Using the 5.0 A 1.0 MHz Fully Integrated Dual Switch-Mode Power Supply (KIT34717EPEVBE)

1 Introduction

This User's Guide will help the designer get better acquainted with the 34717 IC and Evaluation board. It contains a procedure to configure each block of the 34717 in a practical way, which is based on a working Evaluation Board designed by Freescale (KIT34717EPEVBE).

2 34717 Specification

The 34717 is a highly integrated, space efficient, low cost, dual synchronous buck switching regulator with integrated N-channel power MOSFETs. It is a high performance dual point-of-load (PoL) power supply with many desired features for the 3.3 V and 5.0 V environments.

Both channels can provide up to 5.0 A of continuous output current capability with high efficiency and tight output regulation. The second channel has the ability to track an external reference voltage in different configurations.
3 Application Diagram

Figure 1. Application diagram for 34717

4 Board’s Specifications

The Board was designed to have an operating range defined by:

<table>
<thead>
<tr>
<th>Channel #1</th>
<th>Channel #2</th>
</tr>
</thead>
<tbody>
<tr>
<td>PVIN_MAX</td>
<td>6.0 V</td>
</tr>
<tr>
<td>PVIN_MIN</td>
<td>3.0 V</td>
</tr>
<tr>
<td>VOUT_MAX</td>
<td>3.6 V</td>
</tr>
<tr>
<td>VOUT_MIN</td>
<td>0.7 V</td>
</tr>
<tr>
<td>IOUT_MAX</td>
<td>5.0 A</td>
</tr>
<tr>
<td>IOUT_MIN</td>
<td>0.0 A</td>
</tr>
</tbody>
</table>
5 Component Selection for 34717 Eval Board

5.1 I/O Parameters:
VIN = P_{VIN1} = P_{VIN2} = 5.0V
FSW = 1 MHz
V_{OUT1} = 1.8 V
I_{OUT1} = 5.0 A
V_{OUT1} = 1.5 V
I_{OUT2} = 5.0 A
VREFIN = V_{OUT1}

5.2 Configuring the Output Voltage:
Both channels for the 34717 are General purpose DC-DC converter, the resistor divider to the INV node is the responsible for setting the output voltage. The equation is:

\[V_{OUT} = V_{REF} \left(\frac{R_1}{R_2} + 1 \right) \]

For channel 1: \(V_{REF} = V_{BG} = 0.7V \).

For channel 2: The second channel of 34717 has an internal reference selector, thus \(V_{REF} \) can be either the voltage at the VREFIN terminal, or the internal reference voltage \(V_{BG} \). The reference value is given by the following condition: \(V_{REF} = V_{REFIN} \) if \(V_{REFIN} \) is less than \(V_{BG} = 0.7V \). Otherwise, \(V_{REF} = V_{BG} \). Usually the output regulation voltage is calculated using the internal reference \(V_{BG} \), and the condition \(V_{REF} = V_{REFIN} \) is used for tracking purposes.

Then, for channel 1 at 1.8 V, we choose \(R_1 = 20K\Omega \) and \(R_2 \) is calculated.

\[R_2 = \frac{V_{REF} R_1}{V_{OUT} - V_{REF}} = 12.78K\Omega \]

And for channel 2 at 1.5V and \(R_1 = 20K\Omega \), \(R_2 \) is calculated as follows:

\[R_2 = \frac{V_{REF} R_1}{V_{OUT} - V_{REF}} = 17.5K\Omega \]
5.3 Switching Frequency Configuration

The switching frequency will have a value of 1.0 MHz by connecting the FREQ terminal to the GND. If the smallest frequency value of 200 KHz is desired, then connect the FREQ terminal to VDDI. To program the switching frequency to another value, an external resistor divider will be connected to the FREQ terminal to achieve the voltages given by the Frequency Selection Table.

<table>
<thead>
<tr>
<th>Frequency KHz</th>
<th>Voltage applied to pin FREQ [V]</th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td>2.341 – 2.500</td>
</tr>
<tr>
<td>253</td>
<td>2.185 - 2.340</td>
</tr>
<tr>
<td>307</td>
<td>2.029 - 2.184</td>
</tr>
<tr>
<td>360</td>
<td>1.873 - 2.028</td>
</tr>
<tr>
<td>413</td>
<td>1.717 – 1.872</td>
</tr>
<tr>
<td>466</td>
<td>1.561 – 1.716</td>
</tr>
<tr>
<td>520</td>
<td>1.405 - 1.560</td>
</tr>
<tr>
<td>573</td>
<td>1.249 - 1.404</td>
</tr>
<tr>
<td>627</td>
<td>1.093 - 1.248</td>
</tr>
<tr>
<td>680</td>
<td>0.936 - 1.092</td>
</tr>
<tr>
<td>733</td>
<td>0.781 - 0.936</td>
</tr>
<tr>
<td>787</td>
<td>0.625 - 0.780</td>
</tr>
<tr>
<td>840</td>
<td>0.469 - 0.624</td>
</tr>
<tr>
<td>893</td>
<td>0.313 - 0.468</td>
</tr>
<tr>
<td>947</td>
<td>0.157 - 0.312</td>
</tr>
<tr>
<td>1000</td>
<td>0.000 - 0.156</td>
</tr>
</tbody>
</table>

Table 1. Frequency Selection Table

The EVB frequency is set to 1 MHz, connecting the FREQ terminal directly to GND.
5.4 Selecting Inductor

Inductor calculation process is the same for both Channels. The equation is the following:

\[L = D'_{\text{MAX}} \cdot T \cdot \frac{(V_{\text{OUT}} + I_{\text{OUT}} \cdot (R_{\text{ds(on)}} \cdot l_s + r_w))}{\Delta I_{\text{OUT}}} \]

\[D'_{\text{MAX}} = 1 - \frac{V_{\text{OUT}}}{V_{\text{in}} \cdot \text{max}} \]

\[T = 1\mu s \]

\[R_{\text{ds(on)}} \cdot l_s = 45m\Omega \]

\[R_w = 10m\Omega \]

\[\Delta I_{\text{OUT}} = 0.4 \cdot I_{\text{OUT}} \]

\[L1 = 0.72\mu H \quad \text{and} \quad L2 = 0.75\mu H \]

However, since channel 1 can serve as power supply for channel 2, we have to locate the LC poles at different frequencies in order to ensure that the input impedance of the second converter is always higher than the output impedance of the first converter and thus ensure system stability. To move the LC poles, we can select different values of “L” for each channel, for instance, L1 = 1.0\mu H and L2 = 1.5\mu H, to allow some operating margin for each channel.

5.5 Input Capacitors for PVIN1 and PVIN2

Input capacitor selection process is the same for both channels, and should be based on the current ripple allowed on the input line. The input capacitor should provide the ripple current generated during the inductor charge time. This ripple is dependent on the output current sourced by 34717 so that:

\[I_{\text{RMS}} = I_{\text{OUT}} \sqrt{D(1-D)} \]

Where:

- \(I_{\text{RMS}} \) is the RMS value of the input capacitor current.
- \(I_{\text{OUT}} \) is the output current,
- \(D = V_{\text{OUT}}/V_{\text{in}} \) is the duty cycle.

For a buck converter, \(I_{\text{RMS}} \) has its maximum at \(\text{PVIN} = 2V_{\text{OUT}} \).
Since

\[I_{RMS_{MAX}} = \sqrt{\frac{P_{MAX}}{ESR}} \]

Where \(P_{MAX} \) is the maximum power dissipation of the capacitor and is a constant based on physical size (generally given in the datasheets under the heading AC power dissipation.). We derive that the lower the ESR, the higher would be the ripple current capability. In other words, a low ESR capacitor (i.e., with high ripple current capability) can withstand high ripple current levels without overheating.

Therefore, for greater efficiency and because the overall voltage ripple on the input line also depends on the input capacitor ESR, we recommend using low ESR capacitors.

\[C_{IN_{MIN}} = \frac{0.5 \cdot L \cdot (I_{RMS})^2}{\Delta V_{OUT} \cdot V_{IN}} \]

For a \(\Delta V_{OUT} = 0.5 \cdot V_{IN} \), Then \(C_{IN_{MIN}} = 30.4 \mu F \)

To ensure better performance on regulation, an array of low ESR ceramic capacitors were used to get a total of 300 \(\mu F \) in both input terminals.

5.6 Selecting the Output Filter Capacitor

For the output capacitor, the following considerations are most important and not the actual Farad value: the physical size, the ESR of the capacitor, and the voltage rating. Calculate the minimum output capacitor using the following formula:

\[C_o = \frac{\Delta I_{OUT}}{8 \cdot F_{SW} \cdot \Delta V_{OUT}} \]

A more significative calculation must include the transient response in order to calculate the real minimum capacitor value and assure a good performance.
5.7 **Bootstrap Capacitor**

Freescale recommends a 0.1 μF for capacitor C_{BOOT1} and C_{BOOT2}.

5.8 **Compensation Network**

Compensation network is calculated exactly in the same way for both channels. Since we are using different values for L, the LC poles will be located at different frequencies to ensure stability of the system when converter 1 is supplying the power voltage of converter 2.

1. Choose a value for R_1 (in this case, $R_1 = 20kΩ$ for both channels)

2. Using a Crossover frequency of 100 kHz, set the Zero pole frequency to $F_{cross}/10$

$$F_{po} = \frac{1}{10} F_{cross} = \frac{1}{2\pi * R_1 C_F}$$

$$C_F = \frac{1}{2\pi * R_1 F_{po}}$$

3. Knowing the LC frequency, the Frequency of Zero 1 and Zero 2 in the compensation network are equal to F_{LC}

$$F_{LC} = \frac{1}{2\pi \sqrt{L_x C_{ox}}} = F_{Z_1} = F_{Z_2}$$

$$F_{Z_1} = \frac{1}{2\pi * R_F C_F}$$

$$F_{Z_2} = \frac{1}{2\pi * R_S C_S}$$

$$R_F = \frac{1}{2\pi * C_F F_{Z_1}}$$

$$C_S = \frac{1}{2\pi * R_S F_{Z_2}}$$

4. Calculate R_S by placing the first pole at the ESR zero frequency.
Using the 34717, Rev. 3.0

Component Selection for 34717 Eval Board

\[F_{ESR} = \frac{1}{2\pi C_x ESR} = F_{P1} \]
\[F_{P1} = \frac{1}{2\pi R_s C_s} \]
\[R_s = \frac{1}{2\pi F_{P1} C_s} \]

5. Set the second pole at Crossover Frequency to achieve a faster response and a proper phase margin.

\[F_{P2} = \frac{1}{2\pi R_F \frac{C_F C_x}{C_F + C_x}} \]
\[C_x = \frac{C_F}{2\pi R_F C_F F_{P2} - 1} \]

<table>
<thead>
<tr>
<th>For Channel 1</th>
<th>For Channel 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLC = 9.19 KHz</td>
<td>FLC = 7.5 KHz</td>
</tr>
<tr>
<td>(F_{ESR} = 265.26 \text{ KHz (For ESR = 2.0m}\Omega))</td>
<td>(F_{ESR} = 265.26 \text{ KHz (For ESR = 2.0m}\Omega))</td>
</tr>
<tr>
<td>(F_{CROSS} = 100 \text{ KHz})</td>
<td>(F_{CROSS} = 100 \text{ KHz})</td>
</tr>
<tr>
<td>(F_{PO} = 10 \text{ KHz})</td>
<td>(F_{PO} = 10 \text{ KHz})</td>
</tr>
<tr>
<td>R1 = 20 K\Omega</td>
<td>R1 = 20 K\Omega</td>
</tr>
<tr>
<td>C_F = 0.75 nF</td>
<td>C_F = 1.8 nF</td>
</tr>
<tr>
<td>R_F = 22 K\Omega</td>
<td>R_F = 15 K\Omega</td>
</tr>
<tr>
<td>C_S = 0.91 nF</td>
<td>C_S = 1 nF</td>
</tr>
<tr>
<td>R_S = 0.560 K\Omega</td>
<td>R_S = 300 K\Omega</td>
</tr>
<tr>
<td>C_X = 0.015 nF</td>
<td>C_X = 0.020 nF</td>
</tr>
</tbody>
</table>

5.9 Soft Start

Table 2 shows the voltage that should be applied to terminals ILIM1 and ILIM2 to get the desired configuration of the soft start. The voltage can be achieved by connecting a resistor divided from Output VDDI (2.5V) to the ILIM Terminals.

<table>
<thead>
<tr>
<th>Soft Start [ms]</th>
<th>Voltage applied to ILIM</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.2</td>
<td>1.25 - 1.49V</td>
</tr>
<tr>
<td>1.6</td>
<td>1.50 - 1.81V</td>
</tr>
<tr>
<td>0.8</td>
<td>1.82 - 2.13V</td>
</tr>
<tr>
<td>0.4</td>
<td>2.14 - 2.50V</td>
</tr>
</tbody>
</table>

Table 2. Soft Start Configuration

ILIM1 and ILIM2 are directly connected to VDDI to achieve a soft start of 0.4ms on both outputs.
5.10 Tracking Configurations

This device allows two tracking configurations: Ratiometric and Co-incidental Tracking.

5.10.1 Ratiometric Tracking

Circuit Configuration:

The master voltage feedback resistor divider network will be used in place of R_3 and R_4 as shown in Figure 4. The slave output is connected through its own feedback resistor divider network to the INV- terminal, resistors R_1 and R_2. All four resistors will affect the accuracy of the system and need to be 1% accurate resistors.

The master voltage must be connected in the way shown to achieve this tracking, and cannot be directly connected to the VREFIN terminal.
Component Selection for 34717 Eval Board

Figure 4. Radiometric Tracking Circuit Connections

Equations:
- $V_M = V_{BG_M}(1+R_3/R_4)$
- $V_{REFIN} = V_M * R_4/(R_3+R_4)$
- $V_{REFOUT} = V_{REFIN}$
- $V_S = V_{REFOUT}(1+R_1/R_2) = V_M * R_4/(R_3+R_4)*(R_2+R_1)/R_2$, if $V_{REFOUT} < V_{BG_S}$
- $V_S = V_{BG_S}(1+R_1/R_2)$, if $V_{REFOUT} \geq V_{BG_S}$

Figure 5. Radiometric Tracking Plot
5.10.2 Co- incidental Tracking

Circuit Configuration:

Connect a three resistor divider to the Master Voltage \(V_M\) and route the upper tap point of the divider to the VREFIN terminal, resistors \(R_3\), \(R_4\), and \(R_5\) as shown in Figure 6. This resistor divider must be the same ratio as the slave output’s \(V_S\) feedback resistor divider, which in turn connects to the INV- terminal, resistors \(R_1\) and \(R_2\) (Condition: \(R_1 = R_3\) and \(R_2 = R_4 + R_5\)). The master’s feedback resistor divider would be \((R_3+R_4)\) and \(R_5\). All five resistors will affect the accuracy of the system and must be 1% accurate resistors.

The master voltage must be connected in the way shown to achieve this tracking, and cannot be directly connected to the VREFIN terminal.

![Diagram of Co- incidental Tracking Circuit Connections](image)

Figure 6. Co- incidental Tracking Circuit Connections

Equations:

- \(V_M = V_{BG-M}[1+(R_3+R_4)/R_5]\)
- \(V_{REFIN} = V_M\ast(R_4+R_5)/(R_3+R_4+R_5)\)
- \(V_{REFOUT} = V_{REFIN}\)
- \(V_S = V_{REFOUT}(1+R_1/R_2) = V_M\ast(R_4+R_5)/(R_3+R_4+R_5)\ast(R_2+R_1)/R_2 = V_M\) if \(V_{REFOUT} < V_{BG_S}\)
- \(V_S = V_{BG_S}(1+R_1/R_2), \) if \(V_{REFOUT} \geq V_{BG_S}\)
5.10.3 Non-DDR Mode (Source Only Mode)

This is the case when no tracking is needed. VREFIN should be connected to VDDI and the reference selection block will use the internal band gap voltage as the Error Amplifier’s reference voltage.

A user can potentially apply a voltage to the VREFIN terminal directly, or through a resistor divider to get a buffered output for use in this application. The condition here is, the voltage applied on VREFIN terminal is larger than V_{BG}, to guarantee that the reference selection block will not switch back to the V_{REFOUT} voltage.

The VREFIN pin on the EVB is **left opened**, so that the user can either connect directly to VOUT1 with a jumper, or use an external master voltage to track, in either of these configurations.
5.11 EVB Schematic Design

Figure 8. KIT34717EPEVBE Schematic Part 1
Figure 9. KIT34717EPEVBE Schematic Part 2
6 Layout Design

Figure 10. PCB Top View Layout Design

Figure 11. PCB Bottom View Layout Design
6.1 PCB Layout Recommendations

- Place decoupling capacitors as close as possible to their corresponding pad(s)
- Try to place all components on just one Layer.
- Do not place a Ground Plane on component and routing side.
- Create a Ground plane layer and tie it to ground signals with vias.
- To effectively transfer heat from the center thermal pad on the top layer to the ground plane, vias need to be used in the center pad. Use 5 to 9 vias spaced evenly with a finished diameter of 0.3mm.
- Place Test vias as close as possible to the IC to ensure a good measurement value.
- PVIN, VIN, VOUT signals have to be tracked with a widely and straight copper area
- Never trace the Feedback signal in parallel to the SW signal.
- Ensure the SW Inductor is placed as close as possible to its pads.
- SW track has to be as thin and short as possible.
- Make sure the I/O connectors are capable to manage the Load current.

Note: Freescale does not recommend connecting the PGND pins to the thermal pad. The thermal pad is connected to the signal ground and should not be used to make the connection from the PGND pins to the ground plane. Doing so can cause ground bounce on the signal ground from the high di/dt switch current and parasitic trace inductance.

Using the 34717, Rev. 3.0
6.2 Bill of Materials

Table 3. BILL OF MATERIALS KIT34717

EVB Number: KIT34717EPEVBE

<table>
<thead>
<tr>
<th>Item</th>
<th>Qty</th>
<th>Reference</th>
<th>Value</th>
<th>Description</th>
<th>Footprint</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>23</td>
<td>VOUT1,SW1,PVIN1,INV1,ILIM1,COMP1,BOOT1,VOUT2,SW2,PVIN2,INV2,ILIM2,COMP2,BOOT2,VREFOUT,VREFIN,VIN,VDDI,STBY,SD,PG,GND,FREQ</td>
<td>not populated</td>
<td>PC Test point miniature SMT</td>
<td>TP</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>C2,C31</td>
<td>1.0 µF</td>
<td>Cap Cer 1.0 µF 6.3V 10% X5R 0603</td>
<td>SM/C_0603</td>
</tr>
<tr>
<td>3</td>
<td>12</td>
<td>C3,C4,C5,C6,C7,C8,C10,C24,C25,C29,C32,C33</td>
<td>100 µF</td>
<td>Cap Cer 100 µF 6.3V 10% X5R 1210</td>
<td>SM/C_1210</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>C9,C26</td>
<td>not populated</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>10</td>
<td>C1,C11,C12,C13,C14,C15,C16,C27,C28,C30</td>
<td>0.1 µF</td>
<td>Cap Cer 0.1 µF 50V 10% X7R 0603</td>
<td>SM/C_0603</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>C17</td>
<td>10 µF</td>
<td>Cap Cer 10 µF 6.3V 20% X5R 0603</td>
<td>SM/C_0603</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>C18</td>
<td>15 pF</td>
<td>Cap Cer 15pF 50V 1% C0G 0603</td>
<td>SM/C_0603</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>C19</td>
<td>750 pF</td>
<td>Cap Cer 750pF 50V 5% C0G 0603</td>
<td>SM/C_0603</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>C20</td>
<td>910 pF</td>
<td>Cap Cer 910pF 50V 5% C0G 0603</td>
<td>SM/C_0603</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>C21</td>
<td>20 pF</td>
<td>Cap Cer 20pF 50V 5% C0G 0603</td>
<td>SM/C_0603</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>C22</td>
<td>1.8 nF</td>
<td>Cap Cer 1800pF 50V 5% C0G 0603</td>
<td>SM/C_0603</td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>C23</td>
<td>1.0 nF</td>
<td>Cap Cer 1000pF 25V 5% C0G 0603</td>
<td>SM/C_0603</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>D1</td>
<td>LED</td>
<td>LED Green 0603 SMD</td>
<td>SM/C_0603</td>
</tr>
<tr>
<td>14</td>
<td>2</td>
<td>D2,D3</td>
<td>not populated</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>1</td>
<td>J1</td>
<td>Pin Header (2 x 5)</td>
<td>HDR 2X5 TH 100mil CTR 330H AU</td>
<td>0.1" (2.54mm)</td>
</tr>
<tr>
<td>16</td>
<td>3</td>
<td>Jumpers</td>
<td>100mils</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>3</td>
<td>J2,J3,J4</td>
<td>not populated</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Layout Design

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>1</td>
<td>J5</td>
<td>not populated</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>1</td>
<td>L1</td>
<td>1.0µH Inductor Power 1.0µH 7.5A SMD</td>
<td>B82464G</td>
</tr>
<tr>
<td>20</td>
<td>1</td>
<td>L2</td>
<td>1.5µH Inductor Power 1.5µH 7.0A SMD</td>
<td>B82464G</td>
</tr>
<tr>
<td>21</td>
<td>2</td>
<td>R1,R4</td>
<td>20kΩ Res MF 20kΩ 1/10W 1% 0603 SMD</td>
<td>SM/C_0603</td>
</tr>
<tr>
<td>22</td>
<td>1</td>
<td>R2</td>
<td>12.7kΩ Res MF 12.7kΩ 1/10W 1% 0603 SMD</td>
<td>SM/C_0603</td>
</tr>
<tr>
<td>23</td>
<td>2</td>
<td>R3,R20</td>
<td>not populated</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>3</td>
<td>R5,R6,R21</td>
<td>not populated</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>1</td>
<td>R7</td>
<td>1kΩ Res MF 1.0kΩ 1/10W 1% 0603</td>
<td>SM/C_0603</td>
</tr>
<tr>
<td>26</td>
<td>1</td>
<td>R10</td>
<td>10kΩ Res MF 10kΩ 1/10W 1% 0603</td>
<td>SM/C_0603</td>
</tr>
<tr>
<td>27</td>
<td>3</td>
<td>R12,R13,R22</td>
<td>not populated</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>4</td>
<td>R8,R9,R11,R16</td>
<td>10kΩ Res MF 10kΩ 1/10W 1% 0603</td>
<td>SM/C_0603</td>
</tr>
<tr>
<td>29</td>
<td>1</td>
<td>R14</td>
<td>560Ω Res MF 560Ω 1/10W 1% 0603</td>
<td>SM/C_0603</td>
</tr>
<tr>
<td>30</td>
<td>1</td>
<td>R15</td>
<td>22kΩ Res MF 22kΩ 1/10W 5% 0603</td>
<td>SM/C_0603</td>
</tr>
<tr>
<td>31</td>
<td>1</td>
<td>R17</td>
<td>17.4kΩ Res MF 17.4kΩ 1/10W 1% 0603</td>
<td>SM/C_0603</td>
</tr>
<tr>
<td>32</td>
<td>1</td>
<td>R18</td>
<td>300Ω Res MF 300Ω 1/10W 5% 0603</td>
<td>SM/C_0603</td>
</tr>
<tr>
<td>33</td>
<td>1</td>
<td>R19</td>
<td>15kΩ Res MF 15kΩ 1/10W 1% 0603</td>
<td>SM/C_0603</td>
</tr>
<tr>
<td>34</td>
<td>1</td>
<td>SD</td>
<td>Push_Button Switch Tact Mini 200GF SLV Gwing</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>1</td>
<td>STBY</td>
<td>not populated Switch Tact Mini 200GF SLV Gwing</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>1</td>
<td>U2</td>
<td>MC34717 QFN_26</td>
<td></td>
</tr>
</tbody>
</table>

Notes: Freescale does not assume liability, endorse, or warrant components from external manufacturers that are referenced in circuit drawings or tables. While Freescale offers component recommendations in this configuration, it is the customer’s responsibility to validate their application.

Using the 34717, Rev. 3.0

Freescale Semiconductor
7 Conclusion

With this User Guide, the user will be capable of configuring the 34717 as a double switching power supply for devices that can make use of some of the capabilities that the 34717 offers. The board is fully configured to work at any desirable input voltage within 3V and 6V. However, it is highly recommended to calculate all components for the specific application situation in order to assure a better efficiency and stability of the IC.

8 References

• 34717 Datasheet, 5A and 5A 1MHz fully integrated double switch-mode power supply, Freescale semiconductor, Inc.
• Application Note “AN1989 MC34701 and MC34702 Component Selection Guide”, Freescale Semiconductor, Inc.
RoHS-compliant and/or Pb-free versions of Freescale products have the functionality and electrical characteristics of their non-RoHS-compliant and/or non-Pb-free counterparts. For further information, see http://www.freescale.com or contact your Freescale sales representative.

For information on Freescale’s Environmental Products program, go to http://www.freescale.com/epp.

Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals", must be validated for each customer application by customer’s technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners.

© Freescale Semiconductor, Inc., 2007-2009. All rights reserved.