

Freescale Semiconductor

Document Number: MPC8572DSUG Rev. 1, 01/2009

MPC8572 Development System User's Guide

Networking and Multimedia Group bv Freescale Semiconductor, Inc. Austin. TX

Overview 1

MPC8572DS is a high-performance computing, evaluation and development platform supporting the MPC8572 processor built on Power Architecture technology. MPC8572DS is optimized to support two high-bandwidth memory ports for the processor core, as well as the three PCI-express ports, two of which are dedicated for graphics or other slot-based cards, and the third dedicated for Linux I/O with the ULI south-bridge.

MPC8572DS is designed for standard ATX form-factor, allowing it to be used in a standard ATX chassis. The system is lead-free and RoHS-compliant.

2 **Features**

The features of the MPC8572DS evaluation/development board are as follows:

- MPC8572 Processor •
 - See full feature list from the device reference manual
 - PCI Express (SerDes1)
 - x4 connections to PCIe slot2

Contents

1.	Overview
2.	Features
3.	Block Diagram 3
4.	Evaluation Support 4
5.	Usage Scenarios 6
6.	Architecture
7.	Configuration 45
8.	Debug Support 54
9.	Programming Model 54
10.	Revision History 71
Α.	References
В.	Lead-Free/RoHS Issues

© Freescale Semiconductor, Inc., 2009. All rights reserved.

Features

- PCI Express (SerDes2)
 - x2 connections to PCIe slot1
- PCI Express (SerDes3)
 - x2 connectivity to ULI M1575 South bridge
- SGMII Support
 - x4 connectivity to SGMII PHY plug-in card.
- Trusted Platform Modules using I2C and ULI LPC
- South Bridge
 - NVIDIA/ULI M1575
 - IDE Controller
 - Parallel ATA
 - Serial ATA 2 (RAID-1 Support)
 - USB Interface
 - UHCI/EHCI USB 2.0 Interface
 - Two ports on stacked USB header
 - Two ports on PCB header (mates with standard PC chassis connectors)
 - PCI
 - Two 5-V, 33-MHz slots.
 - Other
 - LPC (socketed) boot flash
 - Real-time Clock
 - NVRAM: 256-byte
- System Logic
 - Manages system reset sequencing
 - Manages system bus and PCI clock speed selections
 - Controls system and monitoring
 - Implements registers for system control and monitoring
- Clocks
 - System and DDR clocks
 - Switch selectable to one of eight common settings in the interval.
 - Default = 66MHz Sysclk.
 - Software selectable via FPGA in 1MHz increments.
- Power Supplies
 - VCORE supplied by a programmable switcher.
 - VTT/VREF for DDR
 - General I/O power

3 Block Diagram

Figure 1 shows the overall architecture of the MPC8572DS system

Figure 1. MPC8572DS Block Diagram

Evaluation Support

4 Evaluation Support

MPC8572DS is intended to evaluate as many features of the MPC8572 as are reasonable within a limited amount of board space and cost limitations.

MPC8572 Feature	System	Evaluation Support/Methods		
SerDes 1	PCI Express	Connects to PCIExpress slot via PEX/4X connection. Testable via PCIExpress card (graphics) or Catalyst TM PCIExpress control/monitoring card. Traffic monitoring via Tek/Agilent passive mid-point probing.		
SerDes 2	PCI Express	Connects to PCIExpress slot via PEX/2X connection. Testable via PCIExpress card (graphics) or Catalyst TM PCIExpress control/monitoring card. Traffic monitoring via Tek/Agilent passive mid-point probing.		
SerDes 3	PCI Express	Connects to ULI south bridge via PEX/2X connection. Testable by functional code. Traffic monitoring via Tek/Agilent passive mid-point probing.		
SGMII	SGMII	Connects to SGMII riser slot via x4 lane connection.		
Memory Controller	DDR3	Not supported.		
	DDR2 (2 channels)	Independent VIO supplies (1.8V). Independent VTT supplies. Debugging uses Tek/NextWave analyzer breakout cards. No special MECC/Debug tap.		
	VTT	Resistor dividers allow setting different VTT thresholds. Each DIMM can use VTT VREF or disconnect and use resistor dividers for custom threshold use/analysis.		
Ethernet	All	Supports RGMII modes. Uses VSC8244 QuadPHY (for software compatibility). Four ports attached.		
	Port 1, 2, 3, 4	Connects to two RJ45 dual connectors for rear-panel access.		
Local Bus	NOR Flash	1 bank of 16-bit, 128MB NORflash Option for PromJet access.		
	Pixis	Internal registers implementing: Board ID VDD control Frequency reset. Self-reset reset		
	NAND Flash	4 GB.		
	FSRAM	UPM operated 512K x 36 bit NOBL.		

Table 1. MPC8572DS Evaluation Summar	ъ
--------------------------------------	---

MPC8572 Feature	System	Evaluation Support/Methods		
12C	Bus 1	Boot initialization code Voltage Monitoring SERDES CLOCK 1 AT97SC3203S Trusted Platform Module		
	Bus 2	DDR Bus 1 and 2 DIMM modules SPD EEPROMs System (MAC address storage, serial number, etc.) Board EEPROM PEX/PCI Slots (as "SMBus")		
Serial	UART ports 0-1	UART: Supports 2-wire and 4-wire modes for two serial ports muxed to one serial connector.		
Clocking	DDRCLK	Digitally settable clock generator. Switch-selectable coarse settings. Software-selectable fine settings.		
	SYSCLK	Digitally settable clock generator. Switch-selectable coarse settings. Software-selectable fine settings.		
	REFCLK	SERDES reference clocks to SERDES's on MPC8572, ULI and slots.		
	RTCCLK	Reference clock.		
DMA	DMA(0:3) REQ/ACK/Done	Test points.		
IRQs	IRQ*(0:11)	EVENT switch asserts IRQ* but can drive SRESET via software setting.		
	IRQ_OUT			
	SRESET*			
VCore Power	VDD	VID switch settable		
		Pixis software-monitored/controlled voltages		
		7-bit encoded voltage		

|--|

Usage Scenarios

5 Usage Scenarios

The MPC8572DS is expected to be used in many different test and evaluation scenarios. This section discusses aspects of each potential use; for example "how would I use MPC8572DS to do ____?"

5.1 Development System Use

For general hardware and/or software development and evaluation purposes, MPC8572DS can be used just like an ordinary desktop computer. In the absence of special hardware or software configuration, MPC8572DS operates identically to a development/evaluation system such as "Sandpoint" or a member the HPC family (HPC1 and HPC2). Figure 2 shows an example of MPC8572DS system in a desktop configuration.

Figure 2. MPC8572DS Desktop Configuration

The FPGA is used to provide startup configuration information for DINK, UBOOT or Linux and other advanced features are used or may be ignored.

5.2 Embedded Use

For general embedded hardware and/or software development and evaluation purposes, MPC8572DS can be used just like an ordinary desktop computer. The core voltage and PLL settings might be adjusted to allow the different performance points. Peripherals and embedded storage can be connected to the PromJet connector.

As before, the PIXIS is used to provide startup configuration information for DINK, UBOOT or Linux and other advanced features are used or can be ignored.

The MPC8572DS architecture is primarily determined by the Freescale Semiconductor MPC8572 Power processor, and by the need to provide typical OS-dependant resources (disk, ethernet, etc.).

6.1 Processor

MPC8572DS supports these Freescale Semiconductor processors:

• mpc8572 processor, all speeds

Table 2 lists the major pin groupings of the MPC8572.

Signal Group	Pin Count	Details
DDR2 Memory 1	147	Section 6.1.1
DDR2 Memory 2	147	Section 6.1.1
MII Interface/Clock	3	Section 6.1.2
Gbit MAC 1	25	Section 6.1.2
Gbit MAC 2	25	Section 6.1.2
Gbit MAC 3	25	Section 6.1.2
Gbit MAC 4	25	Section 6.1.2
SERDES 1	48	Section 6.1.3.1
SERDES 2	24	Section 6.1.3.3
SERDES Extra	2	Section 6.1.3.2
Local Bus	67	Section 6.1.4
DMA	6	Section 6.1.11
MPIC	18	Section 6.1.7
System Control	8	Section 6.1.11
DUART	8	Section 6.1.5
I2C	4	Section 6.1.8
Debug	15	Section 6.1.11
Power Mgmt	1	Section 6.1.11
Clock	2	Section 6.1.11
Test	4	Section 6.1.11
JTAG/COP	5	Section 6.1.11
Thermal	2	Section 6.1.11
TOTAL	637	

Table 2. MPC8572 Summary

6.1.1 DDR

The MPC8572 contains two memory controller capable of supporting DDR1 and DDR2 devices. MPC8572DS supports DDR2 only, using industry-standard JEDEC DDR2 DIMM modules. The memory interface includes all the necessary termination and I/O power and is routed so as to achieve maximum performance on the memory bus.

The general DDR SDRAM architecture is shown in Figure 3.

Note also that MPC8572DS does not directly support the use of the MECC pins to access internal debug information, as MPC8572DS does not provide the special multiplexer and thus has a simpler routing and signal integrity status. On the other hand, MPC8572DS does not interfere with this path, so access to debug information on the MECC pins is possible with the use of a NextWave (or equivalent) DDR logic analyzer connector and the use of non-ECC DDR modules.

Differential clocks for the memory module are supplied by the MPC8572; these signals are not parallel terminated, unlike the single-ended memory signals.

32-bit DDR2 interface mode is supported; from the viewpoint of the MPC8572DS board, the unused lower MDQ/MDS/MDM signals are simply inactive.

The DDR2 power supply the following interface voltages:

- VDDQ & VDD_IOup to 18A
- MVREFup to 10mA

DDR2 memory port signals and connections are summarized in Table 3.

Pin Count	Signal Names	Compensation	Termination	Connections
64	MDQ[0:63]	_	_	MPC8572, DIMM
8	MECC[0:7]	_	_	MPC8572, DIMM
9	MDM[0:8]	_	_	MPC8572, DIMM
18	MDQS[0:8](p,n)	_	_	MPC8572, DIMM
3	MBA[0:2]	22pF	47 Ω	MPC8572, DIMM, VTT
16	MA[0:15]	22pF	47 Ω	MPC8572, DIMM, VTT
1	MWE*	22pF	47 Ω	MPC8572, DIMM, VTT
1	MRAS*	22pF	47 Ω	MPC8572, DIMM, VTT
1	MCAS*	22pF	47 Ω	MPC8572, DIMM, VTT
2	MCS*[0:1]	22pF	47 Ω	MPC8572, DIMM, VTT
2	MCS*[2:3]	_	_	Not used
2	MCKE[0:1]	22pF	47 Ω	MPC8572, DIMM, VTT
2	MCKE[2:3]	_	_	Not used
6	MCK_0[0:2](p,n)	_	_	MPC8572, DIMM
6	MCK_0[3:5](p,n)	_	_	Not used
2	MODT[0:1]	22pF	47 Ω	MPC8572, DIMM, VTT
2	MODT[2:3]	_	_	Not used

6.1.1.1 Compatible DDR2 Modules

The DDR interface of MPC8572DS and the MPC8572 should work with any JEDEC-compliant 240-pin DDR2 DIMM module, provided that the devices are 64Mib to 4Gib in size, and that the devices are x8, x16 or x32 bits in width. Table 4 shows several DIMM modules which are believed compatible; those which have been tested and confirmed are noted as such.

Mfg.	Part Number	Size	Speed	Data Rate	Notes	Verified?
Micron	MT9HTF6472AY-800	512 MB	DDR2-800		—	Pending

6.1.2 Ethernet

The MPC8572 supports four 10/100/1000Base-T Ethernet ports. On MPC8572DS, the VSC8244 PHY is used to provide access to these four ports. Both Ethernet ports come out the rear ATX I/O panel as shown in Table 5.

mpc8572 TSEC #	ATX Port \$	PHY Address	Location	Description
1	1	0	Bottom of "normal" RJ45 stack	Quasi-standard rack-mount server location.
2	2	1	Bottom of "extra" RJ45 stack	Non-standard
3	3	2	Top of "normal" RJ45 stack	Quasi-standard rack-mount server location.
4	4	3	Top of "extra" RJ45 stack	Non-standard

Table 5. Ethernet Port Locations

MPC8572DS uses the Vitesse VSC8244 quad-PHY, which provides a direct connection to the four GMACs and the RGMII interface. The remaining connections are essentially clocks and resets. Signals are summarized in Table 6.

Category	Pin Count	Signal Names	Connections
Ethernet MI	2	EC_MDC, EC_MDIO	MPC8572, VSC8244
GbE Clocking	1	EC_GTX_CLK125	MPC8572, VSC8244
ETSECx	12	TSECx_TXD(3:0), TSECx_TX_EN, TSECx_TX_CLK, TSECx_RXD(3:0), TSECx_RX_DV, TSECx_RX_CLK	MPC8572, VSC8244
— 13 TSECx_TXD(7:4), TSECx_TX_ER, TSECx_GTX_CLK, TSECx_CRS, TSECx_COL, TSECx_RXD(7:4), TSECx_RX_ER		TSECx_TXD(7:4), TSECx_TX_ER, TSECx_GTX_CLK, TSECx_CRS, TSECx_COL, TSECx_RXD(7:4), TSECx_RX_ER	n/c (unless config pin)

Table 6. Ethernet Port Connections

The PHY addresses are 0 to 3, for GMAC/Ethernet ports 0 to 3, respectively.

Figure 4. Ethernet Architecture

Refer to the Vitesse website for programming information for the PHY.

6.1.3 SERDES Ports

The MPC8572 contains two high-speed SERDES ports. MPC8572DS uses these ports for 3 PCIExpress (x4 slot, x2 slot, and x2 ULI South bridge) and 4 SGMII channels to the optional SGMII slot.

All signals are connected using PCIExpress routing topology and spacing rules, and includes a AC coupling capacitor at the transmit pins.

SerDes signals not used for connections are connected to test points or pull-ups (as appropriate) and are otherwise unused. Signals are summarized in Table 7.

Category	Controller	Pin Count	Signal Names	Connections
SerDes 1	PEX 1	8	SD1_RX[0:3](p,n)	MPC8572, slot 2 (PCIe x4)
	PEX1	8	SD1_TX[0:3](p,n)	MPC8572, slot 2 (PCIe x4)
	PEX 2	4	SD1_RX[4:5](p,n)	MPC8572, slot 1 (PCIe x2)
	PEX 2	4	SD1_TX[4:5](p,n)	MPC8572, slot 1 (PCIe x2)
	PEX 3	4	SD1_RX[6:7](p,n)	MPC8572, ULI M1575 (PCIe x2)
	PEX 3	4	SD1_TX[6:7](p,n)	MPC8572, ULI M1575 (PCIe x2)
SerDes 2	SGMII 1	8	SD2_RX[0:3](p,n)	MPC8572, SGMII slot (SGMII x4)
	SGMII 1	8	SD2_TX[0:3](p,n)	MPC8572, SGMII slot (SGMII x4)

Table 7. SerDes Port Connections

6.1.3.1 SerDes 1: PCI Express x4 to Slot 2, x2 to Slot 1

The SerDes 1 block provides two PCI Express slots, each connected to a PCI Express x16 slot on the MPC8572DS motherboard. Each SerDes port supports only up to a x4 or x2 protocol width respectively, but an x16 connector is used to allow the use of standard PCI Express video cards (possibly at a reduced width). The primary test mechanism of the SerDes 1 port is expected to be a PCI Express x4 connection using standard graphics cards (ATI, NVidia) or PCI Express test boards (Catalyst). Figure 5 shows an overview.

Figure 5. PCI Express x4 and x2 Slot Connections Overview

Signals	are	summarized in	Table	8.
0				

Table 8	. PCI	Express	x4 and	x2	Slot	Connections
---------	-------	---------	--------	----	------	-------------

Pin Count	Signal Names	Connections
8	SD1_RX[0:3](p,n)	MPC8572 PCI Express Slot 2
8	SD1_TX[0:3](p,n)	MPC8572 PCI Express Slot 2
2	SD1_RX[4:5](p,n)	MPC8572 PCI Express Slot 1
2	SD1_TX[4:5](p,n)	MPC8572 PCI Express Slot 1
2	SD1_REFCLK(p,n)	MPC8572 ICS9FG108 Clock generator
2	SD1_PLL_TPA SD1_PLL_TPD	MPC8572 Test point
2	SD1_TXCLK(p,n)	MPC8572, not used, testpoints
2	SD1_IMP_CAL_TX SD1_IMP_CAL_RX	Connected to 100 and 200 Ohm calibration resistors.
1	AGND_SRDS	Tied directly to ground.

6.1.3.2 SerDes 1: PCI Express x2 to ULI South Bridge

The MPC8572 SerDes 1 block provides a PCI Express x2 that is connected to the ULI M1575 South Bridge device that provides many resources for running Linux. Because this is not a slot-based connection, a mid-point bus probe is provided for connecting a PCIe analyzer. Figure 6 shows an overview.

Figure 6. PCI Express x2 to South Bridge Overview

Connections are summarized in Table 9.

Table 9. PCI Express x2 to South Bridge Connections

Pin Count	Signal Names	Connections
4	SD1_RX[6:7](p,n)	MPC8572 ULI M1575
4	SD1_TX[6:7](p,n)	MPC8572 ULI M1575

6.1.3.3 SerDes 2: SGMII x4

The MPC8572 SerDes2 block also provides a x4 SGMII interface. On the MPC8572DS, these lanes are connected to a dedicated SGMII slot, and a special SGMII-GbE plug-in card is designed for test and evaluation. Figure 7 shows an overview.

MPC8572 Development System User's Guide, Rev. 1

Connections are summarized in Table 10.

Pin Count	Signal Names	Connections
2	SD2_REFCLK(p,n)	MPC8572 ICS841 Clock
8	SD2_RX[0:3](p,n)	MPC8572 SGMII Slot
8	SD2_TX[0:3](p,n)	MPC8572 SGMII Slot
2	SD2_PLL_TPA SD2_PLL_TPD	MPC8572 Test point
2	SD2_TXCLK(p,n)	unused, testpoints
2	SD2_IMP_CAL_TX SD2_IMP_CAL_RX	Connected to 100 and 200 Ohm calibration resistors.
1	AGND_SRDS2	Tied directly to ground.

Table 10. Serdes 2 x4 SGMII Port Connections

6.1.4 Local Bus

The eLBC (embedded Local Bus Controller) is a split architecture, a fast side for NoBl SRAM and slow side for flash and FPGA. For MPC8572DS, the local bus connects to various flash devices and the PIXIS internal register space.

MPC8572DS uses external address demultiplexers to generate the local bus address, rather than using the provided de multiplexed address. To keep overall routing and costs to a minimum, 16-bit devices are used.

Figure 8 shows an overview

Figure 8. Local Bus Overview

Local Bus connections are summarized in Table 11.

Table 11. Local Bus Chip Select Mapping

Flash Selection (cfg_lbmap)	NOR Flash	PromJet	NAND Flash	PIXIS	SRAM	CFG_FLASHBANK	Description
00	LCS0	LCS1	LCS[2,4:6]	LCS3	LCS7	0	Normal; boot from NOR flash
01	LCS1	LCS0	LCS[2,4:6]			0	Boot from PromJet (code injection)
10	LCS2	LCS1	LCS[0,4:6]			0	Normal; boot from NAND flash
11	LCS0	LCS1	LCS[2,4:6]			1	Swap flash halves; boot from NOR flash but with MSB of address toggled.

The "address toggle" feature mentioned in Table 11 is implemented as an XOR gate in-line with the most significant address of the flash, as shown in Figure 9.

Figure 9. Flash Address Toggle

When CFG_FLASHBANK is '0', A25 is not altered and so the flash behaves as normal. When CFG_FLASHBANK is '1' (which occurs when LB_MAP="00"), A25 is toggled such that data in the high half of the flash appears at the bottom, and vice-versa. Note that CFI flash programming algorithms do not use higher address bits, so such algorithms are not affected.

Local bus signals are summarized in Table 12.

Pin Count	Signal Names	Connections
32	LAD[0:31]	NORFlash: LAD[0:15] to D[15:0] NANDFlash: LAD[0:7] to D[7:0] PIXIS: LAD[0:7] to D[7:0]
8	LCS*[0:7]	See Table 11.
1	LWE[0]*_LFWE_LBS*[0]	NANDFlash: LFWE to WE* NORFlash: LWE0* to WE MRAM: LWE0* to WE*
3	LWE[1:3]*_LBS*[1:3]	unused
1	LBCTL	_
1	LALE	_
1	LGPL0/LFCLE	NANDFlash: LFCLE to CLE
1	LGPL1/LFALE	NANDFlash: LFCLE to ALE
1	LGPL2/LOE/LFRE	NANDFlash: LFRE to RD_B
1	LGPL3/LSDCAS	unused

Pin Count	Signal Names	Connections
1	LGPL4/LUPWAIT/LGTA	NANDFlash: LFCLE to R/B_B
1	LGPL5	unused
3	LCLK[0:2]	unused

6.1.5 Serial Ports

MPC8572DS muxes the two serial ports (UART0 and UART1) to a DB9 female connector located in the ATX I/O gasket area, and RTS/CTS flow control is supported on this connector. The user may select which serial port is connected to the DB9 via header J9. In normal operation, UART0 is selected (jumper un-installed on board).

Note that newer versions of the MPC8572DS assembly revision X5 (revision D PCB) or later do not mux the two serial ports but added a header (J100) to allow full utilization of UART1 via a custom cable. UART0 is always available on the DB9 connector and UART1 is always available at J100 with a custom cable. J9 is no longer able to mux the two ports. The custom cable is not provided, but may easily be fabricated if two serial ports are desired. For most applications and debug, one serial port is sufficient. Figure 10 shows construction details for this cable.

The UART programming model is a standard PC16550-compatible register set. Baud rate calculations for the divisor latch registers (DLL and DML) is typically done by reading the PIXIS SYSCLK register to determine the MPC8572 reference clock input frequency. The baud rate divisors can then be calculated using the formula described in the User's Manual.

Figure 10. Serial Port 2 Cable Details

6.1.6 Power

6.1.6.1 Power Delivery to the Core

The wholesale delivery of power to the VDD pins must be considered in the presence of the vias used for the BGA attachment. Simulation results show that with 1 oz. copper power planes in the presence of the documented BGA escape pattern, 6 A per quadrant may be used.

Figure 11. MPC8572 VDD_CORE Planar Current Delivery by Quadrant

6.1.6.2 Core Power Regulator

MPC8572DS uses the SemTech SC457 single-phase switching power controller. This device can produce at least 35A over the range of interest for the MPC8572, with additional margin above and below. The voltage encoding, called VID(6:0), is seven bits and encodes 12.5 mV steps.

VID(6:0)	VCORE Voltage	VID(6:0)	VCORE Voltage
0000000	1.5000	0011011	1.1625
000001	1.4875	0011100	1.1500
0000010	1.4750	0011101	1.1375
0000011	1.4625	0011110	1.1250
0000100	1.4500	0011111	1.1125

Table 13. SC458 VID(6:0) Encoding

MPC8572 Development System User's Guide, Rev. 1

N			

VID(6:0)	VCORE Voltage	VID(6:0)	VCORE Voltage
0000101	1.4375	010000	1.1100
0000110	1.4250	0100001	1.0875
0000111	1.4125	0100010	1.0750
0001000	1.4000	0100011	1.0625
0001001	1.3875	0100100	1.0500
0001010	1.3750	0100101	1.0375
0001011	1.3625	0100110	1.0250
0001100	1.3500	0100111	1.0125
0001101	1.3375	0101000	1.0000
0001110	1.3250	0101001	0.9875
0001111	1.3125	0101010	0.9750
0010000	1.3000	0101011	0.9625
0010001	1.2875	0101100	0.9500
0010010	1.2750	0101101	0.9375
0010011	1.2625	0101110	0.9250
0010100	1.2500	0101111	0.9125
0010101	1.2375	0110000	0.9000
0010110	1.2250	0110001	0.8875
0010111	1.2125	0110010	0.8750
0011000	1.2000	0110011	0.8625
0011001	1.1875	0110100	0.8500
0011010	1.1750	0110101	0.8375

Table 13. SC458 VID(6:0) Encoding (continued)

6.1.7 Interrupts

MPC8572DS contains numerous external interrupt connections. Secondly, whenever the PCI Express controller is in root complex mode and it receives an inbound INTx asserted or negated message transaction, it asserts or negates an equivalent internal INTx signal to the PIC.

The internal INTx signals from the PCI Express controller are logically combined with the interrupt request (IRQn) signals so that they share the same OpenPIC external interrupt controlled by the associated EIVPRn and EIDRn registers.

If PCI Express INTx signalling is used, then the PIC must be configured so that external interrupts are active-low (EIVPRn[P] = 0) and level-sensitive (EIVPRn[S] = 1), as the OpenPIC interrupt is now shared between multiple entities. If an interrupt occurs, the interrupt service routine must poll both the external

sources connected to the IRQ*n* input and the PCI Express INTx sources to determine from which path the external interrupt came.

Category	Pin Count	Signal Names	External Connections	Internally Mapped to OpenPIC
MCP	2	MCP0/1*	pullup (unused)	_
IRQ	12	IRQ0*	unused	PCI Express 1—INTA
		IRQ1*	PCI Slot 1—INTD PCI Slot 2—INTC	PCI Express 1—INTB
		IRQ2*	PCI Slot 1—INTA PCI Slot 2—INTD	PCI Express 1—INTC
		IRQ3*	PCI Slot 1—INTB PCI Slot 2—INTA	PCI Express 1—INTD
		IRQ4*	PCI Slot 1—INTC PCI Slot 2—INTB	PCI Express 2- INTA
		IRQ5*	unused	PCI Express 2- INTB
		IRQ6*	SGMII slot	PCI Express 2- INTC
		IRQ7*	SGMII slot	PCI Express 2- INTD
		IRQ8*	PIXIS FPGA	PCI Express 3- INTA
		IRQ9*	ULI M1575 Bridge	PCI Express 3- INTB
		IRQ10*	VSC8244 PHY INT*	PCI Express 3- INTC
		IRQ11*	unused	PCI Express 3- INTD
	1	IRQ_OUT*	unused. Can be routed back to IRQ0 or IRQ2 if resistors are populated.	_

Table	14	Interrupt	Connections
Table		menupt	Connections

Figure 12 shows a conceptual diagram of the MPC8572DS system interrupt scheme.

Figure 12. MPC8572DS Concept of System Interrupts

1

6.1.8 I2C

The MPC8572 has two separate I2C buses. The I2C bus connections are summarized in Table 15.

 Table 15. I2C Bus Connections

Category	Pin Count Signal Names Connections		Connections
I2C1	2	I2C1_SDA, I2C1_SCL	MPC8572, TPM ¹ , Current Monitor (MCP3021), ics9fg108, FPGA, Boot EEPROM
12C2	2	12C2_SDA, 12C2_SCL	MPC8572, ICS841, DIMM Sockets, 2 Board specific EEPROMs, PCI Express Slots (as SMBus), SGMII slot, ULI, SIO, PCI slots (as SMBus).

Note: TPM is no longer supported.

I2C/SMB bus device addresses are summarized in Table 16.

Bus	I2C Address	Device
1	0x55	Current Monitor (MCP3021),
1	52 write 52 read	Trusted Platform Module (TPM)
1	0x6E	I2C9FG108 (SERDES clock generator)
1	Not currently implemented.	Actel FPGA
1	0x50 or 0x51	4KiB EEPROM (reset initialization)
2	0x6E	ICS841
2	0x51	DIMM Channel 1 Socket
2	0x52	DIMM Channel 2 Socket
2	0x56	DINK ENV storage/general purpose 256x8 eeprom
2	0x57	SYSTEM ID EEPROM (write protected) 256x8 eeprom
2	SMBus	PCIexpress slots
2	SMBus	Legacy PCI slots
2	0x50	SGMII slot
2	0x5A	SIO LPC
2	(programmable)	ULI M1753 SMB interface

Table 16. I2C Bus Device Map

Note: These are "DINK"-style addresses, which ignore the LSB of the transmitted address (the read/write bit).

6.1.9 Temperature

The MPC8572 has two pins connected to a thermal body diode on the die, allowing direct temperature measurement. These pins are connected to the LPC47M192 SIO logic, which contains standard PC-compatible hardware monitoring logic, including a thermal measurement port. This device allows direct reading of the temperature of the die.

Thermal management signals are summarized in Table 17.

Table 17.	Thermal	Management	Connections

Category	Pin Count	Signal Names	Connections
Thermal	2	TEMP_ANODE, TEMP_CATHODE	MPC8572, LPC47M192

6.1.10 Mechanical Clearance

6.1.11 Other

The remaining MPC8572 signals are summarized in Table 18.

Category	Pin Count	Signal Names	Connections
Clock	4	SYSCLK/DDRCLK	ICS307 clock synthesizer
		RTC	ICS9F108->MPC94551 -> RTC pin
		CLK_OUT	Test point w/adjacent ground.
DMA	10	DMA1_DREQ[0:1]* DMA1_DACK[0:1]* DMA1_DDONE[0:1]* DMA2_DREQ[0]* DMA2_DREQ[2]* DMA2_DACK[0]* DMA2_DDONE[0]*	Test points.
STATUS	3	ASLEEP	To PIXIS for monitoring. Buffered LED monitor
		READY P1	Buffered LED monitor
		READY P2/TRIG_OUT	Debug P6880 Header Buffered LED monitor
System Control	4	HRESET	From PIXIS reset controller (hence from COP, Power Good, etc.)
		HRESET_REQ	To PIXIS, test point
		SRESET	From PIXIS
Debug	16	CKSTP_IN[0:1]*	COP Header, test point
		CKSTP_OUT[0:1]*	COP Header, test point
		TRIG_IN	Debug P6880 Header
		MSRCID[0:4]	Debug P6880 Header
		MDVAL	Debug P6880 Header
Test	4	TEST_SEL	Pull-ups

Table 18. Miscellaneous MPC8572 Connections

Category	Pin Count	Signal Names	Connections	
JTAG	JTAG 5 TCK		COP Header	
		TDI	COP Header	
		TDO	COP Header	
		TMS	COP Header	
		TRST	PIXIS	
General Purpose Out	8	GPINOUT[0:7]	test points and Put-downs	
Test	4	TEST_SEL	Pull-ups	

Table 18. Miscellaneous MPC8572 Connections	(continued)
---	-------------

6.2 South Bridge

MPC8572DS uses the ULI M1575"Super South Bridge" to provide access to standard Linux I/O devices, including:

- USB 2.0
- SATA 2 ("serial IDE")
- PATA ("classic IDE")
- PCI slots (non-PCIExpress graphics, customer-specific
- LPC flash (optional)
- Real-time clock/BBRAM

Figure 13 shows an overview of the ULI M1575

Figure 13. ULI M1575 Overview

There are several other features of the ULI M1575, such as a 10/100baseT ethernet MAC, that are not supported. By at large, the ULI M1575 supplies all the IO channels needed for full Linux, QNX or other OS desktop support.

MPC8572 Development System User's Guide, Rev. 1

The ULI M1575 is in a 628-Ball (31mmx31mm) BGA package, and requires several clock and power sources as detailed in Section 6.5, "System Power," and Section 6.6, "Clocks." It is pin-compatible with the ULI M1575 which may also be used.

6.2.1 ULI SATA Controller

The ULI M1575 supports a high-speed serial ATA ("SATA") connections. The SATA controller supports four ports at a 1.5 Gbit/s and 3.0 Gbit/s data rates, for SATA I and SATA II modes, respectively. AHCI features are also supported. Figure 14 shows the overall connections of the SATA bus.

Figure 14. SATA Architecture

6.2.2 ULI PATA Controller

The ULI M1575 supports four conventional parallel ATA ("PATA"), or classic IDE" connections. MPC8572DS supports only the primary channel due to board space/routing restriction. The interface supports 2-channel Ultra DMA-33/66/100/133 IDE bus master operations.

Figure 15 shows the overall connections of the PATA connections.

Figure 15. PATA Architecture

6.2.3 ULI USB Controller

The ULI M1575 contains one EHCI (USB 2.0) and three OHCI (USB 1.1) controllers. The controllers support all three speed definitions: HS (480Mbits/sec), FS (12Mbits/sec) and LS (1.5Mbits/sec). Though

eight USB ports are supported, MPC8572DS supports only four due to I/O and board space limitations. Figure 16 shows the overall connections of the USB ports.

Figure 16. USB Architecture

As shown, USB ports 0 and 1 connect to the stacked USB+RJ45 Ethernet connector, while ports 2 and 3 connect to a $2 \notin 5$ header. This header is compatible with the pinout of most ATX/microATX chassis front-panel USB cable attachments.

6.2.4 ULI LPC Interface

The ULI M1575 supports a standard LPC (Low Pin Count) flash interface and MPC8572DS uses this interface to access flash and to communicate with the SuperIO.

6.2.5 ULI Interrupts

The ULI M1575 collects interrupts from a variety of internal resources, and combines them with the external interrupts (for PCI, those listed in Table 19). Interrupts are generated as PCIExpress MSI interrupts, or legacy INTA:D# messages.

6.2.6 ULI Audio

The ULI AC97 audio controller logic is connected to an AC97 codec, and then to a standard combined AC97 audio line in/mic in/line out mini jack. Figure 17 shows the overall connections of the audio portion.

Figure 17. Audio Architecture

In addition to the standard ATX I/O audio connectors, there is a single "CD AUDIO" internal connector. This could be used for CD audio, though analog capture is mostly unused on modern systems. It can be useful for TV capture card audio outputs, however.

6.2.7 ULI Power/Power Control

Other than standby real-time clock/NVRAM battery power, all ULI power supplies are supplied by the ATX power supply or other sources derived from it. VCC_HOT_1.8V is constantly provided to power the APM/ACPI section.

6.2.8 ULI Other

The ULI M1575 has several useful features which are supported. These include:

- RTC
- NVRAM—256 bytes

6.2.9 ULI Unsupported Interfaces

The 10/100baseT ethernet, floppy and other interfaces are not supported.

6.3 SuperIO

MPC8572DS contains a SuperIO, the SMSC LPC47M192. The SIO is used to provide temperature monitoring for the processor as well as the PCB, and hardware monitoring (voltage, fan speed, etc.). The SIO also provides PS/2-type keyboard and mouse interfacing for legacy software, and numerous GPIO pins to control miscellaneous features.

Table 19 summarizes the SIO connections.

Feature	Pins		Definition	Notes
Voltage Monitoring	12_IN_VID4		VCC_12V_BULK	_
	5V_IN		VCC_5	—
	3.3V_IN		VCC_3.3	—
	2.5V_IN		VCC_DDRA_IO	—
	1.8V_IN		VCC_1.8	—
	1.5V_IN	VC	C_XVDD (SERDES)	—
	Vccp_IN		VCC_HOT_3.3	—
Temperature Monitoring	D0n, D0p	MPC8572 Thermal Diode		—
	D1n, D1p		Tied to ground	—
Thermal Alert	—			—
Fan Tachometer	—		—	—
PS/2	KCLK, KDAT	D	IN6 stack (bottom)	—
	MCLK, MDAT		DIN6 stack (top)	—
GPIOs	GP14	IN	SGMII_PRESENT*	SGMII card occupied if low.
	GP15	IN	S1_PRSNT*	Slot 1 occupied if low.
	GP16	IN	S2_PRSNT*	Slot 2 occupied if low.
	LED_GP60	OUT	SIO_LED	Direct drive of an LED.

Table 19. SIO Support Table

6.4 System Control Logic

MPC8572DS contains a FPGA, the "Pixis", which implements the following functions:

- Reset sequencing/timing combined with COP/JTAG connections.
- Map/re-map MPC8572 local bus chip selects to flash, compact flash, etc.
- Provide internal registers to monitor and control:
 - Processor VCORE setting.
 - Device Reset
 - System bus speed monitoring/selection
- Miscellaneous system logic
 - COP reset merging
 - CF+ Sideband signals
 - DMA trigger/monitor regs.

The FPGA is powered from standby power supplies and an independent clock. This ameliorates issues with IO cells transition, and possibly accidentally (mis)controlling, the rest of the board during power up of the FPGA. It does, however, raise a few different side-effects:

- IO and output cells must insure they do not drive any unpowered devices.
- there are two asynchronous clock domains; signals which cross this barrier must be metastable-hardened (or have no relevant AC timing, such as the case of reset signals, etc.)

The PIXIS is implemented in an Actel APA150 in a 256-pad micro-BGA. Figure 18 shows the overall PIXIS architecture.

Figure 18. PIXIS Overview

The principal portions of PIXIS are as follows:

СОР	Handles merging COP header resets with on-board resets in a transparent manner.
RESETSEQ	Collects various reset/power-good signals and starts the global reset sequencer.
REGRESETS	Drives resets from the sequencer, from register-based software control, or from VELA.
REGFILE	A dual-ported register file containing several sorts of registers.
LOCALBUS	Interface between processor and REGFILE
CONFIG	Monitors and/or sets selected configuration signals
PCI TARGET	Target-only interface between remote PCI devices and the REGFILE.
VELA	VELA is a simple machine to monitor requested changes in board configuration and when detected, perform a power-on-reset / re-configuration of the target system.

6.4.1 Subsections

6.4.1.1 COP

Handles merging COP header resets with on-board resets in a transparent manner. It is critical that the COP HRST* input resets the entire system **EXCEPT** for the COP JTAG controller (i.e. TRST* must not be asserted). With COP not attached, it is critical that reset **does** assert TRST*. The COP core manages these modal operation.

6.4.1.2 RESETSEQ

Collects various reset/power-good signals and starts the global reset sequencer.

Figure 19 shows the overall reset process flow (vastly simplified).

Figure 19. PIXIS Reset Overview

MPC8572 Development System User's Guide, Rev. 1

Note that ASLEEP indicates the processors(s) have exited the reset state. It does not cause a reset, as the processor can sleep for any number of reasons after hard reset has completed.

Note also that during power-down ALL I/O and output drivers must be tri-stated. After power up, drivers MAY be driven. Normal operation and/or use of the VELA engine may cause some I/Os to be tri-stated.

6.4.1.3 REGRESETS

Copies reset signals from the sequencer, but also allows register-based software to individually asserted reset tot the local bus, memory, and/or compact flash interfaces.

6.4.1.4 REGFILE

A dual-ported register file containing several sorts of registers.

Note that REGFILE must be able to accept (or arbitrate for) concurrent writes to the same register, though this is not a statistically likely occurrence.

6.4.1.5 LOCALBUS

Interface between processor and REGFILE (and indirect access to LEGACYIO and CFIO. Since access to the internal registers may be blocked, asynchronous (not ready) signalling is used.

6.4.1.6 CONFIG

Monitors and/or sets selected configuration signals.

In some instances, CONFIG maps switch settings into direct configuration outputs, while in others (such as SYSCLK) it maps a 3-position switch into a 16-bit register initialization pattern, which is subsequently used to initialize the clock generator.

6.4.1.7 PCI TARGET

Target-only interface between remote PCI devices (generally Data Blizzard) and the REGFILE.

The PCI vendor ID is 0x1957 (Freescale) and the device ID is 0x3002.

6.4.1.8 VELA

VELA is a simple micro sequencer used to monitor sequence in requested changes in board configuration upon a signal (generally a register write from PCI). When detected, bits in a register allow performing a power-off/power-on cycle and/or re-configuration of the target system.

- 1. If PX_VCTL[GO] = '1' then STEP 2 else STEP 1
- 2. Wait 1 usWait for LB/PCI to quiesce.
- 3. Assert HRESET
- 4. Wait 200 us
- 5. If PX_VCFGEN0[VID] = '1' then STEP 6 else STEP 8Change the voltage?

- 6. Drive PX_VCORE0 => VID(6:0) pins.PS_VCORE_PG drops
- 7. Wait 1 usWait for PS_VCORE_PG to be set
- 8. If PX_VCFGEN0[CLK] = '1' then STEP 9 else STEP 11Change SYSCLK and/or DDRCLK?
- 9. Drive PX_VCLKH+L => SYSCLK_S+R+V pins
- 10. Wait 200 usWait for SYSCLK
- 11. If PX_VCFGEN0[MPLL] = '1' then STEP 12 else STEP 13Change MPX PLL?
- 12. Drive PX_VSPEED1[MPXPLL] => MPXPLL pins
- 13. If PX_VCFGEN0[CPLL] = '1' then STEP 14 else STEP 15Change Core PLL?
- 14. Drive PX_VSPEED0[COREPLL] => COREPLL pins
- 15. If PX_VCFGEN0[REFCLK] = '1' then STEP 16 else STEP 18Change RefClk?
- 16. Drive PX_VSPEED0[REFCLKSEL] => REFCLKSEL pins
- 17. Wait 200 usWait for SYSCLK
- 18. If PX_VCFGEN1[BOOTLOC] = '1' then STEP 19 else STEP 20Change BootLoc?
- 19. Drive PX_BOOT[BOOTLOC] => BOOTLOC pins
- 20. If PX_VCFGEN1[BOOTSEQ] = '1' then STEP 21 else STEP 22Change BootSeq?
- 21. Drive PX_BOOT[BOOTSEQ] => BOOTSEQ pins
- 22. If PX_VCFGEN1[FLASH] = '1' then STEP 23 else STEP 25Change FlashMap/FlashBank?
- 23. Drive PX_BOOT[FMAP] => FLASHMAP pin
- 24. Drive PX_BOOT[FBANK] => FLASHBANK pin
- 25. If PX_VCFGEN1[HOST] = '1' then STEP 26 else STEP 27Change Host/Agent mode?
- 26. Drive PX_VSPEED1[HOST] => HOSTMODE pin
- 27. If PX_VCFGEN1[PIXIS] = '1' then STEP 28 else STEP 29Change Host/Agent mode?
- 28. Drive PX_VSPEED1[PIXIS] => PIXIS pin
- 29. Release HRESET
- 30. If PX_VCTL[GO] = '1' then STEP 30 else STEP 1Wait for sync. release

6.4.2 Power

Power for PIXIS is derived from the VCC_HOT_3.3 and VCC_HOT_2.5V rails.

6.4.3 Register Summary

PIXIS contains several registers as detailed in Table 30; for further details, see Section 9.2, "PIXIS Registers."

6.5 System Power

The 12 V, 5 V, and 3.3 V power requirements are met by the attached ATX-12V compatible power supply unit (PSU). 5 V and 3.3 V is connected to individual power planes in the MPC8572DS PCB stackup. The 12V power from the standard ATX header treated as separate from the ATX-12-V power, which supplies

a large amount of current and is referred to as "VCC_12V_BULK". The latter is used solely for the VCORE power supply rail, while the former is used for miscellaneous purposes such as fan power and PCI slots.

Note that to support PIXIS standby operation and to support video cards or other high-power-dissipation cards in the PCIExpress slot, the PSU should support the following minimum specification:

- minimum 450 W overall
- supports one PCIE 12 V connector
- PCIE 12 V support a minimum of 150 W
- minimum 5 V 2 A standby current

All other power sources are derived from the ATX PSU. Figure 20 shows the principal power connections.

Figure 20. MPC8572DS Power Architecture

Table 20 summarizes these power requirements.

Table 20.	. MPC8572DS	Power	Requirements
-----------	-------------	-------	--------------

Power Rails		Destination					
Parent	Output Capacity	Sub-Power	Output Capacity	Device	I _{MAX,} mA	Total Load	Notes
STANDBY POWER	L					I	
+5V_HOT 10	2 A	VCC_3.3V_HO	HO 3 A 9.9 W	PIXIS IO	450 mA	2972 mA 9.8 W	_
	10 VV	I 3.3 V ± 5%		PEX Slot 1	375 mA		Spec
				PEX Slot 2	375 mA		limit; very unlikely in
				PCI Slot 1	375 mA		99.9% of
				PCI Slot 2	375 mA		64363.
				33 MHz Osc.	75 mA		_
				Actel Program Header	50 mA		_
				HOT 2.5V supply	1032 mA		80% conv. efficiency
				HOT 1.8V supply	240 mA		80% conv. efficiency
					Maximum:	2972 mA 9.8 W	—
VCC_3.3V_HOT	3 A	VCC_2.5V_HO T 2.5 V ± 5%	1 A 2.5 W	PIXIS VCORE	850 mA	860 mA 2.2 W	_
	9.9 W			PIXIS PLL	10 mA		_
				Actel Program Header	mA		Part of VCORE
		VCC_1.8V_HO T 1.8 V ± 5%	1 A 1.8 W	ULI PM/ACPI	200 mA	200 mA 0.4 W	
					Maximum:	1272 mA 4.2 W	80% conv. efficiency
FULL POWER							
+12 V	13 A 156 W	VCC_12 12 V ± 5%	13 A 156 W	FAN Power 1, 2	6 A	13.5 A 162 W	_
				PEX Slots (2x)	6.5 A		—
				PCI Slots (2x)	1 A		_
					Maximum:	13.5 A 162 W	—
+12V_BULK	17 A 204 W	VDD_CORE 1.0 V	35 A 35 W	SC457 FETs	30 A 30 W	35 A	Assumes 85% eff.

Power Rails		Destination					
Parent	Output Capacity	Sub-Power	Output Capacity	Device	I _{MAX,} mA	Total Load	Notes
					Maximum:	13 A 13 W	—
–12 V	A W	VCC_12N -12V ± 5%	A W	PCI Slots (2x)	200 mA	200 mA 2.4 W	—
					Maximum:	13.5 A 162 W	_
+5 V 50 260	52 A	52 A VCC_5 0 W 5V ± 5%	52 A 260 W	SC457 Controller	15 mA	38.3 A 192 W	—
	260 W			TPS54310 SPS (3X)	3.3 A		85% eff.
				74CBTD16211 (2x)	5 mA		—
				PCI Slot (2x)	10 A		—
				MIC2077-2BM	2.1 A	-	_
				TPS51116 (2x)	7.4 A		
				VDD_DDRx_IO FETs (2x)	8.2 A		_
				PS/2 (2)	1 A		_
					Maximum:	38.3 A 192 W	—

Table 20. MPC8572DS Power Requirements (continued)

Power Rails		Destination						
Parent	Output Capacity	Sub-Power	Output Capacity	Device	I _{MAX,} mA	Total Load	Notes	
+3.3 V	28A	VCC_3.3	28A	ICS307	20 mA	17.1 A	_	
	92 W	3.3 V ± 5%	92 W	TPS54910 SPS	2.5 A	56 W	85% eff.	
				MPC94551 (2x)	78 mA			
				ICS9FG108	250 mA		_	
				74LVC16244 (2x)	100 mA		incl. drivers	
				MPC8572D OVDD	1 A		est.	
				VSC8244 VCC3.3V	397 mA			
				VSC8244 VMAC	152 mA		_	
				74ALVCH32973 (2x)	100 mA		incl. drivers	
				Flash: AM29LV641MH	60 mA		_	
				EmuTech PromJet	300 mA		optional	
				M1575 PCI	72 mA			
				M1575 SATA	126 mA		_	
				M1575 USB	23 mA			
				M1575 Other	5 mA			
				ALC650 PWR	88 mA			
				SGMII Slot	ЗА			
				PEX Slot (2x)	6 A			
				PCI Slots (2x)	7.6 A		_	
				SIO: LPC47M192	20 mA		_	
				Flash: SST49LF016C	60 mA		_	
				LEDs (20x)	400 mA		_	
					Maximum:	20.1 A 66.3 W		
	—	VCC_DDRx_IO	10 A	MPC8572 DDR	—	—		
		—		DIMM IO	—		_	
	—	—	—	DIMM Power	_	_	DIMM-de pendant	
_	_	VTTx (2x)	3 A	Termination Array		_		
_	_	VCC_1.8V		ULI CORE	550	_	1	

Table 20. MPC8572DS Power Requirements (continued)

Architecture

Power Rails		Destination					
Parent	Output Capacity	Sub-Power	Output Capacity	Device	I _{MAX,} mA	Total Load	Notes
_	_	_	_	ULI PEX	487	—	
_	_	_	_	ULI SATA	176	—	
_	_	_	_	MPC8572 AVDD	100 mA	—	over est.
_	_	VCC_SERDES	_	MPC8572 SVDD	700 mA	—	
_	_	_	_	MPC8572 XVDD	700 mA	—	
_	_	VCC_1.2 V	_	VSC8244 1.2	957 mA	—	
_	—		—	ULI VDD_CPU	0.5 mA	—	—

Table 20. MPC8572DS Power Requirements (continued)

Table 21 summarizes these power sequencing requirements.

Power Rail		Sequence					Notos
Parent	Child	0	1	2	3	4	10163
+5V_HOT		®		—	—		Essentially simultaneous.
	VCC_3.3V_HOT	®	_	_	_		
	VCC_2.5V_HOT	®		—	—		
	VCC_1.8V_HOT	®		—	—		
+12 V			®	—	—		No sequencing.
+12V _BULK		_	®	—	—		No sequencing.
	VCORE	_	_	—	®	_	Nominal 1.0V
	VCC_XVDD	—		—	®		Filtered Vcore & separated plane.
	VCC_SVDD	—		—	®		Filtered Vcore & separated plane.
+5 V		_	®	—	—		No sequencing.
	VDD_1.2		_	®	—		—
	VCC_SERDES	_	_	®	—		—
	VCC_1.8	_	_	®	—		—
	VCC_DDRA_IO	_	_	—	—	®	—
	VTT_A	_	_	—	—	®	—
+3.3 V		—	®	—	—	—	No sequencing.
	OVDD	—	®	—	—	—	OVDD=VCC_3.3
	VDD_ENET_IO	—	R	—	—		2.5V generated via TPS72525 device

6.6 Clocks

Table 22 summarizes the clock requirements of MPC8572DS. Note that completely independent and isolated clocks, such as those of the DDR interfaces, are not discussed here.

Clock	Destination	Clock Frequency	Specs	Туре	Notes
SYSCLK/ DDRCLK	MPC8572 SYSCLK/DDRCLK	33–200 MHz	t _R <= 1ns t _F <= 1ns <= 60% duty <= 150 ps jitter	LVTTL	40.00 nominal closed loop jitter bandwidth should be <500 kHz at -20 dB.
REFCLK	MPC8572 SD1_REFCLK(p,n)	100.00 MHz	jitter: 80-100 ps	LVDS	PEX: 100.00 MHz
ICS9F108	PEXSLOT1 REFCLK(p,n)		skew: 330 ps		roo ps jiller
	PEXSLOT2 REFCLK(p,n)				
	MIDBUS TAPS 3 & 4				
REFCLK	MPC8572 SD2_REFCLK(p,n)	100.00 MHz	jitter: 80-100 ps skew: 330 ps	LVDS	PEX: 100.00 MHz
ICS841	ULI PE_REFCLK(p,n)	125.00 MHZ			100 ps jitter
	MIDBUS TAPS 1& 2				
GTXCLK	MPC8572 EC_GTX_CLK125(0:1)	125.000 MHz	>47-53% duty	LVTTL	_
	VSC8244 XTAL				_
PCICLK	M1575	33.333 MHz	>47-53% duty	LVTTL	—
BCLK	M1575 CLK14M	14.318 MHz	none	LVTTL	Traditional ISA clock
	SIO CLOCKI				reference.
	MPC8572 RTCCLK				
	ALC650 AUD_CLK				
USBCLK	M1575 USBCLK	48.000 MHz	_	LVTTL	—
SATACLK	M1575 X25M(1:2)	25.000 MHz	—	LVTTL	—
CLKCLK	M1575 X32KI	32.768 kHz	—	analog	—

Table 22. MPC8572DS Clock Requirements

Architecture

Figure 21 shows the principal clock connections (DDR and miscellaneous clocks are not shown).

Figure 21. MPC8572DS Clock Architecture

6.6.1 SYSCLK

Much of the timing within the MPC8572 is derived from the SYSCLK pin. On MPC8572DS this pin is controlled by the IDT ICS307-02 frequency synthesizer. This device is serially configured by PIXIS as part of the reset/power-up sequence. It is possible to set the SYSCLK speed to 1-MHz increments using remote access; however, in most circumstances, PIXIS uses a value determined from three switches located on the motherboard.

Table 23 summarizes the switch-selectable clock generation possibilities, which are based upon a 33.333 MHz clock input. The "Control Word" field is the data sent to the ICS307 upon startup or when commanded to by the VELA controller. This value can be calculated from the ICS307 data sheet examples, or using the convenient on-line calculator IDT provides. In the cases below, whenever different values are calculated for frequency accuracy vs. lowest-jitter, the lowest-jitter parameter was chosen.

cfg_sysclk(0:2)	Selected SYSCLK	Actual SYSCLK	Error	ICS Control Word	Notes
000	33.333 MHz	33.3330 MHz	0 ppm	0x200381	—
001	40.000 MHz	39.9996 MHz	10 ppm	0x200501	—

Table 2	23.	ICS307	SYSCLK	Frequency	v Options
					,

cfg_sysclk(0:2)	Selected SYSCLK	Actual SYSCLK	Error	ICS Control Word	Notes
010	50.000 MHz	49.9995 MHz	10 ppm	0x220501	_
011	66.666 MHz	66.666 MHz	0 ppm	0x270501	1
100	83.333 MHz	83.3325 MHz	6 ppm	0x230381	_
101	100.000 MHz	99.999 MHz	10 ppm	0x230501	_
110	133.333 MHz	133.332 MHz	7.5 ppm	0x210201	_
111	166.666 MHz	166.665 MHz	6 ppm	0x210381	_

Table 23. ICS307 SYSCLK Frequency Options (continued)

Notes:

1. Default configuration.

6.6.2 DDRCLK

Some of the timing within the MPC8572 is derived from the DDRCLK pin. On MPC8572DS this pin is controlled by the IDT ICS307-02 frequency synthesizer. This device is serially configured by PIXIS as part of the reset/power-up sequence. It is possible to set the DDRCLK speed to 1-MHz increments using remote access; however, in most circumstances, PIXIS uses a value determined from three switches located on the motherboard.

Table 24 summarizes the switch-selectable clock generation possibilities, which are based upon a 33.333 MHz clock input. The "Control Word" field is the data sent to the ICS307 upon startup or when commanded to by the VELA controller. This value can be calculated from the ICS307 data sheet examples, or using the convenient on-line calculator IDT provides. In the cases below, whenever different values are calculated for frequency accuracy vs. lowest-jitter, the lowest-jitter parameter was chosen.

cfg_ddrclk(0:2)	Selected DDRCLK	Actual DDRCLK	Error	ICS Control Word	Notes
000	33.333 MHz	33.3330 MHz	0 ppm	0x200381	—
0 0 1	40.000 MHz	39.9996 MHz	10 ppm	0x200501	—
010	50.000 MHz	49.9995 MHz	10 ppm	0x220501	—
011	66.666 MHz	66.666 MHz	0 ppm	0x270501	1
100	83.333 MHz	83.3325 MHz	6 ppm	0x230381	—
101	100.000 MHz	99.999 MHz	10 ppm	0x230501	—
110	133.333 MHz	133.332 MHz	7.5 ppm	0x210201	—
111	166.666 MHz	166.665 MHz	6 ppm	0x210381	—

Table 24.	ICS307	DDRCLK	Frequency	Options
-----------	--------	--------	-----------	---------

Notes:

1. Default configuration.

6.6.3 REFCLK

REFCLK is the clock used by PCIExpress. It is a differential clock and is routed to each PEX target. These frequencies are generated by the ICS9FG108.

Switches or I2C accesses are used to set the REFCLK frequency.

Table 25 summarizes the clock frequencies which the ICS9FG108 can generate.

REFCLK_SEL(2:0)	REFCLK	Notes
000	100.000 MHz	1
001	125.000 MHz	—
010	133.333 MHz	—
011	166.000 MHz	—
100	200.000 MHz	—
101	266.000 MHz	—
110	333.000 MHz	—
111	400.000 MHz	—

Table 25. ICS9FG108 Frequency Options

Notes:

1. Nominal default PEX frequency.

6.7 System Reset

Figure 22 shows the reset connections of MPC8572DS.

Figure 22. MPC8572DS Reset Architecture

All reset operations are conducted within various portions of the PIXIS; refer to Section 6.4.1.2, "RESETSEQ," for details. Due to the many reset resources and outputs, reset generation is a little more complicated than normal. Table 26 summarizes reset terms.

Term	Description	Notes
INPUT TERMS	1	
HOT_RST*	Low until VCC_HOT_3.3 is stable, high thereafter.	Only toggles when power supply is removed/unplugged.
PWRGD	Low until ATX power supply is stable, or while system reset is asserted (motherboard switch or chassis-cabled switch)	Asserted after PWRON* asserted by ULI, or by manual user intervention.
PWRGD_xxx	Low until other supplies are stable, during power-sequencing controls.	_
COP_HRST*	Asserted under COP control.	Must never cause CPU_TRST* to be asserted.
COP_TRST*	Asserted under COP control. Drives CPU_TRST*.	_
SB_INIT*/SB_CPURST*	Asserted by ULI for s/w initiated reset.	(seem to be the same)
DATABLIZZARD_INTD#	Asserted by DataBlizzard to initiate system recovery.	Can be masked in s/w.
VELA "GO"	Asserted by s/w (local or remote). Triggers configuration-controlled startup.	Most of the PIXIS registers will retain their values.
RESET_REQ*	Asserted by CPU(s) to start self-reset.	Short duration needs stretching.
OUTPUT TERMS		
CPU_HRST*	Restarts MPC8572 cores.	Cannot directly cause CPU_TRST*. CPU_TRST* is pulsed by either PIXIS reset controller or COP TRST.
CPU_TRST*	Resets MPC8572 JTAG controller.	Must be asserted by others when COP is not attached. Must not be asserted by others when COP is attached.
PHY_RST*	Soft-reset of PHY.	_
LB_RST*	Resets flash and compact-flash devices.	_
MEM_RST*	Resets DIMMs on all controllers.	_
GEN_RST*	Hard-reset of PHY and other devices.	_
CFG_DRV*	Asserted one clock beyond CPU_HRST* to insure adequate configuration sampling.	_

Table 26. Reset Terms

Some of the important guidelines for creating the reset controller are as follows:

- PWRGD from the ATX power supply is also the general system reset
- COP_TRST* must be asserted during normal, non-COP startup.
- COP_TRST* must not be asserted if COP asserts COP_HRST*

Architecture

- COP_HRST* must reset the target system as well as the processor HRESET* inputs.
- HRESET_REQ* is only 2–3 clock cycles and requires pulse stretching.
- DATABLIZZARD_INTD# must serve as a reset by default to insure catastrophic recovery is possible.
- For shmoo/test tracking, one register (PX_AUX) must be reset by all reset sources EXCEPT COP_HRST and WDOG_RST.

Figure 22 shows the reset connections of MPC8572DS.

Figure 23. MPC8572DS Reset Hierarchy

From Figure 22, the following can be inferred:

- PIXIS registers are reset by every reset input except PWRGD_xxx (which are slowly sequenced) and GO (which is an output controlled by VELA, in turn controlled by PIXIS registers).
- Most PIXIS registers are reset by either RRST or XRST, except one, PX_AUX, which is reset ONLY by RRST (it is unaffected by COP_HRST and wdog_rst).
- If the watchdog timer expires, all internal settings (including VELA-controlled configuration) are reset.
- If the COP COP_HRST signal is asserted, all internal settings (including VELA-controlled configuration) are reset.
- Transitions on the subordinate power supplies (VDD_PLAT, etc.) do NOT cause registers to be reset.

- The reset sequencer is triggered upon "GO", "COP_HRESET", or "RST". The sequencer performs identically, except that when triggered by COP_HRST" it does NOT assert CPU_TRST; in all other cases, it does.
- The reset sequencer controls CPU_HRST; it must run for the COP_HRST signal to be passed through.
- Conversely, CPU_TRST is wire-OR'ed with the sequencer, so COP has control of CPU_TRST directly (essentially).

There are three categories of configuration options, as follows:

- those options which require software-configuration to support evaluation,
- those options which are expected to be easily and often changed by the end-user/developer, and
- those which should rarely or never be changed.

The first two options are implemented with "DIP switches" and/or software-settable options, while the latter set are usually implemented by resistors which must be added or removed by competent technicians.

For those signals configured using switches, the configuration logic is as shown in Figure 24.

Figure 24. Configuration Logic

7.1 Required Hardware Configuration

Table 27 summarizes the configuration options supported by MPC8572DS.

Table 27. Configuration Options

Option	Select Method	Assert Method	Width	Controls	Description	Notes
SWITCHAB1E CON	FIGURATION	J		•		
Extra Switches	SW1[1:2]	—	2	—	Not Used	—
REFCLK (SERDES) Speed	SW1[3:5] or I2C	CFGDR V	3	CFG_REFCLKSEL (2:0)	CFG_REFCLKSEL see Table 25	—
REFCLK (Spread enable)	SW1[6]	CFGDR V	1	CFG_REFCLK_SP READ	CFG_REFCLK_SPREAD 0 Spread spectrum disabled 1 Spread spectrum clocking enabled	—
Configuration via Local Bus AD(0:1)	SW1[7:8]	CFGDR V	2	CFG_LADOPT(0:1)	General-Purpose POR Configuration via Local Bus AD(0:1)	3
Processor VID Encoding	SW2[1:7] or FPGA registers	static	7	SC457 VID(6:0)	VID(6:0) 0101000 1.0 V Nominal setting	_
Extra Switches	SW2[8]	_	1	—	Not Used	—
System (platform) Clock PLL ratio	SW3[1:3] or FPGA registers	CFGDR V	2	LA[29:31]	cfg_sys_pll[0:2] 000 4 : 1 001 5 : 1 010 6 : 1 011 8 : 1 100 10 : 1 101 12 : 1 110 ReservedPLL Bypass—Functional Mode 111 ReservedPLL Bypass—Burn-In Mode	_
Extra Switches	SW3[4]	_	1	—	Not Used	_

Option	Select Method	Assert Method	Width	Controls	Description	Notes
Boot ROM Location	SW3[5:8] or FPGA registers	CFGDR V	4	TSEC1_TXD[6:4],T SEC1_TX_ER	cfg rom loc[0:3]0000 PCI Express 10001 PCI Express 20010 Serial RapidIO0011 Reserved Hyper Transport0100 DDR controller 10101 DDR controller 20110 DDR Interleaved0111 PCI Express 31000 Local bus FCM8-bit NAND Flash smallpage1001 ReservedLocal bus FCM16-bit NAND Flash smallpage1011 ReservedLocal bus FCM8-bit NAND Flash largepage1011 ReservedLocal bus FCM16-bit NAND Flash largepage1011 ReservedLocal bus FCM16-bit NAND Flash largepage1111 ReservedLocal bus FCM16-bit NAND Flash largepage1100 ReservedLocal bus GPCM—8-bit ROM1111 Local bus GPCM—32-bit ROM	
SGMII 1 Configuration	SW4[1] or FPGA registers	CFGDR V	1	LA[28]	0 eTSEC1 Ethernet interface operates in SGMII mode and uses SGMII SerDes lane 0 pins. 1 eTSEC1 Ethernet interface operates in standard parallel interface mode and uses the TSEC1_* pins (default).	_
SGMII 2 Configuration	SW4[2] or FPGA registers	CFGDR V	1	LGPL1/LFALE	 0 eTSEC2 Ethernet interface operates in SGMII mode and uses SGMII SerDes lane 1 pins. 1 eTSEC2 Ethernet interface operates in standard parallel interface mode and uses the TSEC2_* pins (default). 	_
SGMII 3 Configuration	SW4[3] or FPGA registers	CFGDR V	1	TSEC3_TXD[3]	 0 eTSEC3 Ethernet interface operates in SGMII mode and uses SGMII SerDes lane 2 pins. 1 eTSEC3 Ethernet interface operates in standard parallel interface mode and uses the TSEC3_* pins provided the FEC is not enabled. If the FEC is enabled, eTSEC3 is powered down (default). 	

Table 27. Configuration Options (continued)

Table 27.	. Configuration	Options	(continued)
-----------	-----------------	---------	-------------

Option	Select Method	Assert Method	Width	Controls	Description	Notes
SGMII 4 Configuration	SW4[4] or FPGA registers	CFGDR V	1	UART_SOUT[0]	 0 eTSEC4 Ethernet interface operates in SGMII mode and uses SGMII SerDes lane 3 pins. 1 eTSEC4 Ethernet interfaces operates in standard parallel interface mode and uses the TSEC4_* pins provided the FEC is not enabled. If the FEC is enabled, eTSEC4 is powered down (default). 	_
Debug to ECC Configuration	SW4[5]	CFGDR V	1	DMA2_DDONE[0]	Debug information is driven on the ECC pins instead of normal ECC I/O. ECC signals from memory devices must be disconnected. 1 Debug information is not driven on ECC pins. ECC pins function in their normal mode (default).	_
Serial EEPROM Address select	SW4[6]	static	1	CFG_SERROM_A DDR	0 Address = 0x50 1 Address = 0x51 .	_
Memory Debug Configuration	SW4[7,8]	CFGDR V	2	DMA2_DACK[0], DMA1_DDONE[0]	 cfg_mem_debug[0:1] 00 Debug information from the local bus controller (LBC) is driven on the MSRCID and MDVAL signals 01 Reserved 10 Debug information from the DDR SDRAM controller 1 is driven on the MSRCID and MDVAL signals. 11 Debug information from the DDR SDRAM controller 2 is driven on the MSRCID and MDVAL signals (default). 	
Host/Agent Configuration	SW5[1:3] or FPGA registers	CFGDR V	3	LWE[1:3]	 cfg_host_agt[0:2] 000 an agent of a HyperTransport hoston every interface. 001 an endpoint of a host on PCI Express interface 1. 010 an endpoint of a host on PCI Express interface 2 / Serial RapidIO. 011 an endpoint of a host on PCI Express interface 3. 100 an endpoint/agent of hosts on PCI Express interface 1 and PCI Express interface 2 / Serial RapidIO. 101 an endpoint of hosts on PCI Express interface 1 and PCI Express interface 2 / Serial RapidIO. 101 an endpoint of hosts on PCI Express interface 1 and PCI Express interface 3. 110 an endpoint/agent of hosts on PCI Express interface 2 / Serial RapidIO and PCI Express interface 3. 111 the host processor/root complex for all interfaces. < 	

Option	Select Method	Assert Method	Width	Controls	Description	Notes
Boot Sequencer Configuration	SW5[4:5] or FPGA registers	CFGDR V	2	LGPL3, LGPL5	 cfg_boot_seq[0:1] 00 Reserved 01 Normal I2C addressing mode is used. Boot sequencer is enabled and loads configuration information from a ROM on the I2C interface. A valid ROM must be present. 10 Extended I2C addressing mode is used. Boot sequencer is enabled and loads configuration information from a ROM on the I2C1 interface. A valid ROM must be present. 11 Boot sequencer is disabled. No I2C ROM is accessed (default). 	_
DDR clock pll ratio	SW5[6:8] or FPGA registers	CFGDR V	3	TSEC_1588_CLK_ OUT, TSEC_1588_PULS E_OUT1, TSEC_1588_PULS E_OUT2	cfg_ddr_pll[0:2] 000 Reserved3 : 1 001 Reserved4 : 1 010 6 : 1 011 8 : 1 100 10 : 1 <<	
SYSCLK Speed	SW6[1:3] or FPGA registers	mapped and driven	3->24 bit serial load	PIXIS, then ICS307	CFG_SYSCLK(0:2)Table 23 mapped to SYSCLK 000 :: SYSCLK= 33MHz 001 :: SYSCLK= 40MHz 010 :: SYSCLK= 50MHz 011 :: SYSCLK= 66MHz 100 :: SYSCLK= 83MHz 101 :: SYSCLK=100MHz 110 :: SYSCLK=134MHz 111 :: SYSCLK=166MHz	1
DDRCLK Speed	SW6[4:6] or FPGA registers	mapped and driven	3->24 -bit serial load	PIXIS, then ICS307	CFG_DDRCLK(0:2)Table 24 mapped to SYSCLK 000 :: DDRCLK= 33MHz 001 :: DDRCLK= 40MHz 010 :: DDRCLK= 50MHz 011 :: DDRCLK= 66MHz 100 :: DDRCLK= 83MHz 101 :: DDRCLK=100MHz 110 :: DDRCLK=134MHz	1
Extra Switches	SW6[7:8]	—	2	—	Not Used	—

Table 27. Configuration Options (continued)

Option	Select Method	Assert Method	Width	Controls	Description	Notes
ULI Options	SW7[1]	static	1	ACZ_SYNC	ACZ_SYNC 0 24 MHz on TP49. 1 48 MHz on TP49.	_
	SW7[2]		1	ACB_SYNC	ACB_SYNC 0 Thermtrip enabled 1 Thermtrip disabled	_
	SW7[3]		1	ACZ_SDOUT	ACZ_SDOUT 0 AMD Mode 1 P4 Mode	—
	SW7[4]		1	ACB_SDOUT	ACB_SDOUT 0 PATA freq = 125 MHz 1 PATA freq = 133 MHz	_
	SW7[5]		1	—	Not Used	—
	SW7[6]		1	SATA_GPO3	SATA_GPO3 0 1	—
	SW7[7]		1	AC_PWR	AC_PWR 0 Battery power mode 1 AC power mode	—
Config/ID EEPROM Write-Protect	SW7[8]	static	1	CFG_WP	CFG_IDWP 0 Writing permitted. 1 Writing disabled.	_
LED Function	SW8[1:2]	static	2	Status LED(1:8)	 LED FUNCTION [0:1] 00 Bit by bit represents the contents of the LED register. A "0" in the LED register light status LED(1:8). 01 Status of Reset Controller and EP MODE for ULI 10 Status of Reset Controller and EP MODE for ULI 11 Status of Reset Controller and EP MODE for ULI 	
Extra Switches	SW8[3:8]	—	6	—	Not Used	_
Local Bus Mapping	SW9[1:2] or FPGA registers	static	2	CFG_LBMAP[0:1]	CFG_LBMAP[0:1] 00 Boot from NOR Normal Bank 01 Boot from Promjet 10 Boot from NAND 11 Boot from NOR Swapped Bank	_
Flash Write Protect	SW9[3]	static	1	CFG_FLASHWP	FLASHWP 0 Flash protected from writes 1 Flash can be written	—

Table 27. Configuration Options (continued)

Table 27.	Configuration	Options	(continued))

Option	Select Method	Assert Method	Width	Controls	Description	Notes
CPU Boot Control	SW9[4:5] or FPGA registers	static	2	CFG_CPU0_BOOT , CFG_CPU1_BOOT	CFG_CPU[0:1]_BOOT 00 CPU boot holdoff mode for both cores. 01 e500 core 1 is allowed to boot 10 e500 core 0 is allowed to boot 11 Both e500 cores are allowed to boot	_
ULI Bridge Mode	SW9[6] FPGA register read only	static	1	CFG_EPMODE	0 southbridge mode 1 endpoint mode	_
FPGA Optional Switches	SW9[7:8] or FPGA registers read only	static	2	CFG_PIXIS _OPT[0:1]	Unused	_
e500 Core 0 PII Clock Ratio	SW10[1:3] or FPGA registers	CFGDR V	3	LBCTL, LALE, LGPL2/LOE/LFRE	CFG_CORE0_PLL[0:2] 000 4 : 1 001 9 : 2 (4.5:1) 010 1 : 1 011 3 : 2 (1.5 : 1) 100 2 : 1 101 5 : 2 (2.5:1) 110 3 : 1 111 7 : 2 (3.5 : 1)	
Extra Switches	SW10[4:5]	static	2		Not Used	—
e500 Core 1 Pll Clock Ratio	SW10[6:8] or FPGA registers	CFGDR V	3	LWE[0]/LBS[0]/LF WE, UART_SOUT[1], READY_P1	CFG_CORE1_PLL[0:2] 000 4 : 1 001 9 : 2 (4.5:1) 010 1 : 1 011 3 : 2 (1.5 : 1) 100 2 : 1 101 5 : 2 (2.5:1) 110 3 : 1 111 7 : 2 (3.5 : 1)	_

Option	Select Method	Assert Method	Width	Controls	Description	Notes
I/O Port Selection	SW6[6:8]	CFGDR V	3	TSEC3_TXD[6:4]	cfg_io_ports[0:2] 000 All three PCI Express ports powered down. SGMII ports powered down	—
					001 All three PCI Express ports powered down. SGMII ports active	
					010 PCI Express port 1 active. PCI Express ports 2 and 3 powered down. SGMII ports powered down	
					011 PCI Express port 1 active. PCI Express ports 2 and 3 powered down. SGMII ports active	
					100 PCI Express ports 1 and 2 active. PCI Express port 3 powered down. SGMII ports powered down	
					101 PCI Express ports 1 and 2 active. PCI Express port 3 powered down. SGMII ports active	
					110 All three PCI Express ports active. SGMII ports powered down	
					111 All three PCI Express ports active. SGMII ports active	
					PCI Express 1:	
					RX lane[0:3] -> SD_RX[0:3],	
					TX lane[0:3] -> SD_TX[0:3]	
					PCI Express 2:	
					RX lane[0:3] -> SD_RX[4:7],	
					TX lane[0:3] -> SD_TX[4:7]	
					PCI Express 3:	
					RX lane[0] -> SD2_RX[0],	
					TX lane[0] -> SD2_TX[0],	
					SGMII:	
					RX lane[0:1] -> SD2_RX[2:3]	
					TX lane[0:1] -> SD2_TX[2:3]	
CPU Boot Configuration	SW10[4] or FPGA registers	CFGDR V	1	LA27	cfg_cpu_boot 0 CPU boot holdoff mode. The e500 core is prevented from booting until configured by an	_
	- 3				1 The e500 core is allowed to boot without	
					waiting for configuration by an external master (default).	
PRE-CONFIGURED	SETTINGS	(Other tha	n defaul	t value by on-chip pul	lup resistor)	•
DDR PLL	on-chip	static	1	EC5_MDC	Reserved. CFG_DDR_PLL_FDBK_SEL	3
FEEDBACK	pull-up resistor.					
Dram Type	pull down resistor	static	1	TSEC2_TXD[1]	Set to DDR2. CFG_DRAM_TYPE	3

Table 27. Configuration Options (continued)

Option	Select Method	Assert Method	Width	Controls	Description	Notes
FEC Configuration	on-chip pull-up resistors	static	1	DMA1_DDONE_B[1]	FEC is disabled.	3
IO Port Configuration	Pull Up/Down resistors	static	4	TSEC1_TXD[3:1], TSEC2_TX_ER	cfg_io_ports[0:3] Pull up/down resistor = 0111 PCI Express 1 (x4), PCI Express 2 (x2), PCI Express 3 (x2) 100-MHz reference clock PCI Express 1: RX lane[0:3] -> SD1_RX[0:3] TX lane[0:3] -> SD1_RX[0:3] PCI Express 2: RX lane[0:1] -> SD1_RX[4:5] TX lane[0:1] -> SD1_TX[4:5] PCI Express 3: RX lane[0:1] -> SD1_RX[6:7] TX lane[0:1] -> SD1_TX[6:7]	3
TSEC1 Reduced	Pull Down resistor	static	1	EC1_MDC	Set to reduced mode. cfg_tsec_1_reduce	3
TSEC3 Reduced	Pull Down resistor	static	1	TSEC3_TXD[2]	Set to reduced mode. cfg_tsec_3_reduce	3
Configure TSEC1 Protocol	Pull Up/Down resistors	static	2	TSEC1_TXD[0], TSEC1_TXD[7]	cfg_tsec1_prtcl[0:1] = 10. If not in SGMII mode via cfg_sgmii1, then RGMII mode.	3
Configure TSEC2 Protocol	Pull Up/Down resistors	static	2	TSEC2_TXD[0], TSEC2_TXD[7]	cfg_tsec2_prtcl[0:1] = 10. If not in SGMII mode via cfg_sgmii2, then RGMII mode.	3
Configure TSEC3 Protocol	Pull Up/Down resistors	static	2	TSEC3_TXD[0], TSEC3_TXD[1]	cfg_tsec3_prtcl[0:1] = 10. If not in SGMII mode via cfg_sgmii3, then RGMII mode.	3
Configure TSEC4 Protocol	Pull Up/Down resistors	static	2	TSEC4_TXD[0], TSEC4_TXD[1]	cfg_tsec4_prtcl[0:1] = 10. If not in SGMII mode via cfg_sgmii4, then RGMII mode.	3

Table 27. Configuration Options (continued)

Notes:

1. To save pins, the SYSCLK switches are reduced to only three inputs, but are mapped to 24 outputs. This means that switch-configured speeds are limited to 8 pre-selected "popular" values. Fine grained (~1MHz) tuning of the output requires external software setting, or modification of the FPGA image.

2. To change "RES" options, consult the schematic.

3. LAD(2:31) are undriven, so values read should be considered random.

Debug Support

8 Debug Support

For debug purposes, Table 28 summarizes the debug support options for various MPC8572DS subsystems.

Subsystem	Debug Support Method	Notes
SERDES 1	Mid-point TAP (PEX or SRIO)	—
SERDES 2	PEX connector (whether PEX or SRIO) Catalyst card for PEX	—
DDR2	NextWave DDR2 "interposer"	Must use non-ECC DDR
Flow	P6880 "banjo" logic analyzer trace	—
Local Bus	Mictor headers	—

Table 28. MPC8572DS Debug Options

9 Programming Model

9.1 Address Map

Table 29 shows a typical map of the MPC8572DS for UBOOT. Since all chip-selects are programmable, almost all devices may be located with impunity, so this map is subject to great changes.

Start Address	End Address	Size	Register
0_000_0000	0_7FFF_FFF	2 Gbytes	DDR memory
0_8000_0000	0_8FFF_FFFF	256 Mbytes	PEX 2: PEX Slot 1 x2
0_9000_0000	0_9FFF_FFF		Reserved
0_A000_0000	0_AFFF_FFFF	256 Mbytes	PEX 1: PEX Slot 2 x4
0_B000_0000	0_BFFF_FFFF	256 Mbytes	PEX 3: ULI South Bridge x2
0_C000_0000	0_DFFF_FFFF	_	Reserved
0_E000_0000	0_E00F_FFFF	1 Mbyte	CCSRBAR space (internal MPC8572 registers)
0_E100_0000	0_E1FF_FFFF	_	Reserved
0_E200_0000	0_E27F_FFFF	8 Mbytes	PCI Express 1 IO range
0_E280_0000	0_E2FF_FFFF	8 Mbytes	PCI Express 2 IO range
0_E300_0000	0_E37F_FFFF	8 Mbytes	PCI Express 3 IO range
0_E380_0000	0_E3FF_FFFF	_	Reserved
0_E400_0000	0_E400_3FFF	4 Kbytes	Cacheable TLB0
0_E800_0000	0_E80F_FFFF	1 Mbyte	PIXIS register space
0_F000_0000	0_F7FF_FFF	128 Mbytes	Flash (2nd bank)
0_F800_0000	0_FFFF_FFFF	128 Mbytes	Flash (1st bank)

Table 29. Address Map

9.2 PIXIS Registers

The PIXIS device contains several software-accessible registers which are accessed from the base address programmed for LCS3 (see Section 6.1.4, "Local Bus"). Table 30 shows the register map of the PIXIS device.

Base Address Offset	Address Register		Access	Reset
0x00	System ID register	PX_ID	R	20 (0x14)
0x01	System version register	PX_VER	R	varies
0x02	Pixis version register	PV_PVER	R	varies
0x03	General control/status register	PX_CSR	R/W	varies
0x04	Reset control register	PX_RST	R/W	0x8F
0x05	Power status register	PX_PWR1	R	varies
0x06	Auxiliary 1 register	PX_AUX1	R/W	0x00
0x07	Speed register	PX_SPD	R	varies
0x08	Auxiliary 2 register	PX_AUX2	R/W	0x00
0x09–0x0F	Reserved	Reserved	Reserved	undefined
0x10	VELA Control Register	PX_VCTL	R/W	0x00
0x11	VELA Status Register	PX_VSTAT	R	0x00
0x12	VELA Configuration Enable Register 0	PX_VCFGEN0	R/W	0x00
0x13	VELA Configuration Enable Register 1	PX_VCFGEN1	R/W	0x00
0x14	VCORE0 Register	PX_VCORE0	R/W	varies
0x15	Reserved	Reserved	Reserved	undefined
0x16	VBOOT Register	PX_VBOOT	R/W	varies
0x17	VSPEED0 Register	PX_VSPEED0	R/W	varies
0x18	VSPEED1 Register	PX_VSPEED1	R/W	varies
0x19	VSPEED2 Register	PX_VSPEED2	R/W	varies
0x1A-0x1B	Reserved	Reserved	Reserved	undefined
0x1C	VELA SYSCLK0 Register	PX_VSYSCLK0	R/W	varies
0x1D	VELA SYSCLK1 Register	PX_VSYSCLK1	R/W	varies
0x1E VELA SYSCLK2 Register		PX_VSYSCLK2	R/W	varies
0x1F VELA DDRCLK0 Register		PX_VDDRCLK0	R/W	varies
0x20	VELA DDRCLK1 Register	PX_VDDRCLK1	R/W	varies
0x21	VELA DDRCLK2 Register	PX_VDDRCLK2	R/W	varies
0x22-0x23 Reserved		Reserved	Reserved	undefined

Table 30. PIXIS Register Map

Table 30.	PIXIS Register	Мар	(continued)

Base Address Offset	Register	Name	Access	Reset
0x24	WATCH Register	PX_WATCH	R/W	0x7F
0x25	LED Register	PX_LED	R/W	0x00
0x26-0x3F	Reserved	Reserved	Reserved	undefined

The corresponding header file definitions are in Section 9.3, "System ID EEPROM."

9.2.1 ID Register (PX_ID)

The ID register contains a unique classification number; this ID number is used by DINK/eDINK and other software to identify board types. This number does not change for any MPC8572DS revision.

Table 31. PX_ID Field Descriptions

Bits	Name	Description
0–7	ID	Board identification. For MPC8572DS ID = 20(0x14)

9.2.2 Version Register (PX_VER)

The version register contains the major and minor revision information of the MPC8572DS PCB. Used to delineate software compatibility between different artwork spins. However, if PCB spin does not effect functionality or important architectural changes that software needs, then this revision may not progress until it is necessary. For example, if REV B of PCB is only adding tooling holes, thus no important function change that software needs to process, then this register may remain indication of REV A until the next PCB rev that needs software to be aware of functional changes.

Bits	Name	Description
0–3	VER	Version Number: 0x0 = Reserved 0x1 = Reserved 0x2 = PCB is Rev. A 0x3 = PCB is Rev. D
4–7	REV	Revision Number (starts with 0)—Currently this field in not used.

Table 32. PX_VER Field Descriptions

9.2.3 Version Register (PX_PVER)

The version register contains the major and minor revision information of the Pixis FPGA.

Figure 27. Version Register (PX_PVER)

Table 33. PX_PVER Field Descriptions

Bits	Name	Description
0–3	VER	Version Number: etc.
4–7	REV	Revision Number (starts with 0)

- 0.0 Initial design.
- 0.1 For REV A and B PCB. First working and shipped.
- 0.2 For REV A and B PCB. Added second Auxiliary Register at offset 0x8.
- 1.0 For REV D and Later PCB. Same as Rev 0.2 but allows software to know that second serial port is available on REV D PCB and Higher.

9.2.4 General Control/Status Register (PX_CSR)

The PX_CSR register contains various control and status fields.

Figure 28. General Control/Status Register (PX_CSR)

Bits	Name	Description
0	_	Reserved
1	ASLEEP	If 0:The processor(s) are running. If 1:The processor(s) are idled/waiting.
2	_	Reserved
3	EPMODE	Reflects the settings of the CFG_EPMODE switch. if 1} Then system is running ULI in Endpoint mode. if 0} Then system is running ULI in Southbridge mode
4–5	EVES	If 00:The EVENT* switch asserts IRQ8* (debugger switch). If 01:The EVENT* switch asserts SRESET*. If 10:The EVENT* switch asserts UDE0* If 11:The EVENT* switch asserts UDE1*.
6	PASS	If set, the external LED labelled "PASS" is turned off. By default, the LED is inactive, so software must actively clear this bit on the completion of a successful self-test.
7	FAIL	If set, the external LED labelled "FAIL" is turned off. By default, the LED is active, so software must actively clear this bit on the completion of a successful self-test.

Table 34. PX_CSR Field Descriptions

Note: Do not enable both PX_CSR[LOCK] and PX_VCTL[WDEN]—the watchdog then cannot be disabled and the board will keep resetting when the watchdog expires (since it cannot be disabled).

59

Programming Model

9.2.5 Reset Control Register (PX_RST)

The PX_RST register may be used to assert system resets. PX_RST is usually only written—reads return the value in the register, and do not (necessarily) reflect the value of the system reset.

Figure 29. Reset Control Register (PX_RST)

Bits	Name	Description
0	ALL	If set to 0, a full system reset is initiated.
1–3	—	Reserved
4	DBMASK	If 0:DATABLIZZARD_INTD# is just an interrupt. If 1:DATABLIZZARD_INTD# is a system reset term.
5	РНҮ	If 0:PHY_RST* is asserted. If 1:PHY_RST* is deasserted
6	LB	If 0:LB_RST* is asserted. If 1:LB_RST* is deasserted
7	GEN	If 0:GEN_RST* is asserted. If 1:GEN_RST* is deasserted

Table 35. PX_RST Field Descriptions

Notes:

- Bits 1–3 are used to implement an errata related to PEX operation on the V1.0 mpc8572 silicon, and will not be needed thereafter.
- The PX_RST register bits are not self-resetting. PX_RST[ALL] is reset only as a side-effect of triggering a full system reset. The other bits must be cleared with software.
- These register-based resets are OR'd with existing reset sequencer outputs. Setting these bits while a VELA configuration cycle is active may have unpredictable results.
- DATABLIZZARD_INTD# defaults to a reset term; this insures that remote systems can generally take control of an erratic system. In deployed systems where the standard INTD# function of SLOT1 is required, this bit can be disabled and PX_CSR[LOCK] set to insure cards do not cause a system reset.
- The PCI slot resets are controlled via ULI M1575. Initially, the on-board reset sequencer in PIXIS FPGA will control resets to the PCI slots. However, additional software control may be available via the M1575.

9.2.6 Power Status Register (PX_PWR)

The PX_PWR registers reports the status of power supplies. Since the system is not running if power is not active, this reporting is primarily only of use to remote accessories.

Figure 30. Power Status Register (PX_PWR)

Table 36. PX_PWR Field Descriptions
Description

Bits	Name	Description
0	PWRGD	0:ATX power supply is off
		1:ATX power supply is on.
1	V0_PG	0:VCORE0 power supply off/fault
		1:VCORE0 power supply is on.
2–3	—	Reserved
4	SDPG	0:VCC_SERDES power supply off/fault
		1:VCC_SERDES power supply is on.
5	V1P2PG	0:VCC_1.2 power supply off/fault
		1:VCC_1.2 power supply is on.
6	V1P8PG	0:VCC_ULI_1.8V power supply off/fault
		1:VCC_ULI_1.8V power supply is on.
7	DDRPG	0:Either M1_DDR power supply off/fault
		1:Both M1_DDR power supplies is on.

Note: DDR power-good reporting is the composite of both; s/w cannot see if both have failed (but one is bad enough).

9.2.7 Auxiliary Register 1 (PX_AUX1)

The PX_AUX 1 register is a general-purpose read/write register. It reset upon initial power activation, or by chassis reset sources; PX_AUX 1 preserves its value between COP- or watchdog-initiated resets.

Table 37. PX_AUX1 Field Descriptions

Bits	Name	Description
0–7	USER	User defined.

9.2.8 Speed Register (PX_SPD)

The PX_SPD register is used to communicate the current settings for the SYSCLK input. It is typically needed for software to be able to accurately initialize timing-dependant parameters, such as those for DDR2, I2C, and more.

Figure 32. Power Status Register (PX_SPD)

Table 38. PX_SPD Field Descriptions

Bits	Name	Description
0–1	—	Reserved
2–4	DDRCLK	Reflects switch settings as described in Table 24.
5–7	SYSCLK	Reflects switch settings as described in Table 23.

9.2.9 Auxiliary Register 2 (PX_AUX2)

The PX_AUX 2 register is a general-purpose read/write register. If reset upon initial power activation, or by chassis reset sources; PX_AUX 2 preserves its value between COP- or watchdog-initiated resets.

Figure 33. Power Status Register (PX_AUX2)

Table 39. PX_AUX2 Field Descriptions

Bits	Name	Description
0–7	USER	User defined.

9.2.10 VELA Control Register (PX_VCTL)

The PX_VCTL register may be used to start and control the configuration reset sequencer as well as other configuration/test-related features.

Figure 34. PIXIS VELA Configuration Register (PX_VCTL)

Bits	Name	Description
0–3	—	Reserved
4	WDEN	Watchdog Enable 0:Watchdog disabled. 1:Watchdog enabled. If not disabled with 2^29 clock cycles (> 5 minutes at 30ns clock), the system will be reset. Note: This is not a highly-secure watchdog; software can reset this bit at any time, disabling the watchdog.
5	_	Reserved
6	PWROFF	Power Off 0:Power is controlled as normal (by ULI or by switch). 1:Power is forced off. Note: Hardware must restore power; software cannot force power on.
7	GO	Go 0:The VELA sequencer remains idle. 1:The VELA sequencer starts. Note: The sequencer halts after running until software resets GO to 0.

Table 40. PX_VCTL Field Descriptions

Notes:

The default value of PWROFF is zero, so that normal operations do not interfere with the power switches. Setting PWROFF to one overrides any user- or APM-initiated power switch event.

• Do not enable both PX_CSR[LOCK] and PX_VCTL[WDEN]—the watchdog cannot be disabled and the board will keep resetting when the watchdog expires (since it cannot be disabled).

9.2.11 VELA Status Register (PX_VSTAT)

The PX_VSTAT register may be used to assert general resets.

Figure 35. PIXIS VELA Status Register (PX_VSTAT)

Table 41. PX_VSTAT Field Descriptions

Bits	Name	Description
0–6		Reserved
7	BUSY	0:The VELA sequencer is idle.
		1:The VELA sequencer is busy.

9.2.12 VELA Config Enable Register (PX_VCFGEN0)

The PX_VCFGEN0 register is one of two registers which are used to specifically enable register-based overrides of the MPC8572DS environment.

Figure 36. General Control/Status Register (PX_VCFGEN0)

Table 42. PX_VCFGEN0 Field Descriptions

Bits	Name	Description
0	VCORE0	0:CFG_VID(6:0) is controlled by the switches. 1:CFG_VID(6:0) is controlled by the value in PX_VCORE0.
1–2	_	Reserved
3	CPLL	0:CFG_CORE0_PLL(0:2) and CFG_CORE1_PLL(0:2) are controlled by the switches. 1:CFG_CORE0_PLL(0:2) and CFG_CORE1_PLL(0:2) are controlled by the value in PX_VSPEED0[CORE0PLL] and PX_VSPEED0[CORE0PLL] respectively.
4	MPLL	0:CFG_MPXPLL(0:2) is controlled by the switches. 1:CFG_MPXPLL(0:2) is controlled by the value in PX_VSPEED1[PX_MPX].

Bits	Name	Description
5	CLK	0:SYSCLK and DDRCLK are controlled by the switch-based presets. 1:SYSCLK is controlled by the values in PX_VSYSCLK(0/1/2). DDRCLK is controlled by the values in PX_VDDRCLK(0/1/2).
6	_	Reserved
7	DPLL	0:CFG_DDRPLL(0:3) is controlled by the switches. 1:CFG_DDRPLL(0:3) is controlled by the value in PX_VSPEED1[DDRPLL].

Table 42. PX_VCFGEN0 Field Descriptions (continued)

9.2.13 VELA Config Enable Register (PX_VCFGEN1)

The PX_VCFGEN0 register is the other of two registers which are used to specifically enable register-based overrides of the MPC8572DS environment.

Figure 37. General Control/Status Register (PX_VCFGEN1)

Table 43. PX_VCFGEN1 Field Descriptions

Bits	Name	Description
0–1	_	Reserved
2	SGMII	0:CFG_SGMII(1/2/3/4) are controlled by the switches. 1:CFG_SGMII(1/2/3/4) are controlled by the value in PX_SPEED2[SGMII].
3	PIXIS	0:CFG_PIXIS(0:1) is controlled by the switches. 1:CFG_PIXIS(0:1) is controlled by the value in PX_SPEED1[PIXIS].
4	HOST	0:CFG_HOSTMODE(0:2) is controlled by the switches. 1:CFG_HOSTMODE(0:2) is controlled by the value in PX_SPEED1[HOSTMODE].
5	FLASH	0:CFG_LBMAP is controlled by the switches. 1:CFG_LBMAP is controlled by the values in PX_VBOOT[LBMAP].
6	BOOTSEQ	0:CFG_BOOTSEQ(0:1) is controlled by the switches. 1:CFG_BOOTSEQ(0:1) is controlled by the value in PX_VBOOT[BOOTSEQ].
7	BOOTLOC	0:CFG_BOOTLOC(0:3) is controlled by the switches. 1:CFG_BOOTLOC(0:3) is controlled by the value in PX_VBOOT[BOOTLOC].

9.2.14 VELA VCORE0 Register (PX_VCORE0)

The PX_VCORE0 register may be used to control the VCORE power supply to the processor core 0.

Figure 38. VCORE0 Control Register (PX_VCORE0)

Table 44. PX_VCORE0 Field Descriptions

Bits	Name	Description
0	—	Reserved
1–7	VID	Read:returns the current values on the CFG_VID(6:0) bus. Write: values written to VID are driven on the CFG_VID(6:0) bus, provided PX_VCFGEN0[VCORE0]=1; otherwise, it has no effect.

Note: VID(6:0) is a little-endian bus, so the bits may appear to be swapped; however, they are correct as shown.

See table Table 13 for encoded VID values for the SC457 regulator.

9.2.15 VELA VBOOT Register (PX_VBOOT)

The PX_VBOOT register controls general settings used for startup code location selection.

Figure 39. VBOOT Control Register (PX_VBOOT)

Table 45. PX_VBOOT Field Descriptions

Bits	Name	Description
0–1	LBMAP	Read:returns the current values on the CFG_LBMAP signal. Write: values written to LBMAP are driven on the CFG_LBMAP signal, provided PX_VCFGEN[FLASH]=1; otherwise, it has no effect.

Bits	Name	Description
2–3	BOOTSEQ	Read:returns the current values on the CFG_BOOTSEQ(0:1) signals. Write: values written to BOOTSEQ are driven on the CFG_BOOTLOC bus, provided PX_VCFGEN[BOOTLOC]=1; otherwise, it has no effect.
4–7	BOOTLOC	Read:returns the current values on the CFG_BOOTLOC(0:3) signals. Write: values written to BOOTLOC are driven on the CFG_BOOTLOC bus, provided PX_VCFGEN[BOOTLOC]=1; otherwise, it has no effect. Note: BOOTLOC(3) is not needed by the MPC8572. Write as zero.

Table 45. PX_VBOOT Field Descriptions (continued)

9.2.16 VELA VSPEED Register 0 (PX_VSPEED0)

The PX_VSPEED0 register controls some of the general speed/clock settings used for startup.

Figure 40. VELA VSPEED Register 0 (PX_VSPEED0)

Table 46. PX_VSPEED0 Field Descriptions

Bits	Name	Description
0–2	CORE0PLL	Read:returns the current values on the CFG_CORE0PLL(0:2) bus. Write: values written to COREPLL are driven on the CFG_CORE0PLL(0:2) bus, provided PX_VCFGEN0[CPLL]=1; otherwise, it has no effect. Note: COREPLL(3:4) is not needed by the MPC8572. Write as zero.
3–5	CORE1PLL	Read:returns the current values on the CFG_CORE1PLL(0:2) bus. Write: values written to COREPLL are driven on the CFG_CORE1PLL(0:2) bus, provided PX_VCFGEN0[CPLL]=1; otherwise, it has no effect. Note: COREPLL(3:4) is not needed by the MPC8572. Write as zero.
6–7		Reserved

9.2.17 VELA VSPEED Register 1 (PX_VSPEED1)

The PX_VSPEED1 register controls some of the general speed/clock settings used for startup.

Figure 41. VELA VSPEED Register 1 (PX_VSPEED1)

Table 47. PX_VSPEED1 Field Descriptions

Bits	Name	Description
0–1		Reserved
2–4	DDRPLL	Read:returns the current values on the CFG_DDRPLL(0:2) bus. Write: values written to DDRPLL are driven on the CFG_DDRPLL(0:2) bus, provided PX_VCFGEN0[DPLL]=1; otherwise, it has no effect.
5–7	MPXPLL	Read:returns the current values on the CFG_MPXPLL(0:2) bus. Write: values written to COREPLL are driven on the CFG_MPXPLL(0:2) bus, provided PX_VCFGEN0[MPLL]=1; otherwise, it has no effect.

9.2.18 VELA VSPEED Register 2(PX_VSPEED2)

The PX_VSPEED2 register controls some of the high speed port configuration for the processor.

Figure 42. VELA VSPEED Register 2(PX_VSPEED1)

Table 48. PX_VSPEED2 Field Descriptions

Bits	Name	Description
0–2	HOSTMODE	Read:returns the current values on the CFG_HOSTMODE(0:2) bus. Write: values written to HOSTMODE are driven on the CFG_HOSTMODE(0:2) bus, provided PX_VCFGEN1[HOST]=1; otherwise, it has no effect.
3	—	Reserved
4	SGMII1	Read:returns the current values on the CFG_SGMII1 signal. Write: values written to SGMII1 are driven on the CFG_SGMII1 signal, provided PX_VCFGEN1[SGMII]=1; otherwise, it has no effect.

Bits	Name	Description
5	SGMII2	Read:returns the current values on the CFG_SGMII2 signal. Write: values written to SGMII2 are driven on the CFG_SGMII2 signal, provided PX_VCFGEN1[SGMII]=1; otherwise, it has no effect.
6	SGMII3	Read:returns the current values on the CFG_SGMII3 signal. Write: values written to SGMII3 are driven on the CFG_SGMII3 signal, provided PX_VCFGEN1[SGMII]=1; otherwise, it has no effect.
7	SGMII4	Read:returns the current values on the CFG_SGMII4 signal. Write: values written to SGMII4 are driven on the CFG_SGMII4 signal, provided PX_VCFGEN1[SGMII]=1; otherwise, it has no effect.

Table 48. PX_VSPEED2 Field Descriptions (continued)

9.2.19 VELA SYSCLK[0:2] Registers (PX_VSYSCLK0/1/2)

The PX_VCLK[0:2] registers control the 24-bit configuration word of the ICS307 system clock generator.

Figure 43. VELA VCLK[0:2] Register (PX_VCLK0/1/2)

Table 49.	PX_	VSYSCL	.K[0:2]	Field	Descriptions
-----------	-----	--------	---------	-------	--------------

Bits	Name	Description
0–7	WORD	Read:returns the current programmed values. Write: values written to WORD are driven into the ICS307 during reset sequencing if PX_VCFGEN0[CLK]=1; otherwise, the encoded value of CFG_SYSCLK(0:2) is used.

Note: CFG_SYSCLK(0:2) are used to preset 24bits of data for the ICS307.

9.2.20 VELA DDRCLK[0:2] Registers (PX_VDDRCLK0/1/2)

The PX_VDDRCLK[0:2] registers control the 24-bit configuration word of the ICS307 system clock generator.

Figure 44. VELA VDDRCLK[0:2] Register (PX_VDDRCLK0/1/2)

Table 50. PX_VDDRCLK[0:2] Field Descriptions

Bits	Name	Description
0–7	WORD	Read:returns the current programmed values. Write: values written to WORD are driven into the ICS307 during reset sequencing if PX_VCFGEN0[CLK]=1; otherwise, the encoded value of CFG_DDRCLK(0:2) is used.

Note: CFG_DDRCLK(0:2) are used to preset 24bits of data for the ICS307.

9.2.21 VELA Watchdog Register (PX_VWATCH)

The PX_VWATCH register controls the duration of the watchdog facility.

Figure 45. VELA Watchdog Register (PX_VWATCH)

Table 51. PX_VWATCH Field Descriptions

Bits	Name	Description
0–7	V	Read:returns the current watchdog setting. Write: sets new watchdog timer value. PX_VCTL[WDEN] must be zero (watchdog disabled) before new values are written.

The PX_VWATCH register value represents the 8 most-significant bits of the 34 bit watchdog timer. Any new value should be written before the PX_VCTL[WDEN] bit is set to one, and the value must be written after every reset of this register (it resets just like any other general register).

The unprogrammed lower 26 bits of the internal watchdog timer are always set to one. The watchdog runs off the 33MHz PIXIS clock, so the minimum watchdog timer interval is:

26 bits * 30ns interval = 2.01326592 seconds.

Therefore the PX_VWATCH register represents multiples of this base value, with the value zero indicating only the lower 26 bits are used. The formula is:

(PX_VWATCH +1) *2.01326592 sec.

Table 52 lists some examples.

PX_WATCH Value	Watchdog Timer (minutes)
1111111	8.59
0111111	4.29
00111111	2.15
00011111	1.07
00001111	32.1
00000111	16.1
00000011	8.05
0000001	4.03
00000000	2.01

Table 52. Watchdog Timer Values

9.2.22 LED Register (PX_LED)

Controls the eight general purpose LEDs on the board.

Figure 46. LED Register (PX_LED)

Table 53. PX_LED Field Descriptions

Bits	Name	Description
0–7	LEDS	Read:returns the current values of this register. LED Function switches have no effect. Write: values written to these bits drive the STAT_LED signals. A value="1" lights the corresponding LED and a "0" disables the LED when LED Function switches SW8[1:2] are set to 00. Otherwise, the value of the LEDs report the status of the reset controller + EPMODE.

9.3 System ID EEPROM

The "system ID" EEPROM, located at I2C address 0x57, is provided on many Freescale development platforms. In addition to storing board identification data, it also serves as storage for Ethernet MAC address numbers. During startup, software needs to read this device to associate one MAC address for each port that will be used.

The System ID EEPROM format is as follows:

	End	Name	Definition
0x0000	0x0003	NXID	4-character string set to "NXID" for revision control.
0x0004	0x000F	SERIAL	Null-terminated arbitrary string.
0x0010	0x0014	ERRATA	Null-terminated arbitrary string.
0x0015	0x001A	TIME	Date and time
0x001B	0x003F	_	Reserved
0x0040	—	MAC_QTY	UBYTE: Number of valid numbers in the MAC table.
0x0041	_	MAC_FLG	UBYTE: Flags.
0x0042	0x0047	MAC_01	UBYTE[6]: MAC address for PHY #0
0x0048	0x004D	MAC_02	UBYTE[6]: MAC address for PHY #1
0x004E	0x0053	MAC_03	UBYTE[6]: MAC address for PHY #2
0x0054	0x0059	MAC_04	UBYTE[6]: MAC address for PHY #3
0x005A	0x005F	MAC_05	UBYTE[6]: MAC address for PHY #4
0x0060	0x0065	MAC_06	UBYTE[6]: MAC address for PHY #5
0x0066	0x006B	MAC_07	UBYTE[6]: MAC address for PHY #6
0x006C	0x0071	MAC_08	UBYTE[6]: MAC address for PHY #7
0x0072	0x00FF	_	-

Table 54. System ID EEPROM Format

10 Revision History

Table 55 provides a revision history for this document.

Rev. Number	Date	Substantive Change(s)
1	01/2009	 In Figure 1, "MPC8572DS Block Diagram," added note to TPM block. In Section 6.1.1, "DDR," modified second sentence of first paragraph. In Table 15, "I2C Bus Connections," added footnote. In Section 6.2, "South Bridge," changed "LPC boot flash (optional)" to "LPC flash (optional)." Significantly modified Section 6.2.4, "ULI LPC Interface."
0	10/2007	Initial release

Revision History

Appendix A References

Table A-1 lists useful references.

Table A-1. Useful References

Торіс	Reference
PromJet	"PromJet" modules are flash memory emulators available from Emutec (www.emutec.com). MPC8572DS uses the 16-bit wide devices (size is user-dependant). The "low-voltage" option for use on the 3.3-V local bus.
SC457	www.semtech.com

Appendix B Lead-Free/RoHS Issues

All components are chosen from lead-free selections, where possible. Table B-1 lists the exceptions.

Table B-1. Lead-Free/RoHS Exceptions

Component	Solution
Vertical Compact Flash header	This connector is not populated as it is apparently not (easily) available in a lead-free version. Customers wishing to use the CF port will need to obtain a CF header (leaded or unleaded) and install it themselves.

Revision History

THIS PAGE INTENTIONALLY LEFT BLANK

How to Reach Us:

Home Page: www.freescale.com

Web Support: http://www.freescale.com/support

USA/Europe or Locations Not Listed:

Freescale Semiconductor, Inc. Technical Information Center, EL516 2100 East Elliot Road Tempe, Arizona 85284 1-800-521-6274 or +1-480-768-2130 www.freescale.com/support

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support

Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor China Ltd. Exchange Building 23F No. 118 Jianguo Road Chaoyang District Beijing 100022 China +86 10 5879 8000 support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center P.O. Box 5405 Denver, Colorado 80217 1-800 441-2447 or +1-303-675-2140 Fax: +1-303-675-2150 LDCForFreescaleSemiconductor @hibbertgroup.com Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

Freescale[™] and the Freescale logo are trademarks of Freescale Semiconductor, Inc. The Power Architecture and Power.org word marks and the Power and Power.org logos and related marks are trademarks and service marks licensed by Power.org. All other product or service names are the property of their respective owners.

© Freescale Semiconductor, Inc., 2009. All rights reserved.

Document Number: MPC8572DSUG Rev. 1 01/2009

