ZigBee Cluster Library
User Guide

JN-UG-3103
Revision 1.4
25 April 2017

¥ igBee

ZigBee Cluster Library
User Guide

2 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

ZigBee Cluster Library

User Guide
Contents

Preface 23
Organisation 23
Conventions 25
Acronyms and Abbreviations 25
Related Documents 26
Support Resources 26
Trademarks 26
Chip Compatibility 26

Part I: General and Development Information
1. ZigBee Cluster Library (ZCL) 29
1.1 Member Clusters 30
1.2 Compile-time Options 34
2. ZCL Fundamentals and Features 37
2.1 Shared Device Structures 37
2.2 Accessing Attributes 39
2.2.1 Reading Attributes 39
2.2.1.1 Reading a Set of Attributes of a Remote Cluster 39
2.2.1.2 Reading an Attribute of a Local Cluster 41
2.2.2 Writing Attributes 42
2.2.2.1 Writing to Attributes of a Remote Cluster 42
2.2.2.2 Writing an Attribute Value to a Local Cluster 45
2.2.3 Attribute Discovery 45
2.2.4 Attribute Reporting 46
2.3 Attribute Storage by Application (SE 1.2.2 only) 47
2.4 Default Responses 50
2.5 Bound Transmission Management 51
2.6 Command Discovery 52
2.6.1 Discovering Command Sets 53
2.6.2 Compile-time Options 54
3. Event Handling 55
3.1 Event Structure 55
3.2 Processing Events 56
3.3 Events 57

JN-UG-3103v1.4 © NXP Laboratories UK 2017 3

Contents

4. Error Handling 63
4.1 Last Stack Error 63
4.2 Error/Command Status on Receiving Command 63

Part Il: Clusters and Modules

5. Basic Cluster 67
5.1 Overview 67
5.2 Basic Cluster Structure and Attributes 68
5.3 Mandatory Attribute Settings 72
5.4 Functions 72

eCLD_BasicCreateBasic 73
eCLD_BasicCommandResetToFactoryDefaultsSend 75

5.5 Enumerations 77
5.5.1 teCLD_BAS_ClusterlD 77
5.5.2 teCLD_BAS PowerSource 77
5.5.3 teCLD_BAS_ApplicationProfileType 79
5.6 Compile-Time Options 79

6. Power Configuration Cluster 81
6.1 Overview 81
6.2 Power Configuration Cluster Structure and Attributes 82
6.3 Functions 92

eCLD_PowerConfigurationCreatePowerConfiguration 93

6.4 Enumerations and Defines 95
6.4.1 teCLD_PWRCFG_Attributeld 95
6.4.2 teCLD_PWRCFG_BatterySize 97
6.4.3 Defines for Voltage Alarms 97

6.5 Compile-Time Options 98

7. Identify Cluster 103
7.1 Overview 103
7.2 Identify Cluster Structure and Attribute 104
7.3 Initialisation 105
7.4 Sending Commands 105

7.4.1 Starting and Stopping Identification Mode 105
7.4.2 Requesting Identification Effects (ZLL Only) 105
7.4.3 Inquiring about ldentification Mode 106
7.4.4 Using EZ-mode Commissioning Features (HA only) 106
7.5 Sleeping Devices in ldentification Mode 107

4 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

7.6 Functions
eCLD_IdentifyCreateldentify
eCLD_IdentifyCommandldentifyRequestSend
eCLD_ldentifyCommandTriggerEffectSend
eCLD_IdentifyCommandldentifyQueryRequestSend
eCLD_IdentifyfEZModelnvokeCommandSend
eCLD_IdentifyUpdateCommissionStateCommandSend
7.7 Structures
7.7.1 Custom Data Structure
7.7.2 Custom Command Payloads
7.7.3 Custom Command Responses
7.7.4 EZ-mode Commissioning Command Payloads
7.8 Enumerations
7.8.1 teCLD_ldentify_ClusterlD

7.9 Compile-Time Options

Groups Cluster

8.1 Overview
8.2 Groups Cluster Structure and Attribute
8.3 Initialisation

8.4 Sending Commands
8.4.1 Adding Endpoints to Groups
8.4.2 Removing Endpoints from Groups
8.4.3 Obtaining Information about Groups
8.5 Functions
eCLD_GroupsCreateGroups
eCLD_GroupsAdd
eCLD_GroupsCommandAddGroupRequestSend
eCLD_GroupsCommandViewGroupRequestSend
eCLD_GroupsCommandGetGroupMembershipRequestSend
eCLD_GroupsCommandRemoveGroupRequestSend
eCLD_GroupsCommandRemoveAllGroupsRequestSend
eCLD_GroupsCommandAddGrouplfldentifyingRequestSend
8.6 Structures
8.6.1 Custom Data Structure
8.6.2 Group Table Entry
8.6.3 Custom Command Payloads
8.6.4 Custom Command Responses
8.7 Enumerations
8.7.1 teCLD_Groups_ClusterID

8.8 Compile-Time Options

ZigBee Cluster Library
User Guide

107
108
110
112
114
116
118

120
120
120
120
121

122
122

122

125

125
125
126

126
126
126
127

127
128
130
131
133
135
137
139
141

143
143
143
144
145

146
146

147

JN-UG-3103 v1.4

© NXP Laboratories UK 2017

Contents

9.

10.

Scenes Cluster

9.1 Overview
9.2 Scenes Cluster Structure and Attributes
9.3 Initialisation

9.4 Sending Remote Commands
9.4.1 Creating a Scene
9.4.2 Copying a Scene (ZLL Only)
9.4.3 Applying a Scene
9.4.4 Deleting a Scene
9.4.5 Obtaining Information about Scenes

9.5 Issuing Local Commands
9.5.1 Creating a Scene
9.5.2 Applying a Scene
9.6 Functions
eCLD_ScenesCreateScenes
eCLD_ScenesAdd
eCLD_ScenesStore
eCLD_ScenesRecall
eCLD_ScenesCommandAddSceneRequestSend
eCLD_ScenesCommandViewSceneRequestSend
eCLD_ScenesCommandRemoveSceneRequestSend
eCLD_ScenesCommandRemoveAllScenesRequestSend
eCLD_ScenesCommandStoreSceneRequestSend
eCLD_ScenesCommandRecallSceneRequestSend
eCLD_ScenesCommandGetSceneMembershipRequestSend
eCLD_ScenesCommandEnhancedAddSceneRequestSend
eCLD_ScenesCommandEnhancedViewSceneRequestSend
eCLD_ScenesCommandCopySceneSceneRequestSend

9.7 Structures
9.7.1 Custom Data Structure
9.7.2 Custom Command Payloads
9.7.3 Custom Command Responses

9.8 Enumerations
9.8.1 teCLD_Scenes_ClusterlD

9.9 Compile-Time Options

On/Off Cluster

10.1 Overview
10.2 On/Off Cluster Structure and Attribute
10.3 Initialisation

149

149
150
150

151
151
152
152
152
153

153
153
153

154
155
157
158
159
160
162
164
166
168
170
172
174
176
178

180
180
180
184

188
188

188

191
191
192
194

© NXP Laboratories UK 2017

JN-UG-3103 v1.4

ZigBee Cluster Library

User Guide
10.4 Sending Commands 194
10.4.1 Switching On and Off 194
10.4.1.1 Timeout on the ‘On’ Command 194
10.4.1.2 Profile-specific Features 195
10.4.2 Switching Off Lights with Effect (ZLL Only) 195
10.4.3 Switching On Timed Lights (ZLL Only) 196
10.5 Saving Light Settings (ZLL Only) 196
10.6 Functions 197
eCLD_OnOffCreateOnOff 198
eCLD_OnOffCommandSend 200
eCLD_OnOffCommandOffwithEffectSend 202
eCLD_OnOffCommandOnWithTimedOffSend 204
10.7 Structures 206
10.7.1 Custom Data Structure 206
10.7.2 Custom Command Payloads 206
10.8 Enumerations 208
10.8.1 teCLD_OnOff_ClusterID 208
10.8.2 teCLD_OOSC_SwitchType (On/Off Switch Types) 208
10.8.3 teCLD_OOSC_SwitchAction (On/Off Switch Actions) 208
10.9 Compile-Time Options 209
11. On/Off Switch Configuration Cluster 211
11.1 Overview 211
11.2 On/Off Switch Config Cluster Structure and Attribute 212
11.3 Initialisation 212
11.4 Functions 212
eCLD_OOSCCreateOnOffSwitchConfig 213
11.5 Enumerations 215
11.5.1 teCLD_OOSC_ClusterID 215
11.6 Compile-Time Options 215
12. Level Control Cluster 217
12.1 Overview 217
12.2 Level Control Cluster Structure and Attributes 218
12.3 Initialisation 220
12.4 Sending Remote Commands 220
12.4.1 Changing Level 220
12.4.2 Stopping a Level Change 221
12.5 Issuing Local Commands 222
12.5.1 Setting Level 222
12.5.2 Obtaining Level 222

JN-UG-3103v1.4 © NXP Laboratories UK 2017 7

Contents

13.

12.6 Functions
eCLD_LevelControlCreateLevelControl
eCLD_LevelControlSetLevel
eCLD_LevelControlGetLevel

eCLD_LevelControlCommandMoveToLevelCommandSend

eCLD_LevelControlCommandMoveCommandSend
eCLD_LevelControlCommandStepCommandSend
eCLD_LevelControlCommandStopCommandSend

eCLD_LevelControlCommandStopWithOnOffCommandSend

12.7 Structures
12.7.1 Custom Data Structure
12.7.2 Custom Command Payloads
12.7.2.1 Move To Level Command Payload
12.7.2.2 Move Command Payload
12.7.2.3 Step Command Payload
12.8 Enumerations

12.8.1 teCLD_LevelControl_ClusterlD
12.9 Compile-Time Options

Alarms Cluster

13.1 Overview
13.2 Alarms Cluster Structure and Attributes
13.3 Initialisation

13.4 Alarm Operations
13.4.1 Raising an Alarm
13.4.2 Clearing an Alarm (from Server)
13.4.3 Resetting Alarms (from Client)

13.5 Alarms Events

13.6 Functions
eCLD_AlarmsCreateAlarms
eCLD_AlarmsCommandResetAlarmCommandSend
eCLD_AlarmsCommandResetAllAlarmsCommandSend
eCLD_AlarmsCommandGetAlarmCommandSend
eCLD_AlarmsCommandResetAlarmLogCommandSend
eCLD_AlarmsResetAlarmLog
eCLD_AlarmsAddAlarmTolLog
eCLD_AlarmsGetAlarmFromLog
eCLD_AlarmsSignalAlarm
eCLD_AlarmsClearAlarm

223
224
226
227
228
230
232
234
235

236
236
236
236
237
237

238
238

238

241

241
242
242

242
242
243
243

243

245
246
248
250
252
254
256
257
258
259
261

© NXP Laboratories UK 2017

JN-UG-3103 v1.4

ZigBee Cluster Library

User Guide
13.7 Structures 263
13.7.1 Event Callback Message Structure 263
13.7.2 Custom Data Structure 264
13.7.3 Custom Command Payloads 264
13.7.3.1 Reset Alarm Command Payload 264
13.7.3.2 Alarm Notification Payload 265
13.7.4 Custom Response Payloads 265
13.7.4.1 Get Alarm Response Payload 265
13.7.5 Alarms Table Entry 266
13.8 Enumerations 266
13.8.1 teCLD_Alarms_AttributelD 266
13.9 Compile-Time Options 267
14. Time Cluster and ZCL Time 269
14.1 Overview 269
14.2 Time Cluster Structure and Attributes 271
14.3 Attribute Settings 273
14.3.1 Mandatory Attributes 273
14.3.2 Optional Attributes 274
14.4 Maintaining ZCL Time 275
14.4.1 Updating ZCL Time Following Sleep 275
14.4.2 ZCL Time Synchronisation 276
14.5 Time-Synchronisation of Devices 276
14.5.1 Initialising and Maintaining Master Time 278
14.5.2 Initial Synchronisation of Devices 279
14.5.3 Re-synchronisation of Devices 280
14.6 Time Event 280
14.7 Functions 281
eCLD_TimeCreateTime 282
vZCL_SetUTCTime 284
u32ZCL_GetUTCTime 285
bZCL_GetTimeHasBeenSynchronised 286
vZCL_ClearTimeHasBeenSynchronised 287
14.8 Return Codes 288
14.9 Enumerations 288
14.9.1 teCLD_TM_AttributelD 288
14.10 Compile-Time Options 288

JN-UG-3103v1.4 © NXP Laboratories UK 2017 9

Contents

15.

16.

17.

Binary Input (Basic) Cluster
15.1 Overview
15.2 Binary Input (Basic) Structure and Attribute
15.3 Functions
eCLD_BinarylnputBasicCreateBinarylnputBasic
15.4 Enumerations
15.4.1 teCLD_BinarylnputBasicCluster_AttrID

15.4.2 teCLD_BinarylnputBasic_Polarity
15.4.3 teCLD_BinarylnputBasic_Reliability

15.5 Compile-Time Options

Commissioning Cluster
16.1 Overview

16.2 Commissioning Cluster Structure and Attributes

16.3 Attribute Settings
16.4 Functions

16.5 Enumerations
16.5.1 teCLD_Commissioning_AttributelD

16.6 Compile-Time Options

Door Lock Cluster

17.1 Overview

17.2 Door Lock Cluster Structure and Attributes
17.3 Door Lock Events

17.4 Functions
eCLD_DoorLockCreateDoorLock
eCLD_DoorLockSetLockState
eCLD_DoorLockGetLockState
eCLD_DoorLockCommandLockUnlockRequestSend
eCLD_DoorLockSetSecurityLevel

17.5 Return Codes

17.6 Enumerations
17.6.1 ‘Attribute ID’ Enumerations
17.6.2 ‘Lock State’ Enumerations
17.6.3 ‘Lock Type' Enumerations
17.6.4 ‘Door State’ Enumerations
17.6.5 ‘Command ID’ Enumerations

17.7 Structures
17.7.1 tsCLD_DoorLockCallBackMessage
17.7.2 tsCLD_DoorLock_LockUnlockResponsePayload

17.8 Compile-Time Options

291

291
201
294

295

297
297
297
298

298

299

299
299
304
304
304

304
305

307

307
307
310

311
312
314
315
316
317

318

318
318
318
319
320
320

321
321
321

322

10

© NXP Laboratories UK 2017

JN-UG-3103 v1.4

ZigBee Cluster Library

User Guide
18. Thermostat Cluster 323
18.1 Overview 323
18.2 Thermostat Cluster Structure and Attributes 323
18.3 Thermostat Operations 330
18.3.1 Initialisation 330
18.3.2 Recording and Reporting the Local Temperature 330
18.3.3 Configuring Heating and Cooling Setpoints 331
18.4 Thermostat Events 332
18.5 Functions 333
eCLD_ThermostatCreateThermostat 334
eCLD_ThermostatSetAttribute 336
eCLD_ThermostatStartReportingLocalTemperature 337
eCLD_ThermostatCommandSetpointRaiseOrLowerSend 338
18.6 Return Codes 339
18.7 Enumerations 339
18.7.1 ‘Attribute ID’ Enumerations 339
18.7.2 ‘Operating Capabilities’ Enumerations 340
18.7.3 ‘Command ID’ Enumerations 341
18.7.4 'Setpoint Raise Or Lower’ Enumerations 341
18.8 Structures 342
18.8.1 Custom Data Structure 342
18.8.2 tsCLD_ThermostatCallBackMessage 342
18.8.3 tsCLD_Thermostat_SetpointRaiseOrLowerPayload 343
18.9 Compile-Time Options 344
19. Fan Control Cluster 347
19.1 Overview 347
19.2 Fan Control Structure and Attributes 347
19.3 Initialisation 348
19.4 Functions 348
eCLD_FanControlCreateFanControl 349
19.5 Enumerations 351
19.5.1 teCLD_FanControl_Cluster_AttrID 351
19.5.2 teCLD_FanControl_FanMode 351
19.5.3 teCLD_FanControl_ModeSequence 352
19.6 Compile-Time Options 352

JN-UG-3103 v1.4 © NXP Laboratories UK 2017 11

Contents

20.

21.

Thermostat Ul Configuration Cluster

20.1 Overview
20.2 Cluster Structure and Attributes
20.3 Initialisation

20.4 Functions
eCLD_ThermostatUIConfigCreateThermostatUlConfig
eCLD_ThermostatUIConfigConvertTemp
20.5 Return Codes
20.6 Enumerations
20.6.1 ‘Attribute ID’ Enumerations
20.6.2 ‘Temperature Display Mode’ Enumerations
20.6.3 ‘Keypad Functionality’ Enumerations

20.7 Compile-Time Options

Colour Control Cluster

21.1 Overview
21.2 Colour Control Cluster Structure and Attributes
21.3 Initialisation

21.4 Sending Commands
21.4.1 Controlling Hue
21.4.2 Controlling Saturation
21.4.3 Controlling Colour (CIE x and y Chromaticities)
21.4.4 Controlling Colour Temperature
21.4.5 Controlling ‘Enhanced’ Hue (ZLL Only)
21.4.6 Controlling a Colour Loop (ZLL Only)
21.4.7 Controlling Hue and Saturation

21.5 Functions
eCLD_ColourControlCreateColourControl

eCLD_ColourControlCommandMoveToHueCommandSend
eCLD_ColourControlCommandMoveHueCommandSend
eCLD_ColourControlCommandStepHueCommandSend

eCLD_ColourControlCommandMoveToSaturationCommandSend

eCLD_ColourControlCommandMoveSaturationCommandSend
eCLD_ColourControlCommandStepSaturationCommandSend

eCLD_ColourControlCommandMoveToHueAndSaturationCommandSend

eCLD_ColourControlCommandMoveToColourCommandSend
eCLD_ColourControlCommandMoveColourCommandSend
eCLD_ColourControlCommandStepColourCommandSend

eCLD_ColourControlCommandEnhancedMoveToHueCommandSend
eCLD_ColourControlCommandEnhancedMoveHueCommandSend
eCLD_ColourControlCommandEnhancedStepHueCommandSend

353

353
354
354

355
356
358

359

359
359
359
360

360

361

361
362
371

372
372
373
374
375
376
378
378

380
381
383
385
387
389
391
393
395
397
399
401
403
405
407

eCLD_ColourControlCommandEnhancedMoveToHueAndSaturationCommandSend 409

eCLD_ColourControlCommandColourLoopSetCommandSend

411

12

© NXP Laboratories UK 2017

JN-UG-3103 v1.4

ZigBee Cluster Library

User Guide
eCLD_ColourControlCommandStopMoveStepCommandSend 413
eCLD_ColourControlCommandMoveToColourTemperatureCommandSend 415
eCLD_ColourControlCommandMoveColourTemperatureCommandSend 417
eCLD_ColourControlCommandStepColourTemperatureCommandSend 419
eCLD_ColourControl_GetRGB 421
21.6 Structures 422
21.6.1 Custom Data Structure 422
21.6.2 Custom Command Payloads 422
21.7 Enumerations 432
21.7.1 teCLD_ColourControl_ClusterID 432
21.8 Compile-Time Options 433
22. llluminance Measurement Cluster 437
22.1 Overview 437
22.2 llluminance Measurement Structure and Attributes 437
22.3 Functions 438
eCLD_llluminanceMeasurementCreatellluminanceMeasurement 439
22.4 Enumerations 441
22.4.1 teCLD_IM_ClusterlD 441
22.5 Compile-Time Options 441
23. llluminance Level Sensing Cluster 443
23.1 Overview 443
23.2 Cluster Structure and Attributes 443
23.3 Functions 445
eCLD_llluminancelLevelSensingCreatellluminanceLevelSensing 446
23.4 Enumerations 448
23.4.1 teCLD_ILS ClusterlD 448
23.4.2 teCLD_ILS_LightSensorType 448
23.4.3 teCLD_ILS_LightLevelStatus 448
23.5 Compile-Time Options 449
24. Temperature Measurement Cluster 451
24.1 Overview 451
24.2 Temperature Measurement Structure and Attributes 451
24.3 Functions 452
eCLD_TemperatureMeasurementCreate TemperatureMeasurement 453
24.4 Enumerations 455
24.4.1 teCLD_TemperatureMeasurement_AttributelD 455
24.5 Compile-Time Options 455

IN-UG-3103 v1.4 © NXP Laboratories UK 2017 13

Contents

25.

26.

27.

Relative Humidity Measurement Cluster
25.1 Overview

25.2 RH Measurement Structure and Attributes
25.3 Functions

eCLD_RelativeHumidityMeasurementCreateRelativeHumidityMeasurement

25.4 Enumerations
25.4.1 teCLD_RHM_ClusterID

25.5 Compile-Time Options

Occupancy Sensing Cluster

26.1 Overview
26.2 Occupancy Sensing Structure and Attributes
26.3 Functions
eCLD_OccupancySensingCreateOccupancySensing
26.4 Enumerations
26.4.1 teCLD_OS_ClusterID

26.5 Compile-Time Options

IAS Zone Cluster

27.1 Overview
27.2 |IAS Zone Structure and Attributes

27.3 Enrollment
27.3.1 Trip-to-Pair
27.3.2 Auto-Enroll-Response
27.3.3 Auto-Enroll-Request

27.4 |AS Zone Events

27.5 Functions
eCLD_IASZoneCreatelASZone
eCLD_IASZoneUpdateZoneStatus
eCLD_lASZoneUpdateZoneState
eCLD_IASZoneUpdateZoneType
eCLD_IASZoneUpdateZonelD
eCLD_IASZoneUpdateCIEAddress
eCLD_IASZoneEnrollIReqSend
eCLD_IASZoneEnrollRespSend
eCLD_lASZoneStatusChangeNotificationSend
eCLD_lIASZoneNormalOperationModeReqSend
eCLD_IASZoneTestModeReqSend

27.6 Structures
27.6.1 Custom Data Structure
27.6.2 Custom Command Payloads

27.7 Compile-Time Options

457

457
457
458

459
461

461
461

463

463
464

466
467
469
469
469

471

471
472

475
475
476
476

ar7

478
479
481
483
484
485
486
487
489
491
493
494

496
496
496

499

14

© NXP Laboratories UK 2017

JN-UG-3103 v1.4

28. IAS Ancillary Control Equipment Cluster

28.1 Overview

28.2 IAS ACE Structure and Attributes
28.3 Table and Parameters

28.4 Command Summary

28.5 IAS ACE Events

28.6 Functions
eCLD_IASACECreatelASACE
eCLD_IASACEAddZoneEntry
eCLD_IASACERemoveZoneEntry
eCLD_IASACEGetZoneTableEntry
eCLD_IASACEGetEnrolledZones
eCLD_IASACESetPanelParameter
eCLD_IASACEGetPanelParameter
eCLD_IASACESetZoneParameter
eCLD_IASACESetZoneParameterValue
eCLD_IASACEGetZoneParameter
eCLD_IASACE_ArmSend
eCLD_IASACE_BypassSend
eCLD_IASACE_EmergencySend
eCLD_IASACE_FireSend
eCLD_IASACE_PanicSend
eCLD_IASACE_GetZonelDMapSend
eCLD_IASACE_GetZonelnfoSend
eCLD_IASACE_GetPanelStatusSend
eCLD_IASACE_SetBypassedZoneListSend
eCLD_IASACE_GetBypassedZoneListSend
eCLD_IASACE_GetZoneStatusSend
eCLD_IASACE_ZoneStatusChangedSend
eCLD_IASACE_PanelStatusChanged

28.7 Structures
28.7.1 Custom Data Structure
28.7.2 Zone Table Entry
28.7.3 Zone Parameters
28.7.4 Panel Parameters
28.7.5 Custom Command Payloads
28.7.6 Event Data Structures

28.8 Enumerations
28.8.1 teCLD_IASACE_ArmMode
28.8.2 teCLD_IASACE_PanelStatus
28.8.3 teCLD_IASACE_AlarmStatus
28.8.4 teCLD_IASACE_AudibleNotification

28.9 Compile-Time Options

ZigBee Cluster Library
User Guide

501

501
501
501
502
504

506
507
509
510
511
512
513
514
515
517
518
519
521
523
524
525
526
528
530
532
534
536
538
540

542
542
542
543
545
546
552

555
555
555
556
556

557

JN-UG-3103v1.4 © NXP Laboratories UK 2017

15

Contents

29. IAS Warning Device Cluster

29.1 Overview

29.2 IAS WD Structure and Attribute

29.3 Issuing Warnings

29.4 IAS WD Events

29.5 Functions
eCLD_IASWDCreatelASWD
eCLD_IASWDUpdate
eCLD_IASWDUpdateMaxDuration
eCLD_IASWDStartWarningReqSend
eCLD_IASWDSquawkReqgSend

29.6 Structures

29.6.1 Custom Data Structure

29.6.2 Custom Command Payloads
29.6.3 Event Data Structures

29.7 Compile-Time Options

30.0TA Upgrade Cluster

30.1 Overview

30.2 OTA Upgrade Cluster Structure and Attributes

30.3 Basic Principles
30.3.1 OTA Upgrade Cluster Server
30.3.2 OTA Upgrade Cluster Client

30.4 Application Requirements
30.5 Initialisation

30.6 Implementing OTA Upgrade Mechanism
30.7 Ancillary Features and Resources for OTA Upgrade

30.7.1 Rate Limiting
30.7.2 Device-Specific File Downloads

30.7.3Image Block Size and Fragmentation

30.7.4 Page Requests
30.7.5 Persistent Data Management
30.7.6 Mutex for Flash Memory Access

30.7.7 External Flash Memory Organisation

30.7.8Low-Voltage Flag
30.8 OTA Upgrade Events
30.8.1 Server-side Events
30.8.2 Client-side Events
30.8.3 Server-side and Client-side Events

559

559
559
560
561

562
563
565
566
567
569

571
571
571
573

575

S77

S77
578

581
582
582

583
584
585

588
588
5901
593
594
596
597
598
599

600
601
602
605

16

© NXP Laboratories UK 2017

JN-UG-3103 v1.4

ZigBee Cluster Library

User Guide
30.9 Functions 606
30.9.1 General Functions 606
eOTA_Create 607
vOTA_Flashlinit 608
eOTA_AllocateEndpointOTASpace 609
vOTA_GenerateHash 611
eOTA_GetCurrentOtaHeader 612
30.9.2 Server Functions 613
eOTA_SetServerAuthorisation 614
eOTA_SetServerParams 615
eOTA_GetServerData 616
eOTA_EraseFlashSectorsForNewlmage 617
eOTA_FlashWriteNewimageBlock 618
eOTA_NewlmagelLoaded 619
eOTA_ServerimageNotify 620
eOTA_ServerQueryNextimageResponse 621
eOTA_ServerlmageBlockResponse 622
eOTA_SetWaitForDataParams 624
eOTA_ServerUpgradeEndResponse 625
eOTA_ServerSwitchToNewlmage 627
eOTA_InvalidateStoredimage 628
eOTA_ServerQuerySpecificFileResponse 629
30.9.3 Client Functions 630
eOTA_SetServerAddress 631
eOTA_ClientQueryNextimageRequest 632
eOTA_ClientimageBlockRequest 633
eOTA_ClientimagePageRequest 634
eOTA_ClientUpgradeEndRequest 635
eOTA_HandlelmageVerification 637
eOTA_UpdateCoProcessorOTAHeader 638
eOTA_CoProcessorUpgradeEndRequest 639
eOTA_ClientSwitchToNewlmage 640
eOTA_UpdateClientAttributes 641
eOTA_RestoreClientData 642
VOTA_SetimageValidityFlag 643
eOTA_ClientQuerySpecificFileRequest 644
eOTA_SpecificFileUpgradeEndRequest 645
VvOTA_SetLowVoltageFlag 646
30.10 Structures 647
30.10.1 tsOTA_ImageHeader 647
30.10.2 tsOTA_CoProcessorOTAHeader 649
30.10.3 tsOTA_Common 649
30.10.4 tsOTA_HwFncTable 650
30.10.5 tsNvmDefs 650
30.10.6 tsOTA_ImageNotifyCommand 651
30.10.7 tsOTA_QuerylmageRequest 652
JN-UG-3103v1.4 © NXP Laboratories UK 2017 17

Contents

31.

30.10.8 tsOTA_QuerylmageResponse

30.10.9 tsOTA_BlockRequest

30.10.10 tsOTA_ImagePageRequest

30.10.11 tsOTA_ImageBlockResponsePayload
30.10.12 tsOTA_UpgradeEndRequestPayload
30.10.13 tsOTA_UpgradeEndResponsePayload
30.10.14 tsOTA_SuccessBlockResponsePayload
30.10.15 tsOTA_WaitForData

30.10.16 tsOTA_WaitForDataParams

30.10.17 tsOTA_PageReqServerParams

30.10.18 tsOTA_PersistedData

30.10.19 tsOTA_QuerySpecificFileRequestPayload
30.10.20 tsOTA_QuerySpecificFileResponsePayload
30.10.21 tsOTA_CallBackMessage

30.10.22 tsCLD_PR_Ota

30.10.23 tsCLD_AS_Ota

30.10.24 tsOTA_ImageVersionVerify

30.10.25 tsOTA_UpgradeDowngradeVerify

30.11 Enumerations
30.11.1 teOTA_Cluster
30.11.2 teOTA_UpgradeClusterEvents
30.11.3 eOTA_AuthorisationState
30.11.4 teOTA_ImageNotifyPayloadType
30.12 Compile-Time Options
30.13 Build Process
30.13.1 Modifying Makefiles
30.13.2 Building Applications
30.13.3 Preparing and Downloading Initial Client Image
30.13.4 Preparing and Downloading Server Image

Diagnostics Cluster

31.1 Overview
31.2 Diagnostics Structure and Attributes

31.3 Functions
eCLD_DiagnosticsCreateDiagnostics
eCLD_DiagnosticsUpdate

31.4 Enumerations
31.4.1 teCLD_Diagnostics_Attributeld

31.5 Compile-time Options

652
653
654
655
656
656
657
658
659
659
660
661
662
663
665
666
667
667
668
668
669
673
673
674

678
678
678
678
679

681

681
682
686

687
689

690
690

691

18

© NXP Laboratories UK 2017

JN-UG-3103 v1.4

ZigBee Cluster Library

User Guide
32.EZ-mode Commissioning Module 693
32.1 Overview 693
32.2 Commissioning Process and Stages 694
32.2.1 Invocation 695
32.2.2 Network Steering 695
32.2.2.1 Not a Network Member 696
32.2.2.2 Already a Network Member 697
32.2.3 Find and Bind 697
32.2.4 Grouping 699
32.3 Persisting Commissioning Data 701
32.4 Joining States 702
32.5 EZ-mode Commissioning Events 703
32.6 Functions 705
32.6.1 Joining Functions 705
VEZ_ SetUpPolicy 706
VEZ_FormNWK 707
eEZ UpdateEZState 708
VEZ EZModeNWKJoinHandler 709
eEZ_GetJoinState 710
VEZ_ReJoinOnLastKnownCh 711
VEZ_ RestoreDefaultAIBChMask 712
VvEZ_SetDefaultAIBChMask 713
32.6.2 ‘Find and Bind’/Grouping Functions 714
eEZ_ExcludeClusterFromEZBinding 715
eEZ_FindAndBind 716
eEZ_Group 717
VvEZ_ SetGroupld 718
ul6EZ_GetGroupld 719
eEZ_GetFindAndBindState 720
vEZ_Exit 721
VEZ_ FactoryReset 722
vEZ_EZModeNWKFindAndBindHandler 723
vEZ_ EPCallBackHandler 724
vEZ_EZModeCb 725
32.7 Enumerations 726
32.7.1 'Set-Up Policy’ Enumerations 726
32.7.2 Status Enumerations (‘Find and Bind’ Return Codes) 726
32.7.3 ‘Cluster Exclude’ Enumerations 727
32.7.4 ‘Join Action’ Enumerations 728
32.7.5 Event Enumerations 728
32.8 Structures 729
32.8.1 tsEZ_FindAndBindEvent 729
32.9 Compile-Time Options 730

JN-UG-3103 v1.4 © NXP Laboratories UK 2017 19

Contents

Part lll: General Reference Information

33. ZCL Functions

33.1 General Functions

eZCL_Register
vZCL_EventHandler
eZCL_GetLastZpsError

33.2 Attribute Access Functions

eZCL_SendReadAttributesRequest
eZCL_SendWriteAttributesRequest
eZCL_SendWriteAttributesNoResponseRequest
eZCL_SendWriteAttributesUndividedRequest
eZCL_SendDiscoverAttributesRequest
eZCL_SendDiscoverAttributesExtendedRequest
eZCL_SendConfigureReportingCommand
eZCL_SendReadReportingConfigurationCommand
eZCL_ReportAllAttributes
eZCL_CreatelLocalReport
eZCL_SetReportableFlag
eZCL_HandleReadAttributesResponse
eZCL_ReadLocalAttributeValue
eZCL_WriteLocalAttributeValue
eZCL_OverrideClusterControlFlags
eZCL_SetSupportedSecurity

33.3 Command Discovery Functions

eZCL_SendDiscoverCommandReceivedRequest
eZCL_SendDiscoverCommandGeneratedRequest

34. ZCL Structures

34.1 General Structures

34.1.1 tsZCL_EndPointDefinition

34.1.2 tsZCL_ClusterDefinition

34.1.3 tsZCL_AttributeDefinition

34.1.4 tsZCL_Address

34.1.5 tsZCL_AttributeReportingConfigurationRecord
34.1.6 tsZCL_AttributeReportingConfigurationResponse
34.1.7 tsZCL_AttributeReadReportingConfigurationRecord
34.1.8 tsZCL_IndividualAttributesResponse

34.1.9 tsZCL_DefaultResponse

34.1.10 tsZCL_AttributeDiscoveryResponse

34.1.11 tsZCL_AttributeDiscoveryExtendedResponse
34.1.12 tsZCL_ReportAttributeMirror

34.1.13 tsZCL_OctetString

34.1.14 tsZCL_CharacterString

737

737
738
739
740

741
742
744
746
748
750
752
754
756
758
759
760
761
762
764
766
767

768
769
771

773

773
773
774
775
776
776
778
778
779
779
780
780
781
782
783

20

© NXP Laboratories UK 2017

JN-UG-3103 v1.4

ZigBee Cluster Library

User Guide

34.1.15 tsZCL_ClusterCustomMessage 783

34.1.16 tsZCL_Clusterinstance 784

34.1.17 tsZCL_CommandDiscoverylndividualResponse 785

34.1.18 tsZCL_CommandDiscoveryResponse 785

34.1.19 tsZCL_CommandDefinition 786

34.1.20 tsZCL_SceneExtensionTable 786

34.1.21 tsZCL_WriteAttributeRecord 787

34.1.22 tsZCL_PersistDataHeader (SE 1.2.2 only) 787

34.2 Event Structure (tsZCL_CallBackEvent) 788

35. Enumerations and Status Codes 791

35.1 General Enumerations 791

35.1.1 Addressing Modes (teZCL_AddressMode) 791

35.1.2 Broadcast Modes (ZPS_teAplAfBroadcastMode) 793

35.1.3 Attribute Types (teZCL_ZCLAttributeType) 794

35.1.4 Command Status (teZCL_CommandStatus) 796

35.1.5 Report Attribute Status (teZCL_ReportAttributeStatus) 798

35.1.6 Security Level (teZCL_ZCLSendSecurity) 799

35.2 General Return Codes (ZCL Status) 800

35.3 ZCL Event Enumerations 803
Part IV: Appendices

A. Mutex Callbacks 809

B. Attribute Reporting 811

B.1 Automatic Attribute Reporting 811

B.2 Configuring Attribute Reporting 812

B.2.1 Compile-time Options 812

B.2.2 ‘Attribute Report Configuration” Commands 813

B.3 Sending Attribute Reports 815

B.4 Receiving Attribute Reports 816

B.5 Querying Attribute Reporting Configuration 817

B.6 Storing an Attribute Reporting Configuration 818

B.6.1 Persisting an Attribute Reporting Configuration 818

B.6.2 Formatting an Attribute Reporting Configuration Record 819

B.7 Profile Initialisation of Attribute Reporting 821

C. Extended Attribute Discovery 822

C.1 Compile-time Options 822

C.2 Application Coding 822

D. JN516x Bootloader 823

JN-UG-3103 v1.4 © NXP Laboratories UK 2017 21

Contents

E.

OTA Extension for Dual-Processor Nodes
E.1 Application Upgrades for Different Target Processors

E.2 Application Upgrade Scenarios
E.2.1 Loading Image into JN516x in OTA Server Node
E.2.2 Distributing Image to JN516x in OTA Client Node(s)
E.2.3 Distributing Image to Co-processor in OTA Client Node(s)

E.3 Storing Upgrade Images in Co-processor Storage on Server
E.4 Use of Image Indices

E.5 Multiple OTA Download Files
E.5.1 Multiple Independent OTA Files
E.5.2 Multiple Dependent OTA Files

EZ-mode Commissioning Actions and Terminology

Example Code Fragments
G.1 Code Fragment for Flash Memory Access

Glossary

824
826
827
829
829
830
834
835

836
836
836

837

838
838

839

22

© NXP Laboratories UK 2017

JN-UG-3103 v1.4

ZigBee Cluster Library
User Guide

Preface

This manual describes the NXP implementation of the ZigBee Cluster Library (ZCL)
for use with the following application profiles:

= Home Automation (HA)

= ZigBee Light Link (ZLL)

= Smart Energy (SE) 1.2.1

= Smart Energy (SE) 1.2.2 for dual-processor (restricted release)

Note 1: Content that is specific to a particular profile
“ (such as ZLL, HA or SE) is indicated as such in this

manual.

Note 2: This manual assumes that you are already
familiar with the concepts of ZigBee application profiles,
devices, clusters and attributes. These are described in
the ZigBee PRO Stack User Guide (see “Support
Resources” on page 26).

Organisation

This manual is divided into four parts:
= Part I: General and Development Information comprises four chapters:
Chapter 1 introduces the ZigBee Cluster Library (ZCL)

Chapter 2 describes some essential concepts for the ZCL, including read/
write access to cluster attributes and the associated read/write functions

Chapter 3 describes the event handling framework of the ZCL, including
the supplied event handling function

Chapter 4 describes the error handling provision of the ZCL, including the
supplied error handling function

= Part lI: Clusters and Modules comprises twenty-eight chapters (one chapter per
cluster or module):

Chapter 5 details the Basic cluster

Chapter 6 details the Power Configuration cluster
Chapter 7 details the Identify cluster

Chapter 8 details the Groups cluster

Chapter 9 details the Scenes cluster

Chapter 10 details the On/Off cluster

Chapter 11 details the On/Off Switch Configuration cluster
Chapter 12 details the Level Control cluster

JN-UG-3103 v1.4 © NXP Laboratories UK 2017 23

Preface

Chapter 13 details the Alarms cluster
Chapter 14 details the Time cluster, as well as the use of ZCL time
Chapter 15 details the Binary Input (Basic) cluster
Chapter 16 details the Commissioning cluster
Chapter 17 details the Door Lock cluster
Chapter 18 details the Thermostat cluster
Chapter 19 details the Fan Control cluster
Chapter 20 details the Thermostat Ul Configuration cluster
Chapter 21 details the Colour Control cluster
Chapter 22 details the llluminance Measurement cluster
Chapter 23 details the llluminance Level Sensing cluster
Chapter 24 details the Temperature Measurement cluster
Chapter 25 details the Relative Humidity Measurement cluster
Chapter 26 details the Occupancy Sensing cluster
Chapter 27 details the IAS Zone cluster
Chapter 28 details the IAS ACE (Ancillary Control Equipment) cluster
Chapter 29 details the IAS WD (Warning Device) cluster
Chapter 30 details the OTA (Over-the-Air) Upgrade cluster
Chapter 31 details the Diagnostics cluster
Chapter 32 details the EZ-mode Commissioning module

= Part lll: General Reference Information comprises three chapters:
Chapter 33 details the general functions of the ZCL
Chapter 34 details the general structures used by the ZCL
Chapter 35 details the general enumerations used by the ZCL

= Part IV: Appendices comprises eight appendices covering the use of JenOS
mutexes by the ZCL, the attribute reporting mechanism, the ‘extended’ attribute
discovery mechanism, the JN516x bootloader operation, the OTA extension for
dual-processor nodes, the terminology to use with EZ-mode commissioning,
example code fragments and a glossary of terms.

24

© NXP Laboratories UK 2017 JN-UG-3103 v1.4

ZigBee Cluster Library

User Guide

Conventions

Files, folders, functions and parameter types are represented in bold type.

Function parameters are represented in italics type.

Code fragments are represented in the Courier New typeface.

This is a Tip. It indicates useful or practical information.

This is a Note. It highlights important additional
“ information.

This is a Caution. It warns of situations that may result
in equipment malfunction or damage.

Acronyms and Abbreviations

ACE
APDU
API
CIE
HA
IAS
NPDU
OTA
SE

ul
ZCL
ZLL

Ancillary Control Equipment
Application Protocol Data Unit
Application Programming Interface
Control and Indicating Equipment
Home Automation

Intruder Alarm System

Network Protocol Data Unit

Over The Air

Smart Energy

User Interface

ZigBee Cluster Library

ZigBee Light Link

JN-UG-3103 v1.4

© NXP Laboratories UK 2017

25

Preface

Related Documents

JN-UG-3101 ZigBee PRO Stack User Guide (for HA and ZLL)
JN-UG-3048 ZigBee PRO Stack User Guide (for SE)

JN-UG-3076 ZigBee Home Automation User Guide

JN-UG-3091 ZigBee Light Link User Guide

JN-UG-3059 ZigBee Smart Energy User Guide

JN-UG-3100 ZigBee Smart Energy v1.2.2 User Guide

JN-UG-3075 JenOS User Guide

JN-UG-3081 JN51xx Encryption Tool (JET) User Guide

075123 ZigBee Cluster Library Specification [from ZigBee Alliance]
095264 ZigBee Over-the-Air Upgrading Cluster [from ZigBee Alliance]

Support Resources
To access JN516x support resources such as SDKs, Application Notes and User
Guides, visit the Wireless Connectivity area of the NXP web site:
www.nxp.com/products/wireless-connectivity

ZigBee resources can be accessed from the ZigBee page, which can be reached via
the short-cut www.nxp.com/zigbee.

All NXP resources referred to in this manual can be found at the above addresses,
unless otherwise stated. Resources that are specific to ZigBee Smart Energy 1.2.2
must be requested from NXP.

Trademarks

All trademarks are the property of their respective owners.

Chip Compatibility

The ZCL software described in this manual can be used on the NXP JN516x family of
wireless microcontrollers with the exception of the JN5161 device. However, the
supported devices will be referred to as JN516x.

26 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

ZigBee Cluster Library
User Guide

Part I:
General and Development
Information

JN-UG-3103 v1.4 © NXP Laboratories UK 2017 27

28

© NXP Laboratories UK 2017

JN-UG-3103 v1.4

ZigBee Cluster Library
User Guide

1. ZigBee Cluster Library (ZCL)

The ZigBee Alliance has defined the ZigBee Cluster Library (ZCL), comprising a
number of standard clusters that can be applied to different functional areas. For
example, all ZigBee application profiles use the Basic cluster from the ZCL.

The ZCL provides a common means for applications to communicate. It defines a
header and payload that sit inside the Protocol Data Unit (PDU) used for messages.
It also defines attribute types (such as ints, strings, etc), common commands (e.g. for
reading attributes) and default responses for indicating success or failure.

The NXP implementation of the ZCL, described in this manual, is supplied with the
NXP software for the following ZigBee application profiles:

= ZigBee Home Automation

m ZigBee Light Link

m ZigBee Smart Energy 1.2.1

m ZigBee Smart Energy 1.2.2 for dual-processor (restricted release)

The NXP application profile software is available via the NXP web site (see “Support
Resources” on page 26). The ZCL is fully detailed in the ZigBee Cluster Library
Specification (075123), available from the ZigBee Alliance.

The NXP ZCL software can be used on the NXP JN516x family of wireless
microcontrollers with the exception of the JN5161 device.

Note 1: Content that is specific to a particular profile
“ (such as ZLL, HA or SE) is indicated as such in this

manual.

Note 2: Resources for the Smart Energy 1.2.2 profile
must be requested from NXP.

JN-UG-3103 v1.4 © NXP Laboratories UK 2017 29

Chapter 1

ZigBee Cluster Library (ZCL)

1.1 Member Clusters

The clusters of the ZCL include those listed in Table 1 below.

General Cluster Cluster ID
Basic 0x0000
Power Configuration 0x0001
Identify 0x0003
Groups 0x0004
Scenes 0x0005
On/Off 0x0006
On/Off Switch Configuration 0x0007
Level Control 0x0008
Alarms 0x0009
Time 0x000A
Binary Input (Basic) 0x000F
Commissioning 0x0015
Door Lock 0x0101
Thermostat 0x0201
Fan Control 0x0202
Thermostat User Interface Configuration 0x0204
Colour Control 0x0300
llluminance Measurement 0x0400
llluminance Level Sensing 0x0401
Temperature Measurement 0x0402
Relative Humidity Measurement 0x0405
Occupancy Sensing 0x0406
IAS Zone 0x0500
IAS ACE (Ancillary Control Equipment) 0x0501
IAS WD (Warning Device) 0x0502

Table 1: ZCL Member Clusters

In addition, a number of non-ZCL clusters/modules which are common to all ZigBee
profiles are documented in this manual. These are the OTA Upgrade cluster (0x0019),

Diagnostics cluster (0xOB05) and EZ-mode Commissioning module.

30

© NXP Laboratories UK 2017

JN-UG-3103 v1.4

ZigBee Cluster Library
User Guide

Basic

The Basic cluster contains the basic properties of a ZigBee device (e.g. software and
hardware versions) and allows the setting of user-defined properties (such as
location). The Basic cluster is detailed in Chapter 5.

Power Configuration

The Power Configuration cluster allows the details of a device’s power source(s) to be
determined and under/over voltage alarms to be configured. The Power Configuration
cluster is detailed in Chapter 6.

Identify

The Identify cluster allows a ZigBee device to make itself known visually (e.g. by
flashing a light) to an observer such as a network installer. The Identify cluster is
detailed in Chapter 7.

Groups

The Groups cluster allows the management of the Group table concerned with group
addressing - that is, the targeting of multiple endpoints using a single address. The
Groups cluster is detailed in Chapter 8.

Scenes

The Scenes cluster allows the management of pre-defined sets of cluster attribute
values called scenes, where a scene can be stored, retrieved and applied to put the
system into a pre-determined state. The Scenes cluster is detailed in Chapter 9.

On/Off

The On/Off cluster allows a device to be put into the ‘on’ and ‘off’ states, or toggled
between the two states. The On/Off cluster is detailed in Chapter 10.

On/Off Switch Configuration

The On/Off Switch Configuration cluster allows the switch type on a device to be
defined, as well as the commands to be generated when the switch is moved between
its two states. The On/Off Switch Configuration cluster is detailed in Chapter 11.

Level Control

The Level Control cluster allows control of the level of a physical quantity (e.g. heat
output) on a device. The Level Control cluster is detailed in Chapter 12.

Alarms

The Alarms cluster is used for sending alarm notifications and the general
configuration of alarms for all other clusters on the ZigBee device (individual alarm
conditions are set in the corresponding clusters). The Alarms cluster is detailed in
Chapter 13.

JN-UG-3103 v1.4 © NXP Laboratories UK 2017 31

Chapter 1
ZigBee Cluster Library (ZCL)

Time
The Time cluster provides an interface to a real-time clock on a ZigBee device,
allowing the clock time to be read and written in order to synchronise the clock to a
time standard - the number of seconds since 0 hrs 0 mins 0 secs on 1st January 2000
UTC (Co-ordinated Universal Time). This cluster includes functionality for local time-
zone and daylight saving time. The Time cluster is detailed in Chapter 14.

Binary Input (Basic)

The Binary Input (Basic) cluster provides an interface for accessing a binary
measurement and its associated characteristics, and is typically used to implement a
sensor that measures a two-state physical quantity. The Binary Input (Basic) cluster
is detailed in Chapter 15.

Commissioning

The Commissioning cluster can be optionally used for commissioning the ZigBee
stack on a device (during network installation) and defining the device behaviour with
respect to the ZigBee network (it does not affect applications operating on the
devices). The Commissioning cluster is detailed in Chapter 16.

Door Lock

The Door Lock cluster provides a means of representing the state of a door lock and
(optionally) the door. The Door Lock cluster is detailed in Chapter 17.

Thermostat

The Thermostat cluster provides a means of configuring and controlling the
functionality of a thermostat. The Thermostat cluster is detailed in Chapter 18.

Fan Control

The Fan Control cluster provides a means of controlling the speed or state of a fan
which may be part of a heating or cooling system. The Fan Control cluster is detailed
in Chapter 19.

Thermostat User Interface (Ul) Configuration

The Thermostat Ul Configuration cluster provides a means of configuring the user
interface (keypad and/or LCD screen) for a thermostat or a thermostat controller
device. The Thermostat Ul Configuration cluster is detailed in Chapter 20.

Colour Control

The Colour Control cluster can be used to adjust the colour of a light (it does not
govern the overall luminance of the light, as this is controlled using the Level Control
cluster). The Colour Control cluster is detailed in Chapter 21.

32

© NXP Laboratories UK 2017 JN-UG-3103 v1.4

ZigBee Cluster Library
User Guide

Illuminance Measurement

The llluminance Measurement cluster provides an interface to an illuminance
measuring device, allowing the configuration of measuring and the reporting of
measurements. The Illuminance Measurement cluster is detailed in Chapter 22.

llluminance Level Sensing

The Illluminance Level Sensing cluster provides an interface to light-level sensing
functionality. The Illuminance Level Sensing cluster is detailed in Chapter 23.

Temperature Measurement

The Temperature Measurement cluster provides an interface to a temperature
measuring device, allowing the configuration of measuring and the reporting of
measurements. The Temperature Measurement cluster is detailed in Chapter 24.

Relative Humidity Measurement

The Relative Humidity Measurement cluster provides an interface to a humidity
measuring device, allowing the configuration of relative humidity measuring and the
reporting of measurements. The Relative Humidity Measurement cluster is detailed in
Chapter 25.

Occupancy Sensing

The Occupancy Sensing cluster provides an interface to an occupany sensor, allowing
the configuration of sensing and the reporting of status. The Occupancy Sensing
cluster is detailed in Chapter 26.

IAS Zone

The IAS Zone cluster provides an interface to a zone device in an IAS (Intruder Alarm
System). The IAS Zone cluster is detailed in Chapter 27.

IAS ACE (Ancillary Control Equipment)

The IAS ACE cluster provides a control interface to a CIE (Control and Indicating
Equipment) device in an IAS (Intruder Alarm System). The IAS ACE cluster is detailed
in Chapter 28.

IAS WD (Warning Device)

The IAS WD cluster provides an interface to a Warning Device in an IAS (Intruder
Alarm System). For example, a CIE (Control and Indicating Equipment) device can
use the cluster to issue alarm warning indications to a Warning Device when an alarm
condition is detected. The IAS WD cluster is detailed in Chapter 29.

Note: Some of the above clusters have special

' attributes that are used in ZigBee Light Link (ZLL) but in
no other application profile. If required, these attributes
must be enabled at compile-time (see Section 1.2).

JN-UG-3103 v1.4 © NXP Laboratories UK 2017 33

Chapter 1
ZigBee Cluster Library (ZCL)

1.2 Compile-time Options

Before the application can be built, the ZCL compile-time options must be configured
in the header file zcl_options.h for the application.

Enabled Clusters
All required clusters must be enabled in the options header file. For example, to enable
the Basic and Time clusters:
#define CLD_BASIC
#define CLD_TIME

Support for Attribute Read/Write

Read/write access to cluster attributes must be explicitly compiled into the application,
and must be enabled separately for the server and client sides of a cluster using the
following macros in the options header file:

#define ZCL_ATTRIBUTE_READ_SERVER_SUPPORTED

#define ZCL_ATTRIBUTE_READ CLIENT_SUPPORTED

#define ZCL_ATTRIBUTE_WRITE_SERVER_SUPPORTED

#define ZCL _ATTRIBUTE_WRITE_CLIENT_SUPPORTED

Each of the above definitions will apply to all clusters used in the application.

Tip: If only read access to attributes is required then do
not enable write access, as omitting the write options
will give the benefit of a reduced application size.

Optional and ZLL Attributes

Many clusters have optional attributes that may be enabled at compile-time via the
options header file - for example, to enable the Time Zone attribute in the Time cluster:

#define E_CLD_TIME_ATTR_TIME_ZONE

The ZigBee Light Link (ZLL) application profile uses special attributes in the ZCL
clusters. These attributes are not needed for other application profiles and must be
enabled for ZLL by including the appropriate defines in the options header file.

Note: Cluster-specific compile-time options are detailed
' in the sections for the individual clusters in Chapter 5.
The following optional features also have their own

compile-time options: attribute reporting (see Appendix
B.2.1) and OTA upgrade (see Section 30.12).

34 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

ZigBee Cluster Library
User Guide

Cooperative Tasks (HA and ZLL only)

If the tasks within the application are cooperative then this should be specified through
the following line:

#define COOPERATIVE

As a result, events will not be generated for locking and unlocking mutexes for
resources that are shared between the tasks. This option can be defined in the
zcl_options.h file or the makefile.

Parameter Checking (HA and ZLL only)
Parameter checking in various functons can be enabled by including the following line:
#define STRICT_PARAM_CHECK

This feature is useful for testing during application development. When the testing is
complete, the option should be disabled to eliminate the checks and to save code
memory. This option can be defined in the zcl_options.h file or the makefile.

JN-UG-3103 v1.4 © NXP Laboratories UK 2017 35

Chapter 1
ZigBee Cluster Library (ZCL)

36 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

ZigBee Cluster Library
User Guide

2. ZCL Fundamentals and Features

This chapter describes essential ZCL concepts, including the use of shared device
structures as well as remote read and write accesses to cluster attributes. The
attribute access functions are also detailed that are provided in the NXP
implementation of the ZCL.

Note: ZCL functions are referred to in this chapter which
“ are detailed in Chapter 33.

2.1 Shared Device Structures

In each ZigBee device, cluster attribute values are exchanged between the application
and the ZCL by means of a shared structure. This structure is protected by a mutex -
see Appendix A. The structure for a particular ZigBee device contains structures for
the clusters supported by that device.

Note: In order to use a cluster which is supported by a
“ device, the relevant option for the cluster must be

specified at build-time - see Section 1.2.

A shared device structure within a device can be accessed both by the local
application and by a remote application on another device. Remote read and write
operations involving a shared device structure are illustrated in Figure 1 below.
Normally, these operations are requested by a cluster client and performed on a
cluster server. For more detailed descriptions of these operations, refer to Section 2.2.

Usually, the ZCL parses remote commands that write attribute values to the shared
device structure. The written values can then be read by the local application. For
example, in a Home Automation network, an On/Off Switch device remotely writes to
the shared device structure in an On/Off Light device and the local application then
reads this data to change the state or configuration of the light.

JN-UG-3103 v1.4 © NXP Laboratories UK 2017 37

Chapter 2
ZCL Fundamentals and Features

Reading Remote Attributes

Client Device

Server Device

1. Application requests read of attribute values from device
structure on remote server and ZCL sends request.

4. ZCL receives response and generates events (which can
prompt application to read attributes from structure).

Read
Read Request Command
L.
icati ZCL ZCL icati
Application Device Application
-t g <&— Structure |* Write |
Event (s) Response Read Hees

. If necessary, application first updates attribute values in

device structure.

. ZCL reads requested attribute values from device structure

and then returns them to requesting client.

Writing Remote Attributes

Client Device

Server Device

1. ZCL sends ‘write attributes' request to remote server.
5. ZCL can receive optional response and generate events
for the application (that indicate any unsuccessful writes).

Write Request Write
Command >
Application ZCL ZCL Device | -] Application
~ Event (s) - Response structure | Reag

. ZCL writes received attribute values to device structure and

optionally sends response to client.

. If required, application can then read new attribute values

from device structure.

. ZCL can optionally generate a ‘write attributes’ response.

Figure 1: Operations using Shared Device Structure

Note: Provided that there are no remote attribute writes,
the attributes of a cluster server (in the shared structure)
on a device are maintained by the local application(s).

38 © NXP Laboratories UK 2017

JN-UG-3103 v1.4

ZigBee Cluster Library
User Guide

2.2 Accessing Attributes

This section describes the processes of reading and writing cluster attributes on a
remote node. For the attribute access function descriptions, refer to Section 33.2.

2.2.1 Reading Attributes

A ZigBee PRO application may need to read attribute values from a remote device.
Attributes are read by sending a ‘read attributes’ request, normally from a client cluster
to a server cluster. This request can be sent using a general ZCL function (see below)
or using a function which is specific to the target cluster. The cluster-specific functions
for reading attributes are covered in the chapters of this manual that describe the
supported clusters. Note that read access to cluster attributes must be explicitly
enabled at compile-time as described in Section 1.2.

A ZCL function is provided for reading a set of attributes of a remote cluster instance,
as described in Section 2.2.1.1. A function is also provided for reading a local cluster
attribute value, as described in Section 2.2.1.2.

2.2.1.1 Reading a Set of Attributes of a Remote Cluster

This section describes the use of the function eZCL_SendReadAttributesRequest()
to send a ‘read attributes’ request to a remote cluster in order to obtain the values of
selected attributes. The resulting activities on the source and destination nodes are
outlined below and illustrated in Figure 2. The events generated from a ‘read
attributes’ request are further described in Chapter 3.

Note: The described sequence is similar when using the
“ cluster-specific ‘read attributes’ functions.

JN-UG-3103 v1.4 © NXP Laboratories UK 2017 39

Chapter 2
ZCL Fundamentals and Features
1. On Source Node

The function eZCL_SendReadAttributesRequest() is called to submit a request to
read one or more attributes on a cluster on a remote node. The information required
by this function includes the following:

® Source endpoint (from which the read request is to be sent)

® Address of destination node for request

® Destination endpoint (on destination node)

= |dentifier of the cluster containing the attributes [enumerations provided]
= Number of attributes to be read

= Array of identifiers of attributes to be read [enumerations provided]

2. On Destination Node

On receiving the ‘read attributes’ request, the ZCL software on the destination node
performs the following steps:

1. Generates an E_ ZCL _CBET_READ_REQUEST event for the destination
endpoint callback function which, if required, can update the shared device
structure that contains the attributes to be read, before the read takes place.

2. Generates an E_ZCL_CBET_LOCK_MUTEX event for the endpoint callback
function, which should lock the mutex that protects the shared device
structure - for information on mutexes, refer to Appendix A.

3. Reads the relevant attribute values from the shared device structure and
creates a ‘read attributes’ response message containing the read values.

4. Generates an E_ZCL_CBET_UNLOCK_ MUTEX event for the endpoint
callback function, which should now unlock the mutex that protects the shared
device structure (other application tasks can now access the structure).

5. Sends the ‘read attributes’ response to the source node of the request.

3. On Source Node

On receiving the ‘read attributes’ response, the ZCL software on the source node
performs the following steps:

1. For each attribute listed in the ‘read attributes’ response, it generates an
E_ZCL_CBET_READ_INDIVIDUAL_ATTRIBUTE_RESPONSE message for
the source endpoint callback function, which may or may not take action on
this message.

2. On completion of the parsing of the ‘read attributes’ response, it generates a
single E_ZCL_CBET_READ_ATTRIBUTES_ RESPONSE message for the
source endpoint callback function, which may or may not take action on this
message.

40 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

ZigBee Cluster Library

User Guide
Source Node Destination Node
Endpoint ZCL ZCL Endpoint
'Read Attributes' Message
'Read Attributes' Request
» READ_REQUEST
LOCK_MUTEX
= Read Attribute Values Shared
N Structure

UNLOCK_MUTEX

Y

> ‘Read Attributes’ Response

A

READ_INDIVIDUAL _

ATTRIBUTE_RESPONSE A

READ_ATTRIBUTES
_RESPONSE

A

Figure 2: ‘Read Attributes’ Request and Response

Note: The ‘read attributes’ requests and responses
arrive at their destinations as data messages. Such a
message triggers a stack event of the type
ZPS_EVENT_APS_DATA_INDICATION, which is
handled as described in Section 3.2.

2.2.1.2 Reading an Attribute of a Local Cluster

An individual attribute of a cluster on the local hode can be read using the function
eZCL_ReadLocalAttributeValue(). The read value is returned by the function (in a
memory location for which a pointer must be provided).

JN-UG-3103 v1.4 © NXP Laboratories UK 2017 41

Chapter 2
ZCL Fundamentals and Features

2.2.2 Writing Attributes

The ZCL provides functions for writing attribute values to both remote and local
clusters, as described in Section 2.2.2.1 and Section 2.2.2.2 respectively.

2.2.2.1 Writing to Attributes of a Remote Cluster

A ZigBee PRO application may need to write attribute values to a remote device.
Attribute values are written by sending a ‘write attributes’ request, normally from a
client cluster to a server cluster, where the relevant attributes in the shared device
structure are updated. Note that write access to cluster attributes must be explicitly
enabled at compile-time as described in Section 1.2.

Three ‘write attributes’ functions are provided in the ZCL:

m eZCL_SendWriteAttributesRequest(): This function sends a ‘write attributes’
request to a remote device, which attempts to update the attributes in its shared
structure. The remote device generates a ‘write attributes’ response to the
source device, indicating success or listing error codes for any attributes that it
could not update.

m ¢ZCL_SendWriteAttributesNoResponseRequest(): This function sends a
‘write attributes’ request to a remote device, which attempts to update the
attributes in its shared structure. However, the remote device does not
generate a ‘write attributes’ response, regardless of whether there are errors.

= eZCL_SendWriteAttributesUndividedRequest(): This function sends a ‘write
attributes’ request to a remote device, which checks that all the attributes can
be written to without error:

If all attributes can be written without error, all the attributes are updated.
If any attribute is in error, all the attributes are left at their existing values.

The remote device generates a ‘write attributes’ response to the source device,
indicating success or listing error codes for attributes that are in error.

The activities surrounding a ‘write attributes’ request on the source and destination
nodes are outlined below and illustrated in Figure 3. The events generated from a
‘write attributes’ request are further described in Chapter 3.

42 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

ZigBee Cluster Library
User Guide

1. On Source Node

In order to send a ‘write attributes’ request, the application on the source node calls
one of the above ZCL ‘write attributes’ functions to submit a request to update the
relevant attributes on a cluster on a remote node. The information required by this
function includes the following:

Source endpoint (from which the write request is to be sent)

Address of destination node for request

Destination endpoint (on destination node)

Identifier of the cluster containing the attributes [enumerations provided]
Number of attributes to be written

Array of identifiers of attributes to be written [enumerations provided]

2. On Destination Node

On receiving the ‘write attributes’ request, the ZCL software on the destination node
performs the following steps:

1.

For each attribute to be written, generates an
E_ZCL_CBET_CHECK_ATTRIBUTE_RANGE event for the destination
endpoint callback function.

If required, the callback function can do either or both of the following:

check that the new attribute value is in the correct range - if the value is
out-of-range, the function should set the eAttributeStatus field of the
eventto E_ZCL_ERR_ATTRIBUTE RANGE

block the write by setting the the eAttributeStatus field of the event to
E_ZCL_DENY_ATTRIBUTE_ACCESS

In the case of an out-of-range value or a blocked write, there is no further
processing for that particular attribute following the ‘write attributes’ request.

Generates an E_ZCL_CBET_LOCK_MUTEX event for the endpoint callback
function, which should lock the mutex that protects the relevant shared device
structure - for information on mutexes, refer to Appendix A.

Writes the relevant attribute values to the shared device structure - an
E_ZCL CBET_WRITE_INDIVIDUAL_ATTRIBUTE event is generated for
each individual attempt to write an attribute value, which the endpoint callback
function can use to keep track of the successful and unsuccessful writes.

Note that if an ‘undivided write attributes’ request was received, an individual
failed write will render the whole update process unsuccessful.

Generates an E_ZCL_CBET_WRITE_ATTRIBUTES event to indicate that all
relevant attributes have been processed and, if required, creates a ‘write
attributes’ response message for the source node.

Generates an E_ZCL_CBET_UNLOCK_MUTEX event for the endpoint
callback function, which should now unlock the mutex that protects the shared
device structure (other application tasks can now access the structure).

If required, sends a ‘write attributes’ response to the source node of the
request.

JN-UG-3103 v1.4

© NXP Laboratories UK 2017 43

Chapter 2
ZCL Fundamentals and Features

3. On Source Node

On receiving an optional ‘write attributes’ response, the ZCL software on the source
node performs the following steps:

1. For each attribute listed in the ‘write attributes’ response, it generates an
E_ZCL_CBET_WRITE_INDIVIDUAL_ATTRIBUTE_RESPONSE message for
the source endpoint callback function, which may or may not take action on
this message. Only attributes for which the write has failed are included in the
response and will therefore result in one of these events.

2. On completion of the parsing of the ‘write attributes’ response, it generates a
single E_ ZCL_CBET_WRITE_ATTRIBUTES_RESPONSE message for the
source endpoint callback function, which may or may not take action on this
message.

Source Node Destination Node

Endpoint ZCL ZCL Endpoint

‘Write Attributes’ Message

[
-

‘Write Attributes' Request

....=., CHECK_ATTRIBUTE_RANGE
£ -

R 4 »
LOCK_MUTEX

[
-

Write Attribute Value p Shared
A Structure
i ;WRITE_INDIVIDUAL_ATTRIBUTE

[
-

WRITE_ATTRIBUTES

[
-

UNLOCK_MUTEX

[
-

‘Write Attributes' Response

A

WRITE_INDIVIDUAL _

ATTRIBUTE_RESPONSE [&7

WRITE_ATTRIBUTES
_RESPONSE

A

Figure 3: ‘Write Attributes’ Request and Response

Note: The ‘write attributes’ requests and responses
“ arrive at their destinations as data messages. Such a

message triggers a stack event of the type
ZPS_EVENT_APS_DATA_INDICATION, which is
handled as described in Chapter 3.

44 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

ZigBee Cluster Library
User Guide

2.2.2.2 Writing an Attribute Value to a Local Cluster

An individual attribute of a cluster on the local node can be written to using the function
eZCL_WriteLocalAttributeValue(). The function is blocking, returning only once the
value has been written.

2.2.3 Attribute Discovery

A ZigBee cluster may have mandatory and/or optional attributes. The desired optional
attributes are enabled in the cluster structure. An application running on a cluster client
may need to discover which optional attributes are supported by the cluster server.

The ZCL provides functionality to perform the necessary ‘attribute discovery’, as
described in the rest of this section.

Note 1: ‘Extended’ attribute discovery is also available
“ in which the accessibility of each reported attribute is

also indicated. This is described in Appendix C.

Note 2: Alternatively, the application on a cluster client
can check whether a particular attribute exists on the
cluster server by attempting to read the attribute (see
Section 2.2.1) - if the attribute does not exist on the
server, an error will be returned.

Compile-time Options
If required, the attribute discovery feature must be explicitly enabled on the cluster

server and client at compile-time by respectively including the following defines in the
zcl_options.h files:

#define ZCL_ATTRIBUTE_DISCOVERY_SERVER_SUPPORTED
#define ZCL_ATTRIBUTE_DISCOVERY_CLIENT_SUPPORTED

Application Coding

The application on a cluster client can initiate a discovery of the attributes on the
cluster server by calling the function eZCL_SendDiscoverAttributesRequest(),
which sends a ‘discover attributes’ request to the server. This function allows a range
of attributes to be searched for, defined by:

® The ‘start’ attribute in the range (the attribute identifier must be specified)
= The number of attributes in the range

Initially, the start attribute should be set to the first attribute of the cluster. If the
discovery request does not return all the attributes used on the cluster server, the
above function should be called again with the start attribute set to the next
‘undiscovered’ attribute. Multiple function calls may be required to discover all of the
attributes used on the server.

JN-UG-3103 v1.4 © NXP Laboratories UK 2017 45

Chapter 2

ZCL Fundamentals and Features

On receiving a discover attributes request, the server handles the request
automatically (provided that attribute discovery has been enabled in the compile-time
options - see above) and replies with a ‘discover attributes’ response containing the
requested information.

The arrival of this response at the client results in an
E_ZCL_CBET_DISCOVER_INDIVIDUAL_ATTRIBUTE_RESPONSE event for each
attribute reported in the response. Therefore, multiple events will normally result from
a single discover attributes request. This event contains details of the reported
attribute in a tsZCL_AttributeDiscoveryResponse structure (see Section
34.1.10).

Following the event for the final attribute reported, the event
E_ZCL_CBET_DISCOVER_ATTRIBUTES_ RESPONSE is generated to indicate that
all attributes from the discover attributes response have been reported.

2.2.4 Attribute Reporting

A cluster client can poll the value of an attribute on the cluster server by sending a
‘read attributes’ request, as described in Section 2.2.1. Alternatively, the server can
issue unsolicited attribute reports to the client using the ‘attribute reporting’ feature (in
which case there is no need for the client to request attribute values).

The attribute reporting mechanism reduces network traffic compared with the polling
method. It also allows a sleeping server to report its attribute values while it is awake.
Attribute reporting is an optional feature and is not supported by all devices.

Note: This section only introduces attribute reporting.
“ This optional feature is fully described in Appendix B.

An ‘attribute report’ (from server to client) can be triggered in one of the following ways:
= by the user application (on the server device)
= automatically (triggered by a change in the attribute value or periodically)
Automatic attribute reporting is more fully described in Appendix B.1.

The rules for automatic reporting can be configured by a remote device by sending a
‘configure reporting’ command to the server using the function
eZCL_SendConfigureReportingCommand(). If it is required, automatic attribute
reporting must also be enabled at compile-time on both the cluster server and client.
The configuration of attribute reporting is detailed in Appendix B.2.

Note: Attribute reporting configuration data should be
“ preserved in Non-Volatile Memory (NVM) to allow

automatic attribute reporting to resume following a reset
of the server device. Persisting this data in NVM is
described in Appendix B.6.

46

© NXP Laboratories UK 2017 JN-UG-3103 v1.4

ZigBee Cluster Library
User Guide

An attribute report for all reportable attributes on the server can be issued directly by
the server application using the function eZCL_ReportAllAttributes(). Only the
standard attributes are reported - this does not include manufacturer-specific
attributes. This method of attribute reporting does not require any configuration and
does not need to be enabled at compile-time on the server, although the client still
needs to be enabled at compile-time to receive attribute reports.

Sending an attribute report from the server is further described in Appendix B.3 and
receiving an attribute report on the client is described in Appendix B.4.

2.3 Attribute Storage by Application (SE 1.2.2 only)

Storage for cluster attributes is defined in a shared structure when a cluster instance
is created. This is explained in the descriptions of cluster-specific ‘Create’ functions.
The ZCL and cluster functionality maintains and modifies the relevant attributes, and
informs the user about any major events.

In Smart Energy 1.2.2, you can over-ride this standard functionality by instead storing
and maintaining the attributes in the application. To do this, follow the steps below:

1. Define the macro APP_STORE_SERVER_ATTRIBUTE_DATA in the file
zcl_options.h to store the server attributes in the application and/or
APP_STORE_CLIENT_ATTRIBUTE_DATA in zcl_options.h to store client
attributes in the application.

2. Implement the function pvZCL_GetAttributePointer() in the application. This
function will be called when ZCL/cluster-specific code tries to read or write any
attributes. This function should return a pointer to the attribute data. A sample
implementation is shown below:

PUBLIC void *pvZCL_GetAttributePointer(
tsZCL_AttributeDefinition *psAttributeDefinition,

tsZCL_Clusterlnstance *psClusterlinstance,
uintl6 ul6Attributeld)

uint8 uB8attributeSize;

if((psAttributeDefinition==NULL) |]| (psClusterinstance == NULL))

{
DBG_vPrintf(TRUE,
"((psAttributeDefinition==NULL) | | (psClusterinstance == NULL))\r\n');

return(NULL);
}

eZCL_GetAttributeTypeSize(psAttributeDefinition->eAttributeDataType,
&uBattributeSize);

if(ul6Attributeld < psAttributeDefinition->ul6AttributeEnum)

{
DBG_vPrintf(TRUE, "(ul6Attributeld < psAttributeDefinition-
>ulB6AttributeEnum)\r\n™);

JN-UG-3103 v1.4 © NXP Laboratories UK 2017 a7

Chapter 2

ZCL Fundamentals and Features

return(NULL) ;
}

return (vPtrApp_GetAttr(psAttributeDefinition->eAttributeDataType,

ul6Attributeld));

}

PUBLIC void *vPtrApp_GetAttr(uint8 u8AttributeType, uintl6 ul6ATtributelD)

{
static uint64 u64AttribMaxSize64Bit = 2;

static tsZCL_OctetString sOctetString;

static tsZCL_CharacterString sCharacterString;

static uint8 u80ctectStringData[] = { "Test Octect String Attributes'};
static uint8 u8CharStringData[] = { "Test Character String Attributes'};

switch(u8AttributeType)
{

case(E_ZCL_GINT8):

case(E_ZCL_UINTS8):

case(E_ZCL_INT8):

case(E_ZCL_ENUM8):

case(E_ZCL_BMAP8):

case(E_ZCL_BOOL):

{

return ((Uint8*)&ub64AttribMaxSize64Bit);

}

case(E_ZCL_GINT16):

case(E_ZCL_UINT16):

case(E_ZCL_ENUM16):

case(E_ZCL_INT16):
case(E_ZCL_CLUSTER_ID):
case(E_ZCL_ATTRIBUTE_ID):
case(E_ZCL_BMAP16):
case(E_ZCL_FLOAT_SEMI):

{

return ((uintl6*)&u64AttribMaxSize64Bit);

}

case(E_ZCL_GINT24):
case(E_ZCL_UINT24):
case(E_ZCL_INT24):

case(E_ZCL_BMAP24):

{
return ((Uint32*)&ub64AttribMaxSize64Bit);

}

case(E_ZCL_UINT32):

48

© NXP Laboratories UK 2017

JN-UG-3103 v1.4

case(E_ZCL_INT32):

case(E_ZCL_GINT32):

case(E_ZCL_BMAP32):

case(E_ZCL_UTCT):

case(E_ZCL_TOD):

case(E_ZCL_DATE):
case(E_ZCL_FLOAT_SINGLE):

{

return ((Uint32*)&ub4AttribMaxSize64Bit);

}

case(E_ZCL_GINT40):

case(E_ZCL_UINT40):

case(E_ZCL_INT40):

case(E_ZCL_BMAP40):

{

return ((Uint64*)&u64AttribMaxSize64Bit);

}

case(E_ZCL_GINT48):
case(E_ZCL_UINT48):
case(E_ZCL_INT48):

case(E_ZCL_BMAP48):

{
return ((Uint64*)&u64AttribMaxSize64Bit);

}

case(E_ZCL_GINT56):

case(E_ZCL_UINT56):

case(E_ZCL_INT56):

case(E_ZCL_BMAP56):

{

return ((Uint64*)&ub4AttribMaxSize64Bit);

}

case(E_ZCL_GINT64):

case(E_ZCL_UINT64):

case(E_ZCL_INT64):

case(E_ZCL_BMAP64):
case(E_ZCL_IEEE_ADDR):
case(E_ZCL_FLOAT_DOUBLE):

{

return ((Uint64*)&ub64AttribMaxSize64Bit);

}

/* strings - length determined in actual string*/

case(E_ZCL_OSTRING):

sOctetString.u8MaxLength = sizeof(u80ctectStringData);
sOctetString.u8Length = sizeof(u80ctectStringData);
sOctetString.pu8Data = u80ctectStringData;

ZigBee Cluster Library
User Guide

JN-UG-3103 v1.4

© NXP Laboratories UK 2017

49

Chapter 2

ZCL Fundamentals and Features

return &sOctetString;

case(E_ZCL_CSTRING):

sCharacterString.u8MaxLength = sizeof(u8CharStringData);
sCharacterString.u8Length = sizeof(u8CharStringData);
sCharacterString.pu8Data = u8CharStringData;

return &sCharacterString;

ks
return NULL;

}

2.4 Default Responses

The ZCL provides a default response which is generated in reply to a unicast
command in the following circumstances:

= when there is no other relevant response and the requirement for default
responses has not been disabled on the endpoint that sent the command

= when an error results from a unicast command and there is no other relevant
response, even if the requirement for default responses has been disabled on
the endpoint that sent the command

The default response disable setting is made in the bDisableDefaul tResponse
field of the structure tsZCL_EndPointDefinition detailed in Section 34.1.1. This
setting dictates the value of the ‘disable default response’ bit in messages sent by the
endpoint. The receiving device then uses this bit to determine whether to return a
default response to the source device.

The default response includes the ID of the command that triggered the response and
a status field (see Section 34.1.9). Therefore, in the case of an error, the identity of the
command that caused the error will be contained in the command ID field of the default
response.

Note that the default response can be generated on reception of all commands,
including responses (e.g. a ‘read attributes’ response) but not other default responses.

50

© NXP Laboratories UK 2017 JN-UG-3103 v1.4

ZigBee Cluster Library
User Guide

2.5 Bound Transmission Management

ZigBee PRO provides the facility for bound transfers/transmissions. In this case, a
source endpoint on one node is bound to one or more destination endpoints on other
nodes. Data sent from the source endpoint is then automatically transmitted to all the
bound endpoints (without the need to specify destination addresses). The bound
transmission is handled by a Bind Request Server on the source node. Binding, bound
transfers and the Bind Request Server are fully described in the ZigBee PRO Stack
User Guide (JN-UG-3101 or JN-UG-3048).

Congestion may occur if a new bound transmission is requested while the Bind
Request Server is still busy completing the previous bound transmission (still sending
packets to bound nodes). This causes the new bound transmission to fail. The ZCL
software incorporates a feature for managing bound transmission requests, so not to
overload the Bind Request Server and cause transmissions to fail.

Note 1: This feature for managing bound transmissions

' is not strictly a part of the ZCL but is provided in the ZCL
software since it may be used with all ZigBee application
profiles.

Note 2: The alternative to using this feature is for the
application to re-attempt bound transmissions that fail.

If this feature is enabled and a bound transmission request submitted to the Bind
Request Server fails, the bound transmission APDU is automatically put into a queue.
A one-second scheduler periodically takes the APDU at the head of the queue and
submits it to the Bind Request Server for transmission. If this bound transmission also
fails, the APDU will be returned to the bound transmission queue.

The bound transmission queue has the following properties:
= Number of buffers in the queue
m Sjze of each buffer, in bytes

The feature is enabled and the above properties are defined at compile-time, as
described below.

Note: If a single APDU does not fit into a single buffer in
“ the queue, it will be stored in multiple buffers (provided

that enough buffers are available).

JN-UG-3103 v1.4 © NXP Laboratories UK 2017 51

Chapter 2
ZCL Fundamentals and Features

Compile-time Options

In order to use the bound transmission management feature, the following definitions
are required in the zcl_options.h file.

Add this line to enable the bound transmission management feature:
#define CLD_BIND_SERVER

Add this line to define the number of buffers in the bound transmission queue (in this
example, the queue will contain four buffers):

#define MAX_NUM_BIND_QUEUE_BUFFERS 4

Add this line to define the size, in bytes, of a buffer in the bound transmission queue
(in this example, the buffer size is 60 bytes):

#define MAX_PDU_BIND_QUEUE_PAYLOAD_SIZE 60

Certain clusters and the ‘attribute reporting’ feature allow APS acknowledgements to
be disabled for bound transmissions. The required definitions are detailed in the
cluster-specific compile-time options.

2.6

Command Discovery

The ZCL provides the facility to discover the commands that a cluster instance on a
remote device can receive and generate. This is useful since an individual cluster
instance may not be able to receive or generate all of the commands that are
theoretically supported by the cluster.

The commands that are supported by a cluster (and that can therefore potentially be
discovered) are defined in a Command Definition table which is enabled in the cluster
definition when Command Discovery is enabled (see Section 34.1.2).

Two ZCL functions are provided to implement the Command Discovery feature (as
indicated in Section 2.6.1 below and fully described in Section 33.3).

52

© NXP Laboratories UK 2017 JN-UG-3103 v1.4

ZigBee Cluster Library
User Guide

2.6.1 Discovering Command Sets

The commands supported by a remote cluster instance can be discovered as
described below.

Discovering commands that can be received

The commands that can be received by an instance of a cluster on a remote device
can be discovered using the function

eZCL_SendDiscoverCommandReceivedRequest()

This function sends a request to the remote cluster instance, which responds with a
list of commands (identified by their Command IDs). On receiving this response, the
following events are generated on the local device:

m E ZCL_CBET_DISCOVER_INDIVIDUAL_COMMAND_RECEIVED_RESPONSE

This event is generated for each individual command reported in the response.
The reported information is contained in a structure of the type
tsZCL_CommandDiscoverylIndividualResponse (see Section 34.1.17).

m E ZCL_CBET_DISCOVER_COMMAND_RECEIVED_RESPONSE
This event is generated after all the above individual events, in order to indicate

the end of these events. The reported information is contained in a structure of
the type tsZCL_CommandDiscoveryResponse (see Section 34.1.18).

Discovering commands that can be generated

The commands that can be generated by an instance of a cluster on a remote device
can be discovered using the function

eZCL_SendDiscoverCommandGeneratedRequest()

This function sends a request to the remote cluster instance, which responds with a
list of commands (identified by their Command IDs). On receiving this response, the
following events are generated on the local device:

= E_ZCL_CBET_DISCOVER_INDIVIDUAL_COMMAND_GENERATED_ RESPONSE

This event is generated for each individual command reported in the response.
The reported information is contained in a structure of the type
tsZCL_CommandDiscoverylndividualResponse (see Section 34.1.17).

= E_ZCL_CBET_DISCOVER_COMMAND_GENERATED_RESPONSE

This event is generated after all the above individual events, in order to indicate
the end of these events. The reported information is contained in a structure of
the type tsZCL_CommandDiscoveryResponse (see Section 34.1.18).

Note: The above functions can be called multiple times

' to discover the commands in stages. After each call, the
tsZCL_CommandDiscoveryResponse structure
contains a Boolean flag which indicates whether there
are more commands to be discovered (see Section
34.1.18). For full details, refer to the function
descriptions in Section 33.3.

JN-UG-3103 v1.4 © NXP Laboratories UK 2017 53

Chapter 2
ZCL Fundamentals and Features

2.6.2 Compile-time Options

If required, the Command Discovery feature must be enabled at compile-time.
To enable the feature, the following must be defined at both the local and remote ends:
#define ZCL_COMMAND_DISCOVERY_SUPPORTED

To enable the handling of Command Discovery requests (and the generation of
responses) at the remote end, the following must be defined on the remote device:

#define ZCL_COMMAND_RECEIVED_DISCOVERY_SERVER_SUPPORTED

To enable the handling of Command Discovery responses at the local end, the
following must be defined on the local device:

#define ZCL_COMMAND_RECEIVED_DISCOVERY_CLIENT_SUPPORTED

54 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

ZigBee Cluster Library
User Guide

3. Event Handling

This chapter describes the event handling framework which allows the ZCL to deal
with stack-related and timer-related events (including cluster-specific events).

A stack event is triggered by a message arriving in a message queue and a timer
event is triggered when a JenOS timer expires (for more information on timer events,
refer to Section 5.2).

The event must be wrapped in a tsZCL_Cal 1BackEvent structure by the application
(see Section 3.1 below), which then passes this event structure into the ZCL using the
function vZCL_EventHandler(), described in Section 33.1. The ZCL processes the
event and, if necessary, invokes the relevant endpoint callback function. Refer to
Section 3.2 for more details of event processing.

3.1

Event Structure

The tsZCL_Cal IBackEvent structure, in which an event is wrapped, is as follows:

typedef struct

{

teZCL_Cal lBackEventType eEventType;

uint8 u8TransactionSequenceNumber;

uint8 u8EndPoint;

teZCL_Status eZCL_Status;

union {
tsZCL_IndividualAttributesResponse sindividualAttributeResponse;
tsZCL_Defaul tResponse sDefaul tResponse;
tsZCL_TimerMessage sTimerMessage;
tsZCL_ClusterCustomMessage sClusterCustomMessage;

tsZCL_AttributeReportingConfigurationRecord
sAttributeReportingConfigurationRecord;

tsZCL_AttributeReportingConfigurationResponse
sAttributeReportingConfigurationResponse;

tsZCL_AttributeDiscoveryResponse sAttributeDiscoveryResponse;
tsZCL_AttributeStatusRecord sReportingConfigurationResponse;
tsZCL_ReportAttributeMirror sReportAttributeMirror;
uint32 u32TimerPeriodMs;
#ifdef EZ_MODE_COMMISSIONING
tsZCL_EZModeBindDetails sEZBindDetails;
tsZCL_EZModeGroupDetails SEZGroupDetails;
#endif
tsZCL_CommandDiscoverylndividualResponse
sCommandsReceivedDiscoverylndividualResponse;
tsZCL_CommandDiscoveryResponse sCommandsReceilvedDiscoveryResponse;
tsZCL_CommandDiscoverylndividualResponse
sCommandsGeneratedDiscoverylndividualResponse;
tsZCL_CommandDiscoveryResponse sCommandsGeneratedDiscoveryResponse;
tsZCL_AttributeDiscoveryExtendedResponse
sAttributeDiscoveryExtenedResponse;
}uMessage;

JN-UG-3103 v1.4 © NXP Laboratories UK 2017 55

Chapter 3
Event Handling

ZPS_tsAfEvent *pZPSevent;
tsZCL_Clusterlnstance *psClusterlinstance;
} tszZCL_CallBackEvent;

The fields of this structure are fully described Section 34.2.

In the tsZCL_Cal 1BackEvent structure, the eEventType field defines the type of
event being posted - the various event types are described in Section 3.3 below. The
union and remaining fields are each relevant to only specific event types.

3.2

Processing Events

This section outlines how the application should deal with stack events and timer
events that are generated externally to the ZCL. A cluster-specific event will initially
arrive as one of these events.

The occurrence of an event prompts JenOS to activate a ZCL user task - the event
types and the task are pre-linked using the JenOS Configuration Editor. The following
actions must then be performed in the application:

1. The task checks whether a message has arrived in the appropriate message
gueue, using the JenOS function OS_eCollectMessage(), or whether a
JenOS timer has expired, using the JenOS function
OS_GetSWTimerStatus().

2. The task sets fields of the event structure tsZCL_Cal IBackEvent (see
Section 3.1), as follows (all other fields are ignored):

If a timer event, sets the field eEventType to E_ZCL_CBET_TIMER

If a millisecond timer event, sets the field eEventType to
E_ZCL_CBET_TIMER_MS

If a stack event, sets the field eEventType to E_ZCL_ZIGBEE_EVENT
and sets the field pZPSevent to point to the ZPS_tsATfEvent structure
received by the application - this structure is defined in the ZigBee PRO
Stack User Guide (JN-UG-3101 or JN-UG-3048)

3. The task passes this event structure to the ZCL using vZCL_EventHandler()
- the ZCL will then identify the event type (see Section 3.3) and invoke the
appropriate endpoint callback function (for information on callback functions,
refer to the documentation for the application profile, e.g. Home Automation).

» Note: For a cluster-specific event (which arrives as a
“ stack event or a timer event), the cluster normally

contains its own event handler which will be invoked by
the ZCL. If the event requires the attention of the
application, the ZCL will replace the eEventType field
with E_ZCL_CBET_CLUSTER_CUSTOM and populate
the tsZCL_ClusterCustomMessage structure with
the event data. The ZCL will then invoke the user-
defined endpoint callback function to perform any
application-specific event handling that is required.

56

© NXP Laboratories UK 2017 JN-UG-3103 v1.4

ZigBee Cluster Library
User Guide

3.3 Events

The events that are not cluster-specific are divided into four categories (Input, Read,
Write, General), as shown in the following table. The ‘input events’ originate externally

to the ZCL and are passed into the ZCL for processing (see Section 3.2). The

remaining events are generated as part of this processing.

Note: Cluster-specific events are covered in the chapter
for the relevant cluster.

Category

Event

Input Events

E_ZCL_ZIGBEE_EVENT

E_ZCL_CBET_TIMER

E_ZCL_CBET_TIMER_MS

Read Events

E_ZCL_CBET_READ_REQUEST

E_ZCL_CBET_READ_INDIVIDUAL_ATTRIBUTE_RESPONSE

E_ZCL_CBET_READ_ATTRIBUTES_RESPONSE

Write Events

E_ZCL_CBET_CHECK_ATTRIBUTE_RANGE

E_ZCL_CBET_WRITE_INDIVIDUAL_ATTRIBUTE

E_ZCL_CBET_WRITE_ATTRIBUTES

E_ZCL_CBET_WRITE_INDIVIDUAL_ATTRIBUTE_RESPONSE

E_ZCL_CBET_WRITE_ATTRIBUTES_RESPONSE

General Events

E_ZCL_CBET_LOCK_MUTEX

E_ZCL_CBET_UNLOCK_MUTEX

E_ZCL_CBET_DEFAULT RESPONSE

E_ZCL_CBET_UNHANDLED EVENT

E_ZCL_CBET_ERROR

E_ZCL_CBET_CLUSTER_UPDATE

E_ZCL_CBET_CLUSTER_DATA_PENDING *

E_ZCL_CBET_CLUSTER_DATA RECEIVED *

Table 2: Events

* Smart Energy 1.2.2 only

The above events are described below.

JN-UG-3103 v1.4

© NXP Laboratories UK 2017

57

Chapter 3
Event Handling

Input Events

The ‘input events’ are generated externally to the ZCL. Such an event is received by
the application, which wraps the event in a tsZCL_Cal I1BackEvent structure and
passes it into the ZCL using the function vZCL_EventHandler() - for further details of
event processing, refer to Section 3.2.

» E_ZCL_ZIGBEE_EVENT

All ZigBee PRO stack events to be processed by the ZCL are designated as this
type of event by setting the eEventType field in the tsZCL_Cal IBackEvent
structure to E_ZCL_ZIGBEE_EVENT.

= E_ZCL_CBET_TIMER

A timer event (indicating that a JenOS timer has expired) which is to be
processed by the ZCL is designated as this type of event by setting the
eEventType field in the tsZCL_Cal I1BackEvent structure to
E_ZCL_CBET_TIMER.

= E_ZCL_CBET_TIMER_MS

A millisecond timer event (indicating that a JenOS timer has expired) which is
to be processed by the ZCL is designated as this type of event by setting the
eEventType field in the tsZCL_Cal I1BackEvent structure to
E_ZCL_CBET_TIMER_MS.

Read Events

The ‘read events’ are generated as the result of a ‘read attributes’ request (see Section
2.2.1). Some of these events are generated on the remote node and some of them are
generated on the local (requesting) node, as indicated in the table below.

Generated on local node (client): Generated on remote node (server):

E_ZCL_CBET_READ_REQUEST

E_ZCL_CBET_READ_INDIVIDUAL_ATTRIBUTE_RESPONSE

E_ZCL_CBET_READ_ATTRIBUTES_RESPONSE

Table 3: Read Events

The circumstances surrounding the generation of the ‘read events’ are outlined below:
m E ZCL_CBET_READ_REQUEST

When a ‘read attributes’ request has been received and passed to the ZCL (as
a stack event), the ZCL generates the event E_ ZCL_CBET_READ_REQUEST
for the relevant endpoint to indicate that the endpoint’s shared device structure
is going to be read. This gives an opportunity for the application to access the
shared structure first, if required - for example, to update attribute values before
they are read. This event may be ignored if the application reads the hardware
asynchronously - for example, driven by a timer or interrupt.

= E_ZCL_CBET_READ_INDIVIDUAL_ATTRIBUTE_RESPONSE

When a ‘read attributes’ response has been received by the requesting node
and passed to the ZCL (as a stack event), the ZCL generates the event
E_ZCL_CBET_READ_INDIVIDUAL_ATTRIBUTE_RESPONSE for each
individual attribute in the response. Details of the attribute are incorporated in

58

© NXP Laboratories UK 2017 JN-UG-3103 v1.4

ZigBee Cluster Library
User Guide

the structure tsZCL_ReadlIndividualAttributesResponse, described in
Section 34.2.

Note that this event is often ignored by the application, while the event
E_ZCL_CBET_READ_ATTRIBUTES_RESPONSE (see next event) is
handled.

» E_ZCL_CBET_READ_ATTRIBUTES_RESPONSE

When a ‘read attributes’ response has been received by the requesting node
and the ZCL has completed updating the local copy of the shared device
structure, the ZCL generates the event
E_ZCL_CBET_READ_ATTRIBUTES_RESPONSE. The transaction sequence
number and cluster instance fields of the tsZCL_Cal 1BackEvent structure
are used by this event.

Write Events

The ‘write events’ are generated as the result of a ‘write attributes’ request (see
Section 2.2.2). Some of these events are generated on the remote node and some of
them are generated on the local (requesting) node, as indicated in the table below.

Generated on local node (client): Generated on remote node (server):

E_ZCL_CBET_CHECK_ATTRIBUTE_RANGE

E_ZCL_CBET_WRITE_INDIVIDUAL_ATTRIBUTE

E_ZCL_CBET_WRITE_ATTRIBUTES

E_ZCL_CBET_WRITE_INDIVIDUAL_ATTRIBUTE_RESPONSE

E_ZCL_CBET_WRITE_ATTRIBUTES_RESPONSE

Table 4: Write Events

During the process of receiving and processing a ‘write attributes’ request, the
receiving application maintains a tsZCL_Individual AttributesResponse structure
for each individual attribute in the request:

typedef struct PACK {

uintl6é ulb6AttributeEnum;
teZCL_ZCLAttributeType eAttributeDataType;
teZCL_CommandStatus eAttributeStatus;
void *pvAttributeData;
tsZCL_AttributeStatus *psAttributeStatus;

} tsZCL_IndividualAttributesResponse;

The ul6AttributeEnum field identifies the attribute.

The field eAttributeDataType is set to the ZCL data type of the attribute in the
request, which is checked by the ZCL to ensure that the attribute type in the request
matches the expected attribute type.

The above structure is fully detailed in Section 34.2.

JN-UG-3103 v1.4 © NXP Laboratories UK 2017 59

Chapter 3
Event Handling

The circumstances surrounding the generation of the ‘write events’ are outlined below:
s E ZCL_CBET_CHECK_ATTRIBUTE_RANGE

When a ‘write attributes’ request has been received and passed to the ZCL (as
a stack event), for each attribute in the request the ZCL generates the event
E ZCL CBET_CHECK_ATTRIBUTE_RANGE for the relevant endpoint. This
indicates that a ‘write attributes’ request has arrived and gives an opportunity for
the application to do either or both of the following:

check that the attribute value to be written falls within the valid range
(range checking is not performed in the ZCL because the range may
depend on application-specific rules)

decide whether the requested write access to the attribute in the shared
structure will be allowed or disallowed

The value to be written is pointed to by pvAttributeData in the above
structure (note that this does not point to the field of the shared structure
containing this attribute, as the shared structure field still has its existing value).

The attribute status field eAttributeStatus in the above structure is initially
setto E_ZCL_SUCCESS. The application should set this field to
E_ZCL_ERR_ATTRIBUTE_RANGE if the attribute value is out-of-range or to
E_ZCL _DENY_ATTRIBUTE_ACCESS if it decides to disallow the write. Also
note the following:

If a conventional ‘write attributes’ request is received and an attribute value
fails the range check or write access to an attribute is denied, this attribute
is left unchanged in the shared structure but other attributes are updated.

If an ‘undivided write attributes’ request is received and any attribute fails
the range check or write access to any attribute is denied, no attribute
values are updated in the shared structure.

» E_ZCL_CBET_WRITE_INDIVIDUAL_ATTRIBUTE

Following an attempt to write an attribute value to the shared structure, the ZCL
generates the event E_ZCL_CBET_WRITE_INDIVIDUAL_ATTRIBUTE for the
relevant endpoint. The field eAttributeStatus in the structure
tsZCL_IndividualAttributesResponse indicates to the application whether
the attribute value was updated successfully:

If the write was successful, this status field is left as E_ZCL_SUCCESS.

If the write was unsuccessful, this status field will have been set to a
suitable error status (see Section 35.1.4).

» E_ZCL_CBET_WRITE_ATTRIBUTES

Once all the attributes in a ‘write attributes’ request have been processed, the
ZCL generatesthe eventE_ZCL_CBET_WRITE_ATTRIBUTES for the relevant
endpoint.

s E ZCL_CBET_WRITE_INDIVIDUAL_ATTRIBUTE_RESPONSE

The E_ZCL_CBET_WRITE_INDIVIDUAL_ATTRIBUTE_RESPONSE event is
generated for each attribute that is listed in an incoming ‘write attributes’
response message. Only attributes that have failed to be written are contained
in the message. The field eAttributeStatus of the structure
tsZCL_IndividualAttributesResponse indicates the reason for the failure
(see Section 35.1.4).

60

© NXP Laboratories UK 2017 JN-UG-3103 v1.4

ZigBee Cluster Library
User Guide

» E_ZCL_CBET_WRITE_ATTRIBUTES_RESPONSE

The E_ZCL_CBET_WRITE_ATTRIBUTES_ RESPONSE event is generated
when the parsing of an incoming ‘write attributes’ response message is
complete. This event is particularly useful following a write where all the
attributes have been written without errors since, in this case, no
E_ZCL_CBET_WRITE_INDIVIDUAL_ATTRIBUTE_RESPONSE events will be
generated.

General Events

» E_ZCL_CBET_LOCK_MUTEX and E_ZCL_CBET_UNLOCK_MUTEX

When an application task accesses the shared device structure of an endpoint,
a mutex should be used by the task to protect the shared structure from
conflicting accesses. Thus, the ZCL may need to lock or unlock a mutex in
handling an event - for example, when a “read attributes” request has been
received and passed to the ZCL (as a stack event). In these circumstances, the
ZCL generates the following events:

E ZCL_CBET_LOCK _MUTEX when a mutex is to be locked
E ZCL_CBET_UNLOCK MUTEX when a mutex is to be unlocked

The ZCL will specify one of the above events in invoking the callback function
for the endpoint. Thus, the endpoint callback function must include the
necessary code to lock and unlock a mutex - for further information, refer to
Appendix A.

The locking and unlocking of a mutex are useful if the tasks in the application
are non-cooperative while sharing the same resource. To optimise the code, the
above events will not be generated when the tasks are in a cooperative group
(HA/ZLL only). For cooperative tasks, the COOPERATIVE compiler flag must
be defined in the application makefile or zcl_options.h file (see Section 1.2).

» E_ZCL_CBET_DEFAULT RESPONSE

The E_ZCL_CBET_DEFAULT_RESPONSE event is generated when a ZCL
default response message has been received. These messages indicate that
either an error has occurred or a message has been processed. The payload of
the default response message is contained in the structure
tsZCL_DefaultResponseMessage below:

typedef struct PACK {
uint8 u8Commandld;
uint8 u8StatusCode;
} tszZCL_DefaultResponseMessage;

u8Commandld is the ZCL command identifier of the command which triggered
the default response message.

u8StatusCode is the status code from the default response message. Itis set
to 0x00 for OK or to an error code defined in the ZCL Specification.

= E_ZCL_CBET_UNHANDLED_EVENT and E_ZCL_CBET_ERROR

The E_ZCL_CBET_UNHANDLED_EVENTandE_ZCL_CBET_ERROR events
indicate that a stack message has been received which cannot be handled by
the ZCL. The *pZPSevent field of the tsZCL_Cal IBackEvent structure
points to the stack event that caused the event.

JN-UG-3103 v1.4

© NXP Laboratories UK 2017 61

Chapter 3

Event Handling

E_ZCL_CBET_CLUSTER_UPDATE

The E_ZCL_CBET_CLUSTER_UPDATE event indicates that one or more
attribute values for a cluster on the local device may have changed.

E_ZCL_CBET_CLUSTER_DATA_PENDING (SE 1.2.2 only)

The E_ZCL_CBET_CLUSTER_DATA_PENDING event indicates that more
cluster data for a device is pending on its parent. The event is mainly intended
for sleepy End Devices. When this event occurs, the End Device should
continue polling its parent for data until the event
E_ZCL_CBET_CLUSTER_DATA_RECEIVED occurs (see below) or until an
application-specific timeout occurs.

E_ZCL_CBET_CLUSTER_DATA_RECEIVED (SE 1.2.2 only)

The E_ZCL_CBET_CLUSTER_DATA_ RECEIVED event indicates that all
pending cluster data has been received by the device from its parent. The event
is mainly intended for sleepy End Devices.

Note: ZCL error events and default responses (see
' Section 34.1.9) may be generated when problems occur
in receiving commands. The possible ZCL status codes

contained in the events and responses are detailed in
Section 4.2.

62

© NXP Laboratories UK 2017 JN-UG-3103 v1.4

ZigBee Cluster Library
User Guide

4. Error Handling

This chapter describes the error handling provision in the NXP implementation of the
ZCL.

4.1

Last Stack Error

The last error generated by the ZigBee PRO stack can be obtained using the ZCL
function eZCL_GetLastZpsError(), described in Section 33.1. The possible returned
errors are listed in the Return/Status Codes chapter of the ZigBee PRO Stack User
Guide (JN-UG-3101 or JN-UG-3048).

4.2

Error/Command Status on Receiving Command

An error may be generated when a command is received by a device. If receiving a
command results in an error, as indicated by an event of the type
E_ZCL_CBET_ERROR on the device, the following status codes may be used:

= The ZCL status of the event (sZCL_Cal IBackEvent.eZCL_Status)is setto
one of the error codes detailed in Section 35.2.

= A‘default response’ (see Section 34.1.9) may be generated which contains one
of the command status codes detailed in Section 35.1.4. This response is sent
to the source node of the received command (and can be intercepted using an
over-air sniffer).

The table below details the error and command status codes that may be generated.

JN-UG-3103 v1.4 © NXP Laboratories UK 2017 63

Chapter 4
Error Handling

Error Status (in Event)

Command Status (in Response)

Notes

E_ZCL_ERR_ZRECEIVE_FAIL *

None

A receive error has occurred. This error
is often security-based due to key estab-
lishment not being successfully com-
pleted - ZPS error is
ZPS_APL_APS_E_SECURITY_FAIL.

E_ZCL_ERR_EP_UNKNOWN

E_ZCL_CMDS_SOFTWARE_FAILURE

Destination endpoint for the command is
not registered with the ZCL.

E_ZCL_ERR_CLUSTER_NOT_FOUND

E_ZCL_CMDS_UNSUP_CLUSTER_
COMMAND

Destination cluster for the command is
not registered with the ZCL.

E_ZCL_ERR_SECURITY_
INSUFFICIENT_FOR_CLUSTER

E_ZCL_CMDS_FAILURE

Attempt made to access a cluster using
a packet without the necessary applica-
tion-level (APS) encryption.

None

E_ZCL_CMDS_UNSUP_GENERAL_
COMMAND

Command is for all profiles but has no
handler enabled in zcl_options.h file.

E_ZCL_ERR_CUSTOM_COMMAND_
HANDLER_NULL_OR_RETURNED_
ERR

E_ZCL_CMDS_UNSUP_CLUSTER_
COMMAND

Custom command has no registered
handler or its handler has not returned
E_ZCL_SUCCESS.

CALLBACK_ERROR

E_ZCL_ERR_KEY_ESTABLISHMENT_ None Key Establishment cluster has not been
END_POINT_NOT_FOUND registered correctly.
E_ZCL_ERR_KEY_ESTABLISHMENT_ None Key Establishment cluster callback func-

tion has returned an error.

None

E_ZCL_CMDS_MALFORMED_
COMMAND

A received message is incomplete due
to some missing command-specific data.

Table 5: Error and Command Status Codes

* ZigBee PRO stack raises an error which can be retrieved using eZCL_GetLastZpsError().

64

© NXP Laboratories UK 2017

JN-UG-3103 v1.4

ZigBee Cluster Library
User Guide

Part Il;
Clusters and Modules

JN-UG-3103 v1.4 © NXP Laboratories UK 2017 65

66

© NXP Laboratories UK 2017

JN-UG-3103 v1.4

ZigBee Cluster Library
User Guide

5. Basic Cluster

This chapter details the Basic cluster which is defined in the ZCL and is a mandatory
cluster for all ZigBee devices.

The Basic cluster has a Cluster ID of 0x0000.

5.1 Overview

All devices implement the Basic cluster as a Server-side (input) cluster, so the cluster
is able to store attributes and respond to commands relating to these attributes. The
cluster’s attributes hold basic information about the node (and apply to devices
associated with all active endpoints on the host node). The information that can
potentially be stored in this cluster comprises: ZCL version, application version, stack
version, hardware version, manufacturer name, model identifier, date, power source.

Note: The Basic cluster can also be implemented as a
“ Client-side (output) cluster to allow the host device to

act as a commissioning tool.

The Basic cluster contains only two mandatory attributes, the remaining attributes
being optional - see Section 5.2.

Note 1: The Basic cluster has an optional attribute
which is only applicable to the ZigBee Light Link (ZLL)
profile - see Section 5.2.

Note 2: Since the Basic cluster contains information
about the entire node, only one set of Basic cluster
attributes must be stored on the node, even if there are
multiple instances of the Basic cluster server across
multiple devices/endpoints. All cluster instances must
refer to the same structure containing the attribute
values.

The Basic cluster is enabled by defining CLD_BASIC in the zcl_options.h file.

A Basic cluster instance can act as a client and/or a server. The inclusion of the client
or server software must be pre-defined in the application’s compile-time options (in
addition, if the cluster is to reside on a custom endpoint then the role of client or server
must also be specified when creating the cluster instance).

The compile-time options for the Basic cluster are fully detailed in Section 5.6.

JN-UG-3103 v1.4 © NXP Laboratories UK 2017 67

Chapter 5
Basic Cluster

5.2 Basic Cluster Structure and Attributes

The Basic cluster is contained in the following tsCLD_Basic structure:

typedef struct
{

zuint8 u8ZCLVersion;

#ifdef CLD_BAS_ATTR_APPLICATION_VERSION
zuints8 u8ApplicationVersion;
#endif

#ifdef CLD_BAS_ATTR_STACK_VERSION
zuint8 u8StackVersion;
#endi

#ifdef CLD_BAS_ATTR_HARDWARE_VERSION
zuint8 u8HardwareVersion;

#endi

#ifdef CLD_BAS_ATTR_MANUFACTURER_NAME

tsZCL_CharacterString sManufacturerName;
uints au8ManufacturerName[32];
#endif

#ifdef CLD_BAS_ATTR_MODEL_IDENTIFIER

tsZCL_CharacterString sModel ldentifier;
uint8 au8Model ldentifier[32];
#endi

#ifdef CLD_BAS_ATTR_DATE_CODE

tsZCL_CharacterString sDateCode;

uint8 au8DateCode[16] ;
#endif

zenum8 ePowerSource;

#ifdef CLD_BAS_ATTR_ID_APPLICATION_PROFILE_TYPE
zenum8 eAppProfileType;
#endif

#ifdef CLD_BAS_ATTR_ID_APPLICATION_PROFILE_VERSION

uint32 u32AppProfileVersion;
#endif

#ifdef CLD_BAS_ATTR_LOCATION_DESCRIPTION

sZCL_CharacterString sLocationDescription;
uint8 au8LocationDescription[16];
#endif

68 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

wh

ZigBee Cluster Library
User Guide

#ifdef CLD_BAS_ATTR_PHYSICAL_ENVIRONMENT
zenum8 u8PhysicalEnvironment;
#endif

#ifdef CLD_BAS ATTR_DEVICE_ENABLED
zbool bDeviceEnabled;
#endi

#ifdef CLD_BAS_ATTR_ALARM_MASK
zbmap8 u8AlarmMask;
#endif

#ifdef CLD_BAS_ATTR_DISABLE_LOCAL_CONFIG
zbmap8 u8DisableLocalConfig;
#endi

#ifdef CLD_BAS_ATTR_SW_BUILD_ID

tsZCL_CharacterString sSWBui ldID;
uints au8sWBui ldID[16];
#endi

} tsCLD_Basic;

ere:

m y8ZCLVersion is an 8-bit version number for the ZCL release that all clusters
on the local endpoint(s) conform to. Currently, this should be setto 1

= u8ApplicationVersion is an optional 8-bit attribute which represents the
version of the application (and is manufacturer-specific)

= u8StackVersion is an optional 8-bit attribute which represents the version of
the ZigBee stack used (and is manufacturer-specific)

= u8HardwareVersion is an optional 8-bit attribute which represents the
version of the hardware used for the device (and is manufacturer-specific)

= The following optional pair of attributes are used to store the name of the
manufacturer of the device:

» sManufacturerName is a tsZCL_CharacterString structure (see
Section 34.1.14) for a string of up to 32 characters representing the
manufacturer’s name

« auB8ManufacturerName[32] is a byte-array which contains the
character data bytes representing the manufacturer’s name

= The following optional pair of attributes are used to store the identifier for the
model of the device:

 sModelldentifier is a tsZCL CharacterString structure (see
Section 34.1.14) for a string of up to 32 characters representing the model
identifier

« auBModel ldentifier[32] is a byte-array which contains the character
data bytes representing the model identifier

JN-UG-3103 v1.4

© NXP Laboratories UK 2017 69

Chapter 5
Basic Cluster

= The following optional pair of attributes are used to store manufacturing

information about the device:

sDateCode is a tsZCL_CharacterString structure (see Section
34.1.14) for a string of up to 16 characters in which the 8 most significant
characters contain the date of manufacture in the format YYYYMMDD and
the 8 least significant characters contain manufacturer-defined information
such as country of manufacture, factory identifier, production line identifier

au8DateCode[16] is a byte-array which contains the character data
bytes representing the manufacturing information

Note: The application profile/device code automatically
' sets two of the fields of sDataCode. The field
sDataCode.pu8Data is set to point at au8DateCode

and the field sDataCode .u8MaxLength is setto 16
(see Section 34.1.14 for details of these fields).

ePowerSource is an 8-bit value in which seven bits indicate the primary power
source for the device (e.g. battery) and one bit indicates whether there is a
secondary power source for the device. Enumerations are provided to cover all
possibilities - see Section 5.5.2

Note: The power source in the Basic cluster is

' completely unrelated to the Node Power descriptor in
the ZigBee PRO stack. The power source in the ZigBee
PRO stack is set using the ZPS Configuration Editor.

eAppProfileType is an optional 8-bit value which indicates the ZigBee
application profile under which the Basic cluster was certified. This is not the
ZigBee Application Profile ID. Enumerations for the possible profiles are
provided in teCLD_BAS_ApplicationProfileType - see Section 5.5.3.

u32AppProfileVersion is an optional 32-bit value representing the version
of the ZigBee application profile under which the Basic cluster was certified

The following optional pair of attributes relates to the location of the device:

sLocationDescriptionis a tsZCL_CharacterString structure
(see Section 34.1.14) for a string of up to 16 characters representing the
location of the device

au8LocationDescription[16] is a byte-array which contains the
character data bytes representing the location of the device

u8PhysicalEnvironment is an optional 8-bit attribute which indicates the
physical environment of the device

bDeviceEnabled is an optional Boolean attribute which indicates whether the
device is enabled (TRUE) or disabled (FALSE). A disabled device cannot send
or respond to application level commands other than commands to read or
write attributes

70

© NXP Laboratories UK 2017 JN-UG-3103 v1.4

ZigBee Cluster Library
User Guide

= u8AlarmMask is an optional bitmap indicating the general alarms that can be
generated (Bit O - general software alarm, Bit 1 - general hardware alarm)

= u8DisablelLocalConfig is an optional bitmap allowing the local user
interface of the device to be disabled (Bit O - ‘Reset to factory defaults’ buttons,
Bit 1 - ‘Device configuration’ buttons)

= The following optional pair of attributes are used to store a manufacturer-
specific software build identifier (this attribute may be used in the ZigBee Light
Link profile only):

sSWBui ldID is a tsZCL_CharacterString structure (see Section
34.1.14) for a string of up to 16 characters representing the software build
identifier

au8sSWBui IdID[16] is a byte-array which contains the character data
bytes representing the software build identifier

The Basic cluster structure contains two mandatory elements, u8ZCLVersion and
ePowerSource. The remaining elements are optional, each being enabled/disabled
through a corresponding macro defined in the zcl_options.h file - for example, the
attribute u8ApplicationVersion is enabled/disabled using the enumeration
CLD_BAS_ATTR_APPLICATION_VERSION (see Section 5.3).

The mandatory attribute settings are described further in Section 5.3.

JN-UG-3103 v1.4 © NXP Laboratories UK 2017 71

Chapter 5
Basic Cluster

5.3

Mandatory Attribute Settings

The application must set the values of the mandatory u8ZCLVersion and
ePowerSource fields of the Basic cluster structure so that other devices can read
them. This should be done immediately after calling the endpoint registration function
for the device, e.g. eHA RegisterDimmableLightEndPoint().

These values can be set by calling the eZCL_WriteLocalAttributeValue() function
with the appropriate input values. Alternatively, they can be set by writing to the

relevant members of the shared structure of the device, as illustrated below, where
sLight or sSwitch is the device that is registered using the registration function.

On a Dimmabile Light:

sLight.sBasicCluster.u8ZCLVersion
sLight.sBasicCluster.ePowerSource

0x01;
E_CLD_BAS_PS_SINGLE_PHASE_MAINS;

On a battery-powered Dimmer Switch:

sSwitch.sLocalBasicCluster.u8ZCLVersion 0x01;
sSwitch.sLocalBasicCluster.ePowerSource = E CLD BAS PS BATTERY;

5.4

Functions

The following Basic cluster functions are provided in the NXP implementation of the
ZCL:

Function Page
eCLD_BasicCreateBasic 73
eCLD_BasicCommandResetToFactoryDefaultsSend 75

72

© NXP Laboratories UK 2017 JN-UG-3103 v1.4

ZigBee Cluster Library
User Guide

eCLD_BasicCreateBasic

teZCL_Status eCLD_BasicCreateBasic(
tsZCL_Clusterinstance *psClusterinstance,
bool _t bisServer,
tsZCL_ClusterDefinition *psClusterDefinition,
void *pvEndPointSharedStructPtr,
uint8 *pu8AttributeControlBits);

Description

This function creates an instance of the Basic cluster on an endpoint. The cluster
instance is created on the endpoint which is associated with the supplied
tsZCL_ClusterlInstance structure and can act as a server or a client, as
specified.

The function should only be called when setting up a custom endpoint containing one
or more selected clusters (rather than the whole set of clusters supported by a
standard ZigBee device). This function will create a Basic cluster instance on the
endpoint, but instances of other clusters may also be created on the same endpoint
by calling their corresponding creation functions.

Note: This function must not be called for an endpoint on
which a standard ZigBee device (e.g. Simple Sensor of the
HA profile) will be used. In this case, the device and its
supported clusters must be registered on the endpoint using
the relevant device registration function.

When used, this function must be the first Basic cluster function called in the
application, and must be called after the stack has been started and after the
application profile has been initialised.

The function requires an array to be declared for internal use, which contains one
element (of type uint8) for each attribute of the cluster. The array length should
therefore equate to the total number of attributes supported by the Basic cluster,
which can be obtained by using the macro
CLD_BASIC_MAX_NUMBER_OF_ATTRIBUTE.

The array declaration should be as follows:

uint8
au8AppBasicClusterAttributeControlBits[CLD_BASIC_MAX_NUMBER_OF_ATTRIBUTE];

The function will initialise the array elements to zero.

Parameters

psClusterinstance Pointer to structure containing information about the
cluster instance to be created (see Section 34.1.16).
This structure will be updated by the function by
initialising individual structure fields.

JN-UG-3103 v1.4

© NXP Laboratories UK 2017 73

Chapter 5
Basic Cluster

Returns

blsServer

psClusterDefinition

pvEndPointSharedStructPtr

puBAttributeControlBits

E_ZCL_SUCCESS

Type of cluster instance (server or client) to be created:

TRUE - server
FALSE - client

Pointer to structure indicating the type of cluster to be
created (see Section 34.1.2). In this case, this structure
must contain the details of the Basic cluster. This
parameter can refer to a pre-filled structure called
sCLD_Basic which is provided in the Basic.h file.

Pointer to the shared structure used for attribute
storage. This parameter should be the address of the
structure of type tsCLD_Basic which defines the
attributes of Basic cluster. The function will initialise the
attributes with default values.

Pointer to an array of uint8 values, with one element for
each attribute in the cluster (see above).

E_ZCL_ERR_PARAMETER_NULL

74

© NXP Laboratories UK 2017

JN-UG-3103 v1.4

ZigBee Cluster Library
User Guide

eCLD_BasicCommandResetToFactoryDefaultsSend

teZCL_Status eCLD_BasicCommandResetToFactoryDefaultsSend(
uint8 u8SourceEndPointld,
uint8 u8DestinationEndPointld,
tsZCL_Address *psDestinationAddress,
uint8 *pu8TransactionSequenceNumber);

Description

This function can be called on a client device to send a ‘Reset To Factory Defaults’
command, requesting the recipient server device to reset to its factory defaults. The
recipient device will generate a callback event on the endpoint on which the Basic
cluster was registered.

If used, the ‘Reset To Factory Defaults’ command must be enabled in the compile-
time options on both the client and server, as described in Section 5.6.

You are required to provide a pointer to a location to receive a Transaction Sequence
Number (TSN) for the request. The TSN in the response will be set to match the TSN
in the request, allowing an incoming response to be paired with a request. This is
useful when sending more than one request to the same destination endpoint.

Parameters

u8SourceEndPointld Number of the local endpoint through which to
send the request. This parameter is used both to
send the command and to identify the instance of
the shared structure holding the required
attribute values

u8DestinationEndPointld Number of the endpoint on the remote node to
which the request will be sent. This parameter is
ignored when sending to address types
eZCL_AMBOUND and eZCL_AMGROUP

psDestinationAddress Pointer to a structure holding the address of the
node to which the request will be sent

pu8TransactionSequenceNumber Pointer to a location to receive the Transaction
Sequence Number (TSN) of the request

Returns

E_ZCL_SUCCESS
E_ZCL_ERR_PARAMETER_NULL
E_ZCL_ERR_EP_RANGE
E_ZCL_ERR_EP_UNKNOWN
E_ZCL_ERR_CLUSTER_NOT_FOUND
E_ZCL_ERR_ZBUFFER_FAIL

JN-UG-3103v1.4 © NXP Laboratories UK 2017

75

Chapter 5
Basic Cluster

E_ZCL_ERR_ZTRANSMIT_FAIL

If an error is returned by the ZigBee PRO stack function which is invoked by this
function to transmit the data, this error may be obtained by calling
eZCL_GetLastZpsError().

76 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

ZigBee Cluster Library
User Guide

55 Enumerations

5.5.1 teCLD_BAS_ClusterID

The following structure contains the enumerations used to identify the attributes of the
Basic cluster.

typedef enum
{
E CLD BAS ATTR_ID_ZCL_VERSION = 0x0000, /* Mandatory */
E CLD BAS ATTR _ID_APPLICATION_VERSION,
E CLD BAS ATTR_ID_STACK_VERSION,
E CLD BAS ATTR_ID_HARDWARE_VERSION,
E CLD BAS ATTR_ID_MANUFACTURER_NAME,
E CLD BAS ATTR _ID_MODEL_IDENTIFIER,
E _CLD BAS ATTR_ID_DATE_CODE,
E _CLD_BAS ATTR_ID_POWER_SOURCE, /* Mandatory */
E CLD BAS ATTR_ID_LOCATION_DESCRIPTION = 0x0010,
E _CLD_BAS ATTR_ID_PHYSICAL_ENVIRONMENT,
E CLD BAS ATTR _ID _DEVICE_ENABLED,
E CLD_BAS ATTR_ID_ALARM_MASK,

E_CLD_BAS_ATTR_ID_DISABLE_LOCAL_CONFIG,
E_CLD_BAS_ATTR_ID_SW_BUILD_ID = 0x4000

} teCLD _BAS ClusterlD;

5.5.2 teCLD_BAS_ PowerSource

The following enumerations are used in the Basic cluster to specify the power source
for a device (see above):

typedef enum

{
E_CLD_BAS_PS_UNKNOWN = 0x00,
E_CLD_BAS_PS_SINGLE_PHASE_MAINS,
E_CLD_BAS_PS_THREE_PHASE_MAINS,
E_CLD_BAS_PS_BATTERY,
E_CLD_BAS_PS_DC_SOURCE,
E_CLD_BAS_PS_EMERGENCY_MAINS_CONSTANTLY_POWERED,
E_CLD_BAS_PS_EMERGENCY_MAINS_AND_TRANSFER_SWITCH,
E_CLD_BAS_PS_UNKNOWN_BATTERY_BACKED = 0x80,
E_CLD_BAS_PS_SINGLE_PHASE_MAINS_BATTERY_BACKED,
E_CLD_BAS_PS_THREE_PHASE_MAINS_BATTERY_BACKED,
E_CLD_BAS_PS_BATTERY_BATTERY_BACKED,
E_CLD_BAS_PS_DC_SOURCE_BATTERY_BACKED,
E_CLD_BAS_PS_EMERGENCY_MAINS_CONSTANTLY_POWERED_BATTERY_BACKED,
E_CLD_BAS_PS_EMERGENCY_MAINS_AND_TRANSFER_SWITCH_BATTERY_BACKED,

} teCLD_BAS_PowerSource;

JN-UG-3103 v1.4 © NXP Laboratories UK 2017 77

Chapter 5
Basic Cluster

The power source enumerations are described in the table below.

Enumeration

Description

E_CLD_BAS_PS_UNKNOWN

Unknown power source

E_CLD_BAS_PS_SINGLE_PHASE_MAINS

Single-phase mains powered

E_CLD_BAS_PS_THREE_PHASE_MAINS

Three-phase mains powered

E_CLD_BAS_PS_BATTERY

Battery powered

E_CLD_BAS_PS_DC_SOURCE

DC source

E_CLD_BAS_PS_EMERGENCY_MAINS_
CONSTANTLY_POWERED

Constantly powered from emergency mains
supply

E_CLD_BAS_PS_EMERGENCY_MAINS_
AND_TRANSFER_SWITCH

Powered from emergency mains supply via
transfer switch

E_CLD_BAS_PS_UNKNOWN_BATTERY_
BACKED

Unknown power source but battery back-up

E_CLD_BAS_PS_SINGLE_PHASE_MAINS_
BATTERY_BACKED

Single-phase mains powered with battery
back-up

E_CLD_BAS_PS_THREE_PHASE_MAINS_
BATTERY_BACKED

Three-phase mains powered with battery
back-up

E_CLD_BAS_PS_BATTERY_
BATTERY_BACKED

Battery powered with battery back-up

E_CLD_BAS_PS_DC_SOURCE_
BATTERY_BACKED

DC source with battery back-up

E_CLD_BAS_PS_EMERGENCY_MAINS_

CONSTANTLY_POWERED_BATTERY_BACKED

Constantly powered from emergency mains
supply with battery back-up

E_CLD_BAS_PS_EMERGENCY_MAINS_AND_

TRANSFER_SWITCH_BATTERY_BACKED

Powered from emergency mains supply via
transfer switch with battery back-up

Table 6: Power Source Enumerations

78

© NXP Laboratories UK 2017

JN-UG-3103 v1.4

ZigBee Cluster Library
User Guide

5.5.3 teCLD_BAS_ApplicationProfileType

The following enumerations are used in the Basic cluster to specify the ZigBee
Application Profile under which the Basic cluster was certified (note that these values
do not correspond to the ZigBee Application Profile IDs).

typedef enum

{
E_CLD_BAS_APT_ZIGBEE_BUILDING_AUTOMATION = 0x00,
E_CLD_BAS_APT_ZIGBEE_REMOTE_CONTROL,
E_CLD_BAS_APT_ZIGBEE_SMART_ENERGY,
E_CLD_BAS_APT_ZIGBEE_HEALTH_CARE,
E_CLD_BAS_APT_ZIGBEE_HOME_AUTOMATION,
E_CLD_BAS_APT_ZIGBEE_INPUT_DEVICE,
E_CLD_BAS_APT_ZIGBEE_LIGHT_LINK,
E_CLD_BAS_APT_ZIGBEE_RETAIL_SERVICES,
E_CLD_BAS_APT_ZIGBEE_TELECOM_SERVICES

} teCLD_BAS_ApplicationProfileType;

5.6 Compile-Time Options
To enable the Basic cluster in the code to be built, it is necessary to add the following
to the zcl_options.h file:
#define CLD_BASIC

In addition, to include the software for a cluster client or server or both, it is necessary
to add one or both of the following to the same file:

#define BASIC_CLIENT
#define BASIC_SERVER

The Basic cluster contains macros that may be optionally specified at compile-time by
adding some or all of the following lines to the zcl_options.h file.

Add this line to enable the optional Application Version attribute:
#define CLD_BAS_ATTR_APPLICATION_VERSION

Add this line to enable the optional Stack Version attribute:
#define CLD_BAS_ATTR_STACK_VERSION

Add this line to enable the optional Hardware Version attribute:
#define CLD_BAS_ATTR_HARDWARE_VERSION

JN-UG-3103 v1.4 © NXP Laboratories UK 2017 79

Chapter 5
Basic Cluster

Add this line to enable the optional Manufacturer Name attribute:
#define CLD_BAS_ATTR_MANUFACTURER_NAME

Add this line to enable the optional Model Identifier attribute:
#define CLD_BAS_ATTR_MODEL_IDENTIFIER

Add this line to enable the optional Date Code attribute:
#define CLD_BAS_ATTR_DATE_CODE

Add this line to enable the optional Application Profile Type attribute:
#define CLD_BAS_ATTR_ID_APPLICATION_PROFILE_TYPE

Add this line to enable the optional Application Profile Version attributes:
#define CLD_BAS_ATTR_ID_APPLICATION_PROFILE_VERSION

Add this line to enable the optional Location Description attribute:
#define CLD_BAS_ATTR_LOCATION_DESCRIPTION

Add this line to enable the optional Physical Environment attribute:
#define CLD_BAS_ATTR_PHYSICAL_ENVIRONMENT

Add this line to enable the optional Device Enabled attribute:
#define CLD_BAS_ATTR_DEVICE_ENABLED

Add this line to enable the optional Alarm Mask attribute:
#define CLD_BAS_ATTR_ALARM_MASK

Add this line to enable the optional Disable Local Config attribute:
#define CLD_BAS_ATTR_DISABLE_LOCAL_CONFIG

Add this line to enable the optional Software Build ID attribute (ZLL only):
#define CLD_BAS_ATTR_SW_BUILD_ID

Add this line to enable the optional Reset To Factory Defaults command on the client
and server:

#define CLD_BAS_CMD_RESET TO_FACTORY DEFAULTS

80 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

ZigBee Cluster Library
User Guide

6. Power Configuration Cluster

This chapter describes the Power Configuration cluster which is defined in the ZCL
and is concerned with the power source(s) of a device.

The Power Configuration cluster has a Cluster ID of 0x0001.

6.1 Overview

The Power Configuration cluster allows:
= information to be obtained about the power source(s) of a device
= voltage alarms to be configured

To use the functionality of this cluster, you must include the file
PowerConfiguration.h in your application and enable the cluster by defining
CLD_POWER_CONFIGURATION in the zcl_options.h file.

It is also necessary to enable the cluster as a server or client, or as both:

= The cluster server is able to receive commands to start and stop identification
mode on the local device.

= The cluster client is able to send the above commands to the server (and
therefore control identification mode on the remote device)

The inclusion of the client or server software must be pre-defined in the application’s
compile-time options (in addition, if the cluster is to reside on a custom endpoint then
the role of client or server must also be specified when creating the cluster instance).

The compile-time options for the Power Configuration cluster are fully detailed in
Section 6.5.

Note: Some attributes of this cluster are part of an HA

' extension of the cluster and must only be used with the
HA profile. For details, refer to the attribute descriptions
in Section 6.2.

JN-UG-3103 v1.4 © NXP Laboratories UK 2017 81

Chapter 6
Power Configuration Cluster

6.2 Power Configuration Cluster Structure and Attributes

The structure definition for the Power Configuration cluster is:

typedef struct

{

#ifdef CLD PWRCFG_ATTR_MAINS_ VOLTAGE
zuintl6 ul6MainsVoltage;

#endif

#ifdeFf CLD PWRCFG_ATTR_MAINS_ FREQUENCY
zuint8 u8MainsFrequency;
#endif

#ifdeFf CLD_PWRCFG_ATTR_MAINS_ ALARM_MASK
zbmap8 u8MainsAlarmMask;
#endif

#ifdef CLD_PWRCFG_ATTR_MAINS_ VOLTAGE_MIN_THRESHOLD
uintl6 ul6MainsVoltageMinThreshold;
#endif

#ifdef CLD_PWRCFG_ATTR_MAINS VOLTAGE_ MAX_THRESHOLD
uintl6 ul6MainsVoltageMaxThreshold;
#endif

#ifdef CLD_PWRCFG_ATTR_MAINS VOLTAGE DWELL_ TRIP_POINT
uintl6 ul6MainsVoltageDwel I TripPoint;
#endif

#ifdeFf CLD_ PWRCFG_ATTR_BATTERY_VOLTAGE
uint8 u8BatteryVoltage;
#endif

#ifdef CLD PWRCFG_ATTR_BATTERY_PERCENTAGE_REMAINING
uint8 u8BatteryPercentageRemaining;
#endif

#ifdef CLD _PWRCFG_ATTR_BATTERY_MANUFACTURER
tsZCL_CharacterString sBatteryManufacturer;
uints au8BatteryManufacturer[16];
#endif

82 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

ZigBee Cluster Library
User Guide

#ifdef CLD_PWRCFG_ATTR_BATTERY_SIZE
zenum8 u8BatterySize;
#endif

#ifdef CLD_PWRCFG_ATTR_BATTERY_AHR_RATING
zuintl6 ul6BatteryAHRating;
#endif

#ifdef CLD_PWRCFG_ATTR_BATTERY_QUANTITY
zuint8 u8BatteryQuantity;
#endif

#ifdef CLD_PWRCFG_ATTR_BATTERY_RATED_VOLTAGE
zuint8 u8BatteryRatedVoltage;
#endif

#ifdef CLD_PWRCFG_ATTR_BATTERY_ALARM_MASK
zbmap8 u8BatteryAlarmMask;
#endif

#ifdef CLD_PWRCFG_ATTR_BATTERY_VOLTAGE_MIN_THRESHOLD
zuint8 u8BatteryVoltageMinThreshold;
#endif

#ifdef CLD_ PWRCFG_ATTR_ID BATTERY_VOLTAGE_ THRESHOLD1
zuint8 u8BatteryVoltageThresholdl;
#endif

#ifdef CLD_ PWRCFG_ATTR_ID BATTERY_VOLTAGE_ THRESHOLD2
zuint8 u8BatteryVoltageThreshold2;
#endif

#ifdef CLD_PWRCFG_ATTR_ID BATTERY_VOLTAGE_ THRESHOLD3
zuint8 u8BatteryVoltageThreshold3;
#endif

#ifdef CLD _PWRCFG_ATTR_ID BATTERY_PERCENTAGE_MIN_THRESHOLD
zuint8 u8BatteryPercentageMinThreshold;
#endif

#ifdef CLD _PWRCFG_ATTR_ID BATTERY_PERCENTAGE_ THRESHOLD1
zuint8 u8BatteryPercentageThresholdl;

JN-UG-3103 v1.4 © NXP Laboratories UK 2017 83

Chapter 6
Power Configuration Cluster

#endi

#ifdef CLD_PWRCFG_ATTR_ID_BATTERY_PERCENTAGE_THRESHOLD2
zuint8 u8BatteryPercentageThreshold2;
#endif

#ifdef CLD_PWRCFG_ATTR_ID_BATTERY_PERCENTAGE_THRESHOLD3
zuint8 u8BatteryPercentageThreshold3;
#endif

#ifdef CLD_PWRCFG_ATTR_ID_BATTERY_ALARM_STATE
zbmap32 u32BatteryAlarmState;
#endif

#ifdef CLD_PWRCFG_ATTR_BATTERY_2_ VOLTAGE
uints u8Battery2Voltage;
#endif

#ifdef CLD_PWRCFG_ATTR_BATTERY_2_ PERCENTAGE_REMAINING
uints u8Battery2PercentageRemaining;
#endif

#ifdef CLD_PWRCFG_ATTR_BATTERY_2 MANUFACTURER
tsZCL_CharacterString sBattery2Manufacturer;
uint8 au8Battery2Manufacturer|[16];
#endif

#ifdef CLD_PWRCFG_ATTR_BATTERY_2_ SIZE
zenum8 u8Battery2Size;
#endif

#ifdef CLD _PWRCFG_ATTR_BATTERY_2 AHR_RATING
zuintl6 ul6Battery2AHRating;
#endif

#ifdef CLD PWRCFG_ATTR_BATTERY_2 QUANTITY
zuint8 u8Battery2Quantity;
#endif

#ifdeFf CLD_PWRCFG_ATTR_BATTERY_2 RATED VOLTAGE
zuint8 u8Battery2RatedVoltage;
#endif

84 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

ZigBee Cluster Library
User Guide

#ifdef CLD_PWRCFG_ATTR_BATTERY_2 ALARM_MASK

zbmap8 u8Battery2AlarmMask;
#endif

#ifdef CLD_PWRCFG_ATTR_BATTERY_2_ VOLTAGE_MIN_THRESHOLD
zuint8 u8Battery2VoltageMinThreshold;
#endif

#ifdef CLD_PWRCFG_ATTR_ID_BATTERY_2_VOLTAGE_THRESHOLD1
zuints8 u8Battery2VoltageThresholdl;
#endif

#ifdef CLD_PWRCFG_ATTR_ID_BATTERY_2 VOLTAGE_THRESHOLD2
zuint8 u8Battery2VoltageThreshold2;
#endif

#ifdef CLD_PWRCFG_ATTR_ID_BATTERY_2_ VOLTAGE_THRESHOLD3
zuint8 u8Battery2VoltageThreshold3;
#endif

#ifdef CLD_PWRCFG_ATTR_ID_BATTERY_2 PERCENTAGE_MIN_THRESHOLD
zuint8 u8Battery2PercentageMinThreshold;
#endif

#ifdef CLD_PWRCFG_ATTR_ID_BATTERY_2 PERCENTAGE_THRESHOLD1
zuint8 u8Battery2PercentageThresholdl;
#endif

#ifdef CLD_PWRCFG_ATTR_ID_BATTERY_2 PERCENTAGE_THRESHOLD2
zuint8 u8Battery2PercentageThreshold2;
#endif

#ifdef CLD_PWRCFG_ATTR_ID_BATTERY_2 PERCENTAGE_THRESHOLD3
zuint8 u8Battery2PercentageThreshold3;
#endif

#ifdef CLD_PWRCFG_ATTR_BATTERY_3_VOLTAGE
uints u8Battery3Voltage;
#endif

#ifdef CLD_PWRCFG_ATTR_BATTERY_PERCENTAGE_3 REMAINING
uints u8Battery3PercentageRemaining;
#endif

JN-UG-3103 v1.4 © NXP Laboratories UK 2017 85

Chapter 6

Power Configuration Cluster

#ifdef CLD_PWRCFG_ATTR_BATTERY_3 MANUFACTURER

tsZCL_CharacterString

uints8
#endi

sBattery3Manufacturer;
au8Battery3Manufacturer[16];

#ifdef CLD_PWRCFG_ATTR_BATTERY_3_SIZE

zenum8
#endi

u8Battery3Size;

#ifdef CLD_PWRCFG_ATTR_BATTERY_3_AHR_RATING

zuintl6
#endi

ul6Battery3AHRating;

#ifdef CLD_PWRCFG_ATTR_BATTERY_3_QUANTITY

zuint8
#endi

u8Battery3Quantity;

#ifdef CLD_PWRCFG_ATTR_BATTERY_3_RATED VOLTAGE

zuint8
#endi

u8Battery3RatedVoltage;

#ifdef CLD_PWRCFG_ATTR_BATTERY_3_ALARM_MASK

zbmap8
#endif

u8Battery3AlarmMask;

#ifdef CLD_PWRCFG_ATTR_BATTERY_3_VOLTAGE_MIN_THRESHOLD

zuint8
#endi

u8Battery3VoltageMinThreshold;

#ifdef CLD_PWRCFG_ATTR_ID_BATTERY_3_ VOLTAGE_THRESHOLD1

zuint8
#endi

u8Battery3VoltageThresholdl;

#ifdef CLD_PWRCFG_ATTR_ID_BATTERY_3_ VOLTAGE_THRESHOLD2

zuint8
#endi

u8Battery3VoltageThreshold2;

#ifdef CLD_PWRCFG_ATTR_ID_BATTERY_3_ VOLTAGE_THRESHOLD3

zuint8
#endi

u8Battery3VoltageThreshold3;

#ifdef CLD_PWRCFG_ATTR_ID_BATTERY_3_ PERCENTAGE_MIN_THRESHOLD

86

© NXP Laboratories UK 2017 JN-UG-3103 v1.4

ZigBee Cluster Library
User Guide
zuint8 u8Battery3PercentageMinThreshold;
#endif

#ifdef CLD_PWRCFG_ATTR_ID_BATTERY_3 PERCENTAGE_THRESHOLD1
zuint8 u8Battery3PercentageThresholdl;
#endif

#ifdef CLD_PWRCFG_ATTR_ID_BATTERY_3 PERCENTAGE_THRESHOLD2
zuint8 u8Battery3PercentageThreshold2;
#endif

#ifdef CLD_PWRCFG_ATTR_ID BATTERY_3 PERCENTAGE_THRESHOLD3
zuint8 u8Battery3PercentageThreshold3;

#endif

} tsCLD_PowerConfiguration;

The attributes are classified into four attribute sets: Mains Information, Mains Settings,

Ba

ttery Information and Battery Settings. The attributes from these sets are described

below.

Mains Information Attribute Set

= yl6MainsVoltage is the measured AC (RMS) mains voltage or DC voltage
currently applied to the device, in units of 100 mV.

= u8MainsFrequency is half of the measured AC mains frequency, in Hertz,
currently applied to the device. Actual frequency = 2 x u8MainsFrequency.
This allows AC mains frequencies to be stored in the range 2-506 Hz in steps
of 2 Hz. In addition:

0x00 indicates a DC supply or that AC frequency is too low to be
measured

OxFE indicates that AC frequency is too high to be measured
OxFF indicates that AC frequency could not be measured.

JN-UG-3103 v1.4

© NXP Laboratories UK 2017 87

Chapter 6
Power Configuration Cluster

Mains Settings Attribute Set
= u8MainsAlarmMask is a bitmap indicating which mains voltage alarms can be

generated (a bit is set to ‘1’ if the alarm is enabled):

Bit Description

0 Under-voltage alarm (triggered when measured RMS mains
voltage falls below a pre-defined threshold - see below)

1 Over-voltage alarm (triggered when measured RMS mains
voltage rises above a pre-defined threshold - see below)

2 Mains power supply has been lost or is unavailable - that is,
the device is now running on battery power. This value is
part of the HA extension to the cluster

3-7 Reserved

= uyl6MainsVoltageMinThreshold is the threshold for the under-voltage

alarm, in units of 100 mV. The RMS mains voltage is allowed to dip below this
threshold for the duration specified by 16MainsVoltageDwel ITripPoint
before the alarm is triggered (see below). OxFFFF indicates that the alarm will
not be generated.

uléMainsVoltageMaxThreshold is the threshold for the over-voltage
alarm, in units of 100 mV. The RMS mains voltage is allowed to rise above this
threshold for the duration specified by 16MainsVoltageDwel ITripPoint
before the alarm is triggered (see below). OxFFFF indicates that the alarm will
not be generated.

uléMainsVoltageDwel ITripPoint defines the time-delay, in seconds,
before an over-voltage or under-voltage alarm will be triggered when the mains
voltage crosses the relevant threshold. If the mains voltage returns within the
limits of the thresholds during this time, the alarm will be cancelled. OxFFFF
indicates that the alarms will not be generated.

Battery Information Attribute Set (Battery 1)

u8BatteryVoltage is the measured battery voltage currently applied to the
device, in units of 100 mV. OxFF indicates that the measured voltage is invalid
or unknown.

u8BatteryPercentageRemaining indicates the remaining battery life as a
percentage of the complete battery lifespan, expressed to the nearest half-
percent in the range 0 to 100 - for example, OXAF represents 87.5%. The
special value OxFF indicates an invalid or unknown measurement. This
attribute is part of the HA extension to the cluster.

Battery Settings Attribute Set (Battery 1)

sBatteryManufacturer is a pointer to the array containing the name of the
battery manufacturer (see below).

au8BatteryManufacturer[16] is a 16-element array containing the name
of the battery manufacturer (maximum of 16 characters).

u8BatterySize is an enumeration indicating the type of battery in the device
- the enumerations are listed in Section 6.4.2.

88

© NXP Laboratories UK 2017 JN-UG-3103 v1.4

ZigBee Cluster Library
User Guide

ul6BatteryAHRating is the Ampere-hour (Ah) charge rating of the battery,
in units of 10 mAh.

u8BatteryQuantity is the number of batteries used to power the device.

u8BatteryRatedVoltage is the rated voltage of the battery, in units of
100 mV.

u8BatteryAlarmMask is a bitmap indicating whether the battery-low alarm
can be generated - if enabled, the alarm is generated when the battery voltage
falls below a pre-defined threshold (see below). The alarm-enable bit is bit O
(which is set to ‘1’ if the alarm is enabled).

u8BatteryVoltageMinThreshold is the battery voltage threshold, in units
of 100 mV, below which the device cannot operate or transmit - a battery-low
alarm can be triggered when the battery voltage falls below this threshold:

Value Description

0x00 - 0x39 Minimum battery voltage threshold, in units of 100 mV

0x3A Mains power supply has been lost or is unavailable - that is,
the device is how running on battery power. This value is
part of the HA extension to the cluster

0x3B - OxFF Reserved

u8BatteryVoltageThresholdl is a battery voltage threshold, in units of
100 mV, which can correspond to a battery-low alarm - that is, if the battery
voltage falls below this threshold, an alarm can be triggered. It must be greater
than the value defined for u8BatteryVoltageMinThreshold. The special
value OXFF indicates that the threshold is not used. This attribute is part of
the HA extension to the cluster.

u8BatteryVoltageThreshold2 is a battery voltage threshold, in units of
100 mV, which can correspond to a battery-low alarm - that is, if the battery
voltage falls below this threshold, an alarm can be triggered. It must be greater
than the value defined for u8BatteryVoltageThresholdl. The special
value OXFF indicates that the threshold is not used. This attribute is part of
the HA extension to the cluster.

u8BatteryVoltageThreshold3 is a battery voltage threshold, in units of
100 mV, which can correspond to a battery-low alarm - that is, if the battery
voltage falls below this threshold, an alarm can be triggered. It must be greater
than the value defined for u8BatteryVoltageThreshold2. The special
value OXFF indicates that the threshold is not used. This attribute is part of
the HA extension to the cluster.

u8BatteryPercentageMinThreshold is the minimum alarm threshold for
percentage battery-life, expressed in half-percent steps in the range 0 to 100 - if
the remaining percentage battery-life (u8BatteryPercentageRemaining)
falls below this threshold, an alarm can be triggered. This attribute is part of
the HA extension to the cluster.

u8BatteryPercentageThresholdl is an alarm threshold for percentage
battery-life, expressed in half-percent steps in the range 0 to 100 - if the
remaining percentage battery-life (u8BatteryPercentageRemaining) falls
below this threshold, an alarm can be triggered. It must be greater than the

JN-UG-3103 v1.4

© NXP Laboratories UK 2017 89

Chapter 6

Power Configuration Cluster

value defined for u8BatteryPercentageMinThreshold. The special value
OxFF indicates that the threshold is not used. This attribute is part of the HA
extension to the cluster.

u8BatteryPercentageThreshold2 is an alarm threshold for percentage
battery-life, expressed in half-percent steps in the range 0 to 100 - if the
remaining percentage battery-life (u8BatteryPercentageRemaining) falls
below this threshold, an alarm can be triggered. It must be greater than the
value defined for u8BatteryPercentageThresholdl. The special value
OxFF indicates that the threshold is not used. This attribute is part of the HA
extension to the cluster.

u8BatteryPercentageThreshold3 is an alarm threshold for percentage
battery-life, expressed in half-percent steps in the range 0 to 100 - if the
remaining percentage battery-life (u8BatteryPercentageRemaining) falls
below this threshold, an alarm can be triggered. It must be greater than the
value defined for u8BatteryPercentageThreshold2. The special value
OxFF indicates that the threshold is not used. This attribute is part of the HA
extension to the cluster.

u32BatteryAlarmState is a bitmap repesenting the current state of the
alarms for the battery or batteries (the bitmap includes status bits for optional
additional batteries 2 and 3). It indicates the state of the battery in relation to
the voltage and percentage-life thresholds defined by the attributes above (a bit
is set to ‘1’ when the corresponding threshold has been reached). This
attribute is part of the HA extension to the cluster.

Bit Description

Bits for Battery

0 Bit is set if one of the following thresholds has been reached:
= u8BatteryVoltageMinThreshold
= u8BatteryPercentageMinThreshold

1 Bit is set if one of the following thresholds has been reached:
= u8BatteryVoltageThresholdl
= u8BatteryPercentageThresholdl

2 Bit is set if one of the following thresholds has been reached:
= u8BatteryVoltageThreshold2
= u8BatteryPercentageThreshold2

3 Bit is set if one of the following thresholds has been reached:
= u8BatteryVoltageThreshold3
= u8BatteryPercentageThreshold3

4-9 Reserved

Bits for Battery 2 (Optional)

10 Bit is set if one of the following thresholds has been reached:
= u8Battery2VoltageMinThreshold
= u8Battery2PercentageMinThreshold

90

© NXP Laboratories UK 2017 JN-UG-3103 v1.4

ZigBee Cluster Library
User Guide

Bit Description

11 Bit is set if one of the following thresholds has been reached:
= u8Battery2VoltageThresholdl
= u8Battery2PercentageThresholdl

12 Bit is set if one of the following thresholds has been reached:
= u8Battery2VoltageThreshold2
= u8Battery2PercentageThreshold2

13 Bit is set if one of the following thresholds has been reached:
= u8Battery2VoltageThreshold3
= u8Battery2PercentageThreshold3

14-19 Reserved

Bits for Battery 3 (Optional)

20 Bit is set if one of the following thresholds has been reached:
= u8Battery3VoltageMinThreshold
= u8Battery3PercentageMinThreshold

21 Bit is set if one of the following thresholds has been reached:
= u8Battery3VoltageThresholdl
= u8Battery3PercentageThresholdl

22 Bit is set if one of the following thresholds has been reached:
= u8Battery3VoltageThreshold2
= u8Battery3PercentageThreshold2

23 Bit is set if one of the following thresholds has been reached:
< u8Battery3VoltageThreshold3
= u8Battery3PercentageThreshold3

24 - 29 Reserved

30 Mains power supply has been lost or is unavailable - that is, the device is how
running on battery power

31 Reserved

Battery Information and Battery Settings Attribute Sets for Battery <X>

The Battery Information and Battery Settings attribute sets are repeated for up to two
further (optional) batteries, denoted 2 and 3. The attributes are as follows, where <X>
is 2 or 3, and their definitions are identical to those of the equivalent attributes in the
Battery Information and Battery Settings attribute sets described above.

= u8Battery<X>Voltage

= u8Battery<X>PercentageRemaining
= au8Battery<X>Manufacturer[16]
= u8Battery<X>Size

= yl6Battery<X>AHRating

JN-UG-3103 v1.4 © NXP Laboratories UK 2017 91

Chapter 6
Power Configuration Cluster

u8Battery<X>Quantity
u8Battery<X>RatedVoltage
u8Battery<X>AlarmMask
u8Battery<X>VoltageMinThreshold
u8Battery<X>VoltageThresholdl
u8Battery<X>VoltageThreshold2
u8Battery<X>VoltageThreshold3
u8Battery<X>PercentageMinThreshold
u8Battery<X>PercentageThresholdl
u8Battery<X>PercentageThreshold2
u8Battery<X>PercentageThreshold3
u32Battery<X>AlarmState

6.3 Functions

The following Power Configuration cluster function is provided in the NXP
implementation of the ZCL:

Function

eCLD_PowerConfigurationCreatePowerConfiguration

Page
93

92

© NXP Laboratories UK 2017

JN-UG-3103 v1.4

ZigBee Cluster Library
User Guide

eCLD_PowerConfigurationCreatePowerConfiguration

teZCL_Status
eCLD_PowerConfigurationCreatePowerConfiguration(
tsZCL_Clusterinstance *psClusterinstance,
bool _t bisServer,
tsZCL_ClusterDefinition *psClusterDefinition,
void *pvEndPointSharedStructPtr,
uint8 *pu8AttributeControlBits);

Description

This function creates an instance of the Power Configuration cluster on an endpoint.
The cluster instance is created on the endpoint which is associated with the supplied
tsZCL_ClusterlInstance structure and can act as a server or a client, as
specified.

The function should only be called when setting up a custom endpoint containing one
or more selected clusters (rather than the whole set of clusters supported by a
standard ZigBee device). This function will create a Power Configuration cluster
instance on the endpoint, but instances of other clusters may also be created on the
same endpoint by calling their corresponding creation functions.

Note: This function must not be called for an endpoint on
which a standard ZigBee device will be used. In this case, the
device and its supported clusters must be registered on the
endpoint using the relevant device registration function.

When used, this function must be called after the stack has been started and after
the application profile has been initialised.

The function requires an array to be declared for internal use, which contains one
element (of type uint8) for each attribute of the cluster. The array length should
therefore equate to the total number of attributes supported by the Power
Configuration cluster, which can be obtained by using the macro
CLD_PWRCFG_MAX_NUMBER_OF_ATTRIBUTE.

The array declaration should be as follows:

uint8 auB8AppPowerConfigurationClusterAttributeControlBits[
CLD_PWRCFG_MAX_NUMBER_OF_ATTRIBUTE];

The function will initialise the array elements to zero.

Parameters

psClusterinstance Pointer to structure containing information about the
cluster instance to be created (see Section 34.1.16).
This structure will be updated by the function by
initialising individual structure fields.

JN-UG-3103 v1.4

© NXP Laboratories UK 2017 93

Chapter 6
Power Configuration Cluster

Returns

blsServer

psClusterDefinition

pvEndPointSharedStructPtr

puBAttributeControlBits

E_ZCL_SUCCESS

Type of cluster instance (server or client) to be created:

TRUE - server
FALSE - client

Pointer to structure indicating the type of cluster to be
created (see Section 34.1.2). In this case, this structure
must contain the details of the Basic cluster. This
parameter can refer to a pre-filled structure called
sCLD_PowerConfiguration whichis provided in the
PowerConfiguration.h file.

Pointer to the shared structure used for attribute
storage. This parameter should be the address of the
structure of type tsCLD_PowerConfiguration
which defines the attributes of Power Configuration
cluster. The function will initialise the attributes with
default values.

Pointer to an array of uint8 values, with one element for
each attribute in the cluster (see above).

E_ZCL_ERR_PARAMETER_NULL

94

© NXP Laboratories UK 2017

JN-UG-3103 v1.4

ZigBee Cluster Library
User Guide

6.4 Enumerations and Defines

6.4.1 teCLD_PWRCFG_Attributeld

The following structure contains the enumerations used to identify the attributes of the
Power Configuration cluster (some attributes are part of the HA extension of this
cluster - see Section 6.2).

typedef enum

{

/* Mains Information attribute set */
E_CLD_PWRCFG_ATTR_ID_MAINS_VOLTAGE
E CLD PWRCFG_ATTR_ID_MAINS_FREQUENCY,

0x0000,

/* Mains Settings attribute set */
E_CLD_PWRCFG_ATTR_ID_MAINS_ALARM_MASK
E_CLD_PWRCFG_ATTR_ID_MAINS_VOLTAGE_MIN_THRESHOLD,
E_CLD_PWRCFG_ATTR_ID_MAINS_VOLTAGE_MAX_THRESHOLD,
E_CLD_PWRCFG_ATTR_ID_MAINS_VOLTAGE_DWELL_TRIP_POINT,

0x0010,

/* Battery Information attribute set */
E_CLD_PWRCFG_ATTR_ID_BATTERY_VOLTAGE
E_CLD_PWRCFG_ATTR_ID_BATTERY_PERCENTAGE_REMAINING,

0x0020,

/* Battery Settings attribute set */
E_CLD_PWRCFG_ATTR_ID_BATTERY_MANUFACTURER
E_CLD_PWRCFG_ATTR_ID_BATTERY_SIZE,
E_CLD_PWRCFG_ATTR_ID_BATTERY_AHR_RATING,
E_CLD_PWRCFG_ATTR_ID_BATTERY_QUANTITY,
E_CLD_PWRCFG_ATTR_ID_BATTERY_RATED_VOLTAGE,
E_CLD_PWRCFG_ATTR_ID_BATTERY_ALARM_MASK,
E_CLD_PWRCFG_ATTR_ID_BATTERY_VOLTAGE_MIN_THRESHOLD,
E_CLD_PWRCFG_ATTR_ID_BATTERY_VOLTAGE_THRESHOLD1,
E_CLD_PWRCFG_ATTR_ID_BATTERY_VOLTAGE_THRESHOLD2,
E_CLD_PWRCFG_ATTR_ID_BATTERY_VOLTAGE_THRESHOLD3,
E_CLD_PWRCFG_ATTR_ID_BATTERY_PERCENTAGE_MIN_THRESHOLD,
E_CLD_PWRCFG_ATTR_ID_BATTERY_PERCENTAGE_THRESHOLD1,
E_CLD_PWRCFG_ATTR_ID_BATTERY_PERCENTAGE_THRESHOLD2,
E_CLD_PWRCFG_ATTR_ID_BATTERY_PERCENTAGE_THRESHOLDS,
E_CLD_PWRCFG_ATTR_ID_BATTERY_ALARM_STATE,

0x0030,

JN-UG-3103 v1.4

© NXP Laboratories UK 2017 95

Chapter 6
Power Configuration Cluster

/* Battery 2 Information attribute set */

E_CLD_PWRCFG_ATTR_ID_BATTERY_2 VOLTAGE = 0x0040,
E_CLD_PWRCFG_ATTR_ID_BATTERY_2 PERCENTAGE_REMAINING,

/* Battery 2 Settings attribute set */

E _CLD _PWRCFG_ATTR_ID_BATTERY_2 MANUFACTURER = 0x0050,

E_CLD_PWRCFG_ATTR_ID_BATTERY_2_SIZE,
E_CLD_PWRCFG_ATTR_ID_BATTERY_2_AHR_RATING,
E_CLD_PWRCFG_ATTR_ID_BATTERY_2_QUANTITY,
E_CLD_PWRCFG_ATTR_ID_BATTERY_2 RATED_ VOLTAGE,
E_CLD_PWRCFG_ATTR_ID_BATTERY_2_ALARM_MASK,
E_CLD_PWRCFG_ATTR_ID_BATTERY_2_ VOLTAGE_MIN_THRESHOLD,
E_CLD_PWRCFG_ATTR_ID_BATTERY_2_ VOLTAGE_THRESHOLD1,
E_CLD_PWRCFG_ATTR_ID_BATTERY_2_ VOLTAGE_THRESHOLD2,
E_CLD_PWRCFG_ATTR_ID_BATTERY_2_ VOLTAGE_THRESHOLD3,
E_CLD_PWRCFG_ATTR_ID_BATTERY_2 PERCENTAGE_MIN_THRESHOLD,
E_CLD_PWRCFG_ATTR_ID_BATTERY_2_ PERCENTAGE_THRESHOLD1,
E_CLD_PWRCFG_ATTR_ID_BATTERY_2_ PERCENTAGE_THRESHOLD2,
E_CLD_PWRCFG_ATTR_ID_BATTERY_2_ PERCENTAGE_THRESHOLD3,

/* Battery 3 Information attribute set */

E _CLD_PWRCFG_ATTR_I1D_BATTERY_3 VOLTAGE = 0x0060,
E_CLD_PWRCFG_ATTR_ID_BATTERY_3 PERCENTAGE_REMAINING,

/* Battery 3 Settings attribute set */

E _CLD_PWRCFG_ATTR_I1D_BATTERY_3 MANUFACTURER = 0x0070,

E_CLD_PWRCFG_ATTR_ID_BATTERY_3_SIZE,
E_CLD_PWRCFG_ATTR_ID_BATTERY_3_AHR_RATING,
E_CLD_PWRCFG_ATTR_ID_BATTERY_3_QUANTITY,
E_CLD_PWRCFG_ATTR_ID_BATTERY_3 RATED_VOLTAGE,
E_CLD_PWRCFG_ATTR_ID_BATTERY_3_ALARM_MASK,
E_CLD_PWRCFG_ATTR_ID_BATTERY_3 VOLTAGE_MIN_THRESHOLD,
E_CLD_PWRCFG_ATTR_ID_BATTERY_3_VOLTAGE_THRESHOLD1,
E_CLD_PWRCFG_ATTR_ID_BATTERY_ 3 VOLTAGE_THRESHOLD2,
E_CLD_PWRCFG_ATTR_ID_BATTERY_3_VOLTAGE_THRESHOLD3,
E_CLD_PWRCFG_ATTR_ID_BATTERY_ 3 PERCENTAGE_MIN_THRESHOLD,
E_CLD_PWRCFG_ATTR_ID_BATTERY_3_PERCENTAGE_THRESHOLD1,
E_CLD_PWRCFG_ATTR_ID_BATTERY_3 PERCENTAGE_THRESHOLD2,
E_CLD_PWRCFG_ATTR_ID_BATTERY_3_PERCENTAGE_THRESHOLD3

} teCLD_PWRCFG_Attributeld;

96 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

ZigBee Cluster Library
User Guide

6.4.2 teCLD PWRCFG_BatterySize

The following structure contains the enumerations used to indicate the type of battery
used in the device.

typedef enum
{

E_CLD_PWRCFG_BATTERY_SIZE_NO_BATTERY
E_CLD PWRCFG_BATTERY_SIZE BUILT_IN,
E_CLD_PWRCFG_BATTERY_SIZE_OTHER,
E_CLD_PWRCFG_BATTERY_SIZE_AA,
E_CLD_PWRCFG_BATTERY_SIZE_AAA,
E_CLD _PWRCFG_BATTERY_SIZE C,
E_CLD_PWRCFG_BATTERY_SIZE_D,
E_CLD_PWRCFG_BATTERY_SIZE_UNKNOWN

} teCLD _PWRCFG_BatterySize;

0x00,

OxfT,

6.4.3 Defines for Voltage Alarms

The following #defines are provided for use in the configuration of the mains over-
voltage and under-voltage alarms, and the battery-low alarm.

Mains Alarm Mask

#define CLD_PWRCFG_MAINS_VOLTAGE TOO LOW (1 << 0)
#define CLD_PWRCFG_MAINS_VOLTAGE_TOO HIGH (1 << 1)

Battery Alarm Mask
#define CLD_PWRCFG_BATTERY_VOLTAGE_TOO LOW (1 << 0)

JN-UG-3103 v1.4 © NXP Laboratories UK 2017 97

Chapter 6
Power Configuration Cluster

6.5 Compile-Time Options
To enable the Power Configuration cluster in the code to be built, it is necessary to add
the following to the zcl_options.h file:
#define CLD_POWER_CONFIGURATION

In addition, to include the software for a cluster client or server or both, it is necessary
to add one or both of the following to the same file:

#define POWER_CONFIGURATION_CLIENT
#define POWER_CONFIGURATION_SERVER

The Power Configuration cluster contains macros that may be optionally specified at
compile-time by adding some or all the following lines to the zcl_options.h file.

Note: Some attributes of this cluster are part of an HA

' extension of the cluster and must only be used with the
HA profile. For details, refer to the attribute descriptions
in Section 6.2.

Add this line to enable the optional Mains Voltage attribute:
#define CLD_PWRCFG_ATTR_MAINS_VOLTAGE

Add this line to enable the optional Mains Frequency attribute:
#define CLD_PWRCFG_ATTR_MAINS_FREQUENCY

Add this line to enable the optional Mains Alarm Mask attribute:
#define CLD_PWRCFG_ATTR_MAINS_ALARM_MASK

Add this line to enable the optional Mains Voltage Min Threshold attribute:
#define CLD_PWRCFG_ATTR_MAINS_ VOLTAGE_MIN_THRESHOLD

Add this line to enable the optional Mains Voltage Max Threshold attribute:
#define CLD_PWRCFG_ATTR_MAINS_VOLTAGE_MAX_ THRESHOLD

Add this line to enable the optional Mains Voltage Dwell Trip Point attribute:
#define CLD_PWRCFG_ATTR_MAINS_VOLTAGE_DWELL_TRIP_POINT

Add this line to enable the optional Battery Voltage attribute:
#define CLD_PWRCFG_ATTR_BATTERY_VOLTAGE

98 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

ZigBee Cluster Library
User Guide

Add this line to enable the optional Battery Manufacturer attributes:
#define CLD_PWRCFG_ATTR_BATTERY_MANUFACTURER

Add this line to enable the optional Battery Size attribute:
#define CLD_PWRCFG_ATTR_BATTERY_SIZE

Add this line to enable the optional Battery Amp Hour attribute:
#define CLD_PWRCFG_ATTR_BATTERY_AHR_RATING

Add this line to enable the optional Battery Quantity attribute:
#define CLD_PWRCFG_ATTR_BATTERY_QUANTITY

Add this line to enable the optional Battery Rated Voltage attribute:
#define CLD_PWRCFG_ATTR_BATTERY_RATED_VOLTAGE

Add this line to enable the optional Battery Alarm Mask attribute:
#define CLD_PWRCFG_ATTR_BATTERY_ALARM_MASK

Add this line to enable the optional Battery Voltage Min Threshold attribute:
#define CLD_PWRCFG_ATTR_BATTERY_VOLTAGE_MIN_THRESHOLD

Add this line to enable the optional Battery Percentage Life Remaining attribute:
#define CLD_PWRCFG_ATTR_BATTERY_PERCENTAGE_REMAINING

Add this line to enable the optional Battery Voltage Threshold 1 attribute:
#define CLD_PWRCFG_ATTR_ID_BATTERY_VOLTAGE_THRESHOLD1

Add this line to enable the optional Battery Voltage Threshold 2 attribute:
#define LD_PWRCFG_ATTR_ID_BATTERY_VOLTAGE_THRESHOLD2

Add this line to enable the optional Battery Voltage Threshold 3 attribute:
#define CLD_PWRCFG_ATTR_ID_BATTERY_VOLTAGE_THRESHOLD3

Add this line to enable the optional Battery Percentage Life Min Threshold attribute:
#define CLD_PWRCFG_ATTR_ID BATTERY_PERCENTAGE_MIN_THRESHOLD

Add this line to enable the optional Battery Percentage Life Threshold 1 attribute:
#define CLD_PWRCFG_ATTR_ID BATTERY_PERCENTAGE_THRESHOLD1

JN-UG-3103 v1.4 © NXP Laboratories UK 2017 99

Chapter 6
Power Configuration Cluster

Add this line to enable the optional Battery Percentage Life Threshold 2 attribute:
#define CLD_PWRCFG_ATTR_ID BATTERY_PERCENTAGE_THRESHOLD2

Add this line to enable the optional Battery Percentage Life Threshold 3 attribute:
#define CLD_PWRCFG_ATTR_I1D_BATTERY_PERCENTAGE_THRESHOLD3

Add this line to enable the optional Battery Alarm State attribute:
#define CLD_PWRCFG_ATTR_ 1D _BATTERY_ALARM_STATE

Add this line to enable the optional Battery <X> Voltage attribute:
#define CLD_PWRCFG_ATTR_BATTERY_<X> VOLTAGE

Add this line to enable the optional Battery <X> Percentage Life Remaining attribute:
#define CLD_PWRCFG_ATTR_BATTERY_<X> PERCENTAGE_REMAINING

Add this line to enable the optional Battery <X> Manufacturer attributes:
#define CLD_PWRCFG_ATTR_BATTERY_<X>_ MANUFACTURER

Add this line to enable the optional Battery <X> Size attribute:
#define CLD_PWRCFG_ATTR_BATTERY_ <X> SIZE

Add this line to enable the optional Battery <X> Amp Hour attribute:
#define CLD_PWRCFG_ATTR_BATTERY_<X> AHR_RATING

Add this line to enable the optional Battery <X> Quantity attribute:
#define CLD_PWRCFG_ATTR_BATTERY_<X> QUANTITY

Add this line to enable the optional Battery <X> Rated Voltage attribute:
#define CLD_PWRCFG_ATTR_BATTERY_<X>_RATED_VOLTAGE

Add this line to enable the optional Battery <X> Alarm Mask attribute:
#define CLD_PWRCFG_ATTR_BATTERY_<X>_ ALARM_MASK

Add this line to enable the optional Battery <X> Voltage Min Threshold attribute:
#define CLD_PWRCFG_ATTR_BATTERY_ <X> VOLTAGE_MIN_THRESHOLD

Add this line to enable the optional Battery <X> Voltage Threshold 1 attribute:
#define CLD_PWRCFG_ATTR_ID_BATTERY_<X> VOLTAGE_THRESHOLD1

100 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

ZigBee Cluster Library
User Guide

Add this line to enable the optional Battery <X> Voltage Threshold 2 attribute:
#define CLD_PWRCFG_ATTR_ID_BATTERY_<X> VOLTAGE_THRESHOLD2

Add this line to enable the optional Battery <X> Voltage Threshold 3 attribute:
#define CLD_PWRCFG_ATTR_ID_BATTERY_<X> VOLTAGE_THRESHOLD3

Add this line to enable the optional Battery <X> Percentage Life Remaining attribute:
#define CLD PWRCFG_ATTR_ID BATTERY_ <X> PERCENTAGE_MIN_THRESHOLD

Add this line to enable the optional Battery <X> Percentage Life Threshold 1 attribute:
#define CLD_PWRCFG_ATTR_ID_BATTERY_<X> PERCENTAGE_THRESHOLD1

Add this line to enable the optional Battery <X> Percentage Life Threshold 2 attribute:
#define CLD_PWRCFG_ATTR_ID_BATTERY_<X> PERCENTAGE_THRESHOLD2

Add this line to enable the optional Battery <X> Percentage Life Threshold 3 attribute:
#define CLD_PWRCFG_ATTR_ID BATTERY_<X> PERCENTAGE_THRESHOLD3

JN-UG-3103 v1.4 © NXP Laboratories UK 2017 101

Chapter 6
Power Configuration Cluster

102 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

ZigBee Cluster Library
User Guide

7. ldentify Cluster

This chapter describes the Identify cluster which is defined in the ZCL and allows a
device to identify itself (for example, by flashing a LED on the node).

The Identify cluster has a Cluster ID of 0x0003.

7.1 Overview

The Identify cluster allows the host device to be put into identification mode in which
the node highlights itself in some way to an observer (in order to distinguish itself from
other nodes in the network). It is recommended that identification mode should involve
flashing a light with a period of 0.5 seconds.

To use the functionality of this cluster, you must include the file Identify.h in your
application and enable the cluster by defining CLD_IDENTIFY in the zcl_options.h
file.

It is also necessary to enable the cluster as a server or client, or as both:

m The cluster server is able to receive commands to start and stop identification
mode on the local device.

= The cluster client is able to send the above commands to the server (and
therefore control identification mode on the remote device)

The inclusion of the client or server software must be pre-defined in the application’s
compile-time options (in addition, if the cluster is to reside on a custom endpoint then
the role of client or server must also be specified when creating the cluster instance).

The compile-time options for the Identify cluster are fully detailed in Section 7.9.

Note: The Identify cluster contains optional functionality
“ for the EZ-mode Commissioning module, which is

detailed in Chapter 32 (and is currently only available for
use with the Home Automation profile). However, this
enhanced functionality is not presently certifiable.

JN-UG-3103 v1.4 © NXP Laboratories UK 2017 103

Chapter 7
Identify Cluster

7.2 Identify Cluster Structure and Attribute

The structure definition for the Identify cluster is:

typedef struct

{

zuintl6

ul6ldentifyTime;

#ifdeT CLD_IDENTIFY_ATTR_COMMISSION_STATE

zbmap8

#endi

u8CommissionState;

} tsCLD_ldentify;

where:

= ul6ldentifyTime is a mandatory attribute specifying the remaining length of
time, in seconds, that the device will continue in identification mode. Setting the
attribute to a non-zero value will put the device into identification mode and the
attribute will subsequently be decremented every second

= y8CommissionState is an optional attribute for use with EZ-mode
Commissioning (see Chapter 32) to indicate the network status and operational
status of the node - this information is contained in a bitmap, as follows:

Bits

Description

0

Network State
¢ 1if in the correct network (must be 1 if Operational State bit is 1)
« 0 if not in a network, or in a temporary network, or network status is unknown

Operational State
« 1 if commissioned for operation (Network State bit will also be set to 1)
< 0 if not commissioned for operation

Reserved

104

© NXP Laboratories UK 2017 JN-UG-3103 v1.4

ZigBee Cluster Library
User Guide

7.3 Initialisation

The function eCLD_IdentifyCreateldentify() is used to create an instance of the
Identify cluster. This function is generally called by the initialisation function for the
host device but can alternatively be used directly by the application in setting up a
custom endpoint which supports the Identify cluster (amongst others).

7.4 Sending Commands

The NXP implementation of the ZCL provides functions for sending commands
between an Identify cluster client and server.

7.4.1 Starting and Stopping Identification Mode

The function eCLD_IdentifyCommandIldentifyRequestSend() can be used on the
cluster client to send a command to the cluster server requesting identification mode
to be started or stopped on the server device. The required action is contained in the
payload of the command (see Section 7.7.2):

m Setting the payload element ul6ldentifyTime to a non-zero value has the effect
of requesting that the server device enters identification mode for a time (in
seconds) corresponding to the specified value.

m Setting the payload element ul6ldentifyTime to zero has the effect of
requesting the immediate termination of any identification mode that is currently
in progress on the server device.

In a ZigBee Light Link (ZLL) network, identification mode can alternatively be started
and stopped as described in Section 7.4.2.

7.4.2 Requesting ldentification Effects (ZLL Only)

The function eCLD_ldentifyCommandTriggerEffectSend() can be used in a ZigBee
Light Link (ZLL) network to request a particular identification effect or behaviour on a
light of a remote node (this function can be used for entering and leaving identification
mode instead of eCLD_IdentifyCommandIldentifyRequestSend()).

The possible behaviours that can be requested are as follows:
= Blink: Light is switched on and then off (once)

= Breathe: Light is switched on and off by smoothly increasing and then
decreasing its brightness over a one-second period, and then this is repeated
15 times

= Okay:
Colour light goes green for one second
Monochrome light flashes twice in one second

JN-UG-3103 v1.4 © NXP Laboratories UK 2017 105

Chapter 7
Identify Cluster

= Channel change:
Colour light goes orange for 8 seconds

Monochrome light switches to maximum brightness for 0.5 s and then to
minimum brightness for 7.5 s

= Finish effect: Current stage of effect is completed and then identification mode
is terminated (e.g. for the Breathe effect, only the current one-second cycle will
be completed)

= Stop effect: Current effect and identification mode are terminated as soon as
possible

7.4.3 Inquiring about Identification Mode

The function eCLD_IdentifyCommandIldentifyQueryRequestSend() can be called
on an Identify cluster client in order to request a response from a server cluster if it is
currently in identification mode. This request should only be unicast.

7.4.4 Using EZ-mode Commissioning Features (HA only)

When using the EZ-mode Commissioning module, which is described in Chapter 32
(and is currently only available with the Home Automation profile), the Identify cluster
is mandatory:

= An EZ-mode initiator device must host an Identify cluster client
= An EZ-mode target device must host an Identify cluster server

The Identify cluster also contains the following optional features that can be used with
the EZ-mode Commissioning module (these features are not currently certifiable).

‘EZ-mode Invoke’ Command

The ‘EZ-mode Invoke’ command is supported which allows a device to schedule and
start one or more stages of EZ-mode commissioning on a remote device. The
command is issued by calling the eCLD_ldentifyEZModelnvokeCommandSend()
function and allows the following stages to be specified:

1. Factory Reset: EZ-mode commissioning configuration of the destination
device to be reset to ‘Factory Fresh’ settings

2. Network Steering: Destination device to be put into the ‘Network Steering’
phase

3. Find and Bind: Destination device to be put into the ‘Find and Bind’ phase

Onreceiving the command, the eventE_CLD_IDENTIFY_CMD_EZ MODE_INVOKE
is generated on the remote device, indicating the requested commissioning action(s).
The local application must perform these action(s) using the functions of the EZ-mode
Commissioning module (see Section 32.6). If more than one stage is specified, they
must be performed sequentially in the above order and must be contiguous.

If the ‘EZ-mode Invoke’ command is to be used by an application, its use must be
enabled at compile-time (see Section 7.9).

106 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

ZigBee Cluster Library
User Guide

‘Commissioning State’ Attribute

The Identify cluster server contains an optional ‘Commissioning State’ attribute,
u8CommissionState (see Section 7.2), which indicates whether the local device is:

= a member of the (correct) network
® jn a commissioned state and ready for operation

If the ‘Commissioning State’ attribute is to be used by an application, its use must be
enabled at compile-time (see Section 7.9).

The EZ-mode initiator can send an ‘Update Commission State’ command to the target
device in order to update the commissioning state of the target. The command is
issued by calling the eCLD_ldentifyUpdateCommissionStateCommandSend()
function. On receiving this command on the target, the ‘Commissioning State’ attribute
is automatically updated. It is good practice for the EZ-mode initiator to send this
command to notify the target device when commissioning is complete.

7.5 Sleeping Devices in Identification Mode

If a device sleeps between activities (e.g. a switch that is configured as a sleeping End
Device) and is also operating in identification mode, the device must wake once per
second for the ZCL to decrement the ul6ldentifyTime attribute (see Section 7.2),
which represents the time remaining in identification mode. The device may also use
this wake time to highlight itself, e.g. flash a LED. The attribute update is performed
automatically by the ZCL when the application passes an E_ZCL_CBET_TIMER
event to the ZCL via the vZCL_EventHandler() function. The ZCL will also
automatically increment ZCL time as a result of this event.

When in identification mode, it is not permissible for a device to sleep for longer than
one second and to generate one timer event on waking. Before entering sleep, the
value of the ul6ldentifyTime attribute can be checked - if this is zero, the device is not
in identification mode and is therefore allowed to sleep for longer than one second (for
details of updating ZCL time following a prolonged sleep, refer to Section 14.4.1).

7.6 Functions

The following Identify cluster functions are provided in the NXP implementation of the

ZCL:

Function Page
eCLD_IdentifyCreateldentify 108
eCLD_IdentifyCommandldentifyRequestSend 110
eCLD_IdentifyCommandTriggerEffectSend 112
eCLD_IdentifyCommandldentifyQueryRequestSend 114
eCLD_IdentifyEZModelnvokeCommandSend 116
eCLD_IdentifyUpdateCommissionStateCommandSend 118

JN-UG-3103 v1.4 © NXP Laboratories UK 2017 107

Chapter 7

Identify Cluster

eCLD_lIdentifyCreateldentify

teZCL_Status eCLD_ldentifyCreateldentify(
tsZCL_ClusterIinstance *psClusterinstance,
bool _t bilsServer,
tsZCL_ClusterDefinition *psClusterDefinition,
void *pvEndPointSharedStructPtr,
uint8 *pu8AttributeControlBits,
tsCLD_IdentifyCustomDataStructure

*psCustomDataStructure);

Description

This function creates an instance of the Identify cluster on an endpoint. The cluster
instance is created on the endpoint which is associated with the supplied
tsZCL_ClusterlInstance structure and can act as a server or a client, as
specified.

The function should only be called when setting up a custom endpoint containing one
or more selected clusters (rather than the whole set of clusters supported by a
standard ZigBee device). This function will create a Identify cluster instance on the
endpoint, but instances of other clusters may also be created on the same endpoint
by calling their corresponding creation functions.

Note: This function must not be called for an endpoint on
which a standard ZigBee device will be used. In this case, the
device and its supported clusters must be registered on the
endpoint using the relevant device registration function.

When used, this function must be the first Identify cluster function called in the
application, and must be called after the stack has been started and after the
application profile has been initialised.

The function requires an array to be declared for internal use, which contains one
element (of type uint8) for each attribute of the cluster. The array length should
therefore equate to the total number of attributes supported by the Identify cluster,
which can be obtained by using the macro
CLD_IDENTIFY_MAX_NUMBER_OF_ATTRIBUTE.

The array declaration should be as follows:

uint8
au8AppldentifyClusterAttributeControlBits[CLD_IDENTIFY_MAX_NUMBER_OF_ATTRIBU
TE];

The function will initialise the array elements to zero.

Parameters

psClusterinstance Pointer to structure containing information about the
cluster instance to be created (see Section 34.1.16).
This structure will be updated by the function by
initialising individual structure fields.

108

© NXP Laboratories UK 2017 JN-UG-3103 v1.4

ZigBee Cluster Library

User Guide
blsServer Type of cluster instance (server or client) to be created:
TRUE - server
FALSE - client
psClusterDefinition Pointer to structure indicating the type of cluster to be

created (see Section 34.1.2). In this case, this structure
must contain the details of the Identify cluster. This
parameter can refer to a pre-filled structure called
sCLD_Identify which is provided in the Identify.h
file.

pvEndPointSharedStructPtr Pointer to the shared structure used for attribute
storage. This parameter should be the address of the
structure of type tsCLD_Identify which defines the
attributes of Identify cluster. The function will initialise
the attributes with default values.

puBAttributeControlBits Pointer to an array of uint8 values, with one element for
each attribute in the cluster (see above).

psCustomDataStructure Pointer to structure which contains custom data for the
Identify cluster (see Section 7.7.1). This structure is
used for internal data storage. No knowledge of the
fields of this structure is required

Returns

E_ZCL_SUCCESS
E_ZCL_ERR_PARAMETER_NULL

JN-UG-3103 v1.4 © NXP Laboratories UK 2017 109

Chapter 7
Identify Cluster

eCLD_IdentifyCommandIdentifyRequestSend

teZCL_Status eCLD_IdentifyCommandldentifyRequestSend(
uint8 u8SourceEndPointld,
uint8 u8DestinationEndPointld,
tsZCL_Address *psDestinationAddress,
uint8 *pu8TransactionSequenceNumber,
tsCLD_Identify_IdentifyRequestPayload *psPayload);

Description

This function can be called on a client device to send a custom command requesting
that the recipient server device either enters or exits identification mode. The
required action (start or stop identification mode) must be specified in the payload of
the custom command (see Section 7.7.2). The required duration of the identification
mode is specified in the payload and this value will replace the value in the Identify
cluster structure on the target device.

A device which receives this command will generate a callback event on the endpoint
on which the Identify cluster was registered.

You are required to provide a pointer to a location to receive a Transaction Sequence
Number (TSN) for the request. The TSN in the response will be set to match the TSN
in the request, allowing an incoming response to be paired with a request. This is
useful when sending more than one request to the same destination endpoint.

Parameters

u8SourceEndPointld Number of the local endpoint through which to
send the request. This parameter is used both to
send the command and to identify the instance of
the shared structure holding the required
attribute values

u8DestinationEndPointld Number of the endpoint on the remote node to
which the request will be sent. This parameter is
ignored when sending to address types
eZCL_AMBOUND and eZCL_AMGROUP

psDestinationAddress Pointer to a structure holding the address of the
node to which the request will be sent

pu8TransactionSequenceNumber Pointer to a location to receive the Transaction
Sequence Number (TSN) of the request

psPayload Pointer to a structure containing the payload for
the command (see Section 7.7.2).

110 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

ZigBee Cluster Library
User Guide

Returns

E_ZCL_SUCCESS

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_EP_RANGE

E_ZCL_ERR_EP_UNKNOWN

E_ZCL_ERR_CLUSTER_NOT_FOUND

E_ZCL_ERR_ZBUFFER_FAIL

E_ZCL_ERR_ZTRANSMIT_FAIL

If an error is returned by the ZigBee PRO stack function which is invoked by this

function to transmit the data, this error may be obtained by calling
eZCL_GetLastZpsError().

JN-UG-3103 v1.4 © NXP Laboratories UK 2017 111

Chapter 7
Identify Cluster

eCLD_IdentifyCommandTriggerEffectSend

teZCL_Status eCLD_IdentifyCommandTriggerEffectSend(
uint8 u8SourceEndPointid,
uint8 u8DestinationEndPointld,
tsZCL_Address *psDestinationAddress,
uint8 *pu8TransactionSequenceNumber,
teCLD_Identify_Effectld eEffectld,
uint8 u8EffectVariant);

Description

This function can be called on a client device to send a custom command to a server
device in a ZigBee Light Link (ZLL) network, in order to control the identification effect
on a light of the target node. Therefore, this function can be used to start and stop
identification mode instead of eCLD_IdentifyCommandIdentifyRequestSend|().

The following effect commands can be sent using this function:

Effect Command | Description

Blink Light is switched on and then off (once)

Breathe Light is switched on and off by smoothly increasing and then
decreasing its brightness over a one-second period, and then this is
repeated 15 times

Okay « Colour light goes green for one second
* Monochrome light flashes twice in one second

Channel change « Colour light goes orange for 8 seconds

« Monochrome light switches to
maximum brightness for 0.5 s and then to
minimum brightness for 7.5 s

Finish effect Current stage of effect is completed and then identification mode is
terminated (e.g. for the Breathe effect, only the current one-second
cycle will be completed)

Stop effect Current effect and identification mode are terminated as soon as
possible

A variant of the selected effect can also be specified, but currently only the default
(as described above) is available.

A device which receives this command will generate a callback event on the endpoint
on which the Identify cluster was registered.

You are required to provide a pointer to a location to receive a Transaction Sequence
Number (TSN) for the request. The TSN in the response will be set to match the TSN
in the request, allowing an incoming response to be paired with a request. This is
useful when sending more than one request to the same destination endpoint.

112 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

ZigBee Cluster Library
User Guide

Parameters

u8SourceEndPointld Number of the local endpoint through which to
send the request. This parameter is used both to
send the message and to identify the instance of
the shared structure holding the required
attribute values

u8DestinationEndPointld Number of the endpoint on the remote node to
which the request will be sent. This parameter is
ignored when sending to address types
eZCL_AMBOUND and eZCL_AMGROUP

psDestinationAddress Pointer to a structure holding the address of the
node to which the request will be sent

pu8TransactionSequenceNumber Pointer to a location to receive the Transaction
Sequence Number (TSN) of the request

eEffectld Effect command to send (see above), one of:
E_CLD_IDENTIFY_EFFECT_BLINK
E_CLD_IDENTIFY_EFFECT BREATHE
E_CLD_IDENTIFY_EFFECT_OKAY
E_CLD_IDENTIFY_EFFECT_CHANNEL_CHANGE
E_CLD_IDENTIFY_EFFECT_FINISH_EFFECT
E_CLD_IDENTIFY_EFFECT_STOP_EFFECT

u8EffectVariant Required variant of specified effect - set to zero
for default (as no variants currently available)

Returns

E_ZCL_SUCCESS

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_EP_RANGE

E_ZCL_ERR_EP_UNKNOWN

E_ZCL_ERR_CLUSTER_NOT_FOUND

E_ZCL_ERR_ZBUFFER_FAIL

E_ZCL_ERR_ZTRANSMIT_FAIL

If an error is returned by the ZigBee PRO stack function which is invoked by this

function to transmit the data, this error may be obtained by calling
eZCL_GetLastZpsError().

JN-UG-3103 v1.4 © NXP Laboratories UK 2017 113

Chapter 7
Identify Cluster

eCLD_IdentifyCommandIdentifyQueryRequestSend

tsZCL_Status
eCLD_ldentifyCommandldentifyQueryRequestSend(
uint8 u8SourceEndPointid,
uint8 u8DestinationEndPointld,
tsZCL_Address *psDestinationAddress,
uint8 *pu8TransactionSequenceNumber);

Description

This function can be called on a client device to send a custom command requesting
a response from any server devices that are currently in identification mode.

A device which receives this command will generate a callback event on the endpoint
on which the Identify cluster was registered. If the receiving device is currently in
identification mode, it will return a response containing the amount of time for which
it will continue in this mode (see Section 7.7.3).

You are required to provide a pointer to a location to receive a Transaction Sequence
Number (TSN) for the request. The TSN in the response will be set to match the TSN
in the request, allowing an incoming response to be paired with a request. This is
useful when sending more than one request to the same destination endpoint.

Parameters

u8SourceEndPointld Number of the local endpoint through which to
send the request. This parameter is used both to
send the message and to identify the instance of
the shared structure holding the required
attribute values

u8DestinationEndPointld Number of the endpoint on the remote node to
which the request will be sent. This parameter is
ignored when sending to address types
eZCL_AMBOUND and eZCL_AMGROUP

psDestinationAddress Pointer to a structure holding the address of the
node to which the request will be sent

pu8TransactionSequenceNumber Pointer to a location to receive the Transaction
Sequence Number (TSN) of the request

114

© NXP Laboratories UK 2017 JN-UG-3103 v1.4

ZigBee Cluster Library
User Guide

Returns

E_ZCL_SUCCESS

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_EP_RANGE

E_ZCL_ERR_EP_UNKNOWN

E_ZCL_ERR_CLUSTER_NOT_FOUND

E_ZCL_ERR_ZBUFFER_FAIL

E_ZCL_ERR_ZTRANSMIT_FAIL

If an error is returned by the ZigBee PRO stack function which is invoked by this

function to transmit the data, this error may be obtained by calling
eZCL_GetLastZpsError().

JN-UG-3103 v1.4 © NXP Laboratories UK 2017 115

Chapter 7
Identify Cluster

eCLD_IdentifyEZModelnvokeCommandSend

teZCL_Status eCLD_IdentifyEZModelnvokeCommandSend(
uint8 u8SourceEndPointld,
uint8 u8DestinationEndPointld,
tsZCL_Address *psDestinationAddress,
uint8 *pu8TransactionSequenceNumber,
bool bDirection,
tsCLD_Identify_EZModelnvokePayload

*psPayload);

Description

This function can be used to send an ‘EZ-mode Invoke’ to a remote device. The sent
command requests one or more of the following stages of the EZ-mode
commissioning process to be performed on the destination device (for more
information, refer to Chapter 32):

1. Factory Reset - clears all bindings, group table entries and the u8CommissionState

attribute, and reverts to the ‘Factory Fresh’ settings
2. Network Steering - puts the destination device into the ‘Network Steering’ phase
3. Find and Bind - puts the destination device into the ‘Find and Bind’ phase

The required stages are specified in a bitmap in the command payload structure
tsCLD_ldentify_EZModelnvokePayload (see Section 7.7.4). If more than one
stage is specified, they must be performed in the above order and be contiguous.

On receiving the ‘EZ-mode Invoke’ command on the destination device, an
E_CLD_IDENTIFY_CMD_EZ_MODE_INVOKE event will be generated with the
required commissioning action(s) specified in the u8Action field of the
tsCLD_ldentify_EZModelnvokePayload structure. It is the local application's
responsibility to perform the requested action(s) using the functions of the EZ-mode
Commissioning module (see Section 32.6).

Note that the ‘EZ-mode Invoke’ command is optional and, if required, must be
enabled in the compile-time options (see Section 7.9).

You are required to provide a pointer to a location to receive a Transaction Sequence
Number (TSN) for the request. The TSN in the response will be set to match the TSN
in the request, allowing an incoming response to be paired with a request. This is
useful when sending more than one request to the same destination endpoint.

Parameters

u8SourceEndPointld Number of the local endpoint through which to
send the request. This parameter is used both to
send the message and to identify the instance of
the shared structure holding the required
attribute values

u8DestinationEndPointld Number of the endpoint on the remote node to
which the request will be sent. This parameter is
ignored when sending to address types
eZCL_AMBOUND and eZCL_AMGROUP.

© NXP Laboratories UK 2017 JN-UG-3103 v1.4

ZigBee Cluster Library
User Guide

psDestinationAddress Pointer to a structure holding the address of the
node to which the request will be sent

pu8TransactionSequenceNumber Pointer to a location to receive the Transaction
Sequence Number (TSN) of the request

bDirection Boolean indicating the direction of the command,
as follows (this should always be set to TRUE):

TRUE - Identify cluster client to server
FALSE - Identify cluster server to client

psPayload Pointer to a structure containing the payload for
the command (see Section 7.7.4)

Returns

E_ZCL_SUCCESS

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_EP_RANGE

E_ZCL_ERR_EP_UNKNOWN

E_ZCL_ERR_CLUSTER_NOT_FOUND

E_ZCL_ERR_ZBUFFER_FAIL

E_ZCL_ERR_ZTRANSMIT_FAIL

If an error is returned by the ZigBee PRO stack function which is invoked by this

function to transmit the data, this error may be obtained by calling
eZCL_GetLastZpsError().

JN-UG-3103 v1.4 © NXP Laboratories UK 2017 117

Chapter 7
Identify Cluster

eCLD_lIdentifyUpdateCommissionStateCommandSend

teZCL_Status
eCLD_ldentifyUpdateCommissionStateCommandSend(
uint8 u8SourceEndPointld,
uint8 u8DestinationEndPointld,
tsZCL_Address *psDestinationAddress,
uint8 *pu8TransactionSequenceNumber,
tsCLD_Identify_UpdateCommissionStatePayload
*psPayload);

Description

This function can be used to send an ‘Update Commission State’ command from an
EZ-mode initiator device (cluster client) to a target device (cluster server) in order to
update the (optional) uBCommissionState attribute (see Section 7.2) which is
used for EZ-mode commissioning. The command allows individual bits of
u8CommissionState to be set or cleared (see Section 7.7.4).

On receiving the ‘Update Commission State’ command on the target device, an
event will be generated and the requested update will be automatically performed.

Note that the uBCommissionState attribute is optional and, if required, must be
enabled in the compile-time options (see Section 7.9).

You are required to provide a pointer to a location to receive a Transaction Sequence
Number (TSN) for the request. The TSN in the response will be set to match the TSN
in the request, allowing an incoming response to be paired with a request. This is
useful when sending more than one request to the same destination endpoint.

Parameters

u8SourceEndPointld Number of the local endpoint through which to
send the request. This parameter is used both to
send the message and to identify the instance of
the shared structure holding the required
attribute values

u8DestinationEndPointld Number of the endpoint on the remote node to
which the request will be sent. This parameter is
ignored when sending to address types
eZCL_AMBOUND and eZCL_AMGROUP.

psDestinationAddress Pointer to a structure holding the address of the
node to which the request will be sent

pu8TransactionSequenceNumber Pointer to a location to receive the Transaction
Sequence Number (TSN) of the request

psPayload Pointer to a structure containing the payload for
the command (see Section 7.7.4)

118 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

ZigBee Cluster Library
User Guide

Returns

E_ZCL_SUCCESS

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_EP_RANGE

E_ZCL_ERR_EP_UNKNOWN

E_ZCL_ERR_CLUSTER_NOT_FOUND

E_ZCL_ERR_ZBUFFER_FAIL

E_ZCL_ERR_ZTRANSMIT_FAIL

If an error is returned by the ZigBee PRO stack function which is invoked by this

function to transmit the data, this error may be obtained by calling
eZCL_GetLastZpsError().

JN-UG-3103 v1.4 © NXP Laboratories UK 2017 119

Chapter 7
Identify Cluster

7.7 Structures

7.7.1 Custom Data Structure

The Identity cluster requires extra storage space to be allocated to be used by internal
functions. The structure definition for this storage is shown below:

typedef struct

{
tsZCL_ReceilveEventAddress sReceiveEventAddress;
tsZCL_CallBackEvent sCustomCal IBackEvent;
tsCLD_IldentifyCallBackMessage sCallBackMessage;

} tsCLD_IldentifyCustomDataStructure;

The fields are for internal use and no knowledge of them is required.

7.7.2 Custom Command Payloads

The following structure contains the payload for an Identify cluster custom command
(sent using the function eCLD_ldentifyCommandldentifyRequestSend()):
/* ldentify request command payload */
typedef struct
{
zuintl6 ul6ldentifyTime;
} tsCLD_Identify_ ldentifyRequestPayload;

where ul6ldentifyTime is the amount of time, in seconds, for which the target device
is to remain in identification mode. If this element is set to 0x0000 and the target device
is currently in identification mode, the mode will be terminated immediately.

7.7.3 Custom Command Responses

The following structure contains the response to a query as to whether a device is
currently in identification mode (the original query is sent using the function
eCLD_ldentifyCommandldentifyQueryRequestSend()):

/* ldentify query response command payload */
typedef struct

{
zuintl6 ul6éTimeout;

} tsCLD_Ildentify_ldentifyQueryResponsePayload;

where ul6Timeout is the amount of time, in seconds, that the responding device will
remain in identification mode.

120 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

ZigBee Cluster Library
User Guide

7.7.4 EZ-mode Commissioning Command Payloads

The structures shown and described below may be used when the Identify cluster is
used in conjunction with the EZ-mode Commissioning module.

‘EZ-Mode Invoke’ Command Payload

The following structure is used when sending an ‘EZ-mode Invoke’ command (using
the eCLD_ldentifyEZModelnvokeCommandSend() function).

typedef struct
{
zbmap8 u8Action;
} tsCLD_Ildentify_ EZModelnvokePayload;

where u8Action is a bitmap specifying the EZ-mode commissioning action(s) to be
performed on the destination device - a bit is set to ‘1’ if the corresponding action is
required, or to ‘0" if it is not required:

Bits Action
0 Factory Reset - clears all bindings, group table entries and the u8CommissionState
attribute, and reverts to the ‘Factory Fresh’ settings
1 Network Steering - puts the device into the ‘Network Steering’ phase
2 Find and Bind - puts the device into the ‘Find and Bind’ phase
3-7 Reserved

‘Update Commission State’ Command Payload

The following structure is used when sending an ‘Update Commission State’
command (using the eCLD_IdentifyUpdateCommissionStateCommandSend()
function), which requests an update to the value of the uBCommissionState
attribute (for the definition of the attribute, refer to Section 7.2).

typedef struct
{

zenum8 u8Action;
zbmap8 u8CommissionStateMask;
} tsCLD_Identify UpdateCommissionStatePayload;

where:

= u8Action is a value specifying the action to perform (set or clear) on the
u8CommissionState bits specified through uB8CommissionStateMask:

1: Set the specified bit(s) to ‘1’
2: Clear the specified bit(s) to ‘0’
All other values are reserved.

JN-UG-3103 v1.4 © NXP Laboratories UK 2017 121

Chapter 7
Identify Cluster

= y8CommissionStateMask is a bitmap in which the bits correspond to the bits
of the uBCommissionState attribute. A bit of this field indicates whether the
corresponding attribute bit is to be updated (according to the action specified in
u8Action):

If a bitis set to ‘1’, the corresponding u8CommissionState bit should be
updated

If a bitis set to ‘0’, the corresponding u8CommissionState bit should not
be updated

7.8 Enumerations

7.8.1 teCLD_lIdentify_ClusterIlD

The following structure contains the enumerations used to identify the attributes of the
Identify cluster.

typedef enum

{
E_CLD_IDENTIFY_ATTR_ID_IDENTIFY_TIME = 0x0000, /* Mandatory */

E_CLD_IDENTIFY_ATTR_ID_COMMISSION_STATE /* Optional */
} teCLD_Ildentify_ClusterlD;

7.9 Compile-Time Options
To enable the Identify cluster in the code to be built, itis necessary to add the following
to the zcl_options.h file:
#define CLD_IDENTIFY

In addition, to include the software for a cluster client or server or both, it is necessary
to add one or both of the following to the same file:

#define IDENTIFY_CLIENT
#define IDENTIFY_SERVER

The following optional cluster functionality can be enabled in the zcl_options.h file.

Enhanced Functionality for EZ-mode Commissioning (HA only)
To enable the optional ‘Commission State’ attribute, you must include:
#define CLD_IDENTIFY_ATTR_COMMISSION_STATE

To enable the optional ‘EZ-mode Invoke’ command, you must include:
#define CLD_IDENTIFY_CMD_EZ MODE_INVOKE

Note that the above EZ-mode Commissioning features are not currently certifiable.

122 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

ZigBee Cluster Library
User Guide

Enhanced Functionality for ZLL

Enhanced functionality (identification effects) is available for the ZigBee Light Link
(ZLL) profile - see Section 7.4.2. To enable this enhanced cluster functionality for ZLL,
you must include:

#define CLD_IDENTIFY_SUPPORT_ZLL ENHANCED_COMMANDS

JN-UG-3103 v1.4 © NXP Laboratories UK 2017 123

Chapter 7
Identify Cluster

124 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

ZigBee Cluster Library
User Guide

8. Groups Cluster

This chapter describes the Groups cluster which is defined in the ZCL and allows the
management of the Group table concerned with group addressing.

The Groups cluster has a Cluster ID of 0x0004.

8.1 Overview

The Groups cluster allows the management of group addressing that is available in
ZigBee PRO. In this addressing scheme, an endpoint on a device can be a member
of a group comprising endpoints from one or more devices. The group is assigned a
16-bit group ID or address. The group ID and the local member endpoint numbers are
held in an entry of the Group table on a device. If a message is sent to a group
address, the Group table is used to determine to which endpoints (if any) the message
should delivered on the device. A group can be assigned a name of up to 16
characters and the cluster allows the support of group names to be enabled/disabled.

To use the functionality of this cluster, you must include the file Groups.h in your
application and enable the cluster by defining CLD_GROUPS in the zcl_options.h
file.

It is also necessary to enable the cluster as a server or client, or as both:
®= The cluster server is able to receive commands to modify the local group table.

m The cluster client is able to send commands to the server to request changes to
the group table on the server.

The inclusion of the client or server software must be pre-defined in the application’s
compile-time options (in addition, if the cluster is to reside on a custom endpoint then
the role of client or server must also be specified when creating the cluster instance).

The compile-time options for the Groups cluster are fully detailed in Section 8.8.

8.2 Groups Cluster Structure and Attribute

The structure definition for the Groups cluster is:

typedef struct

{
zbmap8 u8NameSupport;

} tsCLD_Groups;

where u8NameSupport indicates whether group names are supported by the cluster:
= A most significant bit of 1 indicates that group names are supported
= A most significant bit of O indicates that group names are not supported

JN-UG-3103 v1.4 © NXP Laboratories UK 2017 125

Chapter 8
Groups Cluster

8.3

Initialisation

The function eCLD_GroupsCreateGroups() is used to create an instance of the
Groups cluster. The function is generally called by the initialisation function for the host
device.

A local endpoint can be added to a group on the local node using the function
eCLD_GroupsAddy(). If the group does not already exist, the function will create it.
Therefore, this is a way of creating a local group.

8.4

Sending Commands

The NXP implementation of the ZCL provides functions for sending commands
between a Groups cluster client and server. A command is sent from the client to one
or more endpoints on the server. Multiple endpoints can be targeted using binding or
group addressing.

8.4.1 Adding Endpoints to Groups

Two functions are provided for adding one or more endpoints to a group on a remote
device. Each function sends a command to the endpoint(s) to be added to the group,
where the required group is specified in the payload of the command. If the group does
not already exist in the target device’'s Group table, it will be added to the table.

m eCLD_GroupsCommandAddGroupRequestSend() can be used to request
the addition of the target endpoint(s) to the specified group.

m eCLD_GroupsCommandAddGrouplfidentifyingRequestSend() can be
used to request the addition of the target endpoint(s) to the specified group
provided that the target device is currently in identification mode of the Identity
cluster (see Chapter 7).

An endpoint can also be added to a local group, as described in Section 8.3.

8.4.2 Removing Endpoints from Groups

Two functions are provided for removing one or more endpoints from groups on a
remote device. Each function sends a command to the endpoint(s) to be removed
from the group(s). If a group is empty following the removal of the endpoint(s), it will
be deleted in the Group table.

m eCLD_GroupsCommandRemoveGroupRequestSend() can be used to
request the removal of the target endpoint(s) from the group which is specified
in the payload of the command.

m eCLD_GroupsCommandRemoveAllGroupsRequestSend() can be used to
request the removal of the target endpoint(s) from all groups on the remote
device.

If an endpoint is a member of a scene associated with a group to be removed, the
above function calls will also result in the removal of the endpoint from the scene.

126

© NXP Laboratories UK 2017 JN-UG-3103 v1.4

ZigBee Cluster Library
User Guide

8.4.3 Obtaining Information about Groups

Two functions are provided for obtaining information about groups. Each function
sends a command to the endpoint(s) to which the inquiry relates.

m eCLD_GroupsCommandViewGroupRequestSend() can be used to request
the name of a group with the ID/address specified in the command payload.

m eCLD_GroupsCommandGetGroupMembershipRequestSend() can be used
to determine whether the target endpoint is a member of any of the groups
specified in the command payload.

8.5 Functions

The following Groups cluster functions are provided in the NXP implementation of the

ZCL:

Function Page
eCLD_GroupsCreateGroups 128
eCLD_GroupsAdd 130
eCLD_GroupsCommandAddGroupRequestSend 131
eCLD_GroupsCommandViewGroupRequestSend 133
eCLD_GroupsCommandGetGroupMembershipRequestSend 135
eCLD_GroupsCommandRemoveGroupRequestSend 137
eCLD_GroupsCommandRemoveAllGroupsRequestSend 139

eCLD_GroupsCommandAddGrouplfldentifyingRequestSend 141

JN-UG-3103 v1.4 © NXP Laboratories UK 2017 127

Chapter 8

Groups Cluster

eCLD_GroupsCreateGroups

teZCL_Status eCLD_GroupsCreateGroups(
tsZCL_ClusterIinstance *psClusterinstance,
bool t bisServer,
tsZCL_ClusterDefinition *psClusterDefinition,
void *pvEndPointSharedStructPtr,
tsCLD_GroupsCustomDataStructure

*psCustomDataStructure,

tsZCL_EndPointDefinition *psEndPointDefinition);

Description

This function creates an instance of the Groups cluster on an endpoint. The cluster
instance is created on the endpoint which is associated with the supplied
tsZCL_ClusterlInstance structure and can act as a server or a client, as
specified.

The function should only be called when setting up a custom endpoint containing one
or more selected clusters (rather than the whole set of clusters supported by a
standard ZigBee device). This function will create a Groups cluster instance on the
endpoint, but instances of other clusters may also be created on the same endpoint
by calling their corresponding creation functions.

Note: This function must not be called for an endpoint on
which a standard ZigBee device will be used. In this case, the
device and its supported clusters must be registered on the
endpoint using the relevant device registration function.

When used, this function must be the first Groups cluster function called in the
application, and must be called after the stack has been started and after the
application profile has been initialised.

The function retrieves any group IDs already stored in the ZigBee PRO stack's
Application Information Base (AIB). However, the AIB does not store group names.
If name support is required, the application should store the group names using the
JenOS PDM module, so that they can be retrieved following a power outage.

Parameters

psClusterinstance Pointer to structure containing information about the
cluster instance to be created (see Section 34.1.16).
This structure will be updated by the function by
initialising individual structure fields.

bisServer Type of cluster instance (server or client) to be created:
TRUE - server
FALSE - client

psClusterDefinition Pointer to structure indicating the type of cluster to be

created (see Section 34.1.2). In this case, this structure
must contain the details of the Groups cluster. This

128

© NXP Laboratories UK 2017 JN-UG-3103 v1.4

ZigBee Cluster Library
User Guide

parameter can refer to a pre-filled structure called
sCLD_Groups which is provided in the Groups.h file.

pvEndPointSharedStructPtr Pointer to the shared structure used for attribute
storage. This parameter should be the address of the
structure of type tsCLD_Groups which defines the
attributes of Groups cluster. The function will initialise
the attributes with default values.

psCustomDataStructure Pointer to a structure containing the storage for internal
functions of the cluster (see Section 8.6.1)

psEndPointDefinition Pointer to the ZCL endpoint definition structure for the
application (see Section 34.1.1)

Returns

E_ZCL_SUCCESS
E_ZCL_ERR_PARAMETER_NULL

JN-UG-3103 v1.4 © NXP Laboratories UK 2017 129

Chapter 8
Groups Cluster

eCLD_GroupsAdd

teZCL_Status eCLD_GroupsAdd(uint8 u8SourceEndPointld,
uint16 ul6Groupld,
uint8 *pu8GroupName);

Description

This function adds the specified endpoint on the local node to the group with the
specified group ID/address and specified group name. The relevant entry is modified
in the Group table on the local endpoint (of the calling application). If the group does
not currently exist, it will be created by adding a new entry for the group to the Group
table.

Note that the number of entries in the Group table must not exceed the value of
CLD_GROUPS_MAX NUMBER_OF_GROUPS defined at compile-time (see

Section 8.8).

Parameters
u8SourceEndPointld Number of local endpoint to be added to group
ul6Groupld 16-bit group ID/address of group
pu8GroupName Pointer to character string representing name of

group

Returns

E_ZCL_SUCCESS

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_EP_RANGE

E_ZCL_ERR_EP_UNKNOWN

E_ZCL_ERR_CLUSTER_NOT_FOUND

If an error is returned by the ZigBee PRO stack function which is invoked by this

function to transmit the data, this error may be obtained by calling
eZCL_GetLastZpsError().

130 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

ZigBee Cluster Library
User Guide

eCLD_GroupsCommandAddGroupRequestSend

teZCL_Status
eCLD_GroupsCommandAddGroupRequestSend(
uint8 u8SourceEndPointld,
uint8 u8DestinationEndPointld,
tsZCL_Address *psDestinationAddress,
uint8 *pu8TransactionSequenceNumber,
tsCLD_Groups_AddGroupRequestPayload
*psPayload);

Description

This function sends an Add Group command to a remote device, requesting that the
specified endpoint(s) on the target device be added to a group. The group ID/address
and name (if supported) are specified in the payload of the message, and must be
added to the Group table on the target node along with the associated endpoint
number(s).

The device receiving this message will generate a callback event on the endpoint on
which the Groups cluster was registered and, if possible, add the group to its Group
table before sending a response indicating success or failure (see Section 8.6.4).

You are required to provide a pointer to a location to receive a Transaction Sequence
Number (TSN) for the request. The TSN in the response will be set to match the TSN
in the request, allowing an incoming response to be paired with a request. This is
useful when sending more than one request to the same destination endpoint.

Parameters

u8SourceEndPointld Number of the local endpoint through which to
send the request. This parameter is used both to
send the message and to identify the instance of
the shared structure holding the required
attribute values

u8DestinationEndPointld Number of the endpoint on the remote node to
which the request will be sent. This parameter is
ignored when sending to address types
eZCL_AMBOUND and eZCL_AMGROUP

psDestinationAddress Pointer to a structure holding the address of the
node to which the request will be sent

pu8TransactionSequenceNumber Pointer to a location to receive the Transaction
Sequence Number (TSN) of the request

psPayload Pointer to a structure containing the payload for
this message (see Section 8.6.3)

JN-UG-3103 v1.4 © NXP Laboratories UK 2017 131

Chapter 8
Groups Cluster

Returns

E_ZCL_SUCCESS

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_EP_RANGE

E_ZCL_ERR_EP_UNKNOWN

E_ZCL_ERR_CLUSTER_NOT_FOUND

E_ZCL_ERR_ZBUFFER_FAIL

E_ZCL_ERR_ZTRANSMIT_FAIL

If an error is returned by the ZigBee PRO stack function which is invoked by this

function to transmit the data, this error may be obtained by calling
eZCL_GetLastZpsError().

132 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

ZigBee Cluster Library
User Guide

eCLD_GroupsCommandViewGroupRequestSend

teZCL_Status

eCLD_GroupsCommandViewGroupRequestSend(
uint8 u8SourceEndPointid,
uint8 u8DestinationEndPointld,
tsZCL_Address *psDestinationAddress,
uint8 *pu8TransactionSequenceNumber,
tsCLD_Groups_ViewGroupRequestPayload

*psPayload);

Description

This function sends a View Group command to a remote device, requesting the name
of the group with the specified group ID (address) on the destination endpoint.

The device receiving this message will generate a callback event on the endpoint on
which the Groups cluster was registered and will generate a View Group response
containing the group name (see Section 8.6.4).

You are required to provide a pointer to a location to receive a Transaction Sequence
Number (TSN) for the request. The TSN in the response will be set to match the TSN
in the request, allowing an incoming response to be paired with a request. This is
useful when sending more than one request to the same destination endpoint.

Parameters
u8SourceEndPointld

u8DestinationEndPointld

psDestinationAddress
pu8TransactionSequenceNumber

psPayload

Number of the local endpoint through which to
send the request. This parameter is used both to
send the message and to identify the instance of
the shared structure holding the required
attribute values

Number of the endpoint on the remote node to
which the request will be sent. This parameter is
ignored when sending to address types
eZCL_AMBOUND and eZCL_AMGROUP

Pointer to a structure holding the address of the
node to which the request will be sent

Pointer to a location to receive the Transaction
Sequence Number (TSN) of the request

Pointer to a structure containing the payload for
this message (see Section 8.6.3)

JN-UG-3103 v1.4

© NXP Laboratories UK 2017

133

Chapter 8
Groups Cluster

Returns

E_ZCL_SUCCESS

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_EP_RANGE

E_ZCL_ERR_EP_UNKNOWN

E_ZCL_ERR_CLUSTER_NOT_FOUND

E_ZCL_ERR_ZBUFFER_FAIL

E_ZCL_ERR_ZTRANSMIT_FAIL

If an error is returned by the ZigBee PRO stack function which is invoked by this

function to transmit the data, this error may be obtained by calling
eZCL_GetLastZpsError().

134 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

ZigBee Cluster Library
User Guide

eCLD_GroupsCommandGetGroupMembershipRequestSend

teZCL_Status

eCLD_GroupsCommandGetGroupMembershipRequestSend
(uint8 u8SourceEndPointid,
uint8 u8DestinationEndPointld,
tsZCL_Address *psDestinationAddress,
uint8 *pu8TransactionSequenceNumber,
tsCLD_Groups_GetGroupMembershipRequestPayload

*psPayload);

Description

This function sends a Get Group Membership command to inquire whether the target
endpoint is a member of any of the groups specified in a list contained in the

command payload.

The device receiving this message will generate a callback event on the endpoint on
which the Groups cluster was registered and will generate a Get Group Membership
response containing the required information (see Section 8.6.4).

You are required to provide a pointer to a location to receive a Transaction Sequence
Number (TSN) for the request. The TSN in the response will be set to match the TSN
in the request, allowing an incoming response to be paired with a request. This is
useful when sending more than one request to the same destination endpoint.

Parameters
u8SourceEndPointld

u8DestinationEndPointld

psDestinationAddress
pu8TransactionSequenceNumber

psPayload

Number of the local endpoint through which to
send the request. This parameter is used both to
send the message and to identify the instance of
the shared structure holding the required
attribute values

Number of the endpoint on the remote node to
which the request will be sent. This parameter is
ignored when sending to address types
eZCL_AMBOUND and eZCL_AMGROUP

Pointer to a structure holding the address of the
node to which the request will be sent

Pointer to a location to receive the Transaction
Sequence Number (TSN) of the request

Pointer to a structure containing the payload for
this message (see Section 8.6.3)

JN-UG-3103 v1.4

© NXP Laboratories UK 2017

135

Chapter 8
Groups Cluster

Returns

E_ZCL_SUCCESS

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_EP_RANGE

E_ZCL_ERR_EP_UNKNOWN

E_ZCL_ERR_CLUSTER_NOT_FOUND

E_ZCL_ERR_ZBUFFER_FAIL

E_ZCL_ERR_ZTRANSMIT_FAIL

If an error is returned by the ZigBee PRO stack function which is invoked by this

function to transmit the data, this error may be obtained by calling
eZCL_GetLastZpsError().

136 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

ZigBee Cluster Library
User Guide

eCLD_GroupsCommandRemoveGroupRequestSend

teZCL_Status
eCLD_GroupsCommandRemoveGroupRequestSend(
uint8 u8SourceEndPointld,
uint8 u8DestinationEndPointld,
tsZCL_Address *psDestinationAddress,
uint8 *pu8TransactionSequenceNumber,
tsCLD_Groups_RemoveGroupRequestPayload
*psPayload);

Description

This function sends a Remove Group command to request that the target device
deletes membership of the destination endpoint(s) from a particular group - that is,
remove the endpoint(s) from the group’s entry in the Group table on the device and,
if no other endpoints remain in the group, remove the group from the table.

The device receiving this message will generate a callback event on the endpoint on
which the Groups cluster was registered. If the group becomes empty following the
deletion(s), the device will remove the group ID and group name from its Group table.
It will then generate an appropriate Remove Group response indicating success or
failure (see Section 8.6.4).

If the target endpoint belongs to a scene associated with the group to be removed
(requiring the Scenes cluster - see Chapter 9), the endpoint will also be removed
from this scene as a result of this function call - that is, the relevant scene entry will
be deleted from the Scene table on the target device.

You are required to provide a pointer to a location to receive a Transaction Sequence
Number (TSN) for the request. The TSN in the response will be set to match the TSN
in the request, allowing an incoming response to be paired with a request. This is
useful when sending more than one request to the same destination endpoint.

Parameters

u8SourceEndPointld Number of the local endpoint through which to
send the request. This parameter is used both to
send the message and to identify the instance of
the shared structure holding the required
attribute values

u8DestinationEndPointld The number of the endpoint on the remote node
to which the request will be sent. This parameter
is ignored when sending to address types
eZCL_AMBOUND and eZCL_AMGROUP.

psDestinationAddress Pointer to a structure holding the address of the
node to which the request will be sent

pu8TransactionSequenceNumber Pointer to a location to receive the Transaction
Sequence Number (TSN) of the request

psPayload Pointer to a structure containing the payload for
this message (see Section 8.6.3)

JN-UG-3103 v1.4 © NXP Laboratories UK 2017 137

Chapter 8
Groups Cluster

Returns

E_ZCL_SUCCESS

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_EP_RANGE

E_ZCL_ERR_EP_UNKNOWN

E_ZCL_ERR_CLUSTER_NOT_FOUND

E_ZCL_ERR_ZBUFFER_FAIL

E_ZCL_ERR_ZTRANSMIT_FAIL

If an error is returned by the ZigBee PRO stack function which is invoked by this

function to transmit the data, this error may be obtained by calling
eZCL_GetLastZpsError().

138 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

ZigBee Cluster Library
User Guide

eCLD_GroupsCommandRemoveAllGroupsRequestSend

teZCL_Status
eCLD_GroupsCommandRemoveAllGroupsRequestSend
uint8 u8SourceEndPointid,
uint8 u8DestinationEndPointld,
tsZCL_Address *psDestinationAddress,
uint8 *pu8TransactionSequenceNumber);

Description

This function sends a Remove All Groups command to request that the target device
removes all group memberships of the destination endpoint(s) - that is, remove the
endpoint(s) from all group entries in the Group table on the device and, if no other
endpoints remain in a group, remove the group from the table.

The device receiving this message will generate a callback event on the endpoint on
which the Groups cluster was registered. If a group becomes empty following the
deletion(s), the device will remove the group ID and group name from its Group table.

If the target endpoint belongs to scenes associated with the groups to be removed
(requiring the Scenes cluster - see Chapter 9), the endpoint will also be removed
from these scenes as a result of this function call - that is, the relevant scene entries
will be deleted from the Scene table on the target device.

You are required to provide a pointer to a location to receive a Transaction Sequence
Number (TSN) for the request. The TSN in the response will be set to match the TSN
in the request, allowing an incoming response to be paired with a request. This is
useful when sending more than one request to the same destination endpoint.

Parameters

u8SourceEndPointld Number of the local endpoint through which to
send the request. This parameter is used both to
send the message and to identify the instance of
the shared structure holding the required
attribute values

u8DestinationEndPointld The number of the endpoint on the remote node
to which the request will be sent. This parameter
is ignored when sending to address types
eZCL_AMBOUND and eZCL_AMGROUP.

psDestinationAddress Pointer to a structure holding the address of the
node to which the request will be sent

pu8TransactionSequenceNumber Pointer to a location to receive the Transaction
Sequence Number (TSN) of the request

JN-UG-3103 v1.4 © NXP Laboratories UK 2017 139

Chapter 8
Groups Cluster

Returns

E_ZCL_SUCCESS

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_EP_RANGE

E_ZCL_ERR_EP_UNKNOWN

E_ZCL_ERR_CLUSTER_NOT_FOUND

E_ZCL_ERR_ZBUFFER_FAIL

E_ZCL_ERR_ZTRANSMIT_FAIL

If an error is returned by the ZigBee PRO stack function which is invoked by this

function to transmit the data, this error may be obtained by calling
eZCL_GetLastZpsError().

140 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

ZigBee Cluster Library
User Guide

eCLD_GroupsCommandAddGrouplfldentifyingRequestSend

teZCL_Status
eCLD_GroupsCommandAddGrouplfldentifyingRequestSend
(uint8 u8SourceEndPointld,
uint8 u8DestinationEndPointld,
tsZCL_Address *psDestinationAddress,
uint8 *pu8TransactionSequenceNumber,
tsCLD_Groups_AddGroupRequestPayload
*psPayload);

Description

This function sends an Add Group If Identifying command to a remote device,
requesting that the specified endpoint(s) on the target device be added to a particular
group on the condition that the remote device is currently identifying itself. The group
ID/address and name (if supported) are specified in the payload of the message, and
must be added to the Group table on the target node along with the associated
endpoint number(s). The identifying functionality is controlled using the Identify
cluster (see Chapter 7).

The device receiving this message will generate a callback event on the endpoint on
which the Groups cluster was registered and will then check whether the device is
currently identifying itself. If so, the device will (if possible) add the group ID and
group name to its Group table. If the device it not currently identifying itself then no
action will be taken.

You are required to provide a pointer to a location to receive a Transaction Sequence
Number (TSN) for the request. The TSN in the response will be set to match the TSN
in the request, allowing an incoming response to be paired with a request. This is
useful when sending more than one request to the same destination endpoint.

Parameters

u8SourceEndPointld Number of the local endpoint through which to
send the request. This parameter is used both to
send the message and to identify the instance of
the shared structure holding the required
attribute values

u8DestinationEndPointld Number of the endpoint on the remote node to
which the request will be sent. This parameter is
ignored when sending to address types
eZCL_AMBOUND and eZCL_AMGROUP

psDestinationAddress Pointer to a structure holding the address of the
node to which the request will be sent

pu8TransactionSequenceNumber Pointer to a location to receive the Transaction
Sequence Number (TSN) of the request

psPayload Pointer to a structure containing the payload for
this message (see Section 8.6.3)

JN-UG-3103 v1.4 © NXP Laboratories UK 2017 141

Chapter 8
Groups Cluster

Returns

E_ZCL_SUCCESS

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_EP_RANGE

E_ZCL_ERR_EP_UNKNOWN

E_ZCL_ERR_CLUSTER_NOT_FOUND

E_ZCL_ERR_ZBUFFER_FAIL

E_ZCL_ERR_ZTRANSMIT_FAIL

If an error is returned by the ZigBee PRO stack function which is invoked by this

function to transmit the data, this error may be obtained by calling
eZCL_GetLastZpsError().

142 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

ZigBee Cluster Library
User Guide

8.6 Structures

8.6.1 Custom Data Structure

The Groups cluster requires extra storage space to be allocated to be used by internal
functions. The structure definition for this storage is shown below:

typedef struct

{
DLIST 1GroupsAllocList;
DLIST IGroupsDeAllocList;
bool bldentifying;
tsZCL_ReceiveEventAddress sReceilveEventAddress;
tsZCL_CallBackEvent sCustomCal IBackEvent;

tsCLD_GroupsCallBackMessage sCallBackMessage;
#if (defined CLD_GROUPS) && (defined GROUPS_SERVER)

tsCLD_GroupTableEntry
asGroupTableEntry[CLD_GROUPS_MAX NUMBER_OF_GROUPS];

#endif
} tsCLD_GroupsCustomDataStructure;

The fields are for internal use and no knowledge of them is required.

However, the structure tsCLD_GroupTableEntry used for the Group table entries
is shown in Section 8.6.2.

8.6.2 Group Table Entry

The following structure contains a Group table entry.

typedef struct

{
DNODE dll1GroupNode;

uintlé ul6Groupld;
uint8 au8GroupName[CLD_GROUPS_MAX_GROUP_NAME_LENGTH + 17;

} tsCLD GroupTableEntry;

The fields are for internal use and no knowledge of them is required.

JN-UG-3103 v1.4 © NXP Laboratories UK 2017 143

Chapter 8
Groups Cluster

8.6.3 Custom Command Payloads

The following structures contain the payloads for the Groups cluster custom
commands.

Add Group Request Payload

typedef struct

{
zuintl6 ul6Groupld;

tsZCL_CharacterString sGroupName;
} tsCLD_Groups_AddGroupRequestPayload;

where:

® yl6Groupld is the ID/address of the group to which the endpoint(s) must be
added

®= sGroupName is the name of the group to which the endpoint(s) must be added

View Group Request Payload

typedef struct

{
zuintl6 ul6Groupld;

} tsCLD_Groups_ViewGroupRequestPayload;

where ul6Groupld is the ID/address of the group whose name is required

Get Group Membership Request Payload

typedef struct
{

zuint8 u8GroupCount;
zintlé *pil6GrouplList;
} tsCLD_Groups_GetGroupMembershipRequestPayload;

where:
® u8GroupCount is the number of groups in the list of the next field

® pil6GroupList is a pointer to a list of groups whose memberships are being
queried, where each group is represented by its group ID/address

144 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

ZigBee Cluster Library
User Guide
Remove Group Request Payload

typedef struct

{
zuintl6 ul6Groupld;

} tsCLD_Groups_RemoveGroupRequestPayload;

where ul6Groupld is the ID/address of the group from which the endpoint(s) must be
removed

8.6.4 Custom Command Responses

The Groups cluster generates responses to certain custom commands. The
responses which contain payloads are detailed below:

Add Group Response Payload

typedef struct
{

zenum8 eStatus;
zuintl6 ul6Groupld;
} tsCLD_Groups_AddGroupResponsePayload;

where:
®m eStatus is the status (success or failure) of the requested group addition
= yl6Groupld is the ID/address of the group to which endpoint(s) were added

View Group Response Payload

typedef struct
{

zenum8 eStatus;

zuintl6 ul6Groupld;

tsZCL_CharacterString sGroupName;
} tsCLD_Groups_ViewGroupResponsePayload;

where:
® eStatus is the status (success or failure) of the requested operation
® ul6Groupld is the ID/address of the group whose name was requested
® sGroupName is the returned name of the specified group

JN-UG-3103 v1.4 © NXP Laboratories UK 2017 145

Chapter 8
Groups Cluster

Get Group Membership Response Payload
typedef struct

{
zuint8 u8Capacity;
zuint8 u8GroupCount;
zintlé *pil6GrouplList;

} tsCLD_Groups_GetGroupMembershipResponsePayload;

where:

®m y8Capacity is the capacity of the device’s Group table to receive more groups
- that is, the number of groups that may be added (special values: OXFE means
at least one more group may be added, a higher value means that the table’s
remaining capacity is unknown)

® u8GroupCount is the number of groups in the list of the next field

® pil6GroupList is a pointer to the returned list of groups from those queried
that exist on the device, where each group is represented by its group ID/
address

Remove Group Response Payload

typedef struct
{

zenum8 eStatus;
zuintl6 ul6Groupld;
} tsCLD_Groups_RemoveGroupResponsePayload;

where:
®m eStatus is the status (success or failure) of the requested group modification

= ul6Groupld is the ID/address of the group from which endpoint(s) were
removed

8.7 Enumerations

8.7.1 teCLD Groups_ClusterIlD

The following structure contains the enumeration used to identify the attribute of the
Groups cluster.

typedef enum
{

E_CLD_GROUPS_ATTR_I1D_NAME_SUPPORT = 0x0000 /* Mandatory */
} teCLD_Groups_ClusterliD;

146 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

ZigBee Cluster Library
User Guide

8.8 Compile-Time Options
To enable the Groups cluster in the code to be built, it is necessary to add the following
to the zcl_options.h file:
#define CLD_GROUPS

In addition, to include the software for a cluster client or server or both, it is necessary
to add one or both of the following to the same file:

#define GROUPS_CLIENT
#define GROUPS_SERVER

The Groups cluster contains macros that may be optionally specified at compile-time
by adding one or both of the following lines to the zcl_options.h file.

Add this line to set the size used for the group addressing table in the .zpscfg file:
#define CLD_GROUPS_MAX_NUMBER_OF_GROUPS ()

Add this line to configure the maximum length of the group name:
#define CLD_GROUPS_MAX_GROUP_NAME_LENGTH (16)

JN-UG-3103 v1.4 © NXP Laboratories UK 2017 147

Chapter 8
Groups Cluster

148 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

ZigBee Cluster Library
User Guide

9. Scenes Cluster

This chapter describes the Scenes cluster which is defined in the ZCL.

The Scenes cluster has a Cluster ID of 0x0005.

9.1 Overview

A scene is a set of stored attribute values for one or more cluster instances, where
these cluster instances may exist on endpoints on one or more devices.

The Scenes cluster allows standard values for these attributes to be set and retrieved.
Thus, the cluster can be used to put the network or part of the network into a pre-
defined mode (e.g. Night or Day mode for a lighting network in a Home Automation
system). These pre-defined scenes can be used as a basis for ‘mood lighting’. A
Scenes cluster instance must be created on each endpoint which contains a cluster
that is part of a scene.

A scene is often associated with a group (which collects together a set of endpoints
over one or more devices) - groups are described in Chapter 8. A scene may,
however, be used without a group.

» Note: When the Scenes cluster is used on an endpoint,
' a Groups cluster instance must always be created on
the same endpoint, even if a group is not used for the
scene.

If a cluster on a device is used in a scene, an entry for the scene must be contained
in the Scene table on the device. A Scene table entry includes the scene ID, the group
ID associated with the scene (0x0000 if there is no associated group), the scene
transition time (amount of time to switch to the scene) and the attribute settings for the
clusters on the device. The scene ID must be unique within the group with which the
scene is associated.

To use the functionality of this cluster, you must include the file Scenes.h in your
application and enable the cluster by defining CLD_SCENES in the zcl_options.h file.

It is also necessary to enable the cluster as a server or client, or as both:
® The cluster server is able to receive commands to access scenes.

= The cluster client is able to send commands to the server to request read or
write access to scenes.

The inclusion of the client or server software must be pre-defined in the application’s
compile-time options (in addition, if the cluster is to reside on a custom endpoint then
the role of client or server must also be specified when creating the cluster instance).

The compile-time options for the Scenes cluster are fully detailed in Section 9.9.

JN-UG-3103 v1.4 © NXP Laboratories UK 2017 149

Chapter 9
Scenes Cluster

9.2 Scenes Cluster Structure and Attributes

The structure definition for the Scenes cluster is:

typedef struct

{

zuint8 u8SceneCount;
zuint8 u8CurrentScene;
zuintl6 ul6CurrentGroup;
zbool bScenevalid;
zuint8 u8NameSupport;

#ifdef CLD_SCENES_ATTR_LAST_CONFIGURED_BY

zieeeaddress u64LastConfiguredBy

#endi

} tsCLD_Scenes;

where:

u8SceneCount is the number of scenes currently in the Scene table
u8CurrentScene is the scene ID of the last scene invoked on the device

ul6CurrentGroup is the group ID of the group associated with the last scene
invoked (or 0x0000 if this scene is not associated with a group)

bSceneValid indicates whether the current state of the device corresponds to
the values of the CurrentScene and CurrentGroup attributes (TRUE if they
do, FALSE if they do not)

u8NameSupport indicates whether scene names are supported - if the most
significant bit is 1 then they are supported, otherwise they are not supported

ub4LastConfiguredBy is the 64-bit IEEE address of the device that last
configured the Scene table (OXFFFFFFFFFFFFFFFF indicates that the address
is unknown or the table has not been configured)

9.3 Initialisation

The function eCLD_ScenesCreateScenes() is used to create an instance of the
Scenes cluster. The function is generally called by the initialisation function for the
host device.

150

© NXP Laboratories UK 2017 JN-UG-3103 v1.4

ZigBee Cluster Library
User Guide

9.4 Sending Remote Commands

The NXP implementation of the ZCL provides functions for sending commands
between a Scenes cluster client and server. A command is sent from the client to one
or more endpoints on the server. Multiple endpoints can usually be targeted using
binding or group addressing.

Note: In the case of the ZigBee Light Link profile,
“ commands can also be issued for operations on the

local node, as described in Section 9.5.

9.4.1 Creating a Scene

In order to create a scene, an entry for the scene must be added to the Scene table
on every device that contains a cluster which is associated with the scene.

The function eCLD_ScenesCommandAddSceneRequestSend() can be used to
request that a scene is added to a Scene table on a remote device. A call to this
function can send a request to a single device or to multiple devices (using binding or
group addressing). The fields of the Scene table entry are specified in the payload of
the request.

In the case of the ZigBee Light Link profile, the enhanced function
eCLD_ScenesCommandEnhancedAddSceneRequestSend() must be used
instead, which allows the transition time for the scene to be set in units of tenths of a
second (rather than seconds).

Alternatively, a scene can be created by saving the current attribute settings of the
relevant clusters - in this way, the current state of the system (e.g. lighting levels in a
Home Automation system) can be captured as a scene and re-applied ‘at the touch of
a button’ when required. The current settings are stored as a scene in the Scene table
using the function eCLD_ScenesCommandStoreSceneRequestSend() which,
again, can send the request to a single device or multiple devices. If a Scene table
entry already exists with the same scene ID and group ID, the existing cluster settings
in the entry are overwritten with the new ‘captured’ settings.

Note: This operation of capturing the current system

' state as a scene does not result in meaningful settings
for the transition time and scene name fields of the
Scene table entry. If non-null values are required for
these fields, the table entry should be created in

advance with the desired field values using
eCLD_ScenesCommandAddSceneRequestSend().

JN-UG-3103 v1.4 © NXP Laboratories UK 2017 151

Chapter 9

Scenes Cluster

9.4.2 Copying a Scene (ZLL Only)

In the case of the ZigBee Light Link profile, scene settings can be copied from one
scene to another scene on the same remote endpoint using the function
eCLD_ScenesCommandCopySceneSceneRequestSend(). This function allows
the settings from an existing scene with a specified source scene ID and associated
group ID to be copied to a new scene with a specified destination scene ID and
associated group ID.

Note: If an entry corresponding to the target scene ID
' and group ID already exists in the Scene table on the
endpoint, the entry settings will be overwritten with the

copied settings. Otherwise, a new Scene table entry will
be created with these settings.

The above function also allows all scenes associated with particular group ID to be
copied to another group ID. In this case, the original scene IDs are maintained but are
associated with the new group ID (any specified source and destination scene IDs are
ignored). Thus, the same scene IDs will be associated with two different group IDs.

9.4.3 Applying a Scene

The cluster settings of a scene stored in the Scene table can be retrieved and applied
to the system by calling eCLD_ScenesCommandRecallSceneRequestSend().
Again, this function can send a request to a single device or to multiple devices (using
binding or group addressing).

If the required scene does not contain any settings for a particular cluster or there are
some missing attribute values for a cluster, these attribute values will remain
unchanged in the implementation of the cluster - that is, the corresponding parts of the
system will not change their states.

9.4.4 Deleting a Scene

Two functions are provided for removing scenes from the system:

m eCLD_ScenesCommandRemoveSceneRequestSend() can be used to
request the removal of the destination endpoint from a particular scene - that is,
to remove the scene from the Scene table on the target device.

m eCLD_ScenesCommandRemoveAllScenesRequestSend() can be used to
request that the target device removes scenes associated with a particular
group ID/address - that is, remove all Scene table entries relating to this group
ID. Specifying a group ID of 0x0000 will remove all scenes not associated with
a group.

152

© NXP Laboratories UK 2017 JN-UG-3103 v1.4

ZigBee Cluster Library
User Guide

9.4.5 Obtaining Information about Scenes

The following functions are provided for obtaining information about scenes:

= eCLD_ScenesCommandViewSceneRequestSend() can be used to request
information on a particular scene on the destination endpoint. Only one device
may be targeted by this function. The target device returns a response
containing the relevant information.

In the case of the ZigBee Light Link profile, the enhanced function
eCLD_ScenesCommandEnhancedViewSceneRequestSend() must be used
instead, which allows the transition time for the scene to be obtained in units of
tenths of a second (rather than seconds).

m eCLD_ScenesCommandGetSceneMembershipRequestSend() can be used
to discover which scenes are associated with a particular group on a device.
The request can be sent to a single device or to multiple devices. The target
device returns a response containing the relevant information (in the case of
multiple target devices, no response is returned from a device that does not
contain a scene associated with the specified group ID). In this way, the
function can be used to determine the unused scene IDs.

9.5 Issuing Local Commands

Some of the operations described in Section 9.4 that correspond to remote commands
can also be performed locally, as described below.

9.5.1 Creating a Scene

A scene can be created on the local node using either of the following functions:

= eCLD_ScenesAdd(): This function can be used to add a new scene to the
Scene table on the specified local endpoint. A scene ID and an associated
group ID must be specified (the latter must be set to 0x0000 if there is no group
association). If a scene with these IDs already exists in the table, the existing
entry will be overwritten.

= eCLD_ScenesStore(): This function can be used to save the currently
implemented attribute values on the device to a scene in the Scene table on the
specified local endpoint. A scene ID and an associated group ID must be
specified (the latter must be set to 0x0000 if there is no group association). If a
scene with these IDs already exists in the table, the existing entry will be
overwritten with the exception of the transition time and scene name fields.

9.5.2 Applying a Scene

An existing scene can be applied on the local node using the function
eCLD_ScenesRecall(). This function reads the stored attribute values for the
specified scene from the local Scene table and implements them on the device. The
values of any attributes that are not included in the scene will remain unchanged.

JN-UG-3103 v1.4 © NXP Laboratories UK 2017 153

Chapter 9

Scenes Cluster

9.6 Functions

The following Scenes cluster functions are provided in the NXP implementation of the

ZCL:

Function

eCLD_ScenesCreateScenes

eCLD_ScenesAdd

eCLD_ScenesStore

eCLD_ScenesRecall
eCLD_ScenesCommandAddSceneRequestSend
eCLD_ScenesCommandViewSceneRequestSend
eCLD_ScenesCommandRemoveSceneRequestSend
eCLD_ScenesCommandRemoveAllScenesRequestSend
eCLD_ScenesCommandStoreSceneRequestSend
eCLD_ScenesCommandRecallSceneRequestSend
eCLD_ScenesCommandGetSceneMembershipRequestSend
eCLD_ScenesCommandEnhancedAddSceneRequestSend
eCLD_ScenesCommandEnhancedViewSceneRequestSend
eCLD_ScenesCommandCopySceneSceneRequestSend

Page

155
157
158
159
160
162
164
166
168
170
172
174
176
178

154

© NXP Laboratories UK 2017

JN-UG-3103 v1.4

ZigBee Cluster Library
User Guide

eCLD_ScenesCreateScenes

teZCL_Status eCLD_ScenesCreateScenes(
tsZCL_ClusterIinstance *psClusterinstance,
bool t bisServer,
tsZCL_ClusterDefinition *psClusterDefinition,
void *pvEndPointSharedStructPtr,
uint8 *pu8AttributeControlBits,
tsCLD_ScenesCustomDataStructure

*psCustomDataStructure,

tsZCL_EndPointDefinition *psEndPointDefinition);

Description

This function creates an instance of the Scenes cluster on an endpoint. The cluster
instance is created on the endpoint which is associated with the supplied
tsZCL_ClusterlInstance structure and can act as a server or a client, as
specified.

The function should only be called when setting up a custom endpoint containing one
or more selected clusters (rather than the whole set of clusters supported by a
standard ZigBee device). This function will create a Scenes cluster instance on the
endpoint, but instances of other clusters may also be created on the same endpoint
by calling their corresponding creation functions.

Note: This function must not be called for an endpoint on
which a standard ZigBee device will be used. In this case, the
device and its supported clusters must be registered on the
endpoint using the relevant device registration function.

When used, this function must be the first Scenes cluster function called in the
application, and must be called after the stack has been started and after the
application profile has been initialised.

On calling this function for the first time, a ‘global scene’ entry is created/reserved in
the Scene table. On subsequent calls (e.qg. following a power-cycle or on waking from
sleep), if the scene data is recovered by the application from non-volatile memory
before the function is called then there will be no reinitialisation of the scene data.
Note that removing all groups from the device will also remove the global scene entry
(along with other scene entries) from the Scene table.

The function requires an array to be declared for internal use, which contains one
element (of type uint8) for each attribute of the cluster. The array length should
therefore equate to the total number of attributes supported by the Scenes cluster,
which can be obtained by using the macro
CLD_SCENES_MAX_NUMBER_OF_ATTRIBUTE.

The array declaration should be as follows:

uint8
au8AppScenesClusterAttributeControlBits[CLD_SCENES_MAX_NUMBER_OF_ATTRIBUTE];

The function will initialise the array elements to zero.

JN-UG-3103 v1.4 © NXP Laboratories UK 2017 155

Chapter 9
Scenes Cluster

Parameters

psClusterinstance Pointer to structure containing information about the
cluster instance to be created (see Section 34.1.16).
This structure will be updated by the function by
initialising individual structure fields.

bisServer Type of cluster instance (server or client) to be created:
TRUE - server
FALSE - client

psClusterDefinition Pointer to structure indicating the type of cluster to be

created (see Section 34.1.2). In this case, this structure
must contain the details of the Scenes cluster. This
parameter can refer to a pre-filled structure called
sCLD_Scenes which is provided in the Scenes.h file.

pvEndPointSharedStructPtr Pointer to the shared structure used for attribute
storage. This parameter should be the address of the
structure of type tsCLD_Scenes which defines the
attributes of Scenes cluster. The function will initialise
the attributes with default values.

pu8AttributeControlBits Pointer to an array of uint8 values, with one element for
each attribute in the cluster (see above)

psCustomDataStructure Pointer to a structure containing the storage for internal
functions of the cluster (see Section 9.7.1)

psEndPointDefinition Pointer to the ZCL endpoint definition structure for the
application (see Section 34.1.1)

Returns

E_ZCL_SUCCESS
E_ZCL_ERR_PARAMETER_NULL

156 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

ZigBee Cluster Library
User Guide

eCLD_ScenesAdd

teZCL_Status eCLD_ScenesAdd(
uint8 u8SourceEndPointld,
uint16 ul6Groupld,
uint8 u8Sceneld);

Description

This function adds a new scene on the specified local endpoint - that is, adds an entry
to the Scenes table on the endpoint. The group ID associated with the scene must
also be specified (or set to 0x0000 if there is no associated group).

If a scene with the specified scene ID and group ID already exists in the table, the
existing entry will be overwritten (i.e. all previous scene data in this entry will be lost).

Parameters
u8SourceEndPointld Number of local endpoint on which Scene table entry is
to be added
ul6Groupld 16-bit group ID/address of associated group
(or 0x0000 if no group)
u8Sceneld 8-bit scene ID of new scene
Returns

E_ZCL_SUCCESS
E_ZCL_ERR_PARAMETER_NULL

JN-UG-3103 v1.4 © NXP Laboratories UK 2017 157

Chapter 9
Scenes Cluster

eCLD_ScenesStore

teZCL_Status eCLD_ScenesStore(
uint8 u8SourceEndPointld,
uint16 ul6Groupld,
uint8 u8Sceneld);

Description

This function adds a new scene on the specified local endpoint, based on the current
cluster attribute values of the device - that is, saves the current attribute values of the
device to a new entry of the Scenes table on the endpoint. The group ID associated
with the scene must also be specified (or set to 0x0000 if there is no associated
group).

If a scene with the specified scene ID and group ID already exists in the table, the
existing entry will be overwritten (i.e. previous scene data in this entry will be lost),
with the exception of the transition time field and the scene name field - these fields
will be left unchanged.

Parameters
u8SourceEndPointld Number of local endpoint on which Scene table entry is
to be added
ul6Groupld 16-bit group ID/address of associated group
(or 0x0000 if no group)
u8Sceneld 8-bit scene ID of scene
Returns

E_ZCL_SUCCESS
E_ZCL_ERR_PARAMETER_NULL

158 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

ZigBee Cluster Library
User Guide

eCLD_ScenesRecall

teZCL_Status eCLD_ScenesRecall(
uint8 u8SourceEndPointld,
uint16 ul6Groupld,
uint8 u8Sceneld);

Description

This function obtains the attribute values (from the extension fields) of the scene with
the specified Scene ID and Group ID on the specified (local) endpoint, and sets the
corresponding cluster attributes on the device to these values. Thus, the function
reads the stored attribute values for a scene and implements them on the device.

Note that the values of any cluster attributes that are not included in the scene will
remain unchanged.

Parameters
u8SourceEndPointld Number of local endpoint containing Scene table to be
read
ul6Groupld 16-bit group ID/address of associated group
(or 0x0000 if no group)
u8Sceneld 8-bit scene ID of scene to be read
Returns

E_ZCL_SUCCESS
E_ZCL_ERR_PARAMETER_NULL

JN-UG-3103 v1.4 © NXP Laboratories UK 2017 159

Chapter 9
Scenes Cluster

eCLD_ScenesCommandAddSceneRequestSend

teZCL_Status
eCLD_ScenesCommandAddSceneRequestSend(
uint8 u8SourceEndPointld,
uint8 u8DestinationEndPointld,
tsZCL_Address *psDestinationAddress,
uint8 *pu8TransactionSequenceNumber,
tsCLD_ScenesAddSceneRequestPayload *psPayload);

Description

This function sends an Add Scene command to a remote device in order to add a
scene on the specified endpoint - that is, to add an entry to the Scene table on the
endpoint. The scene ID is specified in the payload of the message, along with a
duration for the scene among other values (see Section 9.7.2). The scene may also
be associated with a particular group.

The device receiving this message will generate a callback event on the endpoint on
which the Scenes cluster was registered and, if possible, add the scene to its Scene
table before sending an Add Scene response indicating success or failure (see
Section 9.7.3).

You are required to provide a pointer to a location to receive a Transaction Sequence
Number (TSN) for the request. The TSN in the response will be set to match the TSN
in the request, allowing an incoming response to be paired with a request. This is
useful when sending more than one request to the same destination endpoint.

Parameters

u8SourceEndPointld Number of the local endpoint through which to
send the request. This parameter is used both to
send the message and to identify the instance of
the shared structure holding the required
attribute values

u8DestinationEndPointld Number of the endpoint on the remote node to
which the request will be sent. This parameter is
ignored when sending to address types
eZCL_AMBOUND and eZCL_AMGROUP

psDestinationAddress Pointer to a structure holding the address of the
node to which the request will be sent

pu8TransactionSequenceNumber Pointer to a location to receive the Transaction
Sequence Number (TSN) of the request

psPayload Pointer to a structure containing the payload for
this message (see Section 9.7.2)

160

© NXP Laboratories UK 2017 JN-UG-3103 v1.4

ZigBee Cluster Library
User Guide

Returns

E_ZCL_SUCCESS

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_EP_RANGE

E_ZCL_ERR_EP_UNKNOWN

E_ZCL_ERR_CLUSTER_NOT_FOUND

E_ZCL_ERR_ZBUFFER_FAIL

E_ZCL_ERR_ZTRANSMIT_FAIL

If an error is returned by the ZigBee PRO stack function which is invoked by this

function to transmit the data, this error may be obtained by calling
eZCL_GetLastZpsError().

JN-UG-3103 v1.4 © NXP Laboratories UK 2017 161

Chapter 9
Scenes Cluster

eCLD_ScenesCommandViewSceneRequestSend

teZCL_Status
eCLD_ScenesCommandViewSceneRequestSend(
uint8 u8SourceEndPointld,
uint8 u8DestinationEndPointld,
tsZCL_Address *psDestinationAddress,
uint8 *pu8TransactionSequenceNumber,
tsCLD_ScenesViewSceneRequestPayload
*psPayload);

Description

This function sends a View Scene command to a remote device, requesting
information on a particular scene on the destination endpoint. The relevant scene ID
is specified in the command payload. Note that this command can only be sent to an
individual device/endpoint and not to a group address.

The device receiving this message will generate a callback event on the endpoint on
which the Scenes cluster was registered and will generate a View Scene response
containing the relevant information (see Section 9.7.3).

You are required to provide a pointer to a location to receive a Transaction Sequence
Number (TSN) for the request. The TSN in the response will be set to match the TSN
in the request, allowing an incoming response to be paired with a request. This is
useful when sending more than one request to the same destination endpoint.

Parameters

u8SourceEndPointld Number of the local endpoint through which to
send the request. This parameter is used both to
send the message and to identify the instance of
the shared structure holding the required
attribute values

u8DestinationEndPointld Number of the endpoint on the remote node to
which the request will be sent. This parameter is
ignored when sending to address type
eZCL_AMBOUND

psDestinationAddress Pointer to a structure holding the address of the
node to which the request will be sent

pu8TransactionSequenceNumber Pointer to a location to receive the Transaction
Sequence Number (TSN) of the request

psPayload Pointer to a structure containing the payload for
this message (see Section 9.7.2)

162

© NXP Laboratories UK 2017 JN-UG-3103 v1.4

ZigBee Cluster Library
User Guide

Returns

E_ZCL_SUCCESS

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_EP_RANGE

E_ZCL_ERR_EP_UNKNOWN

E_ZCL_ERR_CLUSTER_NOT_FOUND

E_ZCL_ERR_ZBUFFER_FAIL

E_ZCL_ERR_ZTRANSMIT_FAIL

If an error is returned by the ZigBee PRO stack function which is invoked by this

function to transmit the data, this error may be obtained by calling
eZCL_GetLastZpsError().

JN-UG-3103 v1.4 © NXP Laboratories UK 2017 163

Chapter 9
Scenes Cluster

eCLD_ScenesCommandRemoveSceneRequestSend

teZCL_Status
eCLD_ScenesCommandRemoveSceneRequestSend(
uint8 u8SourceEndPointld,
uint8 u8DestinationEndPointld,
tsZCL_Address *psDestinationAddress,
uint8 *pu8TransactionSequenceNumber,
tsCLD_ScenesRemoveSceneRequestPayload
*psPayload);

Description

This function sends a Remove Scene command to request that the target device
deletes membership of the destination endpoint from a particular scene - that is,
remove the scene from the Scene table. The relevant scene ID is specified in the
payload of the message. The scene may also be associated with a particular group.

The device receiving this message will generate a callback event on the endpoint on
which the Scenes cluster was registered. The device will then delete the scene in the
Scene table. If the request was sent to a single device (rather than to a group
address), it will then generate an appropriate Remove Scene response indicating
success or failure (see Section 9.7.3).

You are required to provide a pointer to a location to receive a Transaction Sequence
Number (TSN) for the request. The TSN in the response will be set to match the TSN
in the request, allowing an incoming response to be paired with a request. This is
useful when sending more than one request to the same destination endpoint.

Parameters

u8SourceEndPointld Number of the local endpoint through which to
send the request. This parameter is used both to
send the message and to identify the instance of
the shared structure holding the required
attribute values

u8DestinationEndPointld Number of the endpoint on the remote node to
which the request will be sent. This parameter is
ignored when sending to address types
eZCL_AMBOUND and eZCL_AMGROUP

psDestinationAddress Pointer to a structure holding the address of the
node to which the request will be sent

pu8TransactionSequenceNumber Pointer to a location to receive the Transaction
Sequence Number (TSN) of the request

psPayload Pointer to a structure containing the payload for
this message (see Section 9.7.2)

164

© NXP Laboratories UK 2017 JN-UG-3103 v1.4

ZigBee Cluster Library
User Guide

Returns

E_ZCL_SUCCESS

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_EP_RANGE

E_ZCL_ERR_EP_UNKNOWN

E_ZCL_ERR_CLUSTER_NOT_FOUND

E_ZCL_ERR_ZBUFFER_FAIL

E_ZCL_ERR_ZTRANSMIT_FAIL

If an error is returned by the ZigBee PRO stack function which is invoked by this

function to transmit the data, this error may be obtained by calling
eZCL_GetLastZpsError().

JN-UG-3103 v1.4 © NXP Laboratories UK 2017 165

Chapter 9
Scenes Cluster

eCLD_ScenesCommandRemoveAllScenesRequestSend

teZCL_Status
eCLD_ScenesCommandRemoveAllScenesRequestSend(
uint8 u8SourceEndPointld,
uint8 u8DestinationEndPointld,
tsZCL_Address *psDestinationAddress,
uint8 *pu8TransactionSequenceNumber,
tsCLD_ScenesRemoveAllScenesRequestPayload
*psPayload);

Description

This function sends a Remove All Scenes command to request that the target device
deletes all entries corresponding to the specified group ID/address in its Scene table.
The relevant group ID is specified in the payload of the message. Note that specifying
a group ID of 0x0000 will remove all scenes not associated with a group.

The device receiving this message will generate a callback event on the endpoint on
which the Scenes cluster was registered. The device will then delete the scenes in
the Scene table. If the request was sent to a single device (rather than to a group
address), it will then generate an appropriate Remove All Scenes response
indicating success or failure (see Section 9.7.3).

You are required to provide a pointer to a location to receive a Transaction Sequence
Number (TSN) for the request. The TSN in the response will be set to match the TSN
in the request, allowing an incoming response to be paired with a request. This is
useful when sending more than one request to the same destination endpoint.

Parameters

u8SourceEndPointld Number of the local endpoint through which to
send the request. This parameter is used both to
send the message and to identify the instance of
the shared structure holding the required
attribute values

u8DestinationEndPointld Number of the endpoint on the remote node to
which the request will be sent. This parameter is
ignored when sending to address types
eZCL_AMBOUND and eZCL_AMGROUP

psDestinationAddress Pointer to a structure holding the address of the
node to which the request will be sent

pu8TransactionSequenceNumber Pointer to a location to receive the Transaction
Sequence Number (TSN) of the request

psPayload Pointer to a structure containing the payload for
this message (see Section 9.7.2)

166 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

ZigBee Cluster Library
User Guide

Returns

E_ZCL_SUCCESS

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_EP_RANGE

E_ZCL_ERR_EP_UNKNOWN

E_ZCL_ERR_CLUSTER_NOT_FOUND

E_ZCL_ERR_ZBUFFER_FAIL

E_ZCL_ERR_ZTRANSMIT_FAIL

If an error is returned by the ZigBee PRO stack function which is invoked by this

function to transmit the data, this error may be obtained by calling
eZCL_GetLastZpsError().

JN-UG-3103 v1.4 © NXP Laboratories UK 2017 167

Chapter 9
Scenes Cluster

eCLD_ScenesCommandStoreSceneRequestSend

teZCL_Status
eCLD_ScenesCommandStoreSceneRequestSend(
uint8 u8SourceEndPointld,
uint8 u8DestinationEndPointld,
tsZCL_Address *psDestinationAddress,
uint8 *pu8TransactionSequenceNumber,
tsCLD_ScenesStoreSceneRequestPayload
*psPayload);

Description

This function sends a Store Scene command to request that the target device saves
the current settings of all other clusters on the device as a scene - that is, adds a
scene containing the current cluster settings to the Scene table. The entry will be
stored using the scene ID and group ID specified in the payload of the command. If
an entry already exists with these IDs, its existing cluster settings will be overwritten
with the new settings.

Note that the transition time and scene name fields are not set by this command (or
for a new entry, they are set to null values). When using this command to create a
new scene which requires particular settings for these fields, the scene entry must
be created in advance using the Add Group command, at which stage these fields
should be pre-configured.

The device receiving this message will generate a callback event on the endpoint on
which the Scenes cluster was registered. If the request was sent to a single device
(rather than to a group address), it will then generate an appropriate Store Scene
response indicating success or failure (see Section 9.7.3).

You are required to provide a pointer to a location to receive a Transaction Sequence
Number (TSN) for the request. The TSN in the response will be set to match the TSN
in the request, allowing an incoming response to be paired with a request. This is
useful when sending more than one request to the same destination endpoint.

Parameters

u8SourceEndPointld Number of the local endpoint through which to
send the request. This parameter is used both to
send the message and to identify the instance of
the shared structure holding the required
attribute values

u8DestinationEndPointld Number of the endpoint on the remote node to
which the request will be sent. This parameter is
ignored when sending to address types
eZCL_AMBOUND and eZCL_AMGROUP

psDestinationAddress Pointer to a structure holding the address of the
node to which the request will be sent

pu8TransactionSequenceNumber Pointer to a location to receive the Transaction
Sequence Number (TSN) of the request

168 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

ZigBee Cluster Library
User Guide

psPayload Pointer to a structure containing the payload for
this message (see Section 9.7.2)

Returns

E_ZCL_SUCCESS

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_EP_RANGE

E_ZCL_ERR_EP_UNKNOWN

E_ZCL_ERR_CLUSTER_NOT_FOUND

E_ZCL_ERR_ZBUFFER_FAIL

E_ZCL_ERR_ZTRANSMIT_FAIL

If an error is returned by the ZigBee PRO stack function which is invoked by this

function to transmit the data, this error may be obtained by calling
eZCL_GetLastZpsError().

JN-UG-3103 v1.4 © NXP Laboratories UK 2017 169

Chapter 9
Scenes Cluster

eCLD_ScenesCommandRecallSceneRequestSend

teZCL_Status
eCLD_ScenesCommandRecallSceneRequestSend(
uint8 u8SourceEndPointld,
uint8 u8DestinationEndPointld,
tsZCL_Address *psDestinationAddress,
uint8 *pu8TransactionSequenceNumber,
tsCLD_ScenesRecallSceneRequestPayload
*psPayload);

Description

This function sends a Recall Scene command to request that the target device
retrieves and implements the settings of the specified scene - that is, reads the scene
settings from the Scene table and applies them to the other clusters on the device.
The required scene ID and group ID are specified in the payload of the command.

Note that if the specified scene entry does not contain any settings for a particular
cluster or there are some missing attribute values for a cluster, these attribute values
will remain unchanged in the implementation of the cluster.

The device receiving this message will generate a callback event on the endpoint on
which the Scenes cluster was registered. If the request was sent to a single device
(rather than to a group address), it will then generate an appropriate Recall Scene

response indicating success or failure (see Section 9.7.3).

You are required to provide a pointer to a location to receive a Transaction Sequence
Number (TSN) for the request. The TSN in the response will be set to match the TSN
in the request, allowing an incoming response to be paired with a request. This is
useful when sending more than one request to the same destination endpoint.

Parameters

u8SourceEndPointld Number of the local endpoint through which to
send the request. This parameter is used both to
send the message and to identify the instance of
the shared structure holding the required
attribute values

u8DestinationEndPointld Number of the endpoint on the remote node to
which the request will be sent. This parameter is
ignored when sending to address types
eZCL_AMBOUND and eZCL_AMGROUP

psDestinationAddress Pointer to a structure holding the address of the
node to which the request will be sent

pu8TransactionSequenceNumber Pointer to a location to receive the Transaction
Sequence Number (TSN) of the request

psPayload Pointer to a structure containing the payload for
this message (see Section 9.7.2)

170 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

ZigBee Cluster Library
User Guide

Returns

E_ZCL_SUCCESS

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_EP_RANGE

E_ZCL_ERR_EP_UNKNOWN

E_ZCL_ERR_CLUSTER_NOT_FOUND

E_ZCL_ERR_ZBUFFER_FAIL

E_ZCL_ERR_ZTRANSMIT_FAIL

If an error is returned by the ZigBee PRO stack function which is invoked by this

function to transmit the data, this error may be obtained by calling
eZCL_GetLastZpsError().

JN-UG-3103 v1.4 © NXP Laboratories UK 2017 171

Chapter 9
Scenes Cluster

eCLD_ScenesCommandGetSceneMembershipRequestSend

teZCL_Status
eCLD_ScenesCommandGetSceneMembershipRequestSend(
uint8 u8SourceEndPointld,
uint8 u8DestinationEndPointld,
tsZCL_Address *psDestinationAddress,
uint8 *pu8TransactionSequenceNumber,
tsCLD_ScenesGetSceneMembershipRequestPayload
*psPayload);

Description

This function sends a Get Scene Membership to inquire which scenes are associated
with a specified group ID on a device. The relevant group ID is specified in the

payload of the command.

The device receiving this message will generate a callback event on the endpoint on
which the Scenes cluster was registered. If the request was sent to a single device
(rather than to a group address), it will then generate an appropriate Get Scene
Membership response indicating success or failure and, if successful, the response
will contain a list of the scene IDs associated with the given group ID (see Section
9.7.3). If the original command is sent to a group address, an individual device will
only respond if it has scenes associated with the group ID in the command payload

(so will only respond in the case of success).

You are required to provide a pointer to a location to receive a Transaction Sequence
Number (TSN) for the request. The TSN in the response will be set to match the TSN
in the request, allowing an incoming response to be paired with a request. This is
useful when sending more than one request to the same destination endpoint.

Parameters

u8SourceEndPointld Number of the local endpoint through which to
send the request. This parameter is used both to
send the message and to identify the instance of
the shared structure holding the required

attribute values

u8DestinationEndPointld Number of the endpoint on the remote node to
which the request will be sent. This parameter is
ignored when sending to address types
eZCL_AMBOUND and eZCL_AMGROUP

psDestinationAddress Pointer to a structure holding the address of the

node to which the request will be sent

pu8TransactionSequenceNumber Pointer to a location to receive the Transaction
Sequence Number (TSN) of the request

psPayload Pointer to a structure containing the payload for

this message (see Section 9.7.2)

172 © NXP Laboratories UK 2017

JN-UG-3103 v1.4

ZigBee Cluster Library
User Guide

Returns

E_ZCL_SUCCESS

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_EP_RANGE

E_ZCL_ERR_EP_UNKNOWN

E_ZCL_ERR_CLUSTER_NOT_FOUND

E_ZCL_ERR_ZBUFFER_FAIL

E_ZCL_ERR_ZTRANSMIT_FAIL

If an error is returned by the ZigBee PRO stack function which is invoked by this

function to transmit the data, this error may be obtained by calling
eZCL_GetLastZpsError().

JN-UG-3103 v1.4 © NXP Laboratories UK 2017 173

Chapter 9
Scenes Cluster

eCLD_ScenesCommandEnhancedAddSceneRequestSend

teZCL_Status
eCLD_ScenesCommandEnhancedAddSceneRequestSend(
uint8 u8SourceEndPointld,
uint8 u8DestinationEndPointld,
tsZCL_Address *psDestinationAddress,
uint8 *pu8TransactionSequenceNumber,
tsCLD_ScenesEnhancedAddSceneRequestPayload
*psPayload);

Description

This function sends an Enhanced Add Scene command to a remote ZLL device in
order to add a scene on the specified endpoint - that is, to add an entry to the Scene
table on the endpoint. The function can be used only with the ZLL profile and allows
a finer transition time (in tenths of a second rather than seconds) when applying the
scene. The scene ID is specified in the payload of the message, along with a duration
for the scene and the transition time, among other values (see Section 9.7.2). The

scene may also be associated with a particular group.

The device receiving this message will generate a callback event on the endpoint on
which the Scenes cluster was registered and, if possible, add the scene to its Scene
table before sending an Enhanced Add Scene response indicating success or failure

(see Section 9.7.3).

You are required to provide a pointer to a location to receive a Transaction Sequence
Number (TSN) for the request. The TSN in the response will be set to match the TSN
in the request, allowing an incoming response to be paired with a request. This is
useful when sending more than one request to the same destination endpoint.

Parameters

u8SourceEndPointld Number of the local endpoint through which to
send the request. This parameter is used both to
send the message and to identify the instance of
the shared structure holding the required

attribute values

u8DestinationEndPointld Number of the endpoint on the remote node to
which the request will be sent. This parameter is
ignored when sending to address types
eZCL_AMBOUND and eZCL_AMGROUP

psDestinationAddress Pointer to a structure holding the address of the

node to which the request will be sent

pu8TransactionSequenceNumber Pointer to a location to receive the Transaction
Sequence Number (TSN) of the request

psPayload Pointer to a structure containing the payload for

this message (see Section 9.7.2)

174 © NXP Laboratories UK 2017

JN-UG-3103 v1.4

ZigBee Cluster Library
User Guide

Returns

E_ZCL_SUCCESS

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_EP_RANGE

E_ZCL_ERR_EP_UNKNOWN

E_ZCL_ERR_CLUSTER_NOT_FOUND

E_ZCL_ERR_ZBUFFER_FAIL

E_ZCL_ERR_ZTRANSMIT_FAIL

If an error is returned by the ZigBee PRO stack function which is invoked by this

function to transmit the data, this error may be obtained by calling
eZCL_GetLastZpsError().

JN-UG-3103 v1.4 © NXP Laboratories UK 2017 175

Chapter 9

Scenes Cluster

eCLD_ScenesCommandEnhancedViewSceneRequestSend

teZCL_Status
eCLD_ScenesCommandEnhancedViewSceneRequestSend(
uint8 u8SourceEndPointld,
uint8 u8DestinationEndPointld,
tsZCL_Address *psDestinationAddress,
uint8 *pu8TransactionSequenceNumber,
tsCLD_ScenesEnhancedViewSceneRequestPayload
*psPayload);

Description

This function sends an Enhanced View Scene command to a remote ZLL device,
requesting information on a particular scene on the destination endpoint. The
function can be used only with the ZLL profile and the returned information includes
the finer transition time available with ZLL. The relevant scene ID is specified in the
command payload. Note that this command can only be sent to an individual device/
endpoint and not to a group address.

The device receiving this message will generate a callback event on the endpoint on
which the Scenes cluster was registered and will generate a Enhanced View Scene
response containing the relevant information (see Section 9.7.3).

You are required to provide a pointer to a location to receive a Transaction Sequence
Number (TSN) for the request. The TSN in the response will be set to match the TSN
in the request, allowing an incoming response to be paired with a request. This is
useful when sending more than one request to the same destination endpoint.

Parameters

u8SourceEndPointld Number of the local endpoint through which to
send the request. This parameter is used both to
send the message and to identify the instance of
the shared structure holding the required
attribute values

u8DestinationEndPointld Number of the endpoint on the remote node to
which the request will be sent. This parameter is
ignored when sending to address type
eZCL_AMBOUND

psDestinationAddress Pointer to a structure holding the address of the
node to which the request will be sent

pu8TransactionSequenceNumber Pointer to a location to receive the Transaction
Sequence Number (TSN) of the request

psPayload Pointer to a structure containing the payload for
this message (see Section 9.7.2)

176

© NXP Laboratories UK 2017 JN-UG-3103 v1.4

ZigBee Cluster Library
User Guide

Returns

E_ZCL_SUCCESS

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_EP_RANGE

E_ZCL_ERR_EP_UNKNOWN

E_ZCL_ERR_CLUSTER_NOT_FOUND

E_ZCL_ERR_ZBUFFER_FAIL

E_ZCL_ERR_ZTRANSMIT_FAIL

If an error is returned by the ZigBee PRO stack function which is invoked by this

function to transmit the data, this error may be obtained by calling
eZCL_GetLastZpsError().

JN-UG-3103 v1.4 © NXP Laboratories UK 2017 177

Chapter 9
Scenes Cluster

eCLD_ScenesCommandCopySceneSceneRequestSend

teZCL_Status

uint8 u8SourceEndPointld,

eCLD_ScenesCommandCopySceneSceneRequestSend(

uint8 u8DestinationEndPointld,

tsZCL_Address *psDestinationAddress,

uint8 *pu8TransactionSequenceNumber,
tsCLD_ScenesCopySceneRequestPayload *psPayload);

Description

This function sends a Copy Scene command to a remote ZLL device, requesting that
the scene settings from one scene ID/group ID combination are copied to another
scene ID/group ID combination on the target endpoint. The function can be used only
with the ZLL profile. The relevant source and destination scene ID/group ID
combinations are specified in the command payload.

Note that:

® |f the destinaton scene ID/group ID already exists on the target endpoint, the existing

scene will be overwritten with the new settings.

® The message payload contains a ‘copy all scenes’ bit which, if set to ‘1’, instructs the
destination server to copy all scenes in the specified source group to scenes with the
same scene IDs in the destination group (in this case, the source and destination scene
IDs in the payload are ignored).

The device receiving this message will generate a callback event on the endpoint on
which the Scenes cluster was registered and, if the original request was unicast, will
generate a Copy Scene response (see Section 9.7.3).

You are required to provide a pointer to a location to receive a Transaction Sequence
Number (TSN) for the request. The TSN in the response will be set to match the TSN
in the request, allowing an incoming response to be paired with a request. This is
useful when sending more than one request to the same destination endpoint.

Parameters
u8SourceEndPointld

u8DestinationEndPointld

psDestinationAddress
pu8TransactionSequenceNumber

psPayload

Number of the local endpoint through which to
send the request. This parameter is used both to
send the message and to identify the instance of
the shared structure holding the required
attribute values

Number of the endpoint on the remote node to
which the request will be sent. This parameter is
ignored when sending to address type
eZCL_AMBOUND

Pointer to a structure holding the address of the
node to which the request will be sent

Pointer to a location to receive the Transaction
Sequence Number (TSN) of the request

Pointer to a structure containing the payload for
this message (see Section 9.7.2)

178

© NXP Laboratories UK 2017

JN-UG-3103 v1.4

ZigBee Cluster Library
User Guide

Returns

E_ZCL_SUCCESS

E_ZCL_ERR_PARAMETER_NULL

E_ZCL_ERR_EP_RANGE

E_ZCL_ERR_EP_UNKNOWN

E_ZCL_ERR_CLUSTER_NOT_FOUND

E_ZCL_ERR_ZBUFFER_FAIL

E_ZCL_ERR_ZTRANSMIT_FAIL

If an error is returned by the ZigBee PRO stack function which is invoked by this

function to transmit the data, this error may be obtained by calling
eZCL_GetLastZpsError().

JN-UG-3103 v1.4 © NXP Laboratories UK 2017 179

Chapter 9
Scenes Cluster

9.7 Structures

9.7.1 Custom Data Structure

The Scenes cluster requires extra storage space to be allocated to be used by internal
functions. The structure definition for this storage is shown below:

typedef struct

{
DLIST IScenesAllocList;

DLIST IScenesDeAllocList;

tsZCL_ReceiveEventAddress sReceilveEventAddress;
tsZCL_CallBackEvent sCustomCal IBackEvent;
tsCLD_ScenesCal IBackMessage sCal IBackMessage;

tsCLD_ScenesTableEntry
asScenesTableEntry[CLD_SCENES_MAX_NUMBER_OF_SCENES] ;

} tsCLD_ScenesCustomDataStructure;

The fields are for internal use and no knowledge of them is required.

9.7.2 Custom Command Payloads

The following structures contain the payloads for the Scenes cluster custom
commands.

Add Scene Request Payload
typedef struct

{
uintl6 ul6Groupld;
uint8 u8Sceneld;
uintl6 ul6TransitionTime;
tsZCL_CharacterString sSceneName;

tsCLD_ScenesExtensionField sExtensionField;
} tsCLD_ScenesAddSceneRequestPayload;

where:

= u16Groupld is the group ID with which the scene is associated (0x0000 if there
is no association with a group)

= u8Sceneld is the ID of the scene to be added to the Scene table (the Scene ID
must be unique within the group associated with the scene)

® yl6TransitionTime is the amount of time, in seconds, that the device will take
to switch to this scene

180 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

ZigBee Cluster Library
User Guide

®m sSceneName is an optional character string (of up to 16 characters)
representing the name of the scene

= sExtensionField is a structure containing the attribute values of the clusters
to which the scene relates

View Scene Request Payload

typedef struct

{
uintl6 ul6Groupld;

uint8 u8Sceneld;
} tsCLD_ScenesViewSceneRequestPayload;

where:
® ul6Groupld is the group ID with which the desired scene is associated
® u8Sceneld is the scene ID of the scene to be viewed

Remove Scene Request Payload
typedef struct

{
uintl6 ul6Groupld;
uint8 u8Sceneld;
} tsCLD_ScenesRemoveSceneRequestPayload;
where:

® yl6eGroupld is the group ID with which the relevant scene is associated
®m u8Sceneld is the scene ID of the scene to be deleted from the Scene table

Remove All Scenes Request Payload

typedef struct

{
uintl6 ul6Groupld;

} tsCLD_ScenesRemoveAl lScenesRequestPayload;

where ul6Groupld is the group ID for which all scenes are to be deleted.

JN-UG-3103 v1.4 © NXP Laboratories UK 2017 181

Chapter 9
Scenes Cluster

Store Scene Request Payload

typedef struct

{
uintl6 ul6Groupld;

uints u8Sceneld;
} tsCLD_ScenesStoreSceneRequestPayload;

where:
® ul6Groupld is the group ID with which the relevant scene is associated

= u8Sceneld is the scene ID of the scene in which the captured cluster settings
are to be stored

Recall Scene Request Payload

typedef struct

{
uintl6 ul6Groupld;

uints u8Sceneld;
} tsCLD_ScenesRecal 1SceneRequestPayload;

where:
® yl6eGroupld is the group ID with which the relevant scene is associated

= u8Sceneld is the scene ID of the scene from which cluster settings are to be
retrieved and applied

Get Scene Membership Request Payload

typedef struct

{
uintl6 ul6Groupld;

} tsCLD_ScenesGetSceneMembershipRequestPayload;

where ul6Groupld is the group ID for which associated scenes are required.

Enhanced Add Scene Request Payload (ZLL Only)
typedef struct

{
uintl6 ul6Groupld;
uint8 u8Sceneld;
uintl6 ul6TransitionTimelOOms;
tsZCL_CharacterString sSceneName;

tsCLD_ScenesExtensionField sExtensionField;
} tsCLD_ScenesEnhancedAddSceneRequestPayload;

182 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

ZigBee Cluster Library
User Guide

where:

= u16Groupld is the group ID with which the scene is associated (0x0000 if there
is no association with a group)

= u8Sceneld is the ID of the scene to be added to the Scene table (the Scene ID
must be unique within the group associated with the scene)

® yl6TransitionTimel00ms is the amount of time, in tenths of a second, that
the ZLL device will take to switch to this scene

®m sSceneName is an optional character string (of up to 16 characters)
representing the name of the scene

= sExtensionField is a structure containing the attribute values of the clusters
to which the scene relates
View Scene Request Payload (ZLL Only)

typedef struct

{
uintl6 ul6Groupld;

uints u8Sceneld;
} tsCLD_ScenesEnhancedViewSceneRequestPayload;
where:
= ul16Groupld is the group ID with which the desired scene is associated
® u8Sceneld is the scene ID of the scene to be viewed

Copy Scene Request Payload (ZLL Only)
typedef struct

{
uint8 u8Mode;
uintl6 ul6FromGroupld;
uint8 u8FromSceneld;
uintl6 ul6ToGroupld;
uint8 u8ToSceneld;

} tsCLD_ScenesCopySceneRequestPayload;

where:
= u8Mode is a bitmap indicating the required copying mode (only bit O is used):

If bit O is set to ‘1’ then ‘copy all scenes’ mode will be used, in which all
scenes associated with the source group are duplicated for the destination
group (and the scene ID fields are ignored)

If bit O is set to ‘0’ then a single scene will be copied
® yl6FromGroupld is the source group ID
= u8FromSceneld is the source scene ID (ignored for ‘copy all scenes’ mode)
® ul6ToGroupld is the destination group ID
® u8ToSceneld is the destination scene ID (ignored for ‘copy all scenes’ mode)

JN-UG-3103 v1.4 © NXP Laboratories UK 2017 183

Chapter 9
Scenes Cluster

9.7.3 Custom Command Responses

The Scenes cluster generates responses to certain custom commands. The
responses which contain payloads are detailed below:

Add Scene Response Payload
typedef struct

{
zenum8 eStatus;
uintl6 ul6Groupld;
uints8 u8Sceneld;

} tsCLD_ScenesAddSceneResponsePayload;

where:
®m eStatus is the outcome of the Add Scene command (success or invalid)
= ul16Groupld is the group ID with which the added scene is associated
®= u8Sceneld is the scene ID of the added scene

View Scene Response Payload
typedef struct

{
zenum8 eStatus;
uintl6 ul6Groupld;
uints u8Sceneld;
uintl6 ul6TransitionTime;
tsZCL_CharacterString sSceneName;

tsCLD_ScenesExtensionField sExtensionField;
} tsCLD_ScenesViewSceneResponsePayload;

where:
®m eStatus is the outcome of the View Scene command (success or invalid)
® ul6Groupld is the group ID with which the viewed scene is associated
® u8Sceneld is the scene ID of the viewed scene

® yl6TransitionTime is the amount of time, in seconds, that the device will take
to switch to the viewed scene

®m sSceneName is an optional character string (of up to 16 characters)
representing the name of the viewed scene

= sExtensionField is a structure containing the attribute values of the clusters
to which the viewed scene relates

184 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

ZigBee Cluster Library
User Guide

Remove Scene Response Payload
typedef struct

{
zenum8 eStatus;
uintl6 ul6Groupld;
uint8 u8Sceneld;

} tsCLD_ScenesRemoveSceneResponsePayload;

where:
® eStatus is the outcome of the Remove Scene command (success or invalid)
® yl6Groupld is the group ID with which the removed scene is associated
® u8Sceneld is the scene ID of the removed scene

Remove All Scenes Response Payload

typedef struct
{

zenum8 eStatus;
uintl6 ul6Groupld;
} tsCLD_ScenesRemoveAl 1ScenesResponsePayload;

where:

®m eStatus is the outcome of the Remove All Scenes command (success or
invalid)

= yl6Groupld is the group ID with which the removed scenes are associated

Store Scene Response Payload
typedef struct

{
zenum8 eStatus;
uintl6 ul6Groupld;
uint8 u8Sceneld;

} tsCLD_ScenesStoreSceneResponsePayload;

where:
® eStatus is the outcome of the Store Scene command (success or invalid)
® ul6Groupld is the group ID with which the stored scene is associated
® u8Sceneld is the scene ID of the stored scene

JN-UG-3103 v1.4 © NXP Laboratories UK 2017 185

Chapter 9
Scenes Cluster

Get Scene Membership Response Payload
typedef struct

{
zenum8 eStatus;
uints u8Capacity;
uintl6 ul6Groupld;
uints u8SceneCount;
uints *pu8SceneList;

} tsCLD_ScenesGetSceneMembershipResponsePayload;

where:

® eStatus is the outcome of the Get Scene Membership command (success or
invalid)

®m y8Capacity isthe capacity of the device’s Scene table to receive more scenes
- that is, the number of scenes that may be added (special values: OXFE means
at least one more scene may be added, a higher value means that the table’s
remaining capacity is unknown)

® yl6Groupld is the group ID to which the query relates
® uB8SceneCount is the number of scenes in the list of the next field

® pu8Scenelistis a pointer to the returned list of scenes from those queried that
exist on the device, where each scene is represented by its scene ID

Enhanced Add Scene Response Payload (ZLL Only)
typedef struct

{
zenum8 eStatus;
uintl6 ul6Groupld;
uints8 u8Sceneld;

} tsCLD_ScenesEnhancedAddSceneResponsePayload;

where:

® eStatus is the outcome of the Enhanced Add Scene command (success or
invalid)

® ul6Groupld is the group ID with which the added scene is associated
® u8Sceneld is the scene ID of the added scene

186 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

ZigBee Cluster Library
User Guide

Enhanced View Scene Response Payload (ZLL Only)
typedef struct

{
zenum8 eStatus;
uintl6 ul6Groupld;
uints u8Sceneld;
uintl6 ul6éTransitionTime;
tsZCL_CharacterString sSceneName;

tsCLD_ScenesExtensionField sExtensionField;
} tsCLD_ScenesEnhancedViewSceneResponsePayload;

where:

®= eStatus is the outcome of the Enhanced View Scene command (success or
invalid)

= ul6Groupld is the group ID with which the viewed scene is associated
®m u8Sceneld is the scene ID of the viewed scene

® yl6TransitionTime is the amount of time, in seconds, that the device will take
to switch to the viewed scene

®m sSceneName is an optional character string (of up to 16 characters)
representing the name of the viewed scene

= sExtensionField is a structure containing the attribute values of the clusters
to which the viewed scene relates
Copy Scene Response Payload (ZLL Only)
typedef struct

{
uints8 u8Status;
uintl6 ul6FromGroupld;
uints8 u8FromSceneld;

} tsCLD_ScenesCopySceneResponsePayload;

where:

®m y8Status is the outcome of the Copy Scene command (success, invalid scene
or insufficient space for new scene)

= yl6FromGroupld was the source group ID for the copy
= u8FromSceneld was the source scene ID for the copy

JN-UG-3103 v1.4 © NXP Laboratories UK 2017 187

Chapter 9
Scenes Cluster

9.8 Enumerations

9.8.1 teCLD Scenes_ClusterlD

The following structure contains the enumerations used to identify the attributes of the
Scenes cluster.

typedef enum

{
E_CLD_SCENES_ATTR_ID_SCENE_COUNT = 0x0000, /* Mandatory */
E_CLD_SCENES_ATTR_ID_CURRENT_SCENE, /* Mandatory */
E_CLD_SCENES_ATTR_ID_CURRENT_GROUP, /* Mandatory */
E_CLD_SCENES_ATTR_ID_SCENE_VALID, /* Mandatory */
E_CLD_SCENES_ATTR_ID_NAME_SUPPORT, /* Mandatory */
E_CLD_SCENES_ATTR_ID_LAST CONFIGURED_BY /* Optional */

} teCLD_Scenes_ClusterliD;

9.9 Compile-Time Options
To enable the Scenes cluster in the code to be built, it is necessary to add the following
to the zcl_options.h file:
#define CLD_SCENES

In addition, to include the software for a cluster client or server or both, it is necessary
to add one or both of the following to the same file:

#define SCENES_CLIENT
#define SCENES_SERVER

The Scenes cluster contains macros that may be optionally specified at compile-time
by adding some or all the following lines to the zcl_options.h file.

Add this line to enable the optional Last Configured By attribute:
#define CLD_SCENES_ATTR_LAST_ CONFIGURED_BY

Add this line to configure the maximum length of the Scene Name storage:
#define CLD_SCENES_MAX_SCENE_NAME_LENGTH (16)

Add this line to configure the maximum number of scenes:
#define CLD_SCENES_MAX_NUMBER_OF_SCENES (16)

Add this line to configure the maximum number of bytes available for scene storage:
#define CLD_SCENES_MAX_SCENE_STORAGE_BYTES (20)

188 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

ZigBee Cluster Library
User Guide

Further, enhanced functionality is available for the ZigBee Light Link (ZLL) profile and
must be enabled as a compile-time option - for more information, refer to the ZigBee
Light Link User Guide (JN-UG-3091).

JN-UG-3103 v1.4 © NXP Laboratories UK 2017 189

Chapter 9
Scenes Cluster

190 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

ZigBee Cluster Library
User Guide

10. On/Off Cluster

This chapter describes the On/Off cluster which is defined in the ZCL.
The On/Off cluster has a Cluster ID of 0x0006.

10.1 Overview

The On/Off cluster allows a device to be put into the ‘on’ and ‘off’ states, or toggled
between the two states. In the case of the ZigBee Light Link profile, the cluster also
provides the following enhanced functionality:

= When switching off light(s) with an effect, saves the last light (attribute) settings
to a global scene, ready to be re-used for the next switch-on from the global
scene - see Section 10.4.2 and Section 10.5

= Allows light(s) to be switched on for a timed period (and then automatically
switched off) - see Section 10.4.3

To use the functionality of this cluster, you must include the file OnOff.h in your
application and enable the cluster by defining CLD_ONOFF in the zcl_options.h file.

It is also necessary to enable the cluster as a server or client, or as both:

= The cluster server is able to receive commands to change the on/off state of
the local device.

= The cluster client is able to send commands to the server to request a change
to the on/off state of the remote device.

The inclusion of the client or server software must be pre-defined in the application’s
compile-time options (in addition, if the cluster is to reside on a custom endpoint then
the role of client or server must also be specified when creating the cluster instance).

The compile-time options for the On/Off cluster are fully detailed in Section 10.9.

JN-UG-3103 v1.4 © NXP Laboratories UK 2017 191

Chapter 10
On/Off Cluster

10.2 On/Off Cluster Structure and Attribute

The structure definition for the On/Off cluster is:

typedef struct
{

zbool bOnOfT;

#ifdeFf CLD_ONOFF_ATTR_ID_ON_CONFIGURABLE_DURATION
zuintl6 uléOnConfigurableDuration;
#endif

#ifdeFf CLD_ONOFF_ATTR_ID_DURATION_UNIT_OF MEASUREMENT
zenum8 eDurationUnitOfMeasurement;
#endi

#ifdeFf CLD_ONOFF_ATTR_ID_MAX DURATION
zuintl6 ul6MaxDuration;
#endif

#ifdef CLD_ONOFF_ATTR_GLOBAL_SCENE_CONTROL
zbool bGlobalSceneControl ;
#endif

#ifdef CLD_ONOFF_ATTR_ON_TIME
zuintl6 uleonTime;
#endif

#ifdef CLD_ONOFF_ATTR_OFF _WAIT_TIME
zuintl6 ul6OffWaitTime;
#endif

} tsCLD_OnOff;

where:
= bOnOFF is the on/off state of the device (TRUE = on, FALSE = off)

= yleOnConfigurableDuration is an optional attribute indicating the time-
duration for which the ‘on’ state will be maintained before automatically
switching to the ‘off’ state after receiving an ‘On’ command. The unit of
measure for this time-duration is specified in the attribute
eDurationUnitOfMeasurement (below). The value must be less than or
equal to that of ul6MaxDuration (below). The special values 0x0000 and
OXFFFF indicate that the device will remain in its current state on receiving the

192 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

ZigBee Cluster Library
User Guide

command. This attribute provides a more flexible alternative to the Ontime
attribute (for ZLL)

= eDurationUnitOfMeasurement is an optional attribute specifying the unit of
measure for the ‘Duration’ attributes. The value indicates the power of 10
seconds, as follows:

Value Unit
0x00 10%
0x01 108s
0x02 103s
0x03 1s
0x04 1073s
0x05 106s
0x06 10%

0x07 - OxFF Reserved

= ul6MaxDuration is an optional attribute indicating the maximum time-
duration for which the ‘on’ state can be maintained before automatically
switching to the ‘off’ state after receiving an ‘On’ command. The unit of
measure for this maximum time-duration is specified in the attribute
eDurationUnitOfMeasurement (above). This limit cannot be exceeded by
any other duration values, e.g. ul60nConfigurableDuration.

= pbGlobalSceneControl is an optional ZLL attribute that is used with the
global scene - the value of this attribute determines whether to permit saving
the current light settings to the global scene:

TRUE - Current light settings can be saved to the global scene
FALSE - Current light settings cannot be saved to the global scene

= ul160nTime is an optional ZLL attribute used to store the time, in tenths of a
second, for which the lights will remain ‘on’ after a switch-on with ‘timed off’
(i.e. the time before starting the transition from the ‘on’ state to the ‘off’ state).
The special values 0x0000 and OXFFFF indicate the lamp must be maintained
in the ‘on’ state indefinitely (no timed off)

= yl60FfWaitTime is an optional ZLL attribute used to store the waiting time, in
tenths of a second, following a ‘timed off’ before the lights can be again
switched on with a ‘timed off’

) Note: If the bGlobalSceneControl attribute and
“ global scene are to be used, the Scenes and Groups

clusters must also be enabled - see Chapter 9 and
Chapter 8.

JN-UG-3103 v1.4 © NXP Laboratories UK 2017 193

Chapter 10

On/Off Cluster

10.3 Initialisation

The function eCLD_OnOffCreateOnOff() is used to create an instance of the On/Off
cluster. The function is generally called by the initialisation function for the host device.

» Note: In the case of ZigBee Light Link, if the global

' scene is to be used to remember light settings then

Scenes and Groups cluster instances must also be
created - see Chapter 9 and Chapter 8.

10.4 Sending Commands

The NXP implementation of the ZCL provides functions for sending commands
between an On/Off cluster client and server. A command is sent from the client to one
or more endpoints on the server. Multiple endpoints can usually be targeted using
binding or group addressing.

10.4.1 Switching On and Off

A remote device (supporting the On/Off cluster server) can be switched on, switched
off or toggled between the on and off states by calling the function
eCLD_OnOffCommandSend() on a cluster client. In the case of a toggle, if the
device is initially in the on state it will be switched off and if the device is initially in the
off state it will be switched on.

10.4.1.1 Timeout on the ‘On’ Command

On receiving an 'On' command, a timeout can be applied such that the 'on' state will
be maintained for a specified duration before automatically switching to the 'off' state.
This timeout is defined using the optional attributes u160nConfigurableDuration
and eDurationUnitOfMeasurement. The timeout duration in seconds is given by:

uléOnConfigurableDuration * 10" (power from eDurationUnitOfMeasurement)

The attribute ul60nConfigurableDuration can be set locally or remotely, while
the attribute eDurationUnitOfMeasurement must be set locally. A maximum
timeout duration can be defined locally via the optional attribute ul6MaxDuration,
which puts an upper limit on the value of ul60nConfigurableDuration.

The attribute ul60nConfigurableDuration can be set remotely using the
eZCL_SendWriteAttributesRequest() function. On receiving this write request, the
local ZCL will check that the requested duration is within the permissible range (see
Section 2.2.2.1) - if the request exceeds the maximum permitted value, the timeout
duration will be clipped to this maximum.

For full details of the above attributes, refer to Section 10.2.

194

© NXP Laboratories UK 2017 JN-UG-3103 v1.4

ZigBee Cluster Library
User Guide

When an ‘On’ command is received, an E_ZCL_CBET_CLUSTER_CUSTOM eventis
generated. The application is responsible for implementing the timeout described
above, if it is enabled. First, the application must check the attributes
uléOnConfigurableDuration and eDurationUnitOfMeasurement to make
sure they have valid values. If this is the case, the application must start a timer to
implement the timeout for the duration defined by these attributes. On expiration of the
timer, the application must switch from the ‘on’ state to the ‘off’ state by (locally) writing
to the bONOFT attribute.

10.4.1.2 Profile-specific Features

Note the following:

= For the ZigBee Light Link profile, a fourth option is available in the above
function. This is to switch on with light settings retrieved for a global scene - for
more information, refer to Section 10.5.

= For the Home Automation profile, if the Level Control cluster (see Chapter 12)
is also used on the target device, an ‘On’ or ‘Off command can be implemented
with a transition effect, as follows:

If the optional Level Control ‘On Transition Time’ attribute is enabled, an
‘On’ command will result in a gradual transition from the ‘off’ level to the
‘on’ level over the time-interval specified by the attribute.

If the optional Level Control ‘Off Transition Time’ attribute is enabled, an
‘Off command will result in a gradual transition from the ‘on’ level to the
‘off’ level over the time-interval specified by the attribute.

10.4.2 Switching Off Lights with Effect (ZLL Only)

In the case of the ZigBee Light Link profile, lights can be (remotely) switched off with
an effect by calling the function eCLD_OnOffCommandOffWithEffectSend() on an
On/Off cluster client.

Two ‘off effects’ are available and there are variants of each effect:
= Fade, with the following variants:
Fade to off in 0.8 seconds (default)
Reduce brightness by 50% in 0.8 seconds then fade to off in 4 seconds
No fade
= Rise and fall, with (currently) only one variant:

Increase brightness by 20% (if possible) in 0.5 seconds then fade to off in
1 second (default)

JN-UG-3103 v1.4 © NXP Laboratories UK 2017 195

Chapter 10
On/Off Cluster

10.4.3 Switching On Timed Lights (ZLL Only)

In the case of the ZigBee Light Link profile, lights can be switched on temporarily and
automatically switched off at the end of a timed period. This kind of switch-on can be
initiated remotely using the function CLD_OnOffCommandOnWithTimedOffSend()
on an On/Off cluster client. In addition, a waiting time can be implemented after the
automatic switch-off, during which the lights cannot be switched on again using the
above function (although a normal switch-on is possible).

The following values must be specified:
= Time for which the lights will remain on (in tenths of a second)
= Waiting time following the automatic switch-off (in tenths of a second)

In addition, the circumstances in which the command can be accepted must be
specified - that is, accepted at any time (except during the waiting time) or only when
the lights are already on. The latter case can be used to initiate a timed switch-off.

10.5 Saving Light Settings (ZLL Only)

In the case of the ZigBee Light Link profile, the current light (attribute) settings can be
automatically saved to a ‘global scene’ when switching off the lights using the function
eCLD_OnOffCommandOffWithEffectSend(). If the lights are subsequently switched
on with the E_CLD_ONOFF_CMD_ON_RECALL_GLOBAL_SCENE option in
eCLD_OnOffCommandSend(), the saved light settings are re-loaded. In this way,
the system remembers the last light settings used before switch-off and resumes with
these settings at the next switch-on. This feature is particularly useful when the light
levels are adjustable using the Level Control cluster (Chapter 12) and/or the light
colours are adjustable using the Colour Control cluster (Chapter 21).

The attribute values corresponding to the current light settings are saved (locally) to a
global scene with scene ID and group ID both equal to zero. Therefore, to use this
feature:

m Scenes cluster must be enabled and a cluster instance created
m Groups cluster must be enabled and a cluster instance created
= Optional On/Off cluster attribute bGlobalSceneControl must be enabled

The above attribute is a boolean which determines whether to permit the current light
settings to be saved to the global scene. The attribute is set to FALSE after a switch-
off using the function eCLD_OnOffCommandOffWithEffectSend(). Itis setto TRUE
after a switch-on or a change in the light settings (attributes) - more specifically, after
a change resulting from a Level Control cluster ‘Move to Level with On/Off’ command,
from a Scenes cluster ‘Recall Scene’ command, or from an On/Off cluster 'On'
command or 'On with Recall Global Scene' command.

196 © NXP Laboratories UK 2017 JN-UG-3103 v1.4

ZigBee Cluster Library
User Guide

10.6 Functions

The following On/Off cluster functions are provided in the NXP implementation of the

ZCL:

Function Page
eCLD_OnOffCreateOnOff 198
eCLD_OnOffCommandSend 200
eCLD_OnOffCommandOffWithEffectSend 202
eCLD_OnOffCommandOnWithTimedOffSend 204

JN-UG-3103 v1.4 © NXP Laboratories UK 2017 197

Chapter 10
On/Off Cluster

eCLD_OnOffCreateOnOff

teZCL_Status eCLD_OnOffCreateOnOff(
tsZCL_ClusterIinstance *psClusterinstance,
bool t bisServer,
tsZCL_ClusterDefinition *psClusterDefinition,
void *pvEndPointSharedStructPtr,
uint8 *pu8AttributeControlBits,
tsCLD_OnOffCustomDataStructure

*psCustomDataStructure);

Description

This function creates an instance of the On/Off cluster on an endpoint. The cluster
instance is created on the endpoint which is associated with the supplied
tsZCL_ClusterlInstance structure and can act as a server or a client, as
specified.

The function should only be called when setting up a custom endpoint containing one
or more selected clusters (rather than the whole set of clusters supported by a
standard ZigBee device). This function will create an On/Off cluster instance on the
endpoint, but instances of other clusters may also be created on the same endpoint
by calling their corresponding creation functions.

Note: This function must not be called for an endpoint on
which a standard ZigBee device will be used. In this case, the
device and its supported clusters must be registered on the
endpoint using the relevant device registration function.

When used, this function must be the first On/Off cluster function called in the
application, and must be called after the stack has been started and after the
application profile has been initialised.

The function requires an array to be declared for internal use, which contains one
element (of type uint8) for each attribute of the cluster. The array length should
therefore equate to the total number of attributes supported by the On/Off cluster,
which can be obtained by using the macro
CLD_ONOFF_MAX_NUMBER_OF_ATTRIBUTE.

The array declaration should be as follows:

uint8
au8AppOnOFffClusterAttributeControlBits[CLD_ONOFF_MAX_NUMBER_OF_ATTRIBUTE];

The function will initialise the array elements to zero.

Parameters

psClusterinstance Pointer to structure containing information about the
cluster instance to be created (see Section 34.1.16).
This structure will be updated by the fu