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MSC8101 Overview 1
The Freescale MSC8101 is a versatile, one-chip integration of a high-performance SC140 core, 
large internal memory (0.5 MB), a communications processor module (CPM), a very flexible 
system interface unit (SIU), and a 16-channel DMA controller. The SC140 core contains four 
ALUs and features high performance, low cost, low power, and superscalar architecture. It 
performs at 1200 DSP MIPS using an internal 300 MHz clock at 1.6 V core voltage. The large 
internal memory (0.5 MB) minimizes the penalties caused by accessing external program and 
data memory by accessing memory at full speed using a 128-bit wide program bus and two 64-bit 
wide data buses. The SIU user-defined memory controller interfaces with almost any memory 
system and external peripherals. The CPM is based on the PowerQUICC II™ CPM. It supports a 
wide variety of serial interfaces and protocols including 155-Mbps Asynchronous Transfer Mode 
(ATM) and 100-Mbps Fast Ethernet. The MSC8101 targets third-generation wireless 
infrastructure systems as well as wireline multi-channel applications, such as media over packet.

1.1 Target Markets

The MSC8101 target markets include:

� Wireless infrastructure systems. The MSC8101 can be used in both 2.5G (EDGE) and 3G 
(3GPP) systems. In a base station (BTS), the MSC8101 performs functions such as 
channel coding. In a base station controller and transcoder unit, the MSC8101 performs 
speech coding and echo cancellation. Many wireless infrastructure applications use a 
packetized network, so network connectivity is a key attribute. The MSC8101 performs 
the traditional digital signal processing tasks and network interface tasks, such as linking 
to the packetized ATM AAL2 network.

� Media (Voice/Fax/Data) over Packet gateways. In these systems, media streams (voice, 
fax, or data) are packetized and transmitted over a packetized network (ATM, Ethernet, 
IP). The MSC8101 performs digital signal processing tasks such as speech compression, 
echo cancellation, fax or modem data pump, error correction/data compression (ECDC), 
or even real-time protocol (RTP). Furthermore, the MSC8101 performs the network 
interface task (using the CPM), thus removing bottlenecks in these systems.

1.2 Features

The following sections give an overview of MSC8101 features.
MSC8101 User’s Guide, Rev. 3
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MSC8101 Overview
1.2.1   High-performance SC140 Core
� Up to 1200 true DSP MIPS/3000 RISC MIPS at 300 MHz and 1.6 V core voltage; DSP 

MIPS measure multiply-accumulate (MAC) operations and associated MOVEs and 
pointer updates

� Four 16-bit arithmetic logic units (ALUs), each with a 40-bit parallel barrel shifter

� Two address arithmetic units (AAUs) with integer arithmetic capabilities and unique DSP 
addressing modes

� 32-bit data and program address space

� Sixteen 40-bit wide data registers

� Eight 32-bit wide address pointer registers, eight 32-bit wide bus address registers, four 
32-bit wide offset registers, and four 32-bit wide modifier registers

� Two 32-bit wide stack pointers: user stack pointer and supervisor stack pointer

� Hardware support for fractional and integer data types

� Very rich 16-bit wide orthogonal instruction set

� Up to 6 instructions executed in a single clock cycle

� Variable-Length Execution Set (VLES) execution model, optimized for performance and 
code density

� Zero overhead hardware DO loops

� Single unified memory space with byte addressability

� Position independent code (PIC) support

� IEEE 1149.1-compatible JTAG port

� Enhanced On-Chip Emulation (EOnCE) module with real-time debugging capability

1.2.2   Internal Memories 
� Total of 512 KB (256 K ×  16-bit words) unified internal RAM

� 2 KB bootstrap ROM

1.2.3   100 MHz System Bus
� 64/32-bit data and 32-bit address 60x-compatible bus

� Data width selectable at reset: 64-bit mode without the host interface (HDI16) or 32-bit 
mode, with the HDI16

� Bus supports multiple master designs

� Four-beat burst transfers (eight beat in 32-bit wide mode)

� Port size of 64, 32, 16, and 8 bits wide controlled by internal memory controller

� Support for data parity 

� Bus can access internal memory expansion and external peripherals or enable an external 
host device to access internal resources
MSC8101 User’s Guide, Rev. 3
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1.2.4   Eight-bank Memory Controller
� Glueless interface to SRAM, 100 MHz page mode SDRAM, DRAM, EPROM, FLASH 

and other user-definable peripherals

� Byte write enables and selectable parity generation

� 32-bit address decodes with programmable bank size

� User-programmable machines (UPMs); general-purpose chip-select machine (GPCM); 
and a page-mode, pipelined SDRAM machine

� Byte selects for 64-bit bus width and byte selects for 32-bit bus width

1.2.5   System Interface Unit
� Clock synthesizer

� Reset controller

� Two interrupt controllers

� Real-time clock register

� Periodic interrupt timer

� Hardware bus monitor and software watchdog timer

1.2.6   Internal Peripherals
� Enhanced 16-bit parallel host interface (HDI16) supports multiple buses and provides 

glueless connection to a number of industry-standard microcomputers, microprocessors, 
and DSPs

� Enhanced filter coprocessor (EFCOP) is a 300 MHz 32 ×  32 bit filtering and 
echo-cancellation coprocessor that runs in parallel to the SC140

1.2.7   DMA Engine
� 16 independent unidirectional channels (each one is either read or write)

� Priority based time multiplexing between channels using 16 internal priority levels 
between channels

� Support for four external peripherals

� Support for misaligned addresses in source and destination

� Efficient bus usage via bursts and packing/unpacking

� Support for either dual address or single address (flyby) transfers

� Flexible buffer configuration; support for simple buffer, cyclic buffers, single address 
buffers (I/O devices), multi buffers and chained buffers

1.2.8   Communications Processor Module (CPM)
� Embedded 32-bit RISC controller architecture for flexible communication peripherals

� Interface to the SC140 through dual-port RAM and serial DMA controllers
MSC8101 User’s Guide, Rev. 3
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MSC8101 Overview
� Two serial DMA (SDMA) channels for receive and transmit on all serial channels

� Parallel I/O registers with open-drain and interrupt capability

� Three full-duplex fast serial communication controllers (FCCs) support IEEE 802.3 and 
Fast Ethernet protocols, HDLC up to E3 rates (45 Mbps), and totally transparent 
operation. Each FCC can be configured to transmit in fully transparent mode and receive 
in HDLC mode or vice versa. FCC1 can also support the ATM (155 Mbps) protocol 
through the UTOPIA2 interface. Two FCCs have dedicated pins; the third one operates 
only in TDM mode.

� Two multi-channel controllers (MCCs)

— Two 128-serial full-duplex data channels (a total of 256 64-Kbps channels); each MCC 
can be split into four subgroups of 32 channels each

— Almost any combination of subgroups can be multiplexed to single or multiple TDM 
interfaces

� Four full-duplex serial communication controllers (SCCs) supporting IEEE 
802.3/Ethernet, high-level synchronous data link control, HDLC, local talk, UART, 
Synchronous UART, BISYNC, and transparent operations. Two SCCs have dedicated 
pins; the other two can operate only in TDM mode.

� Two full-duplex serial management controllers (SMCs) supporting GCI, UART, and 
transparent operation

� One serial peripheral interface (SPI)

� One inter-integrated circuit (I2C) controller (microwire-compatible) with multimaster, 
master, and slave modes

� Up to four time-division multiplex (TDM) interfaces (one of which can be T3/E3)

— Support for two groups of TDM channels for a total of four TDMs
— Support for T1, CEPT, T1/E1,T3/E3, pulse code modulation highway, ISDN basic 

rate, ISDN primary rate, Freescale interchip digital link (IDL), general circuit interface 
(GCI), and user-defined TDM serial interfaces

— Up to 256 entries in SI RAM for each TDM interface
— Bit or byte resolution
— Independent transmit and receive routing, frame synchronization

� Eight independent baud-rate generators and 10 input clock pins for supplying clocks to 
FCC, SCC, and SMC serial channels

� Four independent 16-bit timers that can interconnect as two 32-bit timers

1.2.9   Separate PLLs for SC140 Core, Bus, and CPM
� SC140, CPM, and bus can run at different frequencies for  

power/performance optimization

� Phase-lock loop (PLL) values at reset are based on configuration pin values
MSC8101 User’s Guide, Rev. 3
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1.2.10   Packaging
� 332-pin 0.8 mm pitch

� 17 ×  17 mm flip chip plastic ball grid array (FC-PBGA)

1.2.11   Software Development Tools
� Highly efficient C and C++ compilers, which enable development of DSP algorithms and 

control-oriented code in a high-level language

� Debug environments, which support non-intrusive real-time tracing and profiling 

� Device simulation models integrated into leading system simulation environments enable 
design and simulation of systems around SC140-based devices

1.2.12   Hardware Development Tools
� MSC8101 application development system (ADS)

� MSC8101 evaluation module (EVM)

1.3 Architecture 

The MSC8101 is composed of the following major functional blocks: 

� SC140 core

� SRAM block

� System interface unit (SIU)

� DMA controller

� Host Interface (HDI16)

� Enhanced filter coprocessor (EFCOP)

� Communications processor module (CPM)

Figure 1-1 shows a functional block diagram of the MSC8101.
MSC8101 User’s Guide, Rev. 3
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1.3.1   SC140 Core

The 16-bit SC140 core packs four data arithmetic-logic execution units (ALUs), each consisting 
of a MAC unit, a logic unit, and a bit field unit (BFU), which also serves as a barrel shifter. This 
number of MAC units delivers very high performance in such essential DSP tasks as finite 
impulse response (FIR) and infinite impulse response (IIR) filters and fast Fourier transforms 
(FFTs). In addition to the four data execution units, the core contains two address arithmetic units 
(AAUs), one bit mask unit (BMU), and one branch unit. Overall, the SC140 can issue and 
execute up to six instructions per clock—for example, four independent arithmetic instructions 
and two pointer-related instructions (such as moves or other operations on addresses).

At its initial clock speed of 300 MHz, the SC140 can therefore execute 1200 true DSP 
MIPS—1.2 billion MAC operations per second, together with associated data movement 
functions and pointer updates. Note that one such DSP MIPS is the equivalent of several RISC 

Figure 1-1.  MSC8101 Block Diagram
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MIPS, the performance measure used by some other DSPs. For purposes of comparison, the 
SC140 can be said to perform 3000 RISC MIPS—ten RISC operations per cycle at 300 MHz.

The SC140 core can sustain this high level of performance over time because its four data 
execution units can operate simultaneously in any combination. For example, the SC140 could 
execute four MAC operations in a single clock, or one MAC, two arithmetic/logical operations, 
and one bit field operation. All four data ALUs are identical. This permits great flexibility in the 
assignment and execution of instructions, increasing the likelihood that four execution units can 
be kept busy on any given cycle and enabling programs to take better advantage of the core’s 
parallel architecture. For details on the SC140, consult the SC140 Core Reference Manual.

1.3.2   Internal SRAM

The 512 KB of SRAM is arranged as a 256K ×  16 bit unified memory. The internal memory 
provides zero-wait-state access to as many as 256 bits (128 program bits and 128 data bits) per 
300 MHz cycle. It also provides access of 64 bit per clock cycle on the local bus. At the same 
time, the DMA engine can perform its own 64-bit wide access. The SRAM has sufficient storage 
capacity to hold all the program code and data the MSC8101 needs for many target applications, 
thus eliminating the cost, space, and performance penalties of external memory. When memory 
requirements exceed the internal storage capacity, the MSC8101 can address up to 4 GB of 
external memory via the bus interface.

1.3.3   System Interface Unit (SIU)

The SIU consists of the following:

� A 60x-compatible parallel system bus configurable at reset to either 64-bit or 32-bit data 
width. Port sizes can be 64, 32, 16, and 8 bits wide. The MSC8101 internal arbiter can 
support the external bus. External bus-request pins allows external masters to acquire the 
bus. The MSC8101 internal arbiter arbitrates between internal masters (SC140, CPM, 
DMA, and three external masters). You can disable this arbiter and use an external arbiter 
if necessary.

� An internal local 64-bit data, 32-bit address bus. The local bus is synchronous to the 
system bus and runs at the same frequency.

� A memory controller supporting eight external memory banks. The memory controller, 
which is based on the MPC8260 memory controller, supports UPMs as well as an 
SDRAM machine with page mode and address data pipeline.

� A bus monitor that prevents system bus lock-ups, a real-time clock, a periodic interrupt 
timer, and other system functions useful in embedded applications.
MSC8101 User’s Guide, Rev. 3
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1.3.4   DMA Controller

The 16 independent unidirectional channels of the DMA controller move data among internal and 
external memories and internal and external peripherals without the involvement of the SC140 
core. Transfers occur on the internal (local) bus, the external bus, or between the two buses. The 
DMA engine handles full 64-bit transfers and bursting to take maximum advantage of available 
bus bandwidth. Non-aligned transfers are also handled. Dual address transfers require two DMA 
channels. 

Bus usage is further improved by the DMA unit’s first-in/first-out buffers (FIFOs), which store 
data temporarily between read and write operations. For example, if the DMA is transferring data 
from an external memory to internal memory, it need not wait until the local bus is free to begin 
reading the data. Instead, it fetches the data over the system bus, storing it temporarily in a FIFO 
until the local bus is available, and then it completes the transfer by writing the data to internal 
memory. The DMA also runs in a “flyby” mode in which data is transferred directly from a 
source to a destination in a single cycle (from an internal peripheral to internal memory or from 
an external peripheral to external memory). In flyby mode, the source and destination are of equal 
width and aligned. The DMA controller supports complex addressing such as circular buffers, 
dual buffers, and multiple buffers. Buffer type is configured in the DMA parameter RAM.

1.3.5   Host Interface (HDI16)

In addition to its bus interface, the MSC8101 features an enhanced HDI16, supporting a variety 
of standard buses and providing glueless connection to industry-standard microcontrollers, 
microprocessors and DSPs. The host interface can be used concurrently with the interface 
operating in 32-bit mode. The combination of bus interfaces provides a great deal of system 
design flexibility. For example, in systems where a large amount of data is passed between a host 
processor (for example, a or PowerQUICC II) and a bank of MSC8101s, the DSPs can 
communicate with the host via the bus interface in 64-bit mode. In systems with a smaller amount 
of host-DSP traffic, the MSC8101s could communicate via their 16-bit HDI16 interfaces, while 
simultaneously connecting to private or shared memory via 32-bit buses.

1.3.6   Enhanced Filter Coprocessor (EFCOP)

The EFCOP performs filtering operations vital to such DSP tasks as echo cancellation. These 
filtering operations include both adaptive and non-adaptive FIR and IIR filtering with 32-bit 
precision (the EFCOP contains a 32-bit ×  32-bit multiply unit and 72-bit accumulator). The 
EFCOP’s hardwired circuitry performs one FIR filter tap per clock cycle, drawing very little 
power. The EFCOP can also update coefficients in an adaptive filter. The coprocessor operates 
independently and in parallel with the core processor. This allows the MSC8101 to perform such 
operations as echo cancellation in parallel with such operations as voice compression, boosting 
overall performance in applications such as Internet telephony. At a 70-percent usage rate—a 
MSC8101 User’s Guide, Rev. 3
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typical average for EFCOP utilization in DSP applications—the coprocessor provides 210 MIPS 
above the SC140 core’s 1,200-MIPS performance.

1.3.7   Communications Processor Module (CPM)

The CPM allows the MSC8101 to excel in a variety of applications mainly targeted for the 
networking and the telecommunication markets. The CPM, based on the PowerQUICC II, is a 
supersede of the MPC860 PowerQUICC CPM. It is enhanced with RISC performance and 
additional hardware and microcode routines that handle high bit rate protocols, such as ATM (up 
to 155-Mbps full-duplex) and Fast Ethernet (up to 100-Mbps full-duplex). The CPM consists of 
the following functional blocks:

� An embedded 32-bit RISC controller, also called the communications processor (CP), that 
handles the lower-layer tasks and serial DMA control activities, freeing the SC140 to 
handle higher-layer activities as well as DSP tasks. The RISC controller has an instruction 
set optimized for communication, but it can also handle general-purpose applications, 
relieving the SC140 of small, often repeated tasks.

� Two serial DMA (SDMA) controllers that can perform simultaneous transfers, optimized 
for burst transfers to the bus and to the local bus. 

� Three full-duplex fast serial communication controllers (FCCs) support IEEE 802.3 and 
Fast Ethernet protocols, HDLC up to E3 rates (45Mbps), and totally transparent operation. 
Each FCC can be configured to transmit in transparent mode and receive in HDLC mode 
or vice versa. FCC1 can also support the ATM (155 Mbps) protocol through the 
UTOPIA2 interface. Two FCCs have dedicated pins; the third one operates only in TDM 
mode.

� Two multi-channel controllers (MCCs) that can handle an aggregate of 256 ×  64-Kbps 
HDLC or transparent channels, multiplexed on up to four TDM interfaces. The MCC also 
supports super channels of rates higher than 64 Kbps and subchanneling of the 64 Kbps 
channels.

� Four full-duplex serial communication controllers (SCCs) supporting 
IEEE802.3/Ethernet, synchronous data link control, high-level data link control protocol 
(HDLC), local talk, UART, Synchronous UART, BISYNC, and transparent mode. Two 
SCCs have dedicated pins; the other two can operate only in TDM mode.

� Two full-duplex SMCs for general circuit interface (GCI), UART, and transparent 
operation.

� SPI and I2C bus controllers.

� Two serial interfaces (SIs) with time-slot assigners (TSAs) that support multiplexing of 
data from any of the three FCCs, two MCCs, four SCCs, and two SMCs.

� The time-slot assigner (TSA) supports data multiplexing of data from any of the four 
SCCs, three FCCS, and two SMCs.
MSC8101 User’s Guide, Rev. 3
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The CPM includes many other functions; the preceding list is only an overview of major features. 

1.3.7.1   Serial Protocol 

Table 1-1 summarizes the available protocols for each serial port.

1.3.7.2   CPM Configurations

The CPM comprises many different functional blocks and offers flexibility in configuring the 
device for specific applications. The functions described in the preceding sections are all 
available in the device, but not all of them can be used at the same time. This does not mean that 
the device is not fully activated in any given implementation. The CPM architecture uses 
common hardware resources for many different protocols and applications. Two physical factors 
limit the functionality in any given system: pinout and performance. To fit into a small pin count 
package, some pins have multiple functions. In some cases, choosing a function may preclude the 
use of another function. The CPM handles an aggregate rate of 750 Mbps on the communication 
channels at 150 MHz CPM clock and 100 MHz system bus clock. Performance depends on the 
following factors:

� Serial rate versus CPM clock frequency for adequate sampling on serial channels

� Serial rate and protocol versus CPM clock frequency for CPM RISC protocol handling

� Serial rate and protocol versus bus bandwidth 

� Serial rate and protocol versus core clock for adequate protocol handling

Table 1-2 describes a few options to configure the fast communication channels on the 
MSC8101. The frequency specified is the minimum CPM frequency necessary to run the 
mentioned protocols concurrently at full-duplex.

Table 1-1.  MSC8101 Serial Protocols 

Available Protocol FCC SCC MCC SMC

ATM (UTOPIA) +

ATM (serial) +

100BaseT +

10BaseT + +

HDLC + +

HDLC_BUS +

TRANSPARENT + + +

UART + +

DPLL +

Multiple channel +
MSC8101 User’s Guide, Rev. 3
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The FCCs run not only in high-speed mode but also in slower modes, such as HDLC or 10BaseT. 
The CPM RISC architecture has the advantage of using common hardware resources for all 
FCCs.

1.3.7.3   Buffer Descriptors

If you are programming the CPM serial controllers, you need to know how the serial controllers 
use buffer descriptors to define buffer allocation. A buffer descriptor (BD) contains the essential 
information about each buffer in memory. Each buffer is referenced by a BD that can reside 
anywhere in dual-port RAM. These BDs are shared among all serial controllers, including:

� SCCs in UART, HDLC, BISYNC, Transparent, Ethernet, and AppleTalk modes

� FCCs in HDLC, Fast Ethernet, and Transparent modes

� SMCs in UART, Transparent, and GCI modes

� MCCs in HDLC and Transparent modes

� SPI

� I2C

Each 64-bit BD has the structure shown in Figure 1-2. This structure is common to all 
communications controllers. A receive buffer descriptor (RxBD) table and a transmit buffer 
descriptor (TxBD) table are associated with each serial controller. Each table can have multiple 
BDs.

Table 1-2.  MSC8101 Serial Performance Example

FCC 1 FCC 2 MCC CPM Clock  System Bus Clock

155-Mbps ATM 100 BaseT 150 MHz 100 MHz

100-BaseT 100 BaseT 150 MHz 100 MHz

155-Mbps ATM 128 64-Kbps channels 150 MHz 100 MHz

100-BaseT 100 BaseT 128 64-Kbps channels 150 MHz 100 MHz

155-Mbps ATM 256 64-Kbps channels 150 MHz 100 MHz

100-BaseT 256 64-Kbps channels 150 MHz 100 MHz

45-Mbps HDLC 256 64-Kbps 150 MHz 100 MHz

45-hbps HDLC 100 BaseT 256 64-Kbps 150 MHz 100 MHz

100 BaseT 16 576-Kbps 150 MHz 100 MHz
MSC8101 User’s Guide, Rev. 3
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In this discussion, the BD and field values use the following convention:

BD.field

Table 1-3 shows the possible BD and field naming conventions. Bit names in RxBD.bd_cstat 
and TxBD.bd_cstat use the following convention:

BD.bd_cstat.bit

The structural elements of a buffer descriptor are defined as follows:

� Status and control. The 16-bit value at offset+0x0, which contains status and control 
bits that control and report status information on the data transfer. The CPM updates the 
status bits after the buffer is sent or received. Only this field differs for each protocol. 
Refer to the MSC8101 Reference Manual for each protocol’s RxBD.bd_cstat and 
TxBD.bd_cstat bit description.

� Data length. The 16-bit value at offset+0x2, which contains the number of bytes sent or 
received. 

� RxBD data length. The number of bytes the CP writes into the RxBD buffer once the BD 
closes. The communications processor (CP) updates this field after the received data is 
placed into the buffer and the buffer is closed. You do not need to initialize this field. In 
frame-based protocols, except for the SCC transparent mode, RxBD.bd_length contains 
the total frame length including CRC bytes. If a received frame’s length, including CRC, 
is an exact multiple of the parameter RAM maximum receive buffer length MRBLR, the 
last buffer holds no actual data but the associated BD contains the total frame length.

Offset 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0x0 Status and Control

0x2 Data Length

0x4 High-Order Buffer Pointer

0x6 Low-Order Buffer Pointer

Figure 1-2.  Buffer Descriptor Structure

Table 1-3.  Buffer Descriptor Naming Conventions

BD Field Example

RxBD/TxBD bd_cstat TxBD.bd_cstat. R refers to the ready bit in the TxBD’s status and control 
field. Refer to the MSC8101 Reference Manual for the protocol’s status and 
control field bit definition.

bd_length RxBD.bd_length refers to RxBD’s data length field.

bd_addr RxBD.bd_addr refers to RxBD’s buffer pointer field.
MSC8101 User’s Guide, Rev. 3
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� TxBD data length. The number of data bytes the controller needs to transmit from its 
buffer. The CP never modifies this field, which is initialized by the user.

� Buffer pointer. The 32-bit data at offset+0x4, which points to the beginning of the 
buffer in internal or external memory.

� RxBD buffer pointer. The buffer pointer value must be a multiple of four to be 
word-aligned.

� TxBD buffer pointer. The buffer pointer value can be even or odd.

1.3.7.4   Parameter RAM

In the dual-port RAM memory map (see Table 1-4), Banks 9–10 (IMM+$8000:IMM+$8FFF) 
store parameters associated with the SCCs, FCCs, MCCs, SMCs, SPI, and I2C controllers. The 
parameter RAM contains parameters for operating these channels. The exact definition of the 
parameter RAM, which differs for each protocol, is provided in the MSC8101 Reference Manual. 
Table 1-5 shows the MSC8101 parameter RAM structure. The parameters for the SCCs, FCCs, 
and MCCs are stored in the parameter RAM. The parameters for the SMCs, SPI, and I2C are 
stored in locations to which the user-programmable values in the parameter RAM point. For 
example, IMM+$8200 contains the SCC3 parameters. However, IMM+$8AFC contains a pointer 
to the I2C parameters, which can be placed in Banks 1–8 in the dual-port RAM.

Table 1-4.  Dual-Port RAM Memory Map 

Memory Location Bank Content Size

IMM+0x0000 Bank 1 BD/Data/Code 2 KB

IMM+0x0800 Bank 2 BD/Data/Code 2 KB

IMM+0x1000 Bank 3 BD/Data/Code 2 KB

IMM+0x1800 Bank 4 BD/Data/Code 2 KB

IMM+0x2000 Bank 5 BD/Data/Code 2 KB

IMM+0x2800 Bank 6 BD/Data/Code 2 KB

IMM+0x3000 Bank 7 BD/Data/Code 2 KB

IMM+0x3800 Bank 8 BD/Data/Code 2 KB

IMM+0x4000 Reserved 16 KB

IMM+0x8000 Bank 9 Parameter RAM 2 KB

IMM+0x8800 Bank 10 Parameter RAM 2 KB

IMM+0x9000 Reserved 8 KB

IMM+0xB000 Bank 11 FCC Data 2 KB

IMM+0xB800 Bank 12 FCC Data 2 KB
MSC8101 User’s Guide, Rev. 3
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Table 1-6 shows the parameter RAM for all SCC protocols. You must initialize entries with 
boldfaced names before the SCC can be enabled. Refer to the MSC8101 Reference Manual for 
the protocol-specific parameters.

Table 1-5.  MSC8101 Parameter RAM Structure  

Offset from IMM Peripheral
Size

(Bytes)
Offset from IMM Peripheral

Size
(Bytes)

0x8000 SCC1 256 0x8900 Reserved 224

0x8100 SCC2 256 0x89FC SPI_BASE 2

0x8200 SCC3 256 0x89FE Reserved 2

0x8300 SCC4 256 0x8A00 Reserved 224

0x8400 FCC1 256 0x8AE0 RISC Timers 16

0x8500 FCC2 256 0x8AF0 REV_NUM 2

0x8600 FCC3 256 0x8AF2 Reserved 2

0x8700 MCC1 128 0x8AF4 Reserved 4

0x8780 Reserved 124 0x8AF8 RAND 4

0x87FC SMC1_BASE 2 0x8AFC I2C_BASE 2

0x87FE Reserved 2 0x8AFE Reserved 2

0x8800 MCC2 128 0x8B00 Reserved 1280

0x8880 Reserved 124

0x88FC SMC2_BASE 2

0x88FE Reserved 2

Table 1-6.  SCC Parameter RAM 

Offset 
from SCC 

Base1
Name Width Description

0x00 RBASE 16-bits RxBD/TxBD table base address. Offset from the beginning of dual-port RAM. The 
BD tables can be placed in any unused portion of Banks 1–8. The CP starts BD 
processing at the top of the table. These values must be initialized before the 
corresponding channels are enabled. RBASE and TBASE values should be multiples 
of 8.

0x02 TBASE 16-bits

0x04 RFCR 8-bits Rx/Tx function code. Contains the transaction specification associated with SDMA 
channel accesses to external memory.

0x05 TFCR 8-bits

0x06 MRBLR 16-bits Maximum receive buffer length. Defines the maximum number of bytes the 
MSC8101 writes to a receive buffer before it goes to the next buffer. The MSC8101 
can write fewer bytes than MRBLR if an error or an end-of-frame occurs. It never writes 
more bytes than the MRBLR value. MRBLR should be changed only while the receiver 
is disabled.

0x08 RSTATE 32-bits Rx internal state. For CP use only.
MSC8101 User’s Guide, Rev. 3
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1.3.7.5   BD and Buffer Memory Structure

The BDs of all protocols can point to data buffers that are located in the internal dual-port RAM. 
Banks 1–8 (IMM+0x0:IMM+0x4FFF) are available for storing BDs and their buffers. 
However, if the data buffers are large, they can be located in external memory. In the SCC2 
example shown in Figure 1-3, the SCC2 RxBD and the TxBD parameters are located in the 
dual-port RAM, and the buffers are located in external memory. RxBD.bd_addr contains a 
pointer to the receive buffer in external memory, and TxBD.bd_addr contains a pointer to the 
transmit buffer in external memory. The 256-byte SCC2 parameter RAM is located at 
IMM+0x8100.

In the SPI example shown in Figure 1-4, the SPI RxBD and TxBD tables are located in the 
dual-port RAM, and the buffers are located in external memory. RxBD.bd_addr contains a 
pointer to the receive buffer in external memory, and TxBD.bd_addr contains a pointer to the 
transmit buffer in external memory. The two-byte SPI_BASE parameter RAM is located at 
IMM+0x89FC, which contains a pointer to the SPI parameter table. The SPI parameter table can 
be placed at any 64-byte aligned address in the dual-port RAM’s general-purpose area or in 
Banks 1–8. 

0x0C — 32-bits Rx internal buffer pointer. Updated by the SDMA channels to show the next address 
in the buffer to be accessed.

0x10 RBPTR 16-bits Current RxBD pointer. Points to the current BD being processed or to the next BD the 
receiver uses when it is idling. After reset or when the end of the BD table is reached, 
the CP initializes RBPTR to the value in RBASE. 

0x12 — 16-bits Rx internal byte count. Down-count value initialized with MRBLR and decremented 
with each byte written by the supporting SDMA channel.

0x14 — 32-bits Rx temp. For CP use only.

0x18 TSTATE 32-bits Tx internal state. For CP use only.

0x1C — 32-bits Tx internal buffer pointer. Updated by the SDMA channels to show the next address 
in the buffer to be accessed.

0x20 TBPTR 16-bits Current TxBD pointer.

0x22 — 16-bits Tx internal byte count. Down-count value initialized with TxBD.bd_length and 
decremented with each byte read by the supporting SDMA channel.

0x24 — 32-bits Tx temp. For CP use only.

0x28 RCRC 32-bits Temp receive/transmit cyclic redundancy check (CRC). Does not need to be 
accessed for normal operation but may be helpful for debugging.

0x2C TCRC 32-bits

0x30 — Protocol-specific area.

Notes: 1. SCC base is IMM+0x8000. Refer to Table 1-5

Table 1-6.  SCC Parameter RAM (Continued)

Offset 
from SCC 

Base1
Name Width Description
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1.3.7.6   RxBD Processing Example

Figure 1-5 shows how the RxBD is processed in SCC UART mode. This example assumes that 
the maximum receive buffer length (MRBLR) is 80 bytes. The MRBLR is the number of bytes 
the MSC8101 writes to a receive buffer before it moves to the next buffer. However, the 
MSC8101 can write fewer bytes than the MRBLR value if an error or end-of-frame (for 
frame-based protocols) occurs. It never writes more bytes than the MRBLR value, so the receive 
buffers cannot be smaller than the MRBLR. 

When data arrives, the CP moves the data to the buffer to which the first RxBD in the table is 
pointing. The CP continues to move data until the buffer is full or an error occurs. Then the buffer 
is closed. Subsequent data uses the next BD.

Figure 1-3.  Example SCC2 BD and Buffer Memory Structure
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Figure 1-4.  Example SPI BD and Buffer Memory Structure
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Figure 1-5.  Example SCC UART RxBD Processing

If RxBD.bd_cstat.E is cleared, the current buffer is not empty, and it reports a busy error. 
The CP does not move from the current BD until the SC140 core sets RxBD.bd_cstat.E to 
indicate that the buffer is empty. After using a descriptor, the CP clears RxBD.bd_cstat.E 
and does not reuse a BD until the core processes it. However, in continuous mode when 
RxBD.bd_cstat.CM is set, RxBD.bd_cstat.E remains set so the buffer can be 
overwritten when the CP accesses this BD again. When the CP discovers a descriptor’s 
RxBD.bd_cstat.W (wrap) is set, which indicates that it is the last BD in the circular BD table, 
it returns to the beginning of the table when it is time to move to the next BD. 

When the UART receives idle characters (all ones), the channel begins counting consecutive idle 
characters received. If the maximum idle characters (MAX_IDL) is reached, 
RxBD.bd_cstat.ID is set, the buffer is closed, and an interrupt is generated if not masked. 
When the UART receives no stop bit, it reports framing errors. The channel writes the received 
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RxBD 1

1. Receives characters and stores them in the buffer at 0x12020.

2. Clears RxBD.bd_cstat.E after buffer is full (8 bytes received).

3. Writes 0x08 to RxBD.bd_length.

1. Receives characters and stores them in the buffer at 0x89C000.

2. Clears RxBD.bd_cstat.E after buffer is full.

3. Proceeds to RxBD 1 since RxBD.bd_cstat.W = 1.

RxBD 3

1. Receives characters and stores them in the buffer at 0xFF07F000.
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of consecutive idle sequences (MAX_IDL) was received.
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...

2. Clears RxBD.bd_cstat.E after buffer is full (8 bytes received).

RxBDx
MSC8101 User’s Guide, Rev. 3

1-18 Freescale Semiconductor



Architecture
character to the buffer, closes it, sets RxBD.bd_cstat.FR, generates an interrupt if not 
masked, and increments the received characters with the framing error counter (FRMEC). A new 
receive buffer receives subsequent data.

1.3.7.7   TxBD Processing Example

Figure 1-6 shows how the TxBD is processed in SCC UART mode. When the CP detects that the 
TxBD.bd_cstat.R (ready) is set, it starts transmitting the buffer. After the buffer is 
transmitted, the CP waits for the next descriptor’s TxBD.bd_cstat.R to be set before 
proceeding. When the CP detects that a descriptor’s TxBD.bd_cstat.W (wrap) is set, 
indicating that this BD is last in the BD table, it returns to the start of the BD table after this last 
BD is processed. The CP clears TxBD.bd_cstat.R (not ready) after using a TxBD, which 
keeps it from being retransmitted before the SC140 core confirms it. However, some protocols 
support a continuous mode for which TxBD.bd_cstat.R remains set after the buffer is closed 
to allow the buffer to be resent next time the CP accesses this BD. Continuous mode is enabled 
by setting TxBD.bd_cstat.CM. 

Figure 1-6.  Example SCC UART TxBD Processing
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3. Proceeds to the next TxBD since TxBD.bd_cstat.W = 0.

TxBD n

2. Clears TxBD.bd_cstat.R after buffer is sent.
3. Proceeds to TxBD 1 since TxBD.bd_cstat.W = 1.
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R W I CR A CM P NS CT

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
SCC UART TxBD.bd_cstat
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can cause an interrupt since TxBD.bd_cstat.I = 1.

4. Proceeds to next TxBD since TxBD.bd_cstat.W = 0.

TxBD.bd_cstat

TxBD.bd_length

TxBD.bd_addr
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1.4 MSC8101 Application Examples 

The MSC8101 can be configured to meet many system application needs. Example applications 
include:

� Media (voice/fax/data) over packet gateway

� 3G infrastructure BTS

� Centralized DSP architecture

� Distributed DSP architecture

In all the examples, the SCCs, SMCs, I2C, SPI ports can be used for management.

1.4.1   Media (Voice/Fax/Data) Over Packet Gateway (ATM/FR/IP)

Figure 1-7 shows the media (voice/fax/data) over packet gateway (ATM/FR/IP) configuration.

Figure 1-7.  Media (Voice/Fax/Data) Over Packet (ATM/FR/IP)

In this application, a single TDM port connects to an external framer. Up to four MSC8101 TDM 
interfaces can handle an aggregate of 256 channels (one of which can be T3/E3). One TDM 
interface can support 32–128 channels. The MSC8101 receives and transmits data in transparent 
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MSC8101 Application Examples
either in memory residing internally in the device or externally via the system bus (optional). The 
main trunk can be configured as 155 Mbps full-duplex ATM using the UTOPIA interface, as 100 
Mbps 10/100 Base Fast Ethernet with the MII interface, or as a high-speed serial channel (up to 
45 Mbps).

The HDI16 can interface with/control a bank of MSC8101s via a host controller. Through the 
HDI16, the host controller downloads the code via a bootstrap routine at reset and handles 
scheduling and overall control of the MSC8101. The MSC8101 memory controller supports 
many types of memories, including EDO DRAM and page-mode as well as pipeline SDRAM for 
efficient burst transfers.

1.4.2   3G Infrastructure Cellular BTS

Figure 1-8 shows a 3G infrastructure cellular BTS configuration.

Figure 1-8.  3G Infrastructure Cellular BTS
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MSC8101 Overview
the internal virtual IDMA. The slow communication ports (SCCs, SMCs, I2C, and SPI) perform 
management and debug functions. Each MSC8101 is memory-mapped, through its HDI16 port, 
on the MPC8260 local bus. In addition, each MSC8101 can connect to a private local memory 
through the 32-bit wide bus.

Figure 1-9.  Centralized DSP Architecture

1.4.4   Distributed DSP Architecture

Figure 1-10 shows a distributed DSP architecture connected through the HDI16 port. In this 
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Software Development
Figure 1-10.  Distributed DSP Architecture Connected Through the HDI16 Port

In the configuration depicted in Figure 1-11, the bus port can be used in both master and slave 
mode, eliminating the need for a separate HDI16 connection. The bus operates in either 32- or 
64-bit wide mode, and each of the DSPs can access the shared SDRAM, eliminating the need for 
private memories. The connection to the serial backplane is a combination of TDMs, Ethernet, or 
ATM. When connected to an ATM backbone, all devices connect to a shared UTOPIA bus. One 
of the device is the UTOPIA master, and all others (including the PHY device) are UTOPIA 
slaves.

Figure 1-11.  Distributed DSP Architecture Connected Through a Shared Bus
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Figure 1-12.  Software Development Flow

Software development starts at the C level. The architecture of the SC140 DSP core is very C 
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Software Development
efforts on these critical code sections, either by modifying the C code or by optimizing code 
segments in assembly.

A variety of optimization techniques can be implemented either in C code or assembly code. 
Optimization focuses mainly on exposing the parallelism that is embedded in the algorithm so 
that the compiler can place as many instructions as possible into the same execution set. This is 
mainly true for the DSP routines in which the parallelism is not always visible to the compiler. It 
is less true for the control code routines in which the compiler can expose the potential 
parallelism (where it exists) by itself. Example optimization techniques are split summation, 
multisample, loop unrolling, and loop merging. These techniques are described in detail in an 
application note entitled Introduction to the StarCore Tools: An Approach in Nine Exercises 
(AN2009/D), which is available with accompanying code at the Website listed on the back cover 
of this manual.

All tools are integrated under a comprehensive integrated development environment (IDE), 
which increases developer productivity by tying together code generation and system debug tools 
with project management and editing tools.

Freescale  also provides an MSC8101 application development module (ADM). This board has an 
MSC8101 device surrounded by hardware that enables the customer to test most of the device 
networking and connectivity capabilities. The board includes a memory sub-system (SDRAM 
and Flash memory), various network transceivers (155 Mbps ATM, 100 Mbps Ethernet, Quad 
E1/T1, RS232), Stereo CODEC, and a JTAG debug interface to the MSC8101. It links to the host 
via a variety of interfaces (parallel, serial, and PCI).
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Reset Configuration and Boot 2
This chapter describes the MSC8101 reset and boot process illustrated with examples of different 
system configurations. It also describes the device clocking system, as it pertains to the reset and 
boot process. The MSC8101 communicates with other devices in a system either through the 
system bus or the host port (HDI16). The chosen communication mode defines the reset 
configuration and the boot method.

2.1 Reset Configuration and Boot Basics

Reset configuration sets the basic mode of operation for the MSC8101, including the operating 
frequency, arbitration, boot port size, memory controller functionality, and bus behavior. These 
are the minimal parameters that must be set for correct operation. The system configuration 
(memory controller, system protection logic, interrupt controller, parallel I/O, and clocks) do not 
change. There are three kinds of reset in the MSC8101 system:

� Soft reset. Invoked externally by asserting the SRESET signal or internally by events. The 
soft reset initializes the core and internal logic, but system configuration and clocks do not 
change. 

� Hard reset. Invoked externally by asserting the HRESET signal or internally by events. The 
hard reset initializes the core internal logic and system configuration. The phased-lock 
loop (PLL) and delay-lock loop (DLL) are not affected.

� Power-on reset. Invoked only externally by asserting the PORESET signal. Power-on reset 
initializes the core internal logic, the system configuration, and the clocks. Asserting 
PORESET input also asserts the HRESET and SRESET signals internally. During power-on 
reset, several configuration pins are sampled to set the boot mode, the source of the reset 
configuration values, and the basic clocking mode. The configuration pins are sampled at 
the rising edge of PORESET, and then the reset configuration process starts. During reset 
configuration, a reset configuration word that determines basic parameter settings is 
written to the MSC8101, and a PLL and DLL locking process starts. The HRESET and 
SRESET pins remain asserted for a time after the PLL and DLL locking.

2.1.1   Bootloader Program

The bootloader program loads and executes source code that initializes the MSC8101 after the 
MSC8101 completes a reset sequence, and the MSC8101 programs its registers for the required 
mode of operation. The bootloader program, which is provided in the on-chip ROM of the 
MSC8101 User’s Guide, Rev. 3
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Reset Configuration and Boot
MSC8101 and presented in Appendix C of the MSC8101 Reference Manual (MSC8101RM), 
loads and executes source programs received from a host processor, external memory (an 
EPROM or a standard memory device on the system bus), or a serial EPROM using the I2C 
protocol. The bootloader code starts at location 0xF80000 in the on-chip memory. The bootloader 
operation mode is set by configuring the BTM[0–1]/EE[4–5] external pins. These pins are sampled 
on the rising edge of PORESET and their value is stored. In the case of a hard or soft reset, the 
stored value defines the boot mode. After power-on reset, these pins are available for other uses. 
Table 2-1 shows the mode options selected by BTM[0–1]/EE[4–5].

Note: The contents of the stack memory location can be corrupted when a reset occurs during 
normal operation. The first instruction of the boot code sets the starting stack address 
to 0x68000. If a hard or soft reset occurs, the boot code overwrites any user data at this 
location. Ensure that the user program reinitializes the stack contents after a reset 
occurs before executing code that uses the stack contents. Never load any source code 
to 0x68000 during the boot process, because it will corrupt the stack during execution 
of the bootloader program. 

The system does not support interrupt handling during the bootloader operation in any mode. The 
user must plan for any interrupts that occur while the boot procedure is in progress. Always load 
interrupt handling code and change the location of the interrupt handler table as soon as possible 
during the boot procedure. Make sure that no non-maskable interrupt (NMI) occurs before the 
interrupt handler loading is complete.

2.1.2   Clocks 

The MSC8101 clocking architecture includes two PLLs: the system PLL (SPLL) and the core 
PLL (CPLL). The SPLL is the source clock for the following:

� Internal clocks for all blocks in the device, including the CPLL.

� The external system bus clock.

� A DLL used to eliminate possible clock skews in the system, thus allowing multiple 
MSC8101s to be connected on the same board synchronously, as well as to SRAM.

Table 2-1.  Boot Mode Selection

External Pin
Source Program Location

BTM0/EE4 BTM1/EE5

0 0 External Memory

0 1 Host

1 0 Serial EPROM

1 1 Reserved
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Each CPLL has the following:

� A predivider that can divide by any integer number between 2 and 5.

� The capability to multiply the input frequency by any even integer number between 10 and 
14, with a phase-locking mechanism for skew elimination. 

Refer to the MSC8101 Technical Data sheet and AN2306/D Clock Mode Selection for MSC8101 
and MSC8103 Mask Set 2K87M for details on the clocking structure. Figure 2-1 shows the block 
diagram of the MSC8101 clocking structure.

The MSC8101 supports the following set of frequency ratios: 

� Ratios between the system bus clock and the CPM clock—limited to 1:2, 1:2.5, 1:3, and 
1:4. 

� Ratios between the system bus clock and the SC140 clock—limited to 1:3, 1:3.5, 1:4, 1:5, 
and 1:6. 

Six bits map the MSC8101 clocks to one of 64 possible configuration mode options, 27 of which 
are valid modes. Each option determines the CLKIN, system bus, SC140, and CPM frequency 
ratios. The six bits comprise three dedicated pins (MOSCK[1-3]) and three bits from the reset 
configuration word (MODCK_H). For information on clock configuration modes and examples, 
see AN2306/D Clock Mode Selection for MSC8101 and MSC8103 Mask Set 2K87M.

Figure 2-1.  MSC8101 Clocking Structure
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2.2 Configuring a Single MSC8101

This section describes the configuration for a system that consists of a single MSC8101 and 
external memories. The input clock operates at 20 MHz, and the required system clocks are the 
CPM clock at 150 MHz, the system bus clock at 100 MHz, and the SC140 clock at 300 MHz. 
There are three possible ways to apply the hard reset configuration word in such a system. 

� The MSC8101 is a reset configuration master and reads its own reset configuration word 
from EPROM.

� The MSC8101 is a reset configuration slave and the system has no boot EPROM.

� The default configuration is used, and the system does not access the boot EPROM.

2.2.1   Master Mode With EPROM

In the configuration described in Figure 2-2 and Table 2-2, the MSC8101 works as a reset 
configuration master and reads its own reset configuration word from external EPROM. The 
MSC8101 performs the first part of the reset configuration process described in Section 2.3.1, 
Reset Configuration Sequence.

. 

Figure 2-2.  Configuring a Single Device From EPROM

Table 2-2.  Pin Connectivity for a Reset Configuration From Boot EPROM
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BTM[0–1]/EE[4–5] To GND to enable boot from external memory

MODCK[1–3] As required to enable the desired clock frequency
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Configuring a Single MSC8101
2.2.2   Slave Mode With No EPROM

For a system with no boot EPROM, you can configure the MSC8101 as a configuration slave by 
deasserting RSTCONF during PORESET assertion and then asserting RSTCONF while driving an 
appropriate configuration word on D[0–31] (seeTable 2-3). In such a system, asserting HRESET in 
the middle of an operation causes the MSC8101 to return to the configuration programmed after 
PORESET assertion. The reset configuration word should be applied to D[0–31] using pull-ups and 
pull-downs on each signal of the bus.

2.2.3   Default Configuration With No EPROM

The default MSC8101 reset configuration is the simplest configuration scenario (see Figure 2-3 
and Table 2-4). The MSC8101 does not access the boot EPROM; it is assumed that the default 
configuration is used when exiting hard reset.

RSTCONF To GND

Boot EPROM To the address (A[0–31]) and data (D[0–63]) buses

Table 2-3.  Pin Connectivity for a Reset Configuration With No Boot EPROM

Pin/Function Connection

External reset To PORESET

HRESET Pulled up

DBREQ/EE0 To GND for normal operation of the SC140 core

HPE/EE1 To GND to disable the host port

BTM[0–1]/EE[4–5] To GND to enable boot from external memory

MODCK[1–3] As required to enable the desired clock frequency

RSTCONF To VCC during PORESET; is driven to GND when the configuration word is applied

Boot EPROM Any external memory connected to address and data bus is not accessed for reset 
configuration, but it can be accessed for boot and other purposes. 

D[0–31] Pull each line up to VCC or down to ground as appropriate to generate the correct reset 
configuration word

Table 2-2.  Pin Connectivity for a Reset Configuration From Boot EPROM

Pin/Function Connection
MSC8101 User’s Guide, Rev. 3
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Reset Configuration and Boot
Figure 2-3.  Configuring a Single Chip With the Default Configuration

After exiting reset, the MSC8101 accesses an address table that starts from address 0xFE000110. 
This address table is a jump table that contains the address for the boot routine. The address table 
has eight entries, which are accessed according to the MSC8101 internal space base (ISB) of the 
SIU Internal Memory Map Register (IMMR), which are configured during reset. Each entry is 
four bytes wide. For example, an MSC8101 with an ISB of 000 accesses the first entry, which 
resides at address 0xFE000110. An MSC8101 with an ISB of 010 accesses the third entry, which 
resides at address 0xFE000118. After getting the boot code location, the MSC8101 starts 
executing the boot code. The boot memory connects to CS0, which gates access to the memory.

2.3 Configuring a Multi-MSC8101 System, Bus Connected

This section describes a system of up to eight MSC8101s that connect to a bus. The reset 
configuration and boot process occur via the bus. In such a system, an EPROM or other standard 
memory device usually serves the reset and the boot process. This memory device also connects 
to the bus. The input clock operates at 20 MHz, and the required system clocks are the CPM 
clock at 150 MHz, the bus clock at 100 MHz, and the SC140 clock at 300 MHz.

Table 2-4.  Pin Connectivity for the Default Reset Configuration 

Pin/Function Connection

PORESET External reset

HRESET Pulled up

DBREQ/EE0 To GND for normal operation of the core

HPE/EE[1] To GND to disable the host port

BTM[0–1]/EE[4–5] To GND to enable boot from external memory

MODCK[1–3] As required to enable the desired clock frequency

RSTCONF To VCC during PORESET

Boot EPROM Any external memory connected to address and data bus is not accessed for 
reset configuration, but it can be accessed for boot and other purposes. 

Configuration
Slave MSC8101

PORESET

PORESET

RSTCONF

D[0–31]

A[0–31]

HRESET

Vcc

Vcc
MSC8101 User’s Guide, Rev. 3

2-6 Freescale Semiconductor



Configuring a Multi-MSC8101 System, Bus Connected
One of the MSC8101 devices acts as a reset configuration master for the reset configuration 
process, and the rest are slaves. A reset configuration word for each MSC8101 in the system is 
stored at a known address in the memory device. The reset configuration master reads the first 
reset configuration word, configures itself, and then reads the other configuration words to 
configure the rest of MSC8101s. This process is described in detail in the following sections.

After exiting reset, each MSC8101 boots from a different address in order to provide maximum 
system flexibility. After reset, the MSC8101 accesses the external memory device to perform the 
boot routine. Each MSC8101 can access a unique address to perform its own boot routine. Table 
2-5 and Figure 2-4 describe the MSC8101 pins and system connectivity.

Table 2-5.  Pin Connectivity for a Multi-MSC8101 System, Bus Connected

Pin/Function Connection

All PORESET External reset

HRESET Connected among themselves and pulled up, if a simultaneous out of reset is 
required. As long as one of the chips is still in the reset condition, HRESET is 
asserted and does not allow the others to exit reset.

DBREQ/EE0 To GND for normal operation of the core

HPE/EE1 To GND to disable the host port

BTM[0–1]/EE[4–5] To GND to enable boot from external memory or to VCC to enable boot from 
the HDI16

RSTCONF Configuration master MSC8101:
To GND
Configuration slave MSC8101s:
To one of A[0–6]
MSC8101 User’s Guide, Rev. 3

Freescale Semiconductor 2-7



Reset Configuration and Boot
Figure 2-4.  Multi-MSC8101 Bus System
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Configuring a Multi-MSC8101 System, Bus Connected
2.3.1   Reset Configuration Sequence

The reset configuration sequence supports a system with up to eight MSC8101 devices, each 
configured differently. It needs no additional glue logic for reset configuration. In a typical 
multi-MSC8101 system, one MSC8101 acts as the configuration master while all other 
MSC8101s act as configuration slaves. The configuration master reads eight configuration words 
from EPROM in the system and uses them to configure itself as well as the configuration slaves. 
The way that the MSC8101 acts during hardware reset configuration is determined by the value 
of the RSTCONF input during the period in which PORESET is asserted and deasserted. If RSTCONF 
is asserted (0) while PORESET changes state, the MSC8101 is a configuration master; otherwise, 
it is a slave. 

In a typical multiple-MSC8101 system, the RSTCONF input to the configuration master is 
hardwired to ground, while the RSTCONF inputs of other devices connect to the high-order 
address bits of the configuration master, as described in Table 2-6.

The configuration words for all MSC8101s reside in an EPROM connected to CS0 of the 
configuration master. Because the port size of this EPROM is not known to the configuration 
master, the configuration master must read all the hard reset configuration words byte-by-byte 
from locations that are port size independent before reading the configuration words. Table 2-7 
shows the addresses used to configure the various MSC8101s. Byte addresses that are not listed 
in this table have no effect on the configuration of the MSC8101 devices. The values of the bytes 
in Table 2-7 are always read on byte lane D[0–7], regardless of the port size.

Table 2-6.  RSTCONF Connections in a Multiple-MSC8101 System

Configured Device RSTCONF Connection

Configuration master GND

First configuration slave A0

Second configuration slave A1

Third configuration slave A2

Fourth configuration slave A3

Fifth configuration slave A4

Sixth configuration slave A5

Seventh configuration slave A6

Table 2-7.  Configuration EPROM Addresses 

Configured Device Byte 0 Address Byte 1 Address Byte 2 Address Byte 3 Address

Configuration master 0x00 0x08 0x10 0x18

First configuration slave 0x20 0x28 0x30 0x38

Second configuration slave 0x40 0x48 0x50 0x58
MSC8101 User’s Guide, Rev. 3
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Reset Configuration and Boot
The configuration master first reads a value from address 0x00 and then reads a value from 
addresses 0x08, 0x10, and 0x18. These four bytes form the configuration word of the 
configuration master, which then proceeds reading the bytes that form the configuration word of 
the first slave device. The configuration master drives the whole configuration word on D[0–31] 
and toggles its A0 address line. Each configuration slave uses its RSTCONF input as a strobe for 
latching the hard reset configuration word during HRESET assertion time. Thus, the first 
configuration slave whose RSTCONF input connects to the configuration masters A0 output latches 
the word driven on D[0–31] as its configuration word. The configuration master continues to 
configure all MSC8101 devices in the system. The configuration master always reads eight 
configuration words, regardless of the number of MSC8101 devices in the system. 

2.3.2   Reset Configuration Word Values

In the system described in Figure 2-4, one arbiter handles the system bus arbitration and one 
memory controller controls the signals and attributes of all memory accesses. Any MSC8101 in 
the system can handle the roles of system arbiter and memory controller. The MSC8101 that 
serves as a system arbiter uses its internal arbiter, and the rest of the MSC8101s are configured to 
work in an external arbitration mode. The MSC8101 that serves as the memory controller for the 
system uses its memory controller, and the remaining MSC8101s are configured to work with an 
external memory controller. The arbitration mode and memory controller mode are set in the hard 
reset configuration word.

Each MSC8101 in the system must have a unique value in the IMMR. In the reset configuration 
word, there can be up to eight different values for the first three bits of the IMMR (ISB[0–2]). 
Each MSC8101 in the system must be configured to one of these values. These values can be 
changed during boot. MODCK is also configured in reset configuration to choose the desired clock 
frequency.

Third configuration slave 0x60 0x68 0x70 0x78

Fourth configuration slave 0x80 0x88 0x90 0x98

Fifth configuration slave 0xA0 0xA8 0xB0 0xB8

Sixth configuration slave 0xC0 0xC8 0xD0 0xD8

Seventh configuration slave 0xE0 0xE8 0xF0 0xF8

Table 2-7.  Configuration EPROM Addresses (Continued)

Configured Device Byte 0 Address Byte 1 Address Byte 2 Address Byte 3 Address
MSC8101 User’s Guide, Rev. 3
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Configuring a Multi-MSC8101 System, Bus Connected
2.3.3   Boot in a Multi-MSC8101 Bus System

The MSC8101 executes commands directly from external memory when BTM[0–1]/EE[4–5] are 
both pulled low. If required, a boot sequence can be loaded into internal RAM as part of the boot 
routine. There are no restrictions on the format of the boot sequence. The MSC8101 internal 
memory controller supports specific boot functionality. The boot chip-select operation allows 
address decoding prior to system initialization for the external memory boot operation. CS0 is the 
boot chip-select output, and the external boot memory should connect to it. The MSC8101 boot 
chip-select operation also provides a programmable port size during system reset, if the BPS bits 
in the reset configuration word are written. 

The bootloader program accesses an address table that resides at address 0xFE000110. This table 
holds the address of the boot routine as a 32-bit entry. This address is user-programmable, and the 
routine can be placed at any address in the space controlled by the chip-select. The MSC8101 
retrieves the boot address from the table according to the ISBs in first three IMMR[0–2], which 
are configured during reset. Each entry is four bytes wide. For example, a device with an ISB 
cleared to 000 accesses the first entry, which resides at address 0xFE000110. A device with an 
ISB of 010 accesses the third entry, which resides at address 0xFE000118. After getting the boot 
code location, the MSC8101 begins executing the boot. Therefore, each device can have its own 
boot routine.

Table 2-8.  Hard Reset Configuration Word Values  

Master MSC8101 Slave MSC8101 Devices

Value Description Value Description

EARB = 0 Internal arbitration EARB = 1 External arbitration

EXMC = 0 Internal memory controller EXMC = 1 External memory controller

EBM = 1  system bus-compatible mode EBM = 1  system bus-compatible mode

BPS = 01 8-bit boot port size according to the 
example in Figure 2-4

BPS = 01 8-bit boot port size according to the 
example in Figure 2-4

SCDIS = 0 SC140 core enabled SCDIS = 0 SC140 core enabled

DLLDIS = 0 No DLL bypass for normal operation DLLDIS = 0 No DLL bypass for normal operation

ISB = 000 IMMR value is 0xf000_0000 ISB = xxx IMMR value is different for each 
MSC8101

MODCK_H = xxx As required to enable the desired clock MODCK_H = xxx As required to enable the desired clock

The rest of the fields should be configured according to system requirements: IRQ7INT, ISPS, IRPC, DPPC, NMI OUT, BBD, 
TCPC, BC1PC. Assume they are all equal to zero.
MSC8101 User’s Guide, Rev. 3
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2.4 Configuring a Multi-MSC8101 System Connected Via the Host 
Port

This section presents an example of a system with three MSC8101s controlled by one MSC8101 
that serves as a host. The host exits reset and boots, and then it writes the reset configuration 
word to each of the other two MSC8101 devices. After the last MSC8101 hard reset 
configuration word is written, the MSC8101s exit reset and the boot process starts. The host 
loads the hard reset configuration word into each MSC8101, which then executes its boot code. 
The host MSC8101 can be configured in any of the ways described for a single device, and it 
exits reset as a single device. In the example discussed here, it is configured by reading a hard 
reset configuration word from external memory. Then it executes its boot code, which resides in 
the external EPROM. The host MSC8101 is ready to configure the rest of the system. It executes 
code from the EPROM or other external memory, or it downloads the code to its internal SRAM. 
This code contains the hard reset configuration words and the boot code for each MSC8101 
device in the system. Table 2-9 and Table 2-10 show the pin connectivity for the host and for the 
multi-MSC8101 system. Figure 2-5 describes the MSC8101 pins and basic system connectivity.

Table 2-9.  Host MSC8101 of a Multi-MSC8101 System Connected Via Host Port

Pin/Function Connection

External reset To all PORESET

HRESET Does not connect to the HRESET of the other MSC8101s

DBREQ/EE0 To GND for normal operation of the SC140 core.

HPE/EE1 Connected to GND to disable the host port

BTM[0–1]/EE[4–5] Connected to GND to enable boot from external memory

RSTCONF Connected to GND

Table 2-10.  Multi-MSC8101 System Connected Via Host Port 

Pin/Function Connection

External reset To all PORESET

HRESET Connected among themselves and pulled up, if a simultaneous out of reset is 
required. As long as one of the devices is still in the reset condition, HRESET 
is asserted and does not allow the others to exit reset.

DBREQ/EE0 To GND for normal operation of the SC140 core.

HPE/EE1] To VCC to enable the host port

BTM[0–1]/EE[4–5] All BTM0s connect to GND and BTM1s connect to VCC to enable boot loading 
through host port

RSTCONF Connects to VCC

NOTE: Ensure that the ISPS bit 7 of the hard reset configuration word is set (1) when the Host Port (HDI16) is in 
use. This changes the data bus from 64 to 32 bits wide. Failure to set this bit results in data bus conflicts and errors.
MSC8101 User’s Guide, Rev. 3
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Configuring a Multi-MSC8101 System Connected Via the Host Port
Figure 2-5.  Multiple MSC8101s Connected Via the Host Port

2.4.1   Host Reset Configuration Sequence

This section describes how the reset configuration word is applied to a host-controlled MSC8101. 
Host reset configuration allows the host to program the reset configuration word via the host port 
after PORESET is deasserted. If HPE is sampled high at the rising edge of PORESET, the host port is 
enabled. In this mode the RSTCONF pin must be pulled up deasserted. The device extends the 
internal PORESET until the host programs the reset configuration word register. The host must 
write four 8-bit half-words to the host reset configuration register address to program the reset 
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Reset Configuration and Boot
configuration word, which is 32-bits wide.1 This register is programmed before the internal PLL 
and DLL in the MSC8101 are locked. The host must program this register after the rising edge of 
PORESET input. The host has its own clock and does not depend on the MSC8101 clock. After the 
PLL and DLL are locked, HRESET remains asserted for another 512 bus clocks and is then 
released. The SRESET is released three bus clocks later. 

2.4.1.1   Reset Configuration Word Value

In the system depicted in Figure 2-5, the host MSC8101 transfers data and control to/from the 
other MSC8101s through the host port. The host uses its address and data buses for data transfers. 
Only the host can initiate transactions, so there is no need for a system arbiter. The host accesses 
external memory via its system bus. The other MSC8101s connect to their own external memory, 
a memory for each MSC8101, so there is no need for a system memory controller.

2.4.2   Boot Through Host Port

The MSC8101 host interface supports bootloading from hosts with 8-bit or 16-bit ports. The 
system in the example discussed here uses a 16-bit port. The MSC8101 host treats all accesses as 
address accesses. Single-data strobe or dual-data strobe access and data strobe polarity are 
configured via external pins. The MSC8101 host interacts with the host port of the MSC8101 
slave in polling mode. The MSC8101 host accesses the host port registers to determine the status 
of the host port—for example, whether the host port can receive more data.

1. For details on the host port registers, refer to the HDI16 chapter in the MSC8101 Reference Manual.

Table 2-11.  Reset Configuration Word Values for Host Reset Configuration 

Master MSC8101 Slave MSC8101 Devices

Value Description Value Description

EARB = 0 Internal arbitration EARB = 0 Internal arbitration

EXMC = 0 Internal memory controller EXMC = 0 Internal memory controller

EBM = 0 Single-chip mode EBM = 0 Single-chip mode

BPS = 01 8-bit boot port size according to the 
example in Figure 2-5

BPS = 00 Boot occurs via the host port; this value 
has no effect

SCDIS = 0 SC140 core enabled SCDIS = 0 SC140 core enabled

DLLDIS = 0 No DLL bypass for normal operation DLLDIS = 0 No DLL bypass for normal operation

ISB = 000 IMMR value is 0xF000_0000 ISB = 010 Each MSC8101 can have any IMMR value; 
can be changed by boot

ISPS = 1 Select 32-bit data bus ISPS = 1 Selects 32-bit data bus

The rest of the fields should be configured according to system requirements: IRQ7INT, ISPS, IRPC, DPPC, NMI 
OUT, BBD, TCPC, BC1PC. Assume they are all equal to zero.
MSC8101 User’s Guide, Rev. 3
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Configuring a Multi-MSC8101 System Connected Via the Host Port
2.4.3   Source Program Data Stream Structure

The source program can be organized into several blocks. Each block is either a data block or an 
instruction block, and it can be loaded to a different specified destination. The checksum method 
ensures correct data loading. Each block specifies its size and destination address, and it ends 
with a checksum and a CHECKSUM. Figure 2-6 summarizes the structure of the source program 
data stream.

Figure 2-6.  Boot Code Stream Structure

The data stream source programs must be structured in the format shown in Table 2-12.

The bootloader routine expects at least one code block. When more than one block is included in 
the source program data stream, word n+5 contains the address of the second block, as shown in 
Table 2-12. The sequence repeats for subsequent blocks until the final block in the data stream is 
reached. A special boot end block indicates the end of the boot code stream (see Table 2-13).

Table 2-12.  Data Stream Source Program Block Structure 

Word Description

1 Block size in 16 bits of the first program block to be loaded, most significant part

2 Block size in 16 bits of the first program block to be loaded, least significant part

3 Address where the first block of the source program is to be loaded, most significant part

4 Address where the first block of the source program is to be loaded, least significant part

5 0x0000

6 0x0000

7 Checksum—xor

8 Checksum—xor

Block 1

Block 2

.

.

.

Block n

Boot End
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Reset Configuration and Boot
The first two words indicate the end of the source blocks. At least one block of source code is 
loaded when the bootloader is invoked.

2.4.4   Host Interface Load Procedure

The host interface load procedure includes:

1. Loading the source code blocks

2. Storing the blocks in a given address

3. Performing checks

The host MSC8101 writes the source code word after word to the host interface registers of the 
MSC8101 slave. For each code word that is loaded, the routine calculates a checksum. The 
checksum is calculated by XORing the current word bit by bit with the result of XORing 
previous words. The value of bit i of the current result is equal to XORing bit i of the current 
word with bit i of the previous result. After the entire block is loaded, the calculated checksum is 
compared to the loaded checksum to verify that the code loading completed correctly. Note that 
the checksum is calculated on all the block words, starting from the address.

A handshaking mechanism between the host and the slave indicates the status of the code 
loading. The handshake mechanism uses one flag of the Interface Control Register (ICR) and two 
flags in the Host Control Register (HCR). The host can set a flag in the ICR to ignore the 
checksum comparison. If the flag is set, the checksum should be compared.

The SC140 core of the slave MSC8101 sets a flag in the HCR to indicate the completion of code 
loading. It sets a different flag to indicate the occurrence of an error during the checksum checks. 
The host MSC8101 ignores this flag if it does not need the checksum checks. 

2.5 Related Reading
� MSC8101 Reference Manual

� MSC8101 Technical Data

Table 2-13.  Structure of the Boot End Block

Word Description

1 0x0000

2 0x0000

3 Boot start address, most significant part

4 Boot start address, least significant part

5 Checksum, XOR

6 Checksum, XOR 
MSC8101 User’s Guide, Rev. 3
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Optimizing Memory on the SC140 Core 3
This chapter describes the memory mechanism of the SC140 core and explains how to allocate 
the memory efficiently for an application running on the MSC8101. The recommended SC140 
application development methodology involves significant use of a C compiler, which reduces 
development time and results in high-performance code. Most of the memory allocation tasks are 
relegated to the compiler, and the recommendations presented here complement the default 
memory allocation it performs.

3.1 Memory Requirements

Any memory used by the SC140 core must conform to the following system requirements:

� The MSC8101 core supports only unified memory, meaning that memory is regarded as a 
single space. There is no distinction between program memory locations and data memory 
locations, and each memory location possesses a unique address. For example, memory 
address 0x1000 can hold either data or program information. 

� Data must be byte-addressable and accessible to both memory data buses.

� The memory must support all data width accesses used by the SC140 core, namely 
half-word (8 bits), word (16 bits), double-word (32 bits), or quad-word (64 bits).

� Memory must be accessed cycle by cycle so that all accesses on a given cycle are 
identified and resolved before proceeding to accesses in the next cycle.

� Multiple access rules in a given cycle are as follows:

— Multiple read or write accesses to different memory locations execute without any 
predetermined sequence.

— When multiple accesses to the same memory location occur, the access sequence is as 
follows: program fetch, data read, and data write.

— If two write operations access overlapping bytes in memory in the same cycle, there is 
a memory contention. The memory subsystem detects these cases and issues an 
interrupt to the SC140 core.

� The SC140 core does not support accesses to a non-existent memory location. If required, 
the memory subsystem detects these occurrences and generates non-maskable interrupts 
(NMIs) to the SC140 core.
MSC8101 User’s Guide, Rev. 3

Freescale Semiconductor 3-1



Optimizing Memory on the SC140 Core
3.2 Partitioning Memory

The SC140 core is flexible in its support for various memory structures, including different 
division into submemories. The example in Figure 3-1 presents a general structure that partitions 
the memory as follows:

� The memory is made up of a number of 32 KB groups. 

� Each group consists of eight 4 KB modules.

� Each module includes 128 rows.

Addresses are interleaved over the modules within a group, in row boundaries. This organization 
enables consecutive addressing across more than one module in a group.

3.3 Allocating Memory

The compiler allocates program memory and data RAM. By default, the program memory is 
allocated to the subroutines sequentially. In the data memory, a sophisticated algorithm 
efficiently allocates the various arrays and variables. For each variable or array, a time period 
analysis is performed in which the living time of the array or variable is examined, and the option 
to share other variables on the same physical memory locations is tested. If there is no overlap in 
the living times of two variables, they can share the same memory location. The algorithm 
generally finds the most efficient way to allocate the variables. Therefore, it is recommended that 
you allow the compiler to allocate the data RAM. However, for flexibility, the option to allocate 
memory manually still exists. In memory-critical applications, a more optimized allocation may 
be achieved by manual allocation. 
MSC8101 User’s Guide, Rev. 3
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Allocating Memory
Figure 3-1.  Memory Organization
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Optimizing Memory on the SC140 Core
3.4 Avoiding Memory Contentions

Contentions occur when there are multiple requests for access to a memory group in the same 
cycle. A contention event is followed by a stall cycle per conflict in which the contention is 
resolved. The following guidelines apply:

� There can be up to three core memory accesses per clock cycle:

— Two data accesses
— One program access

� Only one program access, or one or two data accesses, can refer to a specific group in the 
same clock cycle.

� Two conflicting accesses to a group (program and data) stall the core for one cycle.

� Two data accesses cause a one-cycle stall if the accesses are to two different rows in the 
same module.

� Two data accesses to the same group do not cause a stall in the following cases:

— Accesses to different modules
— Accesses to the same row of the same module

� The address interleaving structure, in which consecutive addresses are interleaved over the 
eight modules within a group, implies that two data accesses to different memory 
locations do not cause a stall if the addresses of these locations fall within a range of 224 
bytes (7 rows). 

As Figure 3-2 shows, the SC140 memory space is divided into 32 KB groups, each divided into 
eight 4 KB modules. The modules are divided into 32-byte lines.

Figure 3-2.  Memory Structure

Memory contentions between program memory and data memory occur when the program bus 
and the data bus attempt to access the memory within the same group. To prevent memory 
contentions, keep the data and program memory in different groups. For example use the 
addresses 0..0x7FFF (group0) for data storage and addresses 0x8000..0xFFF for program 
memory.
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Related Reading
A memory contention is also caused if the DMA and data bus attempt to access the memory 
within the same group. For information on how to avoid this type of contention, see Section 6.5, 
Avoiding DMA and SC140 Core Contentions, on page 1-25.

Data memory contentions are caused when the two address generation unit (AGU) instructions in 
the execution set attempt to access two different lines in the same memory module. This causes 
the execution set to take one more cycle. To avoid data memory contentions, you can do the 
following:

� If possible, write each memory access in a different execution set. 

� If not, analyze the code to find what combination of memory transfers may cause a 
contention, and then separate them.

� If possible, change the start addresses to avoid contention.

The analysis and contention checks can be done using the simulator, through the display on 
stall option.

3.5 Related Reading

Table 2-1.  

MSC8101 Reference Manual

Chapter 8, Memory Map

Chapter 9, Internal Memory System and Reservation Operation

Chapter 10, Memory Controller

Chapter 11, QBus
MSC8101 User’s Guide, Rev. 3
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Connecting External Memories and 
Memory-Mapped Devices 4
This chapter illustrates several memory interconnection options for the MSC8101 bus and 
memory controller. It outlines the hardware connections and memory register settings for the 
MSC8101 when the system bus connects to Flash memory, Synchronous DRAM (SDRAM) or 
an MSC8101 HDI16 slave.

4.1 Memory Controller Basics

The MSC8101 has three integrated memory controllers tailored to suit a variety of bus control 
profiles. This chapter discusses all of these memory controllers and illustrates them with 
examples:

� General-Purpose Chip Select Machine (GPCM). A baseline controller for simple 
non-multiplexed interfaces such as EPROM, Flash EPROM, and SRAM. A 
GPCM-derived chip select interfaces simple, non-bursting devices over a selection of port 
sizes (8-, 16-, 32- and 64-bit) and a wide range of speed grades. To illustrate its use, the 
chapter discusses the interface to a Flash EEPROM device.

� Dedicated SDRAM controller. Gluelessly connects to JEDEC-compliant SDRAM devices. The 
SDRAM controller generates the row address strobe (RASn), column address strobe (CASn), chip 
select (CSn), and control signal combinations. The programmable address multiplexing and 
timing characteristics enables configuration of the SDRAM parameters including, row to column 
address latch timing, page-mode burst operation, and interleaving. To illustrate SDRAM 
controller operation, this chapter discusses the interface to a SDRAM device on the 100 MHz 
System Bus.

� User-Programmable Machine (UPM). A flexible alternative controller by which users can 
define a fully programmable bus cycle profile for a range of such standard or proprietary 
interfaces as SRAM, Slave Interfaces (HDI16), and ASICs. The UPM offers much more 
flexibility in timing to target a broader range of system devices than the GPCM. Through 
the UPM-controlled interface, software can define the chip selects and control strobes on 
each bus clock to one quarter clock granularity. Developers commonly use this flexibility 
for user-defined interfaces to ASICs or DSPs. Any or all of the eight external chip selects 
can use the same UPM timing. To illustrate the UPM capabilities, this chapter discusses a 
MSC8101 User’s Guide, Rev. 3

Freescale Semiconductor 4-1



Connecting External Memories and Memory-Mapped Devices
UPM-defined interface that gives a programmable port size and strobe generation 
matching that of the MSC8101 HDI16 host port. 

For each chip select (CSn[0-7], CSn[10-11]) and associated memory bank, the associated memory 
controller (that is: GPCM, SDRAM, or UPM) must be programmed in the Machine Select field 
of the respective Base Register (BRx[MS]). Two of the total chip selects (CSn[10-11]) are 
allocated internally on the local bus (for peripherals and memory control). The remaining eight 
chip selects are available for the external system bus. For these chip selects, one set of SDRAM 
settings and up to two separate UPM settings are possible, although multiple chip selects can use 
the same configurations for mapping different memory regions. Any remaining chip selects can 
be programmed in the General-Purpose Chip select mode with individual timing settings per chip 
select.

Whatever memory controller mode is selected, the following parameters must be programmed:

� Base address

� Addressable memory window size

� Port width (8, 16, 32, 64 bits)

On the basis of the address decoded for an internal transaction, the bus operation is mapped onto 
the selected bus. If the data is larger than the corresponding port size, the memory controller 
automatically splits the data into multiple bus cycles of a data width up to the programmed 
maximum: for example, a 64-bit transaction to a 16-bit port generates four bus cycles 
back-to-back).

4.2 External Bus Basics

All memory controller types use exactly the same external 64-bit (or 32-bit) system bus, with the 
distinction that each memory controller offers differing additional strobe signals. This system bus 
has two completely separate configurable bus modes, Single-Master MSC8101 Bus mode and 
Multi-Master Bus mode. The Single-Master MSC8101 Bus mode is selected when the Bus 
Configuration Register BCR[EBM] bit is cleared, and multi-master mode selected when this bit 
is set. The Flash memory, SDRAM, and HDI16 examples in this chapter focus on the 
Single-Master MSC8101 Bus mode.

The Single-Master MSC8101 Bus mode gives the simplest interconnect to external peripherals. 
In this mode, there is no external arbitration, so the MSC8101 is the only master on the bus. The 
MSC8101 drives the address and data for the duration of every bus access, so that external 
memories can connect directly to it, if the capacitive load of the connected devices allows. This 
direct interconnect method is used for the three memory controller examples, GPCM-controlled 
Flash memory, UPM-controlled HDI16 interfaces, and direct SDRAM interfacing in which all 
the signalling, including row and column address multiplexing is handled internally. 
MSC8101 User’s Guide, Rev. 3
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Connecting the Bus to the Flash Memory Device
The System bus operating in multi-master mode has one or more bus masters arbitrating for 
access to the shared bus resource. The advantage of multi-master mode is that several compatible 
bus masters can interconnect directly and make full use of the bus pipelining potential. To 
achieve full bandwidth performance, the separate address and data tenures are pipelined. 
Therefore, the address and associated address controls lines can be ready for the next access 
before the data phase for the current access is complete. The interface to memory devices 
requires the use of external address latches to register the address and maintain it to the memory 
for the full duration of the memory access. Meanwhile, the processor can overlap the next 
arbitration and address phase in readiness for a subsequent access. The MSC8101 simplifies 
external address latching through an address latch signal (ALE), and for SDRAM usage, it also 
provides an address multiplex signal for row and column multiplexing (PSDAMUX).

4.3 Connecting the Bus to the Flash Memory Device

In most embedded systems, Flash memory is the standard way to store the non-volatile bootstrap 
code for the system at power-up. In a DSP environment, at least one device typically connects to 
the Flash memory to configure the system and bootload real-time firmware code into other 
devices from a power-up or reset. The MSC8101 supports such a Flash memory boot operation, 
as follows: 

� PORESET is released and a number of registers are programmed automatically.

Figure 4-1.  Memory Controller Machine Selection
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Connecting External Memories and Memory-Mapped Devices
� Chip Select 0 (CSn0) is programmed by default as a GPCM (BR0[MSEL] = 000) with base 
address 0xFE000000 (BR0[BA] = 1111_1111_1110_0000_0), and an address mask of 
32MB (OR[SDAM] = 1111_1110_0000_0000_0), with conservative timings (relaxed 
timing (OR[TRLX:EHTR] = 10) and 15 wait states (OR[SCY] = 1111)). 

� The MSC8101 will access Flash memory to determine the 32-bit reset configuration word. 
To access Flash memory from reset the external Reset Configuration signals CNFGS and 
RSTCONF should be pulled low to enable the Hardware Reset Configuration Sequence.

� HRESET is released and code is fetched from memory as determined by the Reset Vector 
pointer address. 

Refer to the Reset Configuration and Boot chapter for details on the reset configuration and 
booting procedures. The following subsections present a typical MSC8101-to-Flash-memory 
interconnection example, together with the primary GPCM register configuration and timing 
assumptions.

4.3.1   GPCM Hardware Interconnect 

The GPCM timing can interface with any industry-standard Flash memory device directly. The 
example discussed here illustrates the use of an AMD AM29LV320DB 90 ns 2 M ×  16-bit Flash 
memory. The chip select (CSn0), Output Enable (OEn), and Write Enable (WEn) signals connect 
directly to the Flash memory; with the appropriate programmed register settings (see Figure 
4-2).

4.3.2   Single-Bus Mode GPCM-Based Timings

The timing characteristics of the MSC8101 chip select must meet the worst-case timing needs of 
the selected Flash memory device to assure operation over full temperature and voltage range. 
Valid data is driven from the Flash memory on a read access based on the combined, CEn and OEn 
timings. During a write the address is latched on the falling edge of WEn or CEn, whichever 
happens later. All data is latched into the memory on the rising edge of WEn or CEn, whichever 
happens first. The key timings to assure data transfer integrity are therefore the set-up and hold 
times around these two data latch points.

Figure 4-2.  MSC8101-to-Flash-Memory Interconnect in Single Master Bus Mode
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Connecting the Bus to the Flash Memory Device
To maintain data integrity, it is very important that only one device drives the data bus at any 
given time, so data bus timing around the beginning and end of bus cycles is of great interest. 
Typically, on a write cycle, the data is driven on the first clock edge of the access. To prevent 
data bus contention, sufficient time should be allotted at the end of a read access to ensure that the 
data bus is appropriately tri-stated before the next cycle.

The example illustrated in Figure 4-3 and Figure 4-4 (10 ns CLK period) uses unbuffered data, so 
the situation is relatively simple. However, if data is buffered, the BCTLx signals that control the 
buffer direction (BCTL0) and output enable (BCTL1) timing are asserted on the first memory 
controller clock and negated on the clock of the TA assertion. Therefore, if data buffering is used 
for a GPCM Flash memory (or UPM) access, allot time at the end of read accesses to ensure that 
data is tri-stated. Also, allot time at the beginning of read accesses to ensure that OE timing does 
not contend with buffer write data.

Figure 4-3.  Flash Memory Read, Single Master
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Connecting External Memories and Memory-Mapped Devices
For the AMD AM29LV320D-90 ns device, the 90 ns access timing implies that around nine to 
ten 10 ns clock accesses should be possible. Taking into account the full timing requirements of 
the interdependent signals in the timing diagram example of Figure 4-3 and Figure 4-4, both 
read and write accesses actually use eleven to twelve 100 MHz clock accesses. To achieve this, 
the Option Register (ORx) settings of ACS[0–1]) = 00, TRLX:EHTR = 10, SCY = 7 wait states 
and CSNT = 1 are used. See the Option Register settings in Table 4-1.

The memory controller timing options are set so that write accesses achieve the CSn hold time 
after deassertion of the WEn latches the data. The relaxed timing (OR[TRLX:EHTR] = 10) helps 
prevent data contention on the data bus when reads and writes are alternated. In particular, the 
extended hold time capability on reads ensures that the troublesome case of write data after a read 
does not cause data contention with the next cycle. The one disadvantage of these timings is that 
for back-to-back write accesses, the WEn deassertion time (tWPH) requirements of the Flash 
memory device are not met directly. This is not usually a problem because the Flash memory 
programming is infrequent and typically involves a read (poll) access between each write.

Close inspection of the timings reveals that it is not essential to set TRLX when no buffering is 
used. Therefore, the same timing settings could be altered so that TRLX = 0 and SCY = 7 wait 
states to get a more aggressive clock access with a 90 ns Flash memory. However, the case 
detailed here is more general because the relaxed timing allows more time at the beginning and 
end of cycles, so a buffered solution can use exactly the same settings.

Figure 4-4.  Flash Memory Write, Single Master
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SDRAM Memory Interface
4.4 SDRAM Memory Interface

SDRAMs are the most cost effective, high capacity read/write memories on the market, offering 
high-performance throughput with the cost benefits of a commodity item. The synchronous 
nature of the SDRAM allows precise access timing control, with data transactions possible on 
every clock cycle. SDRAMs are thus ideal for high-bandwidth memory systems.

The SDRAM machine within the MSC8101 memory controller provides all the necessary control 
functions and signals for interfacing to JEDEC-compliant SDRAMs.

The following subsections detail the hardware connection of a 32-bit SDRAM to the MSC8101 
using the SDRAM controller in both Single-Master MSC8101 Bus and Multi-Master Bus modes. 
This is followed by a description of the Timing control settings and the SDRAM initialization 
procedure. Notice that the hardware timings differ for both modes. In Single-Master MSC8101 
Bus mode, the memory controller uses memory timings and is completely glueless. In 
multi-master mode, the memory controller allows pipelined 60x-compatible accesses and 
requires an external address latch and multiplexor.

4.4.1   Single-Bus Mode SDRAM Hardware Interconnect

When operating in Single-Master MSC8101 Bus mode, the MSC8101 is the only master on the 
bus and typically connects directly to memory and/or slave peripherals. The MSC8101 SDRAM 
controller provides the address, data, and control signals for a direct, glueless interconnect to the 
SDRAM. All the address multiplexing is performed internally within the MSC8101, so there is 
no need for address latches or multiplexers typically required for SDRAM control. For the 
SDRAM control commands, the SDRAM needs a chip select (CSn) together with Row and 
Column address strobes (RASn and CASn), Write Enable (WEn), byte lane selects (PSDDQMn), and 
a multiplexed A10/AP bank select pin. Figure 4-5 shows the connection between the MSC8101 
memory controller and a 32-bit Micron MT48LC2M32B2TG using page-based interleaving.

Table 4-1.  GPCM Option Register Settings

Register Setting Description

OR[BCTLD] = 1 BCTL[0–1] signals are not asserted upon access to the Flash memory

OR[CSNT] = 1 CSn/WEn deasserted ¼ clock cycle earlier relative to address deassertion

OR[ACS] = 00 CSn asserted with new address

OR[SCY] = 0111 7 clock cycle wait states

OR[SETA] = 0 PSDVAL is generated internally

OR[TRLX:EHTR] = 10 4 idle cycles are inserted between read access from current bank and next access
MSC8101 User’s Guide, Rev. 3

Freescale Semiconductor 4-7



Connecting External Memories and Memory-Mapped Devices
4.4.2   Single-Bus Mode SDRAM Pin Control Settings

This section presents an example 32-bit Micron SDRAM with the following characteristics:

� 8 MByte size comprising internal 512 KB ×  32-bit ×  4 bank structure 

� 8 column, 11 row addresses 

� 2 bank address pins (BA[1–0]).

Figure 4-6 shows how the address is split into equivalent row and column addresses of a 
page-based interleaved configuration (PSDMR[PBI] = 1). In page interleaving, the least 
significant addresses (immediately below the row address lines) are used for bank select 
addresses so that interleaving is possible on every page boundary. The two least significant 
addresses from the MSC8101 are not connected to the SDRAM because of the 32-bit port size.

Two registers configure the main SDRAM. The SDRAM Mode Register (PSDMR) defines the 
timing and control related parameters, and the Option Register (OR) defines size parameters for 
the SDRAM. The SDRAM mask OR[SDAM] is set to 0xFF8 and OR[LSDAM] = 00000 to 
select 8 MB of addressable space for the chip select. The ORx fields are programmed as follows:

� OR[BPD] = 01 for four internal banks.

� OR[NUMR] = 010 for 11 row addresses. 

For the page-based interleaving example discussed here, Page Mode Select OR[PMSEL] and 
OR[IBID] are both set to 0. Figure 4-6 indicates that the appropriate row start address is A9 using 
OR[ROWST] = 0110.

Figure 4-5.  MSC8101-To-SDRAM Interconnect in Single-Bus Master Mode
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SDRAM Memory Interface
The PSDMR fields are set as follows:

� The address multiplexing control parameters of the PSDMR register indicate that row 
addresses A[9–19] are output on the physical address pins A[19–29] during the ACTIVATE 
command cycle using PSDMR[SDAM] = 010. 

� The MSC8101 BNKSEL pins BNKSEL[1–2] are output on A[20-21], so PSDMR[BSMA] = 
111. Note that the MSB BNKSEL[0] is not used. 

� As Figure 4-6 shows, the row address A9 must be output on the PSDA10 pin by 
programming PSDMR[SDA10] = 001.

� The A10/AP is a dual function pin, during an ACTIVATE it functions as an address signal 
while during a READ/WRITE it acts as an AUTOPRECHARGE control signal.

Table 4-2 summarizes the control settings of the MSC8101 SDRAM controller. 

Figure 4-6.  MSC8101 SDRAM Address Multiplexing

Table 4-2.  SDRAM Controller Settings
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Connecting External Memories and Memory-Mapped Devices
4.4.3   Single-Bus Mode SDRAM Timing Control Settings 

The timing parameters for accessing an SDRAM device must be carefully selected based on a 
timing analysis between the MSC8101 and the SDRAM that includes any external glue logic 
required. For Single-Master MSC8101 Bus mode, you can connect the devices directly and verify 
one set of AC timing characteristics against another. Several programmable timing parameters 
are available within the MSC8101 SDRAM controller. Typically, these parameters vary 
according to the associated timing of the SDRAM. When an access misses an 8 ns 
MT48LC2M32B2 SDRAM page, the read access profile is 5-1-1-1 clocks (10 ns clock period). 
The write access profile is 3-1-1-1 clocks. The Single-Master MSC8101 Bus mode read access is 
shown in Figure 4-7 and the write access in Figure 4-8.

Figure 4-7.  SDRAM Burst Read Page Miss, Single Master
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SDRAM Memory Interface
For the read access, the SDRAM controller assumptions are CAS latency = 3, Last Data Out to 
Precharge = –2, and Precharge to Activate = 2 clocks. The underlying assumption here is that the 
30pF output timing is used in Single MSC8101 Bus mode to meet the SDRAM address set-up 
time. Also, an 8 ns (125 MHz) SDRAM is used for aggressive set-up and hold times to meet the 
MSC8101 specifications.

For write accesses, the SDRAM controller Activate to R/W = 2 and Write Recovery = 2 clocks. 
The write recovery period defines the earliest time a Precharge can occur after the last data output 
in a write cycle. For a single-cycle access, the write recovery period must be 2 cycles to meet the 
overall SDRAM cycle time needs, assuming an Activate to R/W of 2. Table 4-3 lists the 
SDRAM timing control values.

Figure 4-8.  SDRAM Burst Write Page Miss, Single Master

Table 4-3.  SDRAM Timing Control Values

Register Setting Description

PSDMR[RFRC] = 110  8-clock, Refresh to Activate minimum period.

PSDMR[PRETOACT] = 010  2-clock, Precharge to Activate/Refresh minimum period.

PSDMR[ACTTORW] = 010  2-clock, Activate to Read/Write minimum period.

PSDMR[BL] = 1  8-beat burst length (for 32-bit memory size).
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Connecting External Memories and Memory-Mapped Devices
For operation in Single-Master MSC8101 Bus mode, the Burst Length (BL) of 8 and CAS latency 
of 3 cycles should be used for compatibility with the specified 32-bit, 8 ns device. The 
corresponding settings must also be made in the SDRAM itself during initialization.

The memory controller supplies auto-refreshes to the SDRAM according to the interval specified 
in the SDRAM refresh timer (PSRT) and Memory Refresh Timer Prescaler MPTPR[PTP] 
registers as follows:

When the refresh timer expires, the memory controller requests the bus. If the request is granted, 
it issues an auto refresh request using the SDRAM Controller. The value of these registers 
depends on the specific SDRAM device used and the operating frequency of the MSC8101 
system bus. The settings should allow for a potential collision between memory accesses and 
refresh cycles. The period of the refresh interval must be greater than the access time to ensure 
that read and write operations complete successfully.

The MT48LC2M32B2TG requires a refresh rate of 15.625 µs, assuming a 100 MHz system bus 
gives register values of PSRT = 0x31 and MPTPR[PTP] = 0x20.

4.4.4   SDRAM Mode Register Programming and Initialization

SDRAMs must be powered up and initialized in a predefined manner to prevent undefined 
behavior. Once power is applied and the clock is stable, a JEDEC standard initialization sequence 
is performed to configure the SDRAM. This is carried out in software utilizing the SDRAM 
controller Operation field PSDMR[OP]. The sequence required is detailed below:

1. Apply power and start clock.

2. Maintain stable power, stable clock and NOP input conditions for 100 us at the inputs 
(this time is device specific).

3. Issue PRECHARGE ALL BANKS command to the SDRAM.

PSDMR[LDOTOPRE] = 10  –2 clock, Last Data Read to Precharge minimum period.

PSDMR[WRC] = 10  2-clock, Last Data Written to Precharge minimum period. 

OR[EAMUX] = 0  No external address multiplexing.

OR[BUFCMD] = 0  No external buffered control lines (Normal timing).

OR[CL] = 11  3-clock CAS latency. The minimum period between the SDRAM sampling a column 
address and the first data out

Table 4-3.  SDRAM Timing Control Values

RefreshRate PSRT 1+( ) MPTPR PTP[ ] 1+( )×
BusFrequency

---------------------------------------------------------------------------------------=
MSC8101 User’s Guide, Rev. 3
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SDRAM Memory Interface
⇒Program PSDMR[OP] bits to 101 and then perform a dummy access to the SDRAM.

4. Issue 8 CBR Refresh commands to the SDRAM.

⇒Program PSDMR[OP] bits to 001 and then perform 8 accesses to the SDRAM.

5. Issue Mode Register Set command to program the SDRAM Mode Register.

⇒Program PSDMR[OP] bits to 011 and then performing an access to the SDRAM bank  
at an address offset to 0x0CC.

6. Issue the Normal Operation command to the SDRAM.

⇒Program PSDMR[OP] bits to 000. 

The Mode Register programmed in step 5 is used to define the specific mode of operation of the 
SDRAM. This definition includes the selection of a burst length, burst type, CAS latency, 
operating mode and write burst mode. It is programmed via address inputs A[10–0] as detailed in 
Figure 4-9.

Note: In multi-master mode the bus master supplies the mode register data on the low bits of 
the address during the access, for example, the column strobe. The Mode register will 
power up in an unknown state so it is important that it is programmed prior to applying 
an operation command.

4.4.5   60x-Compatible Bus Mode SDRAM Hardware Interconnect

In Multi-Master Bus mode, there are separate address and data tenure phases in which the address 
is not driven for the entire bus transaction, so internal address multiplexing is not used. 
Therefore, external logic must latch the address and multiplex the column and row addresses to 
the SDRAM at the appropriate time. The MSC8101 memory controller provides an Address 
Latch Enable (ALE) and Select pin (PSDAMUX) to control these functions. Figure 4-10 shows the 
interconnect between the MSC8101 and the 32-bit Micron MT48LC2M32B2 using page-based 
interleaving in Multi-Master Bus mode.

The interface signals are essentially the same as for Single-Master MSC8101 Bus mode, apart 
from the address portion. While separate latch and multiplexer devices could be used, this 
example uses a 74LVT16260, which has an integrated latch and 24–12 multiplexer. As Figure 

Figure 4-9.  SDRAM Mode Register Programming
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A9 A8 A7 A6 A5 A4 A3 A2 A1 A0

BLBTCAS LATOP MODEWB
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SDRAM only sees this part of the bus Not
connected

0x0CC

SDRAM Address Lines

MSC8101 Address Lines

BL = 011, Burst Length 8 for 32-bit port
BT = 0, Burst Type is Sequential
CAS Latency = 011, Latency of 3
OP Mode = 00, Standard Operation
WB = 0, Programmed Burst Length
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Connecting External Memories and Memory-Mapped Devices
4-6 shows, addresses A[22–29] are used during column accesses and A[9–19] are used for row 
accesses. Although address lines A[20–21] are not used as part of the column strobe they should 
still be connected on the multiplexer as they are required during mode register programming. As 
A9 is output on the SDA10 pin, the connection to the multiplexer is A[10–19] and A[20–29], 
respectively. The bank address lines are output on the BNKSEL lines. The LE pin latches the 1B 
and 2B inputs on the falling edge of the ALE signal; the MSC8101 PSDAMUX pin determines the 
output of the multiplexer.

4.5 Connecting to the MSC8101 HDI16 Memory Interface

The MSC8101 HDI16 host port is a programmable 16- or 8-bit wide parallel port that gives an 
external host device an access window for data transactions. A parallel interface between the 
external system bus of an MSC8101 host and a target MSC8101 HDI16 slave port is often used 
as a control and data path. One use of the HDI16 interface is to download bootstrap code at 
start-up. The MSC8101 is a RAM-based device, so at power-up the DSP initialization 
instructions must be provided directly by an external ROM or the code must be downloaded into 
the internal RAM ready for execution. Typically the HDI16 places code/data into the MSC8101 
internal DSP RAM under complete control of an MSC8101 external host. 

Once the HDI16 initialization code is downloaded, a branch is made to the start of the 
downloaded initialization code and execution begins. When the DSP is initialized, the MSC8101 
external host can use the same HDI16 host port to control and schedule the ongoing DSP tasks. 

Figure 4-10.  MSC8101-To-SDRAM Interconnect in 60x-Compatible Multi-Master Bus Mode
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Connecting to the MSC8101 HDI16 Memory Interface
The HDI16 offers various programmable options for chip selects and data strobe modes. When 
the HDI16 interface downloads initialization bootstrap code, it is important to select a strobe 
implementation that the MSC8101 HDI16 interface supports straight from reset. One option is to 
select the dual strobe, 16-bit bus mode by setting the H8BIT pin = 0 and HDDS pin = 1 at PORESET 
release. 

One of the most important HDI16 host port hardware features is that it is an asynchronous 
interface, which reduces concerns over clock skew between an external bus master such as the 
system bus and the HDI16 host port. Since all the host-side registers are accessed by asserting a 
single chip select and four address lines, the HDI16 MSC8101 host port can be regarded an 
asynchronous memory-mapped region. In dual strobe mode, the MSC8101 bus master simply 
asserts a chip select and a data read (or write) strobe to validate an HDI16 access. The hosts read 
or write strobe is the data latch control to complete the bus transactions, eliminating the need for 
any handshake signal back from the HDI16 target. Selecting the appropriate modes, an MSC8101 
host can fully support the HDI16 feature set through the UPM-controlled signals. The 
UPM-defined interface can be used with any (or all) of the MSC8101 chip selects to give a 
16/8-bit port size and strobe generation matching that of the HDI16 host port. 

The standard MSC8101 GPCM can meet the timings required by the HDI16 gluelessly where 
ACS = 00 and CSNT = 1. However, this ACS setting requires that the address and chip select be 
driven active on the first rising clock edge of the bus cycle. This requirement may cause an issue 
in some systems that use data buffering, in that slower devices may not have stopped driving data 
from the one access before the next. Therefore, while a GPCM chip select is a potential solution, 
the UPM is illustrated here as a more general solution.

4.5.1   HDI16 Hardware Interconnect

The interconnection of the MSC8101 UPM-controlled system bus operating in Single-Master 
MSC8101 Bus mode with the MSC8101 HDI16 port is completely glueless, see Figure 4-11. 
Each HDI16 slave interface requires at least one chip select from the MSC8101 host in order to 
access the memory map of each device separately. During start-up, a common second chip select 
can enable all HDI16 slaves to receive broadcast bootstrap code. Regardless of the chip select 
used, the MSC8101 Byte Strobe 0 [BS0n] generates the HDI16 Write Data strobe (HWRn), which 
must be asserted every 16-bit write transaction. The general-purpose line PGPL2 is programmed 
high in a UPM write cycle and low for a UPM read cycle to generate the MSC8101 HDI16 read 
strobe line (HRDn). These pins correspond to the GPCM-equivalent memory control pins so that 
the same pins can use either GPCM- or UPM-derived memory control. Operating in dual strobe mode 
and with active low signal polarity, the HDI16 can be accessed directly by the MSC8101 host.
MSC8101 User’s Guide, Rev. 3
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Connecting External Memories and Memory-Mapped Devices
The timing of the single-master interface allows for 5-cycle read and write accesses between a 
system bus operating in Single-Master MSC8101 Bus mode and an HDI16 slave. When the 
system bus operates in Multi-Master Bus mode, arbitration is demanded between the multiple 
masters to determine which one gains access to the bus. As part of this multi-master bus protocol, 
the bus must be idle between separate transactions, adding at least one clock cycle of latency. 
Since the pipelined address must be latched, an external address latch device is required. See 
Figure 4-12 for an example of a system bus operating in Multi-Master mode interconnected to a 
buffered HDI16 interface.

For a few DSPs, the MSC8101 data bus can connect directly to the DSP host port without any 
glue logic. However, because many applications deal with a multi-DSP concept, appropriate 
buffering must be added to meet the capacitive loading requirements and make the solution more 
scalable to a larger bank of DSP devices. The same UPM programming can be used for both 
buffered and unbuffered systems. The MSC8101 Buffer Control lines (BCTL[0–1]) control the 
direction and output enable of the 74LCX245 bidirectional buffer. To enable BCTL1 set 
SIUMCR[CS5PC] = 1, and for an active low output enable, SIUMCR[BCTLC] = 00. Again, the 
BCTL[0–1] lines are used so that the same system bus-to-HDI16 interconnect can also be controlled 
via a GPCM machine.

Figure 4-11.  Single Master MSC8101 Bus to HDI16 Interface
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Connecting to the MSC8101 HDI16 Memory Interface
4.5.2   Single-Bus Mode HDI16 Timing Settings

The UPM offers some extremely flexible memory control options by which the memory control 
signals can be controlled to one quarter of one clock resolution. However, depending upon the 
CPM:Bus clock ratio, the relative phases of this one quarter of one clock granularity may vary. 
There may be cases where the timing needs change with different clock ratios. To ensure that the 
timing recommendations developed here hold true at any clock speed or ratio, the analysis is 
performed using the maximum bus clock of 100 MHz and using only the invariable one half of 
one clock boundaries (T1 and T3) to change signals. Therefore, the recommendations hold true 
for anything less than a 100 MHz bus clock.

The UPM-controlled HDI16 read access is illustrated in Figure 4-13 and the write access in 
Figure 4-14. Both the read and write accesses on the system bus operating in Single-Master 
MSC8101 mode can be accessed within five clocks.

During a read access, the data into the MSC8101 is latched on the falling edge rather than on the 
usual rising clock edge. The advantage of this change is a sufficient timing margin to incorporate 
a further data buffer data delay with the same timing settings still in effect. The DLT3 bit must be 
set in the corresponding UPM word to indicate the data latch point on the falling clock (falling 
edge of clock corresponds to rising edge of T3), and MxMR[GPL_x4DIS] must be set to enable 
this mode. 

Figure 4-12.  Multi-Master System Bus to Buffered HDI16 Interface
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Connecting External Memories and Memory-Mapped Devices
Furthermore, the read and write strobe negation times are readily met with the illustrated UPM 
configuration, and this is difficult to achieve with a competitive memory access profile in the 
alternative GPCM-controlled case.

Figure 4-13.  HDI16 UPM Read, Single Master 

Figure 4-14.  HDI16 UPM Write, Single Master 
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Balancing Between the System and Local 
Buses 5
The MSC8101 combines the SC140 core with a 60x-compatible system bus and the 
PowerQUICC II Communications Processor Module (CPM). The system bus   makes it possible 
to place an MSC8101 device directly on an existing 60x-compatible system   bus. The MSC8101 
has two 64-bit buses: the system bus and the local bus. The system bus accesses external memory 
and any external bus resources. The local bus provides efficient communication between the 
MSC8101 SC140 core and the SIU and CPM. This chapter describes the functions of these two 
buses and their interaction. Table 5-1 compares the features of the system bus and the local bus. 
Figure 5-1 shows the MSC8101 block diagram. Notice the system and local buses in the SIU 
portion of the diagram.

Table 5-1.  Features of the System Bus and Local Bus

System Bus Local Bus

64/32-bit data and 32-bit address 64-bit data and 32-bit address

Data width selectable in software: 64-bit mode or 
32-bit mode

Support for multiple-master designs

Support for four-beat burst transfers Support for four-beat burst transfers

Port size of 64, 32, 16, and 8 bits controlled by the 
internal memory controller

Port size of 64, 32, 16, and 8 bits

Support for data and address parity Support for data and address parity

Can access external memory expansion or external 
peripherals, or can enable an external host device to 
access internal resources

No external access
MSC8101 User’s Guide, Rev. 3
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Balancing Between the System and Local Buses
Figure 5-1.  MSC8101 Block Diagram
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System Bus
Figure 5-2.  System Bus External Memory Access Example

In addition to the system bus and the local bus, the MSC8101 contains the QBus, which is the 
SC140 core interface. It handles all communication between the SC140 core and the peripherals: 
boot ROM, PIC, EFCOP, and the HDI16 host interface. It also connects to the system external 
bus interface via a interface called the QIU. Figure 5-3 shows the QBus interface. Notice that the 
QBus does not have access to the local bus.

 

Figure 5-3.  QBus-to-System Bus Interface
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Balancing Between the System and Local Buses
When the SC140 core initiates an access, any transaction that does not match the SC140 core 
internal address space or the QBus banks is routed to the system bus. This routing occurs through 
the interface on the QBus. Accesses to the system bus can take 16–18 core clock cycles. For 
example, if the SC140 core needs to access a DMA register on the system bus, it requires 2–4 
core clocks to get through the QBus switch and interface to the system bus, 4 bus clocks (12 core 
clocks assuming a 3:1 core/bus clock ratio) for a fast transaction on the system bus, and 2 core 
clocks to complete the transaction. Although the QBus interface enables the SC140 core to access 
information external to the SC140 core, such QBus access are costly because each access through 
the interface requires a significant number of cycles to complete. You should use system bus 
accesses from the QBus sparingly so that the focus of the SC140 core remains on DSP data 
processing tasks. 

5.2 Local Bus 

The MSC8101 local bus is the interface between the SC140 core and the SIU and CPM blocks. 
DMA data exchanges between the core peripherals (HDI16 and EFCOP), SRAM, and other 
modules of the MSC8101 occur through the local bus. As the MSC8101 block diagram in Figure 
5-1 shows, the local bus does not have direct access to the SC140 core. Figure 5-4 shows the 
local bus interface to the core.

Figure 5-4.  Interface From Local bus to the SC140 Core
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Bus Interaction
Figure 5-5.  SIU Block Diagram
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Balancing Between the System and Local Buses
Figure 5-6.  Bus Architecture
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Bus Interaction
Figure 5-7.  Memory Controller Machine Selection
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Balancing Between the System and Local Buses
5.3.1   DMA Controller

The multi-channel DMA controller connects to both the system bus and the local bus. Data from 
the core transfers from the local bus to the system bus and vice versa. 

5.3.1.1   Selecting a Bus 

The DMA Channel Configuration Register DCHCRx[PPC] bit selects the bus associated with the 
channel. Clearing this bit assigns the channel to the local bus, and setting this bit assigns the 
channel to the system bus. For example, when data is transferred from an external peripheral on 
the system bus to the DMA FIFO, the DCHCRx[PPC] bit is set to select the system bus. When 
data is transferred from an internal peripheral such as the EFCOP, which is located on the local 
bus to internal SRAM, the DCHCRx[PPC] is cleared to select the local bus.

5.3.1.2   DMA FIFO

The DMA uses a FIFO for its data transfers. Therefore, one bus can transfer its data to the DMA 
FIFO and be free of the data transaction instead of waiting with the data until the other bus is free. 
For example, in a transfer from the EFCOP data output register to memory on the system bus, the 
data is transferred on the local bus to the DMA FIFO, and the local bus is released. Subsequently, 
the DMA arbitrates for access to the system bus. When access is granted, the DMA transfers the 
data from the DMA FIFO to external memory, completing the transfer. The local bus does not 
have to wait for access to the system bus before it can execute a second transfer, which could be 
from the CPM to internal SRAM, for example. 

5.3.1.3   Chained Buffers

A chained buffer is a type of buffer that jumps to the address of the next buffer when its size 
reaches zero. If the buffers use different buses—for example, one buffer maps to the system bus 
while the other maps to the local bus—the flush option should be used to prevent out-of-sequence 
transactions from crossing the buses. When data in the FIFO is flushed, data is transferred to the 
destination. The Buffer Attributes BD_ATTR[FLS] bit configures the behavior of the DMA 
FIFO when BD_SIZE reaches zero. Clearing this bit does not flush the FIFO, and setting this bit 
flushes the FIFO.

5.3.1.4   Bus Errors

A non-maskable interrupt is generated and the DMA TEA Status Register (DTEAR) is updated 
whenever a system bus or a local bus error occurs on a DMA access.

The DTEAR[DBER_P] bit is set when a system bus error occurs. The DMA transfer error 
address is read from the DMA Transfer Error Address (PDMTEA) Register. The channel that 
caused the error is read from the DMA Transfer Error Requestor Number Register, 
PDMTER[RQNUM]. The DTEAR[DBER_L] bit is set when a local bus error occurs. The DMA 
transfer error address is read from the Local DMA Transfer Error Address (LDMTEA) Register. 
MSC8101 User’s Guide, Rev. 3
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Bus Interaction
The channel that caused the error is read from the Local DMA Transfer Error Requestor Number 
Register, LDMTER[RQNUM].

5.3.2   SDMA Channels

The CPM uses its own SDMA channels to transfer data to and from the CPM and the rest of the 
MSC8101. The CPM SDMA channels are separate from the DMA channels in the SIU. Each 
SDMA channel has access to a bus. SDMA1 accesses the system bus so that a master on the 
system bus can send information to the CPM regarding incoming data on a CPM port. Data from 
the CPM can be sent directly to the core for processing using the SDMA2 channel and the local 
bus. Figure 5-8 shows the interaction of the SDMA module with the system and local buses.

Although the CPM has only two physical SDMA channels, the communications processor (CP) 
within the CPM can implement many dedicated virtual SDMA channels for each FCC, MCC, 
SCC, SMC, SPI, and I2C. Each channel is permanently assigned to service either the receive or 
transmit operation of an FCC, MCC, SCC, SMC, SPI, or I2C. As Figure 5-8 shows, data from the 
peripheral controllers can be routed to external RAM using the system bus (path 1). To route data 
to internal SRAM, the local bus (path 2) must be used. 

Figure 5-8.  SDMA Data Paths
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Balancing Between the System and Local Buses
On a path 1 access, the SDMA channel must acquire the system bus. On a path 2 access, the local 
bus is acquired and the access is not seen on the external system bus. Thus, the local bus transfer 
occurs at the same time as other operations on the external system bus. SDMA access times to 
memory on the buses varies depending on the memory used. One example of transfer time is 
from the CPM to internal SRAM. A single access to internal SRAM from the CPM using the 
local bus requires 4 bus clocks. 

5.3.2.1   Bus Errors from SDMA access

If a system bus or local bus error occurs during a CP-related access by the SDMA, the CP 
generates a unique interrupt in the SDMA Status Register (SDSR). The interrupt service routine 
then reads the appropriate DMA transfer error address register (PDTEA for the system bus or 
LDTEA for the local bus) to determine the address at which the bus error occurred.1 The channel 
that caused the bus error is determined by reading the channel number from the SDMA Transfer 
Error MSNUM Registers, PDTEM and LDTEM. If an SDMA bus error occurs on a CP-related 
transaction, all CPM activity stops and the entire CPM must be reset in the CP Command 
Register (CPCR).

5.3.2.2   SDMA Bus Arbitration and Bus Transfers

On the MSC8101, theSC140 and SDMA can become external bus masters. Therefore, any 
SDMA channel can arbitrate for the bus against the other internal devices and any external 
devices present. Once an SDMA channel becomes system bus master, it remains bus master for 
one transaction (which can be a byte, half-word, word, burst, or extended special burst) before it 
releases the bus. 

1. For details on the SDMA Transfer Error Address Registers (PDTEA and LDTEA), consult the “SDMA Program-
ming Model” section of the chapter on SDMA Channels in the MSC8101 Reference Manual.
MSC8101 User’s Guide, Rev. 3
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DMA Channels 6
The internal direct memory access (DMA) controller channels transport data between the various 
modules of the MSC8101 so that the data is available for processing when needed. The DMA 
controller can transfer data to and from memory or enable communication between peripherals 
directly without passing through memory. The DMA requestors can be accessed by one of the 
following:

� Host interface (HDI16), internal peripheral

� Enhanced filter coprocessor (EFCOP), internal peripheral

� External Peripherals (up to 4)

� DMA FIFO (each channel is a requestor)

This chapter describes the purpose and use of DMA on the MSC8101 and provides numerous 
programming examples.

6.1 DMA Programming Basics

The MSC8101 DMA controller is located in the system interface unit (SIU) between the system 
and local buses (see Figure 6-1). The DMA controller transfers data to and from the system bus, 
the local bus, or between the two buses, so it is a highly flexible data transfer mechanism. The 
MSC8101 DMA controller handles hot swap operation, so it can service one channel in the 
current clock cycle and service a different channel in the following clock cycle with no addition 
of wait states or delay between the two. Hot swap thus increases the efficiency of the DMA 
transfers.
MSC8101 User’s Guide, Rev. 3
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DMA Channels
Figure 6-1.  DMA Engine Interfaces

6.1.1   Operating Modes

The DMA controller operates in two modes: Normal (dual-access) mode and Flyby 
(single-access) mode. 

6.1.1.1   Normal Mode (Dual Access)

In Normal mode, data is read from the source and written to the destination through the DMA 
FIFO. Two DMA channels are required in this mode (as illustrated in Figure 6-2), so it is called 
a “dual-access.” The even-numbered channel is always the read path, and the odd-numbered 
channel defines the transaction write path. For example, if channel 4 were selected to read data 
from external memory to the DMA FIFO, then channel 9 could not be used to write the data from 
the DMA FIFO to the EFCOP. Instead, DMA channel 5 must be used.
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DMA Programming Basics
Figure 6-2.  Normal Mode Example

6.1.1.2   Flyby Mode (Single Access)

Flyby mode does not require two DMA channels to complete a data transfer between a peripheral 
and a memory module. In this mode, the transaction occurs between two resources with the same 
port size1 on the same bus so that it can be executed by a single channel without going through 
the DMA FIFO. The read cycle data is transferred directly “on the fly” to its destination.

There are constraints on which DMA channels can be used during a flyby transaction. If the 
transaction is a read transaction from memory, then an even-numbered DMA channel must be 
programmed for the transfer. If a write transaction to memory is required, an odd-numbered 
DMA channel must be programmed. The channel must be programmed to external request mode 
by clearing the (DCHCRx[INT]) bit, and the corresponding BD_ADDR field is programmed to 
the memory address. The DCHCR requestor number field points to the peripheral.

6.1.2   Transfer Types

Each DMA channel is configured in one of six possible ways. This section describes each 
configuration.

1. Port size is programmed in the BRx registers. It can be 8, 16, 32, or 64 bits. 
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DMA Channels
6.1.2.1   Memory to DMA FIFO

A memory transfer to the DMA FIFO can occur from either external or internal memory. Figure 
6-3 shows both possibilities. Note that in memory/DMA FIFO transactions, both directions, the 
channel is programmed to internal request mode (DCHCRx[INT] = 1).

Figure 6-3.  Memory to DMA FIFO Transfers

6.1.2.2   DMA FIFO to Memory

A DMA FIFO to memory can access either external or internal memory. Figure 6-4 shows both 
possibilities.

Figure 6-4.  DMA FIFO to Memory Transfers
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DMA Programming Basics
6.1.2.3   Peripheral to DMA FIFO

The DMA controller transfers data from the internal peripherals HDI16 and EFCOP, which 
reside on the local bus, to the DMA FIFO. It also transfers data from peripherals on the external 
system bus to the DMA FIFO. Figure 6-5 shows both of these options. The relevant DMA 
channel can be programmed either to external or internal request mode, depending on the 
peripheral type.

Figure 6-5.  Peripheral to DMA FIFO Transfers
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DMA Channels
Figure 6-6.  DMA FIFO to Peripheral Transfers

6.1.2.5   Memory to Peripheral, Flyby Mode

Flyby transactions can be executed from memory connected to the system bus to a peripheral 
connected to the same bus and to the DMA request/acknowledge lines. They can also be executed 
from the SRAM connected to the local bus, to the HDI16, or to the EFCOP. Figure 6-7 shows 
DMA transfers from memory to a peripheral on the same bus, and Figure 6-8 shows a DMA 
transfer from a peripheral to memory.

Figure 6-7.  Memory to Peripheral, Flyby Mode Data Transfer
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Initializing the DMA
Figure 6-8.  Peripheral to Memory, Flyby Mode Data Transfer

6.2 Initializing the DMA

The DMA controller uses registers and DMA Channel Parameters RAM (DCPRAM) to 
configure each DMA channel. Table 6-1 summarizes the DMA registers involved in initializing 
the DMA. For details on programming the DMA registers, consult the DMA chapter of the 
MSC8101 Reference Manual.

 

6.2.1   DMA Channel Configuration Registers (DCHRx)

Each DMA channel has a DCHCR that defines whether the channel is active (ACTV), the active 
bus (PPC), settings of the DMA request/acknowledge signals, Flyby mode (FLY), active 

Table 6-1.  DMA Registers

Mnemonic Name Description

DCHCRx DMA Channel Configuration 
Registers

Configures the connection between a DMA requestor and the 
corresponding DMA channel. There is one register per 
channel.

DCPRAM DMA Channel Parameters RAM Holds the buffer parameters for all the channels

DPCR DMA Pin Configuration Register Selects the functionality of the DONE/DRACK pins.

DSTR DMA Status Register Reflects the interrupt requests of the various channels

DIMR DMA Internal Mask Register Enables interrupt requests of the corresponding channel on 
the PIC.

DEMR DMA External Mask Register Enables interrupt requests of the corresponding channel to 
the SIC_EXT.
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DMA Channels
requestor (INT, RQNUM), and channel priority (PRIO). Since bit 0 of this register activates the 
DMA channel, it should be set to 1 only after all registers are programmed.

Four DCHCRx bit groupings control DMA signal usage: 

� EXP defines the number of cycles to ignore asserted level DREQ after DRACK or DACK 
signal is asserted.

� DRS defines the type of trigger used with the DREQ signal. It can be either edge-triggered 
or level-triggered. 

� DPL defines the polarity of the DREQ signal. 

� DRACK is used to acknowledge a request before its execution. The external peripheral must 
support the DRACK protocol.

These bits do not affect DMA transactions involving internal peripherals. They are for use in 
programming a DMA interface to external devices. See Section 6.3 for further discussion of the 
DMA signals. When a flyby transaction (FLY = 1) is implemented, the DMA cannot initiate the 
data transfer. Instead, the INT bit must be cleared so that a peripheral initiates the request. The 
specific peripheral requesting the transfer is defined by RQNUM. If INT is set to 1, the 
transaction does not start. 

6.2.2   DMA Pin Configuration Register (DPCR)

The DPCR is an 8-bit register with two programmable bits. This register selects between the 
DRACK/DONE signals, which are available only for external requestors 1 or 2. When an external 
DMA requestor is in use and an external peripheral requires the DMA to notify it when a transfer 
completes, the DMA activates a DONE signal to alert the peripheral that it will not be serviced 
further. On the other hand, if the peripheral requires the DMA channel to terminate before the 
DMA transfer completes, the peripheral generates the DONE signal to alert the DMA that the 
channel must be terminated. Instead of using the DONE signal, an external peripheral can use the 
DRACK signal. In this case, it receives acknowledgment when the DMA samples its DMA request, 
and the peripheral either asserts a new request or resumes other processes. 

Table 6-2.  DCHCRx Bits

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

ACTV PPC — EXP DRS DPL BDPTR

TYPE R/W

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

DRACK FLY — RQNUM FRZ INT — PRIO

TYPE R/W

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
MSC8101 User’s Guide, Rev. 3
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Initializing the DMA
6.2.3   DMA Status Register (DSTR)

The bits in the DSTR indicate whether an interrupt request is pending for the associated DMA 
channel. If the bit is set, the channel has requested service from the core processor. 

6.2.4   DMA Internal/External Mask Registers (DIMR/DEMR)

The DIMR/DEMR enable generation of interrupt requests to their associated interrupt 
controllers. The DIMR enables an interrupt to the Peripheral Interrupt Controller (PIC). The 
DEMR enables an interrupt to the SIU-CPM Interrupt Controller (SIC_EXT). Interrupts from the 
SIC_EXT generate interrupt requests to an external host on the system bus.

Note: For each DMA channel, the respective bits in the DIMR and DEMR should have 
different values. For example, if DIMR[Mx] = 0, ensure that the corresponding 
DEMR[Mx] = 1 to avoid undefined system behavior. Enable each channel for an 
internal or an external interrupt only.

6.2.5   DMA Channel Parameters RAM (DCPRAM)

The DCPRAM\) holds 64 buffer descriptors. Each buffer descriptor includes buffer address, 
transfer size down counter, buffer base size, and buffer attributes. Each buffer descriptor is 
allocated four 32-bit fields for these transaction parameters. Table 6-3 shows addresses for the 
BD_ADDR, BD_SIZE, and BD_ATTR for 17 of the 64 buffer descriptors. Note that there are 64 
buffer descriptors that can be programmed but only 16 DMA channels.

Table 6-3.  DCPRAM Addressing 

DMA 
Channel

Memory 
Map 

Address*

Channel 
Buffer

Address

Memory 
Map 

Address*

Channel 
Transfer 

Size

Memory 
Map 

Address*

Channel 
Attributes

Memory 
Map 

Address*

Channel 
Transfer 

Base Size

0 0xF001080
0

BD_ADDR0 0xF001080
4

BD_SIZE0 0xF001080
8

BD_ATTR0 0xF001080
C

BD_BSIZE0

1 0xF001081
0

BD_ADDR1 0xF001081
4

BD_SIZE1 0xF001081
8

BD_ATTR1 0xF001081
C

BD_BSIZE1

2 0xF001082
0

BD_ADDR2 0xF001082
4

BD_SIZE2 0xF001082
8

BD_ATTR2 0xF001082
C

BD_BSIZE2

3 0xF001083
0

BD_ADDR3 0xF001083
4

BD_SIZE3 0xF001083
8

BD_ATTR3 0xF001083
C

BD_BSIZE3

4 0xF001084
0

BD_ADDR4 0xF001084
4

BD_SIZE4 0xF001084
8

BD_ATTR4 0xF001084
C

BD_BSIZE4

5 0xF001085
0

BD_ADDR5 0xF001085
4

BD_SIZE5 0xF001085
8

BD_ATTR5 0xF001085
C

BD_BSIZE5

6 0xF001086
0

BD_ADDR6 0xF001086
4

BD_SIZE6 0xF001086
8

BD_ATTR6 0xF001086
C

BD_BSIZE6

* These addresses assume that the Bus memory map is based at 0xF0000000. This is the default value for the Internal 
Memory Map Register (IMMR) at reset. 
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DMA Channels
Each DMA channel uses buffer descriptors in the DCPRAM to point to a buffer and characterize 
it. The buffer descriptor contains four distinct parameters: address (BD_ADDRn), size 
(BD_SIZEn), base size (BD_BSIZEn), and attributes (BD_ATTRn). Each DMA channel selects 
the buffer descriptor by configuring the DCHCRx[BDPTR] bits. Therefore, DMA channel 15 
and DMA channel 3 can both use the same buffer descriptor if the parameters for both transfers 
are the same, but these channels can be requested by different sources. Table 6-4 describes the 
four types of buffer descriptor parameters for DMA data transactions.

7 0xF001087
0

BD_ADDR7 0xF001087
4

BD_SIZE7 0xF001087
8

BD_ATTR7 0xF001087
C

BD_BSIZE7

8 0xF001088
0

BD_ADDR8 0xF001088
4

BD_SIZE8 0xF001088
8

BD_ATTR8 0xF001088
C

BD_BSIZE8

9 0xF001089
0

BD_ADDR9 0xF001089
4

BD_SIZE9 0xF001089
8

BD_ATTR9 0xF001089
C

BD_BSIZE9

10 0xF00108A
0

BD_ADDR1
0

0xF00108A
4

BD_SIZE1
0

0xF00108
A8

BD_ATTR1
0

0xF00108A
C

BD_BSIZE1
0

11 0xF00108B
0

BD_ADDR1
1

0xF00108B
4

BD_SIZE1
1

0xF00108
B8

BD_ATTR1
1

0xF00108B
C

BD_BSIZE1
1

12 0xF00108C
0

BD_ADDR1
2

0xF00108C
4

BD_SIZE1
2

0xF00108
C8

BD_ATTR1
2

0xF00108C
C

BD_BSIZE1
2

13 0xF00108D
0

BD_ADDR1
3

0xF00108D
4

BD_SIZE1
3

0xF00108
D8

BD_ATTR1
3

0xF00108D
C

BD_BSIZE1
3

14 0xF00108E
0

BD_ADDR1
4

0xF00108E
4

BD_SIZE1
4

0xF00108
E8

BD_ATTR1
4

0xF00108E
C

BD_BSIZE1
4

15 0xF00108F
0

BD_ADDR1
5

0xF00108F
4

BD_SIZE1
5

0xF00108F
8

BD_ATTR1
5

0xF00108F
C

BD_BSIZE1
5

... ... ... ... ... ... ... ... ...

64 0xF0010BF
0

BD_ADDR1
5

0xF0010BF
4

BD_SIZE1
5

0xF0010B
F8

BD_ATTR1
5

0xF0010BF
C

BD_BSIZE1
5

Table 6-3.  DCPRAM Addressing (Continued)

DMA 
Channel

Memory 
Map 

Address*

Channel 
Buffer

Address

Memory 
Map 

Address*

Channel 
Transfer 

Size

Memory 
Map 

Address*

Channel 
Attributes

Memory 
Map 

Address*

Channel 
Transfer 

Base Size

* These addresses assume that the Bus memory map is based at 0xF0000000. This is the default value for the Internal 
Memory Map Register (IMMR) at reset. 
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Initializing the DMA
The BD_ATTR bits are as follows.

Some of the bit functions are straightforward:

� INTRPT defines whether the DMA issues an interrupt when BD_SIZE reaches zero. 

� NO_INC defines the constant address for port access applications. 

� TSZ determines the transfer size. 

� FLS indicates whether the FIFO is flushed when BD_SIZE reaches zero. 

� RD must be set if data should be read from the buffer. 

Other BD_ATTR bits work together in a particular mode. CYC, NBUS, and NBD must be 
considered if CONT is set. CONT defines whether the buffer is closed when the transfer is 
complete or whether the DMA transaction continues when BD_SIZE reaches zero. If a 
continuous buffer is chosen (CONT = 1), then BD_SIZE is reloaded with a BD_BSIZE value. 

Table 6-4.  Buffer Descriptor Parameters 

Parameter Description

BD_ADDR Address
Describes either the source or destination of the DMA data transfer. For a read cycle, BD_ADDR 
describes the source address of the DMA transfer. For a write cycle, BD_ADDR describes the 
destination address of the transfer. The BD_ADDR for a flyby request must be programmed to the 
memory address. 

BD_SIZE Size
A transfer byte size down counter. BD_SIZE is always the number of bytes left to transfer even 
though the transfer size parameter may vary between eight bits to one burst.

BD_BSIZE Base Size
Required only for programming continuous buffers. When the DMA transfer size reaches zero (the 
complete buffer is transferred), BD_SIZE is updated with the value of the BD_BSIZE parameter, and 
the transfer can resume. 

BD_ATTR Attributes
Defines the buffer characteristics. 

BD_ATTR Buffer Attributes Parameter

Bit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

INTRPT CYC CONT — NO_INC BP — NBUS NBD

TYPE R/W

RESET Undefined

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

— TSZ — FLS RD — TC — GBL

TYPE R/W

RESET Undefined
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Freescale Semiconductor 6-11



DMA Channels
CYC defines whether BD_ADDR is a cyclic address. NBUS defines which bus is used for the 
next transaction, and NBD defines the next buffer to be used.

Another grouping of bits that relate to each other are the BP, TC, and GBL bits. These bits all 
regulate bus action for the DMA transfer. BP defines the priority for a given transfer on the bus. 
This priority value goes into effect when the DMA arbitrates for mastership of the bus. DMA bus 
priority 0 corresponds to BP = 00. This is the highest bus priority level. BP = 10 is DMA bus 
priority 2, the lowest DMA bus priority level. The transfer code bits (TC) give the bus extra 
information about the source of a DMA transaction. Both settings tell the bus that the transfer is a 
DMA transfer. Additional bus signals, TT[0–4], TSIZ[0–3], and TBST, are used to define the bus 
transaction. These signals are described in detail in the chapter on the system bus in the MSC8101 
Reference Manual. When GBL is set, the bus transaction is global. This bit is set only when the 
DMA transfer accesses a memory shared by multiple devices. Otherwise, the GBL bit is cleared. 
For details, consult the chapter on the system bus in the MSC8101 Reference Manual.

6.2.6   FIFO Requests

The DMA FIFO issues two types of requests that are generated by hardware within the 
MSC8101: watermark requests and hungry requests. The DMA FIFO generates a watermark 
request to notify the channel that the FIFO contains data to be transferred to a destination by the 
DMA channel. Therefore, the DMA channel should write the data in the FIFO to the destination. 
If the DMA FIFO has room for more data, it generates a hungry request to notify the channel that 
it can accept more data. 

The watermark request is asserted when the FIFO holds 32 bytes or more to notify the destination 
DMA channel that the FIFO contains data to be transferred to the destination. A hungry request is 
asserted when the FIFO contains less than 56 bytes of data to notify the source DMA channel that 
the FIFO can receive more data. Both watermark and hungry requests can be generated 
simultaneously to alert both DMA channels associated with a given FIFO that there is room for 
more data and that data is ready to be transferred.

6.2.7   Multiple Pending DMA Requests

If multiple channels are needed, you can program the order in which each channel executes by 
assigning each channel a priority by the DCHCRx[PRIO] bits. Correct multiple-channel 
prioritization enables smooth operation. Lower-bandwidth channels should be assigned a higher 
priority, and the same rules goes for lower-latency channels, such as voice channels. 

If all channels are given the same priority, the channels are prioritized based on their number. A 
lower channel number has priority over a higher channel number. For example, if channels 0, 1, 
14, and 15 are active, channel 0 has the highest priority and channel 15 has the lowest. The 
arbitration between channels is done on a per cycle basis. When a channel wins the arbitration, it 
can issue one transaction only. Another channel may win the arbitration on the next cycle. If a 
channel has the highest priority (or the same priority and a lower channel number), then it wins 
MSC8101 User’s Guide, Rev. 3
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Initializing the DMA
all the arbitration phases until it is stopped by one of the following events: the FIFO becomes 
empty/full, or BD_SIZE for the channel reaches zero. When a channel stops, any other channel 
can issue a transaction on the bus.

6.2.8   Buffering and Bursting

The MSC8101 DMA module supports five types of buffering: simple, cyclic, chained, 
incremental, and dual cyclic. For details regarding these buffer types, consult the DMA chapter in 
the MSC8101 Reference Manual. For programming examples of cyclic and chained buffers, refer 
to Example 6-2, External Memory to External Memory, Burst Mode, Cyclic Buffer, on page 6-19 
and Example 6-4, External Flash Memory to External SDRAM Memory, Dual Access Mode, on 
page 6-23. Figure 6-9 shows a diagram of all five buffer types for quick reference.

The MSC8101 DMA module can execute burst data transfers of up to 32 bytes per burst. Timing 
of the transfer depends on the setting of the memory controller. Burst transfers can be 
programmed to external devices as long as they are burst-capable controlled by either the 
SDRAM controller or the UPM. The GPCM is not burst-capable. If a peripheral or memory 
device is controlled by the GPCM and programmed for a burst transfer, the burst is split into a 
single-beat transfer, and the address is incremented.

6.2.9   Interrupts

The DMA module controls the IRQ18 input to the Programmable Interrupt Controller (PIC). 
Perform the following steps to initialize interrupts:

1. Set up the interrupt routine by placing code to handle the interrupt at the appropriate 
interrupt vector address.

The location of the vector address for IRQ18 is 0xC80 offset from VBA.

2. Enable the interrupts by setting bits in various control registers:

a. To enable interrupts by a buffer, when BD_SIZE reaches zero, set the INTRPT (bit 0) 
bit in the BD_ATTR field.
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b. To specify which interrupt priority levels are allowed, set the interrupt mask bits 
(I0–2) of the Status Register (SR) in the SC140 core. For details, refer to the SC140 
Core Reference Manual.

c. To define the priority level for each enabled interrupt, set the PIC 
Edge/Level-Triggered Interrupt Priority Register E (ELIRE) Interrupt Priority 
Level (PILxx) bits. 

d. To set the interrupt trigger mode, set the PED18 bits of the ELIRE registers. IRQ18 
interrupts are edge-triggered.

e. To enable the transaction complete interrupt, set the mask bit in the DIMR register 
corresponding to the DMA channel.

f. To enable interrupts, issue an ei (enable interrupts) instruction.

For an example of DMA programming with interrupts, see Example 6-4.
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Figure 6-9.  DMA Buffer Types

6.3 Using DMA Signals to Initiate and Control DMA Transfers

DMA has four signal types to initiate and control DMA transfers by external peripherals. These 
signals are:

� DREQ[1–4] (DMA request)

� DACK[1–4] (DMA acknowledge)

� DONE[1–2] (DMA done)/DRACK[1–2] (DMA request acknowledge)
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DREQ[3–4] and DACK[3–4] are multiplexed with IRQ[4–7], EXT_BG3, and EXT_DBG3 lines on the 
MSC8101 pins, as shown in the external signals chapter of the MSC8101 Reference Manual. The 
remaining DMA signals are multiplexed on the CPM ports C and D. Since there are four 
groupings of DMA signals, up to four external devices can request DMA service via DMA 
request lines. However, only two of the devices can use the DONE/DRACK protocol. Also, if a 
system requires use of the DONE/DRACK signals, then the SCC1:RXD and SCC1:TXD signals are 
not available due to multiplexing on the CPM ports. Also, the DREQ[1–2] and DACK[1–2 signals are 
multiplexed with BRG7, BRG8, and CLK[7–10]. Therefore, when using these DMA signals, a system 
designer must use other baud-rate generators or clocks for the application design.

6.4 DMA Programming Examples

The code examples in this section illustrate how to program the DMA controller in various 
modes:

� A simple buffer to transfer data from internal memory to external memory. 

� Burst mode transactions between two external memory locations. It also uses a cyclic 
buffer. 

� A simple buffer to transfer data from an internal peripheral (HDI16) to external memory. 

� A data transfer between external Flash memory, external memory, and internal memory. 
The two transfers are chained. This example also shows how interrupts are used. For an 
example of a flyby data transfer with an internal peripheral, see .

The examples in this section use equate labels for the location of the DMA registers and buffer 
descriptors. It is assumed that these equates are declared before the example code. Equate labels 
include the register or field name preceded with “M_”.

6.4.1   Internal to External Dual Access, Simple Buffer

Example 6-1 uses a DMA channel to transfer data from internal to external memory with a 
simple buffer. Since data is transferred from internal memory to external SDRAM, the DMA 
transfer is a dual transaction. A transaction transfers SIZE bytes of data 32-bits at a time. Bank 2 
and bank 10 of the memory controller are configured to allow the DMA channel to access 
external memory through the SDRAM and the internal DSP SRAM through the UPMC, 
respectively. The memory buffer to which the OUT_ADDR equate points must be within the 
memory range of bank 2; the memory buffer to which the IN_ADDR equate points must be 
within the memory range of bank 10.

1. Channel 0 reads data from internal memory to the DMA FIFO. The DMA control 
registers for channel 0 are programmed as follows:

a. The address location of the data, IN_ADDR, is written to the DMA buffer address 
pointer field (BD_ADDR0). Note that the buffer descriptor is associated to the channel 
by the DCHCR[BDPTR] bits.
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b. The total number of bytes to transfer, SIZE, is written to the DMA buffer size field 
(BD_SIZE0).

The DMA buffer base size (BD_BSIZE0) does not need to be programmed since this 
is not a continuous buffer.

c. To configure DMA channel 0 for 32-bit read transactions, flush mode, the value 
0x000001b0 is written to the DMA attribute field (BD_ATTR0).

d. To enable channel 0 as a dual transaction initiated by the DMA controller, the value 
0x80000040 is written to the DCHCR0.

2. Channel 1 writes data from the DMA FIFO to external SDRAM. The DMA control 
registers for channel 1 are programmed as follows:

a. The address location of output data, OUT_ADDR, is written to the DMA buffer 
address pointer field (BD_ADDR1).

b. The total number of bytes to transfer, SIZE, is written to the DMA buffer size field 
(BD_SIZE1).

The DMA buffer base size (BD_BSIZE1) does not need to be programmed since this 
is not a continuous buffer.

c. To configure channel 1 for 32-bit write transactions, the value 0x00000180 is 
written to the DMA attribute field (BD_ATTR1). Note that the flush bit should be 
set, if desired, only for the read channel.

d. To enable channel 1 as a dual transaction initiated by the DMA controller, the value 
0xc0010040 is written to DCHRC1.

3. The DMA Status register is polled to see if channels 0 and 1 have completed their 
transactions.

Bits 0 and 1 are checked in the DSTR. If bits 0 and 1 are clear, then the code continues 
to run. If bits 0 and 1 are set, then DMA channels 0 and 1 have completed their 
transactions.

Once the DMA channels are programmed, the data is transferred without intervention of the 
SC140 core.

Example 6-1.   Internal Memory to External Memory, Simple Buffer
;DMA0 init to input DATA to DMA Buffer
move.l #IN_ADDR,d0 ;Init source address
move.l d0,M_BDADDR0
move.l #SIZE,d0 ;Init transfer size
move.l d0,M_BDSIZE0
move.l #ATTR0,d0 ;Init channel 0 attrib
move.l d0,M_BDATTR0

;DMA1 init to output DATA from DMA Buffer
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move.l #OUT_ADDR,d0 ;Init destination 
address
move.l d0,M_BDADDR1
move.l #SIZE,d0 ;Init transfer size
move.l d0,M_BDSIZE1
move.l #ATTR1,d0 ;Init channel 1 attrib

DMA_START
move.l d0,M_BDATTR1
moveu.l #dchcr0,d0 ;Init channel 0 config
move.l d0,M_DCHCR0
moveu.l #dchcr1,d0 ;Init channel 1 config
move.l d0,M_DCHCR1

CONT    
move.l M_DSTR,d5
bmtstc #0xc000,d5.h
jt CONT ;Wait until output done

6.4.2   External to External Dual-Access Burst Transfer, Cyclic Buffer

Example 6-2 transfers data from external memory to external memory. Data is transferred from 
SDRAM to SDRAM, so this is a dual access transaction with a cyclic buffer in burst mode. 
Channel 0 reads data from external memory to the DMA FIFO; channel 1 writes the 64 bytes of 
data from the DMA FIFO to external memory. Thus, the first 32 bytes from the source address 
are transferred to the destination twice. Bank 2 of the memory controller is configured to allow 
the DMA channel to access external memory through the SDRAM. The memory buffer to which 
the IN_ADDR and OUT_ADDR equates point must be within the memory range of bank 2.

1. Channel 0 reads data from cyclic buffer external SDRAM to the DMA FIFO. The DMA 
control registers for channel 0 are programmed as follows:

a. The address location of the data, IN_ADDR, is written to the DMA buffer address 
pointer field (BD_ADDR0).

b. The total number of bytes to transfer, SIZE0, is written to the DMA buffer size 
field (BD_SIZE0).

c. The buffer is a continuous cyclic buffer. The buffer size to be reloaded, BSIZE0, is 
written to the DMA buffer base size field (BD_BSIZE0)

d. To configure channel 0 for burst cyclic read transactions, the value 0xe0400210 is 
written to the DMA attribute field (BD_ATTR0).

e. To enable channel 0 as a dual transaction initiated by the DMA, the value 
0xc0000040 is written to the DCHCR0.

2. Channel 1 writes data from the DMA FIFO to external SDRAM. The DMA control 
registers for channel 1 are programmed as follows:
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a. The address location of output data, OUT_ADDR, is written to the DMA buffer 
address pointer field (BD_ADDR1).

b. The total number of bytes to transfer, SIZE1, is written to the DMA buffer size 
field (BD_SIZE1).

The DMA buffer base size (BD_BSIZE1) does not need to be programmed since this 
is not a continuous buffer.

c. To configure channel 1 for burst write transactions, the value 0x00000200 is 
written to the DMA attribute field (BD_ATTR1).

d. To enable channel 1 as a dual transaction initiated by the DMA controller, the value 
0xc0010040 is written to DCHRC1.

3. The DMA Status register is polled to see if channels 0 and 1 have completed their 
transactions. Bits 0 and 1 are checked in the DSTR. If bits 0 and 1 are clear, then the 
code continues to run. If bits 0 and 1 are set, then DMA channels 0 and 1 have 
completed their transactions.

Once the DMA channels are programmed, the data is transferred without intervention of the 
SC140 core.

Example 6-2.   External Memory to External Memory, Burst Mode, Cyclic Buffer
;DMA0 init to input DATA to DMA Buffer

move.l #IN_ADDR,d0 ;Init source address 
move.l d0,M_BDADDR0
move.l #BSIZE0,d0 ;Init base size
move.l d0,M_BDBSIZE0
move.l #SIZE0,d0 ;Init transfer size
move.l d0,M_BDSIZE0
move.l #ATTR0,d0 ;Init channel 0 attrib
move.l d0,M_BDATTR0

;DMA1 init to output DATA from DMA Buffer

move.l #OUT_ADDR,d0 ;Init destination 
address
move.l d0,M_BDADDR1
move.l #SIZE1,d0 ;Init transfer size
move.l d0,M_BDSIZE1
move.l #ATTR1,d0 ;Init channel 1 attrib
move.l d0,M_BDATTR1

DMA_START
moveu.l #dchcr0,d0 ;Init channel 0 config
move.l d0,M_DCHCR0
moveu.l #dchcr1,d0 ;Init channel 1 config
MSC8101 User’s Guide, Rev. 3

Freescale Semiconductor 6-19



DMA Channels
move.l d0,M_DCHCR1
CONT    
move.l M_DSTR,d5
bmtsts #0xc000,d5.h
jf CONT

6.4.3   Internal Peripheral to External Dual Access, Simple Buffer

Example 6-3 transfers 16-bit data from an internal peripheral to external memory as a dual 
transaction with a simple buffer. The data is read from the host via the HDI16 interface to the 
DMA FIFO. The DMA FIFO writes the data to external SDRAM. Bank 2 and bank 11 of the 
memory controller are configured to allow the DMA channel to access external memory through 
the SDRAM and to the HDI16 through the GPCM, respectively. The memory buffer to which the 
BUFF_START equate points must be within the memory range of bank 2.

1. The HDI16 control registers are initialized in the following manner:

a. The Host Control Register (HCR) is programmed for Host DMA mode by the value 
(INIT_HCR).

b. The Host Port Control Register (HPCR) is programmed for 16-bit mode by the 
value (INIT_HPCR).

c. After the control registers are programmed, the HDI16 is enabled as a host 
interface by setting bit 8 of the HPCR.

2. Channel 0 reads data from the Host Receive Data Register (HORX) as a simple buffer to 
the DMA FIFO. The DMA control registers for channel 0 are programmed in the 
following manner:

a. The address location of the data, M_HORX, is written to the DMA buffer address 
pointer field (BD_ADDR0).

b. The total number of bytes to transfer, PATT_SIZE, is written to the DMA buffer 
size field (BD_SIZE0).

The DMA buffer base size (BD_BSIZE0) does not need to be programmed since this 
is a simple buffer.

c. To configure channel 0 to perform 16-bit read transactions with no increment of the 
address and a flush of the FIFO, the value 0x08000130 is written to the DMA 
attribute field (BD_ATTR0).

d. To enable channel 0 as a dual transaction initiated by an HDI16 read request, the 
value 0x81800005 is written to DCHCR0.

3. Channel 1 writes data from the DMA FIFO to external SDRAM. The DMA control 
registers for channel 1 are programmed as follows:

a. The address location of output data, BUFF_START, is written to the DMA buffer 
address pointer field (BD_ADDR1).
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b. The total number of bytes to transfer, PATT_SIZE, is written to the DMA buffer 
size field (BD_SIZE1).

The DMA buffer base size (BD_BSIZE1) does not need to be programmed since this 
is a simple buffer.

c. To configure channel 1 for 16-bit write transactions, the value 0x80000120 is 
written to the DMA attribute field (BD_ATTR1).

d. To enable channel 1 as a dual transaction initiated by the DMA, the value 
0xc0010045 is written to DCHRC1.

4. The DMA Status register is polled to see if the channels 0 and 1 have completed their 
transactions.

Bits 0 and 1 are checked in the DSTR. If bits 0 and 1 are clear, then the code continues 
to run. If bits 0 and 1 are set, then DMA channels 0 and 1 have completed their 
transactions.

Example 6-3.   Internal Peripheral to External Memory, Simple Buffer
;setup HDI16 registers

move.w #INIT_HCR,r0 ; Init HDI16 host 
control 

; register
move.w r0,M_HCR
move.w #INIT_HPCR,r0 ; Init HDI16 host port 
control 

; register
move.w r0,M_HPCR
bmset.w #0x80,M_HPCR ;Enable HDI16

;DMA0 init to input DATA from HDI16 to DMA Buffer

move.l #M_HORX,d0 ;Init source address 
move.l d0,M_BDADDR0
move.l #PATT_SIZE,d0 ;Init transfer size
move.l d0,M_BDSIZE0
move.l #ATTR0,d0 ;Init channel 0 attrib
move.l d0,M_BDATTR0

;DMA1 init to output DATA from DMA Buffer

move.l #BUFF_START,d0 ;Init destination 
address
move.l d0,M_BDADDR1
move.l #PATT_SIZE,d0 ;Init transfer size
move.l d0,M_BDSIZE1
move.l #ATTR1,d0 ;Init channel 1 attrib
move.l d0,M_BDATTR1
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DMA_START
moveu.l #dchcr0,d0 ;Init channel 0 config
move.l d0,M_DCHCR0
moveu.l #dchcr1,d0 ;Init channel 1 config
move.l d0,M_DCHCR1
CONT    
move.l M_DSTR,d5
bmtsts #0xc000,d5.h
jf CONT

6.4.4   External to External Dual Access, Chained with Interrupts

Example 6-4 uses a dual access to transfer 100 bytes of data from external SDRAM memory to a 
second external SDRAM memory location. DMA channel 2 reads data from the first external 
SDRAM memory address controlled by the SDRAM controller. Then DMA channel 3 reads data 
from the DMA FIFO and writes it to the second external SDRAM memory location under control 
of the SDRAM controller. This first transfer is chained to a second transfer that moves the data 
from the second external SDRAM address to the DMA FIFO using DMA channel 2. DMA 
channel 3 then transfers the data from the DMA FIFO to internal SRAM and generates an 
interrupt when the transfer is complete. The code implements the DMA transfer as follows:

Note: This code does not show initialization of the external and internal memory banks. It 
assumes that this is already complete.

1. The code begins with initialization of interrupts, as follows:

a. The interrupt mask bits (I0-2) of the Status Register (SR) are cleared. This permits all 
interrupt priority levels. 

b. ELIRE is programmed with IRQ18 at priority level 5 level-triggered mode.

c. To allow a DMA Channel 3 interrupt, the associated mask bit in the DIMR is set. 

d. To enable interrupts, an ei instruction is issued.

2. The first DMA transaction is initialized. Since it is a dual access transaction, both DMA 
channel 2 and DMA channel 3 must be programmed. BD_BSIZE is not initialized for 
any of the transfers because the code is not implementing cyclic buffers.

a. The DMA buffer descriptor 2 address is initialized to an SDRAM memory location for 
a 32-bit transfer size, transferring a total of 100 bytes. Once the buffer descriptor 2 read 
transfer is complete, it invokes the buffer descriptor 8 transfer.

b. The DMA buffer descriptor 3 address is initialized to another SDRAM memory 
location for a 32-bit transfer size, transferring a total of 100 bytes. Also, 
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BD_ATTR3 must include the next buffer pointer since this is a chained buffer. 
DMA channel 3 invokes DMA buffer descriptor 9 once its transfer is complete.

3. The second DMA transaction is initialized. Since it is a dual-access transaction, both 
buffer descriptor 8 and buffer descriptor 9 must be programmed.

a. The buffer descriptor 8 address is initialized to the second SDRAM memory location 
for a 32-bit transfer size, reading a total of 100 bytes.

b. The buffer descriptor 9 address is initialized to an internal SRAM memory location 
for a 32-bit transfer size, writing a total of 100 bytes. BD_ATTR9 must also enable 
interrupts so that the SC140 core is notified when the entire transaction is complete.

4. The DCHCRx for each channel must be initialized. Each DCHCRx value defines which 
bus the transaction is occurring on (System or local bus), which buffer descriptor is 
associated with the channel, and the priority level of the DMA transfer. All of these 
transactions are internal requests, so none of them are requested by a peripheral. The 
DCHCRx registers are programmed for the first transfer buffer descriptors. Once the 
first transfer is complete, the channel remains open, and the second two buffer 
descriptors define the remainder of the transfer.

5. Processing begins as soon as the activate channel bit is set in DCHCR2.

Example 6-4.   External Flash Memory to External SDRAM Memory, Dual Access Mode
; Memory Map Base Value
SDRAM_LOC equ  $20000000 ; SDRAM 
Base Address
SRAM_LOC equ  $02000000 ; SRAM 
base address on local bus
; Data Addresses
SDRAM_DATA1 equ  SDRAM_LOC+$300   ; Location of 
first SDRAM data
SDRAM_DATA2 equ  SDRAM_LOC+$400   ; Location of 
second SDRAM data
SRAM_DATA equ  SRAM_LOC+$4000 ; 
Location of final data in SRAM
;--------------------------------------------------
----
MAIN
; Initialize 16 MB SDRAM at address $20000000
INIT_INTER
    ; initialize interrupts
    bmclr #$00e0,sr.h      ; allow all interrupt 
levels
    move.l #M_ELIRE,r7              
    nop
    move.w #$0500,(r7) ; set IRQ18 interrupt to 

; level 5
    move.l #$10000000,d7 ; enable DMA channel 3 
interrupt to PIC
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    move.l d7,M_DIMR 
    ei ; enable interrupts
INIT_DMA1
    move.l #SDRAM_DATA1,d0
    move.l d0,BD_ADDR2
    move.l #$204801B0,d0 ; continuous next bus 
60x,  

; xfer 32 bits, 
chained to BD8
    move.l d0,BD_ATTR2
    move.l #100,d0 ; transfer 100 bytes
    move.l d0,BD_SIZE2

    move.l #SDRAM_DATA2,d0
    move.l d0,BD_ADDR3
    move.l #$200901A0,d0 ; continuous,next 
local,next buff 

; 9,xfer 32, write bits 
    move.l d0,BD_ATTR3
    move.l #100,d0 ; transfer 100 bytes
    move.l d0,BD_SIZE3
INIT_DMA2
    move.l #SDRAM_DATA2,d0
    move.l d0,BD_ADDR8
    move.l #$00000190,d0 ; 32-bit xfer
    move.l d0,BD_ATTR8
    move.l #100,d0 ; transfer 100 bytes
    move.l d0,BD_SIZE8

    move.l #SRAM_DATA,d0
    move.l d0,BD_ADDR9
    move.l #$80000180,d0 ; enable interrupt, 
32-bit xfer  
    move.l d0,BD_ATTR9
    move.l #100,d0 ; transfer 100 bytes
    move.l d0,BD_SIZE9
DMA_XFER
    move.l #$C0020045,d0   ; activate 
DMA2,60x,BD2,int req, prio 5
    move.l d0,M_DCHCR2
    move.l #$C0030045,d0 ; activate 
DMA3,60x,BD3,int req, prio 5
    move.l d0,M_DCHCR3
LOOP
    bra * ; Stay here until the 
interrupt
END
    debug 
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The SC140 core can run other application code while the DMA channel completes its data 
transfer. When the transfer is complete, DMA channel 3 triggers an interrupt to the SC140 core 
using IRQ18. Once this interrupt is triggered, the processor jumps to the appropriate interrupt 
vector address and begins processing. The interrupt vector code, shown in Example 6-5, uses an 
equate level, I_IRQ18, to define the offset from the vector base address for the interrupt request. 
All DMA interrupts generate an IRQ18 interrupt trigger. The interrupt service routine must 
determine which DMA channel triggered the interrupt and respond accordingly. Before a jump to 
the DMA interrupt service routine, all interrupts are disabled so that the DMA service routine can 
operate without interruption by any other resource on the device. The interrupts are re-enabled 
when the service routine completes.

Example 6-5.   Interrupt Vector Code
    org p:I_IRQ18 ; DMA interrupt
    di ; disable interrupts
    jsr DMAHANDLER ; jump to subroutine to 
handle 

; the interrupt
    ei ; enable interrupts
    jmp END ; return from interrupt

The interrupt service routine shown in Example 6-6 completes the program as follows:

1. The code gets the value of the DSTR and tests it to see if DMA channel 3 triggered the 
interrupt. 

2. If the interrupt is triggered by DMA channel 3, then the code operates as follows:

a. To notify the SC140 core that the interrupt has been serviced, the pending IRQ18 
interrupt is cleared in Interrupt Pending Register B (IPRB).

b. The interrupt service bit in the DSTR is cleared. Service of the interrupt is 
complete, so the code returns from the interrupt.

3. If the interrupt is not triggered by the DMA channel 3, then the code returns from the 
interrupt and continues to process. 

Example 6-6.   Interrupt Service Routine
DMAHANDLER
    move.l (M_DSTR),d7 ; move dma status reg 

; contents to d7
    move.l #I_IPRB,r7
    bmtset #$0040,d7.h ; test if dma3 int
    bmset.w #$4,(r7) ; clear pending EMA 
interrupt
    jf DMA_END ; if not dma3 int then 
return

    ; if dma3 was pending clear interrupt and finish 
    move.l d7,(M_DSTR) ; clear dma3 interrupt
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DMA_END
    rts

6.5 Avoiding DMA and SC140 Core Contentions

The DMA and the SC140 core can access internal memory and peripheral registers independently 
of each other. Thus, potential contention between the DMA controller and the SC140 core can 
occur if both are trying to access the same memory location or peripheral register at the same 
time. Here are some helpful hints to avoid contention:

� Internal Memory. Both the DMA channel and the SC140 core interface with the internal 
SRAM through the UPMC. The L1 bus has the highest priority over the P and X buses. 
The DMA channel connects to internal SRAM on the L1 bus; the SC140 core connects to 
internal SRAM on the P and X buses. Therefore, if the DMA channel and SC140 core try 
to access the same memory location, the DMA channel has priority over the SC140 core. 
To ensure that both the DMA controller and SC140 core can access internal SRAM 
without interfering with each other, the DMA controller and core should access different 
memory locations. 

� Peripheral Registers. The DMA controller and the SC140 core have access to the HDI16 
and EFCOP registers via the GPCM. If the DMA controller and SC140 core both try to 
access the same peripheral register, the DMA controller has priority over the SC140 core. 
To ensure that the correct value is written to or read from a peripheral register, the DMA 
controller and SC140 core should not access the same peripheral register at the same time 

� External Access. In the BP field of the BD_ATTR register, each DMA channel indicates 
which bus mastership request will be initiated. The PRKM field of the System Bus Arbiter 
Configuration Register (PPC_ACR) and the Local Bus Arbiter Configuration Register 
(LCL_ACR) defines the parked master on the System bus and local bus, respectively. 

For the System bus, the system Bus Arbitration-Level Register (PPC_ALRH and 
PPC_ALRL) define the arbitration priority for the system bus master. The bus master 
programmed in priority field 0 has the highest priority. For example, 01 (arbitrate for bus 
mastership with request 1011) is programmed in the BP field of the BD_ATTR register. 
1011 (DMA priority 1) is programmed in priority field 0, and 0101 (SC140 core interface) 
is programmed in priority field 1. The DMA has priority over the SC140 core on the 
system bus.

For the local bus, the Local Bus Arbitration Level Register (LCL_ALRH and 
LCL_ALRL) define the arbitration priority for the local bus master. These registers are 
programmed the same way as the PPC_ALRH and PPC_ALRL.

� DMA Access. The SC140 core can access the DMA in mid-operation. The DCHCR[INT, 
PRIO, FRZ, PPC, ACTV] bits can be modified while the DMA channel is active. The 
DMA can also change the BDPTR and ACTV fields. To prevent the SC140 core from 
conflicting with the DMA logic and overwriting the DMA modifications, use byte access 
to the fields when the channel is active. Modifying fields other than the DCHCR[INT, 
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PRIO, FRZ, PPC, ACTV] bits may result in erroneous results. For a chained buffer, if the 
DCHCR[BDPTR] bits are written while the PRIO field is modified, the incorrect buffer 
may be selected.
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Interrupts and Interrupt Priorities 7
This chapter describes a step-by-step procedure for handling MSC8101 interrupts. The main 
steps in this procedure are the software configuration phases for setting up the information in the 
interrupt controller registers and the interrupt subroutines to be executed. An example driver 
implementation illustrates both the hardware and software configurations for connecting to a 
peripheral (the EFCOP) and interrupting it. Refer to the MSC8101 Reference Manual for 
information on features not implemented by the driver.

7.1 Interrupt Basics

The MSC8101 interrupt scheme consists of three different interrupt controllers: 

� Programmable interrupt controller (PIC), which operates in the SC140. The PIC receives 
interrupts from DSP peripherals, DMA, external IRQ[2–3], and the SIC. When the PIC 
detects an interrupt request (IRQ) on one or more of its inputs, it arbitrates each IR 
according to its priority level.

� SIU-CPM interrupt controller (SIC), which generates interrupt requests to the PIC. The 
SIC receives interrupts from internal sources, such as the Periodic Interrupt Timer (PIT) or 
Time Counter Register (TMCNT), from the CPM, and from external sources such as port 
C parallel I/O pins or IRQs. The SIC generates interrupt requests to the PIC to be handled 
by the SC140.

� External SIU-CPM interrupt controller (SIC_EXT), which generates interrupt requests to 
an external host CPU. The SIC_EXT receives interrupts from the same sources as the SIC 
with additional IRQs from external IRQ[2–3] and DMA, but it generates interrupts externally 
for handling by an external processor. The use of two SICs increases flexibility since each 
SIC can handle different interrupt sources. For example, the SC140 core can handle 
DSP-related interrupts while another processor, such as the MSC8101 device or the 
PowerQUICC II, handles communication-related interrupts.

This configuration provides maximum flexibility so that interrupts can be handled internally by 
the SC140, by an external host, or by a combination of the two. Figure 7-1 shows the MSC8101 
interrupt structure.
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Figure 7-1.  MSC8101 Interrupt Structure

7.2 Programmable Interrupt Controller (PIC)

The MSC8101 PIC is a peripheral module that serves all the IRQs and non-maskable interrupts 
(NMIs) received from MSC8101 peripherals and I/O pins. NMIs handled by the SIC can be routed 
to the SC140 through the PIC or to an external host. The NMI handler is determined according to 
the NMI OUT bit in the hard reset configuration word. Routing NMIs to an external host makes it 
possible to build a system in which a single host handles all NMIs.

The PIC is memory-mapped to the SC140 and can be accessed via the SC140 QBus. Key features 
of the PIC include the following:

� 32 inputs for IRQs and NMIs, consisting of:

— 8 asynchronous edge-triggered NMI inputs.
— 24 asynchronous edge-triggered/level-triggered IRQ inputs.

� Auto-vector interrupt generation enable and disable.

� Support for software acknowledgment of all edge-triggered IRQ and NMI.

� Visibility to all pending IRQ.
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� Support for nine priority levels:

— Interrupt disabled (level 0).
— Interrupt enabled (levels 1-7, where 7 is the highest priority).
— NMI level (8 inputs only).

� Support for location-dependent priority for equi-level IRQ and NMI.

� Ability to work with slow peripherals in edge-triggered/level-triggered modes.

Figure 7-2.  PIC Block Diagram

7.3 Programming MSC8101 Interrupts

When the PIC detects an IRQ on one or more of its inputs, it arbitrates each IRQ according to its 
priority level and location and then generates the following:

� An IRQ signal to the SC140, indicating that an IR input has requested interrupt service 
from the SC140.

� An RIPL[2–0] signal indicating the priority of the IRQ.
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� An entry in the predefined Vector Address Bus (VAB), determined by the location of the 
IR.

Programming MSC8101interrupts consists of the following overall steps:

1. Set the interrupt table base address in the Vector Base Address (VBA) register.

2. Program the PIC ELIRx registers to set the interrupt priority level (IPL) and trigger 
mode of the interrupt requests.

3. Monitor the status of pending interrupts.

4. Route the interrupts.

7.3.1   Setting the Interrupt Table Base Address

You determine the base address for the interrupt vector table by writing it to the VBA register in 
the SC140 core. At reset the value of the 20-bit wide VBA register is set to zero. The offset for 
each exception vector is predefined. There are 64 possible exception vector locations. The 
spacing between two exception vectors is 32 words (four full execution sets).

7.3.2   Setting the Interrupt Priority Level and Trigger Mode

The SC140 core uses six edge-triggered/level-triggered interrupt priority registers (16-bit 
read/write registers) to determine the interrupt priority level (IPL) and trigger mode of the 
interrupt requests received at each of the 24 maskable PIC inputs. These registers are software 
programmable. Each of the six edge-triggered/level-triggered interrupt priority registers, ELIRA 
through ELIRF, defines a bank of four maskable IR inputs. 

.

Each register defines the interrupt trigger mode and IPL for four inputs. For each input, three bits 
define the priority level, and one bit specifies the trigger mode for the interrupt.

Of the 32 PIC inputs, eight are non-maskable interrupts (NMI) and cannot be programmed. The 
NMI are always assigned the highest priority, regardless of their source. Each of the remaining 
24 inputs can be programmed to one of seven maskable priority levels, IPL 0 through IPL 6, with 
a corresponding numeric value of 1 through 7. The highest maskable priority is IPL 6. Table 7-2 

Table 7-1.  Edge-Triggered/Level-Triggered Interrupt Priority Registers 

Register Name Description Bank IR Inputs

ELIRA PIC Edge/Level-Triggered Interrupt Priority Register A A 0–3

ELIRB PIC Edge/Level-Triggered Interrupt Priority Register B B 4–7

ELIRC PIC Edge/Level-Triggered Interrupt Priority Register C C 8–11

ELIRD PIC Edge/Level-Triggered Interrupt Priority Register D D 12–15

ELIRE PIC Edge/Level-Triggered Interrupt Priority Register E E 16–19

ELIRF PIC Edge/Level-Triggered Interrupt Priority Register F F 20–23
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lists the possible settings for the three interrupt priority level bits, with their corresponding value 
and IPL. A value of zero in these three bits indicates that interrupts are disabled on this input.

7.3.3   Monitoring the Status of Pending Interrupts

The PIC interrupt pending registers, IPRA and IPRB, are 16-bit read/write registers used by the 
SC140 for two purposes:

� Monitoring pending interrupts.

� Resetting edge-triggered interrupts.

Reading the two interrupt pending registers, you can view the status of all current IRQ and NMI. 
Each bit in the registers represents one of the 32 inputs. If an IRQ is configured as level-triggered, 
its corresponding interrupt pending (IP) bit reflects the status of the IRQ signal. The IP bit is set if 
at least one IRQ is pending and reset if there are no IRs pending. 

When the corresponding IR is configured as edge-triggered, its IP bit is set for every new 
negative edge detected on the IR. A value of “1” written to the IP bit indicates that the 
corresponding IR has been acknowledged. This feature is used for both IRs and NMIs to indicate 
to the PIC that the SC140 core has acknowledged the corresponding edge-triggered interrupt 
source and that the PIC should ignore any request from the corresponding interrupt source until 
its next negative edge. 

Each bit in the interrupt pending registers corresponds to an interrupt source, as shown in Table 
7-3. Interrupt pending register A (IPRA) defines the status of the first 16 programmable IRs, 
while interrupt pending register B (IPRB) defines the remaining eight programmable IRs and the 
eight NMIs.

Table 7-2.  Interrupt Priority Level Bit Settings

PILxx0 PILxx1 PILxx2 Enabled Value IPL

0 0 0 No 0 ----

0 0 1 Yes 1 0

0 1 0 Yes 2 1

0 1 1 Yes 3 2

1 0 0 Yes 4 3

1 0 1 Yes 5 4

1 1 0 Yes 6 5

1 1 1 Yes 7 6
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7.3.4   Routing Interrupts

The MSC8101 PIC can serve a total of 24 IRQ and 8 NMI. Each IRQ is configured as 
edge-triggered or level-triggered and can be assigned a priority in the range 0 through 7, where 
priority 0 masks the interrupt. On reset, all IRQ are masked (set to priority 0) and configured as 
level-triggered. On bootstrap, IRQ[19–20] are configured as edge-triggered. The NMI relative 
priority is fixed, with NMI0 assigned the lowest priority and NMI7 the highest. NMI are always 
edge-triggered. 

To ensure that specific sets are executed in sequence, mask all interrupts using the di (disable 
interrupts) instruction and unmask them using the ei (enable interrupts) instruction. You can also 
mask interrupts up to a specified priority level by setting the selected priority level in the SC140 
status register I[2–0] (SR[23–21]). The SC140 core handles only NMI or interrupts with an IPL 
higher than the current interrupt mask value. At reset these bits are set, and all interrupts are 
disabled. The interrupt mask bits, I2, I1, and I0, reflect the current IPL of the SC140 core. 

The memory allocation for each interrupt routine is 64 bytes, which constitutes four program 
fetches. SC140 instructions are encoded as two to four bytes, with a minimum instruction size of 
one word. An average of 20 instructions can be held in the allocated memory area. The address 
calculation is based on the VBA and VAB registers, as follows:

ADDR[0:31] = {VBA[0:19],VAB[0:5],6’b0} 

Table 7-4 summarizes the routing of MSC8101 interrupts. Unless stated otherwise, all IRQ are 
level-triggered. 

Table 7-3.  Interrupt Pending Sources

Register Name Description Bank Inputs IRQ/NMI

IPRA PIC Interrupt Pending Register A A 0–15 IRQ

IPRB PIC Interrupt Pending Register B B 16–23
24–31

IRQ
NMI

Table 7-4.  Routing of MSC8101 Interrupts 

VAB[0–5] Signal Description
Service Routine Address 

(Offset from VBA)

0x0 TRAP Internal exception (generated by trap instruction) 0x0

0x1 – Reserved 0x40

0x2 ILLEGAL Illegal instruction or set 0x80

0x3 DEBUG Debug exception (EOnCE) 0xC0

0x4 – Reserved 0x100

0x5 OVERFLOW Overflow exception (DALU) 0x140

0x6 DEFAULT NMI In VAB disabled mode only 0x180
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0x7 DEFAULT IRQ In VAB disabled mode only 0x1C0

0x8-0x1F – Reserved 0x200-0x7FF

0x20 IRQ0 EFCOP (0): Input FIFO not full 0x800

0x21 IRQ1 EFCOP (1): Input FIFO empty 0x840

0x22 IRQ2 EFCOP (2): Output FIFO full 0x880

0x23 IRQ3 EFCOP (3): Output FIFO not empty 0x8C0

0x24 IRQ4 EFCOP (4): Update done 0x900

0x25 IRQ5 HDI16 (0): Receive FIFO full 0x940

0x26 IRQ6 HDI16 (1): Receive FIFO not empty 0x980

0x27 IRQ7 HDI16 (2): Transmit FIFO empty 0x9C0

0x28 IRQ8 HDI16 (3): Transmit FIFO not full 0xA00

0x29 IRQ9 HDI16 (4): External HOST command 0xA40

0x2A IRQ10 Bus controller (x-y contention) 0xA80

0x2B IRQ11 Bus controller (level1 contention) 0xAC0

0x2C IRQ12 Bus controller (p-x contention) 0xB00

0x2D IRQ13 Bus controller (non-aligned data error) 0xB40

0x2E IRQ14 Reserved 0xB80

0x2F IRQ15 External IRQ2 (edge/level configurable) 0xBC0

0x30 IRQ16 SIC interrupt 0xC00

0x31 IRQ17 External IRQ3 (edge/level configurable) 0xC40

0x32 IRQ18 DMA interrupt (channel/buffer terminated) 0xC80

0x33 IRQ19 SMI (TEA) (edge-triggered) 0xCC0

0x34 IRQ20 EOnCE interrupt (edge-triggered) 0xD00

0x35 IRQ21 Reserved 0xD40

0x36 IRQ22 Reserved 0xD80

0x37 IRQ23 Reserved 0xDC0

0x38 NMI0 HDI16: External Host NMI 0xE00

0x39 NMI1 Reserved 0xE40

0x3A NMI2 Bus controller (memory write error) 0xE80

0x3B NMI3 Bus controller (non-aligned error) 0xEC0

0x3C NMI4 Reserved 0xF00

0x3D NMI5 Reserved 0xF40

0x3E NMI6 Reserved 0xF80

0x3F NMI7 SIC NMI, for example, S/W watchdog, external 
NMI, parity error

0xFC0

Table 7-4.  Routing of MSC8101 Interrupts (Continued)

VAB[0–5] Signal Description
Service Routine Address 

(Offset from VBA)
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7.4 Interrupt Programming Examples

This section describes how to use the PIC programming model for IRs and NMIs. The 
programming examples include the following functionality:

� Setting the interrupt base address in the VBA register.

� Initializing the stack pointer.

� Masking interrupts in the MSC8101 status register.

� Masking, unmasking, and programming IR properties in the ELIRx registers.

� Clearing a pending IRQ in the IPRx register.

� Using interrupt service routines longer than 64 bytes

The VBA holds the 20 MSB of the interrupt table base address. Consequently, the 12 LSB of this 
register must be cleared. At bootstrap, the VBA is initialized to the ROM base address 
(0x00F80000), and the stack pointer is initialized to 0x68000. You can change this value before 
issuing a call to any subroutine, since, depending on the specific software, this address may not 
be available for the stack. At reset, the SC140 core disables all interrupts. When an IR occurs, the 
status register is pushed onto the stack and the interrupt priority level (IPL) of the current IR is 
written to SR[23–21]. All IRs with a priority level less than or equal to the IPL of the current IR 
are masked.

The following example programs the interrupt base address in the VBA, initializes the stack 
pointer, and enables interrupts with priority levels of 6 or 7 only. All interrupts with priority level 
5 or less are masked.

...

;Programming the VBA register to address 0x5000

move.l #$5000,vba

;Initializing the stack pointer to address 0x68000

move.l #$68000,r0

nop

tfra r0,sp

...

...

; Masking interrupts of priority 0,1,2.

bmclr #$00a0,sr.h

...
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7.4.1   PIC Programming

In the PIC ELIRA–ELIRF registers, you can configure the priority level and select the trigger 
mode for each interrupt. On reset, all IRs are masked (set to priority 0) and configured as 
level-triggered. The following example shows how to assign priority 5 to the SIC interrupt, 
priority 4 to the DMA interrupt, and priority 6 to the SMI interrupt. This example also configures 
the SMI interrupt as edge-triggered, and the other two interrupts as level-triggered.

...

; BASE0 is 0x00f00000

ELIRE equ $00f01c20

IRQ16 equ $50c00

IRQ18 equ $50c80

IRQ19 equ $50cc0

; VBA is set to 0x50000

move.l #$50000,vba

; assign priority 5 to SIC (irq 16) and priority 4 to DMA (irq 18)

; assign priority 6 to SMI (irq 19) and set to edge trigger.

move.w #$e405,ELIRE

...

org p:IRQ16

; interrupt routine for SIC

rte

org p:IRQ18

; interrupt routine for DMA

rte

org p:IRQ19

; interrupt routine for SMI

rte

7.4.2   Clearing Pending Requests

The first task that an interrupt routine normally handles is to clear pending requests by writing to 
IPRx. If the size of the interrupt routine is larger then 64 bytes, you can use service routines to 
accommodate unlimited code size. The following example illustrates a typical interrupt routine 
that uses a service routine. This example also demonstrates the use of the ei and di instructions, 
which enable and disable IRs, respectively.

IPRB equ $00f01c38

...
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org p:IRQ16

; interrupt routine for SIC

di ; disable any IR

jsr SIC_IRQ

nop

ei ; enable IR

rte

...

org p:SIC_IRQ

; clear pending interrupt in IRPB

move.w #$1,IPRB

; interrupt service routine to handle SIC

...

rts

7.4.3   EFCOP Programming Examples
;;~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

; Interrupt Initialization                                              ;

                                                                        ;

ELIR_A          equ             $7007   ;       enable IRQ0 - IRQ3      ;

ELIR_B          equ             $0000   ; ;

IRQ0_SUB        equ             INIT                                    ;

IRQ1_SUB        equ             INIT+$100                               ;

IRQ2_SUB        equ             INIT+$200                               ;

IRQ3_SUB        equ             INIT+$300                               ;

IRQ4_SUB        equ             INIT+$400                               ;

;;~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~;

;;~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~;

;;       NM interrupt handle subroutine (SIC NMI vector)       ;

;; ----------------------------------------------------------------     ;

;

        org p:NMI7                                                      ;

NMI

        nmis    7                                                       ;
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        rte                                                             ;

;;~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~;

;;~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~;

;;      interrupt handle subroutine (input buffer not full)             ;

                                                                        ;

        org p:IRQ0                                                      ;

        irqs    0                                                       ;

        jsr             IRQ0_SUB                                        ;

        rte                                                             ;;

;; ----------------------------------------------------------------     ;

;;      interrupt handle subroutine (input buffer empty)                ;

;; ----------------------------------------------------------------     ;

        org p:IRQ1                                                      ;

        irqs    1                                                       ;

        jsr             IRQ1_SUB                                        ;

        rte                                                             ;;

;; ----------------------------------------------------------------     ;

;;      interrupt handle subroutine (output buffer full)                ;

;; ----------------------------------------------------------------     ;

        org p:IRQ2                                                      ;

        irqs    2                                                       ;

        jsr             IRQ2_SUB                                        ;

        rte                                                             ;;

;; ----------------------------------------------------------------     ;

;;      interrupt handle subroutine (output buffer not empty)           ;

;; ----------------------------------------------------------------     ;

        org p:IRQ3                                                      ;

        irqs    3                                                       ;

        jsr             IRQ3_SUB                                        ;

        rte                                                             ;;

;; ----------------------------------------------------------------     ;

;;      interrupt handle subroutine (update coefficient done)           ;

;; ----------------------------------------------------------------     ;

        org p:IRQ4                                                      ;

        irqs    4                                                       ;
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        jsr             IRQ4_SUB                                        ;

        rte                                                             ;

                                                                        ;

;;~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~; 

;;~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~;

        ;; PIC init                             ;

        ; enable VAB in PIC-SR                  ;

        write_w #$0000,PICSR                    ;

                                                ;

        write_w #ELIR_A,ELIRA   ; irq3 enable   ;

        write_w #ELIR_B,ELIRB                   ;

        write_w #$0000,ELIRC                    ;

        write_w #$0000,ELIRD                    ;

        write_w #$0000,ELIRE                    ;

        write_w #$0000,ELIRF                    ;

;;~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~;

;;~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~;

;;     enable interupts  
bmclr #$00e0,sr.h                       ;

;;~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~;

;;~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~;

;;      interrupt handle subroutine                                     ;

;; ----------------------------------------------------------------     ;

;;      interrupt handle subroutine (input buffer not full)             ;

;; ----------------------------------------------------------------     ;

        org p:IRQ0_SUB                                                  ;

                                                                        ;

        write_l (r8)+,(r5)      ;       write long ( 32 bit ) to FDIR     ;

        nop                                                             ;

        deceq d3                                                        ;

        jf IBNF                                                         ;

        move.l  EFCTL,d5                ;       clear FINFIE bit        ;

        nop                                                             ;

        bmclr   #$0800,d5.l                                             ;

        nop                                                             ;
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        move.l  d5,EFCTL                                                ;

IBNF                                                                    ;

        rts                                                             ;

;; ----------------------------------------------------------------     ;

;;      interrupt handle subroutine (input buffer empty)                ;

;; ----------------------------------------------------------------     ;

        org p:IRQ1_SUB                                                  ;

        dosetup0        loop0                                           ;

                doen0   #4                                              ;

                nop                                                     ;

                nop                                                     ;

        loopstart0                                                      ;

loop0                                                                   ;

        write_l (r8)+,(r5)                                              ;

        deceq d3                ;       decrement the SRC_COUNT         ;

        nop                                                             ;

        nop                                                             ;

        nop                                                             ;

        nop                                                             ;

        loopend0                                                        ;

        cmpeq.w #0,d3                                                   ;

        jf IBE                                                          ;

        move.l  EFCTL,d5                ;       clear FIEIE bit         ;

        bmclr   #$0400,d5.l                                             ;

        move.l  d5,EFCTL                                                ;

IBE                                                                     ;

        rts                                                             ;

                                                                        ;

;; ----------------------------------------------------------------     ;

;;      interrupt handle subroutine (output buffer full)                ;

;; ----------------------------------------------------------------     ;

        org p:IRQ2_SUB                                                  ;

        dosetup1        loop1                                           ;

                doen1   #4                                              ;

                nop                                                     ;
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                nop                                                     ;

        loopstart1                                                      ;

loop1                                                                   ;

        write_l (r4),(r6)+                                              ;

        deceq d4                ;       decrement the DST_COUNT         ;

        nop                                                             ;

        nop                                                             ;

        nop                                                             ;

        nop                                                             ;

        loopend1                                                        ;

        cmpeq.w #0,d4                                                   ;

        jf OBF                                                          ;

        move.l  EFCTL,d5                ;       clear FOFIE bit         ;

        bmclr   #$1000,d5.l                                             ;

        move.l  d5,EFCTL                                                ;

OBF                                                                     ;

        rts                                                             ;

                                                                        ;

;; ----------------------------------------------------------------     ;

;;      interrupt handle subroutine (output buffer not empty)           ;

;; ----------------------------------------------------------------     ;

        org p:IRQ3_SUB                                                  ;

        write_l EFDOR,(r6)+     ;       read single word from FDOR      ;

        deceq d4                                                        ;

        jf OBNE                                                         ;

        move.l  EFCTL,d5                ;       clear FONEIE bit        ;

        bmclr   #$2000,d5.l                                             ;

        move.l  d5,EFCTL                                                ;

OBNE                                                                    ;

        rts                                                             ;

                                                                        ;

;; ----------------------------------------------------------------     ;

;;      interrupt handle subroutine (update coefficient done)           ;

;; ----------------------------------------------------------------     ;

        org p:IRQ4_SUB                                                  ;
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        irqs    4                                                       ;

        write_l EFDOR,(r6)+     ;read single word from FDOR             ;

        write_l (r8)+,EFDIR     ;write single word to FDIR after UCD    ;

        deceq d4                                                        ;

        jf UPD                                                          ;

        move.l  EFCTL,d5                ;       clear FUDIE bit         ;

        bmclr   #$0200,d5.l                                             ;

        move.l  d5,EFCTL                                                ;

UPD                                                                     ;

        rts                                                             ;

;~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~;

7.4.4   PIC Macros

Following is an irqs macro to clear an edge-triggered interrupt request:

irqs    MACRO   irq_num

        ;; irq num from 0-23

        nop

        if      irq_num<16

                move.l #irq_num,d6

                move.l #1,d7

                lsll d6,d7

                nop

                move.w d7,IPRA

        else

                move.l #irq_num-16,d6

                move.l #1,d7

                lsll d6,d7

                nop

                move.w d7,IPRB

        endif

        nop

        ENDM

Following is an nmis macro to clear the edge-triggered interrupt request:

nmis    MACRO   nmi_num
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        ;; nmi num from 0-7

        nop

        move.w PICSR,d6

        nop

        move.l #nmi_num+8,d6

        move.l #1,d7

        lsll d6,d7

        nop

        move.w d7,IPRB

        nop

        ENDM

7.4.4.1   Examples of SIC Interrupts 

#include"Sic.h"

Sic_Branch SIC_BranchTable[64];

main () 
{ 
...... M A I N - P R O G R A M ...... 
}

void SPI_InitInterrupt() 
{ 
//create entry in SIC branch table: 
SIC_BranchTable[SIC_SPI].Interrupt = SPI_Interrupt; 
//the interrupt routine for the SPI must be called SPI_Interrupt 
SIC_BranchTable[SIC_SPI].Serial = NULL; //temp 
//Configure SPI:  

IMM->spi_spie = 0xFF;  //clear any previous SPI interrupt events in SPI-reg.  
IMM->spi_spim = 0x01;  //enable only Rx interrupt! Although we only use the 

//Tx line, we need the Rx interrupt to make sure that

//we get an interrupt after all bits have been sent.  
//The Tx Irq is useless here because it appears too 
//early. All this is neccessary to set CS back to 1.  

//Configure the SIU_CPM interrupt controller (SIC):

  //When a SPI interrupt occurs, bit17 of the SIPNR_L will be 
//set. Furthermore the corresponding interrupt code (SPI = 2) 
//0x08000000 is visible in SIVEC (dependent on priority 
//level).

  IMM->ic_sipnr_l = 0x00004000; //clear any previous SPI interrupt

  IMM->ic_simr_l  |= 0x00004000; //enable SPI interrupt
MSC8101 User’s Guide, Rev. 3

7-16 Freescale Semiconductor



Interrupt Programming Examples
return; 
} // end SPI_InitInterrupt() 
/**************/ 
/* SPI_Interrupt */ 
/**************/ 
void SPI_Interrupt(void *spi) 
{ 
/* 
This function is called only when a SIC/SPI interrupt occurs. 
*/

  QMM->Iprb  = 0x0001; //clear SIC interrupt flag in Irq Pending Register B: 
IMM->ic_sipnr_l = 0x00004000; //clear SPI interrupt flag in SIC-reg. 
IMM->spi_spie |= 0xFF;         //clear all SPI irq flags in SPIE-reg.  
}

typedef struct sicbrancht Sic_Branch; 
struct sicbrancht 
{ 
void (*Interrupt)(void*); 
void *Serial; 
};

/* --------------------------------------------------------------- */ 
/* Interrupt codes used for SIVEC and SIC branch table */

/* --------------------------------------------------------------- */

enum SIC_IRQ_CODE {  SIC_ERROR,    SIC_I2C,    SIC_SPI,   SIC_RISC, 
SIC_SMC1,   SIC_SMC2,  SIC_IDMA1,  SIC_IDMA2, 
SIC_IDMA3,  SIC_IDMA4,   SIC_SDMA, SIC_RESV01, 
SIC_TIMER1, SIC_TIMER2, SIC_TIMER3, SIC_TIMER4, 
SIC_TMCNT,    SIC_PIT, S IC_RESV02,   SIC_IRQ1, 
SIC_IRQ2,   SIC_IRQ3,   SIC_IRQ4,   SIC_IRQ5, 
SIC_IRQ6,   SIC_IRQ7, SIC_RESV03, SIC_RESV04, 

SIC_RESV05, SIC_RESV06, SIC_RESV07, SIC_RESV08,   
SIC_FCC1,   SIC_FCC2,   SIC_FCC3, SIC_RESV09, 
SIC_MCC1,   SIC_MCC2, SIC_RESV10, SIC_RESV11, 
SIC_SCC1,   SIC_SCC2,   SIC_SCC3,   SIC_SCC4, 
SIC_RESV12, SIC_RESV13, SIC_RESV14, SIC_RESV15, 
SIC_PC15,   SIC_PC14,   SIC_PC13,   SIC_PC12, 
SIC_PC11,   SIC_PC10,   SIC_PC09,   SIC_PC08, 
SIC_PC07,   SIC_PC06,   SIC_PC05,   SIC_PC04, 
SIC_PC03,   SIC_PC02,   SIC_PC01,   SIC_PC00

                  };

void SIC_InitInterrupt(); 
void PIC_Code(); 
void SIC_IrqHandler();
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7.4.4.2   Examples of SIC Interrupts

#define VBA  0x00000000 //Value for Vector Base Address Register (VBA) 
#define SET_VBA           asm("move.l #$00000000,vba") //macro to set vba register 
#include "netcomm.h"         //Global defines 
#include "msc8101.h" 
#include "MM.h" 
#include "Sic.h" 
#include"segmentor.h" 
extern BasePtrIMM *IMM;           //Internal Memory Map base pointer 
extern QMMBank0 *QMM;

//This table contains all SIC interrupt function addresses.   
extern Sic_Branch SIC_BranchTable[64]; 
//64 entries, each 4 bytes => 256 bytes of memory 

/***********************************************/ 
/* SIC_InitInterrupt                                                         */ 
/***********************************************/

void SIC_InitInterrupt() 
{ 
/* 

Note! The SIU Interrupt Vector Register (SIVEC) is not used here, 
so the ’SIC_IrqHandler’ must find out the reason for 
every SIC interrupt.

  */ 

/* Establish relevant pointers and registers for SIC-Irq usage in PIC */ 
SET_VBA;  // macro to set vba register   
//Configure the Programmable Irq Controller (PIC) to enable SIC Irqs: 
//Make sure that the Vector Base Address Reg. (VBA) is set correctly! 
//At a SIC-Irq the core jumps into the PIC Irq routing table (base is VBA)  
//to the offset 0x0C00.

//Create a PIC Irq routing table entry for SIC-Irq; that is, copy assembly code 
//to the provided location of the PIC Irq Routing table. (Note! Here the maximum 
//number of bytes per entry are copied, although maybe less are used. The 
//rationale is that the number of bytes does not need to be changed when 
//the assembly code changes.)  
//SIC_BranchTable = (Sic_Branch*)get_seg(DATA,64*sizeof(Sic_Branch));

  memcpy((void*)(VBA + 0x0c00), &PIC_Code,0x50);

  

  //clear whole SIC branch table

  memset(SIC_BranchTable, 0 , sizeof(SIC_BranchTable));

  

  //clear any previous SIC interrupt in Irq Pending Register B:

  QMM->Iprb  = 0x0001; 
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  //Configure Edge/Level-Triggered Irq Priority Register E to enable IRQ16: 
//Irq16 (SIC), level-triggered, Irq priority level = 3

  QMM->Elire = (QMM->Elire & 0xFFF0) | 0x0003; 

  

  IMM->ic_sipnr_l  = 0xFFFFFFFF; //clear any previous interrupts in SIC-reg. 
IMM->ic_simr_l   = 0x00000000; //disable all interrupts

  asm("ei"); //enable interrupts

}

#pragma interrupt PIC_Code 
void PIC_Code()

 {

   /* This function must be copied to the location ’VBA+0x0C00’ within the PIC 
Irq routing table. Ensure that max. 50 bytes (64-(6+6+2)) of assembly code 
are included into this function. */

  

  //asm("jsr _QCtxtSave");     

//6 bytes for JSR, created by #pragma to push registers into stack 
asm("di"); 
SIC_IrqHandler(); 
asm("ei");

//asm("jsr _QCtxtRestore"); //6 bytes for JSR, created by #pragma to pop  
//registers from stack 

//asm("rte");                //2 bytes, created by #pragma to return from 
//interrupt

 }

/************************************************/ 
/* SIC_IrqHandler                                                            */ 
/************************************************/

void SIC_IrqHandler() 
{

 /*Ensure that the SIC interrupt branch 
table is allocated (global) with ’UWORD SIC_BranchTable[64]’.*/

UBYTE sivec;

sivec = (IMM->ic_sivec>>26);//IMM->ic_sivec bits 0-31 wheras only bits 0-5 matters

 SIC_BranchTable[ sivec].Interrupt(SIC_BranchTable[ sivec].Serial); 

}
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/*  asm("move.l _IMM,r0");       //IMM base address 
asm("move.l #$00010C04,r1"); //SIVEC offset

  asm("nop");

  asm("adda r1,r0");           //SIVEC address

  asm("nop");

 asm("moveu.b (r0),r1");      //get SIVEC to figure out the irq source 
asm("move.l #_SIC_BranchTable,r0"); //get branch table base 
asm("nop"); 
asm("adda r0,r1");           //add sivec to branch table base 
asm("nop"); 
asm("move.l (r1),r0");       //get address of irq function from 

//branch 
//table 

asm("nop"); 
asm("jsr r0");               //call interrupt function
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Host Interface (HDI16) 8
The HDI16 host port is an MSC8101 DSP peripheral featuring a 16-bit-wide parallel port for 
communication with a host processor. This parallel port is a full-duplex and double-buffered 
slave interface. It transfers data between a host or DMA controller and the DSP, and it transfers 
commands from the host to the DSP. The 16-bit-wide HDI16 data bus handles 16-bit, 32-bit, 
48-bit, and 64-bit data transfers. In addition, an 8-bit data mode handles 8-bit, 16-bit, 24-bit, and 
32-bit data transfers on an 8-bit-wide data bus. Programmable options provide a glueless 
connection between the DSP and other MSC8101 devices or MPC860 and MPC8260 host 
processors. Minimal glue logic is required to interface the HDI16 port to several 
industry-standard processors and buses, such as the ISA bus and theFreescale 68K family.

This chapter tells you how and why to operate the HDI16 in different modes, discusses the 
various handshaking protocols for managing data transfers and the pros and cons of each, and 
examines how you can use the innovative host command feature of the host interface. For 
information on the HDI16 and power-on reset, see Section 2.4, Configuring a Multi-MSC8101 
System Connected Via the Host Port, on page 1-11. For a detailed discussion of the HDI16 
registers and programming model, consult the MSC8101 Reference Manual.

8.1 HDI16 Programming Basics

Note: The HDI16 interface is multiplexed with the upper 32 bits of the system data bus. To 
use the HDI16, you must enable the port by pulling up the HPE/EE1 line up at reset and 
set the ISPS bit in the Hard Reset Configuration Word to configure the system data bus 
as 32 bits to release the upper 32 bits for use by the HDI16. After the HDI16 is enabled 
at reset, you can set the HPCR[HEN] to make the interface active.

The HDI16 interface is a “slave” peripheral, which means that a “master” performs all the 
external read and write accesses necessary to communicate with the HDI16 port. In this chapter, 
the master is called the “host.” The internal MSC8101 resources that manipulate the HDI16 
interface are referred to as the “DSP.”

As Figure 8-1 shows, the HDI16 peripheral has two register banks:

� Host-side register bank. Accessible only to the host from the external HDI16 bus.

� DSP-side register bank. Accessible only to the DSP internal resources.
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For host-to-DSP transfers, the host writes the host-side registers and the DSP reads the DSP-side 
registers; for DSP-to-host transfers, the DSP writes the DSP-side registers and the host reads the 
host-side registers. The separate receive and transmit data paths are double buffered for efficient, 
high-speed asynchronous transfers. On the DSP side, the Host Transmit Data Register (HOTX) 
and the Host Receive Data Register (HORX) are FIFOs of four 64-bit words. The host-side 
transmit data path (used for transfers from the host to the DSP) is also the DSP-side receive path. 
The host-side receive data path (used for transfers from the DSP to the host) is also the DSP-side 
transmit path.

Figure 8-1.  HDI16 Programmer’s Model

8.1.1   Host-Side Model

To the host, the HDI16 appears as eleven 16-byte-wide locations mapped in its external address 
space, as indicated in Table 8-1. The control registers provide the host with control and status 
information and allow the use of host commands. The data registers enable data transfers. 
Finally, the reset configuration registers are used only during reset to configure the MSC8101 
hardware.

Table 8-1.  Host-Side Programmer’s Model 

Type Host Address Host-Side Register Mnemonic

Control 0x0 Interface Control Register ICR

0x1 Command Vector Register CVR

0x2 Interface Status Register ISR

0x3 Reserved —

HCR

RX2 RX3

HSR

RX1 TX1 TX2TX0ICR CVRISR IVR

HCVR

External Host Bus

Internal DSP Data Bus

DSP
Side

Host
Side

Receive and
transmit

data paths
HPCR

RX0 TX3

HORXHOTX
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8.1.2   DSP-Side Model

To the SC140 core, the DSP-side registers appear as six registers mapped in the QBus memory 
space, as indicated in Table 8-2, allowing MSC8101 instructions and addressing modes to access 
these registers. Four 16-bit control registers provide the SC140 core control of the HDI16 
functionality, and two 64-bit data registers transfer the data. 

8.2 Operating in Different Data Transfer Modes

The HDI16 offers two modes for transferring data between the host and the DSP. Normal mode 
refers to non-DMA transfers, and DMA mode refers to transfers using an external DMA 
controller (not be confused with the operation of the internal DMA controller). The Host DMA 
Mode Enable bit in the Host Port Control Register, HPCR[DMA], defines the mode of operation 
as shown in Table 8-3. The hardware can be set up so that both transfer modes, Normal and 
DMA, can be used on the same bus, though not simultaneously. In Normal mode, the host 
transfers data one access at a time, with each access requiring an address and data transaction on 
the host bus. In host DMA mode, the data is transferred on the host bus without requiring address 
transactions, thus giving faster data access.

Data 0x4 Transmit/Receive Register 3 TX3/RX3

0x5 Transmit/Receive Register 2 TX2/RX2

0x6 Transmit/Receive Register 1 TX1/RX1

0x7 Transmit/Receive Register 0 TX0/RX0

Reset 
Configuration

0x8 Reset Configuration Register 0 RSCFG0

0x9 Reset Configuration Register 1 RSCFG1

0xA Reset Configuration Register 2 RSCFG2

0xB Reset Configuration Register 3 RSCFG3

0xC–0xF Reserved —

Table 8-2.  DSP-Side Programmer’s Model 

Type
Host Address

(HA[0–3])
Host-Side Register Mnemonic

Control 0x0000 Host Control Register HCR

0x0040 Host Status Register HSR

0x0060 Host Command Vector Register HCVR

— 0x0020 Host Port Control Register HPCR

Data 0x0080 Host Transmit Data FIFO HOTX

0x00A0 Host Receive Data FIFO HORX

Table 8-1.  Host-Side Programmer’s Model (Continued)

Type Host Address Host-Side Register Mnemonic
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To accommodate these modes, each HDI16 pin serves multiple purposes, as Table 8-4, Table 
8-5, and Table 8-6 show.

The Host Port Control Register (HPCR) and the HDDS, HDSP, and H8BIT pins are used to set the 
following options:

� Width of the data bus. The HDI16 is programmed to use the 8-bit-wide or 16-bit-wide host 
data bus as indicated by setting the HPCR[H8BIT] bit or by driving the H8BIT pin low to 
select 16-bit mode. The functionality of the HD[15–0] data pins (indicated in Table 8-4) 
applies to a 16-bit wide host data bus. For an 8-bit host data bus width, only the HD[7–0] 
data pins are used. 

� Use of single or dual read/write strobes (signals). An OR of the HPCR[HDDS] bit and the 
HDDS pin indicate a single or dual strobe. In a single-strobe bus, the Host Data Strobe pin 
(HDS) indicates that valid data is present on the bus. The Host Read/Write pin (HRW) 
indicates the type of transaction in process (read or write). In dual-strobe mode, the Host 
Read (HRD) and the Host Write (HWR) lines each indicate data validity and transaction 
type.

� Polarity of the read/write strobes. Signals can be programmed as active high or active 
low, as indicated by an ORing of the HPCR[HDSP] bit and the HDSP pin.

The HDI16 can be programmed to use a single host request line or dual host request lines.

Table 8-3.  Normal and DMA Mode Selection

HPCR[DMA] Mode

0 Normal

1 DMA

Table 8-4.  Normal and DMA Mode Pin Functions 

Pin Normal Mode DMA Mode

HD[15–0] HD[15–0] HD[15–0]

HA[3–0] HA[3–0] —

HCS1 HCS1 —

HCS2 HCS2 —

Table 8-5.  Single- and Dual-Strobe Bus Pin Functionality

HDI16 Pin Single-Strobe Bus Dual-Strobe Bus

HRW/HRD HRW HRD/HRD

HDS/HWR HDS/HDS HWR/HWR
MSC8101 User’s Guide, Rev. 3
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Refer to Section 8.3.3, Host Requests for information on the host request lines.

8.2.1   Normal Mode

In Normal mode, the HDI16 port appears to the host as eleven 16-bit wide registers mapped to its 
external memory, much as a 16-bit SRAM would appear. To enable Normal mode, the DSP core 
must clear the Host Port Control Register’s DMA bit (HPCR[DMA]) and set the Host Enable bit 
(HPCR[HEN]). Once Normal mode is enabled, the HCR[HICR] bit determines whether the 
DSP-side Host Control Register (HCR) or the host-side Interface Control Register (ICR) defines 
the size of the data transferred (see Table 8-7).

If the host defines the Normal mode transfer (HCR[HICR] = 1), the host-side Interface Control 
Register HDM[0–1] bits define the size as indicated in Table 8-8. The ICR HDM[0–1] bits are 
reflected on the DSP-side HCR[HM] bits, allowing the DSP-side to determine the data transfer 
size.

Conversely, if the DSP defines the data size of the Normal mode transfer (HCR[HICR] = 0), the 
DSP-side HCR[HDM] bits select the data size, as indicated in Table 8-9. The HCR[HDM] bits 
are reflected on the host-side ICR[HDM] bits, allowing the host side to determine the DMA data 
transfer size.

Table 8-6.  Single and Dual Host Request Lines

Pin Single Request Dual Request

HREQ/HTRQ HREQ/HREQ HTRQ/HTRQ

HACK/HRRQ HACK/HACK HRRQ/HRRQ

Table 8-7.  Transfer Control in Normal Mode

HCR[HICR] Defines Transfer Register 

0 DSP HCR[HDM[0–2]]

1 Host ICR[HDM[0–1]]

Table 8-8.  Host-Defined Normal Mode Data Size

ICR[HDM0] ICR[DM1] Data Size Last Address

0 0 64-bit 0x7

0 1 48-bit 0x6

1 0 32-bit 0x5

1 1 16-bit 0x4
MSC8101 User’s Guide, Rev. 3
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Recall that the host can read only the HDI16 host-side Receive Data Registers (RX[0–3]) or write 
the HDI16 host-side Transmit Data Registers (TX[0–3]). In DSP-to-host transfers, the DSP first 
writes data to the DSP-side Transmit Data Register (HOTX) FIFO. This data is automatically 
transferred to the host-side RX[0–3] when these registers are empty. To access this data, the host 
first reads RX0/TX0 at address offset 0x7 and continues, depending on the data size being used, 
with reads to RX1/TX1 at address 0x6, RX2/TX2 at address 0x7, and finally RX3/TX3 at address 
0x4. The final 16-bit portion of the data is read from the corresponding “last address” register 
(see Table 8-8 and Table 8-9), automatically causing the transfer of any data available in the 
DSP-side HOTX FIFO to the host-side RX[0–3] registers.

Similarly, in host-to-DSP transfers, the host begins by writing the host-side RX0/TX0 at address 
offset 0x7 and continues, depending on the data size being used, with writes to RX1/TX1 at 
address 0x6, RX2/TX2 at address 0x5, and finally RX3/TX3 at address 0x6. The final 16-bit 
portion of the data is written to the corresponding “last address” register (see Table 8-8 and 
Table 8-9), automatically causing the transfer of the entire datum from the host-side TX[0–3] 
registers to the DSP-side HORX FIFO. Thus, the HDI16 supports 16-bit, 32-bit, 48-bit, and 
64-bit transfers.

The minimum hardware set-up necessary for using the HDI16 port in Normal mode is a chip 
select, four address lines to access the eleven HDI16 host-side registers, sixteen data lines (in 
16-bit mode), and two data strobe lines. Figure 8-2 shows a simple hardware set-up that supports 
Normal mode. The host bus performs the following actions:

1. Selects the HDI16 device (HCS1).

2. Indicates the direction of the transfer (HRD or HWR)

3. Asserts the address of the HDI16 register to be accessed (HA[0–3]).

4. Accesses the data (HD[0-15]).

Table 8-9.  DSP-Defined Normal Mode Data Size

HCR[HDM1] HCR[HDM2] DMA Data Size Last Address

0 0 16-bit 0x7

0 1 32-bit 0x6

1 0 48-bit 0x5

1 1 64-bit 0x4
MSC8101 User’s Guide, Rev. 3
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Figure 8-2.  Example Hardware Set-up for Normal Mode Transfers

The assembly language equate listed in Example 8-1 defines the initial values of the Host Port 
Control Register (HPCR) to set up the HDI16 for the hardware set-up represented in Figure 8-2.

Example 8-1.   HPCR Values for Example in Figure 8-2
INIT_HPCR EQU 0x1000

; [0] = HAP = 0 => Not used. Write to 0

; [1] = HRP = 0 -> Not used. Write to 0

; [2] = HCSP = 0 -> HCS1 active low

; [3] = HDDS = 1 -> Dual strobe

; [4:5] = reserved = 00

; [6] = HDSP = 0-> HRD & HWR active low

; [7] = reserved = 0

; [8] = HEN = 0 -> Host interface disabled

; [9] = H8BIT = 0 -> 16-bit mode used

; [10:13] = reserved = 0000

; [14] = DMA = 0 -> normal mode

; [15] = OAD = 0 -> Not used. Write to 0

This initialization configures the HDI16 for 16-bit Normal mode transfers by clearing the 
HPCR[H8BIT] and HPCR[DMA] bits. Bus transactions are programmed to use dual, active low, 
read (HRD) and write (HWR) strobes by setting HPCR[HDDS] and clearing HPCR[HDSP]. Active 
low Chip Select (HCS1) is programmed by clearing HPCR[HCSP].

The HPCR[HEN] bit is initially cleared, disabling the HDI16 port. To assure proper operation, 
the HPCR[HAP, HRP, HCSP, HDDS, HDSP, and H8BIT] bits should be set only when 
HPCR[HEN] is cleared. After these bits are set as required, the HDI16 port is enabled by setting 
the HPCR[HEN] bit. The MSC8101 code listed in Example 8-2 meets these requirements and 
initializes and enables the HDI16 port.

Example 8-2.   Initializing the HDI16 Port

move.l #HPCR_ADDR,r1  ; r1 = HPCR address 
move.w #INIT_HPCR,(r1)  ; initialize HPCR 
bmset.w #$80,(r1) ; enable HDI16

HD[0–15]

HA[0–3]

HCS1

Data

Address

Chip Select

HRD Read Strobe

Write StrobeHWR

HDI16

HostMSC8101

Port
Host
Port
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The following list summarizes the steps the DSP performs to initialize the HDI16 port in Normal 
mode:

1. Initialize the Host Port Control Register (HPCR), ensuring that HPCR[HEN] is clear 
and setting the HPCR[HDDS] bit to select the dual-strobe mode.

2. Enable the HDI16 by setting HPCR[HEN].

3. Initialize the HCR[HICR] bit to indicate which register (HCR or ICR) defines the data 
size.

4. Initialize the DSP-side HCR or the host-side ICR for the desired data size (recall that 
only the host can access host-side registers)

8.2.2   Host DMA Mode

Host DMA mode supports external DMA controllers connected to the HDI16 on the host bus and 
should not be confused with the operation of the internal DMA to the MSC8101 DSP. In Host 
DMA mode, data is transferred in bursts without the need to drive a new address on the host bus 
address lines for every transfer. To enable Host DMA mode, the DSP core must set the Host Port 
Control Register DMA bit (HPCR[DMA]). Once DMA mode is enabled, the HCR[HICR] bit 
determines whether the DSP-side Host Control Register (HCR) or the host-side Interface Control 
Register (ICR) defines the characteristics (direction and data size) of the DMA transfer (see 
Table 8-10).

If the host (external DMA controller) defines the DMA (HCR[HICR] = 1), the host-side 
ICR[RREQ] bit defines the direction of the DMA transfers (see Table 8-11) and the 
ICR[HM[0–1]] bits select the DMA data size (see Table 8-12). The HM[0–1] bits are reflected 
on the DSP-side HCR[HM] bits, allowing the DSP side to determine the DMA data transfer size. 
The RREQ bit is reflected in the HCR[RREQ] bit, so the DSP side can determine the DMA 
direction.

Table 8-10.  Transfer Control in Host DMA Mode

HCR[HICR] Defines DMA Register 

0 DSP HCR[HDM[0–2]]

1 Host ICR[HDM[0–1]]

Table 8-11.  Host-Defined DMA Transfer Direction

ICR[RREQ] DMA Direction

0 Host-to-DSP

1 DSP-to-host
MSC8101 User’s Guide, Rev. 3
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If the DSP defines the characteristics of the DMA (HCR[HICR] = 0), the DSP-side HCR 
HDM[0–2] bits select the DMA data size and direction as indicated in Table 8-13. HDM0 is 
reflected in ICR[HDM0] when read, and the HDM[1–2] bits are reflected on the host-side 
ICR[HDM] bits, allowing the host-side to determine the DMA data transfer size and direction.

There are two ways to set up the hardware connection for DMA transfers, depending on the 
method of acknowledging that valid data is on the host bus. Data always transfers over the 
HD[0–15] data lines (HD[0–7] in 8-bit mode). The HREQ output pin is always used to request DMA 
transfers from the host or DMA controller. However, valid data on the host bus can be 
acknowledged in two different ways, using the HACK input pin or the host address 0x4, as defined 
in Table 8-14.

Consider the hardware set-up shown in Figure 8-3. In this example, the hardware set-up uses 
sixteen data lines, the HREQ pin for DMA data transfer requests to the host, and the HACK pin for 
valid data acknowledgment. No address lines are required. An internal 2-bit address counter 

Table 8-12.  Host-Defined DMA Data Size 

ICR[HM0] ICR[HM1] DMA Data Size Last Address

0 0 16-bit 0x7

0 1 32-bit 0x6

1 0 48-bit 0x5

1 1 64-bit 0x4

Table 8-13.  DSP-Defined DMA Data Size and Direction

HCR[HDM0] HCR[HDM1] HCR[HDM2] DMA Direction DMA Data Size

0 0 0 Host-to-DSP 64-bit

0 0 1 48-bit

0 1 0 32-bit

0 1 1 16-bit

1 0 0 DSP-to-host 64-bit 

1 0 1 48-bit

1 1 0 32-bit

1 1 1 16-bit

Table 8-14.  DMA Valid Data Acknowledgment

HPCR[OAD] Data Valid

0 HACK pin is asserted

1 Host address 0x4 is asserted
MSC8101 User’s Guide, Rev. 3
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preloaded with the values in ICR[9–10] determines which host-side data register is selected 
during the DMA transfer. The address counter is initialized using (ICR[INIT]). After each DMA 
transfer on the host data bus, the address counter is incremented to the next data register. When 
the address counter reaches the highest register, the counter is reloaded with the value in 
ICR[9–10]. Reloading the counter allows 16-bit, 32-bit, 48-bit, and 64-bit circular data transfers 
and eliminates the need for the host or DMA controller to supply an address transaction for each 
data transfer.

The HREQ pin is asserted to indicate a request for a data transfer (receive or transmit). The HACK 
input pin is used as a DMA acknowledge. For DSP-to-host transfers, the HDI16 writes data on 
the bus when HACK is asserted; for host-to-DSP transfers, the data is valid on the bus when HACK 
is asserted. The same principle would hold true if host address 0x4 were used for DMA data valid 
acknowledgment instead of HACK.

Figure 8-3.  HDI16 Hardware set-up for DMA Mode Transfer

The assembly language equate listed in Example 8-3 defines the initial register values to set up 
the HDI16 for the hardware set-up represented in Figure 8-3.

Example 8-3.   Register Values for Example Shown in Figure 8-3
INIT_HPCR EQU 0xC002

; [0] = HAP = 1 -> HACK pin active high

; [1] = HRP = 1-> HREQ pin active high

; [2] = HCSP = 0 -> Not used. Write to 0

; [3] = HDDS = 0-> Not used. Write to 0

; [4:5] = reserved = 00

; [6] = HDSP = 0 -> Not used. Write to 0

; [7] = reserved = 0

; [8] = HEN = 0 -> Host interface disabled

; [9] = H8BIT = 0 -> 16-bit mode used

; [10:13] = reserved = 0000

; [14] = DMA = 1-> DMA mode

; [15] = OAD = 0 -> HACK pin for DMA acknowledge

INIT_HCR EQU 0x0600

; [0] = HF4 = 0 -> Not used. Write to 0

HD[0–15] Data

HREQ DMA Request

DMA AcknowledgeHACK

HDI16

Host orMSC8101

Port Host
Port

DMA Controller
MSC8101 User’s Guide, Rev. 3

8-10 Freescale Semiconductor
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; [1] = HF5 = 0 -> Not used. Write to 0

; [2] = HF6 = 0 -> Not used. Write to 0

; [3] = HF7 = 0 -> Not used. Write to 0

; [4] = HICR = 0 -> HCR defines DMA direction and size

; [5-7] = HDM[0-2] = 110 -> DSP-to-host DMA,32-bit data

; [8] = reserved = 0

; [9] = DBTE = 0 -> DMA transmit burst disabled

; [10] = DBRE = 0 -> DMA receive burst disabled

; [11] = HCIE = 0 -> Host command interrupt disabled

; [12] = HFTIE = 0 -> Host transmit not full interrupt disabled

; [13] = HTEIE = 0 -> Host transmit empty interrupt disabled

; [14] = HRFIE = 0 -> Host receive full interrupt disabled

; [15] = HREIE= 0 -> Host receive not empty interrupt disabled

This initialization configures the HDI16 for a 16-bit bus and DMA mode transfers by clearing 
HPCR[H8BIT] and setting HPCR[DMA]. Bus transactions are programmed to use active high 
HACK and HREQ signals by setting HPCR[HAP] and HPCR[HRP]. The HPCR[HEN] bit is 
initially cleared, disabling the HDI16 port. To assure proper operation, the HPCR[HAP, HRP, 
HCSP, HDDS, HDSP] bits should be set only when HPCR[HEN] is cleared. After these bits are 
set as appropriate, then enable the HDI16 by setting the HPCR[HEN] bit. The MSC8101 code 
listed in Example 8-4 meets these requirements and initializes and enables the HDI16 port. The 
HCR[HICR] bit is cleared, indicating that the HCR[HDM[0–2]] bits determine the DMA 
direction to be DSP-to-host and the data size to be 32 bits.

Example 8-4.   Initializing the HDI16 Port
move.w #HPCR_ADDR,r1 ; r1 = HPCR address

move.l #HCR_ADDR,r2 ; r2 = HCR address

move.w #INIT_HPCR,(r1) ; initialize HPCR

bmset.w #8,(r1) ; enable HDI16

move.w #INIT_HCR,(r2) ; initialize HCR

The following list summarizes the steps the DSP follows to initialize the HDI16 port in DMA 
mode:

1. Initialize the Host Port Control Register (HPCR), ensuring that the HPCR[HEN] bit is 
clear.

2. Enable the HDI16 by setting HPCR[HEN].

3. Initialize the HCR[HICR] bit to indicate which register (HCR or ICR) defines the DMA 
direction and data size

4. Initialize the DSP-side HCR or the host-side ICR for the desired DMA direction and 
data size (recall that only the host can access host-side registers)
MSC8101 User’s Guide, Rev. 3
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8.3 Managing Data Transfers Via Handshaking Protocols

The HDI16 interface port is slave-only, so the host is the master of all bus transfers. In 
host-to-DSP transfers, the host writes data to the Transmit Word Registers (TX[0–3]). In 
DSP-to-host transfers, the host reads data from the Receive Word Registers (RX[0–3]). The DSP 
side has access only to the Host Receive Data Register (HORX) and the Host Transmit Data 
Register (HOTX). Available data automatically moves between the host-side data registers and 
the DSP-side data registers. This double-buffered mechanism allows for fast data transfers, but it 
creates a “pipeline” that can stall (if the pipeline is either full or empty) or cause erroneous data 
transfers (overwriting new data or reading old data). Several HDI16 port handshaking 
mechanisms are available to reduce the possible occurrence of such stalls and erroneous 
transfers.

For example, a host writing several pieces of data to the HDI16 port should first determine 
whether any data previously written to the Transmit Word Registers (TX[0–3]) has successfully 
transferred to the DSP side. A handshaking protocol makes this possible. If the host-side 
Transmit Word Registers (TX[0–3]) are empty, the host writes the data to these registers. The 
transfer to the DSP-side Host Receive Data Register (HORX) occurs only if HORX is not full 
(recall that the HORX is a FIFO of four 64-bit words). Similarly, the DSP core uses an 
appropriate handshaking protocol to move data from HORX to the receiving memory buffer or 
register. If the handshaking protocol were not used, the host might overwrite data not yet 
transferred to the DSP side, or the DSP might receive bogus data.

A similar situation occurs when the host performs multiple reads from the HDI16 port Receive 
Word Registers (RX[0–3]). The DSP side uses an appropriate handshaking protocol to determine 
whether the 64-bit Host Transmit Register (HOTX) FIFO is not full. If HOTX is not full, the DSP 
writes the data to this register. Data is transferred to the host-side Receive Word Registers 
(RX[0–3]) only if they are empty (that is, the host has previously read them). The host can then 
use any of the available handshaking protocols to determine when data is ready to be read.

The MSC8101 HDI16 port offers the following handshaking protocols for data transfers with the 
host:

� Software polling (DSP and host)

� DSP interrupts

� Host requests

� Direct Memory Access (MSC8101 internal DMA and host DMA)

The following sections discuss several factors that determine which protocol to use, including:

� The amount of data to be transferred 

� The timing requirements for the transfer 

� The availability of resources such as processing bandwidth and DMA channels
MSC8101 User’s Guide, Rev. 3
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Managing Data Transfers Via Handshaking Protocols
Recall that the transfers described here occur between the host and the DSP asynchronously. 
Each side transfers data at its own pace. However, using an appropriate handshaking protocol 
allows data to be transferred at optimal rates. Furthermore, the DSP and the host can use different 
handshaking techniques.

8.3.1   Software Polling

Software polling is the simplest handshaking protocol, but it can consume the most processing 
power. In software polling, the host or the DSP core reads status bits to determine the state of the 
HDI16 registers. While polling these status bits, the DSP or host consumes processing clocks.

8.3.1.1   DSP Polling

On the DSP-side, four bits are available for polling. In DSP-to-host transfers (host reads), the 
DSP core can determine whether the HOTX is empty, partially empty/full, or full. To determine 
whether HOTX is empty, the DSP core polls the Host Transmit Empty bit in the Host Status 
Register (HSR[HTFE]):

� If HTFE is clear, the HOTX FIFO is not empty (it is either partially empty or full).

� If HTFE is set, the HOTX FIFO is empty.

To determine whether HOTX is full, the DSP core polls the Host Transmit Not Full bit in the 
Host Status Register (HSR[HTFNF]):

� If HTFNF is clear, the HOTX FIFO is full, and the core should not write to it.

� If HTFNF is set, the HOTX FIFO is not full (it is either partially full or empty).

The MSC8101 assembly code in Example 8-5 implements the polling and transfer of 16-bit data 
from a buffer in memory to the HOTX register:

Example 8-5.   Implementing Polling and Data Transfer to HOTX
move.l #HSR_ADDR,r2 ; r2 = HSR address

move.l #BUFF_ADDR,r3 ; r3 = buffer start address

label1 bmtstc.w#4,(r2) ; test HSR[HTFE]

bt label1 ; loop if HSR[HTFE] = 0

move.w p:(r3),d1 ; d1 = data from buffer in memory

move.w d1,p:HOTX_ADDR ; move d1 to HOTX

For host-to-DSP transfers (host writes), the DSP side should determine whether the HORX is 
full, partially full/empty, or empty. To determine whether HORX is full, the DSP core polls the 
Host Receive Full bit in the Host Status Register (HSR[HRFF]):

� If HRFF is clear, the HORX FIFO is not full (it is either partially full or empty)

� If HRFF is set, the HORX FIFO is full and the DSP core should read it. 
MSC8101 User’s Guide, Rev. 3
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To determine whether HORX is empty, the DSP core polls the Host Receive Not Empty bit in the 
Host Status Register (HSR[HRFNE]):

� If HRFNE is clear, the HORX FIFO is empty.

� If HRFNE is set, the HOTX FIFO is not empty (it is either partially empty or full).

The MSC8101 assembly code in Example 8-6 implements the polling and transfer of 16-bit data 
from the HORX register to a buffer in memory:

Example 8-6.   Implementing Polling and Data Transfer From HORX
move.l #HSR_ADDR,r2 ; r2 = HSR address

move.l #BUFF_ADDR,r3 ; r3 = buffer start address

label1 bmtstc.w#1,(r2) ; test HSR[HRFNE]

bf label1 ; loop if HSR[HRFNE] = 0

move.w p:HORX_ADDR,d1 ; d1 = HORX data

move.w d1,p:(r3) ; move d1 to buffer in memory

8.3.1.2   Host Polling

A polling mechanism similar to that for the DSP is available for host use. When data is 
transferred to the DSP (host writes), the host polls the Transmit Data Empty bit in the Interface 
Status Register (ISR[TXDE]). If TXDE is set, the Transmit Data Registers (TX[0–3]) are empty, 
and the host can write to them. Otherwise, it must wait until the data in these registers is 
transferred to the DSP-side HORX. In DSP-to-host transfers, (host reads), the host can poll the 
Receive Data Full bit in the Interface Status register (ISR[RXDF]). When RXDF is set, there is 
valid data in the Receive Data registers (RX[0–3]).

8.3.1.3   Host Flags

The HDI16 control registers, HCR on the DSP-side and ICR on the host-side, each have four 
general-purpose flags for communication between the host and the DSP: 

� DSP side. The HCR Host Flag bits (HCR[HF[4–7]]) can pass application-specific 
information to the host. The host-side ISR Host Flag bits (ISR[HF[4–7]]) reflect the status 
of HCR Host Flag bits.

� Host side. The ICR Host Flag bits (ICR[HF[0-1]] and ICR[HF[2-3]]) can pass 
application-specific information to the DSP. The DSP-side HSR Host Flag bits 
(HSR[HF[0–3]]) reflect the status of the ICR Host Flag bits.

8.3.1.4   Transmit Ready bit

The ISR[TRDY] bit allows the host to determine whether the Transmit Data Registers (TX[0–3]) 
and the HORX FIFO are empty. When TRDY is set, the TX[0–3] and HORX are empty, so any 
information written from the host to the TX[0–3] immediately transfers to the DSP side, thus 
ensuring that the DSP receives this data.
MSC8101 User’s Guide, Rev. 3
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8.3.2   DSP Interrupts

HDI16 interrupts allow the DSP core to perform other processing tasks while waiting for HDI16 
resources to become ready. An enabled interrupt automatically occurs when the HDI16 data 
resources are available for transfer. The interrupt routine can then transfer the data to and from 
the HDI16 host port. Table 8-15 lists all the HDI16 sources that can be used to interrupt the 
SC140 core. Notice that the interrupt sources associated with HORX and HOTX are triggered by 
the same status bits the SC140 core reads when polling techniques are used. The DSP uses these 
interrupts to move data to or from the HOTX and HORX data registers. The host command 
interrupt and the non-maskable interrupt allow the host to force execution of a DSP interrupt 
routine. (NMI and host commands are addressed in Section 8.4, Issuing Host Commands and 
Non-Maskable Interrupts, on page 8-23).

Figure 8-4 depicts how the interrupt source status bits and the masking bits operate to generate 
an interrupt. When the appropriate interrupt mask bit in the HCR is set, the interrupt is enabled. 
An event that causes the corresponding status bit in the HSR to be set therefore generates an 
interrupt request to the Program Interrupt Controller (PIC). 

For each interrupt service routine (ISR), the MSC8101 PIC must be programmed. Each HDI16 
interrupt source can cause an ISR to execute at a distinct offset from the vector base address 
(VBA). The PIC Edge/Level triggered Interrupt Priority Registers (ELIRx) enable you to mask 
and define the relative priority level of the interrupt, as Table 8-16 shows. Refer to the chapter on 
interrupts for a further discussion of the PIC and MSC8101 interrupt service routines.

Table 8-15.  HDI16 Interrupt Sources 

Interrupt Source HCR Masking Bit

Host Command (HCVR[HCP]) Host Command Interrupt Enable (HCR[HCIE])

HOTX transmit FIFO not full (HSR[HTFNF]) Host Transmit Not Full Interrupt Enable (HCR[HTFIE])

HOTX transmit FIFO empty (HSR[HTFE]) Host Transmit Empty Interrupt Enable (HCR[HTEIE])

HORX receive FIFO full (HSR[HRFF]) Host Receive Full Interrupt Enable (HCR[HRFIE])

HORX receive FIFO not empty (HSR[HRFNE]) Host Receive Not Empty Interrupt Enable (HCR[HREIE])

Host non-maskable interrupt (NMI) None

Table 8-16.  PIC Interrupts

ISR Address 
(VBA offset)

PIC Interrupt Source
PIC Priority 
Level Bits

PIC Trigger 
Mode Bits

PIC Interrupt 
Pending Bits

0x940 IRQ5–HDI16: Receive FIFO full ELIRB[9–11] ELIRB[8] IPRA[10]

0x980 IRQ6–HDI16: Receive FIFO not empty ELIRB[5–7] ELIRB[4] IPRA[9]

0x9C0 IRQ7–HDI16: Transmit FIFO empty ELIRB[1–3] ELIRB[0] IPRA[8]

0xA00 IRQ8–HDI16: Transmit FIFO not full ELIRC[13–15] ELIRC[12] IPRA[7]
MSC8101 User’s Guide, Rev. 3
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To clear the interrupt, the SC140 core interrupt service routine must read or write the appropriate 
HORX or HOTX register or, for host commands and NMI interrupts, the pending interrupt 
condition is cleared when the HCVR is read. Furthermore, the interrupt service routine must also 
clear the interrupt request in the PIC Interrupt Pending Registers (IPRx) if the PIC Trigger Mode 
is set to Edge Triggered. The exception routine may also need to determine whether the current 
data is the last data to be transferred, since this is a good place to decide whether to disable the 
interrupt.

0xA40 IRQ9Q–HDI16: External host command ELIRC[9–11] ELIRC[8] IPRA[6]

0xE00 NMI0–HDI16: External host NMI - - IPRB[7]

Table 8-16.  PIC Interrupts

ISR Address 
(VBA offset)

PIC Interrupt Source
PIC Priority 
Level Bits

PIC Trigger 
Mode Bits

PIC Interrupt 
Pending Bits
MSC8101 User’s Guide, Rev. 3
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Figure 8-4.  HDI16 DSP-Side Interrupt Operation

Example 8-7 shows the set-up code for a simple interrupt that receives 16-bit data from the 
HDI16 HORX and places it into a buffer in memory. For simplicity, the r3 register used as a 
pointer into memory is assumed to retain its state throughout.

Example 8-7.   Receive Interrupt Set-up Code
; setup HI16 registers

move.l   #M_HPCR,r1 ; r1 = HPCR address

move.l   #M_HCR,r0 ; r0 = HCR address

0 15
Enable

HCIE HTFIE HTEIE HRFIE HREIE HCR

HTFNF HTFE HRFF HRFNE HSR

Status

Core Interrupts

0 15

HCP

0 15
HCV
R

NMI HC CVR
0 7 8 15

IRQ5: Receive FIFO Full

IRQ6: Receive FIFO Not Empty

IRQ7: Transmit FIFO Empty

IRQ8: Transfer FIFO Not Full

NMI0: HDI16 External Host NMIHost N

IRQ9: External Host Command

Status
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move.w   #INIT_HPCR,(r1) ; init HI16 HPCR

bmset.w  #M_HEN,(r1) ; enable HI16

move.w   #INIT_HCR,(r0) ; init HI16 HCR

move.w   #BUFF,r3 ; r3 = pointer to buffer in memory

; set-up and enable interrupt

di

move.l   #I_ELIRB,r1

bmclr    #$00e0,sr.h ; enable all IPLs

move.w   #INIT_ELIRB,(r1) ; set hi16 rxne IPL

bmset.w  #M_HREIE,(r0) ; enable HI16 RX interrupt

ei ; enable interrupts

Example 8-8 shows code for a simple interrupt service routine that receives 16-bit data from the 
HDI16 HORX into a buffer in memory. For simplicity, the initialization of buffer pointer r3 and 
the saving of the SC140 core’s context are not shown.

Example 8-8.   Receive Interrupt Service Routine

org p:#VBA_INIT+0x980 ; Receive FIFO not empty vector address

jsr hi16_rxne ; jump to ISR

rte ; return from interrupt

org p:HDI16_ISR ; ISR program code

hi16_rxne

move.w p:HORX_ADDR,d1 ; d1 = HORX data

move.w d1,p:(r3)+ ; move d1 to buffer in memory

rts ; return form ISR

8.3.3   Host Requests

The host request mechanism provides a set of signal lines by which the DSP can request data 
transfers from the host. The request signal lines from the DSP normally connect to the host’s 
interrupt request pins (IRQx) and indicate to the host when a HDI16 port requires service. The 
DSP side can be configured to use either a single request line (HREQ) for both receive and 
transmit requests or two signal lines, a Host Transmit Request (HTRQ) and a Host Receive 
Request (HRRQ), one for each direction of transfer. 

The host enables host requests using the Interface Control Register (ICR) as follows:
MSC8101 User’s Guide, Rev. 3
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1. Configure the HDI16 for single (HREQ) or double (HRRQ and HTRQ) requests using the 
ICR Host Double Request bit as indicated in Table 8-17. This bit is available only in 
Normal transfer modes.

 

2. Enable receive requests by setting the ICR Receive Request Enable bit (ICR[RREQ]) 
and/or enable transmit requests by setting the ICR Transmit Request Enable bit 
(ICR[TREQ]).

With host requests enabled, the host request pins operate as Figure 8-5 shows. 

Figure 8-5.  HDI16 Host Request Operation

Table 8-18 shows how the HREQ pin operates in single request mode.

Table 8-19 shows how the transmit request (HTRQ) and receive request (HRRQ) lines operate with 
double host requests enabled.

Table 8-17.  Single or Double Request Configuration

ICR[HDRQ] Host Request

0 Single

1 Double

Table 8-18.  HREQ Pin In Single Request Mode (ICR[HDRQ] = 0)

ICR[TREQ] ICR[RREQ] HREQ Pin

0 0 No host requests enabled

0 1 ISR[RXDF] request enabled

1 0 ISR[TXDE] request enabled

1 1 ISR[RXDF] and ISR[TXDE] request enabled

ISR: 15

RXDFTXDE

ICR: 01

RREQTREQ

HRRQ pin

HREQ pin

14

HTRQ pin
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The request signal lines from the DSP normally connect to the host’s interrupt request pins 
(IRQx), which generate an interrupt in the host. Generally, the host interrupt service routine must 
test the status bits in the HDI16 host-side ISR to determine the interrupt source. To clear the 
interrupt request, the host must read or write the appropriate HDI16 host-side data registers, 
TX[0–3] and RX[0–3].

8.3.4   Direct Memory Access (DMA)

Two distinct DMA mechanisms are associated with the HDI16: external DMA and internal 
DMA. Externally, the host or an external DMA controller connected to the HDI16 host bus can 
transfer data between itself and the HDI16 port. External DMA operation is described in Section 
8.2.2, Host DMA Mode, on page 8-8. The DMA controller that is internal to the DSP is the 
subject of this section.

The MSC8101 DMA controller performs data transfers between memory (either external on the 
system bus or internal) and the HDI16 HORX and HOTX data registers with no SC140 core 
intervention. The DMA controller frees the core to use its processing power on functions other 
than polling or interrupt routines associated with the HDI16. DMA may well be the most efficient 
and least costly method to use for data transfers, but it requires available DMA channels. If the 
HDI16 DMA controller transfers data to and from the internal SRAM, a single DMA channel can 
be used in flyby mode.1 If the source or destination is on the system bus, two DMA channels are 
required, one to transfer data between the memory and the DMA FIFO and the other to transfer 
the data between the HDI16 data register and the DMA FIFO.

The details of the MSC8101 internal DMA are beyond the scope of this chapter. The overall steps 
involved in programming a DMA channel for access of the HDI16 in flyby mode are as follows:

1. Initialize a DMA Channel Configuration Register (DCHCRx) for the selected DMA. In 
flyby mode, the DCHCRx describes the HDI16 peripheral; thus, the Request Number 
bits (DCHCRx[RQNUM]) identify the HDI16 as indicated in Table 8-20 (this field is 
valid only when an internal requestor is defined by setting DCHCRx[INT]). The flyby 

Table 8-19.  HTRQ and HRRQ Pins In Double Request Mode (ICR[HDRQ] = 1)

ICR[TREQ] ICR[RREQ] HTRQ Pin HRRQ Pin

0 0 No interrupts No interrupts

0 1 No interrupts ISR[RXDF] request enabled

1 0 ISR[TXDE] Request enabled No interrupts

1 1 ISR[TXDE] Request enabled ISR[RXDF] request enabled

1. A flyby transfer is also known as a “single access data transaction.” The data path is between a peripheral and 
memory with the same port size, located on the same bus. On the MSC8101, flyby transactions can occur only 
between external peripherals and external memories located on the bus, or between internal peripherals and inter-
nal SRAM located on the local bus. Flyby operations do not require access to the DMA FIFO.
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transaction bit is asserted to enable flyby mode and the DMA Active Channel bit is 
negated until later.

 

2. Configure the DMA Channel Parameter RAM (DCPRAM) for the buffer descriptor to 
which the Buffer Pointer bits in the DCHCRx point.

In flyby mode the DCPRAM parameters describe the memory, so the BD_ADDR 
parameter is initialized with the address in SRAM to be used as a source/destination of 
the DMA. The BD_SIZE and BD_BSIZE parameters are initialized with the size of the 
DMA transfer. The BD_ATTR parameter is initialized with the characteristics of the 
access of the buffer in SRAM (simple, cyclic, incremental, chained, or a combination of 
these).

3. Activate the DMA by setting the Active DMA Channel bit, DCHCRx[ACTV].

You can also specify whether to transfer the data in bursts or single accesses via the 
DMA Transmit Burst Enable (DBTE) and the DMA Receive Burst Enable (DBRE) in 
the Host Control Register (HCR). These bits define what condition associated with the 
HOTX and HORX registers requests a DMA access, thus indicating to the DMA 
controller whether to use burst for the data access. Table 8-21 shows the behavior of the 
DBTE and DBRE bits.

Example 8-9 shows the code necessary to set up a dual DMA to receive BUFF_SIZE 16-bit data 
elements from the HDI16 and place them into a buffer in the internal SRAM located at 
BUFF_START. An interrupt is generated when the DMA is finished.

Example 8-9.   Receive Interrupt Service Routine
INIT_ATTR0 EQU $08000010

INIT_ATTR1 EQU     $80000000

INIT_DCHCR0 EQU     $80000005

Table 8-20.  DMA Request Sources

Requesting Device DCHCRx[RQNUM]

HDI16 read request 00000

HDI16 write request 00001

Table 8-21.  DMA Single and Burst Mode Access

ICR[DBTE] ICR[DBRE] DMA Request Condition DMA Transfer Type

0 n/a HSR[HTFNF] Single access to HOTX

1 n/a HSR[HTFE] Burst access to HOTX

n/a 0 HSR[HRFNE] Single access from HORX

n/a 1 HSR[HRFF] Burst access from HORX
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INIT_DCHCR1 EQU     $80010045

INIT_DIMR EQU     $40000000

INIT_ELIRE      EQU     $0c00

; setup source DMA DCPRAM

move.l   #BD_ADDR0,r1 ; set source address base

moveu.l  #I_GPCM+HORX,d0

move.l   d0,(r1)

move.l   #BD_SIZE0,r1 ; set size of source transfer

moveu.l  #BUFF_SIZE,d0

move.l   d0,(r1)

move.l   #BD_BSIZ0,r1 ; set source base size

moveu.l  #$00000000,d0

move.l   d0,(r1)

move.l   #BD_ATTR0,r1 ; set source channel attributes

moveu.l  #INIT_ATTR0,d0

move.l   d0,(r1)

; setup dstination DMA DCPRAM

move.l   #BD_ADDR1,r0 ; set destination address base

moveu.l  #BUFF_START,d0

move.l   d0,(r0)

move.l   #BD_SIZE1,r0 ; set size of destination transfer

moveu.l  #PATT_SIZE,d0

move.l   d0,(r0)

move.l   #BD_BSIZ1,r0 ; set destination base size

moveu.l  #$00000000,d0

move.l   d0,(r0)

move.l   #BD_ATTR1,r0 ; set destination channel attributes

moveu.l  #INIT_ATTR1,d0

move.l   d0,(r0)

; setup DMA internal mask register

move.l   #M_DIMR,r1 ; set DIMR

moveu.l  #INIT_DIMR,d0

move.l   d0,(r1)

; setup DMA channel configuration and activate

move.l   #M_DCHCR0,r1 ; set DCHCR0

moveu.l  #INIT_DCHCR0,d0

move.l   d0,(r1)

move.l   #M_DCHCR1,r0 ; set DCHCR1

moveu.l  #INIT_DCHCR1,d0

move.l   d0,(r0)

; setup PIC registers

move.l   #M_ELIRE,r3

bmclr           #$00a0,sr.h ; mask priorities < 2

move.w   #INIT_ELIRE,(r3) ; init PIC ELIRE reg
MSC8101 User’s Guide, Rev. 3

8-22 Freescale Semiconductor



Issuing Host Commands and Non-Maskable Interrupts
The internal MSC8101 DMA controller does not access the host bus, so the host must determine 
when data is available in the host-side data registers using an appropriate polling mechanism.

8.4 Issuing Host Commands and Non-Maskable Interrupts

The innovative host command feature of the HDI16 host interface allows the host to issue any of 
128 pre-programmed functions for the DSP to execute. For example, the host can issue a host 
command that sets up and enables a DMA data transfer. This flexibility is independent of the data 
transfer mechanisms in the HDI16; it enables the host processor to read or write DSP registers or 
memory locations, perform control status or debugging operations, and start DMA transfers, 
among other functions.

To enable host command interrupts, set the Host Command Interrupt Enable bit (HCR[HCIE]) on 
the DSP-side Host Control Register (HCR). The MSC8101 PIC must be programmed 
accordingly (refer to Section 8.3.2, DSP Interrupts, on page 8-15). The PIC Edge/Level triggered 
Interrupt Priority Registers (ELIRx) allow you to mask and define the relative priority level of 
the host command interrupts, as shown in Table 8-16. The host can then issue a host command 
by writing the CVR[HV] bits with the pointer to the interrupt service routine to execute and 
setting the Host Command (CVR[HC]) to request the interrupt. The host can write the HC and 
HV bits simultaneously.

When the MSC8101 Programmable Interrupt Controller (PIC) on the extended core recognizes 
the host command interrupt request, the External Host Command interrupt service routine at 
VBA offset 0xA40 is executed. This interrupt service routine must then read the Host Vector bits 
of the DSP-side Host Command Vector Register (HCVR[HV]), which reflect the CVR[HV] bits, 
to determine which command to execute. The Host Command Pending bit, HCVR[HCP], reflects 
the status of the CVR[HC] bit. HCVR[HCP] and CVR[HC] are cleared when the interrupt 
service routine reads the HCVR. The host must not clear CVR[HC] (which clears HCVR[HCP]) 
until the interrupt service routine clears them. However, the host can poll this bit to determine 
when the PIC accepts this command. The ISR must also clear the interrupt request in the PIC 
Interrupt Pending Registers (IPRx).

The operation is very similar for non-maskable interrupts (NMIs), except that the ISR cannot be 
masked in the HCR. Typically, the host writes the CVR[HV] bits with the pointer to the 
pre-programmed function and also sets the HC and NMI bits. This causes the PIC on the 
MSC8101 extended core to execute the External Host NMI ISR at VBA offset 0xE00. The 
pending interrupt condition is cleared when the interrupt service routine reads the HCVR. As 
with host command interrupt service routines, the host NMI ISR must also clear the interrupt 
request in the PIC Interrupt Pending Registers (IPRx).
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Host Interface (HDI16)
8.5 Related Reading

Table 2-22.  

MSC8101 User’s Guide (This manual)

Chapter 7, Interrupts and Interrupt Priorities

MSC8101 Reference Manual

Chapter 5, Reset

Chapter 14, Host Interface (HDI16)

Chapter 15, Direct Memory Access (DMA)

Chapter 16, Interrupt Scheme 
Especially the section on the Programmable Interrupt Controller (PIC)
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Enhanced Filter Coprocessor (EFCOP) 9
The MSC8101 EFCOP module is a general-purpose, fully programmable filter with 32-bit 
resolution. It has optimized modes of operation to perform real and complex finite impulse 
response (FIR) filtering, infinite impulse response (IIR) filtering, adaptive FIR filtering, and 
multichannel FIR filtering. EFCOP filter operations complete concurrently with SC140 
operations, with minimal CPU intervention. For optimal performance, the EFCOP has one 
dedicated filter multiplier accumulator (FMAC) unit. As a result, the SC140/EFCOP combination 
offers multiple multiply-accumulate (MAC) filtering capabilities.

Its dedicated modes make the EFCOP a very flexible filtering coprocessor with operations 
optimized for cellular base station applications. In a transceiver base station, the EFCOP 
performs complex matched filtering to maximize the signal-to-noise ratio (SNR) in an equalizer. 
The coefficients of the matched filter can be determined by a cross-correlation filtering process 
between a received training sequence and a known reference sequence. In a transcoder base 
station or a mobile switching center, the EFCOP can perform all types of FIR and IIR filtering 
within a vocoder, as well as LMS-type echo cancellation.

This chapter discusses how to program the EFCOP to operate in different modes and how to use 
the different methods for transferring data into and out of the EFCOP. Code examples 
demonstrate how the EFCOP can be programmed to complete a variety of tasks. The focus is on 
programming the EFCOP internally from the SC140 core. The EFCOP can also be programmed 
from an external device on the system bus, and all the programming issues discussed here still 
apply. 

9.1 Programming the Control Registers

The EFCOP is programmed by writing the desired settings to the memory-mapped control 
registers. Table 9-1 summarizes the EFCOP control registers.:

Table 9-1.  EFCOP Control Registers

Register Name Description

Filter Count Register (FCNT) A 16-bit read/write register that specifies the number of filter taps. 
The count stored in the FCNT register is used by the EFCOP 
address generation logic to generate correct addressing to the filter 
data memory (FDM) and filter coefficient memory (FCM).

EFCOP Control Register (FCTL) A 16-bit read/write register used by the SC140 to program the 
EFCOP.
MSC8101 User’s Guide, Rev. 3
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Enhanced Filter Coprocessor (EFCOP)
The EFCOP operates in many different modes based on the settings of these control registers. 
However, the EFCOP performs only two basic modes of processing, FIR filter type and IIR filter 
type processing. Various operating modes are available for each filter type. The following 
sections discuss the two basic operating modes. 

9.2 Specifying the Operating Modes for the FIR Filter Type

This section discusses the various operating modes that are available for the FIR filter type. The 
FIR filter type is selected by clearing the FCTL[FLT] bit, and it performs the processing shown 
in Figure 9-1 using the following equation:

For each sample to be filtered, the EFCOP completes the following steps:

1. Take an input, x(n), from the FDIR.

2. Save the input while shifting the previous inputs down in the FDM. The shifting down 
of the previous inputs is accomplished by incrementing the value in the FDBA register 
by one.

3. Multiply each input in the FDM by the corresponding coefficient, Bi, stored in the FCM.

EFCOP ALU Control Register (FACR) A 16-bit read/write register used by the SC140 to program the 
EFCOP data ALU operating modes.

EFCOP Data Base Address Register (FDBA) A 16-bit read/write register used by the SC140 to indicate the 
EFCOP data buffer base start address pointer in FDM RAM.

EFCOP Coefficient Base Address Register (FCBA) A 16-bit read/write register by which the SC140 indicates the 
EFCOP coefficient buffer base start address pointer in FCM RAM.

EFCOP Decimation/Channel Count Register (FDCH) A 16-bit read/write register that sets the number of channels in 
multichannel mode and the filter decimation ratio. The EFCOP 
address generation logic uses this information to supply the correct 
addressing to the FDM and FCM.

EFCOP Status Register (FSTR) A 16-bit read-only register used by the SC140 to examine the status 
of the EFCOP module.

Filter Data Input Register (FDIR) An 8-word deep 32-bit wide FIFO used for core-to-EFCOP and DMA 
data transfers. Data from the FDIR is transferred to the FDM for filter 
processing.

Filter Data Output Register (FDOR) An 8-word deep 32-bit wide FIFO used for EFCOP-to-core and DMA 
data transfers. Data is transferred to FDOR after processing of all 
filter taps is completed for a specific set of input samples.

Filter K-Constant Input Register (FKIR) A 32-bit read/write register for core-to-EFCOP constant transfers. 

Table 9-1.  EFCOP Control Registers

Register Name Description
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Specifying the Operating Modes for the FIR Filter Type
4. Accumulate the multiplication results.

5. Place accumulation result, w(n), into the FDOR.

Figure 9-1.  FIR Filter Block Diagram

Four operating modes are available for the FIR filter type: real, complex, alternating complex, 
and magnitude mode. 

9.2.1   Real Mode

Real mode performs FIR type filtering with real data and is selected by clearing both 
FCTL[FOM] bits. For each sample (the real input) written to the FDIR, one sample (the real 
output) is read from the FDOR. In Real mode, the number written to the FCNT register should be 
one minus the number of filter coefficients. 

Two other options are available with the real FIR filter type: Adaptive and Multichannel modes. 
These modes can be used singly or together.

9.2.1.1   Adaptive Mode

The Adaptive mode provides a way to update the coefficients based on filter input, x(n), using the 
following equation: 

where hn(i) is the ith coefficient at time n. The coefficients are updated when the FCTL[FUPD] 
bit is set. When this bit is set, the EFCOP checks to see if a value has been written to the FKIR. If 
no value is written, the EFCOP halts processing until a value is written to the FKIR. When a 
value is written to the FKIR, the EFCOP updates all the coefficients based on the preceding 
equation using the value in the FKIR for Ke(n). The EFCOP automatically clears the 
FCTL[FUPD] bit when the coefficient update completes.

FDIR

FCMFDM

FDORB0
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B2

BN
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x(n-1)

x(n-2)
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Enhanced Filter Coprocessor (EFCOP)
If the coefficients are to be updated after every input sample, Adaptive mode is enabled by setting 
the FCTL[FADP] bit. In Adaptive mode, the EFCOP automatically sets the FCTL[FUPD] bit 
after each input sample is processed. This allows for continuous processing using interrupts that 
includes a filter session and a coefficient update session with minimal core intervention.

Additionally, the EFCOP can generate an interrupt request to the SC140 core when the 
coefficient update is complete. This interrupt is controlled by the FCTL[FUDIE] bit. If this bit is 
clear, the interrupt is disabled. If this bit is set, the interrupt is enabled. When the interrupt is 
enabled, it is triggered by the FSTR[FUDN] bit. The EFCOP sets FSTR[FUDN] when the 
coefficient update session completes. Thus, when both FSTR[FUDN] and FCTL[FUDIE] are set, 
the EFCOP requests the coefficient update complete interrupt from the SC140 core.

9.2.1.2   Multichannel Mode 

In Multichannel mode, several channels of data are processed concurrently. This mode is selected 
by setting the FCTL[FMLC] bit. The number of channels to process is one plus the number in the 
FDCH[FCHL] bits. The number of channels can be programmed to be from 1 to 64. For each 
time period, the EFCOP expects to receive the samples for each channel sequentially. This 
process repeats for consecutive time periods. 

Filtering is performed with the same filter or different filters for each channel using the 
FACR[FSCO] bit. If this bit is set, the same set of coefficients is used for all channels. If 
FACR[FSCO] is clear, the coefficients for each channel are stored sequentially in memory with 
the beginning address of each coefficient buffer at the next 2k address (where 2k-1 ≤ filter length ≤ 
2k). If the filter length is less than 2k there is a space between the sequential buffers of 2k minus 
the filter length. 

9.2.2   Complex Mode

Complex mode performs FIR type filtering with complex data based on the following equations, 
in which Re is the real part and Im is the imaginary part: 

where H(n) is the coefficients, D(n) is the input data, and F(n) is the output data at time n. For 
every two samples written to the FDIR (the real part followed by the imaginary part of the input), 
two samples (the real part followed by the imaginary part of the output) are read from the FDOR.

Complex mode is selected by writing 01 to the FCTL[FOM] bits. When Complex mode is used, 
the number written to the FCNT register should be twice the number of filter coefficients minus 
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Specifying the Operating Modes for the FIR Filter Type
one, (2 ×  filter length) – 1. Also, the coefficients should be stored in the FCM with the real part 
of the coefficient in the memory location preceding the location holding the imaginary part.

9.2.3   Alternating Complex Mode

Alternating Complex mode performs FIR type filtering with complex data providing alternating 
real and complex results based on the following equations:

where H(n) is the coefficients, D(n) is the input data, and F(n) is the output data at time n. For 
every two samples (the real part followed by the imaginary part of the input) written to the FDIR, 
one sample (alternating between the real part and the imaginary part of the output) is read from 
the FDOR.

Alternating Complex mode is selected by writing 10 to FCTL[FOM] bits. When Alternating 
Complex mode is used, the number written to the FCNT register should be twice the number of 
filter coefficients minus one, (2*filter length) –1. Also, the coefficients should be stored in the 
FCM with the real part of the coefficient in the memory location preceding the location holding 
the imaginary part.

9.2.4   Magnitude Mode

Magnitude mode calculates the magnitude of an input signal using the following equation: 

where D(n) is the input data and F(n) is the output data at time n. For each sample (the real input) 
written to the FDIR, one sample (the real magnitude of the input signal) is read from the FDOR. 
Magnitude mode is selected by setting both FCTL[FOM] bits. In Magnitude mode, the number 
written to the FCNT register should be the number of data samples to compute the magnitude of 
minus one, and the value in the FCBA register is ignored.
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Enhanced Filter Coprocessor (EFCOP)
9.2.5   Data and Coefficient Initialization

Before the first sample can be processed, the filter must be initialized, meaning that the input 
samples for times before n = 0 (assuming that time starts at 0) must be loaded into the FDM. The 
number of samples needed to initialize the filter is the number of filter coefficients. 

The Data Initialization mode is selected via the FCTL[FPRC] bit:

� If FCTL[FPRC] is set, initialization is disabled and the EFCOP assumes that the SC140 
core wrote the initial input values to the FDM before the EFCOP was enabled. Thus, the 
first value written to FDIR is the first sample to be filtered. 

� If FCTL[FPRC] is clear, initialization mode is enabled and the EFCOP initializes the 
FDM by receiving the number of coefficient data samples through the FDIR. These 
samples are loaded into the FDM buffer and after the last value is loaded the EFCOP 
begins processing the first result.

The EFCOP also allows the coefficient buffer to be initialized before processing begins. The 
Coefficient Initialization mode is selected via FCTL[FCIM]:

� If FCTL[FCIM] is clear, Coefficient Initialization mode is disabled and processing 
completes as described earlier, depending on how the FCTL[FPRC] bit is set. 

� If FCTL[FCIM] is set, the coefficients are initialized by a coefficient update session with 
the original coefficients equal to zero, as in the following equation: 

The data buffer, x(i), should be initialized first, either by the SC140 core or the EFCOP 
with data initialization. Then, K should be written to FKIR, and the EFCOP initializes the 
coefficient buffer accordingly. 

If data and coefficient initialization are both enabled, data initialization completes first but 
the EFCOP does not begin processing the first result. After FKIR is written, the EFCOP 
initializes the coefficients and then another input sample must be written to FDIR to begin 
processing. 

Coefficient initialization is usually used with Adaptive mode or can be used to clear the 
coefficients by writing zero to FKIR.

9.2.6   Decimation

Decimation is another option that can be used with any of the four FIR filter type modes. 
However, decimation cannot be used in conjunction with the Adaptive or Multichannel modes. 
Decimation, also known as “downsampling,” decreases the sampling rate. The decimation ratio 
defines the number of input samples per output sample. The decimation ratio is one plus the 
number in the FDCH[FDCM] bits. The decimation ratio can be programmed from 1 to 16. 

h i( ) Kx i( )=
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Specifying the Operating Modes for the IIR Filter Type
For Real and Magnitude modes, the decimation ratio number of the sample must be written to the 
FDIR before an output sample can be read from the FDOR. For Complex mode, two times the 
decimation ratio number of samples must be written to the FDIR (one for the real part and one for 
the imaginary part of the input) before two output samples (one for the real part and one for the 
imaginary part of the output) can be read from the FDOR. For Alternating Complex mode, two 
times the decimation ratio number of samples must be written to the FDIR (one for the real part 
and one for the imaginary part of the input) before one output sample (alternating between the 
real part and the imaginary part of the output) can be read from the FDOR. 

9.3 Specifying the Operating Modes for the IIR Filter Type

This section discusses the various operating modes that are available for the IIR filter type. To 
process a complete IIR filter, a FIR filter type session followed by an IIR filter type session is 
needed. The IIR filter type is selected by setting the FCTL[FLT] bit, and it performs the 
processing shown in Figure 9-2 using the following equation:. 

For each sample input to the FDIR, the EFCOP completes the following steps: 

1. Multiply each previous output value in the FDM by the corresponding coefficient, A, 
stored in the FCM.

2. Accumulate the multiplication results.

3. Add the input, w(n), from the FDIR.

4. Place the accumulation result, y(n), in the FDOR.

5. Save the output while shifting the previous outputs down in the FDM. The shifting 
down of the previous outputs is accomplished by incrementing the value in the FDBA 
register by one.

Only the Real and the Multichannel Operation modes are available for the IIR filter type. Thus, 
the FCTL[FOM] bits are ignored when the IIR filter type is used. The Real Operation mode 
performs IIR type filtering with real data. For each sample (the real input) written to the FDIR, 
one sample (the real output) is read from the FDOR. In Real mode, the number written to the 
FCNT register should be the number of filter coefficients minus one.
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Enhanced Filter Coprocessor (EFCOP)
Figure 9-2.  IIR Filter Block Diagram

Multichannel mode for the IIR filter type works exactly the same way as for FIR filter type as 
explained in Section 9.2.1.2, Multichannel Mode, on page 9-4. Decimation and Adaptive modes 
are not available with the IIR filter type. 

Initialization is always disabled with the IIR filter type, and the FCTL[FPRC] bit is ignored. 
Thus, the SC140 core must write the initial input values to the FDM before the EFCOP is 
enabled. The first value written to the FDIR is always the first sample to be filtered.

9.4 Specifying the ALU Modes

Two modes that affect the arithmetic operation of the EFCOP are rounding and input scaling. 
These ALU modes are independent of the filter type.

9.4.1   Rounding

Rounding mode is selected via the FACR[FRM] bits. These bits select the type of rounding 
performed by the EFCOP data ALU (DALU) during arithmetic operations. The EFCOP DALU 
performs the following types of rounding:

� Convergent rounding (FACR[FRM] = 00)

� Twos complement rounding (FACR[FRM] = 01)

� No rounding, that is, truncation (FACR[FRM] = 10)
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Transferring Data In and Out of the EFCOP
9.4.2   Input Scaling

The Input Scaling mode affects only IIR filtering and the coefficient update session of adaptive 
FIR filtering. The FACR[FISL] and FACR[FSCL] bits, determine how the outputs are scaled. 
The result can be scaled up by the following values:

� One, that is, no scaling (FACR[FSCL] = 00)

� Eight (FACR[FSCL] = 01)

� Sixteen (FACR[FSCL] = 10)

For IIR type filtering, FACR[FISL] determines whether the IIR input is scaled. When 
FACR[FISL] is set, the IIR feedback terms are scaled, but the IIR input, w(n) is not scaled. This 
case is represented by the following equation: 

where S is the scaling factor. When FACR[FISL] is clear, the EFCOP ALU scales both the IIR 
feedback terms and the IIR input. This case is represented by the following equation: 

Figure 9-2 also shows where the scaling occurs, depending on the value of FISL. 

For coefficient update sessions, FACR[FISL] determines whether the original coefficients are 
scaled. When FACR[FISL] is set, the EFCOP ALU scales only the input/constant term and not 
the original coefficients. This is represented by the following equation: 

When FACR[FISL] is clear, both the input/constant term and the original coefficients are scaled. 
This is represented by the following equation:.

9.5 Transferring Data In and Out of the EFCOP

When the EFCOP is programmed and enabled, it waits until input data is written to the Filter 
Data Input Register (FDIR). The FDIR is an 8-element deep FIFO, so up to eight 32-bit wide data 
samples can be written into FDIR at the same address. When the EFCOP finishes processing the 
input data from the FDIR, it sends the results to the FDOR. The FDOR is an 8-element deep 
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Enhanced Filter Coprocessor (EFCOP)
read-only FIFO, so up to eight 32-bit wide data samples can be read from FDOR at the same 
address.

There are three methods for transferring data to or from the EFCOP data registers: 

� Polling. The easiest method, but it demands a large amount of the core processing power. 
The SC140 core cannot be involved in other processing activities while it is polling the 
input and output buffer bits.

� Interrupts. This method requires more code, but the core can process other routines while 
the EFCOP is computing.

� DMA. This method requires even less core intervention and the set-up code is minimal, but 
the DMA channels must be available. 

The following sections describe each transfer method. 

9.5.1   Polling

The EFCOP Status Register (FSTR) contains bits that notify when data is ready for transfer to or 
from the EFCOP. These bits determine when to interact with the EFCOP. For proper operation, 
the SC140 core must write to the FDIR only when it is empty or not full and read from the FDOR 
only when it is full or not empty. 

FSTR[FIBNF] and FSTR[FDIBE] determine when to write to the FDIR:

� FSTR[FIBNF] is set when the FDIR is not full (that is, at least one of the locations is 
empty). Thus, when FSTR[FIBNF] is set, the SC140 core can write only one sample of 
data to the FDIR. 

� FSTR[FDIBE] is set when the FDIR is empty (that is, all eight of the locations are empty). 
Thus, when FSTR[FDIBE] is set, the core can write up to eight samples of data to FDIR. 
This bit is set immediately after the EFCOP is enabled by setting FCTL[FEN]. 

FSTR[FOBNE] and FSTR[FDOBF] determine when to read from the FDOR:

� FSTR[FOBNE] is set when the FDOR is not empty (that is, at least one of the locations is 
full). Thus, when this bit is set, the SC140 core can read only one sample of data from the 
FDOR. 

� FSTR[FDOBF] is set when the FDOR is full (that is, all eight of the locations are full). 
Thus, when this bit is set, the SC140 core can read up to eight samples of data from the 
FDOR. 

For an example of EFCOP programming with polling, see Section 9.6.1, Complex FIR Filter 
with Polling, on page 9-13.
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Transferring Data In and Out of the EFCOP
9.5.2   Interrupts

The EFCOP provides five interrupts. Table 9-2 describes these interrupts, including how they are 
enabled and triggered and the location of the vector address.

In general, configuring interrupts requires two steps: 

1. Set up the interrupt routine by placing the code to be run during the interrupt at the 
appropriate interrupt vector address. 

The location of the vector address is shown in Table 9-2 and depends on the setting of the 
Vector Base Address (VBA) Register. The memory allocation for each interrupt is 64 
bytes. To extend the interrupt code size further, service routines can be used.

2. Enable the interrupts by setting bits in various control registers:

a. To enable the desired interrupts, set the appropriate bits in the FCTL.

b. To determine the interrupt priority level of the core, set the interrupt mask bits 
(I0–2) bits of the Status Register (SR).

c. To determine the priority level for each enabled interrupt, set the PIC 
Edge/Level-Triggered Interrupt Priority Registers A and B (ELIRA and ELIRB) 
Interrupt Priority Level (PILxx) bits. 

d. Clear the Interrupt Trigger Mode (PEDxx) bits of the ELIRx registers because all 
peripheral interrupts are level triggered. 

e. Enable the interrupts by issuing an ei (enable interrupts) instruction. 

For an example of EFCOP programming with interrupts, see Section 9.6.2, Adaptive Filter With 
Interrupts, on page 9-16.

Table 9-2.  EFCOP Interrupts 

Signal Description
Enabled by 

Setting
Triggered When

Vector Address 
(Offset from 

VBA)

IRQ0 Data Input FIFO Not 
Full

FCTL[FINFIE] FSTR[FIBNF] and FCTL[FINFIE] are 
set simultaneously

0x800

IRQ1 Data Input FIFO 
Empty

FCTL[FIEIE] FSTR[FDIBE] and FCTL[FIEIE]
are set simultaneously

0x840

IRQ2 Data Output FIFO Full FCTL[FOFIE] FSTR[FDOBF] and FCTL[FOFIE] are 
set simultaneously

0x880

IRQ3 Data Output FIFO Not 
Empty

FCTL[FONEIE] FSTR[FOBNE] and FCTL[FONEIE] are 
set simultaneously

0x8C0

IRQ4 Coefficient Update 
Done

FCTL[FUDIE] FSTR[FUDN] and FCTL[FUDIE] are 
set simultaneously

0x900
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Enhanced Filter Coprocessor (EFCOP)
9.5.3   DMA

The Direct Memory Access (DMA) controller is an internal device that permits data transfers to 
and from the EFCOP without intervention of the SC140 core. The DMA can move data to the 
EFCOP input register and from the EFCOP output register. The DMA allows dual access and 
flyby transactions to the EFCOP. Flyby transactions occur directly between the EFCOP and 
internal SRAM, and do not require access to the DMA FIFO.

The DMA request source is controlled by the requestor number bits (RQNUM, bits 19-23) in the 
DMA Channel Configuration Register (DCHCRx). If these bits are equal to 00010, the DMA is 
triggered by an EFCOP read request (the FDOR needs to be read because it is full or not empty). 
If these bits are equal to 00011, the DMA is triggered by an EFCOP write request (when the 
FDIR needs to be written because it is empty or not full). 

On the EFCOP side, DMA transfers are controlled by the FCTL[FDIM] and FCTL[FDOM] bits. 

� FCTL[FDIM] controls the data input mode:

— When FCTL[FDIM] is clear, the EFCOP issues a transfer request from the DMA when 
the input buffer is not full (when FSTR[FIBNF] is set). Use this mode when the DMA 
is programmed to transfer single 32-bit samples to the FDIR (DMA BD_ATTR field 
TSZ bits equal to 011). Burst transfers or single transfers larger than 32-bits cause an 
error when the FCTL[FDIM] is clear.

— When FCTL[FDIM] is set, the EFCOP issues a transfer request from the DMA when 
the input buffer is empty (when FSTR[FDIBE] is set). Use this mode when the DMA 
is programmed to burst mode (TSZ equal to 100).

� FCTL[FDOM] controls the data output mode:

— When FCTL[FDOM] is clear, the EFCOP issues a transfer request from the DMA 
when the output buffer is not empty (when FSTR[FOBNE] is set). Use this mode when 
the DMA is programmed to transfer single 32-bit samples from the FDOR (DMA 
BD_ATTR field TSZ bits equal to 011). Burst transfers or single transfers larger than 
32-bits cause an error when FCTL[FDOM] is clear.

— When FCTL[FDOM] is set, the EFCOP issues transfer request from the DMA when 
the output buffer is full (when FSTR[FOBNE] is set). Use this mode when the DMA is 
programmed to burst transfer mode (TSZ equal to 100).

Note: The EFCOP does not support the DMA 64-bit transfer size.
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Figure 9-3 shows EFCOP/Internal memory transfers using DMA configured for 32-bit flyby 
mode. shows the use of DMA flyby burst mode with the EFCOP.

For an example of EFCOP programming with DMA, see Section 9.6.3, Real IIR Filter with 
DMA, on page 9-19.

9.6 Programming Examples

The code examples in this section illustrate how to program the EFCOP to complete three basic 
EFCOP operations: FIR filtering, IIR filtering, and adaptive filtering. These examples also 
illustrate the three EFCOP data transfer methods. The examples use equate labels for the location 
of the EFCOP registers and assume that these equates are declared prior to the example code. 
These labels include the register name preceded with “M_”.

9.6.1   Complex FIR Filter with Polling

The code in Example 9-1 exhibits a simple way to program the EFCOP using polling to transfer 
complex data in and out of the EFCOP data registers. In Complex mode, each filter operation 
begins with a write of two data samples to the FDIR: one for the real part followed by one for the 
imaginary part of the input data. Two 32-bit data samples are written to the FDIR register using 
two move.l instructions. More efficiently, two 32-bit data samples (the real and the imaginary 

Figure 9-3.  Single 32-Bit Transfers—DMA Configured for 32-Bit Flyby Mode

Figure 9-4.  Burst Transfers—DMA Configured for Burst Mode

EFCOP

Input Buffer Output Buffer

Internal SDRAM (512 KB)

Configuration:
FCTL[FDIM] = 0
FCTL[FDOM] = 0
DMA Channel 0 BD_ATTR[TSZ] = 011
DMA Channel 1 BD_ATTR[TSZ] = 011

DMA Channel 0 DMA Channel 1

EFCOP

Input Buffer Output Buffer

Internal SDRAM (512 KB)

Configuration:
FCTL[FDIM] = 1
FCTL[FDOM] = 1
DMA Channel 0 BD_ATTR[TSZ] = 100
DMA Channel 1 BD_ATTR[TSZ] = 100

DMA Channel 0 DMA Channel 1
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part) can be written to the FDIR with one move.2l instruction. This code programs the EFCOP to 
implement a complex FIR filter based on the equation from Section 9.2.2, as follows:

1. The address register pointers are initialized for the filter input and output data (INPUT 
and OUTPUT) and for the EFCOP input and output registers. 

2. EFCOP control parameters are written to the appropriate memory-mapped control 
registers as follows: 

a. The FDBA and FCBA registers are written with 0x400. To determine where the FDM 
and FCM are located in memory based on these register settings, recall that these 
registers contain the offset of the FDM and FCM from their base addresses (0x70000 
for the FDM and 0x78000 for the FCM) in four-byte resolution and that memory is 
addressed in one byte resolution. Therefore, the FDM and FCM are located at 0x400 
multiplied by four plus the base address, which is memory location 0x71000 for the 
FDM and 0x79000 for the FCM.

b. The FCNT constant defines the filter length and is equal to twice the number of 
complex filter coefficients (that is, if there are five complex filter coefficients, 
FCNT should be 10). FCNT –1 is written to the filter count register. 

c. The value 0x0011 is written to FCTL to enable the EFCOP in complex FIR filter 
mode with data initialization enabled. 

3. Before the first filter operation, the FDM buffer must be initialized because the FPRC 
bit is clear. To initialize the FDM buffer for complex data, FCNT/2 complex samples 
must be written to the FDM through the FDIR. The code uses a short loop to write the 
first FCNT/2 complex samples of the input data to the FDIR using move.2l 
instructions. 

4. The code waits until an output is available in the FDOR register by polling the 
FSTR[FOBNE] bit. The code tests the FSTR[FOBNE] bit and jumps back to the test if 
the bit is not set. When this bit is set, the output of the filter operation is ready and the 
code continues. 

5. The FDOR is read using a move.2l instruction, and the complex value is placed into the 
output data buffer. 

6. The next complex input data sample is written to the FDIR, and the process continues 
until all the input data values are written to the FDIR. 

7. The last output value is read, and the filter is complete. 

Example 9-1.   Complex FIR Filter Code

move.w #INPUT,r0move.w #OUTPUT,r1 ;Init data pointers

move.l #M_FDIR,r2

move.l #M_FDOR,r3
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move.w #$400,d0 ;Init FDBA

move.w d0,M_FDBA

move.w #$400,d0 ;Init FCBA

move.w d0,M_FCBA

move.w #FCNT-1,d0 ;Init FCNT

move.w d0,M_FCNT

move.w #$0011,d0 ;Init FCTL

move.w d0,M_FCTL

doensh0 #FCNT/2 ;Init data taps

move.2l (r0)+,d0:d1

loopstart0

move.2l d0:d1,(r2)

move.2l (r0)+,d0:d1

loopend0

dosetup0 empty doen0 #NSAMP

loopstart0

emptymove.w M_FSTR,d4

bmtstc #$0040,d4.l

jt empty ;Wait until out not empty

move.2l (r3),d2:d3

move.2l d2:d3,(r1)+ ;Read output

move.2l d0:d1,(r2)

move.2l (r0)+,d0:d1 ;Write input

loopend0

endempty

move.w M_FSTR,d4

bmtstc #$0040,d4.l

jt endempty ;Wait until out not empty

move.2l (r3),d2:d3

move.2l d2:d3,(r1) ;Read last output
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Before this code can run, the SC140 core must initialize the coefficient buffer because EFCOP 
coefficient initialization is disabled for this example. Example 9-2 shows an easy way to do this. 
Here the coefficients are positioned, with org and dcl directives, at the location of the FCM 
(which is memory location 0x79000 as described earlier). For each complex coefficient, the real 
and imaginary parts are stored in memory separately with the real part first. The coefficients are 
stored in reverse order so that the coefficient with the largest index is stored first and the 
coefficient with the smallest index is stored last. 

Example 9-2.   Coefficient Initialization

org P:$00079000 ;Init coefficients

dcl [Re H(FCNT-1)]

dcl [Im H(FCNT-1)]

.

.

.

dcl [Im H(0)]

dcl [Im H(0)]

Code such as shown in Example 9-1 and Example 9-2 may not appear in an actual application, 
but this code shows how the EFCOP works in a very simple way. The next example shows a 
more sophisticated way to use the EFCOP. 

9.6.2   Adaptive Filter With Interrupts

The code in Example 9-3 shows how to program the EFCOP to implement a real FIR filter using 
interrupts as the transfer method. In Real mode, each filter operation begins by writing one 32-bit 
data sample to the FDIR register using a move.l instruction. This code uses Adaptive mode and 
the data output not empty interrupt (IRQ3) to update the coefficients as shown in Section 9.2.1.1, 
as follows:

1. Address register pointers are initialized for the filter input and output data (INPUT and 
OUTPUT). 

2. The EFCOP control parameters are written to the appropriate memory mapped control 
registers as follows:

a. FDM and FCM are located at the beginning of the shared memory, so the FDBA and 
FCBA registers are written with zero. 
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b. The FCNT constant defines the filter length and is equal to the number of real filter 
coefficients. FCNT - 1 is written to the filter count register. 

c. The value 0x2105 is written to the control register to enable the EFCOP in real FIR 
filter mode with Adaptive mode enabled and data and coefficient initialization 
enabled. This value also enables the Data Output Not Empty (IRQ3) interrupt.

3. The code enables interrupts as follows:

a. The appropriate bits in the core control registers are set. The interrupt mask bits (I0–2) 
of the SR are cleared to permit all interrupt priority levels. 

b. The value 0x7000 is written to the ELIRA. This value sets the PIL[30–32] bits to 
assign IRQ3 with a priority level a six. This value also clears the PED3 bit to assign 
IRQ3 to be level triggered. 

c. Interrupts are enabled by issuing an ei instruction. 

4. The FDM buffer must be initialized because the FPRC bit is clear. To initialize the FDM 
buffer, FCNT samples are written to the FDM through the FDIR. The code uses a short 
loop to write the first FCNT input samples to the FDIR using a move.l instruction. 

5. The FCM buffer must be initialized because the FCTL[FCIM] bit is set. After the FKIR 
value is written to the K-constant input register, the EFCOP initializes the FCM buffer 
using a coefficient update session with the original coefficients equal to zero (so it does 
not matter what the values are in the FCM buffer memory locations before the code 
begins).

6. Processing begins with the write of the first input data sample to the FDIR.

Example 9-3.   Adaptive Filter Code

move.w #INPUT,r0move.w #OUTPUT,r1 ;Init data pointers

move.w #0,d0 ;Init FDBA 

move.w d0,M_FDBA

move.w #0,d0 ;Init FCBA 

move.w d0,M_FCBA

move.w #FCNT-1,d0 ;Init FCNT 

move.w d0,M_FCNT

move.w #$2105,d0 ;Init FCTL

move.w d0,M_FCTL

bmclr #$00E0,sr.h ;Enable all IPL

move.w #$7000,d0 ;Out not empty IPL 6

move.w d0,M_ELIRA  
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ei ;Enable interrupts

doensh0 #FCNT

loopstart0 ;Init data taps

move.l (r0)+,d0

move.l d0,M_FDIR

loopend0

move.l #FKIR,d0 ;Init coeffs

move.l d0,M_FKIR

move.l (r0)+,d0 ;Write first input

move.l d0,M_FDIR

The main code is now complete and the SC140 core can run other application code while the 
EFCOP completes the filter operation. When the EFCOP completes the filter operation, it places 
the result in the FDOR, which triggers the data output not empty interrupt. The processor jumps 
to the appropriate interrupt vector address. 

The interrupt vector code, shown in Example 9-4, uses an equate label, I_IRQ3, for the location 
of the EFCOP data output not empty interrupt vector address. The example assumes that this 
equate is declared prior to the example code. The interrupt vector code includes the command to 
jump to the interrupt service routine. 

Example 9-4.   Interrupt Vector Code

org P:I_IRQ3 ;Output not empty vector

jsr OBNE_ISR

rte

The interrupt service routine code, shown in Example 9-5, completes the processing as follows: 

1. The code moves the filter output from FDOR to the output data buffer.

2. The step parameter is loaded into FKIR. Once FKIR is loaded, the EFCOP performs the 
coefficient update session, as discussed in Section 9.2.1.1, and replaces the filter 
coefficients with the updated coefficients. 

3. The next input sample is written from the input data buffer to the FDIR to begin the 
next filter operation, and the process begins again.
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Example 9-5.   Interrupt Service Routine Code

OBNE_ISR ;Output not empty ISR

move.l M_FDOR,d0 ;Read output

move.l d0,(r1)+

move.l #FKIR,d0 ;Write coef update param

move.l d0,M_FKIR

move.l (r0)+,d0 ;Write input

move.l d0,M_FDIR

rts

Example 9-5 shows the basics of adaptive filtering. The transfer method of this example is more 
complex than in the polling example, but the SC140 core can process other routines while the 
EFCOP is computing. Code similar to this example may be seen in an actual application. This 
example is not complete, because it does not contain code to determine how many samples to 
process. This example also uses a simple constant for the coefficient update parameter. Other 
applications may calculate a value to update the coefficients. 

9.6.3   Real IIR Filter with DMA

The code in Example 9-6 and Example 9-7 shows how to program the EFCOP to implement a 
real IIR filter using DMA to transfer data into and out of the EFCOP data registers. Processing a 
complete IIR filter requires two sessions: a FIR filter session (see Section 9.2) followed by an IIR 
filter session (see Section 9.3). This example uses dual-access DMA transactions for the FIR 
session and flyby DMA transactions for the IIR session. Each DMA transaction transfers NSAMP 
bytes, so the EFCOP processes NSAMP/4 32-bit samples. 

Example 9-6 and Example 9-7 use equate labels for the location of the DMA channel 
configuration registers and DMA Channel Parameter RAM fields. The code assumes that these 
equates are declared prior to the example code. These labels include the register or field name 
preceded with “M_”. This code also assumes that banks 10 and 11 of the memory controller are 
configured to allow the DMA to access the internal DSP SRAM through the UPMC and to access 
the EFCOP registers through the GPCM, respectively. The memory buffers to which the 
IN_ADDR, TMP_ADDR, and OUT_ADDR equates point must be within the memory range of bank 10. The 
FDIR_ADDR and FDOR_ADDR equates must point to the EFCOP input and output register locations 
in bank 11. 

The code in Example 9-6 shows the code for the FIR session using dual-access DMA 
transactions. Four DMA channels are used for the FIR session: two channels (0 and 1) to transfer 
the data to the FDIR and two channels (2 and 3) to transfer the data from the FDOR. The DMA 
transfers occur in single transfer mode, that is, the DMA transfers one 32-bit sample to the FDIR 
whenever the FDIR is not full, and the DMA transfers one 32-bit sample from the FDOR 
whenever the FDOR is not empty. The FIR session proceeds as follows:
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1. The following control parameters are written to the EFCOP control registers:

a. The FDM and FCM are located at an offset from the beginning of the shared memory 
defined by the FIR_FDBA and FIR_FCBA constants. 

b. The FIR_FCNT constant defines the FIR filter length and is equal to the number of 
real filter coefficients. FIR_FCNT – 1 is written to the Filter Count Register. 

c. The value 0x0081 is written to FCTL to enable the EFCOP in real FIR filter mode 
with data initialization disabled. This value also sets the input and output data 
modes to single-transfer.

2. DMA Channel 0 transfers the data from memory to the DMA FIFO. The channel 0 
DMA control registers are programmed as follows:

a. The address location of the input data, IN_ADDR, is written to the DMA buffer address 
pointer field (BD_ADDR0). 

b. The total number of bytes to transfer, NSAMP, is written to the DMA buffer size 
field (BD_SIZE0). 

c. To configure channel 0 for 32-bit read transactions, the value 0x00000190 is written 
to the DMA attribute field (BD_ATTR0).

d. To enable channel 0 as dual access transaction initiated by the DMA, the value 
0x80000045 is written to the DMA Channel Configuration Register (DCHCR0). 

3. DMA Channel 1 transfers the data from the DMA FIFO to the FDIR. The channel 1 
DMA control registers are programmed as follows:

a. The address location of the FDIR in bank 11, FDIR_ADDR, is written to the DMA buffer 
address pointer field (BD_ADDR1). 

b. The total number of bytes to transfer, NSAMP, is written to the DMA buffer size 
field (BD_SIZE1). 

c. To configure channel 1 for 32-bit write transactions without incrementing the 
buffer address (always transfers to the FDIR), the value 0x08000180 is written to 
the DMA attribute field (BD_ATTR1).

d. To enable channel 1 in dual access mode triggered by an EFCOP write request, the 
value 0x80010305 is written to the DMA Channel Configuration Register 
(DCHCR1). 

4. DMA Channel 2 transfers the data from the FDOR to the DMA FIFO. The channel 2 
DMA control registers are programmed as follows:

a. The address location of the FDOR in bank 11, FDOR_ADDR, is written to the DMA 
buffer address pointer field (BD_ADDR2). 
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b. The total number of bytes to transfer, NSAMP, is written to the DMA buffer size 
field (BD_SIZE2). 

c. The value 0x08000190 is written to the DMA attribute field (BD_ATTR2). This 
value configures channel 2 for 32-bit read transactions without incrementing the 
buffer address (always transfers from the FDOR). 

d. The value 0x80020205 is written to the DMA Channel Configuration Register 
(DCHCR2). This value enables channel 2 in dual access mode triggered by an 
EFCOP read request. 

5. DMA Channel 3 transfers the data from the DMA FIFO to memory. The channel 3 
DMA control registers are programmed as follows:

a. The address location of the FIR output data, TMP_ADDR, is written to the DMA buffer 
address pointer field (BD_ADDR3). 

b. The total number of bytes to transfer, NSAMP, is written to the DMA buffer size 
field (BD_SIZE3). 

c. To configure channel 3 for a 32-bit write transaction, the value 0x00000180 is 
written to the DMA attribute field (BD_ATTR3).

d. To enable channel 3 as dual access transaction initiated by the DMA, the value 
0x80030045 is written to the DMA Channel Configuration Register (DCHCR3). 

Once the DMAs and EFCOP are programmed, they work together requesting and sending data 
without intervention of the SC140 core. After all NSAMP/4 data samples are processed, the IIR 
session begins. 

Example 9-6.   FIR Filter Session

move.w #FIR_FDBA,d0 ;Init FDBA

move.w d0,M_FDBA

move.w #FIR_FCBA,d0 ;Init FCBA

move.w d0,M_FCBA

move.w #FIR_FCNT-1,d0 ;Init FCNT

move.w d0,M_FCNT

move.w #$0081,d0 ;Init FCTL

move.w d0,M_FCTL

;DMA0 init to transfer Memory to DMA FIFO

move.l #IN_ADDR,d0 ;Init source address

move.l d0,M_BDADDR0

move.l #NSAMP,d0 ;Init transfer size

move.l d0,M_BDSIZE0
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move.l #$00000190,d0 ;Init channel 0 attrib

move.l d0,M_BDATTR0

move.l #$80000045,d0 ;Init channel 0 config

move.l d0,M_DCHCR0

;DMA1 init to transfer DMA FIFO to FDIR

move.l #FDIR_ADDR,d0 ;Init destination address

move.l d0,M_BDADDR1

move.l #NSAMP,d0 ;Init transfer size

move.l d0,M_BDSIZE1

move.l #$08000180,d0 ;Init channel 1 attrib

move.l d0,M_BDATTR1

move.l #$80010305,d0 ;Init channel 1 config

move.l d0,M_DCHCR1

;DMA2 init to transfer FDOR to DMA FIFO

move.l #FDOR_ADDR,d0 ;Init source address

move.l d0,M_BDADDR2

move.l #NSAMP,d0 ;Init transfer size

move.l d0,M_BDSIZE2

move.l #$08000190,d0 ;Init channel 2 attrib

move.l d0,M_BDATTR2

move.l #$80020205,d0 ;Init channel 2 config

move.l d0,M_DCHCR2

;DMA3 init to transfer DMA FIFO to Memory

move.l #TMP_ADDR,d0 ;Init destination address

move.l d0,M_BDADDR3

move.l #NSAMP,d0 ;Init transfer size

move.l d0,M_BDSIZE3

move.l #$00000180,d0 ;Init channel 3 attrib

move.l d0,M_BDATTR3

move.l #$80030045,d0 ;Init channel 3 config

move.l d0,M_DCHCR3

Example 9-7 shows the code for the IIR session using flyby DMA transactions. Two DMA 
channels are used for the IIR session: channel 0 to transfer the data to the FDIR and channel 1 to 
transfer the data from the FDOR. The DMA transfers occur in burst transfer mode, that is, 
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channel 0 transfers eight 32-bit samples to the FDIR whenever the FDIR is empty and channel 1 
transfers eight 32-bit samples from the FDOR whenever the FDOR is full. The IIR session 
proceeds as follows:

1. The EFCOP is disabled by clearing the FCTL before the IIR session parameters are 
programmed into the FCTL. 

2. The following control parameters are written to the EFCOP control registers:

a. The FDM and FCM are located at an offset from the beginning of the shared memory 
defined by the IIR_FDBA and IIR_FCBA constants. 

b. The IIR_FCNT constant defines the IIR filter length and is equal to the number of 
real filter coefficients. IIR_FCNT – 1 is written to the Filter Count Register.

c. The IIR_FACR constant is written to the Filter ALU Control Register. This 
constant can be used to enable scaling for the IIR output if necessary.

d. The value 0xC083 is written to FCTL to enable the EFCOP in IIR filter mode. This 
value also sets the input and output data modes to burst transfer.

3. DMA Channel 0 of the DMA is used in flyby mode to transfer the input data from 
memory to the FDIR in burst mode; that is, the DMA transfers eight 32-bit samples to 
the FDIR whenever the FDIR is empty. The DMA control registers are programmed as 
follows:

a. The address location of the input data (the FIR session output), TMP_ADDR, is written 
to the DMA buffer address pointer field (BD_ADDR0). 

b. The total number of bytes to transfer, NSAMP, is written to the DMA buffer size 
field (BD_SIZE0). 

c. To configure the DMA for a burst read transaction, the value 0x00000210 is 
written to the DMA attribute field (BD_ATTR0).

d. To enable DMA channel 0 in flyby mode triggered by an EFCOP write request, the 
value 0x80004305 is written to the DMA Channel Configuration Register 
(DCHCR0). 

4. DMA Channel 1 of the DMA is used in flyby mode to transfer the output data from the 
FDOR to memory in burst mode; that is, the DMA transfers eight 32-bit samples from 
the FDOR whenever the FDOR is full. The DMA control registers are programmed as 
follows:

a. The address location of the output data, OUT_ADDR, is written to the DMA buffer 
address pointer field (BD_ADDR1). 
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b. The total number of bytes to transfer, NSAMP, is written to the DMA buffer size 
field (BD_SIZE1). 

c. The value 0x00000200 is written to the DMA attribute field (BD_ATTR1). This 
value configures the DMA for a burst write transaction. 

d. The value 0x80014204 is written to the DMA Channel Configuration Register 
(DCHCR1). This value enables DMA channel 1 in flyby mode triggered by an 
EFCOP read request. 

Example 9-7.   IIR Filter Session

move.w #0,d0 ;Disable EFCOP

move.w d0,M_FCTL

move.w #IIR_FDBA,d0 ;Init FDBA

move.w d0,M_FDBA

move.w #IIR_FCBA,d0 ;Init FCBA

move.w d0,M_FCBA

move.w #IIR_FCNT-1,d0 ;Init FCNT

move.w d0,M_FCNT

move.w #IIR_FACR,d0 ;Init FACR

move.w d0,M_FACR

move.w #$C083,d0 ;Init FCTL

move.w d0,M_FCTL

;DMA0 init to input DATA to EFCOP

move.l #TMP_ADDR,d0 ;Init source address

move.l d0,M_BDADDR0

move.l #NSAMP,d0 ;Init transfer size

move.l d0,M_BDSIZE0

move.l #$00000210,d0 ;Init channel 0 attrib

move.l d0,M_BDATTR0

move.l #$80004305,d0 ;Init channel 0 config

move.l d0,M_DCHCR0

;DMA1 init to output DATA from EFCOP

move.l #OUT_ADDR,d0 ;Init destination address

move.l d0,M_BDADDR1
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move.l #NSAMP,d0 ;Init transfer size

move.l d0,M_BDSIZE1

move.l #$00000200,d0 ;Init channel 1 attrib

move.l d0,M_BDATTR1

move.l #$80014204,d0 ;Init channel 1 config

move.l d0,M_DCHCR1

Once the DMAs and EFCOP are programmed, they work together requesting and sending data 
without intervention of the SC140 core. When all NSAMP/4 data samples are processed, the filter 
is complete. 

Example 9-6 and Example 9-7 show the basics of IIR filtering and DMA transactions with the 
EFCOP. The transfer method of this example requires the least core intervention once the 
EFCOP and DMAs are programmed and requires no address registers. Code similar to this may 
appear in an actual application. However, this example is not complete because it does not 
contain code to initialize the FDM and FCM. This example also does not contain code to 
determine when the DMA transfers of each session are complete, which can be done with DMA 
interrupts or polling.

9.7 Related Reading

MSC8101 User’s Guide (This manual)

Section 1.3.7.3, Buffer Descriptors, on page 1-11

MSC8101 Reference Manual

Chapter 15, Direct Memory Access (DMA)

Chapter 18, Enhanced Filter Coprocessor (EFCOP)
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Multi- Channel Controllers (MCCs) 10
This chapter describes a step-by-step procedure for setting up a 32-channel T1/E1 link using one 
of the MSC8101 multi-channel controllers (MCCs). The main steps in this procedure are three 
software configuration phases for setting up MCC and CPM parameters. An example driver 
implementation illustrates both hardware and software configuration for connecting to an 
industry-standard T1/E1 line transceiver. The physical interface between the MSC8101 and the 
PMC PM6388 T1/E1 transceiver is described. 

The procedure for global parameter set-up and channel-specific initialization exemplifies the 
basic CPM concepts in use throughout the other CPM-supported protocols. This basic procedure 
can be used for applications with varying numbers of channels and protocols. Refer to the 
MSC8101 Reference Manual for information on features not implemented by the driver discussed 
here.

10.1 MCC Configuration Basics

The MSC8101 communications processor module (CPM) contains two MCC blocks, each 
capable of providing up to 128 full-duplex serial data channels routed through the programmable 
time-slot assigner (TSA) in the serial interface blocks, SI1 and SI2. Target applications of the 
MCC are mainly time-division multiplexing (TDM) interfaces such as TDM 
backplanes/interconnects and WAN networks. The SI1 has one TDM interface, and the SI2 has 
three.

MCC channels are individually configured to handle either transparent or HDLC protocols. For 
each channel, the serial interface (SI) and its associated RAM (SIRAM) control the routing of 
time-division multiplexing data through each of the four TDM interfaces to the external network. 
The channels can be spread across the four TDMs, and a single TDM can handle all 128 
channels. The MCC operates in both normal mode, in which a single logical channel is assigned 
to a single time slot, and a superchannel mode, in which multiple MCC channel slots are assigned 
to a logical channel. The example implementation illustrates only normal mode channels; for 
details on super channels, refer to the MSC8101 Reference Manual.

The main MCC configuration is through MCC-specific parameters in the internal Dual Port 
RAM (DPRAM). The MCC utilizes several other CPM resources, as the white boxes in Figure 
10-1 show.
MSC8101 User’s Guide, Rev. 3
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Multi- Channel Controllers (MCCs)
Figure 10-1.  MCC Resource Usage

10.1.1   Procedure for Initializing the MCC Resources

The steps for initializing the MCC resources are as follows:

1. Configure the channels:

a. Initialize the buffer descriptors (BDs).

b. Set up the global parameters.

c. Set up the MCC control registers.

d. Set up the channel-specific parameters.

e. Initialize the interrupt queues.

2. Select the TSA channel route to a TDM timeslot:

a. Program the serial interface RAM (SIRAM).

b. Set up the baud-rate generators (BRGs).

3. Configure the external interface:

a. Set up the parallel I/O pins.
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MCC Configuration Basics
b. Enable the TDM.

These steps map to the functionality flow of the software driver discussed in this chapter. See 
Figure 10-2 for a listing of the driver functions.

Figure 10-2.  Driver Functions

ExtIntHandler() provides an example interrupt handler. The handler checks the event that causes 
the interrupt and, in the HDLC loopback modes, enables a memory check to ensure that the 
received data is identical to the transmitted data. Table 10-1 shows examples of functions that are 
useful in handling interrupts.

Table 10-1.  Interrupt Handler Functions 

Function Name Function Details

BDRxError() Identifies the reason for the Rx interrupt.

LastBD() Indicates whether this is the last buffer descriptor in the ring.

BDEmpty() Determines whether the buffer descriptor is empty.

ExtIntHandler()

BDRxError() LastBD() BDEmpty() GP01ed() GP11ed() FlashGP1Led()

main()

Load Tx
Buffers()

InitBDs() MCC Global
Init()

MCC ExChan
SpecInit()

MCCChan
SpecInit()

Interrupt
ControlInit()

SIInit() InitTxRx
Params()

ClockingInit() InitParallel
Ports()

Init_PHY()
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Multi- Channel Controllers (MCCs)
10.1.2   Driver Memory Map

All values in the driver memory map are set up as offsets to the Internal Memory Map Register 
(IMMR), indicated in Figure 10-3 as the DPRAM Base. These values are changed via the mcc.h 
header file, with these exceptions: the MCC2 parameter RAM, in which the global parameters are 
stored, and the channel-specific parameters, which both have fixed locations. When writing to the 
parameter RAM, you must ensure that other parameters are not inadvertently overwritten. 
External memory refers either to the internal SRAM or external memory. The software driver 
uses only the DPRAM and the 512 KB internal SRAM, shown as external memory in Figure 
10-4. Figure 10-3 shows a detailed memory map for the specific driver example.

Figure 10-3.  Driver Memory Map

DPRAM

MCC2 Channel 160–191 
specific parameters

0x2800

0x3000

Offset to 
DPRAM Base

MCC2 Channel 160 - 191 
extra channel parameters

MCC2 Global Parameters

0x8800

0x8880

DPRAM Base 

Offset to 
MCCBASE

MCCBASE = 0x00100000

Tx Interrupt Table

Rx Interrupt Table

TINTBASE

RINTBASE

XTRABASE 
= 0x3800

0x100000

External Memory

Buffer 

0x20000

0x200100

Descriptors

Buffers 
MSC8101 User’s Guide, Rev. 3

10-4 Freescale Semiconductor



MCC Configuration Basics
Figure 10-4.  Internal and External Memory Usage

10.1.3   Memory Usage

Memory resources can become scarce as the number of MCC channels increases. The size of the 
BD ring should be varied to suit the protocol being run and the amount of other CPM activity. To 
avoid a receive overrun or transmit underrun, the circular BD table should be sized to provide 
enough valid buffers for the available SC140 core servicing rate. See Section 1.3.7.5, BD and 
Buffer Memory Structure, on page 1-15.

Table 10-2 details the potential memory usage for the MCC in two cases: (1) maximum number 
of channels (256) supported; (2) the specific driver example code. It indicates whether the 
parameters are stored in DPRAM or external memory. The interrupt circular tables are shown in 
external memory; however they can also be stored in DPRAM memory, space permitting.

Table 10-2.  Memory Utilization for MCC Parameters and Resources 

Parameters DPRAM External Memory

Maximum Driver Maximum Driver

MCC global parameters 2 ×  128 bytes 128 bytes N/A N/A

Channel-extra parameters 256 ×  8 bytes 32 ×  8 bytes N/A N/A
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Multi- Channel Controllers (MCCs)
To simplify the relocation, all BDs for each MCC start from a fixed base in external memory, 
with the restriction that all BDs for a specific MCC are located within the same 512 KB block.

Rx and Tx BDs have the same structure, consisting of status, length and data buffer address 
fields. The Empty and Ready status field bits of the Rx and Tx BDs, respectively, are set by the 
core prior to channel start-up. These fields indicate to the CPM that each buffer is ready to be 
processed. For the final BD in the ring, the wrap bit is set, indicating to the CPM that the next BD 
entry wraps back to the first BD in the ring.

10.2 Connect the TDM Interface to T1/E1

This section details the interconnection of the MSC8101 to one port on the PM6388 Octal T1/E1 
line transceiver and outlines the loopback configurations available to aid in software driver 
development.

The standardized TDM lines used for inter-hub backbones or trunks are T1/E1 (CEPT) lines in 
Europe and T1 lines in the US. An T1/E1 interface implements 32 ×  64 Kbps slots, giving a 
2.048 Mbps bandwidth. T1 implements 24 ×  64 Kbps time slots for a 1.544 Mbps line bandwidth 
link. Both time-division, multiplexed interfaces can be implemented using the TSA capability of 
the serial interface in conjunction with an MCC of the MSC8101 CPM. The TDM pins must be 
carefully selected so that there are no conflicts with other CPM functions multiplexed on the 
same pins. Figure 10-5 shows MCC2 on the MSC8101 connected to port 6 on the PM6388 Octal 
T1/E1 transceiver through TDMB. T1 applications can use the same interconnect, with the 
PM4388 transceiver as a drop-in alternative.

Channel-specific 
parameters

256 ×  64 bytes 32 ×  64 bytes N/A N/A

Buffer descriptors N/A N/A (256 ×  8 ×  8) ×  2 
bytes

(32 ×  8 ×  8) ×  2 bytes

Buffers N/A N/A (256 ×  8 ×  64) ×  2 
bytes

(32 ×  8 ×  64) ×  2 bytes

Circular interrupt tables (4 ×  64) ×  5 bytes (4 ×  64) ×  2 bytes

Total memory used 18688 bytes 2432 bytes 296192 bytes 37376 bytes

Notes: 1. External memory utilization assumptions: 8 Tx/Rx buffers per channel, 64 bytes each; 2 INTQs, 64 
entries each.

Table 10-2.  Memory Utilization for MCC Parameters and Resources (Continued)

Parameters DPRAM External Memory

Maximum Driver Maximum Driver
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Connect the TDM Interface to T1/E1
Figure 10-5.  T1/E1 Transceiver Interface Example

The TDM interface connection is relatively simple, consisting of a transmit and receive clock, 
synchronization signals, and data signals. The MSC8101 expects L1RCLKB and L1RSYNCB 
synchronization to be generated by an external device—in this case, the T1/E1 line transceiver. 
The T1/E1 frame is delimited by the transceiver synchronization signal (EFP/IFP) that marks the 
start of the first time slot in the frame and by a clock (ICLK/TLCLK) that controls the line bit 
rate. The T1/E1 frame is split into multiple time slots, each designated for a different logical 
channel. Figure 10-6 illustrates an T1/E1 frame consisting of thirty-two 8-bit logical channels 
(with common L1RSYNC/L1TSYNC and L1RCLK/L1TCLK used).
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Multi- Channel Controllers (MCCs)
Figure 10-6.  T1/E1 Data Frame

10.2.1   Provide Appropriate Signal Polarity and Timing

Table 10-3 defines the SI Mode Register bit settings required on the MSC8101 to provide 
appropriate signal polarity and timing to the PM6388 line transceiver.

10.2.2   Perform a Phased Test of the Transceiver Interface

During the development process, several loopback options can aid in a phased test of the PHY 
interface.

� SIRAM loopback. Allows verification of the MCC and serial interface programming with 
loopback at the serial interface.

� TDM loopback. Tests the time-slot assigner (TSA) programming with L1TXDB 
connected internally to L1RXDB.

Table 10-3.  MSC8101 SI Mode Register Settings

Register Setting Description

SIxMR[RFSDx] = 00
SIxMR[TFSDx] = 00

L1RSYNCB/L1TSYNC have no L1RCLK/L1TCLK delay from synchronization to 
data.

SIxMR[FEx] = 0 L1TSYNCB and L1RSYNCB pulses are sampled at the falling edge of TCLK/RCLK.

SIxMR[SLx] = 0 L1TSYNCB and L1RSYNCB are active high signals.

SIxMR[CEx] = 0
SIxMR[DSCx] = 0

Rx Data is latched in on the falling edge, Tx data on the rising edge of 
L1TCLK/L1RCLK. The double-speed TDM clock is not used.
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Connect the TDM Interface to T1/E1
� External PHY loopback. The full external Transmit-to-Receive path tests the physical 
interface between the MSC8101 and the physical (PHY) device.

Figure 10-7 summarizes the three system-level loopback options: (1) SI-level internal loopback, 
(2) TDM-level internal loopback, and (3) external PHY loopback. 

Figure 10-7.  Loopback Modes

In the absence of an external PHY, loopback modes (1) and (2) can be used, with clocks and 
synchronizing signals generated by the MSC8101. The transmit and receive clocks for TDMB 
are selected through the CMX SI2 Clock Route Register (CMXSI2CR); the selected clock input 
pin is sourced from one of the flexible internal baud rate generator (BRG) outputs. Frame 
synchronization is generated from one of the internal timers: the timer registers are programmed 
to divide the BRGCLK by (32 ×  8), thus creating a positive, bit-wide pulse every 32 timeslots. 

The MSC8101 has independent receive and transmit clock signals and synchronization signals; 
however, making these signals common can simplify the interconnection and synchronization. 
The internal loopback configurations use this concept: setting the SI2MR[CRTx] bit internally 
connects the transmit clock (L1TCLK) and synchronization (L1TSYNC) to the respective 
receive clock (L1RCLK) and synchronization (L1RSYNC).

In external PHY loopback mode (3), the PM6388 PHY is used. It generates separate transmit and 
receive frame syncs, so the physical connection between the timer output (TOUT) and the 
L1RSYNC is not used. Instead, the Ingress Frame Pulse (IFP) from the PM6388 connects 
directly to the L1RSYNC in the receive direction, and the Egress Frame Pulse (EFP) sources 
L1TSYNC for the transmit side. The TDM clocks between the MSC8101 and the T1/E1 
transceiver are also generated by the PM6388 with the Transmit Line Clock (TLCLK) sourcing 
L1TCLK and the Ingress Clock (ICLK) connected to L1RCLK (see Figure 10-5).
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Multi- Channel Controllers (MCCs)
The PM6388 T1/E1 PHY transceiver is initialized in software through the Init_PHY() function. 
The driver code sets up the PHY to be in internal loopback mode to enable external PHY 
loopback.

10.3 Configure the Channels

Channel configuration proceeds in two steps:

� Configure the global MCC resources applicable to all the channels supported by the MCC.

� Configure the individual, channel-specific parameters for the assigned protocol.

The main data structures for programming the MCC are held in the CPM DPRAM. However, 
several other structures must reside in memory external to the CPM, either in the internal SRAM 
or in a memory device connected to the system bus. The next sections describe the global and 
channel-specific data structures for configuring MCC resources.

10.3.1   Set Up the Global MCC Parameters

Each MCC has a set of global parameters that are held in DPRAM and are common to all 
channels within that MCC. The global parameters define a base for the Transmit (Tx) and 
Receive (Rx) circular buffer descriptor (BD) tables, the maximum buffer size, the number of 
receive frame interrupts that cause an interrupt to the SC140 core, and the interrupt queue 
addresses. The buffer descriptor tables, which are stored in internal SRAM, define the Tx and Rx 
data buffer locations and maintain status information on received and transmitted data frames. 
The global parameters provide the common functionality for all active channels on each MCC. 

The following parameters must be set up before the channel-specific parameters are assigned: 

� MCCBASE. Defines the starting address of the 512 KB BD segment. In this case, it is set 
to 0x1000000 via the variable BDRING_BASE in the header file.

� MCCSTATE. Set to all zeros to define the initial MCC state.

� MRBLR. Defines the maximum number of bytes written to a receive buffer before a move 
to the next buffer. For transparent mode, the MRBLR should be assigned the same length 
as the buffers, 64 bytes in this example.

� GRFTHR and GRFCNT. Two parameters relating to the reception of frames. GRFTHR is 
a threshold value after which an interrupt is generated.

� XTRABASE. Defines the offset in the dual-port RAM (DPRAM) that points to the location 
holding the extra channel-specific parameters. Each channel’s extra parameters are stored 
in order contiguously from this offset. (Offset 0x3800 is used in this example.)

The following parameters relate to interrupt queue set-up and handling:

� TINTBASE. Defines the Tx circular interrupt table location. In this driver example, the 
interrupt tables are held in external memory; however, they can be held in DPRAM.
MSC8101 User’s Guide, Rev. 3
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Configure the Channels
� RINTBASE. Points to the receive circular table location. This example uses RINT Table 0.

Before the interrupts are enabled, the Rx and Tx temporary interrupt queue locations should be 
initialized to zero, with the wrap bit set in the last entry.

10.3.2   Set Up the MCC Configuration and Control Registers

Part of the global setup is to initialize the three main MCC control registers:

� MCCFx. Defines the mapping of MCC channel blocks to a TDM pin interface. Table 10-4 
shows the TDM-to-MCC usage available for the MSC8101. The 128 channels on each 
MCC are split into four subgroups, each of which can be routed to a particular TDM. All 
MCC1 channels must be routed through TDMA. The MCC2 subgroups are routed to one 
of three TDMs (TDMB, TDMC, or TDMD). All channels within a subgroup must be 
routed to the same TDM, though different subgroups can be routed to the same or different 
TDMs (see Table 10-4 for details). The transmit and receive data flow is controlled by the 
programmable SIRAM and the respective MCCF2[0-7] register, which routes the data to 
the specified channels. The TDM group channel assignments made in the respective 
MCCF register must be coherent with the SI register programming. The example driver 
code configures 32 MCC2 channels in the range 160–191 for TDMB by setting the 
MCCF2 register to 0x10.

.

� MCCM. The Interrupt Mask Register filters interrupt event requests to the core. In this 
example, setting MCCM = 0x4004 enables the RINT0 and TINT interrupts.

� MCCE. The Interrupt Event Register reports receive and transmit events. This register is 
cleared by writing all ones (MCCE = 0xFFFF) at initialization. During interrupt handling, 
only events serviced at that time should be cleared by writing a one to the relevant register 
bit; otherwise interrupt events could be lost. Writing all zeros has no effect on the register. 

10.3.3   Set Up Channel-Specific Parameters

The main channel-specific characteristics include maximum receive frame size, allowable core 
interrupts, start-up parameters for a channel, and the transparent or HDLC protocol to be 
supported by an individual channel. In addition, the RISC CP uses areas of this parameter RAM 
as temporary variable space. Both HDLC and transparent protocols have parameters that the user 

Table 10-4.  MCC TDM Usage in MSC8101 

SIRAM1 (MCC1) SIRAM2 (MCC2)

MCC Subgroup A B C D A B C D

MCC Channel 0–31 32–63 64–95 96–127 128–15
9

160–19
1

192–23
1

231–25
6

Usable TDM Yes No No No No Yes Yes Yes
MSC8101 User’s Guide, Rev. 3
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Multi- Channel Controllers (MCCs)
must initialize. Most of these parameters are initialized to predefined values. However, INTMSK, 
CHAMR, TSTATE and RSTATE are user-configurable. In the example discussed here, you can 
configure all 32 channels to handle either transparent or HDLC protocols by setting the MODE 
variable appropriately in the driver.

� INTMSK. Determines which non-masked events are passed to the interrupt queue assigned 
to the channel. The driver code enables interrupts by setting INTMSK to 0x0105 when an 
RX frame is received (RXF event) or when buffers are transmitted or received (TXB and 
RXB events).

� CHAMR. Selects transparent or HDLC mode for the channel. The bit format of the register 
varies depending on the protocol and enables receive interrupt queue configuration for a 
respective channel. For the HDLC protocol, the CHAMR register is programmed to 
0xE080 so that no timestamp is added to the data buffers and receive interrupt queue 0 is 
used. For transparent mode, this register is programmed to 0x7000.

� RSTATE/TSTATE. Provides the SDMA transactional details and starts the channel. Bits 
0–7 of the RSTATE/TSTATE registers are set to 0x18 to select the byte ordering, the 
transfer code used during the SDMA channel memory access, and the bus used for data 
BDs and interrupt queues. In the driver, all the channels are set up in big-endian mode, 
with all data transactions on the local bus for access to the internal SRAM. 

10.3.4   Set Up the Channel Extra Parameters

Each MCC channel has an 8-byte allocation for parameters defining the actual address of the Tx 
and Rx BDs for a specific channel. These extra parameters are located at an offset from the base 
address of the DPRAM, defined by XTRABASE, in the global parameters.

The driver sets up all channel-extra parameters for MCC2 from the [XTRABASE+(channel 
number ×  8)] address. The TBASE/RBASE parameters define the base address of the Tx and Rx 
BDs for a particular channel. For example, for channel 160, the RBASE offset is 0x0500 and the 
TBASE offset is 0x0600. All channel BDs are contiguous in memory.

10.3.5   Initialize Circular Interrupt Queues

Each unmasked channel interrupt generated during the transmission and reception of data creates 
an entry in an interrupt queue. The receive and transmit entries are held in separate tables, with 
four receive interrupt tables and one transmit table that can be allocated to the MCC. The global 
MCC parameters define the MCC interrupt queue allocation; the queues are stored in internal 
SRAM. 

The interrupt circular queue is initialized to be stored in external memory. Each MCC can be 
allocated up to five interrupt queues (one transmit and four receive). Each queue’s length is 
user-definable in the global parameters. The final entry in the table is indicated with a set wrap bit 
to indicate that the next entry to be used is the first in the table.
MSC8101 User’s Guide, Rev. 3
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Select the TSA Channel Route to a TDM Timeslot
In the example discussed here, RINT0 and TINT are used for the receive and transmit interrupts 
respectively, as set up in the global parameters. The Tx and Rx BDs of all channels that use a 
particular interrupt table must reside on the same bus. 

10.4 Select the TSA Channel Route to a TDM Timeslot

Once the MCC is configured to support 32 channels, the channel route to a particular timeslot on 
the TDM interface must be selected based on the SIRAM entry and the CPM multiplexing 
settings.

10.4.1   Define the Serial Interface Entries in SIRAM

Figure 10-8.  Serial Interface

The SIRAM is a block of memory internal to the CPM that routes data from the TDM pins to the 
MCC. The SIRAM consists of a series of entries, one set for the Tx and one for the Rx flow. 
Figure 10-9 shows an example of the bit definitions for the Tx and Rx entries of channel 160 
through the last entry for channel 191. To set the Tx and Rx entries, we perform the following 
steps:

1. For the Rx entry of channel 191, enable SI loopback mode by setting the Loop/Echo bit 
in the RX entry, thereby looping the transmit back to the receive. Note that the 
Loop/Echo bit should be set for either the Tx or Rx entry, but not both. 

2. Define the MCC channel number in the MCSEL field. 

3. Indicate the number of bytes routed using the CNT and BYT fields. A CNT of 000 
represents “1,” and BYT indicates whether the CNT is measured in bits or bytes. 

4. Set LST to indicate the last entry in the frame.

MCC1

MCC2

TDMA Channels

TDMB channels
TDMC channels
TDMD channels

SIRAM1 Time-Slot 
Assigner

TDMA pins

TDMB pins
TDMC pins
TDMD pins

External MSC8101Internal MSC8101

SIRAM2
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Multi- Channel Controllers (MCCs)
The TSA set-up is independent of the protocol in use; it simply routes programmed portions of 
the received data frame from the TDM pins to the MCC. See Section 10.2, Connect the TDM 
Interface to T1/E1, on page 10-6 for details on the TSA configuration.

Figure 10-9.  Serial Interface Entry Definitions for Driver Example

10.4.2   Set up Clocks, Baud Rate Generators (BRG), and Timers

The TDMB clocks (L1RCLKB, L1TCLKB) are always driven from an external source. In our 
example, they are configured to be driven from the CLK[15–16] pins (the CMX SI2 Clock Route 
Register [CMXSI2CR] is cleared to 0x0). The reference clock input to these pins is either from 
the T1/E1 framer, in external PHY loopback, or from the BRG in internal (SI or TDM) loopback. 
The driver implements internal loopback clock generation via BRG5. The BRG5 output is a 
fraction of the CPM BRGCLK clock and is determined by the division factors programmed in the 
BRG Configuration (BRGC) registers. To give a clock rate of ~2.048 MHz from a 150 MHz 
CPM, BRGC5 is set to 0x00010048. The BRG is set for normal operation, with no prescaler and 
a clock divider of 37. The clocks produced by the BRGs are sent to the bank-of-clocks logic, 
where they are either routed to the serial controllers or to the external pins, as in this case. The 
BRG50 pin must be externally connected to the CLK15 pin.

To provide the synchronization signals, the following CPM timer registers require configuration: 

1. Timer Global Configuration Register (TGCR). TGCR must be configured prior to the 
TMR or erratic behavior can occur. Setting TGCR1 = 0x09 enables Timer1 with normal 
gate mode.

2. Timer Mode Register (TMR). Next, the TMR1 register is configured with the timer 
prescaler set to 1, the capture event disabled and the timer counter is reset immediately 
after the reference value is reached. The input source for the timer is TIN1 (fed by 
BRG5); therefore TIMR1 is set to 0x000E.
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Set Up the External Interface
3. Timer Reference Register (TRR). Finally, the TRR1 register is set to contain the timeout 
reference value, resulting in a configuration of 0x00FF. The timer output TOUT1 must be 
externally connected to L1RSYNC.

10.5 Set Up the External Interface

The CPM interface is essentially a set of I/O pins that can be configured for either a peripheral or 
a general-purpose function. The multiplexed peripheral pins for TDMB are configured through 
the parallel I/O port registers (PPAR, PSOR, PDIR). The driver function InitParallelPorts() 
details the appropriate port registers assignment.

Note: All the CPM I/O pins default to general-purpose inputs. 

Enabling the TDM involves configuring the serial interface registers. The SI Global Mode 
Register (SIGMR), which is the last register to be set up in the driver before the driver is started, 
defines the activation of the TDM channels for each SI. Because TDMB is used, this register is 
set at 0x02.

10.6 Related Reading

MSC8101 User’s Guide (This manual)

Section 1.3.7, Communications Processor Module (CPM), on page 1-9

Section 1.3.7.3, Buffer Descriptors, on page 1-11

MSC8101 Reference Manual

Chapter 19, Communications Processor Module Overview

Chapter 20, Serial Interface With Time-Slot Assigner

Chapter 22, Baud-Rate Generators

Chapter 33, Multi-Channel Controllers (MCCs)
MSC8101 User’s Guide, Rev. 3
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Serial Peripheral Interface (SPI) 11
The serial peripheral interface (SPI) is a synchronous serial data protocol that is standard across 
many Freescale processors and other SPI-compatible devices, including EEPROMs and 
analog-to-digital A/D converters. It is essentially a shift register that transmits and receives data 
serially to and from other devices with an SPI. The MSC8101 SPI includes the following 
features:

� Four-wire interface (SPIMOSI, SPIMISO, SPICLK, SPISEL)

� Full-duplex operation

� Double-buffered receiver and transmitter

� Independent programmable baud-rate generator

� Master or slave mode

� Multi-master environment support

This chapter describes how the MSC8101 exchanges data between other devices via the SPI. It 
tells you how to configure port D for SPI operation and how to configure the SPI baud-rate 
generator in master mode. It gives examples of the SPI operating as a master and as a slave. 

11.1 Configuring the SPI for Use

The first phase of SPI programming is to configure the MSC8101 to use the SPI signals on port D 
pins, select the SPI peripheral function for port D, and select the pin direction. Table 11-1 
describes the functions of the SPI signals.
MSC8101 User’s Guide, Rev. 3
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The SPI signals are multiplexed with the port D pins, PD[16–19]. These pins can be configured as 
general-purpose pins or as dedicated peripheral pins. To configure PD[16–19] for SPI, the 
following registers must be initialized:

� Port Pin Assignment Register D (PPARD). Assigns PD[16–19] as dedicated SPI peripheral 
signals:

� Special Options Register D (PSORD). Selects the SPI peripheral function by assigning 
PD[16–19] to use the option 2 function. The SO[16–19] bits of this register are all set to a 
value of one.

� Data Direction Register D (PDIRD). Selects the pin direction, as follows:

Table 11-1.  SPI Signals 

Signal Description

SPIMOSI SPI Master Out Slave In
When the SPI is configured as a master, SPIMOSI is the output signal that 
transmits data to the slave device.

When the SPI is configured as a slave, SPIMOSI is the input signal that 
receives data from the master device.

SPIMISO SPI Master In Slave Out
When the SPI is configured as a master, SPIMISO is the input signal that 
receives data from the slave device.

When the SPI is configured as a slave, SPIMISO is the output signal that 
transmits data to the master device.

SPICLK SPI Clock
When the SPI is configured as a master, SPICLK is the output signal that shifts 
received data in from SPIMISO and transmitted data out to SPIMOSI.

When the SPI is configured as a slave, SPICLK is the input signal that shifts 
received data in from SPIMOSI and transmitted data out to SPIMISO.

SPISEL SPI Select
When the SPI is configured as a master, SPISEL should be disabled to prevent 
a multi-master error.

When the SPI is configured as a slave, SPISEL is the input signal that the 
master device asserts to select the slave device.

Table 1-2.  

Bit Name Value Description

16 DD16 1 PD16 is assigned to SPIMISO

17 DD17 1 PD17 is assigned to SPIMOSI

18 DD18 1 PD18 is assigned to SPICLK

19 DD19 1 PD19 is assigned to SPISEL
MSC8101 User’s Guide, Rev. 3
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Setting the Clock
11.2 Setting the Clock

In the master mode, the baud rate is determined by the divide by 16 option and the prescale 
modulus. The SPI baud rate generator (SPI BRG) takes its input from BRGCLK and generates the 
SPICLK. The SPI BRG provides a divide-by 16 option and a prescale divider option. Figure 11-1 
shows the SPI BRG block diagram.

Figure 11-1.  SPI BRG Block Diagram

Note: The BRGCLK is an internally derived signal generated from CLKIN. There is no separate 
BRGCLK input. See the MSC8101 Technical Data sheet for details.

To divide the BRGCLK input to the SPI BRG by 16, set the DIV16 bit in the SPI Mode Register 
(SPMODE). The SPMODE[DIV]16 bit description is as follows.

To divide the BRGCLK input to the SPI BRG by a value other than 16, configure the PM bits in the 
SPMODE register. The SPMODE[PM] bits select the prescale modulus for the SPI BRG. 
BRGCLK is divided by 4 ×  (PM[0–3])+1. The prescale modulus range is 4 to 64. The synchronous 
baud rate is calculated by dividing the BRGCLK input to the BRG by the DIV16 and PM options:

Sync Baud Rate = BRGCLK / [DIV16 × (4 × PM+1)]

Table 1-3.  

PDIRD Bits Name Value Description

16 DR16 0 SPIMISO is bidirectional.

17 DR17 0 SPIMOSI is bidirectional.

18 DR18 0 SPICLK is bidirectional.

19 DR19 0 SPISEL is input.

Table 1-4.  

SPMODE Bit Name Description

4 DIV16 Selects the clock source for the SPI BRG.

0 BRGCLK is input to the SPI BRG.

1 BRGCLK/16 is input to the SPI BRG.

BRGCLK Divide by
1 or 16

Prescale
Modulus

SPI BRG

SPICLK
MSC8101 User’s Guide, Rev. 3
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For this calculation, use 1 or 16 for the meaning of DIV16, instead of 0 or 1.

11.3 Specifying the Receive and Transmit Buffer Descriptors

The SPI parameter table (see Table 11-5) can be placed at any 64-byte aligned address in Banks 
1–8 in the dual-port RAM. The SPI parameters specify the receive and transmit buffer 
descriptors. You must initialize the parameters shown in bold-face. They should be changed only 
when the SPI is disabled. The remaining parameters are for communications processor (CP) use 
only, so you do not need to initialize them.

Table 11-5.  SPI Parameter Table 

IMM + 0x 
Value in 
0x89FC

Name Width Description

0x00 RBASE 16-bits RxBD/TxBD table base address
Indicates where the BD tables begin in the dual-port RAM. BD tables can be 
placed in any unused portion of Banks 1–8. RBASE and TBASE must be 
initialized before the SPI is enabled. These values should be multiples of 8.

0x02 TBASE 16-bits

0x04 RFCR 8-bits Rx/Tx function code
Contains the transaction specification associated with SDMA channel accesses to 
external memory.0x05 TFCR 8-bits

0x06 MRBLR 16-bits Maximum receive buffer length
Defines the maximum number of bytes the MSC8101 writes to a receive buffer 
before moving to the next buffer. The MSC8101 can write fewer bytes than 
MRBLR if an error or an end-of-frame occurs. It never writes more bytes than the 
MRBLR value. MRBLR should be changed only while the receiver is disabled.

0x08 RSTATE 32-bits Rx internal state
For CP use only.

0x0C — 32-bits Rx internal data pointer
Updated by the SDMA channels to show the next address in the buffer to be 
accessed.

0x10 RBPTR 16-bits Current RxBD pointer
Points to the RxBD being processed or to the next BD to be serviced when idle. 
After reset or at the end of the RxBD table, the CP initializes RBPTR to RBASE. 

0x12 — 16-bits Rx internal byte count. 
Down-count value initialized with MRBLR and decremented with each byte written 
by the supporting SDMA channel.

0x14 — 32-bits Rx temp
For CP use only.

0x18 TSTATE 32-bits Tx internal state
For CP use only.

0x1C — 32-bits Tx internal data pointer
Updated by the SDMA channels to show the next address in the buffer to be 
accessed.

0x20 TBPTR 16-bits Current TxBD pointer
Points to the TxBD being processed or to the next BD to be serviced when idle. 
After reset or at the end of the TxBD table, the CP initializes TBPTR to TBASE. 
MSC8101 User’s Guide, Rev. 3
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Figure 11-2 shows an example of the memory structure of the SPI BDs and buffers. SPI_BASE 
points to the beginning of the parameter table at location IMM + 0x89FC in the dual-port RAM. 
For example, if the value at location IMM + 0x89FC were 0x3800, then the SPI parameter 
table would begin at IMM + 0x3800. The RxBDs reside in the dual-port RAM, starting at the 
address in RBASE. The TxBDs also reside in the dual-port RAM, starting at the address in 
TBASE. For example, if one RxBD is followed by one TxBD, RBASE contains 0x0000, and 
TBASE contains 0x0008, then the RxBD is located at IMM + 0x0000 and the TxBD is 
located at IMM + 0x0008. The data buffers can reside in the internal dual-port RAM. 
However, if the data buffers are large, they can reside in external memory. The receive buffer 
starts at the location to which RxBD.bd_addr points, and the transmit buffer starts at location to 
which TxBD.bd_addr points. RxBD.bd_addr and TxBD.bd_addr are the address fields in the 
receive and transmit buffer descriptors.

Figure 11-2.  SPI BD and Buffer Memory Structure

0x22 — 16-bits Tx internal byte count. 
Down-count value initialized with TxBD.bd_length and decremented with each 
byte read by the supporting SDMA channel.

0x24 — 32-bits Tx temp. 
For CP use only.

0x34 — 32-bits SDMA temp.

Table 11-5.  SPI Parameter Table (Continued)

IMM + 0x 
Value in 
0x89FC

Name Width Description

IMM + 0x89FC

IMM + 0x0000
Dual-Port RAM

SPI Parameters

RxBDs

External Memory or

Rx Buffer

Tx Buffer

SPI_BASE 

SPI RxBD Table

SPI TxBD Table

RBASE

TBASE

RFCR

TFCR

MRBLR

SPI 
Parameter Table

RxBD.bd_cstat

RxBD.bd_length

RxBD.bd_addr

TxBD.bd_cstat

TxBD.bd_length

TxBD.bd_addr

TxBDs

Dual-Port RAM
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11.4 Operating the SPI as a Master

The state diagram in Figure 11-3 shows how the SPI transmits and receives characters as a 
master. The SPI is enabled by setting SPMODE[EN] = 1.

1. Once the SPI is enabled, the start of data transfer is enabled by setting SPCOM[STR] = 
1.

2. TxBD[R] is set to indicate that the buffer is ready for transmission. As a master, the SPI 
generates clock pulses on SPICLK for each character and simultaneously shifts transmit 
data out on SPIMOSI and receive data in on SPIMISO. Received data is written into a 
receive buffer using the next available RxBD.

3. The SPI transmits and receives data until the entire buffer is sent or an error occurs. The 
CP clears TxBD[R] after the buffer is sent and clears RxBD[E] to indicate that the 
buffer is full.

4. If the current TxBD[L] is cleared, indicating that the current buffer does not contain the 
last character of the message, the next TxBD is processed after data from the current 
buffer is sent. The next TxBD[R] is set to indicate that the next buffer is ready for 
transmission. 

5. If the current TxBD[L] is set, indicating that the current buffer contains the last 
character of the message, transmission stops after the current buffer is sent. The RxBD 
is closed after transmission stops even if the receive buffer is not full.

6. To resume transmission, SPCOM[STR] is set.

7. An error occurs when SPISEL is asserted while the SPI is master. To avoid this error, 
SPISEL must be disabled.

8. The SPI must be initialized after an error occurs by setting the SPCOM[STR] bit.
MSC8101 User’s Guide, Rev. 3
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Figure 11-3.  SPI as a Master

The following example shows the steps required to initialize the SPI as a master. The master SPI 
drives the SCLK signal. The assumptions underlying this example are:

� IMM is a pointer to the MSC8101 registers in the system bus address spaces and is 
initialized to 0xF0000000.

� SPIPRAM is a pointer to the SPI parameter RAM.

� RxTxBD is a pointer to the buffer descriptors RxBD and TxBD.

� One RxBD and one TxBD are used.

The steps in initializing the SPI as a master are as follows:

1. Configure port D for SPI.

In the master mode, SPISEL is disabled while SPIMOSI, SPIMISO, and SPICLK are enabled. 
SPISEL must be configured as a GPIO. The PPARD, PDIRD, and PSORD registers are 
configured as follows:

IMM->io_regs[PORT_D].ppar = 0x0000E000;
IMM->io_regs[PORT_D].pdir = 0x00001000;
IMM->io_regs[PORT_D].psor = 0x0000F000;

2. Assign a pointer to the SPI parameter RAM.

At location IMM + 0x89FC, SPI_BASE points to the SPI parameter RAM area, which 
can be placed at any 64-byte aligned address in the dual-port RAM’s general-purpose 
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Serial Peripheral Interface (SPI)
area (Banks 1–8 are located at IMM + 0x0 through IMM + 0x3FFF). In this 
example, assume that the SPI parameter RAM area resides in Bank 8 at IMM + 
0x3800. 

IMM->pram.standard.spi[0] = 0x38;
IMM->pram.standard.spi[1] = 0x00;

3. Configure RBASE and TBASE.

Assume that there is one RxBD followed by one TxBD at the beginning of the dual-port 
RAM and the RxBD starts at IMM+0. Since each buffer descriptor is 8-bytes, the TxBD 
starts at IMM+8.

SPIPRAM->rbase = 0x0000;
SPIPRAM->tbase = 0x0008;

4. Configure RFCR and TFCR.

SPIRAM->rfcr = 0x10;
SPIRAM->tfcr = 0x10;

5. Configure MRBLR.

Assume the maximum bytes per receive buffer is 16 bytes.
SPIRAM->mrblr = 0x0010;

a. Configure the RxBD and TxBD.

Since there is only one RxBD, it is the last BD in the table. Assume the buffer is empty 
and an interrupt is generated after the buffer is filled.

RxTxBD->RxBD[0].bd_cstatus = 0xB000;
Since there is only one TxBD, it is the last BD in the table. Assuming the buffer is 
ready, an interrupt is generated after the buffer is filled and the buffer contains the last 
character of the message.

RxTxBD->TxBD[0].bd_cstatus = 0xB800;
Assume that five 8-bit characters must be transmitted. 

RxTxBD->TxBD[0].bd_length = 0x0005;
RxTxBD->RxBD[0].bd_length = 0x0000; (optional)

Assume that the receive buffer is located at IMM + 0x1000 and the transmit buffer is 
located at IMM + 0x2000. 

RxTxBD->RxBD[0].bd_addr = 0xF0001000;
RxTxBD->TxBD[0].bd_addr = 0xF0002000;

b. Execute the INIT RX AND TX PARAMETERS opcode.

This opcode operates on the SPI sub-block code 10 to initialize the transmit and 
receive parameters.

IMM->cpm_cpcr = 0x25410000;
c. Clear any previous events.

Write a 1 to clear SPI Event Register (SPIE) bits to clear previous events.

IMM->spi_spie = 0xFF;
MSC8101 User’s Guide, Rev. 3
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Operating the SPI as a Slave
d. Enable all possible interrupts.

Setting SPI Mask Register (SPIM) bits enables the corresponding interrupt.

IMM->spi_spim = 0x37;
e. Configure the SPI Mode Register (SPMODE).

Assume normal operation, master mode, SPI enabled, 8-bits per character, and the 
fastest speed possible.

IMM->spi_spmode = 0x0370;
f. Start the transfer.

Setting the SPCOM[STR] bit causes the SPI to start transferring data to and from the 
Tx/Rx buffers.

IMM->spi_spcom = 0x80;

11.5 Operating the SPI as a Slave

The state diagram in Figure 11-4 shows how the SPI transmits and receives characters as a 
master. The SPI is enabled by setting SPMODE[EN] = 1.

1. Once the SPI is enabled, the start of data transfer is enabled: SPCOM[STR] = 1.

2. TxBD[R] is set to indicate that the buffer is ready for transmission. Once SPISEL is 
asserted, the slave shifts data out on SPIMISO and shifts data in on SPIMOSI. 

3. The SPI transmits and receives data until the entire buffer is sent. 

4. If the current TxBD[L] is cleared, indicating that the current buffer does not contain the 
last character of the message, the next TxBD is processed after data from the current 
buffer is sent. The next TxBD[R] is set to indicate that the next buffer is ready for 
transmission. 

5. If the current TxBD[L] is set, the current buffer contains the last character of the 
message and transmission stops after the current buffer is sent. Then the SPI sends ones 
as long as SPISEL remains asserted.

6. Transmission resumes when SPCOM[STR] is set.

7. Transmission stops when SPISEL is deasserted.

8. Transmission resumes when SPISEL is reasserted.
MSC8101 User’s Guide, Rev. 3
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Figure 11-4.  SPI as Slave

The following example shows the steps required to initialize the SPI as a slave. The assumptions 
underlying this example are:

� IMM is a pointer to the MSC8101 registers in the system bus and local bus address spaces.

� SPIPRAM is a pointer to the SPI parameter RAM.

� RxTxBD is a pointer to the buffer descriptors RxBD and TxBD.

� One RxBD and one TxBD are used.

The steps in initializing the SPI as a slave are as follows:

1. Configure Port D for SPI.

In the slave mode, SPISEL, SPIMOSI, SPIMISO, and SPICLK are enabled. The PPARD and 
PDIRD and PSORD are configured as follows:

IMM->io_regs[PORT_D].ppar = 0x0000F000;
IMM->io_regs[PORT_D].pdir = 0x00000000;
IMM->io_regs[PORT_D].psor = 0x0000F000;

2. Assign a pointer to the SPI Parameter RAM.

At location IMM+0x89FC, SPI_BASE points to the SPI Parameter RAM area which 
can be placed at any 64-byte aligned address in the dual-port RAM’s general-purpose 
area (Banks 1-8 located at IMM+0x0 through IMM+0x3FFF). In this example, assume 
that the SPI Parameter RAM area is located in Bank 8 at IMM+0x3800.

IMM->pram.standard.spi[0] = 0x38;
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Operating the SPI as a Slave
IMM->pram.standard.spi[1] = 0x00;
3. Configure RBASE and TBASE.

Assume that there is one RxBD followed by one TxBD at the beginning of the dual-port 
RAM and the RxBD starts at IMM+0. Since each buffer descriptor is 8-bytes, the TxBD 
starts at IMM+8.

SPIPRAM->rbase = 0x0000;
SPIPRAM->tbase = 0x0008;

4. Configure RFCR and TFCR.

Assume big-endian byte ordering is used.
SPIRAM->rfcr = 0x10;
SPIRAM->tfcr = 0x10;

5. Configure MRBLR.

Assume the maximum bytes per receive buffer is 16 bytes.
SPIRAM->mrblr = 0x0010;

6. Configure the RxBD and TxBD.

Since there is only one RxBD, it is the last BD in the table. Assume the buffer is empty 
and an interrupt is generated after the buffer is filled.

RxTxBD->RxBD[0].bd_cstatus = 0xB000;
Since there is only one TxBD, it is the last BD in the table. Assume the buffer is ready, 

an interrupt is generated after the buffer is filled and the buffer contains the last 
character of the message.

RxTxBD->TxBD[0].bd_cstatus = 0xB800;
Assume five 8-bit characters need to be transmitted. 

RxTxBD->TxBD[0].bd_length = 0x0005;
RxTxBD->RxBD[0].bd_length = 0x0000; (optional)

Assume the receive buffer is located at IMM+0x1000 and the transmit buffer is 
located at IMM+0x2000.

RxTxBD->RxBD[0].bd_addr = 0xF0001000;
RxTxBD->TxBD[0].bd_addr = 0xF0002000;

7. Execute the INIT RX AND TX PARAMETERS opcode.

This opcode operates on the SPI sub-block code 10 and page 9 to initialize the transmit 
and receive parameters.

IMM->cpm_cpcr = 0x25410000;
8. Clear any previous events.

Write a 1 to clear bits to clear previous events.
IMM->spi_spie = 0xFF;

9. Enable all possible interrupts.

Setting SPIM bits enables the corresponding interrupt.
IMM->spi_spim = 0x37;

10. Configure SPMODE.
MSC8101 User’s Guide, Rev. 3
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Assume normal operation, slave mode, SPI enabled, 8-bits per character, and the fastest 
speed possible.

IMM->spi_spmode = 0x0170;
11. Start the data transfer to and from the Tx/Rx buffers by setting the SPCOM[STR] bit.

IMM->spi_spcom = 0x80;

11.6 Responding to a Multi-master Error

A multi-master error occurs when the SPISEL pin is asserted while the SPI is configured as a 
master because more than one SPI device is a bus master. To avoid this error, the SPISEL must be 
disabled as shown in Section 11.4, Operating the SPI as a Master, on page 11-6. Figure 11-5 
shows how the SPI responds to a multi-master error. When the SPI is operating as a master and 
the SPISEL is asserted, the SPI sets the SPIE[MME] bit to indicate that a multi-master error has 
occurred. Then a maskable interrupt is issued to the SC140 core. The SPI operation and output 
drivers are disabled. The SC140 core must clear SPMODE[EN] before the SPI is used again. The 
SPIE[MME] bit must be cleared by writing a 1 before the SPI can be re-enabled.
MSC8101 User’s Guide, Rev. 3

11-12 Freescale Semiconductor



Related Reading
Figure 11-5.  SPI Response to Multi-Master Error

11.7 Related Reading

MSC8101 User’s Guide (This manual)

Section 1.3.7, Communications Processor Module (CPM), on page 1-9

MSC8101 Reference Manual

Chapter 7, Clocks

Chapter 19, Communications Processor Module Overview

Chapter 22, Baud-Rate Generators (BRGs)

Chapter 39, Serial Peripheral Interface (SPI)
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System Debugging 12
This chapter presents examples of how the EOnCE port can be used for system-level debugging 
of real-time systems. The following examples are presented:

� Reading/writing EOnCE registers through JTAG

� Executing a single instruction through JTAG

� Writing to the EOnCE Receive Register (ERCV)

� Reading from the EOnCE Transmit Register (ETRSMT)

� Downloading software

� Reading/writing the trace buffer

� Using the EOnCE to perform profiling functions

12.1 EOnCE/JTAG Basics

In order to access the EOnCE through JTAG, you need to know about the JTAG scan paths, the 
JTAG instructions, the EOnCE control register value, and the CORE_CMD value. This section 
gives you these basics, starting with the scan paths.

The host controller transitions from one Test Access Port (TAP) controller state to another by 
taking one of the following scan paths:

� Select-IR JTAG scan path. Used when the host sends the JTAG instructions shown in 
Table 12-2 to the MSC8101. 

� Select-DR JTAG scan path. Used when the host sends data to the MSC8101 or receives 
status information from the MSC8101.

Figure 12-1 shows the TAP controller state machine, and Table 12-1 shows the states associated 
with each scan path. The Test Mode Select (TMS) pin determines whether an instruction register 
scan or a data register scan is performed. At power-up or during normal operation of the host, the 
TAP is forced into the Test-Logic-Reset state by driving TMS high for five or more Test Clock 
(TCK) cycles. When test access is required, TMS is set low to cause the TAP to exit the 
Test-Logic-Reset and move through the appropriate states. From the Run-Test/Idle state, an 
instruction register scan or a data register scan can be issued to transition through the appropriate 
states. The first action that occurs when either block is entered is a Capture operation. The 
Capture-DR state captures the data into the selected serial data path, and the Capture-IR state 
MSC8101 User’s Guide, Rev. 3
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captures status information into the instruction register. The Exit state follows the Shift state 
when shifting of instructions or data is complete. The Shift and Exit states follow the Capture 
state so that test data or status information can be shifted out and new data shifted in. Latches in 
the selected scan path hold their present state during the Capture and Shift operations. The 
Update state causes the latches to update with the new data that is shifted into the selected scan 
path. 

Figure 12-1.  TAP Controller State Machine

Table 12-1.  JTAG Scan Paths

Select-DR Scan Path Select-IR Scan Path

Select-DR_SCAN Select-IR_SCAN

Capture-DR Capture-IR

Shift-DR Shift-IR

Test-Logic-Reset

Run-Test/Idle Select-DR-Scan

 Capture-DR

 Shift-DR

 Exit1-DR

 Pause-DR

 Exit2-DR

 Update-DR

Select-IR-Scan

 Capture-IR

 Shift-IR

 Exit1-IR

 Pause-IR

 Exit2-IR

 Update-IR

TMS=1

TMS=0

TMS=0

TMS=0

TMS=0

TMS=0

TMS=0
TMS=0 TMS=0

TMS=0TMS=0

TMS=0 TMS=0

TMS=0 TMS=0

TMS=1 TMS=1 TMS=1

TMS=1 TMS=1

TMS=1

TMS=1

TMS=1

TMS=1

TMS = 0 TMS = 0

TMS = 1 TMS = 1

TMS = 1TMS = 1

TMS = 1TMS = 1
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12.1.1   Instructions

The host sends JTAG instructions to the MSC8101 least significant bit first. As Figure 12-2 
shows, the TDI pin inputs the instruction into the MSC8101 and is sampled on the rising edge of 
TCK. 

Figure 12-2.  Test Logic Diagram Showing the Five-Bit Instruction Register

Table 12-2 describes the JTAG instructions and lists the bit values of the five-bit instruction 
register for each instruction (B0–B4, with B0 as the least significant bit). In the MSC8101, there 
is only one EOnCE module.

Exit1-DR Exit1-IR

Update-DR Update-IR

Table 12-1.  JTAG Scan Paths

Select-DR Scan Path Select-IR Scan Path

M
U
X

5–Bit Instruction Register

TDO

TDI

TMS

TCK

TRST

12

TAP Controller

3

EOnCE Logic

Instruction Apply and 

Boundary Scan Register

Bypass Register

Identification Register

M
U
X

0

M
U
X

M
U
X

4
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12.1.2   Executing a JTAG Instruction

This section presents an example of how the host takes the instruction register scan path to send 
the JTAG instruction DEBUG_REQUEST (00111) to the MSC8101. JTAG instructions are sent 

Table 12-2.  JTAG Instructions 

B4 B3 B2 B1 B0 Instruction Description

0 0 0 0 0 EXTEST Selects the Boundary Scan Register. Forces a predictable 
internal state while performing external boundary scan 
operations.

0 0 0 0 1 SAMPLE/PRELOAD Selects the Boundary Scan Register. Provides a snapshot 
of system data and control signals on the rising edge of 
TCK in the Capture-DR controller state. Initializes the BSR 
output cells prior to selection of EXTEST or CLAMP.

0 0 0 1 0 IDCODE Selects the ID Register. Allows the manufacturer, part 
number and version of a component to be identified.

0 0 0 1 1 CLAMP Selects the Bypass Register. Allows signals driven from the 
component pins to be determined from the Boundary Scan 
Register.

0 0 1 0 0 HIGHZ Selects the Bypass Register. Disables all device output 
drivers and forces the output to high impedance (tri-state) 
as per the IEEE specification.

0 0 1 1 0 ENABLE_EONCE Selects the EOnCE registers. Allows you to perform system 
debug functions. Before this instruction is selected, the 
CHOOSE_EONCE instruction is activated to define which 
EOnCE is going to be activated.

0 0 1 1 1 DEBUG_REQUEST Selects the EOnCE registers. Forces the MSC8101 into the 
debug mode of operation. In addition, ENABLE_EONCE is 
active to allow system debug functions to be performed. 
Before this instruction is selected, the CHOOSE_EONCE 
instruction is activated to define which EOnCE is going to 
request debug mode in a system with multiple MSC8101 
devices.

0 1 0 0 0 RUNBIST Selects the BIST registers. Allows you to generate a built-in 
self-test for checking the system circuitry.

0 1 0 0 1 CHOOSE_EONCE Selects the EOnCE registers. Allows you to operate 
multiple devices. This instruction is activated before the 
ENABLE_EONCE and DEBUG_REQUEST instructions.

0 1 1 0 0 ENABLE_SCAN Selects the DFT registers. Allows the DFT chain registers 
to be loaded by a known value or examined in the Shift_DR 
controller state.

0 1 1 0 1 LOAD_GPR Allows the component manufacturer to gain access to test 
features of the device.

0 1 1 1 0 LOAD_SPR Allows the component manufacturer to gain access to test 
features of the device.

1 1 1 1 1 BYPASS Selects the Bypass register. Creates a shift register path 
from TDI to the Bypass Register and to TDO. Enhances 
test efficiency when a component other than the MSC8101 
becomes the device under test.
MSC8101 User’s Guide, Rev. 3
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least significant bit first on TDI. If the TAP controller is in the Run-Test/Idle state, 
DEBUG_REQUEST is issued via JTAG, as shown in Figure 12-3.

Figure 12-3.  Executing DEBUG_REQUEST

The following sequence occurs at the rising edge of each TCK cycle:

1. TMS = 1 to enter the Select-DR state.

2. TMS = 1 to enter the Select-IR state.

3. TMS = 0 to enter the Capture-IR state.

4. TMS = 0 to enter the Shift-IR state.

5. TMS = 0 to stay in the Shift-IR state and TDI = 1.

6. TMS = 0 to stay in the Shift-IR state and TDI = 1.

7. TMS = 0 to stay in the Shift-IR state and TDI = 1.

8. TMS = 0 to stay in the Shift-IR state and TDI = 0.

9. TMS = 1 to enter the Exit1-IR state and TDI = 0.

10. TMS = 1 to enter the Update-IR state.

11. TMS = 0 to return to the Run-Test/Idle state.

12.1.3   Registers

Two registers of special concern to the EOnCE/JTAG programmer are the EOnCE Control 
Register (ECR) and the Core Command Register (CORE_CMD). The 16-bit write-only ECR 
receives its serial data from the TDI input signal. It is accessible only via JTAG. The host writes to 
the ECR to specify the direction of the data transfer with the selected register and additional 
control bits. Table 12-3 shows the ECR bit definitions, and Table 12-4 summarizes the EOnCE 
registers, which are either a source or destination for a read or write operation.

Table 12-3.  EOnce Control Register (ECR) Bits

Name Description Settings

15–10 Reserved. Write to zero for future compatibility.

1 2 3 4 5 6 7 8 9 10
TCK

TMS

TDI 1 11 0 0

11
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All the EOnCE registers are accessible from the core and are memory-mapped. Therefore, each 
register has its own address in the memory space. The memory address of an EOnCE register is 
defined by adding four times the register address offset from the address offset shown in Table 
12-4 to the EOnCE register base address defined for each SOC derivative. The address offset is 
from the EOnCE base address 0x00EFFE00. For example, the memory address for the LSB part 
of register ERCV is 58 + rba_via, where rba_via is the derivative dependent register base 
address. For details, consult the SC140 DSP Core Reference Manual.

9 R/W Specifies the direction of a data transfer. 0 Write the data into the 
register specified by REGSEL

1 Read the data in the register 
specified by REGSEL

8 GO An instruction written to the CORE_CMD register 
executes and the core remains in Debug mode 
unless the EX bit is set. If EX is set, the system exits 
Debug mode after the instruction executes.

When a register other than the CORE_CMD 
register is written or read, the next instruction in the 
pipeline executes. 

0 Inactive

1 Execute one instruction

7 EX When EX is set, the SC140 core leaves Debug 
mode and resumes normal operation after 
executing the read or write command.

0 Remain in debug mode

1 Exit debug mode

6–0 REGSEL Defines which register is the source or destination 
for the read or write operation.

See Table 12-4 for a the EOnCE 
registers’ address offsets.

Table 12-4.  EOnce Register Summary 

Address 
Offset

Mnemonic Register Width

00 ESR EOnCE Status Register 32

01 EMCR EOnCE Monitor and Control Register 32

02 ERCV EOnCE Receive Register LSB 64

03 EOnCE Receive Register MSB

04 ETRSMT EOnCE Transmit Register LSB 64

05 EOnCE Transmit Register MSB

06 EE_CTRL EOnCE Pins Control Register 16

07 PC_EXCP Exception PC Register 32

08 PC_NEXT PC of next execution set 32

09 PC_LAST PC of last execution set 32

0A PC_DETECT PC Breakpoint Detection Register 32

... Reserved

Table 12-3.  EOnce Control Register (ECR) Bits

Name Description Settings
MSC8101 User’s Guide, Rev. 3
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10 EDCA0_CTRL EDCA 0 Control Register 16

11 EDCA1_CTRL EDCA 1 Control Register 16

12 EDCA2_CTRL EDCA 2 Control Register 16

13 EDCA3_CTRL EDCA 3 Control Register 16

14 EDCA4_CTRL EDCA 4 Control Register 16

15 EDCA5_CTRL EDCA 5 Control Register 16

... Reserved

18 EDCA0_REFA EDCA 0 Reference Value A 32

19 EDCA1_REFA EDCA 1 Reference Value A 32

1A EDCA2_REFA EDCA 2 Reference Value A 32

1B EDCA3_REFA EDCA 3 Reference Value A 32

1C EDCA4_REFA EDCA 4 Reference Value A 32

1D EDCA5_REFA EDCA 5 Reference Value A 32

... Reserved

20 EDCA0_REFB EDCA 0 Reference Value B 32

21 EDCA0_REFB EDCA 0 Reference Value B 32

22 EDCA0_REFB EDCA 0 Reference Value B 32

23 EDCA0_REFB EDCA 0 Reference Value B 32

24 EDCA0_REFB EDCA 0 Reference Value B 32

25 EDCA0_REFB EDCA 0 Reference Value B 32

... Reserved

30 EDCA0_MASK EDCA 0 Mask Register 32

31 EDCA0_MASK EDCA 1 Mask Register 32

32 EDCA0_MASK EDCA 2 Mask Register 32

33 EDCA0_MASK EDCA 3 Mask Register 32

34 EDCA0_MASK EDCA 4 Mask Register 32

35 EDCA0_MASK EDCA 5 Mask Register 32

... Reserved

38 EDCD_CTRL EDCD Control Register 16

39 EDCD_REF EDCD Reference Value 32

3A EDCD_MASK EDCD Mask Register 32

... Reserved

40 ECNT_CNTRL Counter Control Register 16

41 ECNT_VAL Counter Value Register 32

42 ECNT_EXT Extension Counter Value 32

... Reserved

Table 12-4.  EOnce Register Summary (Continued)

Address 
Offset

Mnemonic Register Width
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Freescale Semiconductor 12-7



System Debugging
The external host writes the instruction to be executed by the SC140 core into the CORE_CMD 
register. The SC140 core executes the instruction without leaving Debug mode unless 
ECR[EXIT] = 1, in which case the SC140 core exits Debug mode after the instruction executes. 
Figure 12-4 shows the instruction format of the 48-bit CORE_CMD register. The bits in this 
format are defined as follows:

� Word Length (bits 1–0). Specify the instruction word length. Valid CORE_CMD word 
lengths are one, two, or three words, as shown here:

� Prefix Bits (bits 3–2). Derive from bits 5 and 7 of the Prefix1 word. The CORE_CMD 
register does not use the other bits of the Prefix1 word. 

� Opcode (bits 19–4). Derive from the instruction opcode. These bits are reversed in order 
from the instruction opcode value. That is, bits 15–0 of the instruction opcode are reversed 
as bits 0–15 of the CORE_CMD register.

48 ESEL_CTRL Selector Control Register 8

49 ESEL_DM Selector DM Mask 16

4A ESEL_DI Selector DI Mask 16

4B Reserved

4C ESEL_ETB Selector Enable TB Mask 16

4D ESEL_DTB Selector Disable TB Mask 16

... Reserved

50 TB_CTRL Trace Buffer Control Register 8

51 TB_RD Trace Buffer Read Pointer 16

52 TB_WR Trace Buffer Write Pointer 16

53 TB_BUFF Trace Buffer 32

... Reserved

7E CORE_CMD Core Command Register 48

7F NOREG No register selected

Table 12-5.   

Word Length Bits Description

0 0 Not supported

0 1 One-word instruction

1 0 Two-word instruction

1 1 Three-word instruction

Table 12-4.  EOnce Register Summary (Continued)

Address 
Offset

Mnemonic Register Width
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� Immediate A (bits 33–20). Derive from the instruction immediate A value. These bits are 
reversed in order from the instruction immediate A value. The two most significant bits of 
the instruction immediate A value are not used. Therefore, bits 15–0 of the instruction 
immediate A are reversed as bits 0–13 of the CORE_CMD register.

� Immediate B (bits 47–34). Derive from the instruction immediate B value. These bits are 
reversed in order from the instruction immediate B value. The two most significant bits of 
the instruction immediate B value are not used. Therefore, bits 15–0 of the instruction 
immediate B are reversed as bits 0–13 of the CORE_CMD register.

Figure 12-4.  CORE_CMD Instruction Format

12.1.3.1   CORE_CMD Example 1

Instruction: move.l #0xdead,d0

Opcode: 0x30C0 3EAD 8000

CORE_CMD: 0x0002 D5F0 30C3

Prefix1[15–0] Prefix2[15–0] Opcode[15–0] ImmB[15–0]

Bit Description

3–2 Prefix1[5, 7]

19–4 Opcode[0–15]

47–34 ImmB[0–13]

33–20 ImmA[0–13]

1–0 Length Control

Instruction Format

CORE_CMD Instruction Format

ImmA[15–0]
MSC8101 User’s Guide, Rev. 3
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12.1.3.2   CORE_CMD Example 2

Instruction: move.l (r1)+,d1

Opcode: 0x5199

CORE_CMD: 0x0000 0009 98A1

12.1.3.3   CORE_CMD Example 3

Instruction: move.2l d0:d1,(r0)+

Opcode: 0xC018

CORE_CMD: 0x0000 0001 8031

Table 12-6.   

ImmA ImmB Opcode Prefix1[5, 7] Length

0x8000 0x3EAD 0x30C0 3 words

ImmA[15:0]
1000 0000 0000 0000

ImmB[15–0]
0011 1110 1010 1101

Opcode[15–0]
0011 0000 1100 0000

ImmA[0:13]
0000 0000 0000 00

ImmB[0–13]
1011 0101 0111 11

Opcode[0–15]
0000 0011 0000 1100 00 11

Note: The 48-bit CORE_CMD register is the concatenation of the bits in boldface.

Table 12-7.   

ImmA ImmB Opcode Prefix1[5, 7] Length

0x5199 1 word

Opcode[15–0]
0101 0001 1001 1001

ImmA[0–13]
0000 0000 0000 00

ImmB[0–13]
0000 0000 0000 00

Opcode[0–15]
1001 1001 1000 1010 00 01

Note: The 48-bit CORE_CMD register is the concatenation of the bits in boldface.

Table 12-8.   

ImmA ImmB Opcode Prefix1[5, 7] Length

0xC018 1 word

Opcode[15–0]
1100 0000 0001 1000

ImmA[0–13]
0000 0000 0000 00

ImmB[0–13]
0000 0000 0000 00

Opcode[0–15]
0001 1000 0000 0011 00 01

Note: The 48-bit CORE_CMD register is the concatenation of the bits in boldface.
MSC8101 User’s Guide, Rev. 3
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12.1.3.4   CORE_CMD Example 4

Instruction: move.l #$c0ffee,d8

Opcode: 0x3820 A000 30E0 3FEE 80C0

CORE_CMD: 0x0301 DFF0 70CB

12.2 Writing EOnCE Registers Through JTAG

This section presents an example of how the host writes to the SC140 core 32-bit Event Counter 
Value Register (ECNT_VAL) via JTAG. This example shows how an EOnCE register can be 
written via JTAG. This general procedure applies to writing all the writable EOnCE registers:

1. Select-IR: CHOOSE_EONCE instruction to select EOnCE device.

2. Select-DR: ‘1’ since the MSC8101 has only one EOnCE device.

3. Select-IR: ENABLE_EONCE instruction to allow you to perform system debug 
functions.

4. Select-DR: Write 0x0041 into the ECR to perform the following operation: 

ECR[R/W] = 0 to perform a write access.

ECR[GO] = 0 to remain inactive.

ECR[REGSEL] = 1000001 to select the ECNT_VAL register.

5. Select-DR: Write the 32-bit ECNT_VAL data on TDI.

Table 12-9.   

ImmA ImmB Opcode Prefix1 Length

0x80C0 0x3FEE 0x30E0 0x3820 3 words

ImmA[15–0]
1000 0000 1100 0000

ImmB[15–0]
0011 1111 1110 1110

Opcode[15–0]
0011 0000 1110 0000

Prefix1[5]
1

Prefix1[7]
0

ImmA[0–13]
0000 0011 0000 00

ImmB[0–13]
0111 0111 1111 11

Opcode[0–15]
0000 0111 0000 1100

Prefix1[5, [7]
10 11

Note: The 48-bit CORE_CMD register is the concatenation of the bits in boldface.
MSC8101 User’s Guide, Rev. 3
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Figure 12-5.  Writing EOnCE Registers

12.3 Reading EOnCE Registers Through JTAG

This section presents an example of the host reads from the SC140 core 32-bit Event Counter 
Value Register (ECNT_VAL) via JTAG. This example shows how an EOnCE register is read 
through JTAG. This general procedure applies to reading all the readable EOnCE registers:

1. Select-IR: CHOOSE_EONCE instruction to select EOnCE device.

2. Select-DR: ‘1’ since the MSC8101 has only one EOnCE device.

3. Select-IR: ENABLE_EONCE instruction to allow you to perform system debug 
functions.

4. Select-DR: Write 0x0241 into the ECR to perform the following operation: 

ECR[R/W] = 1 to perform a read access.

ECR[GO] = 0 to remain inactive.

ECR[REGSEL] = 1000001 to select the ECNT_VAL register.

5. Select-DR: Read the 32-bit ECNT_VAL data on TDO.

CHOOSE_EONCE

Shift in ‘1’ on TDI

ENABLE_EONCE

Write into ECR:
Write, no Go, ECNT_VAL

 

Write 32-bit data into
ECNT_VAL

 

Host MSC8101

EOnCE is enabled and
system debug functions
can now be performed.

ECNT_VAL register is
selected.

MSC8101 EOnCE
device is selected.
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Figure 12-6.  Reading EOnCE Registers

12.4 Executing a Single Instruction Through JTAG

This section presents an example of how the host writes an instruction into the CORE_CMD 
register for the SC140 core to execute.

1. Select-IR: CHOOSE_EONCE instruction to select EOnCE device.

2. Select-DR: ‘1’ since the MSC8101 has only one EOnCE device.

3. Select-IR: DEBUG_REQUEST instruction to generate a debug request to the MSC8101 
and to allow the user to perform system debug functions.

4. Select-DR: Write 0x017E into the ECR to perform the following operation: 

ECR[R/W] = 0 to perform a write access.

ECR[GO] = 1 to execute the instruction.

ECR[REGSEL] = 1111110 to select the CORE_CMD register.

5. Select-DR: Write 48-bit CORE_CMD data to move 0xdead into data register d0.

move.l #$dead,d0

The CORE_CMD value is 0x0002 D5F0 30C3. See Section 12.1.3.1, CORE_CMD 
Example 1, on page 12-9 for information on calculating this value.

CHOOSE_EONCE

Shift in ‘1’ on TDI

ENABLE_EONCE

Write into ECR:
Read, no Go, ECNT_VAL
 

Read 32-bit data from
ECNT_VAL

 

Host MSC8101

ECNT_VAL register is
selected.

MSC8101’s EOnCE
device is selected.

EOnCE is enabled and
system debug functions
can now be performed.
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Figure 12-7.  Executing a Single Instruction Through JTAG

12.5 Writing to the EOnCE Receive Register (ERCV)

This section presents an example of how to write to the ERCV register through JTAG.

1. Select-IR: CHOOSE_EONCE instruction to select EOnCE device.

2. Select-DR: ‘1’ since the MSC8101 has only one EOnCE device.

3. Select-IR: ENABLE_EONCE instruction to enable the EOnCE registers.

4. Select-DR: Write 0x0002 into the ECR to perform the following operation: 

ECR[R/W] = 0 to perform a write access.

ECR[GO] = 0 to remain inactive.

ECR[REGSEL] = 0000010 to select the ERCV register.

5. Select-DR: Write the 64-bit ERCV data on TDI. After the most significant bit of the 
ERCV is written, the ESR[RCV] bit is set to indicate that the host has finished writing to 
the ERCV. The MSC8101 can now access the ERCV. The ESR[RCV] bit is cleared 
when the MSC8101 reads the most significant bit.

6. The host can poll the EE3 pin when EE_CTRL[EE3DEF] = 01 to indicate that the 
SC140 core has read the ERCV register.

CHOOSE_EONCE

Shift in ‘1’ on TDI

DEBUG_REQUEST

Write into ECR:
Write, Go, CORE_CMD

 

Write 48-bit data into
CORE_CMD

 

The core executes the

Host MSC8101

Debug request is 
granted and system
debug functions can now
be performed.

CORE_CMD register is
selected.

MSC8101’s EOnCE
device is selected.

instruction written 
into the CORE_CMD
register.
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Reading From the EOnCE Transmit Register (ETRSMT)
Figure 12-8.  Writing to ERCV

12.6 Reading From the EOnCE Transmit Register (ETRSMT)

This section presents an example of how to read from the ETRSMT register through JTAG.

1. Select-IR: CHOOSE_EONCE instruction to select EOnCE device.

2. Select-DR: ‘1’ since the MSC8101 has only one EOnCE device.

3. Select-IR: ENABLE_EONCE instruction to enable the EOnCE registers.

4. The host can poll the EE4 pin when EE_CTRL[EE4DEF] = 01 to indicate that the 
SC140 core has written the ETRSMT register.

5. Select-DR: Write 0x0204 into the ECR to perform the following operation: 

ECR[R/W] = 1 to perform a read access.

ECR[GO] = 0 to remain inactive.

ECR[REGSEL] = 0000100 to select the ETRSMT register.

6. Select-DR: Read the 64-bit ETRSMT data on TDO.

CHOOSE_EONCE

Shift in ‘1’ on TDI

ENABLE_EONCE

Write into ECR:
Write, no Go, ERCV

 

Write 64-bit data into
ERCV
 

RCV bit in ESR is set

Host MSC8101

ERCV register is
selected.

MSC8101 EOnCE
device is selected.

to indicate host has
finished writing to the
ERCV register.

SC140 core can now read the
ERCV. LSB is read first.
RCV bit is cleared after
MSB is read.

EOnCE is enabled and
system debug functions
can now be performed.
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Figure 12-9.  Reading From ETRSMT

12.7 Downloading Software

This section presents an example showing how software is downloaded from the host to the DSP 
via JTAG.

1. Select-IR: CHOOSE_EONCE instruction to select EOnCE device.

2. Select-DR: ‘1’ since the MSC8101 has only one EOnCE device.

3. Select-IR: DEBUG_REQUEST instruction to generate a debug request to the MSC8101 
and to allow you to perform system debug functions.

4. Select-DR: Write 0x0002 into the ECR to perform the following operation: 

ECR[R/W] = 0 to perform a write access.

ECR[GO] = 0 to remain inactive.

ECR[REGSEL] = 0000010 to select the ERCV register.

5. Select-DR: Write the 64-bit ERCV data on TDI.

6. Select-DR: Write 0x017E into the ECR to perform the following operation:

ECR[R/W] = 0 to perform a write access.

CHOOSE_EONCE

Shift in ‘1’ on TDI

ENABLE_EONCE

Write into ECR:
Read, no Go, ETRSMT

 

Read 64-bit ETRSMT
data

 

ESR[TRSMT] bit is set to indicate

Host MSC8101

ETRSMT register is
selected.

MSC8101 EOnCE
device is selected.

that the SC140 core has finished
writing the MSB of the ETRSMT
register. The TRSMT bit

The host can now read the
ETRSMT. The TRSMT bit is cleared
after ETRSMT is read.

EOnCE is enabled and
system debug functions
can now be performed.

is cleared after ETRSMT is read.
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ECR[GO] = 1 to execute the instruction.

ECR[REGSEL] = 1111110 to select the CORE_CMD register.

7. Select-DR: Write 48-bit CORE_CMD data to move data from the lower 32-bits of the 
ERCV to an internal register. Assuming that address register r1 points to 0xEFFE08, 
the ERCV address, the following command moves the ERCV data into data register d1: 

move.l (r1)+,d1

The CORE_CMD value is 0x0000 0009 98A1. See Section 12.1.3.2, CORE_CMD 
Example 2, on page 12-10 for information on calculating this value.

8. Select-DR: Write 0x017E into the ECR to perform the following operation:

ECR[R/W] = 0 to perform a write access.

ECR[GO] = 1 to execute the instruction.

ECR[REGSEL] = 1111110 to select the CORE_CMD register.

9. Select-DR: Write 48-bit CORE_CMD data to move data from the upper 32-bits of the 
ERCV to an internal register. The following command moves the upper 32-bits of 
ERCV data into data register d0: 

move.l (r1)+,d0

The CORE_CMD value is 0x0000 0009 90A1.

After the move operation executes, the r1 pointer must be reinitialized to 0xEFFE08 so 
that it points to ERCV before the next iteration.

10. Select-DR: Write 0x017E into the ECR to perform the following operation:

ECR[R/W] = 0 to perform a write access.

ECR[GO] = 1 to execute the instruction.

ECR[REGSEL] = 1111110 to select the CORE_CMD register.

11. Select-DR: Write 48-bit CORE_CMD data to move data from address registers d0 and 
d1 to memory. Assuming that address register r0 points to the starting memory address, 
the following command moves the ERCV data into memory: 

move.2l d0:d1,(r0)+

The CORE_CMD value is 0x0000 0001 8031. See Section 12.1.3.3, CORE_CMD 
Example 3, on page 12-10 for information on calculating this value.

12. Repeat steps 4 – 11 until all data and code are downloaded.
MSC8101 User’s Guide, Rev. 3
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Figure 12-10.  Software Downloading

CHOOSE_EONCE

Shift in ‘1’ on TDI

DEBUG_REQUEST

Write into ECR:
Write, no Go, ERCV

 

Write 64-bit data into
ERCV

 

Write into ECR:
Write, Go, CORE_CMD

 

Write 48-bit data into
CORE_CMD
move.l (r1)+,d1

Write into ECR:
Write, Go, CORE_CMD

Write 48-bit data into
CORE_CMD
move.l (r1)+,d0

Write into ECR:
Write, Go, CORE_CMD

Write 48-bit data into
CORE_CMD

 
move.2l d0:d1,(r0)+

MSC8101 EOnCE
device is selected.

Debug request is 
granted and system
debug functions can
now be performed.

ERCV register is
selected.

Host MSC8101

RCV bit in ESR is
set to indicate host 
has finished writing to
the ERCV register.

Core can now read the
ERCV. LSB is read first.
RCV bit is cleared after
MSB is read.CORE_CMD register

is selected.

The lower portion of 
ERCV is moved to
register d1.

CORE_CMD register
is selected.

The upper portion of 
ERCV is moved to
register d0.

CORE_CMD register
is selected.

ERCV is moved to
memory.

Reinitialize r1
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12.8 Writing and Reading the Trace Buffer

This section presents an example that shows how the trace buffer is written and read. Table 12-5 
shows the trace buffer register set:

1. Enable the trace buffer by setting TB_CTRL[TEN] = 1. Both TB_WR and TB_RD are 
cleared when the trace buffer is enabled.

2. Select trace mode. Possible trace modes are:

• trace change-of-flow instructions

• trace addresses of interrupt vectors

• trace issue of execution sets

• trace MARK instruction

• trace hardware loops

For this example, setting TB_CTRL[TEXEC] = 1 traces any execution set.

3. The trace buffer is written. 

The addresses of every issued execution set is written to TB_BUFF, and TB_WR 
increments after every trace. 

4. Read TB_BUFF when the trace is buffer is full or disabled. 

The ESR[TBFULL] flag is set when the trace buffer is full or when 2033 entries (2 KB 
entry size minus 15) are written. Each entry is 32-bits long. When the end of memory is 
reached, the trace buffer wraps around to address zero and continues unless 
EMCR[TBFDM] is set. When this bit is set, the system enters Debug mode when the 
trace buffer is full. Disabling the trace buffer by clearing TB_CTRL[TEN] allows you to 
read the contents of the TB_BUFF. 

5. Wait three cycles before reading the trace buffer. 

Table 12-5.  Trace Buffer Register Set

Register Description

TB_CTRL Trace Buffer Control Register

TB_RD Trace Buffer Read Pointer

TB_WR Trace Buffer Write Pointer

TB_BUFF Trace Buffer Virtual Register
MSC8101 User’s Guide, Rev. 3

Freescale Semiconductor 12-19



System Debugging
Because of the pre-fetch mechanism, a three-cycle delay must occur from the time the 
trace buffer is disabled until the first read access to the trace buffer is issued.

12.9 Using EE0 to Enter Debug Mode

In the previous examples, the JTAG instruction DEBUG_REQUEST is used to enter Debug 
mode. Another method of entering Debug mode is to program the EE0 pin to cause the SC140 
core to enter Debug mode after core reset. Holding EE0 at logic 1 during and after core reset 
forces the SC140 core to enter Debug mode. 

12.10 Counting Core Cycles

Core cycles are counted using the event counter, event detection unit, and event selector. This 
example shows how you can use the EOnCE port to perform program profiling. The program 
executes and when the start address is detected, the counter is enabled and the core clocks are 
counted. When the final address is detected, a debug exception is generated. The interrupt service 
routine disables the counter and calculates the number of clocks between the start and final 
addresses. The event counter, event detection, and event selector register sets are shown in Table 
12-6.

1. Initialize the event counter value. Set ECNT_VAL to an initial value of 0xFFFFFFFF.

2. Specify what needs to be counted. Configure the event counter to count core clocks by 
setting ECNT_CTRL[ECNTWHAT] = 1100.

3. Enable the event counter. The event counter is disabled but hardware enables it when 
EDCA #0 detects an event because ECNT_CTRL[ECNTEN] = 0001. 

Table 12-6.  Event Register Sets

Name Description

Event Counter ECNT_CTRL Event Counter Register

ECNT_VAL Event Counter Value Register

ECNT_EXT Extension Counter Value Register

Event Detection Channel Address EDCAi_CTRL EDCA Control Register

EDCAi_REFA EDCA Reference Value Register A

EDCAi_REFB EDCA Reference Value Register B

EDCAi_MASK EDCA Mask Register

Event Selector ESEL_CTRL Event Selector Control Register

ESEL_DM Event Selector Mask Debug Mode Register

ESEL_DI Event Selector Mask Debug Exception Register

ESEL_ETBL Event Selector Mask Enable Trace Register

ESEL_DTB Event Selector Mask Disable Trace Register
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In this example, the event counter is enabled when EDCA #0 detects the starting 
address.

4. Enable the event detection channels. Set EDCA0_CTRL[EDCAEN] = 1111 and 
EDCA1_CTRL[EDCAEN] = 1111 to enable the EDCA.

5. Set the reference values to be compared by the event detection channel comparators. Set 
EDCA0_REFA to the start address and EDCA1_REFA to the final address of the 
program.

6. Specify which condition generates an event detection. Set EDCA0_CTRL[CS] = 00 so 
only comparator A condition is detected and EDCA0_CTRL[CACS] = 00 to select 
equal to EDCA0_REFA.

Set EDCA1_CTRL[CS] = 00 so only the comparator A condition is detected and 
EDCA1_CTRL[CACS] = 00 to select equal to EDCA1_REFA.

7. Specify the access type and the bus to be sampled for comparison by comparator A. 
Read accesses are detected by setting EDCA0_CTRL[ATS] = 00 and 
EDCA1_CTRL[ATS] = 00. When EDCA0_CTRL[BS] = 11 and EDCA1_CTRL[BS] 
= 11, the program counter is compared to reference registers at every execution of an 
execution set.

8. Specify which source causes a debug exception. Set ESEL_DI[EDCA1] = 1 so that the 
detection of the final address causes a debug exception.

9. Configure the event selector for debug exception. 

A debug exception is reached upon detection of the event by any one of the sources 
selected on the ESEL_DI register by setting ESEL_CTRL[SELDI] = 0. In this example, 
a debug exception is reached when EDCA #1 reads the final address of the program.

10. Service the debug exception. The interrupt service routine for the debug exception 
disables the event counter by setting ECNT_CTRL[ECNTEN] = 0000, reads the 
ECNT_VAL register, and subtracts the number of cycles of the interrupt service routine 
overhead. When the event counter counts the core clock, the memory contention and 
external wait state clocks are not counted.

12.11 Related Reading

StarCore SC140 Core Reference Manual

Chapter 4, Emulation and Debug (EOnCE)

MSC8101 Reference Manual

Chapter 17, JTAG and IEEE 1149.1 Test Access Port
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Glossary A
This glossary presents an alphabetical list of terms, phrases, and abbreviations that are used in 
this manual. Many of the terms are defined in the context of how they are used in this 
manual—that is, in the context of the MSC8101. Some of the definitions are derived from 
Newton’s Telecom Dictionary: The Official Dictionary of Telecommunications, © 1998 by Harry 
Newton.

AAL ATM adaptation layer. This layer of the ATM Protocol Reference Model 
is divided into the convergence sublayer (CS) and the segmentation and 
reassembly (SAR) sublayer. The AAL accomplishes conversion from the 
higher-layer, native data format and service specifications of the user data 
into the ATM layer.

AAU Address arithmetic unit. On the SC140 core, there are two identical 
AAUs. Each contains a 32-bit full adder called an offset adder that can 
add or subtract two AGU registers, add immediate value, increment or 
decrement an AGU register, add PC, or add with reverse-carry. The offset 
adder also performs compare or test operations and arithmetic and logical 
shifts. The offset values added in this adder are pre-shifted by 1, 2, or 3, 
according to the access width. In reverse-carry mode, the carry propagates 
in the opposite direction. A second full adder, called a modulo adder, adds 
the summed result of the first full adder to a modulo value, M or minus M, 
where M is stored in the selected modifier register. In modulo mode, the 
modulo comparator tests whether the result is inside the buffer, by 
comparing the results to the B register, and chooses the correct result from 
between the offset adder and the modulo adder.

ABI Application binary interface.

ALU Arithmetic logic unit. The part of the CPU that performs the arithmetic 
and logical operations. The SC140 is the four-ALU version of the 
StarCore SC100 DSP core family. 

anti-aliasing 
filter

Band limits the input, eliminating out-of-band signals that can be aliased 
back into the pass band due to the sampling filter. The output of the line 
driver probably has a low pass filter to remove the effects of digitizing.
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ASIC Application-specific integrated circuit. An integrated circuit that performs 
a particular function by defining the interconnection of a set of basic 
circuit building blocks taken from a library provided by a circuit 
manufacturer.

ATM Asynchronous transfer mode. A high-speed transmission technology. 
ATM is a high bandwidth, low-delay connection-oriented, packet-like 
switching and multiplexing technique.

atomic A bus access that attempts to be part of a read-write operation to the same 
address uninterrupted by any other access to that address. The MSC8101 
initiates the read and write separately, but it signals the memory system 
that it is attempting an atomic operation. If the operation fails, status is 
kept so that MSC8101 can try again.

AUI Attachment unit interface. A 15-pin connection interface for ethernet 
connections defined in IEEE 802.3.

bandwidth A measure of the carrying capacity, or size, of a communications channel. 
For an analog circuit, the bandwidth is the difference between the highest 
and lowest frequencies that a medium can transmit and is expressed in 
hertz (Hz). Hz is equal to one cycle per second. 

baseband The original band of frequencies of a signal before it is modulated for 
transmission at a higher frequency. The signal is typically multiplexed 
and sent on a carrier with other signals at the same time. 

beat A single state on the MSC8101 interface that may extend across multiple 
bus cycles. An MSC8101 transaction can be composed of multiple 
address or data beats.

big-endian For big-endian scalars, the most significant byte (MSB) is stored at the 
lowest, or starting, address while the least significant byte (LSB) is stored 
at the highest, or ending, address. This memory structure is called 
“big-endian” because the big end of the scalar comes first in memory. The 
MSC8101 supports big-endian. See also little-endian.

BMU Bit mask unit. On the SC140 core, performs bit mask operations, such as 
setting, clearing, changing, or testing a destination, according to an 
immediate mask operand. All bit mask instructions typically execute in 
two cycles and work on 16-bit data. This data can be a memory location, 
or a portion (high or low) of a register. Only a single bit mask instruction 
is allowed in any single execution set, since only one execution unit exists 
for these instructions. 
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bootloader Loads and executes source code that initializes the after it completes a 
reset sequence and programs its registers for the required mode of 
operation. The bootloader program, which is provided in the internal 
ROM of the MSC8101, loads and executes source programs received 
from a host processor, an EPROM, or a standard memory device.

BRG Baud-rate generator. The CPM contains eight independent, identical 
BRGs for use with the FCCs, SCCs, and SMCs. The clocks produced by 
the BRGs are sent to the bank-of-clocks selection logic, where they can be 
routed to the controllers. In addition, the output of a BRG can be routed to 
a pin for external use. See also FCC, SCC, SMC.

broadband Also called wideband. A type of data transmission in which a single 
medium (wire) can carry several channels at once. Cable TV, for example, 
uses broadband transmission. In contrast, baseband transmission allows 
only one signal at a time. Most communications between computers, 
including the majority of local-area networks, use baseband 
communications. An exception is B-ISDN networks, which employ 
broadband transmission. 

buffer descriptor 
(BD)

The MSC8101 has two types of buffer descriptors. One type is associated 
with the CPM, while the second defines action by the DMA controller. 
For the CPM buffer descriptors, data associated with each 
communications controller channel is stored in buffers and each buffer is 
referenced by a BD that can reside anywhere in dual-port RAM. The total 
number of 8-byte BDs is limited only by the size of the dual-port RAM. 
These BDs are shared among all communications controllers—FCCs, 
SCCs, SMCs, SPI, and I2C. The user defines how the BDs are allocated 
among the controllers.

Each DMA channel uses the specifications in its associated buffer 
descriptors to define operation of the channel.

burst A multiple-beat data transfer in the MSC8101 whose total size is equal to 
32 bytes or 4 data beats at 8 bytes per beat. 

CD Carrier detect.
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CDMA Code division multiple access. A spread spectrum method of allowing 
multiple users to share the radio frequency spectrum by assigning each 
active user an individual code. In a CDMA system, each voice circuit is 
labeled with a unique code and transmitted on a single channel 
simultaneously along with many other coded voice circuits. The only 
distinctions between the multiple voice circuits are the assigned codes. 
The channel is typically very wide with each voice circuit occupying the 
entire channel bandwidth.

CP Communications processor. See CPM.

CPM Communications processor module. One of three internal modules in the 
MSC8101: CPM, SIU, and SC140 extended core. The CPM consists of 
much more than PIO ports. The brains of the CPM is the communications 
processor (CP), a 32-bit RISC microcontroller that resides on a separate 
bus from the SC140 core and performs tasks independently of the SC140 
core. The CP handles lower-layer communications tasks and DMA 
control, freeing the SC140 core to handle higher-layer activities. The CP 
works with the peripheral controllers, serial DMA (SDMA) channels, 
timers, baud-rate generators, and PIO ports.

CTS Clear to send.

DALU Data ALU. Performs arithmetic and logical operations on data operands in 
the MSC8101. The source operands for the Data ALU, which may be 16, 
32, or 40 bits, originate either from data registers or from immediate data. 
The results of all Data ALU operations are stored in the data registers. All 
Data ALU operations are performed in one clock cycle. Up to four 
parallel arithmetic operations can be performed in each cycle. The 
destination of every arithmetic operation can be used as a source operand 
for the operation immediately following, without any time penalty. 

Debug mode On the MSC8101, the JTAG and IEEE 1149.1 Test Access Port gives 
entry to the debug mode of operation. With the EOnCE real-time 
debugging capability, users can read the chip’s internal resources without 
having to stop the device and go into debug mode. The benefits range 
from faster debugging to reduced system development costs and 
improved field diagnostics. The SC140 core has a debug mode that is 
enabled at reset by pulling up the DBREQ/EE0 pin. See also EOnCE.
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DMA Direct memory access. A fast method of moving data from a storage 
device to RAM, which speeds up processing. The MSC8101 
multi-channel DMA controller supports up to 16 time-multiplexed 
channels and buffer alignment by hardware. The DMA controller 
connects to both the 60x-compatible system bus and the local bus and can 
function as a bridge between both buses. The MSC8101 DMA controller 
supports flyby transactions on either bus. The DMA controller enables hot 
swap between channels, by time-multiplexed channels with no cost in 
clock cycles. Sixteen priority levels support synchronous and 
asynchronous transfers on the bus and give a varying bus bandwidth per 
channel. The DMA controller can service multiple requestors. A requestor 
can be any one of four external peripherals, two internal peripherals, or 
sixteen internal requests generated by the DMA FIFO itself. See also 
flyby transfer.

double word For the 16-bit SC140 core, a double word is 32 bits. For the CPM and 
60x-compatible bus, a double word is 64 bits.

DRAM Dynamic random-access memory. Dynamic memory is solid-state 
memory in which the stored information decays over a period of time. The 
decay time can range from milliseconds to seconds depending on the 
device and its physical environment. The memory cells must undergo 
refresh operations often enough to maintain the integrity of the stored 
information. The dynamic nature of the circuits for DRAM require data to 
be written back after being read, hence the difference between access time 
and cycle time. DRAM memory is organized as a rectangular matrix 
addressed by rows and columns.

DSP MIPs At its initial clock speed of 300 MHz, the SC140 core can execute 1,200 
true DSP MIPS—1.2 billion multiply-accumulate operations, together 
with associated data movement functions and pointer updates—per 
second. One such DSP MIPS is the equivalent of several RISC MIPS, the 
performance measure used by some other DSPs. For purposes of 
comparison, the SC140 core can be said to perform 3000 RISC 
MIPS—ten RISC operations per cycle at 300 MHz. Moreover, the 
MSC8101 enhanced filter coprocessor (EFCOP) performs filtering 
operations at a 70 percent usage rate—a typical average for EFCOP 
utilization in DSP applications—the EFCOP provides 210 MIPS above 
the SC140 core’s 1,200-MIPS performance.
MSC8101 User’s Guide, Rev. 3

Freescale Semiconductor A-5



Glossary
E1 The European equivalent of the North American T1, except that E1 
carries information at the rate of 2.048 Mbps. This is a telephony 
standard. Its size is based on the number of channels, each of which 
carries 64 Kbps. See also T1.

EFCOP Enhanced filter coprocessor. A peripheral MSC8101 module that 
functions as a general-purpose, fully programmable complex filter. Its 
optimized modes of operation perform complex finite impulse response 
(FIR) filtering, infinite impulse response (IIR) filtering, adaptive FIR 
filtering, and multichannel filtering. The EFCOP allows filter operations 
to be completed concurrently with the SC140 core operations with 
minimal CPU intervention. It has dedicated modes of operation optimized 
for cellular base station applications. In a transceiver base station, the 
EFCOP can be used for complex matched filtering to maximize the 
signal-to-noise ratio (SNR) within an equalizer. In a transcoder base 
station or a mobile switching center, the EFCOP can be used for all types 
of FIR and IIR filtering within a vocoder, as well as for LMS-type echo 
cancellation.

EOnCE Enhanced On-Chip Emulation. Allows nonintrusive interaction with the 
MSC8101 and its peripherals so that a user can examine registers, 
memory, or internal peripherals, define various breakpoints, and read the 
trace-FIFO. These interactions facilitate hardware and software 
development on the MSC8101 processor. The EOnCE module interfaces 
with the debugging system through the internal JTAG TAP controller 
pins.

FCC Fast communications controllers. A type of serial communications 
controller optimized for synchronous high-rate protocols. MSC8101 
FCCs can be configured independently to implement different protocols. 
Together, they can implement bridging functions, routers, and gateways; 
they can interface with a wide variety of standard WANs, LANs, and 
proprietary networks. FCCs have many physical interface options, such as 
interfacing to TDM buses, ISDN buses, standard modem interfaces, fast 
Ethernet interface (MII), and ATM interfaces (UTOPIA). The FCCs are 
independent from the physical interface, but FCC logic formats and 
manipulates data from the physical interface. The FCC is described in 
terms of the protocol that it runs. When an FCC is programmed to a 
certain protocol, it implements a certain level of functionality associated 
with that protocol. For most protocols, this corresponds to portions of the 
link layer (layer 2 of the seven-layer OSI model). Many FCC functions 
are common to all protocols.
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FC-PBGA 
package

Flip Chip-Plastic Ball Grid Array. The MSC8101 FC-PBGA package has 
332 pins. 

FDMA Frequency division multiple access. A method of allowing multiple users 
to share the radio frequency spectrum by assigning each active user an 
individual frequency channel. In this practice, users are dynamically 
allocated a group of frequencies so that the apparent availability is greater 
than the number of channels.

FIR Finite impulse response. A type of filter. FIR filters are characterized by 
transfer functions that are polynomials, where the coefficients are directly 
the impulse response of the filter. The form of an FIR filter gives rise to 
the terminology of tapped delay line and the coefficients as tap weights. 
The length of an FIR filter is the number of taps, N, and thus the 
convention of using indices from 0 through (N-1) for the coefficients. 

flyby transfer Also known as a “single access transaction.” The data path is between a 
peripheral and memory with the same port size, located on the same bus. 
On the MSC8101, flyby transactions can occur only between external 
peripherals and external memories located on the 60x-compatible system 
bus, or between internal peripherals and internal SRAM located on the 
local bus. Flyby operations do not require access to the DMA FIFO. See 
also DMA.

full duplex Transmission in two directions simultaneously—that is, simultaneous 
two-way communications. Such communications occur on four-wire 
circuits. In contrast, half duplex communications occur in only one 
direction at one time.

GPCM General-purpose chip-select machine. Part of the MSC8101 memory 
controller. The GPCM provides interfacing for simpler, 
lower-performance memory resources and memory-mapped devices. The 
GPCM has inherently lower performance because it does not support 
bursting. For this reason, GPCM-controlled banks are used primarily for 
boot-loading and access to low-performance memory-mapped 
peripherals. The MSC8101 GPCM controls Bank 11, which is assigned 
for DSP peripherals. Banks 0–7 can be assigned to the GPCM as well.

half-word For the 16-bit SC140 core, a half-word is 8 bits. For the CPM and 
60x-compatible bus, a half-word is 16 bits.
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HDLC High-level data link control. An ITU-TSS link layer protocol standard for 
point-to-point and multi-point communications. In HDLC, control 
information is always placed in the same position. Specific bit patterns 
used for control differ dramatically from those used in representing data 
so that errors are less likely to occur. On the MSC8101, the SCCs can run 
in HDLC mode. See also SCC.

I2C Inter-integrated circuit, a simple and low-cost mechanism for connecting 
multiple devices. I2C is more flexible than SPI for multi-masters in 
handling collisions. I2C has a synchronous two-wire interface (clock and 
data). It features bidirectional operation, master/slave modes, and 
multi-master modes. Clock rates run up to 520 kHz@25 MHz system 
clock. Developed by Phillips.

IIR Infinite impulse response. A type of filter. See FIR.

ISR Interrupt service routine. In the MSC8101, the SC140 core handles 
pending unmasked interrupts in order of priority. The interrupt controller 
passes an interrupt vector corresponding to the highest-priority, 
unmasked, pending interrupt. 

lane A sub-grouping of signals within a bus. An 8-bit section of the address or 
data bus may be referred to as a byte lane for that bus.

little-endian For little-endian scalars, the least-significant byte (LSB) is stored at the 
lowest (or starting) address. This is called “little-endian” because the little 
end of the scalar comes first in memory. See also big-endian.

MAC Multiply and accumulate. On the SC140 core, the MAC unit is the main 
arithmetic processing unit. It performs all the calculations on data 
operands. The MAC unit outputs one 40-bit result in the form of 
[Extension:Most Significant Portion:Least Significant Portion] 
(EXT:MSP:LSP). The multiplier executes 16-bit x 16-bit fractional or 
integer multiplication between two’s complement signed, unsigned, or 
mixed operands. The 32-bit product is right-justified and added to the 
40-bit contents of one of the 16 data registers. 

maskable 
interrupt

A hardware interrupt that can be enabled or disabled through software.

master The device that owns the address or data bus, the device that initiates or 
requests the transaction.
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MCC Multi-channel controller. The two MSC8101 MCCs (MCC1 and MCC2) 
each handle up to 128 serial, full-duplex data channels. The 128 channels 
are divided into four subgroups (of 32 channels each). One or more 
subgroups can be multiplexed through SIx time-division multiplexing 
(TDM) channels. Multiplexed in this way, the MCCs can support a total 
of four T1 or E1 lines. MCC1 connects through SI1, and MCC2 uses SI2. 
Each channel can be programmed separately either to perform high-level 
data link control (HDLC) formatting/deformatting or to act as a 
transparent channel. See also SI, TDM, T1, and E1.

memory 
controller

A unit whose main function is to control the bus memories and I/O 
devices. The MSC8101 memory controller is located in the SIU portion of 
the MSC8101. It controls a maximum of 10 memory banks shared by a 
high-performance SDRAM machine, a general-purpose chip-select 
machine (GPCM), and three user-programmable machines (UPMs). It 
supports a glueless interface to synchronous DRAM (SDRAM), SRAM, 
EPROM, flash EPROM, burstable RAM, regular DRAM devices, 
extended data output DRAM devices, and other peripherals. 

MII Media Independent Interface. Part of the Fast Ethernet specification, the 
MII replaces 10BaseT AUI (Attachment Unit Interface) and connects the 
MAC layer to the physical layer. The MII is the standard for all three 
100Base-T specifications: 100Base-TX, 100Base-T4, and 100Base0Fx. 
The MII interface can be used for both 100Base-T and 10Base-T. 
MSC8101 MII support includes four bits of data for transmit and four bits 
of data for receive.

MIPS Millions of instructions per second. A rough measure of processor 
performance, measuring the number of instructions that can be executed 
in one second. However, different instructions require more or less time 
than others, and performance can be limited by other factors, such as 
memory and I/O speed.

modulo An arithmetic term to designate an operation that uses the remainder value 
from a division operation.

Multi-Master 
Bus Mode

The multi-master bus mode can include one or more potential bus masters 
external to the MSC8101. The other bus masters can, for example, be 
ASIC DMAs, high-end PowerQUICC IIs, or other MSC8101 devices. 
Also see Single Master Bus Mode.

multiplexing A method by which two or more signals share a physical pin connection 
or a single data stream.
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operation code Also known as “opcode.” The command part of a machine instruction. 
That is, in most cases, the first byte of the machine code that describes the 
type of operation and combination of operands to the central processing 
unit (CPU).

parameter RAM The CPM maintains a section of RAM called the parameter RAM, which 
contains many parameters for the operation of the FCCs, SCCs, SMCs, 
SPI, and I2C channels. The exact definition of the parameter RAM is 
contained in each protocol subsection describing a device that uses a 
parameter RAM.

parking Granting potential bus mastership without requiring a prior bus request 
from that device. This eliminates the arbitration delay associated with the 
bus request.

PIC Programmable interrupt controller. A peripheral module to serve all the 
interrupt requests (IRQs) and non-maskable interrupts (NMIs) received 
from MSC8101 peripherals and I/O pins. The PIC is memory mapped to 
the SC140 core and is accessed via the SC140 core QBus. The PIC not 
only handles incoming interrupts from internal and external devices, but 
also generates interrupts to other devices. This capability enables the 
MSC8101 to be used as a companion chip complementing an external 
CPU such as a 60x-compatible processor. For example, the MSC8101 
might be used to provide protocol handling services, sending an interrupt 
to notify the central processor each time it finishes processing a batch of 
data.

pipelining Initiating a bus transaction before the current one finishes. This involves 
running an address tenure for a new bus transaction before the data tenure 
for a current bus transaction completes.

PLL Phase lock loop. An electronic circuit that controls an oscillator so that it 
maintains a constant phase angle relative to a reference signal. A PLL can 
be used to multiply or divide an input clock frequency to generate a 
different output frequency.

QFP Quad flat pack. A flat, rectangular package that holds an integrated 
circuit. The electrical leads, or pins, project from all four sides of the 
package. These packages are usually made of ceramic materials. When 
such a package is made of plastic, it is called a PQFP.
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quad word For the 16-bit SC140 core, a quad word is 64 bits. For the CPM and 
60x-compatible bus, a quad word is 128 bits.

requestor An external peripheral, an internal peripheral, or an internal request 
generated by the DMA FIFO. A peripheral interfaces with the DMA by 
placing a request for service. The request can be external or internal, 
depending on its origin.

reset A means to bring a device and its components to a known state by setting 
the registers and control bits to predetermined values and signaling 
execution to start at a specified address.

RS232 with 
modem controls

An ANSI standard specifying three interfaces: electrical, functional, and 
mechanical. The RS232 standard is typically used to communicate 
between computers, terminals, and modems. All PCs support RS-232, 
typically through a DB9 connector, as specified by ANSI. The MSC8101 
supports TXD, RXD, RTS, CTS, and CD signals.

RS232 with no 
modem controls

The MSC8101 SMC1-2 interface supports TXD, RXD, and SMSYN signals. 
The SMC interface does not support modem control signals, and the data 
rates are not as fast as those of the SCC interface.

SCC Serial communications controller. The MSC8101 has four SCCs, which 
can be configured independently to implement different protocols for 
bridging functions, routers, and gateways and to interface with a wide 
variety of standard WANs, LANs, and proprietary networks. An SCC 
offers many physical interface options, such as interfacing to TDM buses, 
ISDN buses, and standard modem interfaces. The SCCs are independent 
from the physical interface, but SCC logic formats and manipulates data 
from the physical interface. Furthermore, the choice of protocol is 
independent from the choice of interface. An SCC is described in terms of 
the protocol it runs. When an SCC is programmed to a certain protocol or 
mode, it implements functionality that corresponds to parts of the 
protocol’s link layer (layer 2 of the OSI reference model). See also CPM 
and FCC.
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SDMA Serial DMA. The MSC8101 has two physical SDMA channels. The CP 
implements many dedicated virtual SDMA channels for each FCC, MCC, 
SCC, SMC, SPI, and I2C—one for each transmitter and receiver. Each 
channel is permanently assigned to service either the receive or transmit 
operation of an FCC, MCC, SCC, SMC, SPI, or I2C. On the MSC8101, 
the SDMA makes it possible for local bus transfers to occur at the same 
time as other operations on the external 60x-compatible system bus. See 
also CPM.

SDRAM A type of DRAM that can deliver bursts of data at very high speeds using 
a synchronous interface.

set To write a non-zero value to a bit or bit field; the opposite of clear. The 
term set can also more generally describe the updating of a bit or bit field.

SI Serial interface. On the MSC8101, there are actually two serial interfaces 
(SI1 and SI2). The “1” and “2” at the end of the TDM names indicates 
which serial interface (SI) they belong to: SI1 or SI2. The MSC8101 has 
one TDM from SI1 (TDMA1) and three from SI2 (TDMB2, TDMC2, 
TDMD2). The MSC8101 TDM interfaces are split up between SI1 and 
SI2 to allow for higher system performance. See also TDM.

Single-Master 
Bus Mode

This mode uses the MSC8101 memory controller as the only 
60x-compatible bus master to connect external devices to the bus. In 
single-master bus mode, the MSC8101 uses the address bus as a memory 
address bus. Slaves cannot use the 60x-compatible system bus signals 
because the addresses use memory timing, not address tenure timing. Also 
see Multi-Master Bus Mode.

SIU System interface unit. Controls system start-up and initialization, as well 
as operation, protection, and the external system bus. The system 
configuration and protection functions provide various monitors and 
timers, including the bus monitor, software watchdog timer, periodic 
interrupt timer, and time counter. The clock synthesizer generates the 
clock signals for the SIU and other MSC8101 modules. 

slave The device addressed by the master. The slave is identified in the address 
tenure and is responsible for sourcing or sinking the requested data for the 
master during the data tenure.
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SMC Serial management controller. The CPM has two SMCs, which are 
full-duplex ports that can be configured independently to support one of 
three protocols or modes: UART mode, Transparent mode, and 
General-Circuit Interface (CGI) mode. UART operation provides a 
debug/monitor port in an application, freeing the SCCs for other uses. In 
totally Transparent mode, the SMC can connect to a TDM channel (such 
as an E1 line) or directly to its own set of signals. This mode can be used 
for a fast connection between MSC8101s.

snooping Monitoring addresses driven by a bus master to detect the need for 
coherency actions.

SPI Serial peripheral interface. A full-duplex, synchronous, character-oriented 
channel that supports a four-wire interface (receive, transmit, clock, and 
slave select). SPI supports master/slave and multi-master modes. 
Character size is programmable. Developed by Freescale Semiconductor.

split- 
transaction

A transaction with separate request and response tenures.

SRAM Static random access memory. Contrast with dynamic random access 
memory (DRAM). The dynamic nature of the circuits for DRAM require 
data to be written back after being read, hence the difference between the 
access time and the cycle time and also the need to refresh. SRAMs use 
more circuits per bit to prevent the information from being disturbed 
when read. Thus, unlike DRAMs, there is no difference between access 
time and cycle time, and there is no need to refresh SRAM. In DRAM 
designs, the emphasis is on capacity, while SRAM designs are concerned 
with both capacity and speed.

super channel The super channel table entry redirects an MCC slot to a different channel 
number. Therefore, the transmitter super channel uses more FIFO in the 
MCC hardware (2 bytes—half of a single-channel transmitter 
FIFO—multiplied by the number of the channels in the super channel). 
On the transmitter side, super channels must be defined in the SI RAM, 
and a super-channel table must be created. On the receiver side, the 
transparent super channels that require slot synchronization must be 
programmed in the SI RAM as super channels. The slot synchronization 
ensures that the data is aligned in the receiver buffer starting from the first 
time slot after a sync pulse. See also MCC, HDLC, and SI.

T1 Digital transmission link with a capacity of 1.544 Mbps. See also E1.
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TDM Time-division multiplexing. The external interface to the MSC8101 and 
the MSC8101 time-slot assigner (TSA) block. The MSC8101 supports 
four TDM interfaces: TDMA1, TDMB2, TDMC2, and TDMD2. 

tenure The period of bus mastership. For MSC8101, there can be separate 
address bus tenures and data bus tenures.

transaction A complete exchange between two bus devices. A typical transaction is 
composed of an address tenure and a data tenure, which may overlap or 
occur separately from the address tenure. A transaction can minimally 
consist of an address tenure alone.

TSA Time-slot assigner. A functional block within the MSC8101 CPM that 
connects the time-division multiplexing (TDM) interfaces to selected 
communications controllers inside the MSC8101. 

UART Universal asynchronous receiver/transmitter. A serial communications 
interface.

UPM User-programmable machine. The MSC8101 memory controller has three 
UPMs. The UPMs support address multiplexing of the 60x-compatible 
system bus, refresh timers, and generation of programmable control 
signals for row address and column address strobes to allow for a glueless 
interface to DRAMs, burstable SRAMs, and almost any other kind of 
peripheral. The UPM can generate different timing patterns for the control 
signals that govern a memory device. These patterns define how the 
external control signals behave during a read, write, burst-read, or 
burst-write access request. Refresh timers are also available to 
periodically generate user-defined refresh cycles.

UTOPIA Universal Test and Operations Interface for ATM. UTOPIA is the 
interface to an ATM network. It is defined by the ATM Forum in the 
UTOPIA Specification Level 1 and UTOPIA Specification Level 2 
documents. The Level 2 specification is a continuation of the Level 1 
document. The MSC8101 is Level-1 and Level-2 compliant.

wait state A period of time when a bus does nothing but wait. Wait states are used to 
synchronize circuitry or devices operating at different speeds so that they 
seem to be operating at the same speed.

word The MSC8101 DSP core is a 16-bit processor, so a word in the core 
portion of the MSC8101 is 16 bits. The SIU and CPM portions of the 
MSC8101 consider a word equal to 32 bits.
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