Freescale Semiconductor, Inc.

Advance Information

&
MOTOROLA T -
MPC180SWUG/D intelligance averywhere” d"l g'tra 'I' dna
Rev.0.1, 2/2003

MPC180 Security
Co-Processor Software
Reference Guide

This document describes the interface components for accessing the cryptographic hardware
accelerators provided by the MPC180 integrated circuit. It covers the following topics:

Topic Page
Section 1, “General Overview” 1
Section 2, “MPC180Init Module” 2
Section 3, “MPC180Pkha Module” 3
Section 4, “MPC180Des Modul€e” 8
Section 5, “MPC180Mdha Module” 20
Section 6, “MPC180Afha Module” 24
Section 7, “MPC180Rng Module” 26
Section 8, “MPC180 Interface Modul e Porting” 27
Section 9, “IPsec and IKE” 30
Section 10, “vxWorks’ 30

1 General Overview

The MPC180Lib Interface Module provides a ‘C’ language programming interface for
accessing the cryptographic hardware accel erators provided by the MPC180. Table 1-1 shows
the six modules that make up the MPC180Lib Interface.

Table 1-1. MPC180 Programming Interface

Module Function

MPC180Init Initialization and Interrupt Handling code
MPC180Pkha Public Key Encryption—ECC and RSA
MPC180Des DES Encryption

MPC180Lib
MPC180Mdha Hash and HMAC
MPC180Afha RC4 Compatible Encryption
MPC180Rng Random Number Generation.

For More Information On This Product,
Go to: www.freescale.com



Freescale Semiconductor, Inc.

The MPC180 is designed to work with the vxWorks 5.4 operating system. Detail on porting may be found
in Section 8, “MPC180 Interface Module Porting.”

2 MPC180Init Module

Asshownin Table 2-1, the MPC180Init module contains the initialization routines and the interrupt service
routine (ISR). Theinitialization routines are broken into two, one to be used before the operating systemis
running (mpc180InitHw) and one to be used after the operating system is running (mpcl180InitHw2). The
routines are described in the sections that follow.

Table 2-1. MPC180Init Module

Module Routine

mpc180InitHw
MPC180Init mpc180InitHw2

mpc180initisr

2.1 MPC180Init Routines

The following sections describe the functions that are used to initialize the MPC180 hardware.

2.1.1 mpcl80InitHw()

This function is used to initialize the MPC180 hardware before the operating system kernel is running. It
resets the MPC180 and masks all interrupts.

voi d npc180I ni t Hw

(
)

Returns: N/A

2.1.2 mpcl80InitHw2()
This function is used to initialize the MPC180 hardware and interface modules after the operating system
kernel isrunning. It creates the necessary semaphores and connects the interrupt routine.

voi d npcl80l nit H2

(
)

Returns: N/A

2.1.3 mpcl80int()

This function is the interrupt service routine that services the single interrupt line for the MPC180. It
determines the type of interrupt that has occurred and gives the appropriate semaphore.

voi d npcl180l nt

(
)

2 MPC180 Security Co-Processor Software Reference Guide MOTOROLA

For More Information On This Product,
Go to: www.freescale.com



Freescale Semiconductor, Inc.

Returns: N/A

3 MPC180Pkha Module

The MPC180Pkha module performs many advanced mathematical functions to support both RSA and
ECC public key cryptographic algorithms. ECC is supported in both F,m (polynomial-basis) and F,

Asshownin Table 3-1, the PKHA software module is made up of three sub modules.

MOTOROLA MPC180 Security Co-Processor Software Reference Guide 3

For More Information On This Product,
Go to: www.freescale.com



Freescale Semiconductor, Inc.

Table 3-1. MPC180PkhaUtil Module

Module

Sub Module

Routine

MPC180Pkha

mpc180PkhauUtil

mpcl80PkhalLoadModSize

mpcl180PkhaReadModSize

mpc180PkhaloadSubReg

mpcl80PkhaReadSubReg

mpcl80PkhaCopySubReg

mpc180PkhaloadReg

mpcl80PkhaReadReg

mpc180PkhaCopyReg

mpc180PkhaClearMemory

mpc180PkhaR?2

mpc180PkhaR Ry

mpc180PkhaEcc

mpc180EccMultkPtoQ

mpcl80EccAddPto

mpc180EccDoubleQ

mpc180EccModularAdd

mpcl80EccModularSubtract

mpc180EccModularMulitply

mpc180EccModularMultiply2

mpcl80PkhaRsa

mpcl80RsaExpA

mpcl80RsaModularAdd

mpcl180RsaModularSubtract

mpcl80RsaModularMultiply

mpcl180RsaModularMultiply2

The first of these sub modules, mpc180PkhaUtil, allows users to load and read the large number registers
which are present on the chip, set/read the modulus size, clear the register memory, and perform supporting
calculations. The sub register functions are able to load/read up to 512 bits (or 32 16bit digits) from the sub
registers AQ, Al, A2, A3, BO, B1, B2, B3, NO, N1, N2, and N3. The full register functions are able to
load/read up to 2048 bits (or 128 16bit digits) from the registers A, B, and N. In addition, two supporting

calcul ations may be performed for finding R mod N and RpRn mod P.

The second of these sub modules, MPC180Ecc, is used to perform calculations for ECC, or Elliptic Curve

Cryptography. Two levels of calculation may be performed.

» Thefirstishigh level and performs elliptic curve point multiplication. These point multiplies may
be performed in either F, or F,m basisand using either projective or affine coordinates. The second
level of operations alows the application to perform elliptic curve point additions and point
doubles. These operations require that the application work in projective coordinates, and al inputs
and outputs of these operations are expected to be in the Montgomery residue system. These
operations are used internally by the point multiplication, and are provided to the user, if they are

needed.

4 MPC180 Security Co-Processor Software Reference Guide

For More Information On This Product,
Go to: www.freescale.com

MOTOROLA



Freescale Semiconductor, Inc.

» Thesecond level of operations allows the application to perform modular multiplication, addition,
and subtraction in either F, or F,m basis. Notice that the module does not provide the Point Add or
Point Double routines that are used internally by the MPC180 to perform Point Multiplication, but
which have extremely limited value to an application program.

The third, and final, of these sub modules, MPC180Rsa, is used to perform calculations for modular
arithmetic (such as RSA, DSA, and Diffie-Hellman). Two levels of calculation may be performed:

« Thefirst level is high level and performs modular exponentiation, or A XP mod N

* Thesecond level alows the application to perform modular multiplication, addition, and
subtraction. Thisisimplemented with the functions mpc180RsaM odularM ultiply(),
mpc180RsaM odularMultiply2(), mpcl80RsaModularAdd (), and mpcl80RsaM odularSubtract ().
Normally, these use the full register set (512 bits). However, the calls do support sub-register
operations. These are provided to support Chinese Remainder Theorem (CRT) operations, which
often generate intermediate values that must be stored for later use. By using sub registers, the need
to store and retrieve these values from MPC180 memory is alleviated.

For al of the PKHA routines, the modSize register specifies the maximum size of the modulus in 16 bit
digits. It may be set by calling the mpc180Pkhal oadM odSize(). If the number of bitsin the modulusis not
evenly divisible by 16, those remaining bits above the evenly-divisible number of bits constitutes an entire
16 bit block in so far as setting modSize is concerned. Each routine has a minimum number of digitsit may
work with, and the maximum is 32 for ECC operations and 128 for RSA operations.

The following is an example of the mpcl80Pkha module performing an exponentiation using the
mpc180Util and mpcl80Rsa routines:

PKHA_NUM nunber, exponent, nodul us, result;
i nt nodul us_si ze;
i nt exponent _si ze;

Qo Qo Qo

npc180PkhalLoadMbdSi ze( nodul us_si ze) ;
npc180PkhaLoadReg( modul us, PKHA REGN);
npcl180PkhaLoadReg( nunber, PKHA REGA);
npcl180RsaExpA( exponent, exponent size, 0, 0, 0);
npcl80PkhaReadReg(result, PKHA REGB);

3.1 MPC180Pkha Routines

The following sections describe the functionsthat are used to set and read the size of the modulus, load and
read PKHA sub registers, and copy from the PKHA sub registers to another register.

3.1.1 mpcl80PkhalLoadModSize()

Thisfunction is used to set the size of the modulus used for al calculations. It is specified as the number of
16 bit digits in the modulus. If the number of bits in the modulus is not evenly divisible by 16, those
remaining bits above the evenly-divisible number of bits constitutes an entire 16-bit block in so far as setting
modSizeis concerned. Each routine has minimum number of digitsit may work with, and the maximum is
32 for ECC operations and 128 for RSA operations.

STATUS npc180PkhalLoadModSi ze
(
MOTOROLA MPC180 Security Co-Processor Software Reference Guide 5

For More Information On This Product,
Go to: www.freescale.com



Freescale Semiconductor, Inc.

unsi gned i nt nodSi ze
)
Returns: OK, or ERROR if modSize > 128.

3.1.2 mpcl80PkhaReadModSize()

This function is used to read the size of the modulus (set by mpcl80Pkhal oadModSize()) used for al
calculations.
unsi gned i nt npcl80PkhaReadMbdSi ze

(
)

Returns: Current value of modSize.

3.1.3 mpcl80PkhalLoadSubReg()

Thisfunction is used to load one of the MPC180 PKHA sub registersfor acalculation. Thevaluetoload is
specified in x, with the current modSize parameter specifying the number of 16 bit digitsin the value x, and
regSel specifies into which of the sub registers to load the nhumber (PKHA_BO = 0, PKHA_B1 =1,
PKHA_B2=2,PKHA_B3=3 PKHA_A0=4,PKHA A1=5 PKHA_A2=6,PKHA_A3=7,PKHA NO
=8, PKHA_N1=9, PKHA_N2 =10, PKHA_N3=11).

voi d npcl180PkhalLoadSubReg

(
PKHA_SUBNUM X,

unsi gned int regSel
)

Returns one of the following:

« OK
* ERRORif modSize> 32

3.1.4 mpcl80PkhaReadSubReg()

Thisfunction is used to read one of the MPC180 PKHA sub registersto obtain aresult of acalculation. The
valueread isreturned in x, with the current modSize parameter specifying the number of 16-bit digitsin the
valuex, and regSel specifiesfrom which of the sub registersto read the number (PKHA_B0O =0, PKHA_B1
=1, PKHA_B2 = 2, PKHA B3 = 3, PKHA_AO = 4, PKHA_A1 = 5, PKHA_A2 = 6, PKHA_A3 =7,
PKHA_NO=8, PKHA_N1=9, PKHA N2 =10, PKHA N3 = 11).

unsi gned i nt npcl80PkhaReadSubReg

(
PKHA_SUBNUM X,

unsi gned int regSel

)

Returns one of the following:
¢ modSize parameter specifying the number of 16-bit digitsin the value x
* ERRORif modSize > 32

6 MPC180 Security Co-Processor Software Reference Guide MOTOROLA

For More Information On This Product,
Go to: www.freescale.com



Freescale Semiconductor, Inc.

3.1.5 mpcl80PkhaCopySubReg()

This function is used to copy one of the MPC180 PKHA sub registers to another. The current modSize
parameter specifies the number of 16 bit digitsto copy. regSrcSel specifies from which of the sub registers
to copy (PKHA_BO =0, PKHA_B1=1, PKHA B2 =2, PKHA_ B3 =3, PKHA_A0=4, PKHA_Al1=5,
PKHA_A2 =6, PKHA A3 =7 PKHA NO =8, PKHA_N1 =9, PKHA_ N2 =10, PKHA_ N3 = 11), and
regDest Sel specifies the destination sub register.
STATUS npc180PkhaCopySubReg
(

unsi gned int regSrcSel,
unsi gned int regDest Sel

)

Returns one of the following:
« OK
* ERRORif modSize> 32

3.1.6 mpcl1l80PkhaLoadReg()

Thisfunction is used to load one of the MPC180 PKHA full registersfor acalculation. Thevalueto loadis
specified in x, with the current modSize parameter specifying the number of 16-bit digits in the value x.
regSel specifies into which of the full registers to load the number (PKHA_B = 0, PKHA_A = 1,
PKHA_N =2).

STATUS npc180PkhalLoadReg

(
PKHA_NUM X,

unsi gned int regSel
)
Returns: OK

3.1.7 mpcl80PkhaReadReg()

Thisfunction is used to read one of the MPC180 PKHA full registersto obtain aresult of acalculation. The
value read isreturned in x, with the current modSi ze parameter specifying the number of 16 bit digitsin the
value x. regSel specifiesinto which of the full registers to load the number (PKHA_B =0, PKHA_A =1,
PKHA_N =2).

unsi gned i nt npcl80PkhaReadReg

(
PKHA_NUM X,

unsi gned int regSel

)

Returns: modSize parameter specifying the number of 16-bit digitsin the value x.

3.1.8 mpcl80PkhaCopyReg()

This function is used to copy one of the MPC180 PKHA full registers to another. The current modSize
parameter specifies the number of 16 bit digitsto copy. regSr cSel specifies from which of the full registers
to copy (PKHA_B =0, PKHA_A =1, PKHA_N = 2), and regDest Sel specifiesthe destination full register.

MOTOROLA MPC180 Security Co-Processor Software Reference Guide 7

For More Information On This Product,
Go to: www.freescale.com



Freescale Semiconductor, Inc.

voi d npcl180PkhaCopyReg
(

unsi gned int regSrcSel,
unsi gned int regDest Sel

)
Returns: N/A

3.1.9 mpcl80PkhaClearMemory()

This routine clears al of the RAM memory locations in the PKHA. Thisincludesthe A, B, and N RAMs.
All RAM locations are set to zero. This routine is automatically invoked following a reset.

STATUS npcl180Pkhad ear Menory

(
)

Returns: OK, or ERROR if no response from the MPC180.

3.1.10 mpcl1l80PkhaR2()

This function is used to calculate R? mod N, where R = 2160 and D is the number of 16 bit digitsin the
modulus vector N.

The input parameters are expected to be loaded, using the mpc180LoadNReg() function, in the following
registers.

Parameter Register

N (modulus) NO-3

NOTE
For this routine to execute, the upper 16 bits of N must not be 0.

The output parameters are left in the following registers and may be read with the function
mpcl80ReadBReg().

Parameter Register

R2 mod N BO-3

This function works with a minimum of 4 digits, so the value of modSize should have been previously set
(with mpc180Pkhal oadM odSize) to a value between 4 and 128.

STATUS npc180PkhaR2

(
)

Returns one of the following:
« OK
« ERROR if one of the following:
— modSize< 4
— the upper 16 bits of the modulo are O
— no response from the MPC180

8 MPC180 Security Co-Processor Software Reference Guide MOTOROLA

For More Information On This Product,
Go to: www.freescale.com



Freescale Semiconductor, Inc.

3.1.11 mpcl80PkhaRpRn()

This function is used to calculate R,Ry mod P, where R, = 216D and Ry = 2165, D is the number of 16-bit
digitsin the modulus p, E is the number of 16-bit digitsin the modulusN, and D + 4 <E.

The input parameters are expected to be loaded, using the mpcl180LoadNReg() function, in the following
registers.

Parameter Register

P (prime modulus) NO-3

The output parameters are left in the following registers and may be read with the function
mpcl80ReadBReg().

Parameter Register

RpRn mod P BO-3

pM odSize and nM odSize specify the maximum size of the modulusin 16-bit digits. The calculation works
with a minimum of 5 digits, so the value of pM odSize and nM 0dSize should be between 5 and 128. This
function does not depend on mpcl80Pkhal. oadM odSize to load the modSize register, but uses the input
parameters instead. The modSize register is left set to the pM odSize specified after execution.

STATUS npc180PkhaRpRn

(
unsi gned int pMdSi ze,

unsi gned i nt nhbdSi ze
)

Returns one of the following:

« OK

* ERROR if one of the following:
— pModSize< 4
— pModSize> 128
— nModSize< 4

— nModSize > 128
— (pModSize + 4 >= nModSize)
— No response from the MPC180

3.2 MPC180PkhaEcc Routines

The following sections describe the functions that perform the elliptic curve point multiplication and
addition, ECC modular addition and subtraction, and the Montgomery Modular Multiplication.

3.2.1 mpcl80EccMultkPtoQ()

This function performs an elliptic curve point multiply of Q = k x P, where Q =(X5,Y »,Z,) and
P= (X].’Ylizl)'

The parameter basis specifiesif the point multiply isto be done in the F, basis (basis = PKHA_F) or the
Fom basis (basis = PKHA_F,m).
MOTOROLA MPC180 Security Co-Processor Software Reference Guide 9

For More Information On This Product,
Go to: www.freescale.com



Freescale Semiconductor, Inc.

The parameter coor dinate specifies if the point multiply is done with input parameters in projective
(coordinate = PKHA _PROJ) or affine (coordinate = PKHA_AFF) coordinates.

The input parameters are expected to be loaded, using the mpc180L oadSubReg function, in the registers
specified in the table below.

Parameter Register
X1 A0
Y, Al
Zq A2 (Set to 1 automatically if coordinate=PKHA_AFF)

a elliptic curve parameter |A3

b elliptic curve parameter |BO

R? mod N B1

modulus or prime P NO

The output parameters are left in the following registers and may be read with the function
mpcl180ReadSubReg().

Parameter Register
X, B1
Y, B2
Z, B3
Z,° A2 (when coordinate = PKHA_AFF)
z,8 A3 (when coordinate = PKHA_PROJ)

All of theinput numbers are expected to be in standard format, not Montgomery residue system.

When coordinate = PKHA_AFF, output consists of the projective coordinate values X,,Y 5, Z, in
Montgomery residue system. To put these coordinates in their affine form, the following equations should
be used along with the returned values for Z,2 and Z,°:

Xol  Z52

X

y = Y2/ 223

Since the MPC180 does not support the inverse function, it is the responsibility of the host processor to
find (Z3)™ and (z3) "1 by using any available module-n inversion techniques. Once this is accomplished,
the programmer may then use these values and the function mpc180EccFpM odularMultiply2() to calculate
the required values.

The input parameter k isthe scalar multiplier. The point multiply works with a minimum modulus size of
5, so the value of modSize should have been previously set (with mpc180Pkhal oadModSize) between 5
and 32. ksize specifies the size of the multiplier in 32-bit words. The parameter kL swT oM sw is a boolean
which specifies the ordering of words in the input parameter k.If the order of wordsis“LSW islowest in
memory,” kL swToM sw should be set to TRUE; if the order is“MSW is lowest in memory,” it should be
set to FALSE.

STATUS npcl80EccMil t kPt 0Q

(
PKHA_SUBNUM K,

10 MPC180 Security Co-Processor Software Reference Guide MOTOROLA

For More Information On This Product,
Go to: www.freescale.com



Freescale Semiconductor, Inc.

unsi gned int kSize,

unsi gned int basis,

unsi gned i nt coordi nate,
BOOLEAN kLswToMsw

)
Returns one of the following:
« OK
* ERROR if one of the following:
— k<5
— modSize<5
— modSize> 32

— no response from the MPC180
3.2.2 mpcl80EccAddPtoQ()

This function performs an elliptic curve point addition of R = P x Q, where Q = (X,,Y »,Z5),
P=(X1Y1Zy), and R =(X3,Y3.Z3)

The parameter basis specifiesif the point multiply isto be done in the F, basis (basis = PKHA_F) or the
Fom basis (basis = PKHA_F,m).

Theinput parameters are expected to be loaded, using the mpc180L cadSubReg() function, in the following
registers.

Parameter Register
X' AO
Y, Al
Z, A2

a elliptic curve parameter |A3

b elliptic curve parameter|B0O

X'y B1
Y, B2
Z5 B3
modulus or prime P NO

The output parameters are left in the following registers and may be read with the function
mpc180ReadSubReg().

Parameter Register
X3 B1
Y3 B2
Z5 B3
X' A0
MOTOROLA MPC180 Security Co-Processor Software Reference Guide 11

For More Information On This Product,
Go to: www.freescale.com



12

Freescale Semiconductor, Inc.

Parameter

Register

Yy

Al

Zy

A2

a elliptic curve parameter

A3

b elliptic curve parameter

BO

MPC180 Security Co-Processor Software Reference Guide

For More Information On This Product,
Go to: www.freescale.com

MOTOROLA



A Freescale Semiconductor, Inc.

All of the input/output numbers are expected to be in Montgomery residue system, not standard format.

The point multiply works with a minimum modulus size of 5, so the value of modSize should have been previously set
(with mpc180Pkhal oadM odSize) to a value between 5 and 32.

STATUS npcl180EccAddPt 0Q
(

unsi gned int basis
)
Returns one of the following:
« OK
* ERROR if one of the following:
— k<5
— modSize<5
— modSize> 32
— no response from the MPC180

3.2.3 mpcl80EccDoubleQ()
This function performs an elliptic curve point addition of R =2 x Q, where Q = (X4,Y1,Z7) and R = (X3,Y 3,Z3)

The parameter basis specifies if the point multiply is to be done in the F, basis (basis = PKHA_F), or the Fom basis
(basis = PKHA_F,om).

Theinput parameters are expected to be loaded, using the mpc180L oadSubReg function, in the following registers.

Parameter Register

a elliptic curve parameter |A3

b elliptic curve parameter |BO

X' B1
Y, B2
Z, B3
modulus or prime P NO

The output parameters are left in the following registers and may be read with the function mpc180ReadSubReg().

For More Information On This Product,
Go to: www.freescale.com



Freescale Semiconductor, Inc.

Parameter Register
X3 B1
Y3 B2
Z B3

a elliptic curve parameter | A3

b elliptic curve parameter |BO

All of the input/output numbers are expected to be in Montgomery residue system, not standard format.

The point multiply works with a minimum modulus size of 5, so the value of modSize should have been
previoudly set (with mpcl80Pkhal oadM odSize) to a value between 5 and 32.

STATUS npc180EccDoubl eQ
(

unsi gned int basis
)

Returns one of the following:

« OK
* ERRORif one of the following:
— k<5
— modSize< 5
— modSize> 32
— no response from the MPC180

3.2.4 mpcl80EccModularAdd ()

This function performs an ECC modular addition, with two vectors loaded into the A and B registers,
where both of these vectors are less than the value stored in the modulus register N. The parameters
regAsd (0,1,2,3), regBsel (0,1,2,3), and regNsel (0,1,2,3) specify which of the registers to use for the
operation. The result is returned in the same register asthe input B parameter.

For example, if regAseal = 2, regBsel = 1, and regNsel = 3, the calculation would be as follows:
B1=A2+ B1modN3

The parameter basis specifies if the modular addition is to be done in the F, basis (basis = PKHA_F,) or
the Fom basis (basis = PKHA_F,m).

The modular addition works with a minimum of 4 digits, so the value of modSize should have been
previoudy set (with mpcl80Pkhal oadM odSize) to a value between 4 and 32.

STATUS npc180EccMdul ar Add
(

unsi gned int regAsel,
unsi gned int regBsel
unsi gned int regNsel,
unsi gned int basis

)

Returns one of the following:

14 MPC180 Security Co-Processor Software Reference Guide MOTOROLA

For More Information On This Product,
Go to: www.freescale.com



Freescale Semiconductor, Inc.

« OK

* ERROR if one of the following:
— modSize< 4
— modSize> 32
— no response from the MPC180

3.2.5 mpcl80EccModularSubtract()

This function performs an ECC modular subtraction, in Fp, with two vectors loaded into the A and B
registers, where both of these vectors are less than the value stored in the modulus register N. The
parametersregAsel (0,1,2,3), regBsdl (0,1,2,3), and regNsel (0,1,2,3) specify which of the registersto use
for the operation. The result is returned in the same register as the input B parameter.

For example, if regAsel = 0, regBsel = 3, and regNsel = 2, the calculation would be as follows:

B3 =A0-B3 mod N2
The parameter basis specifiesif the modular subtraction is to be done in the F, basis (basis = PKHA_F ),
or the Fom basis (basis = PKHA_Fom).
The modular subtraction works with a minimum of 4, so the value of modSize should have been
previoudly set (with mpc180Pkhal oadM odSize) to a value between 4 and 32.

STATUS npc180EccModul ar Subt r act
(

unsi gned int regAsel,
unsi gned int regBsel,
unsi gned int regNsel,
unsi gned int basis

)
Returns one of the following:
« OK
« ERROR if one of the following:
— modSize< 4
— modSize> 32
— no response from the MPC180

3.2.6 mpcl80EccModularMultiply()

This function performs the Montgomery Modular Multiplication (A x B x R'Y) mod N, in Fp, with two
vectors loaded into the A and B registers, where both of these vectors are less than the value stored in the
modulus register N, and R = 216° where D is the number of digits in the modulus vector. The parameters
regAsd (0,1,2,3), regBsel (0,1,2,3), and regNsel (0,1,2,3) specify which of the registers to use for the
operation. The result is returned in the same register asthe input B parameter.

For example, if regAsel = 2, regBsel = 1, and regNsel = 3, the calculation would be as follows:
B1=(A2x B1x RY) mod N3

The modular multiplication works with a minimum of 5, so the value of modSize should have been
previously set (with mpcl180Pkhal oadModSize) between 5 and 32.

The parameter basis specifies if the modular multiply is to be done in the F, basis (basis = PKHA_F) or
the Fom basis (basis = PKHA_F,m).

15 MPC180 Security Co-Processor Software Reference Guide MOTOROLA

For More Information On This Product,
Go to: www.freescale.com



Freescale Semiconductor, Inc.

STATUS npcl1l80Ecchbdul arMul ti ply
(

unsi gned int regAsel,

unsi gned int regBsel,

unsi gned int regNsel,

unsi gned int basis

)
Returns one of the following:
« OK
* ERROR if one of the following:
— modSize<5
— modSize> 32
— no response from the MPC180

3.2.7 mpcl80EccModularMultiply2()

This function performs the Montgomery Modular Multiplication.

(AxBxR?) modN, in Fp, with two vectors [oaded into the A and B registers, where both of these vectors
are less than the value stored in the modulus register N, and R = 216D \where D is the number of digitsin
the modulus vector. The parameters regAseal (0,1,2,3), regBsd (0,1,2,3), and regNsel (0,1,2,3) specify
which of the registers to use for the operation. The result is returned in the same register as the input B
parameter.

For example, if regAsel = 2, regBsel = 1, and regNsel = 3, the calculation would be as follows:
B1=(A2x B1x R? modN3

The parameter basis specifies if the modular multiply is to be done in the F, basis (basis = PKHA_F) or
the Fom basis (basis = PKHA_F,m).

Thisfunction isideal for working with affine coordinates. After apoint multiply, thisfunction may be used
to exit projective coordinates. For exampletofind x, for x = X/Z2, where X and (Z%)! arein the Montgomery
residue system. Loading X and (Z2) into the appropriate operand registers and initiating this function
would yield x which is no longer in the Montgomery residue system.

The modular multiplication works with a minimum of 5 digits, so the value of modSize should have been
previously set (with mpc180Pkhal oadM odSize) to a value between 5 and 32.

STATUS npcl180EccFpModul arMul ti pl y2
(

unsi gned int regAsel,

unsi gned int regBsel,

unsi gned int regNsel,

unsi gned int basis

)
Returns one of the following:
« OK
* ERROR if one of the following:
— modSize<5
— modSize> 32
16 MPC180 Security Co-Processor Software Reference Guide MOTOROLA

For More Information On This Product,
Go to: www.freescale.com



Freescale Semiconductor, Inc.

— no response from the MPC180

3.3 MPC180PkhaRsa Interface

The following sections describe the functions that perform exponentiation on the input value, modular
addition and subtraction with two vectors, and the Montgomery Modular Multiplication.

3.3.1 mpcl80RsaExpA()

This function performs an exponentiation on the input value. The mathematical representation is
S=(A’ x RHYEXP mod N.

The input parameters are expected to be loaded, using the mpcl80LoadAReg and mpcl80L oadNReg()
functions, in the following registers.

Parameter Register

A A0-3
N (modulus) NO-3

The output parameters are left in the following registers and may be read with the function
mpcl80ReadBReg().

Parameter Register

S BO-3

Theinput A’ in register AO-3 should be provided in Montgomery format. If it is, the value calculated is as
follows:

S=(A’ x RHFPmod N = (A x Rx RH)F*P mod N = A BXP mod N.

The parameter exp is the exponent, expSize is the size of the exponent in 32-bit words (1-64). The
parameter expL swT oM sw is a boolean which specifies the ordering of wordsin the input parameter exp. If
the order of wordsis“LSW islowest in memory,” expL swToM sw should be set to TRUE; otherwise, if the
order is“MSW islowest in memory,” it should be set to FAL SE.The exponentiation workswith aminimum
of 5 digits, so the value of modSize should have been previously set (with mpc180Pkhal oadModSize) to a
value between 5 and 128.

STATUS npcl80RsaExpA
(

PKHA_NUM exp,

unsi gned i nt exposes,
BOOLEAN expLswToMsw

)
Returns one of the following:
« OK
* ERROR if one of the following:
— modSize< 5
— no response from the MPC180
17 MPC180 Security Co-Processor Software Reference Guide MOTOROLA

For More Information On This Product,
Go to: www.freescale.com



Freescale Semiconductor, Inc.

3.3.2 mpcl80RsaModularMultiply()

This function performs the Montgomery Modular Multiplication (A x B x R™Y) mod N, with two vectors
loaded into the A and B registers, where both of these vectors are less than the value stored in the modulus
register N, and R = 216P, where D is the number of digits in the modulus vector. The result is returned in
the B register.

The parametersregAsel (0,1,2,3), regBsel (0,1,2,3), and regNsdl (0,1,2,3) specify which of the registersto
use for the operation. The result is returned in the same register as the input B parameter. Normally, these

parameters are all set to 0, due to the size of RSA parameters. However, for operations such as the Chinese
Remainder Theorem, they may be set to other values.

For example, if regAsel = 2, regBsel = 1, and regNsel = 3, the calculation would be as follows:
B1=(A2x B1x RY) mod N3

Thisroutine is used to put messages into the Montgomery format.

The modular multiplication works with a minimum of 5 digits so the value of modSize should have been

previously set (with mpc180Pkhal oadM odSize) to a value between 5 and 128.

STATUS npcl80RsaMbdul arMul ti ply
(

unsi gned int regAsel,

unsi gned int regBsel,

unsi gned int regNsel

)
Returns one of the following:
« OK
* ERROR if one of the following:
— modSize< 5
— no response from the MPC180

3.3.3 mpcl80RsaModularMultiply2()

This function performs the Montgomery Modular Multiplication (A x B x R*2 mod N, with two vectors
loaded into the A and B registers, where both of these vectors are |ess than the value stored in the modulus
register N, and R = 216P, where D is the number of digits in the modulus vector. The result is returned in
the B register.

The parametersregAsel (0,1,2,3), regBsel (0,1,2,3), and regNsdl (0,1,2,3) specify which of the registersto
use for the operation. The result is returned in the same register as the input B parameter. Normally, these
parameters are all set to 0, due to the size of RSA parameters. However, for operations such as the Chinese
Remainder Theorem, they may be set to other values.

For example, if regAsel = 2, regBsel = 1, and regNsel = 3, the calculation would be as follows:
B1=(A2x B1x R mod N3
This routine may be used to take messages out of the Montgomery format.

The modular multiplication works with a minimum of 5 digits so the value of modSize should have been
previously set (with mpc180Pkhal oadM odSize) to a value between 5 and 128.

STATUS npcl180RsaMbdul arMul ti ply2

18 MPC180 Security Co-Processor Software Reference Guide MOTOROLA

For More Information On This Product,
Go to: www.freescale.com



Freescale Semiconductor, Inc.

(

unsi gned int regAsel,
unsi gned int regBsel,
unsi gned int regNsel

Returns one of the following:

« OK
« ERROR
— modSize<5
— no response from the MPC180

3.3.4 mpcl80RsaModularAdd()

This function performs modular addition with two vectors loaded into the A and B registers, where both of
these vectors are less than the value stored in the modulus register N. Theresult isreturned in the B register
(B = A+B mod N).

The parametersregAsel (0,1,2,3), regBsel (0,1,2,3), and regNsel (0,1,2,3) specify which of the registersto
use for the operation. The result is returned in the same register as the input B parameter. Normally, these

parameters are all set to 0, due to the size of RSA parameters. However, for operations such as the Chinese
Remainder Theorem, they may be set to other values.

For example, if regAsel = 2, regBsel = 1, and regNsel = 3, the calculation would be as follows:
B1=(A2+B1) mod N3

The modular addition works with a minimum of 4 digits so the value of modSize should have been

previously set (with mpc180Pkhal oadM odSize) to a value between 4 and 128.

STATUS npcl180RsaModul ar Add
(

unsi gned int regAsel,
unsi gned int regBsel,
unsi gned int regNsel

)
Returns. OK, or ERROR modSize < 4 or no response from the MPC180.

3.3.5 mpcl80RsaModularSubtract()

Thisfunction performs modular subtraction with two vectors |oaded into the A and B registers, where both
of these vectors are less than the value stored in the modulus register N. The result is returned in the B
register. (B = A-B mod N)

The parametersregAsel (0,1,2,3), regBsel (0,1,2,3), and regNsel (0,1,2,3) specify which of the registersto
use for the operation. The result is returned in the same register as the input B parameter. Normally, these

parameters are all set to 0, due to the size of RSA parameters. However, for operations such as the Chinese
Remainder Theorem, they may be set to other values.

For example, if regAsd = 2, regBsdl = 1, and regNsel = 3, the calculation would be as follows:
B1=(A2-B1) mod N3

The modular subtraction works with a minimum of 4 digits so the value of modSize should have been
previously set (with mpc180Pkhal oadM odSize) to a value between 4 and 128.
19 MPC180 Security Co-Processor Software Reference Guide MOTOROLA

For More Information On This Product,
Go to: www.freescale.com



Freescale Semiconductor, Inc.

STATUS npcl80RsalMbdul ar Subt r act
(

unsi gned int regAsel,
unsi gned int regBsel,
unsi gned int regNsel

)
Returns: OK, or ERROR modSize < 4 or no response from the MPC180.

4 MPC180Des Module

The MPC180Des module performs high-speed encryption and decryption using the DES algorithm. It aso
supports two key and three key Triple-DES encryption/decryption. It can be used in both Electronic Code
Book (ECB) and Cipher Block Chaining (CBC) modes of operation. This module uses DMA and the
MPC180 chip’s FIFO mode to transfer data for encryption/decryption.

Table 4-1. MPC180Des Module

Module Routine
mpc180DesEch
mpc1803DesEch

MPC180Des
mpc180DesChc
mpc1803DesChbc

4.1 MPC180Des Routines

The following sections describe the functions that can encrypt or decrypt a buffer.

4.1.1 mpcl80DesEch()

The DES agorithm in ECB mode, together with the 64 bits of key in key, can be used to encrypt or decrypt
abuffer (inBuff) of len bytes and returns the result in outBuff. If encrypt istrue, the function will encrypt
the data; otherwise, it will decrypt the data.

STATUS npc180DesEch

(
unsi gned | ong key[ 2],

unsi gned | ong *i nBuff,
unsi gned int |en,

unsi gned | ong *out Buff,
BOOLEAN encr ypt

)
Returns one of the following:
« OK
* ERRORif one of the following:
— no response from MPC180
— lenisnot amultiple of the DES block size (8)

20 MPC180 Security Co-Processor Software Reference Guide MOTOROLA

For More Information On This Product,
Go to: www.freescale.com



Freescale Semiconductor, Inc.

4.1.2 mpcl803DesEch

The Triple DES agorithm in ECB mode, together with the three 64-bit keysinkey, can be used to encrypt
or decrypt a buffer (inBuff) of len bytes and returns the result in outBuff. If encrypt is true, the function
will encrypt the data; otherwise it will decrypt the data.

STATUS npc1803DesEch

(

unsi gned | ong key[3][2],
unsi gned | ong *i nBuff,
unsi gned int |en,

unsi gned | ong *out Buff,
BOOLEAN encr ypt

)

Returns one of the following:

« OK
* ERRORif one of the following:
— no response from MPC180
— len isnot amultiple of the DES block size (8)

4.1.3 mpcl80DesChbc

The DES algorithm in CBC mode, together with the 64 bits of key in key and 64 bits of initialization vector
iniv, can be used to encrypt or decrypt a buffer (inBuff) of len bytes. It returns the result in outBuff. If
encrypt is true, then the function will encrypt the data; otherwise it will decrypt the data.

STATUS npc180DesChc

(

unsi gned | ong key[ 2],
unsi gned long iv[2],
unsi gned | ong *i nBuff,
unsi gned int |en,

unsi gned | ong *out Buff,
BOOLEAN encr ypt

)
Returns one of the following:
« OK
* ERROR if one of the following:
— no response from MPC180
— lenisnot amultiple of the DES block size (8)

4.1.4 mpcl803DesChc

The Triple DES algorithm in CBC mode, together with the three 64-bit keys in key and 64 bits of
initialization vector in iv, can be used to encrypt or decrypt abuffer (inBuff) of len bytes. It returnsthe result
in outBuff. If encrypt istrue, then the function will encrypt the data; otherwise it will decrypt the data.
STATUS npc1803DesChc
(

21 MPC180 Security Co-Processor Software Reference Guide MOTOROLA

For More Information On This Product,
Go to: www.freescale.com



Freescale Semiconductor, Inc.

unsi gned | ong key[3][2],
unsigned long iv[2],
unsi gned | ong *i nBuff,
unsi gned int |en,

unsi gned | ong *out Buff,
BOOLEAN encrypt

)
Returns one of the following:
« OK
* ERROR if one of the following:
— no response from MPC180

— lenisnot amultiple of the DES block size (8)

5 MPC180Mdha Module

The MPC180Mdha module is capable of performing SHA-1, MD4, and MD5, three of the most popular
public Message Digest algorithms. It is also cable of generating an HMAC as specified in RFC 2104. The
HMAC can be built upon any of the hash functions supported by MPC180M dha.

Table 5-1. MPC180Mdha Module

Module Routine

mpc180MdhaHash
mpc180MdhaHmac
mpc180MdhaHashlnit
mpc1803MdhaHmaclnit
mpcl1803MdhaUpdate
mpc1803MdhaFinal

MPC180Mdha

The interfaces to MPC180Mdha are broken up into two groups. The first is intended to process complete
messages through the hash or HMAC. Thisis accomplished by calling mpc180Hash() or mpc180Hmac().
Thistype of sequence isillustrated by the following:

unsi gned char *nyMsg = “This is the nessage to be hashed...”;
unsi gned char digest[4];

npc180Hash( MDHA MD5, nyMsg, strlen(nyMsg), digest);

The second interface is used when the message to be hashed or HMACed is presented in chunks. Thisis
accomplished by calling mpc180Hashinit() or mpcl80HmMacl nit() to start the hash, mpc180M dhalUpdate()
to hash a chunk, and mpc180MdhaFinal() to finish the hash and store the digest. This type of sequenceis
illustrated by the following:

unsi gned char *nyMsgl “This is the nmessage to be hashed...... "
unsi gned char *nyMsg2 = “And it cones in several parts...... "
unsi gned char *myMsg3 “Whi ch nust be hashed separately...... "
unsi gned char *key = “AbCdEf G';

unsi gned char digest[4];

22 MPC180 Security Co-Processor Software Reference Guide MOTOROLA

For More Information On This Product,
Go to: www.freescale.com



Freescale Semiconductor, Inc.

MDHA CTX *cont ext;
context = (MDHA CTX *) mal | oc(si zeof (MDHA CTX));

npc180Hmacl ni t (MDHA_MD5, context, FALSE, key, 7, NULL);
npcl180MdhaUpdat e( myMsgl, strlen(myMsgl), context);
npcl180MdhaUpdat e( myMsg2, strlen(myMsg2), context);
npcl180MdhaUpdat e( myMsg2, strlen(myMsg2), context);
npcl1l80MlhaFi nal (di gest, context);

The second interface may also be used to do a precomputation step, if the same key is going to be used for
many HMAC calculations. To do this, the routine is called with context = NULL and precalc = FALSE,
which will hash the key, and return the partial result in *digest. Then, to initialize the HMAC with the
precomputed digest, you may call the routine again with context | = NULL, precalc = TRUE, and the
precomputed digest in *digest. Note, key, and keyL en must still be provided on this call, as they are used
at the end of the HMAC calculation sequence (by mpcl80MdhaFinal()).This sequence, as shown in the
following code, will save time over the previous one, if the same key is reused many times:

unsi gned char *nyMsgl “This is the nessage to be hashed...... ;
unsi gned char *nyMsg2 “And it cones in several parts...... ",
unsi gned char *myMsg3 “Whi ch nmust be hashed separately...... ”
unsi gned char *key = “AbCdEf G;

unsi gned char preDi gest[4];

unsi gned char digest[4];

MDHA CTX *cont ext;

context = (MDHA CTX *) mal |l oc(sizeof (MDHA _CTX));

npc180Hmacl nit (MDHA MD5, NULL, FALSE, key, 7, preDi gest);

Qo Qo Qo

npcl180Hmacl ni t (MDHA_MD5, context, TRUE, key, 7, prebDigest);
npcl180MdhaUpdat e( myMsgl, strlen(myMsgl), context);
npcl180MdhaUpdat e( myMsg2, strlen(myMsg2), context);
npcl180MdhaUpdat e( myMsg2, strlen(myMsg2), context);
npc180MihaFi nal (di gest, context);

5.1 MPC180Mdha Routines

The following section describe the functions that compute a message digest and authentication, initialize
context structure used for hashing.

5.1.1 mpcl80MdhaHash()

Compute a message digest of the len bytes stored at inBuff and placeit at digest. The parameter algorithm
specifies which hashing agorithm to use (algorithm = MDHA_MD4, MDHA_MD5, or MDHA_SHA1).
The digest buffer must be able to hold 16 bytes for MD4 and MD5 and 20 bytes for SHA-1.

STATUS npcl180MihaHash
(

unsi gned int algorithm
unsi gned char *i nBuff,
unsi gned int |en,

23 MPC180 Security Co-Processor Software Reference Guide MOTOROLA

For More Information On This Product,
Go to: www.freescale.com



Freescale Semiconductor, Inc.

unsi gned char *di gest
)
Returns. OK, or ERROR if no response from the MPC180.

5.1.2 mpcl80MdhaHmac()

Computes the message authentication code of the len bytes at inBuff using the respective hash function
(MD4, MD5, SHA-1) and the key which iskeyL en byteslong. The codeis stored in the code buffer digest,
which must be able to hold 16 bytesfor MD4 and MD5 and 20 bytes for SHA-1. The parameter algorithm
specifies which hashing algorithm to use (algorithm = MDHA_MD4, MDHA_MDS5, or MDHA_SHA1).

STATUS npcl180MihaHnac

(

unsi gned int al ogorithm
unsi gned char *key,

unsi gned int keylLen,
unsi gned char *inBuff,
unsigned int |en,

unsi gned char *di gest

)
Returns: OK, or ERROR if no response from the MPC180.

5.1.3 mpcl80MdhaHashinit ()

Initializes a context structure used for hashing a message in parts. The structure *context should be
pre-allocated. The parameter algorithm specifies which hashing algorithm to use
(algorithm = MDHA_MD4, MDHA_MD5, or MDHA_SHA1).

voi d npcl180Hashl nit
(

unsi gned int alogorithm
MDHA CTX *cont ext
)

Returns: N/A

5.1.4 mpcl80MdhaHmaclInit ()

Initializes a context structure used for computing a HMAC of a message in parts. The structure *context
should be pre-alocated. The parameter algorithm specifies which hashing agorithm to use
(algorithm = MDHA_MD4, MDHA_MD5, or MDHA_SHA1). The key used iskeyL en bytes long.

Thisroutine may also be used to precalculate a partial digest for akey that is reused many times. To do this,
the routine is called with context = NULL and precalc = FALSE, which will hash the key and return the
partial result in *digest.

Then, to initialize the HMAC with the precomputed digest, you may cal the routine again with
context ! = NULL, precalc = TRUE, and the precomputed digest in *digest. Note, key and keylLen must
still be provided on this call, as they are used at the end of the HMAC calculation sequence (by
mpcl180MdhaFinal()).

NOTE

If context ! = NULL and precalc = FALSE, then digest is ignored, and
may be NULL.

24 MPC180 Security Co-Processor Software Reference Guide MOTOROLA

For More Information On This Product,
Go to: www.freescale.com



Freescale Semiconductor, Inc.

STATUS npcl1l80Hnmacl ni t
(

unsi gned int al ogorithm
MDHA CTX *cont ext

BOOLEAN precal c,

unsi gned char *key,

unsi gned int keyLen,

const unsigned char *di gest

)
Returns: OK, or ERROR if no response from MPC180.

5.1.5 mpcl80MdhaUpdate()

This function is called repeatedly with chunks of message data to be hashed. The data to be hashed in len
bytes at inBuff, with the hash context of context used. The digest is computed using the hashing algorithm
that was selected when either mpc180MdhHashinit() or mpcl80MdhaHmaclnit() was called for this
context.

STATUS npcl180HashUpdat e

(
MDHA CTX *cont ext,

const unsigned char *inBuff,
unsigned int |en

)
Returns. OK, or ERROR if no response from MPC180.

5.1.6 mpcl80MdhaFinal()

Places the completed message digest in digest, which must be able to hold 16 bytes of datafor the MD4 and
MD5 algorithms, and 20 bytes of data for the SHA-1 algorithm. It also erases the hash context structure
*context. The digest is computed using the hashing algorithm that was selected when either
mpc180MdhHashinit() or mpc180MdhaHmaclnit() was called for this context.

STATUS npc180HashFi nal
(

unsi gned char *di gest,
MDHA CTX *cont ext

)
Returns: OK, or ERROR if no response from MPC180.

6 MPC180Afha Module

The AFHA Module accelerates an algorithm compatible with the RC4 stream cipher from RSA Security,
Inc. The RC4 algorithm is byte oriented, therefore a byte of plaintext is encrypted with akey to produce a
byte of ciphertext. The key is variable length, and MPC180Afha supports keys ranging from 40 bits to 128
bits.

25 MPC180 Security Co-Processor Software Reference Guide MOTOROLA

For More Information On This Product,
Go to: www.freescale.com



Freescale Semiconductor, Inc.

Table 6-1. MPCAfha Module

Module Routine
mpcl80AfhaSetKey
MPC180Afha
mpcl80AfhaProcess

The MPC180Afha module is used by making one call to set the key for an encryption/decryption sequence,
calling the process function to process sequential encryption/decryption blocks. This is illustrated in the
following code segment:

unsi gned char *nyKey = "AbCdE";

unsi gned char *blockl = "Nowis the tine ";
unsi gned char *block2 = "for every ";

unsi gned char *encrypt Bl ockl;

unsi gned char *encrypt Bl ock2;

AFHA _CTX *cont ext;

context = (AFHA CTX *) mall oc(sizeof (AFHA CTX));

npc180Af haSet Key( nyKey, 5, context);

encrypt Bl ockl = nmall oc(strl en(bl ockl));

encrypt Bl ock2 = mal | oc(strl en(bl ock2));

npc180Af haPr ocess(bl ockl, strlen(blockl), encryptBl ockl, context);
npc180Af haPr ocess(bl ock2, strlen(bl ock2), encryptBl ock2, context);

The MPC180Afha module also is able to support encryption context switching, where a
encryption/decryption sequence is temporarily suspended to allow encryption of another message with a
different key. The encryption context switch is done automatically by calling mpcl80AfhaSetKey() or
mpcl180AfhaProcess() for the second (or third, etc.) set of data. Note, however, that the context switch time
can be quite large as alarge amount of data must be transferred to/from the MPC180 to perform the context
switch. This sequence of operationsisillustrated in the following code segment:

unsi gned char *nyKeyl = "AbCdE";

unsi gned char *nyKey2 = "FgH Jk";

unsi gned char *bl ockll "Now is the tinme ";
unsi gned char *bl ockl12 "for every ";

unsi gned char *bl ock21 "Four score and ";
unsi gned char *bl ock22 "twenty years ago ";
unsi gned char *encrypt Bl ockl1;

unsi gned char *encrypt Bl ock12;

unsi gned char *encrypt Bl ock21;

unsi gned char *encrypt Bl ock22;

AFHA CTX *cont ext;

AFHA CTX *cont ext 2;

contextl (AFHA_CTX *) mal |l oc(si zeof (AFHA_CTX));
cont ext 2 (AFHA CTX *) mal | oc(si zeof (AFHA _CTX) ;

npc180Af haSet Key(nmyKeyl, 5, contextl);
encrypt Bl ockl = nmall oc(strlen(bl ockl));
npc180Af haPr ocess(bl ock1l, strlen(blockll), encryptBl ockll, contextl);

npc180Af haSet Key(nmyKey2, 6, context?2);

26 MPC180 Security Co-Processor Software Reference Guide MOTOROLA

For More Information On This Product,
Go to: www.freescale.com



Freescale Semiconductor, Inc.

encrypt Bl ock21 = mal | oc(strlen(bl ock2l));
nmpc 180Af haPr ocess( bl ock21, strlen(bl ock2l), encryptBlock2l, context?2);
encrypt Bl ock22 = mal | oc(strl en(bl ock22));
npc180Af haPr ocess(bl ock22, strlen(block22), encryptBl ock22, context?2);

encrypt Bl ock1l2 = mal |l oc(strlen(bl ockl2));
npc180Af haPr ocess(bl ockl12, strlen(blockl2), encryptBlockl2, contextl);

6.1 MPC180Afha Routines

The following sections describe different functional routines that can alow context switching, and
encrypting or decrypting.

6.1.1 mpcl80AfhaSetKey()

Sets up the AFHA key for use, using the keyL en bytes long key at key. Valid values for keyLen are
between 5 and 16. The context structure pointer that is passed inisto alow for context switchesto occur. If
the parameter, doNotSaveContext is TRUE, the AFHA context which the MPC180 was currently
processing will not be saved, and the old context will be invalidated.

STATUS npc180Af haSet Key
(

unsi gned char *key,

unsi gned int keylLen,
AFHA CTX *cont ext,
BOOLEAN doNot SaveCont ext

)
Returns one of the following:
« OK
* ERROR if one of the following:
— key<5
— key>16

— no response from MPC180

6.1.2 mpcl80AfhaProcess|()

Thelen bytes of data at inBuff can be encrypted or decrypted using key (from mpc180AfhaSetKey()). The
results are stored at outBuff.

27 MPC180 Security Co-Processor Software Reference Guide MOTOROLA

For More Information On This Product,
Go to: www.freescale.com



Freescale Semiconductor, Inc.

STATUS npcl180Af haProcess
(

unsi gned char *inBuff,
unsi gned int |en,

unsi gned char *out Buff,
AFHA CTX *cont ext

)
Returns: OK, or ERROR if no response from MPC180.

7 MPC180Rng Module

The MPC180Rng module provides the application software with a method of generating 32-bit random
numbers. There are two interfaces provided, one to provide one random number, and the second to provide
ablock of random numbers. The single random number interface uses the MPC180 in Open Address mode,

while the block random number interface employees FIFO mode and DMA.

Table 1. MPC180Rng Module

Module Routine

mpcl80Rand
MPC180Rng

mpcl80RandLongs

7.1 MPC180Rng Routines

The following sections describe the functions that generate 32-hit random numbers and store them in a

buffer.

7.1.1 mpcl80Rand()

This routine generates a 32 bit random number.

unsi gned | ong npcl180Rand

(
)

Returns: 32-bit random number

7.1.2 mpcl80RandLongs()

This routine generates len 32-bit random numbers and stores them at buff.

STATUS npcl80Rand
(

unsi gned | ong *buff,
unsigned int |en

)
Returns. OK or ERROR if no response from the MPC180.

28 MPC180 Security Co-Processor Software Reference Guide

For More Information On This Product,
Go to: www.freescale.com

MOTOROLA



Freescale Semiconductor, Inc.

8 MPC180 Interface Module Porting

The following sections describe main operating system specific concept of semaphores, the required files
for the interface module code, configuration of the interface modules, and external variables and functions.

8.1 Include Files

The interface module code uses the file vxWorks.h. This includes standard vxWorks type includes. Using
this code in another system will require redefining those types for that system. For example, the type
UINT32 should be defined as a 32-bit unsigned integer on your target system.

In addition, for the semaphore mechanism (described in Section 8.2), the file semLib.h is included, to
provide definitions for the semaphore type (SEM _ID) and the semaphore function calls. This will need to
be replaced by the appropriate files depending on the communication mechanism used for the port.

Several drivers also use the ANSI standard string functions specified in string.h.

8.2 Semaphores

The main operating system specific concepts used in the code are two types of semaphores. Thefirst of these
is the mpc180Mutex, which is used to make sure that only one task is able to use the MPC180 at one time.
There are three calls involved with this semaphore:

e semMCreate(mpcl80Mutex....—This call creates the semaphore for later use.

* semTake(mpcl80Mutex, WAIT_FOREVER)—This call takes the semaphore, preventing another
task from using the MPC180.

¢ semGive(mpcl80Mutex)—This call gives the semaphore, allowing another task to use the
MPC180.

The second type of semaphores are Binary Semaphores that are used for communication between the
interrupt service routine and the main line routines. In other multitasking operating systems, these calls
should be replaced with the appropriate semaphore calls for the specific operating system. In a single
threaded system (no multitasking OS), the Mutex is not necessary, and the Binary Semaphore mechanism
may be replaced by the setting and clearing of global flags. The semaphores used in the code are asfollows:

SEM | D npcl80Mut ex;

SEM | D npc180PkhaDoneSenaphor e;

SEM I D npc180PkhaEr dySenmaphor e;

SEM | D npc180DesDoneSermaphor e;

SEM | D npc180Af hal ni t Semaphor e;

SEM | D npc180Af haPer nmut eSermaphor e;
SEM | D npc180Af haFul | MessageSemaphor e;
SEM | D npc180Af haSubMessageSenmaphor e;
SEM I D npcl180MihaSemaphor e;

SEM | D npc 1801 dmaQut Sermaphor e;

There are three calls involved with these semaphores:
* semBCreate—This call creates the semaphore for later use.

 semTake—Thiscall isused in mainline code to wait on the semaphore to be given in the Interrupt
Service Routine. It usually has atimeout associated with it.

» semGive—This call givesthe semaphore from the ISR, allowing the mainline task to continue.

29 MPC180 Security Co-Processor Software Reference Guide MOTOROLA

For More Information On This Product,
Go to: www.freescale.com



Freescale Semiconductor, Inc.

Alsonote, if auser ischaining several of the PKHA operationsto do ahigher level arithmetic function, they
should use the “mpc180 Mutex” in the higher level functions to prevent another task from disturbing the
state of the PKHA registers between the low level function calls.

8.3 Conditional Compilation

Three configurations of the interface modules may be built:

1. Processor Transfer of Datato MPC180, MPC180 byte swapping.
In this configuration, the processor transfers data to and from the MPC180' s FIFO buffers, not the
DMA controller. In addition, byte swapping required by the algorithms is performed by switching
the MPC180 endian pin by means of an externally provided function (see section 8.4). For this
configuration, no macro definitions are necessary.

2. DMA Transfer of Datato MPC180, MPC180 byte swapping
This works the same as configuration 1, except in this case, the 8260 DMA engineis used to
transfer data to/from the MPC180. The required macros for this configuration are:
#define INCLUDE_MPC180 DMA

3. Processor Transfer of Datato MPC180, Processor byte swapping.
Thisisthe same as configuration 1; however, the processor performs the byte swapping in
software, and the external endian pin function should not be provided. The required macrosfor this
configuration are:
#define INCLUDE_MPC180 SW_BYTE_SWAP

NOTE

The macros for options 2 and 3 must not be defined at the same time
because the drivers will not perform the required functionsiif they are.

8.4 Required Externals

The MPC180 interface modules require three external variables (shown in Table 8-1) and three external
functions.

Table 8-1. External Variables Required by the MPC180 Interface

External variable code Definition

extern const UINT32 MPC180_BASE_ADRS; Specifies the base address of the MPC180 in memory.

extern const int MPC180_INPUT_DMA_CHANNEL; |Specifies which DMA channel is used to transfer data
to the MPC180.

extern const int MPC180_OUTPUT_DMA_CHANNEL; | Specifies which DMA channel is used to transfer data
to the MPC180.

Thefirst of the three required external functionsis as follows:
voi d sysMpcl1l80Endi an(i nt endi an)
where endian is either MPC180_BIG_ENDIAN =1 or MPC180 LITTLE_ENDIAN = 2.
This function is used to change the state of the MPC180 Endian pin and is dependent on hardware. In the

reference design, this pin is tied to Parallel Port A, pin 1 on both the MPC8260 and the MPC860. The
function has the following form:

voi d sysMpc180Endi an
(

int endi an

30 MPC180 Security Co-Processor Software Reference Guide MOTOROLA

For More Information On This Product,
Go to: www.freescale.com



Freescale Semiconductor, Inc.

)

{

int immrVval = vxlmrGet() ;

if (endian == MPC180_BI G_ENDI AN)
{
*PDATA( inmrVal ) |= PAl; /* Set to big endian */
}

el se
{
*PDATA( immrVal ) & ~PAl; /* Set to little
endi an */

}

}

The other two required external functions are calls to the DMA drivers to start DMA transfers. They have
the following prototypes:

voi d ppc8260l dmaStart (i nt channel, unsigned char *source,

unsi gned char *desti nati on,

U NT32 size, BOOL interrupt, int direction);

voi d ppc8260I dnmaChai nStart (i nt channel, unsigned char
*sour cel,

unsi gned char *sourcez2,

unsi gned char *destinati on,

U NT32 sizel, U NT32 size2, BOOL interrupt);

9 [|IPsec and IKE

This section describes MPC180 functionality with Wind River’ s modifications to the WindNet™ | Psec and
WindNet IKE (these modifications are not shown in the user’s guide for the base WindNet 1Psec and
WindNet IKE products).

These release notes support Wind River’ s modifications to the WindNet | Psec and WindNet IKE products
to alow the use of the MPC180 Security Processor with these products. The user’s guide for the base
WindNet 1Psec and WindNet IKE products which describes the functionality is unchanged do to these
modifications. For information on the drivers used by these modifications, consult the mpcl80 Interface
Library Guide.

NOTE

Forward slashes are used as pathname delimiters for both UNIX and
Windows filenames since thisis the default for vxWorks.

9.1 Installation

Theinstallation instructions for the base WindNet | Psec and WindNet IKE products should be followed as
stated in the release notes for those products. However, before these products are built (as shown in section
2.3.2 and 2.4.2 of the I Psec/I K E rel ease notes), the modifications for the MPC180 should beinstalled. If the
IPsec and IKE products have been built already, the current build should be deleted as described in the
| Psec/IKE release notes.

Also, the MPC180 Interface Modules must be installed prior to building of 1Psec/IKE.

31 MPC180 Security Co-Processor Software Reference Guide MOTOROLA

For More Information On This Product,
Go to: www.freescale.com



Freescale Semiconductor, Inc.

To install the modifications for the MPC180, extract the zip file containing the modifications
(ipsec_ike_mpc180.zip) into the Tornado installation directory. Once the modifications are installed,
WindNet IPSec and WindNet IKE may be built and used per their installation instructions.

9.2 Distribution Archive

For this release, the distribution archive consists of the source files listed in this section. Note that the file
paths are relative to installDir/target/.

WNCrypto Fil es

src/ w n/wncrypt o/ openssl/sha. h

src/ w n/wncrypt o/ openssl / crypt o/ sha/ Makefil e

src/ w n/ wncrypt o/ openssl /crypt o/ wn/ Makefil e

src/wrn/wncrypt o/ openssl/crypto/wn/crypto _functions_interface.h
src/ w n/wncrypt o/ openssl /crypto/wn/crypto_functions_interface.c
src/ w n/wncrypt o/ openssl /crypto/wn/math_functions_interface.c
src/ w n/wncrypt o/ openssl /crypt o/ wn/ nmd5. h

10 vxWorks

The following sections describe the installation of the MPC180 interface modules, BSP integration, and
distribution archives.

10.1 Introduction

These release notes support MPC180 Security Processor Interface Modules for use with vxWorks. For
information on the use of the interface modules (including porting issues), consult the MPC180 Interface
Library Guide.

NOTE

Forward dlashes are used as pathname delimiters for both UNIX and
Windows filenames since thisis the default for vxWorks.

10.2 Installation

To instal the MPC180 Interface Modules, extract the zip file containing the source files
(mpcl80_drivers.zip) into the Tornado installation directory.

Once the modules are installed, the vxWorks image may be built per the following instructions.

10.3 Building the Interface Modules

Throughout the remainder of the installation instructions, the following variables are used:

Variable Definition
cpuFamily Specifies the target CPU family, such as PPCEC603 or PPC860
toolChain Specifies the tool, such as gnu
32 MPC180 Security Co-Processor Software Reference Guide MOTOROLA

For More Information On This Product,
Go to: www.freescale.com



Freescale Semiconductor, Inc.

Follow these instructions to build WindNet | PSec.

1. Go tothe command prompt or shell
2. ExecutetorVarsto set up the Tornado command line build environment.
3. Run makein theingtallDir/tar get/sr c/drv/crypto directory by typing these command lines
switches:
make CPU = cpuFamily TOOL = toolChain
The command line in step 3 builds the configuration Processor Transfer of Datato MPC180, MPC180 byte
swapping (No macro definitions). To build the other configurations the following commands should be used
instead of step 3.
1. DMA Transfer of Datato mpcl80, mpcl80 byte swapping (#define INCLUDE_MPC180 DMA)
make CPU = cpuFamily TOOL = toolChain DMA = YES

2. Processor Transfer of Datato mpcl180, Processor byte swapping. (#define
INCLUDE_MPC180 SW_BYTE_SWAP)
make CPU = cpuFamily TOOL =toolChain SWBY TESWAP = YES

10.4 BSP Integration

Once the modules are built, they may be integrated with the users board support package.

10.5 Distribution Archive

For this release, the distribution archive consists of the source files listed in this section. Note that the file
paths are relative to install Dir/target/.

h/ drv/ crypt o/ npc180. h

h/ drv/ crypt o/ npc180Af ha. h
h/ drv/ crypt o/ npc180Des. h

h/ drv/ crypt o/ npcl180Dma. h

h/ drv/ crypto/ npcl80Init.h
h/ drv/ crypt o/ npc180Miha. h
h/ drv/ crypt o/ npc180Pkha. h
h/ drv/ crypt o/ npcl180Rng. h

h/ dr v/ dma/ ppc8260I1 dma. h
src/drv/crypto/ Makefile
src/drv/crypto/ npcl80Af ha. c
src/drv/crypto/ npcl80Des. c
src/drv/crypto/ npcl80Dma. c
src/drv/crypto/ npcl80lnit.c
src/drv/crypto/ npcl80Miha. c
src/drv/crypto/ npcl80Pkha. c
src/drv/crypto/ npcl80Rng. c

33 MPC180 Security Co-Processor Software Reference Guide MOTOROLA

For More Information On This Product,
Go to: www.freescale.com



34

Freescale Semiconductor, Inc.

MPC180 Security Co-Processor Software Reference Guide

For More Information On This Product,
Go to: www.freescale.com

MOTOROLA



35

Freescale Semiconductor, Inc.

MPC180 Security Co-Processor Software Reference Guide

For More Information On This Product,
Go to: www.freescale.com

MOTOROLA



A Freescale Semiconductor, Inc.

HOW TO REACH US:
USA/EUROPE/LOCATIONS NOT LISTED:

Motorola Literature Distribution

P.O. Box 5405, Denver, Colorado 80217
1-303-675-2140

(800) 441-2447

JAPAN:

Motorola Japan Ltd.

SPS, Technical Information Center
3-20-1, Minami-Azabu Minato-ku
Tokyo 106-8573 Japan
81-3-3440-3569

ASIA/PACIFIC:

Motorola Semiconductors H.K. Ltd.

Silicon Harbour Centre, 2 Dai King Street

Tai Po Industrial Estate, Tai Po, N.T., Hong Kong
852-26668334

TECHNICAL INFORMATION CENTER:
(800) 521-6274
HOME PAGE:

www.motorola.com/semiconductors

Information in this document is provided solely to enable system and software implementers to use
Motorola products. There are no express or implied copyright licenses granted hereunder to design
or fabricate any integrated circuits or integrated circuits based on the information in this document.

Motorola reserves the right to make changes without further notice to any products herein.
Motorola makes no warranty, representation or guarantee regarding the suitability of its products
for any particular purpose, nor does Motorola assume any liability arising out of the application or
use of any product or circuit, and specifically disclaims any and all liability, including without
limitation consequential or incidental damages. “Typical” parameters which may be provided in
Motorola data sheets and/or specifications can and do vary in different applications and actual
performance may vary over time. All operating parameters, including “Typicals” must be validated
for each customer application by customer’s technical experts. Motorola does not convey any
license under its patent rights nor the rights of others. Motorola products are not designed,
intended, or authorized for use as components in systems intended for surgical implant into the
body, or other applications intended to support or sustain life, or for any other application in which
the failure of the Motorola product could create a situation where personal injury or death may
occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized
application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries,
affiliates, and distributors harmless against all claims, costs, damages, and expenses, and
reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death
associated with such unintended or unauthorized use, even if such claim alleges that Motorola was

negligent regarding the design or manufacture of the part.

Motorola and the Stylized M Logo are registered in the U.S. Patent and Trademark Office.
digital dna is a trademark of Motorola, Inc. All other product or service names are the property of
their respective owners. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

© Motorola, Inc. 2003

MPC180SWUG/D

For More Information On This Product,

Go to: www.freescale.com




