from now and Timer C
at 75 ms from now. The list delta values are thus A=25, B=25, C=25, since B will expire
25 ms after A and C will expire 25 ms after B. 10 ms later, Timer D is set to expire after
20 ms. Timer D entry will expire in-between Timer A and Timer B (i.e. 30 ms from time
0), so it is inserted between A and B in the list. Its delta value from timer A is 5 ms (i.e.
Timer D expires 5 ms after Timer A expires). However, since Timer D is now in-
between Timers A and B in the list, Timer B's delta value must be adjusted so that it
is relative to Timer D's expiry time. Therefore, Timer B's adjusted delta value is now
20. However, since Timer C's delta is calculated relative to Timer B, it does not need
to change. So after the insertion, the list appears as A=25, D=5, B=20, C=25.

To run the counter, the first element from the list is removed and JenOS uses the Get
and Set functions to calculate and set the compare value for the next expiry point
(current count + delta from the list). The counter runs to the compare value and then
generates an interrupt. JenOS then expires all software timers that match this point,
and any others that may have expired during the time it was processing those which
caused the interrupt. After performing all the processing to expire the timers (e.g.
activating tasks associated with the timers), the next value from the list is added to the
current hardware counter value and becomes the new compare value. This is
managed by the function OS_eExpireSWTimers().

Any free running counter with the ability to generate an interrupt when the counter
reaches a compare value can be used.
JN-UG-3075 v1.8 © NXP Laboratories UK 2016 193

Appendices
A.2 Use of Tick Timer as Hardware Counter

The Tick Timer of the JN516x device is normally used as the hardware counter for the
JenOS software timers:

 The Tick Timer is a free-running counter running at 16 MHz (62.5 ns). An
interrupt occurs when the Tick Timer counter value matches the value in the
Tick Timer compare register.

 The macro APP_TIME_MS(t) in app_timer_driver.h (in Components/
Utilities/Include) gives the number of tick timer ticks that will occur in t ms
(1 ms = 62.5 ns x 16000).

 The OS_eStartSWTimer() and OS_eContinueSWTimer() functions must be called
with the number of ticks less than 2147483647. This equates to approximately two
minutes with the 16-MHz hardware timer. Application software can time a longer
period by maintaining a count of timer expiries.

 Routines which implement the callbacks required by the hardware counter can
be found in components/utilities/source/app_timer_driver.c and consist of
the following functions:

 APP_cbEnableTickTimer(): Clears pending tick interrupts, sets the timer
for continuous running and then enables Tick Timer interrupts.

 APP_cbDisableTickTimer(): Disables tick interrupts and stops the Tick
Timer.

 APP_cbGetTickTimer(): Returns the current value of the Tick Timer.

 APP_cbSetTickTimerCompare(): Sets the compare value of the Tick
Timer with the value calculated - when this matches the Tick Timer counter
value, an interrupt is generated.

 APP_isrTickTimer: ISR called when Tick Timer value matches compare
value - calls the OS function that manages the OS software timers,
OS_eExpireSWTimers().
194 © NXP Laboratories UK 2016 JN-UG-3075 v1.8

 JenOS
User Guide
B. Clearing Interrupts

When using JenOS, it is the programmer’s responsibility to clear down an interrupt
source within the relevant Interrupt Service Routine (ISR). JenOS only manages the
Programmable Interrupt Controller (PIC) to set interrupt priorities and does not clear
interrupts.

Unless an interrupt source is cleared down, the corresponding interrupt status bits will
remain set, resulting in continuous interrupts. For interrupt sources among the JN516x
peripherals, the JN516x Integrated Peripherals API contains a number of functions for
clearing down some but not all peripheral interrupt sources. Clearing down JN516x
peripheral interrupts is described below for the various peripheral blocks.

Where no API function exists for clearing a peripheral interrupt, a workaround is
detailed. Callback functions registered through the Integrated Peripherals API are not
permitted when using JenOS. Instead, you should link an interrupt source to an ISR in
the JenOS Configuration Editor by adding the interrupt source (purple box) and
connecting it to an ISR (using a purple arrow), as illustrated in the diagram below.

System Controller

The following interrupt sources associated with the System Controller can be cleared
using the function vAHI_ClearSystemEventStatus():

 System clock

 Comparator

 Pulse counter

 Random number generator

 Brownout detector

For further information, refer to the function description in the JN516x Integrated
Peripherals API User Guide (JN-UG-3087).

Figure 1: Linking an Interrupt Source to an ISR

Note: Where a dedicated function is referenced below
for clearing down a peripheral interrupt source, the
function is fully detailed in the JN516x Integrated
Peripherals API User Guide (JN-UG-3087).
JN-UG-3075 v1.8 © NXP Laboratories UK 2016 195

Appendices
Interrupts from the following System Controller sources must be cleared using the
functions indicated:

 DIO interrupts may be cleared using u32AHI_DioInterruptStatus() or
vAHI_DioWakeStatus()

 Wake timer interrupts are cleared using u8AHI_WakeTimerFiredStatus()

Analogue Peripherals

There are two analogue peripheral interrupts:

 ADC/DAC conversion complete (CAPT) - this is set when an ADC conversion
and a DAC conversion have taken place (ADC and DAC running concurrently)

 ADC conversion complete in accumulation mode (ADCACC) - this is set when
a number of digital samples have been accumulated (2, 4, 8 or 16)

There are no API functions to clear down these interrupts and therefore a workaround
is needed:

 The relevant interrupt status bits can be read (bit 0 for CAPT, bit 1 for
ADCACC) using the following function call:

u32Data=u32REG_AnaRead(REG_ANPER_IS);

 The bits can be written back using the following function call:

vREG_AnaWrite(REG_ANPER_IS, u32Data);

These register access functions are not described in the JN516x Integrated
Peripherals API User Guide (JN-UG-3087) but are available in the header file
PeripheralRegs.h, which is included in the SDK.

You should check both bits in the ISR and process accordingly, as there are situations
in which both bits are set.

UARTs

The UART interrupts are set in response to a number of external conditions. The
interrupt status of a UART (0 or 1) can be read using the function
u8AHI_UartReadInterruptStatus(). For details of the returned value, refer to the
function description in the JN516x Integrated Peripherals API User Guide
(JN-UG-3087).

The accessed register is read only. The only way to clear a UART interrupt is to
remove the cause-condition.

Timers

A timer can generate interrupts on the rising and/or falling edges of the timer output
and the function u8AHI_TimerFired() can be used to clear the interrupt source.

Tick Timer

Any pending Tick Timer interrupt can be cleared using the function
vAHI_TickTimerIntPendClr().
196 © NXP Laboratories UK 2016 JN-UG-3075 v1.8

 JenOS
User Guide
Serial Interface (2-wire)

A Serial Interface interrupt is asserted to indicate the status of a data transfer, such as
a byte transfer having completed or loss of arbitration. The interrupt can be cleared
using the function bAHI_SiMasterSetCmdReg() in the following call:

bAHI_SiMasterSetCmdReg(FALSE,FALSE,FALSE,FALSE,FALSE,TRUE);

SPI Master

If enabled, a SPI interrupt is generated when each transfer has completed. There is
no API function to clear down this interrupt and therefore a workaround is needed:

 The relevant interrupt status bit can be read using the following function call (bit
0 is set if the interrupt is pending):

u32Data=u32REG_SpiRead(REG_SPIM_IS);

 The bit can be written back using the following function call:

u32REG_SpiWrite(REG_SPIM_IS,u32Data);

These register access functions are not described in the JN516x Integrated
Peripherals API User Guide (JN-UG-3087) but are available in the header file
PeripheralRegs.h, which is included in the SDK.

Intelligent Peripheral

A Serial Interface interrupt is asserted to indicate the status of a data transfer, such as
transaction completed. There is no API function to clear down this interrupt and
therefore a workaround is needed:

 The relevant interrupt status bit can be read using the following function call (bit
6 is set if the interrupt is pending):

u32Data= u32REG_SpiIpRead(REG_INTPER_CTRL);

 The bit can be written back using the following function call:

u32REG_SpiIpWrite(REG_INTPER_CTRL,u32Data);

These register access functions are not described in the JN516x Integrated
Peripherals API User Guide (JN-UG-3087) but are available in the header file
PeripheralRegs.h, which is included in the SDK.

Digital Audio Interface (DAI)

If enabled, a DAI interrupt is generated to indicate the completion of a data transfer.
There is no API function to clear down this interrupt and therefore a workaround is
needed:

 The relevant interrupt status bit can be read using the following function call (bit
0 is set if the interrupt is pending):

u32Data=u32REG_DaiRead(REG_DAI_INT);

 The bit can be written back using the following function call:

vREG_DaiWrite(REG_DAI_INT, u32Data);

These register access functions are not described in the JN516x Integrated
Peripherals API User Guide (JN-UG-3087) but are available in the header file
PeripheralRegs.h, which is included in the SDK.
JN-UG-3075 v1.8 © NXP Laboratories UK 2016 197

Appendices
Sample FIFO

The Sample FIFO interrupts indicate the status of the Transmit and Receiver buffers.
There is no API function to clear down this interrupt and therefore a workaround is
needed:

 The relevant interrupt status bit can be read using the following function call (bit
0 is set if the interrupt is pending):

u32Data=u32REG_SampleFifoRead(REG_SFF_INT);

 The bit can be written back using the following function call:

u32REG_SampleFifoWrite(REG_SFF_INT, u32Data);

These register access functions are not described in the JN516x Integrated
Peripherals API User Guide (JN-UG-3087) but are available in the header file
PeripheralRegs.h, which is included in the SDK.

However, the application must also remove the condition(s) that caused the interrupt,
otherwise the just-cleared interrupt will be immediately set again.
198 © NXP Laboratories UK 2016 JN-UG-3075 v1.8

 JenOS
User Guide
Revision History

Version Date Comments

1.0 25-Nov-2010 First release containing JenOS information taken from ZigBee PRO
Stack User Guide (JN-UG-3048), former ZigBee PRO APIs
Reference Manual (JN-RM-2041) and former ZigBee PRO
Configuration Guide (JN-UG-3065)

1.1 3-Mar-2011 Overlays feature added, co-operative tasks described and other
minor updates made. Accompanying software files also updated

1.2 20-Sept-2011 Appendix on clearing interrupts added. Advice on de-activating soft-
ware timers before sleeping added. Software timer ‘Start’ and ‘Expire’
functions modified. Other minor updates/corrections also made

1.3 24-Aug-2012 Minor updates/corrections made

1.4 19-Dec-2012 Updated for JN516x

1.5 4-July-2014 Internal edition with debug module updated and support for JN514x
removed

1.6 9-Feb-2015 Removed tutorials and minor updates/corrections made

1.7 26-Aug-2015 Added Persistent Data Manager (PDM) for JN516x EEPROM

1.8 25-Aug-2016 Added section on CPU stack and heap sizes. Web addresses for
NXP Wireless Connectivity pages updated
JN-UG-3075 v1.8 © NXP Laboratories UK 2016 199

JenOS
User Guide

Important Notice

Limited warranty and liability - Information in this document is believed to be accurate and reliable. However, NXP
Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or
completeness of such information and shall have no liability for the consequences of use of such information. NXP
Semiconductors takes no responsibility for the content in this document if provided by an information source outside
of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages
(including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or
replacement of any products or rework charges) whether or not such damages are based on tort (including
negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate
and cumulative liability towards customer for the products described herein shall be limited in accordance with the
Terms and conditions of commercial sale of NXP Semiconductors.

Right to make changes - NXP Semiconductors reserves the right to make changes to information published in this
document, including without limitation specifications and product descriptions, at any time and without notice. This
document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use - NXP Semiconductors products are not designed, authorized or warranted to be suitable for use
in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an
NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or
environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP
Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the
customer's own risk.

Applications - Applications that are described herein for any of these products are for illustrative purposes only. NXP
Semiconductors makes no representation or warranty that such applications will be suitable for the specified use
without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors
products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product
design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit
for the customer's applications and products planned, as well as for the planned application and use of customer's
third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks
associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on
any weakness or default in the customer's applications or products, or the application or use by customer's third party
customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products
using NXP Semiconductors products in order to avoid a default of the applications and the products or of the
application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Export control - This document as well as the item(s) described herein may be subject to export control regulations.
Export might require a prior authorization from competent authorities.

NXP Semiconductors

For online support resources and contact details of your local NXP office or distributor, refer to:

www.nxp.com
200 © NXP Laboratories UK 2016 JN-UG-3075 v1.8

	Contents
	Preface
	Organisation
	Conventions
	Acronyms and Abbreviations
	Related Documents
	Support Resources
	Trademarks
	Chip Compatibility

	Part I: Concept and Operational Information
	1. Introduction
	1.1 Modules and Architecture
	1.1.1 JenOS Modules
	1.1.2 Software Architecture

	1.2 Resources

	2. Real-time Operating System (RTOS)
	2.1 RTOS Fundamentals
	2.2 Introduction to the JenOS RTOS
	2.3 RTOS Configuration
	2.4 RTOS Concepts and Features
	2.4.1 User Tasks
	2.4.2 Interrupt Service Routines (ISRs)
	2.4.3 Priorities and Scheduling
	2.4.4 Task/ISR States
	2.4.5 State Transitions
	2.4.6 Activity Scheduling (using Software Timers)
	2.4.7 Mutual Exclusion (Mutex)
	2.4.8 Inter-task Communication (using Messages)

	2.5 OS Error Callback Function
	2.5.1 Strict Error Checks
	2.5.2 Handling OS Errors

	3. Persistent Data Manager (PDM) for Flash Memory
	3.1 Overview
	3.2 Initialising the PDM
	3.3 Data Storage in NVM
	3.4 Recovering Data from NVM
	3.5 Saving Data to NVM
	3.6 Deleting Data in NVM
	3.7 Mutexes in PDM
	3.8 Ensuring Consistency of PDM Records

	4. Persistent Data Manager (PDM) for EEPROM
	4.1 Overview
	4.2 Initialising the PDM and Building a File System
	4.3 Managing Data in EEPROM
	4.3.1 Saving Data to EEPROM
	4.3.2 Recovering Data from EEPROM
	4.3.3 Deleting Data in EEPROM

	4.4 Storing Counters in EEPROM
	4.4.1 Creating a Counter
	4.4.2 Incrementing a Counter
	4.4.3 Reading a Counter
	4.4.4 Deleting a Counter

	4.5 PDM Features
	4.5.1 Mutex in PDM
	4.5.2 Event and Error Handler for EEPROM
	4.5.3 EEPROM Capacity
	4.5.4 EEPROM Wear Count
	4.5.5 Ensuring Consistency of PDM Records

	5. Power Manager (PWRM)
	5.1 Low-Power Modes
	5.1.1 Doze Mode
	5.1.2 Sleep Mode with Memory Held
	5.1.3 Sleep Mode without Memory Held
	5.1.4 Deep Sleep Mode

	5.2 Callback Functions for Power Manager
	5.2.1 Essential Callback Function
	5.2.2 Pre-sleep and Post-sleep Callback Functions
	5.2.3 Wake Timer Callback Function

	5.3 Initialising and Starting the Power Manager
	5.4 Enabling Power-Saving
	5.5 Non-interruptible Activities
	5.6 Terminating Low-Power Mode
	5.7 Scheduling Wake Events
	5.8 Doze Mode
	5.8.1 Circumstances that Lead to Doze Mode
	5.8.2 Doze Mode Monitoring During Development

	6. Protocol Data Unit Manager (PDUM)
	6.1 Message Assembly and Disassembly
	6.2 Preparing the PDU Manager
	6.3 Inserting Data into Outgoing Message
	6.4 Extracting Data from Incoming Message

	7. Debug (DBG) Module
	7.1 Overview
	7.2 Enabling the Debug Module
	7.3 Initialising and Configuring the Debug Module
	7.3.1 Using JN516x UART Input/Output
	7.3.2 Using Alternative Serial Output

	7.4 Debug Configuration Flags
	7.5 Example Diagnostic Code

	Part II: Reference Information
	8. RTOS API
	8.1 RTOS Macros
	OS_TASK
	OS_ISR
	OS_SWTIMER_CALLBACK
	OS_HWCOUNTER_ENABLE_CALLBACK
	OS_HWCOUNTER_DISABLE_CALLBACK
	OS_HWCOUNTER_SET_CALLBACK
	OS_HWCOUNTER_GET_CALLBACK

	8.2 RTOS Functions
	8.2.1 Initialisation Functions
	OS_vStart
	OS_vRestart

	8.2.2 User Task Functions
	OS_eActivateTask
	OS_eGetCurrentTask

	8.2.3 Interrupt Functions
	OS_eDisableAllInterrupts
	OS_eEnableAllInterrupts
	OS_eSuspendOSInterrupts
	OS_eResumeOSInterrupts

	8.2.4 Mutex Functions
	OS_eEnterCriticalSection
	OS_eExitCriticalSection

	8.2.5 Messaging Functions
	OS_ePostMessage
	OS_eCollectMessage
	OS_eGetMessageStatus

	8.2.6 Software Timer Functions
	OS_eStartSWTimer
	OS_eStopSWTimer
	OS_eExpireSWTimers
	OS_eContinueSWTimer
	OS_eGetSWTimerStatus

	9. PDM API for Flash Memory
	PDM_vInit
	PDM_vSPIFlashConfig
	PDM_eLoadRecord
	PDM_vSaveRecord
	PDM_vSave
	PDM_vDeleteRecord
	PDM_vDelete
	PDM_vWarmInitHw
	PDM_ vRegisterSystemCallback

	10. PDM API for EEPROM
	10.1 EEPROM PDM Functions
	PDM_eInitialise
	PDM_eSaveRecordData
	PDM_eReadDataFromRecord
	PDM_eDeleteData
	PDM_eDeleteAllData
	PDM_u8GetSegmentCapacity
	PDM_u8GetSegmentOccupancy
	PDM_bDoesDataExist

	10.2 EEPROM PDM Bitmap Counter Functions
	PDM_eCreateBitmap
	PDM_eIncrementBitmap
	PDM_eGetBitmap
	PDM_eDeleteBitmap

	10.3 EEPROM PDM Miscellaneous Functions
	PDM_vRegisterSystemCallback
	PDM_vSetWearCountTriggerLevel
	PDM_eGetSegmentWearCount

	11. PWRM API
	11.1 Core Functions
	PWRM_vInit
	PWRM_eStartActivity
	PWRM_eFinishActivity
	PWRM_u16GetActivityCount
	PWRM_eScheduleActivity
	PWRM_vManagePower

	11.2 Callback Set-up Functions
	vAppMain
	PWRM_vRegisterPreSleepCallback
	PWRM_vRegisterWakeupCallback
	vAppRegisterPWRMCallbacks
	PWRM_vWakeInterruptCallback

	11.3 Debugging Function
	PWRM_vSetupDozeMonitor

	12. PDUM API
	PDUM_vInit
	PDUM_hAPduAllocateAPduInstance
	PDUM_eAPduFreeAPduInstance
	PDUM_u16APduInstanceReadNBO
	PDUM_u16APduInstanceWriteNBO
	PDUM_u16APduInstanceWriteStrNBO
	PDUM_u16SizeNBO
	PDUM_u16APduGetSize
	PDUM_pvAPduInstanceGetPayload
	PDUM_u16APduInstanceGetPayloadSize
	PDUM_eAPduInstanceSetPayloadSize
	PDUM_vDBGPrintAPduInstance

	13. DBG API
	DBG_vInit
	DBG_vUartInit
	DBG_vPrintf
	DBG_vAssert
	DBG_vDumpStack
	DBG_vFlush
	DBG_iGetChar

	14. JenOS Structures
	14.1 PDM_tsHwFncTable
	14.2 tSPIflashFncTable
	14.3 PWRM_teSleepMode
	14.4 DBG_tsFunctionTbl
	14.5 tsReg128
	14.6 PDM_tpfvSystemEventCallback
	14.7 PDM_eSystemEventCode
	14.8 PDM_teStatus
	14.9 OS_teStatus

	Part III: Configuration Information
	15. JenOS Configuration
	15.1 CPU Stack and Heap Sizes
	15.2 Configuration Principles
	15.3 Configuring JenOS Resources

	Part IV: Appendices
	A. Hardware Counter Details
	A.1 Hardware Counter Operation
	A.2 Use of Tick Timer as Hardware Counter

	B. Clearing Interrupts

