

Freescale Semiconductor User Guide

Document Number: P5040RDBUG Rev. 0, 05/2013

P5040/P5020 Reference Design Board User Guide

This document describes the functionality of the P5040 (quad-core)/P5021 (dual core) and P5020 (dual core)/P5010 (single core) processors as the reference design board (RDB) for customers.

The P5040/P5020 reference board is a lead-free, RoHS-compliant board that is also known as P5040/P5020RDB. Figure 1 shows the block diagram for both processors implemented in this reference board.

The processors currently supported and the orderable part number for each kit are as follows:

P5040/P5021	P5040-RDB
P5020/P5010	P5020-RDB

1 Before you begin

This table lists useful documentation references.

NOTE

Contact your local Freescale field applications engineer to access documents that are not available on freescale.com.

Contents

1.	Before you begin 1
2.	Features
3.	Block Diagram 4
4.	Evaluation Support 5
5.	Architecture 7
6.	Configuration 44
7.	Programming Model 48
8.	Revision History 69

© 2013 Freescale Semiconductor, Inc. All rights reserved.

Table	1.	Useful	References
-------	----	--------	------------

Торіс	Document Title	Document ID				
System design	P5040 QorIQ Integrated Processor Hardware Specifications P5020 QorIQ Integrated Processor Hardware Specifications	P5040EC/ P5020EC				
SoC programming	SoC programming <i>P5040 QorIQ Integrated Multicore Communication Processor Family Reference Manual</i>					
	P5020 QorIQ Integrated Multicore Communication Processor Family Reference Manual	P5020RM				
Switch configuration	P5040/P5020DS Configuration Sheet	—				
SystemID format	The SystemID Format for Power Architecture® Development Systems	AN3638				

The initial version of the Software Development Kit (version 1.3) is shipped with the P5040/P5020 reference design board. The customer should check for new patch releases, which generally are updated on Freescale.com two times a year.

2 Features

The general features of the P5040/P5020RDB are as follows:

- P5040/P5020 supports functions that include the following:
 - Standard 400W 1U power supply connector
 - One SD card/MMC connector
 - SerDes PCI-Express (PCIe) connector
 - One PCIe x2/x4 connector (SerDes lanes "A" through connector "D"), which can support up to four lanes of PCIe 2.0/1.0
 - One mini PCIe x1 connector
 - Two Type A USB 2.0 connectors.
 - One DUART DB-9 RS-232 connector (muxed UART0/1 and UART 2/3 serial ports) that operate at up to 115200 Kbps
 - Two XAUI copper (10Gbit RJ-45 connectors) and two fiber optic SFP+ connectors
 - One dual-port TN8022 PHY supporting two XAUI copper link(10GHz) and two XFI link supporting 10GHz modules.
 - Two SATA II connectors
 - Two Gigabit Ethernet ports 0 and 1 supporting one dual RGMII (1-GHz) RJ-45 Ethernet connectors
 - One dual-port PHY supporting one dual RGMII (1GHz/100/10-MHz) multifunction FPGA
 - Two dual ported SGMII connectors supporting Gigabit Ethernet ports 0(top)/1(bottom) and ports 2(top)/3(bottom)
 - One quad-port PHY supporting four SGMII (1GHz) links
 - Programmed by the processor on the following a power-up or hard reset. The FPGA functionality varies depending on the specific processor.

- 1588 header—support is TBD
- Aurora debug port
- Other functions routed to reference board devices are as follows:
 - Local bus
 - 128-Mbyte NOR Flash contains Uboot firmware.
 - 4 Gigabit NOR Flash is used for Freescale debug purposes. The user may access this using their own developed software.
 - eSDHC
 - Connects to SDMedia card slot for boot code or mass storage
 - SPI
 - 16-Mbyte EEPROM module for boot code and storage
 - $I^2 C$
 - Three I²C controllers from P5040 and P5020
 - I²C1 to RCW/Boot Sequencer and System configuration EEPROMs, XAUI SFP+ ports 1 and 2
 - I²C2 to DDR slots' SPD
 - I²C3 to system real time clock and CPU Thermal Monitor
 - Debug features
 - Legacy COP/JTAG and USBTAP headers for use with CodeWarrior software
 - Aurora Debug connector
- System logic FPGA—other functions
 - FPGA manages power sequencing
 - Programming model with registers accessible via local bus
- SerDes clock for PCIe slots and XAUI PHY
- Power supplies
 - Power is supplied to the reference board via a standard 1U 450W power supply
 - Power is supplied via +12 V pins, VCC_RTC=3.3 V, and VCC_5V_stby = 5 V on the COM Express connectors
 - 2.5-V power for RMII Ethernet PHY

Block Diagram

3 Block Diagram

This figure depicts the general features and connectivity of the P5040/P5020 reference board.

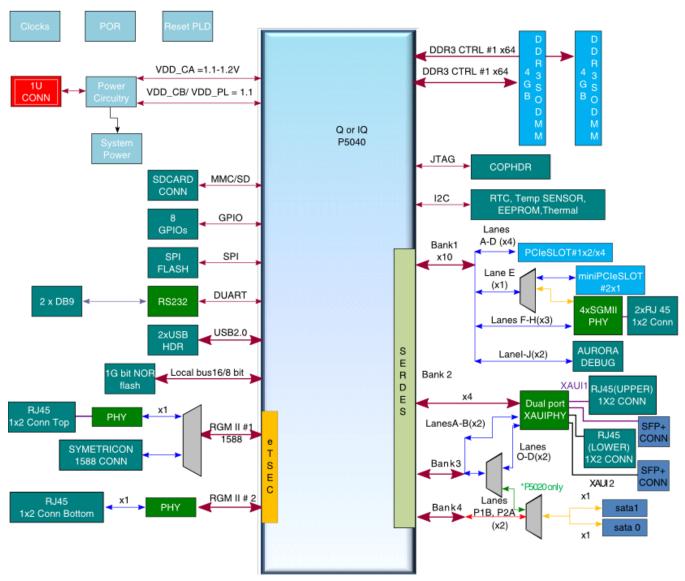


Figure 1. P5040/P5020 Reference Board Block Diagram

This figure shows the P5040 reference design board.

Figure 2. P5040 Reference Design Board

4 Evaluation Support

4.1 P5040/P5020RDB as a Processor Reference Board

For general hardware and/or software development and evaluation purposes, the P5040/P5020 reference design board can be used like an ordinary, desktop computer.

The P5040/P5020 reference board can also be used as reference for many features of the P5040/P5020. This table summarizes the processor hardware interfaces that can be evaluated by using the reference board.

NOTE

Shaded features apply to only one processor.

Evaluation Support

Device Feature	Configuration Options
SerDes	 Connect to PCI Express 2.0 x1 and x4 slots for use with graphics or other PEX cards Test via PCI Express card (typically graphics) or Catalyst[™] PCI Express control/monitoring card
DDR3	 Memory controller capable of supporting DDR3 and DDR3-LV devices. Provides 2 SODIMM slots with one DDR3 8GB 204-pin 1.35/1.5v SODIMM module at 1333/1600 Mbps data rate at 72-bit, and ECC support.
eSDHC	SDMedia card and MMC card
SPI	Supports standard 128Kbyte(2 MHz, 1.8V) and 16MB (100 MHz)
Local bus	Connects 8bit data and 10bit address to system control FPGA to access programming model to configure system: Internal debug
Serial	UART supports two 4-wire serial ports
l ² C	 I²C bus #1 can be used for the following: Boot initialization code System EEPROM (MAC address storage, serial number, and so on) Fiber optic mode for XAUI ports 1 and 2
	I ² C bus #2 can be used for the following: • DDR SODIMM SPD
	I ² C bus #4 can be used for the following: • System RTC clock and CPU Thermal monitorI
Clocking	SerDes clock generator for XAUI PHY, SGMII PHY, and PCI Express slots RMII clock and buffers
GPIO	Eight GPIOs are connected FPGA for future usage
IRQs	EVENT switch normally asserts IRQ* but can drive SRESET0, and/or SRESET1 via software setting
Power	1U power supply to P5040/P5020 connector VCC_12, VCC_5_STBY, VCC_RTC_BAT

Table 2. P5040/P5020RDB device Interfaces

4.2 Reference Design Board Use

In the absence of a special hardware or software configuration, the P5040/P5020 reference design board operates identically to a development/evaluation system.

4.3 Embedded Use

Section 6.1, "Configuration Options," and Section 6.2, "Configuration Modes," provide the FPGA and external configuration switch settings used for start-up configuration information for U-Boot or Linux when the system is used as an embedded platform.

4.4 Difficult-to-Find P5040/P5020 Connections

This figure shows connections that are difficult to find on the COM Express reference board.

Key: 1U power connector SW3 power-on button SW1 local reset FPGA programming header

Figure 3. Difficult-to-Find Connections—P5040/P5020 reference board Top View

5 Architecture

5.1 Processor

This table lists the major pin groupings of the P5040/P5020.

Table 3. P5040/P5020 Pin Groupings Summary

Signal Group	Details
Memory Controllers	Section 5.1.1, "DDR"
SerDes x18	Section 5.1.2, "SerDes x20/x18 Interface"

Signal Group	Details
Ethernet	Section 5.1.3, "Ethernet Controller (EC) Interfaces"
IEEE 1588	Section 5.1.4, "Support for IEEE Std 1588 [™] Protocol"
Serial interfaces	Section 5.1.5, "Serial Interfaces"
eSDHC	Section 5.1.7, "enhanced Secure Digital Host Controller (eSDHC) & embedded Multi Media Controller (eMMC)"
SPI	Section 5.1.6, "enhanced Serial Peripheral Interface (eSPI)"
UART Serial Ports	Section 5.1.8, "UART Serial Ports"
USB	Section 5.1.9, "USB Interfaces"
DMA	Section 5.1.10, "DMA Controllers"
eOpenPIC	Section 5.1.11, "eOpenPIC Interrupt Controller"
GPIO	Section 5.1.12, "GPIO Signals"
System Control	Section 5.1.13, "Control Group"
12C	Section 5.1.14, "I ² C"
EM1 and EM2 Management	Section 5.1.15, "EM1 and EM2 Management Buses"
Debug/Power Management	Section 5.1.17, "Debug Features"
Clock	Section 5.1.18, "Clock"
Thermal	Section 5.1.19, "Temperature Anode and Cathode"
Power	Section 5.1.20, "Power"

Table 3. P5040/P5020 Pin Groupings Summary (continued)

5.1.1 DDR

The P5040/P5020RDB contains a number of DDR-related features, as follows:

- Memory controller capable of supporting DDR3 and DDR3-LV devices
- Supports DDR3 using one 8GB, 1.35V/1.5V 204-pin Micron MT18KSF1G72HZ-1G6E2 SODIMM module @ 1333/1600 Mbps data rate at 72-bit, and ECC support
- Memory interface includes all necessary termination and IO power and is routed in order to achieve maximum performance on the memory bus.
- As noted in the table below, P5040/P5020 has a dual DDR controller connected to dual DDR3 SODIMM slots.

Table 4. DDR Features

DDR Feature	Description
DDR3 Topology	Each controller connects to its own SODIMM slot. Supports write-leveling intended to help determine timing skews.
Termination	All input signal lines are terminated at the DIMM modules. Additional termination is not required.

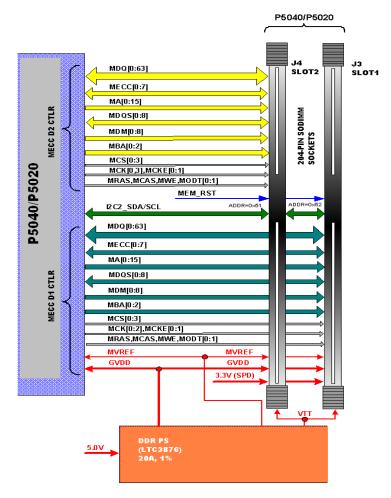


Figure 4. DDR interface

5.1.1.1 DDR Power

P5040/P5020RDB DDR power supplies these voltages.

Figure 5	. DDR	Power	Supply
----------	-------	-------	--------

Voltage Name	e Voltage Current		Note
GVDD	1.5V/1.35V	> 10A	DRAM core and IO
MVREF	0.75V/0.675V	>= 10mA	DRAM reference voltage
VTT	0.75V/0.675V	>= 3A	Bus termination supply

The P5040/P5020RDB uses the Linear Technology LTC3876 (U55) switching power controller as follows:

- Dual-phase controller for up to 20 A at a default at 1.35 v adjustable to 1.5 V output.
- Supplies GVDD, VREF, and VTT for SODIMM DRAM DDR3 and P5040/P5020 DDR controller.

The following summarizes the use of MECC pins on the P5040/P5020RDB:

- RDB does not directly support MECC pin usage to access internal debug information. Since the RDB does not provide a dedicated MUX, it has simpler routing and signal integrity status.
- However, as the RDB does not interfere with the controller-to-DDR path, access to debug information on MECC pins is possible by using a NextWave (or equivalent) DDR logic analyzer connector and non-ECC DDR modules.

5.1.2 SerDes x20/x18 Interface

The SerDes block on the P5040/P5020 provides high-speed serial communications interfaces for several internal devices. The SerDes block provides 20 or 18 serial lanes for the P5040 or P5020, respectively. They may be partitioned as shown in Table 5(a) or (b), respectively.

Note that the term 'lane' is used to describe the minimum number of signals needed to create a bidirectional communications channel; in the case of PCI-Express or Serial RapidIO, a lane consists of two differential pairs, one for receive and one for transmit, or four in all.

Table 5, top down, shows the following clocking banks and how they are configured by the reference board:

Bank1	Lanes A–D go to x4 slot 1, E is demuxed to either x1 slot 2 or combined with lanes E-F to support 4 SGMII ports, and I–J to the Aurora debug connector
Bank2	Lanes A–D go to port 1 of dual-ported XAUI PHY
Bank3	Lanes A–B of P5040 goes to port 2 of dual-ported XAUI PHY while lanes C and D of P5020 could be demuxed to either go to SATA ports 1 and 2 or go to port 2 of dual-ported XAUI PHY.
Bank 4	Lanes P1B and P2A of P5040 are muxed are with lanes C–D of P5020 to SATA ports 1 and 2.

Table 5. P5040/P5020 SerDes Lane Multiplexing Configurations on P5040/P5020

	Bank 1							Bank 2			Bank 3				Bank 4					
A	в	С	D	Е	F	G	Н	I	J	Α	A B C D		Α	В	С	D	P1B	P2A		
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	—	—	
	SLOT 1			SLOT 2				Aurora (Conn on	n SLOT 3				SATA Port1	SATA Port2	_	-	_	_	
				1				P	5040 (RC	W 02 ar	id 34)			1				11		
	PC (5/2	-)	-	le2 .5G)			Debug (5/2.5G)			XAUI	FM1			XAUI F	M2		SATA1	SATA2	
	PC (5/2	-		SGMII FM2	SGMII FM2	SGMII FM2	SGMII FM2	Debug ((5/2.5G)	XAUI FM2		XAUI FM2			—	_	SAT A1	SAT A2	—	_
	P5020 (RCW 34 and 35)																			

	Bank 1					Bank 2 B			Bank	ink 3			ink 4						
Α	В	С	D	Е	F	G	н	I	J	Α	В	С	D	Α	В	С	D	P1B	P2A
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	-	—
	SLOT 1			SLOT 2		Aurora Conn on SLOT 3			SATA Port1	SATA Port2	I	_	_	_					
	PCle1 (5/2.5G)		-	ile2 .5G)	_	_	Debug ((5/2.5G)	G) XAUI FM1			—	-	SATA1	SATA2	—	—		
	PCle1 (5/2.5G)		SGMII FM2	SGMII FM2	SGMII FM2	SGMII FM2	Debug ((5/2.5G)		XAUI	FM1		—	_	SATA1	SATA2		—	

Table 5. P5040/P5020 SerDes Lane Multiplexing Configurations on P5040/P5020 (continued)

NP_

Architecture

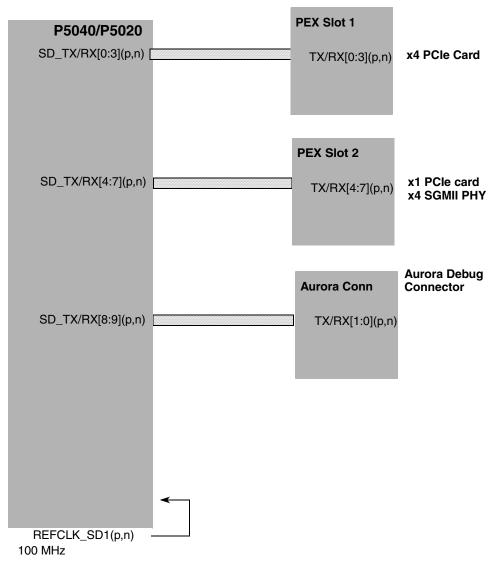


Figure 6. P5040/P5020 SerDes Bank1 to Reference Board Cards/ Debug Connector Configuration

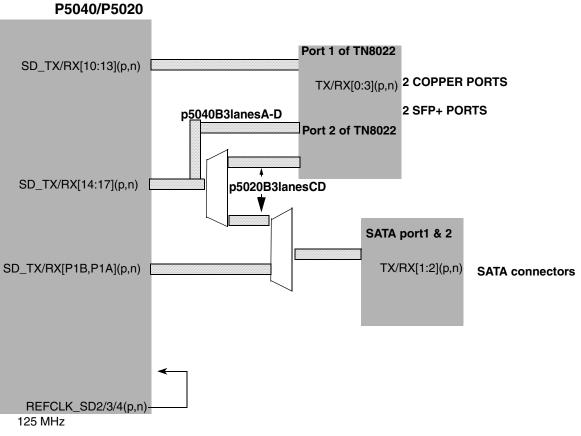


Figure 7. P5040/P5020 SerDes Banks 2,3, and 4 to Reference Board XAUI ports/ SATA Connectors Configuration

5.1.3 Ethernet Controller (EC) Interfaces

The two TSEC—with twisted pair 10/100/1000-Base-T interface—are IEEE 802.3-compliant. Vitesse VSC8244 PHY supports four integrated PHYs though only two are in use. The P5040/P5020RDB only uses the RGMII protocol.

This table shows the general organization of the ETH system.

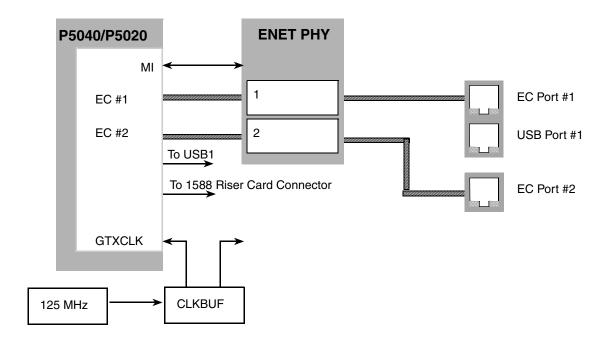

GETH Feature	Specifics	Description
GETH Clocks	IDT ICS8304AMLF	 Low skew Fanout Buffer Receives 125MHz clock oscillator input and generates four LVCMOS/LVTLL outputs: P5040/P5020 EC1_GTXCLK_125 clock input P5040/P5020 EC2_GTXCLK_125 clock input P5040/P5020 1588 clock input VSC8244 PHY XTAL1 input

Table 6. 10/100/1000 Base-T GETH Ports

GETH Feature	Specifics	Description		
GETH Connectors	Copper Interface	 Integrated GETH RJ45 Connector for EC1 and USB TypeA connector for USB1 (J2) 90⁰ RJ45 connector for EC2 (P1) 		
PHY Configuration	CMODE[70]	Inputs used to configure VSC8244 hardware operating modes by connecting Pull-up/down resistors.		
	PHY Default Configuration	 MAC interface select: RGMII to CAT5. Speed/Duplex auto negotiation: 10/100/1000 Base-T HDX, FDX. PHY address[4:2] = '000' 		
PHY Control	MII Management Port	 Controls the following via the two-wire interface port: EMI1_MDC clock EMI1_MDIO bi-directional data line 		
	MAX4906	Analog switch that chooses EMI1 routing.		
	EMI1	 Routing determined by one of the following: P5040/P5020 GPIO[03] ngPIXIS registers PX_BRDCFG1 and PX_BRDCFG2 		
PHY Reset	VSC8244 PHY RESET	 Input is driven by the P5040/P5020 HRESET signal via FPGA, and reset after each P5040/P5020 HRESET sequence. Input can be driven by register PX_RST P5040/P5020RDB FPGA Bit 7. 		
	VSC8244 SOFT_RESET	 Input is driven by the P5040/P5020 HRESET signal via FPGA, and reset after each P5040/P5020 HRESET sequence. Input can be driven by register PX_RST P5040/P5020RDB FPGA Bit 5. Can implement by asserting bit 15 (MSB) on VSC8244 PHY MII Mode Control Register 0. 		

Figure 8. P5040/P5020 Ethernet Connections to the Reference Board

This table summarizes the reference board EC connections and routing when the board is populated with a P5040 or P5020 processor.

P5040/ P5020 EC #	Connection Port	PHY Address	Location
1	1	0	Conn. J6 top
2	2	1	Conn. P1

See Section 5.1.9, "USB Interfaces."

5.1.4 Support for IEEE Std 1588[™] Protocol

The reference board supports the P5040/P5020 IEEE® 1588 precision time protocol (PTP) as shown in Figure 9. This facility works in tandem with an Ethernet controller to timestamp incoming packets.

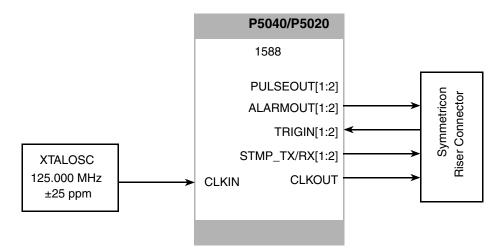


Figure 9. IEEE® 1588 Interface to Reference Board Symmetricon Riser Connector

5.1.5 Serial Interfaces

This figure shows overall connections of RS-232, eSPI, and eSDHC/eMMC interfaces.

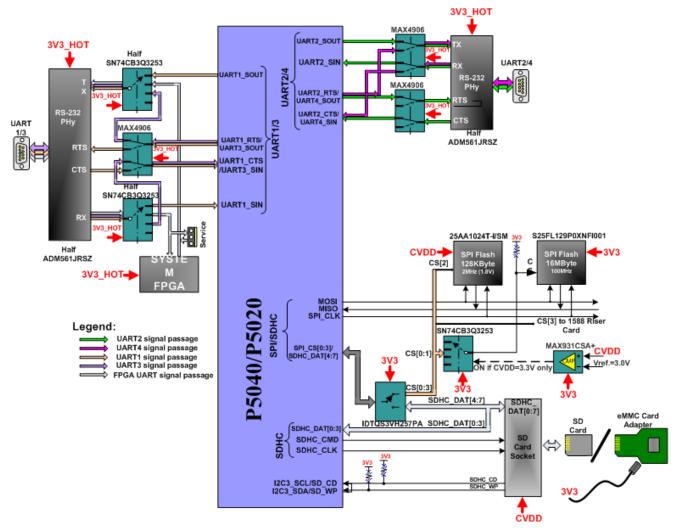


Figure 10. Serial Interfaces

5.1.6 enhanced Serial Peripheral Interface (eSPI)

The P5040/P5020 has an eSPI Master Controller used to communicate with various peripherals.

- Two SPI FLASH support 24-bit address and SPI Modes 0, 3.
- Use Chip Select 0 or 1 with S25FL129P0XNFI001 FLASH if CVDD=3.3 V.
- Use Chip Select 2 with 25AA1024T-I/SM FLASH for all CVDD voltages (1.8, 2.5, or 3.3 V).
- Chip Select 3 is reserved for 1588 Riser Card.

This table describes the P5040/P5020RDB SPI FLASH memory.

Device	Clock Frequency (MHz)	Voltage Range (V)	Capacity	SPI CS
Spansion S25FL129P0XNFI001	104	2.7–3.3	16 MB	CS[0,1]
Microchip 25AA1024T-I/SM	2, 10, 20	1.8–3.3	128 KB	CS2
1588 Riser Card	_	1.8–3.3	_	CS3

 Table 8. eSPI Slave devices

5.1.7 enhanced Secure Digital Host Controller (eSDHC) & embedded Multi Media Controller (eMMC)

The P5040/P5020 processor has an eSDHC and an eMMC controller, which the P5040/P5020 connects to an SD media card slot. The I²C3_SDA signal uses write protect (WP). The I²C3_SCL signal uses card detect (CD). The DS supports the following:

- 1.8, 2.5, and 3.3V SD/eMMC media card voltages.
- x4-bit and x8-bit cards though the latter uses SPI_CS[0:3] signals as eSDHC_DAT[4:7].
 - eSDHC_DAT[4:7] signals are shared with SPI CS pins.
 - Software can route the pins to either eSDHC/eMMC cards or SPI devices; however, they cannot be used simultaneously.

CAUTION

Insert an SD/eMMC media card suited to P5040/P5020 CVDD voltage.

5.1.8 UART Serial Ports

Two RS-232 transceivers on the P5040/P5020RDB contribute to user application development and provide convenient communication channels to both terminal and host computers. The transceivers are connected to P5040/P5020 dedicated UART ports: one provides interconnection to DUT UART1/3 ports or ngPIXIS FPGA; the other explores UART2/4 dedicated ports.

Analog Devices' ADM561JRSZ product internally generates required RS-232 levels from 3.3V_HOT supply.

NOTE

Powering from the 3.3V_HOT power rail is possible even when P5040/P5020 is powered down. Thus, the FPGA processor can run programs and interact with the user while allowing board reconfiguration while sealed in the chassis.

This table describes the P5040/P5020RDB RS-232 interface.

UART Ports	Destination	Power supply	Flow control	External Connector
UART1	Terminal (Host	3.3V_HOT	Supported	UART1/3 (J5 Bottom)
UART3	Computer)		Unsupported	
UART2			Supported	UART2/4 (J5 Top)
UART4]		Unsupported	

5.1.9 USB Interfaces

The P5040/P5020 has dual HS USB transceivers whose main features are as follows:

- Compliance with USB Specification, USB Rev. 2.0.
- USB 2.0 Transceiver Macrocell Interface (UTMI) with Link Controller.
- Supports HS, FS, and LS modes of operation.
- Supports signalling.
- Supports Host and Device modes.
 - Working in Host mode only, the RDB connects a USB transceiver to connector Type A thus enabling communication with keyboards, mice, memory sticks, etc.
 - Working in Host and Device modes, a second USB transceiver connects to a second Type A connector which has bus signal connecting directly to the P5040/P5020 internal PHY.

The 24MHz USB block reference clock provides additional control to the P5040/P5020 in conjunction with the USB power sequence. GPIO 4,6 control the VBUS Drive. GPIO 5,7 get Power Fault indications via the FPGA.

This figure shows the P5040/P5020RDB USB interface.

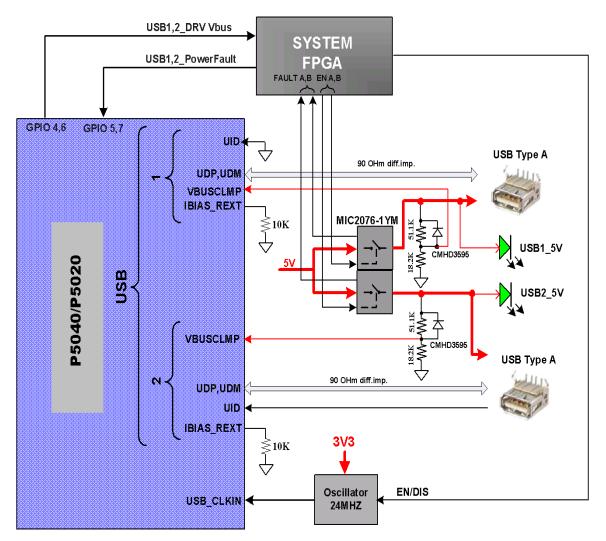


Figure 11. P5040/P5020 USB Connection to Reference Board USB Interfaces

5.1.10 DMA Controllers

The P5040/P5020 DMA controllers have internal and external controls to initiate and monitor DMA activity. The reference board does not incorporate any specific devices that make use of the external pin-controlled DMA controllers.

The P5040/P5020 DMA ports are connected to test points on the reference board to allow external hardware control, as needed.

5.1.11 eOpenPIC Interrupt Controller

The reference board contains numerous interrupt connections. The P5040/P5020 eOpenPIC connections to the P5040/P5020 are shown in this table.

Signal Name	Interrupt Source	Description
IRQ0_B	—	—
IRQ1_B	DS3232 (U50)	System RTC.
IRQ2_B	Zilker ZL6100 PS_CB	Two ZL6100 SALRT outputs.
	Zilker ZL6100 PS_GVDD	
IRQ3_B	Onboard RGMII PHY (J36)	 VSC8244 interrupts 0,1 (wire-OR'd) Optional 1588 Riser Card
IRQ4_B	ngPIXIS FPGA	From Local Event Switch.
IRQ5_B	NOR FLASH Memory RD/BY	Indicates completion of FLASH programming.
IRQ6_B	Reserved	
IRQ7_B		
IRQ8_B		
IRQ9_B		
IRQ10_B	Analog Device Thermal Monitor ADT461	ALERT PIN
IRQ11_B		THERM PIN
IRQ_OUT_B	P5040/P5020	ngPIXIS FPGA used as an EVT pin.

Table 10. P5040/P5020 Interrupt Assignments

5.1.12 GPIO Signals

FPGA provides the control for EMI1 mux; therefore, software can configure the MDIO bus. See the MDIO section for how to select between RGMII and SGMII PHY.

Table 11. Future Options for Configuring P5040/P5020-Dedicated GPIO Signals for EMI MDIO Bus Multiplexing

Signal Name	System Function
GPIO[0:1]	EM1 management bus mux control
GPIO[4:7]	Spares connected to test points

5.1.13 Control Group

P5040/P5020 control group signals, for the most part, stop or restart execution. Figure 12 gives a connections overview and shows the POR flow while Table 12 outlines the POR sequence.

• Legacy COP and Aurora connector resets are muxed to the ngPIXIS FPGA.

- ngPIXIS FPGA injects system-level resets along with legacy COP or Aurora resets.
- Legacy COP HRST is mapped to the P5040/P5020 POR.
- Legacy COP SRST is mapped to the P5040/P5020 HRESET.
- P5040/P5020 HRST is a bi-directional open drain signal; it is not monitored by ngPIXIS FPGA.

NOTE

Reset configuration input signals are ONLY sampled at the negation of POR. Reset Configuration input pins—CFG_RCW_SRC[4...0], CFG_SVR[1...0], CFG_GPINPUT[15...0], CFG_ENG_USE[3...0], CFG_ELBC_ECC, CFG_DRAM_TYPE—function differently when a device is not in a reset state.

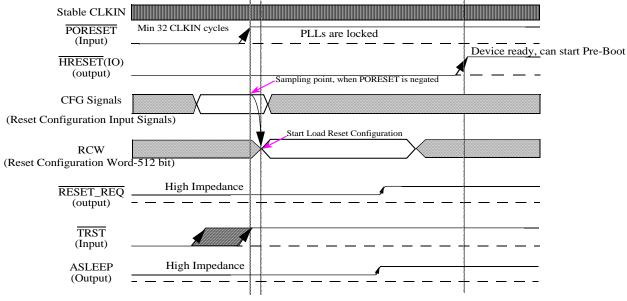


Figure 12. Power-on Reset Sequence

Table 12. PORESET Sequence

Step	Sequence Stage	Description
1	PORESET: General Information	 PORESET is asserted. FPGA drives CFG_RCW_SRC[40] and all reset configuration input signals to P5040/P5020; see Table 13. P5040/P5020 loads RCWs. FPGA drives HRESET/ PORESET to load a new RCW to the device. P5040/P5020 loads the RCW during HRESET.
2	PORESET: During Negation	 Sampling of input signals determines the interface to be loaded into the device. P5040/P5020 asserts HRESET throughout PORESET.

Table 12. PORESET Sequence

Step	Sequence Stage	Description
3	PORESET: After Negation	 P5040/P5020 begins the configuration process and starts loading reset configuration. Host debugger controls PORESET processor signal (which sets a chosen configuration).
4	Configuration Input	Reset configuration inputs are sampled to determine the following: Configuration source: CFG_RCW_SRC[40] CFG_DBG_RST_DIS CFG_ENG_USE[30] CFG_PLL_CONFIG_SEL_B CFG_POR_AINIT CFG_RCW_SRC_SLEW CFG_TEST_PORT_DIS CFG_TEST_PORT_MUX_SEL CFG_XVDD_SEL DRAM Type Select (DDR3 or DDR3L): CFG_DRAM_TYPE General Purpose Input: CFG_GPINPUT[150]. Only two[10] are driven. NAND FLASH ECC Enable: CFG_ELBC_ECC Response Disable: CFG_RSP_DIS System Version Register: CFG_SVR[10]
5	Configuration Time	Time required varies according to configuration source and CLKIN frequency.

NOTE

The P5040/P5020RDB has default DIP-switch settings that can be manually repositioned as per user selected configuration levels. Several RCW bits only can be changed by DIP-switches.

N

This table lists RCW sources.

Value (Binary)	Reset Configuration Signal Name	Description		
0_000	CFG_RCW_SRC[40]	I ² C1 normal addressing supports ROMs up to 256 bytes.		
0_0001		I ² C1 extended addressing		
0_0010		Reserved		
0_0011		Reserved		
0_0100		SPI 16-bit addressing		
0_0101		SPI 24-bit addressing		
0_0110		eSDHC		
0_0111		Reserved		
0_1000		eLBC FCM (NAND FLASH, 8-bit small page)		
0_1001		eLBC FCM (NAND FLASH, 8-bit large page)		
0_1010		Reserved		
0_1011		Reserved		
0_1100		eLBC GPCM (NOR FLASH, 8-bit)		
0_1101		eLBC GPCM (NOR FLASH, 16-bit)		
0_1110		Reserved		
0_1111		Reserved		
1_0000 -1_1011		Hard-coded RCW options		
1_1100-1_1111		Reserved		

Table 13. Reset Configuration Word Source

5.1.14 l²C

The reference design board uses three of the four I^2C buses on the P5040/P5020.

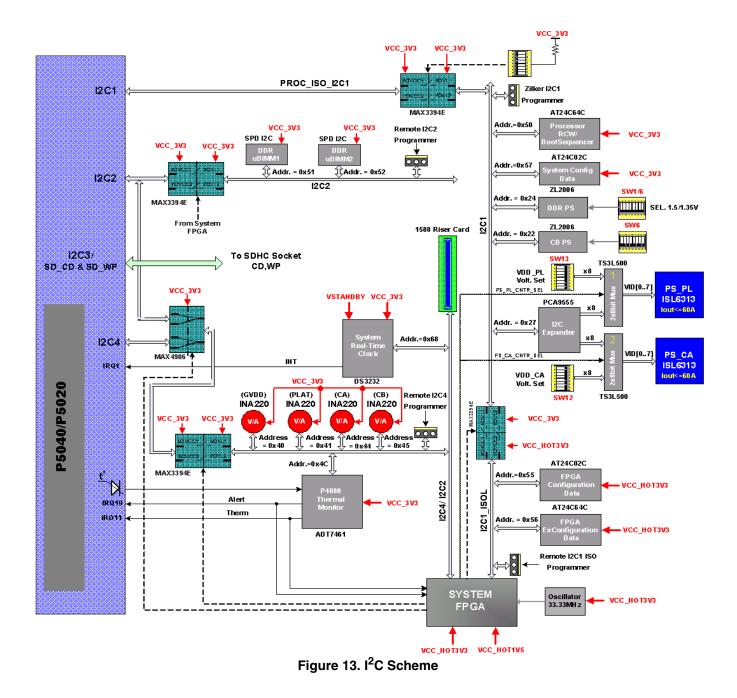
- I²C1 is electrically isolated before P5040/P5020 power-up to allow external or FPGA I²C masters to program Zilker power devices.
- I^2C2 and I^2C4 can function independently, or together with I^2C2 as the controller.

This table summarizes I²C bus device addresses while Figure 13 shows overall I²C scheme connections.

I ² C Bus	I ² C Address	Device	Notes	
1	0x22	LTC3889: VCORE PM Bus (TBD)	Controls rail VDD_CORE.	
1	0x24	LTC3876 regulator: DDR PM Bus (TBD)	Controls rail VDD_GVDD.	

Table 14. I²C Bus Device Map¹

I ² C Bus	I ² C Address	Device	Notes		
1	0x27	Platform regulator LTC3880 (TBD) I ² C/SMBus Expander	Controls VDD_PL		
1	0x50	Atmel AT24C64A or equivalent: 8192 bytes EEPROM	Stores RCW and PBLOADER data.		
1	0x55	Atmel AT24C02B or equivalent: 256 bytes EEPROM	Stores ngPIXIS accessed configuration data. Accessible when board is powered-off. WP		
1	0x56	Atmel AT24C64A or equivalent: 8192 bytes EEPROM	Stores ngPIXIS GMSA program code. Accessible when board is powered-off. WP		
1	0x57	Atmel AT24C02B or equivalent: 256 bytes SYSTEM ID EEPROM	Stores board specific data, including MAC addresses, serial number, errata, etc. WP		
1	n/a	ngPIXIS I ² C Port	For bus reset, monitoring, and master-only data collection.		
1	n/a	I ² C Access Header	For remote programming of boot sequencer startup code (if needed) or Zilker Lab PM Bus programmer.		
2	0x51	DDR3 SODIMM Socket 1	SPD EEPROM Type of device depends on uDIMM vendor.		
2	0x52	DDR3 SODIMM Socket 2	SPD EEPROM Type of device depends on uDIMM vendor.		
2	n/a	I ² C Access Header	For remote programming of boot sequencer startup code (if needed).		
3	n/a	Not used for I ² C functionality.	Used for alternate SD/eMMC functions: SD_WP and SD_CD instead of I ² C.		
4	0x40	INA220 Current/Power Monitor(n/a)	For current/power measurements on P5040/P5020 GVDD.		
4	0x41	INA220 Current/Power Monitor(n/a)	For current/power measurements on P5040/P5020 VDD_PL.		
4	0x44	INA220 Current/Power Monitor(n/a)	For current/power measurements on P5040/P5020 VDD_CA.		
4	0x45	INA220 Current/Power Monitor	For current/power measurements on P5040/P5020 VDD_CB.		
4	0x4C	ADT7461A or equivalent: Processor Thermal Monitor	For measuring P5040/P5020 temperature.		
4	0x68	DS3232: RTC	Used by software.		


Table 14. I ² C Bus Device Map ¹	(continued)
--	-------------

I ² C Bus	I ² C Address	Device	Notes
4	n/a	I ² C Access Header	For remote programming (if needed).
4	n/a	ngPIXIS I ² C Port	For bus reset, monitoring, and master-only data collection.

Table 14. I²C Bus Device Map¹ (continued)

¹Map addresses do not include the position of a transmitted address LSB (R/W bit).

NP

See Section 7, "Programming Model," for I²C implementation information.

5.1.15 EM1 and EM2 Management Buses

The P5040/P5020 has the following types of buses:

- SGMII and RGMII PHY management
- XAUI PHY management

Because one set of buses must span across multiple devices on the reference board, multiplexers are used to route from the P5040/P5020 to each SGMII and RGMII PHYs while EMI2_MDIO bus is routed to XAUI PHY. See Section 7, "Programming Model," for details on using GPIO to select EMI1 device.

PHY management bus control is summarized in this table.

Table 15. P5040/P5020 PHY Management Bus Map for EMI1 on Reference Board

Bus	FPGA_S1S0	Device
EMI1	00	On board RGMI PHYI
EMI1	01	SGMII

5.1.16 Enhanced Local Bus (eLBC) Interface

The eLBC has the following features:

- Supports GPCM, NAND FCM, and UPM.
- Only operates in 3.3V IO voltage.
- Clients include: PromJet Emulator, FPGA, NOR and NAND FLASH.

This figure shows the eLBC block diagram.

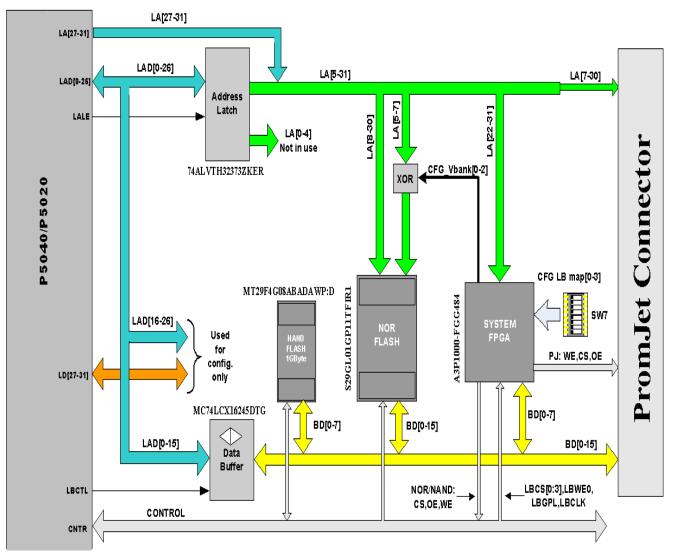


Figure 14. eLBC Interface

This table summarizes local bus chip select routing.

FLASH Selection cfg_lbmap ¹ [0:3]	NOR FLASH	NAND FLASH	PromJet	ngPIXIS	Description
0000	LCS0	LCS[2,4:6]	LCS1	LCS3	Boot from NOR FLASH region #0
0001	1				Boot from NOR FLASH region #1
0010					Boot from NOR FLASH region #2
0011					Boot from NOR FLASH region #3
0100					Boot from NOR FLASH region #4
0101					Boot from NOR FLASH region #5
0110					Boot from NOR FLASH region #6
0111					Boot from NOR FLASH region #7
1000	LCS1	LCS[2,4:6]	LCS0	_	Boot from PromJet & NOR FLASH unbanked.
1001	LCS2	LCS[0,4:6]	LCS1	—	Boot from NAND & NOR FLASH unbanked.
1010–1111	Invalid			id	

 Table 16. Local Bus Chip select Mapping

cfg_lbmap[0:3] are user configuration DIP-switches.

5.1.16.1 Address Latch/Data Transceivers

TI device SN74ALVTH32373ZKER provides address latch while the On Semiconductor device MC74LCX16245DTG provides dual data transceivers.

A transceiver latch enable (LE) input signal is driven by a P5040/P3041/P5020 LALE output signal.

- When LE is taken low, transceiver Q outputs are latched at input-set levels.
- Latched LA[0:26] + LA[27:31] comes directly from the CPU to build a full LA[0:31] address bus.
- The data bus was built with data buffers controlled by the CPU_LBCTL signal.
- D[0:26] is muxed with address.
- D[27:31] is only defined as data.

5.1.16.2 NOR FLASH

Spansion in-socket NOR FLASH memory (S29GL01GP11TFIR1) has 128 MB and a 16-bit data width. The FLASH is controlled by the GPCM local bus. Bus data is obtained from the data transceiver. For address information, see Section 5.1.16.1, "Address Latch/Data Transceivers."

FLASH functioning is as follows:

- Local bus $\overline{\text{LOE}}$ controls FLASH OE while $\overline{\text{LWE0}}$ controls the FLASH $\overline{\text{WE}}$ signal.
- FLASH RY/BY output signal detects the completion of FLASH programming or erasure. The signal is connected to the P5040/P5020 IRQ5 interrupt line.

- $\overline{\text{CS0}}$, $\overline{\text{CS1}}$, or $\overline{\text{CS2}}$ select NOR FLASH depending on "CFG_Vbank[0...2]".
- FPGA-generated signals are used to re-arrange internal addresses as per user configuration options "CFG_LBMAP[0...3]".

5.1.16.3 NAND FLASH

Micron NAND FLASH memory (MT29F4G08ABADAWP:D) has 512 MB and an 8-bit data width. NAND FLASH is controlled by the FCM Local Bus.

- FLASH R/B output indicates the status of a device operation. This open drain output connects to the P5040/P5020 LFR/B/LGPL4 line.
- $\overline{\text{CS0}}$, $\overline{\text{CS2}}$, or $\overline{\text{CS}[4:6]}$ select NAND FLASH as per "CFG_LBMAP[0...3]".

5.1.16.4 PromJet Connector

A PromJet connector can be used for debugging purposes. Perpiherals and embedded storage can be connected to the PromJet superset connector. The 16-bit PromJet modules (FLASH memory emulators) are available from Emutec. See www.emutec.com.

 $\overline{\text{CS0}}$ or $\overline{\text{CS1}}$ select between PromJet FLASH and onboard FLASH as per "CFG_LBMAP[0...3]".

5.1.17 Debug Features

The reference board provides a JTAG COP header and AURORA test points for debug purposes, using the CodeWarrior USBTAP already installed in the system.

To upgrade the U-Boot stored on the NOR FLASH, use the CodeWarrior USBTAP tool.

5.1.18 Clock

For a description of the clock architecture, see Section 5.4, "Clocks."

5.1.19 Temperature Anode and Cathode

The P5040/P5020 has two pins, Temp_Anode and Temp_Cathode, connected to a thermal body diode on the die that allow direct temperature measurement. The pins are connected to an ADT7461 thermal monitor that allows direct die temperature readings with an accuracy of ± 1 °C.

5.1.20 Power

For a description of the clock architecture, see Section 5.3, "System Power Connections."

5.2 System Control Logic

The P5040/P5020RDB contains FPGA ngPIXIS that implements the following functions:

- Resets sequencing/timing as per COP/JTAG connections.
- Maps/re-maps P5040/P5020 local bus chip selects to FLASH, compact FLASH, and so on.

- Transfers switch settings to processor/board configuration signals.
- Loads configuration data from RAM (registers) or EEPROM to override configuration (for self-test).
- Miscellaneous system logic:
 - COP reset merging
 - $I^2 C$ timeout reset

The FPGA is powered from standby power supplies and an independent clock. This allows the FPGA to control all aspects of board bring-up, including power, clocking, and reset.

The ngPIXIS is implemented in an Actel A3P1000-FGG484 484-pad micro-BGA. This figure shows the overall ngPIXIS architecture.

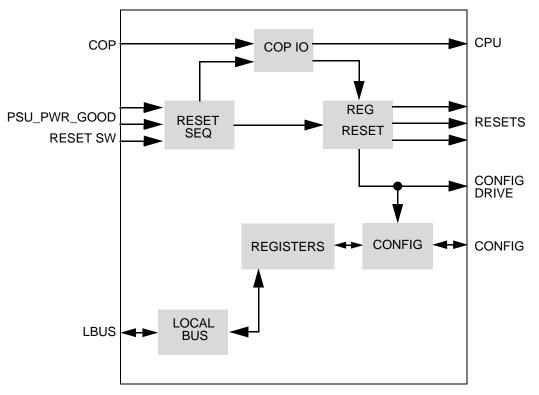


Figure 15. FPGA Overview

Main ngPIXIS features include the following:

Table 17. ngPIXIS Features

Feature		Description		
CONFIG	Configuration	Monitors and/or sets selected configuration signals.		
COP JTAG	COP	Handles, in a transparent manner, the merging of COP header resets with onboard resets.		
LOCALBUS	Local Bus	Interface between processor and REGFILE.		
REGISTERS	Register Files	Multi-ported register file containing status and configuration data.		

Table 17. ngPIXIS Features (continued)

Feature		Description		
REGRESETS	Register Resets	Drives resets from one of the following: sequencer, register-based software control, or VELA.		
RESETSEQ	Reset Sequence	Collects various reset/power-good signals and starts the global reset sequencer.		

5.2.1 CONFIG

CONFIG monitors and/or sets selected configuration signals, per the following examples.

- CONFIG can, in some instances, map switch settings into direct configuration outputs.
- For SYSCLK, it maps a 3-position switch into a 16-bit register initialization pattern that is subsequently used to initialize the clock generator.

5.2.2 COP JTAG

COP JTAG handles, in a transparent manner, the merging of COP header resets with onboard resets.

- It is critical that <u>COP_HRST</u> input reset the entire system **EXCEPT** for the COP JTAG controller; for example, <u>TRST</u> must not be asserted.
- If COP JTAG is not connected to P5040/P5020RDB, then it is critical that reset assert $\overline{\text{TRST}}$.

The COP core manages these modal operations.

5.2.3 LOCALBUS

LOCALBUS is the interface between processor and REGFILE; asynchronous signaling is used since access to the internal registers may be blocked.

5.2.4 REGISTERS

REGFILE is a dual-port register file that contains several types of registers.

NOTE

REGFILE must be able to accept (or arbitrate for) concurrent writes to the same register. This, however, is not a statistically likely occurrence.

5.2.5 REGRESETS

REGRESETS copies sequencer reset signals and allows register-based software to individually assert reset to the local bus, memory, and/or compact FLASH interfaces.

5.2.6 RESETSEQ

RESETSEQ collects various reset/power good signals and initiates the global reset sequencer.

NP

NOTE

ASLEEP negation indicates the processor has exited reset. ASLEEP assertion does not cause reset because, following HRST, the processor can "sleep" for multiple reasons.

Drivers can be driven following power up. Normal operation and/or use of the VELA engine can lead to tri-stated IOs. During power-off, all IO and output drivers must be tri-stated.

5.3 System Power Connections

The 12-V, 5-V, and 3.3-V power requirements for the reference board are met by the attached 1U-12V compatible power supply unit (PSU) of the P5040/P5020RDB. The 5 V and 3.3 V are connected to individual power planes in the P5040/P5020RDB PCB stackup. The 12-V power from the standard 1U header is treated as separate from the 1U-12V power, which supplies a large amount of current and is referred to as VCC_12V_BULK. Other supplies include VCC_5VSTBY and VCC_BAT.

Note that to support the FPGA standby operation, video cards, or other high-power-dissipation cards in the PCI Express slot, the PSU should support the following minimum specifications:

- Minimum 450 W overall, 500 W recommended
- PCIE 12 V supports a minimum of 150 W
- Minimum 5-V, 2-A standby current

All other power sources are also derived from the 1U PSU. The figure below shows the principal system power connections in relation to the FPGA control. For details about the processor power scheme implemented by this system, see the Power device feature row in Table 2.

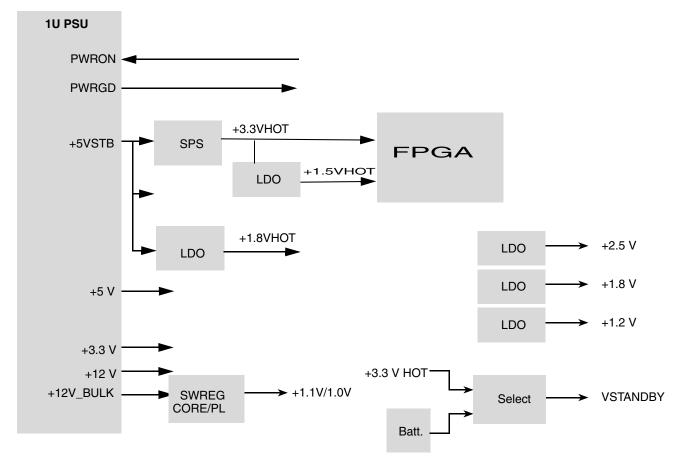


Figure 16. Power connections in relation to the FPGA control

5.3.1 **Power Supplies**

An 1U power supply SPI4601UG (460 W) is provided in the system to support the P5040/P5020 devices, the reference board and all its I/O cards. VCC_12, VCC_12V_BULK, VCC_5V_STBY, and VCC_RTC_BAT are provided from the reference board. In addition, the P5040/P5020RDB PS provides all the voltages necessary for correct operation x2 DDR3 SODIMMs, GETH, FPGA, and all onboard peripherals.

This figure details the power supplies.

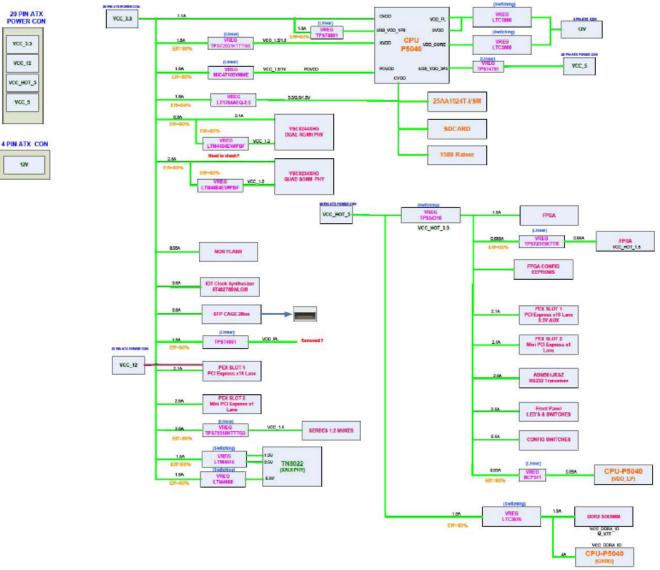


Figure 17. Power Supplies

5.3.1.1 PDN of Main Power Supplies

To reduce cost, a LTC3880 switcher regulator is used to supply both VDD_CA and VDD_CB (core voltage) up to 30A, 1% tolerance. The same chip is also used to supply VDD_PL(platform voltage).

5.3.1.2 PDN Options

Figure 18 shows various main power supplies combination used for different DUT types (depends on PROC_SEL switches: SW7[6:7], SW15[5]) as well as a lot of other optional power combinations which could be used for testing purposes. Power options supported are for P5040/P5021 and P5020/P5010 as shown highlighted in pink in the table below.

#	DUT Type	DUT Type PROC_SEL0,1	SW15[1:5]	PDN Config	7 Seg Indicator	PS_CA	PS_CB
			PDN_CFG [14] PROC_SEL2 [5]	-		Status	Status
0	GENERAL	хХХ	x1111X	PL=OFF; DUT not powered		OFF	OFF
1	P4080	x00	x00000	In de pen de nt		ON	ON
2	P5020	x01	x00000	Independent		ON	ON
3	P3041	x10	x00100	PL+CA+CB=Common		OFF	OFF
4	P2040 (Interposer)	x11	x00100	PL+CA+CB=Common		OFF	OFF
			x00001	Independent		ON	ON
5	P5040 x00	x00011	PL+CA=Common; CB=Independent		OFF	ON	
	1040		x00101	PL+CA+CB=Common		OFF	OFF
			x00111	CA+CB=Common; PL=Independent		ON	OFF
6	P5010	x10	x01011	PL+CA=Common; CB=Disconnected		OFF	OFF
7	P5021	x01	x01101	PL,CA=Independent; CB=Disconnected		ON	OFF

Figure 18. P5040/P5020RDB PDN Options

5.3.1.3 DDR

DDR SDRAM GVDD, termination (M_VTT) and reference (M_VREF) voltages are automatically set at the noted limits, depending on SW1[6] "DRAM TYPE" following power on:

SW1[6] = "1" (DDR3 regular)

- DDR3 default GVDD = 1.5V
- M_VTT = 0.75V
- $M_VREF = 0.75V$

SW1/6 = "0" (DDR3L low power)

- DDR3L default GVDD = 1.35V
- M_VTT = 0.675V
- M_VREF = 0.675V

5.3.1.4 LVDD

GETH LVDD voltage is set to 2.5V.

5.3.1.5 CVDD

CVDD voltage has these characteristics:

- Powers SD and SPI interfaces.
- Used to define IO_VSEL P5020 configuration pins setting.
- CVDD selection of 1.8, 2.5, or 3.3V is made by correctly setting J11.
- IO_VSEL is done automatically in compliance with selected CVDD values.

5.3.1.6 XVDD

XVDD voltage has these characteristics:

- Powers the SERDES block IO.
- Voltage value is set to 1.5 or 1.8V using SW3[5] or a corresponding FPGA control bit.

5.3.1.7 VDD_CORE

VDD_CB voltage has the following characteristics:

- Powers both cores A and B of P5040/P5020 Rev 1.0 and 2.0 devices.
- Set SW6[7] to "0" to turn off voltage. The voltage connected/disconnected from corresponding power plane in conjunction with selected PDN options (see Table 18)

5.3.1.8 POVDD

- Possible to set to 0V, 1.0V, or 1.5V.
- SW3[8] controls ON/OFF status of POVDD onboard secondary PS.
- SW8[6] selects desired POVDD value.
- J21 connects POVDD power line to a selected voltage OR "shorts" it to the GND plane.

5.3.1.9 BVDD & OVDD

BVDD (eLBC block) and OVDD (general IO) voltages are set to 3.3V.

5.3.1.10 USB

USB voltages has the following characteristics:

- USB transceiver: USB_VDD_3P3 voltage is set to 3.3V.
- USB PLL: USB_VDD_1P0 voltage is set to 1.0V.
- External periphery device power: USB1_VBUS, USB2_VBUS voltage = 5V corresponds to USB1_PWR_EN, USB2_PWR_EN signal; otherwise, [default] USB_VBUS = 0V.

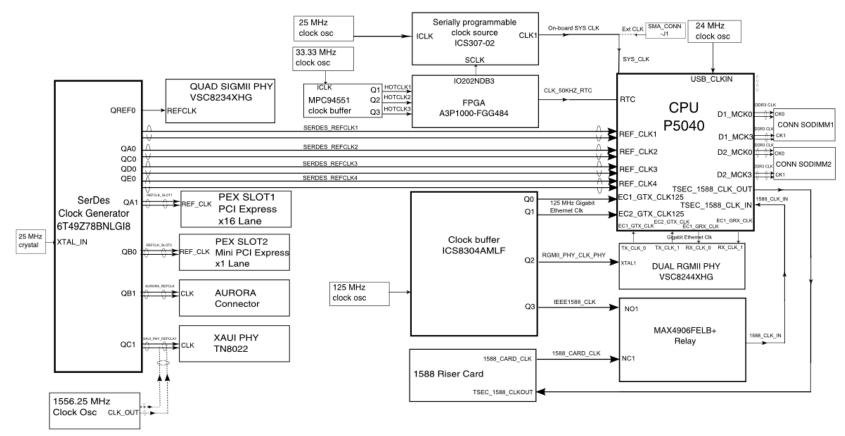
5.3.1.11 VDD_LP

VDD_LP voltage has the following characteristics:

- VDD_LP = 1.0V.
- Low-power security monitor supply: VCC_HOT3V3 or onboard battery BT1 (which is independent of the main PS) supply voltage to the VDD_LP via LDO regulator U21.
- When the main ATX PS is powered and connected to the RDB (VCC_HOT3V3 is present) then voltage is supplied to the CPU. Alternatively, the battery can supply voltage if J9 is "shorted."
- Auxiliary J10, VDD_LP_DET, provides low-power, tamper detect functionality.

This table lists all possible VDD_LP voltage options.

VDD_LP	J10	J9	VCC_HOT3V3	Battery	VDD_LP_TMP_DETECT
1.0V	1-2 2-3	Х	Existing	Х	On Off
	1-2 2-3	Short	X	Existing	On Off
0V	х	х	Not existing	Not existing	Х


 Table 18. VDD_LP Voltage Options

5.4 Clocks

The reference board clock signals are generated by the board in use. Table 19 lists the requirements of the reference board clock signals when the reference board is populated with a P5040 or P5020 processor. This board uses a custom IDT 6T49278BNLGI8 clock to meet the requirements listed in the table below.

This figure shows the principal clock connections for the P5040/P5020.

Conversely, the reference board provides a battery to the RTC clock to keep time while the system is turned off. This table summarizes P5040/P5020 clock distribution.

NOTE

DDR clocks are provided by the P5040/P5020.

Architecture

Table 19. P5040/P5020	Clock Distribution
-----------------------	---------------------------

Clock	Frequency	Destination	Device
SYSCLK	33–200 MHz	SYSCLK	IDT ICS307M-02: • t_R typ = 1ns t_F typ = 1ns • Duty-cycle <= 60% • Jitter type = \pm 120 ps • 25MHz input clock oscillator
RTC	~50KHz	RTCCLK	FPGA
SD_REF_CLK1	100.00 MHz 125.00 MHz 156.25 MHz	SD2_REFCLK(p,n) SLOT1 REFCLK(p,n)	 IDT 6T49278BNLGI8 generator RMS phase jitter type <= 3.04ps Ten selectable 100MHz, 125MHz, 150.05MHz, end 210.5MHz, end 210.5MHz
SD_REF_CLK2	100.00 MHz 125.00 MHz 156.25 MHz	SD2_REFCLK(p,n) SLOT2 REFCLK(p,n) AURORA DEBUG REFCLK(p,n)	156.25MHz and 312.5MHz clocks for PCI Express, sRIO and GbE, HCSL interface levels r
SD_REF_CLK3	100.00 MHz 125.00 MHz 156.25 MHz	SD3_REFCLK(p,n) TN8022 XAUI PHY	
SD_REF_CLK4	100.00 MHz 125.00 MHz 156.25 MHz	P5040 SD4_REFCLK(p,n)	
GTX_CLK125	125 MHz	P5040/P5020 • EC1_GTX_CLK125 • EC2_GTX_CLK125 • 1588_CLK_IN (MUX with 1588 Riser Card REFCLK) Vitess VSC8244 XTAL1	IDT ICS8304AMLN • 1-to-4 Fanout Clock Buffer • 125MHz input clock oscillator • Maximum output skew = 45ps
USB_PHYCLK	24 MHz	USB_CLOCK_In	Clock oscillator
FPGA_CLK	33.33 MHz	FPGA	Clock Oscillator

5.4.1 SYSCLK

A significant amount of P5040/P5020 timing is derived from SYSCLK input. The P5040/P5020 reference design board has the following features:

- SYSCLK pin is controlled by an IDT ICS307M-02 frequency synthesizer.
- IDT device, as part of the reset/power-up sequence, is serially configured by 24 data bits via ngPIXIS.
- 24 data bits can be controlled to set the SYSCLK speed to fine increments; this is done using the dynamic (re)configuration facilities of remote access ngPIXIS.
- To ease configuration, ngPIXIS pre-loads the 24-bit configuration pattern; this is done using one of eight popular values and by sampling three switches located on the motherboard, SW_SYSCLK[0...2].

This table summarizes switch-selectable clock generation possibilities. The calculations are based upon 25 MHz reference clock input. "Control Word" field values are characterized as follows:

- Data was sent to ICS307 upon startup or if commanded by the FPGA VELA controller.
- Values were calculated from ICS307 data sheet examples or using the IDT on-line calculator.
- Values were calculated for frequency accuracy versus lowest-jitter; the latter parameter was chosen.

SYSCLK_SEL[02]	Desired SYSCLK (MHz)	Actual SYSCLK (MHz)	Error (ppm)	ICS307 Control Word
000	67	66.666	4.985	0x370801
0 0 1	83	83.333	4.012	0x330601
010	100	100.000	0	0x330801
011	125	125.000	0	0x310381
100	133	133.333	2.503	0x310401
101	150	150.000	0	0x310501
110	160	160.000	0	0x310C03
111	167	166.666	2	0x310601

Table 20. SYSCLK Frequency Options

5.5 System Reset

Figure 19 shows P5040/P5020RDB reset connections from which the following can be inferred:

- ngPIXIS registers are reset by every reset input as well as GO.
 - GO is a VELA-controller output that is, in turn, controlled by ngPIXIS registers.
- Most ngPIXIS registers are reset by either RRST or XRST.
 - PX_AUX is the exception; it is ONLY reset by RRST and is unaffected by COP_HRST and wdog_rst.
- If the watchdog timer expires then all internal settings are reset. This includes VELA-controlled configurations.
- If the COP_HRST signal is asserted then all internal settings are reset. This includes VELA-controlled configurations.
- Reset sequencer is triggered at GO, COP_HRESET, or RST.
 - Sequencer asserts CPU_TRST when triggered by GO and RST.
 - Sequencer does NOT assert CPU_TRST when triggered by COP_HRST.
- Reset sequencer controls CPU_HRST. The sequencer must be active in order for the COP_HRST signal to pass through.
- Conversely, CPU_TRST is wire-OR'ed with the sequencer.

Architecture

- Thus, COP directly controls the CPU_TRST.

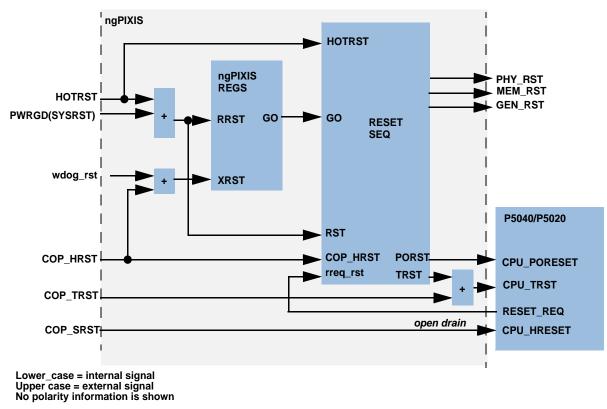


Figure 19. P5040/P5020RDB Reset Hierarchy

5.5.1 System Reset Performed by the FPGA Reset Sequencer

The reference board FPGA contains a reset sequencer that properly manages the orderly bring-up of the system. Note that this is not the same as the power sequencer, which is similar, but not specifically related to reset.

After the system transitions to having fully-stable power supplies, the reset sequencer performs the following:

- 1. Waits for all reset conditions to clear.
- 2. Configures and releases the processor from reset.
- 3. Idles waiting for further reset conditions to occur.

This table summarizes the reset conditions and actions of the FPGA.

Table 21. Reset Conditions and Actions of the FPGA Reset Sequencer

Signal	Туре	Description	Action
HOT_RST_B	External	HOT power stable	Restarts all FPGA internal state machines and registers
PWRGD	External	1U power stable	Causes full system reset unless the system is in S3 (power down) state

Table 21. Reset Conditions and Actions of the FPGA Reset Sequencer (continued)

Signal	Туре	Description	Action
SYS_HRST_B	External	COP tool reset request	Upon power good, sys_rst_b is sent to P5040/P5020 and all peripheral functional blocks
RESET_REQ_B	External	CPU requests reset	Full reset

5.5.2 Reset Terms

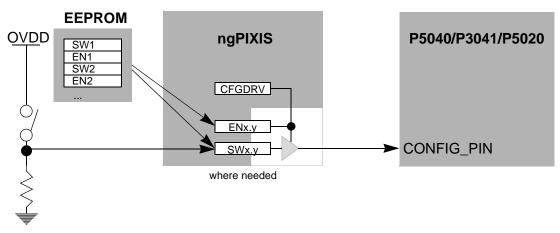
All reset operations are conducted within various portions of the ngPIXIS. See Section 5.2.6, "RESETSEQ," for details. This table summarizes the reset terms.

Reset Term	Description	Notes					
Input Terms							
COP_HRST	Asserted under System Reset Controller, Legacy COP, or Aurora control.	CPU_TRST must never be asserted. Mapped to CPU_PORESET.					
COP_SRST	Asserted under System Reset Controller, Legacy COP, or Aurora control.	 CPU_TRST must never be asserted. Mapped to CPU_HRESET. 					
COP_TRST	Asserted under Legacy COP or Aurora control.	Mapped to CPU_TRST.					
HOT_RST	Asserted low until VCC_HOT_3.3 is stable; thereafter it is negated high.	Toggles when power supply is removed/unplugged.					
PWRGD	 Asserted low: until ATX power supply is stable while system reset is asserted; e.g., motherboard switch or chassis cable switch. 	Asserted only after the following:Power-ON is asserted.Intervention by a manual user.					
RESET_REQ	Assertion by CPU(s) begins self-reset.	Short duration - needs stretching.					
VELA "GO"	Software asserted (local or remote).Triggers configuration controlled startup.	Not applicable to P5040/P5020RDB —					
	Output Terms						
CFG_DRV*	Asserts one clock, beyond \overline{CPU}_{HRST} , to ensure adequate configuration sampling.						
CPU_HRESET	Restarts P5040/P5020 cores.Holds debug data.	 Does not directly cause CPU_TRST. Derived from reset controller, Aurora HRESET, and Legacy COP SRST. 					
CPU_PORESET	Restarts P5040/P5020 cores.	 Does not directly cause CPU_TRST. Asserted with entire system reset. Derived from reset controller, Aurora PORESET, and Legacy COP HRST. 					
CPU_TRST	Resets P5040/P5020 JTAG controller.	 If COP is unattached, then must be asserted by others. If COP is attached, then others cannot perform assert.					
GEN_RST	HRST of PHY and other devices.	-					
MEM_RST	HRST of DDR3 DIMMs.	—					
PHY_RST	SRST of PHY.	—					

Table 22. Reset Terms

Configuration

5.5.3 Reset controller considerations


When creating the reset controller, consider the following:

PWRGD	Functions as general system reset (from ATX power supply).
COP_TRST	Assert during normal, non-COP startup.
COP_HRST	If asserted by COP then do not assert $\overline{\text{COP}_\text{TRST}}$. Resets the target system and processor $\overline{\text{HRESET}}$ inputs.
HRESET_REQ	Only has two-three clock cycles and requires pulse stretching.
SHMOO/Test Tracking	

Register PX_AUX must be reset by all reset sources except COP_HRST and WDOG_RST.

6 Configuration

This figure shows the configuration logic for signals configured using DIP-switches.

Figure 20. Configuration Logic

Configuration logic has several options, as follows:

- ngPIXIS, by default, transfers switch settings to the processor configuration pin during the HRESET_B assertion interval.
- Software running on the P5040/P5020 can initialize internal registers (SWx, ENx) that allow a board to configure itself for the next restart; this is called self-SHMOO or self-characterization.
- At reset, ngPIXIS copies configuration data from an external I²C EEPROM and applies these values to the SWx/ENx registers (while ignoring external hardware switches).

6.1 Configuration Options

There are three configuration options, as follows:

- 1. Require software configuration in order to support evaluation.
- 2. Easily and frequently changed by the end-user/developer.

3. Rarely or never altered.

Options 1 and 2 are implemented with DIP-switches and/or options in which it is possible to set software. Option 3 is normally implemented by resistors that are added/removed by competent technicians.

6.2 Configuration Modes

There are different types of reference board configurations. A list of these configuration types and their implementation is shown below.

Configuration Type	Implementation
Requires software configuration to support evaluation	Implemented with "DIP switches" and/or software-settable options
Expected to be easily or often changed by the end-user or developer	

Table 23. Configuration Types

When used with a P5040/P5020, the reference board switches and their default settings are shown in Appendix A, "Reference board Switch Assignments and Defaults When Used with P5040/P5020." Switch names exactly match the name on the schematics and on the printed-circuit board in most cases, except where a spare has been newly assigned and only the FPGA has changed.

6.2.1 Configuration Switches

For those signals configured using switches, the configuration logic is as shown in this figure.

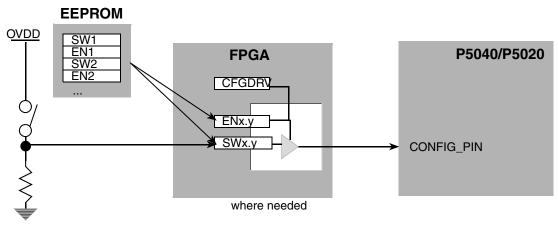


Figure 21. Configuration Switch Logic and P5040/P5020

The default action is for the FPGA to transfer the switch setting to the processor configuration pin during the PORESET_B assertion interval. However, local bus also provides a way to configure certain features dynamically.

Configuration

Switch names exactly match those found in the schematics and on the printed circuit board. See the P5040/P5020RDB Configuration Sheet for help setting the system to a default configuration and for more information about switch functionality.

- Dynamic (processor-only) configuration pins are only asserted during HRESET_B.
- Static configuration pins remain constant while system power is operational.

This table notes software register formats. Figure 21 shows a block diagram of control architecture and switch configurations.

Table 24. Configuration Switch Format

Switch		Bit						
DIP Switch Label	1	2	3	4	5	6	7	8
ngPIXIS Register Bit — Power Architecture: "Big Endian" format	0	1	2	3	4	5	6	7

This table provides a summary of switch configurations.

Group	Switches	Configuration Signals	Class
SW1	1–5	cfg_rcw_src[0:4]	Dynamic
(see Switch 1 (SW1) description)	6	cfg_dram_type	
	7	cfg_rsp_dis	
	8	cfg_elbc_ecc	
SW2	1	SDREFCLK1_QA_FSEL0	Static
(see Switch 2 (SW2) description)	2	SDREFCLK1_QA_FSEL1	
	3	SDREFCLK1_QD_FSEL0	
	4	SDREFCLK1_QD_FSEL1	
	5	SDREFCLK1_QE_FSEL0	
	6	SDREFCLK1_QE_FSEL1	
	7	UART1_3_SEL0	
	8	UART1_3_SEL1	
SW3	1	SW_LANE_SATA_SEL	Static
(see Switch 3 (SW3) description)	2	SW_MUX_SATA_CNTR	
	3	SW_LANE_4_SEL	
	4	SW_LANE_1617_SEL	
	5	SW_VDD_CB_EN	
	6	SW_POVDD_PWR_EN	
	7	SW_EP_nRC	
	8	SW_ENGUSE3	

Table 25. Configuration Switches

Group	Switches	Configuration Signals	Class
SW5	1	SW_SD1_REFSPREAD	Static
(see Switch 5 (SW5) description)	2	SW_UART2_nUART4	
	3	SW_UART2_UART4_SHDN	
	4	SW_UART3_nUART1	
	5	SW_XVDD_SEL	
	6-8	SW_SYSCLK0-2	
SW6 (see Switch 6 (SW6)	1-4	SW_LBMAP[0-3] (Local Bus Map)"	Static
description)	5-7	SW_ENGUSE[0:2]	Dynamic
	8	SW_RESET_REQ_BYPASS	Static
SW7	1–2	SW_CFG_GPINPUT[0:1]	Static
(see Switch 7 (SW7) description)	3-4	SW_CFG_SVR[0:1]	
	5	SW_TESTSEL_B	
	6-7	SW_PROC_SEL[0:1]	
	8	SW_I2C1_PROC_ISO	
SW8	1	SW_FORCE_I2C_OPEN	Static
(see Switch 8 (SW8) description)	2	SW_I2C_RCW_WP	
. ,	3	SW_FLASH_WP	
	4	SW_ID_WP	
	5	AURORA_CLK_EN	
	6	SW_VDD_POVDD_CNTL	
	7	SW_RESET_REQ_MODE	
	8	SW_LEGACY_POD_B	
SW9	1-3	10G_P2_PHYAD[0-2]	Static
(see Switch 9 (SW9) description)	4	10G_P2_PHYAD0	
. ,	5	XAUI_MDIO_SEL	
	6-8	Spare	
SW11	1	SDREFCLK1_QB_FSEL0	
(see Switch 11 (SW11) description)	2	SDREFCLK1_QB_FSEL1	Static
. ,	3	SDREFCLK1_QB_FSEL1	
	4-8	Spare	

Table 25. Configuration Switches (continued)

Group	Switches	Configuration Signals	Class
SW12	1	SW_cfg_pixisopt[0]	Static
(see Switch 12 (SW12) description)	2	SW_cfg_pixisopt[1]	
	3	iplwp-FPGA Ex Config Data WP SW_IPLWP	
	4	cfgwp-FPGA Config Data WP SW_CFGWP	
	5	ATX-PS System Power ON/OFF after ATX_PS ON SW_RP_CNTRL	
	6	spare6	_
	7–8	cfg_cfgopt[0:1]-System Config: Switches/I ² C Content[0:1]	Static
SW15	1-4	PDN_CFG[0:3]	Static
(see Switch 15 (SW15) description)	5	SW_PROC_SEL2	
	6–8	spare	
SW17	1-4	Reserved	
(see Switch 17 (SW17) description)	1	XAUI_JTAG_SEL1	
	2	XAUI_JTAG_SEL0	
	3	P1_DEVSEL	
	4-8	P2_DEVSEL	

Table 25. Configuration Switches (continued)

7 Programming Model

7.1 ngPIXIS Registers

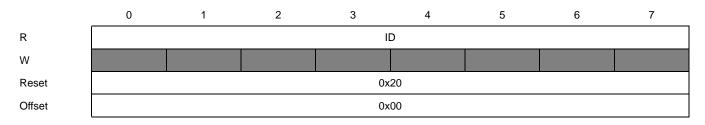
The ngPIXIS (FPGA) device contains several software accessible registers; they are accessed from the base address programmed for the eLBC LCS3 signal. Table 26 is the register map for the ngPIXIS device.

Table 26.	ngPIXIS	Register	Мар
-----------	---------	----------	-----

Base Address Offset	Name	ngPIXIS (PX) Register	Access	Reset
0x00	PX_ID	System ID	R	0x20
0x01	PX_ARCH	System Architecture	R	Board revision-dependant
0x02	PX_SCVER	System Control Version	R	FPGA version-dependant
0x03	PX_CSR	General Control/Status	R/W	0x00

Base Address Offset	Name	ngPIXIS (PX) Register	Access	Reset
0x04	PX_RST	Reset Control	R/W	0xFF
0x05	PX_SERCLK	Clock Enable	R/W	0xF8 for P5020 0xFC for P5040
0x06	PX_AUX	Auxiliary	R/W	0x00
0x07	PX_SPD	Speed	R	Variable
0x08	PX_BRDCFG0	Board Configuration 0	R/W	0x91
0x09	PX_BRDCFG1	Board Configuration 1	R/W	0x09
0x0A	PX_ADDR	SRAM Address	R/W	0x00
0x0B	PX_BRDCFG2	Board Configuration 2	R/W	0x8C for P5020 0x8E for P5040
0x0C	PX_GPIO_DIR	FPGA GPIO Direction	R/W	0x00
0x0D	PX_DATA	SRAM Data	R/W	Undefined
0x0E	PX_LED	LED Data	R/W	0x00
0x0F	PX_TAG	TAG Data	R	FPGA build data-dependant
0x10	PX_VCTL	VELA Control	R/W	0x00
0x11	PX_VSTAT	VELA Status	R	0x00
0x12	PX_HSTAT	P5040/P5020RDBP5040 /P5020 Status	R	0x03
0x13	Reserved	Reserved	Reserved	Undefined
0x14	PX_OCMCSR	OCM Control/Status	R/W	0x00
0x15	PX_OCMMSG	OCM Message	R/W	0x00
0x16 – 0x18	Reserved	Reserved	Reserved	Undefined
0x19	PX_SCLK0	System Clock 0	R/W	Variable
0x1A	PX_SCLK1	System Clock 1	R/W	Variable
0x1B	PX_SCLK2	System Clock 2	R/W	Variable
0x1C	PX_GPIO_OUT	FPGA GPIO Out	R	xx
0x1D	PX_GPIO_IN	FPGA GPIO IN	R/W	0x00
0x1F	PX_WATCH	WATCH	R/W	0x7F
0x20, 0x22,, 0x30	PX_SW(1:8), PX_SW11	Switches (1:8), 11	R/W	Variable
0x21, 0x23,, 0x31	PX_EN(1:8), PX_EN11	Enable Switches (1:8), 11	R/W	0x00

Table 26. ngPIXIS Register Map (continued)



Base Address Offset	Name	ngPIXIS (PX) Register	Access	Reset
0x32	PX_VID_DIR	FPGA VID(0-3)/GPIO(28-31) Direction - N/A for P5040RDB	R/W	0x00
0x33	PX_VID_OUT	FPGA VID(0-3)/GPIO(28-31) Out	R	XX
0x34	PX_VID_IN	FPGA GPIO(28-31) In	R/W	0x00

Table 26. ngPIXIS Register Map (continued)

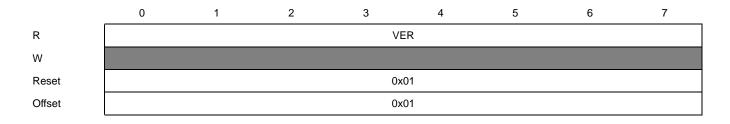
7.1.1 ID Register (PX_ID)

The ID register has a unique classification number; the software uses it to uniquely identify development boards. The number remains the same for all revisions.

Figure 22. ID Register (PX_ID)

Table 27. PX_ID Field Descriptions

Bits	Name	Description		
0–7	ID	Board identification		

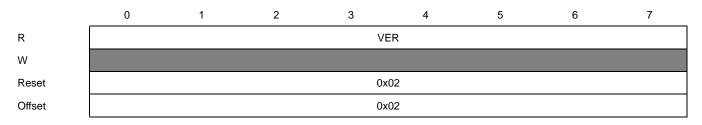

7.1.2 Architectural Version Register (PX_ARCH)

The architectural version register holds the board's architectural revision. Registers change only after a significant board revision—a software-visible and impacting change; for example, replacing a component with a slot or eliminating a "backup" device.

NOTE

Changing a FLASH manufacturer is not considered an architectural change as CFI-compliant FLASH programmers are meant to be adaptable.

Figure 23. Version Register (PX_ARCH)


Table 28. PX_ARCH Field Descriptions

Bits	Name	Description
0–7	VER	%00000001: Version 1%00010010: Version 2, and so on.

7.1.3 System Control FPGA Version Register (PX_SCVER)

The system control FPGA version register has the following features:

- Contains both minor and major ngPIXIS system controller FPGA revision information.
- Changes as FPGA features are added/corrected.
- Increments as FPGA images are distributed—FPGA images are (generally) designed to work on one or more board versions therefore there is no correlation between them.

Figure 24. Version Register (PX_SCVER)

Table 29. PX_SCVER Field Descriptions

Bits	Name	Description
0–7	VER	 %0000001: Version 1 %00000010: Version 2, etc.

7.1.4 General Control/Status Register (PX_CSR)

The general control/status register contains various control and status fields; see Table 30

Figure 25. General Control/Status Register (PX_CSR)

	0	1	2	3	4	5	6	7
R		EVESRC			9999		LED	FAIL
W								
Reset	0	Х	Х	Х	0	0	0	0
Offset	0x03							

Table 30. PX_CSR Field Descriptions

Bits	Name	Description
0-2	33EVESRC	 Selects one of several inputs for mapping to an internal signal, "esig". "esig", in turn, can connect to special outputs; see "EVEDEST" below. 000esig <- event_b 001esig <- trig_out 010esig <- evt_b(2) 011esig <- evt_b(3) 111esig <- chkstpi_b
3–53	EVEDEST	 Selects the output pin. "esig" is driven to a selected output pin; see "EVESRC" (bits 0-2). 001esig -> trig_in 010esig -> evt_b(7) 011esig -> evt_b(8) 100esig -> evt_b(9)
6	LED	Set: PX_LED register value drives diagnostic LEDs.Unset: LEDs default to activity monitors; see "Debug" section.
7	FAIL	 Set/Fail: external LED ("FAIL") is lighted while "PASS" LED is unlighted. Unset/Clear: "PASS" LED is lighted while "FAIL" LED is unlighted.

7.1.5 Reset Control Register (PX_RST)

The reset control register can be used to reset all or part of the system; see Table 31. Register-based resets merge with others internal resets; for example, the VELA sequencer. The setting of bits during a VELA configuration cycle can have unpredictable results.

Figure 26. Reset Control Register (PX_RST)

	0	1	2	3	4	5	6	7
R	ALL	—			SXSLOT	РНҮ	—	GEN
W	ALL				373101	FUI		GEN
Reset	1	1	1	1	1	1	1	1
Offset		0x04						

Table 31. PX	_RST Field	Descriptions
--------------	------------	--------------

Bits ¹	Name	Description
0	ALL ²	Resets the entire system.0 - Initiates a full system reset.1 - Normal operation
1–3	_	Reserved
4	SXSLOT	 Resets any board connected via the SGMII/XAUI riser card slot. 0 - SXSLOT_RST_B is asserted. 1 - SXSLOT_RST_B is deasserted.
5	РНҮ	Resets 10/100/1G Ethernet PHY. • 0 - PHY_RST_B is asserted. • 1 - PHY_RST_B is deasserted.
6	_	Reserved
7	GEN	 Resets miscellaneous board features; see schematics and/or documentation. 0 - GEN_RST_B is asserted. 1 - GEN_RST_B is deasserted.

¹PX_RST register bits cannot reset independently.

²PX_RST[ALL] only resets during a full system reset. Bits [1-7] must be cleared with software.

7.1.6 Clock Enable Register (PX_SERCLK)

This section outlines the clock enable register.

Figure 27. Clock Enable Register (PX_SERCLK)

	0	1	2	3	4	5	6	7
R		SDREFCLK1_	SDREFCLK2_	SDREFCLK3_ EN		SDREFCLK4_	_	—
W	SERCER_EN	EN	EN	EN	USBCER_EN	EN		
Reset	1	1	1	1	1	1	0	0
Offset		0x05						

¹ The Default depends on chip: For P5040 ='1', otherwise '0';

Table 32. PX_SERCLK Field Descriptions

Bits	Name	Description
0	SDREFCLK1_QA_EN	Enables/disables the SerDes Reference Clock to Bank 1 and Slot 1 0 - disabled 1 - enabled
1	SDREFCLK1_QB_EN	 Enables/disables the SerDes Reference Clock to Aurora port and Slot 2 0 - disabled 1 - enabled
2	SDREFCLK2_QC_EN	Enables/disables the SerDes Reference Clock to Bank2 and XAUI PHY 0 - disabled 1 - enabled

Bits	Name	Description			
3	SDREFCLK3_QD_EN	 Enables/disables Serdes Reference Clock to Bank 3. 0 - disabled 1 - enabled 			
4	USBCLK_EN	Enables/disables USB Clock Oscillator. • 0 - disabled • 1 - enabled			
5	SDREFCLK4_QE_EN	Enables/disables Serdes Reference Clock to Bank 4.0 - disabled1 - enabled			
6	OE_REF_EN	Enables/disables SGMII PHY Reference Clock.			
7	_	Reserved			

Table 32. PX_SERCLK Field Descriptions (continued)

7.1.7 Auxiliary Register (PX_AUX)

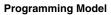
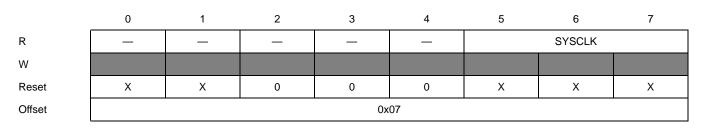

The auxiliary register is a general-purpose R/W register that resets at initial Power-ON or via chassis reset sources. RX-AUX preserves its value between Aurora-, COP- or watchdog-initiated resets.

Figure 28. Auxiliary Register (PX_AUX)

	0	1	2	3	4	5	6	7
R								
W	USER							
Reset	0	0	0	0	0	0	0	0
Offset	0x06							

Table 33. PX_AUX Field Descriptions


Bits	Name	Description
0–7	USER	User defined

7.1.8 Speed Register (PX_SPD)

The speed register communicates current switch-selectable settings for the SYSCLK clock generator. PX_SPD enables software to accurately initialize timing-dependant parameters for local bus, DDR memory, I²C clock rates, and so on.

Figure 29. Speed Status Register (PX_SPD)

Table 34. PX_SPD Field Descriptions

Bits	Name	Description
0–1	PIXISOPT	Reflects SW12(1-2) settings.
2-4	_	Reserved (0)
5–7	SYSCLK	Reflects SW5(6-8) settings; see Table 35.

Table 35. SYSCLK Frequency Options

SYSCLK (PX_SPD[5:7])	Actual SYSCLK	Nominal SYSCLK	Error	ICS307 Control Word
000	66.666 MHz	67 MHz	4.985 ppm	0x370801
0 0 1	83.333 MHz	83 MHz	4.012 ppm	0x330601
010	100.000 MHz	100 MHz	0 ppm	0x330801
011	125.000 MHz	125 MHz	0 ppm	0x310381
100	133.333 MHz	133 MHz	2.503 ppm	0x310401
101	150.000 MHz	150 MHz	0 ppm	0x310501
110	160.000 MHz	160 MHz	0 ppm	0x310C03
111	166.666 MHz	167 MHz	2 ppm	0x310601

7.1.9 Board Configuration Register (PX_BRDCFG0)

This register controls board configurations; they can be changed at any time.

Figure 30. Board Configuration Register 0 (PX_BRDCFG0)

	0	1	2	3	4	5	6	7
R W	I ² C2_EN	l ² C4_nl ² C2	NGI ² C ACC	I ² C4_ISOLb	PJWP_B	FLASHCS_SE L0	FLASHCS_SE L1	SD8X
Reset	1	0	0	1	0	0	0	1
Offset	0x08							

Table 36. PX_BRDCFG0 Field Descriptions

Bits	Name	Description
0	I ² C2_EN	Controls processor access to I ² C2 connected devices: DDR1 SPD and DDR2 SPD. • 0 - Inaccessible • 1 - Accessible
1	l ² C4_nl ² C2	Controls I ² C4 integration—if it is separated from or integrated into an I ² C2 bus. • 0 - Separated I ² C4 ¹ • 1 - Integrated I ² C4 = I ² C2
2	NGI ² C_ACC	 Controls CPU access to I²C1 connected devices owned by ngPIXIS: FPGA, EEPROM FPGA Configuration Data, and EEPROM FPGA ExConfiguration Data. 0 - Inaccessible 1 - Accessible
3	I ² C4_ISOLb	Controls processor access to I ² C4 connected devices: Thermal Monitor, RTC, 1588 riser card, and FPGA. • 0 - Inaccessible • 1 - Accessible
4	PJWP_B	Controls write access to PROMJet. • 0 - No access • 1 - Access
5	FLASHCS_SEL0	Controls SPICS connections to Spansion HS SPI FLASH S25FL129P0XNFI001 as per FLASHCS_SEL1. See Table 37.
6	FLASHCS_SEL1	Controls SPICS connection to Spansion HS SPI FLASH S25FL129P0XNFI001 as per FLASHCS_SEL0. See Table 37.
7	SD8X	 0 - Uses SPI_CS(0:3)_B pins as SDHC data bits 4:7 for SDHC-8bit mode. SPI CS_B pins are pulled high. 1 - Uses SPI_CS(0:3)_B pins with the SPI controller. SDHC data bits 4:7 are pulled high. Only uses SDHC-4bit mode.

¹Bit [1]: used for P5040/P5020.

Table	37	FLASHCS SEL
Table	U /.	LAGINGO_OLL

FLASHCS_SEL1	FLASHCS_SEL0	SPI_CS_SEL	Description
0	0	SPI_CS0	
0	1	SPI_CS1	SPI FLASH S25FL129P0XNFI001
1	0	NC	operates when CVDD = 3.3V.
1	1		

7.1.10 Board Configuration Register (PX_BRDCFG1)

This register controls board configurations; they can be changed at any time.

Figure 31. Board Configuration Register 1 (PX_BRDCFG1)

	0	1	2	3	4	5	6	7
R	—		EMI1_SEL1	EMI1_SEL0	EMI1_SEL_E			SPI_I ² C_SEL
W		—	EIVIII_3ELI	EIVII I_SELU	Ν	—	—	3FI_I C_3EL
Reset	0	0	0	0	1	0	0	1
Offset	0x09							

Table 38. PX_BRDCFG1 Field Descriptions¹

Bits	Name	Description
0	—	Reserved.
1	—	Reserved.
2	EMI1_SEL1	Controls connection to EMI1 bus as per EMI1_SEL0 and EMI1_SEL1. See Table 39.
3	EMI1_SEL0	Controls connection to EMI1 Bus as per EMI1_SEL0 and EMI1_SEL1. See Table 39.
4	EMI1_SEL_EN	 Always enabled. Controls EMI1 signal access to PEX sideband connectors. 0 - Disconnected 1 - Connected
5	—	Reserved
6	—	Reserved
7	SPI_I ² C_SEL	Controls selection of 1588 riser card interface: SPI or I ² C4 bus interface. • 0 - I ² C4 • 1 - SPI

¹See reg_BRDCFG2[1:2] for extra control signals.

EMI1_SEL1	EMI1_SEL0	Connected PHYs
0	0	Onboard Vitesse RGMII PHY
0	1	Onboard SGMII PHY
1	0	Reserved
1	1	Reserved

Table	39.	MII-1	Bus	Selection
-------	-----	-------	-----	-----------

7.1.11 Address Register (PX_ADDR)

The address register is a general-purpose R/W register used to index an internal 256-byte SRAM array. PX_ADDR resets at initial Power-ON or via chassis reset sources. The register preserves its value between COP- or watchdog-initiated resets. PX_ADDR write is non-atomic.

Figure 32. SRAM Address Register (PX_ADDR)



Table 40. PX_ADDR Field Descriptions

Bits	Name	Description
0–7	ADDR	PX_DATA read/writes to this SRAM address array.

Exercise caution when sharing SRAM between processors and/or the ngPIXIS GMSA core.

7.1.12 Board Configuration Register (PX_BRDCFG2)

This register controls board configurations; they can be changed at any time.

Figure 33. Board Configuration Register 2 (PX_BRDCFG2)

	0	1	2	3	4	5	6	7
R	MGN DISABLE	GPIO TEST	REG/GPIO	THERM_SHTN_ON	PS_PL_CNTR	PS_CA_CNTR	LANE_SATA_	_
W	WGN_DISABLE	GPIO_TEST	SEL	THERM_SHIN_ON	_SEL	_SEL	SEL	
Reset	1	0	0	0	1	1	1	0
Offset	0x0B							

¹ The Default depends on chip: For P5040 = '1', otherwise '0'.

Bits	Name	Description
0	MGN_DISABLE	Controls signal usage:VID(not used)or alternate functions. • 0 - VID • 1 - Default - Alternate function: GPIO2(28:31) ¹
1	GPIO_TEST	Controls GPIO[0:7] signal usage: GPIO or alternate functions and P5040 VID/GPIO[28:31] • 0 - Alternate functions: – GPIO[0:3] – MII Management signals selection – GPIO[4:7] – USB1_PWR_EN, USB2_PWR_EN, USB1_PWR_FAULT, USB2_PWR_FAULT – GPIO[28:31] - VID[0:3] (Not applicable for P5040) • 1 - GPIO Note: Not relevant for 1 - GPIO.
2	REG/GPIO SEL	 Selects signals: CPU GPIO[0:1] drives MII Management EMI1_SEL[0:1] FPGA PX_BRDCFG1[1:3,6] drives MII Management EMI2_SEL0(Not Applicable) 0 - GPIO² 1 - FPGA
3	THERM_SHDN_ON	Controls THERM ALERT Power shutdown. • 0 - Not active • 1 - Function is active
4	PS_PL_CNTR_SEL	Controls Platform Rail from either jumper J61 or I2C1. • 0 - Selects I2C1 • 1 - Selects jumper J61
5	PS_CA_CNTR_SEL	 Not applicable - Controls Core Rail from either jumpers J60 and J62 or I2C1. 0 - Selects I2C1 1 - Selects jumpers J60 and J62
6	LANE_SATA_SEL	Controls SerDes MUX routing of SATA1, SATA2 connectors signals • 0- SATA Connectors signals are routed to P5020 BANK 3 Lanes 16, 17. • 1- SATA Connectors signals are routed to P5040 BANK 4 Lanes 18, 19
7	LANE_1617_SEL	 Controls SerDes MUX routing of SATA1, SATA2 connectors signals and XAUI signals to TN8022 PHY. O- SATA Connectors signals are routed to P5020 BANK 3 Lanes 16, 17. 1- XAUI signals are routed to P5040 BANK 3 Lanes 16, 17

Table 41. PX_BRDCFG2	Field Descriptions
----------------------	---------------------------

¹ In order to work with P5040 GPIO2, it is needed to program MGN_DISABLE = '1' and GPIO_TEST = '1'.

² GPIO0 drives EMI1_SEL0; GPIO1 drives EMI1_SEL1; GPIO2 drives EMI1_SEL1; GPIO3 drives EMI2_SEL0; and register PX_BRDCFG1[6] drives EMI2_SEL1.(Not supported for P5040/P5020RDB)

7.1.13 GPIO FPGA Direction (PX_GPIO_DIR)

The GPIO FPGA direction register controls the R/W direction of GPIO[0:7] signals passed via the FPGA.

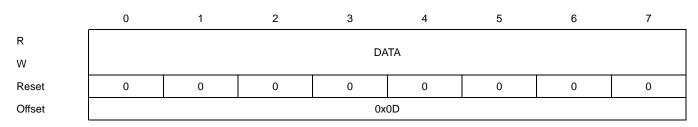
NOTE

The direction of P5040/P5020 GPIO[0:7] must be configured.

Figure 34. GPIO Direction (PX_GPIO_DIR)

	0	1	2	3	4	5	6	7
R W	R/W GPIO(0)	R/W GPIO1)	R/W GPIO(2)	R/W GPIO(3)	R/W GPIO(4)	R/W GPIO(5)	R/W GPIO(6)	R/W GPIO(7)
Reset	0	0	0	0	0	0	0	0
Offset	0x0C							

Table 42. PX_GPIO_DIR Field Descriptions¹

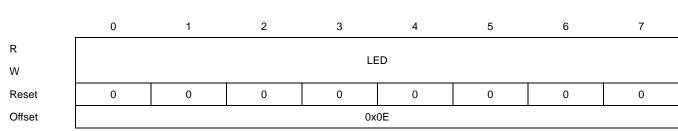

Bits	Name	Description
0-7	R/W GPIO(0-7)	Controls the FPGA GPIO[0-7] (R/W) signal direction. • 0 - Processor output (W) • 1 - Processor input (R)

¹Used when processor GPIO signals are utilized as GPIO: reg_BRDCFG2[1] = '1' and reg_BRDCFG2[2] = '1'.

7.1.14 Data Register (PX_DATA)

The data register is a general-purpose (non-atomic) R/W register used to R/W to an internal 256-byte SRAM array. PX_DATA resets at initial Power-ON or via chassis reset sources. The register preserves its value between COP- or watchdog-initiated resets.

Figure 35. Power Status Register (PX_DATA)


Table 43. PX_DATA Field Descriptions

Bits	Name	Description
0–7	DATA	PX_ADDR-indexed contents of the SRAM array.

7.1.15 LED Data Register (PX_LED)

The LED data register can directly control indicator LEDs; for example, for software message purposes. Direct LED control is only possible if PX_CSR[LED] is set to '1'.

Figure 36. LED Control Register (PX_LED)

Table 44. FS_LED Field Descriptions

Bits	Name	Description
0–7	LED	 Indicator LEDs (L0:7) have corresponding values. Set a bit to '1' to light a LED.

7.1.16 FPGA TAG (PX_TAG)

The FPGA TAG register contains the following information: embedded FPGA build date, minor revisions, image name, and so on.

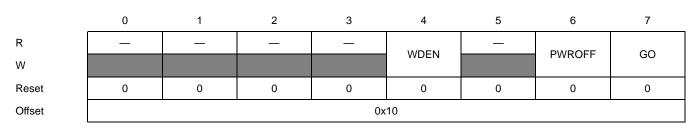
NOTE

Type "ngPIXIS INFO" under eDINK to display FPGA TAG register data.

Figure 37. TAG Register (PX_TAG)

	0	1	2	3	4	5	6	7
R				TA	١G			
W								
Reset	0	0	0	0	0	0	0	0
Offset	0x0F							

7.1.17 VELA Control Register (PX_VCTL)


The VELA control register can start and control the configuration reset sequencer as well as other configuration/test-related features.

NOTE

Not supported for P5040/P5020RDB.

Figure 38. Configuration Sequencer Control Register (PX_VCTL)

Table 45. PX_VCTL Field Descriptions

Bits	Name	Description
0–3	_	Reserved
4	WDEN	 Watchdog Enable 0 - Disabled 1 - Enabled; must be disabled with 2^29 clock cycles (> 5 min. at 30ns clock) or the system will reset. At any time the software can reset the bit and disable the watchdog.
5	—	Reserved
6	PWROFF	 Power Off [Default] 0 - Normal Power-ON 1 - Forced Power-OFF; HW must restore power as the software cannot force Power-ON.
7	GO	Go O - VELA sequencer is idle. 1 - VELA sequencer starts then halts till software resets GO to '0'.

NOTE

PWROFF = [Default] '0'; normal operations do not interfere with the power switches.

PWROFF = '1' overrides any user- or APM-initiated power switch event.

7.1.18 VELA Status Register (PX_VSTAT)

The VELA status register can be used to monitor configuration sequencer activity.

NOTE

Not supported for P5040/P5020RDB.

	0	1	2	3	4	5	6	7
R	—	—	_			_	_	BUSY
W								
Reset	0	0	0	0	0	0	0	0
Offset	0x11							

Figure 39. Configuration Sequencer Status Register (PX_VSTAT)

Table 46. PX_VSTAT Field Descriptions

Bits	Name	Description
0–6	_	Reserved
7	BUSY	0 - VELA sequencer is idle.1 - VELA sequencer is busy.

7.1.19 P5040/P5020RDB Status Register (PX_HSTAT)

The P5040/P5020RDB status register can be used to monitor optional connectivity.

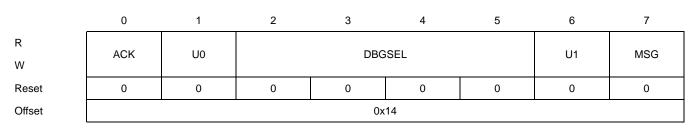
Figure 40. P5040/P5020RDBP5040/P5020RDB Status Register (PX_HSTAT)

	0	1	2	3	4	5	6	7
R	_	_		_	_	_	PRESENT _1588	NAND_TYPE
W								
Reset	0	0	0	0	0	0	1	1
Offset	0x12							

Table 47. PX_HSTAT Field Descriptions

Bits	Name	Description
0–5	_	Reserved
6	PRESENT_1588	 0 - Detects 1588 riser card 1 - No riser card
7	NAND_TYPE	 0 - Micron MT29F4G08ABADAWP:D 1 - Numonix NAND08GW3B2CN1E

7.1.20 OCM Control/Status Register (PX_OCMCSR)


The OCM control/status register is a general-purpose R/W register that communicates between P5040/P5020 and the FPGA GMSA processor.

NOTE

Not supported for P5040/P5020RDB.

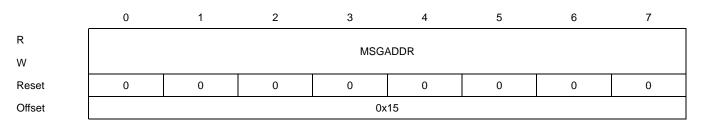
Figure 41. Configuration Sequencer Status Register (PX_OCMCSR)

Table 48. PX_OCMCSR Field Descriptions

Bits	Name	Description
0	ACK	 0 - No acknowledgement 1 - OCM software signals that message has been processed.
1	UO	Unassigned values
2–5	DBGSEL	Selects information for the GMDBG register.
6	U1	Unassigned values
7	MSG	 0 - No message 1 - Software-initiated signal notifies OCM of a message.

NOTE

Software sets the values. Use different software in the GMSA processor to redefine the values.


7.1.21 OCM Message Register (PX_OCMMSG)

The OCM message register is a general-purpose R/W register used to communicate between P5040/P5020 and the FPGA GMSA processor.

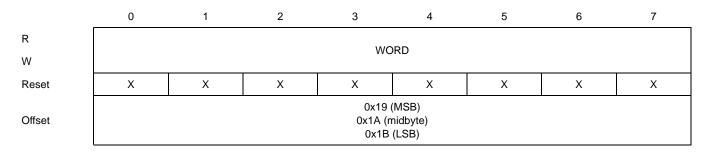
NOTE

Not applicable for P5040/P5020RDB.

Figure 42. Configuration Sequencer Status Register (PX_OCMMSG)

Table 49. PX	OCMMSG Field Descriptions
--------------	---------------------------

Bits	Name	Description
0–7	ADDR	Address in the shared SRAM is still being processed.

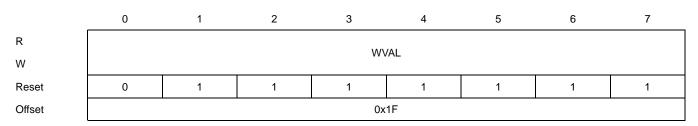

NOTE

Software sets the values. Use different software in the GMSA processor to redefine the values.

7.1.22 SCLK[0:2] Registers (PX_SCLK[0:2])

The SCLK[0:2] registers control the 24-bit configuration word of the ICS307 system clock generator.

Figure 43. SCLK[0:2] Register (PX_SCLK[0:2])


Table 50. PX_SCLK[0:2] Field Descriptions

Bits	Name	Description
0–7	WORD	 R - Returns current programmed values. W - WORD-written values are driven into ICS307 during reset sequencing if PX_VCFGEN0[SCLK]=1. Otherwise, the encoded value of CFG_SYSCLK(0:2) is used.

7.1.23 Watchdog Register (PX_WATCH)

The watchdog register selects a watchdog timer event for the VELA-controlled sequencer. The selected watchdog works independently of other watchdog timers; for example, those within P5040/P5020.

Figure 44. Watchdog Register (PX_WATCH)

Table 51. PX_WATCH Field Descriptions

Bits	Name	Description
0–7	WVAL	 R - Returns current programmed values. W - Sets the watchdog timer.

The PX_WATCH register has the following characteristics:

- Represents the eight most significant bits of an internal 34-bit watchdog timer.
- New values MUST be written before the PX_VCTL[WDEN] bit is set to '1'.
- Rewrites new values (except the PX_VCTL[GO] bit) every time the register is reset due to timeout or other reset/restart conditions.
- Time formulae:
 - Timer Base = 26-bits x 30ns interval = 2.01326592 seconds
 - where the upper 8-bit field represents (seconds)
 - [(decimal value of the 8-bit field) x (2.01326592sec)] + 2.01326592sec

This table lists examples of PX_WATCH register values.

Table 52. Watchdog	Timer Values
--------------------	--------------

Timeou	t Value	Timeout		
Binary	Hex	Timeout		
1111111	0xFF	0.59 min		
0111111	0x7F	4.29 min		
00111111	0x3F	2.15min		
00011111	0x1F	1.07 min		
00001111	0x0F	32.1 sec		
00000111	0x07	16.1 sec		
00000011	0x03	8.05 sec		
0000001	0x01	4.027 sec		
0000000	0x00	2.013 sec		

7.1.24 Switch Register (PX_SWx)

The switch register defines configuration switch overrides. Each SWx register and its bits correspond to a similarly named board switch.

If a matching ENx bit is set then the value written to the corresponding register bit is selected, not the corresponding DIP-switch.

NOTE

SW registers do NOT reflect the content of physical switches.

Figure 45. Switch Register (PX_SW(1:8))

	0	1	2	3	4	5	6	7
R W	SWx #1	SWx #2	SWx #3	SWx #4	SWx #5	SWx #6	SWx #7	SWx #8
Reset	0	0	0	0	0	0	0	0
Offset	0x20, 0x22, 0x24,							

Table 53. PX_SW (1:8) Field Descriptions

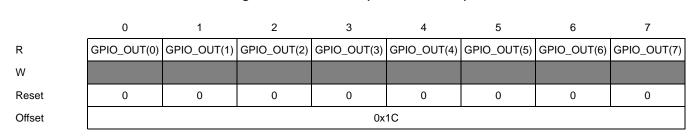
Bits	Name	Description
0–7	SWx #b	Values that will replace switch SWx #b.

7.1.25 Switch Enable Register (PX_ENx)

The switch enable register selects the bit source PX_SWx register or corresponding switches.

Figure 46. Switch Enable Register (PX_EN(1:8))

	0	1	2	3	4	5	6	7
R W	ENx #1	ENx #2	ENx #3	ENx #4	ENx #5	ENx #6	ENx #7	ENx #8
Reset	0	0	0	0	0	0	0	0
Offset								
Olisei	0x21, 0x23, 0x25,							


Table 54. PX_EN(1:8) Field Descriptions

Bits	Name	Description
0–7	ENx #b	 0 - External switch SWx #b controls a corresponding configuration pin; the value is unaffected by the system controller. 1 - Internal register SWx #b controls a corresponding configuration pin; the value is unaffected by the external switches.

7.1.26 GPIO OUT (PX_GPIO_OUT)

The read-only GPIO_OUT register stores GPIO values—values written from the processor when GPIO signals are used for testing purposes, and the corresponding register PX_GPIO_DIR bit = '0'.

Figure 47. GPIO OUT (PX_GPIO_OUT)

Table 55. PX_GPIO_OUT Field Descriptions¹

Bits	Name	Description
0-7	GPIO_OUT(0-7)	Stores processor-written GPIO(0-7) value.

¹When testing processor GPIO signals: reg_BRDCFG2[1] = '1', reg_BRDCFG2[2] = '1', and the corresponding PX_GPIO_DIR bit = '0'.

7.1.27 GPIO Input (PX_GPIO_IN)

The GPIO input register drives processor GPIO input values when GPIO signals are used for testing purposes, and the corresponding PX_GPIO_DIR bit = '1'.

Figure 48. GPIO Input (PX_GPIO_IN)

	0	1	2	3	4	5	6	7
R	GPIO_IN(0)	GPIO_IN(1)	GPIO_IN(2)	GPIO_IN(3)	GPIO_IN(4)	GPIO_IN(5)	GPIO_IN(6)	GPIO_IN(7)
W								
Reset	0	0	0	0	0	0	0	0
Offset	0x1D							

Table 56. PX_GPIO_IN Field Descriptions¹

Bits	Name	Description
0-7	GPIO_IN(0-7)	Processor input value: GPIO(0-7)

¹When testing processor GPIO signals: reg_BRDCFG2[1] = '1', reg_BRDCFG2[2] = '1', and the corresponding PX_GPIO_DIR bit = '1'.

7.2 EEPROM Data

SystemID EEPROM stores important P5040/P5020RDB system data such as the board ID, errata (as shipped), manufacturing date, and Ethernet MAC address.

SystemID EEPROM is a factory-programmed, write-protected device. Data content is described in detail in AN3638: The SystemID Format for Power Architecture® Development Systems; the document is found on the http://www.freescale.com website.

8 Revision History

This table provides a revision history for this document.

Table 57. Document Revision History

Rev. Number	Date	Substantive Change(s)
0	05/2013	Initial public release

Appendix A Reference board Switch Assignments and Defaults When Used with P5040/P5020

NOTE

For the default settings listed in the tables below, ON = 1 and OFF = 0.

The following tables describe the default settings for the devices listed.

This figure describes switch 1 (SW1).

SW1	P5040	P5021 ON = "1"	P5020 ON = "1"		SIGNALS	Description
SW1.1	0	0	0	0	RCW_SRC0	SW1.1 – SW1.5: RCW_SRC[0:4]
SW1.2	1	1	1	1		When NOR flash is blank, use 11000
SW1.3	1	1	1	1	RCW_SRC2	(RCW Configuration Source) Defines RCW configuration sources [0:4]
SW1.4	0	0	0	0	RCW_SRC3	as per P5040RDB.
SW1.5	1	1	1	1	RCW_SRC4	
SW1.6	1	1	1	1	DRAM_TYPE	'0' - 1.35V DDR3 technology (test doc) '1' - 1.5V DDR3L technology [Default]
SW1.7	1	1	1	1	RSP_DIS Response Disable	'0' - RESET pauses at RCW '1' - Continued Boot [Default]
SW1.8	0	0	0	0	eLBC_ECC	'0' - Disabled NAND Flash ECC [Default] '1' - Enabled NAND Flash ECC

Figure 49. Switch 1 (SW1) description

This figure describes switch 2 (SW2).

P5040 ON = "1"	P5021 ON = "1" OFF =	ON = "1"	ON = "1"	SIGNALS	Description
0	0	0	0	SDREFCLK1 QA FSELO	FSEL[0:1] = '00' - processor and slot 1 serdes refclk1 = 100Mhz
		-			FSEL[0:1] = '01' - processor and slot 1 serdes refclk1 = 125Mhz
0	0	0	0	SDREFCLK1 QA FSEL1	FSEL[0:1] = '10' - processor and slot 1 serdes refclk1 = 156.25Mhz
-	-	-			FSEL[0:1] = '11' - processor and slot 1 serdes refclk1 = 312.5Mhz
0	0	0	0	SDREECIK1 OD ESELO	FSEL[0:1] = '00' - processor serdes refclk3 = 100Mhz
Ŭ	°	°	•	SDALL CERT_QD_1SEE	FSEL[0:1] = '01' - processor serdes refclk3 = 125Mhz
1	1	1	1		FSEL[0:1] = '10' - processor serdes refclk3 = 156.25Mhz
1	1	-	1	SDALL CERT_QD_1SEET	FSEL[0:1] = '11' - processor serdes refclk3 = 312.5Mhz
0	0	0	0		FSEL[0:1] = '00' - processor serdes refclk4 = 100Mhz
U	0	U C	0	SDREFCERT_QC_FSEC	FSEL[0:1] = '01' - processor serdes refclk4 = 125Mhz
1	1	1	1		FSEL[0:1] = '10' - processor serdes refclk4 = 156.25Mhz
1	1	T	1	SDREFCERI_QE_FSELI	FSEL[0:1] = '11' - processor serdes refclk4 = 312.5Mhz
					UART1_3[0:1] = '00' - UART1 is connected to RS-232 DB9 BOTTOM;
<u> </u>			•		Selects UART1 with flow
0	0	0	0	UARTI_3_SELU	Default
					UART1_3[0:1] = '01' - UART3 or Reserved
					UART1_3[0:1] = '10' - Connects FPGA to RS-232 DB9 BOTTOM; the UART
0	0	0	0	UART1_3_SEL1	processor is not used.
					UART1_3[0:1] = '11' - Reserved
	P5040 ON = "1" OFF = "0" 0 0 0 1 1 0 1	P5040 ON = "1" OFF = "0" P5021 ON = "1" OFF = "0" 0 0 0 0 0 0 0 0 1 1 0 0 1 1 0 0 1 0 0 0	P5040 ON = "1" OFF = "0" P5021 ON = "1" OFF = "0" P5020 ON = "1" OFF = "0" 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0	P5040 ON = "1" OFF = "0" P5021 ON = "1" OFF = "0" P5020 ON = "1" OFF = "0" P5010 ON = "1" OFF = "0" 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 1 0	P5040 ON = "1" OFF = "0" P5021 OFF = "0" P5020 ON = "1" OFF = "0" P5010 ON = "1" OFF = "0" SIGNALS 0 0 0 1 1 SIGNALS 0 0 0 0 SIGNALS 0 0 0 0 SIGNALS 0 0 0 SIGNALS SIGNALS 1 1 1 SIGNALS SIGNALS 1 1 1 <t< td=""></t<>

Figure 50. Switch 2 (SW2) description

This figure describes switch 3 (SW3).

SW3	Default P5040 ON = "1" OFF = "0"	P5021 ON = "1"	P5020 ON = "1"		SIGNALS	Description
SW3.1	o	0	1	1	SW_LANE_SATA_SEL	SATA_SEL = '0' - Connects FPGA to select P5040 SATA1 &2 for SERDES Bank 4. SATA_SEL = '1' - Connects FPGA to select P5020 SATA1 &2 for SERDES Bank
SW3.2	0	0	1	1	SW_MUX_SATA_CNTR	3 with SW_LANE_1617_SEL = '0'. Same as SW_LANE_SATA_SEL. Same as SW_LANE_SATA_SEL.
SW3.3	1	1	1	1	SW_LANE_4_SEL	SGMII_SEL = '0' - Connects FPGA to select SGMII for SERDES Bank 1. SGMII_SEL = '1' - Connects FPGA to select x1 mini PCIe slot2 for SERDES Bank 1.
SW3.4	1	1	0	0	SW_LANE_1617_SEL	XAUI_SEL = '0' - Connects FPGA to select P5020 SATA 1 & 2 with SW_LANE_SATA_SEL = '1' XAUI_SEL = '1' - Connects FPGA to select P5040 XAUI for SERDES Bank 3.
SW3.5	1	1	1	1	SW_VDD_CB_EN	Reserved
SW3.6	1	1	1	1	SW_POVDD_PWR_EN	POVDD Monitor SEL = '0' - POVDD is not monitored. POVDD Monitor SEL = '1' - POVDD is monitored.
SW3.7	0	0	0	0	SW_EP_nRC	Reserved
SW3.8	1	1	1	1	SW_ENGUSE3	Future ENG_USE3. '0' - Spare. Future ENG_USE3. '1' - Default.

Figure 51. Switch 3 (SW3) description

This figure describes switch 5 (SW5).

SW5	Default P5040 ON = "1" OFF = "0"	ON = "1"	P5020 ON = "1"	ON = "1"	SIGNALS	Description
SW5.1	0	0	0	0	SW_SD1_REFSPREAD	Reserved
SW5.2	1	1	1	1	SW_UART2_nUART4	'0' - P5020/P5040 UART4 connected to RS-232 DB9 TOP '1' - P5020/P5040 UART2 connected to RS-232 DB9 TOP [Default]
SW5.3	0	0	0	0	SW_UART2_UART4_S HDN	'0' - Active UART2/UART4 connected to RS-232 DB9 TOP [Default] '1' - UART2/UART4 in shutdown mode
SW5.4	0	0	0	0	SW_UART3_nUART1	'0' - P5020/P5040 UART1 Flow Control (RTS, CTS) connected to RS-232 DB9 BOTTOM [Default]
SW5.5	0	0	0	0	SW_XVDD_SEL	'1' - P5020/P5040 UART3 connected to RS-232 DB9 BOTTOM. '0' - XVDD = 1.8V [Default] '1' - XVDD = 1.5V
SW5.6	0	0	1	1	SW_SYSCLK0	Selects SYSCLK[0:2] speed as listed below: • '000' - 66.666 MHz
SW5.7	1	1	0	0	SW_SYSCLK1	• '001' - 83.333 MHz [Example for P3041] • '010' - 100 MHz[Example for P5040]
SW5.8	0	0	0	0	SW_SYSCLK2	• '011' - 125 MHz • '100' - 133.333 MHz [Example for P5020]
						• '101' - 150 MHz • '110' - 160 MHz • '111' - 166.666 MHz

Figure 52. Switch 5 (SW5) description

This figure describes switch 6 (SW6).

SW6			Default P5020 ON = "1" OFF = "0"	ON = "1"	SIGNALS	Description
SW6.1	0	0	0	0	SW_LBMAP0	Controls local bus chip select options.
					(Local Bus Map)	• '0000' - LCS0=NOR #0, LCS1=PJET, LCS2/4/5/6=NAND [Default]
SW6.2	0	0	0	0	SW_LBMAP1	• '0001' - LCS0=NOR #1, LCS1=PJET, LCS2/4/5/6=NAND
						• '0010' - LCS0=NOR #2, LCS1=PJET, LCS2/4/5/6=NAND
SW6.3	0	0	0	0	SW_LBMAP2	'0011' - LCS0=NOR #3, LCS1=PJET, LCS2/4/5/6=NAND '0100' - LCS0=NOR #4, LCS1=PJET, LCS2/4/5/6=NAND
						• 0100 - LCSU=NOR #4, LCS1=PJET, LCS2/4/5/6=NAND • 0101' - LCS0=NOR #5, LCS1=PJET, LCS2/4/5/6=NAND
SW6.4	0	0	0	0	SW_LBMAP3	• '0110' - LCS0=NOR #6, LCS1=PJET, LCS2/4/5/6=NAND
						• '0111' - LCS0=NOR #7, LCS1=PJET, LCS2/4/5/6=NAND
						• '1000' - LCS0=PJET, LCS1=NOR, LCS2/4/5/6=NAND
						• '1001' - LCS0/4/5/6=NAND, LCS1=PJET, LCS2=NOR
						• '1010'-'1111' - Reserved
SW6.5	1	1	1	1	SW_ENGUSE0	
SW6.6	1	1	1	1	SW_ENGUSE1	ENG_USE[0:2] - Reserved - '111' - Default
SW6.7	1	1	1	1	SW_ENGUSE2	
SW6.8	1	1	1	1	SW_RESET_REQ_BYPA	'0' - Reset request is ignored
500.5	-	1	-	-	SS	'1' - Action defined by RESET_REQUEST_MODE SW8.7. [Default]

Figure 53. Switch 6 (SW6) description

This figure describes switch 7 (SW7).

SW7	Default P5040 ON = "1" OFF = "0"	P5021 ON = "1"	P5020 ON = "1"	ON = "1"	SIGNALS	Description
SW7.1	1	1	1	1	SW_CFG_GPINPUT0	GPINPUT[0:1]
SW7.2	1	1	1	1	SW_CFG_GPINPUT1	Overwrites PLL settings when CFG_PLL_CONFIG_SEL_B = 1'b0. '11' - Default
SW7.3	1	1	1	1	SW_CFG_SVR0	SVR [0:1] - '00' - Reserved SVR [0:1] - '01' - Reserved
SW7.4	1	1	1	1	ISW CEG SVR1	SVR [0:1] - '10' - Reserved SVR [0:1] - '11' - P5040/P5020 [Default]
SW7.5	1	0	1	0	SW_TESTSEL_B	PROCESSOR TYPE - '0' - P5010 (Single core of P5020), P5021(dual core of P5040)
						PROCESSOR TYPE - '1' - P5020/P5040 [Default]
SW7.6	0	0	0	0	ISW PROCISELU	PROC_SEL[0:1] - '00' - P5040 with SW_TESTSEL_B = '1' [Default]
						PROC_SEL[0:1] - '01' - P5020 with SW_TESTSEL_B = '1' PROC_SEL[0:1] - '01' - P5021 with SW_TESTSEL_B = '0'
SW7.7	0	1	1	0	ISW PROC SEL1	PROC_SEL[0:1] - '00' - P5021 With SW_TESTSEL_B = '0'
SW7.8	1	1	1	1	SW_I2C1_PROC_ISO	Isolate CPU access on I2C devices - '0' - CPU cannot access devices
					(Processor Isolated)	Isolate CPU access on I2C devices - '1' - CPU accesses [Default]

Figure 54. Switch 7 (SW7) description

This figure describes switch 8 (SW8).

SW8	Default P5040 ON = "1" OFF = "0"	P5021 ON = "1"		Default P5010 ON = "1" OFF = "0"	SIGNALS	Description
SW8.1	1	1	1	1	SW_FORCE_I2C_OPEN (I2C1_Force)	Controls CPU access to 12C1 connected devices owned by ngPIXIS device: FPGA as well as EEPROM FPGA Configuration Data and EEPROM ExConfiguration Data. '0' - System cannot access devices '1' - System can access devices [Default]
SW8.2	0	0	0	0	SW_I2C_RCW_WP (RCW Write Protect)	'0' - No EEPROM WP [Default] '1' - EEPROM WP
SW8.3	1	1	1	1	SW_FLASHWP_B (Flash Write Protect)	'0' - NOR Flash and SPI Flash memory WP '1' - No NOR Flash and SPI Flash memory WP [Default]
SW8.4	0	o	o	0	SW_IDWP (ID Write Protect)	 '0' - No EEPROM WP [Default] Defines EEPROM FPGA Configuration Data WP. '1' - EEPROM WP Defines EEPROM FPGA Configuration Data WP.
SW8.5	1	1	1	1	AURORA_CLK_EN	Reserved
SW8.6	0	0	0	0	SW_VDD_POVDD_CN TL	'0' - POVDD=1.5V Ready; [Default] '1' - POVDD = 1.0V Ready;
SW8.7	1	1	1	1	SW_RESET_REQ_MOD E (Reset Request Mode)	 '0' - RESET_REQ asserts HRESET to processor and resets system if SW_RESET_BYPASS = '1'. '1'- RESET_REQ asserts PORESET to processor and resets system if SW_RESET_BYPASS = '1'. [Default]
SW8.8	0	0	0	0	SW_LEGACY_POD_B (JTAG or Aurora Select)	'0' - P5040/P3041/P5020 JTAG port connects to COP/JTAG connector [Default] '1' - P5040/P3041/P5020 JTAG port connects to Aurora connector

Figure 55. Switch 8 (SW8) description

This figure describes switch 9 (SW9).

SW9		P5021 ON = "1"	P5020 ON = "1"	Default P5010 ON = "1" OFF = "0"	SIGNALS	Description
SW9.1	0	0	0	0	10G_PHYAD0	
SW9.2	0	0	0	0	10G_PHYAD1	Set XAUI PHY port 1 address [0:2] = '000'
SW9.3	0	0	0	0	10G_PHYAD2	
SW9.4	1	1	1	1	10G_P2_PHYAD0	Set XAUI PHY port 2 address 0 = '1'
SW9.5	0	0	0	0	XAUI_MDIO_SEL	 '0' - Normal MDIO operation at 1.2V; [Default] '1' - Programming mode for MDIO at 2.5V;
SW9.6	1	1	1	1		Reserved
SW9.7	1	1	1	1		Reserved
SW9.8	1	1	1	1		Reserved

Figure 56. Switch 9 (SW9) description

This figure describes switch 11 (SW11).

C\A/11		P5021 ON = "1"	ON = "1"	Default P5010 ON = "1" OFF = "0"	SIGNALS	Description
						FSEL[0:1] = '00' - Aurora slot and slot 2 serdes refclk of bank1 lane E =
SW11.1	0	0	0	0	SDREFCLK1 QB FSELO	100Mhz
	-	-	-	-		FSEL[0:1] = '01' - Aurora slot and slot 2 serdes refclk of Bank 1 lane E =
						125Mhz
						FSEL[0:1] = '10' - Aurora slot and slot 2 serdes refclk of Bank 1 lane E =
SW11.2	0	0	0	0	SDREECIK1 OB ESEL1	156.25Mhz
50011.2	50011.2 0 0	Ŭ	Ŭ	Ŭ		FSEL[0:1] = '11' - Aurora slot and slot 2 serdes refclk of Bank 1 lane E =
						312.5Mhz
SW11.3	0	0	0	0	SDREFCLK2 QC FSELO	FSEL[0:1] = '00' - processor serdes refclk bank2 and XAUI PHY = 100Mhz
50011.5	Ŭ.	Ŭ.	Ŭ.	Ŭ.	SUREFULKZ_QU_FSELU	FSEL[0:1] = '01' - processor serdes refclk bank2 and XAUI PHY = 125Mhz
						FSEL[0:1] = '10' - processor serdes refclk bank2 and XAUI PHY =
SW11.4	1	1	1	1	SDREFCLK2 QC FSEL1	156.25Mhz
50011.4	-	-	-	-		
						FSEL[0:1] = '11' - processor serdes refclk bank2 and XAUI PHY = 312.5Mhz
SW11.5	1	1	1	1	SDREFCLK1_QA_EN	'0' - SERDES Bank1 Refclk to processor and slot1 disabled.
50011.5	-	-	-	-		'1' - SERDES Bank1 Refclk to processor and slot1 enabled.
SW11.6	1	1	1	1	SDREFCLK1_QB_EN	'0' - SERDES Bank1 Refclk to slot1 disabled.
57711.0	-	-	-	-	SURFICENT_QB_EN	'1' - SERDES Bank1 Refclk to processor and slot1 enabled.
SW11.7	1	1	1	1	SDREFCLK1 QC EN	'0' - SERDES Bank1 Refclk to processor and slot1 disabled.
57711.7	-	-	-	-	JONEFCENT_QC_EN	'1' - SERDES Bank1 Refclk to processor and slot1 enabled.
SW11.8	1	1	1	1	SDREFCLK1 QD EN	'0' - SERDES Bank1 Refclk to processor and slot1 disabled.
57711.5	-	-	-	1	SOME CERT_GO_EN	'1' - SERDES Bank1 Refclk to processor and slot1 enabled.

Figure 57. Switch 11 (SW11) description

This figure describes switch 12 (SW12).

SW12	Default P5040 ON = "1" OFF = "0"	P5021 ON = "1"	P5020 ON = "1"	ON = "1"	SIGNALS	Description
SW12.1	1	1	1	1	SW_PIXISOPT0	'0' - Enabled debugger for OCM ngPIXIS option
						'1' - Disabled debugger for OCM ngPIXIS option. [Default]
SW12.2	1	1	1	1	SW_PIXISOPT1	Reserved. '1' - [Default]
SW12.3	1	1	1	1	SW_IPLWP	'0' - No EEPROM WP for FPGA ExConfiguration Data WP.
50012.5		1	(IPL Write Protect)	'1' - EEPROM WP for FPGA ExConfiguration Data WP. [Default]		
SW12.4	0	0	0	0	SW CFGWP	'0' - No EEPROM WP [Default]
50012.4	Ŭ	Ŭ.	Ŭ	°	510-010	'1' - EEPROM WP
					SW RP CNTRL	'0' - 1U-PS is turned on but the board remains OFF; then press the power
SW12.5	0	0	0	0	(1U Power Supply)	switch. [Default]
					(20100000000000000000000000000000000000	'1' - Board powers automatically after ATX-PS is turned ON.
SW12.6	0	0	0	0	SW SPARE9 6	
	-	-	-	-		Reserved
SW12.7	0	0	0	0	SW CFGOPT0	CFGOPT[0:1] = '00' - Normal switch configurations [Default]
					-	CFGOPT[0:1] = '01' - Reserved
SW12.8	0	0	0	0	SW CFGOPT1	CFGOPT[0:1] = '10' - Memory configuration with I2C content
					_	CFGOPT[0:1] = '11' - Interactive configuration with editable I2C content

Figure 58. Switch 12 (SW12) description

This figure describes switch 15 (SW15).

SW15	Default P5040 ON = "1" OFF = "0"	P5021 ON = "1"	P5020 ON = "1"	Default P5010 ON = "1" OFF = "0"	SIGNALS	Description
SW15.1	o	0	0	0	PDN_CFG0	PDN_CFG[0:3] '0000' - Independent supplies for COREA/B and VDD_PL for p5040/p5020
SW15.2	o	1	0	1	PDN_CFG1	'0010' - Reserved
SW15.3	o	1	0	0	PDN_CFG2	'0110' - PL, CA - Independent; CB - Disconnected; [Default for P5021] '0101' - CB -Disconnected for P5010
SW15.4	o	0	0	1	PDN_CFG3	'1111' - PL-OFF; DUT not Powered
SW15.5	1	1	0	1	SW_PROC_SEL2	Combined with SW7.7-SW7.6 defines processor type [2:0]. For detailes see description in SW7.6-SW7.7 '0' - Select processor to be P5020 '1' - Default for P5040/P5021/P5010
SW15.6	0	0	0	0		Reserved
SW15.7	0	0	0	0		Reserved
SW15.8	0	0	0	0		Reserved

Figure 59. Switch 15 (SW15) description

This table describes SW17.

SW17	P5040	P5021 ON = "1"	P5020 ON = "1"	ON = "1"	SIGNALS	Description
SW17.1	1	1	1	1		Reserved
SW17.2	1	1	1	1		Reserved
SW17.3	1	1	1	1		Reserved
SW17.4	1	1	1	1		Reserved
SW17.5	1	1	1	1	XAUI_JTAG_SEL1	1' - Normal operation [Default]
SW17.6	1	1	1	1	XAUI_JTAG_SEL0	1' - Normal operation [Default]
SW17.7	0	0	0	0	P1_DEVSEL	0' - Normal operation [Default]
SW17.8	0	0	0	0		0' - Normal operation [Default] W17) description

Figure 60. Switch 17 (SW17) description

How to Reach Us:

Home Page: freescale.com

Web Support: freescale.com/support Information in this document is provided solely to enable system and software implementers to use Freescale products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document.

Freescale reserves the right to make changes without further notice to any products herein. Freescale makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each customer application by customer's technical experts. Freescale does not convey any license under its patent rights nor the rights of others. Freescale sells products pursuant to standard terms and conditions of sale, which can be found at the following address: freescale.com/SalesTermsandConditions.

Freescale, the Freescale logo, CodeWarrior, and QorlQ are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. All other product or service names are the property of their respective owners. The Power Architecture and Power.org word marks and the Power and Power.org logos and related marks are trademarks and service marks licensed by Power.org. © 2013 Freescale Semiconductor, Inc.

Document Number: P5040RDBUG Rev. 0 05/2013

