
PMSMRT1170B
MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC
Motors
Rev. 2 — 5 January 2024 User guide

Document information
Information Content

Keywords PMSMRT1170B , PMSM, FOC, MCAT, MID, Motor control, Sensorless control, Speed control,
Servo control, Position control

Abstract This user guide describes the implementation of the motor-control software for 3-phase
Permanent Magnet Synchronous Motors.

https://www.nxp.com

NXP Semiconductors PMSMRT1170B
MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC Motors

1 Introduction

SDK motor control example user guide describes the implementation of the motor-control software for 3-phase
Permanent Magnet Synchronous Motors (PMSM) using following NXP platforms:

• i.MX RT1170-EVKB (MIMXRT1170-EVK)
• Freedom Development Platform for Low-Voltage, 3-Phase PMSM Motor Control (FRDM-MC-LVPMSM)

The document is divided into several parts. Hardware setup, processor features, and peripheral settings are
described at the beginning of the document. The next part contains the PMSM project description and motor
control peripheral initialization. The last part describes user interface and additional example features.

Available motor control examples types with supported motors, and possible control methods are listed in
Table 1.

Possible control methods in SDK example
Example type Supported motor Scalar and

Voltage
Current FOC

(Torque)
Sensorless
Speed FOC

Sensored
Speed FOC

Sensored
Position FOC

Linix 45ZWN24-
40 (default motor) ✓ ✓ ✓ N/A N/A

pmsm_enc
Teknic M-2310P

(with ENC) ✓ ✓ ✓ ✓ ✓

Table 1. Available example type, supported motors and control methods

SDK motor control example description:

• pmsm_enc - pmsm example uses float arithmetic, the example contains sensored and also sensorless field
oriented vector control (FOC). This example can be used for sensor and sensorless motor control application
both. Default motor configuration is tuned for the Linix 45ZWN24-40 motor.

The SDK motor control example contains several additional features:

• FreeMASTER pmsm_float_enc.pmpx project provides a simple and user-friendly way for algorithm tuning,
software control, debugging, and diagnostics.

• MCAT - Motor Control Application Tuning page based on the FreeMASTER runtime debugging tool.
• MID - Motor parameter identification.

The control software and the PMSM control theory, in general, are described in Sensorless PMSM Field-
Oriented Control (FOC) (document DRM148).

PMSMRT1170B All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2 — 5 January 2024
2 / 64

https://www.nxp.com/design/development-boards/i-mx-evaluation-and-development-boards/i-mx-rt1170-evaluation-kit:MIMXRT1170-EVK
https://www.nxp.com/design/development-boards/freedom-development-boards/mcu-boards/nxp-freedom-development-platform-for-low-voltage-3-phase-pmsm-motor-control:FRDM-MC-LVPMSM
https://www.nxp.com/webapp/Download?colCode=DRM148

NXP Semiconductors PMSMRT1170B
MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC Motors

2 Hardware setup

The following chapter describes the used hardware and the setup needed for proper example working

2.1 Linix 45ZWN24-40 motor
The Linix 45ZWN24-40 motor is a low-voltage 3-phase permanent-magnet motor with hall sensor used in
PMSM applications. The motor parameters are listed in Table 2.

Characteristic Symbol Value Units

Rated voltage Vt 24 V

Rated speed - 4000 RPM

Rated torque T 0.0924 Nm

Rated power P 40 W

Continuous current Ics 2.34 A

Number of pole-pairs pp 2 -

Table 2. Linix 45ZWN24-40 motor parameters

Figure 1. Linix 45ZWN24-40 permanent magnet synchronous motor

The motor has two types of connectors (cables). The first cable has three wires and is designated to power the
motor. The second cable has five wires and is designated for the hall sensors’ signal sensing. For the PMSM
sensorless application, only the power input wires are needed.

2.2 Teknic M-2310P motor
The Teknic M-2310P-LN-04K motor is a low-voltage 3-phase permanent-magnet motor used in PMSM
applications. The motor has two feedback sensors (hall and encoder). For information on the wiring of feedback
sensors, see the data sheet on the manufacturer webpage. The motor parameters are listed in Table 3.

Characteristic Symbol Value Units

Rated voltage Vt 40 V

Rated speed - 6000 RPM

Table 3. Teknic M-2310P motor parameters

PMSMRT1170B All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2 — 5 January 2024
3 / 64

NXP Semiconductors PMSMRT1170B
MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC Motors

Characteristic Symbol Value Units

Rated torque T 0.247 Nm

Rated power P 170 W

Continuous current Ics 7.1 A

Number of pole-pairs pp 4 -

Table 3. Teknic M-2310P motor parameters...continued

Figure 2. Teknic M-2310P permanent magnet synchronous motor

For the sensorless control mode, you only need the power input wires. If used with the hall or encoder sensors,
connect the sensor wires to the NXP Freedom power stage.

1 DRAIN x3 P DRAIN 9 16AWG BLK PHASE R
Pin Color

Encoder wires

Motor phases(Wire entry view)

Signal ColorPin Signal

2 N/A N/A 10 16AWG RED PHASE S

3 GRN 11 16AWG WHT PHASE T
4 GRN/WHT 12 RED +5VDC IN

5 GRY/WHT 13 BRN ENC 1
6 DRAIN x1 14 ORN ENC B

7 BLK 15 BLU ENC A

16* ORN/WHT ENC B˜8* BLU/WHT

COMM S-T
COMM R-S

COMM T-R
E DRAIN

GND
ENC A˜

9 10 11 12 13 14 15 16
1 2 3 4 5 6 7 8

Figure 3. Teknic motor connector type 1

PMSMRT1170B All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2 — 5 January 2024
4 / 64

NXP Semiconductors PMSMRT1170B
MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC Motors

R DRAIN x3 P DRAIN L GRY/WHT COMM T-R

Pin Color

Motor phases Encoder wires(Mating face shown)

Signal ColorPin

F

Signal

C 16AWG RED PHASE S U BRN ENC I
D 16AWG WHT G GRN COMM S-T

B 16AWG BLK T RED +5VDC IN
J BLU F* ORN/WHT ENC B˜

K* BLU/WHT V ORN ENC B
H GRN/WHT M DRAIN x1 E DRAIN
S BLK

PHASE T

PHASE R
ENC A

ENC A˜
COMM R-S

GND

G

A M

E

B

H

L

D R
C

J
KP

T
U

S
V
N

Figure 4. Teknic motor connector type 2

2.3 FRDM-MC-LVPMSM
In a shield form factor, this evaluation board effectively turns an NXP Freedom development board or an
evaluation board into a complete motor-control reference design. It is compatible with existing NXP Freedom
development boards and evaluation boards. The Freedom motor-control headers are compatible with the
Arduino R3 pin layout.

The FRDM-MC-LVPMSM low-voltage, 3-phase Permanent Magnet Synchronous Motor (PMSM) Freedom
development platform board has a power supply input voltage of 24 VDC to 48 VDC with reverse polarity
protection circuitry. The auxiliary power supply of 5.5 VDC is created to supply the FRDM MCU boards. The
output current is up to 5 A RMS. The inverter itself is realized by a 3-phase bridge inverter (six MOSFETs) and a
3-phase MOSFET gate driver. The analog quantities (such as the 3-phase motor currents, DC-bus voltage, and
DC-bus current) are sensed on this board. There is also an interface for speed and position sensors (encoder,
hall). The block diagram of this complete NXP motor-control development kit is shown in Figure 5.

Figure 5. Motor-control development platform block diagram

PMSMRT1170B All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2 — 5 January 2024
5 / 64

NXP Semiconductors PMSMRT1170B
MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC Motors

FRDM-MC-LVPMSM Parts

Controller Card Parts

Power Supply

Polarity

24-48V
DC

Motor

15V

6xPWM

Ia, Ib, Ic

Udc, Idc

Enc, Hall

5.5V

3.3V

USB

JTAG

Protection

6x
MOSFET

Analog
Sensing

Encoder /
Hall

Encoder
Hall

Power
Supply

MOSFET
Predriver

FRDM-MC-LVPMSM Controler card

Target
MCU

Open
SDA

Buttons

LEDs

Accel

Therm

Figure 6. FRDM-MC-LVPMSM

The FRDM-MC-LVPMSM board does not require a complicated setup. For more information about the Freedom
development platform, see www.nxp.com.

Note:

There might be a wrong FRDM-MC-LVPMSM series in the market (series VV19520XXX). This series
is populated with 10 mOhm shunt resistors and noisy operational amplifiers which affect phase current
measurement. The mc_pmsm example is tuned for original FRDM-MC-LVPMSM board with 20 mOhm shunt
resistors.

2.4 i.MX RT1170-EVKB
The i.MX RT1170-EVKB provides a high-performance solution in a highly integrated board. It consists of a 6-
layer PCB with through hole design for better EMC performance at a low cost, and it includes key components
and interfaces. The dual-core i.MX RT1170 runs on the Cortex-M7 at 1 GHz and Arm Cortex-M4 at 400 MHz,
while providing best-in-class security.

PMSMRT1170B All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2 — 5 January 2024
6 / 64

http://www.freescale.com

NXP Semiconductors PMSMRT1170B
MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC Motors

Jumper Setting Jumper Setting Jumper Setting

JP6 1-2 J53 1-2 J90 1-2

JP7 1-2 J56 2-3 J91 1-2

J14 1-2 J67 1-2 J93 1-2

J19 1-2 J68 1-2 J97 1-2

J23 1-2 J69 1-2 J98 1-2

J28 1-2 J71 1-2 J99 1-2

J38 7-8 J73 1-2 J100 1-2

J41 1-2 J79 1-2

J49 1-2 J80 1-2

Table 4. MIMXRT1170-EVKB jumper settings

All others jumpers are open.

Figure 7. MIMXRT1170-EVKB board with highlighted jumper settings
PMSMRT1170B All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2 — 5 January 2024
7 / 64

NXP Semiconductors PMSMRT1170B
MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC Motors

The motor-control application requires removing and soldering some zero resistors for a correct connection.
Remove and solder zero resistors according to Table 5.

Add resistors Remove resistors

R1841 R1845 R188 R412

R1842 R1846 R193 R1814

R1843 R1847

R1844

Table 5. Add and remove resistors

For locate resistors on the board see schematic and layout on board web page.

2.4.1 Hardware assembling

1. Connect the FRDM-MC-LVPMSM shield on top of the MIMXRT1170-EVKB board (there is only one possible
option).
Note: Watch out for unwanted connections between bottom of FRDM-MC-PMSM and jumpers on top of
MIMXRT11xx-EVK.

2. Connect the 3-phase motor wires to the screw terminals (J7) on the Freedom PMSM power stage.
3. Plug the USB cable from the USB host to the Debug USB connector J53 on the EVK board.
4. Plug the 24-V DC power supply to the DC power connector on the Freedom PMSM power stage.

PMSMRT1170B All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2 — 5 January 2024
8 / 64

https://www.nxp.com/products/processors-and-microcontrollers/arm-microcontrollers/i-mx-rt-crossover-mcus:IMX-RT-SERIES

NXP Semiconductors PMSMRT1170B
MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC Motors

Figure 8. Assembled Freedome system

Note: The example has been tested on the board with schematic number: SCH-55139 REV B.

PMSMRT1170B All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2 — 5 January 2024
9 / 64

NXP Semiconductors PMSMRT1170B
MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC Motors

3 Processors features and peripheral settings

This chapter describes the peripheral settings and application timing.

3.1 i.MX RT1170
The i.MX RT1170 crossover MCUs are setting speed records at 1 GHz. This ground-breaking family combines
superior computing power and multiple media capabilities with ease of use and real-time functionality. The
i.MX RT1170 MCU offers support over a wide temperature range and is qualified for consumer, industrial, and
automotive markets.

For more information, see i.MX RT1170 Crossover MCU Family web pages.

3.1.1 RT1170 - Hardware timing and synchronization

Correct and precise timing is crucial for motor-control applications. Therefore, the motor-control-dedicated
peripherals take care of the timing and synchronization on the hardware layer. In addition, you can set the PWM
frequencies as a multiple of the ADC interrupt (ADC ISR) frequency where the FOC algorithm is calculated. In
this case, the PWM frequency is equal to the FOC frequency.

master
reload

master
reload

SM0 counter

PWM top

PWN bottom

ADC ETC
and ADC
conversion

ADC ETC
ISR

TRIG0 (val 4) Tdeadtime

Figure 9. Hardware timing and synchronization on i.MX RT1170

• The top signal shows the eFlexPWM counter (SM0 counter). The dead time is emphasized at the PWM top
and PWM bottom signals. The SM0 submodule generates the master reload at every opportunity.

• The SM0 generates trigger 0 (when the counter counts to a value equal to the VAL4) for the ADC_ETC (ADC
External Trigger Control) with a delay of Tdeatime/2. This delay ensures correct current sampling at the duty
cycles close to 100 %.

• ADC_ETC starts the ADC conversion.
• When the ADC conversion is completed, the ADC_ETC ISR (ADC_ETC interrupt) is entered. The FOC

calculation is done in this interrupt.

PMSMRT1170B All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2 — 5 January 2024
10 / 64

https://www.nxp.com/products/processors-and-microcontrollers/arm-microcontrollers/i-mx-rt-crossover-mcus/i-mx-rt1170-crossover-mcu-family-first-ghz-mcu-with-arm-cortex-m7-and-cortex-m4-cores:i.MX-RT1170

NXP Semiconductors PMSMRT1170B
MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC Motors

3.1.2 RT1170 - Peripheral settings

This section describes the peripherals used for the motor control. On i.MX RT1170, three submodules from the
enhanced FlexPWM (eFlexPWM) are used for 6-channel PWM generation and two 12-bit ADCs for the phase
currents and DC-bus voltage measurement. The eFlexPWM and ADC are synchronized via submodule 0 from
the eFlexPWM. The following settings are located in the mc_periph_init.c and peripherals.c files and
their header files.

3.1.2.1 PWM generation - PWM1

• Six channels from three submodules are used for the 3-phase PWM generation. Submodule 0
generates the master reload at event every nth opportunity, depending on the user-defined macro
M1_FOC_FREQ_VS_PWM_FREQ.

• Submodules 1 and 2 get their clocks from submodule 0.
• The counters at submodules 1 and 2 are synchronized with the master reload signal from submodule 0.
• Submodule 0 is used for synchronization with ADC_ETC. The submodule generates the output trigger after the

PWM reload, when the counter counts to VAL4.
• Fault mode is enabled for channels A and B at submodules 0, 1, and 2 with automatic fault clearing.

Note: The PWM outputs are re-enabled at the first PWM reload after the fault input returns to zero.
• The PWM period (frequency) is determined by how long the counter takes to count from INIT to VAL1.

By default, INIT = -MODULO/2 and VAL1 = MODULO/2 -1 where MODULO = FastPeripheralClock /
M1_PWM_FREQ.

• Dead time insertion is enabled. Define the dead time length in the M1_PWM_DEADTIME macro.

3.1.2.2 ADC external trigger control - ADC_ETC

The ADC_ETC module enables multiple users to share the ADC modules in the Time Division Multiplexing
(TDM) way. The external triggers can be brought from the Cross BAR (XBAR) or other sources. The ADC scan
is started via ADC_ETC.

• Both ADCs have set their own trigger chains.
• The trigger chain length is set to 2. The back-to-back ADC trigger mode is enabled.
• The SyncMode is on. In the SyncMode, ADC1 and ADC2 are controlled by the same trigger source. The

trigger source is the PWM submodule 0.
• After both ADCs conversion is completed, ADC_ETC interrupt is enabled and serves the FOC fast-loop

algorithm.

3.1.2.3 Analog sensing - ADC1 and ADC2

ADC1 and ADC2 are used for the MC analog sensing of currents and DC-bus voltage.

• The ADCs operate as 12-bit with the single-ended conversion and hardware trigger selected. The ADCs are
triggered from ADC_ETC by the trigger generated by the eFlexPWM.

3.1.2.4 Quadrature Decoder (QD) module

The QD module is used to sense the position and speed from the encoder sensor.

• The direction of counting is set in the M1_POSPE_ENC_DIRECTION macro.
• The modulo counting and the modulus counting roll-over/under to increment/decrement revolution counter are

enabled.

PMSMRT1170B All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2 — 5 January 2024
11 / 64

NXP Semiconductors PMSMRT1170B
MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC Motors

3.1.2.5 Peripheral interconnection for - XBARA1

The crossbar is used to interconnect the trigger from the PWM to the ADC_ETC and to connect the encoder
(connected to GPIO) to the QD.

• The FLEXPWM2_PWM1_OUT_TRIG0_1 output trigger (generated by submodule 0) is connected to
ADC_ETC_XBAR0_TRIG0.

• The encoder signal Phase A and Phase B are configured in pinmux.c.

3.1.2.6 Slow-loop interrupt generation - TMR1

The QuadTimer module TMR1 is used to generate the slow-loop interrupt.

• The slow loop is usually ten times slower than the fast loop. Therefore, the interrupt is generated after the
counter counts from CNTR0 = 0 to COMP1 = IPG CLK ROOT / (16U * Speed Loop Freq). The speed loop
frequency is set in the M1_SPEED_LOOP_FREQ macro and equals 1000 Hz.

• An interrupt (which serves the slow-loop period) is enabled and generated at the reload event.

3.1.2.7 FreeMASTER communication - LPUART1

Low-Power Universal Asynchronous Receiver and Transmitter (LPUART1) is used for the FreeMASTER
communication between the MCU board and the PC.

• The baud rate is set to 115200 bit/s.
• The receiver and transmitter are both enabled.
• The other settings are set to default.

3.2 CPU load and memory usage
The following information applies to the application built using one of the following IDE: MCUXpresso IDE, IAR,
Keil MDK or CodeWarrior. The memory usage is calculated from the *.map linker file, including FreeMASTER
recorder buffer allocated in RAM. In the MCUXpresso IDE, the memory usage can be also seen after project
build in the Console window. The table below shows the maximum CPU load of the supported examples. The
CPU load is measured using the SYSTICK timer. The CPU load is dependent on the fast-loop (FOC calculation)
and slow-loop (speed loop) frequencies. The total CPU load is calculated using the following equations:

(1)

(2)

(3)

Where:

CPUfast = the CPU load taken by the fast loop

cyclesfast = the number of cycles consumed by the fast loop

ffast = the frequency of the fast-loop calculation

fCPU = CPU frequency

CPUslow = the CPU load taken by the slow loop

cyclesslow = the number of cycles consumed by the slow loop

PMSMRT1170B All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2 — 5 January 2024
12 / 64

NXP Semiconductors PMSMRT1170B
MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC Motors

fslow = the frequency of the slow-loop calculation

CPUtotal = the total CPU load consumed by the motor control

debug configuration

Device Example Speed Control Position Control

i.MX RT1170-EVKB pmsm_enc 7.3 % 6.8 %

Table 6. Maximum CPU load (fast loop)

CPU load measured without defined RAM_RELOCATION macro. Measured CPU load and memory usage
applies to the application built using IAR IDE.

Note: The maximum CPU load is depending on executing functions from RAM or flash memory. Executing
functions can be speeding up in RTCESL_cfg.h header file by using macro RAM_RELOCATION.

Note: Memory usage and maximum CPU load can differ depending on the used IDEs and settings.

PMSMRT1170B All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2 — 5 January 2024
13 / 64

NXP Semiconductors PMSMRT1170B
MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC Motors

4 Project file and IDE workspace structure

All the necessary files are included in one package, which simplifies the distribution and decreases the size of
the final package. The directory structure of this package is simple, easy to use, and organized logically. The
folder structure used in the IDE differs from the structure of the PMSM package installation, but it uses the same
files. The different organization is chosen due to better manipulation of folders and files in workplaces and the
possibility of adding or removing files and directories. The pack_motor_<board_name> project includes all
the available functions and routines. This project serves for development and testing purposes.

4.1 PMSM project structure
The directory tree of the PMSM project is shown in below.

Figure 10. Directory tree

The main project folder pack_motor_<board_name>\boards\<board_name>\demo_apps\mc_pmsm
\pmsm_enc\ contains the following folders and files:

• iar: for the IAR Embedded Workbench IDE.
• armgcc: for the GNU Arm IDE.
• mdk: for the uVision Keil IDE.
• m1_pmsm_appconfig.h: contains the definitions of constants for the application control processes,

parameters of the motor and regulators, and the constants for other vector-control-related algorithms. When

PMSMRT1170B All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2 — 5 January 2024
14 / 64

NXP Semiconductors PMSMRT1170B
MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC Motors

you tailor the application for a different motor using the Motor Control Application Tuning (MCAT) tool, the tool
generates this file at the end of the tuning process.

• main.c: contains the basic application initialization (enabling interrupts), subroutines for accessing the MCU
peripherals, and interrupt service routines. The FreeMASTER communication is performed in the background
infinite loop.

• board.c: contains the functions for the UART, GPIO, and SysTick initialization.
• board.h: contains the definitions of the board LEDs, buttons, UART instance used for FreeMASTER, and so

on.
• clock_config.c and .h: contains the CPU clock setup functions. These files are going to be generated

by the clock tool in the future.
• mc_periph_init.c: contains the motor-control driver peripherals initialization functions that are specific for

the board and MCU used.
• mc_periph_init.h: header file for mc_periph_init.c. This file contains the macros for changing the

PWM period and the ADC channels assigned to the phase currents and board voltage.
• freemaster_cfg.h: the FreeMASTER configuration file containing the FreeMASTER communication and

features setup.
• pin_mux and .h: port configuration files. Generate these files in the pin tool.
• peripherals.c and .h: MCUXpresso Config Tool configuration files.

The main motor-control folder pack_motor_<board_name>\middleware\motor_control\ contains these
subfolders:

• pmsm: contains main PMSM motor-control functions.
• freemaster: contains the FreeMASTER project file pmsm_float_enc.pmpx. Open this file in the

FreeMASTER tool and use it to control the application. The folder also contains the auxiliary files for the
MCAT tool.

The pack_motor_<board_name>\middleware\motor_control\pmsm\pmsm_float\ folder contains
these subfolders common to the other motor-control projects:

• mc_algorithms: contains the main control algorithms used to control the FOC and speed control loop.
• mc_cfg_template: contains templates for MCUXpresso Config Tool components.
• mc_drivers: contains the source and header files used to initialize and run motor-control applications.
• mc_identification: contains the source code for the automated parameter-identification routines of the

motor.
• mc_state_machine: contains the software routines that are executed when the application is in a particular

state or state transition.
• state_machine: contains the state machine functions for the FAULT, INITIALIZATION, STOP, and RUN

states.

PMSMRT1170B All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2 — 5 January 2024
15 / 64

NXP Semiconductors PMSMRT1170B
MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC Motors

5 Motor-control peripheral initialization

The motor-control peripherals are initialized by calling the MCDRV_Init_M1() function during MCU startup
and before the peripherals are used. All initialization functions are in the mc_periph_init.c source file and
the mc_periph_init.h header file. The definitions specified by the user are also in these files. The features
provided by the functions are the 3-phase PWM generation and 3-phase current measurement, as well as the
DC-bus voltage and auxiliary quantity measurement. The principles of both the 3-phase current measurement
and the PWM generation using the Space Vector Modulation (SVM) technique are described in Sensorless
PMSM Field-Oriented Control (document DRM148).

The mc_periph_init.h header file provides the following macros defined by the user:

• M1_MCDRV_ADC_PERIPH_INIT: this macro calls ADC peripheral initialization.
• M1_MCDRV_PWM_PERIPH_INIT: this macro calls PWM peripheral initialization.
• M1_MCDRV_QD_ENC: this macro calls QD peripheral initialization.
• M1_PWM_FREQ: the value of this definition sets the PWM frequency.
• M1_FOC_FREQ_VS_PWM_FREQ: enables you to call the fast-loop interrupt at every first, second, third, or

nth PWM reload. This is convenient when the PWM frequency must be higher than the maximal fast-loop
interrupt.

• M1_SPEED_LOOP_FREQ: the value of this definition sets the speed loop frequency (TMR1 interrupt).
• M1_PWM_DEADTIME: the value of the PWM dead time in nanoseconds.
• M1_PWM_PAIR_PH[A..C]: these macros enable a simple assignment of the physical motor phases to the

PWM periphery channels (or submodules). You can change the order of the motor phases this way.
• M1_ADC[1,2]_PH_[A..C]: these macros assign the ADC channels for the phase current measurement.

The general rule is that at least one-phase current must be measurable on both ADC converters, and the two
remaining phase currents must be measurable on different ADC converters. The reason for this is that the
selection of the phase current pair to measure depends on the current SVM sector. If this rule is broken, a
preprocessor error is issued. For more information about the 3-phase current measurement, see Sensorless
PMSM Field-Oriented Control (document DRM148).

• M1_ADC[1,2]_UDCB: this define is used to select the ADC channel for the measurement of the DC-bus
voltage.

In the motor-control software, the following API-serving ADC and PWM peripherals are available:

• The available APIs for the ADC are:
– mcdrv_adc_t: MCDRV ADC structure data type.
– void M1_MCDRV_ADC_PERIPH_INIT(): this function is by default called during the ADC peripheral

initialization procedure invoked by the MCDRV_Init_M1() function and should not be called again after the
peripheral initialization is done.

– void M1_MCDRV_CURR_3PH_CHAN_ASSIGN(mcdrv_adc_t*): calling this function assigns proper ADC
channels for the next 3-phase current measurement based on the SVM sector.

– void M1_MCDRV_CURR_3PH_CALIB_INIT(mcdrv_adc_t*): this function initializes the phase-current
channel-offset measurement.

– void M1_MCDRV_CURR_3PH_CALIB(mcdrv_adc_t*): this function reads the current information from
the unpowered phases of a stand-still motor and filters them using moving average filters. The goal is to
obtain the value of the measurement offset. The length of the window for moving the average filters is set to
eight samples by default.

– void M1_MCDRV_CURR_3PH_CALIB_SET(mcdrv_adc_t*): this function asserts the phase-current
measurement offset values to the internal registers. Call this function after a sufficient number of
M1_MCDRV_CURR_3PH_CALIB() calls.

PMSMRT1170B All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2 — 5 January 2024
16 / 64

https://www.nxp.com/doc/DRM148
https://www.nxp.com/doc/DRM148

NXP Semiconductors PMSMRT1170B
MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC Motors

– void M1_MCDRV_ADC_GET(mcdrv_adc_t*): this function reads and calculates the actual values of the
3-phase currents, DC-bus voltage, and auxiliary quantity.

• The available APIs for the PWM are:
– mcdrv_pwma_pwm3ph_t: MCDRV PWM structure data type.
– void M1_MCDRV_PWM_PERIPH_INIT: this function is by default called during the PWM periphery

initialization procedure invoked by the MCDRV_Init_M1() function.
– void M1_MCDRV_PWM3PH_SET(mcdrv_pwma_pwm3ph_t*): this function updates the PWM phase duty

cycles.
– void M1_MCDRV_PWM3PH_EN(mcdrv_pwma_pwm3ph_t*): this function enables all PWM channels.
– void M1_MCDRV_PWM3PH_DIS(mcdrv_pwma_pwm3ph_t*): this function disables all PWM channels.
– bool_t M1_MCDRV_PWM3PH_FLT_GET(mcdrv_pwma_pwm3ph_t*): this function returns the state of

the overcurrent fault flags and automatically clears the flags (if set). This function returns true when an
overcurrent event occurs. Otherwise, it returns false.

• The available APIs for the quadrature encoder are:
– mcdrv_qd_enc_t: MCDRV QD structure data type.
– void M1_MCDRV_QD_PERIPH_INIT(): this function is by default called during the QD periphery

initialization procedure invoked by the MCDRV_Init_M1() function.
– void M1_MCDRV_QD_GET(mcdrv_qd_enc_t*): this function returns the actual position and speed.
– void M1_MCDRV_QD_SET_DIRECTION(mcdrv_qd_enc_t*): this function sets the direction of the

quadrature encoder.
– void M1_MCDRV_QD_SET_PULSES(mcdrv_qd_enc_t*): this function sets the number of pulses of the

quadrature encoder.
– void M1_MCDRV_QD_CLEAR(mcdrv_qd_enc_t*): this function clears the internal variables and decoder

counter.

Note: Not all macros are available for every motor control example type.

PMSMRT1170B All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2 — 5 January 2024
17 / 64

NXP Semiconductors PMSMRT1170B
MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC Motors

6 User interface

The application contains the demo mode to demonstrate motor rotation. You can operate it either using the
user button, or using FreeMASTER. The NXP development boards include a user button associated with a
port interrupt (generated whenever one of the buttons is pressed). At the beginning of the ISR, a simple logic
executes and the interrupt flag clears. When you press the button, the demo mode starts. When you press the
same button again, the application stops and transitions back to the STOP state.

The other way to interact with the demo mode is to use the FreeMASTER tool. The FreeMASTER application
consists of two parts: the PC application used for variable visualization and the set of software drivers running
in the embedded application. The serial interface transfers data between the PC and the embedded application.
This interface is provided by the debugger included in the boards.

The application can be controlled using the following two interfaces:

• The user button on the development board (controlling the demo mode):
– MIMXRT1170-EVKB - SW7

• Remote control using FreeMASTER (Following chapter):
– Setting a variable in the FreeMASTER Variable Watch. See chapter Section 7.4

Identify all motor parameters if you are using your own motor (different from the default motors). The automated
parameter identification is described in the following sections.

PMSMRT1170B All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2 — 5 January 2024
18 / 64

NXP Semiconductors PMSMRT1170B
MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC Motors

7 Remote control using FreeMASTER

This section provides information about the tools and recommended procedures to control the sensor/
sensorless PMSM Field-Oriented Control (FOC) application using FreeMASTER. The application contains
the embedded-side driver of the FreeMASTER real-time debug monitor and data visualization tool for
communication with the PC. It supports non-intrusive monitoring, as well as the modification of target variables
in real time, which is very useful for the algorithm tuning. Besides the target-side driver, the FreeMASTER tool
requires the installation of the PC application as well. You can download the latest version of FreeMASTER
at www.nxp.com/freemaster. To run the FreeMASTER application including the MCAT tool, double-click
the pmsm_float_enc.pmpx file located in the middleware\motor_control\freemaster folder. The
FreeMASTER application starts and the environment is created automatically, as defined in the *.pmpx file.

Note: In MCUXpresso, the FreeMASTER application can run directly from IDE in motor_control/
freemaster folder.

7.1 Establishing FreeMASTER communication
The remote operation is provided by FreeMASTER via the USB interface. To control a PMSM motor using
FreeMASTER, perform the steps below:

1. Download the project from your chosen IDE to the MCU and run it.
2. Open the FreeMASTER project pmsm_float_enc.pmpx . The PMSM project uses the TSA by default, so

it is not necessary to select a symbol file for FreeMASTER.
3. To establish the communication, click the communication button (the green "GO" button in the top left-hand

corner).

Figure 11.  Green “GO” button placed in top left-hand corner
4. If the communication is established successfully, the FreeMASTER communication status in the

bottom right-hand corner changes from "Not connected" to "RS-232 UART Communication; COMxx;
speed=115200". Otherwise, the FreeMASTER warning pop-up window appears.

Figure 12. FreeMASTER—communication is established successfully
5. To reload the MCAT HTML page and check the App ID, press F5.
6. Control the PMSM motor by writing to a control variable in a variable watch.
7. If you rebuild and download the new code to the target, turn the FreeMASTER application off and on.

If the communication is not established successfully, perform the following steps:

1. Go to the Project > Options > Comm tab and make sure that the correct COM port is selected and the
communication speed is set to 115200 bps.

PMSMRT1170B All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2 — 5 January 2024
19 / 64

http://www.nxp.com/freemaster

NXP Semiconductors PMSMRT1170B
MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC Motors

Figure 13. FreeMASTER communication setup window
2. Ensure, that your computer is communicating with the plugged board. Unplug and then plug in the USB

cable and reopen the FreeMASTER project.

7.2 TSA replacement with ELF file
The FreeMASTER project for motor control example uses Target-Side Addressing (TSA) information about
variable objects and types to be retrieved from the target application by default. With the TSA feature, you
can describe the data types and variables directly in the application source code and make this information
available to the FreeMASTER tool. The tool can then use this information instead of reading symbol data from
the application’s ELF/Dwarf executable file.

FreeMASTER reads the TSA tables and uses the information automatically when an MCU board is connected.
A great benefit of using the TSA is no issues with the correct path to ELF/Dwarf file. The variables described
by TSA tables may be read-only, so even if FreeMASTER attempts to write the variable, the target MCU side
denies the value. The variables not described by any TSA tables may also become invisible and protected even
for read-only access.

The use of TSA means more memory requirements for the target. If you do not want to use the TSA feature,
you must modify the example code and FreeMASTER project.

To modify the example code, follow the steps below:

1. Open motor control project and rewrite macro FMSTR_USE_TSA from 1 to 0 in freemaster_cfg.h file.
2. Build, download, and run motor control project.
3. Open FreeMASTER project and click to Project > Options (or use shortcut Ctrl+T).
4. Click to MAP Files tab and find Default symbol file (ELF/Dwarf executable file) located in IDE output folder.

PMSMRT1170B All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2 — 5 January 2024
20 / 64

NXP Semiconductors PMSMRT1170B
MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC Motors

Figure 14. Default symbol file
5. Click OK and restart the FreeMASTER communication.

For more information, check FreeMASTER User Guide.

7.3 Motor Control Aplication Tuning interface (MCAT)
The PMSM sensor/sensorless FOC application can be easily controlled and tuned using the Motor Control
Application Tuning (MCAT) plug-in for PMSM. The MCAT for PMSM is a user-friendly page, which runs
within the FreeMASTER. The tool consists of the tab menu and workspace as shown in Figure 15. Each tab
from the tab menu (4) represents one submodule which enables tuning or controlling different application
aspects. Besides the MCAT page for PMSM, several scopes, recorders, and variables in the project tree (5) are
predefined in the FreeMASTER project file to further the motor parameter tuning and debugging simplify.

When the FreeMASTER is not connected to the target, the "Board found" line (2) shows "Board ID not found".
When the communication with the target MCU is established, the "Board found" line is read from Board ID
variable watch and displayed. If the connection is established and the board ID is not shown, press F5 to reload
the MCAT HTML page.

There are three action buttons in MCAT (3):

• Load data - MCAT input fields (for example, motor parameters) are loaded from mX_pmsm_appconfig.h
file (JSON formatted comments). Only existing mX_pmsm_appconfig.h files can be selected for loading.
Loaded mX_pmsm_appcofig.h file is displayed in grey field (7).

• Save data - MCAT input fields (JSON formatted comments) and output macros are saved to
mX_pmsm_appconfig.h file. Up to 9 files (m1-9_pmsm_appconfig.h) can be selected. A pop-up window
with the user motor ID and description appears when a different mX_pmsm_appcofig.h file is selected. The
motor ID and description are also saved in mX_pmsm_appcofig.h as a JSON comment. The embedded
code includes m1_pmsm_appcofig.h only at single motor control application. Therefore, saving to higher
indexed mX_pmsm_appconfig.h files has no effect at the compilation stage.

• Update target - writes the MCAT calculated tuning parameters to FreeMASTER Variables, which effectively
updates the values on target MCU. These tuning parameters are updated in MCU's RAM. To write these

PMSMRT1170B All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2 — 5 January 2024
21 / 64

https://www.nxp.com/docs/en/user-guide/FMSTERUG.pdf
https://www.nxp.com/design/training/motor-control-application-tuning-mcat-tool-pmsm-servo-tuning:TIP-MCAT-PMSM
https://www.nxp.com/design/training/motor-control-application-tuning-mcat-tool-pmsm-servo-tuning:TIP-MCAT-PMSM

NXP Semiconductors PMSMRT1170B
MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC Motors

tuning parameters to MCU's flash memory, m1_pmsm_appcofig.h must be saved, code recompiled, and
downloaded to MCU.

Note: Path to mX_pmsm_appcofig.h file also composed from Board ID value. Therefore, FreeMASTER must
be connected to the target, and Board ID value read prior using Save/Load buttons.

Note: Only Update target button updates values on the target in real time. Load/Save buttons operate with
mX_pmsm_appcofig.h file only.

Note: MCAT may require Internet connection. If no Internet connection is available, CSS and icons may not be
properly loaded.

Figure 15. FreeMASTER + MCAT layout

1. Tab content
2. Connected board
3. User buttons
4. Tab menu
5. Project tree
6. Variable watch
7. Loaded configuration

In the default configuration, the following tabs (4) are available:

• Application concept: welcome page with the PMSM sensor/sensorless FOC diagram and a short application
description.

• Parameters: this page enables you to modify the motor parameters, hardware and application scales
specification, alignment, and fault limits.

• Current loop: current loop PI controller gains and output limits.
• Speed loop: this tab contains fields for the specification of the speed controller proportional and integral gains,

as well as the output limits and parameters of the speed ramp. The position proportional controller constant is
also set here.

PMSMRT1170B All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2 — 5 January 2024
22 / 64

NXP Semiconductors PMSMRT1170B
MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC Motors

• Sensors: this page contains the encoder parameters and position observer parameters.
• Sensorless: this page enables you to tune the parameters of the BEMF observer, tracking observer, and

open-loop startup.
• Output file: this tab shows all the calculated constants that are required by the PMSM sensor/sensorless FOC

application. It is also possible to generate the m1_pmsm_appconfig.h file, which is then used to preset all
application parameters permanently at the project rebuild.

• Online update : this tab shows actual values of variables on target and new calculated values, which can be
used to update the target variables.

Every sublock in FreeMASTER project tree (5) has defined several variables in variable watch (6).

The following sections provide simple instructions on how to identify the parameters of a connected PMSM
motor and how to tune the application appropriately.

7.3.1 MCAT tabs description

This chapter describes MCAT input parameters and equations used to calculate MCAT output (generated)
parameters. In the default configuration, the below described tabs are available. Some tabs may be missing
if not supported in the embedded code. There are general constants used at MCAT calculations listed in the
following table:

Constant Value Unit

UmaxCoeff 1.73205 -

DiscMethodFactor 1 -

k_factor 100 -

pi 3.1416 -

Table 7. Constants used in equations

7.3.1.1 Application concept

This tab is a welcome page with the PMSM sensor/sensorless FOC diagram and a short description of the
application.

7.3.1.2 Parameters

This tab enables modification of motor parameters, specification of hardware and application scales, alignment,
and fault limits. All inputs are described in the following table. MCAT group and MCAT name help to locate the
parameter in MCAT layout. Equation name represents the input parameter in equations below.

MCAT group MCAT name Equation name Description Unit

PP Pp Motor number of pole-pairs.
Obtain from motor manufacturer
or use the pole-pair assistant to
determine and then fill manually.

-

Rs Rs Stator phase resistance. Obtain
from motor manufacturer or
use the electrical parameters
identification and then fill
manually.

[Ω]

Motor
parameters

Ld Ld Stator direct inductance. Obtain
from motor manufacturer or

[H]

Table 8. Parameters tab inputs

PMSMRT1170B All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2 — 5 January 2024
23 / 64

NXP Semiconductors PMSMRT1170B
MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC Motors

MCAT group MCAT name Equation name Description Unit
use the electrical parameters
identification and then fill
manually.

Lq Lq Stator quadrature inductance.
Obtain from motor manufacturer
or use the electrical parameters
identification and then fill
manually.

[H]

Ke Ke Motor electrical constant. Obtain
from motor manufacturer or use
the Ke identification and then fill
manually.

[V.sec/rad]

J J Drive inertia (motor + plant). Use
the mechanical identification and
then fill manually.

[kg.m2]

Iph nom IphNom Nominal motor current. Obtain
from motor manufacturer.

[A]

Uph nom UphNom Nominal motor voltage. Obtain
from motor manufacturer.

[V]

N nom Nnom Nominal motor speed. Obtain
from motor manufacturer.

[rpm]

I max Imax Current sensing HW scale. Keep
as-is in case of standard NXP
HW or recalculate according to
own schematic.

[A]Hardware scales

U DCB max UdcbMax DCBus voltage sensing HW
scale. Keep as-is in case of
standard NXP HW or recalculate
according to own schematic.

[V]

U DCB trip UdcbTrip DCBus braking resistor
threshold. Braking resistor's
transitor is turned on when
DCbus voltage exceeds this
threshold.

[V]

U DCB under UdcbUnder DCBus under voltage fault
threshold

[V]

U DCB over UdcbOver DCBus over voltage fault
threshold

[V]

N over Nover Over speed fault threshold [rpm]

Fault limits

N min Nmin Minimal closed loop speed.
When the required speed ramps
down under this threshold, the
motor control state machine
goes to freewheel state where
top and bottom transistors are
turned off and motor speeds
down freely. Applies only for
sensorless operation.

[rpm]

Table 8. Parameters tab inputs...continued

PMSMRT1170B All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2 — 5 January 2024
24 / 64

NXP Semiconductors PMSMRT1170B
MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC Motors

MCAT group MCAT name Equation name Description Unit

E block Eblock [V]

E block per EblockPer

Blocked rotor detection. When
BEMF voltage drops under E
block threshold for more than E
block per (fast loop ticks), the
blocked rotor fault is detected.

-

N max Nmax Application speed scale. Keep
about 10 % margin above N
over.

[rpm]

U DCB IIR F0 UdcbIIRf0 Cut-off frequency of DCBus IIR
filter

[Hz]

Calibration duration CalibDuration ADC (phase current offset)
calibration duration. Done every
time transitioning from STOP to
RUN.

[sec]

Fault duration FaultDuration After fault condition disappears,
wait defined time to clear
pending faults bitfield and
transition to STOP state.

[sec]

Freewheel duration FreewheelDuration Free-wheel state duration.
Freewheel state in entered when
ramped speed drops under N
min.

[sec]

Application
scales

Scalar Uq min ScalarUqMin Scalar control voltage minimal
value.

[V]

Align voltage AlignVoltage Motor alignment voltage. [V]Alignment

Align duration AlignDuration Motor alignment duration. [sec]

Table 8. Parameters tab inputs...continued

Output equations (applies for saving to mX_pmsm_appcofig.h and also for updating a corresponding
FreeMASTER variable):

• M1_U_MAX = UdcbMax / UmaxCoeff
• M1_FREQ_MAX = Nmax / 60 * Pp
• M1_ALIGN_DURATION = AlignDuration / speedLoopSampleTime
• M1_CALIB_DURATION = CalibDuration / speedLoopSampleTime
• M1_FAULT_DURATION = FaultDuration / speedLoopSampleTime
• M1_FREEWHEEL_DURATION = FreewheelDuration / speedLoopSampleTime
• M1_E_BLOCK_PER = EblockPer
• M1_SPEED_ANGULAR_SCALE = 60 / (Pp * 2 * pi)
• M1_N_MIN = Nmin / 60 * (Pp * 2 * pi)
• M1_N_MAX = Nmax / 60 * (Pp * 2 * pi)
• M1_N_ANGULAR_MAX = (60 / (Pp * 2 * pi))
• M1_N_NOM = Nnom / 60 * (Pp * 2 * pi)
• M1_N_OVERSPEED = Nover / 60 * (Pp * 2 * pi)
• M1_UDCB_IIR_B0 = (2 * pi * UdcbIIRf0 * currentLoopSampleTime) / (2 + (2 * pi * UdcbIIRf0 *

currentLoopSampleTime))
• M1_UDCB_IIR_B1 = (2 * pi * UdcbIIRf0 * currentLoopSampleTime) / (2 + (2 * pi * UdcbIIRf0 *

currentLoopSampleTime))

PMSMRT1170B All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2 — 5 January 2024
25 / 64

NXP Semiconductors PMSMRT1170B
MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC Motors

• M1_UDCB_IIR_A1 = -(2 * pi * UdcbIIRf0 * currentLoopSampleTime - 2) / (2 + (2 * pi * UdcbIIRf0 *
currentLoopSampleTime))

• M1_SCALAR_VHZ_FACTOR_GAIN = UphNom*k_factor/100/(Nnom*Pp/60)
• M1_SCALAR_INTEG_GAIN = 2*pi*Pp*Nmax/60*currentLoopSampleTime/pi
• M1_SCALAR_RAMP_UP = speedLoopIncUp*currentLoopSampleTime/60*Pp
• M1_SCALAR_RAMP_DOWN = speedLoopIncDown*currentLoopSampleTime/60*Pp

7.3.1.3 Current loop

This tab enables current loop PI controller gains and output limits tuning. All inputs are described in the
following table. MCAT group and MCAT name help to locate the parameter in MCAT layout. Equation name
represents the input parameter in equations bellow.

MCAT group MCAT name Equation name Description Unit

Sample time currentLoopSampleTime Fast control loop period. This
disabled value is read from
target via FreeMASTER because
application timing is set in
embedded code by peripherals
setting. This value is accessible
only if target is not connected
and value cannot be obtained
from target.

[sec]

F0 currentLoopF0 Current controller's bandwidth [Hz]

Loop parameters

ξ currentLoopKsi Current controller's attenuation -

Current PI
controller limits

Output limit currentLoopOutputLimit Current controllers' output
voltage limit = Duty cycle limit.
Be careful setting this limit above
95 % because it affects current
sensing (Some minimal bottom
transistors on time is required).

[%]

Table 9. Current loop tab input

Output equations (applies for saving to mX_pmsm_appcofig.h and also for updating a corresponding
FreeMASTER variable):

• M1_CLOOP_LIMIT = currentLoopOutputLimit / UmaxCoeff / 100
• M1_D_KP_GAIN = (2 * currentLoopKsi * 2 * pi * currentLoopF0 * Ld) - Rs
• M1_D_KI_GAIN = (2 * pi * currentLoopF0)^2 * Ld * currentLoopSampleTime / DiscMethodFactor
• M1_Q_KP_GAIN = (2 * currentLoopKsi * 2 * pi * currentLoopF0 * Lq) - Rs
• M1_Q_KI_GAIN = (2 * pi * currentLoopF0)^2 * Lq * currentLoopSampleTime / DiscMethodFactor

7.3.1.4 Speed loop

This tab enables speed loop PI controller gains and output limits tuning, required speed ramp parameters,
feedback speed filter tuning, and position P controller gain tuning (available at sensored/encoder applications
only). MCAT group and MCAT name help to locate the parameter in MCAT layout. Equation name represents
the input parameter in equations bellow.

PMSMRT1170B All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2 — 5 January 2024
26 / 64

NXP Semiconductors PMSMRT1170B
MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC Motors

MCAT group MCAT name Equation name Description Unit

Sample time speedLoopSampleTime Slow control loop period. This
disabled value is read from
target via FreeMASTER because
application timing is set in
embedded code by peripherals
setting. This value is accessible
only if target is not connected
and value cannot be obtained
from target.

[sec]

F0 speedLoopF0 Speed controller's bandwidth [Hz]

Loop parameters

ξ speedLoopKsi Speed controller's attenuation -

Inc up speedLoopIncUp Required speed maximal
acceleration

[rpm/sec]Speed ramp

Inc down speedLoopIncDown Required speed maximal
acceleration

[rpm/sec]

Actual speed
filter

Cut-off freq speedLoopCutOffFreq Speed feedback (before entering
PI subtraction) filter bandwidth.

[Hz]

Upper limit speedLoopUpperLimit Maximal required Q-axis current
(Speed controller's output). Q-
axis current limitation equals to
motor torque limitation.

[A]Speed PI
controller limits

Lower limit speedLoopLowerLimit Minimal required Q-axis current
(Speed controller's output). Q-
axis current limitation equals to
motor torque limitation.

[A]

Position P
controller
constants

PL_Kp speedLoopPLKp Position controller proportional
constant in time domain.

Table 10. Speed loop tab input

Output equations (applies for saving to mX_pmsm_appcofig.h and also for updating a corresponding
FreeMASTER variable):

• varKt = 3 * Ke / (sqrt(3))
• M1_SPEED_PI_PROP_GAIN = (2 * pi / 60 * (4 * speedLoopKsi * pi * speedLoopF0) * J / varKt)
• M1_SPEED_PI_INTEG_GAIN = (2 * pi / 60 * ((2 * pi * speedLoopF0) * (2 * pi * speedLoopF0) * J) / (varKt *

10) * speedLoopSampleTime)
• M1_SPEED_RAMP_UP = (speedLoopIncUp * speedLoopSampleTime / (60 / (Pp * 2 * pi)))
• M1_SPEED_RAMP_DOWN = (speedLoopIncDown * speedLoopSampleTime / (60 / (Pp * 2 * pi)))
• M1_SPEED_IIR_B0= (2 * pi * speedLoopCutOffFreq * currentLoopSampleTime) / (2 + (2 * pi *

speedLoopCutOffFreq * currentLoopSampleTime))
• M1_SPEED_IIR_B1 = (2 * pi * speedLoopCutOffFreq * currentLoopSampleTime) / (2 + (2 * pi *

speedLoopCutOffFreq * currentLoopSampleTime))
• M1_SPEED_IIR_A1 = -(2 * pi * speedLoopCutOffFreq * currentLoopSampleTime - 2) / (2 + (2 * pi *

speedLoopCutOffFreq * currentLoopSampleTime))

PMSMRT1170B All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2 — 5 January 2024
27 / 64

NXP Semiconductors PMSMRT1170B
MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC Motors

7.3.1.5 Sensors

Available at sensored (encoder) applications only. This tab enables setting the encoder properties and tuning
encoder's tracking observer. MCAT group and MCAT name help to locate the parameter in MCAT layout.
Equation name represents the input parameter in equations bellow.

MCAT group MCAT name Equation name Description Unit

Pulse number sensorEncPulseNumber Number of quadrature encoder
pulses. Obtain this value from
encoder manufacturer OR
estimate based on speed/
position comparison of Scalar
controlled application with
encoder processing running on
background.

[pulses]

Direction sensorEncDir Encoder direction / Phase A&B
order.

-

Quadrature
encoder

Minimal speed sensorEncNmin Encoder minimal speed. [rpm]

Sample time sensorObsrvParSampleTime Current control loop sampling
period. This disabled value
is read from target via Free
MASTER because application
timing is set in embedded code
by peripherals setting. This value
is accessible only if target is not
connected and value cannot be
obtained from target.

[sec]

F0 sensorObsrvParF0 Position observer bandwidth [Hz]

Position
observer
parameters

ξ sensorObsrvParKsi Position observer attenuation -

Table 11. Sensors tab input

Output equations (applies for saving to mX_pmsm_appcofig.h and also for updating a corresponding
FreeMASTER variable):

• M1_POSPE_KP_GAIN = (4.0 * pi * sensorObsrvParKsi * sensorObsrvParF0)
• M1_POSPE_KI_GAIN = ((2*pi*sensorObsrvParF0)^2 * sensorObsrvParSampleTime)
• M1_POSPE_INTEG_GAIN = (sensorObsrvParSampleTime / pi / DiscMethodFactor)
• M1_POSPE_ENC_N_MIN = sensorEncNmin
• M1_POSPE_MECH_POS_GAIN = (32768/((sensorEncPulseNumber*4)/2))

7.3.1.6 Sensorless

This tab enables BEMF observer and Tracking observer parameters tuning and open-loop startup tuning. MCAT
group and MCAT name help to locate the parameter in MCAT layout. Equation name represents the input
parameter in equations bellow.

MCAT group MCAT name Equation name Description Unit

F0 sensorlessBemfObsrvF0 BEMF observer bandwidth [Hz]BEMF observer
parameters ξ sensorlessBemfObsrvKsi BEMF observer attenuation -

Table 12. Sensorless tab input

PMSMRT1170B All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2 — 5 January 2024
28 / 64

NXP Semiconductors PMSMRT1170B
MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC Motors

MCAT group MCAT name Equation name Description Unit

F0 sensorlessTrackObsrvF0 Tracking observer bandwidth [Hz]Tracking
observer
parameters ξ sensorlessTrackObsrvKsi Tracking observer attenuation -

Startup ramp sensorlessStartupRamp Open loop startup ramp [rpm/sec]

Startup current sensorlessStartupCurrent Open loop startup current [A]

Merging Speed sensorlessMergingSpeed Merging speed [rpm]

Open loop
startup
parameters

Merging Coefficient sensorlessMergingCoeff Merging coefficient (100 % =
merging is done within one
electrical revolution)

[%]

Table 12. Sensorless tab input...continued

Output equations (applies for saving to mX_pmsm_appcofig.h and also for updating a corresponding
FreeMASTER variable):

• M1_I_SCALE = (Ld / (Ld + currentLoopSampleTime * Rs))
• M1_U_SCALE = (currentLoopSampleTime / (Ld + currentLoopSampleTime * Rs))
• M1_E_SCALE = (currentLoopSampleTime / (Ld + currentLoopSampleTime * Rs))
• M1_WI_SCALE = (Lq * currentLoopSampleTime / (Ld + currentLoopSampleTime * Rs))
• M1_BEMF_DQ_KP_GAIN = ((2 * sensorlessBemfObsrvKsi * 2 * pi * sensorlessBemfObsrvF0 * Ld - Rs))
• M1_BEMF_DQ_KI_GAIN = (Ld * (2 * pi * sensorlessBemfObsrvF0)^ 2 * currentLoopSampleTime)
• M1_TO_KP_GAIN = 2 * sensorlessTrackObsrvKsi * 2 * pi * sensorlessTrackObsrvF0
• M1_TO_KI_GAIN = ((2 * pi * sensorlessTrackObsrvF0)^ 2) * currentLoopSampleTime
• M1_TO_THETA_GAIN = (currentLoopSampleTime / pi)
• M1_OL_START_RAMP_INC = (sensorlessStartupRamp * currentLoopSampleTime / (60 / (Pp * 2 * pi)))
• M1_MERG_SPEED_TRH = (sensorlessMergingSpeed / (60 / (Pp * 2 * pi)))
• M1_MERG_COEFF = ((sensorlessMergingCoeff / 100) * sensorlessMergingSpeed * Pp *

currentLoopSampleTime) / 60
• TO_IIR_cutoff_freq = 1 / (2 * speedLoopSampleTime) * 0.8
• M1_TO_SPEED_IIR_B0 = (2 * pi * TO_IIR_cutoff_freq * currentLoopSampleTime) / (2 + (2 * pi *

TO_IIR_cutoff_freq * currentLoopSampleTime))
• M1_TO_SPEED_IIR_B1 = (2 * pi * TO_IIR_cutoff_freq * currentLoopSampleTime) / (2 + (2 * pi *

TO_IIR_cutoff_freq * currentLoopSampleTime))
• M1_TO_SPEED_IIR_A1 = -(2 * pi * TO_IIR_cutoff_freq * currentLoopSampleTime - 2) / (2 + (2 * pi *

TO_IIR_cutoff_freq * currentLoopSampleTime))

7.4 Motor Control Modes - How to run motor
In the "Project Tree", you can choose between the scalar and FOC control using the appropriate FreeMASTER
tabs. The FreeMASTER variables can control the application, corresponding to the control structure selected
in the FreeMASTER project tree. This is useful for application tuning and debugging. The required control
structure must be selected in the "M1 MCAT Control" variable. To turn on or off the application, use "M1
Application Switch" variable. Set/clear "M1 Application Switch" variable also enables/disables all PWM
channels.

Before motor starts, several conditios have to be completed:

1. Connected power supply to the inverter with the correct voltage value.
2. If you want to use sensored control (encoder feedback), connect the encoder to the inverter.

PMSMRT1170B All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2 — 5 January 2024
29 / 64

NXP Semiconductors PMSMRT1170B
MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC Motors

3. No pending fault. Check variable "M1 Fault Pending" in "Motor M1" project tree subblock. If there is some
value, first remove the cause of the fault, or disable fault checking. (for example in variable "M1 Fault
Enable Blocked Rotor")

7.4.1 Scalar control

The scalar control diagram is shown in figure below. It is the simplest type of motor-control techniques. The ratio
between the magnitude of the stator voltage and the frequency must be kept at the nominal value. Therefore,
the control method is sometimes called Volt per Hertz (or V/Hz). The position estimation BEMF observer and
tracking observer algorithms run in the background, even if the estimated position information is not directly
used. This is useful for the BEMF observer tuning. For more information, see the Sensorless PMSM Field-
Oriented Control (document DRM148).

Um = Uq_req

Uα_req

Uβ_req

θe

ωe2π

Integrator

Ud_req = 0
VSI

PMSM

SVM

αβ

dq

Frequency
Sensor

VDC

Figure 16. Scalar control mode

For run motor in scalar control, follow these steps:

1. Switch project tree subblock on "Scalar & Voltage Control".
2. Switch variable "M1 MCAT Control" on "SCALAR_CONTROL".
3. In variable "M1 Scalar Freq Required" set required frequency. (i.e. 20Hz)
4. Set variable "M1 Application Switch" to "1". Motor start spinning.
5. Observe motor speed, position, phase currents and other graphs predefined in subblock scopes and

recorders.

7.4.2 Open loop control mode

Open loop mode (its diagram is shown in figure below) is similar in function to the Scalar control mode.
However, it provides more flexibility in specifying required parameters. This mode allows you to set specific
angle and frequency, according to the following equation:

(4)

Besides setting voltage in DQ axis, when using this mode you can also enable current controllers and specify
required currents in D and Q axis. Therefore, this function can be utilized for current controller parameter tuning.
Please, bear in mind that current controllers cannot be enabled/disabled in SPIN state (user must turn the
Application Switch OFF before enabling/disabling current controllers).

PMSMRT1170B All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2 — 5 January 2024
30 / 64

https://www.nxp.com/doc/DRM148

NXP Semiconductors PMSMRT1170B
MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC Motors

Uα_req

Uβ_req

θe

ωe2π

Integrator

Ud_req
VSI

PMSM

SVM

αβ

dq

Sensor

VDC

Uq_req

Frequency

θinit

Figure 17. Voltage - Open loop control

For run motor in Voltage - Open loop control, follow these steps:

1. Switch project tree subblock on "Openloop Control".
2. Switch variable "M1 MCAT Control" on "OPEN_LOOP".
3. In variable "M1 Openloop Required Ud" and "M1 Openloop Required Uq" set required values.
4. In variable "M1 Openloop Theta Electrical" set required initial position.
5. In variable "M1 Openloop Required Frequency Electrical" set required frequency.
6. Set variable "M1 Application Switch" to "1". Motor start spinning.
7. Observe motor speed, position, phase currents and other graphs predefined in subblock scopes and

recorders.

Uq_req

id_real

iq_real

Uα_req

Uβ_req

iα_real

iβ_real

θe

θe

Ud_req
Id_req

VDC

VSI

PMSM

Sensor

SVM

αβ

dq

ia_real

ic_real

ib_real

αβ

dq

abc

αβ

PI controller

PI controller

Iq_req

ωe2π

Integrator

Frequency

θinit

Figure 18. Current - Open loop control

For run motor in Current - Open loop control, follow these steps:

1. Switch project tree subblock on "Openloop Control".
2. Switch variable "M1 MCAT Control" on "OPEN_LOOP".
3. Set variable "M1 Openloop Use I Control" to "1".

PMSMRT1170B All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2 — 5 January 2024
31 / 64

NXP Semiconductors PMSMRT1170B
MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC Motors

4. In variable "M1 Openloop Required Id" and "M1 Openloop Required Iq" set required values.
5. In variable "M1 Openloop Theta Electrical" set required initial position.
6. In variable "M1 Openloop Required Frequency Electrical" set required frequency.
7. Set variable "M1 Application Switch" to "1". Motor start spinning.
8. Observe motor speed, position, phase currents and other graphs predefined in subblock scopes and

recorders.

7.4.3 Voltage control

The block diagram of the voltage FOC is shown in Figure 19. Unlike the scalar control, the position feedback
is closed using the BEMF observer and the stator voltage magnitude is not dependent on the motor speed.
Both the d-axis and q-axis stator voltages can be specified in the "M1 MCAT Ud Required" and "M1 MCAT Uq
Required" fields. This control method is useful for the BEMF observer functionality check.

Uq_req

Uα_req

Uβ_req

θe

Position/speed
evaluation

Ud_req
VSI

PMSM

Sensor

SVM

αβ

dq

VDC

Figure 19. Voltage FOC control mode

For run motor in voltage control, follow these steps:

1. Switch project tree subblock on "Scalar & Voltage Control".
2. Switch variable "M1 MCAT Control" on "VOLTAGE_FOC".
3. In variable "M1 MCAT Uq Required" and "M1 MCAT Ud Required" set required voltages.
4. Set variable "M1 Application Switch" to "1". Motor start spinning.
5. Observe motor speed, position, phase currents and other graphs predefined in subblock scopes and

recorders.

7.4.4 Current (torque) control

The current FOC (or torque) control requires the rotor position feedback and the currents transformed into a d-
q reference frame. There are two reference variables ("M1 MCAT Id Required" and "M1 MCAT Iq Required")
available for the motor control, as shown in Figure 20. The d-axis current component "M1 MCAT Id Required"
controls the rotor flux. The q-axis current component of the current "M1 MCAT Iq Required" generates torque
and, by its application, the motor starts running. By changing the polarity of the current "M1 MCAT Iq Required",
the motor changes the direction of rotation. Supposing the BEMF observer is tuned correctly, the current PI
controllers can be tuned using the current FOC control structure.

PMSMRT1170B All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2 — 5 January 2024
32 / 64

NXP Semiconductors PMSMRT1170B
MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC Motors

Uq_req

id_real

iq_real

Uα_req

Uβ_req

iα_real

iβ_real

θe

θe

Position/speed
evaluation

Ud_req
Id_req

VDC

VSI

PMSM

Sensor

SVM

αβ

dq

ia_real

ic_real

ib_real

αβ

dq

abc

αβ

PI controller

PI controller

Iq_req

Figure 20. Current (torque) control mode

For run motor in current control, follow these steps:

1. Switch project tree subblock on "Current Control".
2. Switch variable "M1 MCAT Control" on "CURRENT_FOC".
3. In variable "M1 MCAT Iq Required" and "M1 MCAT Id Required" set required currents.
4. Set variable "M1 Application Switch" to "1". Motor start spinning.
5. Observe motor speed, position, phase currents and other graphs predefined in subblock scopes and

recorders.

7.4.5 Speed FOC control

As shown in Figure 21, the speed PMSM sensor/sensorless FOC is activated by enabling the speed FOC
control structure. Enter the required speed into the "M1 Speed Required" field. The d-axis current reference is
held at 0 during the entire FOC operation.

Uq_req

id_real

iq_real

Uα_req

Uβ_req

iα_real

iβ_real

θe

θe

Position/speed
evaluation

Ud_req
Id_req

VDC

VSI

PMSM

Sensor

SVM

αβ

dq

ia_real

ic_real

ib_real

αβ

dq

abc

αβ

PI controllerPI controller

PI controller

ωe_real

Iq_reqωe_req

Figure 21. Speed FOC control mode

For run motor in speed FOC control, follow these steps:

1. Switch project tree subblock on "Speed Control".
PMSMRT1170B All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2 — 5 January 2024
33 / 64

NXP Semiconductors PMSMRT1170B
MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC Motors

2. Switch variable "M1 MCAT Control" on "SPEED_FOC".
3. Choose between sensored and sensorless control in variable "M1 MCAT POSPE Sensor".
4. In variable "M1 Speed Required" set the required speed. (i.e. 1000rpm). The motor automatically starts

spinning.
5. Observe motor speed, position, phase currents and other graphs predefined in subblock scopes and

recorders.

7.4.6 Position (servo) control

The position of PMSM sensor FOC is shown in Figure 22 (available for sensored/encoder based applications
only). The position control using the P controller can be tuned in the "Speed loop" menu tab. An encoder sensor
is required for the feedback. Without the sensor, the position control does not work. A braking resistor is missing
on the FRDM-MC-LVPMSM board. Therefore, it is necessary to set a soft speed ramp (in the "Speed loop"
menu tab) because the voltage on the DC-bus can rise when braking the quickly spinning shaft. It may cause an
overvoltage fault.

Uq_req

id_real

iq_real

Uα_req

Uβ_req

iα_real

iβ_real

θe

θe

Position/speed
evaluation

Ud_req
Id_req

VDC

VSI

PMSM

Sensor

SVM

αβ

dq

ia_real

ic_real

ib_real

αβ

dq

abc

αβ

PI controllerPI controller

PI controller

ωe_real

Iq_req
θm_req

ωe_req

P controller

θm_real

Figure 22. Position control mode

For run motor in position (servo) control, follow these steps:

1. Switch project tree subblock on "Position Control".
2. Switch variable "M1 MCAT Control" on "POSITION_CNTRL".
3. Swich variable "M1 MCAT POSPE Sensor" to "Encoder [1]".
4. In variable "M1 Position Required" set the required psition. (i.e. 10 revs).
5. Set variable "M1 Application Switch" to "1". The motor starts and automatically stops in the required

position.
6. Change "M1 Encoder Direction" if the motor does not spin. (See chapter Section 7.10.1)
7. Observe motor speed, position, phase currents and other graphs predefined in subblock scopes and

recorders.

7.5 Faults explanation
When the motor is running or during the tuning process, there may be several fault conditions. Therefore,
the motor-control example has an integrated fault indication located in the variable watch of the "Motor M1"
FreeMASTER subblock. If a fault is indicated, state machine enters the FAULT state.

PMSMRT1170B All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2 — 5 January 2024
34 / 64

NXP Semiconductors PMSMRT1170B
MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC Motors

Figure 23. Faults in variable watch located in "Motor M1" subblock

7.5.1 Variable "M1 Fault Pending"

It shows actually persisting faults, which means that the fault indicated during fault conditions is accomplished.
For example, if the source voltage is still under the undervoltage fault threshold, the undervoltage pending fault
is shown. If the fault condition disappears, the fault pending is cleared automatically. "M1 Fault Pending" is
shown in a binary format in the FreeMASTER variable watch. Each place in the variable denotes a different fault
condition.

• b 0000 0001 - the overcurrent fault is indicated. If the overcurrent fault is present, the PWMs are automatically
disabled. The fault occurs when the DC-Bus current exceeds the Imax value (current-sensing HW scale).

• b 0000 0010 - the undervoltage fault is indicated. The undervoltage fault occurs when the UDCBus voltage
(source voltage) is lower than the U DCB under threshold.

• b 0000 0100 - the overvoltage fault is indicated. The overvoltage fault occurs when the UDCBus voltage
(source voltage) is higher than the U DCB over threshold.

• b 0000 1000 - the overload fault is indicated. The overload fault occurs when the rotor is overloaded.
• b 0001 0000 - the overspeed fault is indicated. The overspeed fault occurs when the rotor speed exceeds the

N over threshold.
• b 0010 0000 - the block rotor fault is indicated. The block rotor fault occurs when the back-EMF voltage is

lower than the E block threshold and the duration of the drop is longer than E block per.

Figure 24. Undervoltage fault is indicated (pending)

PMSMRT1170B All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2 — 5 January 2024
35 / 64

NXP Semiconductors PMSMRT1170B
MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC Motors

7.5.2 Variable "M1 Fault Captured"

If any fault condition appears, the fault captured is indicated. Similar to fault pending, fault captured is shown
in the BIN format, but every fault type has its own variable ("M1 Fault Captured Over Curent" and others). For
example, if the undervoltage fault condition is accomplished, fault captured is indicated. Fault captured is also
indicated after the undervoltage fault condition disappears. The captured faults are cleared manually by writing
"Clear [1]" to "M1 Fault Clear".

Figure 25. Undervoltage fault is captured

7.5.3 Variable "M1 Fault Enable"

The fault indication can be unwanted during the tuning process. Therefore, the fault indication can be disabled
by writing "Disabled [0]" to the "M1 Fault Enable" variables.

Note: The overcurrent fault cannot be disabled.

Note: Fault thresholds are located in the "MCAT parameters" tab.

PMSMRT1170B All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2 — 5 January 2024
36 / 64

NXP Semiconductors PMSMRT1170B
MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC Motors

7.6 Initial motor parameters and harware configuration
Motor control examples contain two or more configuration files: m1_pmsm_appconfig.h,
m2_pmsm_appconfig.h, and so on. Each contains constants tuned for the selected motor (Linix 45ZWN24-40
or Teknic M-2310P for the Freedom development platform and Mige 60CST-MO1330 for the High-voltage
platform). The initial motor parameters and the hardware configuration (inverter) are to MCAT loaded from
m1_pmsm_appconfig.h configuration file. There are tree ways to change motor configuration corresponding
to the connected motor.

1. The first way is rename the configuration file:
• In the project example folder, find configuration file to be used.
• Rename this configuration file to m1_pmsm_appconfig.h.
• Rebuild project and load the code to the MCU.

2. The second way is to change motor configuration, as described in Section 7.3.
3. The last way is change motor and hardware parameters manually:

• Open the PMSM control application FreeMASTER project containing the dedicated MCAT plug-in module.
• Select the "Parameters" tab.
• Specify the parameters manually. The motor parameters can be obtained from the motor data sheet

or using the PMSM parameters measurement procedure described in PMSM Electrical Parameters
Measurement (document AN4680). All parameters provided in Table 13 are accessible. The motor inertia
J expresses the overall system inertia and can be obtained using a mechanical measurement. The J
parameter is used to calculate the speed controller constant. However, the manual controller tuning can
also be used to calculate this constant.

Parameter Units Description Typical range

pp [-] Motor pole pairs 1-10

Rs [Ω] 1-phase stator resistance 0.3-50

Ld [H] 1-phase direct inductance 0.00001-0.1

Lq [H] 1-phase quadrature
inductance

0.00001-0.1

Ke [V.sec/rad] BEMF constant 0.001-1

J [kg.m2] System inertia 0.00001-0.1

Iph nom [A] Motor nominal phase
current

0.5-8

Uph nom [V] Motor nominal phase
voltage

10-300

N nom [rpm] Motor nominal speed 1000-2000

Table 13. MCAT motor parameters

• Set the hardware scales—the modification of these two fields is not required when a reference to the
standard power stage board is used. These scales express the maximum measurable current and voltage
analog quantities.

• Check the fault limits—these fields are calculated using the motor parameters and hardware scales (see
Table 14).

Parameter Units Description Typical range

U DCB trip [V] Voltage value at which the
external braking resistor
switch turns on

U DCB Over ~ U DCB max

Table 14. Fault limits

PMSMRT1170B All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2 — 5 January 2024
37 / 64

https://www.nxp.com/doc/AN4680

NXP Semiconductors PMSMRT1170B
MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC Motors

Parameter Units Description Typical range

U DCB under [V] Trigger value at which
the undervoltage fault is
detected

0 ~ U DCB Over

U DCB over [V] Trigger value at which the
overvoltage fault is detected

U DCB Under ~ U max

N over [rpm] Trigger value at which the
overspeed fault is detected

N nom ~ N max

N min [rpm] Minimal actual speed value
for the sensorless control

(0.05~0.2) *N max

Table 14. Fault limits...continued

• Check the application scales—these fields are calculated using the motor parameters and hardware
scales (see Table 15).

Parameter Units Description Typical range

N max [rpm] Speed scale >1.1 * N nom

E block [V] BEMF scale ke* Nmax

kt [Nm/A] Motor torque constant -

Table 15. Application scales

• Check the alignment parameters—these fields are calculated using the motor parameters and hardware
scales. The parameters express the required voltage value applied to the motor during the rotor alignment
and its duration.

• To save the modified parameters into the inner file, click the "Store data" button.

7.7 Identifying parameters of user motor
Because the model-based control methods of the PMSM drives provide high performance (for example,
dynamic response, efficiency), obtaining an accurate model of a motor is an important part of the drive design
and control. For the implemented FOC algorithms, it is necessary to know the value of the stator resistance
Rs, direct inductance Ld, quadrature inductance Lq, and BEMF constant Ke. Unless the default PMSM motor
described above is used, the motor parameter identification is the first step in the application tuning. This
section shows how to identify user motor parameters using MID. MID is written in floating-point arithmetics.
Each MID algorithm is detailed in Section 7.8. MID is controlled via the FreeMASTER "Motor Identification" page
shown in Figure 26.

PMSMRT1170B All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2 — 5 January 2024
38 / 64

NXP Semiconductors PMSMRT1170B
MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC Motors

Figure 26. MID FreeMASTER control

7.7.1 Switch between Spin and MID

Users can switch between two modes of application: Spin and MID (Motor Identification). Spin mode is used
for control PMSM (see Section 7.3). MID mode is used for motor parameters identification (see Section 7.7.2).
The actual mode of application is shown in APP: State variable. The mode is changed by writing one to APP:
MID to Spin request or APP: Spin to MID request variables. The transition between Spin and MID can be done
only if the actual mode is in a defined stop state (for example, MID not in progress or motor stopped). The result
of the change mode request is shown in APP: Fault variable. MID fault occurs when parameters identification
still runs, or the MID state machine is in the fault state. A spin fault occurs when M1 Application switch variable
watch is ON, or M1 Application state variable watch is not STOP.

PMSMRT1170B All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2 — 5 January 2024
39 / 64

NXP Semiconductors PMSMRT1170B
MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC Motors

7.7.2 Motor parameter identification using MID

The whole MID is controlled via the FreeMASTER "Variable Watch". The Motor Identification (MID) subblock is
shown in Figure 26. Following is the motor parameter identification workflow:

1. Set the MID: Command variable to STOP.
2. Select the measurement type that you want to perform via the MID: Measurement Type variable:

• PP_ASSIST - Pole-pair identification assistant
• EL_PARAMS - Electrical parameters measurement
• Ke - BEMF constant measurement
• MECH_PARAMS - Mechanical parameters measurement

3. Insert the known motor parameters via the MID: Known Param set of variables. All parameters with a non-
zero known value are used instead of measured parameters (if necessary).

4. Set the measurement configuration parameters in the MID: Config set of variables.
5. Start the measurement by setting MID: Command to RUN.
6. Observe the MID Start Result variable for the MID measurement plan validity (see Table 18) and the actual

MID: State, MID: Faults (see Table 16), and MID: Warnings (see Table 17) variables.
7. If the measurement finishes successfully, the measured motor parameters are shown in the MID: Measured

set of variables and MID: State goes to STOP.

7.7.3 MID faults and warnings

The MID faults and warnings are saved in the format of masks in the MID: Faults and MID: Warnings variables.
Faults and warnings are cleared automatically when starting a new measurement. If a MID fault appears, the
measurement process immediately stops and brings the MID state machine safely to the STOP state. If a MID
warning appears, the measurement process continues. Warnings report minor issues during the measurement
process. For more details on individual faults and warnings, see Table 16 and Table 17.

Fault mask Fault description Fault reason Troubleshooting

b#0001 Electrical parameters
measurement fault

Some required value
cannot be reached or wrong
measurement configuration

Check whether measurement
configuration is valid

b#0010 Mechanical measurement
timeout

Some part of the mechanical
measurement (acceleration,
deceleration) took too long
and exceeded 10 seconds

Raise the MID: Config
Mech Iq Accelerate or lower
the MID: Config Mech Iq
Decelerate

Table 16. Measurement faults

Warning mask Warning description Warning reason Troubleshooting

b#0001 Ke is out of range The measured Ke is negative Visually check whether the
motor was spinning properly
during the Ke measurement

Table 17. Measurement warnings

The MID measurement plan is checked after starting the measurement process. If a necessary parameter is
not scheduled for the measurement and not set manually, the MID is not started and an error is reported via the
MID: Start Result variable.

PMSMRT1170B All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2 — 5 January 2024
40 / 64

NXP Semiconductors PMSMRT1170B
MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC Motors

MID Start Result mask Description Troubleshooting

b#00 0001 Error during initialization electrical
parameters measurement

Check whether inputs to the MCAA_
EstimRLInit_FLT are valid

b#00 0010 The Rs value is missing Schedule electrical measurement or
enter Rs value manually

b#00 0100 The Ld value is missing Schedule electrical measurement or
enter Ld value manually

b#00 1000 The Lq value is missing Schedule electrical measurement or
enter Lq value manually

b#01 0000 The Ke value is missing Schedule Ke for measurement or enter
its value manually

b#10 0000 The Pp value is missing Enter the Pp value manually

Table 18. MID Start Result variable

7.8 MID algorithms
This section describes how each MID algorithm works.

7.8.1 Stator resistance measurement

The stator resistance Rs is averaged from the DC steps generated by the algorithm. The DC step levels are
automatically derived from the currents inserted by the user. For more details, refer to the documentation of
AMCLIB_EstimRL function from AMMCLib.

7.8.2 Stator inductances measurement

Injection of the AC-DC currents is used for the inductances (Ld and Lq) estimation. Injected AC-DC currents are
automatically derived from the currents inserted by the user. The default AC current frequency is 500 Hz. For
more detail, refer to the documentation of AMCLIB_EstimRL function from AMMCLib.

7.8.3 BEMF constant measurement

Before the actual BEMF constant Ke measurement, the BEMF and Tracking observers parameters are
recalculated from the previously measured or manually set Rs, Ld, and Lq parameters. To measure Ke, the motor
must spin. During the measurement, the motor is open-loop driven at the user-defined frequency MID: Config
Ke Freq El. Required with the user-defined current MID: Config Ke Id Required value. When the motor reaches
the required speed, the BEMF voltages obtained by the BEMF observer are filtered and Ke is calculated:

(5)

When Ke is being measured, you must visually check whether the motor is spinning properly. If the motor is not
spinning properly, perform the steps below:

• Ensure that the number of pp is correct. The required speed for the Ke measurement is also calculated from
pp. Therefore, inaccuracy in pp causes inaccuracy in the resulting Ke.

• Increase MID: Config Ke Id Required variable to produce higher torque when spinning during the open loop.
• Decrease MID: Config Ke Freq El. Required variable to decrease the required speed for the Ke measurement.

PMSMRT1170B All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2 — 5 January 2024
41 / 64

https://www.nxp.com/design/automotive-software-and-tools/automotive-math-and-motor-control-library-ammclib:AMMCLIB#design-resources
https://www.nxp.com/design/automotive-software-and-tools/automotive-math-and-motor-control-library-ammclib:AMMCLIB#design-resources

NXP Semiconductors PMSMRT1170B
MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC Motors

7.8.4 Number of pole-pair assistant

The number of pole-pairs can only be measured with a position sensor. However, there is a simple assistant
to determine the number of pole-pairs (PP_ASSIST). The number of the pp assistant performs one electrical
revolution, stops for a few seconds, and then repeats. Because the pp value is the ratio between the electrical
and mechanical speeds, it can be determined as the number of stops per one mechanical revolution. It is
recommended to refrain from counting the stops during the first mechanical revolution because the alignment
occurs during the first revolution and affects the number of stops. During the PP_ASSIST measurement, the
current loop is enabled, and the Id current is controlled to MID: Config Pp Id Meas. The electrical position is
generated by integrating the open-loop frequency MID: Config Pp Freq El. Required. If the rotor does not move
after the start of PP_ASSIST assistant, stop the assistant, increase MID: Config Pp Id Meas, and restart the
assistant.

7.8.5 Mechanical parameters measurement

The moment of inertia J and the viscous friction B can be identified using a test with the known generated
torque T and the loading torque Tload.

(6)

The ωm character in the equation is the mechanical speed. The mechanical parameter identification
software uses the torque profile. The loading torque is (for simplicity reasons) said to be 0 during the whole
measurement. Only the friction and the motor-generated torque are considered. During the measurement
phase, the constant torque Tmeas is applied and the motor accelerates to 50 % of its nominal speed in time t1.
These integrals are calculated during the period from t0 (the speed estimation is accurate enough) to t1:

(7)

(8)

During the second phase, the rotor decelerates freely with no generated torque, only by friction. This enables
you to measure the mechanical time constant τm=J/B as the time the rotor decelerates from its original value by
63 %.

The final mechanical parameter estimation can be calculated by integrating:

(9)

The moment of inertia is:

(10)

The viscous friction is then derived from the relation between the mechanical time constant and the moment of
inertia. To use the mechanical parameters measurement, the current control loop bandwidth f0,Current, the speed
control loop bandwidth f0,Speed, and the mechanical parameters measurement torque Trqm must be set.

PMSMRT1170B All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2 — 5 January 2024
42 / 64

NXP Semiconductors PMSMRT1170B
MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC Motors

Figure 27. PMSM identification tab

7.9 Electrical parameters measurement control
This section describes how to control electrical parameters measurement, which contains measuring
stator resistance Rs, direct inductance Ld, and quadrature inductance Lq. There are available 4 modes of
measurement which MID: Config El Mode Estim RL variable can select.

Function MCAA_EstimRLInit_FLT must be called before the first use of MCAA_EstimRL_FLT. Function
MCAA_EstimRL_FLT must be called periodically with sampling period F_SAMPLING, which can be defined
by the user. Maximum sampling frequency F_SAMPLING is 10 kHz. In the scopes under "Motor identification",
FreeMASTER subblock can be observed in measured currents, estimated parameters, and so on.

7.9.1 Mode 0

This mode is automatic. Inductances are measured at a single operating point. The rotor is not fixed. The user
has to specify nominal current (MID: Config El I DC nominal variable). The AC and DC currents are
automatically derived from the nominal current. The frequency of the AC signal is set to 500 Hz.

The function outputs stator resistance Rs, direct inductance Ld, and quadrature inductance Lq.

7.9.2 Mode 1

DC stepping is automatic in this mode. The rotor is not fixed. Compared to the Mode 0, an automatic
measurement of the inductances for a defined number (NUM_MEAS) of different DC current levels is performed
using positive values of the DC current. The Ldq dependency map can be seen in the "Inductances (Ld, Lq)"
recorder. The user has to specify the following parameters before parameters estimation:

• MID: Config El I DC (estim Lq) - Current to determine Lq. In most cases, nominal current.

PMSMRT1170B All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2 — 5 January 2024
43 / 64

NXP Semiconductors PMSMRT1170B
MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC Motors

• MID: Config El I DC positive max - Maximum positive DC current for the Ldq dependency map measurement.

Injected AC and DC currents are automatically derived from the MID: Config El I DC (estim Lq) and MID: Config
El I DC positive max currents. The frequency of the AC signal is set to 500 Hz.

The function outputs stator resistance Rs, direct inductance Ld, quadrature inductance Lq, and Ldq dependency
map.

7.9.3 Mode 2

DC stepping is automatic in this mode. The rotor must be mechanically fixed after initial alignment with the
first phase. Compared to the Mode 1, an automatic measurement of the inductances for a defined number
(NUM_MEAS) of different DC current levels is performed using both positive and negative values of the DC
current. The estimated inductances can be seen in the "Inductances (Ld, Lq)" recorder. The user has to specify
following parameters before parameters estimation:

• MID: Config El I DC (estim Ld) - Current to determine Ld. In most cases, 0 A.
• MID: Config El I DC (estim Lq) - Current to determine Lq. In most cases, nominal current.
• MID: Config El I DC positive max - Maximum positive DC current for the Ldq dependency map measurement.

In most cases, nominal current.
• MID: Config El I DC negative max - Maximum negative DC current for the Ldq dependency map

measurement.

Injected AC and DC currents are automatically derived from the MID: Config El I DC (estim Ld), MID: Config
El I DC (estim Lq), MID: Config El I DC positive max, and MID: Config El I DC negative max currents. The
frequency of the AC signal is set to 500 Hz.

The function outputs stator resistance Rs, direct inductance Ld, quadrature inductance Lq, and Ldq dependency
map.

7.9.4 Mode 3

This mode is manual. The rotor must be mechanically fixed after alignment with the first phase. Rs is not
calculated at this mode. The estimated inductances can be observed in the "Ld" or "Lq" scopes. The following
parameters can be changed during the runtime:

• MID: Config El DQ-switch - Axis switch for AC signal injection (0 for injection AC signal to d-axis, 1 for
injection AC signal to q-axis).

• MID: Config El I DC req (d-axis) - Required DC current in d-axis.
• MID: Config El I DC req (q-axis) - Required DC current in q-axis.
• MID: Config El I AC req - Required AC current injected to the d-axis or q-axis.
• MID: Config El I AC frequency - Required frequency of the AC current injected to the d-axis or q-axis.

7.10 Control parameters tuning
To check correct current measuring and proper working of back EMF observer, follow the steps below:

1. Select the scalar control in the "M1 MCAT Control" FreeMASTER variable watch.
2. Set the "M1 Application Switch" variable to "ON". The application state changes to "RUN".
3. Set the required frequency value in the "M1 Scalar Freq Required" variable; for example, 15 Hz in the

"Scalar & Voltage Control" FreeMASTER project tree. The motor starts running.
4. Select the "Phase Currents" recorder from the "Scalar & Voltage Control" FreeMASTER project tree.
5. The optimal ratio for the V/Hz profile can be found by changing the V/Hz factor directly using the "M1 V/Hz

factor" variable. The shape of the motor currents should be close to a sinusoidal shape (Figure 28). Use the
following equation for calculating V/Hz factor:

PMSMRT1170B All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2 — 5 January 2024
44 / 64

NXP Semiconductors PMSMRT1170B
MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC Motors

(11)

Where,
Uphnom = nominal voltage
kfactor = ratio within range 0-100%
pp = number of pole-pairs
Nnom = nominal revolutions
Note: Changes V/Hz factor is not propagated to the m1_pmsm_appconfig.h.

Figure 28. Phase currents
6. Select the "Position" recorder to check the observer functionality. The difference between the "Position

Electrical Scalar" and the "Position Estimated" should be minimal (see Figure 29) for the Back-EMF position
and speed observer to work properly. The position difference depends on the motor load. The higher the
load, the bigger the difference between the positions due to the load angle.

Figure 29. Generated and estimated positions
7. If an opposite speed direction is required, set a negative speed value into the "M1 Scalar Freq Required"

variable.
8. The proper observer functionality and the measurement of analog quantities is expected at this step.

PMSMRT1170B All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2 — 5 January 2024
45 / 64

NXP Semiconductors PMSMRT1170B
MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC Motors

9. Enable the voltage FOC mode in the "M1 MCAT Control" variable while the main application switch "M1
Application Switch" is turned off.

10. Switch on the main application switch on and set a non-zero value in the “M1 MCAT Uq Required” variable.
The FOC algorithm uses the estimated position to run the motor.

7.10.1 Encoder sensor setting

The encoder sensor settings are in the "Sensors" tab. The encoder sensor enables you to compute speed and
position for the sensored speed. For a proper encoder counting, set the number of encoder pulses per one
revolution and the proper counting direction. The number of encoder pulses is based on information about the
encoder from its manufacturer. If the encoder sensor has more pulses per revolution, the speed and position
computing is more accurate. The counting direction is provided by connecting the encoder signals to the NXP
Freedom board and also by connecting the motor phases.

To determine the direction of rotation, follow the steps below:

1. Navigate to the "Scalar & Voltage Control" tab in the project tree and select "SCALAR_CONTROL" in the
"M1 MCAT Control" variable.

2. Turn on the application switch. The application state changes to "RUN".
3. Set the required frequency value in the "M1 Scalar Freq Required" variable; for example, 15 Hz. The motor

starts running.
4. Check the encoder direction. Select the "Encoder Direction Scope" from the "Scalar & Voltage Control"

project tree. If the encoder direction is right, the estimated speed is equal to the measured mechanical
speed. If the measured mechanical speed is opposite to the estimated speed, the direction must be
changed. The first way is to change "M1 Encoder Direction" variable - only 0 or 1 value is allowed. The
second way is invert the encoder wires—phase A and phase B (or the other way round).

Figure 30. Encoder direction—right direction

PMSMRT1170B All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2 — 5 January 2024
46 / 64

NXP Semiconductors PMSMRT1170B
MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC Motors

Figure 31. Encoder direction—wrong direction

7.10.2 Alignment tuning

For the alignment parameters, navigate to the "Parameters" MCAT tab. The alignment procedure sets the rotor
to an accurate initial position and enables you to apply full startup torque to the motor. A correct initial position is
needed mainly for high startup loads (compressors, washers, and so on). The alignment aims to have the rotor
in a stable position, without any oscillations before the startup.

• The alignment voltage is the value applied to the d-axis during the alignment. Increase this value for a higher
shaft load.

• The alignment duration expresses the time when the alignment routine is called. Tune this parameter to
eliminate rotor oscillations or movement at the end of the alignment process.

7.10.3 Current loop tuning

The parameters for the current D, Q, and PI controllers are fully calculated using the motor parameters and no
action is required in this mode. If the calculated loop parameters do not correspond to the required response,
the bandwidth and attenuation parameters can be tuned.

1. Select “Openloop Control” in the FreeMASTER project tree, set “M1 MCAT Control” to “OPENLOOP_CTRL”
and switch “M1 Openloop Use I Control” on.

2. Turn the application on by switching “M1 Application Switch” on and then set “M1 Openloop Requred Id” for
rotor alignment. (Rotor alignment always uses Id, even when you are tuning the Q axis regulator)

3. Mechanically lock the motor schaft and turn the application off.
4. Set the required loop bandwidth and attenuation in MCAT “Current loop” tab and then click the “Update

target” button. The tuning loop bandwidth parameter defines how fast the loop response is while the tuning
loop attenuation parameter defines the actual overshoot magnitude.

5. Select “Current Controller Id” recorder in project tree, turn the application on and set the required step
amplitude in “M1 Openloop Requred Id”. Observe the step response in the recorder.

6. Tune the loop bandwidth and attenuation until you achieve the required response. The example waveforms
show the correct and incorrect settings of the current loop parameters:
• The loop bandwidth is low (100 Hz) and the settling time of the Id current is long (Figure 32).

PMSMRT1170B All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2 — 5 January 2024
47 / 64

NXP Semiconductors PMSMRT1170B
MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC Motors

Figure 32. Slow step response of the Id current controller
• The loop bandwidth (300 Hz) is optimal and the response time of the Id current is sufficient (Figure 33).

Figure 33. Optimal step response of the Id current controller
• The loop bandwidth is high (700 Hz) and the response time of the Id current is very fast, but with

oscillations and overshoot (Figure 34).

PMSMRT1170B All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2 — 5 January 2024
48 / 64

NXP Semiconductors PMSMRT1170B
MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC Motors

Figure 34. Fast step response of the Id current controller

7.10.4 Speed ramp tuning

To tune speed ramp parameters, follow the steps below:

1. The speed command is applied to the speed controller through a speed ramp. The ramp function contains
two increments (up and down) which express the motor acceleration and deceleration per second. If the
increments are very high, they can cause an overcurrent fault during acceleration and an overvoltage fault
during deceleration. In the "Speed" scope, you can see whether the "Speed Actual Filtered" waveform
shape equals the "Speed Ramp" profile.

2. The increments are common for the scalar and speed control. The increment fields are in the "Speed loop"
tab and accessible in both tuning modes. Clicking the "Update target" button applies the changes to the
MCU. An example speed profile is shown in Figure 35. The ramp increment down is set to 500 rpm/sec and
the increment up is set to 3000 rpm/sec.

3. The startup ramp increment is in the "Sensorless" tab and its value is higher than the speed loop ramp.

Figure 35. Speed profile

PMSMRT1170B All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2 — 5 January 2024
49 / 64

NXP Semiconductors PMSMRT1170B
MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC Motors

7.10.5 Open loop startup

To tune open loop startup parameters, follow the steps below:

1. The startup process can be tuned by a set of parameters located in the "Sensorless" tab. Two of them (ramp
increment and current) are accessible in both tuning modes. The startup tuning can be processed in all
control modes besides the scalar control. Setting the optimal values results in a proper motor startup. An
example startup state of low-dynamic drives (fans, pumps) is shown in Figure 36.

2. Select the "Startup" recorder from the FreeMASTER project tree.
3. Set the startup ramp increment typically to a higher value than the speed-loop ramp increment.
4. Set the startup current according to the required startup torque. For drives such as fans or pumps, the

startup torque is not very high and can be set to 15 % of the nominal current.
5. Set the required merging speed. When the open-loop and estimated position merging starts, the threshold is

mostly set in the range of 5 % ~ 10 % of the nominal speed.
6. Set the merging coefficient—in the position merging process duration, 100 % corresponds to a one of an

electrical revolution. The higher the value, the faster the merge. Values close to 1 % are set for the drives
where a high startup torque and smooth transitions between the open loop and the closed loop are required.

7. To apply the changes to the MCU, click the "Update Target" button.
8. Select "SPEED_FOC" in the "M1 MCAT Control" variable.
9. Set the required speed higher than the merging speed.

10. Check the startup response in the recorder.
11. Tune the startup parameters until you achieve an optimal response.
12. If the rotor does not start running, increase the startup current.
13. If the merging process fails (the rotor is stuck or stopped), decrease the startup ramp increment, increase

the merging speed, and set the merging coefficient to 5 %.

Figure 36. Motor startup

7.10.6 BEMF observer tuning

The bandwidth and attenuation parameters of the BEMF and tracking observer can be tuned. To tune the
bandwidth and attenuation parameters, follow the steps below:

PMSMRT1170B All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2 — 5 January 2024
50 / 64

NXP Semiconductors PMSMRT1170B
MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC Motors

1. Navigate to the "Sensorless" MCAT tab.
2. Set the required bandwidth and attenuation of the BEMF observer. The bandwidth is typically set to a value

close to the current loop bandwidth.
3. Set the required bandwidth and attenuation of the tracking observer. The bandwidth is typically set in the

range of 10 – 20 Hz for most low-dynamic drives (fans, pumps).
4. To apply the changes to the MCU, click the "Update target" button.
5. Select the "Observer" recorder from the FreeMASTER project tree and check the observer response in the

"Observer" recorder.

7.10.7 Speed PI controller tuning

The motor speed control loop is a first-order function with a mechanical time constant that depends on the
motor inertia and friction. If the mechanical constant is available, the PI controller constants can be tuned
using the loop bandwidth and attenuation. Otherwise, the manual tuning of the P and I portions of the speed
controllers is available to obtain the required speed response (see Figure 37). There are dozens of approaches
to tune the PI controller constants. To set and tune the speed PI controller for a PM synchronous motor, follow
the steps below:

1. Select the "Speed Controller" option from the FreeMASTER project tree.
2. Select the "Speed loop" tab.
3. Check the "Manual Constant Tuning" option—that is, the "Bandwidth" and "Attenuation" fields are disabled

and the "SL_Kp" and "SL_Ki" fields are enabled.
4. Tune the proportional gain:

• Set the "SL_Ki" integral gain to 0.
• Set the speed ramp to 1000 rpm/sec (or higher).
• Run the motor at a convenient speed (about 30 % of the nominal speed).
• Set a step in the required speed to 40 % of Nnom.
• Adjust the proportional gain "SL_Kp" until the system responds to the required value properly and without

any oscillations or excessive overshoot:
– If the "SL_Kp" field is set low, the system response is slow.
– If the "SL_Kp" field is set high, the system response is tighter.
– When the "SL_Ki" field is 0, the system most probably does not achieve the required speed.
– To apply the changes to the MCU, click the "Update Target" button.

5. Tune the integral gain:
• Increase the "SL_Ki" field slowly to minimize the difference between the required and actual speeds to 0.
• Adjust the "SL_Ki" field such that you do not see any oscillation or large overshoot of the actual speed

value while the required speed step is applied.
• To apply the changes to the MCU, click the "Update target" button.

6. Tune the loop bandwidth and attenuation until the required response is received. The example waveforms
with the correct and incorrect settings of the speed loop parameters are shown in the following figures:
• The "SL_Ki" value is low and the "Speed Actual Filtered" does not achieve the "Speed Ramp".

PMSMRT1170B All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2 — 5 January 2024
51 / 64

NXP Semiconductors PMSMRT1170B
MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC Motors

Figure 37. Speed controller response—SL_Ki value is low, Speed Ramp is not achieved
• The "SL_Kp" value is low, the "Speed Actual Filtered" greatly overshoots, and the long settling time is

unwanted.

Figure 38. Speed controller response—SL_Kp value is low, Speed Actual Filtered greatly overshoots
• The speed loop response has a small overshoot and the "Speed Actual Filtered" settling time is sufficient.

Such response can be considered optimal.

PMSMRT1170B All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2 — 5 January 2024
52 / 64

NXP Semiconductors PMSMRT1170B
MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC Motors

Figure 39. Speed controller response—speed loop response with a small overshoot

7.10.8 Position P controller tuning

The position control loop can be tuned using the proportional gain "M1 Position Loop Kp Gain" variable. A
proportional controller can be used to unpretend the position-control systems. The key for the optimal position
response is a proper value of the controller, which multiplies the error by the proportional gain (Kp) to get the
controller output. The predefined base value can be manually changed. An encoder sensor must be used for a
working position control. The following steps provide an example of how to set the position P controller for a PM
synchronous motor:

1. Select the "Position Controller" scope in "Position Control" tab in the FreeMASTER project tree.
2. Tune the proportional gain in the position P controller constant:

• Set a small value of "PL_Kp" (M1 Position Loop Kp Gain).
• Select the position control, and set the required position in "M1 Position Required" variable (for example;

10 revolutions).
• Select the "Position Controller" scope and watch the actual position response.

3. Repeat the previous steps until you achieve the required position response.

The "PL_Kp" value is low and the actual position response on the required position is very slow.

PMSMRT1170B All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2 — 5 January 2024
53 / 64

NXP Semiconductors PMSMRT1170B
MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC Motors

Figure 40. Position controller response—PL_Kp value is low, the actual position response is very slow

The "PL_Kp" value is too high and the actual position overshoots the required position.

Figure 41. Position controller response—PL_Kp value is too high and the actual position overshoots

The "PL_Kp" value and the actual position response are optimal.

PMSMRT1170B All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2 — 5 January 2024
54 / 64

NXP Semiconductors PMSMRT1170B
MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC Motors

Figure 42. Position controller response—the actual position response is good

PMSMRT1170B All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2 — 5 January 2024
55 / 64

NXP Semiconductors PMSMRT1170B
MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC Motors

8 Conclusion

This application note describes the implementation of the sensor and sensorless field-oriented control of a 3-
phase PMSM. The motor control software is implemented on NXP MIMXRT1170-EVKB board with the FRDM-
MC-LVPMSM NXP Freedom development platform. The hardware-dependent part of the control software is
described in Section 2. The motor-control application timing, and the peripheral initialization are described in
Section 3. The motor user interface and remote control using FreeMASTER are described in Section 6. The
motor parameters identification theory and the identification algorithms are described in Section 7.8.

PMSMRT1170B All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2 — 5 January 2024
56 / 64

NXP Semiconductors PMSMRT1170B
MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC Motors

9 Acronyms and abbreviations

Table 19 lists the acronyms and abbreviations used in this document.

Acronym Meaning

ADC Analog-to-Digital Converter

ACIM Asynchronous Induction Motor

ADC_ETC ADC External Trigger Control

AN Application Note

BLDC Brushless DC motor

CCM Clock Controller Module

CPU Central Processing Unit

DC Direct Current

DRM Design Reference Manual

ENC Encoder

FOC Field-Oriented Control

GPIO General-Purpose Input/Output

LPIT Low-power Periodic Interrupt Timer

LPUART Low-power Universal Asynchronous Receiver/Transmitter

MCAT Motor Control Application Tuning tool

MCDRV Motor Control Peripheral Drivers

MCU Microcontroller

PDB Programmable Delay Block

PI Proportional Integral controller

PLL Phase-Locked Loop

PMSM Permanent Magnet Synchronous Machine

PWM Pulse-Width Modulation

QD Quadrature Decoder

TMR Quad Timer

USB Universal Serial Bus

XBAR Inter-Peripheral Crossbar Switch

IOPAMP Internal operational amplifier

Table 19. Acronyms and abbreviations

PMSMRT1170B All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2 — 5 January 2024
57 / 64

NXP Semiconductors PMSMRT1170B
MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC Motors

10 References

These references are available on www.nxp.com:

• Sensorless PMSM Field-Oriented Control (document DRM148)
• Motor Control Application Tuning (MCAT) Tool for 3-Phase PMSM (document AN4642)
• PMSM Field-Oriented Control on MIMXRT10xx EVK User's Guide (document PMSMFOCRT10xxUG)
• PMSM Field-Oriented Control on MIMXRT10xx EVK (document AN12214)

PMSMRT1170B All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2 — 5 January 2024
58 / 64

http://www.nxp.com
https://www.nxp.com/doc/DRM148
https://www.nxp.com/doc/AN4642
https://www.nxp.com/docs/en/user-guide/PMSMFOCRT10xxUG.PDF
https://www.nxp.com/docs/en/application-note/AN12214.pdf

NXP Semiconductors PMSMRT1170B
MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC Motors

11 Useful links

• MCUXpresso SDK for Motor Control www.nxp.com/sdkmotorcontrol
• Motor Control Application Tuning (MCAT) Tool
• i.MX RT Crossover MCUs
• FRDM-MC-PMSM Freedome Development Platform
• MCUXpresso IDE - Importing MCUXpresso SDK
• MCUXpresso Config Tool
• MCUXpresso SDK Builder (SDK examples in several IDEs)
• Model-Based Design Toolbox (MBDT)

PMSMRT1170B All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2 — 5 January 2024
59 / 64

https://www.nxp.com/design/designs/mcuxpresso-sdk-for-motor-control:MCUXPRESSO-SDK-MOTOR-CONTROL
https://www.nxp.com/design/training/motor-control-application-tuning-mcat-tool-pmsm-servo-tuning:TIP-MCAT-PMSM
https://www.nxp.com/products/processors-and-microcontrollers/arm-microcontrollers/i-mx-rt-crossover-mcus:IMX-RT-SERIES
https://www.nxp.com/design/development-boards/freedom-development-boards/mcu-boards/nxp-freedom-development-platform-for-low-voltage-3-phase-pmsm-motor-control:FRDM-MC-LVPMSM
https://www.nxp.com/video/mcuxpresso-ide-importing-mcuxpresso-sdk:MCUXPRESSO-IDE-IMPORTING-SDK
https://www.nxp.com/design/software/development-software/mcuxpresso-software-and-tools-/mcuxpresso-config-tools-pins-clocks-peripherals:MCUXpresso-Config-Tools
https://mcuxpresso.nxp.com/en/welcome
https://www.nxp.com/design/automotive-software-and-tools/model-based-design-toolbox-mbdt:MBDT

NXP Semiconductors PMSMRT1170B
MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC Motors

12 Revision history

Section 12 summarizes the changes done to the document since the initial release.

Revision number Date Substantive changes

2 Jan 2024 Bug fixing

1 Apr 2023 New documentation structure

0 Dec 2022 Initial release

Table 20. Revision history

PMSMRT1170B All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2 — 5 January 2024
60 / 64

NXP Semiconductors PMSMRT1170B
MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC Motors

Legal information

Definitions
Draft — A draft status on a document indicates that the content is still
under internal review and subject to formal approval, which may result
in modifications or additions. NXP Semiconductors does not give any
representations or warranties as to the accuracy or completeness of
information included in a draft version of a document and shall have no
liability for the consequences of use of such information.

Disclaimers
Limited warranty and liability — Information in this document is believed
to be accurate and reliable. However, NXP Semiconductors does not give
any representations or warranties, expressed or implied, as to the accuracy
or completeness of such information and shall have no liability for the
consequences of use of such information. NXP Semiconductors takes no
responsibility for the content in this document if provided by an information
source outside of NXP Semiconductors.
In no event shall NXP Semiconductors be liable for any indirect, incidental,
punitive, special or consequential damages (including - without limitation -
lost profits, lost savings, business interruption, costs related to the removal
or replacement of any products or rework charges) whether or not such
damages are based on tort (including negligence), warranty, breach of
contract or any other legal theory.
Notwithstanding any damages that customer might incur for any reason
whatsoever, NXP Semiconductors’ aggregate and cumulative liability
towards customer for the products described herein shall be limited in
accordance with the Terms and conditions of commercial sale of NXP
Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to
make changes to information published in this document, including without
limitation specifications and product descriptions, at any time and without
notice. This document supersedes and replaces all information supplied prior
to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed,
authorized or warranted to be suitable for use in life support, life-critical or
safety-critical systems or equipment, nor in applications where failure or
malfunction of an NXP Semiconductors product can reasonably be expected
to result in personal injury, death or severe property or environmental
damage. NXP Semiconductors and its suppliers accept no liability for
inclusion and/or use of NXP Semiconductors products in such equipment or
applications and therefore such inclusion and/or use is at the customer’s own
risk.

Applications — Applications that are described herein for any of these
products are for illustrative purposes only. NXP Semiconductors makes no
representation or warranty that such applications will be suitable for the
specified use without further testing or modification.
Customers are responsible for the design and operation of their
applications and products using NXP Semiconductors products, and NXP
Semiconductors accepts no liability for any assistance with applications or
customer product design. It is customer’s sole responsibility to determine
whether the NXP Semiconductors product is suitable and fit for the
customer’s applications and products planned, as well as for the planned
application and use of customer’s third party customer(s). Customers should
provide appropriate design and operating safeguards to minimize the risks
associated with their applications and products.
NXP Semiconductors does not accept any liability related to any default,
damage, costs or problem which is based on any weakness or default
in the customer’s applications or products, or the application or use by
customer’s third party customer(s). Customer is responsible for doing all
necessary testing for the customer’s applications and products using NXP
Semiconductors products in order to avoid a default of the applications
and the products or of the application or use by customer’s third party
customer(s). NXP does not accept any liability in this respect.

Terms and conditions of commercial sale — NXP Semiconductors
products are sold subject to the general terms and conditions of commercial
sale, as published at https://www.nxp.com/profile/terms, unless otherwise
agreed in a valid written individual agreement. In case an individual
agreement is concluded only the terms and conditions of the respective
agreement shall apply. NXP Semiconductors hereby expressly objects to
applying the customer’s general terms and conditions with regard to the
purchase of NXP Semiconductors products by customer.

Export control — This document as well as the item(s) described herein
may be subject to export control regulations. Export might require a prior
authorization from competent authorities.

Suitability for use in non-automotive qualified products — Unless
this document expressly states that this specific NXP Semiconductors
product is automotive qualified, the product is not suitable for automotive
use. It is neither qualified nor tested in accordance with automotive testing
or application requirements. NXP Semiconductors accepts no liability for
inclusion and/or use of non-automotive qualified products in automotive
equipment or applications.
In the event that customer uses the product for design-in and use in
automotive applications to automotive specifications and standards,
customer (a) shall use the product without NXP Semiconductors’ warranty
of the product for such automotive applications, use and specifications, and
(b) whenever customer uses the product for automotive applications beyond
NXP Semiconductors’ specifications such use shall be solely at customer’s
own risk, and (c) customer fully indemnifies NXP Semiconductors for any
liability, damages or failed product claims resulting from customer design and
use of the product for automotive applications beyond NXP Semiconductors’
standard warranty and NXP Semiconductors’ product specifications.

Translations — A non-English (translated) version of a document, including
the legal information in that document, is for reference only. The English
version shall prevail in case of any discrepancy between the translated and
English versions.

Security — Customer understands that all NXP products may be subject to
unidentified vulnerabilities or may support established security standards or
specifications with known limitations. Customer is responsible for the design
and operation of its applications and products throughout their lifecycles
to reduce the effect of these vulnerabilities on customer’s applications
and products. Customer’s responsibility also extends to other open and/or
proprietary technologies supported by NXP products for use in customer’s
applications. NXP accepts no liability for any vulnerability. Customer should
regularly check security updates from NXP and follow up appropriately.
Customer shall select products with security features that best meet rules,
regulations, and standards of the intended application and make the
ultimate design decisions regarding its products and is solely responsible
for compliance with all legal, regulatory, and security related requirements
concerning its products, regardless of any information or support that may be
provided by NXP.
NXP has a Product Security Incident Response Team (PSIRT) (reachable
at PSIRT@nxp.com) that manages the investigation, reporting, and solution
release to security vulnerabilities of NXP products.

NXP B.V. — NXP B.V. is not an operating company and it does not distribute
or sell products.

Trademarks
Notice: All referenced brands, product names, service names, and
trademarks are the property of their respective owners.
NXP — wordmark and logo are trademarks of NXP B.V.

PMSMRT1170B All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2 — 5 January 2024
61 / 64

mailto:PSIRT@nxp.com

NXP Semiconductors PMSMRT1170B
MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC Motors

Tables
Tab. 1. Available example type, supported motors

and control methods ... 2
Tab. 2. Linix 45ZWN24-40 motor parameters 3
Tab. 3. Teknic M-2310P motor parameters 3
Tab. 4. MIMXRT1170-EVKB jumper settings 7
Tab. 5. Add and remove resistors 8
Tab. 6. Maximum CPU load (fast loop) 13
Tab. 7. Constants used in equations23
Tab. 8. Parameters tab inputs23
Tab. 9. Current loop tab input 26
Tab. 10. Speed loop tab input27

Tab. 11. Sensors tab input .. 28
Tab. 12. Sensorless tab input 28
Tab. 13. MCAT motor parameters37
Tab. 14. Fault limits ... 37
Tab. 15. Application scales ... 38
Tab. 16. Measurement faults ...40
Tab. 17. Measurement warnings 40
Tab. 18. MID Start Result variable 41
Tab. 19. Acronyms and abbreviations57
Tab. 20. Revision history ...60

PMSMRT1170B All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2 — 5 January 2024
62 / 64

NXP Semiconductors PMSMRT1170B
MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC Motors

Figures
Fig. 1. Linix 45ZWN24-40 permanent magnet

synchronous motor ..3
Fig. 2. Teknic M-2310P permanent magnet

synchronous motor ..4
Fig. 3. Teknic motor connector type 1 4
Fig. 4. Teknic motor connector type 2 5
Fig. 5. Motor-control development platform block

diagram ..5
Fig. 6. FRDM-MC-LVPMSM ... 6
Fig. 7. MIMXRT1170-EVKB board with highlighted

jumper settings ..7
Fig. 8. Assembled Freedome system9
Fig. 9. Hardware timing and synchronization on

i.MX RT1170 ..10
Fig. 10. Directory tree ...14
Fig. 11. Green “GO” button placed in top left-hand

corner .. 19
Fig. 12. FreeMASTER—communication is

established successfully19
Fig. 13. FreeMASTER communication setup

window ...20
Fig. 14. Default symbol file ...21
Fig. 15. FreeMASTER + MCAT layout 22
Fig. 16. Scalar control mode .. 30
Fig. 17. Voltage - Open loop control 31
Fig. 18. Current - Open loop control 31
Fig. 19. Voltage FOC control mode32
Fig. 20. Current (torque) control mode33
Fig. 21. Speed FOC control mode 33
Fig. 22. Position control mode34
Fig. 23. Faults in variable watch located in "Motor

M1" subblock ...35

Fig. 24. Undervoltage fault is indicated (pending) 35
Fig. 25. Undervoltage fault is captured 36
Fig. 26. MID FreeMASTER control 39
Fig. 27. PMSM identification tab 43
Fig. 28. Phase currents .. 45
Fig. 29. Generated and estimated positions45
Fig. 30. Encoder direction—right direction 46
Fig. 31. Encoder direction—wrong direction47
Fig. 32. Slow step response of the Id current

controller ..48
Fig. 33. Optimal step response of the Id current

controller ..48
Fig. 34. Fast step response of the Id current

controller ..49
Fig. 35. Speed profile ... 49
Fig. 36. Motor startup ... 50
Fig. 37. Speed controller response—SL_Ki value is

low, Speed Ramp is not achieved 52
Fig. 38. Speed controller response—SL_Kp value

is low, Speed Actual Filtered greatly
overshoots ...52

Fig. 39. Speed controller response—speed loop
response with a small overshoot53

Fig. 40. Position controller response—PL_Kp value
is low, the actual position response is very
slow ... 54

Fig. 41. Position controller response—PL_Kp value
is too high and the actual position
overshoots ...54

Fig. 42. Position controller response—the actual
position response is good 55

PMSMRT1170B All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 2 — 5 January 2024
63 / 64

NXP Semiconductors PMSMRT1170B
MCUXpresso SDK Field-Oriented Control (FOC) of 3-Phase PMSM and BLDC Motors

Contents
1 Introduction .. 2
2 Hardware setup ..3
2.1 Linix 45ZWN24-40 motor3
2.2 Teknic M-2310P motor3
2.3 FRDM-MC-LVPMSM ..5
2.4 i.MX RT1170-EVKB ... 6
2.4.1 Hardware assembling .. 8
3 Processors features and peripheral

settings ... 10
3.1 i.MX RT1170 ..10
3.1.1 RT1170 - Hardware timing and

synchronization .. 10
3.1.2 RT1170 - Peripheral settings 11
3.1.2.1 PWM generation - PWM111
3.1.2.2 ADC external trigger control - ADC_ETC11
3.1.2.3 Analog sensing - ADC1 and ADC211
3.1.2.4 Quadrature Decoder (QD) module 11
3.1.2.5 Peripheral interconnection for - XBARA112
3.1.2.6 Slow-loop interrupt generation - TMR112
3.1.2.7 FreeMASTER communication - LPUART1 12
3.2 CPU load and memory usage 12
4 Project file and IDE workspace structure 14
4.1 PMSM project structure 14
5 Motor-control peripheral initialization16
6 User interface ...18
7 Remote control using FreeMASTER 19
7.1 Establishing FreeMASTER communication 19
7.2 TSA replacement with ELF file 20
7.3 Motor Control Aplication Tuning interface

(MCAT) ...21
7.3.1 MCAT tabs description 23
7.3.1.1 Application concept ..23
7.3.1.2 Parameters .. 23
7.3.1.3 Current loop ...26
7.3.1.4 Speed loop .. 26
7.3.1.5 Sensors ..28
7.3.1.6 Sensorless ... 28
7.4 Motor Control Modes - How to run motor29
7.4.1 Scalar control ...30
7.4.2 Open loop control mode 30
7.4.3 Voltage control ...32
7.4.4 Current (torque) control 32
7.4.5 Speed FOC control ..33
7.4.6 Position (servo) control34
7.5 Faults explanation ..34
7.5.1 Variable "M1 Fault Pending"35
7.5.2 Variable "M1 Fault Captured" 36
7.5.3 Variable "M1 Fault Enable"36
7.6 Initial motor parameters and harware

configuration .. 37
7.7 Identifying parameters of user motor 38
7.7.1 Switch between Spin and MID39
7.7.2 Motor parameter identification using MID 40

7.7.3 MID faults and warnings40
7.8 MID algorithms .. 41
7.8.1 Stator resistance measurement41
7.8.2 Stator inductances measurement 41
7.8.3 BEMF constant measurement 41
7.8.4 Number of pole-pair assistant42
7.8.5 Mechanical parameters measurement42
7.9 Electrical parameters measurement control43
7.9.1 Mode 0 .. 43
7.9.2 Mode 1 .. 43
7.9.3 Mode 2 .. 44
7.9.4 Mode 3 .. 44
7.10 Control parameters tuning 44
7.10.1 Encoder sensor setting46
7.10.2 Alignment tuning ..47
7.10.3 Current loop tuning ..47
7.10.4 Speed ramp tuning .. 49
7.10.5 Open loop startup ..50
7.10.6 BEMF observer tuning50
7.10.7 Speed PI controller tuning 51
7.10.8 Position P controller tuning53
8 Conclusion ... 56
9 Acronyms and abbreviations 57
10 References ..58
11 Useful links .. 59
12 Revision history ...60

Legal information ...61

Please be aware that important notices concerning this document and the product(s)
described herein, have been included in section 'Legal information'.

© 2024 NXP B.V. All rights reserved.
For more information, please visit: https://www.nxp.com

Date of release: 5 January 2024
Document identifier: PMSMRT1170B

	1 Introduction
	2 Hardware setup
	2.1 Linix 45ZWN24-40 motor
	2.2 Teknic M-2310P motor
	2.3 FRDM-MC-LVPMSM
	2.4 i.MX RT1170-EVKB
	2.4.1 Hardware assembling

	3 Processors features and peripheral settings
	3.1 i.MX RT1170
	3.1.1 RT1170 - Hardware timing and synchronization
	3.1.2 RT1170 - Peripheral settings
	3.1.2.1 PWM generation - PWM1
	3.1.2.2 ADC external trigger control - ADC_ETC
	3.1.2.3 Analog sensing - ADC1 and ADC2
	3.1.2.4 Quadrature Decoder (QD) module
	3.1.2.5 Peripheral interconnection for - XBARA1
	3.1.2.6 Slow-loop interrupt generation - TMR1
	3.1.2.7 FreeMASTER communication - LPUART1

	3.2 CPU load and memory usage

	4 Project file and IDE workspace structure
	4.1 PMSM project structure

	5 Motor-control peripheral initialization
	6 User interface
	7 Remote control using FreeMASTER
	7.1 Establishing FreeMASTER communication
	7.2 TSA replacement with ELF file
	7.3 Motor Control Aplication Tuning interface (MCAT)
	7.3.1 MCAT tabs description
	7.3.1.1 Application concept
	7.3.1.2 Parameters
	7.3.1.3 Current loop
	7.3.1.4 Speed loop
	7.3.1.5 Sensors
	7.3.1.6 Sensorless

	7.4 Motor Control Modes - How to run motor
	7.4.1 Scalar control
	7.4.2 Open loop control mode
	7.4.3 Voltage control
	7.4.4 Current (torque) control
	7.4.5 Speed FOC control
	7.4.6 Position (servo) control

	7.5 Faults explanation
	7.5.1 Variable "M1 Fault Pending"
	7.5.2 Variable "M1 Fault Captured"
	7.5.3 Variable "M1 Fault Enable"

	7.6 Initial motor parameters and harware configuration
	7.7 Identifying parameters of user motor
	7.7.1 Switch between Spin and MID
	7.7.2 Motor parameter identification using MID
	7.7.3 MID faults and warnings

	7.8 MID algorithms
	7.8.1 Stator resistance measurement
	7.8.2 Stator inductances measurement
	7.8.3 BEMF constant measurement
	7.8.4 Number of pole-pair assistant
	7.8.5 Mechanical parameters measurement

	7.9 Electrical parameters measurement control
	7.9.1 Mode 0
	7.9.2 Mode 1
	7.9.3 Mode 2
	7.9.4 Mode 3

	7.10 Control parameters tuning
	7.10.1 Encoder sensor setting
	7.10.2 Alignment tuning
	7.10.3 Current loop tuning
	7.10.4 Speed ramp tuning
	7.10.5 Open loop startup
	7.10.6 BEMF observer tuning
	7.10.7 Speed PI controller tuning
	7.10.8 Position P controller tuning

	8 Conclusion
	9 Acronyms and abbreviations
	10 References
	11 Useful links
	12 Revision history
	Legal information
	Tables
	Figures
	Contents

