F le Semiconduct
reescale semiconauctor M68ICSO05KJOM/D

October 1998

M68ICS05KJ
HC705KJ/J1A IN-CIRCUIT SIMULATOR
OPERATOR’'S MANUAL

© Freescale Semiconductor, Inc., 2004. All rights reserved.

freescale"
© MOTOROLA Inc., 1998; All Rights Reserved smeenauer

rxzb30
ForwardLine

rxzb30
copywithline

How to Reach Us:

Home Page:
www.freescale.com

E-mail:
support@freescale.com

USA/Europe or Locations Not Listed:
Freescale Semiconductor

Technical Information Center, CH370
1300 N. Alma School Road

Chandler, Arizona 85224
+1-800-521-6274 or +1-480-768-2130
support@freescale.com

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7

81829 Muenchen, Germany

+44 1296 380 456 (English)

+46 8 52200080 (English)

+49 89 92103 559 (German)

+33 1 69 35 48 48 (French)
support@freescale.com

Japan:

Freescale Semiconductor Japan Ltd.
Headquarters

ARCO Tower 15F

1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064

Japan

0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor Hong Kong Ltd.
Technical Information Center

2 Dai King Street

Tai Po Industrial Estate

Tai Po, N.T., Hong Kong

+800 2666 8080
support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center
P.O. Box 5405

Denver, Colorado 80217

1-800-441-2447 or 303-675-2140

Fax: 303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com

Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductor products. There are no express or
implied copyright licenses granted hereunder to design or fabricate any integrated
circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to
any products herein. Freescale Semiconductor makes no warranty, representation or
guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability arising out of the application or use of
any product or circuit, and specifically disclaims any and all liability, including without
limitation consequential or incidental damages. “Typical” parameters which may be
provided in Freescale Semiconductor data sheets and/or specifications can and do
vary in different applications and actual performance may vary over time. All operating
parameters, including “Typicals” must be validated for each customer application by
customer’s technical experts. Freescale Semiconductor does not convey any license
under its patent rights nor the rights of others. Freescale Semiconductor products are
not designed, intended, or authorized for use as components in systems intended for
surgical implant into the body, or other applications intended to support or sustain life,
or for any other application in which the failure of the Freescale Semiconductor product
could create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended or
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.

‘freescale

semiconductor

rxzb30
hibbertleft

rxzb30
disclaimer

rxzb30
freescalecolorjpeg

CONTENTS

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION

O = YA T = 11-1
1.2[TOOLKIT COMPONENTS......ccuciiiiiiiiisitsi ittt sttt 11-1

.3 HARDWARE AND SOFTWARE REQUIREMENTS........cccccoiiiiiiiiccisscscc e 11-2

(LA TOOLKIT FEATURES.......ccooiiiiiiiiisssect sttt 11-2

S e = S [N AT NI 11-2

(1.6 ABOUT THIS USER’S MANUALcviiitiiiiitiiiiitiitesiestesaseasessessessasassssessessesaneans b, 1-3
(1.7 QUICK START INSTRUCTIONSeouiiiiitiitiitieieiteiteitieiiesieiteessaseeiessesreaseaseesenes | 1-4
(1.8 CUSTOMER SUPPORTcuiiiiiiitiittitiitestessesseastasiessesssssaassassessessesssaeessessesseassases S 1-6

CHAPTER 2 POD INSTALLATION

O = T = v — }2:1
R.2 INSTALLING THE MB8ICSO5KJ POD........iiuiiitieitieiiiieisieiseeiesssesseesseessessesseesseenns b, 2-1

ICHAPTER 3 SOFTWARE INSTALLATION AND INITIALIZATION|

S =S A 1.3:1

B.2 THE ICSO5KJW SOFTWARE COMPONENTSccooieouiiiieeieeeeieeeeeeeeeiaaaanann | T 3-1
B.2.1 The WINIDE EditOr ...cvieeiieiieieieieeiiiiieeiieeiisiee e i i l.=1....... 3
X S Y [A [3-1.....
B.2.3 ICSOSKIW ...eeieiiieeeieeeeeeies i eeseeeeeeeeeeeesiesseeeeeeeseeeerseeseaiesaneeeneeeesaeeaseesseeaen 13:2.....

B.3 INSTALLING THE ICSO5KJW SOFTWAREeiiiiiiiiiiiiiiiiiiiieieeiiissiiieieeeeeesssseees | 3-2
B.3.1 INSLAlAtION SEPS ...veeiiiiiiiitteeiiiesiiiesseeriressiiaseeeriesssaasseesesessiiaseeertessaasiseessessnns 13-2....
B.3.2 Starting the ICSOS5KIW SOftWAIE.uueeeiiiiiiiiiiirieiiiiiiiiissieieissesssreereeeeererereeeees | TR 3-3
B.3.3 ICS COMMUNICALION ... iittteiiieiiiestteeiiessiissseeersessseesseeereesssasseeersesseiisseerrasaaass |..4........ 3-

M68ICS05KJOM/D i

CONTENTS

CHAPTER4 THE WinIDE USER INTERFACH

BT OV ERVIEW.......oooieeeeeeeeeeeeeeeeeeeeeeeeeeeeveesnessnessaneesnnesaneesnnsennessenseeneesesssseeseneesneesensesnes 14-1
.2 THE WINDOWS INTEGRATED DEVELOPMENT ENVIRONMENT............cccu.......... |14-1
B3 WINIDE MAIN WINDOWoooovieeieeeieeeeeeeeeeeeeeeseeesseesenessnessenessnessneesessesesseeessneessessnees 14-2
.3, 1 Main WINOQOW FUNCHIONS...........c.ooeeeeeeeeeeeeeeeeseeeesevereeseeeeseeessnsneesseeesnsneesseseeenenssneeeeeene |4-2
11.3.2 Main WinAOW COMPONENESoueveeeereeeereeeeeeeeeeereesereeeesessesereesesesseseseessseseesseeseesns |4-2
UAGETTING STARTED ..ottt eeeeeeeeeereeeeesensersesensesseeseeeseeseenes |14-3
¥.4.1 Prerequisites for Starting the WinIlDE EditOr...............oooeooeeoeeeeeeeeeeeeeeeereveeeeraerne. |14-3
.4.2 Starting the WinIDE EQITONooveoeeeeeeeeeeeeeeeeeeeeeeseeeeeeeeeseeeereeeesersseneesenenesenanac l4-4
M.4.3 OPENING SOUICE FILES ...ttt eereereeeeeeeraeeaneenaeeanens l4-4
U.4.4 Navigating in the WINIDE EAItOr...............coououeoeeeeeeeeeeeeeeeeeseeeeseereseseesesensesensesenansnas |4-4
W I e |4-5
4.5ICOMMAND-LINE PARAMETERS.......c.ooooieeeteeeeeeeeeeeeeeeeteeeeeeereeeeeesenseeeesenseenneensensneanas |4-6
.6 WINIDE TOOLBAR........cooveteeeeeeteteeeteeeeeeeeeeseeeeeesnseseesensenassssenssesesesssesssessesseesesssesssenes |14-7
A I =Y = NV 14-9
(4.8 WINIDE FILE OPTION S ... itiiiiiitities it issiertsstaseastataossosensessessesseasesse st snserseesessessesseasesseas 14-11
N YT = 1 = Y 14-11
O] 11N 14-12
R Y S - 14-12
Y eI Y 14-12
e Y = - 14-13
T = 1 14-13
N = 14-14
R = 14-14
BOWINIDE EDIT OPTIONS.......ooioeieieeeeeeeeeeeseeeeeeeeeeeeesseseeneesessareesnnsenneesseeesseesnneesneesnes 14-14
NN 14-14
R 14-15
B.9.3 ClUL .ottt eeeeeeee st saneeannsenneesnneenneesnnsenseesnnsesneesnnseeneesonteeneesnnsesneesenees 14-15
e 14-15
e - |4-16
L |4-16
N ey |4-16
.10 WinIDE ENVIRONMENT OPTIONS.......cooteieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeereereeeeesensenneas |4-16
M.00.1 OPEN PIOJECE ..ot eee et eeeeeeeeeeeeeenseraeeeneeseesesensesseeeneneseranenes l4a-17
B.10.2 SAVE PrOJECE ...ttt e et seereessenseseneesesensesassesasensesssnsassnsesnssnensseseeas |4-18
M.10.3 SAVE PrOJECE AS ...ttt eeeeeeetreeeeeeneeraeeensnsessesensesseeaneneseeanenes |4-18
(.10.4 CIOSE/INEW PIrOJECE.........coeeeeeeeteeeeseeeseeresseesseneeseseesesnsesneesesssesesseseenssecesseseeas |4-18
(.10.5 SEEUD ENVIFONMENTc.covieieeieieeeeeeeieeeeeerseeeeeeesnseseesensenareeesnssesssesesseesesessessnenes 14-18

ii M68ICS05KJOM/D

CONTENTS

CHAPTER4 THE WinIDE USER INTERFACE (continued)

RO Y N o 14-27
.11 WINIDE SEARCH OPTIONS..........oooooieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeenaneeeseneeeseneessnneess |14-28
o T TR 14-29
R - 14-30
R S N 14-30
M09 4 GO TO LINC...oeeeeeeeeeeeeeeeeeeeseeeeeeeeeeneeeensneanseeneeneneanseeesnenssneeenesnensseceens 14-30
.12 WiNIDE WINDOW OPTIONS........cvovieeeeeeeeeeeeeeeeeveeseeerrerereeseseeseseseesneeesesessesnesesncesneneses 14-31
e 14-32
B2 2 THIC coeeeeeeeeeeeeeeeen e eesneeeseeeeensneesneesensneaesneneenensaesnenssnenssesneneenensseseens 14-33
B.12.3 ATTANGE LCONS ...ttt eeesereeseeeeseeereesesenseseneesesensesassesaseesesssnsnssnsessseensseseeas |14-34
(.12 4 MINIMUZE AL oot eeeeeeeeneeseeeeseeeneeeneesesensneesseseeeesnensseeeens 14-35
R 14-36

CHAPTER5 ASSEMBLER INTERFACH

N = T = |51
5.2 CASMOSWASSEMBLER USER INTERFACE ..ot |5-2
b5.2.1 Passing Command Line Parametersto the Assembler in WindowS 3.Xcccc.eee.e... |5-3
5.2.2 Passing Command Line Parameters to the Assembler in Windows 95.........c.ccec.eeeeees 15-4
5.3 ASSEMBLER PARAMETERS. ... iuiiiitisiesiiistastttossssiosiosiasesresrtarsisissssiesasessesressearesreanes 15-4
5.4ASSEMBLER OUTPUTSuiiuiiiuiitiiiisiissiesissssiesessanas 15-5
R Tl 1= |5-5
N Y 1= |5-6
SRR I 15-6
5.4.4 Files from Other ASSEMDIENS.iii i ssesee s e sessesessessessssrssresesrssesanns 15-6
5.5 ASSEMBLER OPTIONS......tiiitiitistiestiseseeesstesssseessssosssssasssossssesasssasssossssssssssssessssseesseeses |5-7
B.5.1 Operands and CONSEANES.oiuiiiiiiiieiteirieseieesseseesssssessesaessessesressesrsasssssssssesseasesreanes 15-7
S Oe 1= A SRR 15-8
5.6 ASSEMBLER DIRECTIVES.iitiitiiiiiiitiitiieiitsisisssssssssessessssssssasssssssssssssssssessssssssssessssses 15-8
S |15-8
A O oY e (s L= VT —— |5-8
5.6.3 CONAILIONG ASSEMDIYeeeeeeeeeeeeeeeeeeeeeeeereeeeeeeeeeseeesneeesneecnesncnsseceens |5-10
AN R 15-10
R e |5-11
B.7 LISTING DIRECTIVES. .. .uiiitiiieitiiitieieiieisessesesecsiesesssssessssessesessessosssssssessssssssssssesssssssanas |5-12
AR L |5-12
N Y |5-14

M68ICS05KJOM/D iii

CONTENTS

CHAPTERS5 ASSEMBLER INTERFACE (continued)

5.8 PSEUDQO OPERATIONS........coioiiiiieeeieeeieeeeeseeesereesenssseessereesreeseesseseesenseseessssesseesensesneesnes |5-15
B.8.1 EQUALE (EQU)ocoeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeaeeeaeaeeasaneeesnneeesaneeesnneeesaneeeseneenn |5-15
5.8.2 FOrm Constant BYLE (FCB)iviiiiiiriieiesiisississsesseisesssssesssssessssssessssssssssessessesseas |5-16
5.8.3 FOrM DOUDIE BYLE (FDB).......oeeeeeeeeeeeeeeeeseeeeveeeeseeeaeneeeseeneanseenesncessececas |5-16
T (e e N |5-16
5.8.5 Reserve Memory BYEE (RMB).........c.ooeeeeeeeeeeeeeeeeeeeeeeeeeveeeseeeesereeeeseeeeseseeesnceesececas |5-16

5.9 ASSEMBLER ERROR MESSAGES.......c.oviteieeeeteeeeeeeeteeeeeeteeteeeeserseeesenseseeeansensenanns |5-17

5.10 USING FILES FROM OTHER ASSEMBLERS..........coooeteeeieeeeeeeeeeeeeeeeeeeerrerseenns |5-19

CHAPTER 6 | CSO5K JW SIMULATOR USER INTERFACH

B.L OVERVIEW........oouieeeeeeeeeeeeeeeeeeeeteteeeeeeeveeeeeenseeeeeeesennesaneenseeaneensesanesnenssnesneeesessnesneeseesnenes |6-1
6.2 THE ICSO5KIW IN-CIRCUIT SIMULATOR.........oveeeteeeeeeeeeteeeteeeeeteeereseeeereensesensenenns 16-1
A S SN EIN E T e |6-1
B.2.2 System Requirements for Running the ICSOSKIWcveuveeeeuveeeeeeereerereerensennns |6-2
R EIEN R e e me 111 T — 16-2
5.3 STARTING ICSOSK IWV ... ieeietieieeierieiessossessssssssssssssossssssssssessesssssssssssssssssssssesssssseessssssssssenes 16-5
S S AN N S 16-7
5.5 CODE WINDOWSoiiuiieiiieiieisietieiessossstessssstasesssosssssesassessrtassssessrsassessrsssesssrssressssssressenes 16-8
6.5.1 To Display the Code Windows SNOrtCUt MENUS.couieeiiieieciiesieciesesiesseeesesseenans 16-8
6.5.2 Code Window Shortcut MenuU FUNCHIONS.ccciiiieiiieiiecisssesicsesssessesssssssssssesssssssssnens 16-8
6.5.3 Code Window Keyboard COMMANGS.........ciieiiiieeiiirisesieieisresesesiesseesessssrssseessssesnans 16-9
5.6 VARIABLES WINDOWV ...ttt itiieiieiisisiisiessseiassissississssssssssssssssasssssssssasesssesssssssssaseseeas 16-10
6.6.1 Displaying the Variables ShortCut MENUccuiiiiiiiieiieiieiiisieiiiseeesesesiesseeseseseseeas 16-10
6.6.2 Variables Window Shortcut Menu OPtioNSciouiiieieeirieiiecieseiessesesessesssssssseseeens 16-10
6.6.3 Variable Window Keyboard COmMMaNGS.........oiiiiiiiiiieiieiieiisieisisesesesessesseesessssseeas l6-11
5.7 MEMORY WINDOWuiiiiiiiitiiitiieiesiissisesiasiesisssseessissssseessssssssesasssesssessssasssssesssssnens 16-12
B.8 STATUSWINDOWooouiiiiieiiieiieeiiiisiseeiseseseesssssessssesssssesssossssssssssssessssssssnesssssssssssessessses 16-13
SN TN oo Y A 16-15
B.9.1 Changing REGISIEr VAIUES..........coueeeueieeeieeeeeieieeieeieeeiesesseeesaessenessessesessesesseesseesas 16-15
6.9.2 CPU Window Keyboard COMMENGSoceeirireeieeeereeiesesesesseesssesssesssesesesesssesesessseas 16-16
B.10 CHIP WINDOW ...ttt eeeeeeeeereeeeseneeneesensereeseesensesseseseseesaesnssenaen 16-16
6.10.1 Reading Values in the Chip WIiNGOWoooeeeeeeeeeeeeeeeeeeeeeeeeeeeveeeererrraenns 16-16
6.10.2 Chip Window Keyboard COMMEBNGScooueeeeeeeeeeeeeeseeeeeereeereeesereeenseeensenecas |6-17
B.11 CY CLESWINDOWcooveeeeeeeeeeeeeeeeeerveeveenseeeneeseeeeseseseesneeseeessnsneaesesnssnsnesesneesncnsses 16-17

iv M68ICS05KJOM/D

CONTENTS

CHAPTER 6 ICSO5KJW SIMULATOR USER INTERFACE (continued)

NS O TN oo Y A 16-18
s s |16-18
5.12.2 SUDIOUEINE SEACK ...ouviviitiisiitiieiisiissseisessessessrasssssesssssssesssssessssssssssssenssseseasesseasesseas 16-19

B.13 TRACE WINDOWooooeeeeeeeeeeeeeeeeeeeeeeeeeenseeeseeeeanseeaesnensensneaesnenssnsnesssneesncnsses 16-19

B.14 BREAKPOINT WINDOWoooeeveeeeeeeeesevereeereeeeseseeeeneeseseseeeseeeesnencesesesnenceeeeeesesnence 16-20
B.14.1 AAUING ABIEAKDOINEceeeeeeeeeeeeeeeeeseeeeereeeeseeeeeeseeesneeesneeenesncnsseceens 16-20
B.14.2 EQItiNG @ BrEaKPOINL.............oeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeereeeesenseeesensenseeeeeeseraeenes |6-21
B.14.3 DElEiNG ABIEAKDOINL............oeeeeveeeeeeeeeeeeeeeereeeesseeeeeeeesereeeneneesesenesenenseseseceracas |6-21
B.14.4 RemoVving All BreaKDOINES.ooeoweeeeeeeeeeeeeeeeeeeeeeeeeeereeeeeensereeeensenreeeesensenaeenes |6-21

5.15 PROGRAMMER WINDOWS........coovitiieeeeeeteeeeeeeeteeeeesetseeeeensereneensensneeesensnesneeessseeaea 16-22

.16 REGISTER BLOCK WINDOW........oooveeeeeeeeeeieeereeseeeseereesseeseeeneeseseesesensesessesesensneeees 16-23

6.17 ENTERING DEBUGGING COMMANDS........coovieieeeeeeeteeeeeeeeteeeeeeereeeesenseeeeesenreeeas 16-24

.18 ICSOSKIW TOOLBAR.........ooeeeeteeeeeeeteteeeeeeteeeesetssseseesenseseesenseseeseesesssesesssreseseessseeseas 16-24

5.19 ICSOSKIW MENUS ..o 16-25

TN = e e NS 16-27
P S 16-28
6.20.2 REI080 LASt S19......coeeeieieeeeieeeee s eres e]6-28
R e EY AN E s o N ——— 16-29
[RS e s I E o 1o TR —— 16-29
[V i T 16-30
N s e e (i1 T= N 16-30
e e i 16-31
S = 16-31

B.21 ICSO5KIW EXECUTE OPTIONSceiitiiiiiiiieiisisieseesseseeessesossssesassssessesssssssesseesnesans 16-32
5.21. 1 RESEL PrOCESSONcuvisiisiisieseiseissessesseissasessssssasssssesssssssessssseasssrsssssssenssssesessesssasessess 16-32
AT o TR 16-32
AR IV T XS = o T 16-33
A 16-33
A 16-33
B.21.6 REDEEE COMIMBNGcoeeeeeseeeeeeeeeeeeseeeeeeeeeeeeeneenseeesnceesneeenesncnsseceens 16-33

.22 |CSOSKIW WINDOW OPTIONS.......ooveeeeeeeeeeeeeeeeeseeeseereereeenseeenseseeeeseseesnsneeesneesncesses 16-34
5.22.1 OPEN WINUOWS.......coooeeeeeeeseereeeeereeeereeeeenseeeeseeeesnseeeesneneenensenseessnenesnenessnensseeeens 16-34
5.22.2 CRANGE COLOIS.......c.eoeeereeeeeenserseeeesesessnsessesseeeneesessnenes 16-34
R e 16-35
P e 16-35

M68ICS05KJOM/D v

CONTENTS

CHAPTER 7 | CSO5K JW DEBUGGING COMMAND SET]

[7.1 OV ERVIEW.......ooieeeeeeeeeeeeeeeseeeeeeeeeeeveesnessnesseneesnnesaneesnnssnnessnnsesneesnesesseeseneesneessesennes 17-1
[7.2 ICSO5KIW COMMAND SYNTAX ...oeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeaeeeeeeeneeesanenesaneessaneeesn |7-2
[7.3 COMMAND-SET SUMMOARY ...ooovieeeeeeeeeeeeeeeeeeeeveeveeeesesseeessnesanessnessnreesencesneeseesesnes 17-3
[7.3. 1 ATQUMENE TYDES. c.ceeeeeeeeeeeeeeeseeeeseveeenseeeeseeeeensnenseneneenenessnensenensesenenssneneseeeeesne |7-3
[7.3.2 COMMANA SUMIMIBIY ...t eeeeeeeeeteeeereesereeeesensesesenseseseseseesesseseesseeesseenes |7-4
[7.4 COMMAND DESCRIPTIONS.......ootoeeeeteeeeeeeeeeeeeteeeeeeeeeeeeeeeereereeeensereerenserseeeeeeseeseenes |7-9

CHAPTER 8 EXAMPL E PROJECT|

RN = = 18-1
B.2 SETTING UP A SAMPLE PROJECToveoveeeeeeeeeeeeeeeveeveeenrereneeseeensesensesneeeseceesnceeseceeas 18-1
B.2.1 St UP thE ENVIFONMENL ...t sser s s ensesnsesesensesansesessesesansnae 18-1
B.2.2 Create the SOUICE FIlES..........oeeeeeeeeeeeeeeeeeeeeeeeeeeeveeseeeresereeseeenseeeneeseseesesensnesseseeeeenes 18-2
B.2.3 ASSEMDIE tNE PrOJECE.........ceeeeeet ettt ss e ees e e seensesesensesensesessesesansna |18-3

IAPPENDIX A S RECORD INFORMATION

NN == |A-1
A2 SRECORD CONTENT ...iiiiiseiessresssstessresesssessessessssessssssessesasesessesssssssssssssssessssasssees |A-1
IA.3 S RECORD TYPES.....iiiiioietieieioioiessssesssosessessssososssssssssasassessssestasssssssesassssssseseosssssssens |A-2
[A.4 SRECORD CREATIONoiioioieieorsresssstosrssssesssesssessesssssssssssossesssssssesssessessssesssessesesssens |A-3
IA.5 SRECORD EXAMPLEouiioiiieiiieiitiesssoiessessssososssssssssosassesesssosasssssssesossssssseseosssssssens |A-3
fA.5.1 The SO HEAO0Er RECOIT. ... eieiieiieeeetieeeseeeetesseseesseeaeeseesseessesseesseaaseseeaseeaneaeeasesseeses |A-4
IA5.2 TRE FITSt SLRECONM.......oceeeeiieeeeeieee ettt eee et et seeeseeseneseesesssnsseeseesaneseesnesneesnee |A-5
A.5.3The SO Termination RECOMccuioeieeestieeseeesteeeeseeeseeseseseesresesesesareeaseaeeasesseeses |A-6
IAS.4 ASCI CROIACLEIS........eeeeeeeeeeeeeeeeeeeeeeeeeeeseeseneeneeeseesaneesnnseenessnneesneesneeesneesneeesns |A-6

APPENDIX B TECHNICAL REFERENCE AND TROUBLESHOOTING

RO = YT = |B-1
B.2 FUNCTIONAL DESCRIPTION OF THE KIT.....coiiouiitiiieiiiisiiiiesiesseresesesesssneeesaesseeeaenans |B-1

S RN TSY S0 U (o TR TR T T U T 1B-2

B 2.2 PrOGOIAMIMING .. viviisiitiieiisiiseesessessssesseessssessssssssesssesssssssesssssesssssssssesesssasssrsssssssssssnnsns 1B-2
B.3 TROUBLESHOOTING THE QUICK START ..ottt sseeeeesessveesneas |B-3
B.4 TROUBLESHOOTING THE PROGRAMMERovoiieiieteeseseeeeeseseseseceseesesssncneeeseeesnces |B-4
B.5 SCHEMATIC DIAGRAM, PARTSLIST, AND BOARD LAYOUT.........oueuu....... |B-5

Vi M68ICS05KJOM/D

CONTENTS

LOSSAR
FIGURES
1-1. WinIDE Environment Settings Dialog EXEL Tab.......cccooveeiieienieseese e 1-5
1-2. WinIDE Environment Settings Dialog Assembler/Compiler Tab.......ccoooeveiiieniineninnenns 1-5
1-3. The WinIDE Debugger Toolbar BUILON.............ccviiiieeiieiie e 1-6
1-4. The WinIDE Assemble/Compile File Toolbar BULTON............ccccoiiiiiiiieiereccesc e 1-6
4-1. WIinIDE WindowW COMPONENLS.........ccieiiieiierieeieeseeseeessesseesseeessseessesssssseessessssssesssesssesseessens 4-2
4-2. WINIDE SEAIUS Blccuiiiiiieitieie sttt sttt sreestesee e b eneesneensesneesneensens 4-3
4-3. Edit SNOMCUL IMIBNU ..ottt bbbttt bbb st e 4-5
-4, MaArKEr SUD-MIBINUc.eeiiiiiiiiesie ettt sttt saesae et e e e e s se e beeneesseenseeneesseensens 4-6
-5, WINIDE TOOIDAcoiiiiiiiiiieieee et bbbttt b e b 4-7
I 1 L= 1V = S 4-11
@01 ol 1= I 1T S 4-12
T AT 01 DI T= oo TSP PP 4-13
S I o] 1Y = T PSRRI 4-14
4-10. ENVIFONMENT IMEINU ...ttt st be e sseesteeneesseenseeneesneenseenee e 4-17
4-11. Specify project file to Open DIdlOg.......ccveveieeriee e 4-17
4-12. Specify project file t0 SAVE DIAl0g.........oieriiiiriirieeeee e s 4-18
4-13. Environment Settings Dialog General Environment Tab..........ccccceevveeveeceeseenesieeseennen, 4-19
4-14. Environment Settings Dialog: General Editor Tab........cccoovveiinenieeieeieiceceeeeeee 4-21
4-15. Environment Settings Dialog: Assembler/Compiler Tab........cccccevveveececeesecie e 4-23
e L o gl 0T 0= I TR 4-26
4-17. Environment Settings Dialog: EXE 1 (Debugger) and EXE 2 (Programmer) Tabs......... 4-26
4-18. SEtUP FONES DIAI0OJ.eeteiuieiieieeieieie ettt b 4-28
4-19. SEAICN MEBNU ...ttt bbbttt et et e b b e b b nes 4-29
4-20. FING DIBIOQ ...ttt sttt b et b et e s b e e b b e neene e s 4-29
A I = o = Tor T D= oo S 4-30
4-22. GO To LiNe NUMDES DI@l0OG......cceeeeierierierieniisieei et s 4-31
4-23. TRE WINUOW MENU ..ottt sttt b bbb enes 4-31
4-24. WinIDE with Subordinate Windows Cascaded...........ccocvreeneriieieeneninneeneeee e 4-32
4-25. WinIDE with Subordinate Windows Tiled.........cccieininiienineneeeeee s 4-33
4-26. WinIDE with One Source Window Displayed and Remaining Windows Minimized.....4-34
4-27. The WinI DE Editor with Subordinate Windows Minimized...........c.ccoccvvvnininencnenenne. 4-35

M68ICS05KJOM/D Vi

CONTENTS

4-28. Cascaded Windows with Active WIindow Split..........cccooeiiiininnienieceeeeseseees 4-36
5-1. WinIDE with CASM0O5W Assembler Window Displayed...........ccccvvveieeveiieeseenesieseenns 5-2
5-2. Windows 95 Program Item Property Sheet (Shortcut Property for CASMO5W.EXE)........ 5-3
5-3. CASMO5W for Windows Assembler Parameters..........ccovevereneneninenieseeseese s 5-4
6-1. Can’'t Contact BOArMIalOg.........ccueueierierieriisii st 6-6
6-2. The ICSO5KIW Windows Default POSITIONS........c.ccoiiiiierinesesiesieses e 6-7
6-3. Code Window in Disassembly Mode with Breakpoint Toggled............ccoceverenenencnenenne 6-8
6-4. Code WiIiNAOW SNOMCUL IMENUccueiuiiieiiie ettt bbb 6-8
6-5. WIindow Base AdAre®ialog.......cccooeeriiiriiiiieeeeeee et 6-9
6-6. Variables Window With ShOrtCUt MENU..........c.eiiiirieiiierese e 6-10
6-7. Add VariablEDIalOgcouireriieeieierese e 6-10
6-8. Memory Window with ShortCUt MENUcceieeiieie e 6-12
6-9. SLALUS WINTOW ...ttt ettt a et e s e st et esseesbeeneesaeeseeeneesneesens 6-13
6-10. Results of Entering the LF Command in the Status Windowcccecveveveevecieeseennns 6-14
6-11. Specify Output LOG FilEDIBlOgcceieriiriirinieieieieseese e 6-14
6-12. The Logfile Already EXISIBAESSA0E.ccciieiiieee e steeie et ae e e 6-14
6-13. CPU Window With ShOrtCUL IMENU.........ccoiiiiiiie et 6-15
6-14. The Change CCRDIAIOQcccoiiieiieieeie sttt e s te et e e st e aesreesaeenesneenens 6-16
6-15. CRIP WINUOW ...ttt b e e b b sne e 6-17
B-16. CYCIES WINUOW ..ottt ettt e st e s e sre e s e eneesseentesseesseeneesnaesens 6-18
B-17. SEACK WINTOW ...ttt sttt se e b e et e saeeseeeneesneenneas 6-18
6-18. TTACE WINUOW.......couiiiiii ittt sttt bbbttt e et et e b et e sbennennean 6-19
6-19. Breakpoint Window wWith ShOrCUt MENUoiiiieiiieeereseseeeee e 6-20
6-20. Edit BreakpoinDialOgccciieiriieiiiie e ee st sreesneenesnee s 6-20
6-21. Programmer PICK WINCOW..........ccoiueiiiii i 6-22
6-22. Programmer FilES WINCOWcoiieiiiesiccie et esae e e ne s 6-23
6-23. The Register BIOCK WINCOW..........ccooiiiiiiieeeeeeee e 6-23
6-24. The WinReg Window with Typical Register File Information.............cccccccvvveverieieennnns 6-24
6-25. [CSOSKIW TOOIDAN ..ottt st e nne e 6-24
B-26. FIE IMEBNU ..ottt e et bbb ne e nnean 6-27
6-27. Specify S19 File t0 LOADIAIOTccererierieriieieeieieeee s 6-28
6-28. Specify MACRO File t0 EXE®IDIAIOQccceevueireeiieeiesiieie e eee e nee e 6-29
6-29. Specify MACRO File to RE@DIalOgccveerieieeeiereserieesee e 6-29
6-30. Specify Output LOG FilBIial0g........ccoveiueiieiicie et ceeseee et see e 6-30
6-31. Logfile Already EXIStEIAI0Fc.coiiiriiiiiiiieiee e 6-30
6-32. A SamMpPle OULPUL LOG Fil€.....ccviieieeeee ettt 6-31
6-33. ICSOSKIW EXECULE MENU.......cuieiieiieieiesie sttt sttt e s ssesnesresneenenneas 6-32
6-34. WINCOW IMBNU ...ttt sttt bbbttt e b bbb e nnennenneas 6-34
6-35. Change WINdOW CoIGDIaI0Qcoeruirieriiriirieieieeesie e 6-35

viii M68ICS05KJOM/D

CONTENTS

7-1. Assembly Window O ASM Command with (left), without (right) Argument.................. 7-11
7-3. MOdify MemMOrY DI@lOgcveieeieiie ettt e et st e b e ee e e sreenesneenneas 7-58
7-4. Programmer PICK WINGOWcoviiiieieesie et 7-67
7-4. Program EPROM Personality WINGOWccceccueieeiieieesieie e sieeee e e eee e seesseesseennens 7-68
8-1. CASMOBW WINAOW......cveieiieiiieirieiieieiesiesieseestessessesseeseesaessessessessessessesseessessessessessessessensenses 8-4
B-1. MBBICS05KJ SChematiC DIiagram.........coveieierienie e s B-6
B-4. MBBICSO5K I BOArd LAYOUL........cueueierieriesiesiesiesieeeeeeseesaessessessessessesseeseessessessessessessessens B-11
TABLES
1-1. MB8BICSO5K J SPECITICALIONS.eeueeuieiesiesiesiesiesieeiee ettt sttt e et st sbe b srenne s 1-3
3-1. The ICSO5KIW SOftWare FIlES.........ccciiieeeie ettt 3-3
4-1. WINIDE TOO0IDar BULLONS........cceiiiieiiiiesie ettt sbe e 4-8
4-2. WinIDE Menus and OptioNS SUMIMEIYccererieieieerienieniesiessessesieses e see s s e sneens 4-9
5-1. Change Base PrefiXes/SUFTIXES... ..ottt ne s 5-8
5-2. ASSEMDIEr DITECLIVES......ccuieieeesieesie ettt et s re et et b et e sneenee e e e 5-9
5-3. LiStING DIFECLIVES.oeiueeiicie sttt ettt st e e te e ae e sreeneennesneensenneenns 5-12
5-4. LiStiNg FIE FIEIAS ... 5-13
5-5. Pseudo Operations Allowed by the CASMOSW.........ccviieiieieceseee e 5-15
5-6. ASSEMDIEr ErTOr IMESSAgES........eiuieieeieeeerie ettt sttt sttt e s sn e b e snenneeneas 5-17
6-1. Base PrefixeS and SUFTIXES.......ciiiiiiiesese sttt s 6-11
6-2. ICSOSKIW TOOIDAr BULLONS........oiiiitieieeiesiiesie ettt sreeseeeeesnee e 6-25
6-3. ICSO5KIW Menus and OptioNS SUMIMEIYcccueveevieeeeneeiieseesieeseeseessesseesseessesssesseessens 6-26
-1, ATQUMENT TYPES.....eeiiiiiee ittt r e e e s n e e s ne e n e smn e ene s 7-3
7-2. ICSO5KIW COMMANT OVEIVIBW.......coueeiiieriesiesiesiesee ettt e e see s st sbe s enes 7-4
7-3. PROGRAM COMMENGS.......coiiiiieieiiieiiesie e sie e steesee e sseeeesseessessesseessesnsssseessesnssssesnsens 7-69
A-L SRECOM FIEIAS.oeiiiiiiiciee et bbbttt sbenne s A-1
A-2. S ReCOrd FIeld CONTENTS......ccoiiieiiieiieeiesee ettt eneenaeeneas A-2
e S (= oo (0 [I8/ 0= PSS A-3
A-4. SOHEAAEN RECOIMccveiiiieieiieie ettt sttt st e b te e e b e eesneenneeneas A-4
A-5. SLHEAAEr RECONMoviiiiiiiiiitieiieiee ettt sttt ettt nbe st b nne s A-5
A-6. SOHEAAEr RECOI.....c.eiiiiiieeee ettt et neenne s A-6
B-1. MBBICSO5K I PArtS LiSh.....c.ceiueiiriiriiriesiiniieieie ettt st st e B-9

M68ICS05KJOM/D iX

g |

CONTENTS

M68ICS05KJOM/D

INTRODUCTION

CHAPTER 1
INTRODUCTION

1.1 OVERVIEW

This chapter provides an overview of the M68ICS05K J In-Circuit Simulator Kit components and
aQuick Start guide to setting up a development project.

The Motorola M68ICS05K J In-Circuit Simulator Kit is a development toolkit for designers who
develop and debug target systems that incorporate MC68HC705 KJ and J1A Microcontroller
Unit (MCU) devices. The toolkit contains all of the hardware and software needed to develop
and simulate source code for and program the Motorola M C68HC705K J microcontrollers.

Together, the M68ICS05KJ printed circuit board (pod) and the ICSO5KJW software form a
complete simulator and non-real-time 1/0O emulator for the MC68HC705 KJ and J1A devices.
When you connect the pod to your PC and your target hardware, you can use the actual inputs
and outputs of the target system during simulation of code.

Use the M68ICS05K J toolkit with any IBM-Windows 3.x or Windows 95-based computer with a
serial port.

1.2 TOOLKIT COMPONENTS

| CSO5K JWT he complete M68I CS05K J toolkit contains:
* Hardware:
- The M68ICS05K Jin-circuit simulator pod.
— Sample MC68HC705 KJ and J1IA windowed EPROM MCUs.
— 16- and 20-pin DIP target emulation cables.

* Windows-optimized software components, collectively referred to as 1CS05KJIW
software, and consisting of:

— WINIDE.EXE, the integrated development environment (IDE) software
interface to your target system for editing and performing software or in-
circuit simulation.

- CASMO5W.EXE, the CASMO05W command-line cross-assembler.

- ICS05KJIW.EXE, the in-circuit/standalone simulator software for the
M68ICS05K J target MCU.

M68ICS05KJOM/D 1-1

INTRODUCTION

Documentation:
— The M68ICI05KJ In-Circuit Smulator Operator’s Manual.

— Technica literature, including Understanding Small Microcontrollers, an
introductory guide to understanding and using Motorola MC68HCO05 family
microcontrollers.

1.3 HARDWARE AND SOFTWARE REQUIREMENTS

The ICSO5KJW software requires this minimum hardware and software configuration:

An IBM-compatible host computer running Windows 3.x or Windows 95 operating
system.

Approximately 640 Kb of memory (RAM) and 2 Mb free drive space.
A serial port for communications between the M68I CS05K J and the host computer.

1.4 TOOLKIT FEATURES

The M68ICS05KJ toolkit is a low-cost development system that supports in-circuit simulation.
Its features include:

Software and in-circuit simulation of MC68HC705 KJ and JIA MCUs
Ability to program MC68HC705 KJ and JLJA EPROM microcontrollers
Communication with the host PC viaa seria port

ICSO5KJW software, including editor, assembler, and assembly source-level
simulator

64 instruction breakpoints

SCRIPT command for automatic execution of a sequence of commands
Emulation cable for connection to the target system

On-screen, context-sensitive Windows Help

CHIPINFO command supplies M68ICS05K J pod memory-map, vector, register, and
pin-out information

Software responds to both mouse and keyboard controls

1.5 SPECIFICATIONS

Table 1-1 summarizes the M68I CS05K J hardware specifications.

1-2

M68ICS05KJOM/D

INTRODUCTION

Table 1-1. M68I CS05K J Specifications

Characteristic

Specification

Temperature:
Operating
Storage

0°to 40° C
-40° to +85° C

Relative humidity

0 to 95% (non-condensing)

Power requirement

+9 Vdc @ 0.1 A (maximum)
(from included wall transformer)

Dimensions

3.5x3.2in. (89 x 81 mm)

1.6 ABOUT THIS USER'S MANUAL

This manual covers the M 68ICS05K J software, hardware, and reference information as follows:

Chapter 2 0 Pod Installation

Chapter 30 Loading and Initializing the ICSO5KJW Software

Chapter 4 0 WinIDE User Interface

Chapter 50 1CS05KJW In-Circuit Simulator User Interface
Chapter 6 0 CASMO5W Assembler Interface
Chapter 7 0 1CS05KJW Debugging Command Set

Chapter 8 0 Example Project
Appendix A O S-Record Information

Appendix B 0 Technical Reference and Troubleshooting

Glossary
Index

NOTE

The procedura instructions in this user's manual assume that you
are familiar with the Windows interface and selection procedures.

Figures in this manual show ICSO5K JW windows and dialog boxes
as they appear in the Windows 95 environment.

M68ICS05KJOM/D

1-3

INTRODUCTION

1.7 QUICK START INSTRUCTIONS

The following instructions summarize the hardware and software installation instructions of
Chapters 2 and 3.

If you are experienced in installing Motorola or other development tools, follow these steps.

* Install the ICSO5KJW software: follow the instructions on the diskette label to run
the ICSO5KJW Setup program. During installation, follow the instructions in the
installation wizard: choose the Typical Install option to install the files to your hard
disk, or choose the Compact Install option to copy the files onto another diskette.

* Connect the M68ICS05KJ pod: connect the M68ICS05KJ pod to the host PC's
serial port using the included cable. Plug the cable into the pod connector P2.

CAUTION
See the Electrostatic Discharge Precaution in section 3.1

* Supply power to the M68ICS05KJ pod: connect the wall-mounted transformer’s
circular connector to the connector on the left side of the pod, next to the serial
connector.

« Start the WinIDE editor and open the project files: Double click the WinIDE icon.
From the WinIDE Environment menu, choose @pen Project option, and choose a
project file from theSpecify project file to open dialog. If no project file exists,
choose théNew option from the File menu to create a new project file. Paragraph 8.3
gives additional information about setting up a sample project.

» Configure the environment for the ICSO5KJW software components: from the
WinIDE Environment menu, select th&tup Environment option to open the
Environment Settings dialog and make the following changes:

— Click on theEXE1 Debugger tab to bring the tab (Figure 1-1) to the front. Set
the executable type, path and filename, command line options (including
optional switches, filenames, or port settings), and other options for the
ICSO5KJW debugger application.

1-4 M68ICS05KJOM/D

INTRODUCTION

Environment Settings | x|

[General Ervironment T Gieneral Editor]

Assembler/Compler | {EXET (Debuggen; | EXE2 Progsmmen)
| x Cancel |
EXE Path Ic:\p&e\iicksw\lCSl]S.lW’\lCSI]SJW.EXE|

Options [%FILE.519% |

Type IDehugger

[~ Confirm Command line before running

[¥ Save all files before running

Figure 1-1. Winl DE Environment Settings Dialog EXE1 Tab

— Click on the Assembler/Compiler tab label to bring the tab (Figure 1-2) to the
front. Set the executable path and filename, type, and other options for the
CASMO5W assembler or other application.

Environment Settings | x|

[General Ervironment T Gieneral Editor]
issembler/Compiler} | EXE1(Debugger] | EXE2 (Frogamme]

EXE Path Ic:\p&e\iicksw\CASMW\CASM[IEW'.EX |

Type |P&E CASMWxx Assembler j|
~Output Control
[+ Output 519 Object ™ | utput D ark bject/ Nebug

v Output MAP Debug File T | 0itput 695 Dbject/Debug
v Output Listing File

~Listing Option:
v Show Cycles in Listing ¥ Expand Macros in Listing
¥ Expand Includes in Listing

—A bly Pref

[¥ Show Aszembler Progress [+ Save Files Before Aszembling
¥ Wait for Aszembler Result [~ Sound Bell on Error

Figure 1-2. Winl DE Environment Settings Dialog Assembler/Compiler Tab

— If necessary, change the programmer settings in theEXE2 (Programmer) tab.

— Click on the General Environment and General Editor tabs and make changes
in each as necessary.

- When you have specified all the environment settings, press the OK button to
save the changes in the WINIDE.INI file and close the Environment Settings
dialog.

* Create a project filee The desktop and environment settings you make in the

Environment Settings dialog are stored in the WINIDE.INI file and read each time you
start the WinIDE editor. You may also choose to save project-specific desktop and

M68ICS05KJOM/D 1-5

INTRODUCTION

environment settings in a project file (*.PPF) which is read when you open the
project, allowing you to save and use a general environment as well as custom
environments for individual projects. To create the project file:

— Specify the project-specific desktop and environment settings in the WinIDE
editor.

— Choose the Save Project As option from the WinIDE Environment menu to
name and save the project to a directory folder.

Run the ICS05KJW simulator: With a project or source file open in the WinIDE
main window, click the Debugger (EXEL) button (Figure 1-3) on the WinlIDE tool bar
to start the ICSO5K JW debugger and debug the contents of the active source window.
Additional information about the ICSO5K JW debugger can be found in Chapter 6 and

Chapter 7.
Figure 1-3. The WinI DE Debugger Toolbar Button

Assemble the code: Press the Assemble/Compile File button (Figure 1-4) on the
WInIDE toolbar to assemble the source code in the active WinIDE window.
Additional information about the CASMO05W assembler can be found in Chapter 5.

3

Figure 1-4. The WinIDE Assemble/Compile File Toolbar Button

If you experience problems with the Quick Start procedures, refer to section B.3 for
troubleshooting instructions.

1.8 CUSTOMER SUPPORT

For information about technical assistance and ordering parts, contact the Motorola help desk:

1-6

Telephone: (800) 521-6274
Fax: (512) 895-6146
Web site: http://www.mcu.motsps.com

Mailing address: Motorola, Inc.

MCTG Software Support, MD OE45
6501 William Cannon Drive West
Austin, TX 78735

M68ICS05KJOM/D

POD INSTALLATION

CHAPTER 2
POD INSTALLATION

2.1 OVERVIEW

This chapter explains how to install the hardware components of the M68ICS05KJ in-circuit
simulator on your host PC in both interactive and standal one modes.

When the M68ICS05K J pod is connected to the serial port of a host PC, you can use the actual

inputs and outputs of your target system during simulation of your source code. When the pod is

not connected to the PC, you can use the ICS05K JW software as a standal one simul ator.
ELECTROSTATIC DISCHARGE PRECAUTION

Ordinary amounts of static electricity from your clothing or work
environment can damage or degrade electronic devices and
equipment. For example, the electronic components installed on
your printed circuit board are extremely sensitive to electrostatic
discharge (ESD). You should wear a grounding wrist strap
whenever you handle any printed circuit board. This strap provides
aconductive path for safely discharging static electricity to ground.

2.2 INSTALLING THE M68ICS05KJ POD

Before beginning, locate these pod components:
* Hardware reset switch S3
* Power On switch S1
* 9-pin RS-232 seria connector P2

e 9Volt Input Circular connector P1

Toinstall the M68ICS05K J Pod:

1. Connect the M68ICS05KJ pod to the seria port of your computer: attach the supplied
9-pin seria cable to the connector on the M68ICS05K J board and attach the other end
to the host PC’s serial port.

2. Connect the 9-volt power supply: attach the power supply plug to the circular power
connector on the M68ICS05KJ pod and plug the power supply into a surge protection
device or wall outlet.

M68ICS05KJOM/D 2-1

POD INSTALLATION

2-2

3. To run the ICSO5KJIW software with actual input and output from the target device,
connect the M68ICS05KJ pod to the 16- or 20-pin DIP socket on the target board
using the emulation cable included in the M68ICS05K J kit. When this connection is
established and the pod and target system are started up, the target system will
provide inputs to and accept output from the ICS05KJW software.

M68ICS05KJOM/D

SOFTWARE INSTALLATION AND INITIALIZATION

CHAPTER 3
SOFTWARE INSTALLATION AND INITIALIZATION

3.1 OVERVIEW

This chapter how to install and initialize the ICSO5K JW software.

3.2 THE ICS05KJW SOFTWARE COMPONENTS

The ICS05K JW software consists of the following components:
* WINIDE.EXE: the Windows Integrated Development Environment editor
 CASMO5W.EXE: the 6BHCO05 Cross Assembler

* |CSO5KJW.EXE: the in-circuit Simulator, optimized for the HCO5KJx-family
Motorola microcontrollers

3.2.1 TheWinlIDE Editor

The WinIDE editor is atext editing application that lets you use several different programs from
within a single development environment. Use the WinIDE editor to edit source code, launch a
variety of compatible assemblers, compilers, debuggers, or programmers, and configure the
environment to read and display errors from such programs.

If you select error detection options in the Environment Settings dialog, the WinlDE editor will
highlight errors in the source code, and display the error messages from the compiler or
assembler in the editor.

To debug source code in the WinIDE code window, load compatible source-level map files. You
can configure the CASMO5W to produce such map files as an output.

Because the WinIDE editor is modular, you may, for example, choose to substitute a third party
C-compiler or other assembler for the CASMO5W cross assembler provided in the toolKkit.
3.2.2 CASMO5W

The CASMO5W is a cross assembler that creates Motorola S19 object files and MAP files from
assembly files containing 68HCO5 instructions.

M68ICS05KJOM/D 3-1

SOFTWARE INSTALLATION AND INITIALIZATION

The CASMO5W assembler has the same functionality as the DOS version of the assembler,
optimized to take advantage of the Windows graphical environment. Using the assembler in
conjunction with the WinIDE editor, you can edit standard ASCII files (such as the .ASM
assembly files), and use menu options and toolbar buttons to call other customized assemblers,
compilers, or debuggers. The resulting environment can allow assembled files to be downloaded
and tested while the original source code is modified and assembled, al without leaving the
WinIDE editing environment.

Paragraph 5-5 gives additional information about assembler options and how to use them.

3.2.3 1CS05KJIW

The ICS05KJIW is a simulator for HC705KJ series microcontrollers that can get inputs and
outputs (1/O) for the device when the external M68ICS05K J pod is attached to the host computer.
If you want to use I/O from your own target board, you can attach the M68ICS05K J pod to your
board through the extension cable that comes with the toolkit. You can also program HCO5KJ
devices using the ICS05K J board and | CS05K JW software.

You can start or move to the ICSO5KJW in-circuit simulator software from the WinIDE editor.
The ICS05KJIW software can also be started using standard Windows techniques and run
independently of the WinIDE editor.

The ICS05KJW simulator accepts standard Motorola S19 object code files as input for object
code ssimulation and debugging. If you are using a third party assembly- or C-language compiler,
the compiler must be capable of producing source-level map files to alow source-level
debugging.

3.3 INSTALLING THE ICSO05KJW SOFTWARE

The ICSO5KJIW software is supplied on two 3.5" diskettes containing a setup program that
automatically installs the software on your hard drive.

3.3.1 Installation Steps

To install the software on your host computer’s hard drive, follow these steps:
1. Insert the ICSO5KJW diskette into the 3.5-inch disk drive.
For Windows 3.x: in the Program Manager, select Run from the File menu.
For Windows 95: from the Start Menu, select the Run option.

2. In the Run dialog, enter Setup (or click the Browse button to select a different drive
and/or directory) and press OK.

3-2 M68ICS05KJOM/D

SOFTWARE INSTALLATION AND INITIALIZATION

3. Inthe ICSO5KJIW Microsoft Setup Wizard, follow the instructions that appear on the
screen.

NOTE

Select either the Typical Installation type to install the files to your
hard disk, or choose Compact Installation to copy the files to
another diskette.

Table 3-1 lists the files and directories required to control the ICSO5KJW program modules.

Table 3-1. The |CS05K JW Softwar e Files

Directory Filename Description

Casmw casmO5w.exe | Windows Cross Assembler for the 68HCO05

icsO5kjw | icsO5kjw.exe Windows In-Circuit Simulator

WinIDE winide.exe Windows integrated Development Environment (WinIDE) program
file
Winide.hlp Help for WinIDE

3.3.2 Startingthe | CS05K JW Software

Depending on the operating system you are using, choose the appropriate method for starting the
WinIDE software:

 From the Windows 3.x Program Manager, double-click the WinIDE and/or
|CSO5K JW icon(s).

* From the Windows 95 Start Menu, select the WinIDE and/or ICS05K JW icon(s).

Y ou can start the ICS05K JW simulator alone or from within the WinIDE.

M68ICS05KJOM/D 3-3

SOFTWARE INSTALLATION AND INITIALIZATION

3.3.3 ICS Communication

When you double-click the ICSO5KJW icon, the software attempts to communicate with the pod
using the specified COM port, baud rate, and default parameters. When the software connects to
the pod, the Status Bar contains the message, " Contact with pod established.”

If the pod is not installed, or the ICSO5KJW software cannot establish communications with the
pod through the specified COM port, the Can’t Contact Boardlialog appears, with options for
changing the COM port or baud rate and retrying the connection, or choosing to run the simulator
in standalone mode (with no input or output from the pod).

NOTE

The COM port assignment defaults to COM 1 unless you specify
another port in the startup command.

3-4 M68ICS05KJOM/D

WinIDE USER INTERFACE

CHAPTER 4
THE WinIDE USER INTERFACE

4.1 OVERVIEW

This chapter is an overview of the WinIDE windows, menus, toolbars, dialogs, options, and
procedures for using each.

4.2 THE WINDOWSINTEGRATED DEVELOPMENT ENVIRONMENT

The Windows Integrated Development Environment (the WinIDE editor) is a graphical interface
for editing, compiling, assembling, and debugging source code for embedded systems using the
M68ICS05K J In-Circuit Simulator.

The WinIDE interface consists of standard Windows title and menu bars, a WinIDE toolbar, a
main window containing any open source or project file windows, and a status bar. The WinIDE
components are labeled in Figure 4-1 and described in paragraph 4.3.2.

M68ICS05KJOM/D 4-1

WinIDE USER INTERFACE

TitleBar — poEETTIEEG] M E
Menu Bar s Edl Emionment Sewch iwirdon_Help

Toolbar — Y N R R C S
- D-ATIM\PROJECTS\MDDS51WECTORS ASM
o= DATIMPROJECTS\MDDST1YWORK ASM

Source Windows

i *

| = work_proc
*

| = This is the work procedure for the radio. We just keep looping
* through this procedure.
*

: work_proc: ; do forever

1da 26 ; update RIT every 32nd tim _I
sta rit_counter
workproc_1:
jsr keypad_get ; check keypad for input
dec rit_counter ; check if time to do RIT
bne workproc_1 s no, keep looping -
e e

Main Window

i
Status Bar _ 16 [Toek3s | Tom24 | Bues2m0 | Inset ﬂ

Figure4-1. Winl DE Window Components

4.3 WinIDE MAIN WINDOW

4.3.1 Main Window Functions

When you first start the WinIDE editor, the main window opens without any source or project
files. As you open or create source files or a project, they appear as subordinate windows in the
main window. You can move, size, and arrange subordinate windows using standard Windows

techniques and the WinlDE Window menu options.

Use the WinIDE main window to:

Open, create, edit, save, or print source (*.ASM, *.LST, *.MAP, and *.S19) or project

(*.PPF) file.

Configure the desktop and environment settings for the editor, assembler, compiler,

debugger, and other programs.

Launch the in-circuit simulator, compiler, debugger, or another program.

4.3.2 Main Window Components

Figure 4-1 shows how the WinIDE main window might look during atypical editing project, and

label s the standard window components:

4-2

Title Bar: Thetitle bar appears at the top edge of the main window and contains:

M68ICS05KJOM/D

WinIDE USER INTERFACE

The application title,

The name of the target microcomputer application for which you are editing
source code,

The object file or files, if any (usually truncated),

Windows control buttons for closing, minimizing or maximizing the window.

* Menu Bar: The menu bar appears immediately below the title bar and contains the
names of the WinlDE menus.

* Toolbar: The WinIDE toolbar appears just below the menu bar and contains shortcut
buttons for frequently used menu options.

* Main Window: The main window area is the inside portion of the main window
which contains the open subordinate windows that you can resize, reposition,
minimize, or maximize using standard Windows techniques or Window menu
options.

e Status Bar: The status bar (Figure 4-2) appears along the bottom edge of the main
window and contains a number of fields (depending on the project) that show:

Source-file line and column numbers of the blinking insertion point cursor

System status or progress of the current window; for example, when the
window is edited, the status will be Modified

Total number of linesin the active window

Top: the current line position in the file of the top of the active window
Bytes: displays the total number of bytesin the active window
Insert/Overwrite mode: indicates the current typing mode

The status fields expand and contract as client area contents change and files become

active.

E:1

| Modfied | Totab11 | Top: 1 | Byess277 | Insett ‘

Figure4-2. Winl DE Status Bar

4.4 GETTING STARTED

4.4.1 Prerequisitesfor Starting the WinlDE Editor

Before you can start the WinIDE editor, the Windows operating environment must be running
and the ICS05K JW software must be installed in the host computer.

M68ICS05KJOM/D

4-3

WinIDE USER INTERFACE

Remember that for the MG68ICSO5KJ to run in simulation mode, the asynchronous
communications cable must connect the M68ICS05KJ pod on the platform board to the host
computer, and the power to the M68ICS05K J pod must be on.

4.4.2 Startingthe WinlDE Editor

To start the editor, select the WinIDE icon by double-clicking the ICSO5KJW Program Group
icon in the Windows 3.1 Program Manager or by selecting the icon from the Windows 95 Start
menul.

4.4.3 Opening Source Files

When the WinIDE editor opens, the main window is empty. To build the environment for your
project, choose the Open option from the File menu (or click the File button on the WinIDE
toolbar). In the Open File dialog, choose the files that will make up your project:

1. Select the drive containing the files from the Drives list.
2. Select the directory folder containing the files from the Folders list.

3. You may use the Filename text box to specify a filename or a wildcard/ extension to
filter the list of filenames (or choose a file type from the List files of type list). The
default file type is . ASM, but you can also choose:

*.c (source code files)
* Ist (listing files)

* txt (text files)

** (al files)

When al of the project files have been selected, click the OK button to open the files in the
WinlDE main window.

4.4.4 Navigating in the Winl DE Editor
To navigate among subordinate windows:
To navigate among the several sub-windows in which your project files are displayed in the

WinIDE main window:

¢ Choose the subordinate window’s filename from the Window menu or click on the
file' stitle bar to bring it to the front of the cascaded stack.

» If you have alarge screen or afew project files, you may choose the Tile option from
the Window menu to lay out al of the sub-windows so that all are visible, or choose

4-4 M68ICS05KJOM/D

WinIDE USER INTERFACE

the Cascade option to arrange all windows so that only the top window is entirely
visible.

* Regardless of how you arrange the windows, the title bar of all windows are visible.

To move between the Winl DE editor and the | CSO5K JW simulator:

* From the WinIDE editor, click the External Program 1 toolbar button |g to switch
to the in-circuit simulator or the application which you have specified as the debugger
or other external program to use.

e From ICS05KJW, click the Back to Editor toolbar button E to toggle back to the
editor.

445 Using Markers

Markers provide a convenient way to mark multiple points in a file for navigating between
frequently visited locations while you are editing. You can set as many as 10 markers in source
filesin the WinIDE editor. A marker appearsin the file as a small button labeled with the marker
number.

When you save the project, the WinIDE editor saves the markers for all open edit files as well, so
that when you open the project again, the markers are still set.

To set amarker anywhere in thefile:
1. Placethe cursor on the line where you want the marker to be.
2. Press CNTL + SHIFT + N, where N is a value from 0 to 9 indicating the marker
number. A marker appears at the far left of the line.

To move to a marker, press CNTL + N, where N is denotes a marker number between 0 and 9.
Thisfeatureis useful if you are editing alargefile.

Markers can also be set, changed, navigated to, or cleared using options on the Edit shortcut
menu (Figure 4-3). Open the Edit shortcut menu by clicking the right mouse button in any edit
window.

B
e
Haste

Toogle Marker 0.9 »
Goto Marker 0.9 »
Clear Al Markers

Figure 4-3. Edit Shortcut Menu

M68ICS05KJOM/D 4-5

WinIDE USER INTERFACE

To set or clear amarker using the Edit shortcut menu options:

1. With the cursor in any editing window, click the right mouse button to open the
shortcut menu.

2. Position the cursor on the line where the marker should appear. Click the right mouse
button to display the shortcut menu.

3. Click the Toggle Marker 0-9 option to open the list of markers.

4. Click once on the marker to toggle. When the marker number is checked, it is toggled
on; when the marker number is unchecked, it is toggled off.

To move to amarker number using the shortcut menu options:

1. With the cursor anywhere in the edit file, click the right mouse button to open the Edit
shortcut menu .

2. Click on the Go To Marker 0-9 option to open the Marker sub-menu (Figure 4-4), and
choose the marker number to move to.

Toggle Marker 0
Toggle Marker 1
Togale Marker 2
Toggle Marker 3
Toggle Marker 4
Toggle Marker 5
Toggle Marker &
Toggle Marker 7

Figure4-4. Marker Sub-menu

You can execute many ICSO5KJW menu options using either keyboard commands or toolbar
buttons. For example, to move to a marker, press the Ctrl + Shift + N key combination, where N
IS the marker number).

45 COMMAND-LINE PARAMETERS

The WinIDE editor lets you specify command line options to pass to each executable program.
The name of the currently edited file, or some derivative thereof, can be passed within these
options. To pass the current filename, specify a parameter %FILE%. The WinIDE editor will
substitute this string with the current filename at execution time. You may also change the
extension of the passed filename, by specifying it within the %FILE% parameter. For example,
to specify an .S19 extension on the current filename the user would specify a %FILE.S19%
parameter.

4-6 M68ICS05KJOM/D

WinIDE USER INTERFACE

For example, if the current filename being edited isMYPDA.ASM:

Parameters passed to
Parameters specified program
%FILE% S L D MYPDA.ASM S L D
%FILE.S19% 1 @2 MYPDA.S19 1 @2

Although it is by default the currently edited filename that is used in the %FILE% parameter
substitution, the environment can be configured always to pass the same filename. Do this by
checking the Main File option in the Environment Settings dialog’'s General Options tab. This
technique is useful if you want to pass a specific filename to the external program without regard
to what is being edited.

4.6 WinIDE TOOLBAR

The WInIDE Toolbar (Figure 4-5) provides a number of convenient shortcut buttons that
duplicate the function of the most frequently used menu options. A tool tip or label pops up when
the mouse button lingers over atoolbar button, identifying the button’s function.

&[Z[%] [E[m[E] [e[EE[=

Figure 4-5. WinI DE Toolbar

Table 4-1 identifies and describes the WinIDE toolbar buttons.

M68ICS05KJOM/D 4-7

WinIDE USER INTERFACE

Table4-1. WinIDE Toolbar Buttons

Icon

Button Label

Button Function

External Program 1
(Debugger)

Call the External Program 1 (Debugger or ICS) specified
in the Environment Settings dialog’s EXE 1 (Debugger)
tab; this could be the debugger (by default), the ICS or
other external program, i.e., third party assembler,
debugger, or compiler.

'Z External Program 2 Call the External Program 2 as specified in the
= Environment Settings dialog’s EXE 2 (Programmer) tab
&% Assemble/Compile File Assemble or compile the active source window.
Cut Cut the selected text from the active source window (this
button is a shortcut for the Edit - Cut menu option).
Copy Copy the selected text in the active source window to the
Windows clipboard (this button is a shortcut for the Edit -
Copy menu option).
R Paste Paste the contents of the Windows clipboard at the
il insertion-point location in the active source window (this
button is a shortcut for the Edit - Paste menu option).
Open File Close the active source window (this button is a shortcut
for the File - Open menu option).
B Save File Save the file in the active source window (this button is a
- shortcut for the File - Save menu option).
= Save Project (All Files & Save the active project (this button is a shortcut for the
Setup) Environment - Save Project As menu option).
= Close File Close the active source window (this button is a shortcut

for the File - Close menu option).

M68ICS05KJOM/D

WinIDE USER INTERFACE

4.7 WinIDE MENUS

Table 4-2 summarizes WinlDE menu titles and options.

Table 4-2. WinIDE Menus and Options Summary

Menu Title Option Description
File New File Open a new file window ("No nhame")
Open File Display the Open File dialog to choose a file to open
Save File Save the current file
Save File As Open the Save As dialog to choose a directory and filename
in which to save the current file
Close File Close the current file
Print Open the Print dialog to print the current file
Print Setup Open the Print Setup dialog to choose printer options
Exit Close the WinIDE editor
Edit Undo Undo the last action
Redo Redo the last action
Cut Cut the selection to the clipboard
Copy Copy the selection to the clipboard
Paste Paste the contents of the clipboard
Delete Delete the selection
Select All Select all text in the current window

M68ICS05KJOM/D 4-9

WinIDE USER INTERFACE

Table4-2. WinlDE M enus and Options Summary (continued)

Menu Title Option Description
Environ- Open Project Open the Specify Project File to Open dialog
ment
Save Project Save the current project
Save Project Open the Specify Project File to Save dialog
As
Close/New Close the current project file or open a new project file if no
Project current file
Setup Open the Environment Settings Dialog to change settings for:
- General Environment
- General Editor
- Environment Settings
- Debugger Settings
Setup Font Open the Font dialog to specify font options for the text in the
current file
Search Find Open the Find dialog to enter a search string
Replace Open the Replace dialog to enter a search and replacement
string
Find Next Go to the next occurrence of the search string
Go to Line Open the Go to Line Number dialog and enter a line number
to go to in the current file
Window Cascade Cascade open windows with active window on top
Tile Tile open windows with active window on top
Arrange Icons | Arrange minimized window icons along the bottom edge of
the main window
Minimize All Minimize all open windows
Split Toggle a split window in the active file
Windows (by Itemize the open and minimized windows by name in order of
name) opening
Help Contents Opens the WinIDE Help Contents Page of the Help File
About Displays the WinIDE About Window

4-10

M68ICS05KJOM/D

WinIDE USER INTERFACE

4.8 WinIDE FILE OPTIONS

This section describes the WinIDE File menu options for managing and printing source files or
exiting the WinIDE editor.

To seect aFile option, click once on the File menu title to open the File menu (Figure 4-6). Click on an
option to perform the operation. Y ou may also use accelerator or shortcut keystrokes to execute
the option.

Mew File Ctrl+M
Open File... Cti+0
Save File Chrl+5
Save File gz...

Cloze File Chrl+D

Frint...
Fiint zetup...

E xit Alt+F4

Figure 4-6. FileMenu

4.8.1 New File

Choose New File from the File menu to open anew client window in the WinIDE main window.
Thetitle of the new window in the title bar defaults to [NONAME#], where # reflects the number
of new source windows created during this session. If there is an active project, the project name
appearsin thetitle bar. If there is no project, [No Project] precedes the window name.

Use this new window to enter source code. When you save the contents of this window, the
WinIDE editor prompts you for a new filename. This new filename replaces the NONAME#] in
thetitle bar.

Alternatives: Type Ctrl + N or click the New toolbar button. This is the keyboard equivalent to
choosing the File - New File menu option.

M68ICS05KJOM/D 4-11

WinIDE USER INTERFACE

4.8.2 Open File

Choose Open File from the File menu to open the Open File Dialog (Figure 4-7) and choose an
existing filename, file type, directory, and network (if applicable) to open.

Open File
File name: Folders:
[=.asm| d:\pemicroisample™1

Cancel |
charge.asm A 2 dh -
dcharge_asm £ pemicio
dizplay.asm 23 sample™1
eeprom_asm P
equates_asm frne
init.asm
igr.asm —
mainl.asm b

List files of type: Drives:
Assembly files [*.asm) j I = d: j

Figure4-7. Open File Dialog

Each file opensin its own client window within the main WinlDE window.

Alternatives: Type Ctrl + O or click the Open button on the toolbar. This is the keyboard
equivalent to choosing the File - Open File menu option.

4.8.3 SaveFile

Choose Save File from the File menu to save the file in the active source window.

» If you are saving thefile for the first time (that is, it has not yet been named), the Save
As dialog appears. Enter a new filename for the file and accept the current file type,
directory or folder, and drive, or choose new options. Press the OK button to save the
file to the selected drive/directory.

» If the file has been saved previously (and has a name), the file is saved with the
filename, in the directory and drive previously specified, and the source window
remains open.

Alternatives: Type Ctrl + S or click the Save button on the toolbar. This is the keyboard
equivalent to choosing the File - Save File menu option.

4.8.4 SaveFileAs
Choose Save File As from the File menu to save the contents of the active source window and

assign a new filename. The Save As dialog opens. Enter a new file name in the File Name field
and click the OK button to save the file and return to the source window.

4-12 M68ICS05KJOM/D

WinIDE USER INTERFACE

To save the file with the name of an existing file, select the filename in the File Name list, and
click the OK button. A confirmation dialog will ask you to confirm that you want to overwrite
the existing file.

485 CloseFile

Choose Close File from the File menu to close the file in the active source window.

If you chose the Give user option to save each file option in the General Environment tab in the
Environment Settings dialog, the Information dialog will display, reminding you to save changes
tothe ASM file.

Alternatives: Type Ctrl + D or click the Close toolbar button. This is the keyboard equivalent to
choosing the File - Close File menu option.

4.8.6 Print File

Choose Print from the File menu to open the Print dialog (Figure 4-8) and choose options for
printing the active source window.

The Print dialog for your operating system and printer capabilities opens for you to choose Print
range, Print quality, and open the Print Setup dialog to change printer settings.

Frinter: Diefault Printer [Apple Lazerwiiter Pra oK
00 mLPTT)]

Cancel

Frint range

o Al Setup...

i

" Selection
" Pages

Erom: I To I
Print guality: IEDD dpi 'I Copies: I'I

[Collate copies

Figure 4-8. Print Dialog

NOTE

The Print option is active when at least one source window is
open. The WinIDE editor disables the option if no window is open.

M68ICS05KJOM/D 4-13

WinIDE USER INTERFACE

4.8.7 Print Setup

Choose the Print Setup option from the File menu to open the Print Setup dialog for your
operating system and printer. Use this dialog to choose the printer, page orientation, paper size,
and other options for your printer.

4.8.8 Exit

Choose the Exit option from the File menu to close the editor. If a project or source window is
open, the editor closes the files and exits.

Alternatives: Type Alt + F4. This is the keyboard equivalent to choosing the File - Exit menu
option.

4.9 WinIDE EDIT OPTIONS

This section describes the WinlDE Edit menu options for creating or editing source file contents.

To perform an Edit operation, click once on the Edit menu title to open the Edit Menu
(Figure 4-9). Click on an option to perform the operation.

Undo Chl+2
Redo Shift+Chrl+2

Cut Chrl+
LCopy Chl+C
Paste Chil+
Delete Del

Select Al

Figure 4-9. Edit Menu

49.1 Undo

Choose Undo to undo or reverse the last action or change you made in the active source window.

Changes that you make to the contents of the window (and that are undoable or reversible) are
saved in an undo stack, where they accumulate, up to a maximum of 20 instances. You can
reverse your changes in descending order of the sequence in which they were made. If no more
changes remain in the stack, the Undo option is disabled.

Reversible actions are local to each source window. Commands that are not reversible do not
contribute to the undo stack. Y ou cannot, for example, undo the command to open a new window
using the Undo command.

Alternatives: Type Ctrl + Z. Thisis the keyboard equivalent to selecting the Edit - Undo menu
option.

4-14 M68ICS05KJOM/D

WinIDE USER INTERFACE

4.9.2 Redo
Choose Redo to restore the most recently undone action in the active window.

The Redo option restores actions undone or reversed by the Undo option, in ascending order, that
is, last action first. Reversible changes to the window’s contents accumulate in the window’s
undo stack. Once a change has been reversed using the Undo option, the change can be reversed,
using the Redo option When no more changes remain (that is, the top of the Redo stack is
reached) the Redo option is disabled.

Some commands are not reversible: they do not contribute to the undo stack and therefore cannot
be redone. For instance, since reversible actions are local to each source window, opening a new
window is an action that cannot be undone using the Undo command, or redone using the Redo
command.

NOTE

The Redo option is active only if you have used the Undo option to
modify the contents of the active source window.

Alternative: Type Shift + Ctrl + Z. Thisis the keyboard equivalent to selecting the Edit - Redo
menu option.

4.9.3 Cut

Choose Cut from the Edit menu to cut the currently selected text from the active source window
and place it on the system clipboard.

NOTE

The Cut option is active only when you have selected text in the
active source window.

Alternative: Type Ctrl + X. This is the keyboard equivaent to selecting the Edit - Cut menu
option.
494 Copy

Choose Copy from the Edit menu to copy the selected text from the active source window to the
Windows clipboard.

NOTE

The Copy option is available only if you have selected text in the
active source window.

M68ICS05KJOM/D 4-15

WinIDE USER INTERFACE

Alternatives: Type Ctrl +C or click the Copy toolbar button. Thisis the keyboard equivalent to
selecting the Edit - Copy menu option.
495 Paste

Choose Paste from the Edit menu to paste the contents of the Windows clipboard into the active
source window at the insertion-point location.

Alternatives. Type Ctrl + V or click the Paste button on the toolbar. This is the keyboard
equivalent to selecting the Edit - Paste menu option.
4.9.6 Delete

Choose Delete from the Edit menu to delete the selected text from the active source window
without placing it on the Windows clipboard. Text you delete using the Delete option can be
restored only by using the Undo option.

Alternatives: Pressthe Delete key. Thisis the keyboard equivaent to selecting the Edit - Delete
menu option.
4.9.7 Select All

Choose Select All from the Edit menu to select all text in the active source window.

4.10 WinIDE ENVIRONMENT OPTIONS

This section describes the WinIDE Environment menu options for managing project information,
and setting up environment and font settings for a project.

Environment settings represent the current environment and configuration information for the
WinIDE editor. These settings are stored in the WINIDE.INI file, from which they are loaded
each time you start the editor, and saved each time you exit from the editor.

When you start the editor, the application opens the WINIDE.INI file and reads the project
information. If there is an open project, the project file's environment settings are read and used
instead. Thislets you have different environment configurations for different projects.
Environment information stored in the WINIDE.INI file includes:

» If aproject isopen, its name

* Current font information

e Current source directory and project directory paths

4-16 M68ICS05KJOM/D

WinIDE USER INTERFACE

» The preferences and options you set in the Environment Settings dialog tabs,
including:

- General Environment options
— General Editor options
— Executable options for assembler, debugger, compiler, and programmer

To choose an environment option, click once on the Environment menu title (Figure 4-10) to open the
menu. Click on the option to execute.

Open Project
Save Project
Save Project As..
Cloze/Mew Project

Setup Environment...
Setup Font...

Figure 4-10. Environment Menu

Project files have the extension .PPF; they store two kinds of information:
» Environment Settings: User settings and WinlIDE configuration parameters

» Desktop Information Open edit windows, size and location, markers

4.10.1 Open Project

Choose Open Project from the Environment menu to choose the project file in the Specify
project fileto open dialog (Figure 4-11).

Specify project file to open B3
File name: Folders:
d:\timprojectsimdds1

Cancel |
mods ool gy -
i3 tim Metwork. .. |
£ projects
&5 mdds1
¥
¥
Lizt files of type: Drives:
[Proiect File -PP) =] [d: godet-d =l

Figure 4-11. Specify project file to open Dialog

1. Enter the project name in the File name: text box or select the project name from the
list box below.

2. Pressthe OK button to open the new project file (or press the Cancel button to close
the dialog without opening afile).

M68ICS05KJOM/D 4-17

WinIDE USER INTERFACE

4.10.2 Save Project

Choose Save Project from the Environment menu to save the current project in the currently
specified file and pathname.

4.10.3 SaveProject As

Choose Save Project As from the Environment menu to display the Specify project file to save
diaog (Figure 4-12).

Specify project file to save [7]]
File name: Folders:
d:\tim\projects\mdds1

Cancel |
mdds.ppf = 2 dn -
i3 tim MNetwork. .. |
3 projects
5 mdds1
Save file as type: Drives:
|Project File (- PPF) 7| | = d: godel-d =l

Figure 4-12. Specify project file to save Dialog

1. Enter the project name in the File name: text box or select the project name from the
list box below.

2. Pressthe OK button to open the new project file (or press the Cancel button to close
the dialog without opening afile).

4.10.4 Close/New Project

Choose Close/New Project from the Environment menu to:
* Close an active current project file
* Open anew project

4.10.5 Setup Environment

Choose Setup Environment from the Environment menu to display the Environment Settings
dialog box.

The Environment Settings dialog contains five tabs:
* General Environment
e General Editor

* Assembler/Compiler

4-18 M68ICS05KJOM/D

WinIDE USER INTERFACE

* EXE 1 (Debugger)
* EXE 2 (Programmer)

In the Environment Settings tabs, you can choose options by marking option buttons (sometimes
called radio buttons), check boxes, and entering information in text boxes.
4.10.5.1 The General Environment Tab

Click the General Environment tab in the Environment Settings dialog (Figure 4-13) to change
options for saving the project files, exiting the WinIDE editor, and storing a filename to be
passed to an external program as a parameter.

Environment Settings [1X]
|/ Azzembler/Compiler T EXE1 [Debugger] T EXE2 (Frogrammer]
{Beneral Environment: General Edior |

—Upon Exiting WIN IDE « DK
[V Auto-Save the current project
¥ Auto-Save All Files
[~ Ask user “Exit Application?" ? Help

—Saving the project

[+ Also saves all open editor files

—%FILEZ% Parameter passed to external programs is:

* Currently edited filename

" Main filename ------ > I

—If modified files exist just prior to external program execution:—

[¥ Give user option to save each file

Figure 4-13. Environment Settings Dialog
General Environment Tab

NOTE

Clicking the OK button on any tab saves all changes made in the
Environment Settings dialog and closes the dial og.

The General Environment Tab offers these options:
* Upon Exiting the WinI DE Editor

— Auto-Save the Current Project: Select this option to save the currently open
project automatically, with the file extension .PPF, without prompting. The
editor saves al currently open files with the current project. If you do not
select this option, the editor prompts you to save the open project when you
exit. This setting only has an effect if a project is open when you exit.

M68ICS05KJOM/D 4-19

WinIDE USER INTERFACE

Auto-Save All Files: Select this option to save al open editor files
automatically, without prompting, when you exit. If you do not select this
option, the editor will prompt you to save open files when you exit.

Ask user " Exit Application Select this option to display an Exit Application
confirmation message when you exit. If you do not select this option, the
editor will close without asking for confirmation when you choose the Exit
option from the File menu.

e Savingthe Project

Also save all open editor files: Select this option to save al open editor files
whenever you save the project file. If you do not select this option,
project/environment information is written to the project files, but editor files
are not saved when you choose the Save Project option from the Environment
menu.

* %FILE% Parameter passed to executable programs is. The %FILE% parameter
specifies what is passed on the command line in place of the %FILE% string. You
may specify the %FILE% string as a command line parameter for executable
programs launched from within the WinlDE editor.

Currently edited filename: Select this option to use the name of the current
active file (the window with focus) as the %FILE% parameter substitution.

Main Filename: Select this option to use the filename in the Main filename
edit box as the %FILE% parameter substitution.

NOTE

If you are using include files, you must enter the full pathname of
the file containing the included files in the Main filename edit box.

* If Modified files exist just prior to external program execution All executable
programs which you can launch from the WinIDE editor offer the option to save all
open editor files before the executable is launched.

Give user option to save each file: Select this option if you want to be
prompted to save each modified file before the external program is launched.
If you do not select this option, the external program runs without asking for
your confirmation. The result may be that an external program runs while
modified files exist in the editing environment, a circumstance that may be
undesirable and lead to incorrect results.

4.10.5.2 General Editor Tab

Click the General Editor tab in the Environment Settings dialog (Figure 4-14) to bring the
General Editor tab to the front. Use the General Editor tab to change editing options such as
indentation, word wrap, and tab settings.

4-20

M68ICS05KJOM/D

WinIDE USER INTERFACE

To

NOTE:

change font options, choose the Setup Font option from the

Environment menu.

Environment Settings
|/ Azzembler/Compiler T EXE1 [Debugger] T EXE 2 [Frogrammer]

General Enviranment 1

—General Options—— / oK

[+ Auto-Indentation

[¥ Create Backup
—wWord Wrap

" Wrap to Window

" Wrap to Column ___
i+ Word Wrap OFF

—Tab Settings
" Fixed Tabs Tab Size

i~ Beal Tabs
i+ Smart Tabs

Figure 4-14. Environment Settings Dialog:
General Editor Tab

* General Options

Auto-I ndentation: Select this option to place the cursor in the column of the
first non-space character of the previous line when the Enter key is pressed. If
this option is not checked, the cursor goes to the first column. For example, if
the current line begins with two tab spaces, pressing the Enter key will begin
the next line with two tab spaces, aligning the new line under the first text of
the previous line.

Create Backup: Select this option to create a backup file whenever a file is
saved. The WinIDE editor will copy the current disk version of the file (the
last save) to afile of the same name with the .BAK extension, then save the
current edited copy over the editing filename. The default (and recommended)
setting for this option is "on," giving you the option to return or review the
previous version of the file. If you do not select this option, the currently
edited file will be saved, but no backup will be made.

* Word Wrap

M68ICS05KJOM/D

Wrap to Window: Select this option to have the cursor to wrap to the left
when it reaches the far right side of the window. This lets you see all the text
in the file, without scrolling the line. If you do not select this option, text
wraps only when you press the Enter key.

Wrap to Column: Select this option to wrap text to the left side when the
cursor reaches a specified column. This lets you see al the text in the file,

4-21

WinIDE USER INTERFACE

without scrolling the line. Set the column number at which text wrapping
should occur in the edit box to the right of this option.

— Word Wrap OFF: Select this option to turn text wrapping off. To view or edit
text, which does not fit horizontally in the window, use the scroll controls. In
general, this option should be on when you are writing or editing code.

* Tab Settings

— Fixed Tabs: Select this option to use spaces to emulate tabs: pressing the tab
key inserts a number of spaces to bring the cursor to the position of the next
tab stop. Changing the tab size affects only future tab spacings. Past tabs
remain unchanged.

— Real Tabs: Select this option to use actual tab characters: pressing the tab key
insets a tab character. The tab character is displayed as a number of spaces
determined by the tab size, but is really a tab character. Changing the tab size
affects the display of all tabsin thefile, present and future.

— Smart Tabs: Select this option to enable smart tabs:

¢ If the previous line contains text, pressing the tab key advances the
cursor to the same column as the beginning of the next character group
on the previous line.

¢ If the previous line does not contain text, smart tabs behave as fixed
tabs.

— Tab Size: Enter the number of spacesin atab. This setting affects how all tabs
operate: fixed, real, or smart tabs. This number is the default display size of all
tab characters, and the size in spaces of atab in both fixed and smart modes. If
thetab sizeisN, thetab stopsareat 1, N+1, 2N+1, 3N+1, and so on.

4.10.5.3 Assembler/Compiler Tab

In addition to running an external compiler, you may need to run other external programs such as
third party programmers, debuggers, or simulators. The WinIDE editor lets you configure as
many as three external programs. two general-purpose programs and one compiler. Use the
settings on the Assembler/Compiler tab of the WinIDE Environment Settings dialog to set up
external programs.

Click the Assembler/Compiler tab heading in the Environment Settings dialog (Figure 4-15) to
bring the tab to the front. Use the options on thistab to change the settings and parameters for the
assembler or compiler path and type, and specify output, listing, and assembly preferences.

» EXE Path: Enter the full path and executable name of the compiler in the text box.
The extensions EXE/COM/BAT are legal. For a DOS executable or BATch file, you
may want to create a PIF file to prevent the screen from changing video modes when
the executable runs.

4-22 M68ICS05KJOM/D

WinIDE USER INTERFACE

Environment Settings
f General Enviranment T General Editar]
Assembler/Compiler; | EXET(Debugge) | EXE2 Programmer)

EXE Path ID:\PEHICHD\WINIDE\..\CASHW\cas |

X Cancel |
Type IP&E CASMWwux Assembler ﬂ|

—Dutput Control Lizting Options
¥ Dutput 519 Object [V Show Cycles in Listing
[+ Output Debug File [+ Expand Includes in Listing
[+ Output Listing File [+ Expand Macros in Listing

—Azzembly Pref es
[Show Assembler Progress ¥ Save Files Before Assembling

[~ W ait for Assembler Besult [~ Sound Bell on Error

Figure 4-15. Environment Settings Dialog:
Assembler/Compiler Tab

 TYPE: Click on the downward-pointing arrow to the right of the Type list box to
display the compiler types. Click on the compiler type to select it. The options in the
Assembler/Compiler tab change according to the compiler type chosen:

If you select the P& E compiler, anumber of compiler options are available.

If you select a non-P&E compiler, options lets you specify the parameters to
pass the compiler.

e Output Control: These options specify the output files that the assembler will create:

M68ICS05KJOM/D

Output S19 Object: Select this option to have the assembler output an S19
object file. The S19 object file contains the compiled instructions from the
program assembled. The output S19 file has the same name as the assembly
file, but with the .S19 extension. Appendix A: S-Record Information gives
more information about the S19 file format.

Output Debug File: Select this option to have the assembler produce a debug
.MAP file. The debug .MAP file contains symbol information as well as line
number information for source level debugging from the program assembled.
The output debug file has the same name as the assembly file, but with the
.MAP extension.

Output Listing File: Select this option to have the assembler produce alisting
file. The listing file shows the source code as well as the object codes that
were produced from the assembler. Listing files are useful for debugging, as
they let you see exactly where and how the code assembled. The output listing
file has the same name as the assembly file, but with the .LST extension.

4-23

WinIDE USER INTERFACE

4-24

» Listing Options: The following options specify how the assembler generates the
listing file.

Show Cycles in Listing: Select this option to include cycle information for
each compiled instruction in the listing (.LST) file. View the cycle information
to see how long each instruction takes to execute. The cycle count appears to
the right of the address, enclosed in brackets.

Expand Includesin Listing: Select this option to expand all include files into
the current listing file. This lets you view all source filesin amain listing file.
If this option is not checked, you will see only the $Include statement for each
included file, not the sourcefile.

Expand Macros in Listing: Select this option to expand al macros into the
listing file: each time the macro is used, the listing will show the instructions
comprising the macro. If you do not select this option, you see only the macro
name, not its instructions.

* Assembly Preferences

Show Assembler Progress. Select this option to display a pop-up window
showing the current assembly status, including:

¢ The passthe assembler is currently on
¢ Thefilethat is currently being assembled
¢ Thelinethat is currently being assembled

If this option is not checked, you must wait for the assembly result to be
displayed on the status bar at the bottom of the environment window.

Wait for Assembler Result: Select this option and the Show Assembler
Progress option to cause a progress window displaying the assembly result to
stay up when assembly is done. The assembly result window will remain until
you dismiss it by clicking the OK button. In general, do not select this option,
as the assembler results are shown in the status bar at the bottom of the
WinIDE window.

Save files before Assembling: Select this option to save all open files to disk
before you run the assembler. This is important because the
assembler/compiler reads the file to be compiled from the disk, not from the
open windows in the WinIDE editor. If you do not save the file before
assembling it, the assembler will assemble the last saved version. In general,
you should leave this option checked.

Sound Bell on Error: Select this option to have the assembler beep if it
encounters an error.

M68ICS05KJOM/D

WinIDE USER INTERFACE

e Other Assembler/Compiler: If you choose Other Assembler / Compiler from the
Type list, the WinIDE editor offers these additional options:

Options: Enter the options to pass to the compiler on the command line. Such
options generally consist of switches that instruct the compiler, and a
filename. Enter the %FILE% string in the command line to insert either the
current filename or the filename specified in the Main Filename option in the
EXE Path text box of the General Environment tab options (Figure 4-13).

Confirm command line: Select this option to display a window describing the
executable you want to run, and the parameters that you want to pass to the
executable, just before the assembler/compiler is run. This gives you the
option to cancel the assemble/compile, continue as described, or modify
parameters before you continue with the assembly. If you do not select this
option, the assembler/compiler runs without prompting you to confirm
parameters.

Recover Error from Compiler: Select this option to have the WinIDE editor
attempt to recover error/success information from the assembler/compiler, and
open the file with the error line highlighted (and displayed in the status bar)
when an error is encountered. For this feature to work, the Error Filename and
Error Format options must also be set in this tab. If this option is not checked,
the WinIDE editor will not look for a compiler result and will not display the
results in the status bar.

Wait for compiler to finish: Select this option to have the WinIDE editor
disable itsalf until the compiler terminates. Y ou must select this option for the
editor to attempt to recover error/success information from the assembler/
compiler. Further, turning this option on prevents you from running external
programs from the editor that may require compilation or assembly results. If
you do not select this option, the editor starts the assembler/compiler, and
continues, letting Windows' multitasking capabilities take care of the program.

Save files before Assembling: Select this option to save all open files to disk
before the running the assembler. This can be very important since the
assembler/compiler reads the file to be compiled from the disk and not from
the memory of the WinIDE editor. If the file being assembled isn't saved, the
assembler or compiler will assemble the last saved version. For this reason,
you should leave this option checked.

e Error Format: Click the down arrow to the right of the Error Format list box to
display the list of error formats (Figure 4-16). If the WinIDE editor is to attempt to
read back an error from a compiler, it must understand the error syntax. This option
lets you select an error format from a list of supported formats. If the Recover Error
from compiler option is checked, and the filename specified in the Error Filename
text box is found, the editor parses that file from end to beginning looking for the
error. If the editor finds an error, it opens the file, highlights the error line, and
displays the error in the status bar.

M68ICS05KJOM/D

4-25

WinIDE USER INTERFACE

PLE Compatible

SDS5 C-Compiler
Microzoft Compatible
Borland Compatible

Figure4-16. Error Format List

» Error Filename: Enter the filename to which the editor pipes the compiler/assembler
error output. Some compilers provide a switch for piping error output to a file; others
require that you handle this manually. As most compilers are DOS-based, you can
create a batch file into which to pipe the output. For example:

COWI LER OPTIONS > ERROR. TXT

This batch file creates the file ERROR.TXT and sends the assembler/compiler output to
that file. Most C-compilers require a batch file to run the compiler through its various
steps (compiling, linking), to which you may add a pipe for error output.

Once the environment reads this error file, the WinIDE editor displays the results, and
the deletes the error file. If you want to keep a copy of the file, you must add such
instructions to the batch file.

4.10.5.4 Executable 1 (Debugger) and Executable 2 (Programmer) Tab

Choose either the EXE 1 (Debugger) tab or the EXE 2 (Programmer) tab (Figure 4-17) in the
Environment Settings dialog to bring either tab to the front. Enter options for the general-purpose
external programs, for example, the ICSO5KJW, that you will be using with this project. The
options are the same in both tabs.

Environment Settings [1X]

|/ General Enviranment T General Editar]
Assembler/Compiler T {EXE1 [Debugger): I EXE2 [Frogrammer)

« OK
Type IDehugger |
X Cancel |
EXE Path |c:Mics05cw1MCSO05CWAICS050W EXE
| '

Dptions |[RFILE 519 |

" Confirm Command line before running

[¥ Save all files before running

Figure 4-17. Environment Settings Dialog:
EXE 1 (Debugger) and EXE 2 (Programmer) Tabs

4-26 M68ICS05KJOM/D

WinIDE USER INTERFACE

* Type: Enter adescription of the executable type in the Type text box. This string will
appear in other parts of WinIDE editor. The default for Executable 1 is Debugger. For
the ICSO5K JW, you may choose to change the Type to ICS. Thiswill change the label
on thistab and elsewhere in the dialog.

EXE Path: Enter the full path and executable name of Executable 1 in the
EXE Path text box. The executable name may have an EXE, COM, or BAT
extension. For a DOS-based executable or batch file, you may choose to create
a PIF file to prevent the screen from changing video modes when the file is
run.

Options: Enter the options you want to pass to the executable on the command
line in the Options text box. In general, options will consist of switches that
instruct the executable from the command line. Y ou may add a filename using
the %FILE% string. The %FILE% string inserts either the currently active
filename, or the filename specified by the %FILE% parameter, set in the
%FILE% parameters to pass to external programs field in the General
Environment tab.

Confirm Command line before running: Select this option to display a
window describing the executable to be run and the parameters which will be
passed, just before the assembler/compiler is run. This gives you the option to
cancel the assemble/compile, continue as described, or modify parameters
before continuing. If you do not select this option, the assembler/compiler will
be run without prompting you to confirm parameters.

Save all files before running: Select this option to save all open files to disk
before running the executable. This is important since external programs that
must read the edit file read only the last version saved to disk. In generdl,
always select this option.

Wait for program completion: Select this option to have the WinIDE editor
disable itself until the executable terminates. If you do not select this option,
the editor starts the compiler, and allows Windows to manage the program.

4.10.6 Setup Fonts

Select the Setup Fonts option in the Environment menu to open the Setup Fonts dialog (Figure 4-
18) to change font options in the editor.

M68ICS05KJOM/D

4-27

WinIDE USER INTERFACE

Font =]
Forit stule: Size:
iwedzys) IHegulal 10 oK, I
Corier “ M 3 Al
P Courier Mew Italic Cancel |
Bold
W5 LineDraw Bald Italic
Terminal
[
| |
— Effect: — Sampl
[Shrikeout
AaBbYylz
[~ Underline Y
Color:
G =ck - Script:
IW’estem vl

Figure 4-18. Setup Fonts Dialog

* Font: The Font text box displays the name of the current font. To change the current
font, select another font name from the Font list. Use the scroll arrows if necessary to
view al the font choices.

* Font Style: The Font Style text box displays the name of the current font style. To
change the current font style, select another font style name from theFront Style list.

» Size: The Sze text box displays the current font size. To change the size, enter a new
number in the text box or choose afont size from the list.

» Effects: Toggle special font effects:

— Strikeout: Choose this option to produce a horizontal strike-through line in
the selected text

— Underline: Choose this option to produce a horizontal underscore line below
the selected text

* Color: Choose the text color from the drop-down list box. Click on the downward
pointing arrow to display the Color list. Use the scrolling arrows to view al of the
choices, if necessary.

» Sample: Asyou choose Font options, an example of the text that will result is shown
in the Sample area.

e Script: If you have installed multilingual support, use this option to choose a non-
western script.

4.11 WinIDE SEARCH OPTIONS

This section describes the WinIDE Search menu options for specifying search criteria and
entering aline number to go to in asourcefile.

4-28 M68ICS05KJOM/D

WinIDE USER INTERFACE

To perform a search operation, click once on the Search menu to open the menu (Figure 4-19).
Click on the option to execute.

Find... Chl+F
Beplace.. Cul+R
Erdirest B

Gotaline...

Figure 4-19. Search Menu

411.1 Find

Choose the Find option from the Search menu to open the Find dialog (Figure 4-20). In the Find
what: box, enter the string to search for. The search will be performed in the active WinIDE
editor source window.

Find | x|
Find what: ||

I Match whale word only Direction Cancel |
™ Match case " Up % Down

Figure 4-20. Find Dialog

Enter the search string and choose from the following options to refine your search:

e Match Whole Word Only: choose this option to limit the search to whole "words’
and not character strings that are part of alonger word or string.

* Match Case: choose this option to perform a case sensitive search, that is, to find
words with a specific uppercase and/or lowercase arrangement.

» Direction: Up/Down: Click on an option to direct the search:

— Choose the Down option to direct the search from the current cursor position
in the text to the end or "bottom"” of the file.

— Choose the Up option to direct the search from the current position in the text
to the beginning or "top" of thefile.

Press the Find Next button to start the search.

NOTE

The Find window is modeless and can remain open, allowing you
to interact with either the Find dialog or the source window.

Alternatives. Press Ctrl + F. This is the keyboard equivalent to selecting the Search - Find
menu option.

M68ICS05KJOM/D 4-29

WinIDE USER INTERFACE

4.11.2 Replace

Select the Replace option to open the Replace dialog (Figure 4-21) to search for and substitute
text in the active source window.

Find what: Ireadeed Find Next |

Replace with: I Replace |
Feplace Al |

™ Match whale word only

™ Match case ﬂl

Figure 4-21. Replace Dialog

In the Find what text box, enter the text string to find; in the Replace with text box, enter the text
string to replace it with. Refine the search using the Match whole word only or Match case
options.

* Match Whole Word Only: choose this option to limit the search to whole "words’
and not character strings that are part of alonger word or string

* Match Case: choose this option to perform a case sensitive search, that is, to find
words with a specific uppercase and/or lowercase arrangement.

Press the Cancel button to close the Replace dial og.

Alternatives: Press Ctrl + R. Thisis the keyboard equivalent to selecting the Search - Replace
menu option.

4.11.3 Find Next

Select the Find Next option from the Search menu to find the next occurrence of the previous
search string without displaying the Find dialog.

Alternatives. Press F3. This is the keyboard equivalent to selecting the Search - Find Next
menu option.
4114 GotolLine

Select the Go to Line option from the Search menu to open the Go to Line Number dialog (Figure
4-22). You may note line numbers in the Status Bar and use the dialog to navigate between
pointsin the text.

4-30 M68ICS05KJOM/D

WinIDE USER INTERFACE

Go to Line Humber

Enter Line Number [1 to 15)
[14 |

|\/ 1] & | |x Cancel |

Figure 4-22. Go To Line Number Dialog

The dialog instruction includes the range of line numbers available in the active window. Enter
the Line Number you want to go to, and press the OK button.

4.12 WinIDE WINDOW OPTIONS

This section describes the WinIDE Window menu options for managing the arrangement of open
client windows in the main WinlDE window.

To perform a Window operation, click once on the Window menu to open the menu (Figure 4-23).
Click on the option to execute.

LCazcade

Tile

Arrange lcons
Minimize Al

Split

1 DATIMAPROJECTSAMDDS 1 WCAL ASM

v 2 DATIMAPROJECTSYMDDS1ADDS ASK
S DATIMAPROJECTSAMDDS1MD0 A5 M
4 DATIMAPROJECTSAMDDSTHEEPROM. ASH
S DATIMAPROJECTSAMDDS1AEQUATES A5 M
B DATIMAPROJECTSAMDDS1AFREGLASK
T DATIMAPROJECTSAMDDSTMMIT ASM
8 DATIMAPROJECTSAMDDS1MRO.ASM
SDATIMAPROJECTSAMDDS1MEEYER. A5M
More Windows. .

Figure 4-23. The Window Menu

M68ICS05KJOM/D 4-31

b -

g |

WinIDE USER INTERFACE

4.12.1 Cascade

Select the Cascade option from the Window menu to arrange the open source windows in
overlapping or "cascaded" style (Figure 4-24), like fanned cards. In this arrangement, open source
windows are all set to the same size and shape, one overlapping the other from the upper left
hand to the lower right hand corner of the WinlDE main window, with their title bars visible.

= WIN IDE - [MDDS_PPF] [=[51x]

Fie Edit Envionment Seach Window Help

AZ[= [E2e] [a]=[E=
T] <]
o erRosECTs WS TEX A mEIE

F

-page

|7 . 1 = text.asm
1471~
. | 4 | = Contains text strings to put into display.
EE
74 4 1 = Functions:
1471~
11 ¢ * reset2
1111«
i 4 = Revision history:
EE
i * 89723797 rg Add in latest DDS18 updates.

1 4.1 = 81713797 rg Original miniDD$ version. hd
I o
| |

A E
Nz
182 Tota 80 | Top: 1 | Byes 1882 | Insett ﬂ

Figure 4-24. Winl DE with Subordinate Windows Cascaded

To choose a window from the cascaded display, click on its title bar. This moves the selected
window to the top of the stack, and makes it the active window.

4-32 M68ICS05KJOM/D

WinIDE USER INTERFACE

4.12.2 Tile

Select the Tile option from the Window menu to arrange the open source windows in tiled
fashion (Figure 4-25). You will be able to see the entire window border for each, although not
necessarily the window’ s entire contents.

=) WIN IDE - [MDDS_PPF] [=[51x]
Fle Edi Envionment Seach Window Help

alZln| [£]2]e] [e]E[E]=]

== DATIMAPROJECTS\MDDS 1ATEXT ASM M=l EF || .- D:ATIM\PROJECTSAMDDS 1\KEYPAD _ASM N] 3
-page 2l -page -
* i * o
* text.asm * keypad.asm
* *

*= Contains text strings to put into display. # This file contains miscellaneous rig actio
* *
Functions: * Functions
* *
® reset2 ® keypad_get
® ® keypad_do_1st
* Revision history: = keypad_do_freq
- -

Al 47K 7

== DATIMAPROJECTS\MDDS 1\FREQ.ASM -EE == DATIM\PROJECTS\MDDS1MRQ.ASM =] 3
.page iI |.page =
* * i
= freq.asn * irg.asm
* *
= This file contains frequency management fu = This file contains the interrupt service r
* *
= Functions: = Functions:

* *

® freq_get_ref ® irg_isp

* freq_convert *

= freq_change = Revision history:

* freq_get hd hal

4 oL H 7

11 | | TowlEs | Top: 1 Bytes: 1430 Insert

Figure 4-25. Winl DE with Subordinate Windows Tiled

If the contents of a source window cannot be displayed in their entirety, use the scroll bars.
Thetiled arrangement is practical to use when cutting and pasting from one window to another.

M68ICS05KJOM/D 4-33

b -

WinIDE USER INTERFACE

4.12.3 Arrangelcons

Select the Arrange Icons option from the Window menu to rearrange the icons of minimized
windows into columns and rows at the bottom of the WinlDE main window (Figure 4-26).

4-34

= WIN IDE - [MDDS_PPF] [=[51x]
Fle Edi Envionment Seach Window Help

AZ[= [E2e] [a]=[E=

-page iI

*
* dds.asm

*
* This file contains AD7688 DDS support functions. Also contains
* the frequency tables.

*
* Functions:

dds_put_freq
dds_load_freq
dds_strobe_wr_cs
dds_init_aD7808

Revision history:

ok ok ok ok ok Ok ok K

89723/97 rg Add in latest DDS18 updates.
81/713/97 rg Original miniDDS version.

=

Figure 4-26. WinlDE

with One Sour ce Window Displayed and Remaining Windows Minimized

M68ICS05KJOM/D

WinIDE USER INTERFACE

4.12.4 Minimize All

Select the Minimize All option from the Window menu to minimize all open source windows and
display them asicons at the bottom of the WinIlDE main window (Figure 4-27).

= WIN IDE - [MDDS_PPF] [=[51x]
Fle Edi Envionment Seach Window Help

ElZR FE [e[zE=

Figure 4-27. The WinI DE Editor with Subordinate Windows Minimized

M68ICS05KJOM/D 4-35

h o
g |

WinIDE USER INTERFACE

4125 Split

Select the Split option from the Window menu to divide the active source window into two or
more separate panes, each capable of displaying a different view of the same file. To toggle the
split window view, click on the Split option. A check mark appears beside the option when the
split view isin effect.

Adjust the relative size of the panes by dragging the split bar, a double horizontal line separating
the panes. Position the pointer over the split bar until it changes to the split pointer (Figure 4-28).

== WIN IDE - [PODTEST PPF]

File Edit Enviranment Seal

c o
inmze Al

[NONAMESN v et]
v 1 DAMOTACICS\ SOFTWARENICS0ECWAPODTEST ASM

Cascade

» C8TEST.ASM - 3nONAMEZ
************** 4NOMAME3

porta equ $00

portb equ $01

ddra equ $ey

ddrb equ $05

ter equ $12
T

L

b
% C8TEST.ASM - Sample code to test ICSOSC board)
Split Bar

porta equ $00
portb equ $01
ddra equ $ey
ddrb equ $05
equ $12

Figure 4-28. Cascaded Windowswith Active Window Split

4-36 M68ICS05KJOM/D

ASSEMBLER INTERFACE

CHAPTER 5
ASSEMBLER INTERFACE

5.1 OVERVIEW

This chapter describes the operation of the CASMO5W assembler, including methods for
interfacing with the assembler from the WIinIDE, setting assembler options and directives,
generating and using output files and formats, and understanding assembler-generated error

Messages.

In order to be used in the target microcontroller CPU, the source code for your program must be
converted from its mnemonic codes to the machine code that the target CPU can execute. The
CASM assembler program accomplishes this by reading the source code mnemonics and
assembling an object code file that can be programmed into the memory of the target
microcontroller. Depending on the parameters that you specify for the assembler, other
supporting files can be produced that are helpful in the debugging process.

When you click on the Assemble/Compile file button in the WinIDE, the CASM cross assembler
Is activated to process the active file in the WinIDE main window according to the parameters
you have entered. In addition to two kinds of object code files, you may choose to have the
assembler produce .MAP and/or .LST files as well.

Listing files show the original source code, or mnemonics, including comments, as well as the
object code translation. You can use this listing during the debugging phase of the development
project. It also provides abasis for documenting the program.

M68ICS05KJOM/D 5-1

g |

ASSEMBLER INTERFACE

5.2 CASMOSWASSEMBLER USER INTERFACE
The assembler interface consists of a window that appears briefly in the WinIDE main window
during assembly. Thiswindow (Figure 5-1) contains information about the file being assembled:
* Main File: the path and filename of the main file being assembled
* Current File: the path and filename of the current file being assembled
» Status: the assembler status as the assembly proceeds
e Current Line: the current line position of the assembler
» Total Lines: the total number of linesin the file being assembled

=i WIN IDE - [No Project]
File Edit Environment Search ‘Window Help

Q,ﬁlﬁ%l ||ﬂt| ||%|t§*|

i DAPEMICROASAMPLE “1\DISPLAY ASH
.page

DISPLAY - displays both lines from ram locat

e T -

¥ % % ¥

Main File : ...\SAMPLE~T\DISPLAY.ASM

display equ *

Current File : .. SAMPLE~1'DISPLAY.ASM
bset 8,portc

Status: Pass 2 : Assembling ‘

[EXECUTABLE1] Current Line : 160 Total Lines: 160

K1

Figure5-1. WinIDE
with CASM05W Assembler Window Displayed

5-2 M68ICS05KJOM/D

ASSEMBLER INTERFACE

You can pass parameters to the assembler by modifying the command line in the Program Item
properties in Windows, as shown in Figure 5-2.

Shortcut to Casm05w Properties

Gereral Shortcut |

Bl Shorteut to CasmSw
LIS)

Target tppe; Application

Target location: CASMW

N) FEMICR 0\ CAS M CASMOGW EXE 5 L D Enter command line
= parameters

Start ir: ID:\F‘EMICF!D'\D—‘-.SMW

Shortcut key: INone

Bun: I Marmal windaw j

Firnd Target... | Qhangelcon...l

QK I Cancel | Apply |

Figure 5-2. Windows 95 Program Item Property Sheet
(Shortcut Property for CASM05W.EXE)

5.2.1 Passing Command Line Parametersto the Assembler in Windows 3.x

To enter parameters for the CASMO5W assembler in Windows 3.x:
1. Inthe Windows Program Manager, select the CASMO5W icon.

2. Choose the Properties option from the Program Manager File menu (or type ALT F
+ P).

3. Inthe Program Item Properties dialog box enter the Command Line information. The
command line specifies the command that will execute to start the program. In
general, use the path to the program and its executable file name as the command line
entry. You may also add optional command-line switches or parameters and the name
of aspecificfileto run.

M68ICS05KJOM/D 5-3

ASSEMBLER INTERFACE

5.2.2 Passing Command Line Parametersto the Assembler in Windows 95

To enter parameters for the CASMO05W assembler in Windows 95:

1. If the program is not running, right-click its icon on the Windows desktop, or its
shortcut entry in a folder or Windows Explorer window to open the Shortcut
Properties sheet (Figure 5-2).

In the Target textbox, enter the CASM05W command line parameters.
If necessary, edit the pathname in the Start in text box.
Choose the window type in which to run the assembler:

¢ Choose Normal to run the assembler in a standard CASMO5W window
(Figure 5-3).

¢ Choose Minimized to run the assembler in a minimized CASMO5W window.

* Choose Maximized to run the assembler in a maximized CASMO05W window.

TCASMO5 for Windows [<]

CASMOSW - Version 3.07
P&E Microcomputer Systems, Inc.

Touse CAINDS for Windows, modify the Command Line in the Program
Item Properties as shown below

|(drve) ipath) \CASMOSW EXE filename [LDHCM1Q] |

whete:
filetiame - file to assemble (default extensionis ASM)
3 - optional parameter to generate Motorola 319 object file
L - optional parameter to generate LISTING file
D - optional parameter to generate P&E DEBUG map file
H - optional parameter to generate Intel HEX object file
C - optional parameter to show cycle counts in listing file
M - optional parameter to expand MACROS in listing file
1- optional parameter to expand INCLUDE files in listing file
Q- optional parameter to suppress screen wiites except etrors

All parameters default to off. Parameters must be separated by spaces
and may be in any order.

Example: CAP&EENCASMOSW EXE MYFILES LD

Figure 5-3. CASM05W for Windows Assembler Parameters

5.3 ASSEMBLER PARAMETERS

You may configure the CASMO5W assembler using the following parameters in the Windows
command line.

If you specify multiple parameters, separate them by spaces. Y ou can enter the parameters in any
order. All parameters default to off.

5-4 M68ICS05KJOM/D

ASSEMBLER INTERFACE

* Filename: Required parameter specifying the pathname and filename of the
CASMO5W assembler executable

* S Optiona parameter to general Motorola .S19 S-Record object file
e L: Optional parameter to general an .LST listing file

* D: Optional parameter to generate P& E .MAP debugging file

* H: Optiona parameter to generate Intel HEX object file

* C: Optional parameter to show cycle countsin listing file

e M: Optional parameter to expand MACROS slisting file

I: Optional parameter to expand INCLUDE filesin listing file

e Q: Optiona parameter to suppress screen writes except errors

Example
C. \ P&E\ CASM)5#. EXE MYFILE S L D

5.4 ASSEMBLER OUTPUTS

54.1 Object Files

If you specify an object file in the command-line in the Program Item Properties in Windows,
using the S or H parameters, the object file is created during assembly. The object file has the
same name as the file being assembled, with the extension .HEX or .S19, depending on the
Specification given:
* Motorola uses the S-Record 8-bit object code file format for object files. For more
information, see Appendix A: S-Record Information.

» .HEX istheIntel 8-bit object code format.

In either case, the object code file produced by the CASMO5W assembler is atext file containing
numbers that represent the binary opcodes and data of the assembled program. This object code
file can be sent to the MCU using a programmer or bootstrap program, at which time it is
converted to the binary format required by the target CPU.

The object filename depends on the choice made in the command line of the Windows Program
Item Properties. By default, the object filename is that of the file being assembled, with the
proper object file format extensions. An existing file with the same name will be overwritten.

M68ICS05KJOM/D 5-5

ASSEMBLER INTERFACE

5.4.2 Map Files

If you specify a map file using the D parameter, the P& E Debug .MAP file is created during the
assembly. P& E Microcomputer products (such as the MMDS and the MMEVS) use these map
files during the source-level debugging process.

Map files contain the directory path information under which they are created, and cannot,
therefore, be moved to a new directory. If you must use the map file from a different directory,
place the file in the new directory and reassemble, using the map file option D in the Windows
command line.

5.4.3 Listing Files

If you specify alisting file using the L parameter in the Windows command line, a file with the
same name as the file being assembled and the extension LST can be produced by the assembler.
This file serves as a program listing showing the binary numbers that the CPU needs, alongside
the assembly language statements from the source code.

For more information about using the assembler listing directives, see the summary of Assembler
Directivesin Table 5-2, beginning in paragraph 5-6.

5.4.4 Filesfrom Other Assemblers

It is possible to use files produced by another assembler with the CASMO5W assembler,
providing they are properly prepared before using. To prepare a source file from a third-party
assembler for use with the CASMO5W, follow these steps:

1. Precede all comments by a semicolon.

2. Using the WinIDE (or other editor) globa search and replace command, change any
assembler-specific directives, listing directives, pseudo operations, etc., as required to
create a file which is compatible with the CASMO5W. Remember that assembler
directives must begin with the characters$, / , . , or #, and must begin in column 1.

3. If necessary, use the BASE directive to change the default base for the operands
(CASMO5W defaults to hexadecimal base).

5-6 M68ICS05KJOM/D

ASSEMBLER INTERFACE

5.5 ASSEMBLER OPTIONS

The CASMO5W assembler supports all Motorola opcode mnemonics in the command set. For
descriptions of the debugging commands, see Chapter 7, ICS05K JW Debugging Command Set.

NOTE

Opcodes mnemonics cannot start in column one. If a label begins
the line, there must be at least one space between the label and the
opcode.

5.5.1 Operandsand Constants

Operands are addresses, labels, or constants, as defined by the opcode. Assembly-time arithmetic
is alowed within operands. Such arithmetic may use these operations:

multiplication

division

addition

subtraction

left shift

right shift

remainder after division
bitwise and

bitwise or

bitwise xor

+ = %

>— R LV A

Operator precedence follows algebraic rules. You may use parentheses to alter precedence. If
your expression contains more than one operator, parenthesis, or embedded space, you must put
the entire expression inside braces ({ }).

jmp start ;start is a previously defined | abel
jnp start+3 ;junp to location start + 3
jmp (start > 2) ;junmp to location start divided by 4

Constants are specific numbers in assembly-language commands. The default base for constants
is hexadecimal, but you may change the default using the Change Base Address dialogs for the
Memory and Code windows. To temporarily override the default base, use either the appropriate
prefix or suffix (Table 5-1), but not both.

The assembler aso accepts ASCII constants. Specify an ASCII constant by enclosing it in single
or double quotes. A character ASCII constant has an equivalent value: ‘A’ is the same as 41H.
An example of a string constant is:

db “this is a string”

M68ICS05KJOM/D 5-7

ASSEMBLER INTERFACE

Table 5-1. Change Base Pr efixes/Suffixes

Base | Prefix | Suffix
2 % Q
8 @ @)
10 ! T
16 H

5.5.2 Comments

Use semicolons to delineate comments. A comment may start in any column and runs until the
end of itsline. Additionally, if any line has an asterisk (*) or semicolon (;) in column 1, the entire
lineis a comment.

5.6 ASSEMBLER DIRECTIVES

Assembler directives are keywords that control the progress and the modes of the CASM05W
assembler. To invoke an assembler directive, enter a/, #, or $ as the first character of a line.
Enter the directive immediately after thisinitial character, along with the appropriate parameters
values.

Directives supported by the assembler vary according to manufacturer. Table 5-2 summarizes the
CASMO5W assembler directives. A caret (") indicates that a parameter value must follow the
directive. Note also that a space must separate a directive and its parameter value.

5.6.1 BASE

The BASE assembler directive changes the default base of the current file. The parameter
specified must be in the current base or have a base qualifier (prefix or suffix). The next base
remains in effect until the end of the file, or until you enter another BASE directive.

The origina default base is hexadecimal, but you can change the default to binary, octal, or
decimal default bases instead. It is good practice to specify a base explicitly so that you are
always sure that base is currently in effect.

5.6.2 Cycle Adder

The CASMO5W assembler contains an internal counter for instruction cycles called the cycle
adder. Two assembler directives, CYCLE_ADDER ON and CYCLE _ADDER_OFF, control
this counter.

5-8 M68ICS05KJOM/D

ASSEMBLER INTERFACE

When the assembler encounters the CYCLE_ADDER_ON directive, it clears the cycle adder.
The cycle adder starts a running total of instruction cycles as subsequent instructions are
assembled. For instructions that have variables numbers of instruction cycles, the cycle adder
uses the smallest number.

When the assembler encounters the CY CLE_ADDER_OFF directive, it writes the current cycle-
adder value to the .L ST file and disables the cycle adder.

Table5-2. Assembler Directives

Directive Action

BASE » Change the default input base to binary, octal, decimal, or hexadecimal
CYCLE_ADDER_OFF Stop accumulating instruction cycles and print the total
CYCLE_ADDER_ON Start accumulating instruction cycles
INCLUDE » Include specified file in source code
MACRO # Create a macro
MACROEND End a macro definition
RAMEND ~ Set logical end of RAM space
RAMSTART » Set default for ramloc pseudo operation

Conditional Directive Action
SET Sets the value of its parameter to true.

Maximum number of SETs is 25.

SETNOT Sets the value of its parameter to false.

Maximum number of SETNOTSs is 25.

IF or IFNOT Determines the block of code to be used for conditional assembly; the code
between the IF and ENDIF will be assembled if the given parameter value is
true; the code between IFNOT and ENDIF will be assembled if the
parameter value is false.

ELSEIF Provides alternative to ENDIF when precedes ENDIF; for example, if the
parameter value is true, the code between IF and ELSEIF will be
assembled, but the code between ELSEIF and ENDIF will not be
assembled. If the parameter value is false, code between IF and ELSEIF will
not be assembled, but code between ELSEIF and ENDIF will be assembled.

ELSEIF gives the same alternative arrangement to a directive sequence that
begins with IFNOT.

ENDIF See IF, IFNOT, ELSEIF

M68ICS05KJOM/D 5-9

ASSEMBLER INTERFACE

5.6.3 Conditional Assembly

The CASMO5W assembler allows you to specify blocks of code to be assembled only upon
certain conditions. To set up such conditional assembly procedures, use the conditional
assembler directives summarized in Table 5.2.

Example of Conditional Assembly Directives

$SET debug ; sets debug = true
$SETNOT t est :sets test = fal se
nop ; al ways assenbl es
nop ; al ways assenbl es
$I F debug ;i f debug = true
jnmp start ; assenbl es

$ELSEI F ;i f debug = fal se
jmp end ; does not assenbl e
$ENDI F

nop ; al ways assenbl es
nop ; al ways assenbl es
$I F test if test = true
jmp test ; does not assenbl e
$ENDI F

5.6.4 INCLUDE

If the CASMO5W assembler encounters the INCLUDE directive, it takes source code from the
specified file and continues until it encounters another INCLUDE directive or until it reaches the
end of the main file. When the assembler reaches the end of the main file, it continues taking
source code from the file that contained the include directive.

The file specification of the INCLUDE directive must be in either single or double quotes. If the
fileis not in the current directory, the specification should also include the full path name as well
asthefilename.

Y ou may nest included to a maximum depth of 10, that is, each included file may contain up to 10
additiona included files.

Examples
$INCLUDE “INIT.ASM”

$INCLUDE “C:\project\init.asm*"

5-10 M68ICS05KJOM/D

ASSEMBLER INTERFACE

5.6.5 MACRO

A macro is a named block of text to be assembled. Similar in some ways to an included file, the
macro alows labels and parameter values.

The MACRO directive begins the macro definition. The name of the macro is the parameter
value for the MACRO direction. All subsequent code, until the assembler encounters the
MACROEND directive, is considered the macro definition.

No assembler directives may be used within a macro, nor does the definition require parameter
names. Instead, the macro definition includes the sequential indicators %n for the n™ parameter
values of the macro call. The assembler will ignore parameter values on the MACRO directive
line, so such values may be helpful for internal documentation.

Example
This macro example illustrates a macro that divides the accumulator value by 4:
$MACRO di vide_by 4 ;starts macro definition
asr a ; di vi des accunul ator by 2
asr a ;divides quotient by 2
$MACROEND ;ends macro definition
This macro example illustrates a macro that creates atime delay:
$MACRO del ay count
| daa #$01
| oop: deca
bne | oop
$MACRCEND

In this macro, the CASMO5W assembler ignores the parameter count on the MACRO directive
line. The parameter count merely indicates the role of the parameter value passed to the macro.
That value is substituted for the sequentia indicator %1. The first time this macro is called, the
CASMO5W assembler changes the label loop, on lines 3 and 4, to loop: 0001. If the calling line

del ay 100t
invokes this macro, the loop would occur 100 times. The suffix t represents the decimal base.

The CASMO5W assembler ignores extra parameter values sent to a macro. If the macro does not
receive enough parameter values, the assembl er issues an error message.

Labels change automatically each time they are used. Labels used within macros may not be
longer than 10 characters, because the assembler appends a four-digit hexadecimal number to the
label to insure label uniqueness.

Although code may not jump into a macro, it may jump out of a macro. Macros cannot be
forward-referenced.

M68ICS05KJOM/D 5-11

ASSEMBLER INTERFACE

5.7 LISTING DIRECTIVES

List directives are source-code keywords that control output to the LST listing file. These
directives pertain only to viewing the source-code output; the directives, which may be
interspersed anywhere in source code, do not affect the actual code assembled. Table 5-4
summarizes the listing directives.

Table5-3. Listing Directives

Directive Action

eject or page | Begins a new page

header " Specifies a header on listing pages; the header can be defined only once; the
default header is blank; the header string is entered in quotes.

list Turns on the .Ist file output.

nolist Turns off the .Ist file output. This directive is the counterpart of the list
directive; at the end of a file, this directive keeps the symbol-table from being
listed.

pagelength | Sets the length of the page; the default parameter value is 166 lines (! =
decimal)

pagewidth » Sets the width of the output, word wrapping additional text; the default
parameter value is 160 columns (! = decimal)f.

subheader V' | Makes the string specified in quotes (double or single) a subheader on the
listing pages; the subheader takes effect on the next page.

Note: the caret (*) character following a directive indicates a mandatory parameter value that
must be supplied.

5.7.1 Listing Files

If alisting fileis requested using the L parameter in the command line of the Windows Program
Item Properties, or the Output Listing File option is checked in the Assembler/Compiler tab in
the Environment Settings dialog, thelisting file (.LST) is created during the assembly.

Thislisting file has the same name as the file being assembled, but with the extension .LST. Any
existing file with the same name will be overwritten.

5-12 M68ICS05KJOM/D

ASSEMBLER INTERFACE

The listing file has the following format (file fields shown in the example are described in Table

5-4):

AAAA [CC VWWWWW LLLL Source Code

Example:

0202 [05] 1608 37 bset 3,tcsr ; cl ear
timer overflow flag
Table 5-4. Listing File Fields
Field Field
Contents Description

AAAA The first field contains four hexadecimal digits indicating the address of the
command in the target processor (MCU) memory. The assembler generates this
field.

[CA The second field indicates the number of machine cycles used by the opcode. .
The assembler generates this field.

Note that this value appears only if the cycle counter (Cycle Cntr) was turned on
before assembly.

Also note that the CC value, which always appears in brackets, is a decimal
value. If a command has several possible cycle counts and the assembler cannot
determine the actual number, the CC field shows the best case (lowest number).
An example of a command that may have several possible counts is a branch
command.

VWWWWW/ | The third field contains a label consisting of four hexadecimal digits indicating the
values placed into that memory address (and, possibly, the next several memory
addresses). You may refer to this label in other commands. The size of this field
depends on the actual opcode. The assembler derives this field from the source
code.

LLLL The fourth field may contain up to four digits indicating the line count. The
assembler derives this field from the source code.

Source The last field contains the actual source code from the source code file.

code

Listing The listing table provides a summary of every label and its value, displayed in

table table format at the end of each listing file.

M68ICS05KJOM/D

5-13

ASSEMBLER INTERFACE

ExampleListing Table

MAIN1.ASM Assembled with CASMO5W 2/27/97 12:06:39 PM PAGE 2
0000 26 porta equ $0000
0000 27 portb equ $0001
0000 28 portc equ $0002
0000 29 portd equ $0003
0000 30 ddra equ $0004
0000 31 ddrb equ $0005
0000 32 ddrc equ $0006
0000 33 ddrd equ $0007
Syﬁbbl ' Tabl e
DONSCN 08DD
DONSCNL 08EE
OPTSC1L 0866
OPTSC2 0877
OPTSC3 0888

5.7.2 Labels

As you write the program code, you will not necessarily know the addresses where commands
will be located. The assembler solves this problem using a system of labels, providing you with a
convenient way to identify specific points in the program without knowing the exact addresses.
The assembler later converts these mnemonic labels into specific memory addresses and even
calculates the offsets for branch commands in order for the CPU to use them.

Labels within macros must not exceed 10 charactersin length.

Examples:

Label :

Thi sl sALabel :

Loop_ 1

This | abel _is _rmuch_too | ong:

The assembler would truncate the last example to 16 characters.

5-14 M68ICS05KJOM/D

ASSEMBLER INTERFACE

5.8 PSEUDO OPERATIONS

The CASMO5W assembler also allows pseudo operations (in place of opcode mnemonics). The
operations that the assembler allows are summarized in Table 5-5.

Table 5-5. Pseudo Operations Allowed by the CASM 05W

Pseudo Op Code Action
equ Associates a binary value with a label.
fcb m Defines byte storage, where m = label, number, or string. Strings
or generate ASCII code for multiple bytes; number and label parameters
db m receive single bytes.

Separate multiple parameters with commas.

fdb n Defines word storage, where n = label, number, or string. Two bytes
or are generated for each number or label.
dw n

Separate multiple parameters with commas.

orgn Sets the origin to the value of the number or label n. No forward
references of n are allowed.

rmb nordsn Defines storage, reserving n bytes, where n = number or label; no
forward references of n are allowed.

5.8.1 Equate (EQU)

The equate directive associates a binary value with a label. The value may be either an 8-bit
value or a 16-bit address value. This directive does not generate any object code.

During the assembly process, the assembler must keep a cross-reference list where it stores the
binary equivalent of each label. When alabel appears in the source program, the assembler looks
in this cross-reference table to find the binary equivalent. Each EQU directive generates an entry
in this cross-reference table.

An assembler reads the source program twice. On the first pass, the assembler just counts bytes
of object code and internally builds the cross-reference table. On the second pass, the assembler
generates the listing file and/or the S-record object file, as specified in the command line
parameters for the assembler. This two-pass arrangement allows the programmer to reference
labels that are defined later in the program.

M68ICS05KJOM/D 5-15

ASSEMBLER INTERFACE

EQU directives should appear near the beginning of a program, before their labels are used by
other program statements. If the assembler encounters a label before it has been defined, the
assembler has no choice but to assume the worse case, and assign the label a 16-bit address
value. This would cause the extended addressing mode to be used in places where the more
efficient direct addressing mode could have been used. In other cases, the indexed 16-bit offset
addressing mode may be used where a more efficient 8-bit or no offset indexed command could
have been used.

5.8.2 Form Constant Byte (FCB)

The arguments for this assembler directive are labels or numbers (separated by commas) that the
assembler can convert into a single byte of data. Each byte specified by the FCB directive
generates a byte of machine code in the object code file. Use FCB directives to define constants
in aprogram.

5.8.3 Form Double Byte (FDB)

The arguments for this assembler directive are labels or numbers (separated by commas) that the
assembler can convert into 16-bit data values. Each argument specified in an FDB directive
generates two bytes of machine code in the object codefile.

5.8.4 Originate (ORG)

The originate directive sets the location counter for the assembler. The location counter keeps
track of the address where the next byte of machine code will be stored in memory.

As the assembler transates program statements into machine code commands and data, it
advances the location counter to point to the next available memory location.

Every program has at least one ORG directive, to establish the program’s starting place. Most
complete programs will also have a second ORG directive near the end of the program to set the
location counter to the address where the reset and interrupt vectors are located. Y ou must always
specify the reset vector. It is good practice to aso specify interrupt vectors, even if you do not
expect to use interrupts.

5.8.5 Reserve Memory Byte (RMB)
Use this assembler directive to set aside space in RAM for program variables. The RMB

directive does not generate any object code, but it normally generates an entry in the assembler’s
internal cross-reference table.

5-16 M68ICS05KJOM/D

ASSEMBLER INTERFACE

5.9 ASSEMBLER ERROR MESSAGES

You can configure the CASMO5W assembler to highlight any errors that it encounters during
assembly, and display an error message on the prompt line. Table 56 summarizes these

messages.
Table 5-6. Assembler Error Messages
Message Probable Cause Corrective Action
Conditional The variable in the IF or IFNOT Declare the variable using the
assembly variable | statement has not been declared via s SET or SETNOT directive.
not found SET or SETNOT directive.

Duplicate label

The label in the highlighted line already
has been used.

Change the label to one not
used already.

Error writing .LST
or .MAP file—
check disk space

Insufficient disk space or other reason
prevents creation of an .LST or .MAP
file.

Make sure there is sufficient disk
space. Make sure that your
CONFIG.SYS file lets multiple
files to be open at the same time
(see your DOS or Windows
manual for commands).

Error writing
object file—check
disk space

Insufficient disk space or other reason
prevents creation of an object file.

Make sure there is sufficient disk
space. Make sure your
CONFIG.SYS file allows multiple
files to be open at the same time
(see your DOS or Windows
manual for commands).

Include directives
nested too deep

Includes are nested 11 or more levels
deep.

Nest includes no more than 10
levels deep.

INCLUDE file not
found

Assembler could not find the file
specified in the INCLUDE directive

Make sure that quotes enclose
the file name to be included; if
necessary, specify the full path
name as well.

Invalid base value

Value inconsistent with current default
base (binary, octal, decimal, or
hexadecimal)

use a qualifier prefix or suffix for
the value, or change the default
base.

Invalid opcode,
too long

The opcode on the highlighted line is
wrong.

Correct the opcode.

MACRO label too
long

A label in the macro has 11 or more
characters.

Change the label to have no
more than 10 characters,

M68ICS05KJOM/D

5-17

ASSEMBLER INTERFACE

Table 5-6. Assembler Error Messages (continued)

Message

Probable Cause

Corrective Action

MACRO
parameter error

The macro did not receive sufficient
parameter values.

Send sufficient parameter values
to the macro.

Out of memory

The assembler ran out of system
memory

Create a file that consists only of
an INCLUDE directive, which
specifies your primary file.
Assembling this file leaves the
maximum memory available to
the assembler.

Parameter invalid,
too large, missing
or out of range

Operand field of the highlighted line has
an invalid number representation. Or
the parameter value evaluates to a
number too large for memory space
allocated to the command.

Correct the representation or
change the parameter value.

Too many
conditional
assembly
variables

There are 26 or more conditional
variables.

Limit conditional variables to 25
or fewer.

Too many labels

The assembler ran out of system
memory.

Create a file that consists only of
an INCLUDE directive, which
specifies your primary file.
Assembling this file leaves the
maximum memory available to
the assembler.

Undefined label

The label parameter in the highlighted
line has not been declared.

Declare the label.

Unrecognized

The highlighted opcode is unknown or

Correct the opcode or make it

operation is inconsistent with the number and type | consistent with parameters.
of parameters.
‘} not found A mathematical expression is missing Insert the closing brace.

its closing brace.

5-18

M68ICS05KJOM/D

ASSEMBLER INTERFACE

5.10 USING FILESFROM OTHER ASSEMBLERS

To prepare a source file made by another assembler with the CASM05W, follow these steps:

1. Divide large files into smaller files no larger than 75K. Typicaly, use one file for
system variables and EQUates, another file for 1/0 routines. The main file should be
the one called. Remember that include filenames must be in quotes and must contain
thefile extensions.

2. Make sure al commentsin the source file are preceded by a semicolon.

3. Use the global find-and-replace operation in the editor to change any assembler
directives, listing directives, and/or pseudo operations, if they exist in the source code.
Remember that assembler directives must begin with the character $, /,., or #, and
must start in column 1.

4. If necessary, use the BASE directive to change the default base for operands
(CASMO5W defaults to hexadecimal).

M68ICS05KJOM/D 5-19

g |

ASSEMBLER INTERFACE

5-20

M68ICS05KJOM/D

SIMULATOR USER INTERFACE

CHAPTERG
ICSO5KJIW SIMULATOR USER INTERFACE

6.1 OVERVIEW

This chapter describes the in-circuit simulator user interface, toolbar buttons, windows, sub-
windows, messages, and menu options.

6.2 THE ICSO5KJW IN-CIRCUIT SIMULATOR

The ICSO5KJIW.EXE is an in-circuit simulator for Motorola 6BHCO5K J series microcontrollers
that runs in Windows 3.x and Windows 95. The ICSO5KJW can get inputs and outputs (1/0O) for
the target device from an external pod, the M68ICS05KJ board, that is attached to the host
computer. If you want to use actual inputs and outputs (I/0O) from your own target board, you
may attach the M68I CS05K J board to your target board using the supplied extension cable.

The ICSO5KJW in-circuit simulator software is the debugging component of a complete
development environment when used in conjunction with the WinlDE editing environment and
the CASMO5W command-line assembler.

6.2.1 1CSO5KJW Simulation Speed

The ICSO5KJW is not a real-time debugger. The speed at which the ssmulator executes code is
much slower than the speed at which the actual processor can execute code. Therefore, if there
are any critical timing issues to be resolved, you should use an emulator for the HCO5KJ devices
instead of the ICSO5KJW.

Alternately, you may simulate using the slow mode, then program an EPROM device to check
the full speed operation.

NOTE

An actual speed of 10KHz indicates that the simulator on your host
PC is running at the same speed as the real MCU with a 20-KHz
crystal (a divide-by-2 is attached to the internal oscillator output).
Typical values for actual speed are 3 to 50 kHz.

M68ICS05KJOM/D 6-1

SIMULATOR USER INTERFACE

To calculate actual speed of the assembled code on the target MCU, you need a stopwatch and
some source code. Follow these steps:

1

Load your code using the LOAD command on the ICSO5KJW Status Window
command line.

Set the program counter to the beginning of the routine for which you wish to
measure the speed.

Clear the cycle counter using the CYCLE (or CY) command with the O parameter,
then press Enter:

4. Ready your stopwatch.
5. Enter the GO or G command on the |CS05K JW Status Window command line.

6. Start the stopwatch and press the ENTER button simultaneously to begin code

execution.

After 10 seconds, simultaneously stop the watch and execution (the fastest way to
stop execution is to press the spacebar). Execution halts.

Now enter the CYCLES or CY command on the Status Window command line the
decimal value cycle count is displayed.

Divide the cycle count by 10. The result is theactual speed in kHz.

6.2.2 System Requirementsfor Running the | CSO5K JW

The ICSO5KJW runs under Windows 3.1 or Windows 95. There is a separate 32-bit version of
the ICSO5KJW software for Windows 95/NT available directly from P&E Microcomputer
Systems.

Your host computer should have a minimum of 2 MB of RAM (system memory) available for
assembly processes, as well as sufficient disk space to store the files that the ICSO5K JW creates.

6.2.3 File Typesand Formats

Y ou can use a number of file types in conjunction with the ICSO5KJW simulator. The following
topics describe the use and structure of each type.

6-2

Project Files Project files store two types of information:

— Desktop information includes all the information stored concerning the files
that are currently open in the project. Whenever you save the project file,
WinIDE records information about each window open in the desktop,
including:

¢ Window size
¢ Window position

M68ICS05KJOM/D

SIMULATOR USER INTERFACE

¢ Window style (Maximized/Minimized/Normal)
¢ Markers currently set

— Environment Settings
¢ User settings

¢ WinIDE configuration parameters as specified in the Environment
Settings dialog tabs

When you open the project, or if the project is open when the WinIDE starts, files are
all opened with the settings stored in the project file.

e S19 (Object) Files: The ICSO5KJW software accepts any standard Motorola S19 files
as input for smulation. S19 object files can be created by any HCO5 assembler (such
as CASMO5W), and contain the actual object code that is simulated by the
ICSO5KJW. Specify the S19 files to use on the command line or load it using the
LOAD command in the ICSO5KJW Status window.

— The object file has the same name as the file assembled, with the extension
HEX or .S19, and contains the actual assembled (or object) code to debug. If
you specify an object file in the environment settings, it is created during
assembly.

— The CASMO5W (and some other assemblers) product object files in the .S19
format. The Motorola S19 object code format is described in detail in
Appendix A. HEX files are the Intel 8-bit object code format.

* Map Files contain source level debugging information. To debug symbolic or source
code in the code window you must also load one or more P& E map-files. The *. MAP
source-level map file can be generated by specifying the map files option on the
command line when running the CASMO5W assembler, or loaded using the
LOADMAP command in the ICSO5KJW Status window. If you specify a map filein
the environment settings, it is created during assembly.

NOTE

Map files contain directory information, so cannot be moved. To
place map files in another directory, move the map file to the new
directory and reassemble the file in the new directory so the new
map file will contain the correct directory information.

If you use a third party assembly language or C compiler, it must
be able to produce compatible source-level map files.

* Error Files contain assembly error information. The CASMO5W highlights any
errors that it encounters during the assembly, and displays the error message in the
CASMO5W window. Depending on the environment settings, the assembler may also
open the file in which the error was encountered, and create an error file with the
assembly filename and the .ERR extension.

M68ICS05KJOM/D 6-3

SIMULATOR USER INTERFACE

6-4

Script Files are plain ASCII text files containing ICSO5KJW simulator commands.
Y ou may use any command in the ICS05KJ command set in script files. Running the
script file then has the effect of entering the commands in it in the ICSO5KJW
command line. You can create script files in the WinlDE editor, or you can use files
created by other text editors following these rules:

— Enter each command on its own line.
— Preface comments with a semi-colon.
— Use commands from the ICSO05K JW command set and WAIT.

Listing Files display each line of source code and the resulting (assembled or
compiled) object code. Listing files show exactly how and where each code was
assembl ed.

— If you specify a listing file in the environment settings, it is created during
assembly. The listing file will have the same name as the file being assembled,
with the .LST extension, and will overwrite any previous file with the same
name.

— Listing files contains these fields in the following format:
AAAA [CCl WWW W LLLL Source Code .

Where:

AAAA First four hexadecima digits are the address of the
command in the target processor memory.

[CC] The number of machine cycles used by the opcode. This

value, which always appears in brackets, is a decimal value.
If an instruction has several possible cycle counts (as would
be the case when the assembler encounters a branch
instruction) and the assembler cannot determine the actual
number of cycle counts, the CC field will show the best
case (lowest number).

VVVVVVVV Hexadecimal digits (the number of which depends on the
actual opcode) representing values put into that memory

address.
LLLL Line count.
Source code The actua source code

At the end of the listing file is the symbol table listing every label and its
value.

M68ICS05KJOM/D

SIMULATOR USER INTERFACE

* Log Filesare simple ASCII text files, sometimes called scratch pad files. The log file
records the sequence and content of commands executed, and the debugger responses
to the commands. You can view log files from within the WinIDE editor. The
|CSO5K JW simulator creates log filesif the LOGFILE or LF command is active.

6.3 STARTING ICS05K JW

You can start the ICSO5KJW simulator by itself in standalone mode (with no inputs or outputs
from the target), or run it from within the WinIDE editor. You can also modify the ICSO5KJW
environment in Winl DE editor.

* To run the simulator in standalone mode, double click the ICSO5KJW icon using
either of these methods:

- In Windows 3.x, in the Program Manager, double click the ICSO5KJW iconin
the ICSO5K JW Program Group.

— In Windows 95, choose the ICSO5K JW icon from the ICSO5KJW group in the
Start menu.

* Torunthe simulator from the Winl DE editor, use either of these methods:
— Click the Debugger (EXE1) button on the WinlI DE toolbar
— Pressthe F6 Hotkey

* To modify how the software starts from WinlIDE editor:

1. From the WinIDE Environment menu, choose the Setup Environment option
to open the Environment Settings dial og.

2. Select the EXE1 Debugger tab heading (see Figure 4-17), if it isnot in already
on top, to set options for the ICSO5KJW simulator. For more information
about the optionsin the tab, see paragraph 4.10.5.4.

After startup, the software will establish communication with the board at the given parameters
and the status bar will read Attempting to contact COM 1.

» If the ICS05KJIW software can communicate with the pod through the serial port, the
status bar message reads, Contact with pod established.

» If the software is not able to connect with the board, the Can’t Contact Boardlialog
(Figure 6-1) appears.

M68ICS05KJOM/D 6-5

SIMULATOR USER INTERFACE

-, Can't Contact Board 9I=] E3

Problem contacting board. Check your board connections and
select the correct COM port. Re-attempt communication with
the RETRY button. if board is not to be used then use the
SIMULATION only button. Otherwise use the EXIT button.

COM Port ~Baud Rate
& o

BeR Bk # 115200 baud
T COM2 " COME
o ol

e (Ee1X 19200 baud
 COM4 COM8

SIMULATION only EXIT Application

Figure 6-1. Can't Contact BoardDialog

If the communication parameters for the communications port and baud rate are incorrect in the
Can't Contact Board dialog, change them and then press the RETRY button. If the board is not
connected or you do not wish to use I/O from the board, then click the SIMULATION only
button. Otherwise, pressthe EXIT Application button.

When you start the ICSO5KJW software for the first time, the Pick Device dialog offers choices
of the C-series devices (chips). If you want to open this dialog and change the device later, enter
the CHIPMODE command in the ICS05KJW Status Window command line.

NOTE

If afile named STARTUP.05KJ exists in the current directory, the
WIinIDE runs it as a macro file on startup. See the MACRO
command for more information.

6-6 M68ICS05KJOM/D

h o
g |

SIMULATOR USER INTERFACE

6.4 |CSO5KJW WINDOWS

The ICSO05KJW user interface consists of windows in which system and code information is
shown and into which the ICSO5K JW command set can be entered (Figure 6-2).

<. 1C50%) In-Circuit Simulator - Beta Yersion 1.04

File Execute ‘Windows Help
|l [l [r|=fE] [#]e]
. Wariables . Memory Window
X » |0S5c1 EST| o 1
X b (0sCz TEG| o 1
0 b |PB5 PRO| A O
0 » |PB PRl A 0
0 » |PB3 Phz| o D
o b |PBZ PR3 o D
0+ (PB1 PRa| A0
0+ (PB0 PA5| A0
X » |vop rPas| 4 0
X P |vss a7| 4 1 2. Code Window 2 : Disassembly
TRA ;TRACE =
Pod Detected: Yes = [ET 681 LDA #81
8382 BYC3 SThA B8C3
a3e4 oC RSP
8365 cDhe3en JSR 838A
8388 2BFE BRA 8388
a3 0A 5F CLRY
. Cycles _ O] x| 83 6B AGFE LDA #BFE
83 6D B7 B4 3TA _DDRA
83 8F 4C IHCA
a31e B7 B8 STA _PORTA
8312 AGFF LDA #BFF
CYCLES 8314 B7 85 STA _DDRB
LT 8316 3Fm CLR _PORTB
8318 1A08 BSET 5,_TSCR
831A 9A CLI
8318 ace INC _PORTB
[
BSL=iE
Acca 6@ @pttempting to open COM1 ... Contact with POD established.
Loading ... 519 File Loaded.
SREG B8 Loading map file with 46 entries ... MAP file Loaded.
~Reset
PC 8388
CCR 111.1...
SP FF
||Ready

Figure 6-2. The | CSO5K JW Windows Default Positions

The ICS05K JW also displays these sub-windows when appropriate:
e Stack Window
» Trace Window
* Breakpoint Window
e Programmer Windows
* Register Block Window

M68ICS05KJOM/D 6-7

SIMULATOR USER INTERFACE

6.5 CODE WINDOWS

The Code windows (Codel and Code2) can be set to display source code in either source or
disassembly modes. Code windows aso give visual positions of the current program counter
(PC) and all breakpoints within the source code. You can display both code windows
simultaneously. Each code window is independent: you can configure each window to display
different parts of your source code, or different assembly modes.

The Code Window Shortcut menu contains options for working in the code windows (Figure 6-3).

~. Code Window 2 : Dizazzembly

uninitialized
uninitialized
uninitialized

8183 bt uninitialized
8184 bt uninitialized
8185 bt uninitialized

Figure 6-3. Code Window in Disassembly Mode
with Breakpoint Toggled

6.5.1 To Display the Code Windows Shortcut Menus

To display the Code 1 or Code 2 Windows Shortcut Menu (Figure 6-4), position the cursor in
either the Codel or Code2 window and click the right mouse button.

Toggle Breakpaint at Cursar
Set PC at Cursor
Gotil Address at Cursar

Set Base Address
Set Bage Adddress to PC

Select Source Module

Show Source/Dizazzembly #

Help...

Figure 6-4. Code Window Shortcut Menu

6.5.2 Code Window Shortcut Menu Functions

The Code Window Shortcut Menu (Figure 6-4) offers these options:
» Toggle Breakpoint at Cursor: Choose this option to set or remove the breakpoint at
the current cursor location.

* Set PC at Cursor: Choose this option to set the Program Counter (PC) to the current
cursor location.

6-8 M68ICS05KJOM/D

SIMULATOR USER INTERFACE

Gotil Address at Cursor: Choose this option to execute the source code until the
Program Counter (PC) gets to the line at the current cursor location. When PC gets to
that point, execution stops.

Set Base Address. Choose this option to open the Window Base Address dialog
(Figure 6-5) and set the new address for the first code line in the Code Window.

Window Baze Address E

Mew Address

| |
|q/ OK | |x Carncel |

Figure 6-5. Window Base Address Dialog
Set Base Address to PC: Choose this option to set the Program Counter (PC) to the
address of thefirst line in the Code Window.

Select Source Module: Choose this option to select a source module (if a MAP file
has been loaded into memory).

Show Disassembly: Choose this option to display the Code window contents in
disassembly mode.

Show Sour ce/Disassembly: Choose this option to display the Code window contents
in both disassembly and source modes.

6.5.3 Code Window Keyboard Commands

Use these keys to navigate in the Code Windows:

Press the Up Arrow (1) key to scroll the Code Window contents up one line.

Press the Down Arrow (1) key to scroll the Code Window contents down one line.
Press the Home key to scroll to the Code Window’ s base address.

Press the End key to scroll to the Code Window’ s last address.

Press the Page Up key to scroll the Code Window up one page.

Press the Page Down key to scroll the Code Window down one page.

Press the F1 key to show the Help Contents topic.

Press the Escape (Esc) key to move the cursor to the command line of the Status
Window.

M68ICS05KJOM/D 6-9

SIMULATOR USER INTERFACE

6.6 VARIABLESWINDOW

The Variables window (Figure 6-6) displays current variables during execution. Use the
V ariables window shortcut menu to add or remove variables from the current list.

<. Waniables O]

DDHB : 500

Add Y ariable
Delete Vanable
Clear &l

Help...

Figure 6-6. Variables Window
with Shortcut Menu

6.6.1 Displaying the Variables Shortcut Menu

To display the Variables shortcut menu, position the cursor in the Variables window and click
the right mouse button.

6.6.2 Variables Window Shortcut Menu Options

The Variables Window Shortcut Menu offers these options for managing variables:

* Add Variable: Choose this option to open the Add Variable dialog (Figure 6-7) to
add avariable or address to the current variable list. Select the variable type (size) and

base.

Add Variable
Yariable / Address | |
~Type

i+ Unsigned Byte i~ Signed 8-bit Integer
i Unsigned Word i~ Signed 16-bit Integer
i~ Unsigned Longword i~ Signed 32-bit Integer
i String " Boolean
~ Float [Decimal) " Double [Decimal]
Base X
@ Hexadecimak Octal
" Decimal " Binany
‘s/ OK | ‘ x Cancel ‘ ? Help |

Figure 6-7. Add Variable Dialog

Y ou may enter values for commands in the simulator as either labels (which you have
defined in the map file or with the SYMBOL command), or as nhumbers. You may

6-10 M68ICS05KJOM/D

SIMULATOR USER INTERFACE

specify the base in which variables are shown using the options in the Add Variable
dialog (Figure 6-7). The default number format for the ICSO5K W is hexadecimal.

To override the default base for any number, you may aso enter either a prefix or
suffix (but not both) shown in Table 6-1 in the command lines.

Table 6-1. Base Prefixes and Suffixes

Base Prefixes | Suffixes
16 ‘$ ‘H’
10 i T
8 ‘@’ ‘0’
2 ‘%’ Q
Example
$FF = 1255 = @77 = %41111111 = 11111111Q = 3770 = 255T =
OFFH
NOTE

If the ™’ character is used as a parameter, the address of the cursor
in the code window will be used (if it pointsto valid object code).

>PC 100 Change PC address to address $100.

>N 1 Assign value 1 to CCR N bit.

>MM C0 100T Pl ace value 100 at |ocation $CO.

>BR END Set breakpoint at address of synbol END.

>pPC * Set program counter at address pointed to
by cursor.

Use the Type options in the Add Variable dialog to choose a variable type: 8-hbit
bytes, 16-bit words, 32-bit longs, or ASCII strings.

» Delete Variable: Choose this option to remove the selected (highlighted) variable
from memory and from the current variable list.

» Clear All: Choose this option to clear al variablesin the current variable list.

6.6.3 Variable Window Keyboard Commands

Use these keys to navigate in the Variable Window:
* Pressthelnsert key to add avariable.
» Pressthe Delete key to delete avariable.

M68ICS05KJOM/D 6-11

SIMULATOR USER INTERFACE

Pressthe Up Arrow (1) key to scroll the Variable Window up one variable.
Press the Down Arrow (1) to scroll the Variable Window down one variable.
Press the Home key to scroll the Variable Window to the first variable.

Press the End key to scroll the Variable Window to the last variable.

Press the Page Up key to scroll the Variable Window up one page.

Press the Page Down key to scroll the Variable Window down one page.
Press the F1 key to shows the Help Contents topics.

Press the Escape (Esc) key to move the cursor to the command line of the Status
Window.

6.7 MEMORY WINDOW

Use the Memory Window (Figure 6-8) to view and modify the memory in the ICSO5SKJW. View
bytes by using the scrollbar on the right side of the window.

To modify a set of bytes:

1. Double click on the bytes to open the Modify Memory dialog for that address.

2. Enter the MM command in the command line of the Status Window.

Base ——F oaaa_ 80 0@ FF 88 .. |
Address gy 086 88 a8 U ...
8888 UU UL 648 A8
agac 00 00 08 a9
8018 A8 AE 64 A9

= SN KKOXX
Set Base Address C FF FC
v ShowasHEX sndASCI f& 88 LU ...
Show as HEX Only XXX ..
Help...

Figure 6-8. Memory Window
with Shortcut Menu

Use the options from the Memory Window Shortcut menu to perform these memory functions:

6-12

Set Base Address: Choose this option to set the first memory address to display in
the Memory window.

Show as HEX and ASCII1: Choose this option to display memory map information
in both HEX and ASCII formats

Show as HEX Only: Choose this option to display memory map information in HEX
format only, allowing more bytes per row.

M68ICS05KJOM/D

SIMULATOR USER INTERFACE

Use these keys to navigate in the Memory Window:

Pressthe Up Arrow (1) to scroll the Memory Window up one line.
Press the Down Arrow (1) to scroll the Memory Window down one line.
Press the Home key to scroll the Memory Window to memory address $0000.

Press the End key to scroll the Memory Window to the last address in the memory
map.

Press the Page Up key to scroll the Memory Window up one page.

Press the Page Down key to scroll the Memory Window down one page.

Press the F1 key to show the Help Contents topic.

Press the Escape (Esc) key to move the cursor to the command line of the Status
Window.

6.8 STATUSWINDOW

The Status Window (Figure 6-9) accepts ICSO5KJW commands entered on the command line,
executes them, and returns an error message or status update message, as in the message area of
the window.

The Status Window message area displays all ICS05KJW commands (including implemented
| CSO5K JW menu options and toolbar buttons), and command results.

Use the scroll controls on the right side of the Status Window to view previous commands or use
these keys to navigate within the message area:

Press the up arrow (1) key to scroll the window up oneline

Press the down arrow (1) key to scroll the window down one line.
Press the Home key to scroll the window to the first status line.
Press the End key to scroll the window to the last status line.
Press the Page Up key to scroll the window up one page.

Press the Page Down key to scroll the window down one page.
Press the F1 key to display the Help Contents topic.

<, Status Window H=] E3
Attempting to open COM1 ... Contact with POD establicshed.

>logfile

Opening log file C:\ICSDSCW1\ICSOSCW\TEST.LODG

||R.eady

Command Line

Figure 6-9. Status Window

M68ICS05KJOM/D 6-13

SIMULATOR USER INTERFACE

To save the information displayed in the Status Window, enable logging:

* Choose the Start Logdfile option from the ICSO5KJW File menu, or enter the LF
command in the Status Window command line (Figure 6-10).

~, Status Window H=E3 |
Attempting to open COM1 ... Contact with POD established.
>logfile

Opening log file C:\ICSO5CW1\ICSO5CW\TEST.LOG

>1£

Log file closed.

||Raady

Figure 6-10. Results of Entering the LF Command in the Status Window

* The Specify output LOG file dialog (Figure 6-11) opens.

Specify output LOG file!
File name: Folders:
[.log] c:hicsD5cwl vicsD5cw

Cancel |
test log - et -
£ ics05cwl Metwork... |
29 ics05cw =
Lizt files of type: Drives:
|P&E Logfile [~.log) =l | =c:godel =l

Figure 6-11. Specify Output LOG File! Dialog

* In the diaog, choose a path and filename for the logfile. Press OK to cregte the file
(or Cancel to close the dialog without making changes).

» If you choose a logfile that already exists, the Logfile Already Exists message (Figure
6-12) appears, asking if you wish to overwrite the existing file or append the status
messages to the end of the existing file. Choose Overwrite or Append to begin
logging in the file or Cancel to close the dialog without opening the logfile.

Logfile Already Exists! E

The specified hile already exists. Do you want to
Overwrite the file. Append to the file. or Cancel the
Operation?

[Overwrite | Append | Cancel |

Figure 6-12. The Logfile Already Exists M essage

» Status window messages are added to the logfile while logging is enabled.

6-14 M68ICS05KJOM/D

SIMULATOR USER INTERFACE

To end logging, choose the End Logfile option from the ICSO5KJW File menu or enter the LF
command in the ICSO5K JW Status window command line.

6.9 CPU WINDOW

The CPU Window displays the current register values.

6.9.1 Changing Register Values

Use the CPU Window (Figure 6-13) or its Shortcut Menu options to view and modify the current
state of registers within the CPU.

» To change CPU register values using the Shortcut menu options, position the cursor
in the CPU window and click the right mouse button. Choose the option from the
shortcut menu shown on the right of Figure 6-13. Enter the new value in the dialog
and press OK to close the dialog and save the new value.

~SCPUDS N[=]F3
ACCA BAA
YREC 88 Set Accumulator
Set Index Register
PC 810808 Set Stack Pointer
Set PC
CCR 111.1... Set Condition Codes
SP FF Help...

Figure 6-13. CPU Window with Shortcut Menu

* To change CPU register value in the CPU window:

— To change the CPU accumulator (ACCA), index register (XREG), and
program counter (PC) values from the CPU window, click on the value and
enter the new value in the dialog. Press OK to close the dialog and save the
new value.

— To change the CPU CCR values, double click the CCR vaue in the CPU
window to open the Change CCR dialog (Figure 6-14). Changethe H, I, N, Z,
or C CCR hits by pressing the button below each to toggle condition code
register bits between 1 (on) and 2 (off). Press OK to close the dialog and save
the values.

M68ICS05KJOM/D 6-15

SIMULATOR USER INTERFACE

Change CCRH E
CCR : 111.1...
H bit I bit M bit Z hit C hit

ol 2 B e o]

‘\/[ll(l ‘x [:ance|| ‘? e |

Figure 6-14. The Change CCR Dialog

— To change the CPU stack pointer (SP) value from the CPU window, position
the cursor in the CPU window and click the right mouse button to open the
CPU shortcut menu. Choose the Set Stack Pointer option. In the Change SP
Value dialog, enter the new value. Press OK to close the dialog and save the
value.

NOTE

In the current version of the ICS05KJW software, the values in the
CPU window behave differently when clicked. You can open the
appropriate dialog by clicking once on the ACCA and XREG
values and by clicking twice on the PC and CCR values. To change
the SP value, use the shortcut menu.

6.9.2 CPU Window Keyboard Commands

Use these keyboard commands to navigate in the CPU Window:
* Pressthe F1 key to shows the Help Contents topics.

» Press the Escape (Esc) key to move the cursor to the command line of the Status
Window.

6.10 CHIP WINDOW
6.10.1 Reading Valuesin the Chip Window

Use the Chip Window (Figure 6-15) to see avisual representation of the logic levels at all pins of
the chip.

6-16 M68ICS05KJOM/D

SIMULATOR USER INTERFACE

<. HCFDSJ 1A =] B2
N
¥ W |05C1 EST| o 1
¥ (0S5C2 TEO| 4 1
X b |PES PAO| o X
X b |PE4 PAl| o X
X b |PE3 PRz| A X
X |PEZ PR3z A X
X+ |PB1 Phd| A X
X+ |PED PAas| A X
b R] PaG| A X
X b |rss PAa?| A X
Pod Detected: Ho

Figure 6-15. Chip Window

If the ICSO5KJW pod is connected to the software, the Chip Window reflects the values read
from the pod. For 1/0 pins, the arrows indicate whether the pin is an input or an output.

6.10.2 Chip Window Keyboard Commands

Use these keyboard commands to navigate in the Chip Window:
* Pressthe F1 key to shows the Help Contents topics.

» Press the Escape (Esc) key to move the cursor to the command line of the Status
Window.

6.11 CYCLESWINDOW

Use the Cycles Window (Figure 6-16) to view the number of processor cycles that passed during
execution of code in the simulator. This is valuable if you want to count the number of cycles
that a section of code requires. In order to calculate the timing of code for a device, take the
number of cycles shown in the window and multiply by the amount of time that a cycle
represents in the target system. (i.e. for a 2MHz HCO5, the time per cycle is 500ses (2

M68ICS05KJOM/D 6-17

SIMULATOR USER INTERFACE

- Cycles M=]E3

CYCLES
s Tege e ge o]

Figure 6-16. Cycles Window

6.12 STACK WINDOW

Use the Stack window (Figure 6-17) to view:
* Vauesthat have been pushed on the stack
» The stack pointer value
* CPU resultsif aRTI or RTSinstruction is executed at that time.

To display the stack window, enter the STACK command in the ICSO5KJW Status Window
command line.

~, Stack Window [<]
Rau Bytes Stack Ptr
%% $00F1 = _
%% $ooF2 SP = $FF
XX $00F3
&% s@ary RTS Return
%% $00F5
XX $00F6 PC = $XEEX
XX $00F7 -
XX $00F8
%X LooF9 RTI Return
%% $00FA PC = $XEX
%X $00FB
XX $ooFC A= ax
XX $00FD ¥ = $N¥
XX $O0FE
CCR = $xx
VK| 7Hep |

Figure 6-17. Stack Window

6.12.1 Interrupt Stack

During an interrupt, the Stack window displays:
* Theinterrupt stack
» Datavauesin the stack
» Values of the condition code register (CCR), accumulator (A) and index register (X).

Thisinformation indicates the restored state of the stack upon the return from the interrupt.

6-18 M68ICS05KJOM/D

SIMULATOR USER INTERFACE

6.12.2 Subroutine Stack

During execution of a subroutine, the stack window displays the subroutine stack that indicates
the restored state of the CPU upon return from a subroutine.

NOTE

MC68HCO5 MCUs store information in the stack (1) during an
interrupt or (2) during execution of a subroutine. The stack window
shows both these possible interpretations of stack data. It is
important to know whether program execution is in an interrupt or
in a subroutine, to know which stack datainterpretation isvalid.

6.13 TRACE WINDOW

Use the Trace Window (Figure 6-18) to view instructions captured while tracing is enabled.

13 IRQ_INT 1E88 BSET 7,PORTA -
12 6119 BE18 LDX TCHTH
11 B11B B619 LDA TCHTL
18 811D AB32 ADD #32
9 B11F B788 5Th TEHWP
8 /21 9F THA
7 o122 nAoe8 ADC #8
6 8124 B716 STh OCRH
5 8126 B613 LDA TSR
H 4 8128 B68O LDA TEHMP
3 ®12a B7¥17 5TA OCGRL
2 M2c 80 RTI
1 IRQ_INT 1E88 BSET 7,PORTA
8 8119 BE18 LDX TCHTH
-

Figure 6-18. Trace Window

To display the Trace Window, enter the SHOWTRACE command in the command line of the
|CSO5K JW Status Window.

To enable or disable tracing, enter the TRACE command. If tracing is off, the command will
toggle tracing on; if tracing is on, the command toggles tracing off.

The trace buffer is a 1024 instruction circular buffer that contains al addresses that have been
executed. When the trace window displays instructions, it disassembles instructions at the
addresses stored in the trace buffer. For this reason, the tracing function cannot be used for self-
modifying code. If a buffer slot does not have an address stored in it, the trace window displays
the phrase "No Trace Available". The number in the beginning of atrace line is the slot number
in the trace buffer. The slot number is an offset for the instruction in that slot compared to the
current instruction executing (slot number=0).

M68ICS05KJOM/D 6-19

SIMULATOR USER INTERFACE

6.14 BREAKPOINT WINDOW

Use the Breakpoint Window (Figure 6-19) to view all breakpoints currently set in the current
debugging session, and to add, modify, or delete breakpoints. You can set a maximum of 64
breakpoints.

. Breakpoint Window E
Address Count Breakn Breakx Breaksp
Javailable - - - - IS

Available
Available
Available
Available
Available
Availabl Add Breakpaint
Availabl Edit Breakpoint

nua::Llahl Delete Breakpoint
Availabl

Availabl Remove All Breakpoints
Availabl -

Help
W OK | ? Help

Figure 6-19. Breakpoint Window
with Shortcut Menu

To display the Breakpoint Window, enter the SHOWBREAKS command in the ICS05KJW
Status Window command-line.

If abreakpoint dlot is empty, the word ' Available’ appears under the Address column.

6.14.1 Adding a Breakpoint

To add a breakpoint, with the cursor in the Breakpoint Window, click the right mouse button to
open the Breakpoint Shortcut Menu. Select the Add Breakpoint option from the Shortcut Menu.
In the Edit Breakpoint dialog (Figure 6-20), enter the address for the new breakpoint in the
Address text box. Press the OK button to close the dialog and save the new breakpoint.

. Edit Breakpoint

Address |

Count |

AValue |

X Value |

P Value |

| " OK | | X Cancel |

Figure 6-20. Edit Breakpoint Dialog
Y ou may qualify the breakpoint using these qualifiers:

» Count: Enter the number of times the address will be reached before breaking, i.e.,
break after n times (the default isn=1).

6-20 M68ICS05KJOM/D

SIMULATOR USER INTERFACE

e Accumulator value Enter the number the accumulator value must reach before
breaking, i.e., break if address and A=n.

» X index register value: Enter the number the index register value must reach before
breaking, i.e., break if address and X=n.

e Stack Pointer value: Enter the number the stack pointer value must reach before
breaking, i.e., break if address and SP=n.

6.14.2 Editing a Breakpoint

To edit a breakpoint or view address information, double click on any empty breakpoint slot in
the Breakpoint Window listbox. The Edit Breakpoint dialog (Figure 6-20) displays address
information for the empty breakpoint slot. Enter the appropriate address and other conditional
qualifiers and press the OK button to exit.

In the Breakpoint Window, select the breakpoint to edit. Then use one of the following methods
to open the Breakpoint Shortcut menu and edit the breakpoint:

» Click the right mouse button to open the Breakpoint Shortcut Menu and select the
Edit Breakpoint menu option.

* Pressthelnsert key.

* Double click on the breakpoint in the listbox. In the Edit Breakpoint dialog, enter the
new breakpoint address and conditional qualifiers. Press the OK button to close the
dialog and store the new settings (or press the Cancel button to close the diaog
without saving new settings).

6.14.3 Deleting a Breakpoint

In the Breakpoint Window, choose the breakpoint to delete, and use one of the following
methods to delete the breakpoint:

» Click the right mouse button to open the Breakpoint Shortcut Menu and select the
Delete Breakpoint menu option.

» Pressthe Delete key, to remove the selected breakpoint from the breakpoint list.

Press the OK button to close the Breakpoint Window and store the changes (or press Cancel to
close the window without saving the changes).

6.14.4 Removing All Breakpoints

In the Breakpoint Window, click the right mouse button to open the Breakpoint Shortcut Menu.
Choose the Remove All Breakpoints menu option to clear all breakpoints. Press the OK button to

M68ICS05KJOM/D 6-21

SIMULATOR USER INTERFACE

store changes and close the Breakpoint Window (or press the Cancel button to close the
Breakpoint Window without saving changes).

6.15 PROGRAMMER WINDOWS

Use the Programmer Windows to enter or display programming information and to choose the
files to upload or download.

The KCS05K JW software controls the M68ICS05K J pod’s programming sockets XU7, XU8, and
XU9, and sends RESET, CLOCK, DATA, and other control signals to the pod by means of the
serial connection.

NOTE

To program a 705J1A device, set the jumpers on pod headers
W18 through W32 to positions 1-2.

To program a 705K J device, set the jumpers on pod headers W18
through W32 to positions 2-3.

During programming, you may use three Programming Windows:

* Pick Window: The Pick Window (Figure 6-21) displays all programming actions and
functions for you to select.

. PROG705J1A - Version 1.00 [M[=] B3

PB Program Both EFROM then MOR
PM Program MOR hyte in device

PE Program EPFROM only

PR Protect Device from Reading

YE Venfy to Simulator

%D Specify Dnld [Download] File
5U Specify Upld [Upload] File
UL Upload to Upld 5-Rec File
QU Quit - Exit the Programmer

& OK x Cancel

Figure 6-21. Programmer Pick Window

e Status Window: The Programmer Status Window accepts programming commands
on the command line or from the Pick Window and displays the command results in
the message area. It is identical in form and function to the ICS05KJW Status
Window.

6-22 M68ICS05KJOM/D

SIMULATOR USER INTERFACE

» Files Window: The Programmer Files window (Figure 6-22) identifies the filename
of the download and upload files.

=| Programmer Files | v| o

Download File: Simulator Memory

Upload File: None

Figure 6-22. Programmer Files Window

For more information about using the Programmer windows, see the PROGRAM command
explanation in Chapter 7.

6.16 REGISTER BLOCK WINDOW

The Register Block Window (Figure 6-23) can be opened by pressing the Register Files button
on the ICS05K JW toolbar or by entering the R command in the Status Window command line.

—Address

Figure 6-23. The Register Block Window

The R command loads the register interpreter and opens the Register Files window. From this
window, you can establish the WinReg (Figure 6-24) and Register Window text, colors, and
window positions and view the processor’s register files (sold separately by P& E Microcomputer
Systems).

If you have added register files to your host computer, you can select a file from the list of
register files to display the addresses and address descriptions for each and to begin the
interactive setup of system registers (for example, the 1/0, timer, and COP Watchdog Timer).

Y ou can view the registers, modify values, and store results in memory.

M68ICS05KJOM/D 6-23

SIMULATOR USER INTERFACE

= WinReg ﬂ o

[saticosca serial Communications Interface (5C1) [2] [setup]

—Address Dl:bl.lipliull

00000000 BAUD $CI Baud Rate Control
0000000E SCCR1 5CI Control Register 1
0000000F SCCR2 . 5CI Control Register 2
00000010 SCSR L3 5C1 Status Register
00000011 SCOR SCl Data Register

Figure 6-24. The WinReg Window with Typical Register File Information

6.17 ENTERING DEBUGGING COMMANDS

To enter commands in the |CS05K JW Status window command line:

1. Type the command and its options and/or arguments in the text area (the command
line).

2. When the command is complete, press the Enter key to execute the command.

If the command has not been entered correctly, the Status window will display a
message such as Invalid command or parameter. If the command has been entered
correctly, other prompts, messages, or data appropriate to the command entered are
displayed in the Status window text area.

4. After the command has been executed, a new blank line appears in the command line.

5. The ICS05KJW maintains a command buffer containing the commands and system
responses to the commands entered on the command line. Y ou can use the mouse or
keyboard commands to sequence forward or backward through the command buffer.

For more instructions on using the ICSO5KJW command set, see Chapter 7, The ICSO5KJW
Command Set.

6.18 ICSO5KJW TOOLBAR

The ICSO5KJW Toolbar (Figure 6-25) provides a number of convenient shortcut buttons that
duplicate the function of the most frequently used menu options. A tool-tip or label pops up
when the mouse button lingers over atoolbar button, identifying the button’s function.

(sl & [|8 [$]e]] | 7|

Figure 6-25. 1CS05KJW Toolbar

Table 6-2 identifies and describes the WinIDE toolbar buttons.

6-24 M68ICS05KJOM/D

SIMULATOR USER INTERFACE

Table6-2. ICS05K JW Toolbar Buttons

Button Label

Button Function

Back to Editor

Return to the WinIDE editor.

Load S19 File

Open the Specify S19 File to Load dialog to choose an
S19 file.

Reload Current S19

Reload the last (most currently loaded) S19 file.

Reset Simulate a reset of the MCU and sets the program
counter (PC) to the contents of the reset vector (does
not start execution of user code).

1 Step Execute the STEP command.
;& | Multiple Step Execute the STEPFOR command.

Go Execute the GO command.

Stop Stop execution of assembly commands.

Play Macro Open the Specify Macro File to Execute dialog to

choose a macro to execute.

Record Macro

Open the Specify Macro File to Record dialog to enter
a filename for the macro.

Stop Macro Function

Stop recording the macro.

Open Logfile Execute the LOGFILE command. Opens the Specify
Output Lodfile dialog.
Close Lodfile Execute LOGFILE command; close the current logfile.

M68ICS05KJOM/D

6-25

SIMULATOR USER INTERFACE

6.19 1CS05KJIJW MENUS

Table 6-3 summarizes WinlDE menu titles and options.

Table 6-3. ICSO5K JW M enus and Options Summary

Menu Option Description

File Load S19 File | Open the Specify S19 File to Open dialog to choose S19 file.
Reload Last Reload the last S19 file used, or (if none loaded) display the
S19 Specify S19 File to Open dialog.
Play Macro Open the Specify Macro File to Execute dialog.
Record Macro | Open the Save As dialog.
Stop Macro Close the macro or script file.
Open Logfile | Executes the LOGFILE command.
Close Logfile | Executes the LOGFILE command.
Exit Close the ICSO05KJW simulator.

Execute Reset Reset the emulation MCU and program counter to the contents
Processor of the reset vector.
Step Execute the STEP command.
Multiple Step | Execute the STEPFOR command.
Go Execute the GO command.
Stop Stop code execution.
Repeat Repeat the last command entered in the Status Window
Command command line.

6-26 M68ICS05KJOM/D

SIMULATOR USER INTERFACE

Table 6-3. ICS05K JW Menus and Options Summary (continued)

Menu Option Description

Windows | Code 1 Toggles the Code 1 Window open/closed.
Code 2 Toggles the Code 2 Window open/closed.
Memory Toggles the Memory Window open/closed.
Variables Toggles the Variables Window open/closed.
Cycles Toggles the Cycles Window open/closed.
Status Toggles the Status Window open/closed.
CPU Toggles the CPU Window open/closed.
Chip Toggles the Chip Window open/closed.
Change Opens the Changes Windows Colors dialog.
Colors
Reload Executes the LOADDESK command to load the desktop
Desktop settings from a file.
Save Desktop | Executes the SAVEDESK command to save the current

desktop settings to a file.

6.20 FILE OPTIONS

Use the ICSO5K JW File menu options to load, reload, open, or close files, play or record macros,
or exit the ICSO5K JW application.

To perform a File operation, click once on the File menu (Figure 6-26) title to open the menu.
Click on the option to execute.

Load519File F2
Beload Last 519 F3

Play Macra Ctrl+P
Record Macra Cirl+bd
Stop Macro Chrl+5

Dpen Logfile Crl+L
LCloze Logfile Chrl+C

Exit Crl+=

Figure 6-26. File Menu

The following topics describe and explain the ICSO5K JW File operations and dialogs.

M68ICS05KJOM/D 6-27

SIMULATOR USER INTERFACE

6.20.1 Load S19 File

Select the Load S19 File option from the File menu to open the Specify S19 File to Load dialog
(Figure 6-27). If the S19 fileis not in the default directory, choose a filename and drive/directory,
and network path of an object file or source file to load in the Debugger main window. Y ou can
also use this option to load SLD Map files.

Specify 519 File to Load EHE
File name: Folders:
519 | d\ics05bwhics05bw

Cancel
] [man - —l
{3 ics05bw Network._ |
5 ics05bw
List files of type: Drives:
[Motorola $19 Object (:7| | = d: godel-d =l

Figure 6-27. Specify S19 Fileto Load Dialog

To load an S19 or .MAP file, choose the Load S19 File option from the File menu to open the
Soecify S19 File to Load dialog. Choose the path and filename and press OK to open the selected
filein the ICSO5KJW (or press Cancel to close the dialog without making a selection).

Alternatives: Press the F2 function key or click the Load S19 File toolbar button, or enter the
LOAD command and filename and other arguments in the Status window command line.
6.20.2 Reload Last S19

Select the Reload Last S19 option from the File menu to open the Specify S19 File to Load
dialog (Figure 6-27) and select the most recently opened S19 or .MAP file to open in the
Debugger main window. Follow the procedure for loading an S19 file (above).

Alternatives: Press the F3 function key or click the Reload Current S19 toolbar button. These
are the keyboard equivalents to choosing theFile - Reload Last S19 menu option.

6-28 M68ICS05KJOM/D

SIMULATOR USER INTERFACE

6.20.3 Play Macro

Select the Play Macro option from the File menu to open the Specify MACRO File to Execute
dialog (Figure 6-28) to specify a macro filename and drive/directory path to play.

Specily MACRO File to Execute HE|
File name: Folders:
|sample.mac | d:\pemicroimmeysw

Cancel |
S din -
5 pemicro
E5 mmevew
Lizt filez of type: Drives:
IMach’Scripl File [‘.ma(j I = d: j

Figure 6-28. Specify MACRO Fileto Execute Dialog

Alternatives: Pressthe Ctrl + P key combination or click the Play Macro toolbar button These
are the keyboard equivalents to choosing theFile - Play Macro menu option.

6.20.4 Record Macro

Select the Record Macro option from the File menu to open the Specify MACRO File to
Record dialog (Figure 6-29) and specify a macro filename and drive/directory path to record.

Specify MACRO File to Record I
File name: Folders:
|’. mac | d:\pemicro\mmevsw

Cancel |
sample.mac - 25 dy —

=5 pemicro

-

List files of type: Drives:
IMach’Scripl File ['.ma(j I = d: j

Figure 6-29. Specify MACRO File to Record Dialog

After the macro file has been chosen, all keyboard commands entered in the Debugger window
will be recorded in the macro file and can be repeated by playing “back” the macro udtilg the
- Play Macro menu option.

Alternatives. Press theCtrl + M key combination or click th&®ecord Macro toolbar button
These are the keyboard equivalents to choosingitee Record Macro menu option.

M68ICS05KJOM/D 6-29

SIMULATOR USER INTERFACE

6.20.5 Stop Macro

Select the Stop Macro option from the File menu (or press the Ctrl + S key combination) to
stop the active macro’s execution.

Alternatives. Press th&Ctrl + S key combination or click th8top Macro toolbar button. These
are the keyboard equivalents to choosindHilhe - Stop Macro menu option.

6.20.6 Open Logdfile

Select theDpen Logfile option from the File menu to open tHaecify Output LOG File dialog
(Figure 6-30). Use this dialog to specify a log filename and directory/drive path in which to save
output log information for the current debugging session.

Specify output LOG file!
File name: Folders:
[.log] c:hicsD5cwl vicsD5cw

Cancel |
test log - et -
£ ics05cwl Metwork... |
29 ics05cw =
Lizt files of type: Drives:
|P&E Logfile [~.log) =l | =c:godel =l

Figure 6-30. Specify Output LOG File Dialog

If the specified log file exists, a message box (Figure 6-31) prompts you to:
* Overwrite the existing logfile with current logging information
» Append the current logging information at the end of the existing logfile
» Cancel the Open Logfile command without saving logging information

Logfile Already Exists! [X]

The specified file already exists. Do you want to
Owerwrite the file, Append to the file, or Cancel the
Operation?

[Overwrite | Append | Cancel |

Figure 6-31. Logfile Already Exists Dialog

The open log file does not appear in the Debugger window. To enable logging in a currently
active logfile, you must execute thé& (Log File) command as well, otherwise no logging occurs
in the open log file.

6-30 M68ICS05KJOM/D

SIMULATOR USER INTERFACE

The LF command begins logging of commands and responses to the specified external. While
logging is enabled, any line appended to the command log window is also written to the log file
(Figure 6-32). Logging to the external file continues until another L F command stops logging
and closesthelog file.

Opening log file D:\PEMICROMLOG\SAMPLE.LOG ﬂ
rLogfile
Appending to log file D:\PEMICGRO\LOG\SAMPLE.LDG
>LF
bReset
>0sc
>Baud
>Step
>Stepfor
Operator interrupt.
>Stepfor
K| o

Figure 6-32. A Sample Output Log File

Y ou may view the logfile in the Winl DE editor or in any program that displays text files.
Alternatives. Press the Ctrl + L key combination or click the Open Lodfile toolbar button
These are the keyboard equivalents to choosing theFile - Open Logfile menu option.

6.20.7 CloseLogfile

Choose Close Logfile from the File menu to stop logging and close the active logfile.

Alternatives: Type Ctrl + C or click the Close Logfile button on the toolbar, or enter the LF
command in the Status window command line. These are the keyboard equivalents to choosing
the File - Close Logfile menu option.

6.20.8 Exit

Choose Exit from the File menu to close the Debugger application.

Alternative: Type Ctrl + X to exit the Debugger application and close the subordinate and main
windows. Thisisthe keyboard equivalent to choosing theFile - Exit menu option.

M68ICS05KJOM/D 6-31

SIMULATOR USER INTERFACE

6.21 1CS05KJW EXECUTE OPTIONS

Use the ICS05KJW Execute menu options to reset the emulation microcontroller and perform
debugger routines.

To perform an Execute operation, select Execute in the Menu bar to open the Execute menu
(Figure 6-33). Click on an option to perform the operation.

Beszet Proceszor F4

Step F&
ultiple Step FE
Go F7
Stop Fa

Figure 6-33. ICSO5K JW Execute Menu

6.21.1 Reset Processor

Choose Reset Processor from the Execute menu to send the RESET command to the
emulation MCU and reset the program counter (PC) to the contents of the reset vector.

Alternative: Pressthe F4 function key. Thisis the keyboard equivalent of the Execute - Reset
Processor menu option.

6.21.2 Step

Choose Step from the Execute menu to send the Single Step (Trace) command to the MCU. The
Step command executes a single instruction, beginning at the current program counter (PC)
address value.

NOTE

The Step command does not execute instructions in real-time, so timer values
cannot be tested using this command.

Alternative: Press the F5 function key. This is the keyboard equivalent to choosing the
Execute - Step menu option.

6-32 M68ICS05KJOM/D

SIMULATOR USER INTERFACE

6.21.3 Multiple Step

Choose Multiple Step from the Execute menu to send the STEPFOR command to the MCU.
The STEPFORM command begins continuous instruction execution, beginning at the current
program counter (PC) address value, and continuing until any key is pressed.

NOTE

The Multiple Step command does not execute instructions in real-time, so timer
values cannot be tested using this command.

Alternative: Press the F6 function key. This is the keyboard equivalent to choosing the
Execute - Multiple Step menu option.
6.21.4 Go

Choose Go from the Execute menu to start execution of code in the ICSO5KJW at the current
address. Code execution continues until a stop command is entered, a breakpoint is reached, or
an error occurs.

Alternative: Press the F7 function key. This is the keyboard equivalent to choosing the
Execute - Go menu option.
6.21.5 Stop

Choose Stop from the Execute menu to stop program execution and update the 1CSO5KJIW
simulator windows with current data.

Alternative: Press the F8 function key. This is the keyboard equivalent to choosing the
Execute - Stop menu option.
6.21.6 Repeat Command

Choose Repeat Command from the Execute menu to repeat the execution of the last command
entered in the Status Window command line.

Alternative: Press the F9 function key. Thisis the keyboard equivalent to choosing the Execute
- Repeat Command menu option.

M68ICS05KJOM/D 6-33

SIMULATOR USER INTERFACE

6.22 |CSO5KJW WINDOW OPTIONS
Use the Window menu options to change the window displays in the ICSO5K JW simulator.

To make changes to the windows, select Window in the Menu bar to open the Window Menu
(Figure 6-34). Click on an option to perform the operation.

Code 1
v Code 2
v hemany
v Wariables
v Cuclez
v Status
« CPU
v Chip

Change Colors

Beload Desktop
Save Desktop

Figure 6-34. Window Menu

6.22.1 Open Windows

The Window menu options itemize the source file windows that can be opened in the
ICSO5KJW. A check beside the window name toggles that window display to on. Uncheck the
window name to close the window; check the window name to open it.

For example, Figure 6-35 indicates that all ICSO5KJW windows are open except Code 1. To
open the Code 1 window, click on the Code 1 option. To close the Chip Window, click on the
Chip option to remove the check and close the window.

6.22.2 Change Colors

Choose Change Colors from the Windows menu to open the Change Window Colors Diaog
(Figure 6-35).

The Change Window Colors dialog displays the color settings for the ICSO5KJW debugger
windows or window components. To see the current settings, select the window or window
element from the list on the left. To change the foreground or background color setting for this
window or element, uncheck the Use Defaults for Foreground/Background checkbox, and use the
left mouse button to select a foreground color, or use the right mouse button to select a
background color. Press the OK button to save the color changes (or press the Cancel button to
close the dialog without saving changes).

Some window items allow only the foreground or background to be changed.

6-34 M68ICS05KJOM/D

SIMULATOR USER INTERFACE

Dialog Commands
Status Window - Dialog Responses
Status Window - Dialog Background
Status Window - Dialog Selected
Status Window - Commandbox Text
Status Window - Status Bar

Popup Selection Windows - Hormal
Popup Selection Windows - Selected
Fopup Selection Windows - Disabled
Chip Window - Pin Ualues

Chip Window - Pod Indicator

Use Defaults For:
[+ Foreground
I” Background

This is a sample of what the text in the window will look like. |

‘ « OK H X cancel

‘ ? Help |

Figure 6-35. Change Window Colors Dialog

6.22.3 Reload Desktop

Choose Reload Desktop from the Windows menu to reload the stored configuration for the

current project.

This option is useful for restoring desktop window to their stored sizes and locations after
making changes. To make changes permanent, choose the Save Desktop option. The new
window sizes and locations will be written over the old settings, and stored with other project

files.

6.22.4 Save Desktop

Choose Save Desktop from the Windows menu to save the current configuration of the
desktop, the position and size of the windows in the ICS05KJW simul ator.

M68ICS05KJOM/D

6-35

g |

SIMULATOR USER INTERFACE

6-36

M68ICS05KJOM/D

DEBUGGING COMMAND SET

CHAPTER 7
|CS05KJW DEBUGGING COMMAND SET

7.1 OVERVIEW

This chapter consists of:
* Alogical overview of the ICSO5KJW debugging command set

* An explanation of rules for using the command set, including command syntax and
arguments

* A summary of commands by type and function

» Detailed descriptions of the commands, with example usage
The ICS05KJW simulator command set consists of commands for simulating, debugging,
analyzing, and programming microcontroller programs. Use the commands to:

* Initialize emulation memory

» Display and store data

» Debug user code

» Control the flow of code execution

M68ICS05KJOM/D 7-1

DEBUGGING COMMAND SET

7.2 ICSO5KJW COMMAND SYNTAX

A command is a line of ASCII text that you enter from the computer keyboard. For ICS05K JW
debugging commands, enter the command and its arguments in the ICSO5KJW Status window
command line. Press Enter to terminate each line and activate the command. The typical
command syntax is:

command [<argunment>]. ..

Where:
command A command name, in upper- or lower-case | etters.
<argument> An argument indicator; when arguments are italicized, they
represent a placeholder for the actua value you enter; when not
italicized, they indicate the actual value to enter. Table 7-1 explains
the possible argument values.
In command syntax descriptions:
[] brackets enclose optional items,
| avertical line meansor,
an ellipsis means that you can repeat the preceding item,
() parentheses enclose items only for syntactical purposes

Except where otherwise noted, numerical values in debugging command examples are
hexadecimal.

7-2 M68ICS05KJOM/D

DEBUGGING COMMAND SET

7.3 COMMAND-SET SUMMARY

Table 7-1 lists the argument types used for commands.

Table 7-2 lists the commands

alphabetically and summarizes their functions.

7.3.1 Argument Types

Table 7-1. Argument Types

Type Syntax Indicators Explanation
Numeric <n>, <rate>, <data>, | Hexadecimal values, unless otherwise noted.
<signal>, <frame>, For decimal values, use the prefix ! or the suffix T.
<frequency>, <clips>, For binary values, use the prefix % or the suffix Q.
<count>, <value> Example: 64 = 1100 = 100T = %1100100 = 1100100Q.

Address <address> Four or fewer hexadecimal digits, with leading zeros when
appropriate. If an address is decimal or binary, use a prefix
or suffix, per the explanation of numeric arguments.

Range <range> A range of addresses or numbers. Specify the low value,
then the high value, separated by a space. Use leading
zeros if appropriate.

Symbol <symbol>, <label> Symbols of ASCII characters, usually symbols from source
code.

Filename <filename> The name of a file, in DOS format: eight or fewer ASCII
characters. You may include an optional extension (three or
fewer characters) after a period. If the file is not in the
current directory, precede the name with one or more
directory names.

Keyword Capital letters, such A word to be entered as shown, although optionally in lower

as CLIPS case.
<type>, <state>, Sets of keywords: enter one of the set for a command.
<id>, <mcuid>,
<tag>, <signal>,
<mode>, <v>
Operator <op> + (add); - (subtract); * (multiply); or / (divide)

M68ICS05KJOM/D

DEBUGGING COMMAND SET

7.3.2 Command Summary

Table 7-2. ICS05K JW Command Overview

Command Description

A Set the accumulator to specified value and display new value in CPU
Window. (Identical to the ACC command.)

ACC Set the accumulator to specified value and display new value in CPU
Window. (Identical to the A command.)

ASM Assemble MC68HCO5 instruction mnemonics and place resulting machine
code in memory at the specified address.

BELL Sound PC bell the specified number of times.

BF Fill a block of memory with a specified byte, word, or long value.

BR Display or set instruction breakpoint to specified values or at cursor location.

BREAKA Set accumulator breakpoint to halt code execution when the accumulator
value equals the specified value.

BREAKSP Set stack pointer breakpoint to halt code execution when the SP equals the
specified value.

BREAKX Set index breakpoint to halt code execution when the X or Index register
equals the specified value.

C Set or clear the C bit of the CCR.

CAPTURE Specify location to be monitored for changes in value.

CAPTUREFILE Open a capture file to record changed values. (Identical to the CF command.)

CCR Set the CCR in the CPU to the specified hexadecimal value.

CF Open a capture file to record changed values. Identical to the CAPTUREFILE
command.

CLEARMAP Remove the current MAP file from memory.

CLEARSYMBOL | Remove all user-defined symbols from memory.

COLORS Set simulator colors

CY Change the value of the cycles counter.

CYCLES Change the value of the cycles counter.

DASM Disassemble machine instructions, display addresses and contents as
disassembled instructions in the Code Window.

7-4 M68ICS05KJOM/D

DEBUGGING COMMAND SET

Table 7-2. ICS05K JW Command Overview (continued)

Command Description

DDRA Assign the specified byte value to the Port A data direction register (DDRA).

DDRB Assign the specified byte value to the Port B data direction register (DDRB).

DUMP Send contents of a block of memory to the Status Window in bytes, words or
longs.

EVAL Evaluate a numerical term or expression and give the result in hexadecimal,
decimal, octal, and binary format.

EXIT Terminate the software and close all windows. (Identical to QUIT.)

G Start execution of code at the current PC address or at an optional specified
address. (ldentical to the GO and RUN commands.)

GO Start execution of code at the current PC address or at an optional specified
address. (Identical to the G and RUN commands.)

GOMACRO Execute the program in the simulator beginning at the address in the PC and
continue until a keypress, Stop Macro command (from the Toolbar),
breakpoint, or error occurs.

GOTIL Execute code beginning at the PC address and continue until the PC
contains the specified ending address or until a keypress, Stop Macro
command (from the Toolbar), breakpoint, or error occurs.

GOTOCYCLE Execute code beginning at the current PC and continue until the cycle
counter is equal to or greater than the value specified.

H Set or clear the H bit in the CCR.

HELP Open the ICS05KJW Help File

I Set or clear the | bit of the CCR.

INFO Display information about the line highlighted in the source window.

INPUTA Set the simulated inputs to Port A.

INPUTB Set the simulated inputs to Port B.

INPUTS Show the simulated input values to Port A and B.

INT View or assign the state value of the MCU IRQ pin. (Identical to the IRQ
command.)

IRQ View or assign the state value of the MCU IRQ pin. (Identical to the INT

command.)

M68ICS05KJOM/D

DEBUGGING COMMAND SET

Table 7-2. ICS05K JW Command Overview (continued)

Command Description

LF Open a new or specified external file to receive log entries of commands and
responses in the Status Window. (Identical to the LOGFILE command.)

LISTOFF Turn off screen listing of stepping information.

LISTON Turn on screen listing of stepping information.

LOAD Load S19 object file and associated MAP file into the ICSO5KJW.

LOADDESK Load the desktop settings for window positions, size, and visibility.

LOADMAP Load a MAP file containing source level debug information into the
ICSO5KJW.

LOGFILE Open a new or specify an existing external file to receive log entries of
commands and responses from the Status Window. (Identical to the LF
command.)

MACRO Execute a macro file containing debug command sequences.

MACROEND Close the macro file in which the debug command sequences are being
saved.

MACROSTART Open a macro file and save all subsequent debug commands to this file until
closed by the MACROEND command during an active ICSO5KJW session.

MAP View information from the current MAP file stored in memory. (Identical to the
SHOWMAP command.)

MD Display the contents of memory locations beginning at the specified address
in the Memory Window.

MM Modify contents of memory beginning at the specified address, and/or select
bytes, words, longs.

N Set or clear the N bit of the CCR.

NOBR Remove one or all of active breakpoints.

NOMAP Remove the current MAP file from memory, forcing the ICSO05KJW to show
disassembly in the code windows instead of user source code. (Identical to
the CLEARMAP command.)

NOSYMBOL Remove all user-defined symbols from memory; symbols defined in a loaded
MAP file are not affected by the NOSYMBOL command.

PC Assign the specified value to the MCU program counter.

7-6 M68ICS05KJOM/D

DEBUGGING COMMAND SET

Table 7-2. ICS05K JW Command Overview (continued)

Command Description

POD Attempt to connect with the ICS05KJW circuit board through the specified
COM port; when successful, the POD command returns the current status of
ports, reset and IRQ pins on the ICS05KJW board and the board version
number.

PORTA Assign the specified value to the Port A output register latches. (Identical to
the PRTA command.)

PORTB Assign the specified value to the Port B output register latches. (Identical to
the PRTB command.)

PROGRAM Start the programmer for the desired device.

PRTA Assign the specified value to the Port A output register latches. (Identical to
the PORTA command.)

PRTB Assign the specified value to the Port B output register latches. (Identical to
the PORTB command.)

QUIT Terminate the ICS05KJW application and close all windows. (Identical to the
EXIT command.)

R Open window for Register files (available separately from P&E
Microcomputer Systems) and starts interactive setup of system registers
such as I/O, time, COP.

REG Display contents of CPU registers in the Status Window. (Identical to the
STATUS command.)

REM Enter comments in a macro file.

RESET Simulate a reset of the MCU and sets the PC to the contents of the reset
vector. Does not start execution of user code.

RESETGO Simulates a reset of the MCU, sets PC to contents of the reset vector, and
starts execution from the PC address.

RUN Start execution of code at the current PC current or specified address.
(Identical to the G or GO command.)

SAVEDESK Save the desktop settings for the ICSO5KJW program when it is first opened
or for use with the LOADDESK command.

SCRIPT Execute a macro file containing debug command sequences. (Identical to the
MACRO command.)

SHOW Display the contents of memory locations in the Memory Window beginning

at the specified address. (Identical to the MD command.)

M68ICS05KJOM/D

DEBUGGING COMMAND SET

Table 7-2. ICS05K JW Command Overview (continued)

Command Description

SHOWBREAKS Open window displaying breakpoints used in the current debug session, and
allow modifying breakpoints.

SHOWCODE Display code in the Code Windows beginning at the specified address, but
without changing the value of the PC.

SHOWMAP View current MAP file.

SHOWPC Display code starting from address in the PC in the Code Window.

SHOWTRACE Display the Trace Window with the last 1024 instructions executed since the
TRACE command issued.

SNAPSHOT Save window data to the open log file.

SP Assign specified value to the stack pointer used by the CPU and display in
the CPU Window.

SS Step through a specified number of source code instructions, starting at the
current PC address value, then halt.

ST Step through a specified number of assembly instructions, starting at the
current PC address value, then halt. (Identical to the STEP and T
commands.)

STACK Open the HCO5 Stack Window showing the stack pointer value, data stored
on the stack, and the results of RTS or RTI instruction.

STATUS Display the contents of the CPU registers in the Status Window. (Identical to
the REG command.)

STEP Step through a specified number of assembly instructions, starting at the
current program counter address value, then halt. (Identical to the ST or T
commands.)

STEPFOR Execute instructions continuously, one at a time, starting at the current PC
address and continuing until reaching an error condition, breakpoint, or
keypress.

STEPTIL Step through instructions starting at current PC address and continue until
PC value reaches the specified address, or until keypress, breakpoint, or
error occurs.

SYMBOL View current or create new symbols.

SYSINFO Show the amount of system memory available to the ICS05KJW and the
largest memory block available.

7-8 M68ICS05KJOM/D

DEBUGGING COMMAND SET

Table 7-2. ICS05K JW Command Overview (continued)

Command Description

T Step through a specified number of assembly instructions, starting at the
current PC address, then halt. (Identical to the ST or STEP commands.)

TRACE Toggle tracing.

UPLOAD_SREC | Upload the content of the specified memory block (range) in S19 file format
and display the contents in the Status Window, and enter information into the
current log file.

VAR Display specified address and contents in the Variables Window for viewing
during code execution.

VER Display version and data of ICS05KJW. (Identical to the VERSION
command.)

VERSION Display version and data of ICS05KJW. (Identical to the VER command.)

WAIT Delay simulator command execution by a specified number of cycles.

WHEREIS Display value of the specified symbol.

X Set the X register to the specified value and display in the CPU Window.

(Identical to the XREG command.)

XREG Set the X register to the specified value and display in the CPU Window.
(Identical to the X command.)

Z Toggle the Z bit in the CCR.

7.4 COMMAND DESCRIPTIONS

The following sections, which are arranged alphabetically by command name, describe the
commands in detail.

M68ICS05KJOM/D 7-9

DEBUGGING COMMAND SET

A or ACC Set Accumulator Value

The ACC command sets the accumulator to a specified value. The value entered with the
command is shown in the CPU window. The ACC and A commands are identical.

Syntax:
ACC <n>

where:
<n> The value to be loaded into the accumul ator.

Example:
A 10 Set the accumul ator to $10.

7-10 M68ICS05KJOM/D

DEBUGGING COMMAND SET

ASM Assemble Instructions

The ASM command assembles MC68HCO5-family instruction mnemonics and places the
resulting machine code into memory at the specified address. The command displays a window
with the specified address (if given) and current instruction, and prompts for a new instruction.
Enter the new instruction in the New Instruction text box. Press the Enter key to assemble the
new instruction, store and display the resulting machine code, then move to the next memory
location where you will be prompted for another instruction.

If there is an error in the instruction format, the address stays at the current address and an
assembly error flag appears. To exit assembly, press the Exit button.

Syntax:
ASM [<addr ess>]

where:
<address> Address where machine code is to be generated. If you do not
specify an <address> value, the system checks the address used by
the previous ASM command, then uses the next address for this
ASM command.
Examples:

With an address argument:
ASM 100

The Assembly Window appears as shown on the left of Figure 7-1; the Assembly Window with
the ASM command and no argument is shown on the right).

~. Assembly Window ~. Assembly Window

Address 50100 Address 50100

Current Instruction uninitialized Current Instruction CLRX

New Instruction New Instruction [cLR]

Figure 7-1. Assembly Window [0 ASM Command
with (left), without (right) Argument

M68ICS05KJOM/D 7-11

DEBUGGING COMMAND SET

BELL Sound PC Bell

The BELL command sounds the PC bell the specified number of times. If you enter no argument,
the bell sounds once. To turn off the bell asit is sounding, press any key.

Syntax:
BELL [<n>]

where:
<n> The number of times to sound the bell.

Example:
BELL 3 Ring PC bell 3 times.

7-12 M68ICS05KJOM/D

DEBUGGING COMMAND SET

BF Block Fill Memory

The BF command fills a block of memory with a specified byte, word, or long value. The
optional argument specifies whether to fill the block in bytes (.B, the default, 8 bits), in words
(.\W, 16 bits), or inlongs (.L, 32 bits).

Syntax:

BF [.B| .W]| .L] <startrange> <endrange> <n>

where:
<dtartrange> Beginning address of the memory block (range).
<endrange> Ending address of the memory block (range).
<n> Byte, word, or long value to be stored in the specified block.
* If the byte variant (.B) isused , then <n> must be a 8-bit value.
» If theword variant (W) isused , then <n> must be a 16-bit value.
* If thelong variant (.L) isused , then <n> must be a 32-bit value.
Examples:
BF C0 CF FF Store FF in bytes at addresses CO-CF.
BF. W 300 31F 4143 Store word value 4143 at addresses 300-31F.

M68ICS05KJOM/D 7-13

DEBUGGING COMMAND SET

BR Set Instruction Breakpoint

The BR command displays or sets instruction breakpoints, according to its parameter values:

* If you enter no parameter values, the BR command displays a list of al current
breakpoints in the status window.

* If you enter an <address> value, the BR command sets a breakpoint at the specified
address.

You may also enter an optional value <n> with the address to specify a break count. The BR
command sets a breakpoint at the specified address, but code execution does not break until the
nth time it arrives at the breakpoint.

NOTE

The maximum number of breakpoint addresses is 64. Each BR,
BREAKA, BREAKSP, or BREAKX command that includes an
address value uses an additional breakpoint address, unless the
address is a duplicate. For example, if 64 BR commands already
have taken up 64 addresses, the only way to include an address
value in a BREAKA, BREAKSP, or BREAKX command is to
duplicate one of those 64 addresses.

If source code is displayed in either code window, you can set, remove, or clear al breakpoints
using mouse or keyboard commands:

1. Position the cursor on the line of code for which you want to set a breakpoint.

2. Pressthe right mouse button once to open the Code Window Shortcut Menu.

3. Select Toggle Breakpoint at Cursor option. If there is no current breakpoint set at this
line of code, a breakpoint will be set. If there is a current breakpoint set at this line of
code, the breakpoint will be removed.

To remove al breakpoints:

* Enter the NOBR command in the Status Window command line.

7-14 M68ICS05KJOM/D

DEBUGGING COMMAND SET

BR (continued)
Syntax:
BR [<address> [<n>]] ;set abreakpoint
BR ;list current breakpoints
where:
<address> The address for a breakpoint.
<n> Break after value: code execution passes through the breakpoint n-
1 times, then breaks the nth time it arrives at the breakpoint.
Examples:
BR 300 Set a breakpoint at address 300
BR 330 8 Set a breakpoint at address 330, break on eighth arrival at

330.

7-15

M68ICS05KJOM/D

DEBUGGING COMMAND SET

BREAKA Set Accumulator Breakpoint

The BREAKA command sets an accumulator breakpoint to halt code execution when the value
of the accumulator equals the specified n value.

* With an n value, the command forces a break in execution as soon as the accumul ator
value equalsn.

* With n and address values, the command forces a break in execution when the
accumulator value equals n and execution arrives at the specified address. (If the
accumulator value changes from n by the time execution arrives at the address, no
break occurs).

NOTE

The maximum number of breakpoint addresses is 64. Each BR,
BREAKA, BREAKSP, or BREAKX command that includes an
address value uses an additional breakpoint address, unless the
address is a duplicate. For example, if 64 BR commands already
have taken up 64 addresses, the only way to include an address
value in a BREAKA, BREAKSP, or BREAKX command is to
duplicate one of those 64 addresses.

If you enter the BREAKA command without an address value, the halt in code execution clears
the accumulator breakpoint. To cancel the accumulator breakpoint before the halt occurs, enter
the BREAKA command without any parameter values. (If you enter the BREAKA command
without an address value, the accumulator breakpoint does not show in the BREAKPOINT
WINDOW.)

If you enter the BREAKA command with an address value, you may clear the accumulator
breakpoint by one of these methods:
* Enter the NOBR command

» Position the cursor on that address in the code window, then press the right mouse
button, and select Toggle Breakpoint at Cursor menu item.

Syntax:
BREAKA [<n> [<address>]]
where:
<n> Accumulator value that triggers a break in execution.
<address> Optional address for the break in execution (provided that the

accumulator value equalsn).

7-16 M68ICS05KJOM/D

DEBUGGING COMMAND SET

BREAKA (continued)
Examples:
BREAKA 55 Break execution when the accumul ator value equals 55.
BREAKA Cancel the accumulator breakpoint.
BREAKA 55 300 Break execution at address 300 if accumulator value equals
55.

M68ICS05KJOM/D 7-17

DEBUGGING COMMAND SET

BREAKSP Set Stack Pointer Breakpoint

The BREAKSP command sets a stack pointer breakpoint to halt code execution when the value
of the stack pointer equals a specified value.

» With an n value, the command forces a break in execution as soon as the stack pointer
value equalsn.

* With n and address values, the BREAKSP command forces a halt in execution when
the stack pointer value equals n and execution arrives at the specified address. (If the
stack pointer value changes from n by the time execution arrives at the address, no
break occurs).

NOTE

The maximum number of breakpoint addresses is 64. Each BR,
BREAKA, BREAKSP, or BREAKX command that includes an
address value uses an additional breakpoint address, unless the
address is a duplicate. For example, if 64 BR commands already
have taken up 64 addresses, the only way to include an address
value in a BREAKA, BREAKSP or BREAKX command is to
duplicate one of those 64 addresses.

If you enter the BREAK SP command without an address value, the halt in code execution clears
the stack pointer breakpoint. To cancel the stack pointer breakpoint before the halt occurs, enter
the BREAKSP command without any parameter values. (If you enter the BREAKSP command
without an address value, the stack pointer breakpoint does not show in the Breakpoint
Window.)

If you enter the BREAKSP command with an address value, you may clear the stack pointer
breakpoint by one of these methods:
* Enter the NOBR command

» Position the cursor on that address in the code window, then press the right mouse
button, and select Toggle Breakpoint at Cursor menu item.

7-18 M68ICS05KJOM/D

DEBUGGING COMMAND SET

BREAKSP

Syntax:

(continued)

BREAKSP [<n> [<address>]]

where:
<n>

<address>

Examples:
BREAKSP EO

BREAKSP
BREAKSP EO 300

M68ICS05KJOM/D

Stack pointer value that triggers a break in execution.

Optional address for the break in execution (when that the stack
pointer value equalsn).

Break execution when the stack pointer (SP) value equals
EO.

Cancel the SP breakpoint.
Break execution at address 300 if SP value equals EO.

7-19

DEBUGGING COMMAND SET

BREAKX Set Index Register Breakpoint

The BREAKX command sets an index breakpoint to halt code execution when the value of the
index register equals the specified n value.

* With an n value, the command forces a break in execution as soon as the index
register value equalsn.

* With n and address values, the command forces a halt in execution when the index
register value equals n and execution arrives at the specified address. (If the index
register value changes from n by the time execution arrives at the address, no halt
OCCUrs).

NOTE

The maximum number of breakpoint addresses is 64. Each BR,
BREAKA, BREAKSP, or BREAKX command that includes an
address value uses an additional breakpoint address, unless the
address is a duplicate. For example, if 64 BR commands already
have taken up 64 addresses, the only way to include an address
value in a BREAKA, BREAKSP or BREAKX command is to
duplicate one of those 64 addresses.

If you enter the BREAKX command without an address value, the halt in code execution clears
the index register breakpoint. To cancel the index register breakpoint before the halt occurs, enter
the BREAKX command without any parameter values. (If you enter the BREAKX command
without an address value, the index register breakpoint does not show in the Breakpoint
Window.)

If you enter the BREAKX command with an address value, you may clear the index register
breakpoint using one of these methods:
* Enter the NOBR command

» Position the cursor on that address in the code window, then press the right mouse
button, and select Toggle Breakpoint at Cursor menu item.

Syntax:
BREAKX [<n> [<address>]]
where:
<n> Index register value that triggers a break in execution.
<address> Optional address for the break in execution (when that the index
register value equalsn).

7-20 M68ICS05KJOM/D

DEBUGGING COMMAND SET

BREAKX (continued)
Examples:
BREAKX A9 Break execution when the index register value equals A9.
BREAKX Cancel the index breakpoint.
BREAKX A9 300 Break execution at address 300 if index register value
equals A9.

M68ICS05KJOM/D 7-21

DEBUGGING COMMAND SET

C Set/Clear Carry Bit

The C command sets or clears the C bit of the condition code register (CCR).

NOTE

The CCR bit designators are in the lower portion of the CPU
window. The CCR pattern is 111HINZC (H is haf-carry, | is IRQ
interrupt mask, N is negative, Z is zero and C is carry). A letter in
these designators means that the corresponding bit of the CCR is
set; a period means that the corresponding bit is clear.

Syntax:

Co|1

Examples:
co Clears the C hit of the CCR.

C1 Sets the C bit of the CCR.

7-22 M68ICS05KJOM/D

DEBUGGING COMMAND SET

CAPTURE Capture Changed Data

The CAPTURE command specifies locations to be monitored for changes in value. If the value
of such alocation changes and if a capture file is open, the file records the change in value. (See
the CAPTUREFILE or CF command for more information about capture files).

To stop monitoring a location, specify that same location in another CAPTURE command, or
close the capture file. (Closing the capture file undoes the specifications for all monitoring
locations).

NOTE

Before you enter the CAPTURE command, open a capture file via
the CAPTUREFILE or CF command. The CAPTURE command
has no effect unless a capture file is open.

Syntax:
CAPTURE <address> [<address>...]
where:
<address> L ocation to be monitored for a change in value.
Examples:
CAPTURE PORTA Monitor location PORTA for any value changes.
CAPTURE €0 Monitor RAM location CO for any value changes.
CAPTURE DO D1 D2 Monitor for any value changes in an array of locations.

M68ICS05KJOM/D 7-23

DEBUGGING COMMAND SET

CAPTUREFILE or CF Open/Close Capture File

The CAPTUREFILE command opens a capture file to record changed values. If the specified file
does not yet exist, this command creates the file. If the file already exists, you can use an optional
parameter to specify whether to overwrite existing contents (R, the default) or to append the log
entries (A). If you omit this parameter, a prompt asks for this overwrite/append choice.

The command interpreter does not assume a filename extension for the capture file. To close the
capture file, enter this command without any parameter values.

The CF and CAPTUREFILE commands are identical. If no CAPTURE command has specified
|ocations to be monitored, the CF and CAPTUREFILE commands have no effect.

NOTES

The CAPTURE command specifies the location to be monitored
for value changes. Closing the capture file deletes the location
specification. The simulator continues writing to an open capture
file. The capture file must be closed within a reasonable time, to
prevent the file from growing large.

Syntax:
CAPTUREFI LE [<filenane> [R | A]l]
where:
<filename> Name of the capturefile.
Examples:

CAPTUREFI LE TEST. CAP Open capture file TEST.CAP
CF TEST4.CAP A Open capture file TEST4.CAP; append new entries

7-24 M68ICS05KJOM/D

DEBUGGING COMMAND SET

CCR Set Condition Code Register

The CCR command sets the condition code register (CCR in the CPU) to the specified
hexadecimal value. The value entered with the command displays in the CPU Window.
NOTE

The CCR bit designators are in the lower portion of the CPU
window. The CCR binary pattern is 111HINZC (H is half-carry, |
IS IRQ interrupt mask, N is negative, Z is zero and C is carry). A
letter in these designators means that the corresponding bit is set; a
period means that the corresponding bit is clear.

Syntax:

CCR <n>

where:
<n> The new hexadecimal value for the CCR.

Example:

CCR E4 Assign the value E4 to the CCR. This makes the binary
pattern 11100100; the N bit set, other bits clear.

M68ICS05KJOM/D 7-25

DEBUGGING COMMAND SET

CLEARMAP Clear .MAP File

The CLEARMAP command removes the current MAP file from memory, forcing the debugger
to show disassembled code in the Code Windows instead of source code. Symbols defined using
the SYMBOL command are not affected by this command. (The NOMAP command is identical
to CLEARMAP.)

Syntax:
CLEARMAP

Example:
CLEARNMAP Clears symbols and their definitions.

7-26 M68ICS05KJOM/D

DEBUGGING COMMAND SET

CLEARSYMBOL Clear User Symbols

The CLEARSYMBOL command removes all the user-defined symbols (created with the
SYMBOL command). Debug information from MARP files, used for source level debugging, is
not affected by the CLEARSY MBOL command.

NOTE
List the current user-defined symbols using the SYMBOL
command.
Syntax:
CLEARSYMBOL
Example:
CLEARSYMBOL Clears user defined symbols.

M68ICS05KJOM/D 7-27

DEBUGGING COMMAND SET

COLORS Set Simulator Colors

The COLORS command opens the Change Window Colors dialog that lets you choose the text
and background colors for windows in the ICSO5KJW simulator. After you set colors options for
the windows, save the changes using the SAVEDESK command. For more information about
using the Change Window Colors dialog, see paragraph 6.22.2.

Syntax:

COLORS

Example:
COLORS Open the colors window.

7-28 M68ICS05KJOM/D

DEBUGGING COMMAND SET

CYCLES Set Cycles Counter

The CYCLES command changes the value of the cycle counter. The cycle counter counts the
number of processor cycles that have passed during execution. The Cycle Window shows the
cycle counter. The cycle count can be useful for timing procedures.
Syntax:

CYCLES <n>

where:
<n> Integer value for the cycles counter.

Examples:
CYCLES 0 Reset cycles counter.

CY 1000 Set cycle-counter value to 1000.

M68ICS05KJOM/D 7-29

DEBUGGING COMMAND SET

DASM Disassemble Memory

The DASM command disassembles machine instructions, displaying the addresses and their
contents as disassembled instructions in the debug window.

* If the command includes an address value, one disassembled instruction is shown,
beginning at that address.

» If you enter the command without any parameter values, the software finds the most
recently disassembled instruction then shows the next instruction, disassembled.

e If the command includes startrange and endrange vaues, the software shows
disassembled instructions for the range.

NOTE

If you enter the DASM command with a range, sometimes the
disassembled instructions scroll through the status window too
rapidly to view. In this case, enter the LF command, to record the
disassembled instructions in a logfile, or use the scroll bars in the
status window.

Syntax:
DASM [<address> | <startrange> <endrange>]
where:
<address> First address of three instruction opcodes to be disassembl ed.
<gtartrange> Starting address for arange of instructions to be disassembled.
<endrange> Ending address for arange of instructions to be disassembled.
Examples:
DASM 300
0300 AGES LDA #0OE8
DASM 200 208
0200 5F CLRX
0201 A680 LDA #80
0203 B700 STA PORTA
0205 AGFE LDA #FE
0207 B704 STA DDRA

7-30 M68ICS05KJOM/D

DEBUGGING COMMAND SET

DDRA Set Port A Direction Register

The DDRA command assigns the specified byte value to the port A data direction register
(DDRA). Bits assigned 0 denote input pins; bits assigned 1 denote output pins.

Syntax:
DDRA <n>

where:
<n> The byte value to be placed into DDRA.

Examples:
DDRA FF Set al port A pinsto be outputs.

DDRA 00 Set al port A pinsto be inputs.

M68ICS05KJOM/D 7-31

DEBUGGING COMMAND SET

DDRB Set Port B Direction Register

The DDRB command assigns the specified byte value to the port B data direction register
(DDRB). Bits assigned 0 denote input pins; bits assigned 1 denote output pins.

Syntax:

DDRB <n>
where:

<n> The byte value to be placed into DDRB.

Examples:

DDRB 03 Set the lower two bits of port B pins as outputs, set the

othersto be inputs.
DDRB FF Set al port B pins to be outputs.

7-32 M68ICS05KJOM/D

DEBUGGING COMMAND SET

DUMP

Dump Memory to Screen

The DUMP command sends contents of a block of memory to the status window, in bytes,
words, or longs. The optional variant specifies whether to fill the block in bytes (.B, the default),
inwords (\W), or inlongs (.L).

NOTE

When you enter the DUMP command, sometimes the memory
contents scroll through the debug window too rapidly to view.
Accordingly, you can either the LF command to record the memory
locationsin alogfile, or use the scroll barsin the status window.

Syntax:

DUW [.B | .W/| .L] <startrange> <endrange> [<n>]

where:
<startrange>
<endrange>

<n>

Examples:
DUWP C0 CF
DUMP. W 300 37S
DUMP. B 200 300

M68ICS05KJOM/D

Beginning address of the memory block.
Ending address of the memory block (range).

Optional number of bytes, words, or longs to be written on one
line.

Dump array of RAM values, in bytes.
Dump ROM code in address 300-37S in words.
Dump contents of addresses 200-300 in rows of eight bytes.

7-33

DEBUGGING COMMAND SET

EVAL Evaluate Expression

The EVAL command evaluates a numerical term or simple expression, giving the result in
hexadecimal, decimal, octal, and binary formats. In an expression, spaces must separate the
operator from the numerical terms.

NOTE

Octa numbers are not valid as parameter values. Operand values
must be 16 bits or less. If the value is an ASCII character, this
command also shows the ASCII character as well. The parameters
for the command can be a number, or a sequence of: number,
space, operator, space, and number. Supported operations are
addition (+), subtraction (-), multiplication (*), division (/), logical
AND (&), and logical OR (V).

Syntax:
EVAL <n> [<op> <n>]
where:
<n> Alone, the numerica term to be evaluated. Otherwise either
numerical term of asimple expression.
<op> The arithmetic operator (+, -, *, /, &, or) of a simple expression
to be evaluated.
Examples:
EVAL 45 + 32
0077H 119T 0001670 0000000001110111Q "w'
EVAL 100T

0064H 100T 0001440 0000000001100100Q "d"

7-34 M68ICS05KJOM/D

DEBUGGING COMMAND SET

EXIT or QUIT Exit/Quit Application

The EXIT command terminates the software and closes all windows. The QUIT command is
identical to EXIT.

Syntax:
EXIT

Example:
EXIT Finish working with the program.

M68ICS05KJOM/D 7-35

DEBUGGING COMMAND SET

GO Begin Program Execution

The GO command starts execution of code at the current program counter (PC) address, or at an
optional specified address.

The G, GO, and RUN commands are identical.

If you enter only one address, that address is the starting address. If you enter a second address,
the execution stops at that address. If you specify only one address, the execution continues until
you press akey, it arrives at a breakpoint, or an error occurs.

NOTE

If you want to see the windows update with information during
execution of code, use the STEPFOR command.

Syntax:
@O [<startaddr> [<endaddr>]]
where:
<startaddr> Optional execution starting address. If the command does not have
a<startaddr> value, execution begins at the current PC value.
<endaddr> Optional execution ending address.
Examples:
Q0 Begin code execution at the current PC value.
GO 346 Begin code execution at address 346.
G 300 371 Begin code execution at address 300. End code execution
just before the instruction at address 371.
RUN 300 Begin code execution at address 300.

7-36 M68ICS05KJOM/D

DEBUGGING COMMAND SET

GOMACRO Execute Macro after Break

The GOMACRO command executes the program in the simulator beginning at the address in the
program counter (PC). Execution continues until you press a key, until it arrives at a breakpoint,
or until an error occurs. Afterwards it runs the specified macro file just like the MACRO
command.

Syntax:
GCOMACRO <fi |l enane>

where:
<filename> The name of a script file to be executed, with or without extension
.MAC, or a pathname that includes an asterisk (*) wildcard
character. When the asterisk is entered, the command displays a list
of appropriate files, from which you can select the required file.
Example:
GOVACRO AVCALC. MAC Begin code execution at the current PC value; at breakpoint

execute macro AVCALC.MAC.

M68ICS05KJOM/D 7-37

DEBUGGING COMMAND SET

GOTIL Execute Until Address

The GOTIL command executes code beginning at the address in the program counter (PC).
Execution continues until the program counter contains the specified ending address, or until you
press a key or the Stop button on the ICSO5K JW toolbar, or until it reaches a breakpoint, or until
an error occurs.

Syntax:
COTl L <endaddr >

where:
<endaddr> The address at which execution stops.
Example:
GOTI L 2F0 Executes code up to address 2F0.

7-38 M68ICS05KJOM/D

DEBUGGING COMMAND SET

GOTOCYCLE Execute to Cycle Counter Value

The GOTOCY CLE command executes the program in the simulator beginning at the address in
the program counter (PC). Execution continues until the cycle counter is equal to or greater than
the specified value, or until you press akey or the Stop button on the ICS05KJW toolbar, until it
reaches a breakpoint, or an error occurs.

Syntax:
GOTOCYCLE <n>

where:
<n> Cycle-counter value at which execution stops.
Examples:
GOTOCYCLE 100 Execute the program until the cycle counter equals 100.

M68ICS05KJOM/D 7-39

DEBUGGING COMMAND SET

H Set/Clear Half-Carry Bit

The H command sets or clears the H bit in the condition code register (CCR).

NOTE

The CCR bit designators are in the lower portion of the CPU
window. The CCR pattern is 111HINZC (H is haf-carry, | is IRQ
interrupt mask, N is negative, Z is zero and C is carry). A letter in
these designators means that the corresponding bit of the CCR is
set; a period means that the corresponding bit is clear.

Syntax:
H 0|1

Examples:
H1 Sets the H bit in the CCR.

HO Clear the H bit of the CCR.

7-40 M68ICS05KJOM/D

DEBUGGING COMMAND SET

HELP Open Help

The HELP command opens the Windows help file for the program. An aternative way to open
the help system isto press the F1 key.

Syntax:
HELP

Examples:
HELP Open the help system

M68ICS05KJOM/D 7-41

DEBUGGING COMMAND SET

I Set/Clear Interrupt Mask

The | command sets or clearsthe | bit of the condition code register (CCR).

NOTE

The CCR bit designators are in the lower portion of the CPU
window. The CCR pattern is 111HINZC (H is haf-carry, | is IRQ
interrupt mask, N is negative, Z is zero and C is carry). A letter in
these designators means that the corresponding bit of the CCR is
set; a period means that the corresponding bit is clear.

Syntax:
| 0]1

Examples:
| 1 Set the |l bit in the CCR.
I O Clear the | bit of the CCR.

7-42 M68ICS05KJOM/D

DEBUGGING COMMAND SET

INFO Display Line Information

The INFO command displays information about the line highlighted in the source window.
Information displayed includes the name of the file in the window, the line number, the address,
the corresponding object code, and the disassembled instruction.

Syntax:
I NFO

Example:
I NFO Display information about the cursor line.

Fi | enanme: PODTEST. ASM Line number:6
Addr ess: $0100
Di sassenbl y: START 5F CLRX

M68ICS05KJOM/D 7-43

DEBUGGING COMMAND SET

INPUTA Set Port A Inputs

The INPUTA command sets the ssmulated inputs to port A. The CPU reads this input value when
port A is set as an input port.

NOTE

If the ICSO5K J circuit board is connected, port A inputs come from
the board, so this command has no effect.

Syntax:
| NPUTA <n>
where:
<n> Eight-bit ssimulated value for port A.
Example:
| NPUTA AA Simulate the input AA on port A.

7-44 M68ICS05KJOM/D

DEBUGGING COMMAND SET

INPUTB Set Port B Inputs

The INPUTB command sets the simulated inputs to port B. The CPU reads this input value when
port B is set as an input port.
NOTE

If the ICSO5K J circuit board is connected, port B inputs come from
the board, so this command has no effect.

Syntax:
| NPUTB <n>
where:
<n> Eight-bit simulated value for port B.
Example:
| NPUTB 01 Simulate the input 01 on port B.

M68ICS05KJOM/D 7-45

DEBUGGING COMMAND SET

INPUTS Show Port Inputs

The INPUTS command shows the simulated input values to port A and B (entered via the
INPUTA or INPUTB commands).

NOTE
If the ICS05KJ circuit board is connected, this command shows
input values from the board.
Syntax:
| NPUTS
Example:
I NPUTS Show 1/O port input values.
Port A - AA
Port B - 01

7-46 M68ICS05KJOM/D

DEBUGGING COMMAND SET

IRQ Set IRQ Pin State

The IRQ command assigns the state value of the MCU IRQ pin. To see the current simulated
value on the pin, enter this command without any parameter value. The externa interrupt is
simulated as a level or edge/leve triggered interrupt, depending on the IRQ bit in the MOR
register. (The INT command isidentical).

NOTE

If the ICS05KJ circuit board is connected, the IRQ pin value come
from the board, so this command has no effect.

Syntax:
IRQ [0 | 1]

Examples:
I NT O Assign 0 to the IRQ pin.

IRQ 1 Assign 1 to the IRQ pin.

M68ICS05KJOM/D 7-47

DEBUGGING COMMAND SET

LISTOFF Turn Off Step Listing

The LISTOFF command turns off the screen listing of the step-by-step information for stepping.
Register values and program instructions do not appear in the status window as code runs. (This
display state isthe default when the software isfirst started.)

To turn on the display of stepping information, use the LISTON command.

Syntax:
LI STOFF

Example:
LI STOFF Do not show step information.

7-48 M68ICS05KJOM/D

DEBUGGING COMMAND SET

LISTON Turn On Step Listing

The LISTON command turns on the screen listing of the step by step information during
stepping. The register values and program instructions are displayed in the status window while
running code. The values shown are the same values seen by the REG instruction.

To turn off this step display, use the LISTOFF command.

Syntax:
LI STON

Example:
LI STON Show step information.

M68ICS05KJOM/D 7-49

DEBUGGING COMMAND SET

LOAD Load S-Records

The LOAD command loads an S-record (*.S19) object file and associated map file into the
debugger. Entering this command without a filename value brings up a list of .S19 files in the
current directory. Select a file for loading from this list. Upon loading, if the reset vector is
defined in the code, the debugger sets the PC to that address.

Syntax:
LOAD [<fil enane>]

where:
<filename> The name of the .S19 file to be loaded. The .S19 extension can be
omitted. The filename value can be a pathname that includes an
asterisk (*) wildcard character. If so, the command displays a
window that lists the files in the specified directory, having the
.S19 extension.
Examples:
LOAD PROGL. S19 Load file PROG1.S19 and its map file into the simulator at
the load addressesin thefile.
LOAD PRO&X2 Load file PROG2.S19 and its map file into the simulator at
the load addresses in thefile.
LOAD A: Display the names of the .S19 files on the diskette in drive
A:, for user selection.
LOAD Display the names of the .S19 filesin the current directory,

for user selection.

7-50 M68ICS05KJOM/D

DEBUGGING COMMAND SET

LOADDESK Load Desktop Settings

The LOADDESK command loads the debugger window (desktop) settings for window position,
size, and visibility, allowing you to choose how the windows will be set up for the project.

Use the SAVEDESK command to save the debugger window settings to the desktop file.

Syntax:
LOADDESK

Example:
LOQADDESK Get window settings from desktop file.

M68ICS05KJOM/D 7-51

DEBUGGING COMMAND SET

LOADMAP Load Map File

The LOADMAP command loads into the ICS05KJW simulator a map file that contains source
level debug information. Entering this command without a filename parameter brings up a list of
.MAP files in the current directory. From this a file can be selected directly for loading map file
information.

Syntax:
LOADMVAP [<fil enanme>]

where:
<filename> The name of a map file to be loaded. The .MAP extension can be
omitted. The filename value can be a pathname that includes an
asterisk (*) wildcard character; If so, the command displays a lists
of all filesin the specified directory that have the . MAP extension.
Examples:
LOADVAP PROG. MAP Load map file PROG.MAP into the host compuiter.
LOADVAP PROGL Load map file PROG1.MAP into the host computer.
LOADMAP A: Displays the names of the .MAP files on the diskette in
drive A:
LOADVAP Display the names of the .MAP filesin the current
directory.

7-52 M68ICS05KJOM/D

DEBUGGING COMMAND SET

LOGFILE Open/Close Log File

The LOGFILE command opens an external file to receive log entries of the commands entered in
the command line of the ICSO5KJW Status Window and the system responses to those
commands that appear in the Status Window message area.

» If the specified file does not exist, this command creates the file.

» If thefile specified file exists, you can enter an optional parameter to specify whether
to overwrite existing contents (R, the default) or to append the log entries (A). If this
parameter is omitted, a prompt window asks if you want to overwrite the existing file
or append information to the existing file.

While logging is in effect, any line appended to the command log window is also written to the
log file.

Logging continues until another LOGFILE or LF command is entered without any parameter
values. This second command disables logging and closes the log file.

The command interpreter does not assume a filename extension.

Syntax:
LF [<filename> [<R | A>]]

where:

<filename> The filename of the log file (or logging device to which the

log is written).
Examples:

>LF TEST.LOG R Start logging. Overwrite file TEST.LOG (in the current
directory) with al lines that appear in the status window.

>LF TEMP. LOG A Start logging. Append to file TEMP.LOG (in the current
directory) all linesthat appear in the status window.

>LOGFI LE (If logging is enabled): Disable logging and close the log

file.

M68ICS05KJOM/D 7-53

DEBUGGING COMMAND SET

MACRO Execute Batch File

The MACRO command executes a macro file, a file that contains a sequence of debug
commands. Executing the macro file has the same effect as executing the individual commands,
one after another. The SCRIPT command is identical.

Entering this command without a filename value brings up a list of macro ((MAC) files in the
current directory. Y ou can select afile for execution directly from thislist.

NOTE

A macro file can contain the MACRO command, alowing you to
next macro files up to 16 levels deep.

The most common use of the REM and WAIT commands is within
macro files. The REM command displays comments while the
macro file executes; the WAIT command establishes a pause
between the execution of the macro file commands.

If a startup macro file is in the directory, startup routines run the macro file each time the
application starts. See the STARTUP command for more information.

Syntax:
MACRO <fil enane>

where:
<filename> The name of amacro file to be executed, with or without extension
.MAC. The filename can be a pathname that includes an asterisk
(*) wildcard character. If so, the software displays a list of macro
files, for selection.
Examples:
MACRO | NI T. MAC Execute commandsin file INIT.MAC.
SCRI PT * Display names of all .MAC files (then execute the selected
file).
MACRO A: * Display names of all .MAC filesin drive A (then execute
the selected file).
MACRO Display names of all .MAC filesin the current directory,

then execute the selected file.

7-54 M68ICS05KJOM/D

DEBUGGING COMMAND SET

MACROEND Stop Saving Commands to Batch File

The MACROEND command closes the macro file in which the software has saved debug
commands. (The MACROSTART command opened the macro file). This stops saving debug
commands to the macro file.

Syntax:
MACRCEND

Example:
MACROEND Stop saving debug commands to the macro file, then close
thefile.

M68ICS05KJOM/D 7-55

DEBUGGING COMMAND SET

MACROSTART Save Debug Commands to Batch File

The MACROSTART command opens a macro file and saves all subsequent debug commands to
that file for later use. This file must be closed by the MACROEND command before the
|CSO5K JW session is ended.

Syntax:
MACRCSTART [<fil enane>]

where:
<fil enane> The name of the macro file to save commands. The . MAC
extension can be omitted. The filename can be a pathname
followed by the asterisk (*) wildcard character; if so, the
command displays alist of all filesin the specified directory
that have the .MAC extension.
Example:

MACROSTART TEST. MAC Save debug commands in macro file TEST.MAC

7-56 M68ICS05KJOM/D

DEBUGGING COMMAND SET

MD Display Memory at Address

The MD command displays (in the memory window) the contents of memory locations
beginning at the specified address. The number of bytes shown depends on the size of the
window and whether ASCII values are displayed. If alog file is open, this command also writes
thefirst 16 bytesto thelog file. The MD and SHOW commands are identical.

Syntax:

MD <address>

where:
<address> The starting memory address for display in the upper left corner of
the memory window.
Examples:
MD 200 Display the contents of memory beginning at address 200.
SHOW 100 Display the contents of memory beginning at address 100.

M68ICS05KJOM/D 7-57

DEBUGGING COMMAND SET

MM Modify Memory

The MM command directly modifies the contents of memory beginning at the specified address.
The optional variant specifies whether to fill the block in bytes (.B, the default), in words (\W),
or inlongs (.L). If, however, the command has only an address value, the Modify Memory dialog
(Figure 7-3) appears showing the specified address and its present value. Use the dialog to enter a
new value for the address or to modify the address type by selecting 8-bit bytes, 16-bit words, 32-
bit longs. To modify severa memory locations from this dialog, enter the new value in the New
Value text box and press the >> button to increment the current address, or the << button to
decrement the current address, or the = button to display the same address.

Modify Memory [x|
Address

Present Value : 5F

' Byte WWord Long ‘

Newvae []

« OK X Cancel
<l]

Figure 7-3. Modify Memory Dialog

If the MM command includes optional data values, the software assigns the values to the
specified addresses sequentially, then the command ends. No window appearsin this case.

Syntax:
MM [.Bl.W.L] <address>[<n> ...]

where:
<address> The address of the first memory location to be modified.
<n> The value(s) to be stored (optional).
Examples:
With only one address:
MM 90 Start memory modify at address $90.
MM 300 00 Assign value 00 to address $300.
MM 100 0001 10 11 Assign values 00-11 to bytes 100-103.
MM L 200 123456 Place long value $123456 at address $200.

7-58 M68ICS05KJOM/D

DEBUGGING COMMAND SET

N Set/Clear Negative Bit

The N command sets or clearsthe N bit of the condition code register (CCR).

NOTE

The CCR bit designators are in the lower portion of the CPU
window. The CCR pattern is 111HINZC (H is haf-carry, | is IRQ
interrupt mask, N is negative, Z is zero and C is carry). A letter in
these designators means that the corresponding bit of the CCR is
set; a period means that the corresponding bit is clear.

Syntax:

N 0] 1

Example:
N 1 Set the N hit of the CCR.

N o Clear the N bit of the CCR.

M68ICS05KJOM/D 7-59

DEBUGGING COMMAND SET

NOBR Remove Breakpoints

The NOBR command removes one or al active breakpoints. If this command has an address
value, it removes the breakpoint at that address. If this command has no parameter values, it
removes all current breakpoints. To set breakpoints use the BR command.

An alternative way for clearing a breakpoint in the code window is to position the cursor on a
line of code, then press the right mouse button and select Toggle Breakpoint at Cursor menu
item. This removes the breakpoint from the line.

Syntax:
NOBR [<addr ess>]

where:
<address> Optional address of a single breakpoint to be removed.
Examples:
NOBR Remove all current instruction breakpoints.
NOBR 120 Remove the instruction breakpoint at address 120.

7-60 M68ICS05KJOM/D

DEBUGGING COMMAND SET

NOMAP Clear .MAP File

The NOMAP command removes the current MAP file from memory, forcing the debugger to
show disassembled code in the Code Windows instead of source code. Symbols defined using
the SYMBOL command are not affected by this command.

The NOMAP command is identical to CLEARMAP.

Syntax:
NOVAP

Example:
NOVAP Clears symbols and their definitions.

M68ICS05KJOM/D 7-61

DEBUGGING COMMAND SET

NOSYMBOL Clear User Symbols

The NOSYMBOL command removes all user defined symbols created using the SY MBOL from
memory. Symbols are created using the SYMBOL command. Symbols defined via a loaded
MAP file are not affected.

Syntax:
NOSYMBOL

Example:
NOSYMBCL Clears user defined symbols and their definitions.

7-62 M68ICS05KJOM/D

DEBUGGING COMMAND SET

PC Set Program Counter

The PC command assigns the specified value to the MCU program counter. As the PC aways
points to the address of the next instruction to be executed, assigning a new PC value changes the
flow of code execution; the code windows change accordingly. The value entered with the
command is displayed in the CPU Window.

An aternative way for setting the PC in a code window is to position the cursor on aline of code,
then press the right mouse button and select the Set PC at Cursor menu item. This assigns the
address of that line to the PC.

Syntax:
PC <address>

where:

<address> The new PC value.
Example:

PC 0200 Sets the PC value to 0200.

M68ICS05KJOM/D 7-63

DEBUGGING COMMAND SET

POD Change Serial Port

The POD command connects to the ICS05KJ circuit board through the specified serial (COM)
port. If successful, this command responds with the current status of ports, reset, and IRQ pins on
the board. The command also shows the version of the board.

Syntax:
POD <n>

where:

<n> The number (1...8) of a seria port (COM1 through COM8) on the
PC.

Example:
PCD 1 Connect to serial port COM 1.

Port A - 80
Port B - 00
Reset - 1
IRQ - 1

Version - 01

7-64 M68ICS05KJOM/D

DEBUGGING COMMAND SET

PORTA or PRTA Set Port A Output Latches

The PORTA command assigns the specified value to the port A output register latches. (The
PRTA command is an alternate form of the PORTA command).

NOTE

If the ICS05KJ circuit board is connected, the system sends the n
parameter value of this command to the board.

Syntax:
PORTA <n>
where:
<n> The new value for the port A output latches.
Example:
PORTA FF Set al port A output latches high.

M68ICS05KJOM/D 7-65

DEBUGGING COMMAND SET

PORTB or PRTB Set Port B Output Latches

The PORTB command assigns the specified value to the port B output register latches. (The
PRTB command is an alternate form of the PORTB command).

NOTES

If the ICS05KJ circuit board is connected, the system sends the n
parameter value of this command to the board.

Syntax:
PORTB <n>
where:
<n> The new value for the port B output latches.
Example:
PORTB 03 Set the port B output latches to 03.

7-66 M68ICS05KJOM/D

DEBUGGING COMMAND SET

PROGRAM Start Programmer

The PROGRAM command starts the programmer. The programmer is used for such procedures
as programming, verifying, blank-checking the sample EPROM, and programming the MOR
byte for the desired device.

Programming software installed on the host computer can control the M68ICS05KJ pod
programming socket. The host computer can send RESET, CLOCK, DATA, and other control
signals to the pod through the serial connection.

After entering the PROGRAM command and before beginning to program the EPROM, follow
the directions in the popup windows for setting the power switches and control signals. After
these have been set, the Pick window displays the command choices summarized in Table 7-3.

During programming, you may use the following programming windows:
Pick Window

The Pick Window (Figure 7-4) displays all programming actions and functions.

. PROG705J1A - Version 1.00 [H[=] E3

PB Program Both EFROM then HOR
PM Program MOR byte in device

PE Program EPROM only

PR Protect Device from Reading

YE Verify to Simulator

5D Specify Dnld [Download] File
5U Specify Upld (Upload] File
UL Upload to Upld 5-Rec File
QU Quit - Exit the Programmer

« OK X Cancel

Figure 7-4. Programmer Pick Window

Status Window
The Programmer Status Window accepts programming commands on the command line or from

the Pick Window, then displays the command results in the message area. It isidentical in form
and function to the ICS05K JW Status Window.

M68ICS05KJOM/D 7-67

DEBUGGING COMMAND SET

PROGRAM (continued)

File Window
The Programmer File window identifies the filenames of the downloaded and uploaded files.
Program EPROM Per sonality Window

To program the EPROM personality bits, refer to Figure 7-4. Using the mouse, click on each
desired bit in the row-column matrix to toggle it on or off. Numbers to the right of each row
reflect the hexadecimal value of the row’s byte.

The Location identifier, at the bottom of the window, indicates the bit’s location in the EPROM.
It is not memory-mapped, since the personality bits must be programmed by direct access.

~. Personality EPROM M=l

Columns

$01
302
g 1
$08
310
$20
ju0
i8@

EelElEEEEE =
EEEEEENEE -
EekElEEEEE ~
EekElEEEEE «
EeEkEEEE -
EelEEEEEIE «
EEEEEEE -
EeEElEEEEE ~

= & WA o M -

325

-
=]
x]
-1]
-+
et
=]
=

S\
o
-~
L]
B
=
8

Figure 7-4. Program EPROM Per sonality Window

7-68 M68ICS05KJOM/D

DEBUGGING COMMAND SET

PROGRAM (continued)
Table 7-3. PROGRAM Commands

Cmd Function Description

BC Blank Check - $00 Checks whether the device has been erased.

everywhere?

PB Program Both EPROMSs, then | Programs all of the EPROM space, then the MOR

MOR byte of the HC705KJ device from the download file
specified by the SD programming command and
shown in the Programmer Files Window.

PE Program EPROM only Programs only the EPROM space of the HC705KJ
device (not the MOR) from the file specified in the file
window.

PM Program MOR byte in device | Asks for a value for the MOR byte and then programs
that location only in the HC705KJ device.

PP Program EPROM Personality | Programs the EPROM'’s personality bits, as shown in

Bits the Program EPROM Personality Window.

PR Program Device from Sets the security bit in the device.

Reading

QU Quit; Exit the Programmer Powers down the programmed device and returns to
the simulator.

SD Specify Dnld (Download) File | Gives the name of the S19 file to be programmed
(shown in file window).

SuU Specify Upld (Upload) File Gives the name of the S19 file in which to upload
code (shown in file window).

UL Upload to Upld S-Rec File Reads the entire EPROM space (including MOR byte)
of the HC705KJ device and places it into the upload
file. Verifies that an upload file has been specified.

VE Verify to Simulator OR -Verify | Verifies the device to the download file specified in

to Dnld S-Rec File

the status window.

To execute a programming command in the Pick Window, double-click on the command (or
select the command and press the OK button).

M68ICS05KJOM/D

7-69

DEBUGGING COMMAND SET

PROGRAM (continued)

The programming commands are saved in a file. The default file for downloading commands
comes from simulator memory. To use another S19 file to program the device, use the SD
command to open the dialog and enter or select the new download filename. The Programmer
Files window shows the download and upload filenames. When MCU programming compl etes,
the ICS05K JW simulator interface returns.

Syntax:
PROGRAM

Example:
PROGRAM Starts the programmer.

7.70 M68ICS05KJOM/D

DEBUGGING COMMAND SET

R Use Register Files

The R command pulls up windows for the register files (sold separately by P&E) and starts
interactive setup of such system registers as the /O, timer, and COP.

Entering this command opens the register files window, which can present a list of register files
for the device (if set up previously). Selecting afile brings up a display of values and significance
for each bit of the register. The user can view any of the registers, modify their values, and store
the results back into memory.

An alternate way to bring up the register files window is to press the Register Files speed button.

Syntax:
R

Example:
R Start interactive system register setup.

M68ICS05KJOM/D 7-71

DEBUGGING COMMAND SET

REG Show Registers

The REG command displays the contents of the CPU registers in the Status window. (The
STATUS command isidentical to the REG command.)

Syntax:
REG

Example:
REG Displays the contents of the CPU registers.

7-72 M68ICS05KIOM/D

DEBUGGING COMMAND SET

REM Place Comment in Batch/Macro File

The REM command lets you display comments in a macro file. When the macro file executes,
the text comment appears in the status window.

Syntax:
REM <t ext >
where:
<text> A comment to be displayed when amacro fileis executing.
Example:
REM Pr ogr am execut i ng; Display the message Program executing during macro
file execution.

M68ICS05KJOM/D 7-73

DEBUGGING COMMAND SET

RESET Simulate Processor Reset

The RESET command simulates a reset of the MCU and sets the program counter (PC) to the
contents of the reset vector. This command does not start execution of user code. (To reset and
execute code, use the RESETGO command.)

Syntax:
RESET

Example:
RESET Simulate reset of the MCU.

7-74 M68ICS05KIOM/D

DEBUGGING COMMAND SET

RESETGO Reset and Restart MCU

The RESETGO command simulates a reset of the MCU, sets the program counter (PC) to the
contents of the reset vector, then starts execution from that address.

Syntax:
RESETGO

Example:
RESETGO Simulate reset of the MCU and start execution of code.

M68ICS05KJOM/D 7-75

DEBUGGING COMMAND SET

SAVEDESK Save Desktop Settings

The SAVEDESK command saves window position, size, and other desktop settings. Opening the
application or entering the LOADDESK command loads the saved settings.

Syntax:
SAVEDESK

Example:
SAVEDESK Save window settings for the application.

7.76 M68ICS05KJOM/D

DEBUGGING COMMAND SET

SHOWBREAKS Display Breakpoint Window

The SHOWBREAKS command brings up the Breakpoint Window that displays the breakpoints
used in the current debugging session. Breakpoints can be modified through this window

Syntax:
SHOABREAKS

Example:
SHOWBREAKS Open the breakpoint window.

M68ICS05KJOM/D 7-77

DEBUGGING COMMAND SET

SHOWCODE Display Code at Address

The SHOWCODE command displays code in the code windows beginning at the specified
address, without changing the value of the program counter (PC). The code window shows either
source code or disassembly from the given address, depending on which mode is selected for the
window. This command is useful for browsing through various modules in the program. To
return to code where the PC is pointing, use the SHOWPC command.

Syntax:
SHONCODE <addr ess>

where:
<address> The address or label where code is to be shown.
Example:
SHOWCCODE 200 Show code starting at location $200.

7.78 M68ICS05KJOM/D

DEBUGGING COMMAND SET

SHOWMAP Show Information in Map File

The SHOWMAP command lets you view information from the current map file stored in the
memory. All symbols defined in the source code used for debugging will be listed. The debugger
defined symbols, defined with the SYMBOL command, will not be shown. The MAP command
Isidentical to the SHOWMAP command.

Syntax:
SHOAWAP

Example:
SHOWAP Shows symbols from the loaded map file and their values.

M68ICS05KJOM/D 7-79

DEBUGGING COMMAND SET

SHOWTRACE Display Trace Window

The SHOWTRA CE command displays the trace window, showing the last 1024 instructions that
were executed after the TRACE command is used.

Syntax:
SHOWIRACE

Example:
SHOWIRACE Open the trace window.

7-80 M68ICS05KJOM/D

DEBUGGING COMMAND SET

SNAPSHOT Save Window Data to Log File

The SNAPSHOT command sends textual information about the debugger windows to the open
log file. If no log file is open, the command has no effect.

Syntax:
SNAPSHOT

Example:
SNAPSHOT Save window data to the log file.

M68ICS05KJOM/D 7-81

DEBUGGING COMMAND SET

SP Set Stack Pointer

The SP command assigns the specified value to the stack pointer (SP) used by the CPU. The
value entered with the command should be reflected in the CPU Window.

Syntax:

SP <n>

where:
<n> The new stack pointer value.

Example:
SP $EO Set the stack pointer value to $EO.

7-82 M68ICS05KJOM/D

DEBUGGING COMMAND SET

SS Execute Source Step(s)

The SS command steps through a specified number of source code instructions, beginning at the
current program counter (PC) address value, then halts. All windows are refreshed as each
instruction is executed. This makes the SS command useful for high level language compilers
(such as C) so that the user can step through compiler source code instead of assembly
instructions.

If the number argument is omitted, one source instruction is executed. If the SS command is
entered with an n value, the command steps through n source instructions.

Syntax:

SS [<n>]
where:

<n> number of instructions to step through.

Examples:

SS Step through the instruction at the PC address value.

SS 8 Step through eight instructions, starting at the current PC

address value.

M68ICS05KJOM/D 7-83

DEBUGGING COMMAND SET

STor STEPor T Execute Single Step

The STEP command steps through a specified number of assembly instructions, beginning at the
current program counter (PC) address value, then halts. All windows are refreshed as each
instruction is executed. If the number argument is omitted, one instruction is executed. If you
enter the STEP command with a parameter value, the command steps through that many
instructions. (The ST and T commands are identical to the STEP command.)

Syntax:

STEP [<n>]
where:

<n> The hexadecimal number of instructions to be executed by each
command.

Examples:

STEP Execute the assembly instruction at the PC address value.

ST 2 Execute two assembly instructions, starting at the PC

address value.

7-84 M68ICS05KJOM/D

DEBUGGING COMMAND SET

STACK Show Stack Window

The STACK command opens the HC05 Stack Window, which shows the stack pointer (SP)
value, data stored on the stack, and results of an RTS or RTI instruction.

Syntax:
STACK

Example:
STACK Open the stack window.

M68ICS05KJOM/D 7-85

DEBUGGING COMMAND SET

STEPFOR Step Forever

The STEPFOR command continuously executes instructions, one at a time, beginning at the
current Program Counter (PC) address. Execution continues until an error condition occurs, until
it reaches a breakpoint, or until you press a key or the Stop button on the ICS05K JW toolbar. All
windows are refreshed as each instruction is executed.

Syntax:
STEPFCR

Example:
STEPFOR Step through instructions continuously.

7-86 M68ICS05KJOM/D

DEBUGGING COMMAND SET

STEPTIL Step Until Address

The STEPTIL command continuously steps through instructions beginning at the current
program counter (PC) address until the PC vaue reaches the specified address. Execution
continues to the specified address or until you press a key or the Stop button on the ICS05K JW
toolbar, or it reaches a breakpoint, or until an error occurs.

Syntax:
STEPTI L <address>

where:
<address> Execution stop address. This must be an instruction address.
Example:
STEPTI L 0200 Execute instructions continuously until PC value is 0200.

M68ICS05KJOM/D 7-87

DEBUGGING COMMAND SET

SYMBOL Add Symbol

The SYMBOL command creates a new symbol, which can be used anywhere in the debugger, in
place of the symbol value. If thiscommand is entered with no parameters, it will list the current
user-defined symbols. If parameters are specified, the SYMBOL command will create a new
symbol.

The symbol label is case-insensitive and has a maximum length of 16T. It can be used with the
ASM and MM commands and replaces all addresses in the Code and Variables windows.

Syntax:
SYMBCL [</ abel > <val ue>]

where:
<label> The ASCII-character string label of the new symbol.
<value> The value of the new symbol (label).
Examples:
SYMBOL Show the current user-defined symbols.
SYMBOL tiner_control $08 Define new symbol “timer_control”, with value

$08. Subsequently, to modify the value of
“timer_control”, enter the command:
MM tinmer_control new_val ue

7-88 M68ICS05KJOM/D

DEBUGGING COMMAND SET

TRACE Enable/Disable Tracing

The TRACE command enables or disables instruction captures. When tracing is enabled, the
debugger records instructions in a 1024-element circular buffer. Note that tracing slows
execution somewhat.

The debugger disassembles captured information when buffer contents are viewed through the
trace window. To view tracing results, use the SHOWTRACE command. If tracing is not enabled
or if atrace dlot is empty, the Trace Window will display the message No Trace Available. To
clear the Trace Window, toggle tracing OFF and then ON using the TRACE command.

Syntax:
TRACE

Example:
TRACE Enable (or disable) instruction tracing.

M68ICS05KJOM/D 7-89

DEBUGGING COMMAND SET

UPLOAD_SREC Upload S Record to Screen

The UPLOAD_SREC command uploads the contents of the specified memory block (range), in
.S19 object file format, displaying the contents in the status window. If a log file is opened,
UPLOAD_SREC puts the information into the log file as well.

NOTE

If the UPLOAD_SREC command is entered, sometimes the
memory contents scroll through the debug window too rapidly to
view. Accordingly, either the LOGFILE command should be used,
which records the contents into a file, or use the scroll bars in the
status window.

Syntax:
UPLOAD_ SREC <startrange> <endrange>
where:
<dtartrange> Beginning address of the memory block.
<endrange> Ending address of the memory block (range)
Example:

UPLOAD_SREC 300 7FF Upload the 300-7FF memory block in .S19 format.

7-90 M68ICS05KJOM/D

DEBUGGING COMMAND SET

VAR Display Variable

The VAR command displays the specified address and its contents in the Variables window for
viewing during code execution. Variants of the command display a byte, a word, a long, or a
string. As the value at the address changes, the variables window updates the value. The
maximum number of variablesis 32.

In ASCII displays of variables, control characters or other non-printing characters appear as
periods (.). Byte, word, long, or string variants determine the display format:

» Byte(.B): hexadecimal and binary (the default)

* Word (.\W): hexadecimal and decimal

* Long (.L): hexadecimal and decimal

» String (.S): ASCII characters

The optional <n> parameter specifies the number of string characters to be displayed; the default
valueis 1. The <n> parameter has no effect for byte, word, or long values.

Syntax:
VAR [.Bl.W.L|.S] <address> [<n>]

where:
<address> The address of the memory variable.
<n> Optional number of characters for a string variable; default value is
1, does not apply to byte or word variables.

Examples:

VAR CO Show byte value of address CO (hex and binary)

VAR B D4 Show byte value of address D4 (hex and binary)

VAR W EO Show word value of address EO (hex & decimal)

VAR S @0 5 Show the five-character ASCII string at address CO

M68ICS05KJOM/D 7-91

DEBUGGING COMMAND SET

VERSION or VER Display Software Version

The VERSION command displays the version and date of the software. (VER is an aternate
form of this command.)

Syntax:
VERSI ON

Examples:
VERSI ON Display version and date of the software.

VER Display version and date of the software.

7-92 M68ICS05KJOM/D

DEBUGGING COMMAND SET

WAIT Wait for n Cycles

The WAIT command delays ssmulator command execution by the specified number of cycles.
This command is used in MACRO files to control when inputs come into the ssimulator. If a
WAIT command is encountered, control is passed back to the keyboard. Then the macro file
execution waits for a command to be entered such as GO or STEP, which starts MCU execution
once again. As soon as the number of cycles that pass is equal to the <n> value of the WAIT
command, the simulator resumes executing commands of the macro file until another WAIT is
encountered or the two mentioned conditions happens again.

Syntax:
WAI T <n>
where:
<n> The hexadecimal number of cyclesto wait.
Example:
VAIT A Delay command execution for 10 MCU cycles.

M68ICS05KJOM/D 7-93

DEBUGGING COMMAND SET

WHEREIS Display Symbol Value

The WHEREIS command displays the value of the specified symbol. Symbol names are defined
through source code or the SYMBOL command. Alternatively, this command returns the symbol
at a specified address.
Syntax:

VWHEREI S <synmbol > | <address>

where:
<symbol> A symbol listed in the symbol table.
<address> Address for which a symbol is defined.
Examples:
WHEREI S START Display the symbol START and itsvalue.
WHEREI S 0300 Display the value 0300 and its symbol name if any.

7-94 M68ICS05KJOM/D

DEBUGGING COMMAND SET

X or XREG Set X Register Value

The X command sets the index (X) register to the specified value. The value entered with the
command is displayed in the CPU Window. (The X command is identical to the XREG
command.)

Syntax:

X <val ue>

where:
<value> The new value for the X register.

Examples:
X 05 Set the index register value to 05.
XREG FO Set the index register value to FO.

M68ICS05KJOM/D 7-95

DEBUGGING COMMAND SET

Z Set/Clear Zero Bit

The Z command sets or clears the Z bit in the condition code register (CCR).

NOTE

The CCR bit designators are in the lower portion of the CPU
window. The CCR pattern is 111HINZC (H is haf-carry, | is IRQ
interrupt mask, N is negative, Z is zero and C is carry). A letter in
these designators means that the corresponding bit of the CCR is
set; a period means that the corresponding bit is clear.

Syntax:

Z o1

Examples:
Z0 Clear the Z bit of the CCR.

Z1 Set the Z bit of the CCR.

7-96 M68ICS05KJOM/D

EXAMPLE PROJECT

CHAPTER 8
EXAMPLE PROJECT

8.1 OVERVIEW

This section provides information that will guide you through a first-time use of the ICS05KJW
software and through a typical setup of the WinlDE.

8.2 SETTING UP A SAMPLE PROJECT

To demonstrate how source code to be assembled is handled using the ICSO5KJW simulator,
WinIDE editor, and CASMO5W assembler software as an integrated development environment,
consider as an example the following typical project.

NOTE

The sample files referred to are referenced for illustration purposes
only and are not provided with the software. Create your own
*.ASM files for your projects using the ICSO5KJW software
components. For information about using files created by other
assembl ers, see paragraph 5.4.4.

8.2.1 Set Up the Environment

To begin the project, start the WinIDE editor and establish the desktop and environment settings
for the project:

1. Start the WinIDE editor by selecting the icon from the Windows 95 Start Menu or by
double-clicking on the icon ICS05K JW Program Group in the Windows 3.1 Program
Manager.

2. In the WinIDE editor, choose the Setup Environment option from the File menu to
open the Environment Settings dial og.

M68ICS05KJOM/D 8-1

EXAMPLE PROJECT

3. Enter environment options for the modules of the WinIDE development environment,
represented by the General Editor, General Environment, EXE1, EXE2, and
Assembler/Compiler tabs. For the example project:

a. In the General Environment tab, choose the environment options you prefer.
In the %FILE% Parameter passed to external program is text box, enter the
path and filename (MAIN.ASV).

b. Inthe General Editor tab, choose the editing options you prefer.

c. In the EXE1l tab, make sure the EXE Path text box points to the
ICSO5KJIW.EXE path and filename, and that the Options text box indicates
the proper communications port (if the pod isto be used).

d. Inthe Assembler/Compiler tab, make sure these options are selected:

« The EXE Path text box indicates the path and filename for the
CASMO5W.EXE.

» The Type text box specifies the P& E CASMO5W Assembler.

* To view the CASMO5W window during assembly, check the Show
Assembler Progress option in the Assembly Preferences section of the
tab.

4. Pressthe OK button to save the settings made in the Environment Settings dial og tabs
and close the dialog.

Y ou have now set up the environment for your project. To saveit for later use:
1. Inthe WinIDE, select the Save Project As option from the Environment menu.

2. In the dialog box, enter a path and a descriptive project filename with the PPF
extension. Place the project file in the directory where the source files will be located.

8.2.2 Createthe SourceFiles

Create new or edit existing source code files using the WinIDE editor:

1. From the File menu, choose the New File option to create a blank source window in
which you can enter source code (or open an existing file using the Open File option).
You can al the source code files in the WinIDE editor and work on them
individually.

2. When you have created the new file or edited the existing file, from the File menu,
choose the Save File option to assign a path and filename to the source file (or choose
the Save File As option to assign a new path and filename to an existing file).

3. Create dl the source code files required for the project.

8-2 M68ICS05KJOM/D

EXAMPLE PROJECT

The example project consists of 12 source code files created in the WinIDE editor. The files are
then assembled into *.ASM files using WinIDE Assemble/Compile toolbar button. The 12 files
arethen listed in a separate file MAIN.ASM.

The MAIN.ASM file consists of $INCLUDE functions, each followed by the filename for the
source code file, followed by an optional comment describing the function of the code in that
file. Using the $INCLUDE function in a main file lets you organize your source code logically
into a number of small files, ultimately making it easier to develop, manage, and work with the
source code. For more information about using the $INCLUDE function, see paragraph 5.6.4.

The example MAIN.ASM file:

kkhkkhkkhkkhkhkkhkkhkhkkhhkhkhkhkkhhkhkhhkkhhkhkkhhkhkhkhkhhkhkhkkhkhkk hkhkhkk khkhkhkkhkhkkhkkhkhkkikkkkx*

I nclude fil es

kkhkkhkkhkkhhkkhkhkhkkhhkhkhkhkkhhkhkhhkkhhkhkkhhkhkhkkhhkhkhkkhkhkkhhkhkhkhkk hkhkkhkkhkhkk ki) kkikkkkx*

$i ncl ude "equates. asnf
$include "init.asnf

$i ncl ude "charge. asnt
$i ncl ude "dcharge. asnt
$i ncl ude "options. asnf
$i ncl ude "m sc. asnf

$i ncl ude "readv. asnt
$i ncl ude "isr.asnt

$i ncl ude "di spl ay. asnf
$i ncl ude "eeprom asnt
$i ncl ude "text.asnt

$i ncl ude "vectors. asnt

8.2.3 Assemblethe Project

Now you are ready to assemble your project. Inthe WinIDE, follow these steps:

1. With the MAIN.ASM file in the active window, press the Assemble/Compile File
button (third button from the left) on the WinIDE toolbar to start the assembler from
the WinIDE editor.

2. The assembler concatenates the files in the source code window, assembles them, and
creates the output MAIN.ASM file. MAIN.ASM replaces any previous assembly code
file of the same name in the same directory.

3. If the assembler encounters errors during assembly, the assembler stops and the first
error is displayed highlighted in red in the source file. To correct the errors, click on
the Debugger (EXEL) toolbar button (left-most button) on the WinIDE toolbar to
open or move to the ICSO5KJW simulator to debug the source code. When you have
finished debugging the code in the ICSO5KJW simulator, return to the WinlDE editor
by clicking the Back to Editor button (the left-most button) in the ICSO5K JW toolbar.

4. Continue assembling, debugging, and editing the source files until the assembly
compl etes successfully.

M68ICS05KJOM/D 8-3

EXAMPLE PROJECT

5. Based on the Output Control options selected in the Assembler/Compiler tab of the
Environment Settings dialog, the assembler creates additional output files with the
filename of the main file and an extension which indicates the file type. The S19 and
MAP files are required; the LST fileis optional.

a. MAIN.S19: Motorola S-Record (S19) object code file that you can download
into the simulator.

b. MAIN.MAP: Map file containing information necessary for source level
debugging

c. MAIN.LST: Listing file.

6. The CASMO05W window displays during assembly, showing the files and progress of
the assembler in the Status area. When assembly completes successfully, the
assembler window appears like the one shown in Figure 8-1.

~ CASMO5W M=l =3

Main File : ..\SAMPLE~T'"MAIN1.ASM |
Current File : ..ASAMPLE~1T.MAIN1.ASM |

Status: Successful assembly

Current Line : 13 | Total Lines: 1850 |

Figure 8-1. CASM0O5W Window

8-4 M68ICS05KJOM/D

S-RECORD INFORMATION

APPENDIX A
S-RECORD INFORMATION

A.l OVERVIEW

The Motorola S-record format was devised for the purpose of encoding programs or data filesin
aprintable format for transport between computer platforms. The format also provides for editing
of the S-records and monitoring the cross-platform transfer process.

A.2 SRECORD CONTENT

Each S-record is a character string composed of several fields which identify:
» record type
» record length
* memory address
» code/data
» checksum

Each byte of binary datais encoded in the s-record as a two-character hexadecimal number:
» Thefirst character represents the high-order four bits of the byte
» The second character represents the low-order four bits of the byte

The five fields that comprise an S-record are shown in the Table A-1.

Table A-1. S-Record Fidlds

| TYPE | RECORD LENGTH | ADDRESS | CODE/DATA | CHECKSUM |

M68ICS05KJOM/D A-1

S-RECORD INFORMATION

The S-record fields are described in Table A-2.

Table A-2. S-Record Field Contents

Printable
Field Characters Contents

Type 2 S-record type — S0, S1, etc.

Record 2 Character pair count in the record, excluding the type

Length and record length.

Address 4,6,0r8 2-, 3-, or 4-byte address at which the data field is to be
loaded into memory

Code/Data 0-2n From O to n bytes of executable code, memory
loadable data, or descriptive information. For
compatibility with teletypewriter, some programs may
limit the number of bytes to as few as 28 (56 printable
characters in the S-record)

Checksum 2 Least significant byte of the one’s complement of the
sum of the values represented by the pairs of
characters making up the record length, address, and
the code/data fields

Each record may be terminated with a CR/LF/NULL. Additionally, an S-record may have an
initial field to accommodate other data such as line number generated by some time-sharing
systems.

Accuracy of transmission is ensured by the record length (byte count) and checksum fields.

A.3 SRECORDTYPES

Eight types of S-records have been defined to accommodate the several needs of the encoding,
transport, and decoding functions. The various Motorola upload, download, and other record
transport control programs, as well as cross assemblers, linkers, and other file-creating or
debugging programs, utilize only those S-records which serve the purpose of the program. For
specific information on which S-records are supported by a particular program, consult the user
manual for the program.

NOTE

The ICS05K JW supports only the SO, S1, and S9 record types. All
data before the S1 record is ignored. Thereafter, all records must be
S1 type until the S9 record, which terminates data transfer.

A-2 M68ICS05KJOM/D

S-RECORD INFORMATION

An S-record format may contain the record typesin Table A-3.

Table A-3. S-Record Types

Record
Type Description

SO Header record for each block of S-records. The code/data field may contain any
descriptive information identifying the following block of S-records. The address
field is normally zeroes.

S1 Code/data record and the two-byte address at which the code/data is to reside.

S2-S8 Not applicable to ICSO5KJW

S9 Termination record for a block of S1 records. Address field may optionally contain

the two-byte address of the instruction to which control is to be passed. If not
specified, the first interplant specification encountered in the input will be used.
There is no code/data field.

Only one termination record is used for each block of S-records. Normally, only one header
record is used, although it is possible for multiple header records to occur.

A4 SRECORD CREATION

S-record format programs may be produced by dump utilities, debuggers, cross assemblers, or
cross linkers. Several programs are available for downloading afile in the S-record format from a
host system to an 8- or 16-bit microprocessor-based system.

A5 SRECORD EXAMPLE

A typical S-record format, as printed or displayed, is shown in this example:

Example

S00600004844521B
S1130000285F245F2212226A00042429008237C2A
S11300100002000800082529001853812341001813
S113002041E900084#42234300182342000824A952
S107003000144ED492

S9030000FC

M68ICS05KJOM/D A-3

S-RECORD INFORMATION

In the example, the format consists of:
* an SO header
» four Sl code/data records
e an S9 termination record

A51 TheS0Header Record

The SO header record is described in Table A-4.

Table A-4. SO Header Record

S-Record
Field Entry Description

Type SO S-record type SO, indicating a header record
Record 06 Hexadecimal 06 (decimal 6), indicating six character pairs (or ASCII
Length bytes) follow
Address 0000 Four-character two-byte address field, zeroes
Code/Data | 48 Descriptive information identified the following S1 records:

44 ASCII H, D, and R — “HDR”

52
Checksum | 18 Checksum of SO record

A-4 M68ICS05KJOM/D

S-RECORD INFORMATION

A52 TheFirst S1 Record

Thefirst S1 record is described in Table A-5.

Table A-5. S1 Header Record

S-Record
Field Entry Description
Type S1 S-record type S1, indicating a code/data record to be
loaded/verified at a two-byte address
Record 13 Hexadecimal 13 (decimal 19), indicating 19 character pairs,
Length representing 19 bytes of binary data, follow.
Address 0000 Four-character two-byte address field; hexadecimal address 0000,
indicates location where the following data is to be loaded.
Code/Data | Opcode Instruction
28 | 5F BHCC | $f0161
24 | 5F BCC $0163
22 |12 BHI $0118
22 | 6A BHI $0172
0004 |2 |BRSE |0, $04, $012F
29100 (4 |T $010D
08 | 23 BHCS | 4, $23, $018C
7 | BRSE
T
Checksum | 2A Checksum of the first S1 record

The 16 character pairs shown in the code/data field of Table A-5 are the ASCII bytes of the
actual program.

The second and third S1 code/data records each also contain $13 (19) character pairs and are
ended with checksum 13 and 52, respectively. The fourth S code/data record contains 07
character pairs and has a checksum of 92.

M68ICS05KJOM/D

A-5

S-RECORD INFORMATION

A53 TheS9 Termination Record

The S9 termination record is described in Table A-6.

Table A-6. S-9 Header Record

S-Record

Field Entry Description
Type S9 S-record type S9, indicating a termination record
Record 03 Hexadecimal 04, indicating three character pairs (three bytes)
Length follow
Address 0000 Four-character two-byte address field, zeroes
Code/Data There is no code/data in a S9 record
Checksum | FC Checksum of S9 record

A54 ASCII Characters
Each printable ASCII character in an S-record is encoded in binary. Table A-6 gives an example

of encoding for the S1 record. The binary data is transmitted during a download of an S-record
from a host system to an 9- or 16-bit microprocessor-based system.

A-6 M68ICS05KJOM/D

TECHNICAL REFERENCE AND TROUBLESHOOTING

APPENDIX B
TECHNICAL REFERENCE AND TROUBLESHOOTING

B.1 OVERVIEW
This appendix provides technical support information for the M68ICS05K J In-Circuit Simulator
Kit, including:
* Functional description of the kit
— Emulation
— Programming
* Troubleshooting the Quick Start
» Troubleshooting the Programmer
e Schematic diagram
* Partslist
* Board layout diagram

ELECTROSTATIC DISCHARGE PRECAUTION

Ordinary amounts of static electricity from your clothing or work
environment can damage or degrade electronic devices and
equipment. For example, the electronic components installed on
your printed circuit board are extremely sensitive to electrostatic
discharge (ESD). You should wear a grounding wrist strap
whenever you handle any printed circuit board. This strap provides
aconductive path for safely discharging static electricity to ground.

B.2 FUNCTIONAL DESCRIPTION OF THE KIT

The M68ICS05K J pod consists of two components:
o KJJ1A emulator
* 705K JJ1A programmer (including Vpp generation)

M68ICS05KJOM/D B-1

TECHNICAL REFERENCE AND TROUBLESHOOTING

B.21 TheEmulator

The core of the emulation component of the pod is the MC68HC705 C8A device at circuit board
location U4.. This MCU provides the required input/output information that lets the host
computer perform emulation. The host computer performs all simulation functions except
maintaining port values. The C8A MCU runs a program from its internal EPROM to generate
appropriate port values and communicate with the host computer.

The ICSO5KJW software on the host computer lets the host computer become a simulator.
When the ICS requires port data, the computer requests the data through the host’s seria
connection to the 705C8A device. The C8A responds by sending the data to the host via the
serial connection. It isthis arrangement that lets the ICS simulator interface with the real world.

The M68ICS05KJ pod's 7.37-MHz crystal provides aclock signal for the C8A device. The clock
runs the device at a 3.69-MHz bus rate. Note that the simulation speed is less than the bus rate,
since the host computer is the simulator.

NOTE

The C8A MCU differs from the emulated KJ/J1A device in that it
does not have programmable pull-downs. Accordingly, the
M68ICS05KJ pod has external pull-down resistors, which are
selectable with jumper headers W3 through W16. To disable the
pull-downs, remove the fabricated jumpers from the corresponding
headers.

B.22 Programming

In addition to controlling the input and output port signals, the C8BA MCU (U4) also controls
programming of the KJ/J1A devicesin programming sockets U6 and U7.

The MC34063 device (U3) on the M68ICS05K J circuit board generates the programming voltage

(16.5 Vdc). Switch S2 controls this voltage at the programming sockets. The ICSO5KJW host-

computer software prompts you to turn switches S1 and S2 on and off at the appropriate times.
NOTES

To program a 705K JJ1A device, the EPROM of the device must
first be erased.

To program a 705J1A device, set the jumpers on pod headers
W18 through W32 to positions 1-2.

To program a 705K J device, set the jumpers on pod headers W18
through W32 to positions 2-3.

B-2 M68ICS05KJOM/D

TECHNICAL REFERENCE AND TROUBLESHOOTING

B.3 TROUBLESHOOTING THE QUICK START

NOTE

For replacement parts, call Motorola at 800-451-3464. To contact
Motorolafor items other than replacement parts, see section 1.8 for
customer support information.

In case of difficulties when quick-starting the kit using the procedure outlined in paragraph 1.7,
follow these steps:

1.

If the C8A device (U4) has a window, make sure that a black opague label covers the
window.

Reboot the host computer without loading system startup files. This eliminates TSRS,
mode commands, and similar routines that could interfere with kit operation.

Make sure that the correct seria cable is attached to the M68ICS05KJ circuit board
and to the correct serial port on the host computer.

Disconnect the wall-mounted power supply from the circuit board, then measure the
power supply’s output voltage. The voltage should be greater than 9 Vdc and less
than 15 Vdc. If the voltage is within this range, proceed to Step 5. If the voltage is
outside thisrange, call Motorolafor areplacement.

Reconnect the power supply to the circuit board. Then, with switch S1 turned on,
measure the voltage at pin 3 of the 78T05 regulator (U1). It should be 5 Vdc +0.5
Vdc.

If the voltage is less than 4.5 Vdc, make sure that the power supply can provide
sufficient current. If it cannot, correct this condition.

If there is sufficient current from the power supply, but the voltage is still less than
4.5 Vdc, remove the C8A MCU (U4). If the voltage climbs to the correct range, the
C8A is defective. Call Motorola for a replacement.

If the voltage remains below 4.5 Vdc even with the C8A MCU removed, the
M68ICS05KJ circuit board is defective. Call Motorola for a replacement.

NOTE

A programmed MCU must be used when replacing U4. If
a programmed replacement is not available, a blank C8A
MCU can be programmed using the file ICS05J.S19, which
can be downloaded from Motorola's digital data service.

If the 5 Vdc +0.5 Vdc is present at Ul pin 3 when the C8A (U4) is installed, measure
the voltage between Vdd (pin 40) and Vss (pin 20) of U4. If the level is not also 5
Vdc, check for a bent pin or other structural problem with the socket or the board
trace. If no structural problems are found, call Motorola for a board replacement.

M68ICS05KJOM/D B-3

TECHNICAL REFERENCE AND TROUBLESHOOTING

7.

10.

11.

If 5 Vdc is present between U4 pins 40 and 20, use an oscilloscope to check the
output of U4 pin 38. Set the oscilloscope to 0.5 microseconds per divison. One
cycle per division should be observed, which correspondsto a 7.3 MHz signal. If this
signal is not present, any of the following problems could exist:

* badcrystal 0 Y1

* badresistor [0 R16

* bad capacitor 0 C13or C17

* bad C8A MCU or socket [U4

» broken trace or cold solder joint on circuit board

If the problem has not been found, measure the following two signals while entering
the POD command on the host computer:

a. RS-232 connector P2 pin3 [0 the signal should be at RS-232 level (-5 to +12
volts).

b. U4pin29 0 thesigna should beat TTL level (0to +5 volts).

If signals appear on P2 pin 3 but not on U4 pin 29, check the circuit board
components near location Q3.

If signals do not appear on P2 pin 3, check the serial cable and the host computer’s
serial communications port.

If the problem persists, check LED DS1. Remove U4 from its socket, then short U4
pin 4 to ground. If the LED does not light, it may be defective or installed backwards.

If, during the quick start, the LED still does not flash, consult a Motorola field
application engineer.

If, during the quick start, the LED continues to flash, verify that the signal at header
W6 (PAO) goes high when switch $4 is pressed. If it does not go high, check the
Ohm value of resistor R9 and continuity of switch S4. Consult Motorola board repair
if needed.

B.4 TROUBLESHOOTING THE PROGRAMMER

If you experience problems when programming a 705KJJ1A MCU but can perform other
simulator functions, follow these steps:

1

B-4

Make sure that all programming sockets (XU7, XU8, and XU9) are empty. Verify
that the voltage on pin 19 of programming socket XU9 is 16.5 Vdc. If the voltageis
less than 16 volts or greater than 17 volts, the socket may be bad or there may be a
bad circuit-board trace. To find such a problem, perform the quick-start
troubleshooting procedure described in section B.3.

If XU9 pin 19 is in the 16- to 17-volt range but not 16.5 Vdc, calibrate Vep by
following these steps:

M68ICS05KJOM/D

TECHNICAL REFERENCE AND TROUBLESHOOTING

a. Turn switches S1 and S2 on.
b. Adjust potentiometer VR1 until the voltage is 16.5 £ 0.5 Vdc.
c. Turn switches S1 and $f.

3. On the host computer, with the ICSO5KJW software running, entePROBRAM
command and follow the programming instructions that appear on the screen.

Before reinserting the 705KJ/J1A device, make sure that its erase window is covered.

4. Choose th@&LANK CHECK programming option. Activity should be visible with an
oscilloscope on pin 1 of socket XU9.

If there is no activity, there is a problem with the circuit board or with the C8A MCU
(U4). Call Motorola for replacement parts.

If the result of theBLANK CHECK programming operation iBART NOT BLANK,
erase or replace the 705KJ/J1A MCU.

5. If there is activity on pin 1 of socket XU9, choose HROGRAM option. Use the
oscilloscope to measurepyas the 705KJ/J1A MCU is being programmedgp V
should not drop below 16 Vdc. Ifg¥does drop below 16 Vdc, either the 705KJ/J1A
or the MC34063 MCU is defective. Call Motorola for replacement parts.

B.5 SCHEMATIC DIAGRAM, PARTSLIST, AND BOARD LAYOUT
Figures B-1 through B-3 show the M68ICS05KJ diagram.

Table B-1 itemizes and describes the M68ICS05KJ parts list.
Figure B-4 shows the M68ICS05KJ board layout and component locations.

M68ICS05KJOM/D B-5

TECHNICAL REFERENCE AND TROUBLESHOOTING

¥
-
gl
i : H
g
g L
§. ol
ik E
4 2z =™
E g fEE
g E
5 g 22
@
L - 5] 4
I 3
N 2
5 3
. :
5 .
2 é g
e =
g EH
g
Ll Eg Ll
E
@n
§
s
g
H x alolg|nly]l=]a
EE il
N STEEITT L]
s g
5 feREyRELLE
g : &
8 LTI 2
¢ 5” : T AEELITERH | i
GGGGGGGG TRFFRR z
o I I S B B £ b W] b B e g 5
o @
- © -
2
H
L——— o
H
L =
f
I S
] B .
I S
g s
4 ©
g 3
3 g8
5 s
g s H
£
8
E
: U DU
g R BpeBessk B
[L] [

Figure B-1. M 68l CSO5K J Schematic Diagram (Sheet 1 of 3)

B-6 M68ICS05KJOM/D

TECHNICAL REFERENCE AND TROUBLESHOOTING

ATIVNNYINSSIAGHLON OQ + ONMVHA AEIVENTO HINdINOD

191965 JCESVIC O1dCRS! BUBID

\\\\\\\\

FvEEvN

NOIdMIs3d

SNOISIAZY

ASGEDI

SUOTIOSY NWOHS 2AYSALYD 40 HOLNSEID
SONREHR ANV SEIN N AL 3OVE0 €

‘243 S0 NK0Z TIVH0 0T N 51
9T TIVA0 8 Nt 5.1 NPT TIV0 £ NE
501N TV # Nl OL GBTESYSI GNTOHS

SNOLYOOT Ne aNNCHD

ISOH AL 2eeH

Figure B-2. M 68l CSO5K J Schematic Diagram (Sheet 2 of 3)

B-7

M68ICS05KJOM/D

TECHNICAL REFERENCE AND TROUBLESHOOTING

¥
3
;U
&
L 5 I
+ 9 3
g H
5
g b
z B
3
ChE
3 o EEE
U i
B B
3
]
o z
] g
3 g z
] 2 5] =
E £ E
<
—
S A R A R
il -
SEEQRIRNTRRAEES BESEREFRRT SERERRIRRE
gl sepzeesrefEREY 3l eepzeereed sl sepzeeneef
fel<]olo][e[a]g]=TlaTsT I [ofa]g 1 1 P Y

SOP

DIP
OIC

PROGRAMMING SOCKETS

38 g
0 I pr—treg
! x fj@. .
i ¢

I T I

Figure B-3. M 68l CSO5K J Schematic Diagram (Sheet 3 of 3)

B-8 M68ICS05KJOM/D

TECHNICAL REFERENCE AND TROUBLESHOOTING

TableB-1. M68ICS05KJ PartsList

Reference
Part Number Description Manufacturer Designator
84-RE91082W REV A |PRINTED WIRING BOARD WESTAK
4009-00-5072 BUMPER PAD, BLK FASTEX
EC05ZD0104K CAP, .1uF 10% 50V THOMSON C1, C9, C10, C15,
C18, C21, C22
EDM50N101J CAP, 100pF 10% 50V EPOXY XICON Cl1
CERAMIC
CD50S2-027J CAP, 27pF 10% 25V MULTILAYER XICON C13, C17
CERAMIC
XRL25V22 CAP, 22uF 20% 25V AL XICON Cc14
ELECTROLYTIC
XRL25Vv47 CAP, 47uF 20% 25V AL XICON C2,C5,C7
ELECTROLYTIC
ECS-F1VE105K CAP, 1uF 10% 50V TANTALUM PANASONIC C3,C4
ECS-F1VE106K CAP, 10uF 10% 25V TANTALUM PANASONIC |C6, C8, C12, C16,
C19, C20
1N4148 DIODE, SIGNAL MOTOROLA D1, D2, D4, D5
1IN5817 DIODE, 1A 20V SCHOTTKY MOTOROLA D3
LN28RP LED, T-1 3/4 RED DIFFUSED LED PANASONIC |DS1, DS2
SFB181 IND, 180uH WW/W SLEEVE WILCO L1
IM-2-10.0 IND, CHOKE 10uH 10% DALE L2
PJ-002A CONN, POWER JACK, MALE, 2.1MM [CUI P1
24-326 CONN, 9 PIN SUB-D RECEPT KRISTA P2
2N3904 TRANSISTOR, NPN MOTOROLA Q1, Q3
2N3906 TRANSISTOR, PNP MOTOROLA |Q2
RSS1R68JT50 RES, .68 ohm 5% 1W KOA R1
CF1/4102JT52 RES, 1K 5% 1/4W KOA R10
CF1/4471JT52 RES, 470 ohm 5% 1/4W KOA R11, R12
CF1/4104JT52 RES, 100K 5% 1/4W KOA R13, R15
CF1/4106JT52 RES, 10M 5% 1/4W KOA R16
CF1/4223JT52 RES, 22K 5% 1/4W KOA R18

M68ICS05KJOM/D

B-9

TECHNICAL REFERENCE AND TROUBLESHOOTING

TableB-1. M68ICS05KJ PartsList (continued)

Reference
Part Number Description Manufacturer Designator

CF1/4222JT52 RES, 2.2K 5% 1/4W KOA R2, R22, R23
CF1/4103JT52 RES, 10K 5% 1/4W KOA R3, R17, R19, R20,

R21
CF1/4332JT52 RES, 3.3K 5% 1/4W KOA R4, R8, R14
CF1/4101JT52 RES, 100 ohm 5% 1/4W KOA R5, R6
CF1/4153JT52 RES, 15K 5% 1/4W KOA R7
CF1/4132JT52 RES, 1.3K 5% 1/4W KOA R9
4610X-101-104 RNET, 100K 10 PIN SIP, PIN 1 BOURNS RN1, RN2

COMMON

MHS-222 SWITCH, SLIDE DPDT ALCO S1, 82
EVQ-QS205K SWITCH, PUSHBUTTON SPST PANASONIC S3, 54
MC78TO5CT IC, VOLTAGE REGULATOR MOTOROLA Ul
MC79L0O5ACP IC, VOLTAGE REGULATOR MOTOROLA uz2
MC34063AP1 IC, DC/DC CONVERTER MOTOROLA U3
JICSBOOT ver 2 IC, MCU, MC68HSC705C8ACP MOTOROLA U4
3386T-5K RES, VARIABLE, 5K 10% 1/2W BOURNS VR1
TSW-102-07-T-S CONN, .23 IN. 2 X 1 HDR SAMTEC W1, W2
24-872 CONN, SHUNT 2 POS KRISTA W1-W32
TSW-103-07-T-S CONN, .23 IN. 3 X 1 HDR SAMTEC W17-W32
TSW-108-07-T-D CONN, .23 IN. 8 X 2 HDR SAMTEC W3-28, W9-W16
ICE-406-S-TG SKT, 40 PIN DIP MACHINE ROB NUGENT |XU4
SBE-080-S-TG 8-PIN MACHINE SOCKET - IN LINE ROB NUGENT |XU5
SBE-100-S-TG 10-PIN MACHINE SOCKET - IN LINE ROB NUGENT [XU6
IC51-0282-334-1 28 PIN SOIC CLAMSHELL SOCKET YAMAICHI Xu7
IC51-755.KS-13330 28 PIN SSOP CLAMSHELL SOCKET YAMAICHI Xus
613-0200316 20-PIN LIF PROGRAMMING SOCKET [(WELCON XU9
ECS-73-20-4 CRYSTAL XTL, 7.3728MHZ ECS Y1

B-10

M68ICS05KJOM/D

TECHNICAL REFERENCE AND TROUBLESHOOTING

g6l O W ITOHOLOW

ONINAVHO0dd J10S

[R27]
[R23 |
N —
(wig J
(W19)

LR

KJ PROGRAMMING

POWER C1 Ui
ON .
O
S .
P + Q e
n VPP _ADJUST
e - s
R e
Up—" (D1 W
m i +
- i +C LM \pp ON Q co
% U3 Cle Cs VPP
o 9 c7 1o TP
=
goP2 @D CM m S R DS
N M o
: B L O &
v &2
(’e]
(D4 W
=) S E .
4o |t QDSZ o &
Lo
Q3 Ci3 SWITCH EN
- U4 ” N W2
+C14 HC705KJICS O ULED EN
c15© © 84RE91@82W@1 Wi N
X i o
o I I
(= ol JARGET O
O >
o> C[C—3 X
CW6T— LO
~ c17 =
v =
o 5 O
3 BYodoo T
% faaoanana =
- o 00
=llol || S 30000008 - Yo
— || —)
[a M < 0 O~ a SO <EMA —
i [EEEEEE RERFREFE =
OPTIONAL PULL—DOWNS
O S — N M S O < <
% Sz *7
N 1
115.2k 19.2k 18 | o ‘
2k ()19. +
Wi o 720
JIAT-2 Q
KJ 2-3 (R21]
C19 R21 .
J1A PROGRAMMING C

C20

1 JTA SSOP PROGRAMMING
Xug

]
0 J

JI1A i
Kl —

cz2

XU9 <

L]

4

Kl —

<

JT1A d

DIP PROGRAMMING

M68ICS05KJOM/D

Figure B-4. M68I CS05K J Board L ayout

B-11

TECHNICAL REFERENCE AND TROUBLESHOOTING

B-12 M68ICS05KJOM/D

GLOSSARY

GLOSSARY

8-bit MCU A microcontroller whose data is communicated over a data bus
made up of eight separate data conductors. Members of the
MC68HCO5 family of microcontrollers are 8-bit MCUSs.

A Abbreviation for the accumulator of the MC68HC05 MCU.

accumul ator An 8-bit register of the MC68HCO5 CPU. The contents of this
register may be used as an operand of an arithmetic or logical
instruction.

assembler Software program that translates source code mnemonics into

opcodes that can then be loaded into the memory of a
microcontroller.

assembly language Instruction mnemonics and assembler directives that are
meaningful to programmers and can be trandlated into an object
code program that a microcontroller understands. The CPU uses
opcodes and binary numbers to specify the operations that make up
a computer program. Humans use assembly language mnemonics
to represent instructions. Assembler directives provide additional
information such as the starting memory location for a program.
Labels are used to indicate an address or binary value.

ASCII American Standard Code for Information Interchange. A widely
accepted correlation between alphabetic and numeric characters
and specific 7-bit binary numbers.

breakpoint During debugging of aprogram, it is useful to run instructions until
the CPU gets to a specific place in the program, and then enter a
debugger program. A breakpoint is established at the desired
address by temporarily substituting a software interrupt (SWI1)
instruction for the instruction at that address. In response to the
SWI, control is passed to a debugging program.

byte A set of exactly eight binary bits.

C Abbreviation for “carry/borrow” in the condition codes register of
the MC68HCO05. When adding two unsigned 8-bit numbers, the C
bit is set if the result is greater than 255 ($FF).

M68ICS05KJOM/D Glossary-1

GLOSSARY

CCR

clock

command set

condition codes register

CPU

CPU cycles

CPU reqisters

cycles

data bus

Glossary-2

Abbreviation for “condition codes register” in the MC68HCO05.
The CCR has five bits (H, I, N, Z, and C) that can be used to
control conditional branch instructions. The values of the bits in
the CCR are determined by the results of previous operations. For
example, after a load accumulator (LDA) instruction, Z will be set
if the loaded value was $00.

A square wave signal that is used to sequence events in a
computer.

The command set of a CPU is the set of all operations that the CPU
knows how to perform. One way to represent an instruction set is
with a set of shorthand mnemonics such as LDA meaning “load
A.” Another representation of an instruction set is the set of
opcodes that are recognized by the CPU.

The CCR have five bits (H, I, N, Z, and C) that can be used to
control conditional branch commands. The values of the bits in the
CCR are determined by the results of previous operations. For
example, after a load accumulator (LDA) instruction, Z will be set
if the loaded value was $00.

Central Processor Unit. The part of a computer that controls
execution of instructions.

A CPU clock cycle is one period of the internal bus-rate clock.
Normally this clock is derived by dividing a crystal oscillator
source by two or more so the high and low times will be equal. The
length of time required to execute an instruction is measured in
CPU clock cycles.

Memory locations that are wired directly into the CPU logic
instead of being part of the addressable memory map. The CPU
always has direct access to the information in these registers. The
CPU registers in an MC68HCO5 are A (8-bit accumulator), X (8-
bit index register), CCR (condition codes register containing the H,
I, N, Z, and C bits), SP (stack pointer), and PC (program counter).

See CPU cycles

A set of conductors that are used to convey binary information
from a CPU to a memory location or from a memory location to a
CPU; in the MC68HCO5, the data bus is 8-bits.

M68ICS05KJOM/D

GLOSSARY

development tools

EPROM

index register

input-output (1/0O)

instructions

listing

MCU

M68ICS05KJOM/D

Software or hardware devices used to develop computer programs
and application hardware. Examples of software development tools
include text editors, assemblers, debug monitors, and simulators.
Examples of habrdware development tools include simulators,
logic analyzers, and PROM programmers. An in-circuit simulator
combines a software simulator with various hardware interfaces.

Erasable, Programmable Read-Only Memory. A non-volatile type

of memory that can be erased by exposure to an ultra-violet light
source. MCUs that have EPROM are easily recognized by their
packaging: a quartz window allows exposure to UV light. If an
EPROM MCU is packaged in an opaque plastic package, it is
termed a “one-time-programmable” OTP MCU, since there is no
way to erase and rewrite the EPROM.

Abbreviation for “half-carry” in the condition codes register of the

MC68HCO05. This bit indicates a carry from the low-order four bits

of an 8-bit value to the high-order four bits. This status indicator is
used during BCD calculations.

Abbreviation for “interrupt mask bit” in the condition codes
register of the MC68HCO0S5.

An 8-bit CPU register in the MC68HCO05 that is used in indexed
addressing mode. The index register (X) can also be used as a
general purpose 8-bit register (in addition to the 8-bit accumulator).

Interfaces between a computer system and the external world: for

example, a CPU reads an input to sense the level of an external
signal and writes to an output to change the level on an external
signal.

Instructions are operations that a CPU can perform. Instructions are

expressed by programmers as assembly language mnemonics. A
CPU interprets an opcode and its associated operand(s) as an
instruction.

A program listing shows the binary numbers that the CPU needs

alongside the assembly language statements that the programmer
wrote. The listing is generated by an assembler in the process of
translating assembly language source statements into the binary
information that the CPU needs.

Microcontroller: a complete computer system including CPU,
memory, clock oscillator, and I/O on a single integrated circuit.

Glossary-3

GLOSSARY

memory location

object code file

operand

opcode

OTPROM

PC

program counter

RAM

Glossary-4

In the MC68HCO05, each memory location holds one byte of data
and has a unique address. To store information into a memory
location the CPU places the address of the location on the address
bus, the data information on the data bus, and asserts the write
signal. To read information from a memory location the CPU
places the address of the location on the address bus and asserts the
read signal. In response to the read signal, the selected memory
location places its data onto the data bus.

Abbreviation for “negative,” a bit in the condition codes register of
the MC68HCO05. In twos-complement computer notation, positive
signed numbers have a zero in their MSB and a negative numbers
have a one in their MSB. The N condition code bit reflects the sign
of the result of an operation. After a load accumulator instruction,
the N bit will be set if the MSB of the loaded value was a one.

A text file containing numbers that represent the binary opcodes
and data of a computer program. An object code file can be used to
load binary information into a computer system. Motorola uses the
S-record file format for object code files.

An input value to a logical or mathematical operation.

A binary code that instructs the CPU to do a specific operation in a
specific way. The MC68HCO5 CPU recognizes 210 unique 8-bit
opcodes that represent addressing mode variations of 62 basic
instructions.

A non-volatile type of memory that can be programmed but cannot
be erased. An OTPROM is an EPROM MCU that is packaged in
an opaque plastic package, it is called a “one-time-programmable”
MCU because there is no way to expose the EPROM to a UV light.

Abbreviation for program counter CPU register of the MC68HCO05.

The CPU register that holds the address of the next instruction or
operand that the CPU will use.

Random Access Memory. Any RAM location can be read or
written by the CPU. The contents of a RAM memory location
remain valid until the CPU writes a different value or until power
is turned off.

M68ICS05KJOM/D

GLOSSARY

registers

reset

S-record
simulator
source code

SP

source program

stack pointer

Vb

Vss

Word

M68ICS05KJOM/D

Memory locations that are wired directly into the CPU logic
instead of being part of the addressable memory map. The CPU
always has direct access to the information in these registers. The
CPU registers in the MC68HCO5 are A (8-bit accumulator), X (8-
bit index register), CCR (condition codes register containing the H,
I, N, Z, and C bits), SP (stack pointer), and PC (program counter).
Memory locations that hold status and control information for on-
chip peripherals are called I/O and control registers.

Reset is used to force a computer system to a known starting point
and to force on-chip peripherals to known starting conditions.

A Motorola standard format used for object code files.
A computer program that copies the behavior of areal MCU.
See source program

Abbreviation for stack pointer CPU register in the MC68HCO05
MCU.

A text file containing instruction mnemonics, labels, comments,
and assembler directives. The source file is processed by an
assembler to produce a composite listing and an object file
representation of the program.

A CPU register that holds the address of the next available storage
location on the stack.

The positive power supply to a microcontroller (typically 5 volts
de).

The 0 volt dc power supply return for a microcontroller.

A group of binary bits. Some larger computers consider a set of 16
bits to be awork but thisis not a universal standard.

Abbreviation for *“index register,” a CPU register in the
MC68HCO05.

Abbreviation for “zero,” a bit in the condition codes register of the
MC68HCO05. A compare instruction subtracts the contents of the
tested value from a register. If the values were equal, the result of
this subtraction would be zero so the Z bit would be set; after a
load accumulator instruction, the Z bit will be set if the loaded
value was $00.

Glossary-5

g |

GLOSSARY

Glossary-6

M68ICS05KJOM/D

INDEX

%FILE%, 4-6, 4-7, 4-20, 4-25, 4-27, 8-2
ASM files, 3-2

A command, 7-10

ACC command, 7-10

Accumulator value, 6-21

adding

breakpoints, 6-20
variables, 6-10

address, 5-13

fieldsin listing file, 6-4

ASCII

characters, A-6
constants, 5-7
files, 3-2, 6-4
format, 6-12

ASM command, 7-11
assembler

comments, 5-8
conditional assembly, 5-10
constants, 5-7
description, 1-1, 1-2
directives, 5-6, 5-8, 5-10, 5-11, 5-19
error messages, 5-17
files, 3-2, 3-3
interface, 5-1
listing directives, 5-12
listing files

fields, 5-13
operands, 5-7
options, 4-17
speed of assembled code, 6-2
third party, 5-6, 5-19

Assembler/Compiler

conditional assembly, 5-10
file button, 5-1

files, 3-2

interface, 5-1

options, 1-5, 4-17
outputs, 5-5
parameters, 5-4
preferences, 4-24
progress window, 4-24
quick start, 1-6

tab, 4-22

INDEX

BELL command, 7-12, 7-13
BF command, 7-13
board layout, B-5
BR command, 7-14
branching, 5-13
Breakpoint Window, 6-20
breakpoints, 1-2
adding, 6-20
counting, 6-20
deleting, 6-21
editing, 6-21
removing, 6-21
setting, 6-8
BREAKSP command, 7-18
BREAKX command, 7-20
Browse, 3-2
bus rate, B-2
C command, 7-22
C8A device, B-2
CAPTURE command, 7-23
CAPTUREFILE command, 7-24
CASMO5W
assembler comments, 5-8
assembler directives, 5-8
assembler options, 5-7, 8-2
assembler parameters 5-4
command-line parameters, 5-3, 5-4
conditional assembly, 5-10
cross-assembler, 3-1
cycle adder, 5-8
description, 1-1, 1-3, 3-1
environment, 1-5, 8-2
error messages, 5-17
files, 3-3
INCLUDE directive, 5-10
MACRO directive, 5-11
macros, 5-11
object files, 6-3
outputs, 3-1, 5-5
pseudo-operations, 5-15
quick-start, 1-6
sample project, 8-1
shortcut, 5-3
substituting, 3-1, 5-6, 5-19

Auto-Indentation, 4-21
Auto-Save All Files, 4-20
Auto-Save Current Project, 4-19
Back to Editor toolbar button, 4-5
base address

setting, 6-9
batch files

error output, 4-26

EXE path, 4-22

M68ICS08GPOM/D

user interface, 5-2
window, 1-6, 5-2, 5-4

CCvalue, 5-13

CCR command, 7-25
CF command, 7-24
changes

bases, 6-11
CPU information, 6-15
restoring, 4-15

Index-1

INDEX

reverses, 4-14

save options, 4-19

saving, 4-13

software startup, 6-5
checksum, A-1
child windows, 4-2
chip logic,representing, 6-16
Chip Window, 6-16
CHIPINFO, 1-2
clearing

Clear All, 6-11

markers, 4-6

variables, 6-11
CLEARMAP command, 7-26
CLEARSYMBOL command, 7-27
client windows

WinIDE, 4-2
clock signal, B-2
closing files

current project file, 4-18

WinIDE, 4-13
code timing, 6-17
Code Window, 6-8, 7-88
code/data, A-1
Color, 4-28
column numbers, 4-3
command

buffer, 6-24

sequences, 1-2

syntax, 7-2
command-line

entering commands, 6-13

parameters, 4-6
comments, 5-8

communications, pod-to-host, 1-2, 3-4

Compact, 3-3
compiler
customized, 3-2
options, 4-17
third party, 6-3
types, 4-23
components
ICS05KJIW, 1-1
conditional assembly, 5-10

configuring external programs in WinIDE, 4-22

Confirm command line, 4-25, 4-27
context-sensitive Help, 1-2
copying text, 4-15
counting

breakpoints, 6-20

cycles, 6-17
CPU

registers, 6-15

results, 6-18

Window, 6-15
Create Backup, 4-21
creating

new file

WinIDE, 4-11

Index-2

script files, 6-4
source files, 4-14

Currently edited filename, 4-20
customizing environments, 1-6

cycles
adding, 5-8
counter, 5-13
counting, 6-17
Cycle Adder, 5-8
Cycle Cntr, 5-13
CYCLES command, 7-29

Cycles Window, 6-17, 6-18

fieldinlisting file, 6-4

including information in list file, 4-24

CYCLES command, 7-29
DASM command, 7-30
DDRA command, 7-31
DDRB command, 7-32
debugger

customized, 3-2

options, 4-17

routines, 6-32

third-party, 4-22
debugging commands

command set, 7-1

description, 7-1

detailed listing, 7-9

entering, 6-24

summary, 7-3, 7-4

syntax, 7-2
deleting

breakpoint, 6-21

text, 4-16

variables, 6-11
desktop information, 4-17
direct addressing mode, 5-16
Direction, 4-29
displaying

Code Window Shortcut menu, 6-8

source code, 6-8
Stack Window:, 6-18
Trace Window, 6-19

Variables Shortcut menu, 6-10

distribution media, 3-2
download files, 6-23
drive space, 1-2
DUMP command, 7-33
editing

breakpoints, 6-21

options, WinlDE, 4-14, 4-20

sourcefiles, 4-14
text, 3-1
editor
description, 1-2, 3-1
files, saving, 4-20
options, 4-20
options, WinIDE, 4-14
Effects, 4-28
emulator, B-2

M68ICS08GPOM/D

INDEX

environment
building, 4-3
customizing, 1-6
Environment Menu, 1-4, 4-17
Environment Settings Dialog, 1-4
options, 4-16
path, 4-22
settings, 4-16, 4-17
storing settings, 4-16
EPROM, 1-1, 1-2
EQU, 5-15
equate directive, 5-15
errors
files, 4-26, 6-3
format, 4-25
messages,assembler, 5-17
output batch file, 4-26
EVAL command, 7-34
examples
changing number format, 6-11
conditional assembly directives 5-10
labels, 5-14
listing table, 5-14
macr o directive 5-11
S-records, A-3
EXE 1 (Debugger) tab, 4-26
EXE 2 (Programmer) tab, 4-26
EXE Path, 4-27
executable options, 4-17
executing
source code, 6-9
Exit Application, 4-20
EXIT command, 7-35
exiting
application, 4-20
WinIDE, 4-11, 4-14
Expand Includesin List, 4-24
Expand Macrosin Listing, 4-24
extended addressing mode, 5-16
extension
specifying, 4-6
External Program 1 toolbar button, 4-5
external programs, 4-26
configuring in WinIDE, 4-22
running, 4-22
externa pull-down resistors, B-2
FCB directive, 5-16
FDB directive, 5-16
fields
listing files, 6-4
file options
ICS, 6-27
WinIDE, 4-11
filename
storing as parameter, 4-19
filename parameter, 4-6
files
ASCII, 3-2, 6-4
assembler, 3-3

M68ICS08GPOM/D

assembly, 3-2
ICS, 3-3
|CS05K JW, 3-3
listing, 8-4
map, 3-2
object code, 3-2
printing, 4-13
programmer download, 6-23
programmer upload, 6-23
S19, 3-2,6-3
saving, 4-12, 4-20
script, 6-4
startup, 6-6
WinIDE, 3-3
filetypes
WinIDE, 4-4
Find Dialog
WinlIDE, 4-29
Find Next button, 4-29
Find what textbox, 4-30
Fixed Tabs, 4-22
Font, 4-28
font settings, 4-16
Font Style, 4-28
Form Constant Byte, 5-16
Form Double Byte, 5-16
G command, 7-36
General Editor, 1-5
Genera Editor options, 4-17
General Editor Tab, 4-20, 4-21
General Environment, 1-5
Genera Environment options, 4-17
General Environment Tab, 4-19
Genera Options, 4-21
Give user option to save each file, 4-20
GO command, 7-36
GOMACRO command, 7-37
Gotil Address at Cursor, 6-9
GOTIL command, 7-38
GOTOCY CLE command, 7-39
H command, 7-40
hardware
installation, 2-1
requirements, 1-2
specifications, 1-2
Help, 1-2
HELP command, 7-41
HEX format, 6-12
hexadecimal number format, 6-11
hexadecimal values
fieldin listing file, 6-4
humidity, 1-3
| command, 7-42
1/0, 1-1
1/O pins, 6-17
ICS
commands
argument types, 7-3
command syntax, 7-2

Index-3

INDEX

description, 7-1 INPUTA command, 7-44
detailed descriptions, 7-9 INPUTB command, 7-45
summary, 7-4 INPUTS command, 7-46
viewing, 6-13 installation
components, 1-1 compact, 3-3
description, 1-1 typical, 3-3
description, 3-2 installing
Execute Menu, 6-32 |CS05K W software, 3-2
Execute Options, 6-32 M68ICS05K J pod, 2-1
features, 1-2 MC68HC705 pod, 2-1
FileMenu, 6-27 software, 3-1, 3-2
File options, 6-27 INT command, 7-47
files, 3-3 integrated development environment, 1-1
installing, 1-4 internal registers, 6-15
menu options Interrupt Stack, 6-18
Close Logdfile, 6-31 IRQ command, 7-47
Exit, 6-31 jumper headers, 6-22, B-2
Go, 6-33 labels, 5-11, 5-13, 5-14, 6-10
Load S19 File, 6-28 LF command, 6-5
Multiple Step, 6-33 line count, 5-13
Open Logfile, 6-30 fieldinlist file, 6-4
Open Window, 6-34 line numbers, 4-3
Play Macro, 6-29 lines
Record Macro, 6-29 total, 4-3
Reload Desktop, 6-35 listing directives, 5-12
Reload Last S19, 6-28 listing files, 4-4, 4-24, 5-6, 5-12, 6-4
Reset Processors, 6-32 fields, 5-13
Save Desktop, 6-35 Listing Options, 4-24
Stop, 6-33 listing table, 5-13
Stop Macro, 6-30 LISTOFF command, 7-48
simulation speed, 6-1 LISTON command, 7-49
starting, 1-4, 1-6, 6-5 LOAD command, 7-50
system requirements, 1-2 Load S19 File, 6-28
user interface, 6-1 LOADDESK command, 7-51
Window Options, 6-34 loading
windows map files, 6-28
Breakpoint Window, 6-20 LOADMAP command, 7-52
Chip Window, 6-16 Log Files, 6-5
Code Windows, 6-8 opening, 6-30
CPU Window, 6-15 specifying, 6-30
CPU Wndow, 6-15 LOGFILE command, 6-5
Cycles Window, 6-17 M68ICS05K J, 1-1, 1-2, 1-3, 1-4, 2-1, 2-2, 4-1, 4-4, 6-1, 6-
Memory, 6-12 22,7-67,B-1, B-2
Memory Window, 6-12 board layout, B-5
Per sonality EEPROM Window, 6-19 features, 1-2
Programmer Window, 6-22 partslist, B-5, B-9, B-10
Stack Window, 6-18 pod, 4-4
Status Window, 6-13 schematic diagram, B-5, B-6
Trace Window, 6-19 support information, B-1
Variables Window, 6-10 machine cycles, 5-13
ICSO5KJIW. See ICS MACRO command, 7-54
In-Circuit Simulator. See ICS MACRO directive, 5-11
INCLUDE, 8-3 MACROEND command, 7-55
INCLUDE directive, 5-10 macros
included files expanding, 4-24
expanding, 4-24 forward referencing, 5-11
using, 4-20 jumping from, 5-11
indentation, 4-20 recording, 6-29
INFO command, 7-43 running, 6-29

Index-4 M68ICS08GPOM/D

stopping, 6-30
MACROSTART command, 7-56
Main Filename, 4-20
Main Filename option

WinIDE, 4-25
managing

Code Window contents, 6-8

open windows, 4-31

project information, 4-16

variables, 6-10

WinIDE files, 4-11
map files, 3-2, 5-6

loading, 6-28
Marker Sub-menu, 4-6
markers

clearing, 4-6

moving, 4-5, 4-6

setting, 4-5, 4-6

using, 4-5
Match Casg, 4-29, 4-30

Match Whole Word Only, 4-29, 4-30

MC68HC05 MCUs, 6-19
MC68HC705 C8A device, B-2
MC68HC705K J, 1-1, 1-2
MCUs, 1-1
MD command, 7-57
media, 3-2
memory, 1-2
address, 5-13, A-1
map, 1-2, 6-12
modifying, 6-12
viewing, 6-12
Memory Window, 6-12
Shortcut menu, 6-12
menu options
WinlI DE, 4-9, 4-10, 6-26, 6-27
menus
WinIDE, 4-9
microcontrollers, 1-1
MM command, 6-12, 7-58
modifying
memory, 6-12
memory bytes, 6-12
N command, 7-59
navigating
in IDE environment, 4-5
in sour files, 4-5
No Trace Available, 6-19
NOBR command, 7-60
NOMAP command, 7-61
non-P& E compiler, 4-23
NOSYMBOL command, 7-62
number format, 6-11
object files, 3-2, 5-5
opcode mnemonics, 5-7
Open Filedialog
WinlIDE, 4-12
Open Logfile, 6-30
Open Project, 1-4

M68ICS08GPOM/D

opening
log files, 6-30
WinIDE files, 4-12
operating system, 1-2
Options, 4-27
ORG, 5-16
originate directive, 5-16
Other Assembler/Compiler, 4-25
Output Debug File, 4-23
Output Listing File, 4-23
Output S19 Object, 4-23
P& E compiler, 4-23
P1, 2-1
P2, 1-4, 2-1
parameters
command-line, 4-6
partslist, B-5, B-9, B-10
pasting text, 4-16
path, EXE, 4-22
PC command, 7-63
Pick Window, 6-22
PIFfiles, 4-22
pin-out, 1-2
pins, 6-16
Play Macro, 6-29
pod, 1-1, 1-2, 1-4, 6-17
communications, 3-4
connector P2, 1-4
installation, 2-1
POD command, 7-64
PORTA command, 7-65
PORTB command, 7-66
ports
data, B-2
serid, 1-2
power
requirements, 1-3
supply,connecting, 1-4
switch, 2-1
PPF files, 4-17
printing, 4-11, 4-13
processor cycles
viewing number, 6-17
program counter
setting, 6-8
Program Manager, 3-3
Programmer Files Window, 6-23

Programmer Pick Window, 6-22, 7-67

Programmer Status Window, 6-22
Programmer Window, 6-22
programming

control, B-2

jumpers, B-2

sockets, 6-22, B-2

software. See ICS

troubleshooting, B-4

voltage, B-2

Programr EPROM Per sonality Window, 7-68

project

INDEX

environment, 4-3, 4-16
files, 4-17
name, 4-16
sample, 8-1
saving, 4-18
Project Files, 6-2
PRTA command, 7-65
PRTB command, 7-66
pseudo operations, 5-15
quick start
procedure, 1-4
troubleshooting, B-3
QUIT command, 7-35
R command, 7-71
RAM, 1-2
Real Tabs, 4-22
record length, A-1
Record Macro, 6-29
record type, A-1
recording macros, 6-29
Recover Error from Compiler, 4-25
Redo
WinIDE, 4-15
REG command, 7-72
registers, 1-2
Reload Last S19, 6-28
REM command, 7-73
removing
breakpoints, 6-21
Replace Dialog, 4-30
requirements
hardware, 1-2
host, 6-2
host computer, 1-2
software, 1-2
Reserve Memory Byte, 5-16
reset
microcontroller, 6-32
switch, 2-1
RESET command, 7-74
RESETGO command, 7-75
reversing changes, 4-14
RMB directive, 5-16
RS-232 seria connector, 2-1
RTI, 6-18
RTS, 6-18
Run, 3-2
RUN command, 7-36
running
macros, 6-29
S, 2-1
S19files, 3-2, 6-3
S3,2-1
Sample, 4-28
sample project, 8-1
Save all files before running, 4-27
Save files before Assembling, 4-24, 4-25
SAVEDESK command, 7-76
saving

Index-6

changing options, 4-19
files, 4-12
projects, 4-18
Saving the Project, 4-20
schematic diagram, B-5, B-6
scratch pad files, 6-5
SCRIPT, 1-2, 4-28
Script Files, 6-4
Search Menu
WinlI DE, 4-29
Select Source Module, 6-9
selecting text, 4-16
serial port
connector, 1-4, 2-1
use, 1-2
Set Base Address, 6-9, 6-12
Set Base Addressto PC, 6-9
Set PC at Cursor, 6-8
setting
base address, 6-9
breakpoints, 6-8
markers, 4-5, 4-6
program counter, 6-8
setup, 3-2
|CSO5K W software, 1-4
Setup Environment option, 1-4
Setup Fonts Dialog, 4-28
Show as HEX and ASCII, 6-12
Show as HEX Only, 6-12
Show Assembler Progress, 4-24
Show Cyclesin Listing, 4-24
Show Disassembly, 6-9
Show Source/Disassembly, 6-9
SHOWBREAKS command, 6-20, 7-77
SHOWCODE command, 7-78
SHOWTRACE command, 6-19, 7-80
simulation
mode,| CS05K W, 4-4
speed, 6-1
simulator, 1-2, 4-22
Size, 4-28
SLD map files, 6-28
Smart Tabs, 4-22
software
installation, 3-2
loading, 3-1
modifying startup, 6-5
requirements, 1-2
starting, 3-3
WinIDE, 1-1
Sound Bell on Error, 4-24
source code, 5-13
assembly mode, 6-8
disassembly mode, 6-8
editing, 3-1
executing, 6-9
files, 4-4
source files
creating, 4-14

M68ICS08GPOM/D

INDEX

editing, 4-14

preparing, 5-6
source window

WinIDE, 4-3
source-level debugging, 5-6
SP command, 7-82
specifications

hardware, 1-2

Specify project file to save Dialog, 4-18

specifying
ASCII constants, 5-7
speed
calculating, 6-2
simulation, 6-1
Split Bar, 4-36
Split Pointer, 4-36
S-records
content, A-1
creating, A-3
field contents, A-2
fields, A-1
overview, A-1
SO header record, A-4
S0 record, A-4
S1 record, A-5
S9 record, A-6
termination record, A-6
types, A-2
SS command, 7-83
STACK command, 7-85
stack datainterpretations, 6-19
stack pointer value, 6-18, 6-21
stack values
viewing, 6-18
Stack Window, 6-18
displaying, 6-18
standalone mode, 6-5
Start Menu, 3-2, 3-3
starting
ICS, 6-5
|CS05KJIW, 1-4
software, 3-3
WinIDE, 4-4
startup files, 6-6
STARTUP.05K J, 6-6
status bar
WinIDE, 4-3
Status Window, 6-13
command-line area, 6-13
message area, 6-13
STEP command, 7-84
STEPFOR command, 7-86
STEPTIL command, 7-87
Stop Macro, 6-30
storing
desktop information, 4-17
environment settings, 4-16
executable options, 4-17
Strikeout, 4-28

M68ICS08GPOM/D

Subroutine Stack, 6-19
switches
compiler/assembler, 4-25
power, 2-1
reset, 2-1
SYMBOL command, 6-10, 7-88
symbol table, 5-14
list file, 6-4
system
progress, 4-3
requirements, 6-2
status, 4-3
tab settings, 4-20, 4-22
Tab Size, 4-22
temperature
operating, 1-3
storage, 1-3
text files, 4-4
timing code, 6-17
title bar
WinIDE, 4-3
Toggle Breakpoint at Cursor, 6-8
toolbar
WinIDE, 4-7, 6-24
TRACE command, 6-19, 7-89
Trace Window, 6-19
displaying, 6-19
tracing
trace buffer, 6-19
trace buffer slot numbers, 6-19
viewing, 6-19
transformer
connecting, 1-4
troubleshooting
programmer, B-4
Quick Start, B-3
TYPE, 4-23, 4-27
Typical, 3-3
Underline, 4-28
Understanding Small Microcontrollers, 1-2
Undo
WinIDE, 4-14
upload files, 6-23
UPLOAD_SREC command, 7-90
Upon Exiting WinIDE, 4-19
user interface
ICS, 6-1
WinIDE, 4-1
user manual, 1-2
values on stack, 6-18
VAR command, 7-91
variables
adding, 6-10
choosing types, 6-11
clearing, 6-11
deleting, 6-11
managing, 6-10
Variables Window, 6-10, 7-88
Shortcut menu options, 6-10

Index-7

INDEX

vector, 1-2
VERSION command, 7-92
viewing
breakpoints, 6-20
command results, 6-13
CPU information, 6-15
instructions during tracing, 6-19
memory, 6-12
WAIT command, 7-93
Wait for Assembler Result, 4-24
Wait for compiler to finish, 4-25
Wait for program completion, 4-27
WHEREIS command, 7-94
Window Base Address dialog, 6-9
windows
CASMO5W, 8-4
ICS, 6-7
WinIDE, 4-1
Windows 3.x, 1-1, 1-2, 3-3
Windows 95, 1-1, 1-2, 1-3
WinIDE, 1-1
Assembler/Compiler Tab, 4-22
closing files, 4-13
configuration parameters, 4-17

configuring external programs, 4-22

Edit menu, 4-14
Edit options, 4-14
Close/New Project, 4-18
Copy, 4-15
Cut, 4-15
Delete, 4-16
Open Project, 4-17
Paste, 4-16
Redo, 4-15
Save Project, 4-18
Save Project As, 4-18
Select All, 4-16
Setup Environment, 4-18
Undo, 4-14
Edit shortcut menu, 4-5
Environment Menu, 4-17
Environment options, 4-16
Setup Fonts, 4-27

Environment Settings Dialog, 1-5

Environment Settings dialog
EXE1Tab, 1-5
exiting, 4-14
file management, 4-11
file options, 4-11
CloseFile, 4-13
Exit, 4-14
New File, 4-11
Open File, 4-12
Print, 4-13
Print Setup, 4-14
Save File, 4-12
Save File As, 4-12
files, 3-3
filetypes, 4-4

Index-8

listing, 4-4
source code, 4-4
text, 4-4
font information, 4-16
General Environment Tab, 4-19
INI file, 1-5, 4-16
main window, 4-2

menu options, 4-1, 4-9, 4-10, 6-26, 6-27

menus, 4-9
printing, 4-11
saving files, 4-12
Search options, 4-28
Find, 4-29
Find Next, 4-30
GotoLine, 4-30
shortcut buttons, 4-7, 6-24
source directory, 4-16
source window, 4-3
starting, 4-4
status bar, 4-3
title bar, 4-3
toolbar, 4-7, 6-24
user interface, 4-1
window components, 4-2
Window Menu, 4-31
Window options, 4-31
Arrange lcons, 4-34
Cascade, 4-32
Minimize All, 4-35
Split, 4-36
Tile, 4-33
windows, 4-1
WINIDE.INI file, 1-5, 4-16
word wrap, 4-20, 4-21
Word Wrap OFF, 4-22
Wrap to Column, 4-21
Wrap to Window, 4-21
X command, 7-95
X index register value, 6-21
XREG command, 7-95
Z command, 7-96

M68ICS08GPOM/D

	TABLE OF CONTENTS
	INTRODUCTION
	OVERVIEW
	TOOLKIT COMPONENTS
	HARDWARE AND SOFTWARE REQUIREMENTS
	TOOLKIT FEATURES
	SPECIFICATIONS
	ABOUT THIS USER’S MANUAL
	QUICK START INSTRUCTIONS
	CUSTOMER SUPPORT

	POD INSTALLATION
	OVERVIEW
	INSTALLING THE M68ICS05KJ POD

	SOFTWARE INSTALLATION AND INITIALIZATION
	OVERVIEW
	THE ICS05KJW SOFTWARE COMPONENTS
	The WinIDE Editor
	CASM05W
	ICS05KJW

	INSTALLING THE ICS05KJW SOFTWARE
	Installation Steps
	Starting the ICS05KJW Software
	ICS Communication

	THE WinIDE USER INTERFACE
	OVERVIEW
	THE WINDOWS INTEGRATED DEVELOPMENT ENVIRONMENT
	WinIDE MAIN WINDOW
	Main Window Functions
	Main Window Components

	GETTING STARTED
	Prerequisites for Starting the WinIDE Editor
	Starting the WinIDE Editor
	Opening Source Files
	Navigating in the WinIDE Editor
	Using Markers

	COMMAND-LINE PARAMETERS
	WinIDE TOOLBAR
	WinIDE MENUS
	WinIDE FILE OPTIONS
	New File
	Open File
	Save File
	Save File As
	Close File
	Print File
	Print Setup
	Exit

	WinIDE EDIT OPTIONS
	Undo
	Redo
	Cut
	Copy
	Paste
	Delete
	Select All

	WinIDE ENVIRONMENT OPTIONS
	Open Project
	Save Project
	Save Project As
	Close/New Project
	Setup Environment
	Setup Fonts

	WinIDE SEARCH OPTIONS
	Find
	Replace
	Find Next
	Go to Line

	WinIDE WINDOW OPTIONS
	Cascade
	Tile
	Arrange Icons
	Minimize All
	Split

	ASSEMBLER INTERFACE
	OVERVIEW
	CASM05WASSEMBLER USER INTERFACE
	Passing Command Line Parameters to the Assembler in Windows 3.x
	Passing Command Line Parameters to the Assembler in Windows 95

	ASSEMBLER PARAMETERS
	ASSEMBLER OUTPUTS
	Object Files
	Map Files
	Listing Files
	Files from Other Assemblers

	ASSEMBLER OPTIONS
	Operands and Constants
	Comments

	ASSEMBLER DIRECTIVES
	BASE
	Cycle Adder
	Conditional Assembly
	INCLUDE
	MACRO

	LISTING DIRECTIVES
	Listing Files
	Labels

	PSEUDO OPERATIONS
	Equate (EQU)
	Form Constant Byte (FCB)
	Form Double Byte (FDB)
	Originate (ORG)
	Reserve Memory Byte (RMB)

	ASSEMBLER ERROR MESSAGES
	USING FILES FROM OTHER ASSEMBLERS

	ICS05KJW SIMULATOR USER INTERFACE
	OVERVIEW
	THE ICS05KJW IN-CIRCUIT SIMULATOR
	ICS05KJW Simulation Speed
	System Requirements for Running the ICS05KJW
	File Types and Formats

	STARTING ICS05KJW
	ICS05KJW WINDOWS
	CODE WINDOWS
	To Display the Code Windows Shortcut Menus
	Code Window Shortcut Menu Functions
	Code Window Keyboard Commands

	VARIABLES WINDOW
	Displaying the Variables Shortcut Menu
	Variables Window Shortcut Menu Options
	Variable Window Keyboard Commands

	MEMORY WINDOW
	STATUS WINDOW
	CPU WINDOW
	Changing Register Values
	CPU Window Keyboard Commands

	CHIP WINDOW
	Reading Values in the Chip Window
	Chip Window Keyboard Commands

	CYCLES WINDOW
	STACK WINDOW
	Interrupt Stack
	Subroutine Stack

	TRACE WINDOW
	BREAKPOINT WINDOW
	Adding a Breakpoint
	Editing a Breakpoint
	Deleting a Breakpoint
	Removing All Breakpoints

	PROGRAMMER WINDOWS
	REGISTER BLOCK WINDOW
	ENTERING DEBUGGING COMMANDS
	ICS05KJW TOOLBAR
	ICS05KJW MENUS
	FILE OPTIONS
	Load S19 File
	Reload Last S19
	Play Macro
	Record Macro
	Stop Macro
	Open Logfile
	Close Logfile
	Exit

	ICS05KJW EXECUTE OPTIONS
	Reset Processor
	Step
	Multiple Step
	Go
	Stop
	Repeat Command

	ICS05KJW WINDOW OPTIONS
	Open Windows
	Change Colors
	Reload Desktop
	Save Desktop

	ICS05KJW DEBUGGING COMMAND SET
	OVERVIEW
	ICS05KJW COMMAND SYNTAX
	COMMAND-SET SUMMARY
	Argument Types
	Command Summary

	COMMAND DESCRIPTIONS

	EXAMPLE PROJECT
	OVERVIEW
	SETTING UP A SAMPLE PROJECT
	Set Up the Environment
	Create the Source Files
	Assemble the Project

	S-RECORD INFORMATION
	OVERVIEW
	S-RECORD CONTENT
	S-RECORD TYPES
	S-RECORD CREATION
	S-RECORD EXAMPLE
	The S0 Header Record
	The First S1 Record
	The S9 Termination Record
	ASCII Characters

	TECHNICAL REFERENCE AND TROUBLESHOOTING
	OVERVIEW
	FUNCTIONAL DESCRIPTION OF THE KIT
	The Emulator
	Programming

	TROUBLESHOOTING THE QUICK START
	TROUBLESHOOTING THE PROGRAMMER
	SCHEMATIC DIAGRAM, PARTS LIST, AND BOARD LAYOUT

	GLOSSARY
	INDEX

