

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

MCUEZLNK0508/D

February 1998

MCUez
LINKER

USER'S MANUAL

© Copyright 1998 MOTOROLA and HIWARE AG; All Rights Reserved

For More Information On This Product,

 Go to: www.freescale.com

in

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Important Notice to Users

While every effort has been made to ensure the accuracy of all information in this document,
Motorola assumes no liability to any party for any loss or damage caused by errors or omissions
or by statements of any kind in this document, its updates, supplements, or special editions,
whether such errors are omissions or statements resulting from negligence, accident, or any other
cause. Motorola further assumes no liability arising out of the application or use of any
information, product, or system described herein; nor any liability for incidental or consequential
damages arising from the use of this document. Motorola disclaims all warranties regarding the
information contained herein, whether expressed, implied, or statutory, including implied
warranties of merchantability or fitness for a particular purpose. Motorola makes no
representation that the interconnection of products in the manner described herein will not
infringe on existing or future patent rights, nor do the descriptions contained herein imply the
granting or license to make, use or sell equipment constructed in accordance with this
description.

Information contained in this document applies to
REVision (0) MCUez.

The computer program contains material copyrighted by Motorola Inc., first published 1997, and may
be used only under a license such as the License For Computer Programs (Article 14) contained
Motorola's Terms and Conditions of Sale, Rev. 1/79.

Trademarks

This document includes these trademarks:

MCUez is a trademark of Motorola Inc.
EXORciser is a trademark of Motorola Inc.

The MCUez development, emulation, and debugging application is based on HI-WAVE; a
software technology developed by HIWARE. HI-WAVE is a registered trademark of HIWARE
AG.

AIX, IBM, and PowerPC are trademarks of International Business Machines Corporation.
SPARC is a trademark of SPARC international, Inc.
Sun and SunOS are trademarks of Sun Microsystems, Inc.
UNIX is a trademark of Novell, Inc., in the United States and other countries, licensed
exclusively through X/Open Company, Ltd.
X Window System is a trademark of Massachusetts Institute of Technology.

For More Information On This Product,

 Go to: www.freescale.com

CONTENTS

CONTENTS

 . 1-1

. . 1

. 2-1

 .
. . 2-2

.

 .

 . 2-11
. 2-11

. 2-13
. . 2-
. . 2-15
. 2-
 2-16
 2-16
 . 2-16

 2-17
 . 2-17
. 2-17
. 2-17

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

CHAPTER 1 GENERAL INFORMATION

1.1 INTRODUCTION . 1-1

1.2 FUNCTIONAL DESCRIPTION .

1.3 FEATURES . 1-1

1.4 SUPPORT INFORMATION . -2

 CHAPTER 2 USER INTERFACE

2.1 INTRODUCTION . 2-1

2.2 INTERACTIVE USER INTERFACE .

2.2.1 Starting the MCUez Linker .. 2-1
2.2.2 Starting from WinEdit or Codewright .
2.2.3 Linker Graphical Interface .. . 2-2

2.2.3.1 Window Title . 2-3
2.2.3.2 Content Area . . . 2-3
2.2.3.3 Tool Bar . 2-4
2.2.3.4 Status Bar . 2-5
2.2.3.5 Linker Menu Bar .. 2-6
2.2.3.6 File Menu . 2-6

2.2.3.6.1 Important remarks .
2.2.3.6.2 Save Configuration Dialog .

2.2.3.7 Linker Menu . 2-12
2.2.3.8 View Menu . 2-13
2.2.3.9 Advanced Options Dialog Box .

2.2.4 Message Settings Dialog Box . 14
2.2.4.1 Changing the Class Associated With a Message .
2.2.4.2 Specifying the Input File . 16

2.2.4.2.1 Using the Editable Combo Box in the Tool Bar. .
2.2.4.2.2 Using the Entry File | Link
2.2.4.2.3 Using Drag and Drop .

2.2.5 Error Feedback . 2-16
2.2.5.1 Error Feedback Using Information From the Linker Window
2.2.5.2 Error Feedback Using a User-Defined Editor .

2.2.5.2.1 Line Number Can be Specified on the Command Line
2.2.5.2.2 Line Number Cannot be Specified on the Command Line
MCUEZLNK0508/D iii
For More Information On This Product,

 Go to: www.freescale.com

CONTENTS

. .

 .

 . 4-

 . 4-1

. . 5-5

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

CHAPTER 3 ENVIRONMENT VARIABLES

3.1 INTRODUCTION . 3-1

3.2 SETTING PARAMETERS . 3-1

3.3 PATH VARIABLES . 3-2

3.3.1 LINKOPTIONS . 3-2
3.3.2 GENPATH . 3-3
3.3.3 OBJPATH . 3-3
3.3.4 ABSPATH . 3-3
3.3.5 TEXTPATH . 3-4
3.3.6 SRECORD . 3-5
3.3.7 ERRORFILE . 3-5

 CHAPTER 4 FILES

4.1 INTRODUCTION . 4-1

4.2 PARAMETER FILE: INPUT .4-1

4.3 ABSOLUTE FILES: OUTPUT .1

4.4 MOTOROLA S FILES: OUTPUT .

4.5 MAP FILES . 4-2

 CHAPTER 5 LINKER OPTIONS AND ISSUES

5.1 INTRODUCTION . 5-1

5.2 -E LINKER OPTION . 5-2

5.3 -O LINKER OPTION . 5-2

5.4 -M LINKER OPTION . 5-3

5.5 -S LINKER OPTION . 5-3

5.6 -V LINKER OPTION . 5-4

5.7 -W1 LINKER OPTION . 5-4

5.8 -W2 LINKER OPTION . 5-4

5.9 LINKING ISSUES . 5-5

5.9.1 Object Allocation . 5-5
5.9.1.1 The SEGMENTS Block .
iv MCUEZLNK0508/D
For More Information On This Product,

 Go to: www.freescale.com

 . . 5-6
 . . 5-7
 . . 5-9
 . 5-9
. 5-10
 . 5-10
 . 5-11

6-1

 . .
. 6-1

 . . 6-3

. . 6-6

. . 6-8

. 6-8
 . 6-8

-9

. 6-10

.

. . 6-
 . 6-15

6-16
 6-17
 6-18

 6-19
6-21
 . 6-22
. 6-23

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

5.9.1.1.1 Segment Qualifier .
5.9.1.1.2 Segment Alignment .
5.9.1.1.3 Segment Fill Pattern .

5.9.1.2 PLACEMENT Block .
5.9.1.2.1 Specifying a List of Sections .
5.9.1.2.2 Specifying a List of Segments .

5.9.2 Allocating User-Defined Sections .

CHAPTER 6 OPERATING PROCEDURES

6.1 INTRODUCTION . 6-1

6.2 INITIALIZING THE VECTOR TABLE .

6.2.1 VECTOR Command . 6-1
6.2.1.1 Initializing the Vector Table in the Linker PRM File .
6.2.1.2 Initializing the Vector Table in the Assembly Source File

Using a Relocatable Section .
6.2.1.3 Initializing the Vector Table in the Assembly Source File Using

an Absolute Section .

6.3 SMART LINKING . 6-8

6.3.1 Mandatory Linking From an Object .
6.3.2 Mandatory Linking From All Objects Defined in a File .
6.3.3 Switching OFF Smart Linking for the Application .

6.4 BINARY FILES BUILDING AN APPLICATION . 6

6.4.1 NAMES Block . 6-9
6.4.2 ENTRIES Block . 6-9
6.4.3 Linking an Assembly Application .
6.4.4 Warning Messages .. . 6-11

6.5 THE PARAMETER FILE . 6-13

6.5.1 The Syntax of the Parameter File . 13
6.5.2 Mandatory Parameter File Linker Commands .

6.6 LINKER COMMANDS .6-16

6.6.1 ENTRIES: List of Objects to Link With the Application .
6.6.2 INIT: Specify the Application Entry Point .
6.6.3 LINK - Specify Name of the Output File .
6.6.4 MAIN . 6-19
6.6.5 MAPFILE: Configure the MAP File Content .
6.6.6 NAMES: List the Files building the Application. .
6.6.7 PLACEMENT: Place Sections Into Segments .
6.6.8 SEGMENTS: Define Memory Map .
MCUEZLNK0508/D v
For More Information On This Product,

 Go to: www.freescale.com

CONTENTS

. 6-25
.
 . 6-27
 6-28
. 6-29

 . . 6-

 .

. . 6

. . 6-

. . 7-1

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

6.6.8.1 Defining an Alignment Rule .
6.6.8.2 Defining a Fill Pattern . 6-26

6.6.9 STACKSIZE: Define Stack Size .
6.6.10 STACKTOP: Define Stack Pointer Initial Value .
6.6.11 VECTOR: Initialize Vector Table .

6.7 SECTIONS . 6-30

6.7.1 Terms: Segments and Sections .31
6.7.2 Definition of Section . 6-31
6.7.3 Predefined Sections . 6-31

6.8 EXAMPLES . 6-33

6.9 PROGRAM STARTUP . 6-34

6.9.1 The Startup Descriptor . 6-34
6.9.2 User-Defined Startup Structure: . -36
6.9.3 User-Defined Startup Routines . 37

6.10 THE MAP FILE . 6-38

 CHAPTER 7 LINKER MESSAGES

7.1 INTRODUCTION . 7-1

7.2 LINKER MESSAGES REFERENCE .
vi MCUEZLNK0508/D
For More Information On This Product,

 Go to: www.freescale.com

MCUEZLNK0508/D vii

CONTENTS

FIGURES

Figure 2-1. MCUez Linker Tip of The Day Window . 2-1
Figure 2-2. MCUez Linker Graphical User Interface. 2-2
Figure 2-3. MCUez Linker Tool Bar . 2-4
Figure 2-4. MCUez Linker Status Bar . 2-5
Figure 2-5. Configuration Dialog - Global Editor . 2-7
Figure 2-6. Configuration Dialog - Local Editor . 2-8
Figure 2-7. Configuration Dialog - Editor Started With Command Line. 2-9
Figure 2-8. Configuration Dialog - Editor Started With DDE . 2-10
Figure 2-9. Save Configuration Dialog Window . 2-11
Figure 2-10. Advanced Options Dialog Window . 2-13
Figure 2-11. Message Settings Dialog Window . 2-14
Figure 4-1. Link Process Conceptual Diagram. 4-2

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

CONTENTS

. .
. . 5-1
. .
. . . 5-
. . . 6-
 . 6

 . 6
. .

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

TABLES

Table 2-1. Message Group Definitions . 2-15
Table 5-1. MCUez Linker Options Descriptions .
Table 5-2. Segment Qualifier Descriptions . 5-7
Table 5-3. Segment Alignment Rule Format . 8
Table 6-1. VECTOR Command Syntax . 1
Table 6-2. ENTRIES Block Supported .-16
Table 6-3. MAP File Specifiers . 6-20
Table 6-4. Segment Alignment Items List .-25
Table 6-5. Setting Startup Descriptor Flags . 6-35
Table 6-6. MAP File Sections . 6-38
MCUEZLNK0508/D viii
For More Information On This Product,

 Go to: www.freescale.com

CONTENTS

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

ix MCUEZLNK0508/D
For More Information On This Product,

 Go to: www.freescale.com

GENERAL INFORMATION

of an

nt onto

data,
ts into

tion.
ram.

Also,
 once

rent
e

t the

ine

artup

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

CHAPTER 1

GENERAL INFORMATION

1.1 INTRODUCTION

This manual describes the MCUez Linker. The Linker merges the various object files
application into one file; an “absolute file” (.ABS file for short). The file is termed an
“absolute file” because it contains absolute code (not relocatable code) that can be bur
an EPROM or loaded into the target using the MCUez Debugger.

1.2 FUNCTIONAL DESCRIPTION

Linking is the process of assigning memory to all global objects (functions, global
strings and initialization data) needed for a given application and combining these objec
a format suitable for downloading into a target system or an emulator.

The Linker is a smart linker. It only links those objects actually used by the applica
Various optimization capablities ensure low memory requirements for the linked prog
Unused functions and variables will not occupy memory in the target system.
initialization of global variables is stored in compact form and memory is reserved only
for equivalent strings.

1.3 FEATURES

The most important features supported by the Linker are:

• Complete control over placement of objects in memory: It is possible to allocate diffe
groups of functions or variables to different memory areas (Segmentation, please se
section on Sections).

• Initialization of vectors.

When linking High level Language modules (C, C++, ...), the linker should suppor
following features:

• User defined startup: The application startup script is in a separate file written in “inl
assembly” and can be easily modified. The startup file is named startup.c /
startup.o . This is a generic file name that has to be replaced by the real target st
file name given in the \LIB\COMPILER directory; as mentioned in the README.TXT
file. Usually the file name is start*.c / start*.o , where * is the name or part of the
MCU name and might also contain an abbreviation of the memory model.
MCUEZLNK0508/D 1-1
For More Information On This Product,

 Go to: www.freescale.com

GENERAL INFORMATION

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

• Mixed language linking: Modula-2, Assembly, and C object files can be mixed in the
same application.

1.4 SUPPORT INFORMATION

For information about a Motorola sales or distribution office near you call:

AUSTRALIA, Melbourne – (61-3)887-0711
 Sydney – 61(2)906-3855

BRAZIL, Sao Paulo – 55(11)815-4200

CANADA, B. C., Vancouver – (604)606-8502
 ONTARIO, Toronto – (416)497-8181
 ONTARIO, Ottawa – (613)226-3491
 QUEBEC, Montreal – (514)333-3300

CHINA, Beijing – 86-10-68437222

DENMARK – (45)43488393

FINLAND, Helsinki – 358-9-6824-400

FRANCE, Paris – 33134 635900

GERMANY,
Langenhagen/Hannover – 49(511)786880
Munich – 49 89 92103-0
Nuremberg – 49 911 96-3190
Sindelfingen – 49 7031 79 710
Wiesbaden – 49 611 973050

HONG KONG, Kwai Fong – 852-6106888
Tai Po – 852-6668333

INDIA, Bangalore – (91-80)5598615

ISRAEL, Herzlia – 972-9-590222

ITALY, Milan – 39(2)82201

JAPAN, Fukuoka – 81-92-725-7583
Gotanda – 81-3-5487-8311
Nagoya – 81-52-232-3500
Osaka – 81-6-305-1802
Sendai – 81-22-268-4333
Takamatsu – 81-878-37-9972
Tokyo – 81-3-3440-3311

KOREA, Pusan – 82(51)4635-035
 Seoul – 82(2)554-5118

MALAYSIA, Penang – 60(4)2282514

MEXICO, Mexico City – 52(5)282-0230
 Guadalajara – 52(36)21-8977

PUERTO RICO, San Juan – (809)282-2300

SINGAPORE – (65)4818188

SPAIN, Madrid – 34(1)457-8204

SWEDEN, Solna – 46(8)734-8800

SWITZERLAND, Geneva – 41(22)799 11 11
 Zurich – 41(1)730-4074

TAIWAN, Taipei – 886(2)717-7089

THAILAND, Bangkok – 66(2)254-4910

UNITED KINGDOM, Aylesbury – 441(296)395-252

UNITED STATES, Phoenix, AZ – 1-800-441-2447

For a list of the Motorola sales offices and distributors:
http://www.mcu.motsps.com/sale_off.html
1-2 MCUEZLNK0508/D
For More Information On This Product,

 Go to: www.freescale.com

USER INTERFACE

e

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

CHAPTER 2

USER INTERFACE

2.1 INTRODUCTION

This chapter describes:

• The MCUez Linker User Interface

• How to start the Linker

• Environment variables

2.2 Interactive User Interface

Click the Linker icon on the shell tool bar to run the linker.

2.2.1 Starting the MCUez Linker

When the linker is started, a standard Tip of the Day window containing features about th
linker is displayed.

Figure 2-1. MCUez Linker Tip of The Day Window
MCUEZLNK0508/D 2-1
For More Information On This Product,

 Go to: www.freescale.com

USER INTERFACE

,

w.

fault
lues
indow

ing

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Click Next Tip to view more information about the linker. Click Close to close the Tip of the
Day dialog. If you do not want to view the Tip of the Day window when the linker is started
uncheck Show Tips on StartUp.

To re-enable the automatic display, choose Help|Tip of the Day The Tip of the Day dialog
will display and you can check Show Tips on StartUp.

2.2.2 Linker Graphical Interface

Starting the MCUez Linker without specifying a filename will display the following windo

Figure 2-2. MCUez Linker Graphical User Interface

The Linker Window provides a Menu Bar, Tool Bar, Content Area, and Status Bar.

2.2.2.1 Window Title

The window title displays the linker name and project name. If no project is loaded, “De
Configuration” is displayed. A “*” after the configuration name indicates that some va
have been changed. Changes in options, editor configuration, and appearance (W
position, size, font, ...) will cause the “*” to appear.

2.2.2.2 Content Area

The Content Area displays logging information about the link session. This logg
information consists of:

• The name of the PRM file being linked.

Menu Bar

Tool Bar

Content Area

Status Bar
2-2 MCUEZLNK0508/D
For More Information On This Product,

 Go to: www.freescale.com

USER INTERFACE

file is
e file

a file
n the
alos
e. If a
Settings

hough

entry in

message

ave a

s only
under

y

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

• The name (including full path) of the files building the application.

• Thle list of errors, warnings, and information messages.

When a file name is dropped into the Linker window content area, the corresponding
either loaded as configuration data or linked. It is loaded as configuration data if th
extension is “ini”. If not, the file is linked with the current option settings (See Specifying the
Input File below).

The Linker window content area can have context information consisting of two items:

• a file name including a position inside of a file

• a message number

File context information is available for all output lines where a file name is displayed. If
context is available for a line, double-clicking on this line opens the appropriate file i
editor specified in your MCUez configuration. Double-clicking the right mouse button
opens a context menu. The menu contains an “Open ..” entry if a file context is availabl
file can not be opened although a context menu entry is present, see the section Editor
Dialog.

Note that under Win32s the context menu is not available. If a file can not be opened alt
a context menu entry is present, see the section on “Editor Settings” below.

The message number is available for any message output. To open the corresponding
the help file, do one of the following.

• Select one line of the message and press F1. If the selected line does not have a
number, the main help is displayed.

• Press Shift-F1 and then click on the message text. If the clicked point does not h
message number, the main help is displayed.

• Click the right mouse button at the message text and select “Help on ...”. This entry i
available if a message number is available. The context menu is not available
Win32s.

Once a link session has completed, an Error Feedback can be performed automatically b
double clicking on the message in the content area. To allow Error Feedback, the desired
editor must be configured (See Error Feedback below).
MCUEZLNK0508/D 2-3
For More Information On This Product,

 Go to: www.freescale.com

USER INTERFACE

mand

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

2.2.2.3 Tool Bar

The following illustrates the MCUez Linker Tool Bar.

Figure 2-3. MCUez Linker Tool Bar

• The New, Load and Save buttons are linked to the corresponding entries of the File menu.

• The ? and Context Help buttons are linked to the corresponding entries of the Help menu.

• The editable combo box contains a list of the last commands executed. Once a com
line has been selected or entered in this combo box, click Link to execute this command.

• The Open Advanced Options button opens the corresponding dialog.

• The Message Setting button opens the corresponding dialog.

Message
Setting

Lists Last Command Executed
(command line)

Context Help
Displays Program Information

Saves Current Configuration
Loads a Configuration

New Configuration

Opens
Advanced
Dialog Box

Link: Executes
Link Process
2-4 MCUEZLNK0508/D
For More Information On This Product,

 Go to: www.freescale.com

USER INTERFACE

e

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

2.2.2.4 Status Bar

Point at a menu entry or button in the Tool Bar to display the corresponding description in th
message field. The following illustration shows the MCUez Linker Status Bar.

Figure 2-4. MCUez Linker Status Bar

Current TimeMessage Field Status Bar
MCUEZLNK0508/D 2-5
For More Information On This Product,

 Go to: www.freescale.com

USER INTERFACE

ied

ese

.
ker

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

2.2.2.5 Linker Menu Bar

The following entries are available in the Menu Bar:

2.2.2.6 File Menu

A typical linker Configuration File contains the following information:

• The linker option settings specified in the Advanced Options Settings and Message
Settings dialogs.

• List of commands executed.

• Window position, size and font used.

• The editor associated with the Linker.

Linker Configuration information is stored in section [ELF_LINKER] in the specif
configuration file.

Configuration Files are ASCII files with a .ini extension. You can define as many of th
files as you need for any given project. You can switch between different Configuration Files
by choosing File|Load Configuration and File|Save Configuration in the Linker Menu Bar, or
by clicking the corresponding tool bar buttons.

• Choose File|Linker to open a standard Open File dialog box that displays a list of all
.PRM files in the project directory. Select the input file to be linked and click OK.

• Choose File|New/Default Configuration to reset the linker settings to the default values
Default linker options are specified in the Command Line Options chapter in the Lin
manual.

• Choose File|Load Configuration to open the Open File dialog box and display a list of all
.INI files in the project directory. Select a configuration file containing the data to be
loaded.

• Choose File|Save Configuration to store the current settings in the configuration file
specified on the title bar.

• Choose File|Save Configuration as ... to open a standard Save As dialog box and display a
list of all .INI files. Specify the name or location of the configuration file to store the
current settings. Click OK.

Menu entry Description

File Linker Configuration File management.

Linker Linker option settings.

View Linker Window settings.

Help Standard Windows Help menu.
2-6 MCUEZLNK0508/D
For More Information On This Product,

 Go to: www.freescale.com

USER INTERFACE

itial-

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

• Choose File|Configuration ... to specify an editor to be used for error feedback and
information to be saved in the configuration file.

• Global Editor (Configured by the Shell)

Figure 2-5. Configuration Dialog - Global Editor

This entry is enabled when an editor is configured in the [Editor] section of the global in
ization file "MCUTOOLS.INI" .
MCUEZLNK0508/D 2-7
For More Information On This Product,

 Go to: www.freescale.com

USER INTERFACE

ually

or the

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

• Local Editor (Configured by the Shell)

Figure 2-6. Configuration Dialog - Local Editor

This entry is enabled when an editor is configured in the local configuration file; us
"project.ini" in the project directory.

The Global and Local Editor can be configured with the Shell (see separate Manual f
Shell Tool).
2-8 MCUEZLNK0508/D
For More Information On This Product,

 Go to: www.freescale.com

USER INTERFACE

r error
n the

rt line

pports

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

• Editor started with Command Line

Figure 2-7. Configuration Dialog - Editor Started With Command Line

When this editor type is selected, a separate editor is associated with the Linker fo
feedback. Enter the command line to start the editor. Modifiers can be specified o
command line.

Example:

For Winedit 32-bit version use (with an adapted path to the winedit.exe file)

C:\WinEdit32\WinEdit.exe %f /#:%l

For Write.exe (with an adapted path to the Write.exe file, note that Write does not suppo
numbers).

C:\Winnt\System32\Write.exe %f

For Motpad.exe use (with an adapted path to the Motpad.exe file, note that Motpad su
line number).

C:\TOOLS\MOTPAD\MOTPAD.exe %f::%l
MCUEZLNK0508/D 2-9
For More Information On This Product,

 Go to: www.freescale.com

USER INTERFACE

or. All

’ is
open

ected.

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

• Editor started with DDE

Figure 2-8. Configuration Dialog - Editor Started With DDE

Enter the service, topic and client name to be used for a DDE connection to the edit
entries can have modifiers for file name and line number as explained below.

Example:

For Microsoft Developer Studio use the following setting :

Service Name : "msdev"

Topic Name : "system"

ClientCommand : "[open(%f)]"

• Modifiers

When either entry ‘Editor Started with the Command line’ or ‘Editor started with DDE
selected, the configurations may contain some modifiers to tell the editor which file to
and at which line.

• The %f modifier refers to the file name (including path) where the error has been det

• The %l modifier refers to the line number where the message has been detected.
2-10 MCUEZLNK0508/D
For More Information On This Product,

 Go to: www.freescale.com

USER INTERFACE

. Some
ual to

an be
lower,
tarted

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

The format from the editor command depends on the syntax used to start the editor
modifiers can be specified in the editor command line. Please check your editor man
define the command line which should be used to start the editor.

2.2.2.6.1 Important remarks

Caution should be taken using %l. This modifier can only be used with an editor that c
started with a line number as a parameter. Editors such as WinEdit version 3.1 or
Notepad, and Motpad do not allow this kind of parameter. This kind of editor can be s
using the file name as a parameter. Choose Go to to jump to the line containing the error.

The Command Line looks like:
 C:\WINAPPS\WINEDIT\Winedit.EXE %f

Check your editor manual to define the Command Line used to start the editor.
MCUEZLNK0508/D 2-11
For More Information On This Product,

 Go to: www.freescale.com

USER INTERFACE

 In the

uration

ration

mand
in the

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

NOTE

If you are using a word processing editor (Microsoft Word, Wordpad, ...),
save your input file as an ASCII text file.

2.2.2.6.2 Save Configuration Dialog

The second page of the configuration dialog contains options for the save operation.
save configuration dialog, configure the parts to be stored in a project file.

Figure 2-9. Save Configuration Dialog Window

This dialog box contains:

• Options: When set, the current option and message settings are stored in the config
file. Disable this option to retain the data last saved.

• Editor Configuration: When set, the current editor settings are stored in a configu
file. Disable this option to retain the data last saved.

• Appearance: Saves the window position (only loaded at startup time) and the com
line content and history. When this mark is set, these settings are saved
configuration file.
2-12 MCUEZLNK0508/D
For More Information On This Product,

 Go to: www.freescale.com

USER INTERFACE

ion
tion

oose

r
the

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

NOTE

By disabling selective options only parts of a configuration file can be
written. For example when the suitable editor is found, the save option
mark can be removed. Then future save commands will not modify the
editor setting.

• Save on Exit: If set, the Linker will write the configuration on exit. No confirmat
prompt will appear. If options have changed, the Linker will not write the configura
unless this option is set.

NOTE

Almost all settings are stored in the configuration file, except for the recently
used configuration list and all settings in this dialog.
These settings are stored in the [ELF_LINKER] section of the MCUTOOLS.INI
initialization file.

NOTE

Linker configurations can coexist in the same file as the project
configuration of the shell and other MCUez tools. When an editor is
configured by the shell, the linker can read the content from the project file,
if present. The project configuration file of the shell is named project.ini.
This file name is therefore also suggested (but not mandatory) to the
Linker.

2.2.2.7 Linker Menu

This menu allows you to customize the linker and set or reset linker options. Ch
Linker|Options to define the options for linking an input file (See section 2.2.3.9, Advanced
Options Dialog Box, in this chapter).

2.2.2.8 View Menu

This menu enables you to customize the Linker Window. You can define whether to display o
hide the Status Bar or Tool Bar. You can also define the font used in the window or clear
window.

• Choose View|Tool Bar to switch on/off the Linker Window Tool Bar.

• Choose View|Status Bar to switch on/off the Linker Window Status Bar.

• Choose View|Log ... to customize the output in the Linker Window Content Area.

• Choose View|Log ...|Change Font to open a standard Font Selection dialog box. Options
selected in this dialog are applied to the Linker Window Content Area.

• Choose View|Log ...|Clear Log to clear the Linker Window Content Area.
MCUEZLNK0508/D 2-13
For More Information On This Product,

 Go to: www.freescale.com

USER INTERFACE

ged in
s the

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

2.2.2.9 Advanced Options Dialog Box

This dialog box allows you to set/reset linker options. The options available are arran
different groups. A register card is available for each group. The following figure show
Advanced Options Dialog window.

Figure 2-10. Advanced Options Dialog Window

The content of the list box depends on the selected sheet:

A linker option is set when the corresponding check box is checked.

Option Group Description

Output Lists options related to generated output files (type of files to
be generated).

Input Lists options related to input files.

Messages Lists options controlling generation of error messages.
2-14 MCUEZLNK0508/D
For More Information On This Product,

 Go to: www.freescale.com

USER INTERFACE

vailable
eet.

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

NOTE

When options requiring additional parameters are selected, an edit box or
another window can be opened to set the additional parameters.

2.2.3 Message Settings Dialog Box

The following figure shows the Message Settings Dialog window.

Figure 2-11. Message Settings Dialog Window

This dialog box allows you to map messages to a different message class. A sheet is a
for each error message class and the content of the list box depends on the selected sh
MCUEZLNK0508/D 2-15
For More Information On This Product,

 Go to: www.freescale.com

USER INTERFACE

mber.

 of the
e class.
 click the

ge:

f you
alid.

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

The table below identifies and defines each message group.

Table 2-1. Message Group Definitions

Each message has its own character (‘L’ for Linker message) followed by a 4-5 digit nu
This number allows an easy search for the message both in the manual or online help.

2.2.3.1 Changing the Class Associated With a Message

You can configure your own mapping of messages in the different classes by using one
buttons located on the right hand side of the dialog box. Each button refers to a messag
To change the class associated with a message, select the message in the list box and
button associated with the class where you want to move the message.

Example

To define the message ‘L1201: No stack defined' (warning message) as an error messa

1. Click the Warning sheet to display the list of all warning messages in the list box.

2. Click on the string ‘L1201: No stack defined' in the list box to select the message.

3. Click Error to define this message as an error message.

Click on the 'OK' button to validate the modification to the error message mapping. I
close the dialog box with the 'Cancel' button, the previous message mapping remains v

Message Group Description

Disabled Lists all disabled messages. Messages displayed in the list box will
not be generated by the Linker.

Information Lists all information messages. Information messages depict action
taken by the Linker.

Warning Lists all warning messages. When such a message is generated,
linking continues and an absolute file is generated.

Error Lists all error messages. When such a message is generated, linking
of the input application continues but no absolute file will be
generated.

Fatal Lists all fatal error messages. When such a message is generated,
linking stops immediately.
2-16 MCUEZLNK0508/D
For More Information On This Product,

 Go to: www.freescale.com

USER INTERFACE

, the

the

 tool

e

ed in
 file
other

th the

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

2.2.3.2 Specifying the Input File

The input file to be linked can be specified in several ways. During the link session
options will be set according to the configuration set by the user in the Advanced Options
Settings dialog box. Before linking a file, ensure that you have associated a Project Directory
with your linker.

2.2.3.2.1 Using the Editable Combo Box in the Tool Bar

• Linking a New File - A new file name and additional linker options can be entered in
editable combo box. Click the Link button in the tool bar to link the specified file.

• Linking a File Which Has Already Been Linked - The command executed previously
can be displayed using the arrow on the right side of the editable combo box. Click a
command line to select it and display it in the combo box. Click the Link button in the
bar to assemble the specified file.

2.2.3.2.2 Using the Entry File | Link ...

Choose File|Link ..., to open a standard Open File dialog box. The desired file can then b
browsed. Click OK to link the selected file.

2.2.3.2.3 Using Drag and Drop

A file name can be dragged from another program (e.g., the File Manager) and dropped into
the Linker Window. The dropped file will be linked as soon as the mouse button is releas
the Linker Window. A dragged file with a .ini extension is considered to be a configuration
and it is loaded and not linked. To link a parameter file with a .ini extension use an
method.

2.2.4 Error Feedback

After a parameter file has been linked, you can detect error or warning locations wi
following error message format.

‘>> <FileName>, l ine < l ine number>, co l <column number>, pos
<absolute position in file>
<Portion of code generating the problem>
<message class> <message number>: <Message string>‘

Example

>> in "placemen\tstpla8.prm", line 23, col 0, pos 668
 fpm_data_sec INTO MY_RAM2;

END

ERROR L1110: MY_RAM2 appears twice in PLACEMENT block
MCUEZLNK0508/D 2-17
For More Information On This Product,

 Go to: www.freescale.com

USER INTERFACE

r
errors.

the

er in
g on
or and

n the
lly by

e file

creen.

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

2.2.4.1 Error Feedback Using Information From the Linker Window

Once a file has been linked, the Linker Window Content Area displays a list of all errors o
warnings detected. Any editor can then be used to open the source file and correct the

2.2.4.2 Error Feedback Using a User-Defined Editor

The editor for Error Feedback must first be configured using either the MCUez Shell or
Configuration dialog box.

2.2.4.2.1 Line Number Can be Specified on the Command Line

Motpad, WinEdit V95 or higher, Codewright, or Motpad can be started with a line numb
the command line. Properly configured editors will start automatically by double clickin
an error message. The configured editor will start and open the file containing the err
place the cursor on the line where the error occurred.

2.2.4.2.2 Line Number Cannot be Specified on the Command Line

WinEdit V31 or lower, Notepad, and Wordpad cannot be started with a line number i
command line. When correctly configured, these editors can be activated automatica
double clicking on an error message. The configured editor will start and open th
containing the error. To scroll to the error:

• Activate the linker again

• Click the line on which the message was generated. This line is highlighted on the s

• Copy the line to the clipboard pressing CTRL + C

• Activate the editor again.

• Select Search|Find, the standard Find dialog box is opened.

• Press CTRL + V to paste the line in the Edit box.

• Click Forward to jump to the detected error position.
2-18 MCUEZLNK0508/D
For More Information On This Product,

 Go to: www.freescale.com

ENVIRONMENT VARIABLES

of the
r, ...).

ment,
ile

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

CHAPTER 3

ENVIRONMENT VARIABLES

3.1 INTRODUCTION

This chapter describes environment variables used by the MCUez Linker. Some
environment variables are also used by other tools (e.g. Macro Assembler, Compile
Consult their respective manuals for more information.

3.2 SETTING PARAMETERS

Various linker parameters may be set with environment variables. The syntax is:

KeyName=ParamDefinition

NOTE

No blanks are allowed in the definition of an environment variable.

Example:

GENPATH=C:\INSTALL\LIB;D:\PROJECTS\TESTS;\usr\local\lib;

These parameters may be defined in several ways:

• Using system environment variables supported by your operating system.

• Putting the definitions in a file called DEFAULT.ENV (.hidefaults for UNIX) in the
project directory.

• Putting the definitions in a file given by the value of the system environment variable
ENVIRONMENT.

NOTE

The default directory mentioned above can be set via the system environment
variable DEFAULTDIR.

When looking for an environment variable, all programs first search the system environ
then the DEFAULT.ENV (.hidefaults for UNIX) file and finally the global environment f
given by ENVIRONMENT. If no definition can be found, a default value is assumed.
MCUEZLNK0508/D 3-1
For More Information On This Product,

 Go to: www.freescale.com

ENVIRONMENT VARIABLES

ist is

e
n the

ns of
ez

rent

sed for

to its
ally
e to

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

3.3 PATH VARIABLES

Most environment variables contain path lists indicating where to look for files. A path l
a list of directory names separated by semicolons; as follows:

DirSpec;DirSpec;DirSpec
*DirectoryName

Example:

GENPATH=C:\INSTALL\LIB;D:\PROJECTS\TESTS;\usr\local\lib;

If a directory name is preceded by an asterisk ("*"), the programs recursively search th
whole directory tree for a file, not just the given directory. Directories are searched i
order they appear in the path list.

Example:

LIBPATH=*C:\INSTALL\LIB

NOTE

Some DOS/UNIX environment variables (like GENPATH, LIBPATH, etc.) are
used. For further details refer to “Environment” chapter.

We strongly recommend working with MCUez Shell and setting the environment by mea
a DEFAULT.ENV file in your project directory. This project directory can be set in the MCU
Shell 'Configure...' dialog box. This way, you can have different projects in diffe
directories, each with its own environment.

For some environment variables a synonym also exists. These synonyms may be u
older releases of the linker and will be removed in the future.

3.3.1 LINKOPTIONS

Synonym: None

Syntax: "LINKOPTIONS=" {<option>}.

Arguments: <option>: Linker command line option

Description: If this environment variable is set, the linker appends its contents
command line each time a file is linked. It can be used to glob
specify certain options that should always be set, so you don’t hav
specify them each time a file is linked.

Example: LINKOPTIONS=-W2

See also: Linker options
3-2 MCUEZLNK0508/D
For More Information On This Product,

 Go to: www.freescale.com

ENVIRONMENT VARIABLES

he
ect
the
ble

 the
er
the

the
 is
here

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

3.3.2 GENPATH

Synonym: HIPATH

Syntax: "GENPATH=" {<path>}.

Arguments: <path>: Paths separated by semicolons, without spaces.

Description: The linker will look for the PRM file in the project directory, then in t
directories listed in the environment variable GENPATH. The obj
and library files specified in the linker PRM file are searched for in
project directory, then in directories listed in the environment varia
OBJPATH and finally in directories specified in GENPATH.

NOTE

If a directory specification in this environment variable starts with an asterisk
(“*”), the whole directory tree is searched recursively, i.e. all subdirectories are
also searched. Within one level in the tree, the search order of the subdirectories
is indeterminate (not valid for Win32).

Example: GENPATH=\obj;..\..\lib;

See also: None

3.3.3 OBJPATH

Synonym: None

Syntax: "OBJPATH=" {<path>}.

Arguments: <path>: Paths separated by semicolons, without spaces.

Description: When this environment variable is defined, the linker searches
project directory for the object and library files specified in the link
PRM file. The linker then searches the directories listed in
environment variable OBJPATH and GENPATH.

Example: OBJPATH=\sources\bin;..\..\headers;\usr\local\bin

3.3.4 ABSPATH

Synonym: None

Syntax: "ABSPATH=" {<path>}.

Arguments: <path>: Paths separated by semicolons, without spaces.

Description: When this environment variable is defined, the linker will store
absolute files it produces in the first directory specified. If ABSPATH
not set, the generated absolute files will be stored in the directory w
the parameter file was found.
MCUEZLNK0508/D 3-3
For More Information On This Product,

 Go to: www.freescale.com

ENVIRONMENT VARIABLES

the
s
 the

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Example: ABSPATH=\sources\bin;..\..\headers;\usr\local\bin

See also: None

3.3.5 TEXTPATH

Synonym: None

Syntax: "TEXTPATH=" {<path>}.

Arguments: <path>: Paths separated by semicolons, without spaces.

Description: When this environment variable is defined, the linker will store
MAP file it produces in the first directory specified. If TEXTPATH i
not set, the generated MAP file will be stored in the directory where
PRM file was found.

Example: TEXTPATH=\sources ..\..\headers;\usr\local\txt

See also: None
3-4 MCUEZLNK0508/D
For More Information On This Product,

 Go to: www.freescale.com

ENVIRONMENT VARIABLES

st be

te a
rds

cords

error

me

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

3.3.6 SRECORD

Synonym: None

Syntax: SRECORD=<RecordType>.

Arguments: <Record Type>: Force the type for the Motorola S record that mu
generated. This parameter value can be ‘S1’, ‘S2’ or ‘S3’.

Description: When this environment variable is defined, the linker will genera
Motorola S file containing records from the specified type (S1 reco
when S1 is specified, S2 records when S2 is specified and S3 re
when S3 is specified).

NOTE

If the environment variable SRECORD is set, it is the user responsibility to
specify the appropriate S record type. If you specify S1 while your code is
loaded above 0xFFFF, the Motorola S file generated will not be correct, as the
addresses will all be truncated to 2-byte values.

NOTE

When this variable is not set, the type of S record generated will depend on the
size of the address loaded. If the address can be coded on two bytes, a S1 record
is generated. If the address is coded on three bytes, a S2 record is generated.
Otherwise, a S3 record is generated.

Example: SRECORD=S2

See also: None

3.3.7 ERRORFILE

Synonym: None.

Syntax: ERRORFILE=<filename>

Arguments: <filename>: File name with format specifiers.

Description: The environment variable ERRORFILE specifies the name of the
file (used by the Linker).

Possible format specifiers are:

%n: Substitute with the file name, without the path.

%p: Substitute with the path of the source file.

%f: Substitute with the full file name, i. e. with the path and na
(same as %p%n).

In case of an illegal error file name, a notification box is displayed.
MCUEZLNK0508/D 3-5
For More Information On This Product,

 Go to: www.freescale.com

ENVIRONMENT VARIABLES

with
 the
 list

be

txt

ent

rrect
ile

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Example: ERRORFILE=MyErrors.err

Lists all errors in the file “MyErrors.err” in the project directory.

ERRORFILE=\tmp\errors

Lists all errors in the file “errors” in the directory \tmp.

ERRORFILE=%f.err

Lists all errors in a file with the same name as the source file, but
extension .err. The error file is placed in the same directory as
source file. For example, if we link a file \sources\test.prm, an error
file \sources\test.err will be generated.

ERRORFILE=\dir1\%n.err

For a source file test.prm, an error list file \dir1\test.err will
generated.

ERRORFILE=%p\errors.txt

For a source file \dir1\dir2\test.prm, an error list file \dir1\dir2\errors.
will be generated.

If the environment variable ERRORFILE is not set, the errors are
written to the default error file. The default error file name is depend
upon how the assembler is configured and started. If a file name is
provided in the assembler command line, errors are written to the
EDOUT file (to the name-specified file) in the project directory. If no
file name is provided, errors are written to the ERR.TXT file in the
project directory.

Example: Another example shows the usage of this variable to support co
error feedback with the WinEdit Editor which looks for an error f
called EDOUT:

Installation directory: E:\INSTALL\PROG
Project sources: D:\MEPHISTO
Common Sources for projects: E:\CLIB

Entry in default.env (D:\MEPHISTO\DEFAULT.ENV):
ERRORFILE=E:\INSTALL\PROG\EDOUT

Entry in WINEDIT.INI (in Windows directory):
OUTPUT=E:\INSTALL\PROG\EDOUT

See also: None
3-6 MCUEZLNK0508/D
For More Information On This Product,

 Go to: www.freescale.com

FILES

st that
e
SCII

t code
 the
 file
en to
nsion

an be
ions
on the

If this
e was

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

CHAPTER 4

FILES

4.1 INTRODUCTION

The following sections describe the files used and generated by the MCUez Linker.

4.2 PARAMETER FILE: INPUT

The linker takes any file as input. No special extension is required. However, we sugge
parameter file names have the extension .prm . Parameter files will be searched first in th
project directory and then in the GENPATH directories. The parameter file must be an A
text file.

4.3 ABSOLUTE FILES: OUTPUT

After a successful link session, the linker generates an absolute file containing the targe
as well as some debugging information. This file is written to the directory given in
environment variable ABSPATH. If the variable contains more than one path, the absolute
is written to the first directory specified. If this variable is not set, the absolute file is writt
the directory where the parameter file was found. Absolute files always get the exte
.abs .

4.4 MOTOROLA S FILES: OUTPUT

After a successful link session, the linker generates a Motorola S record file, which c
burnt into an EPROM. This file contains information stored in all the READ_ONLY sect
in the application. The extension for the generated Motorola S record file depends
setting from the SRECORD variable.

• If SRECORD = S1, the Motorola S record file gets the extension .s1 .

• If SRECORD = S2, the Motorola S record file gets the extension .s2 .

• If SRECORD = S3, the Motorola S record file gets the extension .s3 .

• If SRECORD is not set, the Motorola S record file gets the extension .sx .

This file is written to the directory given in the environment variable ABSPATH. If the variable
contains more than one path, the S record file is written to the first directory specified.
variable is not set, the S record file is written to the directory where the parameter fil
found.
MCUEZLNK0508/D 4-1
For More Information On This Product,

 Go to: www.freescale.com

FILES

about
the
 is
 the

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

4.5 MAP FILES

After a successful link session, the linker generates a MAP file containing information
the link process (see figure below). This file is written to the directory given in
environment variable TEXTPATH. If the variable contains more than one path, the MAP file
written to the first directory specified. If this variable is not set, the MAP file is written to
directory where the parameter file was found. MAP files always get the extension .map .

Figure 4-1. Link Process Conceptual Diagram

Linker

 “.o”1.current dir
2.GENPATH

 ERRORFILE

ERR.TXT EDOUT

.abs

1.current dir
2. OBJPATH
3.GENPATH

1.ABSPAT
H
2.Source

.prm
 “.lib”
 “.abs”

.sx or
.map 1.TEXTPAT

H
2.Source
4-2 MCUEZLNK0508/D
For More Information On This Product,

 Go to: www.freescale.com

LINKER OPTIONS AND ISSUES

 are
 not
 Linker
ally,

its
ecify

e linker
ns.

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

CHAPTER 5

LINKER OPTIONS AND ISSUES

5.1 INTRODUCTION

The MCUez Linker offers a number of options to control linker operation. Options
composed of a minus/dash (‘-’) followed by one or more letters or digits. Anything
starting with a dash/minus is assumed to be the name of a parameter file to be linked.
options may be specified on the command line or in the LINKOPTIONS variable. Typic
each option is specified once per linking session.

NOTE

Arguments for an option must not exceed 128 characters.

Command line options are not case sensitive. For example, "–o=test.abs " is the same as
"–O=TEST.ABS".

When the LINKOPTIONS variable is set, the linker appends the variable settings to
command line each time a new file is linked. This variable can be used to globally sp
options that should always be set. The remainder of this section describes each of th
options. The options are listed in alphabetical order and divided into the following sectio

Table 5-1. MCUez Linker Options Descriptions

Topic Description

Syntax Specifies the syntax of the option in an EBNF format.

Arguments Describes and lists optional and required arguments.

Default Shows the default setting for the option.

Description Provides a detailed description of the option and how to use it.

Example Gives an example of usage and effects where possible. Linker
settings, source code and/or Linker PRM files are displayed where
applicable. The examples show an entry in the default.env file
for PC or in the .hidefaults for UNIX.

See also Names related options.
MCUEZLNK0508/D 5-1
For More Information On This Product,

 Go to: www.freescale.com

LINKER OPTIONS AND ISSUES

e the

n the
ing

king

d.

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

5.2 -E LINKER OPTION

-E: Define Application Entry Point

Syntax: "-E=" <FunctionName>.

Arguments: <FunctionName>: Name of the function, which is considered to b
entry point in the application.

Default: none.

Description: This option specifies the name of the application entry point. Whe
entry point is located in an assembly object file, the correspond
symbol must be a global symbol (Specified in an XDEF directive).

Example: LINKOPTIONS=-E=entry

This is the same as using the command:

INIT entry

in the PRM file

See also: Command INIT

5.3 -O LINKER OPTION

-O: Define Absolute File Name

Syntax: "-O=" <FileName>

Arguments: <fileName>: Name of the absolute file to be generated by the lin
session.

Default: None.

Description: This option defines the name of the ABS file that must be generate

Example: LINKOPTIONS=-O=test.abs

This is the same as using the command:

LINK test.abs

in the PRM file

See also: Command LINK
5-2 MCUEZLNK0508/D
For More Information On This Product,

 Go to: www.freescale.com

LINKER OPTIONS AND ISSUES

link

olute

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

5.4 -M LINKER OPTION

-M: Generate MAP File

Syntax: "-M"

Arguments: None.

Default: None.

Description: This option forces generation of a MAP file after a successful
session.

Example: LINKOPTIONS=-M

This is the same as using the command:

MAPFILE ALL

in the PRM file

See also: Command MAPFILE

5.5 -S LINKER OPTION

-S: Do not generate DWARF Information

Syntax: "-S"

Arguments: None.

Default: None.

Description: This option disables the generation of DWARF sections in the abs
file. This will reduce the amount of memory used on your PC.

Example: LINKOPTIONS=-S

See also: None

NOTE

If the absolute file does not contain DWARF information, you will not be able to
debug it.
MCUEZLNK0508/D 5-3
For More Information On This Product,

 Go to: www.freescale.com

LINKER OPTIONS AND ISSUES

OR

nly

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

5.6 -V LINKER OPTION

-V: Prints the Linker Version

Syntax: "-V".

Arguments: None.

Default: None.

Description: Prints the Linker version and the project directory.

Example: -V produces the following list:

Directory: D:\mcuez\PROG
MCUez ELF Linker V-1.0.29
CCPP User Interface Module, V-1.0.4, Date Jul 18 1997

See also: None.

NOTE

This option can be used to determine the project directory.

5.7 -W1 LINKER OPTION

-W1: No Information Messages

Syntax: "-W1"

Arguments: None.

Default: None.

Description: Suppresses all INFORMATION messages; WARNING and ERR
messages are printed.

Example: LINKOPTIONS=-W1

See also: None

5.8 -W2 LINKER OPTION

-W2: No Information and Warning Messages

Syntax: "-W2".

Arguments: None.

Default: None.

Description: Suppresses all INFORMATION and WARNING messages, o
ERRORs are printed.

Example: LINKOPTIONS=-W2

See also: None
5-4 MCUEZLNK0508/D
For More Information On This Product,

 Go to: www.freescale.com

LINKER OPTIONS AND ISSUES

gning
uch an

board

er one

 for the

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

5.9 LINKING ISSUES

The following sections identify specific application issues for the MCUez Linker.

5.9.1 Object Allocation

Object allocation is performed through the SEGMENTS and PLACEMENT blocks.

5.9.1.1 The SEGMENTS Block

The segments block is optional. It increases readability of the linker input file by assi
meaningful names to contiguous memory areas on the target board. Memory within s
area share common attributes:

• Qualifier

• Alignment Rules

• Filling Character

 Two types of segments can be defined:

• Physical Segments

• Virtual Segments

Physical segments are closely related to hardware memory areas.

For example, there may be one READ_ONLY segment for each bank of the target
ROM area and another one covering the RAM area.

Example:

Using the small memory model you can define a segment for the RAM area and anoth
for the ROM area.

 LINK test.abs
 NAMES test.o startup.o END
 SEGMENTS
 RAM_AREA = READ_WRITE 0x00000 TO 0x07FFF;
 ROM_AREA = READ_ONLY 0x08000 TO 0x0FFFF;
 END
 PLACEMENT
 .data INTO RAM_AREA;
 .text INTO ROM_AREA;
 END
 STACKSIZE 0x50

Using the banked memory model you can define a segment for the RAM area, another
non-banked ROM area, and one for each target processor bank.

 LINK test.abs
 NAMES test.o startup.o END
MCUEZLNK0508/D 5-5
For More Information On This Product,

 Go to: www.freescale.com

LINKER OPTIONS AND ISSUES

ing of

 for the

s all

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

 SEGMENTS
 RAM_AREA = READ_WRITE 0x00000 TO 0x07FFF;
 NON_BANKED_AREA = READ_ONLY 0x0C000 TO 0x0FFFF;
 BANK0_AREA = READ_ONLY 0x08000 TO 0x0BFFF;
 BANK1_AREA = READ_ONLY 0x18000 TO 0x1BFFF;
 BANK2_AREA = READ_ONLY 0x28000 TO 0x2BFFF;
 END
 PLACEMENT
 .data INTO RAM_AREA;
 .init, .startData,
 .rodata1,
 NON_BANKED, .copy INTO NON_BANKED_AREA;
 .text INTO BANK0_AREA, BANK1_AREA,
 BANK2_AREA;
 END
 STACKSIZE 0x50

A physical segment may be split into several virtual segments, allowing a better structur
object allocation and taking advantage of some processor specific properties.

Example:

In the small memory model you can define a segment for the direct page area, another
rest of the RAM area, and another one for the ROM area.

 LINK test.abs
 NAMES test.o startup.o END

 SEGMENTS
 DIRECT_RAM = READ_WRITE 0x00000 TO 0x000FF;
 RAM_AREA = READ_WRITE 0x00100 TO 0x07FFF;
 ROM_AREA = READ_ONLY 0x08000 TO 0x0FFFF;
 END
 PLACEMENT
 myRegister INTO DIRECT_RAM;
 .data INTO RAM_AREA;
 .text INTO ROM_AREA;
 END
 STACKSIZE 0x50

5.9.1.1.1 Segment Qualifier

Different qualifiers are available for segments. The following table identifies and define
available qualifiers.
5-6 MCUEZLNK0508/D
For More Information On This Product,

 Go to: www.freescale.com

LINKER OPTIONS AND ISSUES

 HC12,
e can

 for a
r and

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Table 5-2. Segment Qualifier Descriptions

5.9.1.1.2 Segment Alignment

The default alignment rule depends on the processor and memory model used. The
HC08, and HC05 processors do not require alignment for code or data objects. On
choose to define their own alignment rule for a segment. The alignment rule defined
segment block overrides the default alignment rules associated with the processo
memory model.

Qualifier Meaning

READ_ONLY Qualifies a segment, where read only access is allowed. Objects within
such a segment are initialized at application loading time.

READ_WRITE Qualifies a segment, where read and write accesses are allowed. Objects
within such a segment are initialized at application startup. This is only
the case when linking a High Level Language (ANSI C or C++)
application.

NO_INIT Qualifies a segment, where read and write accesses are allowed. Objects
within such a segment remain unchanged during application startup. This
qualifier may be used for segments refering to a battery backed RAM.
Sections placed in a NO_INIT segment should not contain an initialized
variable (variable defined as ‘int c = 8’).This is only the case when linking
a High Level Language (ANSI C or C++) application.

PAGED Qualifies a segment, where read and write accesses are allowed. Objects
within such a segment remain unchanged during application startup.
Additionally, objects located in two PAGED segments may overlap. This
qualifier is used for memory areas, where some user defined page
switching mechanism is required. Sections placed in a NO_INIT segment
should not contain an initialized variable (variable defined as ‘int c =
8’).This is only the case when linking a High Level Language (ANSI C or
C++) application.
MCUEZLNK0508/D 5-7
For More Information On This Product,

 Go to: www.freescale.com

LINKER OPTIONS AND ISSUES

ry, all

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

 The alignment rule has the following format:

 [defaultAlignment] {“[“ObjSizeRange”:”alignment”]”}

Table 5-3. Segment Alignment Rule Format

 Example:

 LINK test.abs
 NAMES test.o startup.o END

 SEGMENTS
 DIRECT_RAM = READ_WRITE 0x00000 TO 0x000FF
 ALIGN 2 [< 2: 1];
 RAM_AREA = READ_WRITE 0x00100 TO 0x07FFF
 ALIGN [1:1] [2..3:2] [>=4:4];
 ROM_AREA = READ_ONLY 0x08000 TO 0x0FFFF;
 END
 PLACEMENT
 myRegister INTO DIRECT_RAM;
 .data INTO RAM_AREA;
 .text INTO ROM_AREA;
 END
 STACKSIZE 0x50

 In previous example:

• In segment DIRECT_RAM, objects whose size is 1 byte are aligned on byte bounda
other objects are aligned on 2-byte boundary.

Item Description

defaultAlignment The alignment value for all objects that do not match the conditions of a range
defined afterward.

ObjSizeRange Defines a certain condition. The condition has the form:

 size : rule applies to objects, where size is equal to ‘size’

 < size : rule applies to objects, where size is smaller than ‘size’

 > size: rule applies to objects, where size is bigger than ‘size’

 <= size: rule applies to objects, where size is smaller or equal to ‘size’

 >= size: rule applies to objects, where size is bigger or equal to ‘size’

From size1 to size2: the rule applies to objects, where size is greater or equal
to ‘size1’ and smaller or equal to ‘size2’.

alignment Defines the alignment value for objects matching the condition defined in the
current alignment block (enclosed in square brackets).
5-8 MCUEZLNK0508/D
For More Information On This Product,

 Go to: www.freescale.com

LINKER OPTIONS AND ISSUES

l to 2

e your
s the
nly

A.

y area
ctions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

• In segment RAM_AREA, 1 byte objects are aligned on byte boundary, objects equa
or 3 bytes are aligned on 2-byte boundary, all other objects are aligned on 4-byte
boundary.

• Default alignment rule applies to the ROM_AREA segment.

5.9.1.1.3 Segment Fill Pattern

The default fill pattern for code and data segments is the null character. You can defin
own fill pattern for a segment. The fill pattern definition in the segment block override
default fill pattern. A fill pattern can be defined for the READ_WRITE memory area o
when linking a high level language (ANSI C, C++) application.

 Example:

 LINK test.abs
 NAMES test.o startup.o END

 SEGMENTS
 DIRECT_RAM = READ_WRITE 0x00000 TO 0x000FF
 FILL 0xAA;
 RAM_AREA = READ_WRITE 0x00100 TO 0x07FFF
 FILL 0x22;
 ROM_AREA = READ_ONLY 0x08000 TO 0x0FFFF;
 END
 PLACEMENT
 myRegister INTO DIRECT_RAM;
 .data INTO RAM_AREA;
 .text INTO ROM_AREA;
 END
 STACKSIZE 0x50

 In previous example:

• In segment DIRECT_RAM, alignment bytes between objects are initialized with 0xA

• In segment RAM_AREA, alignment bytes between objects are initialized with 0x22.

• In segment ROM_AREA, alignment bytes between objects are initialized with 0x00.

5.9.1.2 PLACEMENT Block

The placement block allows you to physically place each section in a specific memor
(segment). The sections specified in a PLACEMENT block may be linker-predefined se
or user sections specified in one of the source files used to build the application.

 A programmer may decide to organize data into sections:

• to enhance application structure

• to ensure that common purpose data is grouped together

• to take advantage of target processor specific addressing mode.
MCUEZLNK0508/D 5-9
For More Information On This Product,

 Go to: www.freescale.com

LINKER OPTIONS AND ISSUES

located

 first,
ec2.

en

 used in
til this
til all

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

5.9.1.2.1 Specifying a List of Sections

When several sections are specified on a PLACEMENT statement, the sections are al
in the sequence they are listed.

Example:

 LINK test.abs
 NAMES test.o startup.o END

 SEGMENTS
 RAM_AREA = READ_WRITE 0x00100 TO 0x002FF;
 STK_AREA = READ_WRITE 0x00300 TO 0x003FF;
 ROM_AREA = READ_ONLY 0x08000 TO 0x0FFFF;
 END
 PLACEMENT
 .data, dataSec1,
 dataSec2 INTO RAM_AREA;
 .text, myCode INTO ROM_AREA;
 .stack INTO STK_AREA;
 END

 In previous example:

• Inside of segment RAM_AREA, the objects defined in the .data section are allocated
then objects defined in section dataSec1 and finally objects defined in section dataS

• Inside of segment ROM_AREA, objects defined in the .text section are allocated, th
objects defined in section myCode.

NOTE

Since the linker is case sensitive, section names specified in the PLACEMENT
block must be valid predefined or user defined sections. Sections DataSec1 and
dataSec1 are different sections.

5.9.1.2.2 Specifying a List of Segments

When several segments are specified on a PLACEMENT statement, the segments are
the sequence they are listed. Allocation is performed for the first segment in the list, un
segment is full. Then allocation continues for the next segment in the list, an so on un
objects are allocated.

Example:

LINK test.abs
 NAMES test.o startup.o END
 SEGMENTS
 RAM_AREA = READ_WRITE 0x00100 TO 0x002FF;
 STK_AREA = READ_WRITE 0x00300 TO 0x003FF;
 NON_BANKED_AREA = READ_ONLY 0x0C000 TO 0x0FFFF;
5-10 MCUEZLNK0508/D
For More Information On This Product,

 Go to: www.freescale.com

LINKER OPTIONS AND ISSUES

.

s are

to the

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

 BANK0_AREA = READ_ONLY 0x08000 TO 0x0BFFF;
 BANK1_AREA = READ_ONLY 0x18000 TO 0x1BFFF;
 BANK2_AREA = READ_ONLY 0x28000 TO 0x2BFFF;
 END
 PLACEMENT
 .data INTO RAM_AREA;
 .stack INTO STK_AREA;
 .init, .startData,
 .rodata1,
 NON_BANKED, .copy INTO NON_BANKED_AREA;
 .text INTO BANK0_AREA, BANK1_AREA,
 BANK2_AREA;
 END

 In previous example:

• Functions implemented in section .text are allocated first in segment BANK0_AREA
When memory for this segment is filled, allocation continues in segment
BANK_1_AREA, then in BANK2_AREA.

NOTE

Since the linker is case sensitive, segment names specified in the PLACEMENT
block must be valid segment names defined in the SEGMENTS block. Segments
Ram_Area and RAM_AREA are different segments.

5.9.2 Allocating User-Defined Sections

Not all sections need to be listed in the PLACEMENT block. Segments in which section
allocated, depends on the type of section.

• Sections containing data are allocated next to the .data section.

• Sections containing code, constant variables, or string constants are allocated next
.text section.

In the segment where .data is placed, allocation is performed as follows:

• Objects from section .data are allocated

• Objects from section .bss are allocated (if .bss is not specified in the PLACEMENT
block).

• Objects from the first user defined data section, which is not specified in the
PLACEMENT block, are allocated.

• Objects from the next user defined data section, which is not specified in the
PLACEMENT block, are allocated.

• and so on until all user defined data sections are allocated.
MCUEZLNK0508/D 5-11
For More Information On This Product,

 Go to: www.freescale.com

LINKER OPTIONS AND ISSUES

ENT

T

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

• If the section .stack is not specified in the PLACEMENT block and is defined with a
STACKSIZE command, the stack is allocated.

Allocation in the segment where .text is placed is performed as follows:

• Objects from section .init are allocated (if .init is not specified in the PLACEMENT
block).

• Objects from section .startData are allocated (if .startData is not specified in the
PLACEMENT block).

• Objects from section .text are allocated.

• Objects from section .rodata are allocated (if .rodata is not specified in the PLACEM
block).

• Objects from section .rodata1 are allocated (if .rodata1 is not specified in the
PLACEMENT block).

• Objects from the first user defined code section, which is not specified in the
PLACEMENT block, are allocated.

• Objects from the next user defined code section, which is not specified in the
PLACEMENT block, are allocated.

• and so on until all user defined code sections are allocated.

• Objects from section .copy are allocated (if .copy is not specified in the PLACEMEN
block).

.data .bss user data
section 1

user data
section 2

user data
section n .stack

.init .start- rodata1
user
sec. 1

user
sec. n.text .rodata .copy

Data
5-12 MCUEZLNK0508/D
For More Information On This Product,

 Go to: www.freescale.com

OPERATING PROCEDURES

n be
RM

alid
alid in
ifferent

tine.

the
 in the
 and
annot

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

CHAPTER 6

 OPERATING PROCEDURES

6.1 INTRODUCTION

 This chapter defines operating procedures for the MCUez Linker application.

6.2 INITIALIZING THE VECTOR TABLE

The following sections describe how to initialize the vector table. The vector table ca
initialized in the assembly source file or in the linker parameter file. Initialization in the P
file is recommended.

6.2.1 VECTOR Command

This command initializes the vector table. The syntax “VECTOR <Number>” is only v
when the vector table starts at address 0x0000. The syntax VECTOR ADDRESS is v
any case. The size of entries in the vector table depends on the target processor. D
syntaxes are available for the VECTOR command (Table 6-1).

Table 6-1. VECTOR Command Syntax

 The last syntax may be very useful, when working with a common interrupt service rou

6.2.1.1 Initializing the Vector Table in the Linker PRM File

Initializing the vector table from the PRM file allows you to initialize single entries in
table (shown in the example below). The user can decide whether to initialize all entries
vector table or not. The labels or functions, must be inserted in the vector table
implemented in the assembly source file. All labels must be published otherwise they c
be addressed in the linker PRM file.

Command Meaning

VECTOR ADDRESS 0xFFFE 0x1000 Indicates that the value 0x1000 must be stored at
address 0xFFFE

VECTOR ADDRESS 0xFFFE FName Indicates that the address of the FName function must
be stored at address 0xFFFE

VECTOR ADDRESS 0xFFFE FName + 2 Indicates that the address of the FName function
incremented by 2 must be stored at address 0xFFFE
MCUEZLNK0508/D 6-1
For More Information On This Product,

 Go to: www.freescale.com

OPERATING PROCEDURES

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Example for HC08:

 XDEF IRQFunc, SWIFunc, ResetFunc
DataSec: SECTION
Data: DS.W 5 ; Each interrupt increments another element of table.
CodeSec: SECTION
; Implementation of the interrupt functions.
IRQ1Func:
 LDA #0
 BRA int
SWIFunc:
 LDA #4
 BRA int
ResetFunc:
 LDA #8
 BRA entry
int:
 PSHH
 LDHX #Data ; Load address of symbol Data in X
 ; X <- address of the appropriate element in the table
Ofset: TSTA
 BEQ Ofset3
Ofset2:
 AIX #$1
 DECA
 BNE Ofset2
Ofset3:
 INC 0, X ; The table element is incremented
 PULH
 RTI
entry:
 LDHX #$0E00 ; Init Stack Pointer to $E00-$1=$DFF
 TXS
 CLRX
 CLRH

 CLI ; Enables interrupts

loop: BRA loop
6-2 MCUEZLNK0508/D
For More Information On This Product,

 Go to: www.freescale.com

OPERATING PROCEDURES

k when
ers it is
s the
st be
and

point
RESS
n at

n

ble be

ted in
e file in

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

NOTE

The functions ‘IRQFunc’, ‘XIRQFunc’, ‘SWIFunc’, ‘OpCodeFunc’, and
‘ResetFunc’ are published. This is required, because they are referenced in the
linker PRM file.

The HC08 processor automatically pushes the PC, X, A, and CCR registers on the stac
an interrupt occurs. The interrupt function does not need to save and restore the regist
using. To maintain compatibility with the M6805 Family, the H register is not stacked, it i
user’s responsibility to save and restore it prior to returning. All interrupt functions mu
terminated with an RTI instruction. The vector table is initialized using the linker comm
VECTOR ADDRESS.

Example:

LINK test.abs
NAMES
 test.o
END
SEGMENTS
 MY_ROM = READ_ONLY 0x0800 TO 0x08FF;
 MY_RAM = READ_WRITE 0x0B00 TO 0x0CFF;
 MY_STACK = READ_WRITE 0x0D00 TO 0x0DFF;
END
PLACEMENT
 .data INTO MY_RAM;
 .text INTO MY_ROM;
 .stack INTO MY_STACK;
END
INIT ResetFunc
VECTOR ADDRESS 0xFFF8 IRQ1Func
VECTOR ADDRESS 0xFFFC SWIFunc
VECTOR ADDRESS 0xFFFE ResetFunc

The statement ‘INIT ResetFunc’ defines the application entry point. Usually, this entry
is initialized with the same address as the reset vector. The statement ‘VECTOR ADD
0xFFF2 IRQFunc’ specifies that the address of function ‘IRQFunc’ should be writte
address 0xFFF2.

6.2.1.2 Initializing the Vector Table in the Assembly Source File Using a Relocatable Sectio

Initializing the vector table in the assembly source file requires that all entries in the ta
initialized. Unused interrupts must be associated with a standard handler.

The labels or functions, which should be inserted in the vector table, must be implemen
one of the assembler source files. The vector table can be defined in an assembly sourc
an additional section containing constant variables.
MCUEZLNK0508/D 6-3
For More Information On This Product,

 Go to: www.freescale.com

OPERATING PROCEDURES

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Example for HC08:

 XDEF ResetFunc
DataSec: SECTION
Data: DS.W 5 ; Each interrupt increments an element of the
table.
CodeSec: SECTION
; Implementation of the interrupt functions.
IRQ1Func:
 LDA #0
 BRA int
SWIFunc:
 LDA #4
 BRA int
ResetFunc:
 LDA #8
 BRA entry
DummyFunc:
 RTI
int:
 PSHH
 LDHX #Data ; Load address of symbol Data in X
 ; X <- address of the appropriate element in the tab
Ofset: TSTA
 BEQ Ofset3
Ofset2:
 AIX #$1
 DECA
 BNE Ofset2
Ofset3:
 INC 0, X ; The table element is incremented
 PULH
 RTI
entry:
 LDHX #$0E00 ; Init Stack Pointer to $E00-$1=$DFF
 TXS
 CLRX
 CLRH
 CLI ; Enables interrupts
loop: BRA loop
VectorTable: SECTION
; Definition of the vector table.
IRQ1Int: DC.W IRQ1Func
IRQ0Int: DC.W DummyFunc
SWIInt: DC.W SWIFunc
ResetInt: DC.W ResetFunc
6-4 MCUEZLNK0508/D
For More Information On This Product,

 Go to: www.freescale.com

OPERATING PROCEDURES

 word
nt’ is
ith

st be
ction.

e non-

 linker

 for
table
ll be
FFA,

ement
RM
. The

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Each constant in the section ‘VectorTable’ is defined as a word (2 Byte constant). Each
entry in the vector table is 16 bits wide. In the previous example, the constant ‘IRQ1I
initialized with the address of the label ‘IRQ1Func’. The constant ‘SWIInt’ is initialized w
the address of the label ‘SWIFunc’. All labels specified as an initialization value mu
defined, published (using XDEF), or imported (using XREF) before the vector table se
Forward referencing is not allowed in the DC directive.

When developing a banked application, ensure that interrupt functions are located in th
banked memory area.

The section should now be placed at the expected address. This is performed in the
parameter file, shown in the example below.

Example:

LINK test.abs
NAMES
 test.o
END
SEGMENTS
 MY_ROM = READ_ONLY 0x0800 TO 0x08FF;
 MY_RAM = READ_WRITE 0x0B00 TO 0x0CFF;
 MY_STACK = READ_WRITE 0x0D00 TO 0x0DFF;
/* Define the memory range for the vector table */
 Vector = READ_ONLY 0xFFF8 TO 0xFFFF;
END
PLACEMENT
 .data INTO MY_RAM;
 .text INTO MY_ROM;
 .stack INTO MY_STACK;
/* Place the section 'VectorTable' at the appropriated address. */
 VectorTable INTO Vector;
END
INIT ResetFunc
ENTRIES
 *
END

The statement ‘Vector = READ_ONLY 0xFFF8 TO 0xFFFF’ defines the memory range
the vector table. The statement ‘VectorTable INTO Vector’ specifies that the vector
should be loaded in the read only memory area Vector. The constant ‘IRQ1Int’ wi
allocated at address 0xFFF8, the constant ‘XIRQ0Int’ will be allocated at address 0xF
and so on. The constant ‘ResetInt’ will be allocated at address 0xFFFE. The stat
‘ENTRIES * END’ switches smart linking OFF. If this statement is missing from the P
file, the vector table will not be linked with the application; because it is never referenced
smart linker only links the objects referenced in the absolute file.
MCUEZLNK0508/D 6-5
For More Information On This Product,

 Go to: www.freescale.com

OPERATING PROCEDURES

ble be
ctions

s. The
aining

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

6.2.1.3 Initializing the Vector Table in the Assembly Source File Using an Absolute Section

Initializing the vector table in the assembly source file requires that all entries in the ta
initialized. Unused interrupts must be associated with a standard handler. Labels or fun
inserted in the vector table must be implemented in one of the assembly source file
vector table can be defined in an assembly source file in an additional section cont
constant variables, shown in the example below.

Example for HC08:

 XDEF ResetFunc
DataSec: SECTION
Data: DS.W 5 ; Each interrupt increments an element of the
table.
CodeSec: SECTION
; Implementation of the interrupt functions.
IRQ1Func:
 LDA #0
 BRA int
SWIFunc:
 LDA #4
 BRA int
ResetFunc:
 LDA #8
 BRA entry
DummyFunc:
 RTI
int:
 PSHH
 LDHX #Data ; Load address of symbol Data in X
 ; X <- address of the appropriate element in the tab
Ofset: TSTA
 BEQ Ofset3
Ofset2:
 AIX #$1
 DECA
 BNE Ofset2
Ofset3:
 INC 0, X ; The table element is incremented
 PULH
 RTI
entry:
 LDHX #$0E00 ; Init Stack Pointer to $E00-$1=$DFF
 TXS
 CLRX
 CLRH
 CLI ; Enables interrupts

loop: BRA loop
6-6 MCUEZLNK0508/D
For More Information On This Product,

 Go to: www.freescale.com

OPERATING PROCEDURES

 entry
t’ is
stant
 an
EF)
 The
8.

e non-
 This is

 the
ot a

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

 ORG $FFF8
; Definition of the vector table in an absolute section
; starting at address $FFF8.
IRQ1Int: DC.W IRQ1Func
IRQ0Int: DC.W DummyFunc
SWIInt: DC.W SWIFunc
ResetInt: DC.W ResetFunc

Each constant in the section ‘VectorTable’ is defined as a word (2 Byte constant). Each
in the vector table is 16 bits wide. In the previous example, the constant ‘IRQ1In
initialized with the address of the label ‘IRQ1Func’. In the previous example, the con
‘SWIInt’ is initialized with the address of the label ‘SWIFunc’. All labels specified as
initialization value must be defined, published (using XDEF), or imported (using XR
before the vector table section. Forward referencing is not allowed in DC directive.
statement ‘ORG $FFF8‘ specifies that the following section must start at address $FFF

When developing a banked application, ensure that interrupt functions are located in th
banked memory area. The section should now be placed at the expected address.
performed in the linker parameter file, shown in the following example.

 Example:

 LINK test.abs
 NAMES
 test.o
 END
 SEGMENTS
 MY_ROM = READ_ONLY 0x0800 TO 0x08FF;
 MY_RAM = READ_WRITE 0x0A00 TO 0x0BFF;
 END
 PLACEMENT
 .data INTO MY_RAM;
 .text INTO MY_ROM;
 END
 INIT ResetFunc
 ENTRIES
 *
 END

The statement ‘ENTRY * END’ switches smart linking OFF. If this statement is missing in
PRM file, the vector table will not be linked with the application. The vector table is n
referenced entity. The linker links referenced objects only in the absolute file.
MCUEZLNK0508/D 6-7
For More Information On This Product,

 Go to: www.freescale.com

OPERATING PROCEDURES

 in the

 with

ful to
e final
 been
ith the

c2 are

tants)
he

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

6.3 SMART LINKING

Smart linking links referenced objects with the application. Application entry points are:

• The application init function

• The functions or constants located in an absolute section (section defined with ORG
assembly source file)

• The function specified in a VECTOR command.

All previously listed entry points and the objects they referenced are automatically linked
the application. You can specify additional entry points using the ENTRIES command in the
PRM file.

6.3.1 Mandatory Linking From an Object

You can choose to link non-referenced objects in your application. This may be use
ensure that a software version number is linked with the application and stored in th
product EPROM. This may also be useful to ensure that a vector table, which has
defined as a constant table of function pointers or as a constant section, is linked w
application.

 Example :

 ENTRIES
 myVar1 myVar2 myProc1 myProc2
 END

 In this example, the variables myVar1 and myVar2, and functions myProc1 and myPro
specified to be additional entry points in the application.

6.3.2 Mandatory Linking From All Objects Defined in a File

You can choose to link all objects defined in a specified object file.

 Example :

 ENTRIES
 myFile1.o:* myFile2.o:*
 END

In this example, all objects (functions, variables, constant variables or string cons
defined in myFile1.o and myFile2.o are specified as additional entry points in t
application.
6-8 MCUEZLNK0508/D
For More Information On This Product,

 Go to: www.freescale.com

OPERATING PROCEDURES

f the

ock

the

to be
ed in
low).

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

6.3.3 Switching OFF Smart Linking for the Application

Switch smart linking off to link all objects in the application.

 Example :

 ENTRIES
 *
 END

 In this example:

Smart linking is switched OFF for the whole application. All objects, defined in one o
binary files that builds the application, are linked with the application.

6.4 BINARY FILES BUILDING AN APPLICATION

Specify binary file names in the NAMES block or ENTRIES block. Usually a NAMES bl
is sufficient.

6.4.1 NAMES Block

All binary files building the application are usually listed in the NAMES block. This is
only place where absolute, library, or object library files may be specified.

Example :

 NAMES
 myFile1.o myFile2.o
 END

In this example, the binary files myFile1.o and myFile2.o build the application.

6.4.2 ENTRIES Block

If a file name is specified in the ENTRIES block, the corresponding file is considered
part of the application, even if it does not appear in the NAMES block. The file specifi
the ENTRIES block may also be present in the NAMES block (shown in the example be
Names of absolute, ROM library or library files are not allowed in the ENTRIES block.

 Example:

 LINK test.abs
 NAMES test.o startup.o END

 SEGMENTS
 DIRECT_RAM = READ_WRITE 0x00000 TO 0x000FF;
 STK_AREA = READ_WRITE 0x00200 TO 0x002FF;
 RAM_AREA = READ_WRITE 0x00300 TO 0x07FFF;
 ROM_AREA = READ_ONLY 0x08000 TO 0x0FFFF;
MCUEZLNK0508/D 6-9
For More Information On This Product,

 Go to: www.freescale.com

OPERATING PROCEDURES

d.

e

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

 END
 PLACEMENT
 myRegister INTO DIRECT_RAM;
 .data INTO RAM_AREA;
 .text INTO ROM_AREA;
 .stack INTO STK_AREA;
 END
 ENTRIES
 test1.o:* test.o:*
 END

 In previous example, the files test.o , test1.o, and startup.o build the application. All
objects defined in the modules test1.o and test.o will be linked with the application.

6.4.3 Linking an Assembly Application

The following example shows how to link an application.

When an application consists only of assembly files, the linker PRM file can be simplifie

• No startup structure is required.

• No stack initialization is required, because the stack is directly initialized in the sourc
file.

• No main function is required.

• An entry point in the application is required.

• All symbols referenced in the PRM file must be published (specified in a XDEF
directive). There is no local symbol defined in the assembler.

Example:

LINK test.abs
NAMES test.o test2.o END
SEGMENTS
 DIRECT_RAM = READ_WRITE 0x00000 TO 0x000FF;
 RAM_AREA = READ_WRITE 0x00300 TO 0x07FFF;
 ROM_AREA = READ_ONLY 0x08000 TO 0x0FFFF;
END
PLACEMENT
 myRegister INTO DIRECT_RAM;
 .data INTO RAM_AREA;
 .text INTO ROM_AREA;
END
INIT Start ; Application entry point
VECTOR ADDRESS 0xFFFE Start ; Initialize Reset Vector

In the previous example:
6-10 MCUEZLNK0508/D
For More Information On This Product,

 Go to: www.freescale.com

OPERATING PROCEDURES

e

st be

on
d with

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

• All data sections defined in the assembly input files are allocated in the segment
RAM_AREA.

• All code and constant sections defined in the assembly input files are allocated in th
segment ROM_AREA.

• The START function defines an application entry point and a reset vector. START mu
a global symbol defined in one of the assembly modules.

6.4.4 Warning Messages

An assembly application does not need a startup structure or root function.

The two warnings:

 ‘WARNING: _startupData not found‘

and

 ‘WARNING: Function main not found‘

can be ignored.

• Smart Linking - When an assembly application is linked, smart linking is performed
section level instead of object level. Sections containing referenced objects are linke
the application.

 Example for HC08:

 Assembly source file

 XDEF entry
 dataSec1: SECTION SHORT
 data1: DS.W 1
 dataSec2: SECTION SHORT
 data2: DS.W 2
 codeSec: SECTION
 entry:
 NOP
 NOP
 LDX #data1
 LDA #$45
 STA 0, X
 loop: BRA loop

 Linker PRM file

 LINK test.abs
 NAMES test.o END

MCUEZLNK0508/D 6-11
For More Information On This Product,

 Go to: www.freescale.com

OPERATING PROCEDURES

s

,

se

the

 linked

ows:

s a

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

 SEGMENTS
 RAM_AREA = READ_WRITE 0x00050 TO 0x000FF;
 ROM_AREA = READ_ONLY 0x08000 TO 0x0FFFF;
 END
 PLACEMENT
 .data INTO RAM_AREA;
 .text INTO ROM_AREA;
 END
 INIT entry
 VECTOR ADDRESS 0xFFE entry

 In the previous example:

• The ENTRY function is defined as an application entry point and also specified a
reset vector.

• The data section ‘dataSec1’ defined in the assembly input file is allocated in the
segment RAM_AREA at address 0x50. This section is linked with the application
because the label ‘data1’ is referenced in the function ‘entry’.

• The code section ‘codeSec’ defined in the assembly input file is allocated in the
segment ROM_AREA at address 0x8000. It is linked with the application, becau
‘entry’ is the application entry point.

• The data section ‘dataSec2’ defined in the assembly input file is not linked with
application, because the symbol ‘data2’ is never referenced.

You can choose to switch smart linking OFF, so that assembly code and objects will be
with the application.

For the previous example, the PRM file used to switch smart linking OFF will look as foll

 LINK test.abs
 NAMES test.o END

 SEGMENTS
 RAM_AREA = READ_WRITE 0x00050 TO 0x000FF;
 ROM_AREA = READ_ONLY 0x08000 TO 0x0FFFF;
 END
 PLACEMENT
 .data INTO RAM_AREA;
 .text INTO ROM_AREA;
 END
 INIT entry
 VECTOR ADDRESS 0xFFE entry
 ENTRIES * END

In the previous example:

• The ENTRY function is defined as an application entry point and also specified a
reset vector.
6-12 MCUEZLNK0508/D
For More Information On This Product,

 Go to: www.freescale.com

OPERATING PROCEDURES

 the

tains
 file in
might
ion.

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

• The data section ‘dataSec1’ defined in the assembly input file is allocated in the
segment RAM_AREA at address 0x50.

• The data section ‘dataSec2’ defined in the assembly input file is allocated next to
section ‘dataSec1’ at address 0x52.

• The code section ‘codeSec’ defined in the assembly input file is allocated in the
segment ROM_AREA at address 0x8000.

6.5 THE PARAMETER FILE

The linker parameter file is an ASCII text file that is required for each application. It con
linker commands that define the linking process. This section describes the parameter
detail, giving examples you may use as templates for your own parameter files. You
also want to take a look at the example parameter files included in your installation vers

6.5.1 The Syntax of the Parameter File

Following is the EBNF syntax of the parameter file.

ParameterFile={Command}

Command= LINK NameOfABSFile

| NAMES ObjFile {ObjFile} END

| SEGMENTS {SegmentDef} END

| PLACEMENT {Placement} END

| (STACKTOP | STACKSIZE) exp

| MAPFILE MapSecSpecList

| ENTRIES EntrySpec {EntrySpec } END

| VECTOR (InitByAddr | InitByNumber)

| INIT FuncName

| MAIN FuncName

NameOfABSFile= FileName

ObjFile= FileName [”+”]

ObjName= Ident

QualIden = FileName “:” Ident

FuncName= ObjName | QualIdent

MapSecSpecList= MapSecSpec “,” { MapSecSpec }

EntrySpec= [FileName“:”] (* | ObjName)

MapSecSpec= ALL | NONE | TARGET | FILE | STARTUP | SEC_ALLOC |
MCUEZLNK0508/D 6-13
For More Information On This Product,

 Go to: www.freescale.com

OPERATING PROCEDURES

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

 OBJ_ALLOC | OBJ_DEP | OBJ_UNUSED | COPYDOWN |

 STATSTIC

SegmentDef= SegmentName “=“ SegmentSpec “;”

SegmentName= Ident

SegmentSpec= StorageDevice Range [Alignment] [FILL CharacterList]

StorageDevice= READ_ONLY | READ_WRITE | PAGED | NO_INIT

Range= exp (TO | SIZE) exp

Alignment= ALIGN [exp] {“[“ObjSizeRange“:” exp”]”}

ObjSizeRange= Number | Number TO Number | CompareOp Number

CompareOp= (“<“ | “>=“ | “>“ | “>=“)

CharacterList= HexByte { HexByte}

Placement= SectionList INTO SegmentList “;”

SectionList= SectionName {“,” SectionName}

SectionName=Ident

SegmentList= Segment {“,” Segment}

Segment= SegmentName | SegmentSpec

InitByAddr= ADDRESS Address Vector

InitByNumber= VectorNumber Vector

Address= Number

VectorNumber= Number

Vector= (FuncName [OFFSET exp] | exp) [“,” exp]

Ident= <any C style identifier>

FileName= <any file name>

exp= Number

Number= DecimalNumber | HexNumber | OctalNumber

HexNumber= 0xHexDigit{HexDigit}

DecimalNumber= DecimalDigit{DecimalDigit}

HexByte= HexDigit HexDigit

HexDigit= “0” | “1”| “2” | “3” | “4” | “5” | “6” | “7” | “8” | “9”|

 “A” | “B” | “C” | “D” | “E” | “F” |

 “a” | “b” | “c” | “d” | “e” | “f”

DecimalDigit= “0” | “1”| “2” | “3” | “4” | “5” | “6” | “7” | “8” |
6-14 MCUEZLNK0508/D
For More Information On This Product,

 Go to: www.freescale.com

OPERATING PROCEDURES

if you
inker

 the

file:

e
nt

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

 “9” |
• Comments may appear anywhere in a parameter file, except where file names are

expected. You may use either C style comments (/* */) or C++(//) style comments.

• File names should not contain paths. This keeps your sources portable. Otherwise,
copy the sources to another directory, the linker might not find all files needed. The l
uses the paths in the environment variables GENPATH, OBJPATH, TEXTPATH and
ABSPATH to decide where to look for files and where to write output files.

• The order of commands in the parameter file does not matter. However, ensure that
SEGMENTS block is specified before the PLACEMENT block.

• There are default sections named .data , .text , .stack , .copy , .rodata1 , .rodata ,
.startData and .init .

6.5.2 Mandatory Parameter File Linker Commands

A linker parameter file always contains at least the entries for LINK , NAMES, and PLACEMENT.
All other commands are optional. The following example shows the minimal parameter

LINK mini.abs /* Name of resulting ABS file */
NAMES
 mini.o startup.o /* Files to link */
END
STACKSIZE 0x20 /* in bytes */
PLACEMENT
 .text INTO READ_ONLY 0xA00 TO 0xBFF;
 .data INTO READ_WRITE 0x800 TO 0x8FF;
END

The first placement statement

.text INTO READ_ONLY 0xA00 TO 0xBFF ;

reserves the address range from 0xA00 to 0xBFF for allocation of read-only objects (henc
the qualifier READ_ONLY). The .text section includes all linked functions, consta
variables, string constants and initialization parts of variables copied to RAM at startup.

The second placement statement

.data INTO READ_WRITE 0x800 TO 0x8FF ;

reserves the address range from 0x800 to 0x8FF for allocation of variables.
MCUEZLNK0508/D 6-15
For More Information On This Product,

 Go to: www.freescale.com

OPERATING PROCEDURES

h the
n. All

 file

ust be

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

6.6 LINKER COMMANDS

The following sections describe all Linker commands.

6.6.1 ENTRIES: List of Objects to Link With the Application

Syntax:

ENTRIES [Filename”:”] (*|objName)

Description:

The ENTRIES block is optional in a PRM file.

Use the ENTRIES block to list objects (referenced or not) that are always linked wit
application. The specified objects are used as additional entry points in the applicatio
objects referenced within these objects will also be linked with the application.

The table below identifies the notation supported in the ENTRIES block.

Table 6-2. ENTRIES Block Supported

If a file name specified in the ENTRIES block is not present in the NAMES block, the
name will be inserted in the list of binary files building the application.

Symbols defined in an assembly module, which are used as additional entry points, m
published (specified in a XDEF directive).

 Example:

 NAMES
 startup.o
 END

 ENTRIES
 fibo.o:*
 END

Notation Meaning

<Object Name> The specified global object will be linked with the application.

<File Name>:<Object Name> The local object defined in the binary file will be linked with the
application. This notation is only valid when referring to a symbol
defined in a high level language (ANSI C or C++) module.

<File Name>:* All objects defined within the specified file will be linked with the
application.

* All objects will be linked with the application. This switches OFF
smart linking for the application.
6-16 MCUEZLNK0508/D
For More Information On This Product,

 Go to: www.freescale.com

OPERATING PROCEDURES

IES

everal
INIT
 it as

uses

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

In the previous example, the application is built from the files fibo.o and startup.o .

 Example:

 NAMES
 fibo.o startup.o
 END

 ENTRIES
 fibo.o:*
 END

In the previous example, the application is built from the files fibo.o and startup.o . The
file ‘ fibo.o ’ specified in the NAMES block is the same as the one specified in the ENTR
block.

NOTE

We strongly recommend to avoid switching smart linking OFF, when the ANSI
library is linked with the application. The ANSI library contains the
implementation of all run time functions and standard functions. This generates a
large amount of code, which is not required by the application.

6.6.2 INIT: Specify the Application Entry Point

Syntax:

INIT FuncName

Description:

The INIT command is mandatory for an assembly application and cannot be specified s
times in the PRM file. This command defines the entry point for the application. When
is not specified in the PRM file, the linker looks for a function named ‘_Startup’ and uses
the application entry point. If an INIT command is specified in the PRM file, the linker
the specified function as the application entry point.
MCUEZLNK0508/D 6-17
For More Information On This Product,

 Go to: www.freescale.com

OPERATING PROCEDURES

for an

nd is
on the

ctory
n.

e as

 the
 it is

me as

 the
 it is

ker

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

You can specify any static or global function as an entry point.

Example:

INIT MyGlobStart /* Specify a global variable as
 application entry point.*/
INIT myFile.o:myLocStart /* Specify a local variable
 as application entry point.*/

Local symbols defined in an assembly module cannot be specified as an entry point
application.

6.6.3 LINK - Specify Name of the Output File

Syntax:

LINK <NameOfABSFile>

Description:

The LINK command defines the file to be generated by the link session. This comma
mandatory and can only be specified once in a PRM file. After a successful link sessi
file “ NameOfABSFile” is created. If the environment variable ABSPATH is defined, the
absolute file is generated in the first directory listed. Otherwise, it is written to the dire
where the parameter file was found. If a file with this name already exists, it is overwritte

A successful link session also creates a MAP file with the same base nam
“NameOfABSFile” and with extension .MAP. If the environment variable TEXTPATH is
defined, the MAP file is generated in the first directory listed. Otherwise, it is written to
directory where the parameter file was found. If a file with this name already exists,
overwritten.

A successful link session also creates an S record file with the same base na
“NameOfABSFile” and with extension .Sx. If the environment variable ABSPATH is defined,
the S Record file is generated in the first directory listed. Otherwise, it is written to
directory where the parameter file was found. If a file with this name already exists,
overwritten.

The LINK command is mandatory in a PRM file. If the LINK command is missing, the lin
generates an error message unless the option -O is specified on the command line.

Example:

LINK fibo.abs

NAMES fibo.o startup.o END
SEGMENTS
 MY_RAM = READ_WRITE 0x1000 TO 0x18FF;
6-18 MCUEZLNK0508/D
For More Information On This Product,

 Go to: www.freescale.com

OPERATING PROCEDURES

om the

C or
not
t.

n as

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

 MY_ROM = READ_ONLY 0x8000 TO 0x8FFF;
 MY_STK = READ_WRITE 0x1900 TO 0x1FFF;
PLACEMENT
 DEFAULT_ROM INTO MY_ROM;
 DEFAULT_RAM INTO MY_RAM;
 SSTACK INTO MY_STK;
END
VECTOR ADDRESS 0xFFFE _Startup /* set reset vector */

The files fibo.abs, fibo.sx and fibo.map are generated after a successful link process fr
previous PRM file.

6.6.4 MAIN

Syntax:

MAIN FuncName

Description:

The MAIN command is optional. This command defines the root function for an ANSI
C++ application (function invoked at the end of startup function). When MAIN is
specified in the PRM file, the linker looks for a function named ‘main’ and uses it as roo

Assembly applications do not require a MAIN function.

If a MAIN command is specified in the PRM file, the linker uses the specified functio
root. You can specify any static or global function as the application root function.

Example:

MAIN MyGlobMain /* Specify a global variable as
 application root.*/
MAIN myFile.o:myLocMain /* Specify a local variable as
 application root.*/

Local symbols defined in an assembly module cannot be specified as the root function.

6.6.5 MAPFILE: Configure the MAP File Content

Syntax:

MAPFILE (ALL|NONE|TARGET|FILE|STARTUP_STRUCT|SEC_ALLOC|
 OBJ_ALLOC|OBJ_DEP|OBJ_UNUSED|COPYDOWN|STATISTIC)
[,{(ALL|NONE|TARGET|FILE|STARTUP_STRUCT|SEC_ALLOC|
OBJ_ALLOC|OBJ_DEP|OBJ_UNUSED|COPYDOWN|STATISTIC)}]
MCUEZLNK0508/D 6-19
For More Information On This Product,

 Go to: www.freescale.com

OPERATING PROCEDURES

t, the
 and

ile

L is

ssible

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Description:

This command is optional and controls the generation of the MAP file. Per defaul
command MAPFILE ALL is activated. This indicates that a map file must be created
contain all linking time information. The following table lists all available MAP f
specifiers.

Table 6-3. MAP File Specifiers

Information generated for each specifier is described in the MAP file chapter. If AL
specified in the MAPFILE command, all sections are inserted in the MAP file.

Example:

Following commands are all equivalent. A map file is generated, which contains all po
information about the linking session.

Specifier Meaning

ALL A map file will be generated containing all information available.

COPYDOWN Information about the initialization value for objects allocated in
RAM will be written to the MAP file (Section COPYDOWN in the
map file). This section is only relevant for High level language
(ANSI C or C++) applications.

FILE Information about application source files will be inserted in the
MAP file.

NONE No map file will be generated.

OBJ_ALLOC Information about allocated objects will be inserted in the map
file (Section OBJECT ALLOCATION in the map file).

OBJ_UNUSED List of all unused objects will be inserted in the map file (Section
UNUSED OBJECTS in the map file).

OBJ_DEP Dependencies between objects in the application will be
inserted in the map file (Section OBJECT DEPENDENCY in the
map file).

SEC_ALLOC Information about sections used in the application will be
inserted in the map file (Section SECTION ALLOCATION in the
map file).

STARTUP_STRUCT Information about the startup structure will be inserted in the
map file (Section STARTUP in the map file). This section is only
relevant for High level language (ANSI C or C++) applications.

STATISTIC Statistic information about the link session will be inserted in the
map file (Section STATISTICS in the map file).

TARGET Information about the target processor and memory model will
be inserted in the map file (Section TARGET in the map file).
6-20 MCUEZLNK0508/D
For More Information On This Product,

 Go to: www.freescale.com

OPERATING PROCEDURES

k is
given
the
ay be

linked

d
n this
is is
.

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

 MAPFILE ALL
 MAPFILE TARGET, ALL
 MAPFILE TARGET, ALL, FILE, STATISTIC

If NONE is specified in the MAPFILE command, no map file is generated.

 Example:

 Following commands are all equivalent. No map file is generated.

 MAPFILE NONE
 MAPFILE TARGET, NONE
 MAPFILE TARGET, NONE, FILE, STATISTIC

NOTE

The following map file commands are also supported:

• MAPFILE OFF is equivalent to MAPFILE NONE

• MAPFILE ON is equivalent to MAPFILE ALL

6.6.6 NAMES: List the Files building the Application.

Syntax:

NAMES <FileName>[‘+’] {<FileName>[‘+’]} END

Description:

The NAMES block contains the list of all binary files building the application. This bloc
mandatory and can only be specified once in a PRM file. The linker reads all files
between NAMES and END. The files are searched for in the project directory, then in
directories specified in the environment variables OBJPATH and GENPATH. The files m
either object files, absolute, or ROM library files or libraries.

Since the linker is a smart linker, only referenced objects (variables and functions) are
to the application.

A plus sign after a file name (e.g. FileName+) switches OFF smart linking for the specifie
file. No blank is allowed between the file name and the plus sign. All objects defined i
file will be linked with the application, regardless of whether they are used or not. Th
equivalent to specifying the file name followed by a * (fileName:*) in the ENTRIES block

 Example:

LINK fibo.abs

NAMES fibo.o startup.o END
SEGMENTS
 MY_RAM = READ_WRITE 0x1000 TO 0x18FF;
MCUEZLNK0508/D 6-21
For More Information On This Product,

 Go to: www.freescale.com

OPERATING PROCEDURES

n the
mory

 from

t. If a

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

 MY_ROM = READ_ONLY 0x8000 TO 0x8FFF;
 MY_STK = READ_WRITE 0x1900 TO 0x1FFF;
PLACEMENT
 DEFAULT_ROM INTO MY_ROM;
 DEFAULT_RAM INTO MY_RAM;
 SSTACK INTO MY_STK;
END
VECTOR ADDRESS 0xFFFE _Startup /* set reset vector */

In this example, the application fibo is built from the files ‘fibo.o’ and ‘startup.o’.

6.6.7 PLACEMENT: Place Sections Into Segments

Syntax:

PLACEMENT
 SectionName{,sectionName} INTO SegSpec{,SegSpec};
 {SectionName{,sectionName} INTO SegSpec{,SegSpec};}
END

Description:

The PLACEMENT block is mandatory in a PRM file. Each placement statement betwee
PLACEMENT and END defines a relation between logical sections and physical me
ranges called segments.

 Example:

 SEGMENTS
 MY_RAM = READ_WRITE 0x1000 TO 0x18FF;
 ROM_1 = READ_ONLY 0x8000 TO 0x8FFF;
 END
 PLACEMENT
 .text, .rodata INTO ROM_1;
 END

In the previous example, objects from section ‘.text’ are allocated first and then objects
section ‘.rodata’.

Starting with the first section, objects are allocated in the first memory range in the lis
segment is full, allocation continues in the next segment.

 Example:

 SEGMENTS
 MY_RAM = READ_WRITE 0x1000 TO 0x18FF;
 ROM_1 = READ_ONLY 0x8000 TO 0x8FFF;
 ROM_2 = READ_ONLY 0xA000 TO 0xAFFF;
 END
6-22 MCUEZLNK0508/D
For More Information On This Product,

 Go to: www.freescale.com

OPERATING PROCEDURES

M_1’
 split
ys be
ENT

ions,

ock.
e or

he
the

bsequent

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

 PLACEMENT
 .text INTO ROM_1, ROM_2;
 END

In the previous example, objects from section ‘.text’ are allocated first in segment ‘RO
and continues in section ‘ROM_2’. A statement inside the PLACEMENT block can be
over several lines and terminated with a semicolon. The SEGMENTS block must alwa
defined before the PLACEMENT block, because segments referenced in the PLACEM
block must previously be defined in the SEGMENTS block.

 Some restrictions apply to commands specified in the PLACEMENT block:

• The .copy section should be the last section in the section list to be specified in the
PLACEMENT block.

• When the .stack section is specified in the PLACEMENT block along with other sect
an additional STACKSIZE command is required in the PRM file.

• Predefined sections .text and .data must always be specified in the PLACEMENT bl
They are used to retrieve the default placement for code or variable sections. All cod
constant sections, which do not appear in the PLACEMENT block, are allocated in t
same segment list as the .text section. All variable sections, which do not appear in
PLACEMENT block, are allocated in the same segment list as the .data section.

6.6.8 SEGMENTS: Define Memory Map

Syntax:

SEGMENTS {(READ_ONLY|READ_WRITE|NO_INIT|PAGED)
 <startAddr> (TO <endAddr> | SIZE <size>)
 [ALIGN <alignmentRule>] [FILL <fillPattern>]}
END

Description:

The SEGMENTS block is optional in a PRM file. The SEGMENTS command allows the user to
assign meaningful names to address ranges. These names can then be used in su
placement statements, thus increasing the readability of the parameter file.

Each address range you define is associated with:

• A qualifier.

• A start and end address or a start address and a size.

• An optional alignment rule.

• An optional fill pattern.

The following qualifiers are available for segments:

• READ_ONLY: Used for address ranges, where read only accesses are allowed.
MCUEZLNK0508/D 6-23
For More Information On This Product,

 Go to: www.freescale.com

OPERATING PROCEDURES

emory

y area
 be

 area
ly,

ge

ds at

d

pping
ta from

 useful
rdware

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

• READ_WRITE: Used for address ranges, where read write accesses are allowed. M
area defined with this qualifier will be initialized with 0 at application startup. This is
only the case when linking a High Level Language (ANSI C or C++) application.

• NO_INIT: Used for address ranges, where read write accesses are allowed. Memor
defined with this qualifier will not be initialized with 0 at application startup. This may
useful if your target has a battery buffered RAM. This is only the case when linking a
High Level Language (ANSI C or C++) application.

• PAGED: Used for address ranges, where read write accesses are allowed. Memory
defined with this qualifier will not be initialized with 0 at application startup. Additional
the linker will not maintain control if there is an overlap between segments. When
overlapped segments are used, it is the user’s responsibility to select the correct pa
before accessing data allocated on a page. This is only the case when linking a High
Level Language (ANSI C or C++) application.

Example:

SEGMENTS
 ROM = READ_ONLY 0x1000 SIZE 0x2000;
 CLOCK = NO_INIT 0xFF00 TO 0xFFFF;
 RAM = READ_WRITE 0x3000 TO 0x3EFF;
 Page0 = PAGED 0x4000 TO 0x4FFF;
 Page1 = PAGED 0x4000 TO 0x4FFF;
END

In the previous example:

• Segment ’ROM’ is a READ_ONLY memory area. It starts at address 0x1000 and is
0x2000 bytes (from address 0x1000 to 0x2FFF).

• Segment ’RAM’ is a READ_WRITE memory area. It starts at address 0x3000 and en
0x3FFF (size = 0x1000 bytes).

• Segment ’CLOCK’ is a READ_WRITE memory area. It starts at address 0xFF00 an
ends at 0xFFFF (size = 100 bytes).

• Segments ’Page0’ and ‘Page1’ are READ_WRITE memory areas. These are overla
segments. It is the user responsibility to select the correct page before accessing da
these segments.

6.6.8.1 Defining an Alignment Rule

An alignment rule can be associated with each segment in the application. This may be
when specific alignment rules are expected on a certain memory range due to ha
restrictions.

An alignment rule can be specified as follows:

ALIGN [<defaultAlignment>] [{‘ [‘ (<Number>|
6-24 MCUEZLNK0508/D
For More Information On This Product,

 Go to: www.freescale.com

OPERATING PROCEDURES

h a
ult
ctor is

te

a 2
 One

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

 <Number> ‘ TO’ <Number>|
 (‘ <‘ | ’ >’ | ’ <=’ | ’ >=’)<Number>)’]:’ <alignment>}]

defaultAlignment : Used to specify the alignment factor for objects that do not matc
condition in the following alignment list. If no alignment list is specified, the defa
alignment factor applies to all objects allocated in the segment. The default alignment fa
optional.

The alignment list contains items of the following form. The specified alignment applies to each
object inside the segment.

Table 6-4. Segment Alignment Items List

Example:

SEGMENTS
 RAM_1 = READ_WRITE 0x800 TO 0x8FF
 ALIGN 2 [1:1];
 RAM_2 = READ_WRITE 0x900 TO 0x9FF
 ALIGN [2 TO 3:2] [>= 4:4];
 RAM_3 = READ_WRITE 0xA00 TO 0xAFF
 ALIGN 1 [>=2:2];
END

In the previous example:

• Inside of segment RAM_1, all objects with size equal to 1 byte are aligned on a 1 by
boundary and all other objects are aligned on a 2 byte boundary.

• Inside of segment RAM_2, all objects with size equal to 2 or 3 bytes are aligned on
byte boundary and all objects bigger or equal to 4 are aligned on a 4 byte boundary.
byte objects follow the default processor alignment rule.

Notation Meaning

[<size>:<align.>] Size is equal to <size>.

[<sz1> TO <sz2>:<align.>] Size is bigger or equal to <sz1> and smaller or equal to <sz2>.

[<<size>:<align.>] Size is smaller than <size>.

[<=<size>:<align.>] Size is smaller or equal to <size>.

[><size>:<align.>] Size is bigger than <size>.

[>=<size>:<align.>] Size is bigger or equal to <size>.
MCUEZLNK0508/D 6-25
For More Information On This Product,

 Go to: www.freescale.com

OPERATING PROCEDURES

yte

eful to
. For

tern is
ject of

attern
te will

ted to

d fill
 bytes
with a
osition

on.

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

• Inside of segment RAM_3, all objects bigger or equal to 2 bytes are aligned on a 2 b
boundary and all other objects are aligned on a 1 byte boundary.

6.6.8.2 Defining a Fill Pattern

A fill pattern can be associated with each segment in the application. This may be us
automatically initialize uninitialized variables in the segments with a predefined pattern
assembly applications, the fill pattern can only be used in READ_ONLY segments.

A fill pattern can be specified as follows:

FILL <HexByte> {<HexByte>}

 Example:

 SEGMENTS
 ROM_1 = READ_ONLY 0x800 TO 0x8FF
 FILL 0xAA 0x55;
 END

In the previous example, fill bytes are initialized with the pattern 0xAA55.

If the size of an object to initialize is higher than the size of the specified pattern, the pat
repeated as many times as required to fill the objects. In the previous example, an ob
four bytes will be initialized with 0xAA55AA55.

If the size of an object to initialize is smaller than the size of the specified pattern, the p
is truncated to match the size of the object. In the previous example, an object of one by
be initialized with 0xAA.

When the value specified in an element of a fill pattern does not fit in a byte, it is trunca
a byte value.

 Example:

 SEGMENTS
 ROM_1 = READ_ONLY 0x800 TO 0x8FF
 FILL 0xAA55;
 END

In the previous example, fill bytes are initialized with the pattern 0x55. The specifie
pattern is truncated to a 1-byte value. Fill patterns provide an initial value to the padding
inserted between two objects during object allocation. This marks the unused position
specific marker and can be detected inside the application. For example, an unused p
inside a code section can be initialized with the hexadecimal code for the NOP instructi
6-26 MCUEZLNK0508/D
For More Information On This Product,

 Go to: www.freescale.com

OPERATING PROCEDURES

oth
ines
tack is

and

o
ess

 of the
 by the

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

6.6.9 STACKSIZE: Define Stack Size

Syntax:

STACKSIZE Number

Description:

The STACKSIZE command is optional in a PRM file. Additionally, you cannot specify b
STACKTOP and STACKSIZE commands in a PRM file. The STACKSIZE command def
the stack size. We recommend using this command if you do not care where the s
allocated but only how large it is. When the stack is defined by a STACKSIZE comm
alone, the stack is placed next to the .data section.

 Example:

 SEGMENTS
 MY_RAM = READ_WRITE 0xA00 TO 0xAFF;
 MY_ROM = READ_ONLY 0x800 TO 0x9FF;
 END
 PLACEMENT
 .text IN MY_ROM;
 .data IN MY_RAM;
 END
 STACKSIZE 0x60

In the previous example, if the section .data is four bytes wide (from address 0xA00 t
0xA03), the section .stack is allocated next to it from address 0xA63 down to addr
0xA04. The stack initial value is set to 0xA62.

When the stack is defined by a STACKSIZE command associated with the placement
.stack section, the stack should start at the segment start address. It is incremented
specified value and defined to the start address of the segment, where .stack has been
placed.

 Example:

 SEGMENTS
 MY_STK = NO_INIT 0xB00 TO 0xBFF;
 MY_RAM = READ_WRITE 0xA00 TO 0xAFF;
 MY_ROM = READ_ONLY 0x800 TO 0x9FF;
 END
 PLACEMENT
 .text IN MY_ROM;
 .data IN MY_RAM;
 .stack IN MY_STK;
 END
 STACKSIZE 0x60
MCUEZLNK0508/D 6-27
For More Information On This Product,

 Go to: www.freescale.com

OPERATING PROCEDURES

to

fining
or data

oth
ines

 to the
ssor PC.
 of the
e start

n to

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

In the previous example, the section .stack is allocated from address 0xB5F down
address 0xB00. The stack initial value is set to 0xB5E.

In an assembly application, the stack pointer must be initialized in the source code. De
the stack in the PRM file only ensures no overlap between your stack and the code
sections in your application.

6.6.10 STACKTOP: Define Stack Pointer Initial Value

Syntax:

STACKTOP Number

Description:

The STACKTOP command is optional in a PRM file. Additionally, you cannot specify b
STACKTOP and STACKSIZE commands in a PRM file. The STACKTOP command def
the initial value for the stack pointer.

 Example:

 If STACKTOP is defined as:

 STACKTOP 0xBFF

the stack pointer will be initialized with 0xBFF at application startup.

When the stack is defined by a STACKTOP command alone, a default size is assigned
stack. This size depends on the processor and is big enough to store the target proce
When the stack is defined by a STACKTOP command associated with the placement
.stack section, the stack should start at the specified address. It is defined down to th
address of the segment, where .stack has been placed.

 Example:

 SEGMENTS
 MY_STK = NO_INIT 0xB00 TO 0xBFF;
 MY_RAM = READ_WRITE 0xA00 TO 0xAFF;
 MY_ROM = READ_ONLY 0x800 TO 0x9FF;
 END
 PLACEMENT
 .text IN MY_ROM;
 .data IN MY_RAM;
 .stack IN MY_STK;
 END
 STACKTOP 0xB7E

In the previous example, the stack pointer will be defined from address 0xB7E dow
address 0xB00.
6-28 MCUEZLNK0508/D
For More Information On This Product,

 Go to: www.freescale.com

OPERATING PROCEDURES

fining
or data

mand
ile. A
nd a

ss 0).
nction

.

ction

xA00.

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

In an assembly application, the stack pointer must be initialized in the source code. De
the stack in the PRM file only ensures no overlap between your stack and the code
sections in your application.

6.6.11 VECTOR: Initialize Vector Table

Syntax:

VECTOR (InitByAddr | InitByNumber)

Description:

The VECTOR command is optional in a PRM file.

A vector is a small amount of memory about the size of a function address. This com
allows the user to initialize the processor vectors while downloading the absolute f
VECTOR command consists of a vector location part (containing vector location) a
vector target part (containing the value to store in the vector).

The vector location part can be specified:

• Through a vector number (only valid when the processor vector table starts at addre
The address where the vector is allocated is evaluated as <Number> * <Size of a Fu
Pointer>.

• Through a vector address. The keyword ADDRESS must be specified in the vector
command.

 The vector target part can be specified:

• As a function name

• As an absolute address

 Example:

 VECTOR ADDRESS 0xFFFE _Startup
 VECTOR ADDRESS 0xFFFC 0xA00
 VECTOR 0 _Startup
 VECTOR 1 0xA00

 In the previous example, if the size of a function pointer is coded on two bytes:

• The vector located at address 0xFFFE is initialized with the address of the function
‘_Startup’.

• The vector located at address 0xFFFC is initialized with the absolute address 0xA00

• Vector number 0 (located at address 0x000) is initialized with the address of the fun
‘_Startup’.

• Vector number 1 (located at address 0x002) is initialized with the absolute address 0
MCUEZLNK0508/D 6-29
For More Information On This Product,

 Go to: www.freescale.com

OPERATING PROCEDURES

se, the

ress of
, the
dler.
y are

y. A
emory
ociated

nt

sed.

s and
ker
allocate

, and
e files
e

ined

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

You can specify an additional offset when the vector target is a function name. In this ca
vector will be initialized with the address of the object plus the specified offset.

Example:

VECTOR ADDRESS 0xFFFE CommonISR + 0x10

In the previous example, the vector located at address 0xFFE is initialized with the add
the function ‘CommonISR’ plus 0x10 bytes. If ‘CommonISR’ starts at address 0x800
vector will be initialized with 0x810. This notation is useful for the common interrupt han
All objects specified in a VECTOR command are entry points in the application. The
always linked with the application, as well as the objects they refer to.

6.7 SECTIONS

The concept section gives you complete control over allocation of objects in memor
section is a named group of global objects (variables or functions) associated with a m
area that may be non-contiguous. Objects belonging to a section are allocated in its ass
memory range. This chapter describes the use of segmentation in detail.

There are many ways to make use of the concept section, the most important being:

• Distribution of two or more groups of functions and other read-only objects to differe
ROMs.

• Allocating a single function or variable to a fixed absolute address (e.g. to access
processor ports using high level language variables).

• Allocating variables in memory locations where special addressing modes may be u

6.7.1 Terms: Segments and Sections

A Section is a named group of global objects declared in the source file, i.e. function
global variables. A Segment is not necessarily a contiguous memory range. In the lin
parameter file, each section is associated with a segment so the linker knows where to
objects belonging to a section.

6.7.2 Definition of Section

A section definition always consists of two parts: the definition of objects belonging to it
the memory area(s) associated with it, called segments. The first is done in the sourc
using pragmas or directives, see Compiler or Assembler Manual. The second is done in th
parameter file using the SEGMENTS and PLACEMENT commands (see section on The
Semantics of the Linker Commands).

6.7.3 Predefined Sections

When linking a high level language (ANSI C or C++) application, a couple of predef
section names can be grouped into sections named by the run-time routines.
6-30 MCUEZLNK0508/D
For More Information On This Product,

 Go to: www.freescale.com

OPERATING PROCEDURES

g

er

nt

om

nt

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

• Sections for things besides variables and functions: .rodata1 , .copy , .stack .

• Sections for grouping large sets of objects:
.data , .text .

• A section for placing objects initialized by the linker: .startData .

• A Section to allocate read-only variables: .rodata .

NOTE

The sections .data and .text provide default sections for allocating objects.

Subsequently we will discuss each of these predefined sections.

.rodata1 All string literals (e.g. “This is a string”) are allocated in section .rodata1 . If this
section is associated with a segment qualified as READ_WRITE, the strings are copied from
ROM to RAM at startup.

If this section is not mentioned in the PLACEMENT block in the parameter file, the strin
litterals are allocated next to the section .text .

.rodata Any constant variable declared as const in a C module or as DC in an assembl
module, which is not allocated in a user-defined section, is allocated in section .rodata .
Usually, the .rodata section is associated with the READ_ONLY segment.

If this section is not mentioned in the PLACEMENT block in the parameter file, the consta
variables are allocated next to the section .text .

.copy Initialization data belongs to section .copy . If a source file contains the declaration

int a[] = {1, 2, 3};

the hex string 000100020003 (6 bytes), which is copied to a location in RAM at program
startup, belongs to segment .copy .

If the .rodata1 or .rodata section is allocated to a READ_WRITE segment, all strings or
constants also belong to the .copy section. Objects in this section are copied at startup fr
ROM to RAM.

.stack The runtime stack has its own segment named .stack . It should always be allocated
to a READ_WRITE segment.

If this section is not mentioned in the PLACEMENT block in the parameter file, the consta
variables are allocated next to the section .data .
MCUEZLNK0508/D 6-31
For More Information On This Product,

 Go to: www.freescale.com

OPERATING PROCEDURES

 for
in the
hey

rtain
ameter

artup

e

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

.data This is the default section for all objects normally allocated to RAM. It is used
variables not belonging to any section or to a section not assigned a segment
PLACEMENT block. If the .bss or .stack sections are not associated with a segment, t
are included in the .data memory area in the following structure.

.text This is the default section for all functions. If a function is not assigned to a ce
section in the source code or if its section is not associated with a segment in the par
file, it is automatically added to section .text . If the .rodata, .rodata1, .startData
or .init sections are not associated with a segment, they are included in the .text memory
area in the following structure.

.startData The startup description data initialized by the linker and used by the st
routine is allocated to segment .startData . This section must be allocated to a READ_ONLY
segment.

.init The application entry point is stored in the .init section. This section also has to b
associated with a READ_ONLY segment.

NOTE

The .data and .text sections must always be associated with a segment.

.data .bss .Stack

.init .startData .text .rodata .rodata1
6-32 MCUEZLNK0508/D
For More Information On This Product,

 Go to: www.freescale.com

OPERATING PROCEDURES

ctions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

6.8 EXAMPLES

Examples 1 and 2 illustrate the use of sections to control allocation of variables and fun
precisely.

Example 1:

Distributing code into two different ROMs:

LINK first.ABS
NAMES first.o strings.o startup.o END
STACKSIZE 0x200
SECTIONS
 ROM1 = READ_ONLY 0x4000 TO 0x4FFF;
 ROM2 = READ_ONLY 0x8000 TO 0x8FFF;
PLACEMENT
 .text INTO ROM1, ROM2;
 .data INTO READ_WRITE 0x1000 TO 0x1FFF;
END

Example 2:

Allocation in battery buffered RAM:

/* Extract from source file "bufram.c" */
#pragma DATA_SEG Buffered_RAM
 int done;
 int status[100];
#pragma DATA_SEG DEFAULT
/* End of extract from "bufram.c" */

Linker parameter file:

LINK bufram.ABS
NAMES
 bufram.o startup.o
END
STACKSIZE 0x200
SECTIONS
 BatteryRAM = NO_INIT 0x1000 TO 0x13FF;
 MyRAM = READ_WRITE 0x5000 TO 0x5FFF;
PLACEMENT
 .text INTO READ_ONLY 0x2000 TO 0x2800;
 .data INTO MyRAM;
 Buffered_RAM INTO BatteryRAM;
END
MCUEZLNK0508/D 6-33
For More Information On This Product,

 Go to: www.freescale.com

OPERATING PROCEDURES

(ANSI
tartup
ules to
 file

cessary.
Startup

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

6.9 PROGRAM STARTUP

This section deals with advanced material and is only relevant for high level language
C or C++) applications. First time users of MCUez may skip this section. Standard s
modules are delivered with the MCUez programs and examples. Include startup mod
link the parameter file. For more information about startup modules see the
Startup.TXT in directory LIB.

Prior to calling root function (main):

• initialize the processor registers

• zero out memory

• copy initialization data from ROM to RAM.

Depending on the processor and application needs different startup routines may be ne
In MCUez, there are standard startup routines for every processor and memory model.
routines are based on a startup descriptor containing all information.

6.9.1 The Startup Descriptor

The linker startup descriptor is declared as:

typedef struct{
 unsigned char *far beg;int size;
} _Range;
typedef struct{
 int size; unsigned char * far dest;
} _Copy;
typedef void (*_PFunc)(void);
typedef struct{
 _PFunc *startup; /* address of startup desc */
} _LibInit;
typedef struct{
 _PFunc *initFunc; /* address of init function */
} _Cpp;
extern struct _tagStartup {
 unsigned short flags;
 _PFunc main;
 unsigned short stackOffset;
 unsigned short nofZeroOuts;
 _Range *pZeroOut;
 _Copy *toCopyDownBeg;
 unsigned short nofLibInits;
 _LibInit *libInits;
 unsigned short nofInitBodies;
 _PFunc *initBodies;
} _startupData;
6-34 MCUEZLNK0508/D
For More Information On This Product,

 Go to: www.freescale.com

OPERATING PROCEDURES

ur

tor. In
bal

.

ed.

ually
In a
 once

k

ed at

s not
p. Be

 at
as the

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

The linker expects the _startupData variable to be declared somewhere in yo
application.

struct _tagStartup _startupData;

Fields of this struct are initialized by the linker and struct is allocated in ROM in section
.startData . If this variable is not declared, the linker does not create a startup descrip
this case, there is no .copy section and the stack is not initialized. Furthermore, the glo
C++ constructor and ROM libraries are not initialized.

The fields have the following semantics:

flags Contains flags to detect special conditions at startup. Currently two bits are used

Table 6-5. Setting Startup Descriptor Flags

This flag is tested in the startup code, to determine if the stack pointer should be initializ

main is a function pointer set to the application’s root function. In a C program, this is us
function main unless a MAIN entry in the parameter file specifies another function as root.
ROM library, this field is zeroed out. The standard startup code jumps to this address
initialization completes.

stackOffset is valid only if flags == 0 . This field contains the initial value of the stac
pointer.

nofZeroOuts is the number of READ_WRITE segments to fill with zero bytes at startup.

This field is not required if you do not have a RAM memory area that should be initializ
startup. Be careful, if this field is not present in the startup structure, the field pZeroOut
must not be present either.

pZeroOut is a pointer to a vector with elements of type _Range. It has exactly
nofZeroOuts elements, each describing a memory area to be cleared. This field i
required if you do not have a RAM memory area that should be initialized at startu
careful, if this field is not present, the field nofZeroOuts must not be present either.

toCopyDownBeg contains the address of the first item to be copied from ROM to RAM
runtime. All data to be copied is stored in a contiguous piece of ROM memory and h
following format:

CopyData = {Size [2] TargetAddr {Byte} Size } 0x0 [2] .

Bit Number Set If ...

0 The application has been linked as a ROM Library

1 There is no stack specification.
MCUEZLNK0508/D 6-35
For More Information On This Product,

 Go to: www.freescale.com

OPERATING PROCEDURES

s not

 be
our

lize
our

or to
 not
field

lobal
xactly
tor is
f this

 startup

, you

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

The size is a binary number whose most significant byte is stored first. This field i
required if you do not have a RAM memory area that should be initialized at startup.

nofLibInits is the number of ROM libraries linked with the application that must
initialized at startup. This field is not required if you do not link any ROM libraries with y
application. Be careful, if this field is not present in the startup structure, the field libInits
must not be present.

libInits is a vector of pointers to the _startupData records of all ROM libraries in the
application. It has exactly nofLibInits elements. These addresses are needed to initia
the ROM libraries. This field is not required if you do not link any ROM libraries with y
application. Be careful, if this field is not present, the field nofLibInits must not be
present.

nofInitBodies is the number of C++ global constructors that must be executed pri
invoking the application root function. This field is not required if your application does
contain any C++ modules. If this field is not present in the startup structure, the
initBodies must not be present.

initBodies is a pointer to a vector of function pointers containing addresses of the g
C++ constructors. They are sorted in the order they need to be called. It has e
nofInitBodies elements. If an application does not contain any C++ modules, the vec
empty. This field is not required if your application does not contain any C++ modules. I
field is not present in the startup structure, the field nofInitBodies must not be present.

6.9.2 User-Defined Startup Structure:

The user can define a startup structure. If you change the startup structure, adapt the
function to match the modifications.

 Example:

If there is no RAM area to initialize at startup and no ROM libraries and C++ modules
can define the startup structure as follows:

 extern struct _tagStartup {
 unsigned short flags;
 _PFunc main;
 unsigned short stackOffset;
 } _startupData;

The startup code must be adapted accordingly:

 extern void near _Startup(void) {
 /* purpose: 1) initialize the stack
 2) call main;
 parameters: NONE */
 do { /* forever: initialize the program; call the root-procedure
*/
6-36 MCUEZLNK0508/D
For More Information On This Product,

 Go to: www.freescale.com

OPERATING PROCEDURES

 the

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

 asm{
 LDD _startupData.flags
 BNE Initialize
 LDS _startupData.stackOffset
 Initialize:
 }
 /* Here user defined code could be inserted,
 the stack can be used
 */
 /* call main() */
 (*_startupData.main)();
 } while(1); /* end loop forever */
 }

NOTE

Field names in the startup structure should not be changed. You can remove
fields inside the structure, but do not change the names of the different fields.

6.9.3 User-Defined Startup Routines

Two ways to replace the standard startup routine with one of your own:

1. Provide a startup module containing a function named _Startup and link it with the
application.

2. Implement your own function and define it as an entry point for your application using
command INIT.

INIT function_name
MCUEZLNK0508/D 6-37
For More Information On This Product,

 Go to: www.freescale.com

OPERATING PROCEDURES

s the

tion.

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

6.10 THE MAP FILE

If linking succeeds, a protocol of the link process is written to a list file; referred to a
MAP file. The name of the map file is the same as the .ABS file, but with extension .MAP. The
map file is written to the directory given by the environment variable TEXTPATH.

The map file consists of up to 9 sections. The following table lists and defines each sec

Table 6-6. MAP File Sections

NOTE

No map file is written when objects can not be found in an object file and the
linking process fails.

Alignment Item Description

TARGET This section names the target processor and memory model.

FILE This section lists the names of all files from which objects were used
or referenced during the link process. In most cases, these are the same
names that are also listed in the linker parameter file between the
keywords NAMES and END.

STARTUP This section lists the prestart code and the values used to initialize the
startup descriptor _startupData . The startup descriptor is listed
member by member with the initialization data at the right hand side of
the member name.

SEGMENT ALLOCATION This section lists segments, in which at least one object was
allocated. At the right hand side of the segment name there is a
pair of numbers, which gives the address range the objects
belonging to the segment were allocated.

OBJECT ALLOCATION This section contains the names of all allocated objects and their
addresses. The objects are grouped by module. If an address of
an object is followed by the “@” sign, the object comes from a
ROM library. In this case the absolute file contains no code for
the object (if it is a function), but the object’s address was used
for linking. If an address of a string object is followed by a dash
“–”, the string is a suffix of some other string. As an example, if
the strings "abc" and "bc" are present in the same program, the
string "bc" is not allocated and its address is the address of "abc"
plus one.

OBJECT DEPENDENCY This section lists the names of global objects used by functions
and variables.

UNUSED OBJECTS This section lists all objects found in the object files that were not
linked.

COPYDOWN This section lists all blocks that are copied from ROM to RAM at
program startup.

STATISTICS This section generates information about the size or code
generated.
6-38 MCUEZLNK0508/D
For More Information On This Product,

 Go to: www.freescale.com

LINKER MESSAGES

ed to

vere

 a four
nted in
 with a

R).

M file.

 this

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

CHAPTER 7

LINKER MESSAGES

7.1 INTRODUCTION

This chapter lists and defines all messages generated by the MCUez Linker.

7.2 LINKER MESSAGES REFERENCE

Three kinds of messages are generated by the linker.

• WARNING - A message is printed and linking continues. Warning messages are us
indicate possible programming errors.

• ERROR - A message is printed and linking is stopped. Error messages are used to
indicate illegal syntax in the PRM file.

• FATAL - A message is printed and linking is aborted. A fatal message indicates a se
error.

If the linker prints a message, the message contains a message code (‘L’ for Linker) and
to five digit number. Error message numbers are referenced in the manual and docume
increasing order. Each message has a description and if available a short example
possible solution or tips to fix a problem. The type of message is also noted, (e.g. ERRO

L1000 <Command Name> Not Found
Type: [ERROR]

Description

This message is generated when a mandatory linker command is missing from the PR
Mandatory commands are:

• LINK, which contains the name of the absolute file to generate. If the option –O is
specified on the command line and the LINK command is missing from the PRM file,
message is not generated.

• NAMES, lists the files building the application.

• PLACEMENT, associates at least the predefined sections ‘.text’ and ‘.data’ with a
memory range.

When the LINK command is missing the message is: ‘LINK not found ‘.

When the NAMES command is missing the message is: ‘NAMES not found‘.
MCUEZLNK0508/D 7-1
For More Information On This Product,

 Go to: www.freescale.com

LINKER MESSAGES

M file.

ge.

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

When the PLACEMENT command is missing the message is: ‘PLACEMENT not found‘.

Example:

NAMES fibo.o start12s.o ansis.lib END
SEGMENTS
 MY_RAM = READ_WRITE 0x800 TO 0x80F;
 MY_ROM = READ_ONLY 0x810 TO 0xAFF;
 MY_STK = READ_WRITE 0xB00 TO 0xBFF;
PLACEMENT
 .text INTO MY_ROM;
 .data INTO MY_RAM;
 .stack INTO MY_STK;
END
/* Set reset vector on _Startup */
VECTOR ADDRESS 0xFFFE _Startup

Tips

Insert the missing command in the PRM file.

Example

LINK fibo.abs
NAMES fibo.o start12s.o ansis.lib END
SEGMENTS
 MY_RAM = READ_WRITE 0x800 TO 0x80F;
 MY_ROM = READ_ONLY 0x810 TO 0xAFF;
 MY_STK = READ_WRITE 0xB00 TO 0xBFF;
PLACEMENT
 .text INTO MY_ROM;
 .data INTO MY_RAM;
 .stack INTO MY_STK;
END
/* Set reset vector on _Startup */
VECTOR ADDRESS 0xFFFE _Startup

L1001 <Command Name> Multiply Defined
Type: [ERROR]

Description:

This message is generated when a linker command is detected more than once in the PR

The following linker commands cannot be specified more than once in a PRM file.

• LINK, which contains the name of the absolute file to generate.

• NAMES, where files building the application are listed.

• SEGMENTS, where a name can be associated with a memory area.

• PLACEMENT, where sections used in the application are assigned to a memory ran
7-2 MCUEZLNK0508/D
For More Information On This Product,

 Go to: www.freescale.com

LINKER MESSAGES

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

• ENTRIES, where objects linked with the application are listed.

• MAPFILE, where information stored in the MAP file is specified.

• MAIN, defines the application main function.

• INIT, defines the application entry point.

• STACKSIZE, defines the stack size.

• STACKTOP, defines the stack pointer initial value.

When the LINK command is detected more than once, the message will be:

‘LINK multiply defined‘

Example:

LINK fibo.abs
NAMES fibo.o start12s.o ansis.lib END
SEGMENTS
 MY_RAM = READ_WRITE 0x800 TO 0x80F;
 MY_ROM = READ_ONLY 0x810 TO 0xAFF;
 MY_STK = READ_WRITE 0xB00 TO 0xBFF;
END
PLACEMENT
 .text INTO MY_ROM;
 .data INTO MY_RAM;
 .stack INTO MY_STK;
END
LINK fibo.abs
/* Set reset vector on _Startup */
VECTOR ADDRESS 0xFFFE _Startup

Tips

Remove one of the duplicated commands.

Example:

LINK fibo.abs
NAMES fibo.o start12s.o ansis.lib END
SEGMENTS
 MY_RAM = READ_WRITE 0x800 TO 0x80F;
 MY_ROM = READ_ONLY 0x810 TO 0xAFF;
 MY_STK = READ_WRITE 0xB00 TO 0xBFF;
END
PLACEMENT
 .text INTO MY_ROM;
 .data INTO MY_RAM;
 .stack INTO MY_STK;
END
/* Set reset vector on _Startup */
VECTOR ADDRESS 0xFFFE _Startup
MCUEZLNK0508/D 7-3
For More Information On This Product,

 Go to: www.freescale.com

LINKER MESSAGES

M file.

n the

. The
ility

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

L1002 Command <Command Name> Overwritten by Option <Option Name>
Type: [WARNING]

Description

This message is generated when a command line option overrides a command in the PR

<command name>: Name of the command in the PRM file

<option name>: Linker command line option

Commands that may be overridden by a command line option are:

• LINK, overridden by the option –O (defines the output file name)

• MAPFILE, overridden by the option –M (enables generation of the MAP file)

• INIT, overridden by the option –E (defines the application entry point)

When the LINK command is detected in the PRM file and the option –O is specified o
command line, the following message is generated:

‘Command LINK overwritten by option -O‘

Tips

Remove either the command in the PRM file or the command line option.

L1003 Only a Single SEGMENTS or SECTIONS Block is Allowed
Type: [ERROR]

Description

This error occurs when the PRM file contains both a SECTIONS and a SEGMENTS block
SECTIONS block is a synonym for the SEGMENTS block. It is supported for compatib
with an old style MCUez PRM file.

Example

LINK fibo.abs
NAMES fibo.o start12s.o ansis.lib END
SEGMENTS
 MY_RAM = READ_WRITE 0x800 TO 0x80F;
 MY_ROM = READ_ONLY 0x810 TO 0xAFF;
 MY_STK = READ_WRITE 0xB00 TO 0xBFF;
END
SECTIONS
 MY_RAM = READ_WRITE 0x800 TO 0x80F;
 MY_ROM = READ_ONLY 0x810 TO 0xAFF;
 MY_STK = READ_WRITE 0xB00 TO 0xBFF;
PLACEMENT
 .text INTO MY_ROM;
7-4 MCUEZLNK0508/D
For More Information On This Product,

 Go to: www.freescale.com

LINKER MESSAGES

pected

ed on a

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

 .data INTO MY_RAM;
 .stack INTO MY_STK;
END
/* Set reset vector on _Startup */
VECTOR ADDRESS 0xFFFE _Startup

Tips

Remove either the SEGMENTS or SECTIONS block.

L1004 <Separator> Expected
Type: [ERROR]

Description

This message is generated when the specified <separator> is missing from an ex
position.

<separator>: character or expression expected

Example 1:

 SEGMENTS
 MY_RAM = READ_WRITE 0x800 TO 0x8FF
 ALIGN [2TO 4, 4]
 ^
 ERROR: : expected.

Tips

Insert the specified separator at the expected position.

L1005 Fill Pattern Will Be Truncated (>0xFF)
Type: [WARNING]

Description

This message is generated when the constant specified as a fill pattern cannot be cod
byte. The constant truncated to a byte value will be used as the fill pattern.

Example

SEGMENTS
 MY_RAM = READ_WRITE 0x0800 TO 0x8FF FILL 0xA34;
END

Tips

To avoid this message, split the constant into two byte constants.

Example
MCUEZLNK0508/D 7-5
For More Information On This Product,

 Go to: www.freescale.com

LINKER MESSAGES

 file.

 inside

d as a

ined

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

SEGMENTS
 MY_RAM = READ_WRITE 0x0800 TO 0x8FF FILL 0xA 0x34;
END

L1007 <Character> Not Allowed in File Name (Restriction)
Type: [ERROR]

Description

A file name specified in the PRM file contains an illegal character.

<character>: characters not allowed in a file name at the indicated position.

Following characters are not allowed in a file name:

• Colon (:), Used as separator to specify a local object (function or variable) in a PRM

• Semi-colon(;), Used as delimiter for a command line in a LAYOUT or
OBJECT_ALLOCATION block.

• Greater than symbol (>), Used as separator to refer to an object located in a section
a LAYOUT or OBJECT_ALLOCATION block.

Avoid putting characters ‘+’ and ‘-‘ in a file name. This may cause a problem when use
file name suffix in the NAMES block.

Example

NAMES
 file:1.o;
 ^
ERROR: ':' or '>' not allowed in file name (restriction)
END

or

NAMES
 file1.o file>2.lib;
 ^
ERROR: ':' or '>' not allowed in file name (restriction)
END

Tips

Change the file name and avoid the illegal characters.

L1009 Segment Name <Segment Name> Unknown
Type: [ERROR]

Description

Segment specified in a PLACEMENT or LAYOUT command line was not previously def
in the SEGMENTS block.
7-6 MCUEZLNK0508/D
For More Information On This Product,

 Go to: www.freescale.com

LINKER MESSAGES

d with

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

<segment name>: name of the segment, which is not known

Example

LINK fibo.abs
NAMES fibo.o start12s.o ansis.lib END
SEGMENTS
 MY_RAM = READ_WRITE 0x800 TO 0x80F;
 MY_ROM = READ_ONLY 0x810 TO 0xAFF;
 MY_STK = READ_WRITE 0xB00 TO 0xBFF;
END
PLACEMENT
 .text INTO ROM_AREA;
 ^
ERROR: Segment Name ROM_AREA unknown
 .data INTO MY_RAM;
 .stack INTO MY_STK;
END
/* Set reset vector on _Startup */
VECTOR ADDRESS 0xFFFE _Startup

Tips

Define the segment names in the SEGMENTS block.

Example

LINK fibo.abs
NAMES fibo.o start12s.o ansis.lib END
SEGMENTS
 RAM_AREA = READ_WRITE 0x800 TO 0x80F;
 ROM_AREA = READ_ONLY 0x810 TO 0xAFF;
 STK_AREA = READ_WRITE 0xB00 TO 0xBFF;
END
PLACEMENT
 .text INTO ROM_AREA;
 .data INTO RAM_AREA;
 .stack INTO STK_AREA;
END
/* Set reset vector on _Startup */
VECTOR ADDRESS 0xFFFE _Startup

L1011 Incompatible Segment Qualifier: <Qualifier1> in Previous Segment and
<Qualifier> in <Segment Name>

Type: [ERROR]

Description

Two segments specified in the same statement in the PLACEMENT block are not define
the same qualifier.
MCUEZLNK0508/D 7-7
For More Information On This Product,

 Go to: www.freescale.com

LINKER MESSAGES

alifier

alifier

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

<qualifier1>: Segment qualifier associated with the previous segment in the list. This qu
may be READ_ONLY, READ_WRITE, NO_INIT, or PAGED.

<qualifier2> Segment qualifier associated with the current segment in the list. This qu
may be READ_ONLY, READ_WRITE, NO_INIT, or PAGED.

<segment name >: Name of the current segment in the list.

Example

LINK fibo.abs
NAMES fibo.o start12s.o ansis.lib END
SEGMENTS
 MY_RAM = READ_WRITE 0x800 TO 0x80F;
 SEC_RAM= READ_WRITE 0x020 TO 0x02F;
 MY_ROM = READ_ONLY 0x810 TO 0xAFF;
 MY_STK = READ_WRITE 0xB00 TO 0xBFF;
END
PLACEMENT
 .data INTO MY_RAM;
 .text INTO MY_ROM, SEC_RAM;
 ^
ERROR: Incompatible segment qualifier: READ_ONLY in previous
segment and READ_WRITE in SEC_RAM
 .stack INTO MY_STK;
END
/* Set reset vector on _Startup */
VECTOR ADDRESS 0xFFFE _Startup

Tips

Modify the qualifier associated with the specified segment.

Example

LINK fibo.abs
NAMES fibo.o start12s.o ansis.lib END
SEGMENTS
 MY_RAM = READ_WRITE 0x800 TO 0x80F;
 SEC_ROM= READ_ONLY 0x020 TO 0x02F;
 MY_ROM = READ_ONLY 0x810 TO 0xAFF;
 MY_STK = READ_WRITE 0xB00 TO 0xBFF;
END
PLACEMENT
 .data INTO MY_RAM;
 .text INTO MY_ROM, SEC_ROM;
 .stack INTO MY_STK;
END
/* Set reset vector on _Startup */
VECTOR ADDRESS 0xFFFE _Startup
7-8 MCUEZLNK0508/D
For More Information On This Product,

 Go to: www.freescale.com

LINKER MESSAGES

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

L1015 No Binary Input File Specified
Type: [ERROR]

Description

No file names specified in the NAMES block.

Example

LINK fibo.abs
NAMES END
SEGMENTS
 MY_RAM = READ_WRITE 0x800 TO 0x80F;
 MY_ROM = READ_ONLY 0x810 TO 0xAFF;
 MY_STK = READ_WRITE 0xB00 TO 0xBFF;
END
PLACEMENT
 .text INTO MY_ROM;
 .data INTO MY_RAM;
 .stack INTO MY_STK;
END
/* Set reset vector on _Startup */
VECTOR ADDRESS 0xFFFE _Startup

Tips

Specify at least one file name in the NAMES block.

L1016 File <File Name> Found Twice in The NAMES Block
Type: [ERROR]

Description

A file name is detected twice in the NAMES block.

<file name >: Name of file detected twice in the NAMES block.

Example

LINK fibo.abs
NAMES fibo.o startup.o fibo.o END
 ^
ERROR: File fibo.o found twice in the NAMES block
SEGMENTS
 MY_RAM = READ_WRITE 0x800 TO 0x80F;
 MY_ROM = READ_ONLY 0x810 TO 0xAFF;
 MY_STK = READ_WRITE 0xB00 TO 0xBFF;
END
PLACEMENT
 .text INTO MY_ROM;
MCUEZLNK0508/D 7-9
For More Information On This Product,

 Go to: www.freescale.com

LINKER MESSAGES

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

 .data INTO MY_RAM;
 .stack INTO MY_STK;
END
/* Set reset vector on _Startup */
VECTOR ADDRESS 0xFFFE _Startup

Tips

Remove the second occurrence of the specified file.

L1100 Segments <Segment1 Name> and <Segment2 Name> Overlap
Type: [ERROR]

Description

Two segments defined in the PRM file overlap each other.

<segment1 name >: Name of the first overlapping segment.

<segment2 name >: Name of the second overlapping segment.

Example

^
Segments MY_RAM and MY_ROM overlap
LINK fibo.abs
NAMES fibo.o startup.o END
SEGMENTS
 MY_RAM = READ_WRITE 0x800 TO 0x80F;
 MY_ROM = READ_ONLY 0x805 TO 0xAFF;
 MY_STK = READ_WRITE 0xB00 TO 0xBFF;
END
PLACEMENT
 .text INTO MY_ROM;
 .data INTO MY_RAM;
 .stack INTO MY_STK;
END
/* Set reset vector on _Startup */
VECTOR ADDRESS 0xFFFE _Startup

Tips

Modify the segment definition to remove the overlap.

Example

LINK fibo.abs
NAMES fibo.o startup.o END
SEGMENTS
 MY_RAM = READ_WRITE 0x800 TO 0x80F;
 MY_ROM = READ_ONLY 0x810 TO 0xAFF;
7-10 MCUEZLNK0508/D
For More Information On This Product,

 Go to: www.freescale.com

LINKER MESSAGES

st

t.

ddress

and a

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

 MY_STK = READ_WRITE 0xB00 TO 0xBFF;
END
PLACEMENT
 .text INTO MY_ROM;
 .data INTO MY_RAM;
 .stack INTO MY_STK;
END
/* Set reset vector on _Startup */
VECTOR ADDRESS 0xFFFE _Startup

L1102 Out of Allocation Space in Segment <Segment Name> at Address <Fir
Address Free>

Type: [ERROR]

Description

The specified segment is not big enough to contain all objects from sections placed in i

<segment name> : Name of the undersized segment.

<first address free>: First address free in this segment (i.e. address following the last a
used).

Example

In the following example, assume the section ‘.data’ contains a character variable
structure of 5 bytes.

^
Out of allocation space in segment MY_RAM at address 0x801
LINK fibo.abs
NAMES fibo.o startup.o END
SEGMENTS
 MY_RAM = READ_WRITE 0x800 TO 0x803;
 MY_ROM = READ_ONLY 0x805 TO 0xAFF;
 MY_STK = READ_WRITE 0xB00 TO 0xBFF;
END
PLACEMENT
 .text INTO MY_ROM;
 .data INTO MY_RAM;
 .stack INTO MY_STK;
END
/* Set reset vector on _Startup */
VECTOR ADDRESS 0xFFFE _Startup

Tips

Set the end address of the specified segment to a higher value.
MCUEZLNK0508/D 7-11
For More Information On This Product,

 Go to: www.freescale.com

LINKER MESSAGES

always

 for
Uez

ge is

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

L1103 <Section Name> Not Specified in The PLACEMENT Block
Type: [ERROR]

Description

Indicates that a mandatory section is not specified in the placement block. Sections
specified in the PLACEMENT block are .text and .data.

Example

^
ERROR: .text not specified in the PLACEMENT block
LINK fibo.abs
NAMES fibo.o startup.o END
SEGMENTS
 MY_RAM = READ_WRITE 0x800 TO 0x80F;
 MY_ROM = READ_ONLY 0x810 TO 0xAFF;
 MY_STK = READ_WRITE 0xB00 TO 0xBFF;
END
PLACEMENT
 .init, .rodata INTO MY_ROM;
 .data INTO MY_RAM;
 .stack INTO MY_STK;
END
/* Set reset vector on _Startup */
VECTOR ADDRESS 0xFFFE _Startup

Tips

Insert the missing section in the PLACEMENT block.

Note:

The section DEFAULT_RAM is a synonym for .data and DEFAULT_ROM is a synonym
.text. These two section names have been defined for compatibility with the old MC
Linker.

L1106 <Object Name> Not Found
Type: [ERROR|WARNING]

Description

An object referenced in the PRM file or in the application is not found. This messa
generated when:

• An object specified in a VECTOR or VECTOR ADDRESS command is not found
(ERROR).

• No startup structure detected in the application (WARNING).
7-12 MCUEZLNK0508/D
For More Information On This Product,

 Go to: www.freescale.com

LINKER MESSAGES

).

.

s the

 name
ea is

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

• An object (function or variable) referenced in another object is not found in the
application (ERROR).

• An object (function or variable) specified in the ENTRIES block is not found (ERROR

 Example

 ^
 ERROR: globInt not found
 LINK fibo.abs
 NAMES fibo.o startup.o END

 SEGMENTS
 MY_RAM = READ_WRITE 0x800 TO 0x80F;
 MY_ROM = READ_ONLY 0x810 TO 0xAFF;
 MY_STK = READ_WRITE 0xB00 TO 0xBFF;
 END
 PLACEMENT
 .text, .rodata INTO MY_ROM;
 .data INTO MY_RAM;
 .stack INTO MY_STK;
 END

 ENTRIES
 globInt;
 END

 /* Set reset vector on _Startup */
 VECTOR ADDRESS 0xFFFE _Startup

 Tips

The missing object must be implemented in one of the modules building the application

Ensure that your definition of OBJPATH and GENPATH is correct and the linker use
latest version of the object files.

Check the NAMES block to ensure all binary files building the application are listed.

 L1109 <Segment Name> Appears Twice in SEGMENTS Block
Type: [ERROR]

 Description

A segment name is specified twice in a PRM file. This is not allowed. When this segment
is referenced in the PLACEMENT block, the linker cannot detect which memory ar
referenced.

 Example

 LINK fibo.abs
MCUEZLNK0508/D 7-13
For More Information On This Product,

 Go to: www.freescale.com

LINKER MESSAGES

ory area

ENT
MENT
both

cified

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

 NAMES fibo.o startup.o END

 SEGMENTS
 MY_RAM = READ_WRITE 0x800 TO 0x80F;
 MY_ROM = READ_ONLY 0x810 TO 0xAFF;
 MY_STK = READ_WRITE 0xB00 TO 0xBFF;
 MY_RAM = READ_WRITE 0xC00 TO 0xCFF;
 ^
 ERROR: MY_RAM appears twice in SEGMENTS block
 END
 PLACEMENT
 .text, .rodata INTO MY_ROM;
 .data INTO MY_RAM;
 .stack INTO MY_STK;
 END

 /* Set reset vector on _Startup */
 VECTOR ADDRESS 0xFFFE _Startup

 Tips

Change one of the segment names, to generate unique segment names. If the same mem
is defined twice, you can remove one of the definitions.

L1110 <Segment Name> Appears Twice in PLACEMENT Block
Type: [ERROR]

 Description

The specified segment appears twice in a PLACEMENT block, and one of the PLACEM
lines is part of a segment list. A segment name may appear in several lines in the PLACE
block, if it is the only segment specified in the segment list. Sections specified in
PLACEMENT lines are merged into one list of sections, which are allocated in the spe
segment.

 Example

 LINK fibo.abs
 NAMES fibo.o startup.o END

 SEGMENTS
 MY_RAM = READ_WRITE 0x800 TO 0x80F;
 MY_ROM = READ_ONLY 0x810 TO 0xAFF;
 MY_STK = READ_WRITE 0xB00 TO 0xBFF;
 ROM_2 = READ_ONLY 0x500 TO 0x7FF;
 END
 PLACEMENT
 .text, .rodata INTO MY_ROM;
 .data INTO MY_RAM;
7-14 MCUEZLNK0508/D
For More Information On This Product,

 Go to: www.freescale.com

LINKER MESSAGES

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

 .stack INTO MY_STK;
 codeSec1, codeSec2 INTO ROM_2, MY_ROM;
 ^
 ERROR: MY_ROM appears twice in PLACEMENT block
 END

 /* Set reset vector on _Startup */
 VECTOR ADDRESS 0xFFFE _Startup

 Tips

 Remove one instance of the segment from the PLACEMENT block.

L1111 <Section Name> Appears Twice in PLACEMENT Block
Type: [ERROR]

 Description

 The specified section appears multiple times in a PLACEMENT block.

 Example

 LINK fibo.abs
 NAMES fibo.o startup.o END

 SEGMENTS
 MY_RAM = READ_WRITE 0x800 TO 0x80F;
 MY_ROM = READ_ONLY 0x810 TO 0xAFF;
 MY_STK = READ_WRITE 0xB00 TO 0xBFF;
 ROM_2 = READ_ONLY 0x500 TO 0x7FF;
 END
 PLACEMENT
 .text, .rodata INTO MY_ROM;
 .data INTO MY_RAM;
 .stack INTO MY_STK;
 .text INTO ROM_2;
 ^
 ERROR: .text appears twice in PLACEMENT block
 END

 /* Set reset vector on _Startup */
 VECTOR ADDRESS 0xFFFE _Startup

 Tips

Remove one occurrence of the specified section from the PLACEMENT block.
MCUEZLNK0508/D 7-15
For More Information On This Product,

 Go to: www.freescale.com

LINKER MESSAGES

Il-

ge is

lifier.

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

L1112 The <Section name> Section Has Segment Type <Segment Qualifier> (
legal)

Type: [ERROR]

 Description

A section is placed in a segment defined with an incompatible qualifier. This messa
generated when:

• The section ‘.stack’ is placed in a READ_ONLY segment.

• The section ‘.bss’ is placed in a READ_ONLY segment.

• The section ‘.startData’ is placed in a READ_WRITE, NO_INIT or PAGED segment.

• The section ‘.init’ is placed in a READ_WRITE, NO_INIT or PAGED segment.

• The section ‘.copy’ is placed in a READ_WRITE, NO_INIT or PAGED segment.

• The section ‘.text’ is placed in a READ_WRITE, NO_INIT or PAGED segment.

• The section ‘.data’ is placed in a READ_ONLY segment.

• A data section is placed in a READ_ONLY segment.

• A code section is placed in a READ_WRITE segment.

 Example

 ^
 ERROR: The .data section has segment type READ_ONLY (illegal)
 LINK fibo.abs
 NAMES fibo.o startup.o END

 SEGMENTS
 MY_RAM = READ_WRITE 0x800 TO 0x80F;
 MY_ROM = READ_ONLY 0x810 TO 0xAFF;
 MY_STK = READ_WRITE 0xB00 TO 0xBFF;
 ROM_2 = READ_ONLY 0x500 TO 0x7FF;
 END
 PLACEMENT
 .text, .rodata INTO MY_ROM;
 .data INTO ROM_2;
 .stack INTO MY_STK;
 END

 /* Set reset vector on _Startup */
 VECTOR ADDRESS 0xFFFE _Startup

 Tips

Place the specified section in a segment that has been defined with an appropriate qua
7-16 MCUEZLNK0508/D
For More Information On This Product,

 Go to: www.freescale.com

LINKER MESSAGES

r>

_INIT
ialized
 when:

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

 Example

 LINK fibo.abs
 NAMES fibo.o startup.o END

 SEGMENTS
 MY_RAM = READ_WRITE 0x800 TO 0x80F;
 MY_ROM = READ_ONLY 0x810 TO 0xAFF;
 MY_STK = READ_WRITE 0xB00 TO 0xBFF;
 ROM_2 = READ_ONLY 0x500 TO 0x7FF;
 END
 PLACEMENT
 .text INTO MY_ROM;
 .data INTO MY_RAM;
 .stack INTO MY_STK;
 END

 /* Set reset vector on _Startup */
 VECTOR ADDRESS 0xFFFE _Startup

L1114 The <Section Name> Section Has Segment Type <Segment Qualifie
(Initialization Problem)

Type: [WARNING]

 Description

The specified section is loaded in a segment that has been defined with the qualifier NO
or PAGED. This may generate a problem because the section contains some init
constants, which will not be initialized at application startup. This message is generated

• The section ‘.rodata’ is placed in a NO_INIT or PAGED segment.

• The section ‘.rodata1’ is placed in a NO_INIT or PAGED segment.

 Example

 ^
 WARNING: The .rodata section has segment type NO_INIT (initial-
ization problem)
 LINK fibo.abs
 NAMES fibo.o startup.o END

 SEGMENTS
 MY_RAM = READ_WRITE 0x800 TO 0x80F;
 MY_ROM = READ_ONLY 0x810 TO 0xAFF;
 MY_STK = READ_WRITE 0xB00 TO 0xBFF;
 RAM_2 = NO_INIT 0x500 TO 0x7FF;
 END
 PLACEMENT
 .text INTO MY_ROM;
 .data INTO MY_RAM;
MCUEZLNK0508/D 7-17
For More Information On This Product,

 Go to: www.freescale.com

LINKER MESSAGES

ITE

 main

n.
tion
nd

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

 .stack INTO MY_STK;
 .rodata INTO RAM_2;
 END

 /* Set reset vector on _Startup */
 VECTOR ADDRESS 0xFFFE _Startup

 Tips

Place the specified section in a segment defined with the READ_ONLY or READ_WR
qualifier.

 Example

 LINK fibo.abs
 NAMES fibo.o startup.o END

 SEGMENTS
 MY_RAM = READ_WRITE 0x800 TO 0x80F;
 MY_ROM = READ_ONLY 0x810 TO 0xAFF;
 MY_STK = READ_WRITE 0xB00 TO 0xBFF;
 RAM_2 = NO_INIT 0x500 TO 0x7FF;
 END
 PLACEMENT
 .text INTO MY_ROM;
 .data INTO MY_RAM;
 .stack INTO MY_STK;
 .rodata INTO MY_ROM;
 END

 /* Set reset vector on _Startup */
 VECTOR ADDRESS 0xFFFE _Startup

 L1115 Function <Function Name> Not Found
Type: [ERROR|WARNING]

 Description

The specified function is not found in the application. This message is generated when:

• No main function is available in the application. This function is not required for an
assembly application. For ANSI C applications, if no main function is available, the
programmer must ensure that application startup is performed correctly. Usually the
function is called ‘main’, but you can define your own main function using the linker
command MAIN.

• No init function is available. The init function defines the entry point in the applicatio
This function is required for ANSI C and assembly applications. Usually the init func
is called ‘_Startup’, but you can define your own init function using the linker comma
INIT.
7-18 MCUEZLNK0508/D
For More Information On This Product,

 Go to: www.freescale.com

LINKER MESSAGES

ENT
ctions.

lock.

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Tips

Provide the application with the requested function.

L1118 Vector Allocated at Absolute Address <Address> Overlaps With Another
Vector or an Absolutely Allocated Object

Type: [ERROR]

 Description

A vector overlaps with an absolute object or another vector.

 Example

 ^
 ERROR: Vector allocated at absolute address 0xFFFE overlaps with
another vector or an absolutely allocated object
 LINK fibo.abs
 NAMES fibo.o startup.o END

 SEGMENTS
 MY_RAM = READ_WRITE 0x800 TO 0x80F;
 MY_ROM = READ_ONLY 0x810 TO 0xAFF;
 MY_STK = READ_WRITE 0xB00 TO 0xBFF;
 END
 PLACEMENT
 .text, .rodata INTO MY_ROM;
 .data INTO MY_RAM;
 .stack INTO MY_STK;
 END

 /* Set reset vector on _Startup */
 VECTOR ADDRESS 0xFFFE _Startup
 VECTOR ADDRESS 0xFFFF 0x000A

 Tips

 Move the object or vector to a free position.

L1119 Vector Allocated at Absolute Address <Address> Overlaps With Sections
Placed in Segment <Segment Name>

Type: [ERROR]

 Description

The specified vector is allocated inside a segment, which is specified in the PLACEM
block. This is not allowed because the vector may overlap with objects defined in the se

A vector may be allocated inside a segment that does not appear in the PLACEMENT b
MCUEZLNK0508/D 7-19
For More Information On This Product,

 Go to: www.freescale.com

LINKER MESSAGES

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

 Example

 ^
 ERROR: Vector allocated at absolute address 0xFFFE overlaps with
sections placed in segment ROM_2
 LINK fibo.abs
 NAMES fibo.o startup.o END

 SEGMENTS
 MY_RAM = READ_WRITE 0x800 TO 0x80F;
 MY_ROM = READ_ONLY 0x810 TO 0xAFF;
 MY_STK = READ_WRITE 0xB00 TO 0xBFF;
 ROM_2 = READ_ONLY 0xFF00 TO 0xFFFF;
 END
 PLACEMENT
 .text INTO MY_ROM;
 .data INTO MY_RAM;
 .stack INTO MY_STK;
 .rodata INTO ROM_2;
 END

 /* Set reset vector on _Startup */
 VECTOR ADDRESS 0xFFFE _Startup

 Tips

 Define the specified segment outside the vector table.

 Example

 LINK fibo.abs
 NAMES fibo.o startup.o END

 SEGMENTS
 MY_RAM = READ_WRITE 0x800 TO 0x80F;
 MY_ROM = READ_ONLY 0x810 TO 0xAFF;
 MY_STK = READ_WRITE 0xB00 TO 0xBFF;
 ROM_2 = READ_ONLY 0xC00 TO 0xCFF;
 END
 PLACEMENT
 .text INTO MY_ROM;
 .data INTO MY_RAM;
 .stack INTO MY_STK;
 .rodata INTO ROM_2;
 END

 /* Set reset vector on _Startup */
 VECTOR ADDRESS 0xFFFE _Startup
7-20 MCUEZLNK0508/D
For More Information On This Product,

 Go to: www.freescale.com

LINKER MESSAGES

t

NLY.
should
n, the

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

L1120 Vector Allocated at Absolute Address <Address> Placed in Segmen
<Segment Name>, Which Has No READ_ONLY qualifier.

Type: [ERROR]

 Description

The specified vector is defined inside a segment not defined with the qualifier READ_O
The vector table should be initialized at application load time during the debug phase. It
be burned into the EPROM when application development is terminated. For this reaso
vector table must always be located in a READ_ONLY memory area.

 Example

 ^
 ERROR: Vector allocated at absolute address 0xFFFE placed in
segment RAM_2 which has not READ_ONLY qualifier
 LINK fibo.abs
 NAMES fibo.o startup.o END

 SEGMENTS
 MY_RAM = READ_WRITE 0x800 TO 0x80F;
 MY_ROM = READ_ONLY 0x810 TO 0xAFF;
 MY_STK = READ_WRITE 0xB00 TO 0xBFF;
 RAM_2 = READ_WRITE 0xFF00 TO 0xFFFF;
 END
 PLACEMENT
 .text INTO MY_ROM;
 .data INTO MY_RAM;
 .stack INTO MY_STK;
 END

 /* Set reset vector on _Startup */
 VECTOR ADDRESS 0xFFFE _Startup

 Tips

 Define the specified segment with the READ_ONLY qualifier.

L1121 Out of Allocation Space at Address <Address> for .copy Section
Type: [ERROR]

 Description

Insufficient memory to store information for initialized variables in the ‘.copy’ section.

 Tips

Specify a higher end address for the segment, where the ‘.copy’ section is allocated.
MCUEZLNK0508/D 7-21
For More Information On This Product,

 Go to: www.freescale.com

LINKER MESSAGES

lock.
en, the

arate

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

L1122 Section .copy Must be The Last Section in The Section List
Type: [ERROR]

 Description

The ‘.copy’ section is not specified at the end of a section list from the PLACEMENT b
Since the size of this section cannot be evaluated before all initialization values are writt
.copy section must be the last section in a section list.

 Example

 ^
 ERROR: Section .copy must be the last section in the section list
 LINK fibo.abs
 NAMES fibo.o startup.o END

 SEGMENTS
 MY_RAM = READ_WRITE 0x800 TO 0x80F;
 MY_ROM = READ_ONLY 0x810 TO 0xAFF;
 MY_STK = READ_WRITE 0xB00 TO 0xBFF;
 END
 PLACEMENT
 .copy, .text INTO MY_ROM;
 .data INTO MY_RAM;
 .stack INTO MY_STK;
 END

 /* Set reset vector on _Startup */
 VECTOR ADDRESS 0xFFFE _Startup

Tips

Move the section .copy to the last position in the section list or define it on a sep
PLACEMENT line in a separate segment.

 Example

 LINK fibo.abs
 NAMES fibo.o startup.o END

 SEGMENTS
 MY_RAM = READ_WRITE 0x800 TO 0x80F;
 MY_ROM = READ_ONLY 0x810 TO 0xAFF;
 MY_STK = READ_WRITE 0xB00 TO 0xBFF;
 ROM_2 = READ_ONLY 0xC00 TO 0xDFF;
 END
 PLACEMENT
 .text INTO MY_ROM;
 .data INTO MY_RAM;
 .stack INTO MY_STK;
7-22 MCUEZLNK0508/D
For More Information On This Product,

 Go to: www.freescale.com

LINKER MESSAGES

s

ress is

w

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

 .copy INTO ROM_2;
 END

 /* Set reset vector on _Startup */
 VECTOR ADDRESS 0xFFFE _Startup

L1123 Invalid Range Defined For Segment <Segment Name> - End Addres
Must Be Bigger Than Start Address

Type: [ERROR]

 Description

The memory range specified in the segment definition is not valid. The segment end add
smaller than the segment start address.

 Example

 LINK fibo.abs
 NAMES fibo.o startup.o END

 SEGMENTS
 MY_RAM = READ_WRITE 0x800 TO 0x7FF;
 ^
 ERROR: Invalid range defined for segment MY_RAM. End address must
be bigger than start address
 MY_ROM = READ_ONLY 0x810 TO 0xAFF;
 MY_STK = READ_WRITE 0xB00 TO 0xBFF;
 END
 PLACEMENT
 .text INTO MY_ROM;
 .data INTO MY_RAM;
 .stack INTO MY_STK;
 END

 /* Set reset vector on _Startup */
 VECTOR ADDRESS 0xFFFE _Startup

Tips

 Change the segment start or end address to define a valid memory range.

L1124 '+' or '-' Should Directly Follow The File Name
Type: [ERROR]

 Description

The ‘+’ or ‘-‘ suffix specified after a file name in the NAMES block does not directly follo
the file name. A space probably exists between the file name and suffix.

 Example
MCUEZLNK0508/D 7-23
For More Information On This Product,

 Go to: www.freescale.com

LINKER MESSAGES

emory

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

 LINK fibo.abs
 NAMES fibo.o + startup.o END
 ^
 ERROR: '+' or '-' should directly follow the file name
 SEGMENTS
 MY_RAM = READ_WRITE 0x800 TO 0x80F;
 MY_ROM = READ_ONLY 0x810 TO 0xAFF;
 MY_STK = READ_WRITE 0xB00 TO 0xBFF;
 END
 PLACEMENT
 .text INTO MY_ROM;
 .data INTO MY_RAM;
 .stack INTO MY_STK;
 END

 /* Set reset vector on _Startup */
 VECTOR ADDRESS 0xFFFE _Startup

 Tips

 Remove the extra space after the file name.

 Example

 LINK fibo.abs
 NAMES fibo.o+ startup.o END
 SEGMENTS
 MY_RAM = READ_WRITE 0x800 TO 0x80F;
 MY_ROM = READ_ONLY 0x810 TO 0xAFF;
 MY_STK = READ_WRITE 0xB00 TO 0xBFF;
 END
 PLACEMENT
 .text INTO MY_ROM;
 .data INTO MY_RAM;
 .stack INTO MY_STK;
 END

 /* Set reset vector on _Startup */
 VECTOR ADDRESS 0xFFFE _Startup

L1125 In Small Memory Model, Code and Data Must Be Located on Bank 0
Type: [ERROR]

 Description

The application has been assembled or compiled in a small memory model and the m
area specified for a segment is not located on the first 64K (0x0000 to 0xFFFF).
7-24 MCUEZLNK0508/D
For More Information On This Product,

 Go to: www.freescale.com

LINKER MESSAGES

t be
FF is

 not

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

 Example

 ^
 ERROR: In small memory model, code and data must be located on
bank 0
 LINK fibo.abs
 NAMES fibo.o startup.o END
 SEGMENTS
 MY_RAM = READ_WRITE 0x800 TO 0x80F;
 MY_ROM = READ_ONLY 0x10810 TO 0x10AFF;
 MY_STK = READ_WRITE 0xB00 TO 0xBFF;
 END
 PLACEMENT
 .text INTO MY_ROM;
 .data INTO MY_RAM;
 .stack INTO MY_STK;
 END

 /* Set reset vector on _Startup */
 VECTOR ADDRESS 0xFFFE _Startup

 Tips

If memory higher than 0xFFFF is required for the application, the application mus
assembled or compiled using the banked memory model. If no memory above 0xFF
required, modify the memory range and place it on the first 64K of memory.

L1200 Both STACKTOP and STACKSIZE Defined
Type: [ERROR]

Description

The STACKTOP and STACKSIZE commands are specified in the PRM file. This is
allowed, because it generates ambiguity for the definition of the stack.

 Example

 ^
 ERROR: Both STACKTOP and STACKSIZE defined
 LINK fibo.abs
 NAMES fibo.o startup.o END

 STACKTOP 0xBFE
 SEGMENTS
 MY_RAM = READ_WRITE 0x800 TO 0x80F;
 MY_ROM = READ_ONLY 0x810 TO 0xAFF;
 END
 PLACEMENT
 .text INTO MY_ROM;
 .data INTO MY_RAM;
MCUEZLNK0508/D 7-25
For More Information On This Product,

 Go to: www.freescale.com

LINKER MESSAGES

mer
n be

ation

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

 END
 STACKSIZE 0x60
 /* Set reset vector on _Startup */
 VECTOR ADDRESS 0xFFFE _Startup

 Tips

 Remove either the STACKTOP or STACKSIZE command from the PRM file.

L1201 No Stack Defined
Type: [WARNING]

Description

The PRM file does not contain a stack definition. In that case, it is the program
responsibility to initialize the stack pointer inside the application code. The stack ca
defined in the PRM file in one of the following ways:

• Through the STACKTOP command in the PRM file.

• Through the STACKSIZE command in the PRM file.

• Through the specification of the .stack section in the placement block.

Example

 ^
WARNING: No stack defined
 LINK fibo.abs
 NAMES fibo.o startup.o END

 SEGMENTS
 MY_RAM = READ_WRITE 0x800 TO 0x80F;
 MY_ROM = READ_ONLY 0x810 TO 0xAFF;
 END
 PLACEMENT
 .text INTO MY_ROM;
 .data INTO MY_RAM;
 END
 /* Set reset vector on _Startup */
 VECTOR ADDRESS 0xFFFE _Startup

Tips

Define the stack in one of the three ways specified above.

Note that if the programmer initializes the stack pointer inside the source code, initializ
from the linker will be overridden.
7-26 MCUEZLNK0508/D
For More Information On This Product,

 Go to: www.freescale.com

LINKER MESSAGES

d. This
d cannot

ck.

a

ection
IZE

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

L1202 Stack Cannot Be Allocated on More Than One Segment
Type: [ERROR]

Description

The section .stack is specified on a PLACEMENT line where several segments are liste
is not allowed, because the memory area reserved for the stack must be contiguous an
be split over different memory ranges.

Example

 ^
 ERROR: stack cannot be allocated on more than one segment
 LINK fibo.abs
 NAMES fibo.o startup.o END
 SEGMENTS
 MY_RAM = READ_WRITE 0x800 TO 0x80F;
 MY_ROM = READ_ONLY 0x810 TO 0xAFF;
 STK_1 = READ_WRITE 0xB00 TO 0xBFF;
 STK_2 = READ_WRITE 0xD00 TO 0xDFF;
 END
 PLACEMENT
 .text INTO MY_ROM;
 .data INTO MY_RAM;
 .stack INTO STK_1, STK_2;
 END

 /* Set reset vector on _Startup */
 VECTOR ADDRESS 0xFFFE _Startup

Tips

Define a single segment with the READ_WRITE or NO_INIT qualifier to allocate the sta

L1203 STACKSIZE Command Defines a Size of <Size> But .stack Specifies
Stacksize of <Size>

Type: [ERROR]

Description

The stack is defined through both a STACKSIZE command and placement of the .stack s
in a READ_WRITE or NO_INIT segment. However, the size specified in the STACKS
command is bigger than the size of the segment where the stack is allocated.

Example

 ^
 ERROR: STACKSIZE command defines a size of 0x120 but .stack
specifies a stacksize of 0x100
 LINK fibo.abs
MCUEZLNK0508/D 7-27
For More Information On This Product,

 Go to: www.freescale.com

LINKER MESSAGES

and to
ZE.

lize

where
:

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

 NAMES fibo.o startup.o END
 SEGMENTS
 MY_RAM = READ_WRITE 0x800 TO 0x80F;
 MY_ROM = READ_ONLY 0x810 TO 0xAFF;
 STK_1 = READ_WRITE 0xB00 TO 0xBFF;
 END
 PLACEMENT
 .text INTO MY_ROM;
 .data INTO MY_RAM;
 .stack INTO STK_1;
 END

 STACKSIZE 0x120
 /* Set reset vector on _Startup */
 VECTOR ADDRESS 0xFFFE _Startup

Tips

To avoid this message you can either adapt the size specified in the STACKSIZE comm
fit into the segment where .stack is allocated or simply remove the command STACKSI

If you remove the command STACKSIZE from the previous example, the linker will initia
a stack from 0x100 bytes. The stack pointer initial value will be set to 0xBFE.

 Example

 LINK fibo.abs
 NAMES fibo.o startup.o END
 SEGMENTS
 MY_RAM = READ_WRITE 0x800 TO 0x80F;
 MY_ROM = READ_ONLY 0x810 TO 0xAFF;
 MY_STK = READ_WRITE 0xB00 TO 0xBFF;
 END
 PLACEMENT
 .text INTO MY_ROM;
 .data INTO MY_RAM;
 .stack INTO MY_STK;
 END

 /* Set reset vector on _Startup */
 VECTOR ADDRESS 0xFFFE _Startup

If the size specified in a STACKSIZE command is smaller than the size of the segment
the section .stack is allocated, the stack pointer initial value will be evaluated as follows

<segment start address> + <size in STACKSIZE> -
<Additional Byte Required by the processor.>

Example

 LINK fibo.abs
 NAMES fibo.o startup.o END
7-28 MCUEZLNK0508/D
For More Information On This Product,

 Go to: www.freescale.com

LINKER MESSAGES

section
OP

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

 SEGMENTS
 MY_RAM = READ_WRITE 0x800 TO 0x80F;
 MY_ROM = READ_ONLY 0x810 TO 0xAFF;
 MY_STK = READ_WRITE 0xB00 TO 0xBFF;
 END
 PLACEMENT
 .text INTO MY_ROM;
 .data INTO MY_RAM;
 .stack INTO MY_STK;
 END
 STACKSIZE 0x60
 /* Set reset vector on _Startup */
 VECTOR ADDRESS 0xFFFE _Startup

In the previous example, the initial value for the stack pointer is evaluated as:

 0xB00 + 0x60s –2 = 0xB5E

L204 STACKTOP Command Defines an Initial Value of <Stack Top> But
.stack Specifies an Initial Value of <Initial Value>

Type: [ERROR]

Description

The stack is defined through both a STACKTOP command and placement of the .stack
in a READ_WRITE or NO_INIT segment. However, the value specified in the STACKT
command is bigger than the end address of the segment where the stack is allocated.

Example

 ^
 ERROR: STACKTOP command defines an initial value of 0xCFE but
.stack specifies an initial value of 0xBFF
 LINK fibo.abs
 NAMES fibo.o startup.o END
 SEGMENTS
 MY_RAM = READ_WRITE 0x800 TO 0x80F;
 MY_ROM = READ_ONLY 0x810 TO 0xAFF;
 STK_1 = READ_WRITE 0xB00 TO 0xBFF;
 END
 PLACEMENT
 .text INTO MY_ROM;
 .data INTO MY_RAM;
 .stack INTO STK_1;
 END

 STACKTOP 0xCFE
 /* Set reset vector on _Startup */
 VECTOR ADDRESS 0xFFFE _Startup
MCUEZLNK0508/D 7-29
For More Information On This Product,

 Go to: www.freescale.com

LINKER MESSAGES

mmand
TOP.

initial

section
tions

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Tips

To avoid this message you can either adapt the address specified in the STACKTOP co
to fit into the segment where .stack is allocated, or simply remove the command STACK

If you remove the command STACKTOP from the previous example, the stack pointer
value will be set to 0xBFE.

 Example

 LINK fibo.abs
 NAMES fibo.o startup.o END
 SEGMENTS
 MY_RAM = READ_WRITE 0x800 TO 0x80F;
 MY_ROM = READ_ONLY 0x810 TO 0xAFF;
 MY_STK = READ_WRITE 0xB00 TO 0xBFF;
 END
 PLACEMENT
 .text INTO MY_ROM;
 .data INTO MY_RAM;
 .stack INTO MY_STK;
 END

 /* Set reset vector on _Startup */
 VECTOR ADDRESS 0xFFFE _Startup

L1205 STACKTOP Command Incompatible With .stack Being Part of a List of
Sections

Type: [ERROR]

 Description

The stack is defined through both a STACKTOP command and placement of the .stack
in a READ_WRITE or NO_INIT segment. The .stack section is specified in a list of sec
in the PLACEMENT block.

 Example

 ^
 ERROR: STACKTOP command incompatible with .stack being part of a
list of sections
 LINK fibo.abs
 NAMES fibo.o startup.o END
 SEGMENTS
 MY_RAM = READ_WRITE 0x800 TO 0x80F;
 MY_ROM = READ_ONLY 0x810 TO 0xAFF;
 STK_1 = READ_WRITE 0xB00 TO 0xBFF;
 END
 PLACEMENT
 .text INTO MY_ROM;
7-30 MCUEZLNK0508/D
For More Information On This Product,

 Go to: www.freescale.com

LINKER MESSAGES

ide a

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

 .data, .stack INTO STK_1;
 END

 STACKTOP 0xBFE
 /* Set reset vector on _Startup */
 VECTOR ADDRESS 0xFFFE _Startup

 Tips

 Specify the .stack section in a placement line, where the stack alone is specified.

L1206 Stack Overlaps With a Segment Which Appears in The PLACEMENT
Block

Type: [ERROR]

 Description

The stack is defined through the command STACKTOP and the initial value is ins
segment, which is used in the PLACEMENT block.

This is not allowed because the stack may overlap with allocated objects.

 Example

 ^
 ERROR: .stack overlaps with a segment which appears in the
PLACEMENT block
 LINK fibo.abs
 NAMES fibo.o startup.o END
 SEGMENTS
 MY_RAM = READ_WRITE 0x800 TO 0x80F;
 MY_ROM = READ_ONLY 0x810 TO 0xAFF;
 STK_1 = READ_WRITE 0xB00 TO 0xBFF;
 END
 PLACEMENT
 .text INTO MY_ROM;
 .data INTO STK_1;
 END

 STACKTOP 0xBFE
 /* Set reset vector on _Startup */
 VECTOR ADDRESS 0xFFFE _Startup

Tips

Define the stack initial value outside all segments specified in the PLACEMENT block.

Example

 LINK fibo.abs
 NAMES fibo.o startup.o END
MCUEZLNK0508/D 7-31
For More Information On This Product,

 Go to: www.freescale.com

LINKER MESSAGES

ent,
mand

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

 SEGMENTS
 MY_RAM = READ_WRITE 0x800 TO 0x80F;
 MY_ROM = READ_ONLY 0x810 TO 0xAFF;
 MY_STK = READ_WRITE 0xB00 TO 0xBFF;
 END
 PLACEMENT
 .text INTO MY_ROM;
 .data INTO MY_RAM;
 END
 STACKTOP 0xBFE

 /* Set reset vector on _Startup */
 VECTOR ADDRESS 0xFFFE _Startup

L1207 STACKSIZE Command is Missing
Type: [ERROR]

 Description

The stack is defined by placing the .stack section in a READ_WRITE or NO_INIT segm
although the .stack section is not alone in the section list. In this case, a STACKSIZE com
is required to specify the stack size.

Example

 ^
 ERROR: STACKSIZE command is missing
 LINK fibo.abs
 NAMES fibo.o startup.o END
 SEGMENTS
 MY_RAM = READ_WRITE 0x800 TO 0x80F;
 MY_ROM = READ_ONLY 0x810 TO 0xAFF;
 STK_1 = READ_WRITE 0xB00 TO 0xBFF;
 END
 PLACEMENT
 .text INTO MY_ROM;
 .data, .stack INTO STK_1;
 END

 /* Set reset vector on _Startup */
 VECTOR ADDRESS 0xFFFE _Startup

Tips

Specify the stack size in a STACKSIZE command.

L1301 Cannot Open File <File Name>
Type: [ERROR]
7-32 MCUEZLNK0508/D
For More Information On This Product,

 Go to: www.freescale.com

LINKER MESSAGES

 used

o store

tory

first
d.

 paths
n the

n:

ted in

les.

on to

 listed

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Description

The linker is unable to open the application map file, absolute file or one of the binary files
to build the application.

Tips

If the abs or map file cannot be found, ensure that memory is available for the directory t
the file and the directory has read/write access.

If the environment variable TEXTPATH is defined, the MAP file is stored in the first direc
specified, otherwise it is created in the directory where the source file is detected.

If the environment variable ABSPATH is defined, the absolute file is stored in the
directory specified, otherwise it is created in the directory where the PRM file is detecte

If a binary file cannot be found, make sure the file exists and spelled correctly. Check if
are defined correctly. The binary files must be located in one of the paths listed i
environment variables OBJPATH or GENPATH, or in the working directory.

L1302 File <File Name> Not Found
Type: [ERROR]

Description

A file required during the link session cannot be found. This message is generated whe

• The parameter file specified on the command line cannot be found.

Tips

Make sure the file really exists and spelled correctly.

Check if paths are defined correctly. The PRM file must be located in one of the paths lis
the environment variable GENPATH or in the project directory.

L1303 <File Name> Is Not a Valid ELF File
Type: [ERROR]

Description

The specified file is not a valid ELF binary file. The linker is only able to link ELF binary fi

Tips

Check that you have compiled or assembled the specified file with the correct opti
generate an ELF binary file.

Check if paths are defined correctly. The binary files must be located in one of the paths
in the environment variables OBJPATH or GENPATH, or in the project directory.
MCUEZLNK0508/D 7-33
For More Information On This Product,

 Go to: www.freescale.com

LINKER MESSAGES

-

essor.

 listed

del. In

 listed

 listed

.

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

L1400 Incompatible Processor: <Processor Name> in Previous Files and <Pro
cessor Name> in Current File

Type: [ERROR]

 Description

The binary files building the application have been generated for a different target proc
In this case, the linked code cannot be compatible.

Tips

Make sure you are compiling or assembling all your sources for the same processor.

Check if paths are defined correctly. The binary files must be located in one of the paths
in the environment variables OBJPATH or GENPATH, or in the project directory.

L1401 Incompatible Memory Model: <Memory Model Name> in Previous Files
and <Memory Model Name> in Current File

Type: [ERROR]

Description

The binary files building the application have been generated for a different memory mo
this case, the linked code cannot be compatible.

Tips

Make sure you are compiling or assembling all sources in the same memory model.

Check if paths are defined correctly. The binary files must be located in one of the paths
in the environment variables OBJPATH or GENPATH, or in the project directory.

L1403 Unknown Processor <Processor Constant>
Type: [ERROR]

 Description

The processor encoded in the binary object file is not a valid processor constant.

Tips

Check if paths are defined correctly. The binary files must be located in one of the paths
in the environment variables OBJPATH or GENPATH, or in the project directory.

L1404 Unknown Memory Model <Memory Model Constant>
Type: [ERROR]

Description

The memory model encoded in the binary object file is not valid for the target processor
7-34 MCUEZLNK0508/D
For More Information On This Product,

 Go to: www.freescale.com

LINKER MESSAGES

 listed

ROM

int is

his is
he field

ture

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Tips

Check if paths are defined correctly. The binary files must be located in one of the paths
in the environment variables OBJPATH or GENPATH, or in the project directory.

L1600 Main Function Detected in ROM Library
Type: [WARNING]

Description

A main function has been detected in a ROM library. A main function is not required in a
library since they are not self executable applications.

Tips

Remove the MAIN command from the PRM file.

If the application contains a ‘main’ function, rename it.

L1601 Startup Function detected in ROM library
Type: [WARNING]

Description

An application entry point has been detected in a ROM library. An application entry po
not required in a ROM library.

Tips

Remove the INIT command from the PRM file.

If the application contains a ‘_Startup’ function, rename it.

L1700 File <File Name> Should Contain DWARF Information
Type: [ERROR]

Description

The binary file that defines the startup structure does not contain DWARF information. T
required because the type of startup structure is not fixed by the linker and depends on t
and field position inside the user defined structure.

Tips

Insert DWARF information and recompile the ANSI C file containing the startup struc
definition.
MCUEZLNK0508/D 7-35
For More Information On This Product,

 Go to: www.freescale.com

LINKER MESSAGES

 listed

 listed

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

L1701 Start Up Data Structure is Empty
Type: [ERROR]

Description

The size of the user defined startup structure is 0 bytes.

Tips

Check if you actually need a startup structure.

If a startup structure is available, ensure that the correct field name is listed.

L1803 Out of Memory in <Function Name>
Type: [ERROR]

Description

Insufficient memory to allocate the internal structure required by the linker.

L1804 No Elf Section Header Table Found in <File Name>
Type: [ERROR]

Description

Section header table not detected in the binary file.

Tips

Ensure that you are using the correct binary file.

Check if paths are defined correctly. The binary files must be located in one of the paths
in the environment variables OBJPATH or GENPATH, or in the project directory.

L1806 Elf file <File Name> appears to be corrupted
Type: [ERROR]

Description

The specified binary file is not a valid ELF binary file.

Tips

Ensure that you are using the correct binary file.

Check if paths are defined correctly. The binary files must be located in one of the paths
in the environment variables OBJPATH or GENPATH, or in the project directory.

L1808 String overflow in <Function Name>, contact vendor
Type: [ERROR]
7-36 MCUEZLNK0508/D
For More Information On This Product,

 Go to: www.freescale.com

LINKER MESSAGES

 In one

in the

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Description

A section name detected in a section table is longer than 100 characters.

Tips

Ensure all section names are smaller than 100 characters.

L1809 Section <Section Name> located in a segment with invalid qualifier.
Type: [ERROR]

Description

Attributes associated with a section and used in several binary files are not compatible.
file, the section contains variables in the other it contains constants, variables, or code.

Tips

Check usage of the different sections in all binary files. A specific section should conta
same type of information throughout the project.

L1811 Symbol <Symbol Number> - < Symbol Name> duplicated in <First File
Name> and <Second file Name>

Type: [ERROR]

Description

The specified global symbol is defined in two different binary files.

Tips

Rename the symbol defined in one of the specified files.

L1820 Weak symbol <Symbol Name> duplicated in <First File Name> and
<Second file Name>

Type: [WARNING]

Description

The specified weak symbol is defined in two different binary files.

Tips

Rename the symbol defined in one of the specified files.

L1822 Symbol <Symbol Name> in file <File Name> is Undefined
Type: [ERROR]
MCUEZLNK0508/D 7-37
For More Information On This Product,

 Go to: www.freescale.com

LINKER MESSAGES

n.

inary

 listed

er, an
bject

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Description

The specified symbol is referenced in the file, but not defined anywhere in the applicatio

Tips

Check if an object file is missing in the NAMES block and if you are using the correct b
file.

Check if paths are defined correctly. The binary files must be located in one of the paths
in the environment variables OBJPATH or GENPATH, or in the project directory.

L1823 External Object <Symbol Name> in <File Name> Created by Default
Type: [WARNING]

Description

The specified symbol is referenced in the file, but not defined in the application. Howev
external declaration for this object is available in at least one of the binary files. The o
should be defined in the first binary file where it is externally defined.

This is only valid for ANSI C applications.

In this case an external definition for a variable var looks like:

extern int var;

The definition of the corresponding variable looks like:

int var;

Tips

Define the specified symbol in one of the files building the application.
7-38 MCUEZLNK0508/D
For More Information On This Product,

 Go to: www.freescale.com

INDEX

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

Index

Symbols

.abs 1-1, 4-1

.copy 6-31, 6-35

.data 6-31, 6-32

.ini 2-6

.init 6-32

.map 4-2, 6-37

.prm 4-1

.rodata 6-31

.rodata1 6-31

.s1 4-1

.s2 4-1

.s3 4-1

.stack 6-31, 6-32

.startData 6-31, 6-32, 6-35

.sx 4-1

.text 6-31, 6-32

A

Absolute File 1-1, 4-1, 6-18, 6-21
ABSPATH 4-1, 6-15
Application

Startup (also see Startup) 6-34
Assembly

Application 6-10, 6-17
Smart Linking 6-11

C

Codewright 2-2
Command

ENTRIES 6-8, 6-9, 6-16
INIT 5-2, 6-17
LINK 5-2, 6-15, 6-18
MAIN 6-19
MAPFILE 5-3, 6-19
NAMES 6-9, 6-15, 6-21
PLACEMENT 5-9, 6-15, 6-22, 6-32
SEGMENTS 5-5, 6-15, 6-23
STACKSIZE 6-27
STACKTOP 6-28
VECTOR 6-1, 6-29

D

DEFAULT.ENV 3-1
Drag and Drop 2-16

E

-E option 5-2
ENTRIES 6-8, 6-9, 6-16
Environment

File 3-1
Environment Variable

ABSPATH 3-3, 4-1, 6-15, 6-18
ENVIRONMENT 3-1
ERRORFILE 3-5
GENPATH 3-3, 4-1, 6-15, 6-21
LINKPTIONS 3-2, 5-1
OBJPATH 3-3, 6-15, 6-21
SRECORD 3-5, 4-1
TEXTPATH 3-4, 4-2, 6-15, 6-18

Error feedback 2-16

F

File
Absolute 1-1, 4-1, 6-18, 6-21
Environment 3-1
Library 6-21
MAP 4-2, 6-18, 6-20, 6-37
Motorola S 4-1
Object 6-21
Parameter 4-1
Parameter (Linker) 6-13

File Menu 2-6

G

GENPATH 6-15, 6-21
Graphical Interface 2-2

I

INIT 5-2, 6-17
Input 2-14
Input File 2-16

L

Library File 6-21
LINK 5-2, 6-15, 6-18
Linker Menu 2-12
MCUEZLNK0508/D I-1
For More Information On This Product,

 Go to: www.freescale.com

INDEX

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

M

-M Option 5-3
MAIN 6-19
MAP File 4-2, 6-18, 6-20, 6-37

COPYDOWN 6-38
FILE 6-38
OBJECT ALLOCATION 6-38
OBJECT DEPENDENCY 6-38
SEGMENT ALLOCATION 6-38
STARTUP 6-38
STATISTICS 6-38
TARGET 6-38
UNUSED OBJECTS 6-38

MAPFILE 5-3, 6-19
MCUTOOLS.INI 2-7
Menu Bar 2-6
MESSAGE 2-14
Message

ERROR 7-1
FATAL 7-1
WARNING 7-1

Motorola S File 4-1

N

NAMES 6-9, 6-15, 6-21
NO_INIT 5-7, 6-24

O

-O Option 5-2, 6-18
Object File 6-21
OBJPATH 6-15, 6-21
Option

-E 5-2
-M 5-3
-O 5-2, 6-18
-S 5-3
-V 5-4
-W1 5-4
-W2 5-4

Output 2-14

P

PAGED 5-7, 6-24
Parameter

File (Linker) 6-13

Parameter File 4-1
Path List 3-2
PLACEMENT 5-9, 6-15, 6-22, 6-32
Program Startup (also see Startup) 6-34

Q

Qualifier 5-5, 5-6, 6-23
NO_INIT 5-7, 6-24
PAGED 5-7, 6-24
READ_ONLY 5-7, 6-24
READ_WRITE 5-7, 6-24

R

READ_ONLY 5-7, 6-24
READ_WRITE 5-7, 6-24
ROM library 6-21, 6-35

S

-S Option 5-3
Section 6-31

.copy 6-31, 6-35

.copy] 6-31

.data 6-31, 6-32

.init 6-32

.rodata 6-31

.rodata1 6-31

.stack 6-31, 6-32

.startData 6-31, 6-32, 6-35

.text 6-31, 6-32
rodata 6-31

Segment 6-31
Alignment 5-5, 5-7, 6-24, 6-25
Ffill pattern 6-24
Fill Pattern 5-5, 5-9, 6-26
Qualifier 5-5, 5-6, 6-23

SEGMENTS 5-5, 6-15, 6-23
Smart Linking 1-1, 6-8
STACKSIZE 6-27
STACKTOP 6-28
Starting 2-1
Startup

Application 6-34
Startup Function 6-37

User Defined 6-37
Startup Structure 6-34
I-2 MCUEZLNK0508/D
For More Information On This Product,

 Go to: www.freescale.com

INDEX

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

flags 6-35
initBodies 6-36
libInits 6-36
main 6-35
nofInitBodies 6-36
nofLibInits 6-36
nofZeroOuts 6-35
pZeroOut 6-35
stackOffset 6-35
toCopyDownBeg 6-35
User Defined 6-36

Startup.TXT 6-34
Status Bar 2-5

T

TEXTPATH 4-2, 6-15
Tip of the Day 2-1
Tool Bar 2-4

V

-V Option 5-4
VECTOR 6-1, 6-29
Vector 1-1
View Menu 2-13

W

-W1 option 5-4
-W2 Option 5-4
Win32s 2-3
Window 2-2
WinEdit 2-2
WINEDIT.INI 2-2
MCUEZLNK0508/D I-3
For More Information On This Product,

 Go to: www.freescale.com

INDEX

F

re
e

sc
a

le
 S

e
m

ic
o

n
d

u
c

to
r,

 I

Freescale Semiconductor, Inc.
n

c
..

.

I-4 MCUEZLNK0508/D
For More Information On This Product,

 Go to: www.freescale.com

	chaptitle - general�information
	heading1 - 1.1 Introduction
	heading1 - 1.2 functional description
	heading1 - 1.3 FEATURES
	heading1 - 1.4 support information

	chaptitle - User�Interface
	heading1 - 2.1 introduction
	heading1 - 2.2 Interactive User Interface
	heading2 - 2.2.1 Starting the MCUez Linker
	figuretitle - Figure 2-1. MCUez Linker Tip of The Day Window

	heading2 - 2.2.2 Linker Graphical Interface
	figuretitle - Figure 2-2. MCUez Linker Graphical User Interface
	heading3 - 2.2.2.1 Window Title
	heading3 - 2.2.2.2 Content Area
	heading3 - 2.2.2.3 Tool Bar
	figuretitle - Figure 2-3. MCUez Linker Tool Bar

	heading3 - 2.2.2.4 Status Bar
	figuretitle - Figure 2-4. MCUez Linker Status Bar

	heading3 - 2.2.2.5 Linker Menu Bar
	heading3 - 2.2.2.6 File Menu
	figuretitle - Figure 2-5. Configuration Dialog - Global Editor
	figuretitle - Figure 2-6. Configuration Dialog - Local Editor
	figuretitle - Figure 2-7. Configuration Dialog - Editor Started With Command Line
	figuretitle - Figure 2-8. Configuration Dialog - Editor Started With DDE
	heading4 - 2.2.2.6.1 Important remarks
	heading4 - 2.2.2.6.2 Save Configuration Dialog
	figuretitle - Figure 2-9. Save Configuration Dialog Window

	heading3 - 2.2.2.7 Linker Menu
	heading3 - 2.2.2.8 View Menu
	heading3 - 2.2.2.9 Advanced Options Dialog Box
	figuretitle - Figure 2-10. Advanced Options Dialog Window

	heading2 - 2.2.3 Message Settings Dialog Box
	figuretitle - Figure 2-11. Message Settings Dialog Window
	tabletitle - Table 2-1. Message Group Definitions
	heading3 - 2.2.3.1 Changing the Class Associated With a Message
	heading3 - 2.2.3.2 Specifying the Input File
	heading4 - 2.2.3.2.1 Using the Editable Combo Box in the Tool Bar
	heading4 - 2.2.3.2.2 Using the Entry File | Link ...
	heading4 - 2.2.3.2.3 Using Drag and Drop

	heading2 - 2.2.4 Error Feedback
	heading3 - 2.2.4.1 Error Feedback Using Information From the Linker Window
	heading3 - 2.2.4.2 Error Feedback Using a User-Defined Editor
	heading4 - 2.2.4.2.1 Line Number Can be Specified on the Command Line
	heading4 - 2.2.4.2.2 Line Number Cannot be Specified on the Command Line

	chaptitle - Environment�variables
	heading1 - 3.1 introduction
	heading1 - 3.2 Setting Parameters
	heading1 - 3.3 Path Variables
	heading2 - 3.3.1 LINKOPTIONS
	heading2 - 3.3.2 GENPATH
	heading2 - 3.3.3 OBJPATH
	heading2 - 3.3.4 ABSPATH
	heading2 - 3.3.5 TEXTPATH
	heading2 - 3.3.6 SRECORD
	heading2 - 3.3.7 ERRORFILE

	chaptitle - Files
	heading1 - 4.1 introduction
	heading1 - 4.2 Parameter File: Input
	heading1 - 4.3 Absolute Files: Output
	heading1 - 4.4 Motorola S Files: Output
	heading1 - 4.5 MAP Files
	figuretitle - Figure 4-1. Link Process Conceptual Diagram

	chaptitle - Linker�Options�and�issues
	heading1 - 5.1 introduction
	tabletitle - Table 5-1. MCUez Linker Options Descriptions

	heading1 - 5.2 -E Linker Option
	heading1 - 5.3 -O Linker Option
	heading1 - 5.4 -M Linker Option
	heading1 - 5.5 -S Linker Option
	heading1 - 5.6 -V Linker Option
	heading1 - 5.7 -W1 Linker Option
	heading1 - 5.8 -W2 Linker Option
	heading1 - 5.9 Linking Issues
	heading2 - 5.9.1 Object Allocation
	heading3 - 5.9.1.1 The SEGMENTS Block
	heading4 - 5.9.1.1.1 Segment Qualifier
	tabletitle - Table 5-2. Segment Qualifier Descriptions

	heading4 - 5.9.1.1.2 Segment Alignment
	tabletitle - Table 5-3. Segment Alignment Rule Format

	heading4 - 5.9.1.1.3 Segment Fill Pattern

	heading3 - 5.9.1.2 PLACEMENT Block
	heading4 - 5.9.1.2.1 Specifying a List of Sections
	heading4 - 5.9.1.2.2 Specifying a List of Segments

	heading2 - 5.9.2 Allocating User-Defined Sections

	chaptitle - operating�procedures
	heading1 - 6.1 introduction
	heading1 - 6.2 Initializing the vector table
	heading2 - 6.2.1 VECTOR Command
	tabletitle - Table 6-1. VECTOR Command Syntax
	heading3 - 6.2.1.1 Initializing the Vector Table in the Linker PRM File
	heading3 - 6.2.1.2 Initializing the Vector Table in the Assembly Source File Using a Relocatable ...
	heading3 - 6.2.1.3 Initializing the Vector Table in the Assembly Source File Using an Absolute Se...

	heading1 - 6.3 Smart Linking
	heading2 - 6.3.1 Mandatory Linking From an Object
	heading2 - 6.3.2 Mandatory Linking From All Objects Defined in a File
	heading2 - 6.3.3 Switching OFF Smart Linking for the Application

	heading1 - 6.4 Binary Files building an Application
	heading2 - 6.4.1 NAMES Block
	heading2 - 6.4.2 ENTRIES Block
	heading2 - 6.4.3 Linking an Assembly Application
	heading2 - 6.4.4 Warning Messages

	heading1 - 6.5 The Parameter File
	heading2 - 6.5.1 The Syntax of the Parameter File
	heading2 - 6.5.2 Mandatory Parameter File Linker Commands

	heading1 - 6.6 Linker Commands
	heading2 - 6.6.1 ENTRIES: List of Objects to Link With the Application
	tabletitle - Table 6-2. ENTRIES Block Supported

	heading2 - 6.6.2 INIT: Specify the Application Entry Point
	heading2 - 6.6.3 LINK - Specify Name of the Output File
	heading2 - 6.6.4 MAIN
	heading2 - 6.6.5 MAPFILE: Configure the MAP File Content
	tabletitle - Table 6-3. MAP File Specifiers

	heading2 - 6.6.6 NAMES: List the Files building the Application.
	heading2 - 6.6.7 PLACEMENT: Place Sections Into Segments
	heading2 - 6.6.8 SEGMENTS: Define Memory Map
	heading3 - 6.6.8.1 Defining an Alignment Rule
	tabletitle - Table 6-4. Segment Alignment Items List

	heading3 - 6.6.8.2 Defining a Fill Pattern

	heading2 - 6.6.9 STACKSIZE: Define Stack Size
	heading2 - 6.6.10 STACKTOP: Define Stack Pointer Initial Value
	heading2 - 6.6.11 VECTOR: Initialize Vector Table

	heading1 - 6.7 Sections
	heading2 - 6.7.1 Terms: Segments and Sections
	heading2 - 6.7.2 Definition of Section
	heading2 - 6.7.3 Predefined Sections

	heading1 - 6.8 Examples
	heading1 - 6.9 Program Startup
	heading2 - 6.9.1 The Startup Descriptor
	tabletitle - Table 6-5. Setting Startup Descriptor Flags

	heading2 - 6.9.2 User-Defined Startup Structure:
	heading2 - 6.9.3 User-Defined Startup Routines

	heading1 - 6.10 The MAP File
	tabletitle - Table 6-6. MAP File Sections

	chaptitle - Linker�Messages
	heading1 - 7.1 introduction
	heading1 - 7.2 Linker Messages Reference

