REALTIMEEDGEUG

Real-time Edge Software User Guide
Rev. 2.5 — 30 March 2023

User guide
Document information
Information Content
Keywords REALTIMEEDGEUG, Real-time Edge Software, Real-time Networking, Real-time System,

Protocols, i.MX boards, QorlQ (Layerscape) boards, i.MX 6ULL EVK, i.MX 8DXL EVK, i.MX 8M
Mini LPDDR4 EVK, i.MX 8M Plus LPDDR4 EVK, i.MX 93 EVK NXP hardware platforms

Abstract This document describes the features and implementation of Real-time Edge Software on NXP

hardware platforms. The key technology components include Real-time Networking, Real-time
System, and Protocols.

h o
P



NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

1 Introduction

1.1 Real-time Edge software

Real-time Edge software is an evolved version of Open Industrial Linux (OpenlL) for real-time and deterministic
systems in different fields. The key technology components include Real-time Networking, Real-time System,
and Protocols.

* The Real-time Networking includes TSN technology, TSN standards, management, configuration, and
applications. Networking and redundancy features are also supported.

* The Real-time System includes PREEMPT_RT Linux, Jailhouse, U-Boot based BareMetal framework, and
different combinations of these systems.

* The Protocols component includes support for industry standard protocols such as EtherCAT, CoE, OPC-UA,
and others.

This document describes the features and implementation of Real-time Edge Software on NXP hardware
platforms.

1.2 Real-time Edge Software Yocto Project

For using Yocto build environment, refer to the Real-time Edge Yocto Project User Guide. This document
describes the steps to build Real-time Edge images using a Yocto Project build environment for both i.MX and
QorlQ (Layerscape) boards.

1.3 Supported NXP platforms
The following table lists the NXP hardware SoCs and boards that support the Real-time Edge software.

Table 1. Supported NXP platforms

Platform Architecture Boot

i.MX 6ULL EVK Arm v7 SD

i.MX 8DXL LPDDR4 EVK Arm v8 SD

i.MX 8M Mini LPDDR4 EVK Arm v8 SD

i.MX 8M Plus LPDDR4 EVK Arm v8 SD

i.MX 93 EVK Arm v8 SD
LS1028ARDB Arm v8 SD, eMMC
LS1043ARDB Arm v8 SD
LS1046ARDB Arm v8 SD, eMMC
LS1046AFRWY Arm v8 SD
LX2160ARDB Rev2 Arm v8 SD

1.3.1 Switch setting

The following table lists and describes the switch configuration for the platforms supported by Real-Time Edge
software.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.5 — 30 March 2023

2/332



NXP Semiconductors

REALTIMEEDGEUG

Table 2. Switch setting for various NXP platforms

Real-time Edge Software User Guide

Platform Boot source Switch setting
i.MX 6ULL EVK Internal Boot / MicroSD SW602 = 0b'10 (internal boot) and SW601[1:4] = 0b'0010
(MicroSD)
i.MX 8DXL LPDDR4 EVK SD SW1[1:4] = 0b'1100
i.MX 8M Mini LPDDR4 EVK MicroSD / uSDHC2 e SW1101[1:10] = 0b’ 0110110010
* SW1102[1:10] = 0b’ 0001101000
i.MX 8M Plus LPDDR4 EVK MicroSD / SDHC2 SW4[1:4] = 0b’0011
i.MX 93 EVK MicroSD / uSDHC2 SW1301[1:4] = 0b'0100
LS1028ARDB SD, eMMC * SD: SW2[1:8] = 0b’10001000
* eMMC: SW2[1:8] = 0b’10011000
LS1043ARDB SD SW4[1:8] + SW5[1] = 0b'00100000_0
UART1 output select
e SW3J[3] = 0b’0: RJ45
e SW3[3] = 0b’1: CMSIS-DAP (MiniUSB)
LS1046ARDB SD, eMMC SW5[1:8] + SW4[1] = 0b'00100000_0
UART1 output select
* SWA4[4] = 0b’0: RJ45
* SW4[4] = 0b’1: CMSIS-DAP (MicroUSB)
LS1046AFRWY SD SW1[1:10] = 0b'0010000000
LX2160ARDB Rev2 SD SW1[1:8] = 0b'10001000

1.3.2 Flashing pre-built images

Pre-built images for platforms supported by Real-time Edge software can be downloaded from NXP website

from the below URL:

https://www.nxp.com/design/software/development-software/real-time-edge-software:REALTIME-EDGE-

SOFTWARE.

Download the image required (LS1028ARDB-PA as the example for following), then run below command to

extract it:

$ unzip Real-time Edge v2.5 LS1028ARDB.zip
$ cd Real-time Edge v2.5 LS1028ARDB/real-time-edge

S 1s
atf fsl-1s1028a-rdb-jailhouse-without-enetc.dtb
dp Image-1s1028ardb.bin

fs1l-1s1028a-rdb-dpdk.dtb
fsl-1s1028a-rdb-dsa-swp5-eno3.dtb
1s1028ardb.rootfs.tar.bz2
fsl1l-1s1028a-rdb.dtb

nxp-image-real-time-edge-1sl1028ardb.manifest
nxp-image-real-time-edge-

nxp-image-real-time-edge-1s1028ardb.wic.zst
fsl-1s1028a-rdb-jailhouse.dtb rcw

$ zstd -d nxp-image-real-time-edge-1sl1028ardb.wic.zst

Insert SD card, device node “sdx” (for example: sdc) is created in directory “/dev/” with USB reader, flash file
‘nxp-image-real-time-edge-1s1028ardb.wic” to SD card:

$ sudo dd if=./nxp-image-real-time-edge-1s1028ardb.wic of=/dev/sdc

REALTIMEEDGEUG

All information provided in this document is subject to legal disclaimers.

© 2023 NXP B.V. All rights reserved.

User guide

Rev. 2.5 — 30 March 2023

3/332


https://www.nxp.com/design/software/development-software/real-time-edge-software:REALTIME-EDGE-SOFTWARE
https://www.nxp.com/design/software/development-software/real-time-edge-software:REALTIME-EDGE-SOFTWARE

NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

After flashing this image to SD card, insert this SD card into LS1028ARDB board, connect UART1 port and
open it. Then, when you power on LS1028ARDB board, the below message would be displayed:

CL=11, ECC on
:1f-5.15.5-1.0.0-0-g05f788b9%b-dirty
« Mar

):1f-5.15.5-1.0.0-0
18, Mar y
elcome to lsle28ardb BL31 Phase

U-Boot 2021.04+fsl+g5e08bboff9 (Apr 21 2022 - 09:19:32 +0000)

® MHz CPUl(A72):15880 MHz
MHz DDR: 166068 MT/s

Word (RCW):

. ) 86600030

Model: ( aye DB Board
Board: B28AE Revl.0-RDB, Version: A, boot from SD

Figure 1. LS1028ARDB boot log

1.4 Related documentation

All documentation related to Real Time Edge are available on the link: REALTIME EDGE Documentation. The
following documents are available:

* Real-time Edge Yocto Project User Guide (refer to it for using Yocto build environment)

* GenAVB/TSN Stack Evaluation User Guide (provides information on how to set up Audio Video Bridging
evaluation experiments of the GenAVB/TSN Stack on NXP platforms)

* Harpoon User's Guide (provides information to build Harpoon Yocto images)

* i.MX6ULL EVK GenAVB/TSN Rework Application Note (AN13678)
For details about graphics features available on i.MX 8M Plus and i.MX 8M Mini boards, refer to thei. MX
Graphics User's Guide

Refer to the following guides for detailed instructions on booting up and setting up the relevant boards.

* i.MX 6ULL EVK Quick Start Guide

e .MX 8M Mini LPDDR4 EVK Quick Start Guide
i.MX 8M Plus LPDDR4 EVK Quick Start Guide
LS1028ARDB Quick Start Guide

LS1043ARDB Getting Started Guide
LS1046ARDB Getting Started Guide
LS1046AFRWY Getting Started Guide
LX2160A/LX2160A-Rev2 RDB Quick Start Guide

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.5 — 30 March 2023

4/332


https://www.nxp.com/design/software/development-software/real-time-edge-software:REALTIME-EDGE-SOFTWARE#documentation
https://www.nxp.com/docs/en/user-guide/IMX_GRAPHICS_USERS_GUIDE.pdf
https://www.nxp.com/docs/en/user-guide/IMX_GRAPHICS_USERS_GUIDE.pdf
https://www.nxp.com/webapp/Download?colCode=IMX6ULLQSG
https://www.nxp.com/docs/en/quick-reference-guide/8MMINILPD4EVKBQSG.pdf
https://www.nxp.com/docs/en/quick-reference-guide/8MPLUSEVKQSG.pdf
https://www.nxp.com/webapp/Download?colCode=LS1028ARDBGSG&location=null
https://www.nxp.com/webapp/Download?colCode=LS1043ARDBGSG&location=null&fsrch=1&sr=10&pageNum=1&Parent_nodeId=&Parent_pageType=
https://www.nxp.com/webapp/Download?colCode=LS1046ARDBGSG&location=null&fsrch=1&sr=3&pageNum=2&Parent_nodeId=&Parent_pageType=
https://www.nxp.com/docs/en/quick-reference-guide/FRWY-LS1046AGSG.pdf
https://www.nxp.com/webapp/Download?colCode=LX2160ARDBGSG&location=null

NXP Semiconductors

REALTIMEEDGEUG

1.5 Acronyms and abbreviations
The following table lists the acronyms used in this document.

Table 3. Acronyms and abbreviations

Real-time Edge Software User Guide

Term Description

AVB Audio video bridging

AMP Asymmetric multiprocessing

BC Boundary clock

BLE Bluetooth low energy

BMC Best master clock

CA Client application

CAN Controller area network

CBS Credit-based shaper

Cbw Concurrent Dual Wi-Fi

CMLDS Common Mean Link Delay Service

DoS Daniel-of-Service

DEI Drop eligibility indication

DP Display port

EtherCAT Ethernet for control automation technology
ECU Electronic control units

FDB Forwarding database

FQTSS Forwarding and queuing enhancements for time-sensitive streams
FMan Frame manager

GPU General processor unit

ICMP Internet control message protocol

IEEE Institute of electrical and electronics engineers
IETF Internet engineering task force

IPC Inter-processor communication

KM Key management

LBT Latency and bandwidth tester

MAC Medium access control

MU Message Unit

NFC Near field communication

NCI NFC controller interface

NMT Network management

ocC Ordinary clock

OpenlL Open industry Linux

OPC Open platform communications
REALTIMEEDGEUG Allinformation provided in this document is subject to legal disclaimers. ©2023 NXP B.V. All rights reserved.
User guide Rev. 2.5 — 30 March 2023

5/332



NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

Table 3. Acronyms and abbreviations...continued

Term Description

OP-TEE Open portable trusted execution environment
(O] Operating system

OTA Over-the-air

OTPMK One-time programmable master key

PCP Priority code point

PDO Process data object

PHC PTP hardware clock

PIT Packet inter-arrival times

PLC programmable logic controller

PTP Precision time protocol

QSPI Queued serial peripheral interface

RCW Reset configuration word

REE Rich execution environment

RPC Remote procedure call

RPMSG Remote processor messaging

RTEdge Real-time edge

RTC Real-time clock

RTT Round-trip times

RX Receiver

SABRE Smart application blueprint for rapid engineering
SDO Service data object

SPI Serial periphery interface

SRP Stream reservation protocol

SRTM Simplified Real-time Messaging

SRK Single root key

TA Trusted application

TAS Time-aware scheduler

TC Traffic classification

TCP Transmission control protocol

TEE Trusted execution environment

TFTP Trivial file transfer protocol

TSN Time sensitive networking

X Transmitter

TZASC Trust zone address space controller

UDP User datagram protocol

VLAN Virtual local area network

REALTIMEEDGEUG Allinformation provided in this document is subject to legal disclaimers. ©2023 NXP B.V. All rights reserved.
User guide Rev. 2.5 — 30 March 2023

6/332



NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

2 Release notes

2.1 What's new

The following sections describe the new features for each release.

2.1.1 What's new in Real-time Edge software v2.5

* Real-time system
— Heterogeneous multi-core
— RPMSG Vring buffer increasing from 256 KB to 8 MB
— VirtlO Network sharing with performance optimization
— Baremetal improvements on LS1046A
— All Cortex-A cores running under baremetal
— Flextimer
— Baremetal example and driver change to DM mode: GPIO
— Integration of Harpoon 2.3
— Support for AVB Talker in FreeRTOS audio app
— Support for RPMsg control (FreeRTOS, all boards)
— Support for Virtual Ethernet
— Basic support for i.MX 93 ("hello world")
* Protocols
— EtherCAT master
— Basic CodeSYS PLC control support and native driver optimization
— i.MX 8M Plus, i.MX 8M Mini, i.MX 93, i.MX 6ULL
* NPI
—i.MX93 A0 11*11
— Baremetal, RPMSG based UART sharing
— AVB Media Clock Recovery
— i.MX8DXL: AVB audio talker/listener
* Platform
— eMMC booting on LS1028ARDB and LS1046ARDB
— Removal of test and doc support, keeping code inclusion for:
— LS1021AIOT, LS1021ATSN, LS1021ATWR, LS1012ARDB
— Based on If-5.15.71-rt-2.2.0
— LTS 5.15.71
— Yocto Kirkstone 4.0
— U-Boot v2022.04

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.5 — 30 March 2023

71332



NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

2.1.2 What's new in Real-time Edge software v2.4

* Real-time system
— Preempt-RT Linux-5.15.52-rt
— Heterogeneous multi-core
— Inter-core communication between Cortex-A core and Cortex-A/Cortex-M core on i.MX 8M Plus and i.MX
8M Mini
— UART 9-bit Multidrop mode (RS-485) support
— RPMSG between Cortex-A cores
— Linux SGI mailbox driver on Linux
— RPMSG Lite with SGI mailbox on RTOS
— Loading binaries on i.MX 8M Mini and i.MX 8M Plus to the Cortex-M from Linux
— Baremetal extensions on LS1046A
— Single hardware interrupt routed to multiple cores
— Newlib math library
— Integration of Harpoon 2.2
— Audio SMP pipeline (Zephyr)
— RPMsg-based IPC through Linux control application
— audio AVB pipeline (FreeRTOS)
— Support for AVB Listener in FreeRTOS audio app
* Real-time Networking
- TSN
— Dynamic TSN configuration of Qci for bandwidth limitation
— Qbu: added preemption TLV on LLDP package and preemption verification support
- AVB
— AVB integration improvements
Protocols
— AVB Milan extensions
— EtherCAT master stacks
— EtherCAT master multiple axes control system
— HMI: LS1028A and i.MX 8M Plus
— HTML5/chromium
— Modbus
— Libmodbus package integration
— Modbus-simulator client and server
— WiFi enabled on i.MX 8DXL
Reference design
— EtherCAT master multiple axes control system
— HCFA 60-axes servo using CSP mode
* NPI
—i.MX93 A0 11*11: Preempt-RT, EtherCAT master, AVB/TSN, TSN stack and config tools, TSN performance,
OPC-UA Pub/Sub
— i.MX8DXL: Preempt-RT, EtherCAT master, TSN stack and config tools, OPC-UA Pub/Sub
Based on If-5.15.52-2.1.0
- LTS 5.15.52
— Yocto Kirkstone 4.0
— U-boot v2022.04

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.5 — 30 March 2023

8/332



NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

2.1.3 What's new in Real-time Edge software v2.3

* Real-time Networking
- TSN
— Dynamic TSN configuration (EAR)
— Qci configuration
— CAF configuration based on 802.1 Qch
— YANG modules updating to latest version
- AVB
— Endpoint support on i.MX 6ULL, i.MX 8M Plus, and i.MX 8M Mini
* Real-time system
— PREEMPT-RT Linux-5.15.5-rt22
— Heterogeneous AMP software
— Yocto based unified delivery for Cortex-A and Cortex-M
— Resource sharing
— RPMSG based UART sharing
— Virtual UART to physical UART 1:1 mapping
— Virtual UART to physical UART n:1 mapping
— Virtual UART to physical UART flexible mapping
— Harpoon (RTOS on Cortex-A)
— Zephyr integration on i.MX 8M Plus and i.MX 8M Mini
— Audio Application
— sine wave playback
— record and playback (loopback)
— audio pipeline
— Industrial application:
— TSN over Ethernet test application
— CAN test application
* Protocols
— EtherCAT master stack
— IGH EtherCAT master native driver on LS1043A and LS1046A
— Multiple EtherCAT masters
— Flexible port selection for EtherCAT and Ethernet
— SOEM EtherCAT master stack enablement (PRC):
— RTOS on Cortex-M on i.MX 8M Plus
— RTOS on Cortex-M on i.MX 8M Mini
— FreeRTOS or without an operating system
* Benchmark
— Scheduling latency on Preempt_RT and Harpoon RTOS
— Inter-core communication bandwidth of BareMetal
— Packet processing time of TSN
— Packet processing time of EtherCAT
* Based on If-5.15.5-1.0.0
— Linux 5.15.5-rt22
— U-Boot v2021.04
— Yocto Honister 3.4

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers.

© 2023 NXP B.V. All rights reserved.

User guide Rev. 2.5 — 30 March 2023

9/332



NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

2.1.4 What's new in Real-time Edge software v2.2

* Real-time Networking
- TSN
— 802.1AS: PHY delay correction calibration
— AF_XDP performance improvements
— |EEE 1588 PTP UDP on LS1028ARDB TSN switch
* Real-time system
— PREEMPT-RT Linux-5.10.72-rt53
— Harpoon (RTOS on Cortex-A)
— Integration of Harpoon on i.MX 8M Plus and i.MX 8M Mini
* Protocols
— EtherCAT master stack
— IGH EtherCAT master native driver on
LS1043A and LS1046A
— Multiple EtherCAT masters
— Flexible port selection for EtherCAT and Ethernet
— SOEM EtherCAT master stack enablement (EAR):
— RTOS on Cortex-M on i.MX 8M Plus

— FreeRTOS
or without an operating system

* Based on If-5.10.72-2.2.0
— Linux 5.10.72-rt
— U-Boot v2021.04
— Yocto Hardknott 3.3

2.1.5 What's new in Real-time Edge software v2.1

What's New:

* Real-time Networking
- TSN
— 802.1AS-2020
— CMLDS (generic interface to PTP stack)
— TSN application
— TSN application with AF_XDP data path
— TSN configuration
— Path selection for Qbv
— Schedule mapping for Qbv
* Real-time system
— PREEMPT-RT Linux-5.10.52-rt47
— Jailhouse
— GPIO in non-root cell Linux support on LS1028ARDB
— ENETC in non-root cell Linux support on LS1028ARDB
* Protocols
— Native EtherCAT-capable network driver module on ENETC (LS1028ARDB)
— Native EtherCAT-capable network driver module on FEC (i.MX 8M Plus EVK)
— EtherCAT: CoE 6-8 axis control
— OPC UA PubSub

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.5 — 30 March 2023

10/332



NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

— OPC UA PubSub over TSN
e Based oni.MX L5.10.52 2.1.0

— Linux 5.10.52-rt

— U-Boot v2021.04

— Yocto Hardknott 3.3

2.1.6 What's new in Real-time Edge software v2.0

* Based on Yocto project 3.2 (Gatesgarth)
* Real-time System
— PREEMPT-RT Linux
— Heterogeneous architecture
— BareMetal: PREEMPT-RT Linux on A core + BareMetal architecture on A core
— i.MX 8M Plus EVK, i.MX 8M Mini EVK, LS1028ARDB, LS1046ARDB, LS1043ARDB, LS1021A-loT
— Jailhouse: PREEMPT-RT Linux on A core + Jailhouse + PREEMPT-RT Linux on A core
— i.MX 8M Plus EVK, LS1028ARDB, LS1046ARDB
* Real-time Networking
- TSN
— TSN Standards
— |EEE 802.1Qav
— |EEE 802.1Qbv
— |IEEE 802.1Qbu
— |EEE 802.1Qci
— |EEE 802.1CB
— |EEE 802.1AS-2020 (gPTP)
— |EEE 802.1Qat-2010 (SRP)
— TSN Configurations
— Linux tc command and tsntool
— NETCONF/YANG
— Dynamic TSN configuration - web-based TSN configuration, dynamic topology discovery
— TSN Applications
— Example for real-time traffic processing
— Networking
— 802.1 Q-in-Q
— VCAP tc flower chain mode
— Priority set, VLAN tag push/pop/modify, Policer Burst and Rate Configuration, drop/trap/redirect
Industrial
— EtherCAT master
— IGH EtherCAT master stack
— Native EtherCAT-capable network driver module (i.MX 8M Mini EVK)
— FlexCAN
— SocketCAN on Linux kernel
— CANOpen
— CANOpen master and slave example code
— CoE: CANOpen over EtherCAT
— CiA402(DS402) profile framework based on IGH CoE interface

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.5 — 30 March 2023

11/332



NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

— EtherCAT CoE 6-8 axis control (i.MX 8M Mini EVK)
— OPC UA/OPC UA PubSub
— open62541
— Modbus
— Modbus master and slave
Modbus-RTU
Modbus-TCP
Modbus-ASCII
* New Added Platform
- i.MX 6ULL EVK

2.1.7 What's new in OpenlL v1.11

What's New:

« TSN
— 802.1AS-2020
— Initial support for multi-domain on i.MX 8M Plus and LS1028A
* Hardware
— i.MX 8M Plus silicon A1
* Linux Kernel
— LTS 5.4.70 for i.MX 8 Series
* U-Boot
—v2020.04 for i.MX 8 Series
* BareMetal
—v2020.04 for Layerscape and i.MX 8 Series
- i.MX 8M Plus EVK

2.1.8 What's new in OpeniL v1.10

What's New:

« TSN
— VCAP chain mode
— GenAVB/TSN stack
* Real-time
— PREEMPT-RT 5.4 on i.MX 8M Mini
— Ethernet
— PCle
- GPIO
— Dsi
* BareMetal
— i.MX 8M Mini EVK (A core to A core)
- ICC
— Ethernet

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers.

© 2023 NXP B.V. All rights reserved.

User guide Rev. 2.5 — 30 March 2023

12/332



NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

- GPIO
* OpenlL framework
— Board
— i.MX 8M Mini platform
— GPU: OpenGL ES
— Display: OpenGL ES, Weston, DSI-MIPI, CSI-MIPI

2.1.9 What's new in OpenlL v1.9

What's New:

* TSN
— tc flower support for Qbu and Qci
-802.1 QinQ
— Multi-ports TSN switch solution
—i.MX 8M Plus - TSN
* Real-time
— PREEMPT-RT 5.4 on i.MX 8M Plus
* BareMetal
— LX2160ARDB rev2 support and ICC
e OpenlL framework
— linuxptp uprev to 3.0
— Board
— i.MX 8M Plus EVK
— TSN: Qbv, Qbu, Qav
— GPU: OpenGL ES, OpenCL
— Display: OpenGL ES, Weston
— LS1028ARDB
— Display: OpenGL ES, Weston
— GPU: OpenGL ES, OpenCL
— LX2160ARDB rev2

2.1.10 What's new in OpeniL v1.8

What's New:

* TSN
— tc VCAP support for VLAN-retagging
— tc VCAP support for police
— tc support for Qav and Qbv
— SJA1105 DSA Support and clock synchronization

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers.

© 2023 NXP B.V. All rights reserved.

User guide Rev. 2.5 — 30 March 2023

137332



NXP Semiconductors

REALTIMEEDGEUG

— YANG modules for network config (IP, MAC, and VLAN)
* Real time
- PREEMPT-RT 5.4
» BareMetal
— LX2160A rev1 ICC
e OpenlL framework
— buildroot uprev to 2020.02
— Kernel/U-Boot
— Linux upgraded to LSDK20.04 - Linux-5.4.3
— U-Boot upgraded to LSDK20.04 - U-Boot 2019.10
— Board
— i.MX 8M Mini
— Foxconn LS1028ATSN board with SJIA1105

2.1.11 What's new in OpenlL v1.7

What's New:

« TSN
— BC-based 802.1AS bridge mode

Real-time Edge Software User Guide

— Netopper2 support based on sysrepo. Support Qbv, Qbu, Qci configuration

— VLAN-based tc flower policer

— Web-based TSN configuration tool - available for Qbv, Qbu, and Qci configuration

* Real time
— Xenomai
— Xenomai I-pipe uprev to 4.19
— BareMetal
— SAl support on LS1028
— i.MX6Q BareMetal ICC
* Industrial protocols
— CANopen over EtherCAT
* OpenlL framework
— Kernel/U-Boot
— Linux upgraded to LSDK1909 - 4.19
— U-Boot upgraded to U-Boot-2019.04
— Boards
— LX2160ARDB SD boot
— LX2160ARDB XSPI boot
— LS1028ARDB XSPI boot
— LS1046ARDB eMMC boot

2.1.12 What's new in OpeniL v1.6

What's New:
e TSN

— Web based TSN configuration tool - available for Qbv and Qbu configuration

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers.

© 2023 NXP B.V. All rights reserved.

User guide Rev. 2.5 — 30 March 2023

14 /332



NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

— TSN driver enhancement
* Real time

— BareMetal

— i.MX6Q-sabresd BareMetal support

« NETCONF/YANG

— NETCONF/YANG model for Qbu and Qci protocol
* Industrial protocols

— LS1028A - BEE click board

2.1.13 What's new in OpeniL v1.5

What's New:
e TSN

— Web based TSN configuration tool - available for Qbv and Qbu configuration

— 802.1AS endpoint mode for LS1028A TSN switch
* Real time
— Xenomai
— LS1028 ENETC Xenomai RTNET support
— BareMetal
— LS1028 BareMetal ENETC support
* NETCONF/YANG
— NETCONF/YANG model for Qbv protocol
* Industrial protocols
— LS1028A - BLE click board

2.1.14 What's new in OpeniL v1.4

What's New:

« TSN
— ENETC TSN driver: Qbv, Qbu, Qci, Qav
— ENETC 1588 two steps timestamping support
— SWTICH TSN driver: Qbv, Qci, Qbu, Qav, 802.1CB support
* Real time
— Xenomai
— LS1028ARDB
— BareMetal
— LS1021AloT, LS1043ARDB, LS1046ARDB
— LS1028 BareMetal basic BareMetal support
* Industrial protocols
— LS1028A - NFC click board
- QT5.11
OpenlL framework
— boards: LS1028ARDB

2.2 Feature support matrix

The following tables show the features that are supported in this release.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers.

© 2023 NXP B.V. All rights reserved.

User guide Rev. 2.5 — 30 March 2023

15/332



NXP Semiconductors

REALTIMEEDGEUG

Table 4. Key features

Real-time Edge Software User Guide

Feature i.MX i.MX 8DXL |i.MX i.MX 8M i.MX |LS1028 LS1043 LS1046 LS1046 LX2160
6ULL LPDDR4 |8M Mini Plus 93 ARDB ARDB ARDB AFRWY ARDB
14x14 |EVK LPDDR4 |LPDDR4 |EVK
EVK EVK EVK

SD Y Y Y Y Y Y Y Y Y Y

Boot mode

eMMC Y Y

Preempt-RT Linux Y Y Y Y Y Y

BareMetal ICC Y Y Y Y Y
PCle Y Y Y
Ethernet Y Y Y Y Y Y
GPIO Y Y Y
IPI Y Y Y Y Y
UART Y Y Y
UsB Y
SAl Y
CAN
12C Y Y Y
QSPI Y
IFC Y
Flextimer Y
Linux ICC Y
(communi- 1Pl v

Real-Time cation with Bare

System Metal)

Single HW Interrupt to Y
multiple cores
Newlib Math library
All Cortex-A cores running
under Baremetal
Heterogen- UART Sharing Y
eous Multicore
RPMSG between
A-Cores
RPMSG between A core Y
and M core with enhanced
8MB buffer
Linux booting M-Core Y Y
Image
Heterogeneous Multicore Y
VirtlO
Jailhouse Y Y Y Y
Harpoon FreeRTOS Y Y
(RTOS on
Cortex-A) Zephyr Y Y
Real Time Qbv Y Y Y Y
Networking
Qbu Y Y Y Y
Qai N/A N/A N/A Y
Qav Y Y Y Y
TSN Standards
802.1AS Y Y Y Y Y Y Y Y
802.1CB N/A N/A N/A Y
VCAP chain mode N/A N/A N/A Y
802.1 Q-in-Q Y
Linux tc command Y Y Y Y
TSN tool Y
NETCONF/YANG | Qbv Y Y Y Y
TSN
Configurations Qbu M M Y M
Qai N/A N/A N/A Y
P Y Y Y Y
MAC Y Y Y Y
REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.
User guide Rev. 2.5 — 30 March 2023

16 /332



NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

Table 4. Key features...continued

Feature i.MX i.MX 8DXL |i.MX i.MX 8M i.MX |LS1028 LS1043 LS1046 LS1046 LX2160
6ULL LPDDR4 8M Mini Plus 93 ARDB ARDB ARDB AFRWY ARDB
14x14 EVK LPDDR4 |LPDDR4 EVK
EVK EVK EVK

VLAN Y Y Y Y
config
Web based Qbv Y Y
configuration
Qbu Y Y
Qai N/A N/A N/A Y
Dynamic topology Y Y
discovery
Dynamic TSN Qci N/A N/A N/A Y
configuration
CQF Y
Qbv Y
AVB standards | AVTP Talker/Listener Y Y Y
AVDECC Y Y Y
MAAP Y Y Y
Milan Y Y Y
Media clock recovery Y Y
IEEE 1588/802.1AS Y Y
IGH EtherCAT master Y Y
stack
IGH native Ethernet Y Y Y Y Y Y Y
EtherCAT device driver
master
SOEM
CodeSYS EtherCAT Y Y Y Y
master stack
FlexCAN Y
CANopen
Industrial OPC UA open62541 Y Y Y Y Y Y Y Y Y Y
Protocol OPC UA PubSub over Y
TSN
BEE (Mikroe Click board) Y
BLE (Mikroe Click board) Y
NFC (Mikroe Click board) Y
Modbus Modbus slave and master |Y Y Y Y Y Y Y Y Y Y
Modbus-RTU Y Y Y Y Y Y Y Y Y Y
Modbus-TCP Y Y Y Y Y Y Y Y Y Y
Modbus-ASCII Y Y Y Y Y Y Y Y Y Y

2.3 Open, fixed, and closed issues

This section contains three tables: Open, Fixed, and Closed issues.

* Open issues do not currently have a resolution. Workaround suggestions are provided where possible.
* Fixed issues have a software fix that has been integrated into the 'Fixed In' Release.

» Closed issues are issues where the root cause and fix are outside the scope of Real-time Edge Software.
Disposition is to provide the explanation.

Table 5. Open issues in Real-time Edge software v2.5

ID Description Opened In Workaround

GENAVB-2176 i.MX93 random kernel deadlock on  |Real-time Edge |To delay the insertion of the genavbtsn
system boot with AVB endpoint use |software v2.5 net avb to when starting the genavbtsn
case stack (tsn.sh start) use:

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.5 — 30 March 2023

171332



NXP Semiconductors

REALTIMEEDGEUG

Table 5. Open issues in Real-time Edge software v2.5

Real-time Edge Software User Guide

ID

Description

Opened In

Workaround

echo "blacklist genavbtsn net
avb" > /etc/modprobe.d/genavbtsn.

cont
Table 6. Fixed Issues in Real-time Edge Software v2.5
ID Description Opened In Fixed In
None - - -
Table 7. Closed Issues in Real-time Edge Software v2.5
ID Description Opened In Disposition

INDLINUX-1980

After setting the swpN link speed to 100M
and sending some pre-emptable frames
from DUT1 (which are not received at
DUT2 Linux), the swpN Tx interface of
DUT1 is blocked. It does not even ping.
Using the commands "i fconfig swpN
down" or"ifconfigswpN up" does not
unblock it

Real-time Edge
software v2.1

Fix depends on silicon design

REALTIMEEDGEUG

All information provided in this document is subject to legal disclaimers.

© 2023 NXP B.V. All rights reserved.

User guide

Rev. 2.5 — 30 March 2023

18/332



NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

3 Real-time system

Real-time Edge software supports real-time system features: Preempt-RT Linux, BareMetal, Jailhouse, and
Harpoon (RTOS on Cortex-A).

3.1 Preempt-RT Linux

The Preempt-RT Linux option turns the kernel into a real-time kernel. It does so by replacing various locking
primitives (for example, spinlocks and rwlocks) with preemptible priority-inheritance aware variants. The
Preempt-RT Linux option also enforces interrupt threading and introduces mechanisms to break up long
non-preemptible sections. This makes the kernel fully preemptible and brings most execution contexts under
scheduler control. However, very low level and critical code paths (entry code, scheduler, low level interrupt
handling) remain non-preemptible.

3.1.1 System Real-time Latency tests

The basic measurement tool for Real-time Linux is cyclictest.

3.1.1.1 Running Cyclictest

Cyclictest provides statistics about the latencies of the system. It accurately and repeatedly measures the
difference between the intended wake-up time of a thread and the time at which it actually wakes up. It can
measure latencies in real-time systems caused by the hardware, the firmware, and the operating system.

Thomas Gleixner (tglx) wrote the original test, but several people had later contributed modifications. Cyclictest
is part of the test suite, rt-tests. Clark Williams and John Kacur currently maintain Cyclictest.

cyclictest:

* Use the below command to perform Latency Test:

S cyclictest -p90 -h50 -D30m

Note: For detailed parameters of Cyclictest, refer to Cyclictest Web Page.

3.1.2 Real-time application development

This section describes the steps for developing the Real-time application.
Real-time Application: API, Basic Structure, Background:

 Basic Linux application rules are the same; Use the POSIX API.

* There is still a division of Kernel Space and User Space.

* Linux applications run in User Space.

» For details, refer to: https://wiki.linuxfoundation.org/realtime/documentation/howto/applications/
application_base

Real-time Application: Users can build it using the steps below:

* Using the cross-compiler example:

$ arm-linux-gnueabihf-gcc <filename>.c -o <filename>.out -lrt -Wall

* Using the native compiler on a target example:

S gcc <filename>.c -o <filename>.out -lrt -Wall

Scheduling policies have two classes:

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.5 — 30 March 2023

19/332


https://wiki.linuxfoundation.org/realtime/documentation/howto/tools/rt-tests
https://wiki.linuxfoundation.org/realtime/documentation/howto/tools/cyclictest/start?s%5b%5d=cyclictest)
https://wiki.linuxfoundation.org/realtime/documentation/howto/applications/application_base
https://wiki.linuxfoundation.org/realtime/documentation/howto/applications/application_base

NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

1. Completely Fair Scheduling (CFS)

* SCHED_NORMAL (traditionally called SCHED_OTHER): The scheduling policy that is used for regular tasks.
Every task gets a so called 'nice value'. It is a value between -20 for the highest nice value and 19 for the
lowest nice value. The average value of execution time of the task depends on the associated nice value.

» SCHED_BATCH: Does not preempt nearly as often as regular tasks. Hence, it allows tasks to run longer and
make better use of caches, but at the cost of interactivity. This is well suited for batch jobs and optimized for
throughput.

» SCHED_IDLE: This policy is even weaker than nice 19. However, it is not a true idle timer scheduler in order
to avoid getting into priority inversion problems, which would deadlock the machine.

2. Real-time policies

* SCHED_FIFO: Tasks have a priority between 1 (low) and 99 (high). A task running under this policy is
scheduled until it finishes or a higher prioritized task preempts it.

* SCHED_RR: This policy is derived from SCHED_FIFO. The difference with respect to SCHED_FIFO policy
is that a task runs during a defined time slice (if it is not preempted by a higher prioritized task). It can be
interrupted by a task with the same priority once the time slice is used up. The time slice definition is exported
in procfs (/proc/sys/kernel/sched rr timeslice ms).

* SCHED_DEADLINE: This policy implements the Global Earliest Deadline First (GEDF) algorithm. Tasks
scheduled under this policy can preempt any task scheduled with SCHED_FIFO or SCHED_RR.

3.2 BareMetal

3.2.1 Overview

The following sections provide an overview of the Real-time Edge BareMetal framework including:

* Features supported

* Getting started with BareMetal framework using the supported platforms:
— NXP Layerscape platforms
- i.MX 8M /i.MX 93 platforms.

It also describes how to run a sample BareMetal framework on the host environment and develop customer-
specific applications based on BareMetal framework.

3.2.1.1 BareMetal framework

The BareMetal framework targets to support the scenarios that need low latency, real-time response, and high-
performance. There is no OS running on the cores and customer-specific application runs on that directly. The
figure below depicts the BareMetal framework architecture.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.5 — 30 March 2023

20/332



NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

Linux/ I I I
Other 0s | | PP | App | | App
U-boot '

Figure 2. BareMetal framework architecture

The main features of the BareMetal framework are as follows:

» Core0 runs as master, which runs the BareMetal or the operating system such as Linux, Vxworks.
 Slave cores run the BareMetal application.

» Easy assignment of different IP blocks to different cores.

* Interrupts between different cores and high-performance mechanism for data transfer.

« Different UART for core0 and slave cores for easy debug.

* Communication via shared memory.

The master core0 runs the BareMetal under master mode, it then loads the BareMetal application to the slave
cores and starts the BareMetal application. The following figure depicts the boot flow diagram:

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.5 — 30 March 2023

2117332



NXP Semiconductors

REALTIMEEDGEUG

Real-time Edge Software User Guide

=

Power On
Initialization | —--—-- — | Initialization
Initialization
Y v
Run bare Run bare
metal metal

Load bare application application

metal binary | |
\
Rest work Slave

Figure 3. BareMetal framework boot flow diagram

3.2.1.2 Supported platforms

The table below lists the industrial 0T features supported by various NXP processors and boards.

Table 8. Industrial loT features supported by NXP processors

Processor Board Main features supported
i.MX 8M Mini i.MX 8M Mini LPDDR4 |UART, IPI, data transfer, Ethernet, GPIO
EVK
i.MX 8M Plus i.MX 8M Plus UART, IPI, data transfer, Ethernet, GPIO
LPDDR4 EVK
i.MX 93 i.MX 93 EVK UART, IPI, data transfer, Ethernet
LS1028A LS1028ARDB I12C, UART, ENETC, IPI, data transfer, SAI
LS1043A LS1043ARDB IRQ, IPI, data transfer, Ethernet, IFC, I12C, UART, FMan, USB, PCle
LS1046A LS1046ARDB IRQ, IPI, data transfer, Ethernet, IFC, I12C, UART, FMan, QSPI, USB,
PCle, GPIO
LX2160A/Rev2 LX2160ARDB UART, IPI, data transfer

3.2.2 Getting started

This section describes how to set up the environment and run the BareMetal examples on slave cores
(assuming that the core0 is the master core and the other cores are the slave cores).

3.2.2.1 Hardware and software requirements

The following are required for running baremetal framework scenarios:

* Hardware: i.MX 8M Mini LPDDR4 EVK, i.MX 8M Plus LPDDR4 EVK, i.MX 93 EVK, LS1028ARDB,
LS1043ARDB, LS1046ARDB, LX2160ARDB, and serial cables.

» Software: Real-time Edge Software v2.5 release or later.

REALTIMEEDGEUG

All information provided in this document is subject to legal disclaimers.

© 2023 NXP B.V. All rights reserved.

User guide

Rev. 2.5 — 30 March 2023
22/ 332




NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

3.2.2.2 Hardware setup

This section describes the hardware setup required for the NXP boards for running the BareMetal framework
examples.

3.2.2.2.1 i.MX 8M Mini LPDDR4 EVK and i.MX 8M Plus LPDDR4 EVK board

Follow the steps below.

1. i.MX 8M Plus LPDDR4 EVK: There is one USB MicroB Debug port on board. Four UART ports can be found
when the MicroB cable connects to PC.

/dev/ttyUSBO
/dev/ttyUSB1
/dev/ttyUSB2
/dev/ttyUSB3

/dev/ttyUSB?2 is used for core0 (master core), /dev/ttyUSB3 is used for core1, core2, and core3 (slave
cores).

2. i.MX 8M Mini LPDDR4 EVK: There is one USB MicroB Debug port on board. Two UART ports can be found
when the MicroB cable connects to PC.

/dev/ttyUSBO
/dev/ttyUSB1

/dev/ttyUSB1 is used for core0 (master core), /dev/ttyUSBO is used for core1, core2, and core3 (slave
cores).

3. GPIO setup
For GPIO test on i.MX 8M Plus LPDDR4 EVK, pin 7 and pin 8 of J21 should be connected by a jumper.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.5 — 30 March 2023

23 /332



NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

=)
cRp Sy TiEscIsT A
med

R10@EXT_3V
TP68@ VDD_5V

TP

UART-RTSej

S
mm.o[s

UART_CTS e,

|
3
>

f'

K o2

TPB2R293 amnen  GPIO e
TPBIR294 DNT
TP84AR29S ox0 GPIO N
wasnzu (T |
PDM_0Q & « : GPIQ %
PDM_1 @&« :
PDM_2 ‘@ '+ ariQ I
L
POM_3 o us? cuon:

GND Orvn'.l 12 lnm v

POM_CLK® - 1
TTPA6 w

™s

" SSCLLTPS
T

SCLHTPS
]X

SDAH
08 ®PCANZ_RX
07 @CAN2_
CAN1_ |

08 o

Figure 4. Connections for GPIO test on i.MX 8M Plus LPDDR4 EVK board
4. For GPIO test on i.MX 8M Mini LPDDR4 EVK, pin7 and pin8 of J1003 should be connected by a jumper.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.5 — 30 March 2023

24332



NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

yso|4 QONVN
2OHAS/QS042!

PO PDOJumo

1

MS L0000, “110

) TTMS

2ol
101

PO
1000

AU R R

L]
‘XXX0101

STATUSS®
~S|El -

0001
MS 0100110110

20TTMS 0010101000
101ImS 1000110110

e e

i

MS (0T, 1000

INTWWS

|00
N -

LIMS 0001
S 0011
0010

1101 1MS
ONVYNWS8

_ 2 TuRs2
TVBNCTS 2 kB
yive 43-@ovgtRY!
G P

[v-1]11011IMS

[v-1]

TR
]

FRERABRAGNT

@ Ri16e'q pR21S

Ve o OND gMMINILPD4-CPU2
» eosssyy on

REEE RN NN

Figure 5. Connections for GPIO test on i.MX 8M Mini LPDDR4 EVK board

3.2.2.2.2 LS1028ARDB, LX2160ARDB, LS1043ARDB, or LS1046ARDB

In case, either the LS1028ARDB, LX2160ARDB, LS1043ARDB, or LS1046ARDB hardware boards are used for
developing the Real-time Edge BareMetal framework, two serial cables are needed. One serial cable is used for
core0, to connect to UART1 port, and the other one is used for slave cores, and connects to the UART2 port.

To support SAIl feature on LS1028ARDB, set switch SW5_8 to "ON".

3.2.2.2.3 i.MX 93 EVK

On i.MX 93 EVK board, the USB Type-C connector (J1401) provides four UART ports when connected to PC

using USB cable. The third port (LPUART1) is used for core0 (master core) and the fourth port (LPUART?2) is
used for core1 (slave core).

3.2.2.3 Building the BareMetal images from U-Boot source code
There are two methods to build the BareMetal images:

* The first method is to compile the images in a standalone way, and is described in the following section.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.5 — 30 March 2023

25/332



NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

* The second method is to build the BareMetal images using Real-time Edge framework. This method is
described in the document, Real-time Edge Yocto Project User Guide in section "Building the image through
Yocto".

3.2.2.3.1 Building BareMetal binary for slave cores

Perform the steps mentioned below:

1. Download the project source from the following path:
https://github.com/nxp-real-time-edge-sw/real-time-edge-uboot.git
2. Check it out to the tag:
* Real-Time-Edge-v2.5-baremetal-202303
3. Configure cross-toolchain on your host environment.
4. Then, run the following commands:

/* build BareMetal image for i.MX 8M Mini LPDDR4 EVK Rev.C board */
$ make imx8mm evk baremetal slave defconfig

S make

/* build BareMetal image for i.MX 8M Plus LPDDR4 EVK board */
$ make imx8mp evk baremetal slave defconfig

S make

/* build BareMetal image for i.MX 93 EVK board */

$ make imx93 11x11 evk baremetal slave defconfig

S make

/* build BareMetal image for LS1028ARDB board */

$ make 1sl028ardb baremetal slave defconfig

S make

/* build BareMetal image with SAI for LS1028ARDB board */
$ make 1sl028ardb baremetal slave sai defconfig

S make

/* build BareMetal image for LS1043ARDB board */

$ make 1sl043ardb baremetal slave defconfig

S make

/* build BareMetal image for LS1046ARDB board */

$ make lslO46ardb baremetal slave defconfig

S make

/* build BareMetal image for LX2160ARDB board */

$ make 1x2160ardb baremetal slave defconfig

S make

5. Finally, the file u-boot-dtb.bin used for BareMetal is generated.

Follow Real-time Edge Software Yocto Project to get the code and build images for these platforms.

3.2.2.4 Building the image through Yocto

There are two methods to build the BareMetal images. One method is to compile the images in a standalone
way which is described in Section 3.2.2.3. The second method is to build the BareMetal images using Real-time
Edge software framework, which is described in this section.

The Real-time Edge software is designed for embedded industrial usage. It is an integrated Linux distribution for
industry. With the current version, the BareMetal can be built and implemented conveniently.

3.2.2.4.1 Getting Real-time Edge software

The latest release is available at the following URL:

https://github.com/nxp-real-time-edge-sw/yocto-real-time-edge.git

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.5 — 30 March 2023

26 /332


https://github.com/nxp-real-time-edge-sw/real-time-edge-uboot.git
https://github.com/nxp-real-time-edge-sw/yocto-real-time-edge.git

NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

Follow Yocto documentation "Real-time Edge Yocto Project User Guide" to get the code and build the image.

3.2.2.4.2 Building the BareMetal images

This section describes the steps for building the BareMetal images for various boards. The steps described are
applicable to the boards such as LS1043ARDB, LS1046ARDB, LX2160ARDB, i.MX 8M Plus LPDDR4 EVK,
and i.MX 8M Mini LPDDR4 EVK board.

3.2.2.4.2.1 Building the BareMetal images for various boards

Run the following commands to build the final BareMetal image for Layerscape and i.MX platforms.

$ cd yocto-real-time-edge

For |.MX 93 EVK BareMetal image:

$ DISTRO=nxp-real-time-edge-baremetal MACHINE=imx93evk source real-time-edge-
setup-env.sh -b build-imx93evk-bm

For LS1028ARDB BareMetal image:

$ DISTRO=nxp-real-time-edge-baremetal MACHINE=1s1028ardb source real-time-edge-
setup-env.sh -b build-1s1028ardb-bm

For LS1043ARDB BareMetal image:

$ DISTRO=nxp-real-time-edge-baremetal MACHINE=1s1043ardb source real-time-edge-
setup-env.sh -b build-1s1043ardb-bm

For LS1046ARDB BareMetal image:

$ DISTRO=nxp-real-time-edge-baremetal MACHINE=1s1046ardb source real-time-edge-
setup-env.sh -b build-1sl1046ardb-bm

For LX2160ARDB BareMetal image:

$ DISTRO=nxp-real-time-edge-baremetal MACHINE=1x2160ardb-rev2 source real-time-
edge-setup-env.sh -b build-1x2160ardb-bm

For i.MX 8M Plus LPDDR4 EVK BareMetal image:

$ DISTRO=nxp-real-time-edge-baremetal MACHINE=imx8mp-lpddr4-evk source real-
time-edge-setup-env.sh -b build-imx8mpevk-bm

For i.MX 8M Mini LPDDR4 EVK BareMetal image:

$ DISTRO=nxp-real-time-edge-baremetal MACHINE=imx8mm-lpddr4-evk source real-
time-edge-setup-env.sh -b build-ix8mmevk-bm

Then, use:

$ bitbake nxp-image-real-time-edge

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.5 — 30 March 2023

271332



NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

3.2.2.4.3 Booting up the Linux with BareMetal

Use the following steps to bootup the system with the images built from Real-time Edge software.

For platforms that can be booted up from the SD card, there are just two steps required to program the image
into SD card.

1. Insert an SD card (at least 4 GB size) into any Linux host machine.
2. Find the image file in building directory (for example: Is1028ardb):

tmp/deploy/images/1sl1028ardb/nxp-image-real-time-edge-1s1028ardb.wic.zst

3. Then, run the following commands:

zstd -d nxp-image-real-time-edge-1s1028ardb.wic.zst

sudo dd if=./nxp-image-real-time-edge-1s1028ardb.wic of=/dev/sdx

or in some other host machine:

sudo dd if=./nxp-image-real-time-edge-1sl1028ardb.wic of=/dev/mmcblkx
find the right SD Card device name in your host machine and replace the
“sdx” or “mmcblkx”.

H= 0 H= U U

4. Then, insert the SD card into the target board (for example Is1028ardb) and power on.

After completion of the above mentioned steps, the Linux system boots up on the master core (core 0), and the
BareMetal system boots up on slave core (core 1) automatically.

3.2.2.5 Single hardware interrupt routed to multiple cores

This section describes how to use GPIO to simulate external interrupt to notify all slave cores. With this feature,
all the slave cores can be triggered to perform operations almost at the same time via a single hardware
interrupt.

Two GPIO pins are selected. One pin is used to output 0 and 1 to simulate an external hardware. The other one
is used as an interrupt pin to trigger an interrupt to a core under pull-down mode. When the core receives the
interrupt, it triggers other slave cores via ICC SGl interrupt.

This feature is supported on LS1046ARDB. On LS1046ARDB, GP102_01 and GP102_02 are selected.
GPI0O2_01 is used to simulate an external hardware whereas GPIO2_02 triggers an interrupt. The board
needs to rework to connect these two pins. In LS1046ARDB, TP14 and TP13 are connected to GPIO2_01 and
GP102_02 separately. We need to connect TP14 with TP13. The figure below shows how to connect TP14 and
TP13.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.5 — 30 March 2023

28 /332



NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

S T o N

K

U -s
s 26 w27

2
4 U]
-

P524Q

5
-\

o
a
o
L)

J2R1I3R134R13
?4:57? RX_VALID
vifEl IMen_ 0§ mts
se e VD999

R

*<SeS 12

Baratn
i3s3

Figure 6. LS1046ARDB hardware interrupt routing to multiple cores

GP102_01 and GP102_02 are multiplexed with SPT_CS B[0] and SDHC_DAT [4] signals. RCW[382 ~ 383]
needs to change to 0b'10 to enable GPI02[0] signal.

Since GPIO2 is assigned to BareMetal core, Linux should not use it again. We can disable GPIO2 under Linux
via dts. The below code could be added in Linux kernel file £s1-1s1046a-rdb-sdk-bm.dts to disable

GPIO2.

&gpiol {
status = "disabled";

I

Under BareMetal, gpio int command provides “enable’, “start” and “stop” commands to control these

two pins.

* gpio_int enable - Configures GPIO2_01 and GPIO2_02 and enables interrupt
* gpio_int start - Sets GPIO2_01 to high

* gpio_int stop - Sets GPIO2_01 to low

gpio_int can run under BareMetal console.
All information provided in this document is subject to legal disclaimers.

Rev. 2.5 — 30 March 2023

© 2023 NXP B.V. All rights reserved.

REALTIMEEDGEUG

User guide
29 /332



NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

The gpio int enable command should be run first to initialize the GPIO2_01/GPIO2_02. Then, use the
command pair gpio int startand gpio int stop to pull high and pull down GPIO2_01. After the
command pair, GPIO2_02 triggers an interrupt when getting pull-down signal. The core1 sends the SGI interrupt
to other slave cores. The time of GPIO interrupt and SGI interrupt is dumped by each slave core. The latency is
the time difference between GPIO interrupt and SGI interrupt. The below example shows the latency is about 1
ps. It means all slave cores could be triggered within 1 pys.

=>gpio _int enable

=> gpio int start

1:data: 0x60000000

1:event: 0x40000000

=> gpio int stop

1:Time (us): 0xb8f5b8c8, GPIO event: 0x60000000
3:Time (us): 0xb8f5b8c9, Get the SGI from CorelID: 1
1:data: 0x0

2:Time (us): 0xb8f5b8c9, Get the SGI from CoreID: 1
1:event: 0x0

=>

3.2.3 Running examples

The following sections describe how to run the BareMetal examples on the host environment for LS1028ARDB
board. Similar steps can be followed for LS1043ARDB, LS1046ARDB, i.MX 8M Mini LPDDR4 EVK, i.MX 8M
Plus LPDDR4 EVK, and i.MX 93 EVK board.

3.2.3.1 Preparing the console

In current BareMetal framework design, two UART ports are used as console. One UART is used for master
core and the other UART is used for slave cores. Refer to Section 3.2.2.2 for preparing the console.

3.2.3.2 Running the BareMetal binary

As described earlier, there are two methods to compile the BareMetal framework. One is a standalone method
and the other method uses the Real-time Edge software. These methods are described in Section 3.2.2.3 and
Section 3.2.2.4 respectively.

* If the Real-time Edge software is used to compile the BareMetal image, the BareMetal image is included in
the nxp-image-real-time-edge-xxxx.wic.zst. In this case, the master core starts the BareMetal
image on slave cores automatically.

* |If standalone compilation method is used, perform the steps below to run the BareMetal binary from U-Boot
prompt of master core. See the below example run on Layerscape platform:
1. After starting U-Boot on the master, download the bare metal image: u-boot-dtb.bin on 0x84000000
using the command below:

=> tftp 0x84000000 xxxx/u-boot-dtb.bin

Where

— xxxx Is your tftp server directory.

— 0x84000000 is the address of CONFIG SYS TEXT BASE on bare metal for Layerscape platforms.
Note:

a. The address is 0x50200000 for i.MX 8M Plus LPDDR4 EVK and i.MX 8M Mini LPDDR4 EVK boards.
b. The address is 0x90200000 for i.MX 93 EVK board.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.5 — 30 March 2023

30/332



NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

2. Then, start the BareMetal cores using the command below:

=> cpu 1 release 0x84000000

Note: In the command cpu <num> release 0x84000000, the 'num'can be 1, 2, 3, ... to the
maximum CPU number.
For i.MX 8M Plus LPDDR4 EVK and i.MX 8M Mini LPDDR4 EVK boards, us the below command:

=> dcache flush;cpu 1 release 50200000;sleep 6;cpu 2 release 50200000;sleep
2;cpu 3 release 502000007

3. Last, the UART2 port displays the logs, and the bare metal application runs on slave cores successfully.

3.2.4 Development based on BareMetal framework

This chapter describes how to develop customer-specific application based on BareMetal framework.

3.2.4.1 Developing the BareMetal application

The directory “app” in the U-boot repository includes the test cases for testing the 12C, GPIO and IRQ init
features. You can write actual applications and store them in this directory.

3.2.4.2 Example software

3.2.4.2.1 Main file app.c

The file <U-boot path>/app/app.c, is the main entrance for all applications. Users can modify the app.c file
to add their applications.

* If using standalone method to build the BareMetal image as described in Section 3.2.2.3, just change the
directory to U-boot path to check the app. c file.

* If using Real-time Edge software to compile the BareMetal binary, you should change to the building directory
to check the app. c file.

The following is a sample code of the file app . c that shows how to add the example test cases of I12C, IRQ, and
GPIO.

void corel main (void)
{
test i2c();
test irqg init();
test gpio();
return;

3.2.4.2.2 Common header files

There are some common APIs provided by BareMetal. The table below describes the header files that include
the APIs.

Table 9. Common header file description
Header file Description

asm/io.h Read/Write 10 APlIs.
Forexample, raw readb, raw writeb, out be32,and in be32.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.5 — 30 March 2023

31/332



NXP Semiconductors

REALTIMEEDGEUG

Real-time Edge Software User Guide

Table 9. Common header file description...continued

Header file Description

linux/string.h

APIs for manipulating strings.
For example, strlen, strcpy, and strcmp.

linux/delay.h

APIs used for small pauses.
For example, udelay and mdelay.

linux/types.h

APIs specifying common types.
Forexample, u32and  u64.

common.h

Common APls.
For example, printf and puts.

3.2.4.2.3 GPIO file

The file uboot/app/test gpio.c is an example to test the GPIO feature, and shows how to write a GPIO

application.

Here is an example for the i.MX 8M Mini board:

1. First, you need the GPIO header file, asm-generic/gpio.h and dm.h, which include all interfaces for the

GPIO.

2. Then, find the corresponding GPIO description according to the name of the GPIO (such as GPIO5_7),
configure GPIO5_7 to OUT direction, configure GPIO5_8 to IN direction and request it.

3. Now, by writing the value 1 or 0 to GPIO5_7, you can receive the same value from GPIO5_8.

The table below shows the APIs used in the file test gpio. c application example.

Table 10. GPIO APIs and their description

Function declaration

Description

int dm gpio_ lookup name (const char
*name, struct gpio desc *desc)

Look up a named GPIO and return its description
name- Name to look up, such as GPIO5_7

desc - GPIO description

Returns: 0 if OK, -ve on error

int dm gpio request (struct gpio desc
*desc, const char *label)

Manually request a GPIO

desc - GPIO description of GPIO to request

label- Label to attach to the GPIO while claimed, such as "output1"”
Returns: 0 if OK, -ve on error

int dm gpio_set value(const struct
gpio_desc *desc, int value)

Configures the direction of GPIO to OUT and writes the value to it.
desc - GPIO description

value- the value written to this GPIO

Returns: 0 if OK, -ve on error

int dm gpio_set dir flags(struct
gpio_desc *desc, ulong flags)

Set direction using description and added flags
desc - GPIO description

flags - New flags to use

Returns: 0 if OK, -ve on error

int dm gpio_ free(struct udevice *dev,
struct gpio_desc *desc)

Free a single GPIO

dev: Device which requested the GPIO
desc - GPIO description

Returns: 0 if OK, -ve on error

REALTIMEEDGEUG

All information provided in this document is subject to legal disclaimers.

© 2023 NXP B.V. All rights reserved.

User guide

Rev. 2.5 — 30 March 2023

32/332



NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

3.2.4.2.4 12C file

The file uboot/app/test i2c.c can be used as an example to test the 12C feature and shows how to write
an 12C application.

On Is1043ardb board, read a fixed data from offset 0 of INA220 device(0x40). If the data is 0x39, a message,
[ok]I2C test ok is displayed on the console.

The table below shows the APIs used in the sample file, test_i2c.c.

Table 11. 12C APIs and their description

Function declaration Description
int i2c_set bus num (unsigned Sets the 12C bus.
int bus) bus- bus index, zero based

Returns 0 if OK, -1 on error.

int i2c_read (uint8_ t chip, Read data from 12C device chip.
unsigned int addr, int alen,  chip - 12C chip address, range 0..127
uint8_t *buffer, int len) * addr - Memory (register) address within the chip

* alen - Number of bytes to use for address (typically 1, 2 for larger
memories, 0 for register type devices with only one register)

e buffer - Where to read/write the data
* len - How many bytes to read/write
Returns 0 if OK, not 0 on error.

int i2c_write (uint8 t chip, Writes data to 12C device chip.
unsigned int addr, int alen,  chip - 12C chip address, range 0..127
uint8_t *buffer, int len) * addr - Memory (register) address within the chip

* alen - Number of bytes to use for address (typically 1, 2 for larger
memories, 0 for register type devices with only one register)

e buffer - Where to read/write the data
* len - How many bytes to read/write
Returns 0 if OK, not 0 on error.

3.2.4.2.5 IRQ file

The file, uboot/app/test_irg init.c is an example to test the IRQ and IPI (Inter-Processor Interrupts)
feature, and shows how to write an IRQ application. The process is described in brief below.

The file asm/interrupt-gic.h, is the header file of IRQ, and includes all its interfaces. Then, register an IRQ
function for SGI 0. After setting an SGI signal, the CPU gets this IRQ and runs the IRQ function. Then, register
a hardware interrupt function to show how to use the external hardware interrupt.

SGI IRQ is used for inter-processor interrupts, and it can only be used between bare metal cores. In case you
want to communicate between BareMetal core and Linux core, refer to Section 3.2.4.4. SGI IRQ id is 0-15. The
SGI IRQ id '8' is reserved for ICC.

Note: Fori.MX 8M Mini LPDDR4 EVK, i.MX 8M Plus LPDDR4 EVK, and i.MX 93 EVK boards, SGI IRQ id is 9.

The table below shows the APIs used in the sample file, test _irg init.c.

Table 12. IRQ APIs and their description
Return type APl name (parameter list) Description

void gic _irg register (int irg num, |Registers an IRQ function.
void (*irqg handle) (int)) * irg num- IRQid, 0-15 for SGI, 16-31 for PPI, 32-1019 for SPI
* irg handle —IRQ function

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.5 — 30 March 2023

33/332



NXP Semiconductors

REALTIMEEDGEUG

Real-time Edge Software User Guide

Table 12. IRQ APIs and their description...continued

Return type APl name (parameter list)

Description

void gic_set sgi
u32 hw _irq)

(int core mask,

Sets a SGI IRQ signal.
* core mask — target core mask
* hw_irg-IRQid

void gic set target
unsigned long hw irq)

(u32 core mask,

Sets the target core for hw IRQ.
* core_mask — target core mask
* hw _irg-IRQid

void gic_set type
hw irq)

(unsigned long

Sets the type for hardware IRQ to identify whether the corresponding
interrupt is edge-triggered or level-sensitive.

* hw irg-IRQid

3.2.4.2.6 QSPIfile

The file uboot/app/test_gspi.c provides an example that can be used to test the QSPI feature. The below steps

show how to write a QSPI application:

1. First, locate the QSPI header files spi_flash.h and spi.h, which include all interfaces for QSPI.
2. Then, initialize the QSPI flash. Subsequently, erase the corresponding flash area and confirm that the erase

operation is successful.

3. Now, read or write to the flash with an offset of 0x3f00000 and size of 0x40000.

The table below shows the APIs used in the file test_gsip.c example.

Table 13. QSPI APIs

API name (type)

Description

spi find bus and cs(bus,cs,
&bus dev, é&new)

The API finds if a SPI device already exists.
¢ “bus” - bus index, zero based.

¢ “cs” —the value to chip select mode.

* “bus_dev” - If the bus is found.

* “new” — If the device is found.

Returns 0 if OK, ~-ENODEV on error.

spi flash probe bus cs(bus,
speed, mode, &new)

cs,

Initializes the SPI flash device.
e “bus” - bus index, zero based.
e “cs” —the value to Chip Select mode.

¢ “speed” — SPI flash speed, can use 0 or CONFIG_SF_DEFAULT _
SPEED.

* “mode” —SPI flash mode, can use 0 or CONFIG_SF_DEFAULT_MODE.
e “new” — If the device is initialized.
Returns 0 if OK, ~-ENODEV on error.

dev_get uclass_priv(new)

Gets the SPI flash.
* “new” - The device being initialized.
Returns flash if OK, NULL on error.

spi_ flash erase(flash,
size)

offset,

Erases the specified location and length of the flash content, erases the
content of all.

* “flash” - Flash is being initialized.

* “offset” — Flash offset address.

e “size” - Erase the length of the data.
Returns 0 if OK, !0 on error.

REALTIMEEDGEUG

All information provided in this document is subject to legal disclaimers.

© 2023 NXP B.V. All rights reserved.

User guide

Rev. 2.5 — 30 March 2023
34 /332



NXP Semiconductors

REALTIMEEDGEUG

Real-time Edge Software User Guide

Table 13. QSPI APIs...continued
API name (type)

Description

spi_ flash read(flash, offset,
len, vbuf)

Reads flash data to memory.

e “flash” - The flash being initialized.

* “offset” — Flash offset address.

e “len” - Read the length of the data.

¢ "vbug" - the buffer to store the data read
Returns 0 if OK, ! 0 on error.

spi_flash write(flash, offset, Writes memory data to flash.

len, buf) e “flash” - The flash being initialized.
* “offset” — Flash offset address.
e “len” - Write the length of the data.
e "buf" - the buffer to store the data write
Returns 0 if OK, !0 on error.
3.2.4.2.7 IFC

Both LS1043ARDB and LS1046ARDB have IFC controller. However, LS1043ARDB supports both NOR flash
and NAND flash, whereas LS1046ARDB supports only NAND flash.

NOR and NAND flash messages are displayed while booting BareMetal cores, as shown below:

1:NAND:
1:Flash:

512 MiB
128 MiB

or (LS1046ARDB)

1:NAND: 512 MiB

There is no example code to test it, but we can use a few commands to verify these features.

For LS1043ARDB NOR Flash (the map memory address is 0x60000000), below command can be used to
verify it:

> md 0x60000000

1:60000000: 55aa55aa 0001lee0l 10001008 0000000a UoWoooooo0o000000
1:60000010: 00000000 00000000 02005514 12400080  ......... U. @
1:60000020: 005002e0 002000cl 00000000 00000000 22000 ocooccococoac
1:60000030: 00000000 00880300 00000000 01110000  ......vueinnnn.
1:60000040: 96000000 01000000 78015709 10e00000  ......... W.x
1:60000050: 00001809 08000000 18045709 9e000000  ......... Woooooo
1:60000060: 1c045709 9e000000 20045709 9e000000 Wooooooo W
1:60000070: 00065709 00000000 04065709 00001060 Wooooooo W.
1:60000080: c000ee09 00440000 58015709 00220000  ...... D..W.X.."
1:60000090: 40800089 01000000 40006108 £f56b710a oo oao a.@.qk
1:600000a0: ffffffff fEEfEfffff fELFFEFF FEEELFFE Lo ool

For NAND flash on LS1043ARDB and LS1046ARDB, "nand" command can be used to verify it (nand erase,
nand read, nand write, and so on.):

=> nand info

l:Device 0: nand0O, sector size 128 KiB
1: Page size 2048 b
1: OOB size 64 b
1l: Erase size 131072 b

REALTIMEEDGEUG

User guide

All information provided in this document is subject to legal disclaimers.

Rev. 2.5 — 30 March 2023

© 2023 NXP B.V. All rights reserved.

35/332



NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

1: subpagesize 2048 b
1: options 0x00004200
1: Dbbt options 0x00028000

=> nand

l:nand - NAND sub-system

1:Usage:

nand info - show available NAND devices

nand device [dev] - show or set current device
nand read - addr off|partition size

nand write - addr off|partition size

read/write 'size' bytes starting at offset 'off'
to/from memory address 'addr', skipping bad blocks.
nand read.raw - addr off|partition [count]

nand write.raw[.noverify] - addr off|partition [count]
Use read.raw/write.raw to avoid ECC and access the flash as-is.

nand erase|.spread] [clean] off size - erase 'size' bytes from offset 'off'
With '.spread', erase enough for given file size, otherwise,
'size' includes skipped bad blocks.

nand erase.part [clean] partition - erase entire mtd partition'

nand erase.chip [clean] - erase entire chip'

nand bad - show bad blocks

nand dump[.oob] off - dump page

nand scrub [-y] off size | scrub.part partition | scrub.chip
really clean NAND erasing bad blocks (UNSAFE)

nand markbad off [...] - mark bad block(s) at offset (UNSAFE)

nand biterr off - make a bit error at offset

3.2.4.2.8 Ethernet

The file uboot/app/test_net.c provides an example to test the Ethernet feature and shows how to write a net
application for using this feature.

Here is an example for the LS1043ARDB (or LS1046ARDB) board.

1. Connect one Ethernet port of LS1043ARDB board to one host machine using Ethernet cable.

¢ (For LS1046ARDB, the default ethact is FM1@DTSECS5. Network cable should be connected to SGMII1
port.

* For LS1043ARDB, the default ethact is FM1@DTSEC3. Network cable should be connected to RGMII1
port.

2. Configure the IP address of the host machine as 192.168.1.2.

3. Power up the LS1043ARDB board. If the network is connected, the message host 192.168.1.2 is
alive is displayed on the console.

4. The IP addresses of the board and host machine are defined in the file test_net.c. In this file, modify the IP

address of LS1043ARDB board using variable ipaddr and change the IP address of host machine using
variable ping ip.

The table below lists the Net APIs and their description.

Table 14. Net APIs and their description

API name (type) Description

void net init (void) Initializes the network

int net loop (enum proto_ t Main network processing loop.

protocol) « enum proto_t protocol - protocol type

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.
User guide Rev. 2.5 — 30 March 2023

36 /332



NXP Semiconductors

REALTIMEEDGEUG

Table 14. Net APIs and their description...continued

Real-time Edge Software User Guide

API name (type) Description

int eth receive
int length)

(void *packet,
* void *packet

Returns length

Reads data from NIC device chip.

* length - Network packet length

int eth send (void *packet, int

length)

Returns length.

Writes data to NIC device chip.
* packet - pointer to the packet is sent
* length - Network packet length

3.2.4.2.9 USB file

The file uboot/app/test usb.c provides an example that can be used to test the USB features. The steps

below show how to write a USB application:
1. Connect a USB disk to the USB port.

Initialize the USB device using the usb _init APL

NoaMWODN

Include the header file, usb . h, which includes all APIs for USB.

Scan the USB storage device on the USB bus using the usb_stor_ scanAPl.
Get the device number using the b1k get devnum by type APl

Read data from the USB disk using the b1k dread API.

Write data to the USB disk using the b1k dwrite API.

The table below shows the APIs used in the file test usb.c example:

Table 15. USB APIs and their description

API name (type)

Description

int usb_init (void)

Initializes the USB controller.

int usb_stop(void)

Stops the USB controller.

int usb stor scan(int mode)

Scans the USB and reports device information to the user if
mode =1

* Mode - if mode = 1, the information is returned to user.
Returns

 the current device, or

* -1 (if device not found).

struct blk desc *blk get devnum by type (enum
if type if type, int devnum)

Get a block device by type and number.
* If type — Block device type

* devnum - device number

Returns

* Points to block device descriptor, or

e NULL (if not found).

unsigned long blk dread(struct blk desc
*block dev, lbaint t start, lbaint t blkcnt,
void *buffer);

Reads data from USB device.

* block_dev — block device descripter

e start — start block

* blkent — block number

e buffer — buffer to store the data

Returns the block number from which, data is read.

REALTIMEEDGEUG

All information provided in this document is subject to legal disclaimers.

© 2023 NXP B.V. All rights reserved.

User guide

Rev. 2.5 — 30 March 2023

371332



NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

Table 15. USB APIs and their description...continued

unsigned long blk dwrite (struct blk desc Writes data to USB device.
*block dev, lbaint t start, lbaint t blkcnt, |e block dev — block device descripter
const void *buffer); o starti— start block

* blkcnt — block number
e buffer - bufferto store the data
Returns the block number to which data is written.

3.2.4.2.10 PCle file

The file app/test pcie.c provides a sample code to test PCle and network card (such as e1000) features.
The steps below show how to write a PCle and net application:

1. Insert a PCle network card (such as e1000) into PCle2, or PCle3 slot (if it exists).
Configure the IP address of the host machine to 192.168.1.2.

Include the files include/pci.h and include/ netdev.h.

Initialize the PCle controller using the pci_init APL

Get uclass device by its name using the uclass_get device by seqAPl.
Initialize the PCle network device using the pci eth init APL

Begin pinging the host machine using the net loop APL.

NOoOR~WDN

The table below shows the APIs used in the file test _pcie.c example.

Table 16. PCle APIs and their description

API name (type) Description
void pci_init (void) Initializes the PCle controller. Does not return a value.
int uclass_get device by Gets the uclass device based on an ID and sequence:
seq(enum uclass_id id, int seq, |e id—uclassID
struct udevice **devp) * seq- sequence
* devp - Pointer to device
Returns:
e 0if Ok.
* Negative value on error.
static inline int pci eth Initializes network card on the PCle bus.
init (bd_t *bis) * Bis — struct containing variables accessed by shared code

Returns the number of network cards.

int net loop (enum proto_ t Main network processing loop.

protocol) * enum proto_t protocol - protocol type
Returns:
* 0if Ok.

* Negative value on error.

3.2.4.2.11 ENETC file

The file app/test net.c provides an example to test ENETC Ethernet feature and shows how to write a net
application for using this feature. This example is a special case of using Net APls.

The file test net for ENETC is only an example for the LS1028ARDB board with
(CONFIG _ENETC COREID SET enabled).

1. Connect ENETC port of LS1028ARDB board to one host machine using Ethernet cable.
2. Configure the IP address of the host machine as 192.168.1.2.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.5 — 30 March 2023

38/332



NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

3. Power up the LS1028ARDB board. If the network is connected, the message host 192.168.1.2 is
alive is displayed on the console.

4. The IP addresses of the board and host machines are defined in the file test net. c. In this file, modify
the IP address of LS1028ARDB board using variable ipaddr and change the IP address of host machine
using variable ping_ ip.

The table below lists the Net APIs for ENETC and their description, refer to Section 3.2.4.2 for other Net APIs.

Table 17. ENETC APIs and their description

API name (type) Description
void pci_init (void) Initializes the PCle controller. Does not return a value.
void eth initialize(void) Initializes the Ethernet.

3.2.4.2.12 SAlfile

The audio feature needs SAl module and codec drivers. The following sections provide an introduction to SAI
module and the audio codec (SGTL5000). These sections also describe the steps for integrating audio with
BareMetal and running an audio application on BareMetal.

3.2.4.2.12.1 Synchronous Audio Interface (SAl)

The LS1028A integrates six SAl modules, but only SAI4 is used by LS1028ARDB board. The synchronous
audio interface (SAIl) supports full duplex serial interfaces with frame synchronization. The bit clock and frame
sync of SAl are both generated externally (SGTL5000).

* Transmitter with independent bit clock and frame sync supporting 1 data line
* Receiver with independent bit clock and frame sync supporting 1 data line

» Maximum Frame Size of 32 words

» Word size of between 8-bits and 32-bits

» Word size configured separately for first word and remaining words in frame
» Asynchronous 32 x 32-bit FIFO for each transmit and receive channel

* Supports graceful restart after FIFO error

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.5 — 30 March 2023

39/332



NXP Semiconductors

REALTIMEEDGEUG

Real-time Edge Software User Guide

Transmitter

¥
Wite
= FIFO
Control
Bus [ o
Clock v
Control
Registers
Audio
Clock
Control
Registars
Bus 1‘
Clock ,1.
Read
FIFO
Control

L »fl SAITX_DATA

B SAI_TX_BCLK

e »fll SAI_TX_SYNC

el SAI_RX_SYNC

B SAl_RX_BCLK

FIFO

¥
Read
FIFO s
Contral Reqister
Bit Clock FE’*::“
L
Gﬂrl:‘diun
..... W
Sy
Joreeemmnnnsanssss L3
Bit Clock FE’*:M"‘:
Generation
Write
FIFO o
Control Ragisier

e W SAI_RX_DATA

Figure 7. SAl block diagram

3.2.4.2.12.2 Audio codec (SGTL5000)

The SGTL5000 is a low-power stereo codec with headphone amplifier from NXP. It is designed to provide a
complete audio solution for products requiring LINEIN, MIC_IN, LINEOUT, headphone-out, and digital 1/Os.
It allows an 8.0 MHz to 27 MHz system clock as input. The codec supports 8.0 kHz, 11.025 kHz, 12 kHz, 16
kHz, 22.05 kHz, 24 kHz, 32 kHz, 44.1 kHz, 48 kHz, and 96 kHz sampling frequencies. The LS1028ARDB board

provides a 25 MHz crystal oscillator to the SGTL5000.

The SGTL5000 provides two interfaces (I12C and SPI) to setup registers. The LS1028ARDB board uses 12C

interface.

REALTIMEEDGEUG

All information provided in this document is subject to legal disclaimers.

© 2023 NXP B.V. All rights reserved.

User guide

Rev. 2.5 — 30 March 2023

40/332




NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

v

Headphone Volume Control
-52dB to +12dB P_OUTw|

LLINE_IN
-~ DAC Volume (CHIP_ANA_HP_CTRL)
L Al -gnggn:nmtlma
LMIC_Inm| (0aB, 2048,
3008, 40d8) Audio
Switch
-12S5_DIN >
Lime Out Volume Control
-125_DOUT- (CHIP_LINE_OUT VOL) }”“EOUT‘

o Mix AVC Bass Enhancament Tone Control /GEQ/PEQ
+6dB +12dB +6dB +12dB

Only Gain is shown for the Digital Audio Processing blocks. For complete description
please see Digital Audio Processing section

Figure 8. System block diagram, signal flow, and gain

3.2.4.2.12.3 Digital interface formats

The SGTL5000 provides five common digital interface formats. The SAl and SGTL5000 digital interface formats
must be the same.

* 12S Format (n = bit length)

CHIP_I2S0_CTRL field values:
(SCLKFREQ= 0; SCLK_INV = 0; DLEN = 1; 12S_MODE = 0; LRALIGN = 0; LRPOL = 0)
|

I25_LRCLK_Il : },’, H E | b b1

128 scmrmﬁm;}m ;;mw Spipliniint/ Halinlin
125, DN Dauo-bm:;; X EXEX O OEENH DX # X

Figure 9. 12S Format (n = bit length)

* Left Justified Format (n = bit length)

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.5 — 30 March 2023

411332



NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

CHIP_I2S0_CTRL field values:
(SCLKFREQ=0; SCLK_'NV = 0; DLEN = 1; 12S_MODE =0; LRALIGN = 1; LRPOL =0)

I2S LRCLK_l : b 7 ]I ! b /7 A

12 scmrm_'rm_[wm %}LI—LI_U—I_I—LJ_#J_I_I—U_LI_ WL
12S_DIN, Dom:.-n:ﬁ OCOE X XN COEEEN X XX EX W

Figure 10. Left Justified Format (n = bit length)
* Right Justified Format (n = bit length)

CHIP_I2S0_CTRL field values:
SCLKFREQ= 0; SCLK_INV = 0; DLEN = 1; 12S_MODE = 1; LRALIGN = 1; LRPOL = Q)

IZS_LRCLK_E : b b | : b A

s s,cmri_ﬂ_h_lwﬁm ;;ULH_IW%M ligligliy
125_DIN muTDDCbCEﬁ M§§4 EXEX M X

Figure 11. Right Justified Format (n = bit length)
* PCM Format A

CHIP_I2S0_CTRL = 0x01F4
(SCLKFREQ=1; MS = 1; SCLK_INV = 1; DLEN = 3; 12S_MODE = 2; LRALIGN = 0)

|25_LRCLKJI—1 i 4 i i—l l 4 T
128, scmm_rLﬂ_ruﬁum #}I‘U—LI_LI_IJ_IJ}T_I_LI_I_I_L gupigh
25_DIN, DDUT:).*W:H DEEN P EEEEN Y TXEEX )

Figure 12. PCM Format A
* PCM Format B

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.5 — 30 March 2023

42332



NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

CHIP_I2S0_CTRL = Ox01F6
(SCLKFREQ=1; MS =1; SCLK_INV = 1; DLEN = 3; I12S_MODE = 2; LRALIGN = 1)

12S_LRCLK_| b —T 1 b 11
rreripipiplipl//aipipigly/ nigligipiis/aipiigig ininin

125 _DIN, DOUT (T XXX h X FrXmoX X e @)X bk /D D

Figure 13. PCM Format B

3.2.4.2.12.4 Running the SAIl application

In order to run SAI application, BareMetal images should be rebuilt with SAl support.

1. Enable SAIl support in Real-time Edge software

$ cd yocto-real-time-edge/sources/meta-real-time-edge
# Open file "conf/distro/include/real-time-edge-base.inc", add "sai" to
"DISTRO FEATURES:append:1sl028ardb" like this:
DISTRO FEATURES:append:1sl028ardb = " jailhouse real-time-edge-libbee real-time-
edge-libblep libnfc-nci \
wayland-protocols weston imx-gpu-viv libdrm kmscube \
real-time-edge-sysrepo tsn-scripts wayland alsa sai"

2. Build the image

S cd yocto-real-time-edge

$ DISTRO=nxp-real-time-edge-baremetal MACHINE=1s1028ardb source real-time-edge-
setup-env.sh -b build-1s1028ardb-bm

S bitbake nxp-image-real-time-edge

3. Play a demo audio file in slave core after booting the board:

=> wavplayer
kA Ak kA hhhkhr kA hhkhkhrhkhkhAhhhkrhkhkhhhkkhkhrhkhkhkhhkkhkrhkhkhkhhkkhkrhkkhkhhkhkkhkrkhkkxxk%
audioformat: PCM nchannels: 1 samplerate: 16000 bitrate: 256000 blockalign: 2
bps: 16 datasize: 67968 datastart: 44
R R IR I b db b db b b db b b S db b b S I b I db b IR Ib b d db b b S Sb b J IR b b db Ib b S db b b db Ib b b db b dh b b4
sgtl5000 revision 0x11l fsl sai ofdata to platdata Probed
sound 'sound' with codec 'codec@a' and i2s 'sai@£f130000'

i2s transfer tx data The music waits for the end! The music is finished!
Ak Ak hkkhkhkkhkhkhhkhhkhhkhkhkhkkhkhkkhkhhhkhhkhhkhhkhkkhkhkkhkhrhkhkhkhkhkhkhkkhkhkkhkhkhkhhkhkhkhkhkhkx*k

3.2.4.2.13 FlexTimer module

The FlexTimer module (FTM) works on BareMetal core as the wakeup source for LS1046ARDB. It can support
nanosecond (ns) level alarm setting.

There is no example code to test it, but we can use a few commands to verify these features.

Use the below commands to verify FTM feature:

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.5 — 30 March 2023

43 /332



NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

* Use “ftm” command to get help information:

=> ftm
l:ftm - ftm alarm test

1:Usage:

ftm test ftm alarm

show - show FTM test result

start [count] us - start FTM test
stop - stop FTM test

e Use “ftm start [count]”command to start ftim test:

=> ftm start
1:Use default alarm time - 5 us
1:FTM test start.

=> ftm start 100
1:FTM test start.

* Using “ftm stop” command to stop ftm test and show the test result:

=> ftm stop

1:FTM test stop.

l:irg count | total (us) | average (us) | max (us) | min (us) |
1:3087560 | 309579251 | 100 | 102 | 100 |

e Use “ftm show” command to show the test result:

=> ftm show
l:irg count | total (us) | average (us) | max (us) | min (us) |
1:317803 | 31854521 | 100 | 102 | 100 |

The table below lists the attributes for “ftm show” and “ftm stop” result:

Table 18. FlexTimer module attributes and their description

Attribute Name Description

irq count Generated interrupt single count since “ftm start” command
total (us) The time since “ftm start” command

average (us) The average time between two interrupt signals

max (us) The maximum time between two interrupt signals

min (us) The minimum time between two interrupts signals

The table below lists the FTM APIs and their description.

Table 19. FlexTimer module APIs

APl Name Description

int ftm rtc_set alarm by us (struct Setting alarm by us count

udevice *dev, unsigned long us, void (* |e struct udevice *dev — device struct of ftm

func) (void *)) « unsigned long us — the time for ftm alarm

* void (* func)(void *) — the handle function when timeup

void ftm rtc_set alarm (struct udevice |Setting alarm by ftm timer count

*dev, ul6 ticks, void (* func) (void « struct udevice *dev — device struct of ftm

)i * u16 ticks — the timer counter for ftm alarm

* void (* func)(void *) — the handle function when timeup

void ftm rtc_alarm stop(struct udevice |Stop and resetftm alarm

*dev) * struct udevice *dev — device struct of ftm
REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.
User guide Rev. 2.5 — 30 March 2023

44332



NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

Table 19. FlexTimer module APIs...continued

unsigned long ftm rtc_get max _alarm us |Getthe max alarm time value for ftm alarm
(struct udevice *dev) * struct udevice *dev — device struct of ftm

3.2.4.3 Newlib’s math library

In order to control 10 devices such as changing the speed or angle, mathematical calculations are required.
Newlib’s math library is added to support such calculations. Newlib is a C library intended for use on embedded
systems.

All math related files are under math folder. The file directory structure is as follows:

math

COPYING
include
L math.h
1lib

L— libm.a
README

To use math library, the below code should be in the header of the file, and then we can directly call all kinds of
math APIs.

#include <math.h>
#undef  always inline
#undef  section
#include <stdlib.h>
#include <common.h>
#include <command.h>
#undef log

For the detailed usage, refer to the example file which is math. c under cmd folder, The example shows how to
call the API of math library including acos/asin/atan/cos/sin/tan and log/pow/sqrt. We can use the
math command to verify these APIs under U-Boot command.

For example:

=> math

math - Test Math Functions
Usage:

math - Only test some simple math functions:

math acos x(double)
math asin x (double)
math atan x (double)
math atan2 y x(double)
math cos x(double)
math cosh x(double)
math sin x(double)
math sinh x (double)
math tanh x (double)
math exp x(double)
math ldexp x (double) exp (int)
math log x(double)

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.5 — 30 March 2023

45/332



NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

math logl0O x (double)
math pow x (double) y(double)
math sqrt x(double)
math ceil x (double)
math fabs x(double)
math floor x (double)
math fmod x(double) y(double)

\%

math asin 0.8
0.927
:=> math sin 1.0
0.841
:=> math cos 1.0
0.540
> math log 10
2.302
:=> math logl0O 10
1.000

===

3.2.4.4 ICC module

Inter-core communication (ICC) module works on Linux core (master) and BareMetal core (slave). It provides
the data transfer between cores via SGI inter-core interrupt and shared memory blocks. It can support multicore
silicon platform and transfer the data concurrently and efficiently.

ICC module structure is based on two basics:

* SGI: Software-generated Interrupts in Arm GIC, used to generate inter-core interrupts. The ICC module uses
the number 8 SGI interrupt for all Linux and BareMetal cores.

» Shared memory: A memory space shared by all platform cores. The base address and size of the share
memory should be defined in header files before compilation.

ICC modules can work concurrently, lock-free among multicore platform, and support broadcast case with Buffer
Descriptor Ring mechanism.

The figure below shows the basic operating principle for data transfer from Core 0 to Core 1. After the data
writing and head point moving to next, Core 0 triggers a SGI (8) to Core 1. After this step, the Core 1 gets the
BD ring updated status and reads the new data, then moves the tail point to next.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.5 — 30 March 2023

46 /332



NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide
lhead

L

Block

Figure 14. BD rings for inter-core communication

For a multicore platform (that is, four cores), the total BD rings are arranged as shown in the following figure.
(See the BD rings on Core 0 and Core 1.)

Core0 to Core1 0 1 2 3 4 5 6 7 8 9
Core0 to Core2 0 1 2 3 4 5 6 7 8 9
Core0 to Core3 0 1 2 3 4 5 6 7 8 9
Core1 to Core0 0 1 2 3 4 5 6 7 8 9
Core1 to Core2 0 1 2 3 4 5 6 7 8 9
Core1 to Core3 0 1 2 3 4 5 6 7 8 9
Figure 15. BD rings for multicore platform

All the ICC ring structures, BD structures, and blocks for data are in the shared memory. A four-core platform
ICC module would map the shared memory as shown in the figure below.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.5 — 30 March 2023

471332



NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

Base Address

Ring and BD structures

Core0 .
Blocks with 4K for each

Ring and BD structures
Core1
Blocks with 4K for each

Share memory
Ring and BD structures size for all cores

Core2
Blocks with 4K for each

Ring and BD structures

Core3
Blocks with 4K for each

Reserved for custom usage

Base Address + Siz_gr

Figure 16. ICC shared memory map for the four-core platform

Generally, Core 0 runs Linux as master core while other cores run BareMetal as slaves. They obtain the same
size of share memory to structure the rings and BDs, and split the blocks space with 4k unit for each block. The
reserved space at the top of the share memory is out of the ICC module and for the custom usage.

For LS1028ARDB platform with two cores, the shared memory map is defined as:

* The total shared memory size is 256 MB.

* The reserved space for custom usage is 16 MB at the top of the share memory space.

* Core 0 runs Linux as master core, the share memory size for ICC is 120 MB, in which the ring and BD
structure space is 2 M, and the block space for data is 118 MB with 4K for each block.

* Core 1 runs BareMetal as slave core, the share memory size for ICC is 120 MB, in which the ring and BD
structure space is 2M, and the block space for data is 118 MB with 4K for each block.

The ICC module includes two parts of the code:

* |CC code for Linux user space, works for data transfer between master core and slave cores. The code is
integrated into the Real-time Edge software and named real-time-edge-icc. After the compilation, the
icc binary is put into the Linux file system.

* |CC code for BareMetal runs on every slave core, works for data transfer between BareMetal cores and
master core.

The ICC code for Linux user space in the repository: https://github.com/nxp-real-time-edge-sw/real-time-edge-
icc.qit.
F— icc-main.c ---the example case commands

I— inter-core-comm.c

— inter-core-comm.h - include the header file to use ICC module

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.5 — 30 March 2023

48 /332


https://github.com/nxp-real-time-edge-sw/real-time-edge-icc.git
https://github.com/nxp-real-time-edge-sw/real-time-edge-icc.git

NXP Semiconductors

REALTIMEEDGEUG

Real-time Edge Software User Guide

L— Makefile

The ICC code for BareMetal in baremetal directory:

baremetal/

— arch/arm/1lib/inter-core-comm.c

F— arch/arm/include/asm/inter-core-comm.h ---includes the header file to use ICC module
L— cmd/icc.c ---the example case commands

The ICC modules of the APIs are exported out for usage in both Linux user space and BareMetal code.

Table 20. ICC APIs
APls

Description

Checks the ring and block state.

Returns:

* 0 - if empty.

* 10 - the working block address currently.

Requests a block, which is ICC_BLOCK_UNIT_SIZE size.
Returns:

e 0 - failed.

e 10 - block address can be used.

unsigned long icc ring
state (int coreid)

Unsigned long icc block
request (void)

Frees a block requested.
Be careful if the destination cores are working on this block.

void icc _block free (unsigned
long block)

int icc irq register(int src_ |Registers ICC callback handler for received data.

coreid, void (*irg handle) Returns:
(int, unsigned long, unsigned |, 0 - on success
int)) e -1 -if failed.

Sends the data in the block to a core or multicore.
This triggers the SGI interrupt.

Returns:

* 0 -o0nsuccess

e -1 -if failed.

int icc_set block(int core
mask, unsigned int byte
count, unsigned long block)

void icc show(void) Shows the ICC basic information.

Initializes the ICC module.

int icc_init(void)

3.2.4.4.1 ICC examples

This section provides example commands for use cases in both Linux user space and BareMetal code. They
can be used to check and verify the ICC module conveniently.

1. In Linux user space, use the command icc to display the supported cases.

[root@LS1046ARDB ~] # icc

icc show - Shows all icc rings status at this core

icc perf <core mask> <counts> - ICC performance to cores <core mask> with
<counts> bytes

icc send <core mask> <data> <counts> - Sends <counts> <data> to cores
<core mask>

icc irg <core mask> <irg> - Sends SGI <irg> ID[0 - 15] to <core mask>

icc read <addr> <counts> - Reads <counts> 32bit register from <addr>

icc write <addr> <data> - Writes <data> to a register <addr>

REALTIMEEDGEUG

All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide

Rev. 2.5 — 30 March 2023
49/ 332



NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

Likewise, in BareMetal system, use the command icc to view the supported cases.

=> icc

l:icc - Inter-core communication via SGI interrupt

1:Usage:

icc show - Show all icc rings status at this
core

icc perf <core mask> <counts>
<core mask> with <counts> bytes

ICC performance to cores

icc send <core mask> <data> <counts> - Send <counts> <data> to cores

<core mask>

icc irqg <core mask> <irg> - Send SGI <irg> ID[0 - 15] to

<core mask>

2. The ICC module command examples on LS1046ARDB with Linux (Core 0) + BareMetal (Core 1, 2, 3)

system:
Run icc send 0x2 0x55 128 to send 128 bytes data 0x55 to core 1.

[root@LS1046ARDB ~] # icc send 0x2 0x55 128

gic _base: 0xffffa033f000, share base: 0xffff9133f000, share phy: 0xd0000000,

block phy: 0xd0200000

ICC send testing

Target cores: 0x2, bytes: 128

ICC send: 128 bytes to 0x2 cores success

all cores: reserved share memory base: 0xdf000000; size: 16777216

mycoreid: 0; ICC _SGI: 8; share memory size: 62914560
block unit size: 4096; block number: 14848; block idx: O
#ring 0 base: 0xffff9133f000; dest core: 0; SGI: 8
desc num: 128; desc _base: 0xd00000cO; head: 0; tail: 0
busy counts: 0; interrupt counts: 0

#ring 1 base: Oxffff9133f030; dest core: 1; SGI: 8
desc num: 128; desc _base: 0xd00008cO; head: 1; tail: 1
busy counts: 0; interrupt counts: 1

#ring 2 base: O0xffff9133f060; dest core: 2; SGI: 8
desc _num: 128; desc base: 0xd00010cO; head: 0; tail: 0
busy counts: 0; interrupt counts: 0

#ring 3 base: Oxffff9133f090; dest core: 3; SGI: 8
desc num: 128; desc _base: 0xd00018c0; head: 0; tail: 0
busy counts: 0; interrupt counts: 0

At the same time, Core 1 displays the received information.

=> 1:Get the ICC from core 0; block: 0xd0200000, bytes: 128,

value: 0x55

3. ICC command run on BareMetal side

=> icc send 0x1 Oxaa 128

1:ICC send testing
1:Target cores: 0xl, bytes: 128
1:ICC send: 128 bytes to 0xl cores success
l:all cores: reserved share memory base: 0xdf000000; size: 16777216
l:mycoreid: 1; ICC_SGI: 8; share memory size: 62914560
l:block unit size: 4096; block number: 14848; block idx: 0
l:#ring 0 base: 00000000d3c00000; dest core: 0; SGI: 8
l:desc num: 128; desc base: 00000000d3c000c0; head: 1; tail: 1
l:busy counts: 0; interrupt counts: 1
l:#ring 1 base: 00000000d3c00030; dest core: 1; SGI: 8
l:desc_num: 128; desc base: 00000000d3c008c0; head: 0; tail: 0
l:busy counts: 0; interrupt counts: O
l:#ring 2 base: 00000000d3c00060; dest core: 2; SGI: 8
l:desc num: 128; desc base: 00000000d3c010c0; head: 0; tail: O
l:busy counts: 0; interrupt counts: 0
REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.
User guide Rev. 2.5 — 30 March 2023

50 /332



NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

l:#ring 3 base: 00000000d3c00090; dest core: 3; SGI: 8
l:desc num: 128; desc base: 00000000d3c018c0; head: 0; tail: O
l:busy counts: 0; interrupt counts: 0

Then, Core 0 side (Linux) receives this data:

[root@LS1046ARDB ~] # [ 4247.733753] 000: Get the ICC from core 1; block:
0xd3e00000, bytes: 128, value: 0Oxaa

3.2.4.5 Hardware resource allocation

This section describes how to modify the hardware resource allocation depending on the application and used
reference design board.

3.2.4.5.1 LS1028ARDB board

This section describes the ENETC configuration setting for LS1028A reference design boards.

3.2.4.5.1.1 ENETC

LS1028ARDB has only one ENETC controller in use, which is assigned to core1 as the default setting. The
controller can be reconfigured by using the command, make menuconfig.

See the following:

ARM architecture --->

[*] Enable baremetal

[*] Enable ENETC for baremetal
(1) Enetcl is assigned to corel
(1) ENETC Controller numbers

3.24.51.2 12C

This section describes how to configure the 12C bus on LS1028A reference design boards.

LS1028ARDB has eight 12C controllers, but only controller 0 is used for I2C devices. For example, RTC,
Thermal Monitor, and Linux (core 0) use this controller for some features (for example, RTC). Therefore, the
code below just shows how to enable 12C on BareMetal side.

Note:
Operate the 12C devices in BareMetal side CAREFULLY.

#define CONFIG SYS I2C MXC I2Cl /* enable I2C bus 0 */
#define CONFIG SYS I2C MXC I2C2 /* enable I2C bus 1 */
#define CONFIG SYS I2C MXC I2C3 /* enable I2C bus 2 */
#define CONFIG SYS I2C MXC I2C4 /* enable I2C bus 3 */

#define CONFIG_I2C BUS CORE_ID SET
#define CONFIG_SYS I2C MXC I2C0 COREID 1

The CONFIG_SYS I2C MXC_I2CO_COREID defines the slave core that runs the 12C bus.

Since 12C is enabled in DM mode on BareMetal side, there is no automatic code to test it. Follow the below
steps to read RTC (0x51 address, is on bus 2) on BareMetal side:

=> i2c bus
Bus 0: 12c@2000000 (active 0)
77: i2c-mux@77, offset len 1, flags O

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.5 — 30 March 2023

51/332



NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

57: generic 57, offset len 1, flags 0
Bus 1: 12c@2000000->i2c-mux@77->12c@1
Bus 2: 12c@2000000->i2c-mux@77->1i2c@3

51: rtc@51, offset len 1, flags 0

Bus 3: 12c@2010000
Bus 4: 12c@2020000
Bus 5: 12c@2030000
Bus 6: 12c@2040000
Bus 7: 12c@2050000
Bus 8: 12c@2060000

Bus 9: 12c@2070000

=> i2c md 0x51 O

Error reading the chip: -121

=> i2c dev 2

Setting bus to 2

=> i2c md 0x51 0

0000: 04 00 36 03 12 15 02 12 20 80 80 80 80 80 00 c2 s0@cao000 coaoacoc

3.2.4.5.1.3 SAl

LS1028ARDB has only one SAI module in use, which is assigned to core1 in the default setting. The SAI
module can be reconfigured by using the command, make menuconfig.

See the following:

Command line interface --->

Misc commands —--->

[*] wavplayer

Device Drivers —-—->

Sound support --->
] Enable sound support
] Enable I2S support
] Freescale sound
] Freescale sgtl5000 audio codec
] Freescale SAI module

Audio integration in BareMetal

For audio feature, we should add SAl and SGTL5000 drivers to BareMetal.

* Add SAl driver source code to the drivers/sound directory
* Add SGTL5000 driver source code to the drivers/sound directory
* Add sound device source code to the drivers/sound directory
* Add a command that can play wav files to the cmd directory
* Add support for SAl and sgtl5000 in LS1028ARDB dits file
In fsl-Is1028a.dtsi file:
said4: audio-controller@f130000 {
#sound-dai-cells = <0>;
compatible = "fsl,vf6l0-sai";
reg = <0x0 0xf130000 0x0 0x10000>;
interrupts = <GIC _SPI 83 IRQ TYPE LEVEL HIGH>;
clocks = <&clockgen QORIQ CLK PLATFORM PLL
QORIQ CLK PLL DIV (2)>,
<&clockgen QORIQ CLK PLATFORM PLL
QORIQ CLK PLL DIV (2)>,
<&clockgen QORIQ CLK PLATFORM PLL
QORIQ CLK PLL DIV (2)>,

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.5 — 30 March 2023

52 /332



NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

<&clockgen QORIQ CLK PLATFORM PLL
QORIQ CLK PLL DIV (2)>;
clock-names = "bus", "mclkl", "mclk2", "mclk3";
dma-names = "tx", "rx";
dmas = <&edmalO 1 10>,
<&edmalO 1 9>;
fsl, sai-asynchronous;
status = "disabled";
i
In fsl-Is1028a-rdb.dts file:

sound {
compatible = "fsl,audio-sgtl5000";
model = "1s1028a-sgtl15000";

audio-cpu = <&said>;
audio-codec = <&sgtl5000>;
audio-routing =
"LINE IN", "Line In Jack",
"MIC IN", "Mic Jack",
"Mic Jack", "Mic Bias",
"Headphone Jack", "HP OUT";
b7
i2c@1 {
#address-cells = <1>;
#size-cells = <0>;
reg = <0x1>;
sgtl1l5000: codec@a {
#sound-dai-cells = <0>;
compatible = "fsl,sgtl15000";
reg = <0xa>;
VDDA-supply = <1800>;
VDDIO-supply = <1800>;
sys mclk = <25000000>;
sclk-strength = <3>;
}i
i
&said {
status = "okay";

bi

* Add all source code to the corresponding makefile file.
* Add new default configurations to Is1028ardb_sdcard_baremetal_defconfig file

3.2.4.5.2 LS1043ARDB or LS1046ARDB board

The following sections describe the hardware resource allocation for the LS1043ARDB or LS1046ARDB boards
for implementing the supported features.

3.2.4.5.2.1 Linux DTS

Remove cpu1, cpu2, cpu3 nodes on DTS, and remove all the devices that bare metal has used.

3.2.4.5.2.2 Memory configuration

This section describes the memory configuration for LS1043ARDB or LS1046ARDB boards.

The LS1043ARDB or LS1046ARDB boards have a DDR of size 2 GB. To use the bare metal framework,
configure DDR into three partitions:

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.5 — 30 March 2023

53 /332



NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

* 512M for core0 (Linux)

» 256M for core1 (bare metal)

» 256M for core2 (bare metal)

» 256M for core3 (bare metal), and 256M for shared memory.

The configuration can be defined in the file include/configs/1s1043a baremetal.h.

#define CONFIG BAREMETAL SYS SDRAM SLAVE SIZE (256 * 1024 * 1024)
#define CONFIG BAREMETAL SYS SDRAM MASTER SIZE (512 * 1024 * 1024)
#define CONFIG BAREMETAL SYS SDRAM RESERVE SIZE (16 * 1024 * 1024)
#define CONFIG BAREMETAL SYS SDRAM SHARE SIZE\ ((256 * 1024 * 1024) -
CONFIG BAREMETAL SYS SDRAM RESERVE SIZE)

Note: The memory configuration must be consistent with the U-Boot configuration of core0.

The memory configuration for bare metal is shown in the figure below.

Share Memory(256M).

BSS-

U-boot image-

Malloc(128M). '
\)- Core1 (bare metal core).

GBL data-.

IRQ & FIQ stack(8K)-

Stack o

Core 0 Memory(512M). |’

Figure 17. Memory configuration for LS1043ARDB or LS1046ARDB

The functions included in malloc.h in the table below can be used to allocate or free memory in program.
Modify CONFIG SYS MALLOC LENin include/configs/1s1043a common.h to change the maximum size
of malloc.

Table 21. Memory APIs description

API name (type) Description

void_t* malloc (size_t n) Allocates memory
* “n” —length of allocated chunk
* Returns a pointer to the newly allocated chunk

void free (void *ptr) Releases the chunk of memory pointed to by ptr (where “ptr” is a pointer to the
chunk of memory)

The GPIO for LS1043ARDB (or LS1046ARDB) has four GPIO controllers. You need to add a GPIO node in the
file 1s1043/6a-rdb.dts to assign a GPIO resource to different cores. The configuration can be done in the
file arch/arm/dts/fs1-1s1043/6a-rdb.dts.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.5 — 30 March 2023

54 /332



NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

3.2.4.5.2.3 GPIO

LS1043/6A has four GPIO controllers. You can add a GPIO node in the file Is1043/6a-rdb.dts to assign a GPIO
resource to different cores. The configuration is in arch/arm/dts/fsl-Is1043/6a-rdb.dts. Use the command below
to add a GPIO node:

&gpio2 {
status = "okay";

}i

3.24.5.24 12C

This section describes how to configure the 12C bus on LS1028A, LS1043A, or LS1046A reference design
boards.

The LS1043ARDB (or LS1028ARDB / LS1046ARDB) has four 12C controllers. You can configure the 12C bus
using the 1s1043ardb bm defconfig file using the commands below:

CONFIG_SYS_I2C_MXC_I2Cl=y
CONFIG_SYS I2C MXC I2C2=y
CONFIG_SYS I2C MXC I2C3=y
CONFIG_SYS I2C MXC_ I2C4=y
CONFIG_I2C_COREID SET=y
CONFIG_SYS I2C MXC I2C0O_COREID=1
CONFIG_SYS I2C_MXC_I2C1 COREID=2
CONFIG_SYS I2C MXC I2C2 COREID=3
CONFIG_SYS I2C MXC I2C3 COREID=1

The CONFIG _SYS I2C MXC_ I2CO_COREID defines the slave core that runs the 12C bus.

3.2.4.5.2.5 Hardware interrupts

LS1043A has twelve IRQs as external IO signals connected to interrupt the controller. These twelve IRQs can
be used on baremetal cores. The ids for these signals, IRQ0-IRQ11 are: 163, 164, 165, 167, 168, 169, 177,
178, 179, 181, 182, and 183. GIC interrupt APIs are defined in asm/interrupt-gic.h. The following example
shows how to register a hardware interrupt:

//register HW interrupt

void gic irg register (int irg num, void (*irg handle) (int));
void gic set target (u32 core mask, unsigned long hw irq);
void gic set type(unsigned long hw irq);

3.2.4.5.2.6 QSPI

LS1046ARDB has a QSPI flash device. To configure the QSPI on Is1046ardb_config.h, use the command
below:

#define CONFIG FSL QSPI COREID 1

Here, the CONFIG FSL QSPI COREID defines the slave core that runs this QSPI.

3.24.5.2.7 IFC

LS1043A and LS1046A have IFC controller. LS1043RDB supports both NOR flash and NAND flash, whereas
LS1046RDB supports only NAND flash.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.5 — 30 March 2023

55/332



NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

1. IFC is disabled in Linux kernel via disabling "ifc" node:

&ifc {
status = "disabled";

b

2. Enter the BareMetal-Framework directory path and then execute the commands below: (IFC is enabled
by default)

make menuconfig ARM architecture ---> [*] Enable baremetal [*] Enable IFC for
baremetal (1) IFC is assigned to that core

3.2.4.5.2.8 Ethernet

This section describes the Ethernet configuration settings for LS1043A or LS1046A reference design boards.
LS1043A or LS1046A has only one FMan, so you should remove the DPAA driver in Linux.
1. Disable the DPAA driver in Linux kernel:

Device Drivers --->
Staging drivers—--->
< > Freescale Datapath Queue and Buffer management

2. Enter the BareMetal-Framework directory and then execute the commands below:

make menuconfig ARM architecture ---> [*] Enable baremetal [*] Enable fman
for baremetal (1) FMANl is assigned to that core

Configure FMan to the specified core by modifying the FManl is assigned to that core value,
which is the default configuration, to corel.

3.24.5.2.9 USB

This section describes the USB configuration setting for LS1043A and LS1046A reference design boards.

Both LS1043A and LS1046A have three DW3 USB controllers. By default, these are assigned as core1, core2,
and core3d. Users can reconfigure the controllers by using the ‘make menuconfig’ command as shown below.

ARM architecture --->

*] Enable baremetal

=] Enable USB for baremetal

1) USBO is assigned to corel
2) USB1 is assigned to core2
3) USB2 is assigned to core3
3) USB Controller numbers

3.2.4.5.2.10 PCI Express (PCle)

This section describes the PCle configuration setting for LS1043A and LS1046A reference design boards.

Both LS1043A and LS1046A have three PCle controllers. By default, these are assigned as core0, core1, and
core2. To reconfigure them, use the command ‘make menuconfig’, as shown below:

ARM architecture --->

[*] Enable baremetal

(0) PCIel is assigned to core0l
(1) PCIe2 is assigned to corel

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.5 — 30 March 2023

56 /332



NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

(2) PCIe3 is assigned to core2
(3) PCIe Controller numbers

3.2.4.5.3 LX2160ARDB board

The following sections describe the hardware resource allocation for the LX2160ARDB boards for implementing
the supported features.

3.2.4.5.3.1 Memory configuration

This section describes the memory configuration for LX2160ARDB boards.

The LX2160ARDB boards have a 16 GB size DDR. To use the BareMetal framework, configure DDR into three
partitions:

* 15G for core0 (Linux)
* 64M per core from core1 to core15 (baremetal), and 64M for shared memory.

The configuration can be defined in the file include/configs/1x2160ardb config.h.

#define CONFIG BAREMETAL SYS SDRAM SLAVE SIZE (64 * 1024 * 1024)
#define CONFIG BAREMETAL SYS SDRAM MASTER SIZE (512 * 1024 * 1024)
#define CONFIG BAREMETAL SYS SDRAM RESERVE SIZE (16 * 1024 * 1024)
#define CONFIG BAREMETAL SYS SDRAM SHARE STIZE \ ((64 * 1024 * 1024) -
CONFIG BAREMETAL SYS SDRAM RESERVE SIZE)

The functions included in malloc.h in the table below can be used to allocate or free memory in program.
Modify CONFIG SYS MALLOC LENin include/configs/1x2160ardb.h to change the maximum size of
malloc.

Table 22. Memory API description

API name (type) Description

void_t* malloc (size_t n) Allocates memory

* “n” — length of allocated chunk
¢ Returns a pointer to the newly allocated chunk

void free (void *ptr) Releases the chunk of memory pointed to by ptr (where “ptr” is a pointer to
the chunk of memory)

3.2.4.5.4 i.MX 8M Mini LPDDR4 EVK and i.MX 8M Plus LPDDR4 EVK board

3.2.4.5.4.1 Linux DTS

When using BareMetal, users should remove all the devices from kernel that BareMetal has used, for example:

&fecl {
status = "disabled";
}i

&gpiob
{

status = "disabled";
b

guart3 {

status = "disabled";

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.5 — 30 March 2023

571332



NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

3.2.4.5.4.2 Memory configuration

This section describes the memory configuration for i.MX 8M Mini LPDDR4 EVK or i.MX 8M Plus LPDDR4 EVK
boards.

1. The boards have a 6 GB DDR memory. To use the BareMetal framework, configure DDR into five partitions:
» 6016M for core0 (Linux)

* 32M for core1 (bare metal)

* 32M for core2 (bare metal)

* 32M for core3 (bare metal)

* 32M for shared memory.

The configuration can be defined in the file include/configs/imx8mm baremetal.h. or include/
configs/imx8mp baremetal.h.

#define CONFIG SYS DDR_SDRAM SLAVE RESERVE SIZE (SZ_32M)
#define CONFIG BAREMETAL SYS SDRAM RESERVE SIZE (SZ_4M)
#define CONFIG BAREMETAL SYS SDRAM SLAVE SIZE (SZ_32M)

2. Memory Reserve

For IPI data transfer, BareMetal needs to share memory between master core and slave core. Hence, users
should reserve some memory from the Linux kernel, as shown in the following dt sfile:

reserved-memory { #address-cells = <2>; #size-cells = <2>; ranges; bm reserved:
baremetal@0x60000000 { no-map; reg = <0 0x60000000 0 0x10000000>; }; 1};

3.2.4.5.4.3 GPIO

1. Connect pin7 and pin8 of J1003. The test_gpio case in BareMetal uses pin7 and pin8 of J1003, so connect
these two pins.

2. Boot the BareMetal on slave core. If the GPIO is working fine, the message below is displayed:

[0k]GPIO test ok

3. Disable the devices from kernel.

For the test_gpio case, use GPIO5_7 (pin8 of J1003) and GPIO5_8 (pin7 of J1003). These two pins are muxed
as UART3_TXD and UART3_CTS, so should disable GPIO5 and UART3 from kernel.

&gpio5 { status = "disabled"; }; &uart3 { status = "disabled"; };

3.2.4.5.4.4 Ethernet

This section describes the Ethernet configuration settings for i. MX 8M Mini LPDDR4 EVK or i.MX 8M Plus
LPDDR4 EVK boards.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.5 — 30 March 2023

58 /332



NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

1. Disable the Ethernet card from dts files:

&fecl {
status = "disabled";

157

Note:

1. i.MX 8M Mini LPDDR4 EVK has only one NIC, default status of ethO(fec1) is disabled. if user does not use
ethO in BareMetal, can enable fec1 in kernel dts file.
2. .MX 8M Plus LPDDR4 EVK has two NICs, default setting is ethO for BareMetal, eth1 for Linux.

2. Confirm BareMetal configuration using the command below:

make menuconfig ARM architecture ---> [*] Enable baremetal [*] Enable NIC for
baremetal (1) which core that NIC is assigned to

Configure NIC to the specified core by modifying the NIC to assign that core value, which is the default
configuration, to core1.

3.3 Jailhouse

3.3.1 Overview

Jailhouse is a partitioning Hypervisor based on Linux. It is able to run baremetal applications or (adapted)
operating systems besides Linux. For this purpose, it configures CPU and device virtualization features of the
hardware platform in a way that none of these domains, called "cells" here, can interfere with each other in an
unacceptable way.

Jailhouse is optimized for simplicity rather than feature richness. Jailhouse does not support overcommitment
of resources such as CPUs, RAM, or devices. This feature makes it different from full-featured Linux-based
hypervisors such as KVM or Xen. It performs no scheduling and only virtualizes those resources in software,
which are essential for a platform and cannot be partitioned in hardware.

Once Jailhouse is activated, it runs BareMetal. This implies that it takes full control over the hardware and
needs no external support. However, in contrast to other baremetal hypervisors, it requires a normal Linux
system to be loaded and configured. Its management interface is based on Linux infrastructure. So, you boot
Linux first, then, enable Jailhouse and finally split off parts of the system's resources and assign them to
additional cells.

3.3.2 Running PREEMPT_RT Linux in Inmate

3.3.2.1 i.MX 8M Plus LPDDR4 EVK

Perform the following steps;

1. Execute run jh mmcboot at U-Boot prompt on the terminal of UART2.
2. Wait for Linux OS to boot up and login.
3. Execute non-root Linux demo (Assuming rootfs has been deployed in /dev/immcblk2p2):

# cd /usr/share/jailhouse/scripts
# ./linux-demo-imx8mp.sh

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.5 — 30 March 2023

59 /332



NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

4. Check the output on the terminal of UART4:

o B B W B R R R ]
cNoloNolNolNoNoNoNoNeNe]

0

.717545]
.721628]
.732428]
.732902]
.732952]
.733632]
.735615]
.735835]
.735863]
.735889]
.736340]
.736351]

version

L R R B B B B W R
[cNoloNoNoNoNoNe]

0.

736354

]
.736382]
.736384]
.736416]
.736418]
.736447]
.736450]
. 7364731
.736475]

printk: console [ttymxc3] enabled

printk: bootconsole [ec imx6g0] disabled
loop: module loaded

of reserved mem lookup () returned NULL
megasas: 07.714.04.00-rcl

imx ahci driver is registered.

tun: Universal TUN/TAP device driver, 1.6
thunder xcv, ver 1.0

thunder bgx, ver 1.0

nicpf, ver 1.0

hclge is initializing

hns3: Hisilicon Ethernet Network Driver for HipO8 Family -

hns3: Copyright (c) 2017 Huawei Corporation.

el1000: Intel(R) PRO/1000 Network Driver

el000: Copyright (c) 1999-2006 Intel Corporation.
e1000e: Intel (R) PRO/1000 Network Driver

el000e: Copyright(c) 1999 - 2015 Intel Corporation.
igb: Intel (R) Gigabit Ethernet Network Driver

igb: Copyright (c) 2007-2014 Intel Corporation.

igbvf: Intel (R) Gigabit Virtual Function Network Driver
igbvf: Copyright (c) 2009 - 2012 Intel Corporation.

NXP Real-time Edge Distro 2.2 imx8mp-lpddrd-evk ttymxc3

imx8mp-lpddrd4-evk login: root

root@imx8mp-lpddri-evk: ~#

root@imx8mp-lpddrd-evk:~# uname -a

Linux imx8mpevk 5.10.72-rt53-1ts-5.10.y+g5304e5555731 #1 SMP PREEMPT RT Tue
Mar 1 06:03:05 UTC 2022 aarch64 aarch64 aarch64 GNU/Linux
root@imx8mp-lpddrd-evk:~#

Note: if the case fails because of rootfs error, update rootfs using the following command:

# rm -fr /run/media/mmcblk2p2/*
# cp —-frd /usr /bin /etc /home /fat /l1ib /linuxrc /lost+found/ /media/ /mnt /
opt /root /sbin /run/media/mmcblk2p2/

5. Exit Jailhouse.

3.3.2.2 LS1028ARDB

3.3.2.2.1 Linux in none-root cell

Perform the following steps to run PREEMPT_RT Linux in Inmate on LS1028ARDB platform:

1. Execute run jh mmcboot from U-Boot prompt.
2. Wait for Linux OS to boot up and log in it.
3. Execute non-root Linux demo:

# cd /usr/share/jailhouse/scripts
# ./linux-demo-1s1028ardb.sh

4. Exit Jailhouse.

# ../tools/jailhouse disable

REALTIMEEDGEUG

All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide

Rev. 2.5 — 30 March 2023
60 /332



NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

3.3.2.2.2 ENETC in none-root cell

Follow the below steps for ENETC that is assigned to non-root cell:

1. Under U-Boot prompt, run the below commands to set the device tree blob, which has ENETC nodes
removed and then boot up Linux:

=> setenv jh mmcboot ‘setenv dtb fsl-1s1028a-rdb-jailhouse-without-
enetc.dtb; run bootcmd’
=> run jh mmcboot

2. Wait for Linux OS to boot up and then log in.
3. Execute non-root Linux demo:

# cd /usr/share/jailhouse/scripts
# ./linux-demo-1sl1028ardb-enetc.sh

Then, network can be available in none-root cell Linux.
4. Exit Jailhouse.

# ../tools/jailhouse disable

Note:

In this case, the GICv3 ITS node is also removed from the root cell Linux device tree. The node is assigned to
non-root cell to service ENETC MSI-X interrupts, so the root cell Linux does not support the MSI/MSI-X service
anymore.

3.3.2.2.3 GPIO in none-root cell

GPIO3 controller is assigned to none-root cell, below steps is for GPIO that is assigned to non-root cell:

1. Hardware setup
Connect J11 Pin5 (1588_ALARM_OUT1/GPIO3_DAT11) to Pin 8 (1588_CLK_OUT/GPIO3_DAT10)
2. RCW setting
In dash-rcw/1s1028ardb/R_SQPP 0x85bb/rcw 1500 sdboot.rcw, change as below:
EC1_SAl4_5 PMUX=1
EC1_SAI3_6_PMUX=1
EC1_SAl4_5 PMUX is set to 0b001, EC1_SAI3_6_PMUX is set to 0b001 to select GPIO.
3. Software configure
a. Configure CPLD register BRDCFG3 (offset 053h) bit 2 to 0 (IEEE signals connect to the IEEE header) in
U-Boot prompt:

=> 12c mw 66 53 00

b. Boot up Linux using Jailhouse DTB and bring up non-root Linux:

=> run jh mmcboot

¢. Wait for Linux OS to boot up and login.
d. Execute non-root Linux demo.

# cd /usr/share/jailhouse/scripts
# ./linux-demo-1s1028ardb.sh

4. Test GPIO function in non-root Linux.
a. Export GPIO pin

# 1ls /sys/class/gpio
# echo 490 > /sys/class/gpio/export

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.5 — 30 March 2023

61 /332



NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

# echo 491 > /sys/class/gpio/export

b. Configure GPIO output and input.

# echo out > /sys/class/gpio/gpio490/direction
# cat /sys/class/gpio/gpiod490/direction
# cat /sys/class/gpio/gpiod91/direction

c. Verify write 1 to GPIO ouput.

# echo 1 > /sys/class/gpio/gpiod490/value
# cat /sys/class/gpio/gpiod90/value
# cat /sys/class/gpio/gpiod491/value

d. Verify write 0 to GPIO ouput.

# echo 0 > /sys/class/gpio/gpiod490/value
# cat /sys/class/gpio/gpiod90/value
# cat /sys/class/gpio/gpiod91/value

5. Exit Jailhouse

# ../tools/jailhouse disable

3.3.2.3 LS1046ARDB

Perform the following steps:

1. Execute run jh mmcboot in U-Boot stage.
2. Wait for Linux OS to boot up and login in it.
3. Execute non-root Linux demo:

# cd /usr/share/jailhouse/scripts
# ./linux-demo-1s1046ardb.sh

4. Exit Jailhouse:

# ../tools/jailhouse disable

3.3.3 Running Jailhouse Examples In Inmate

3.3.3.1 i.MX 8M Plus LPDDR4 EVK

1. Execute run jh mmcboot in U-Boot stage
2. Wait for Linux OS to boot up and login in it.
3. Execute GIC demo.

# cd /usr/share/jailhouse/scripts
# ./gic-demo-imx8mp.sh

4. Check the result on serial port:

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers.

© 2023 NXP B.V. All rights reserved.

User guide Rev. 2.5 — 30 March 2023

62 /332



NXP Semiconductors

REALTIMEEDGEUG

Initializing the GIC...

Initializing the timer...
fired, jitter:
fired, jitter:
fired, jitter:
fired, jitter:
fired, jitter:
fired, jitter:
fired, jitter:
fired, jitter:
fired, jitter:
fired, jitter:
fired, jitter:
fired, Jjitter:

5. Execute UART demo:

Timer
Timer
Timer
Timer
Timer
Timer
Timer
Timer
Timer
Timer
Timer
Timer

2039
1039
879
959
1038
919
919
919
1079
919
919
959

ns,
ns,
ns,
ns,
ns,
ns,
ns,
ns,
ns,
ns,
ns,
ns,

min:
min:
min:
min:
min:
min:
min:
min:
min:
min:
min:
min:

2039
1039

879
879
879
879
879
879
879
879
879
879

ns,
ns,
ns,
ns,
ns,
ns,
ns,
ns,
ns,
ns,
ns,
ns,

Real-time Edge Software User Guide

max:
max:
maxs:
mazs:
mazs:
maxs:
maxs:
maxs:
mas:
ma:
maz:
max:

2039
2039
2039
2039
2038
2039
2039
2039
2039
2039
2039
2039

ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns

# ./uart-demo-imx8mp.sh

6. Check the result on serial port:

Hello
Hello
Hello
Hello
Hello
Hello
Hello
Hello
Hello
Hello
Hello
Hello
Hello
Hello
Hello
Hello
Hello
Hello
Hello
Hello

1

(= B e AT & IS WU o

9

10
11
12
13
14
15
le
17
18
19
20

from
from
from
from
from
from
from
from
from
from
from
from
from
from
from
from
from
from
from
from

cell!
cell!
cell!
cell!
cell!
cell!
cell!
cell!
cell!
cell!
cell!
cell!
cell!
cell!
cell!
cell!
cell!
cell!
cell!
cell!

7. Exit Jailhouse.

# ../tools/jailhouse disable

3.3.3.2 LS1028ARDB Jailhouse example in Inmate

Perform the following steps for running LS1028ARDB Jailhouse example In Inmate:

1. Execute run jh mmcboot in U-Boot stage.
2. Wait for Linux OS to boot up and then log in.
3. Execute GIC demo using the command below:

# cd /usr/share/jailhouse/scripts

# ./gic-demo-1s1028ardb.sh

4. Execute UART demo using the command below:

# ./uart-demo-1s1028ardb.sh

REALTIMEEDGEUG

All information provided in this document is subject to legal disclaimers.

© 2023 NXP B.V. All rights reserved.

User guide

Rev. 2.5 — 30 March 2023

63 /332



NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

5. Execute ivshmem demo using the command below:

# ./ivshmem-demo-1s1028ardb.sh

Note: If ivshmem case fails, then, reboot the board and test the case again.
Check the result on the second serial port:

IVSHMEM: Fcound device at 00:00.0

IVSHMEM: bar0 is at 0x00000000££000000

IVSHMEM: barl is at 0x00000000££001000

IVSHMEM: ID is 1

IVSHMEM: max. peers is 1

IVSHMEM: state table is at 0x00000000c0500000
IVSHMEM: R/W section is at 0x00000000c0501000
IVSHMEM: input sections start at 0xz00000000c050a000
IVSHMEM: output section is at 0x00000000c050c000
IVSHMEM: initialized device

state[0] =1

state[l] = 2
state[2] = 0

rw[0] = 1

rw[l] = 0

rw[2] = -1001599800

in@0x0000 = 10
in@0x2000 = 0
in@0x4000 = 1758252876

IVSHMEM: got interrupt 0 (#1)
state[0] =1
state[l] = 2
state[2] = 0

rw[0] = 1
rw[l] =1
rw[2] = -1001599800

in@0x0000 = 10
in@0x2000 = 10
in@0x4000 1758252876

6. Exit Jailhouse.

3.3.3.3 LS1046ARDB Jailhouse example

Perform the below steps for running Jailhouse examples in Inmate on LS1046ARDB:

1. Execute run jh _mmcboot in U-Boot stage.
2. Wait for Linux OS to boot up and login it.
3. Execute GIC demo:

# cd /usr/share/jailhouse/scripts
# ./gic-demo-1s1046ardb.sh

4. Execute UART demo:
# ./uart-demo-1sl1046ardb.sh

5. Execute ivshmem demo:

# ./ivshmem-demo-1s1046ardb.sh

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.5 — 30 March 2023

64 /332



NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

6. Exit Jailhouse.

# ../tools/jailhouse disable

3.4 Harpoon (RTOS on Cortex-A)

3.4.1 Overview

Harpoon RTOS provides an environment for developing real-time demanding applications on an RTOS running
on one (or several) Cortex-A core(s) in parallel of a Linux distribution.

Harpoon leverages Jailhouse to partition the hardware and run the RTOS as a Linux guest.

The Harpoon RTOS is based on either FreeRTOS or Zephyr plus MCUXpresso drivers and provides several
example applications:

* Audio application
* Industrial application
* Real-time latency test application

For details about Harpoon OS, refer to its user guide available at the following location:

https://www.nxp.com/design/software/development-software/real-time-edge-software:REALTIME-EDGE-
SOFTWARE?tab=Documentation_Tab

3.5 Heterogeneous Multicore Framework

3.5.1 Overview

Heterogeneous multiprocessor systems on a chip are increasingly being used for real-time processing in recent
years. They help to achieve high performance, lower the cost, and increase the energy efficiency in industrial
applications. In particular, the use of many different integrated processors running different operating systems
poses multiple challenges. The heterogeneous AMP architecture has several drawbacks.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.5 — 30 March 2023

65/332


https://www.nxp.com/design/software/development-software/real-time-edge-software:REALTIME-EDGE-SOFTWARE?tab=Documentation_Tab
https://www.nxp.com/design/software/development-software/real-time-edge-software:REALTIME-EDGE-SOFTWARE?tab=Documentation_Tab

NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

Baremental

PInMUX Network ‘ Storage

20In0say
alempleH

Linux BSP ’? MCUX-SDK

Software Release

Figure 18. Drawbacks of using Heterogeneous AMP Software

1. No unified SW release
a. Linux BSP focuses on Cortex-A core.
b. MCUX-SDK focuses on Cortex-M core.
2. No common way to communicate between OS.
3. No way to share limited hardware resource between OS.
4. How to share network device to cross different OS?
a. No unified way to assign and manage hardware resource across multiple operating systems.
b. How to assign memory to a different OS on a different core?
c. How to assign peripheral devices to a different OS?
d. How to set clock pin mux to support the assignment?
Real-time Edge software supports that different systems such as Linux, FreeRTOS, Zephyr, and baremetal run
on different processors. Real-time Edge software provides a total solution to support Heterogeneous AMP and

tries to solve the above pain points.

All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

Rev. 2.5 — 30 March 2023

REALTIMEEDGEUG

User guide
66 / 332



NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

/ Heterogeneous Software \

i Inmate :
Root Cell | (" Preempt RTOS Bare- |,
Linux ! RT (SMP/AMP) Metal | | Preempt RTOS RTOS
T :"“"T' __________ ? ___________ T_ _____ | RT (SMP/AMP)
Jailhouse ]
. ‘r I A J
rpmsg

Peripheral: GPIO, UART, Ethernet, 12C ... /

Linux BSP MCUX-SDK Demos/Solution/Document

Yocto Release

Figure 19. Heterogeneous AMP software architecture

1. Unified SW release
« All different OS/application running on different cores can be built via Yocto.
* A bitbake command can be used to create all images on different cores.
2. Communication between different OS
* RPMSG is used to communicate between different OS
3. Resource sharing between different OS
* Virtual device drivers
¢ Unified APIs with physical device drivers
4. Unified resource allocation and management
* Pinmux, memory, clock, peripherals

3.5.2 Yocto based unified delivery for Cortex-A and Cortex-M

The Yocto project is an open source collaboration project that helps developers create custom Linux-based
systems regardless of the hardware architecture. The project provides a flexible set of tools and a space where
embedded developers worldwide can share technologies, software stacks, configurations, and best practices.
These can further be used to create tailored Linux images for embedded and IOT devices, or anywhere a
customized Linux OS is needed. Moreover, Linux factory selects Yocto as building tool. Real-time Edge also
selects Yocto as the unified SW release tool.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. Al rights reserved.

User guide Rev. 2.5 — 30 March 2023

67 /332



NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

yocto-real-time-edge

Linux on A core RTOS on A core RTOS on M core
github.com/real-time- github.com/NXPmicro/ github.com/ github.com/
edge-sw harpoon-apps NXPmicro/SOEM NXPmicro/xxx
meta-real-time-edge meta-nxp-harpoon meta-rtos-industrial

meta-real-time-edge

Linux Factory MCUX SDK github

Figure 20. Unified Yocto Structure for Heterogeneous AMP

* Yocto Layer meta-real-time-edge focuses on Linux and baremetal application building on Cortex-A core.
* Yocto Layer meta-nxp-harpoon focuses on RTOS building on Cortex-A core.
* Yocto Layer meta-rtos-industrial focuses on RTOS building running on Cortex-M core.

Only one build command is required to generate the complete image, including all binaries running on core A
and core M.

For example:

# setup yocto environment for imx8mp-lpddré4-evk board

$ DISTRO=nxp-real-time-edge MACHINE=imx8mp-lpddr4-evk source real-time-edge-
setup-env.sh

# build all images for imx8mp-lpddrd-evk board

$ bitbake nxp-image-real-time-edge

3.5.3 Yocto layer for Cortex-M core

When the application runs on the Cortex-M core, it uses different toolchain and source code. For a unified
compilation interface, Yocto meta layer meta-rtos-industrial is introduced into Real-time Edge project.
The meta-rtos-industrial layer provides the build environment to create MCUX SDK application for
Cortex-M cores.

3.5.3.1 Introduction to meta-rtos-industrial

The following figure shows the meta-rtos-industrial file structure.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.5 — 30 March 2023

68 /332



NXP Semiconductors

REALTIMEEDGEUG

Real-time Edge Software User Guide

sources/

|— base

|— meta-browser

|— meta-clang

|— meta-cloud-services
|— meta-cpan

|— meta-freescale

|— meta-freescale-3rdparty
|— meta-freescale-distro
— meta-imx

|— meta-nxp-demo-experience
|— meta-nxp-harpoen
|— meta-openembedded
|— meta-python2

|— meta-qorig

|— meta-qt5

|— meta-real-time-edge
|— meta-rtos-industrial
|— meta-security

|— meta-selinux

|— meta-timesys

|— meta-virtualization

¥ meta-rtos-industrial

—conf
— distro

Layer configuration and distro settings

| L—rtos-i ial.conf

}— rayer.conf

|— evkbimxrt1050.conf

(current distro options: rtos-industrial)

Define MCU and MPU’s M core setting

|
|
|
| L— machine
|
I }_ i conf
| L— include
|— recipes-devtools
| L— external-arm-toolchain
| }— arm-binary-toolchain.inc
| L— gec-arm-none-eabi_10.3-2021.10.bb
L— recipes-kernel
L— mcux-kernel

|— demo-hello-world.bb

|— driver-gpio-led-output.bb

|— freertos-hello.bb

|— freertos-soem-gpio-pulse

|— freertos-soem-gpio-pulse.bb

|— mecux-example.inc

— mcux-sdk-src.bb

<«— Download and install arm-none-eabi toolchain

Define example binary compiling, installation and

deployment

— dk-src.inc <

L— soem-gpio-pulse.bb

mcux-sdk

L— poky

Figure 21. RTOS Industrial Layer Structure

3.5.3.1.1 source code definition

All source code related definition is under recipes-kernel/mcux-kernel folder.

mcux-sdk-src.inc defines all repos of (NXPmicro/mcux-sdk: MCUXpresso SDK (github.com)) and the new
repos.

If a new repo needs to download, please append the a new line to “SRC_URI” with the repo’s url and location.
For example(Download SOME stack to git/core/components/SOME folder):

“git://${NXPMICRO_BASE}/soem.git;protocol=https;nobranch=1;destsuffix=git/core/components/
SOEM;name=SOME \”

mcux-sdk-src-XXX.inc is used to define the MCUX SDK repo commit ID for the release XXX.

For examples: mcux-sdk-src-2.11.0.inc contains all repos commit ID for the release 2.11.0.

The default version is defined by the parameter PREFERRED_VERSION_MCUX-SDK in mcux-sdk-src.inc.
If you want to compile different version, you can overwrite this parameter in local.conf.

For examples:

# Add the below line into local.conf

PREFERRED VERSION_MCUX-SDK = "2.10.0"

3.5.3.1.2 Example definition

The file mcux-examples. inc describes the common method to compile install and deploy examples. Each
example bb file should include this file and then specify the folder of the example.

Use the command below to add a new example:

include mcux-example.inc

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers.

User guide Rev. 2.5 — 30 March 2023

© 2023 NXP B.V. All rights reserved.

69 /332


https://github.com/NXPmicro/mcux-sdk

NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

MCUX EXAMPLE DIR = "examples/${RTOS-INDUSTRIAL-BOARD}/demo apps/hello world"

3.5.3.1.3 Toolchain definition

The file recipes-devtools/external-arm-toolchain/gcc-arm-none-eabi VERSION.Dbb describes
how to download, install, and deploy gcc-arm-none-eabi toolchain of the specific VERSION.

This layer also supports external toolchain. Parameter “ARMGCC_DIR” can be overwritten to point the external
toolchain.

For example:

ARMGCC DIR = “/MYPATH/arm-none-eabi”

3.5.3.2 Integration of meta-rtos-industrial

To integrate meta-rtos-industrial into the Real-time Edge project, you need to specify the board and
examples.

The board name is different between i.MX SDK and MCUX SDK. For example, in order to compile Cortex-

M application for i.MX 8M Mini EVK with LPDDR4, use the board name evkmimx8mm instead of imx8mm-
lpddré4-evk. Thefile rtos-industrial-examples. inc is created under meta-real-time-edge/
distro/include to map the board names. The board name used by MCUX SDK should be set to parameter
RTOS-INDUSTRIAL-BOARD.

In the path meta-real-time-edge/recipes—-nxp/packagegroups, packagegroup-real-time-edge-
rtos.bb is used for examples that are compiled. These examples should be installed into rootfs.

3.5.3.3 Building meta-rtos-industrial

As the meta-rtos-industrial is already integrated into Real-time Edge, we do not need any special commands
or settings to enable building the rtos application. When building nxp-image-real-time-edge image, all
examples defined in packagegroup-real-time-edge-rtos.bb are built and installed into “/examples”
folder in rootfs.

Use the below commands to create nxp-image-real-time-edge image for imx8mm-lpddr4-evk board.

$ mkdir yocto-real-time-edge

$ cd yocto-real-time-edge

$ repo init -u https://github.com/nxp-real-time-edge-sw/yocto-real-time-edge.git
-b real-time-edge-kirkstone -m real-time-edge-2.5.0.xml

$ repo sync

S DISTRO=nxp-real-time-edge MACHINE=imx8mm-lpddr4-evk source real-time-edge-

setup-env.sh -b build-imx8mpevk-real-time-edge

$ bitbake nxp-image-real-time-edge

The example binary are located under tmp/deploy/images/imx8mm-1pddr4-evk/examples and /
examples of rooffs.

examples/

— demo-hello-world

| |— ddr_release

| | | hello_world.bin
| | L—nhello_world.elf

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.5 — 30 March 2023

70 /332



NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

| L—release

| — hello_world.bin

| L— hello_world.elf
— driver-gpio-led-output
| F—ddr_release

| | F—igpio_led_output.bin
| | L—igpio_led_output.elf
| L—release

| F— igpio_led_output.bin

| L—igpio_led_output.elf
— freertos-hello

| F—ddr_release

| | |— freertos_hello.bin

| | L— freertos_hello.elf

| L—release

| |— freertos_hello.bin

| L— freertos_hello.elf

— freertos-soem-gpio-pulse

| F—ddr_release

| | |— soem_gpio_pulse.bin

| | L— soem_gpio_pulse.elf

| L—release

| — soem_gpio_pulse.bin

| L— soem_gpio_pulse.elf

— rpmsg-lite-uart-sharing-rtos

| L—release

| F— rpmsg_lite_uart_sharing_rtos.bin
| L rpmsg_lite_uart_sharing_rtos.elf
L— soem-gpio-pulse

— ddr_release

| — soem_gpio_pulse.bin

| L— soem_gpio_pulse.elf

L— release

— soem_gpio_pulse.bin
L— soem_gpio_pulse.elf

If you just want to compile a special example, you can use the following command:

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers.

© 2023 NXP B.V. All rights reserved.

User guide Rev. 2.5 — 30 March 2023

711332



NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

For example:

$ DISTRO=nxp-real-time-edge MACHINE=imx8mm-lpddr4-evk bitbake
rpmsg lite uart sharing rtos

3.5.4 Yocto layer for Cortex-A core

The Cortex-A core allows users to run Linux, Jailhouse, Baremetal, and RTOS. Here is the corresponding Yocto
layer description.

1. Linux and Rootfs
The Yocto layer meta-real-time-edge focuses on Linux building on Cortex-A cores. This layer is based
on Linux factory and describes the process for building all applications for Linux and rootfs on Cortex-A
core.

2. Jailhouse
The scripts under meta-real-time-edge/recipes—-extended/real-time-edge-jailhouse
describe how to build Jailhouse running on Cortex-A core.

3. BareMetal application
The scripts under meta-real-time-edge/recipes-extended/real-time-edge-baremetal
describe how to build baremetal application on Cortex-A core. Refer to Section 3.2 for details.

4. Harpoon (RTOS on A core)
Harpoon provides an environment for developing real-time demanding applications on an RTOS running on
one (or several) Cortex-A core(s) in parallel of a Linux distribution, leveraging the 64-bit Arm (R) architecture
for higher performance. The system starts on Linux and the Jailhouse hypervisor partitions the hardware to
run both Linux and the guest RTOS in parallel. The hardware partitioning is configurable and depends on
the use case. The Yocto layer meta-nxp-harpoon describes how to build these applications on Cortex-A
core. For more information, please refer to Harpoon User's Guide. See Section 1.4.

3.5.5 Resource sharing

3.5.5.1 Overview

On NXP MPU platforms, in general, RTOS runs on Cortex-M Core(s) and Linux runs on Cortex-A Core(s). In
some use cases, considering power management and real-time performance, Cortex-M Core owns and controls
physical resources or peripherals, but needs to share these physical resources or peripherals with Cortex-A
Core(s). The rpmsg lite uart sharing rtos is a FreeRTOS example to share physical UART owned by
Cortex-M Core with Cortex-A Core.

3.5.5.2 Software architecture and design

This chapter describes different software architectures based on different technologies.

3.5.5.3 Resource sharing based on SRTM

This example uses the Simplified Real-Time Messaging (SRTM) protocol to communicate between Cortex-A
and Cortex-M Cores. SRTM is used for communication among SoCs/processors in the same SoC. The figure
below shows the software architecture for resource sharing based on SRTM.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.5 — 30 March 2023

72332



NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

Resource Owner/Sharer Resource User

Application Application

SRTM Services
| I2CSenvice | | RTCService | | Keypad Semvice

|
| AudioService | | IOService | | UartSerice |
|

| PWM Service | | Sensor Service | I Ethernet Service

Virtual Device Drivers

12C Driver RTC Driver Keypad Driver

Link Manager Message Dispatcher

RPMSG (Lite) RPMSG (Lite)

VirtlO VirtlO

e e

Hardware
Shared Memory MU, GIC-5GI

Figure 22. Resource Sharing Software Architecture

SRTM runs on Cortex-M Core which owns the hardware resources. To share these, it provides an application

protocol based on RPMSG.

Virtual Device Drivers run on the resource user. The drivers provide standard device service on Cortex-A, which

needs to use the hardware resources shared by SRTM.

3.5.5.3.1 UART sharing design details

The UART sharing example is designed with the following features:

* RTOS on Cortex-M Core owns and fully controls the physical UART ports.

* SRTM service runs on RTOS and provides physical device sharing service to Linux.
Virtual UART driver on Linux provides standard UART device service to applications.
* Multiple virtual UART ports are provided in Linux.

» Each virtual UART port in Linux can map to a dedicated physical UART on FreeRTOS.

Multiple virtual UART ports can be mapped to the same physical UART.
Supported Platforms: i.MX 8M Mini LPDDR4 EVK, i.MX 93 EVK
It includes the following software components:

* Physical UART driver on FreeRTOS

* SRTM UART sharing service on FreeRTOS

* rpmsg_lite uart sharing rtos application on FreeRTOS
* Virtual UART driver in Linux

The following figure illustrates the software architecture of a UART sharing design.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers.

© 2023 NXP B.V. All rights reserved.

User guide Rev. 2.5 — 30 March 2023

73 /332



NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

Linux Userspace

Application
Linux Kemnel ‘ data
Virtual Device Driver T
control
RPMSG
Virtlo. -
[ oee Jo | umngeuner | .J
Linux General Memaory Shared Memgw MU
RT neral Memo
— < I e ]
FreeRTOS
Application J

, 83T ‘
Device Driver i Service Driver | |
1
- Mes=sags Connection I
Dispatcher Manager

RPMSG(lite)

NS (Virtl0)

Physical Device

Figure 23. UART sharing software architecture

In order to support multiple virtual UART on a single physical UART, a multiple virtual UART protocol is used.
The example described in this document follows the packet format described in the below table.

Table 23. Packet Format

Fields Start Flags Address Payload Size Payload
(4 bytes) (1 bytes) (1 bytes) (n bytes)
HEX 24 55 54 2C X n XXXXXX. ..
ASCII $ U T ,

The packet header includes fields that indicate start flags, address, and payload size. It is 6 bytes by default.

“Start flags” field is used to figure out the start of data packets, user can configure start flags with specified
characters and size. The default start flags are 4 bytes: “SUT,”.

The “Address” field is reused by receive from transmit directions. For receive direction (blue colored path in
Figure 23), it is the destination address or ID of target virtual device. For transmit direction (orange colored path
in Figure 23), it is the source address or ID from which virtual device is transmitted.

“Payload Size” is the size of payload data, it is one byte, so the maximum payload size is 255 bytes. "Payload"
is the actual data exchanged within protocol and it follows the packet header.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.5 — 30 March 2023

74332



NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

3.5.5.4 Source code files and configuration

1. Source code files:
The source files for different software components are listed in the following table:

Table 24. Software source code list

Name Software Component Source Files/Directory

FreeRTOS application: mcux-sdk-examples evkmimx8mm/multicore examples/
rpmsg lite uart sharing rpmsg lite uart sharing rtos/
rtos

SRTM Service mcu-sdk components/srtm/services/

srtm uart service.c
srtm uart service.h
srtm uart adapter.c
srtm uart adapter.h

Virtual UART driver real-time-edge-linux |drivers/tty/rpmsg tty.c

2. Linux Virtual UART driver

By default, Real-time Edge kernel builds the virtual UART driver as module (rpmsg tty.ko) by enabling
the configure item: CONFIG RPMSG TTY=m.

3. Virtual UART and physical UART mapping
The UART Sharing Service supports three modes of mapping between virtual UART and physical UART:

a. Virtual UART to physical UART 1:1 mapping
* Virtual UARTs on A-core have 1:1 mapping to physical UARTs on the M-core.
» Each physical UART connects to a different device.
» Each virtual UART uses a dedicated RPMSG endpoint.

RPMSG aat
Header ata

devittyRPMSG1

dev/ttyRPMSG10

Virtual UART Driver SRTM RPMSG Service
on A-Core on M-Core

i.MX 8M Mini board

Figure 24. Virtual UART to physical UART 1:1 mapping
b. Virtual UART to physical UART n:1 mapping
* Multiple Virtual UARTs on A-core maps to a single physical UARTs on M-core.
* Physical UART connects to a device or another board.
e Each virtual UART uses a dedicated RPMSG Endpoint.

* Multiple UART Header is used to establish multiple virtual UART channels on a single physical UART
connect. For details about multiple UART Headers, refer to the section, “Section 3.5.5.3.1”.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.5 — 30 March 2023

75/332



NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

RPMSG s Multi-UART
Header a Header

Virtual UART Driver SRTM RPMSG Service
on A-Core on M-Core

i.MX 8M Mini board

Figure 25. Virtual UART to physical UART n:1 mapping
c. Virtual UART to physical UART flexible mapping: This mapping mode can support virtual UART to
physical UART 1:1 mapping and n:1 mapping simultaneously. The following figure shows flexible
mapping between two i.MX 8M Mini boards.

RPMSG RPMSG
eI
devittyRPMSG1 / ---------------- devittyRPMSG1
devittyRPMSG2 ~. devittyRPMSG2
[Lommmss | [ . G e K
devittyRPMSG3 —~----Sharng- - --EE-‘ m m dev/ttyRPMSG3
k Service |-~
dev/ittyRPMSG10 devittyRPMSG10
Mul-UART
Virtual UART Driver SRTM RPMSG Sevice SRTM RPMSG Service Virtual UART Driver
onA-Core on M-Core on M-Core onA-Core
i.MX 8M Mini board 1 i.MX 8M Mini board 2

Figure 26. Virtual UART to physical UART flexible mapping

The mapping between virtual UART and physical UART is configured in Linux device tree, as shown in a dts
node example below:

uart rpbus 3: uart-rpbus-3 {
compatible = "fsl,uart-rpbus";
bus id = <3>; /* use uart3 */
flags=<IMX SRTM UART SUPPORT MULTI UART MSG FLAG>;
status = "okay";
}i

This dts node is configured for virtual UART3.

Note:

» The “bus_1id” specifies the physical UART instance ID that this virtual UART maps to. If the property
of “bus_1d”is not configured, the message sent from Linux to this virtual UART is display on M-core’s
debug console directly.

* Physical UART ID is configured in the FreeRTOS application “romsg lite uart sharing rtos”.

e On i.MX 8M Mini LPDDR4 EVK, physical UART3 can be used, so all virtual UART ports are mapped to
physical UART3 by default.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.5 — 30 March 2023

76 /332



NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

* On i.MX 93 EVK, physical LPUART5 can be used, so all virtual UART ports are mapped to physical
LPUARTS5 by default.

* If f1ags is set with the value IMX SRTM UART SUPPORT MULTI UART MSG FLAG, the multiple virtual
UART is mapped to a single physical UART instance specified by bus_id (that implies that multiple
virtual UART protocol packet headers are used).

* If flags is not set, this virtual UART is mapped 1:1 with physical UART instance specified by bus_id.

By default, there are 11 virtual UARTs in the dtb file imx8mm-evkrpmsg.dtb” for i.MX 8M Mini LPDDR4
EVKand imx93-11x11-evk-rpmsg.dtb for iMX 93 EVK.

* The virtual UART 0 to 9 are n:1 mapped to physical UART.
* The virtual UART 10 has no bus_1id and displays messages sent from Linux to M-core’s debug console.

3.5.5.5 Building and running the demo on i.MX 8M Mini LPDDR4 EVK

3.5.5.5.1 Hardware setup for i.MX 8M Mini EVK

Use flying wire to connect UART3 between two i.MX 8M Mini EVK boards. UART3’s pin is provided in J1003
connector; use the following pin connection between the two boards.

Table 25. PIN connection between two i.MX 8M Mini boards

i.MX 8M Mini Board1 Connection i.MX 8M Mini Board2
Pin Function Pin Function
6 GND <> 6 GND
8 UART3_TXD <-> 10 UART3_RXD
10 UART3_RXD <-> 8 UART3_TXD

3.5.5.5.2 Building the demo images

The demo images "rpmsg lite uart sharing rtos.bin"are by default compiled with the i.MX 8M Mini
LPDDR4 EVK target image compiling, and are installed into the "/examples" directory of the target rootfs.

Or the image can be built separately by using the following Yocto command:

DISTRO=nxp-real-time-edge MACHINE=imx8mm-lpddr4-evk bitbake
rpmsg lite uart sharing rtos

The image can be found on directory "<image-build-dir>/tmp/deploy/images/imx8mmevk/
examples/" on building host.

3.5.5.5.3 Running the i.MX 8M Mini EVK demo

1. Connect two i.MX 8M Mini EVK boards by following the steps in section of “Hardware Setup”.

2. Connect two i.MX8M Mini EVK boards to your PC via USB cable between the USB-UART connector and
the PC USB connector.

3. Open the terminal application on the PC, such as PuTTY or TeraTerm, and connect to the debug serial
port number, two debug consoles for each board, one for the Linux debug console and another for the
FreeRTOS debug console.

4. Deploy Real-time Edge release root files in SD card and modify the on-board switch to boot from MicroSD
card.

5. Power on the board and enter into U-Boot command line, then execute the following command:

u-boot => setenv fdtfile imx8mm-evk-rpmsg.dtb

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.5 — 30 March 2023

771332



NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

To make changes permanent, execute the following commands once (after setenv above):

u-boot => saveenv

6. Then, use the following command to download and run FreeRTOS image:

u-boot => ext4load mmc 1:2 0x48000000 /examples/rpmsg-lite-uart-sharing-rtos/
release/rpmsg lite uart sharing rtos.bin;
cp.b 0x48000000 0x7e0000 20000; bootaux 0x7e0000

Then, FreeRTOS debug console would display the following log:

HHAFFHFHHHHFHFS 4444 HF RPMSG UART SHARING DEMO ##### 444444444444
Build Time: Mar 2 2022--09:38:19

LR R I I b I I b b b b S b I I b I S b b S b b 2 4

Wait the Linux kernel boot up to create the link between M core and A core.
R I I e dh b b IR I b b I b i S b b b b i db b b 2 db b b 3b 3

7. And then boot Linux kernel by executing the following command:

u-boot => setenv jh clk clk ignore unused
u-boot => boot

After the Linux kernel boots up, in the FreeRTOS, an extra line of log as shown below indicates that
RPMSG connection between Cortex-A core and Cortex-M core has been established:

Task A is working now.

Execute the above steps (1 to 7) on each i.MX 8M Mini EVK board.
8. After Linux boots up, enter Linux command line, use the following commands to test the demo:
a. Check device files are available:

root@imx8mm-lpddrd-evk:~# 1ls /dev/ttyRPMSG*

There should be 11 device files from “/dev/ttyRPMSGO0” to “/dev/ttyRPMSG10” if the default dtb
file imx8mm-evk-rpmsg.dtb is used. The “/dev/ttyRPMSGO” to “/dev/ttyRPMSG9” have n:1
mapping to physical UART3, “/dev/ttyRPMSG10” is without “bus_1id” and displays the message sent
from Linux to M-core’s debug console.

b. Check each virtual UART from “/dev/ttyRPMSG0” to “/dev/ttyRPMSGS” is connected to peer virtual
UART between two boards, for example, execute the following on the first board:

root@imx8mm-lpddr4-evk:~# cat /dev/ttyRPMSG6

On the second board, execute the following command:

root@imx8mm-1lpddrd-evk:~# echo “this is from virtual uart #6” > /dev/
ttyRPMSG6

Then, the first board receives and displays the message “this is from virtual uart #6”.

3.5.5.6 Building and running the demo on i.MX 93 EVK

3.5.5.6.1 Hardware setup for i.MX 93 EVK

Use flying wire to connect LPUARTS between two i.MX 93 EVK boards. LPUARTS5’s pin is provided in J1001
connector. Use the following pin connection between the two boards.

Table 26. PIN connection between two i.MX 93 EVK boards
i.MX 93 EVK Board1 Connection i.MX 93 EVK Board2

Pin Function Pin Function

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.5 — 30 March 2023

78 /332



NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

Table 26. PIN connection between two i.MX 93 EVK boards...continued

30 GND <-> 30 GND
28 LPUART5_RX <-> 27 LPUART5_TX
27 LPUARTS5_TX <-> 28 LPUART5_RX

3.5.5.6.2 Building the demo images

The demo image "rpmsg_lite_uart_sharing_rtos.bin" is by default compiled with the i.MX 93 EVK target image
compiling, and are installed into the "/examples" directory of the target rootfs.

Or the image can be built separately by using the following Yocto command:

DISTRO=nxp-real-time-edge MACHINE=imx93evk source real-time-edge-setup-env.sh -b
<build dir>

bitbake rpmsg-lite-uart-sharing-rtos

The image can be found on directory "<image-build-dir>/tmp/deploy/images/imx93evk/
examples/" on building host.

3.5.5.6.3 Running the i.MX 93 demo

1. Connect two i.MX 93 EVK boards by following the steps listed in Section 3.5.5.6.1.

2. Connect two i.MX 93 EVK boards to your PC via USB cable between the USB-UART connector and the PC
USB connector.

3. Open the terminal application on the PC, such as PuTTY or TeraTerm, and connect to the debug serial port
number, four debug consoles for each board. Use the third one for the Linux debug console and the fourth
one for the FreeRTOS debug console.

4. Deploy Real-time Edge release root files in SD card and modify the on-board switch to boot from MicroSD
card.

5. Power on the board and enter into U-Boot command line. Then, execute the following command:

u-boot => setenv fdtfile imx93-11xll-evk-rpmsg.dtb

To make changes permanent, execute the following commands once (after setenv above):

u-boot => saveenv

6. Then, use the following command to download and run FreeRTOS image:

u-boot => ext4load mmc 1:2 0x80000000 /examples/rpmsg-lite-uart-sharing-rtos-
mcimx93evk/release/rpmsg lite uart sharing rtos.bin

u-boot => cp.b 0x80000000 0x201e0000 0x10000

u-boot => bootaux 0x201e0000 O

Then, FreeRTOS debug console would display the following log:

#H4#f 4444444 RPMSG UART SHARING DEMO  ########4# #4444 #444#
Build Time: Apr 5 2011 23:00:00

Start SRTM communication
R I i i b b b b b db 2 b b b b b b b I g 2 b b b b b b dh I b b

Wait for the Linux kernel boot up to create the link between M core and A
core.

khkkkkkkkkkkkkkkhkkhkkkkkkhkkkhkhkkkkk

7. And then, boot Linux kernel by executing the following command:

u-boot => setenv jh clk clk ignore unused

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.5 — 30 March 2023

79 /332



NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

u-boot => boot

8. After the Linux kernel boots up, in the FreeRTOS console, an extra line of log as shown below indicates that
RPMSG connection between Cortex-A core and Cortex-M core has been established:

Task A is working now.

Execute the above steps (1 to 7) on each i.MX 93 EVK board.
9. After Linux boots up, enter Linux command line, use the following commands to test the demo:
a. Check device files are available:

root @imx93evk:~# 1ls /dev/ttyRPMSG*

There should be 11 device files from “/dev/ttyRPMSGO0” to “/dev/ttyRPMSG10” if the default dtb file
imx93-11x1l-evk-rpmsg.dtb is used. The “/dev/ttyRPMSGO” to “/dev/ttyRPMSG9”have n:1
mapping to physical LPUARTS, “/dev/ttyRPMSG10” is without “bus id” and displays the message
sent from Linux to M-core’s debug console.

b. Check each virtual UART from “/dev/ttyRPMSGO0” to “/dev/ttyRPMSG9” is connected to peer virtual
UART between two boards, for example, execute the following on the first board:

root@imx93evk:~# cat /dev/ttyRPMSG6

c. On the second board, execute the following command:

root@imx93evk:~# echo "This is from virtual uart #6" > /dev/ttyRPMSG6

Then, the first board receives and displays the message “This is from virtual uart #6".

3.5.6 RPMSG communication for heterogeneous AMP

3.5.6.1 Overview

RPMsg (Remote Processor Messaging) protocol defines a standardized binary interface and is used for inter-
core communication between Heterogeneous AMP on i.MX MPU platforms.

Currently Real-time Edge supports the following Heterogeneous AMP:

* Linux on Cortex-A core(s)
* RTOS on Cortex-M core
* RTOS on Cortex-A core(s)

Between these OS running different processes, Real-time Edge supports inter-core communication between
Cortex-M core and Cortex-A core. It also supports RPMSG between heterogeneous AMP on different Cortex-A
cores.

3.5.6.2 RPMSG Cortex-A core and Cortex-M core

The following figure shows RPMSG communication between RTOS running on Cortex-M core and Linux
running Cortex-A core.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.5 — 30 March 2023

80 /332



NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

DDR
Application

RPMsg-Lite on M-Core Kernel Space
RPMSG slave RPMSG master

Application

MU MU
mailbox mailbox
M-Core A-Core

Side Side
Registers Registers

NV'C refrupt o fi-Core nterrupt to A-Core G lC

RPMSG between Cortex-A and Cortex-M core on i.MX MPU Platforms

Figure 27. RPMSG between Cortex-A core and Cortex-M core

On i.MX MPU platforms, RPMSG builds virtual queue by leveraging Vring of VirtlO in shared memory of DDR.
MU (Message Unit) is a hardware component in MPU platform that provides inter-core interrupt between
Cortex-M core and Cortex-A core, so RPMG uses MU as a mailbox notification mechanism.

In Linux, RPMSG communication is based on VirtlO driver and MU mailbox drivers. The RPMsg-Lite is an
open-source component developed by NXP Semiconductors. It is a lightweight implementation of the RPMSG
protocol. RPMsg-Lite is used on RTOS. It includes VirtlO driver, mailbox driver, and RPMSG driver. RPMsg-Lite
is also enabled on RTOS running on Cortex-A cores.

Details about RPMsg-Lite can be found at RPMsg-Lite User's Guide.

3.5.6.2.1 RPMSG with enhanced 8MB Vring buffer

3.5.6.2.2 RPMSG merits

The RPMSG bus implements 2 virtqueues for transmitting and receiving respectively, and currently each
virtqueue can support up to 256 RPMSG buffers with hardcode size 512B.

This feature increases the total number of RPMSG buffer to 8192 (4096 per direction) and extends the buffer
size to 1024B.

3.5.6.2.3 Building and running the RPMSG demo (Cortex-A and Cortex-M core)

To build and run the demo for RPMSG between Cortex-A and Cortex-M cores, follow the steps listed below:

1. Enable RPMSG 8M buffer support in Real-time Edge software using the below commands:

$ cd yocto-real-time-edge/sources/meta-real-time-edge

# Open file “conf/distro/include/real-time-edge-base.inc” add “rpmsg 8m buf”
to “DISTRO FEATURES” like this:

DISTRO FEATURES:append:mx8mm-nxp-bsp = " rpmsg 8m buf"

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.5 — 30 March 2023

81/332


https://github.com/nxp-mcuxpresso/rpmsg-lite

NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

2. Build the image using the commands below:

S cd yocto-real-time-edge

S DISTRO=nxp-real-time-edge MACHINE=imx8mm-lpddr4-evk source real-time-edge-
setup-env.sh -b build-imx8mm-real-time-edge

$ bitbake nxp-image-real-time-edge

3. Program the full SD card image. For this, use SD card with capacity of at least 4 GB.

S bzip2 -d -c nxp-image-real-time-edge-imx8mm-lpddrd-evk.wic.bz2 | pv | sudo
dd of=/dev/sdx bs=1M && sync

# Note: find the right SD Card device name in your host machine and replace
the “sdx”.

4. Start up M-core firmware under U-Boot:
a. If you choose to run the binary in DRAM:

=> extd4load mmc 1:2 0x80000000 /examples/rpmsg-lite-str-echo-rtos-m4-8m/
ddr release/rpmsg lite str echo rtos.bin

=> dcache flush

=> bootaux 0x80000000

b. If you choose to run the binary in TCM:

=> extd4load mmc 1:2 0x48000000 /examples/rpmsg-lite-str-echo-rtos-m4-8m/
release/rpmsg lite str echo rtos.bin

=> cp.b 0x48000000 0x7e0000 0x20000

=> bootaux 0x7e0000

5. Boot up Linux with RPMSG DTB:

=> setenv fdtfile imx8mm-evk-rpmsg-8m-buf.dtb
=> run bsp bootcmd

6. After Linux boots up, load imx_rpmsg tty.ko

root@imx8mm-lpddrd4-evk:~# modprobe imx rpmsg tty

Linux imx_rpmsg_tty driver sends a “hello world!” message when probed, and it is displayed on the
FreeRTOS console.

7. Test string transmitting through device “t t yRPMSG30” from Linux prompt, the FreeRTOS console displays
the received string. For example execute the following command:

root@imx8mm-lpddrd-evk:~# echo “any-string” > /dev/ttyRPMSG30

8. In this demo, the single RPMSG buffer size is 1024B and the RPMSG header overhead is 16B, so the
transmitting string will be split into up to 1008B fragments. Use the following commands to generate a file
larger than 1KB to verify:

root@imx8mm-lpddrd-evk:~# for i in {1..300}; do echo -n 'seq -s "" 0 1 9 >>
num. txt; done
root@imx8mm-lpddrd-evk:~# echo “cat num.txt > /dev/ttyRPMSG30

The log displays the message shown below:

RPMSG String Echo FreeRTOS RTOS API Demo. ..

Nameservice sent, ready for incoming messages...

Get Message From Master Side : "hello world!"™ [len : 12]

Get Message From Master Side : "012345678901234567890123456789012345678901234567
89012345678901234567890123456789012345678901234567890123456789012345678901234567

89012345678901234567890123456789012345678901234567890123456789012345678901234567

" [len : 1008]

Get Message From Master Side : "8" [len : 1]

Get Message From Master Side : "901234567890123456789012345678901234567890123456
REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.
User guide Rev. 2.5 — 30 March 2023

82 /332



NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

78901234567890123456789012345678901234567890123456789012345678901234567890123456

78901234567890123456789012345678901234567890123456789012345678901234567890123456

" [len : 1008]

Get Message From Master Side : "7" [len : 1]

Get Message From Master Side : "890123456789012345678901234567" [len : 30]

Get Message From Master Side : "890123456789012345678901234567890123456789012345

67890123456789012345678901234567890123456789012345678901234567890123456789012345

67890123456789012345678901234567890123456789012345678901234567890123456789012345
678901234567890123456789" [len : 952]
Get New Line From Master Side

3.5.6.3 RPMSG between heterogeneous AMP on different Cortex-A cores

The following diagram illustrates the software setup for RPMSG between Heterogeneous AMP on different
Cortex-A cores.

DDR
Application

RPMsg-Lite on Cortex-A Kernel Space
RPMSG slave RPMSG master

Application

Generic Software Mailbox

Cortex-A Cortex-A

(Processor A) Interrupt to A Side _Interrupt to B Side (BEC==aisl

New Features

RPMSG between Cortex-A cores on i.MX MPU Platforms

Figure 28. RPMSG between Heterogeneous AMP on different Cortex-A cores

There is no MU hardware mailbox that can be used between different Cortex-A cores. Therefore, a Generic
Software mailbox is created for message notification between Cortex-A cores. The Generic Software mailbox
uses shared memory to simulate MMIO registers that are used by the mailbox driver. Two unused SPI interrupts
in GIC are used as notification interrupts between Cortex-A cores. RPMsg-Lite is also enabled on RTOS of
Cortex-A cores.

3.5.6.3.1 Building the RPMSG demo on i.mx 8m mini

Please refer to RTEDGEYOCTOUG to set up Yocto environment and build the nxp-image-real-time-
edge. All demo applications are located in the /examples directory of the rootfs.

Use the following command to compile the demo separately:

bitbake rpmsg-lite-str-echo-rtos

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.5 — 30 March 2023

83/332



NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

The demo is located in the tmp/deploy/images/imx8mm-1pddrd-evk/examples/ directory.

3.5.6.3.2 Running the RPMSG demo

1.

Open 2 terminal emulators to connect UART2 and UART4, respectively with the following setup:
* 115200

* No parity

* 8 data bits

* 1 stop bit

. Start up FreeRTOS on the selected A-core under U-Boot:

=> ext4load mmc 1:2 93c00000 /examples/rpmsg-lite-str-echo-rtos/ddr release/
rpmsg lite str echo rtos.bin

=> dcache off; dcache flush; icache flush; icache off

=> mw 303d0518 f 1

=> cpu 3 release 93c00000

. Boot up Linux with RPMSG DTB:

=> setenv fdtfile imx8mm-evk-rpmsg-cab3.dtb
=> run bsp bootcmd

. After Linux boots up, load imx rpmsg tty.ko.

root@imx8mm-lpddr4-evk:~# modprobe imx rpmsg tty

. Use minicom to open a console connecting the device ttyRPMSG30 on the Linux prompt as shown below:

root@imx8mm-lpddrd-evk:~# minicom -D /dev/ttyRPMSG30

Observe that the input string should then be echoed back on the console.

3.5.7 Heterogeneous Multicore VirtlO and networking sharing

3.5.7.1 Heterogeneous Multicore VirtlO

Heterogeneous Multicore VirtlO leverages para-virtualization VirtlO technology to build resource sharing
between Heterogeneous AMP. The main difference from para-virtualization VirtlO is that Heterogeneous
Multicore VirtlO does not use and depend on any Hypervisor. Therefore, it can be used for resource sharing
between Cortex-A and Cortex-M cores, or between multiple Cortex-A cores.

The VirtlO is a standard for para-virtualization to provide high-performance IO device virtualization for VM. The
following figure shows the architecture of the VirtlO solution.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.5 — 30 March 2023

84 /332



NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

Guest
—[ Frontend: VirtlO driver *,;;,;;;p,

Available
ring

—-[ Backend: V|rtIO device |

Used
nng

nanbuip

0l NdOA

/9

Hypervisor

Host
N

Figure 29. Para-virtualization VirtlO on Hypervisor

The frontend VirtlO driver runs in the guest kernel space, and the backend VirtlO device runs in the Hypervisor.
The Virtqueue and Vring via shared memory provide data transfer capability. The Hypervisor emulates the
device logic by VMExit and injecting vCPU IRQ. Therefore, para-virtualization VirtlO is used for resource
sharing between Virtual Machine guest OS and host OS, and it depends on the Hypervisor to run VirtlO
backend.

The Heterogeneous Multicore VirtlO in Real Time Edge leverages VirtlO technology. However, it runs VirtlO
backend on any CPU core including Cortex-A core and Cortex-M core. The VirtlO frontend runs on any other
CPU core. This technology uses VirtlO to establish communication between the Frontend and Backend, which
run on different CPU cores. Therefore, VirtlO can be used to share hardware resources between different CPU
cores.

In the current implementation, the backend runs RTOS and owns the hardware resource, such as peripherals.
The frontend runs on Linux. As there is no Hypervisor providing VMEXxit and vCPU IRQ injecting mechanism,
the hardware or software mailbox between the frontend and backend is needed. The following figure shows the
architecture of the Heterogeneous Multicore VirtlO.

Linux p \
APP RTOS
User
Frontend driver ailbox Backend: device
wrtqueue | YI,R,Q, e | virtqueue
_ driver
Kernel Access nptification o o
\ J N\ z
i . S

N

Hardware

Figure 30. Heterogeneous Multicore VirtlO

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.5 — 30 March 2023

85/332



NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

Heterogeneous Multicore VirtlO leverages shared memory to build Vring structure and data buffers. The shared
memory should be coherent between the CPU cores running Frontend and Backend. For i.MX8MM platform,
the shared memory between Cortex-M4 core and Cortex-A53 core is not cache coherent.

Therefore, uncacheable memory should be used for Heterogeneous Multicore VirtlO between Cortex-M4 core
and Cortex-A53 core. However, the memory built in this manner is cache coherent within Cortex-A53 core
cluster on i.MX8MM platform. Therefore, heterogeneous Multicore VirtlO can leverage cacheable memory to
build Vring structure and data buffer to improve the performance.

3.5.7.2 Heterogeneous Multicore VirtlO performance evaluation

A VirtlO transmission device is introduced for evaluating the performance between the frontend and backend
through virtqueues. There are 2 virtqueues for transmitting and receiving directions separately, and the device
configuration registers are used to configure and control the test cases.

The following table lists the combination of supported cases.

Table 27. Heterogeneous Multicore VirtlO performance evaluation

Direction Pkt size I Backend
Buffer copy Buffer copy

TX

Max 2KB YIN YIN
(Linux -> FreeRTOS) ax
RX

Max 2KB YIN YN
(FreeRTOS -> Linux) ax

3.5.7.3 Heterogeneous Multicore VirtlO network sharing

The following figure shows the heterogeneous Multicore VirtlO network sharing architecture.

Cortex-M/A RTOS Cortex-A Linux Cortex-ARTOS
Application Application Application
Virtual Networking Backend I L .
virt-net virtio-net virtio-net
””[ (Frontend) (Frontend)
| e i EJ [ i E][
Control Virtual Switch H
Module o T Virtio Driver - Virtio Driver
A fon M oo P pon p ran
P S S St F'y F'y
—
=7 g
virtio-net virtio-net virtio-net
(backend) (backend) (backend) ) = ) =
A i t ‘ Share Memory ‘ ‘ Share Memory ‘

Vitio
Driver

Wirtio
Driver

Virtio
Driver

Mailbox ‘

Mailbox ‘

ENET Mew Software

Exisfing Software

s Data Path

Centrol Path

Figure 31. Heterogeneous Multicore VirtlO Networking Sharing

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.5 — 30 March 2023

86 /332



NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

The virtual networking frontend runs on Cortex-A core, the frontend in Linux reuses existing “drivers/net/
virtio_ net.c” driver by selecting kernel configuration item “CONFIG_VIRTIO NET”. RTOS frontend driver is
not enabled in this release.

The Virtual Networking Backend can run in RTOS on Cortex-A core or Cortex-M core. The virtio-net backend
drivers leverage Heterogeneous Multicore VirtlO to communicate with virtio-net frontend, it includes two

data path to handle data packets receiving/transmitting of frontend and one control path to handle control
requirement from frontend.

Virtual Switch in backend is used to switch packets from different ports, the switch ports includes one “remote
port” and many “local ports”. In general “remote port” is physical Ethernet port such as physical ENET port, it is
used to receive/transmit packets from/to physical Ethernet port. Here, “local port” refers to the virtual software
port, such as the local port for virtio-net backend used to receive/transmit from/to virtio-net backend. In fact, the
packet is from/to virtio-net frontend through data path of Heterogeneous Multicore VirtlO and another type of
“local port” is used to connect to “virt-net” on RTOS to provide virtual Ethernet interface for RTOS locally.

In the current implementation, an Ethernet L2 switch functions as the Virtual Switch. Each “local port” has
different MAC address, so the packets received from “remote port” can be switched to the destination “local
port” according to destination MAC address in the networking packets. The packets whose destination MAC
address does not match any “local port” are discarded, except broadcast packets. For the packets received
from the “local port”, the switch tries to check whether destination MAC address matches the address of other
“local ports”. If a matching entry is found, the packet is switched to the matched “local port”, so that the virtual
switch can implement switching packets between “local ports” locally. In case a match is not found, the packets
are sent to the external by “remote port”. That is to say Virtual Switch supports “local switch” and “remote
switch”.

The Virtual Switch can connect to multiple “local port”, that is to say single physical Ethernet port, controlled by
CPU Core running backend, can be shared with multiple OS running on different CPU Core by though multiple
frontend, and local virtual Ethernet driver in backend also provide Ethernet service for backend CPU Core
locally.

Note: In this release, “virt-net” on backend is not included and cannot provide local Ethernet service for
backend CPU Core. The “virtio-net” frontend on RTOS is also not included in this release.

3.5.7.4 Building Heterogeneous Multicore VirtlO backend firmware

Refer to RTEDGEYOCTOUG to set up Yocto environment and build the nxp-image-real-time-edge. All demo
applications are located in the /examples directory of the rootfs.

The bellow command is used to compile the demo separately.

bitbake multicore-app-name

where:
* "multicore-app-name" can be "virtio-perf-ca", "virtio-perf-cm", "virtio-net-backend-ca" or "virtio-net-backend-

cm-.

The following backend firmware are located in the directory: tmp/deploy/images/imx8mm-1pddrd-evk/
examples/

* “virtio-perf-cm/release/virtio perf cm4.bin”

* “virtio-perf-ca/ddr release/virtio perf ca53.bin”

* “virtio-net-backend-cm/release/virtio net backend cm4.bin”

* "virtio-net-backend-ca/ddr release/virtio net backend cab53.bin"

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.5 — 30 March 2023

87 /332



NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

3.5.7.5 Building Heterogeneous Multicore VirtlO Frontend Linux Images

Refer to the RTEDGEYOCTOUG to set up Yocto environment and build the nxp-image-real-time-edge,
Linux image, and dtb are all in rootfs images.

Or use the command bellow to compile the demo separately.

bitbake linux-imx

Then copy the following images to board’s first fat partition
arch/armé64/boot/Image: Kernel Image

arch/armé64/boot/dts/freescale/imx8mm-evk-virtio-perf-ca53.dtb: DTB file for VirtlO
performance evaluation, backend on Cortex-A53.

arch/armé64/boot/dts/freescale/imx8mm-evk-virtio-perf-cm4.dtb: DTB file for VirtlO
performance evaluation, backend on Cortex-M4.

arch/armé4/boot/dts/freescale/imx8mm-evk-virtio-net-ca53.dtb: DTB file for VirtlO networking
sharing, backend on Cortex-A53.

arch/armé4/boot/dts/freescale/imx8mm-evk-virtio-net-cm4.dtb: DTB file for VirtlO networking
sharing, backend on Cortex-M4.

3.5.7.6 Running VirtlO performance testing

1. Setup UART Console for Frontend and Backend:
Connect the DEBUG UART slot on the board to your PC through the USB Cable. This step creates two USB
serial ports on the PC. Open 2 UART consoles to connect these two USB serial ports respectively, using the
following setup:
¢ 115200
* No parity
* 8 data bits
* 1 stop bit
One USB serial port is used for Linux which runs VirtlO frontend, another can be used for RTOS which runs
VirtlO backend.

2. Boot backend on Cortex-A core or Cortex-M core
Heterogeneous Multicore VirtlO Backend can run on Cortex-A core or Cortex-M core in order to evaluate
different use cases.
Run the backend on Cortex-M core
On U-Boot command line, execute the following commands to boot Cortex-M core with backend firmware:

=> extd4load mmc 1:2 0x48000000 /examples/virtio-perf-cm/release/
virtio perf cm4.bin

=> cp.b 0x48000000 0x7e0000 0x20000

=> bootaux 0x7e0000

=> setenv fdtfile imx8mm-evk-virtio-perf-cmé.dtb

=> run bsp bootcmd

Or Run the backend on Cortex-A53 core by executing the following command in U-Boot command
line:

fatload mmc 1:1 0x93c00000 virtio perf ca53.bin

dcache flushé&& dcache off && icache flush && icache off
mw 303d0518 0xf 1

cpu 3 release 0x93c00000

setenv fdtfile imx8mm-evk-virtio-perf-cab3.dtb

[ S [ |
vV V V V V

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.5 — 30 March 2023

88/332



NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

=> setenv mmcargs S$mmcargs maxcpus=3
=> run bsp bootcmd

3. Use “vt_test.sh” tool in Linux to start the performance testing use case. The following is help
information
of the tool.
Note: Getthe vt test. sh from the directory tools/virtio of Real-time Edge Linux source code repository.
Run the VirtlO performance test tool in Linux prompt

root@imx8mm-lpddrd-evk:~# /vt test.sh -h

USAGE: ./vt test.sh [-h] [-s pkt size] [-r regression] [-t type] [-b backend
copyl [-f frontend copyl

-s: Pagket size: max 2048 Bytes, default: 64 Bytes

-r: Regression times: default: 1000

-t: Test type: 0: TX; 1: RX

-b: Backend copy buffer option: 0: not copy; 1l: copy

-f: Frontend copy buffer option: 0: not copy; 1l: copy

-h: This USAGE info

a. “-s” specifies the packet size to be used for testing, such as “-s 64”, it uses 64-byte packets for testing.
b. “-t” specifies the testing direction,
* “t 0” means the test will send packets from frontend (Linux) to backend(RTOS on A-Core or M-Core),
* “t 1” means the test will send packets from backend(RTOS on A-Core or M-Core) to frontend(Linux).
c. “-r’ specifies the regression times,

* “r 100000” means the test case will send 100000 packets with the direction from backend to frontend

or frontend to backend which is specified by “-t” parameter.
d. “-b” specifies whether there is memory copy in backend.

* For memory copy case, use “-b 1”7, there will be memory copy from Vring buffer to user application
buffer when receiving packet from fontend, or copy from user application buffer to Vring buffer when
transmitting packets to frontend.

* For no memory copy case “-b 0”, there will be no memory copy in backend for each packet receiving
or transmitting.

e. “f’ specifies whether there is a memory copy in the frontend.
4. For example, see the command below:

./vt_test.sh -s 64 -r 1000000 -t 0 -b 0 -f£ O

The above test case transmits 1000000 packets from frontend (Linux) to backend (RTOS on A-Core or M-
Core), each packet size is 64 bytes, there is no memory copy both on frontend and backend. The test log is
as follows:

root@imx8mm-1lpddrd4-evk:~# ./vt test.sh -s 64 -r 1000000 -t 0 -b O -f O

[20 561527] F kK %k sk ok Kk Kk k Kk kK ks ok ok Kk Kk Kk kK sk ok ok ok k kK ok ok sk ok ok ok ke kK ok ok sk ok ok ok k kK ok ok ok ok ok ok ok kK ok

[20.561539] Front-end: interrupt mode

[20.561543] Back-end: interrupt mode

[20.561544] Front-end: do NOT copy buffer

[20.561546] Back-end: do NOTcopy buffer

[20.561547] Test case: TX

[20.561547] pkt size: <64>

[20.561547] regress times: <1000000>

[21.868494] tx test: pkt size (64 B), pkt cnt (1000000), period (1298108 ns)

The log shows that it uses 1298108 ps for 1000000 packets transmitted from frontend to backend, so the
performance is 770 kpps or 394 Mbps.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.5 — 30 March 2023

89 /332



NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

3.5.7.7 Running VirtlO network sharing

1. Setup UART console for frontend and backend
Connect DEBUG UART slot on the board to your PC through the USB Cable. This step creates two USB
serial ports on PC. Open 2 UART consoles to connect these two USB serial ports respectively with the
following setup:
¢ 115200
* No parity
» 8 data bits
* 1 stop bit
One USB serial port is used for Linux which runs VirtlO frontend, another can be used for RTOS which runs
VirtlO backend.
2. Booting backend and frontend
Heterogeneous Multicore VirtlO backend can run on Cortex-A core or Cortex-M core in order to evaluate
different use cases.
a. Running the backend on Cortex-M4 core of i.MX8MM
On U-Boot command prompt, execute the following commands to boot Cortex-M core with firmware:

=> extd4load mmc 1:2 0x48000000 /examples/virtio-net-backend-cm/release/
virtio net backend cm4.bin

=> cp.b 0x48000000 0x7e0000 0x20000

=> bootaux 0x7e0000

Then boot Linux Kernel:

=> setenv fdtfile imx8mm-evk-virtio-net-cm4.dtb
=> setenv mmcargs Smmcargs mem=1212MB clk ignore unused
=> run bsp bootcmd

b. Or Running the backend on Cortex-A53 core of i.MX8MM

Executing the following command in U-Boot command line:

=> extd4load mmc 1:2 0x93c00000 /examples/virtio-net-backend-ca/
ddr release/virtio net backend ca53.bin

=> dcache flush&& dcache off && icache flush && icache off

=> mw 303d0518 Oxf 1

=> cpu 3 release 0x93c00000

Then boot Linux Kernel:

=> setenv fdtfile imx8mm-evk-virtio-net-cab53.dtb
=> setenv mmcargs Smmcargs maxcpus=3 mem=1212MB clk ignore unused
=> run bsp bootcmd

And the console of FreeRTOS displays logs as following:
Note: If the switch statistics is enabled, the packet statistics information for each port in Virtual Switch is
displayed in a period of 10 seconds. It is disabled by default.

Starting Virtio networking backend...

virtio network device initialization succeeded!
ENET: Wait for PHY link up..

ENET: PHY link speed 1000M full-duplex

Switch enabled with enet remote port

Done

3. Evaluate Networking Sharing
When Linux kernel boots up, use “ifconfig” and “ping” commands to check if the networking works:

root@imx8mm-lpddrd-evk:~# ifconfig

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.5 — 30 March 2023

90 /332



NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

ethO: flags=4163<UP,BROADCAST, RUNNING, MULTICAST> mtu 1500
inet 192.168.1.107 netmask 255.255.255.0 Dbroadcast 192.168.1.255
inet6 f£d08:d7d5:e652::733 prefixlen 128 scopeid 0x0<global>
inet6 fd08:d7d5:e652:0:201:2ff:fe03:405 prefixlen 64 scopeid
0x0<global>
inet6 feB80::201:2ff:£fe03:405 prefixlen 64 scopeid 0x20<link>
ether 00:01:02:03:04:05 txgueuelen 1000 (Ethernet)
RX packets 54 bytes 5544 (5.4 KiB)
RX errors 0 dropped 0 overruns 0 frame 0
TX packets 143 Dbytes 20887 (20.3 KiB)
TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
lo: flags=73<UP, LOOPBACK,RUNNING> mtu 65536
inet 127.0.0.1 netmask 255.0.0.0
inet6 ::1 prefixlen 128 scopeid O0x10<host>
loop txqueuelen 1000 (Local Loopback)
RX packets 98 bytes 8859 (8.6 KiB)
RX errors 0O dropped 0 overruns 0 frame 0
TX packets 98 Dbytes 8859 (8.6 KiB)
TX errors 0 dropped 0 overruns O carrier 0O collisions 0
root@imx8mm-lpddré-evk:~# ping 192.168.1.1
PING 192.168.1.1 (192.168.1.1) 56(84) bytes of data.

64 bytes from 192.168.1.1: icmp seg=1 ttl=64 time=0.888 ms
64 bytes from 192.168.1.1: icmp seg=2 ttl=64 time=0.541 ms
64 bytes from 192.168.1.1: icmp seg=3 ttl=64 time=2.13 ms
64 bytes from 192.168.1.1: icmp seg=4 ttl=64 time=2.29 ms
64 bytes from 192.168.1.1: icmp seg=5 ttl=64 time=1.73 ms

3.6 Booting Cortex-M Core RTOS Image from Linux

On i.MX 8M Plus EVK and i.MX 8M Mini EVK platforms, there are two ways to boot ARM Cortex-M Core. These
are described in the following sections.

3.6.1 Booting from U-Boot command line

After the board is booted into the U-Boot console, use the following command to boot Arm Cortex-M core:

=> extd4load mmc 1:2 0x48000000 /examples/freertos-hello/release/
freertos hello.bin; cp.b 0x48000000 0x7e0000 20000;
=> bootaux 0x7e0000

3.6.2 Using remoteproc to boot from Linux command line

If you choose to use remoteproc to start the remote core directly, execute run prepare mcore in U-Boot
before starting the Linux OS.

=> run prepare mcore

Then, use the following command to use RPMSG dtb file to boot the kernel:

# On imx8mm-lpddr4-evk board
=> setenv fdtfile imx8mm-evk-rpmsg.dtb
=> boot

# On imx8mp-lpddrd-evk board
=> setenv fdtfile imx8mp-evk-rpmsg.dtb

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.5 — 30 March 2023

91 /332



NXP Semiconductors

REALTIMEEDGEUG

Real-time Edge Software User Guide

=> boot

Then, after the Linux kernel boots up, run the commands:

root@imx8mp-lpddrd4-evk:~# echo -n imx8mp m7 TCM hello world.elf > /sys/class/
remoteproc/remoteproc0/firmware

root@imx8mp-lpddrd4-evk:~# echo start > /sys/class/remoteproc/remoteprocO/state
[ 19.668712] remoteproc remoteprocO: powering up imx-rproc

[ 19.670341] remoteproc remoteprocO: Booting fw image

imx8mp m7 TCM hello world.elf, size 153316

root@imx8mp-lpddrd-evk:~# [ 20.191036]

remoteproc remoteprocO: remote processor
imx-rproc is now up

After these steps are followed, the remote processor imx-rproc is up.

REALTIMEEDGEUG

User guide

All information provided in this document is subject to legal disclaimers.

Rev. 2.5 — 30 March 2023

© 2023 NXP B.V. All rights reserved.

92 /332



NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

4 Real-time Networking

4.1 Time Sensitive Networking (TSN) on NXP platforms

Time Sensitive Networking (TSN) is an extension to traditional Ethernet networks, providing a set of standards
compatible with IEEE 802.1 and 802.3. These extensions intend to address the limitations of standard Ethernet
in sectors ranging from industrial and automotive applications to live audio and video systems. Applications
running over traditional Ethernet must be designed to be very robust in order to withstand corner cases such as
packet loss, delay, or even reordering. TSN aims to provide guarantees for deterministic latency and packet loss
under congestion. Therefore, it allows critical and non-critical traffic to be converged in the same network.

This chapter describes the process and use cases for implementing TSN features on the i.MX 8M LPDDR4
Plus, i.MX 8DXL LPDDR4 EVK, i.MX 93 EVK, and LS1028ARDB boards.

4.1.1 TSN hardware capability

Table 28. TSN hardware capability on different platforms

Platform 802.1Qbv 802.1Qbu 802.1Qav 802.1AS 802.1CB 802.1Qci (Per
(Enhancements |and 802.3br | (Credit Based |(Precision Time |(Frame Stream Filtering
for Scheduled |(Frame Shaper) Protocol) Replication and |and Policing)
Traffic) Preemption) Elimination for

Reliability)

ENETC (LS1028 |Y Y Y Y N Y

A)

Felix switch Y Y Y Y Y Y

(LS1028A)

Stmac (i.MX Y Y Y Y N N

8DXL, i.MX 8M

Plus, i.MX 93)

4.1.2 TSN configuration
The table below describes the TSN configuration tools support on different platforms

Table 29. TSN configuration tools support on different platforms

Platform 802.1Qbv 802.1Qbu 802.1Qav 802.1AS 802.1CB 802.1Qci (Per
(Enhancements |and 802.3br | (Credit (Precision (Frame Stream Filtering
for Scheduled |(Frame Based Time Replication and Policing)
Traffic) Preemption) |Shaper) Protocol) and

Elimination for
Reliability)

ENETC tc-taprio ethtool tc-cbs ptp4l N/A tc-flower

(LS1028A) tsntool tsntool tsntool tsntool

Felix switch tc-taprio ethtool tc-cbs ptp4l, Gen tsntool tc-flower

(LS1028A) tsntool tsntool tsntool AVB/TSN tsntool

stack

Stmac (i.MX tc-taprio ethtool tc-cbs ptp4l, Gen N/A N/A

8DXL, i.MX 8M AVB/TSN

Plus, i.MX 93) stack

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.5 — 30 March 2023

93 /332



NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

4.1.2.1 Using Linux traffic control (tc)

Enable the following configurations in kernel when using Linux traffic control (tc):

Symbol: NET SCH MQPRIO [=y] && NET SCH CBS [=y] && NET SCH TAPRIO [=y]

[*] Networking support --->
Networking options --->
[*] QoS and/or fair queueing —--->

<k > Credit Based Shaper (CBS)

<F> Time Aware Priority (taprio) Scheduler

S Multi-queue priority scheduler (MQPRIO)
%) Actions --->

<xE> Traffic Policing

<*F> Generic actions

<k > Redirecting and Mirroring

<*>  SKB Editing

<*E> Vlan manipulation

S Frame gate entry list control tc action

On IS1028A platform, ENETC QoS driver needs to be set to support tc configuration.

Symbol: FSL ENETC QOS [=y]
Device Drivers—-->
[*] Network device support --->
[%] Ethernet driver support --->
=] Freescale devices
[ ENETC hardware Time-sensitive Network support

1. The below link provides details for using tc-taprio to set Qbv:

https://man7.org/linux/man-pages/man8/tc-taprio.8.html

2. The below link provides details for using tc-cbs to set Qav:

https://man7.org/linux/man-pages/man8/tc-cbs.8.html

3. The below link provides details for using tc-flower to set Qci and ACL:

https://man7.org/linux/man-pages/man8/tc-flower.8.html

4.1.2.2 Tsntool

Tsntool is a tool to set the TSN capability of the Ethernet ports of TSN Endpoint and TSN switch. It's used
on LS1028a platform, so enable TSN, ENETC_TSN, and MSCC_FELIX_SWITCH_TSN to support tsntool
configuration on LS1028a.

Symbol: TSN [=y]
[*] Networking support --->
Networking options --->
[*] 802.1 Time-Sensitive Networking support
Symbol: ENETC TSN [=y] && FSL ENETC PTP CLOCK [=y] && FSL ENETC HW TIMESTAMPING

[=v]
Device Drivers —--->
[*] Network device support --->
[*] Ethernet driver support --->
[*] Freescale devices
<* > ENETC PF driver
<K > ENETC VF driver
=%= ENETC MDIO driver
<*k> ENETC PTP clock driver
REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.
User guide Rev. 2.5 — 30 March 2023

94 /332


https://man7.org/linux/man-pages/man8/tc-taprio.8.html
https://man7.org/linux/man-pages/man8/tc-cbs.8.html
https://man7.org/linux/man-pages/man8/tc-flower.8.html

NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

[%] ENETC hardware timestamping support
[*] TSN Support for NXP ENETC driver
Symbol: MSCC FELIX SWITCH TSN [=y]
Device Drivers —--->
[*] Network device support --->
Distributed Switch Architecture drivers --->
<*> Ocelot / Felix Ethernet switch support --->

<K > TSN on FELIX switch driver

Enable PKTGEN in Kernel to use pktgen for testing,

Symbol: NET PKTGEN [=y]
[*] Networking support --->
Networking options --->
Network testing —--—->
<*> Packet Generator (USE WITH CAUTION)

See "Tsntool User Manual" for the details.

4.1.2.2.1 Tsntool User Manual

Tsntool is a tool to set the TSN capability of the Ethernet ports of TSN Endpoint and TSN switch. This document
describes how to use tsntool for NXP's LS1028ARDB hardware platform.

Note: Tsntool supports only the LS1028ARDB platform.

4.1.2.2.1.1 Getting the source code

Github of the tsntool code is mentioned below.

https://github.com/nxp-gorig/tsntool

4.1.2.21.2 Tsn tool commands
The following table lists the TSN tool commands and their description.

Table 30. TSN tool commands and their description

Command Description

help Lists commands support

version Shows software version

verbose Debugs on/off for tsntool

quit Quits prompt mode

gqbvset Sets time gate scheduling config for <i fname>
qbvget Gets time scheduling entries for <i fname>
cbstreamidset Sets stream identification table

cbstreamidget Gets stream identification table and counters
qcisfiset Sets stream filter instance

qcisfiget Gets stream filter instance

qcisgiset Sets stream gate instance

qcisgiget Gets stream gate instance

REALTIMEEDGEUG Allinformation provided in this document is subject to legal disclaimers. ©2023 NXP B.V. All rights reserved.
User guide Rev. 2.5 — 30 March 2023

95/332


https://github.com/nxp-qoriq/tsntool

NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

Table 30. TSN tool commands and their description...continued

Command Description
qcisficounterget Gets stream filter counters
qcifmiset Sets flow metering instance
qcifmiget Gets flow metering instance
cbsset Sets TCs credit-based shaper configure
cbsget Gets TCs credit-based shaper status
qbuset Sets one 8-bits vector showing the preemptable traffic class
gbugetstatus Not supported
tsdset Not supported
tsdget Not supported
ctset Sets cut through queue status (specific for Is1028 switch)
cbgen Sets sequence generate configure (specific for Is1028 switch)
cbrec Sets sequence recover configure (specific for Is1028 switch)
dscpset Sets queues map to DSCP of Qos tag (specific for Is1028 switch)
sendpkt Not supported
regtool Registers read/write of bar0 of PFs (specific for Is1028 enetc)
ptptool ptptool get/set ptp timestamp. Useful commands:

#get ptp0 clock time

ptptool -g

#get ptpl clock time

ptptool -g -d /dev/ptpl
dscpset Set queues map to DSCP of QoS tag (specific for Is1028 switch)
qcicapget Gets max capability of the qci instance
tsncapget Gets tsn capability of the device

4.1.2.2.1.3 Tsntool commands and parameters

This section lists the tsntool commands along with the parameters and arguments, with which they can be used.

Table 31. gbvset

Parameter <argument> Description
--device <ifname> An interface such as eno0/swp0.
--entryfile A file script to input gatelist format. It has the following arguments:
<filename> #'NUMBER' 'GATE VALUE' 'TIME LONG'
* NUMBER: #'t' or 'T' head. Plus entry number. Duplicate entry number will result in an error.
* GATE_VALUE: # format: xxxxxxxxb . # The MSB corresponds to traffic class 7. The LSB
corresponds to traffic class 0. # A bit value of 0 indicates closed, whereas, a bit value of 1
indicates open.
* TIME LONG:# nanoseconds. Do not input O time long.
t0 11101111b 10000 t1 11011111b 10000
REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.
User guide Rev. 2.5 — 30 March 2023

96 / 332



NXP Semiconductors

REALTIMEEDGEUG

Table 31. qbvset...continued

Real-time Edge Software User Guide

Parameter <argument>

Description

Note: Entryfile parameter must be set. If not set, there will be a vi text editor prompt,

"require to input the gate list"

--basetime <value>

AdminBaseTime

A 64-bit hex value means nanosecond until now.

OR a value input format as: Seconds.decimalSecond
Example: 115.000125means 115 seconds and 125 ps.

--cycletime <value>

AdminCycleTime

--cycleextend <value>

AdminCycleTimeExtension

-—-enable | --disable

* enable: enables the gbv for this port.
e disable: disables the gbv for this port.
By default, the value is set to enable, if user does not provide any input.

--maxsdu <value>

queueMaxSDU

--initgate <value>

AdminGateStates

--configchange ConfigChange. Default set to 1.
--configchangetime ConfigChangeTime

<value>

Table 32. qbvget

Parameter <argument> Description

--device <ifname>

An interface such as eno0/swp0

Table 33. cbstreamidset

Parameter <argument>

Description

--enable | --disable

» enable: Enables the entry for this index.
» disable: Disables the entry for this index.

By default, this field is set to enable if there is no enable or disable input.

-—-index <value>

Index entry number in this controller. Mandatory parameter.
This value corresponds to tsnStreamIdHandle on switch configuration.

--device <string>

An interface such as eno0/swp0

--streamhandle tsnStreamIdHandle

<value>

--infacoutport tsnStreamIdInFacOutputPortList
<value>

--outfacoutport tsnStreamIdOutFacOutputPortList
<value>

--infacinport <value>

tsnStreamIdInFacInputPortList

--outfacinport tsnStreamIdOutFacInputPortList

<value>

--nullstreamid | - tsnStreamIdIdentificationType:

-sourcemacvid | - e —nullstreamid:Null Stream identification

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.
User guide Rev. 2.5 — 30 March 2023

97 /332



NXP Semiconductors

REALTIMEEDGEUG

Real-time Edge Software User Guide

Table 33. cbstreamidset ...continued

Parameter <argument>

Description

-destmacvid | --
ipstreamid

e -sourcemacvid: Source MAC and VLAN Stream identification
* —destmacvid: not supported
e —ipstreamid: not supported

--nulldmac <value>

tsnCpeNullDownDestMac

--nulltagged <value>

tsnCpeNullDownTagged

--nullvid <value>

tsnCpeNullDownVlan

--sourcemac <value>

tsnCpeSmacVlanDownSrcMac

--sourcetagged
<value>

tsnCpeSmacVlanDownTagged

--sourcevid <value>

tsnCpeSmacVlanDownVlan

Table 34. cbstreamidget

Parameter <argument>

Description

--device <ifname>

An interface such as eno0/swp0

--index <value>

Index entry number in this controller. Mandatory to have.

Table 35. qcisfiset

Parameter <argument>

Description

-—-device <ifname>

An interface such as eno0/swp0

-—-enable | --disable

* enable: enable the entry for this index
* disable: disable the entry for this index
By default, this field is set to enable if there is no enable or disable input.

--maxsdu <value>

Maximum SDU size.

-—-flowmeterid <value>

Flow meter instance identifier index number.

--index <value>

StreamFilterInstance. index entry number in this controller.

This value corresponds to tsnStreamIdHandle of cbstreamidset command on switch
configuration.

--streamhandle
<value>

StreamHandleSpec
This value corresponds to tsnStreamIdHandle of cbstreamidset command.

--priority <value>

PrioritySpec

--gateid <value>

StreamGateInstancelID

--oversizeenable

StreamBlockedDueToOversizeFrameEnable

--oversize

StreamBlockedDueToOversizeFrame

Table 36. qcisfiget

parameter <argument>

Description

-—-device <ifname>

An interface such as eno0/swp0

REALTIMEEDGEUG

All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide

Rev. 2.5 — 30 March 2023
98 /332



NXP Semiconductors

REALTIMEEDGEUG

Table 36. qcisfiget ...continued

Real-time Edge Software User Guide

parameter <argument>

Description

-—-index <value>

Index entry number in this controller. Mandatory to have.

Table 37. qcisgiset

Parameter <argument>

Description

--device <ifname>

An interface such as eno0/swp0

-—-index <value>

Index entry number in this controller. Mandatory to have.

--enable | --disable |* enable: enable the entry for this index. PSFPGateEnabled

* disable: disable the entry for this index.

By default, this field is set to enable if there is no enable or disable input.

--configchange configchange
--enblkinvrx PSFPGateClosedDueToInvalidRxEnable
--blkinvrx PSFPGateClosedDueToInvalidRx
--initgate PSFPAdminGateStates
-—-initipv AdminIPV
--cycletime Default not set. Get by gatelistfile.
--cycletimeext PSFPAdminCycleTimeExtension
--basetime PSFPAdminBaseTime

A 64-bit hex value means nanosecond until now.

OR a value input format as: Seconds.decimalSecond

Example: 115.000125means 115 seconds and 125 ps.
--gatelistfile PSFPAdminControlList. A file input the gate list: 'NUMBER' 'GATE _VALUE' 'IPV' 'TIME

LONG' 'OCTET MAX'

* NUMBER: # 't or 'T' head. Plus entry number. Duplicate entry number will result in an error.

* GATE VALUE: format: xb: The MSB corresponds to traffic class 7. The LSB corresponds
to traffic class 0. A bit value of 0 indicates closed, A bit value of 1 indicates open.

o IPV:#0~7

* TIME LONG: in nanoseconds. Do not input time long as 0.

* OCTET MaAX: The maximum number of octets that are permitted to pass the gate. If zero,
there is no maximum.

Example:
t0 1b -1 50000 10
Table 38. qcisgiget
Parameter <argument> Description

--device <ifname>

An interface such as eno0/swp0

--index <value>

Index entry number in this controller. Mandatory to have.

REALTIMEEDGEUG

All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide

Rev. 2.5 — 30 March 2023
99 /332



NXP Semiconductors

REALTIMEEDGEUG

Table 39. qcifmiset

Real-time Edge Software User Guide

Parameter <argument>

Description

-—-device <ifname>

An interface such as eno0/swp0

-—-index <value>

Index entry number in this controller. Mandatory to have.

--disable If not set disable, then to be set enable.
-—cir <value> cir. kbit/s.

--cbs <value> cbs. octets.

—-—eir <value> eir.kbit/s.

--ebs <value> ebs.octets.

--cf cf. couple flag.

--cm cm. color mode.

-—dropyellow drop yellow.

-—-markred enable

mark red enable.

--markred

mark red.

Table 40. qcifmiget parameter

Parameter <argument>

Description

--device <ifname>

An interface such as eno0/swp0

-—-index <value>

Index entry number in this controller. Mandatory to have.

Table 41. gbuset parameter

Parameter <argument>

Description

--device <ifname>

An interface such as eno0/swp0

--preemptable <value>

8-bit hex value. Example: Oxfe The MS bit corresponds to traffic class 7.

The LS bit to traffic class 0. A bit value of 0 indicates express. A bit value of 1 indicates
preemptable.

Table 42. cbsset command

Parameter <argument>

Description

-—-device <ifname>

An interface such as eno0/swp0

-—-tc <value>

Traffic class number.

--percentage <value>

Set percentage of tc limitation.

--all <tc-percent:tc- |Not supported.

percent...>

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.
User guide Rev. 2.5 — 30 March 2023

100 /332



NXP Semiconductors

REALTIMEEDGEUG

Table 43. cbsget

Real-time Edge Software User Guide

Parameter <argument>

Description

-—-device <ifname>

An interface such as eno0/swp0

--tc <value>

Traffic class number.

Table 44. regtool

Parameter <argument>

Description

Usage: regtool { pf
number } { offset }
[ data ]

pf number: pf number for the pci resource to act on

of fset: offset into pci memory region to act upon

data: data to be written

Table 45. ctset

Parameter <argument>

Description

--device <ifname>

An interface such as swp0

--queue stat <value>

Specifies which priority queues have to be processed in cut-through mode of operation. Bit
0 corresponds to priority 0, Bit 1 corresponds to priority 1 so-on.

Table 46. cbgen

Parameter <argument>

Description

--device <ifname>

An interface such as swp0

--index <value>

Index entry number in this controller. Mandatory to have.
This value corresponds to tsnStreamIdHandle of cbstreamidset command.

--iport_mask <value>

INPUT_PORT_MASK: If the packet is from input port belonging to this port mask, then it's a
known stream and Sequence generation parameters can be applied

--split_mask <value>

SPLIT_MASK: Port mask used to add redundant paths (or ports). If split is enabled
(STREAM_SPLIT) for a stream. This is OR'ed with the final port mask determined by the
forwarding engine.

-—-seq_len <value>

SEQ_SPACE_LOG2: Minimum value is 1 and maximum value is 28.
tsnSegGenSpace = 2**SEQ SPACE LOG2
For example, if this value is 12, then valid sequence numbers are from 0x0 to OxFFF.

-—seq_num <value>

GEN_REC_SEQ_NUM: The sequence number to be used for outgoing packet passed to
SEQ_GEN function.

Note: Only lower 16-bits are sent in RED_TAG.

Table 47. cbrec

Parameter <argument>

Description

--device <ifname>

An interface such as swp0

--index <value>

Index entry number in this controller. Mandatory to have.
This value corresponds to tsnStreamIdHandle of cbstreamidset command.

REALTIMEEDGEUG

All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide

Rev. 2.5 — 30 March 2023
101 /332



NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

Table 47. cbrec...continued

Parameter <argument> Description

--seq_len <value> SEQ_SPACE_LOG2:Min value is 1 and maximum value is 28.
tsnSegRecSegSpace = 2**SEQ REC SPACE LOG2
For example, if this value is 12, then valid sequence numbers are from 0x0 to OxFFF.

--his_len <value> SEQ_HISTORY_LEN: Refer to SEQ_HISTORY, Min 1 and Max 32.

--rtag pop_en REDTAG_POP: If True, then the redundancy tag is popped by rewriter.

Table 48. dscpset

Parameter <argument> Description

--device <ifname> An interface such as swp0

--disable Disables DSCP to traffic class for frames.
--—index DSCP value

--cos Priority number of queue which is mapped to
--dpl Drop level which is mapped to

Table 49. qcicapget

Parameter <argument> Description

--device <ifname> An interface such as swp0

Table 50. tsncapget

Parameter <argument> Description

--device <ifname> An interface such as swp0

4.1.2.2.1.4 Input tips

While providing the command input, user can use the following shortcut keys to make the input faster:

* When user inputs a command, use the TAB key to help list the related commands.
For example:

tsntool> gbv

Then press TAB key, to get all related gbv* start commands.
If there is only one choice, it is filled as the whole command automatically.
* When user input parameters, if user does not remember the parameter name. User can just input “--” then
press TAB key. It displays all the parameters.
If user inputs half the parameter’s name, pressing the TAB key lists all the related names.
* History: Press the up arrow “1” . User gets the command history and can re-use the command.

4.1.2.2.1.5 Non-interactive mode

Tsntool also supports non-interactive mode.

For example:
REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.
User guide Rev. 2.5 — 30 March 2023

102 /332



NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

In the interactive mode:

tsntool> gbuset --device eno0 --preemptable Oxfe

In non-interactive mode:

tsntool gbuset --device eno0 --preemptable 0Oxfe

4.1.2.3 Remote configuration using NETCONF/YANG

1. Overview

The NETCONF protocol defines a mechanism for device management and configuration retrieval and
modification. It enables a client to adjust to the specific features of any network equipment by using a remote
procedure call (RPC) paradigm and a system to expose device (server) capabilities.

YANG is a standards-based, extensible, hierarchical data modeling language. YANG is used to model the
configuration and state data used by NETCONF operations, RPCs, and server event notifications.

2. Support for different platforms in Real-time Edge

TSN offload Real-time Edge
LS1028A i.MX 8DXL / i.MX 8M Plus / i.MX 93
libtsn tc tc
802.1Qbv Y Y Y
(Time Aware Shaper)
802.1Qbu/802.3br Y Y Y
(Frame Preemption)
802.1Qav - - -
(Credit Based Shaper)
802.1CB - - N/A
(Frame Replication and Elimination for
Reliability)
802.1Qci Y Y N/A
(Per-Stream Filtering and Policing)
IP config Y Y Y
MAC config Y Y Y
VLAN config Y Y Y

3. Installation and configuration

Netopeer is a set of NETCONF tools built on the 1ibnetconf library. The sysrepo-tsn (https://github.com/
nxp-real-time-edge-sw/real-time-edge-sysrepo.git) helps to configure TSN features, including Qbv, Qbu, Qci,
and stream identification via network, without logging in to device. For details of configuring TSN features via
Netopeer, refer to NETCONF/YANG). Some application scenarios for tsn refer to Application scenarios.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.5 — 30 March 2023

103 /332


https://github.com/nxp-real-time-edge-sw/real-time-edge-sysrepo.git
https://github.com/nxp-real-time-edge-sw/real-time-edge-sysrepo.git

NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

4.1.2.4 Web-based configuration

4.1.2.4.1 Setting up web server

The Web Ul allows the remote control of the YANG model and also get devices information by websockets. This
demo is already added to tsntool in the folder tsntool/demos/cnc/.

In case user want to setup the web server step by step, just follow below steps one by one:

1.

Install related libraries: Suppose user is installing the demo on a Centos PC or Ubuntu PC as the

WebServer. CNC demo requires python3 and related libraries: pyang, libnetconf, and libssh.

For Ubuntu:
$ sudo apt install -y libtool python-argparse libtool-bin python-sphinx
libffi-dev
$ sudo apt install -y libxsltl-dev libcurl4-openssl-dev xsltproc python-
setuptools

Uy U i Uy Ur > U U

sudo apt install -y zliblg-dev libssl-dev python-libxml2 libaugeas-dewv
sudo apt install -y libreadline-dev python-dev pkg-config libxml2-dev
sudo apt install -y cmake openssh-server

sudo apt install -y python3-sphinx python3-setuptools python3-libxml2
sudo apt install -y python3-pip python3-dev python3-flask python3-pexpect
sudo apt install -y libnss-mdns avahi-utils

pip3 install flask-restful

pip3 install websockets

For Centos 7.2:

$ sudo yum install libxml2-devel libxslt-devel openssl-devel libgcrypt dbus-
devel
$ sudo yum install doxygen libevent readline.x86 64 ncurses-libs.x86 64
$ sudo yum install ncurses-devel.x86 64 libssh.x86 64 libssh2-devel.x86 64
$ sudo yum install libssh2.x86 64 libssh2-devel.x86 64
S sudo yum install nss-mdns avahi avahi-tools
2. Install pyang
$ git clone https://github.com/mbj4668/pyang.git
S cd pyang
S git checkout b92b17718de53758c4c8a05b6818ea66fc0cd4d8 -b fornetconfl
$ sudo python setup.py install
3. . Install libssh:
$ git clone https://git.libssh.org/projects/libssh.git
$ cd libssh
S git checkout fel8ef279881b65434e3e44fcd4743e4blc7cb891 -b fornetconfl
S mkdir build; cd build/
S cmake
$ make
$ sudo make install
Note: There is a version issue for libssh installation on Ubuntu below version 16.04. Apt-get install libssh
may get version 0.6.4. But libnetconf needs a version of 0.7.3 or later. Remove the default one and reinstall
by downloading the source code and installing it manually.
4. Install libnetconf:
$ git clone https://github.com/CESNET/libnetconf.git
$ cd libnetconf
$ git checkout 8e934324e4blelba6077b537e55636eld7c85aed -b fornetconfl
S autoreconf --force --install
REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.
User guide Rev. 2.5 — 30 March 2023

104 /332



NXP Semiconductors REALTIMEEDGEUG

5.

6.

Real-time Edge Software User Guide

$ ./configure
S make
S sudo make install

Get tsntool source code on the web server PC:

git clone https://source.codeaurora.org/external/goriqg/gorig-components/
tsntool
cd tsntool/demos/cnc/

Install python library:

In the below command segments,

» PATH-to-libnetconf is the path to the libnetconf source code.
* PATH-to-tsntool is the path to the tsntool source code.

S cd PATH-to-libnetconf/

The libnetconf needs to add two patches based on the below commit point to fix the demo python support.
Ensure that the commit id is 313fdadd15427f7287801b92fe81ff84c08dd970.

git checkout 313fdaddl5427£7287801b92fe81£f£84c08dd970 -b cnc-server

cp PATH-to-tsntool/demos/cnc/*patch

git am 000l-1lnctool-to-make-install-transapi-yang-model-proper.patch
git am 0002-automatic-python3-authorizing-with-root-password-non.patch
cd PATH-to-libnetconf/python

python3 setup.py build; sudo python3 setup.py install

Note:

If rebuilding python lib, user need to remove the build folder by command rm build -rf before rebuilding. On
the boards Real-time Edge supports, avahi-daemon and netopeer server are required. Remember to also
add the netopeer2-server run at boards.

Ur Ur > > Ur

. To start the web server on webserver PC, input the command below at shell into the folder: PATH-to-

tsntool/demos/cnc/:

sudo python3 cnc.py

. Start topoagent server on the boards supported

- Make sure the netopeer2-server run at boards(Not necessary for topology discovery).
- Make sure the lldpd daemon is running at boards.

- Make sure the avahi-daemon is running at boards.

Start the topology server on boards:

#Stop lldpd service.

pkill 11dpd

#Start 1lldpd and limit interfaces to use. Use all ports except the control
port.

11dpd -I swpO,swpl,swp2,swp3

#If the hostname is not real-time-edge-S$boardname, change to real-time-edge-
Sboardname.

avahi-set-host-name real-time-edge-1s1028ardb

cd /home/root/samples/cncdemo/

python3 topoagent.py

. Use the web browser to track the topology and configuration of the devices. Input the IP of web server with

the port 8180 at browser. For example:
http://10.193.20.147:8180

Note:
TSN configuration debug:
* |t is recommended to track the boards using tsntool to check the real tsn configuration for comparison.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.5 — 30 March 2023

105 /332



NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

* For tsn configuration, it is also recommended to track if the netopeer2-server is running at board or not.
Limitations of Web Ul are:
* The server setup on a Centos PC or Ubuntu PC could be more compatible.

» Supports Qbv, Qbu, and Qci in current version.

* For Qci setting, Stream-gate entry should be set ahead of setting the Stream-filter as sysrepo required. Or
else, user will get failure for setting Stream-filter without a stream gate id link to.

* The boards and the web server PC are required to be in the same IP domain since the bridge may block
the probe frames.

4.1.2.4.2 Remote configuration

The below section describes the steps for remote configuration.

L. S1028ARDB - PC running Web UL

I

I.MX8M Plus EVK

Example setup for remote configuration

Figure 32. A sample setup for remote configuration

1. Overview

The Web Ul allows the remote control of the YANG model. The user can connect http server, and input TSN
parameter on web Ul, and click "Yes, confirm" button to send them to the board.

2. User Interface
Click the device displayed on the homepage, and an interface description table will appear. Click the interface to
jump to the configuration page.

2.1 Qbv Configuration

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.5 — 30 March 2023

106 / 332



NXP Semiconductors

REALTIMEEDGEUG

Real-time Edge Software User Guide

ADD TSN SETTING @

console output

jgetconfig operation: true

*device:
®@enable Odisable

basetime: |II example: s.ns
*gate control list:

GATE PERIOD

. T O

=]

lgetconfig operation: true

jgetconfig operation: true

2

editconfig operation: true

{

"interfaces":{

"interface":

"name swp2",
"enabled":"true",
"type™: |

"@xmlns:ianaift
"#text":"ianaif

Yr
"gate-parameters":{

"gate-enabled":"true

"admin-control-list"
"index":"0",
"operation-name
"sgs-params": {

STATUS | Get Config I

"gate-states-value":
"time-interval-value

"config-change":"true",
"admin-control-list-length":"1",
E

":"set-gate-states™,

4000"

"@xmlns":"urn:ietf:params:xml:ns:yang:ietf-interfaces”,

urn:ietf:params:xml:ns:yang:iana-if-type",

thernetCsmacd"

"@xmlns":"urn:ieee:std:802.1Q:yang:ieee802-dotlg-sched",

"
r

Figure 33. Qbv Configuration

2.2 Qbu Configuration

ADD TSN SETTING @

@enable Odisable

TCO0 Opreemptable ®express
TC1 Opreemptable ®express
TC2 Opreemptable @express
TC3 ®preemptable Oexpress
TC4 Opreemptable ®express
TC5 Opreemptable @express
TC6 ®@preemptable Oexpress
TC7 Opreemptable ®express

STATUS | Get Config

T T
"gate-states-value":"3",

"time-interval-value":"4000"

1
T
"admin-base-time": {
"seconds":"0",
"fractional-seconds™

}
Ty
"frame-preemption-parameters”: {
"@xmlns":"
"frame-preemption-status-table”: [
{

"traffic-class":"0",

"frame-preemption-status™:

"traffic-class"

’
"frame-preemption-status™:

“"traffic-class":"2",

"frame-preemption-status™:

“"traffic-class":"3",

"frame-preemption-status”:

“"traffic-class":"4",

"frame-preemption-status”:

“"traffic-class":"5",

"frame-preemption-status":

Ny ffia o] m.ngn

urn:ieee:std:802.1Q:yang:ieee802-dotlg-preemption”,

"express"

"express"

"express"

"preemptable™

"express"

"express"

Figure 34. Qbu Configuration

2.3 Qci Configuration

REALTIMEEDGEUG

All information provided in this document is subject to legal disclaimers.

© 2023 NXP B.V. All rights reserved.

User guide

Rev. 2.5 — 30 March 2023

107 / 332




NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

console output A
ADD TSN SETTING @ jgetconfig operation: true
~
jgetconfig operation: true
*device: 1
lgetconfig operation: true
:
®@enable Odisable leditconfig operation: true
*'mdex: H @ "
initial gate Staw:@')pen Oclose lntefg;?\iis':‘ { "urn:ietf:params:xml:ns:yang:ietf-interfaces",
initial ipv:| | | e e
basetime:lil "Z;:Elédf?gtr;e“,
o e "type”:{ )
Yopen @close "@xmlns:ianaift":"urn:ietf:params:xml:ns:yang:iana-if-type",
period: ipv: . "#text":"ianaift:ethernetCsmacd”
. N I
° "gate-parameters”: {
"@xmlns":"urn:ieee:s5td:802.1Q:yang:ieee802-dotlg-sched”,
"gate-enabled":"true",
_ "config-change":"true",
"admin-control-list-length":"1",
"admin-control-list™:{
"index™:"0",
"operation-name":"set-gate-states",
m "sgs-params”: {
"gate-states-value":"3",
STATUS Get Config I , "time-interval-value™:"4000"
Figure 35. Qci Configuration
In this interface, user can choose configuration for "stream identify", "stream filter", "stream gate", and "flow
metering".
4.1.2.4.3 Dynamic remote configuration
1. Overview
The dynamic TSN configuration is used for the TSN configuration dynamically. Users do not need to log into
each TSN node to specify the TSN parameters for TSN configuration. They only need to select the path,
the base time, and then specify the cycle time. Then, the schedule mapping component calculates the TSN
configuration parameters according to the user input and the path selected. The configuration parameters are
delivered to each node by YANG models.
2. Working Flow
Here is an example of the TSN configuration working flow:
After topology discovery and device registration, the network topology could be displayed over web-browser.
The user just needs to select the nodes, specify the stream, and input the timing requirement through the
stream reservation component and schedule configuration component. The results are passed down to the
schedule mapping component to calculate the mapping from customer input to the TSN configuration. The
configuration is instantiated using the YANG model and be delivered to different nodes for actual configuration.
The major components include:
* TSN network topology discovery
* Schedule mapping
* NETCONF/YANG configuration
* TSN Protocol Driver and TSN configuration
» Dashboard for stream management and customer input parse
Here is the architecture diagram.
REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.5 — 30 March 2023
108 / 332



NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

Stream Stream Topology Schedule Industrial
registration | reservation display configuration dashboard

On-field controller

Stream Schedule Cfg Instantiation Topology
management mapping for YANG model discovery

TSN protocol YANG model YANG model Topology
driver analysis configuration discovery

<+—> +—>

Talker Bridges Listeners

Figure 36. Architecture diagram for TSN

There are three layers for the architecture. The first layer is the TSN network layer, the second layer is the
service layer running on the on-field controller/server, and the third layer is the service running in the cloud or
on-field server which is an optional layer.

The first layer is the TSN network layer. It includes TSN switches, like LS1028 TSN switch and TSN endpoints,
like LS1028 ENETC TSN, i.MX 8M Plus TSN endpoint, to be the TSN network. The different components are
running on each of nodes, like the topology discovery component, to collect the network topology, YANG model
for the TSN register configuration, and NETCONF server to parse the YANG model for TSN configuration.

The second layer is the on-field controller layer. It is the server running on-field to host the services of the
industrial board, topology discovery and schedule mapping.

The third layer runs on the cloud, which could host the services running on the on-field controller. This layer is
an optional layer.

3. Topology Discovery

The topology discovery component is used to discover network connections by running LLDP on each TSN
network node. The connection information is delivered to topology discovery service running on the on-filed
server.

4. Path Selection

Path selection implemented an algorithm to select the path between the selected talker and listener. If there are
multiple paths, the dashboard displays all paths and the user can select one of the paths for the stream. Set a
different VLAN ID for the selected path, and the stream with this VID can flow in the path.

5. Schedule Mapping

The schedule mapping component is a critical component to convert the customer requirement to TSN register
configuration. This component will:

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.5 — 30 March 2023

109 /332



NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

* Get the user input and converting the input into TSN parameters.
* Get the path and path delay from the link object of the NetworkGraph file.

* Get the old TSN configuration for each node and calculate a new configuration to meet the user's
requirements.

6. Path Delay

One prerequisite for schedule mapping is clock synchronization and path delay calculation. Clock
synchronization is using gPTP to synchronize the clock of the system. We are using linuxptp PMC tool to get the
path delay.

Here is an example to show the PMC running environment on LS1028ARDB boards.

Boundary clock
# ptpdl -i swpO -i swp1 -2 -P -f master.cfg &

LS1028ARDB-1 # cat master.cfg
[global]
Swpo swp1 priority1 127

LS1028ARDB-2 LS1028ARDB-3

Ordinary clock Ordinary clock
# ptp4l -i swp0 -2 -P & # ptpdl -i swp1 -2 -P &

Figure 37. PMC running environment on LS1028ARDB boards

7. Dashboard Configuration Demo

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. Al rights reserved.

User guide Rev. 2.5 — 30 March 2023

110/ 332



NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

LS1028ARDB
enol
PC running WebUl
swp0 swpl
swp0 swpl
LS1028ARDB
eno0
Example setup for dynamic remote configuration
Figure 38. Dashboard Configuration Demo

7.1 Stream Register

Click “Check Path” button, input the start device in “first device” input box, and end device in “Second device”
input box. Then click the “submit” button, path is described in the topograph.

Check Path R

First Device: real-time-edge 0l.local
‘ real-time-edge 01.local ‘
Second Device: :[
‘ real-time-edge 02.local ‘ )
real-time-edge 02.local

Figure 39. Stream Registration

Click “Register Stream” button, then select the path in path select. Fill VLAN ID, Stream ID, and priority, click
“Add” button. There is output a stream table.

Figure 40. Registering a Stream

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.5 — 30 March 2023

111/ 332



NXP Semiconductors

REALTIMEEDGEUG

‘ Register Stream ‘

Path Select:

Real-time Edge Software User Guide

| real-time-edge_01.local-real-time-edge 02.local- v |
VLANID: |100

Stream ID: ‘1

Priority: |1 || Add
Stream List:

STREAM ID|VLAN IDPRIORITY

1

100

7.2 Configure stream identification

Click one stream ID in stream table, jump to stream configuration page. Select streamidentify and fill information
in input boxes. The stream MAC information and VLAN ID identify a stream according to the 802.1CB definition.
This is used by the PSFP configuration, so this streamidentify page need to be configured before configuring

Qci and CFQ.

ADD TSN SETTING @

console output

streamidentify v

®@enable Cdisable

*filter type:| destinate mac

w

*mac address:

11 11 [ 11 11 [ 11 [ 11|

*vlan type:

®@vid none 0 Ovid=0 Ovid ignore

Figure 41. Configuring stream identification

editconfig operation: true

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers.

© 2023 NXP B.V. All rights reserved.

User guide

Rev. 2.5 — 30 March 2023

112/ 332




NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

7.3 Configure Qbv and Qci On Stream

Select Qbv, and then fill basetime, cycletime, and gate open time in input boxes. Selecting enable Qci button
configures both Qci gate control on input port and Qbv control list on output port. The CNC server calculates
the gate open time slot on each board and get a minimum time delay. Each path node tries to open gate with a
minimum time delay.

console output
ADD TSN SETTING @ editconfig operation: true

qbv v editconfig operation: true delay:0

'l
LV

basetime: example: s.ns
cycletime: | 10000 | example: ns
Gate open time: | 2000

example: ns

Zenable Qci

Figure 42. Configuring Qbv and Qci On Stream
7.4 Configure CQF

The CQF configuration is based on the 802.1Qch definition to configure Qbv and Qci. The CQF configuration
cannot be mixed with the previous Qbv configuration. In CQF configuration, the cycle time and gate open time
for all streams should be the same, and cycle time must be an integer multiple of gate open time. Packets are
delayed for a gate open time on each path node.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.5 — 30 March 2023

113 /332



NXP Semiconductors

REALTIMEEDGEUG

Real-time Edge Software User Guide

ADD TSN SETTING @

CQF v

cycletime: | 10000 |example: ns
Gate open time: | 2000

example: ns

console output

editconfig operation: true

editeconfig operation: true delay:

il
U

Figure 43. Configuring CQF

7.5: Configuring Flow Meter policy on stream

IEEE 802.1Qci avoids traffic overload condition, that impact the bridges and the end-devices on a network.
This improves the robustness of a network, for instance, Daniel-of-Service (DoS) attack, error through streams
transmission or likewise if we receive a flow that is not in the schedule time period then it is dropped.

Configuring flow meter on a stream can limit the bandwidth on the ingress port of each bridge through which the

flow passes.. This can avoid traffic overload and protect all network nodes from flood attack.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers.

© 2023 NXP B.V. All rights reserved.

User guide Rev. 2.5 — 30 March 2023

114/ 332



NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

console output
ADD TSN SETTING @ editconfig operation: true

Qci Flow Meter ~ editconfig operation: true

@enable Odisable .
chs:[_ou0_|

ebs: | 4000
couple flag

color blind
[Jdrop yellow
O mark red

Figure 44. Configuring Flow Meter policy on stream

4.1.3 TSN on i.MX 8DXL /i.MX 8M Plus / i.MX 93

4.1.3.1 Test environment

On i.MX 8M Plus EVK/i.MX 93 EVK platform, the interface name of ENET Q0S port which supports TSN is
eth1. On i.MX 8DXL EVK, the interface name of ENET QOS port which supports TSN is ethO.

Connect ENET_QOS port to the TestCenter to test TSN features. The commands in this section use the i.MX
8M Plus EVK platform as example:

Use the following command to check the TSN Ethernet device name:

#ls /sys/devices/platform/soc@0/30800000.bus/30bf0000.ethernet/net/ ethl

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.5 — 30 March 2023

115/ 332



NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

ETHO

.MX8MP

ETH1 Test Center

Figure 45. TSN test environment setup

Note: TestCenter is a device used to capture streams from eth1 of i. MX8MP board. For this example, Spirent
TestCenter is used to capture preemptable frames in Qbu test case.

4.1.3.2 Clock synchronization

To test 1588 synchronization on dwcmac interfaces, use the following procedure:
1. Connect eth1 interfaces on two boards in a back-to-back manner.

The Linux booting log is as follows:

pps pps0: new PPS source ptp0

2. Configure the IP address using the command below:

ifconfig ethl 192.168.3.1

3. Check PTP clock and timestamping capability:

# ethtool -T ethl
Time stamping parameters for ethl:
Capabilities:
hardware-transmit (SOF _TIMESTAMPING TX HARDWARE)

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.5 — 30 March 2023

116/ 332



NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

software-transmit (SOF TIMESTAMPING TX SOFTWARE)
hardware-receive (SOF TIMESTAMPING RX HARDWARE)
software-receive (SOF | TIMESTAMPING RX ~ SOFTWARE)
software-system-clock (SOF TIMESTAMPING SOFTWARE)
hardware-raw-clock (SOF | TIMESTAMPING RAW HARDWARE)
PTP Hardware Clock: 1
Hardware Transmit Timestamp Modes:

off (HWTSTAMP_TX_OFF)

on (HWTSTAMP_TX ON)
Hardware Receive Filter Modes:

none HWTSTAMP_FILTER_NONE)

all HWTSTAMP_FILTER_ALL)

(
(
ptpvl-l4-event (HWTSTAMP FILTER PTP V1 L4 EVENT)
ptpvl-1l4-sync (HWTSTAMP FILTER PTP V1 L4 SYNC)
ptpvl-l4-delay-reg (HWTSTAMP FILTER PTP V1 L4 DELAY REQ)
ptpv2-l4-event (HWTSTAMP_FILTER PTP V2 L4 EVENT)
ptpv2-1l4-sync (HWTSTAMP FILTER PTP V2 L4 SYNC)
ptpv2-l4-delay-req (HWTSTAMP FILTER PTP V2 L4 DELAY REQ)
ptpv2-event (HWTSTAMP FILTER PTP V2 EVENT)
ptpv2-sync (HWTSTAMP FILTER PTP V2 SYNC)
ptpv2-delay-req (HWTSTAMP FILTER PTP V2 DELAY REQ)

4. Run ptp41 on two boards:

ptp4l -i ethl -p /dev/ptpl -m -2

5. After running, one board is automatically selected as the master, and the slave board displays
synchronization messages.

6. For 802.1AS testing, use the configuration file gPTP.cfg in 1inuxptp source. Run the below command on
the boards, instead:

ptp4l -i ethl -p /dev/ptpl -f /etc/ptp4l cfg/gPTP.cfg -m

Or use GenAVB/TSN Stack with the following command: 'avb.sh start'. Note that the configuration file /
etc/genavb/fgptp.cfg is automatically used.

Note: i.MX 8M Plus current dwmac driver (ethl) initializes few hardware functions while opening net device,
including PTP initialization. Before that, the operations such as ethtool queries, and PTP operations might not
work. So, the workaround is to do operations on the eth1 and PTP of dwmac only after "i fconfig ethl up".

Note: If Qbu preemption is enabled on remote device and the PTP packets are sent as preemption frames, the
ptp4l command should run clock synchronization with the parameter --hwts filter=rfull. For example:

ptp4l -i ethl -p /dev/ptpl -f /etc/ptpdl cfg/gPTP.cfg -m --hwts filter=full

4.1.3.3 Qbv

1. Enable the ptp device, and get the current ptp time.

ptp4l -i ethl -p /dev/ptpl -m
#Get current time (seconds)
devmem?2 0x30bf0b08

O0x5EQ01F9B2

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.5 — 30 March 2023

117 1 332



NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

2. Get the basetime to be 2 minutes later.

#Basetime = (currentime + 120) * 1000000000 = 1577187882000000000

3. Set time schedule, open queue 1 in 100 ys and open queue 2 in 100 ys.

tc gdisc replace dev ethl parent root handle 100 taprio \
num tc 5 map 0 1 2 3 4 queues 1@0 1@1 1@2 1@3 1@4 Dbase-time
1577187882000000000 \
sched-entry S 1 100000 \
sched-entry S 2 100000 \
sched-entry S 4 100000 flags 2

4. Send two streams into queue 1 and queue 2.

/home/root/samples/pktgen/pktgen twoqueue.sh -i ethl -g 1 -s 1000 -n 0 -m
90:e2:ba:ff:ff:ff

5. Capture the streams on TestCenter, 100 ps queue 1 frames (length=1004) and 100 us queue 2 frames
(length=1504) will be got. Or if the Ethernet port is connected to another board, the frames can be captured on
that board by using Linux tcpdump command as shown below:

tcpdump -i eth0 -e -n -t -xx -c 10000 -w tsn.pcap

Then Wireshark can be used to analyze the pcap file on host PC.
Note:

* More than one entry needs to be set on each tc taprio command.

* Use “devmem2 0x30bf0c58”to get Obv status and check if gbv status is active. refer to
MTL EST Status register.

4.1.3.4 Qbu

1. Using ethtool to enable Qbu on eth1, set queue 2 to be preemptable.
ethtool --set-frame-preemption ethl preemptible-queues-mask 0x04 min-frag-
size 60

Note: Once Qbu is enabled, queue 0 is always preemptable queue. To support preemption, MAC should
have at least 1 queue designated as express queue.

Note: On a back-to-back setup using two i. MX8M Plus EVK boards connected via eth1, Qbu should be
enabled on eth1 of both boards.

2. Send two streams into queue 1 and queue 2.

/home/root/samples/pktgen/pktgen twoqueue.sh -i ethl -g 1 -s 150 -n 0 -m
90:e2:ba:ff:ff:ff

3. Capture the mPacket on Spirent TestCenter. Users can observe that Q2 frames are preempted into
fragments.
Note: Spirent TestCenter can capture the preamble of mPacket. Refer to Section 99.3, "MAC Merge Packet
(mPacket)" of IEEE standard for Ethernet 802.3-2018 for the mPacket format.

a. Below is an example mPacket that contains an express packet, which has SMD value of OxD5.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.5 — 30 March 2023

118 /332



NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

No. Time Source Destination Protocol  Length Info L
2228 9.011866000 162
2229 0.011868920 162
2230:0.011872370 162
2231 0.011912420 1268
2232 9.011922660 162
2233 0.011924050 256
2234 0.611926260 1ee
2235 ©.611927090 162 v
< >
> Frame 223@: 162 bytes on wire (1296 bits), 162 bytes captured (1296 bits) i

v User encapsulation not handled: DLT=147, check your Preferences->Protocols->DLT_USEF
> [Expert Info (Warning/Undecoded): User encapsulation not handled: DLT=147, check
v Data (162 bytes)
Data: 555555555555 50e2baF-Fffffeeeeec629bele89945@9608898b509002911 cb740000...

v

Fl Aaneat+h. 1£91
< >
Rl 55 55 55 55 55 55 55 d5 f+ ff ff 00 €9 . al
N MOc 02 ©b 01 @8 6@ 45 00 b5 06 00 20 11 - .
0020 00 00 00 c6 12 12 00 09 00 74

0030 9b e9 55 00 @0 00 00 00 B0 99 ..
0040 0O 00 00 06 B0 00 00 BO 00 09 v

Figure 46. Sample mPAcket that contains an express packet

b. Below is an example mPacket containing an initial fragment of a preemptable packet, which has SMD-
S1 value of 0x4C.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.5 — 30 March 2023

119/ 332



NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

No. Time Source Destination Protocol  Length Info L
2228 ©.011866000 162
2229 0.911868926 162
2230 ©.011872370 162
2231:0.011912420 § 1268
2232 ©.011922660 162
2233 0.0911924656 256
2234 9.011926200 1ee
2235 0.011927090 162 v
L4 >
> Frame 2231: 1268 bytes on wire (10144 bits), 1268 bytes captured (10144 bits) A

v User encapsulation not handled: DLT=147, check your Preferences->Protocols->DLT_USEF
> [Expert Info (Warning/Undecoded): User encapsulation not handled: DLT=147, check
v Data (1268 bytes)
Data: 55555555555 550e2ba'F'F'F'F'F'FOBe€30c029b816806450095 €ed00e0e02011cee30000..

Tl Anaths 19201 o

< >
0000 55 55855055 55055 90 e2 ba ff ff ff 00 e0 A
0010 92 Ob @1 08 00 45 05 ce 00 00 60 00 20 11 . .

0020 €3 0O 00 B0 00 c6 00 2a 00 1c 00 @9 @5 ba

0030 08 be 9b e9 55 00 00 01 0O 60 6O B0 00 00 ..

0040 00 00 00 00 00 00 00 00 00 00 00 00 0O 00 v

Figure 47. Sample mPacket containing an initial fragment of a preemptable packet

c. Below is an example mPacket containing a continuation fragment of a preemptable packet, which has
SMD-C1 value of 0x52, as well as frag count value of OXEG.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.5 — 30 March 2023

120/ 332



NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

No. Time Source Destination Protocol  Length Info L

2228 9.011866000 162

2229 9.011868520 162

2230 9.011872370 162

2231 9.011912420 1268

2232 0.011922660 162

2233 9.011924050 : i 256

2234 0.011926200 - 100

2235 0.0119270990 162 v
< >

Frame 2233: 256 bytes on wire (2048 bits), 256 bytes captured (2048 bits) A

v User encapsulation not handled: DLT=147, check your Preferences->Protocols->DLT_USEF
[Expert Info (Warning/Undecoded): User encapsulation not handled: DLT=147, check
v Data (256 bytes)
Data: 55555555555 éﬁ@@seeeeeeeeeeeeeeeeeeeeeeeeeaeeeeeeeeeeeeeeeeeeeeeeeeeeeeem

NN Anc+h. ACCT
< >
<I=[<]- 55 55 55 55 55 55 52 e6 00 00 00 00 00 00 00 00 . ~
L NO00 €0 00 00 00 B0 60 06 00 90 B0 0O 06 B0 00 00
PI00 00 00 00 00 00 G0 PO 00 PO 00 60 00 B0 00 00
SEI 00 00 00 00 00 00 00 0 00 00 00 00 00 00 00 09
00 €0 00 G0 00 00 00 PO 00 00 60 00 06 0O 00 00 v

v

Figure 48. Sample mPacket containing a continuation fragment of a preemptable packet
4. User can also check the below counter for the number of fragments transmitted.

ethtool -S ethl | grep "mmc tx fpe fragment cntr"

5. Qbu combined with Qbv test
Once a queue is set to be a preemptable queue and the gate open/close is invalid in Qbv gate control list,
the queue is considered as always "Open". Use Hold/Release to control all preemptable queues. When
the GCL entry is set from Hold to Release, preemptable queues begin transmitting. When GCL entry is set
from Release to Hold, preemptable queues are held.

tc gdisc replace dev ethl parent root handle 100 taprio \
num _tc 5 map 0 1 2 3 4 queues 1@0 1@1 1@2 1@3 1@4 base-time
1577187882000000000 \
sched-entry H 2 100000 \
sched-entry R 4 100000 flags 2

4.1.3.4.1 Preemption verify

The preemption capability is enabled only if the link partner announces its support for the preemption capability
via an Additional Ethernet Capabilities TLV in an LLDPDU addressed to the Nearest Bridge group address (see
IEEE Std 802.1Q). The preemption capability is disabled if the MAC Merge sublayer receives indication of link
failure.

Connect two eth1 of boards back to back. Then, use the following command to enable the LLDP verification and
hardware verification:

ethtool --set-frame-preemption ethl 1lldp-verify on fp on preemptible-queues-mask
0x04 min-frag-size 60

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.5 — 30 March 2023

121/ 332



NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

After running the command on two boards, wait a moment until LLDP frames have been exchanged. Use the
following command to show the preemption status.

ethtool --show-frame-preemption ethl

Capture the LLDP frames on eth1 port to see the additional Ethernet capabilities TLV.

4.1.3.5 Qav

1. Set a queue map handle.

tc gdisc add dev ethl root handle 1: mgprio num tc 5 map 0 1 2 3 4 queues 1Q0
1@1 1@2 1@3 1@4 hw O

2. Set bandwidth of queue 3 to be 20 Mbps.

tc gdisc replace dev ethl parent 1:4 cbs locredit -1470 hicredit 30 sendslope
-980000 idleslope 20000 offload 1

3. Send a stream into queue 3:

/home/root/samples/pktgen/pktgen sampleOl simple.sh -i ethl -g 3 -s 500 -n 3000

4. Get the result, bandwidth is 19 Mbps.

WARN : Missing destination MAC address
WARN : Missing destination IP address
Running... ctrl”C to stop
Done
Result device: ethl
Params: count 3000 min pkt size: 500 max pkt size: 500
frags: 0 delay: 0 clone skb: 0 ifname: ethl
flows: 0 flowlen: 0
queue map min: 3 queue map max: 3
dst min: 198.18.0.42 dst max:
src min: Src max:
src mac: a6:85:82:fc:89:bf dst mac: 02:5d:ae:ba:e0:00
udp_src min: 9 wudp src max: 109 udp dst min: 9 wudp dst max: 9
src mac _count: 0 dst mac count: O
Flags: UDPSRC RND NO TIMESTAMP QUEUE MAP RND
Current:
pkts-sofar: 3000 errors: O
started: 5631940023us stopped: 5632560030us idle: 79984us
seq num: 3001 cur dst mac offset: 0 cur src mac offset: 0
cur saddr: 0.0.0.0 cur daddr: 198.18.0.42
cur udp dst: 9 cur udp src: 41
cur_ queue map: 3
flows: 0
Result: OK: 620007 (c540023+d79984) usec, 3000 (500byte,0frags)
4838pps 19Mb/sec (19352000bps) errors: 0

5. Set bandwidth of queue 4 to be 40 Mbps.

tc gdisc replace dev ethl parent 1:5 cbs locredit -1440 hicredit 60 sendslope
-960000 idleslope 40000 offload 1

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.5 — 30 March 2023

122/ 332



NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

6. Send a stream into queue 4 and get the result.

/home/root/samples/pktgen/pktgen sampleOl simple.sh -i ethl -g 4 -s 500 -n 3000
WARN : Missing destination MAC address
WARN : Missing destination IP address
Running... ctrl”C to stop
Done
Result device: ethl
Params: count 3000 min pkt size: 500 max pkt size: 500
frags: 0 delay: 0 clone skb: 0 ifname: ethl
flows: 0 flowlen: 0
queue map min: 4 queue map max: 4
dst min: 198.18.0.42 dst max:
Src _min: src_max:
src mac: a6:85:82:fc:89:bf dst mac: 02:5d:ae:ba:e0:00
udp _src min: 9 udp src max: 109 udp dst min: 9 udp dst max: 9
src_mac _count: 0 dst mac count: O
Flags: UDPSRC RND NO TIMESTAMP QUEUE MAP RND
Current:
pkts-sofar: 3000 errors: 0
started: 6113136017us stopped: 6113443758us idle: 38457us
seq num: 3001 cur dst mac offset: 0 cur src mac offset: 0
cur _saddr: 0.0.0.0 cur daddr: 198.18.0.42
cur udp dst: 9 cur udp src: 17
cur queue map: 4
flows: O
Result: OK: 307741 (c269283+d38457) usec, 3000 (500byte,0frags)
9748pps 38Mb/sec (38992000bps) errors: 0

7. Send two streams into queue 3 and queue 4 using the command below:

/home/root/samples/pktgen/pktgen twoqueue.sh -i ethl -g 3 -s 1500 -n 0

8. Capture the streams on TestCenter, the frames sort by one Q3 frame and two Q4 frames.

4.1.4 TSN on LS1028A
The tsntool is an application configuration tool to configure the TSN capability on LS1028ARDB. The files lusr/
bin/tsntool and /usr/lib/libtsn.so are located in the rootfs. Run tsntool to start the setting shell.

4.1.4.1 TSN configuration on ENETC

The tsntool is an application configuration tool to configure the TSN capability. Users can find the files /usr/
bin/tsntool and /usr/1lib/libtsn.so in the rootfs. Run tsntool to start the setting shell. The following
sections describe the TSN configuration examples on the ENETC Ethernet driver interfaces.

Before testing the ENETC TSN test cases, you must enable mgprio by using the command below:

tc gdisc add dev eno0 root handle 1: mgprio num tc 8 map 0 1 2 3 4 5 6 7 hw 1

4.1.4.1.1 Clock synchronization

To test 1588 synchronization on ENETC interfaces, use the following procedure:

1. Connect ENETC interfaces on two boards in a back-to-back manner. (For example, eno0 to eno0.)

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.5 — 30 March 2023

123 /332



NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

The linux booting log is as follows:

pps pps0: new PPS source ptp0

2. Check PTP clock and timestamping capability:

# ethtool -T eno0
Time stamping parameters for enoO:

Capabilities:
hardware-transmit (SOF TIMESTAMPING TX HARDWARE)
hardware-receive (SOF TIMESTAMPING RX HARDWARE)
hardware-raw-clock (SOF TIMESTAMPING RAW HARDWARE)

PTP Hardware Clock: O
Hardware Transmit Timestamp Modes:
off (HWTSTAMP_ TX OFF)
on (HWTSTAMP TX ON)Hardware Receive Filter Modes:
none (HWTSTAMP FILTER NONE)
all (HWTSTAMP FILTER ALL)

3. Configure the IP address and run ptp41 on two boards:

# ifconfig eno0 <ip addr>
# ptp4l -i eno0 -p /dev/ptp0 -m

4. After running, one board would be automatically selected as the master, and the slave board would print
synchronization messages.

5. For 802.1AS testing, just use the configuration file gPTP. cfg in linuxptp source. Run the below command
on the boards, instead:

# ptp4l -i eno0 -p /dev/ptp0 -f /etc/ptp4l cfg/gPTP.cfg -m

41.41.2 Qbv

This test includes the Basic Gates Closing test, Basetime test, and the Qbv performance test. These are
described in the following sections.

4.1.4.1.2.1 Basic gates closing

The commands below describe the steps for closing the basic gates:

cat > gbv0.txt << EOF
t0 00000000b 20000
EQCF

#Explanation:

# 'NUMBER' 3 t0

# 'GATE VALUE' : 00000000b
# 'TIME LONG' 3 20000 ns

tsntool

tsntool> verbose

tsntool> gbvset --device eno0 --entryfile ./gbv0.txt

ethtool -S eno0

ping 192.168.0.2 -c 1 #Should not pass any frame since gates are all off.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.5 — 30 March 2023

124/ 332



NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

4.1.4.1.2.2 Basetime test

Base on case 1 gbvl.txt gate list.

fcreate 1s gate
cat > gbvl.txt << EOF

t0 11111111b 10000
tl 00000000b 99990000
EOF

#ENETC Qbv basetime can be set any past time or future time.

#For the past time, hardware calculate by:

# effective-base-time = base-time + N x cycle-time

fwhere N is the smallest integer number of cycles such that effective-base-time
>= now.

#If you want a future time, you can get current time by:

tsntool> ptptool -g

#Below example shows basetime start at 260.666 s (start of 1 January 1970):

tsntool> gbvset --device enol --entryfile gbvl.txt --basetime 260.666

tsntool> gbvget --device enoO #User can check configchange time

tsntool> regtool 0 0x11lal0 #Check pending status, Oxl means time gate is working
#Waiting to change state, ping remote computer

ping 192.168.0.2 -A -s 1000

#The reply time will be about 100 ms

Since 10000 ns is the maximum limit for package size 1250 B.

ping 192.168.0.2 -c¢ 1 -s 1300 #frame should not pass

4.1.4.1.2.3 Qbv performance test
Use the setup described in the figure below for testing ENETC port0 (MACO).

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.5 — 30 March 2023

125/ 332



NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

Test Center

swrojl
(swp0) PO
SWP1
LS1028ARDB (swpl) P1
SWP2
(swp2) P2
SWP3
(swp3) P3
TSN-Switch
ENETC
(eno3) enetc 3 P5 (swp5)
(eno2) enetc 2 P4 (swp4)
(enol) enetc 1 X
MACO
(eno0) enetc 0

Figure 49. Setup for testing ENETC port0

Note: TestCenter is a device to capture streams from enetc0 of LS1028ARDB board. Users can use another
board to capture streams by using tcpdump command and then use Wireshark to analyze it.

cat > gbvb.txt << EOF

t0 11111111b 1000000 tl 00000000b 1000000

EOF

gbvset --device eno0 --entryfile gbv5.txt
/home/root/samples/pktgen/pktgen twoqueue.sh -i eno0 -g 3 -n 0
#The stream would get about half line rate

4.1.4.1.2.4 Using taprio Qdisc Setup Qbv

LS1028ardb support the taprio qdisc to setup Qbv either. Below is an example Setup.

#Q0bv test do not require the mgprio setting.

# If mgprio is enabled, try to disable it by below command:
tc gdisc del dev eno0 root handle 1: mgprio

# Enable the Qbv for ENETC eno0 port

# Below command set enoO with gate 0x01, means queue 0 open, the other queues

gate close.

tc gdisc replace dev eno0 parent root handle 100 taprio num tc 8 map O 1 2 3 4 5
6 7 queues 1Q@0 1@1 1@2 1@3 1Q@4 1@5 1@6 1Q@7 base-time 0 sched-entry S 01 300000

flags 0x2
# Ping through eno0 port should be ok

# Then close the gate queue 0. Open gate queue 1. The other queues gate close.
tc gdisc replace dev eno0 parent root handle 100 taprio num tc 8 map O 1 2 3 4 5
6 7 queues 1Q@0 1@1 1@2 1@3 1Q@4 1@5 1@6 1@7 base-time 0 sched-entry S 02 300000

flags 0x2
# Ping through eno0 port should be dropped
#Disable the Qbv for ENETC enol port as below

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers.

© 2023 NXP B.V. All rights reserved.

User guide Rev. 2.5 — 30 March 2023

126/ 332



NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

tc gdisc del dev eno0 parent root handle 100 taprio

4.1.41.3 Qbu

* If user has two LS1028ARDB boards, then link the two eno0 ports back to back. In this case, the test does not
need the switch to be set up. Users can omit the steps 2, 3, and 4 and just perform steps 1, 5, and 6.

* If user has only one board, user can set the frame path from eno0 to switch by linking enetc ports MACO
- SWPO. The setup enables the switch SWPO port-merging capability. Then enetc eno0 can show the
preemption capability. Use the setup as shown in the following figure for the Qbu test.

(swp0) PO

swpl) P1
LS1028ARDB (swpl) Test Center

(swp2) P2

(swp3) P3

TSN-Switch
ENETC

(eno3) enetc 3 P5 (swp5)

(eno2) enetc 2 P4 (swp4)

(enol) enetc 1

(eno0) enetc 0

PCI BUS

Figure 50. Qbu test

Before linking the cable between ENETC port0 to SWPO, set up the switch up (refer the Switch configuration)
and set IP for ENETC port0. To make sure the ENETC port0 is linked to SWPO, use the steps below:

1. Do not forget to enable the priority for each traffic class:

tc gdisc add dev eno0 root handle 1: mgprio num tc 8 map 0 1 2 3 4 5 6 7 hw 1

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.5 — 30 March 2023

127/ 332



NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

2. Make sure link speed is 1 Gbps by using the command:

ethtool enoO

3. Ifitis not 1 Gbps, set it to 1 Gbps by using the command:

ethtool -s swpO speed 1000 duplex full autoneg on

4. Set the switch to enable merge (or user can link to another merge capability port in another board):

devmem2 O0x1£fcl100048 w Ox111 #DEV _GMII:MM CONFIG:ENABLE CONFIG

5. ENETC port setting set and frame preemption test:

ip link set eno0 address 90:e2:ba:ff:ff:ff

tsntool gbuset --device eno0 --preemptable 0Oxfe
/home/root/samples/pktgen/pktgen twoqueue.sh -i eno0 -g 0 -s 100 -n 20000 -m
90:e2:ba:ff:ff:ff

pktgen would flood frames on TCO and TC1.
6. Check the TX merge counter, if it has a non-zero value, it indicates that the Qbu is working.

tsntool regtool 0 0x11£f18

Note: 0x11f18 counting the merge frame count:

0x11f18 Port MAC Merge Fragment Count TX Register (MAC MERGE MMFCTXR)

LS1028ARDB also supports ethtool setup for preemption as in the example below:

ethtool --set-frame-preemption enoO preemptible-queues-mask Oxfe

This implies that we can get same result by using TCO to pass express MAC and TC1~TC7 to pass
preemptable MAC.

The ENETC also supports preemption verify. Use two boards to test preemption verification on eno0. Refer to
Section 4.1.3.4.1.

41.41.4 Qci

Use the following as the background setting:
» Set eno0 MAC address
ip link set eno0 address 10:00:80:00:00:00

Opposite port MAC address 99:aa:bb:cc:dd:ee as frame provider as example.
* Use the figure below as the hardware setup.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.5 — 30 March 2023

128 /332



NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

(swpO0) PO

LS1028ARDB (swpl) P1
(swp2) P2

(swp3) P3

TSN-Switch
ENETC

(eno3) enetc 3 P5 (swp5)

(eno2) enetc 2 P4 (swp4) Test Center

(enol) enetc 1

Figure 51. Qci test case setup
Note: TestCenter is a device to send streams to enetcO of LS1028ardb board. User also can use another
board to send streams.

4.1.4.1.41 Test SFI No Streamhandle

Qci PSFP can work for the streams without stream identify module, which are the streams without MAC address
and vid filter. Such kind of filter setting always sets a larger index number stream for filter entry. The frames that
are not filtered then flow into this stream filter entry.

The below example tests no streamhandle in a stream filter, set on stream filter entry index 2 with a gate stream
entry id 2. Then none stream identifies frames would flow into the stream filter entry index 2 then pass the gate
entry index 2, as shown in the following example:

tsntool> gcisfiset --device eno0 --index 2 --gateid 2

» Streams no streamhandle should pass this filter.

tsntool> gcisfiget --device eno0 --index 2

» Send a frame from the opposite device port (ping for example).

tsntool> gcisfiget --device eno0 --index 2

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.5 — 30 March 2023

129 /332



NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

* Set Stream Gate entry 2

tsntool> gcisgiset --device eno0 --index 2 --initgate 1

» Send a frame from the opposite device port.

tsntool> gcisfiget --device eno0 --index 2

» Set Stream Gate entry 2, gate closes permanently.

tsntool> gcisgiset —--device eno0 --index 2 --initgate 0

» Send a frame from the opposite device port.

tsntool> gcisfiget --device eno0O --index 2

#The result should look like below:

match pass gate drop sdu pass sdu drop red
1 0 1 1 0 0

4.1.4.1.4.2 Testing null stream identify entry

Null stream identify in stream identify module means trying to filter using destination MAC address and vlan id.

Following steps show the stream identify entry index 1 set with filtering destination mac address as
10:00:80:00:00:00 and vlan id ignored (with or without vland id). Then stream filter is set on the entry index 1
with stream gate index entry id 1.

1. Set main stream by closing gate.
2. Set Stream identify Null stream identify entry 1.

tsntool> cbstreamidset --device eno0 --index 1 --nullstreamid --nulldmac
0x000000800010 --nulltagged 3 --nullvid 10 --streamhandle 100

3. Get stream identify entry index 1.

tsntool> cbstreamidget --device eno(O --index 1

4. Set Stream filer entry 1 with stream gate entry id 1.

tsntool> gcisfiset --device eno0 --streamhandle 100 --index 1 --gateid 1

5. Set Stream Gate entry 1, keep gate state close (all frames dropped. return directly if ask user for editing
gate list).

tsntool> gcisgiset --device eno0 --index 1 --initgate O

6. Send one frame from the opposite device port should pass to the close gate entry id 1.

tsntool> gcisfiget --device eno0 --index 1

7. The result should look like the output below:

match pass gate drop sdu pass sdu drop red
101100

4.1.4.1.4.3 Testing source stream identify entry
Source stream identify means stream identify the frames by the source mac address and vlan id.
Use the following steps for this test:

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.5 — 30 March 2023

130/332



NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

1. Keep Stream Filter entry 1 and Stream gate entry 1.

2. Add stream2 in opposite device port: SMAC is 66:55:44:33:22:11 DMAC:20:00:80:00:00:00 (Not
with destination mac address 10:00:80:00:00:00 which stream identify entry index 1 is filtering that dmac
address)

3. Set Stream identify Source stream identify entry 3

tsntool> cbstreamidset --device eno0 --index 3 --sourcemacvid —--sourcemac
0x112233445566 --sourcetagged 3 --sourcevid 20 --streamhandle 100

4. Send frame from opposite device port. The frame passes to stream filter index 1.

tsntool> gcisfiget --device eno0 —--index 1

4.1.4.1.4.4 SGI stream gate list

Use the command below for this test:

cat > sgil.txt << EOF
t0 Ob -1 100000000 O
tl 1b -1 100000000 O

EOF
tsntool> gcisfiset --device eno0 --index 2 --gateid 2
tsntool> gcisgiset --device eno0 --index 2 --initgate 1 --gatelistfile sgil.txt

#flooding frame size 64bytes from opposite device port. (iperf or netperf as
example)
tsntool> qgcisfiget --device eno0 --index 2

Check the frames dropped and passed, they should be the same since stream gate list is setting 100ms open
and 100ms close periodically.

4.1.41.4.5 FMI test

Only send green color frames (normally it is the TCI bit value in 802.1Q tag). Flooding the stream against the
eno0 port speed to 10000 kbsp/s:

tsntool> gcisfiset --device enol --index 2 --gateid 2 --flowmeterid 2
tsntool> gcifmiset --device eno0 --index 2 --cm --cf --cbs 1500 --cir 5000 --ebs
1500 --eir 5000

The 'cm' parameter set color mode enable means frames to separate green frames and yellow frames judged
by the TCI bit in frame. Or else, any frames are green frames.

The 'cf' parameter sets the coupling flag enable. When CF is set to 0, the frames that are declared yellow are
bound by EIR. When CF is set to 1, the frames that are declared Yellow are bound by CIR + EIR, depending on
volume of the offered frames that are declared Green.

After the above commands are setup, since green frames are not larger than EIR + CIR 10 Mbit/s. So the green
frame would not be dropped.

The below setting shows the dropped frames:

tsntool> gcifmiset --device eno0 --index 2 --cm --cf --cbs 1500 --cir 5000 --ebs
1500 --eir 2000

This case makes the green frames pass 5 Mbit/s in CIR, then it pass to the EIR space. However, EIR is 2 Mbit/
s, so total EIR + CIR 7 Mbit/s still do not qualify the total 10 Mbit/s bandwidth. So green frame would be dropped
part.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.5 — 30 March 2023

131 /332



NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

To get information of color frame counters showing at application layer, use the code as in the below example:

tsntool> gcifmiget --device eno0 --index 2

bytecount drop dr0 green drl green dr2 yellow remark yellow dr3 red remark red
1c89 0 4c 0 0 0 0 O

index = 2

cir
cbs
eir
ebs

coup

c34c
5dc
4c4b3c
= bdc

le flag

color mode

41.41.5 Qav

4.1.4.1.5.1 Using tsntool

The following figure illustrates the hardware setup diagram for the Qav test.

(swpO0) PO

LS1028ARDB (swpl) P1
(swp2) P2

(swp3) P3

TSN-Switch
ENETC

(eno3) enetc 3 P5 (swpb)

(eno2) enetc 2 P4 (swp4) Test Center

(enol) enetc 1

(eno0) enetc 0

Figure 52. Qav test setup

Note:

TestCenter is a device to capture streams from enetcO of LS1028ARDB board. Users can also use

another board to capture streams by using tcpdump command, and use Wireshark network protocol analyzer
to analyze results.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.5 — 30 March 2023

132 /332



NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

0. Ensure to enable the priority for each traffic class:

tc gdisc add dev eno0 root handle 1: mgprio num tc 8 map 0 1 2 3 4 5 6 7 hw 1

1. Run the following commands:

tsntool cbsset --device eno0 --tc 7 —--percentage 60
tsntool cbsset --device eno0 --tc 6 —--percentage 20

2. Check each queue bandwidth (pktgen requires enabling NET_PKTGEN in kernel)

/home/root/samples/pktgen/pktgen sample0l simple.sh -i eno0 -g 7 -s 500 -n
30000

Wait a few seconds later to check the result. It should get about 60% percentage line rate.

/home/root/samples/pktgen/pktgen sampleOl simple.sh -i eno0 -g 6 -s 500 -n
30000

Wait a few seconds later to check the result. It should get about 20% percentage line rate.

4.1.4.1.5.2 Using CBS Qdisc to setup Qav

LS1028a supports the CBS qdisc to setup Credit-based Shaper. Below commands set CBS with 100 Mbit/s for
queue 7 and 300 Mbit/s for queue 6.

tc gdisc add dev eno0 root handle 1: mgprio num tc 8 map 0 1 2 3 4 5 6 7 hw 1

tc gdisc replace dev eno0 parent 1:8 cbs locredit -1350 hicredit 150 sendslope
-900000 idleslope 100000 offload 1

tc gdisc replace dev eno0 parent 1:7 cbs locredit -1050 hicredit 950 sendslope
-700000 idleslope 300000 offload 1

# Try to flood stream here (require kernel enable NET PKTGEN)
/home/root/samples/pktgen/pktgen sampleOl simple.sh -i eno0 -g 7 -s 500 -n 20000
/home/root/samples/pktgen/pktgen sampleO0l simple.sh -i eno0 -g 6 -s 500 -n 20000
tc gdisc del dev eno0 parent 1:7 cbs

tc gdisc del dev eno0 parent 1:8 cbs

4.1.4.2 TSN configuration on Felix switch

The following sections describe examples for the basic configuration of TSN switch.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.5 — 30 March 2023

133 /332



NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

4.1.4.2.1 Switch configuration

SWPO
(swp0) PO
SWP1
LS1028ARDB (swpl) P1
SWP2 Test Center
(swp2) P2
SWP3
(swp3) P3
TSN-Switch
ENETC
(eno3) enetc 3 P5 (swp5)
(eno2) enetc 2 P4 (swp4)
(enol) enetc 1 X
MACO
(eno0) enetc 0
PCI BUS

Figure 53. TSN switch configuration

Use the following commands to configure bridge on LS1028ARDB:

ls /sys/bus/pci/devices/0000:00:00.5/net/

Get switch device interfaces for swp0, swp1, swp2 and swp3 as shown below:

ip link set eno2 up

ip link add name switch type bridge vlan filtering 1
ip link set switch up

ip link set swpO master switch && ip link set swpO up
ip link set swpl master switch && ip link set swpl up
ip link set swp2 master switch && ip link set swp2 up
ip link set swp3 master switch && ip link set swp3 up

4.1.4.2.2 Linuxptp test

To run PTP clock synchronization cases on TSN switch in:

* 4.3.5 Quick Start for IEEE 1588
* 4.3.6 Quick Start for IEEE 802.1AS

There are additional configurations of PTP packets trapping besides basic L2 switch mode configuration of
“4.1.4.2.1 Switch configuration”. An available IP should be configured on bridge, and don’t configure IP on swpX
interfaces.

$ ./switch-ptp-trap.sh

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.5 — 30 March 2023

134 /332



NXP Semiconductors

REALTIMEEDGEUG

$ ifconfig switch

<ip address>

Real-time Edge Software User Guide

switch-ptp-trap.sh

# swpO, trap ptp

tc gdisc add dev swp0O clsact

tc filter add
chain 10000
tc filter add
chain 11000
tc filter add
chain 12000
tc filter add
chain 20000
tc filter add
chain 21000
tc filter add
chain 30000
tc filter add dev
trap action goto
tc filter add dev

dev
dev
dev
dev
dev

dev

# swpl, trap ptp

swp0O ingress chain

swpO ingress chain

swpO ingress chain

swp0O ingress chain

swpO ingress chain

swpO ingress chain
swp0O ingress chain

chain 21000

0 pref 49152 flower skip sw action goto

10000 pref 49152

11000 pref 49152
12000 pref 49152
20000 pref 49152
21000 pref 49152

20000

flower skip sw action

flower

flower

flower

flower

skip sw
skip sw
skip sw

skip sw

goto
action goto
action goto
action goto

action goto

protocol 0x88f7 flower skip sw action

tc filter add dev swpO ingress chain 20000 protocol ip flower
skip sw dst ip 224.0.1.129 action trap action goto chain 21000
tc filter add dev tc filter add dev swp0O ingress chain 20000 protocol ip flower
skip sw dst ip 224.0.0.107 action trap action goto chain 21000

tc gdisc add dev swpl clsact

tc filter add
chain 10000
tc filter add
chain 11000
tc filter add
chain 12000
tc filter add
chain 20000
tc filter add
chain 21000
tc filter add
chain 30000
tc filter add dev
trap action goto
tc filter add dev

dev

dev

dev

dev

dev

dev

swpl ingress chain

swpl ingress chain

swpl ingress chain

swpl ingress chain

swpl ingress chain

swpl ingress chain

swpl ingress chain
chain 21000
swpl ingress chain

224.0.1.129 action trap action goto

tc filter add dev

swpl ingress chain

224.0.0.107 action trap action goto

# swp2, trap ptp

tc gdisc add dev swp2 clsact

tc filter add dev
chain 10000

tc filter add dev
chain 11000

tc filter add dev
chain 12000

tc filter add dev
chain 20000

tc filter add dev
chain 21000

REALTIMEEDGEUG

swp2 ingress chain

swp2 ingress chain

swp2 ingress chain

swp2 ingress chain

swp2 ingress chain

All information provided in this document is subject to legal disclaimers.

0 pref 49152 flower skip sw action goto

10000 pref 49152

11000 pref 49152

12000 pref 49152

20000 pref 49152

21000 pref 49152

20000

20000
chain
20000
chain

21000

21000

flower skip sw action
flower skip sw action
flower skip sw action
flower skip sw action

flower skip sw action

goto
goto
goto
goto

goto

protocol 0x88f7 flower skip sw action
protocol ip flower skip sw dst ip

protocol ip flower skip sw dst ip

0 pref 49152 flower skip sw action goto

10000 pref 49152
11000 pref 49152
12000 pref 49152

20000 pref 49152

flower skip sw action goto

flower skip sw action goto

flower skip sw action goto

flower skip sw action goto

© 2023 NXP B.V. All rights reserved.

User guide

Rev. 2.5 — 30 March 2023

135/332



NXP Semiconductors

REALTIMEEDGEUG

tc filter add dev
chain 30000

tc filter add dev
trap action goto

tc filter add dev

swp2 ingress chain

swp2 ingress chain
chain 21000
swp2 ingress chain

224.0.1.129 action trap action goto

tc filter add dev

swp2 ingress chain

224.0.0.107 action trap action goto

# swp3, trap ptp

tc gdisc add dev swp3 clsact

tc filter add
chain 10000
tc filter add
chain 11000
tc filter add
chain 12000
tc filter add
chain 20000
tc filter add
chain 21000
tc filter add
chain 30000
tc filter add dev
trap action goto
tc filter add dev

dev

dev

dev

dev

dev

dev

swp3 ingress chain

swp3 ingress chain

swp3 ingress chain

swp3 ingress chain

swp3 ingress chain

swp3 ingress chain

swp3 ingress chain
chain 21000
swp3 ingress chain

224.0.1.129 action trap action goto

tc filter add dev

swp3 ingress chain

224.0.0.107 action trap action goto

# ebtables,

route ptp,

ebtables --table broute
ebtables --table broute
ip-destination-port 320
ebtables --table broute
ip-destination-port 319

not bridge

--jump DROP

—-—jump DROP

21000

20000

20000
chain
20000
chain

Real-time Edge Software User Guide

pref 49152 flower skip sw action goto

protocol 0x88f7 flower skip sw action

protocol ip flower skip sw dst ip

21000

protocol ip flower skip sw dst ip

21000

0 pref 49152 flower skip sw action goto

10000
11000
12000
20000
21000
21000
21000
chain

21000
chain

pref 49152
pref 49152
pref 49152
pref 49152

pref 49152

flower skip sw action

flower

flower

flower

flower

skip sw
skip sw
skip sw

skip sw

goto
action goto
action goto
action goto

action goto

protocol 0x88f7 flower skip sw action

protocol ip flower skip sw dst ip

21000

protocol ip flower skip sw dst ip

21000

—-—append BROUTING --protocol 0x88F7 —--jump DROP
——append BROUTING --protocol 0x0800 --ip-protocol udp --

—-—append BROUTING --protocol 0x0800 --ip-protocol udp --

4.1.4.2.3 Qbv test setup for LS1028ARDB

The following figure describes the setup for gbv test on LS1028ARDB.

REALTIMEEDGEUG

All information provided in this document is subject to legal disclaimers.

© 2023 NXP B.V. All rights reserved.

User guide

Rev. 2.5 — 30 March 2023

136 /332



NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

Stream

(swp0) PO

LS1028ARDB (swpl) P1 Capture Test Center

(swp2) P2

(swp3) P3

TSN-Switch
ENETC

(eno3) enetc 3 P5 (swpb)

(eno2) enetc 2 P4 (swp4)

(enol) enetc 1

(eno0) enetc 0

PCI BUS

Figure 54. Qbv test

Reserve buffer for each queue on ingress and egress port to avoid resource depletion when Qbv gate is closed.

ingressport=0
egressport=1
for tc in {0..7}; do {
devlink sb tc bind set pci/0000:00:00.5/$ingressport sb 0 tc Stc type
ingress pool 0 th 3000
devlink sb tc bind set pci/0000:00:00.5/$ingressport sb 1 tc $tc type
ingress pool 0 th 10
devlink sb tc bind set pci/0000:00:00.5/Segressport sb 0 tc $tc type egress
pool 1 th 3000
devlink sb tc bind set pci/0000:00:00.5/Segressport sb 1 tc $tc type egress
pool 1 th 10
}

done

4.1.4.2.3.1 Tsntool usage

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.5 — 30 March 2023

1371332



NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

Closing basic gates

Use the set of commands below for basic gate closing.

echo “t0 00000000b 20000” > gbv0.txt

#Explaination:

# '"NUMBER' 8 t0

# 'GATE VALUE' : 00000000b
# 'TIME LONG' : 20000 ns
./tsntool

tsntool> verbose

tsntool> gbvset --device swpl --entryfile ./gbv0.txt
#Send one broadcast frame to swpO from TestCenter.
ethtool -S swpl

#Should not get any frame from swpl on TestCenter.
echo “t0 11111111b 20000” > gbv0.txt

tsntool> gbvset --device swpl --entryfile ./gbv0.txt
#Send one broadcast frame to swpO on TestCenter.
ethtool -S swpl

#Should get one frame from swpl on TestCenter.

Basetime test

For the basetime test, first get the current time in seconds:

#Get current time:
tsntool> ptptool -g -d /dev/ptpl

#add some seconds, for example user gets 200.666 time clock, then set 260.666 as
result

tsntool> gbvset —--device swpl --entryfile ./gbv0.txt —--basetime 260.666

#Send one broadcast frame to swpO on the TestCenter.
#Frame could not pass swpl until time offset.

Qbv performance test

Use the following commands for the QBv performance test:

cat > gbvb.txt << EOF

t0 11111111b 1000000

t1l 00000000b 1000000

EOF

gbvset --device swpl --entryfile gbv5.txt

#Send 1G rate stream to swp0 on TestCenter.
#The stream would get about half line rate from swp1.

Note: Each entry time must be larger than guard band, the guard band is set by "--maxsdu”, if it's not set, use
default 1518Bytes, the least entry time is (1518*8)/1G=12us.

4.1.4.2.3.2 Tc-taprio usage
LS1028ARDB supports the tarprio qdisc to setup Qbv either. Below is an example setup.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.5 — 30 March 2023

138 /332



NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

1. Enable the Qbv for swp1 port, set queue 1 gate open, set circle time to be 300 ps.

tc gdisc replace dev swpl parent root handle 100 taprio num tc 8 map O 1 2 3 4 5
6 7 \
queues 1@0 1@1 1@2 1@3 1@4 1@5 1@6 1@7 base-time 0 sched-entry S 02
300000 flags 0x2

Note: Since the hardware can only use PCP, DSCP or other methods to classify QoS, it cannot map QoS to
different hardware queues. mqprio is not implemented in the felix driver, so "map 0 12 34 5 6 7" in the tc-taprio
command is invalid.

Note: Tc-taprio uses default port max SDU(1518B) as guard band value. Each entry time must be larger than
guard band(1518*8/1G=12us).

2. Send one frame with PCP=1 in vlan tag to swp0 from TestCenter, so as to capture the frame from swp1.

3. Send one frame with PCP=2 in vlan tag to swp0 from TestCenter, gate is closed and the frame from swp1
cannot be captured.

4. Disable the Qbv for swp1 port as below:

tc gdisc del dev swpl parent root handle 100 taprio

41.4.2.4 Qbu

The figure below illustrates the setup for performing the Qbu test using the TSN switch.

PCP=0 Streaml1
SWPO
(swp0) PO
SWP1
LS1028ARDB (swpl) P1
swpz2] PCP=1 Stream2 Test Center
(swp2) P2
SWP3
(swp3) P3
TSN-Switch| N
ENETC \ .
Preemption
(eno3) enetc 3 P5 (swp5)
(eno2) enetc 2 P4 (swp4)
(enol) enetc 1 =X
MACO
(eno0) enetc 0
PCI BUS
Figure 55. Qbu test on switch
REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.
User guide Rev. 2.5 — 30 March 2023

139 /332



NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

4.1.4.2.4.1 Tsntool usage

1. Disable the Cut-through mode before enabling preemption on switch ports.

# tsntool> ctset --device swp3 --queue stat 0x0

2. Set queue 1 to be preemptable. There are two ways to set preemptable queues, users can choose tsntool
or ethtool to set it.

#tsntool command to set preemptable queues:
tsntool> gbuset --device swp3 —--preemptable 0x02

3. Send two streams from TestCenter, set packet size to be 1500 Byte and bandwidth to be 1G. Now, check
the number of additional mPackets transmitted by PMAC using the command below:

ethtool -S swp3 | grep tx merge fragments

4. Follow the steps below to perform Qbu combined with Qbv test.
Set queue 0 gate open 20 us, queue 1 gate open to 20 ps.

cat > gbv0.txt << EOF

t0 00000001b 200000

tl 00000010b 200000

EOF

gbvset --device swp3 --entryfile gbv0.txt

Send two streams from TestCenter. Observe that packets in queue 1 are preempted when gate 1 is closed.

4.1.4.2.4.2 Ethtool usage

1. Set queue 1 to be preemptable. There are two ways to set preemptable queues, users can choose tsntool
or ethtool to set it.

#ethtool command to set preemptable queues:
ethtool --set-frame-preemption swp3 preemptible-queues-mask 0x02 min-frag-
size 124

Explanation:
e preemptible-queues-mask: An 8-bit vector that specifies preemptable queues within the 8 priorities
(with bit-0 for priority-0 and bit-7 for priority-7).
* min-frag-size: specifies the least frame bytes that have been transmitted in the fragment. The
minimum non-final fragment size is 64, 128, 192, or 256 octets (include 4 Bytes fragment header).
2. Send two streams from TestCenter. Set packet size to be 1500 Bytes and bandwidth to be 1 G. Now, check
the number of additional mPackets transmitted by PMAC:

ethtool -S swp3 | grep tx merge fragments

3. Qbu combined with Qbv test.
Set queue 0 gate open 20 us, queue 1 gate open 20 ps.

tc gdisc replace dev swp3 parent root handle 100 taprio num tc 8 map 0 1 2 3
4 5 6 7\
queues 1@0 1Q@1 1@2 1@3 1Q@4 1@5 1@6 1Q@7 base-time 0 \
sched-entry S 01 200000 \
sched-entry S 02 200000 flags 0x2

Send two streams from TestCenter. Note that packets in queue 1 are preempted when gate 1 closed.

4. The felix switch port also supports preemption verify. Use two boards to test preemption verification on
swp0-3. Refer to "4.1.3.4.1 Preemption verify.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.5 — 30 March 2023

140/ 332



NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

4.1.4.2.5 Qci

The figure below illustrates the Qci test case setup.

Streaml

(swp0) PO N

LS1028ARDB (swpl) P1
swezStream1(Forward) Test Center

(swp2) P2

(swp3) P3

TSN-Switch
ENETC

(eno3) enetc 3 P5 (swp5)

(eno2) enetc 2 P4 (swp4)

(enol) enetc 1

(eno0) enetc 0

PCI BUS

Figure 56. Qci test case

4.1.4.2.5.1 Tsntool usage

Stream identification

Use the following commands for stream identification:

1. Set a stream to swp0 on TestCenter. Edit the stream, set the destination MAC as: 00:01:83:fe:12:01,
Vlan ID : 1

2. Add the MAC to MAC table on LS1028a. (This step is not needed if the mac is already learned on port)
bridge fdb add 00:01:83:fe:12:01 dev swpl vlan 1 master static

3. Use the destination MAC as: 00:01:83:fe:12:01, vlan ID : 1 to setthe stream identification on
LS1028A.

tsntool> cbstreamidset --device swpl --nullstreamid --index 1 --nulldmac
0x000183fel1201 --nullvid 1 --streamhandle 1

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.5 — 30 March 2023

141/ 332



NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

Explanation:

* device: set the device port which is the stream forwarded to. If the {destmac, VID} is already learned by
switch, switch will not care device port.

* nulltagged: switch only support nulltagged=1 mode, so there is no need to set it.
¢ nullvid: Use "bridge vlan show" to see the ingress VID of switch port.

tsntool> gcisfiset --device swpO --index 1 --streamhandle 1 --gateid 1 --
priority 0 —--flowmeterid 68

Explanation:
e device: can be any one of switch ports.
¢ index: value is the same as streamhandle of cbstreamidset.
* streamhandle: value is the same as streamhandle of cbstreamidset.
e flowmeterid: PSFP Policer id, ranges from 63 to 383.
4. Send one frame, then check the frames.

ethtool -S swpl
ethtool -S swp2

Only swpl can get the frame.
5. Use the following command to check and debug the stream identification status.

gcisfiget --device swp0O --index 1

Note: The parameter streamhandle is the same as index in stream filter set, we use streamhandle as
SFID to identify the stream, and use index to set stream filter table entry.

Stream gate control

1. Use the following commands for stream gate control:

echo "t0 1b 3 50000 200" > sgi.txt
tsntool> gcisgiset --device swpO --enable --index 1 --initgate 1 --initipv O
-—-gatelistfile sgi.txt --basetime 0x0

Explanation:
* 'device': can be any one of switch ports.
* 'index": gateid
* 'basetime’; It is the same as Qbv set.
2. Send one frame on TestCenter.

ethtool -S swpl

Note that the frame could pass, and green_prio_3 has increased.
3. Now run the following commands:

echo "t0 Ob 3 50000 200" > sgi.txtx
tsntool> gcisgiset --device swpO --enable --index 1 --initgate 1 --initipv O
--gatelistfile sgi.txt —--basetime 0x0

4. Next, send one frame on TestCenter.

ethtool -S swpl

Note that the frame could not pass.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.5 — 30 March 2023

142/ 332



NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

SFI maxSDU test

Use the following command to run this test:

tsntool> gcisfiset --device swp0 --index 1 --gateid 1 --priority 0 --flowmeterid
68 —-maxsdu 200

Now, send one frame (frame size > 200) on TestCenter.

ethtool -S swpl

Users can observe that the frame could not pass.

FMI test

Use the following set of commands for the FMI test.

1. Reserve buffer for each queue on ingress port to receive yellow frames(dp=1) in switch.

ingressport=0
for tc in {0..7}; do {

devlink sb tc bind set pci/0000:00:00.5/$ingressport sb 0 tc $tc type
ingress pool 0 th 3000

devlink sb tc bind set pci/0000:00:00.5/$ingressport sb 1 tc $tc type
ingress pool 0 th 10
}

done

2. Run the command:

tsntool> gcifmiset --device swp0O --index 68 —--cir 100000 --cbs 4000 --ebs
4000 --eir 100000
Note:
* The 'device' in above command can be any one of the switch ports.
e The index of gcifmiset must be the same as flowmeterid of gcisfiset.
3. Now, send one stream (rate = 100M) on TestCenter.

ethtool -S swp0

Note that all frames pass and get all green frames.
4. Now, send one stream (rate = 200M) on TestCenter.

ethtool -S swpO

Observe that all frames pass and get green and yellow frames.
5. Send one stream (rate = 300M) on TestCenter.

ethtool -S swpO

Note that not all frames could pass and get green, yellow, and red frames.
6. Send one yellow stream (rate = 100M) on TestCenter.

ethtool -S swpO0

All frames pass and get all yellow frames.
7. Send one yellow stream (rate = 200M) on TestCenter.

ethtool -S swpO

Note that not all frames could pass and get yellow and red frames.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.5 — 30 March 2023

143/ 332



NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

8. Test cf mode.

tsntool> gcifmiset --device swp0O --index 68 —--cir 100000 --cbs 4000 --ebs
4000 --eir 100000 --cf

9. Send one yellow stream (rate = 200M) on TestCenter.

ethtool -S swpO

All frames pass and get all yellow frames (use CIR as well as EIR).
10. Send one yellow stream (rate = 300M) on TestCenter.

ethtool -S swp0

Note that not all frames could pass and get yellow and red frames.

Port-based SFI set

LS1028A switch can work on port-based PSFP set. This implies that when a null-identified stream is received
on an ingress port, switch will use the port, default SFI.

Below example tests no streamhandle in qcisfiset to set a port, default SFI.
1. Use SFID 2 to set swp0 port as default SFI.

tsntool> gcisfiset --device swpO --index 2 --gateid 1 --flowmeterid 68

After the port default SFI set, any stream sent from swp0 port will do the gate 1 and flowmeter 68 policy.

2. Set stream gate control.

echo "t0 1b 4 50000 200" > sgi.txt
tsntool> gcisgiset --device swp0O --enable --index 1 --initgate 1 --initipv 0 --
gatelistfile sgi.txt

3. Send any stream to swpO.

ethtool -S swpl

Note that the frame could pass, and green_prio_4 has increased.

4.1.4.2.5.2 Tc-flower usage

The figure below illustrates the TC-flower-based Qci test case setup.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.5 — 30 March 2023

144/ 332



NXP Semiconductors

REALTIMEEDGEUG

Real-time Edge Software User Guide

LS1028ARDB

ENETC
(eno3) enetc 3

(eno2) gnetc 2
(enol) enetc 1
(eno0) enetc O

Streaml
(swp0) PO
(swpl) P1 Test Center
(swp2) P2
(swp3) P3
- m 1]
TSN-Switch =
o
3
P5 (swp5) =
3
P4 (swp4) g
=
el

PCl BUS

Figure 57. TC-flower based Qci test case

1. Add the MAC "CA:9C:00:BC:6D:68" in MAC table by using "bridge fdb" command if it is not learned.

bridge fdb add dev swp3 CA:9C:00:BC:6D:68 vlan 1 master static

2. Register chains on ingress port swp0. Refer to Section 4.4.2.

tc gdisc add dev swp0O clsact

tc filter add dev swpO
chain 10000

tc filter add dev swpO
chain 11000

tc filter add dev swpO
chain 12000

tc filter add dev swpO
chain 20000

tc filter add dev swpO
chain 21000

tc filter add dev swpO
chain 30000

ingress
ingress
ingress
ingress
ingress

ingress

chain 0 pref 49152 flower skip sw action goto

chain 10000 pref 49152 flower skip sw action goto
chain 11000 pref 49152 flower skip sw action goto
chain 12000 pref 49152 flower skip sw action goto
chain 20000 pref 49152 flower skip sw action goto

chain 21000 pref 49152 flower skip sw action goto

3. Set Qci on ingress port swp0.

REALTIMEEDGEUG

All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide

Rev. 2.5 — 30 March 2023
145/ 332



NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

a) Use the following commands to set Qci gate.

tc filter add dev swpO ingress chain 30000 protocol 802.1Q flower skip sw
dst mac CA:9C:00:BC:6D:68 vlan id 1 action gate index 1 base-time 0 sched-entry
CLOSE 6000 -1 -1

b). Use the following commands to set Qci flow meter.

tc filter add dev swpO ingress chain 30000 protocol 802.1Q flower skip sw
dst mac CA:9C:00:BC:6D:68 vlan id 1 action police index 1 rate 10Mbit burst
10000 conform-exceed drop/ok

c). Use the following commands to set Qci SFI priority.

tc filter add dev swpO ingress chain 30000 protocol 802.1Q flower skip sw
dst mac CA:9C:00:BC:6D:68 vlan id 1 vlan prio 1 action gate index 1 base-time 0
sched-entry CLOSE 6000 -1 -1

d). Use the following commands to set both gate and flow meter.

tc filter add dev swp0O ingress chain 30000 protocol 802.1Q flower skip sw

dst mac CA:9C:00:BC:6D:68 vlan id 1 action gate index 1 base-time 0 sched-entry
OPEN 6000 2 -1 action police index 1 rate 10Mbit burst 10000 conform-exceed
drop/ok

3. Send a stream from TestCenter, set the stream destination mac as CA:9C:00:BC:6D: 68, set vid=1 and
vlan prio=1 in the vlan tag

4. Using "tcpdump -i eno0 -w enoO.pcap" to receive the stream on eno0, check if packets are received.

5. Use the following commands to delete a stream rule.

tc -s filter show dev swp0O ingress chain 30000
tc filter del dev swpO ingress chain 30000 pref 49152

Note:

» Each stream can only be added only once. If a user wants to update it, delete the rule and add a new one.
* MAC and VID of stream must have been learned in switch MAC table if the stream is required to be added.
* Qci gate cycle time is expected to be more than 5 us.

* Qci flow meter can only set cir and cbs now, and the policers are shared with ACL VCAPs.

41.4.2.6 Qav

The below figure illustrates the Qav test case setup.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.5 — 30 March 2023

146 / 332



NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

PCP=1 Streaml
SWPOJ A
(swp0) PO N
swp1] 4 PCP=2 Stream2
LS1028ARDB (swpl) P1 '< Test Center
swp2 N
(swp2) P2
SWP3 Capture
(swp3) P3
TSN-Switch
ENETC
(eno3) enetc 3 P5 (swp5)
(eno2) enetc 2 P4 (swp4)
(enol) enetc 1 =X
MACO
(eno0) enetc 0
PCI BUS

Figure 58. Qav test case

4.1.4.2.6.1 Tsntool usage

1. Set the percentage of two traffic classes:

tsntool> ctset --device swp0 --queue stat 0x0

tsntool> ctset --device swpl --queue stat 0x0
tsntool> ctset --device swp2 --queue stat 0x0
tsntool> cbsset --device swp2 --tc 1 --percentage 20
tsntool> cbsset --device swp2 --tc 2 —--percentage 40

2. Send two streams from TestCenter, then check the frames count.

ethtool -S swp2

Note that the frame count of queue1 is half of queue2.
Note: Stream rate must lager than bandwidth limited of queue.
3. Capture frames on swp2 on TestCenter.
# The Get Frame sequence is: (PCP=1), (PCP=2), (PCP=2), (PCP=1), (PCP=2),
(PCP=2), ..

4.1.4.2.6.2 Tc-cbs usage

LS1028A supports the CBS qdisc to setup Credit-based Shaper. The below commands set CBS with 20 Mbit/s
for queue 1 and 40 Mbit/s for queue 2.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.5 — 30 March 2023

147/ 332



NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

1. Set the cbs of two traffic classes:

tc gdisc add dev swp2 root handle 1: mgprio num tc 8 map 0 1 2 3 4 5 6 7 \
queues 1@0 1@1 1@2 1@3 1@4 1@5 1@6 1@7 hw O

tc gdisc replace dev swp2 parent 1:2 cbs locredit -1470 hicredit 30 \
sendslope -980000 idleslope 20000 offload 1

tc gdisc replace dev swp2 parent 1:3 cbs locredit -1440 hicredit 60 \
sendslope -960000 idleslope 40000 offload 1

2. Send one stream with PCP=1 from TestCenter, we can get the stream bandwith is 20 Mbit/s from swp2.

3. Send two streams from TestCenter, then check the frames count.

ethtool -S swp2

Note: The frame count of queue1 is half of queue2.

4. Delete the cbs rules.

tc gdisc del dev swp2 parent 1:2 cbs
tc gdisc del dev swp2 parent 1:3 cbs

4.1.4.2.7 802.1CB

The following figure describes the test setup for the seamless redundancy test case.

(swp0) PO > {swp0) PO Board B
sw SW|
Board A . 1 : A P
]
LS1028ARDB (swpl)}P1 > fawpl) P1 LS1028ARDB
1
(spr]}PQ {gwp2) P2
1)
(swp3) P3 (swp3) P3
TSN-Switch TSN-Switch
ENETC ENETC
(eno3) enetc 3 P5 (swp5) P5 (swp5) (eno3) enetc 3
(eno2) enetc 2 P4 (swp4) VA P4 (swp4) (eno2) enetc 2
(enol) enetc 1 =X > (enol) enetc 1
(eno0) enetc 0 (eno0) enetc 0
MACO P eeg—— MACO
PCI BUS Test Center PCI BUS

Figure 59. Seamless redundancy test

4.1.4.2.7.1 Sequence Generator test

Use the following set of commands for the 'Sequence Generator' test.

1. Configure switch ports to be forward mode.
On board A:

ifconfig eno2 up

ip link add name switch type bridge vlan filtering 1
ip link set switch up

ip link set swpO master switch && ip link set swpO up

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.5 — 30 March 2023

148 / 332



NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

ip link set swpl up

ip link set swp2 master switch && ip link set swp2 up
ip link set swp3 master switch && ip link set swp3 up
bridge vlan add dev swpO vid 1 pvid

bridge vlan add dev swp2 vid 1 pvid

bridge vlan add dev swp3 vid 1 pvid

On board B

ifconfig eno2 up

ip link add name switch type bridge vlan filtering
ip link set switch up

ip link set swp0O master switch && ip link set swpO up
ip link set swpl master switch && ip link set swpl up
ip link set swp2 master switch && ip link set swp2 up
ip link set swp3 master switch && ip link set swp3 up
bridge vlan add dev swpO vid 1 pvid

bridge vlan add dev swpl vid 1 pvid

bridge vlan add dev swp2 vid 1 pvid

bridge vlan add dev swp3 vid 1 pvid

=

2. On board A, run the commands:

bridge fdb add 7E:A8:8C:9B:41:DD dev swp2 vlan 1 master static

tsntool> cbstreamidset --device swpO --index 1 --nullstreamid --nulldmac
0x7EA88C9B41DD --nullvid 1 --streamhandle 1

tsntool> cbgen --device swp3 --index 1 --iport mask 0x08 --split mask 0x07 --
seq len 16 --seq num 2048

In the command above,

¢ device: can be any one of switch ports.

¢ index: value is the same as streamhandle of cbstreamidset.

Send a stream from TestCenter to swp3 of board A, set destination mac as 7E:A8:8C:9B:41:DD.

4. Capture frames on swp2 on TestCenter.
We can get frames from swp2 on TestCenter, each frame adds the sequence number: 23450801,
23450802, 23450803...

5. Capture frames from swp2 of board B on TestCenter, we can get the same frames.

W

4.1.4.2.7.2 Sequence Recover test

Use the following steps for the Sequence Recover test:

1. On board B, run the following commands:

bridge fdb add 7E:A8:8C:9B:41:DD dev swpO vlan 1 master static

tsntool> cbstreamidset --device swp2 --index 1 --nullstreamid --nulldmac
0x7EA88C9B41DD --nullvid 1 --streamhandle 1
tsntool> cbrec --device swp0O --index 1 --seq len 16 --his len 31 --

rtag pop en

In the cbrec command mentioned above:
e device: can be any one of switch ports.
¢ index: value is the same as streamhandle of cbstreamidset
2. Send a frame from TestCenter to swp3 of board A, set dest mac to be 7E:A8:8C:9B:41:DD.
3. Capture frames from swp2 of board B on TestCenter, we can get only one frame without sequence tag.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.5 — 30 March 2023

149/ 332



NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

4.1.4.2.8 TSN stream identification

TSN module uses QoS class to identify and control streams. There are three ways to identify the stream to
different QoS class. These are explained in the following sections.

4.1.4.2.8.1 Stream identification based on PCP value of Vlan tag

The default QoS class is based on PCP of Vlan tag for a frame. If there is no Vlan tag for a frame, the default
QoS class is 0.

Set the PCP value on TestCenter.

General Frame Groups RxPort Preview

Preview:
Pya [] showallFields [] Allow Invalid Packets
Hame Value
Frames
=] Frame
Create new Frame > :
[+ EthernetIl

Save Frame as

Template... - Destination MAC 00:00:01:00:00:01
Manage Frame - Source MAC 00:10:94:00:00:02
Templates... - Vians

Actions B \flan

i Type {hex}l 8100
Link Modifiers/VFDs.. - CF1 (i) 0
Insert Modifier.. LD Gnt) 100
- EtherType (hex) <auto> Internet IF
Others
[ IPv4 Header

Expand all

Collapse all
Hex Editor
Q000 FB B B BR BR BR BR D& 00 00 01 00 00 01 00 10 uUUUUUUEi ........
0010: 94 00 00 02 &1 OO 64 DB 00 45 OO OO 140000 1 . . . L B
Q020 0000 FF FDr33 34 CO BR M1 02 CO 00 00 M ..nyII u. A, ..

oK Cancel
Figure 60. Using PCP value of Vlan tag
4.1.4.2.8.2 Based on DSCP of ToS tag
Use the below steps to identify stream based on DSCP value of ToS tag.
REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.5 — 30 March 2023
150/ 332



NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

1. Map the DSCP value to a specific QoS class using the command below:

tsntool> dscpset --device swpO --index 1 --cos 1 —--dpl O

Explanation:
* index: DSCP value of stream, 0-63.
* cos: QoS class which is mapped to.
e dpl: Drop level which is mapped to.
2. Set the DSCP value on TestCenter. DSCP value is the upper six bits of ToS in IP header, set the DSCP
value on TestCenter as shown in the following figure.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.5 — 30 March 2023

151 /332



NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

General Frame Groups RxPort Preview

Preview:
Ethernetll [] showallFields [] allowInvalid Packes

Hame Value
Frames

=  Frame
Create new Frame = ;

[+ EthernetIl
Save Frame as
Template... =~ TPw4 Header
Manage Frame o Tos,Diffsery tos (0x04)
Templates... - Total length (int) <auto> calculated
i - Time to live {int) 255
Actions
- Protocol (int) <auto = Experimental

Add Header(s)... . Source 192.85.1.7
Link Modifiers/VFDs.. . Destination 192.0.0.1

Insert Modifier.. | Header Options

- Gateway 192.85.1.1

Others
Bxpand All
Collapse Al

Hex Editor

0000 65 55 55 BE B5 55 BR DB 00 00 01 OO0
0010: 94 00 00 02 &1 00 20 64 0F 00 45 [
0020 00 00 FF FD 39 90 CO 55 01 02 CO 00

=

oo o0 UDUUUUUE. ..
oo14ooo0 ... . d..EM. ...
iR T T N T

=B

Mavigatestreamblods: | 14 | o of 1 | B 1] oK Cancel

Figure 61. Setting DSCP value on TestCenter

4.1.4.2.8.3 Based on qci stream identification

The following steps describe how to use qci to identify the stream and set it to a QoS class.

1. Identify a stream.

tsntool> cbstreamidset --device swpl --nullstreamid --nulldmac 0x000183fel201
--nullvid 1 --streamhandle 1

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.5 — 30 March 2023

152 /332



NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

tsntool> gcisfiset --device swpO --index 1 --gateid 1 --flowmeterid 68

2. Setto Qos class 3 by using stream gate control.

echo "t0 1b 3 50000 200" > sgi.txt
tsntool> gcisgiset --device swpO --enable --index 1 --initgate 1 --initipv O
--gatelistfile sgi.txt

Note: The Qci-based identity stream can only be used on both the ingress and egress are bridge ports.
The flow injected or extracted through the CPU port cannot be configured for Qci.

4.2 GenAVB/TSN stack

4.2.1 Introduction

The GenAVB/TSN Stack provides advanced implementation for Audio Video Bridging (AVB) and Time-Sensitive
Networking (TSN) functionalities on NXP SoCs and hardware platforms, for both Endpoints and Bridges.

This section provides information on how to set up and evaluate the GenAVB/TSN Stack. In that context, it
provides information on supported SoCs and boards, compile time software package configuration, and runtime
configuration settings.

The GenAVB/TSN stack supports the following roles:
* TSN Endpoint

TSN Endpoint functionality requires TSN hardware support, available on i.MX 93, i.MX 8M Plus, and i.MX 8DXL
SoCs.

* AVB/TSN Bridge
AVB/TSN Bridge functionality requires AVB/TSN hardware support, available in LS1028A SoC.
* AVB Endpoint

AVB Endpoint functionality is provided in i.MX 93, i.MX 8M Plus, i.MX 8DXL, i.MX 8M Mini, and i.MX 6ULL SoCs
(using hardware support if available).

4.2.1.1 gPTP Stack

The gPTP stack implements IEEE 802.1AS-2020 standard, and supports both time-aware Endpoint and
Bridge systems. The stack runs fully in userspace, using Linux socket APIs for packet transmit, receive, and
timestamping. Linux clock APIs are used for clock adjustment. Configuration files are used to configure the
stack at initialization time and extensive logging is available at runtime.

4.2.1.2 SRP stack

The SRP stack implements MRP, MVRP, and MSRP defined in IEEE 802.1Q-2018, sections 10, 11, and 35,
and supports both Endpoint and Bridge systems. The stack runs fully in userspace, using Linux socket APIs
for packet transmit and receive. Linux tc and bridge netlink APls are used to update Multicast FDB entries
and FQTSS Credit Based Shaper (CBS) configuration. Configuration files are used to configure the stack at
initialization time and extensive logging is available at runtime.

4.2.1.3 AVTP Stack

The AVTP stack implements IEEE 1722-2016 standard, supporting both AVB Talker/Listener end stations and
multiple Audio/Video stream formats. The stack runs in userspace, in combination with a Linux AVB kernel
module, providing low latency network packet processing and AVTP packet encapsulation/decapsulation.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.5 — 30 March 2023

153 /332



NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

The stack provides an API for external media applications through a run time library. The API allows external
applications to act as sources of AVTP Talker streams/sinks of AVTP Listener streams.

4.2.1.4 AVDECC/Milan Stack

The AVDECC stack implements IEEE 1722.1-2013 standard, and supports Talker, Listener and Controller
entities. The stack also implements Milan “Discovery, connection and control specification for talkers and
listeners Revision 1.1a” standard, which can be enabled at initialization time. AVDECC entity definitions are
loaded from the filesystem and can be created based on a C header file definition. The stack provides an API
for external media applications through a run time library.

4.2.1.5 MAAP Stack

The MAAP stack implements IEEE 1722-2016, Annex B. The stack provides an API for external media
applications through a run time library, but it mainly serves the AVDECC/Milan stack.

4.2.1.6 Supported configurations

GenAVB/TSN stack currently supports the following boards and the associated roles:

* LS1028ARDB: gPTP Time-aware Bridge and SRP Bridge
i.MX 93 EVK: gPTP Time-aware Endpoint station, TSN Endpoint, and AVB Endpoint stack/applications.

i.MX 8M Plus LPDDR4 EVK: gPTP Time-aware Endpoint station, TSN Endpoint, and AVB Endpoint stack/
applications.

i.MX 8M Mini LPDDR4 EVK: gPTP Time-aware Endpoint station and AVB Endpoint stack/applications.
i.MX 6ULL 14x14 EVK: gPTP Time-aware Endpoint station and AVB Endpoint stack/applications.

i.MX 8DXL LPDDR4 EVK: gPTP Time-aware Endpoint station, TSN Endpoint and AVB Endpoint stack/
applications

The TSN stack supports and is enabled in the following Yocto Real-time Edge machines:

* imx93evk

e imx8mp-Ipddr4-evk
Is1028ardb
imx8dxIb0-lpddr4-evk

The AVB Endpoint stack supports and is enabled in the following Yocto Real-time Edge machines:

imx6ull14x14evk

e imx8mm-lpddr4-evk
imx8mp-Ipddr4-evk
imx8dxIb0-lpddr4-evk

Follow Real-time Edge Software Yocto Project to get the code and build images for these platforms.

4.2.1.7 AVB endpoint example applications

The stack provides extensive example applications for media playback/capture and server. Please refer to
“GenAVB/TSN Stack Evaluation User Guide” for detailed information. Refer Section 1.4.

4.2.1.8 TSN Endpoint example application

The TSN example application provides example code and re-usable middleware exercising the GenAVB/TSN
API. It is used to exercise and verify the real time behavior of the local system as well as TSN properties of the
network between endpoints.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.5 — 30 March 2023

154 /332



NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

application cycle time

= transfer time application time transfer time
= 10 device 1 :

control loop

EIO device 2
control loop

icontroller

control loop

network cycle time .

Figure 62. TSN application cycle

The TSN example application implements a control loop similar to industrial use cases requiring cyclic
isochronous exchanges over the network.

The TSN endpoints run their application synchronized to a common time grid in the same gPTP domain so that
they can send and receive network traffic in a cyclic isochronous pattern (the application cycle time is equal and
synchronous to the network cycle time as shown in above figure). Currently the cycle is configured with a period
of 2ms, and periods as low as 1ms have been confirmed to work as well. When the application is scheduled,
frames from other endpoints are ready to be read and at the end of the application time frames are sent to other
endpoints.

2ms
‘+-—»

Controller l l l jv l l »t
10 ¥ h 4 ¥ ¥ h ¥ >t
ID A J \ 4 k4 A J \ 4 A J - _t_

+—»

2 ms
— Task scheduling
Figure 63. TSN application scheduling

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.5 — 30 March 2023

155/332



NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

As shown in the figure above, the controller and the IO devices are scheduled with a half cycle offset in order to
reduce the processing latency.

The time sensitive traffic is layer 2 multicast with VLAN header and proprietary EtherType. Its priority is defined
using the PCP field of the VLAN header.

In addition, the TSN application provides detailed logs and time sensitive traffic timing statistics (based on
hardware timestamping of packets) which allow characterization of an entire real time distributed system.

Finally, a OPCUA server is implemented and offer the possibility to browse and retrieve the TSN application
statistics exposed as OPCUA objects. The OPCUA server runs over TCP and allows access to any OPCUA
client.

4.2.2 GenAVBI/TSN stack start/stop

GenAVB/TSN stack can be manually started/stopped at runtime by using the commands listed below.

1. To start the TSN stack (if not already started) and start/stop the demo applications:

# avb.sh <start|stop>
2. To just start/stop the TSN stack (gPTP and SRP) use:

# fgptp.sh <start|stop>

3. To restart/stop all GenAVB/TSN processes, TSN stack, and demo applications:

avb.sh restart all/stop all

4. Real-time Edge also provides a systemd service to run genavb-tsn stack as a system service.

# systemctl enable genavb-tsn
# systemctl start genavb-tsn

5. The below commands can be used to stop or disable this service.

# systemctl stop genavb-tsn
# systemctl disable genavb-tsn

4.2.3 Use cases description

4.2.3.1 AVB endpoint

AVB endpoint use cases and example applications are described in the GenAVB/TSN Stack AVB Endpoint User
Guide located in Real Time Edge Documentation.

4.2.3.2 gPTP Bridge

LS1028ARDB can be used as a generic time-aware bridge, connected to other time-aware end stations or
bridges.

By default, LS1028ARDB does not forward packets if no bridge interface is configured under Linux. Enabling
bridge interface is dependent on the board used. For example, how to configure bridge interface on
LS1028ARDB is described in section Section 4.1.4.2.1.

Once gPTP stack is started, logs can be displayed with the following command:

# tail -f /var/log/fgptp-br

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.5 — 30 March 2023

156 / 332


https://www.nxp.com/design/software/development-software/real-time-edge-software:REALTIME-EDGE-SOFTWARE#documentation

NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

In this log file, one can observe which ports are connected, which ports are currently communicating a
synchronized time and what is the role of the port in the time-aware system.

If a port of the bridge is connected to another port capable of communicating a synchronized time, the following
log should appear for each enabled gPTP domain:

gptp _stats dump : Port(l) domain(0,0): Role: Master Link: Up asCapable: Yes
neighborGptpCapable: Yes DelayMechanism: P2P

gptp stats dump : Port(l) domain(l,20): Role: Master Link: Up asCapable: Yes
neighborGptpCapable: Yes DelayMechanism: COMMON P2P

Role status can also take the value Slave depending on parameters described in section Section 4.2.4.2.2.

If a port is not connected, Link status takes the value Down.
If a port is not capable of communicating a synchronized time, AS_Capable status takes the value No.

If a port is using the Common Mean Link Delay Service (CMLDS) the DelayMechanism takes the value
COMMON_P2P, else the value P2P.

For further details about gPTP logs, refer to section Section 4.2.5.2.

4.2.3.3 gPTP Endpoint

Once gPTP stack is started, logs can be displayed using the following command:

# tail -f /var/log/fgptp

In this log file, one can observe the role of the port in the time-aware system.

If the port of the endpoint is connected to another port capable of communicating a synchronized time, the
following log should appear for each gPTP domain:

gptp stats dump : Port(0) domain(0,0): Role: Slave Link: Up AS Capable: Yes
neighborGptpCapable: Yes DelayMechanism: P2P

gptp stats dump : Port(0) domain(l,20): Role: Slave Link: Up AS Capable: Yes
neighborGptpCapable: Yes DelayMechanism: COMMON P2P

Role status can also take the value Master depending on Grandmaster Parameters described in section
Section 4.2.4.2.2.

If a port is not connected, Link status takes the value Down.
If a port is not capable of communicating a synchronized time, AS_Capable status takes the value No.

If a port is using the Common Mean Link Delay Service (CMLDS) the DelayMechanism takes the value
COMMON_P2P, else the value P2P.

For further details about gPTP logs, refer to section Section 4.2.5.1.

4.2.3.4 gPTP multiple domains

This use case illustrates two gPTP domains co-existing independently on a TSN network, over different
802.1AS-2020 Time-aware systems.

The first domain uses the PTP timescale whereas the second domain uses the ARB (arbitrary) timescale.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.5 — 30 March 2023

157 /332



NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

4.2.3.4.1 Requirements

The reference setup for gPTP multiple domains is made of:

* Two gPTP endpoints (i.MX 8MPlus LPDDR4 EVK or i.MX 93 EVK connected through TSN interface eth1l:
dwmac or i.MX 8DXL LPDDR4 EVK connected through TSN interface eth0): EP1-DUT and EP2-DUT
* One gPTP bridge (LS1028ARDB): BR-DUT

m use Controller
uss i.MX TSN Endpoint
| MXTSN Endpoin

USB
| uss
Ethernet m

10 Device 1

i.MX TSN Endpoint

Ethernet

10 Device 2

p
[ we |

S |
A

Figure 64. gPTP multiple domains setup

4.2.3.4.2 gPTP Stack Configuration

The gPTP stack can enable or disable each domain independently through a configuration file.

The default configuration file (for example: /etc/genavb/fgptp.cfqg) is for general gPTP parameters as
well as domain 0 parameters. To enable other domains, new files must be created with ‘-N’ appended to the
filename (for example: /etc/genavb/fgptp.cfg-1 for domain 1).

For gPTP multiple domains, all devices configuration should be changed to support two domains. The first
domain (domain 0) must be assigned domain number 0. The second domain (domain 1) is assigned domain
number 20.

BR-DUT is defined as the GrandMaster for the first domain (domain 0). EP1-DUT is defined as the
GrandMaster for the second domain (domain 1).

On EP1-DUT, edit the file /etc/genavb/fgptp.cfg-1 and change domain number and priorityl
parameters as follows:

domain number = 20

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. Al rights reserved.

User guide Rev. 2.5 — 30 March 2023

158 / 332



NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

priorityl = 245

On EP2-DUT, edit the file /etc/genavb/fgptp.cfg-1 and change domain number parameter as follows:

domain number = 20

On BR-DUT, edit the file /etc/genavb/fgptp-br.cfg-1 and change domain number parameter as
follows:

domain number = 20

Note:

* On Domain 0, BR-DUT is the GrandMaster with the highest priority (lowest value) among all devices in the
domain (BR-DUT priority1=246, EP1-DUT and EP2-DUT priority1=248).

* On Domain 1, EP1-DUT is the GrandMaster with the highest priority (lowest value) among all devices in the
domain (BR-DUT priority1=246, EP1-DUT priority1=245 and EP2-DUT priority1=248).

* By default,
— All ports on Domain 0 are configured to use the per instance peer delay mechanism

(DelayMechanism=P2P).

— All ports on Domain 1 are configured to use the CMLDS (DelayMechanism=COMMON_P2P).

4.2.3.4.3 Evaluation instructions

Test Procedure

1. Start gPTP stack manually on all DUTs by issuing the command below:

# tsn.sh start

2. Wait for 30 s.
3. Check gPTP stack logs on BR-DUT (/var/log/fgptp-br), EP1-DUT and EP2-DUT (/var/log/fgptp)

Verification:
Check the following:
* After Step 3, the log on EP1-DUT reports Port 0 as synchronized on domain 0 only:

Port (0) domain (0, 0) SYNCHRONIZED - synchronization time (ms): 250

» After Step 3, the log on EP2-DUT reports Port 0 as synchronized on all domains :

Port (0) domain (0, 0) SYNCHRONIZED - synchronization time (ms): 250
Port (0) domain(l, 20) SYNCHRONIZED - synchronization time (ms): 250

 After Step 3, the log on BR-DUT reports Port 0 as synchronized on domain 1 only:

Port (0) domain(l, 20) SYNCHRONIZED - synchronization time (ms): 250

* The “Initial adjustment" message should be reported only once per synchronized domains (domain 0 for EP1-
DUT and EP2-DUT, domain 1 for EP2-DUT and BR-DUT):

domain (0,0) Initial Adjustment, offset: 125486471315484 ns, freq adj: 32764

domain(1,20) Initial Adjustment, offset: 125455671332661 ns, freq adj: 16384

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.5 — 30 March 2023

159 /332



NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

Once synchronization is achieved, all the reported clock offset average values should be stable within -50 to
+50 ns range ( domain 0 for EP1-DUT and EP2-DUT, domain 1 for EP2-DUT and BR-DUT):

domain (0,0) Offset between GM and local clock (ns): min -45 avg 0 max 35

domain (1,20) Offset between GM and local clock (ns): min -66 avg 0 max 15

4.2.3.5 AVB Bridge
This use case illustrates an AVB Bridge (mixing gPTP and SRP stack) with other AVB Endpoints

4.2.3.5.1 Requirements

e Two AVB endpoints
* One AVB bridge (LS1028ARDB)

i.MX AVB Endpoint
(EP1-DUT)

Ethernet

151028 (BR-DUT)

AVB Bridge

Ethernet

i.MX AVB endpoint
(EP2-DUT)

Ethernet

Figure 65. AVB Bridge setup

4.2.3.5.2 AVB network configuration

This topic describes AVB configuration.

4.2.3.5.2.1 Priority to traffic class mapping

The priority to traffic class mapping used for the bridge comes directly from the recommended mapping for two
SR classes in IEEE Std 802.1Q-2018 Table 34-1:

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.5 — 30 March 2023

160/ 332



NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

Table 52. Priority to traffic class mapping
Priority 0 1 2 3 4 5 6 7

Traffic Class 1 0 6 7 2 3 4 5

The Bridge should be configured to forward VLAN tagged packets based on their PCP values according to this
mapping, and should configure credit-based shapers on the two highest traffic classes (traffic class 6 and traffic
class 7) for SR class A (priority 3) and SR class B (priority 2) traffic.

Refer to Section 4.2.3.5.3 for the bridge PCP mapping configuration.

4.2.3.5.2.2 FQTSS Credit Based Shapers configuration

The SRP bridge stack relies on preconfigured gdiscs with specific handles to configure the hardware's credit-
based shapers, on the two hardware queues with the two highest traffic classes, for every port. Thus, an mqgprio
qdisc with 8 traffic classes should be configured with the above priority to traffic class mapping and credit-based
shapers qdiscs with the following handles: 0x9006 for CBS on traffic class 6 and 0x9007 for CBS on traffic class
7.

Refer to Section 4.2.3.5.3 for the bridge qdisc configuration.

4.2.3.5.2.3 Linux Best Effort Traffic classification

Linux classifies egress packets, for assignment to traffic classes, based on skb priorities. To avoid assigning
egress best effort traffic to traffic classes with configured credit-based shapers, the skb priorities should be
rewritten so no packets with skb priorities 2 and 3 are present on egress. Furthermore, the bridge code is using
the skb priority as the traffic class for packets injected from the CPU port, making packets with skb priorities 6
and 7 end up in the hardware's traffic classes 6 and 7 on the external ports which in turn harms traffic shaping.
Again, forcing a remapping of these skb priorities avoids this scenario.

Refer to Section 4.2.3.5.3 for the skb priorities remapping configuration.

4.2.3.5.2.4 Bridge VLAN awareness

A proper AVB bridge functioning requires that the switch forward AVB streams (with multicast destination
MAC addresses and specific VLAN ID) only to ports configured in the Forwarding DataBase (FDB). For that,
we should enable VLAN filtering on bridge level, add the desired VLAN ID to all ports and disable the default
multicast flooding configuration (at least for the two highest priority queues) on all the external ports.

Refer to Section 4.2.3.5.3 for the bridge vlan configuration.

4.2.3.5.3 Setup preparation

This has two steps described in the following sections.

4.2.3.5.3.1 Bridge configuration

This configuration needs to be done after each boot. The user can either enter these commands manually or
execute a ready to use script provided by GenAVB/TSN stack

1. Execute the automated configuration script and start the AVB bridge stack:

# avb-bridge.sh

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.5 — 30 March 2023

161 /332



NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

# avb.sh start

2. Alternatively, the bridge can be manually configured using the following commands:
a. Setup bridge forwarding:

ip link set dev eno2 up

ip link add name br0 type bridge
ip link set br0 up

ip link set master br0 swpO up
ip link set master br0 swpl up
ip link set master br0 swp2 up
ip link set master br0 swp3 up

S o S S e e e

b. Establish the PCP to QoS mapping for every port on the bridge:

#
pcp_to_qos_map:([O]:":L" [1]:"O" [2]:"6" [3]:"7" [4]:"2" [5]:"3" [6]:"4" [7]="5");
\
avb ports="swp0 swpl swp2 swp3"; \
for port in $avb ports; do \
for (( pcp=0; pcp < 8; ++pcp )); do \
tsntool pcpmap -d Sport -p Spcp -e 0 -c S${pcp to gos map[S$pcpl} -1 0; \
tsntool pcpmap -d Sport -p $pcp -e 1 -c ${pcp to gos map[Spcpl} -1 1; \
done ;\
done

c. Configure the qdiscs and shapers, with the correct handles, for every external port:

#
pCp_tO_qOS_map=([O]="1" [1]="O" [2]="6" [3]="7" [4]="2" [5]="3" [6]="4" [7]:"5");
\
avb ports="swp0 swpl swp2 swp3"; \
for port in $avb ports; do \
tc gdisc add dev $port root handle 100: mgprio num tc 8 map
${pcp to gos map[@]} queues 1Q@0 1@1 1@2 1@3 1@4 1@5 1@6 1@7 hw 0 ; \
tc gdisc replace dev S$port handle 0x9007 parent 100:8 \
cbs locredit -2147483646 hicredit 2147483647
sendslope -1000000 idleslope 0 offload 0 ; \
tc gdisc replace dev $port handle 0x9006 parent 100:7 \
cbs locredit -2147483646 hicredit 2147483647
sendslope -1000000 idleslope 0 offload 0 ; \
done

Attention:
The two most important CBS parameters for every port device are:
* the parent, which should match the traffic class 6 and 7,
e the handle, which should be 0x9006 and 0x9007.
The other parameters are initialization values and are overridden by the stack at runtime stream
configuration:
* offloadis set to 1 to offload the operation to hardware,
* idleslope and sendslope are set depending on stream,
* port bit rates andthe credit values are Kept at their minimum and maximum values as they
do not directly affect the hardware shaping operation.
d. Setup skb priorities remapping for every external port:

# avb ports="swp0 swpl swp2 swp3"; \
for port in $avb ports; do \
tc gdisc add dev $port clsact; \
tc filter add dev Sport egress basic match 'meta (priority eqg 2)' or
'meta (priority eq 3)' action skbedit priority 0; \

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.5 — 30 March 2023

162 /332



NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

done

3. Enable Vlan filtering, set the correct Vlan IDs and disable multicast flooding, for every external port:

# ip link set br0 type bridge vlan filtering 1; \
avb ports="swpO swpl swp2 swp3"; \
for port in $avb ports; do \
bridge vlan add dev S$Sport vid 2 master; \
bridge link set dev Sport mcast flood off; \
done

4. Start the AVB and gPTP stacks:
# avb.sh start

» Since multicast traffic flooding is now disabled, adding MDB entries for AVDECC (ACMP/ADP) and MAAP
protocols multicast addresses is needed. The following commands should be executed for every port facing
an AVB endpoint.

# bridge mdb add dev br0 port <port> grp 91:e0:f0:01:00:00 permanent
# bridge mdb add dev br0 port <port> grp 91:e0:f0:00:ff:00 permanent

4.2.3.5.3.2 GenAVB/TSN stack configuration

This configuration needs to be done once and is saved accross reboots.

For a proper gPTP operation with AVB endpoints, the gPTP stack needs to compensate for PHY delay in PTP
timestamps:

Inthe /etc/genavb/fgptp-br.cfg, apply the settings (rxDelayCompensation and txDelayCompensation)
described in Table 64 on all bridge ports.

Attention: The PHY Delay Compensation Values in Table 64 are calibrated for 1 Gbps links. The i.MX AVB
endpoints are configured to run by default with 100 Mbps links. These compensation values should be enough
tfo keep pDelay values under 800 ns (propagation time threshold), and therefore the port would still be declared
as Capable.

Future releases shall have proper compensation values for each supported link speed.

4.2.3.5.4 Evaluation instructions

1. Reset all endpoints and the bridge.

2. Using the procedures described above, configure the bridge and start the stack on all connected devices
(bridge and endpoints)

3. After a few seconds, AVB endpoints should be synchronized through gPTP

4. Connect an SR class A (or SR class B) stream from EP-DUT2 as talker to EP-DUT1 as listener: the stream
should be forwarded correctly to the listener endpoint

4.2.3.5.4.1 gPTP operation

If the gPTP protocol is running correctly on all devices, the following line should appear in the bridge gptp log
file for every port connected to a gPTP capable device:

gptp stats dump: Port(0) domain(0, 0): Role: Master Link: Up asCapable: Yes
neighborGptpCapable: Yes DelayMechanism: P2P

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.5 — 30 March 2023

163 /332



NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

gptp stats dump: Port(l) domain(0, 0): Role: Master Link: Up asCapable: Yes
neighborGptpCapable: Yes DelayMechanism: COMMON P2P

Refer to Section 4.2.3.2, for more details on gPTP Bridge operation.

4.2.3.5.4.2 SRP Operation

A detailed view on the SRP protocol communications (such as Domain declaration, SRP port boundary, Talker/
Listener declarations and registration) can be followed by displaying the SRP specific logs from the TSN bridge
stack log file /var/log/tsn-br:

# tail -f /var/log/tsn-br | grep srp

On stream connection, the FQTSS and FDB operation should be visible in the TSN bridge stack log file:
» Stack log shows the FQTSS configuration for the port facing the AVB listener:

fgtss set oper idle slope : logical port(2) port (swp0O, ifindex 5) tc(7)
cbs _gdisc _handle (9007:0): set idle slope 7872000

» Stack log shows the FDB configuration for the port facing the AVB listener:

bridge rtnetlink : add MDB: bridge (br0O, ifindex 9) logical port(2) port (swpO,
ifindex 5) mac_addr(91:e0:£0:00:fe:11) vlan id(2)

Also, the same configuration can be checked using the Linux standard tools (tc and bridge)

» TC tool shows the FQTSS configuration for the port facing the AVB listener:

# tc gdisc show dev swp0
gdisc mgprio 100: root tc 8 map 1 0 6 72 34500000000
queues: (0:0) (1:1) (2:2) (3:3) (4:4) (5:5) (6:6) (7:7)
gdisc pfifo 0: parent 9006: limit 1000p
gdisc pfifo 0: parent 9007: limit 1000p
gdisc pfifo fast 0: parent 100:6 bands 3 priomap 1 2 2 2 1 2 001111111

qéisc pfifo fast 0: parent 100:5 bands 3 priomap 1 2 2 2 1 2 001111111

qéisc pfifo fast 0: parent 100:4 bands 3 priomap 1 2 2 2 1 2 001111111

qéisc pfifo fast 0: parent 100:3 bands 3 priomap 1 2 2 2 1 2 001111111

qéisc pfifo fast 0: parent 100:2 bands 3 priomap 1 2 2 2 1 2 001111111

qéisc pfifo fast 0: parent 100:1 bands 3 priomap 1 2 2 2 1 2 001111111
1

gdisc cbs 9006: parent 100:7 hicredit 2147483647 locredit -2147483646 sendslope
-1000000 idleslope 0 offload O

gdisc cbs 9007: parent 100:8 hicredit 2147483647 locredit -2147483648 sendslope
-992128 idleslope 7872 offload 1

* Bridge tool shows the FDB configuration for the port facing the AVB listener:

# bridge mdb show
dev br0 port swpO grp 91:e0:£f0:00:fe:11 permanent offload vid 2

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.5 — 30 March 2023

164 /332



NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

4.2.3.6 TSN endpoint sample application

4.2.3.6.1 Requirements

¢ Two TSN endpoints (i.MX 8MPIlus LPDDR4 EVK or i.MX 93 EVK connected through TSN interface eth1:
dwmac, i.MX 8DXL LPDDR4 EVK connected through TSN interface eth0O or optionally an i.MX RT1170 EVK)

* One TSN bridge (LS1028ARDB)

Note: The second IO Device is optional.

use Controller

|_uss | : )
U | use i.MX TSN Endpoint
UsB

Ethernet

10 Device 1

i.MX TSN Endpoint

Ethernet

10 Device 2

p— 0

Figure 66. TSN endpoint sample application setup

4.2.3.6.2 Configuring GenAVB/TSN stack and example applications
For some platforms, the GenAVB/TSN stack supports both modes: Endpoint TSN and Endpoint AVB.

By default, these platforms are configured as Endpoint TSN. The GENAVB TSN CONFIG parameter should be
set to the right configuration using the file /etc/genavb/config:

# avb.sh stop all
# vi /etc/genavb/config

Platforms that support both Endpoint AVB and Endpoint TSN (for example i.MX 8MP, i.MX 8DXL and i.MX 93),
should have:

GENAVB TSN CONFIG=1

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. Al rights reserved.

User guide Rev. 2.5 — 30 March 2023

165 /332



NXP Semiconductors

REALTIMEEDGEUG

Real-time Edge Software User Guide

For Endpoint TSN mode, the change from one profile to another is made by modifying the /etc/genavb/
config tsn file. This file specifies the application configuration file. APPS CFG FILE (apps-*.cfg) pointsto a
file containing a demo configuration (application to use, options...). It is parsed by the startup script avb. sh.

TSN configuration profile is made of the application configuration profile. The file /etc/genavb/config tsn
already lists the supported cfg files. Set the PROFILE variable to choose the desired configuration profile.

4.2.3.6.3 TSN network configuration

This topic describes TSN configuration.

4.2.3.6.3.1 Streams
The stream details can be used for analysis and also for computing scheduled traffic timings.

Table 53. TSN streams definition

Stream No Source Destination L Destination Vlan ID Vlan PCP L:r:agTh%]
Multicast MAC Address (bytes)
Stream1 Controller | 1O device(s) Multicast 91:e0:f0:00:fe:70 2 5 84
Stream?2 10 device 1 Controller Multicast 91:e0:f0:00:fe:71 2 5 84
Stream3 | 10 device 2 | Controller Multicast 91:e0:f0:00:fe:80 2 5 84

[11  The frame length includes inter frame gap, preamble, start of frame and CRC (can be used as is for timing calculations)

4.2.3.6.3.2 Scheduled traffic

For deterministic packet transmission the use of scheduled traffic is required both on endpoints and bridges.

The default scheduling configuration for the TSN endpoint example application, as shown in Figure 63, leads to
the following traffic schedules.

Endpoints

Endpoints are running a schedule with a 2000us period. The base offset of the schedule is aligned to gPTP time
modulo 1 second.

Controller transmit gate (for Stream1) opens at 500us offset (relative to the period start).
IO device transmit gate (for Stream2/3) opens at 1000us + 500us offset (relative to the period start).
The gate open interval is around 4us (enough to accommodate the stream frame length plus some margin).

The 500us offset is related to the worst case application latency to send its frame to its peer(s). This value
provides a good margin for a Linux PREEMPT-RT system but can be lowered on a well-tuned system.

Bridges

The schedule for all Bridges and all Bridge ports that transmit one of the streams above, must have a 2000 us
period and a base offset aligned to gPTP time modulo 1 second.

One possible schedule is to open transmit gate (for the ports and queues transmitting Stream 1) at offset 500 ps
and use a gate open interval that accommodates the worst propagation delay.

Itis also possible to use a fixed gate open interval but increase the transmit time offset at each hop along the
stream path.

REALTIMEEDGEUG
User guide

All information provided in this document is subject to legal disclaimers.

Rev. 2.5 — 30 March 2023

© 2023 NXP B.V. All rights reserved.

166 / 332



NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

For ports and queues transmitting Stream 2 and 3, open the transmit gate at offset 1000 + 500 ps.

4.2.3.6.4 Setup preparation

One of the TSN endpoint needs to be configured as “controller’ and the other one as “IO device”. Both
endpoints are connected to the TSN bridge.

Note:

1. On i.MX 8MPIlus LPDDR4 EVK and i.MX 93 EVK: the TSN interface used is eth1.
2. Oni.MX 8DXL LPDDR4 EVK: the TSN interface used is ethO rather than eth1.

4.2.3.6.4.1 Preparing the controller

To be done once:

1. Edit the GenAVB configuration file using the following command at the Linux prompt:

# vi /etc/genavb/config tsn

2. Set the configuration profile to PROFILE 1:

PROFILE=1

3. Exit and save.
The below steps should be done at each boot:
4. The system configuration required for the tsn-app can be performed (after setting the correct PROFILE) by
using the following command (replace ethx with the right TSN network interface):
e eth1 on i.MX 8MP and i.MX 93
¢ ethO on i.MX 8DXL

# tsn-app-setup.sh ethX

Note: This script sets many different settings to improve real time system behavior and to setup proper

network configuration

* VLAN configuration: the script sets vlan id 2 on the TSN interface as VLAN hardwatre filtering is enabled
by default in kernel.

* Low latency settings on network interface: the script disable coalescing and flow control on TSN interface.

* Qdiscs and filters: the script sets taprio qdisc with proper parameters for TX and flower qdisc for RX
classification.

e Interrupts, network tasks, CPU affinities, and priorities: the scripts enable threaded NAPI in kernel and
isolate tasks processing TSN traffic on a separate CPU core.

5. Start the TSN demo application using the following command:

avb.sh start

4.2.3.6.4.2 Preparing IO device(s)

To be done once:

1. Edit the GenAVB configuration file using the following command at the Linux prompt:

# vi /etc/genavb/config tsn

2. Set the configuration profile to PROFILE 2:
PROFILE=2

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.5 — 30 March 2023

167 / 332



NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

3. Exit and save.
The below steps should be done at each boot:

4. Edit the system configuration needed for the tsn-app after setting the correct PROFILE. using the
command shown below (replace ethX with the right TSN network interface):

e eth1 on i.MX 8MP and i.MX 93
* eth0 on i.MX 8DXL

tsn-app-setup.sh ethX

5. Note: This script sets many different settings to improve real time system behavior and to setup proper
network configuration:
e VLAN configuration: the script sets vian id 2 on the TSN interface as VLAN hardware filtering is enabled
by default in the kernel.
* Low latency settings on network interface: the script disables coalescing and flow control on TSN
interface.
* Qdiscs and filters: the script sets taprio gdisc with proper parameters for TX and flower qgdisc for
RX classification.
e Interrupts, network tasks, CPU affinities, and priorities: the scripts enable threaded NAPI in kernel and
isolate tasks processing TSN traffic on a separate CPU core.
6. Start the TSN demo application using the following command:

avb.sh start

4.2.3.6.4.3 Preparing the Bridge
Refer to section Section 4.1.2 and Section 4.1.4.2.3.2 to configure scheduled traffic on the LS1028ARDB board.

The schedule described in section Section "Bridges" should be followed.

The below steps should be done at each boot:

1. Setup bridge forwarding:

ip link set dev eno2 up

ip link add name br0 type bridge
ip link set br0 up

ip link set master br0 swpO up
ip link set master br0 swpl up
ip link set master br0 swp2 up
ip link set master br0 swp3 up

.

2. Disable Pause frames:

# ethtool -A swpO autoneg off rx off tx off
# ethtool -A swpl autoneg off rx off tx off
# ethtool -A swp2 autoneg off rx off tx off
# ethtool -A swp3 autoneg off rx off tx off

3. Start the gPTP stack:
# tsn.sh start

4. Setup scheduled traffic (see above)

tc gdisc del dev swpO root

tc gdisc del dev swpl root

tc gdisc del dev swp2 root

tc gdisc replace dev swp0O root taprio \
num_tc 8 \

#
#
#
id

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.5 — 30 March 2023

168 / 332



NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

map 0 1 2 3 4 5 6 7 \
queues 1@0 1@1 1@2 1@3 1@4 1@5 1@6 1@7 \
base-time 1500000 \
sched-entry S 0x20 20000 \
sched-entry S Oxdf 1980000 \
flags 0x2
# tc gdisc replace dev swpl root taprio \
num_tc 8 \
map 0 1 2 345 6 7 \
queues 1@0 1@1 1@2 1@3 1@4 1@5 1@6 1@7 \
base-time 500000 \
sched-entry S 0x20 20000 \
sched-entry S 0xdf 1980000 \
flags 0x2
# tc gdisc replace dev swp2 root taprio \
num_tc 8 \
map 0 1 2 3 45 6 7 \
queues 1@0 1Q@1 1@2 1@3 1@4 1@5 1@6 1@7 \
base-time 500000 \
sched-entry S 0x20 20000 \
sched-entry S 0xdf 1980000 \
flags 0x2

4.2.3.6.4.4 Preparing the OPC UA client

In order to visualize the data exposed by the TSN endpoint application OPC UA server it is required to use an
OPC UA client on a PC connected to the bridge.

1. Install an OPC UA client on a PC:
a. FreeOpcUa: client with a Qt GUI interface.
Can be found here: http://freeopcua.github.io/
b. opcua-commander: CLI alternative based nodejs node-opcua stack. Can be found here:
https://github.com/node-opcua/opcua-commander
2. Connect the PC to the bridge. If not already done, setup IP addresses on the endpoint running the TSN

example application and also on the PC. Then, make sure you can successfully ping the endpoint using the
PC.

4.2.3.6.5 Evaluation instructions

1. Reset all endpoints.

2. Using the procedures described above, start the gPTP stack on the bridge and the tsn-app application on
the endpoints with the proper enabled scheduled traffic as configured above.

3. After a few seconds, TSN endpoints should be synchronized through gPTP and exchanging packets at the
rate of 500 packets per second (pps). In order to observe this behavior, logs should be checked.

4.2.3.6.5.1 gPTP operation

If the gPTP protocol is running correctly on an endpoint or on the bridge, the following line should appear in the
gptp log file (refer to Section 4.2.3.3 for more details):

gptp stats dump: Port(0) domain(0,0) : Role: Slave Link : Up AS Capable: Yes
DelayMechanism: P2P

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.5 — 30 March 2023

169 / 332


http://freeopcua.github.io/
https://github.com/node-opcua/opcua-commander

NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

If the device is grand master, the role field should be “Master” otherwise it should be “Slave”. The line
appears periodically, but the role should not change over time, except for significant events (such as a cable
disconnection).

4.2.3.6.5.2 Baseline tsn-app operation

If the TSN endpoint sample application is running correctly and receiving valid packets, the following points may
be verified in the tsn_app log file (refer to Section 4.2.5.4 for more details).

The following line should appear at regular intervals:

socket stats print : link up

The "valid frames" counter should increment by 2500 (500 pps for 5 seconds) between two appearances of the
following log:

socket stats print : valid frames : XXXXX

The various error counters should not increment (it is normal to have non-zero values, because of the startup
period when gPTP and/or the remote tsn-app endpoint may not be running and stable):

* "sched early", "sched late", "sched missed", "sched timeout", "sched discont", "clock err"

* "errid", "err ts", "err underflow"
* "frames err" (for both RX and TX directions)
Note:

The checks above apply to all tsn-app endpoints, whether they be the controller or one of the 10 devices.

4.2.3.6.5.3 Scheduled traffic evaluation with no concurrent traffic

The observations below assume an otherwise idle system receiving and sending traffic only through the tsn-app
application, with a 802.1Qbv schedule in place on all devices (tsn-app endpoints, bridge).

Scheduling error statistics ("sched err") should respect the following:

* min around 8 us
* avg around 11 us
* max around 25 us

stats (Oxaaab06ed74b0) sched err min 8817 mean 11120 max 22077 rms”2 125202075
stddev”2 1544829 absmin 7417 absmax 1882057

Processing time statistics ("processing time") should respect the following:

* min around 23 us
* avg around 29 ys
e max around 70 us

stats (0xaaab06ed7910) processing time min 23400 mean 29185 max 59100 rms”2
857707540 stddev”2 5943315 absmin 19560 absmax 4143240

Traffic latency statistics should respect the following:
* min around 503 us
* avg around 503 ps

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.5 — 30 March 2023

170/ 332



NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

* max around 503 ys
 stddev”2 less than 3000

stats (0x419a28) traffic latency min 503417 mean 503503 max 503637 rms”2
253515981945 stddev”2 2004 absmin 503397 absmax 504337

4.2.3.6.5.4 Scheduled traffic evaluation with TX best-effort traffic

1. Connect a PC to the 4th port of the LS1028ARDB switch (swp3).
2. Run iperf3 in server mode on the PC (replace ethX by the PC interface connected to the LS1028):

ifconfig ethX 192.168.1.10 up
iperf3 -s &

iperf3 -s -p 5202 &

iperf3 -s -p 5203 &

iperf3 -s -p 5204 &

S+ e S o

3. Run iperf3 in client mode on the controller:

# ifconfig ethl 192.168.1.80

# taskset b iperf3 -c 192.168.1.10 -u -b 0 -1 2 -t 100 &

# taskset b iperf3 -p 5202 -c 192.168.1.10 -u -b 0 -1 64 -i 2 -t 100 &
# taskset b iperf3 -p 5203 -c 192.168.1.10 -u -b 0 -1 64 -1 2 -t 100 &
# taskset b iperf3 -p 5204 -c 192.168.1.10 -u -b 0 -1 64 -i 2 -t 100 &

4. Observe stats in the tsn-app log files (a 2nd terminal may have to be opened through SSH). The values
should match the table below (in ps):

min mean max stddev?2
Sched err (controller) |21 29 41
Processing time 47 80 260
(controller)
Traffic latency 503 503 503 <3000
(controller and 10
device)

4.2.3.6.5.5 Scheduled traffic evaluation with RX best-effort traffic
Note:

By default, the tsn-app traffic is processed in the same queue as best-effort untagged traffic. To more easily
validate tsn-app with best-effort traffic, we should add a VLAN tag with PCP=0 to best-effort packets so they are
dispatched into a different queue on receive.

1. Connect a PC to the 4th port of the LS1028ARDB switch (swp3).

2. Run iperf3 in server mode on the controller:

# ip link add link ethl name ethl.5 type vlan id 5

# ifconfig ethl.5 192.168.5.80 up

# taskset b iperf3 -s &

# taskset b iperf3 -s -p 5202 &

# taskset b iperf3 -s -p 5203 &

# taskset b iperf3 -s -p 5204 &
REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.
User guide Rev. 2.5 — 30 March 2023

171/ 332



NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

3. Run iperf3 in client mode on the PC (replace ethX by the PC interface connected to the LS1028):

ip link add link ethX name ethX.5 type vlan id 5
ifconfig ethX.5 192.168.5.10 up

iperf3 -c 192.168.5.80 -u -b 0 -1 2 -t 100 &

iperf3 -p 5202 -c 192.168.5.80 -u -b 0 -i 2 -t 100 &
iperf3 -p 5203 -c 192.168.5.80 -u -b 0 -i 2 -t 100 &
iperf3 -p 5204 -c 192.168.5.80 -u -b 0 -i 2 -t 100 &

e

4. Observe stats in the tsn-app log file (a 2nd terminal may have to be opened through SSH). The values

should match the table below (in ps):

min mean max stddev”2
Sched err (controller) |9 13 26
Processing time 25 33 70
(controller)
Traffic latency 503 503 503 <130000
(controller and 10
device)

4.2.3.6.5.6 Modifying the scheduling period of the TSN sample application

The default tsn-app period of 2 ms can be changed through a command-line option. The change has to be
made on all endpoints (controller and devices). The 802.1 Qbv schedule must also be updated to reflect the
new period. The example below shows how to modify the period from the default 2 ms down to 1 ms (this value
has been confirmed to work on the latest builds).

On the controller:

1.

Stop the application if it was already running:

# avb.sh stop

. Edit the application configuration file:

# vi /etc/genavb/apps-tsn-network-controller.cfg

or for an 10 device:

# vi /etc/genavb/apps-tsn-network-iodevice.cfg

. Use the "-p" option to change the period. The below example sets the period to 1 ms (1000000 ns):

CFG_EXTERNAL MEDIA APP OPT="-m network only -r controller -p 1000000"

. Update the traffic schedule using 'tc' command.

In the sample command below, replace ethx with the right TSN network interface:
e eth1 on i.MX 8MP and i.MX 93
e ethO on i.MX 8DXL

# tc gdisc del dev ethX root

#tc gdisc replace dev ethX root taprio \
num_tc 5 \

map 0 0 1 1 223400000000\
queues 1Q@0 1@1 1@2 1@3 1@4 \

base-time 250000 \

sched-entry S 0x4 4000 \

sched-entry S Oxlb 996000 \

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.5 — 30 March 2023

172/ 332



NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

flags 0x2

5. Restart the tsn-app application:

# avb.sh start

On the 10 device(s):

1. Stop the application if it was already running:

# avb.sh stop

2. Edit the application configuration file:

# vi /etc/genavb/apps-tsn-network-iodevice.cfg

3. Use the "-p" option to change the period. The below example sets the period to 1 ms (1000000 ns):

CFG_EXTERNAL MEDIA APP OPT="-m network only -r iodevice N -p 1000000"

4. Update the traffic schedule using tc.
In the sample command below, replace ethx with the right TSN network interface:
e eth1 on i.MX 8MP and i.MX 93
* ethO on i.MX 8DXL

# tc gdisc del dev ethX root

#tc gdisc replace dev ethX root taprio \
num tc 5 \

map 0 0 1 1 22 3400000000\
queues 1Q@0 1@1 1Q@2 1@3 1@4 \

base-time 750000 \

sched-entry S 0x4 4000 \

sched-entry S 0Oxlb 996000 \

flags 0x2

5. Restart the tsn-app application:

# avb.sh start

On the bridge, update the Qbv schedule on all ports:

tc gdisc del dev swpO root
tc gdisc del dev swpl root
tc gdisc del dev swp2 root
tc gdisc replace dev swp0O root taprio \
num _tc 8 \
map 0 1 2 3 45 6 7 \
queues 1Q@Q0 1@1 1Q@2 1@3 1Q@4 1@5 1Q@6 1@7 \
base-time 750000 \
sched-entry S 0x20 20000 \
sched-entry S Oxdf 980000 \
flags 0x2
# tc gdisc replace dev swpl root taprio \
num tc 8 \
map 0 1 2 3 45 6 7 \
queues 1@0 1@1 1@2 1@3 1@4 1@5 1@6 1@7 \
base-time 250000 \
sched-entry S 0x20 20000 \
sched-entry S Oxdf 980000 \
flags 0x2
# tc gdisc replace dev swp2 root taprio \
num_tc 8 \

o o

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.5 — 30 March 2023

173 /332



NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

map 0 1 2 3 45 6 7 \

queues 1@0 1@1 1@2 1@3 1@4 1@5 1@6 1@7 \
base-time 250000 \

sched-entry S 0x20 20000 \

sched-entry S Oxdf 980000 \

flags 0x2

After that, the evaluation can follow the various use cases described previously with the default configuration:
baseline operation, scheduled traffic evaluation with or without best-effort traffic.

Note:

An arbitrary low period might run into the scheduling limits of the systems, and result in errors in the tsn-app
logs, as the systems may no longer be able to keep up with the requested pace.

4.2.3.6.5.7 Enabling AF_XDP sockets in TSN sample application

A new feature makes it possible to use AF_XDP sockets with the Linux tsn-app application, to take advantage
of the lower latency offered by the AF XDP path. The steps below describe how to reconfigure an i.MX8M Plus
LPDDR4 EVK, i.MX 8DXL LPDDR4 EVK, or i.MX 93 EVK board to use AF _XDP sockets.

1. Stop the application and TSN stack if they were already running:

# avb.sh stop all

2. Edit the application configuration file:

# vi /etc/genavb/apps-tsn-network-controller.cfg

3. To enable AF_XDP mode, replace the line:

CFG_EXTERNAL MEDIA APP OPT="-m network only -r controller"
With:

CFG_EXTERNAL MEDIA APP OPT="-m network only -r controller -x"

4. Attach the XDP program to the TSN interface. This step can be done at any time, even if the TSN sample
application is still running with its default configuration, as long as it is done before restarting it in AF_XDP
mode.

# ip 1 set dev ethX xdp obj /lib/firmware/genavb/genavb-xdp.bin

5. Restart the tsn-app application in AF_XDP mode:

# avb.sh start

After that, the evaluation can follow the various use cases described previously with the default configuration:

baseline operation, scheduled traffic evaluation with or without best-effort traffic. Statistics should be similar to
or better than the default configuration, except for traffic latencies: because AF_XDP currently cannot provide

packet timestamps, traffic latencies display bogus values that should be ignored. The tables below summarize
typical values (in us), on a setup using a 1 ms period.

Table 54. Timing statistics without any concurrent traffic

min mean max
Sched err (controller) 6 7 16
Processing time 10 13 19
(controller)
Total time (controller) 16 20 33
REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.
User guide Rev. 2.5 — 30 March 2023

174/ 332



NXP Semiconductors

REALTIMEEDGEUG

Table 55. Timing statistics with TX best-effort traffic

Real-time Edge Software User Guide

min

mean

max

Sched err (controller)

18

25

51

Processing time
(controller)

21

26

52

Total time (controller)

42

51

108

Table 56. Timing statistics with RX best-effort traffic

min

mean

max

Sched err (controller)

7

34

Processing time
(controller)

8

11

25

Total time (controller)

15

21

55

4.2.3.6.5.8 OPC UA server evaluation

The OPC UA server address is in this format : opc.tcp://<endpoint IP address>:4840/

Once connected, the server objects can be browsed and accessed. The same statistics described in the TSN
example application logs are available as OPC UA objects. The OPC UA server traffic is classified as best effort

and doesn't affect the time sensitive traffic.

See below screenshot using FreeOPCUA GUI client:

Actjons

opc.tep://192.168.30.2:4840/

DisplayName
~ B Root
~ M Objects
» @ Server
~ @ TsnApp
+ @ Configuration
~ @ socketStats
~ @ cyclicRxSocketo
» B Emd
» BEnTs
» 8 ErtUnderflow
8 Link
» B peertd
» @ TrafficLatencyHisto
» @ TrafficLatencystats
» B validFrames
» @ CyclicRxSocket1
» @ NetRxSocketd
» @ NetRxsocket1
+ @ NetTxSocket0
~ @ Taskstats
» B clockDiscount
» B clockErr
» @ ProcTimeHisto
» @ ProcTimestats
» B sched
» B schedearly
» @ schedErrHisto
» @ schedErrstats
» B SchedLate
» B SchedMissed

= SchedTimeout:

+ @ TotalTimeHisto
» @ TotalTimeStats
» M Types
» B Views

BrowseName: Nodeld
0:Root i=84
0:0bjects i=85
O:Server i
2TsnApp

2:Configuration
2:Socketstats
2:CyclicRxSocketo
2Errid

2ErTs
2:ErrUnderflow
2Link

2:Peerid
2TrafficLatencyHisto
2TrafficLatencystats
2:ValidFrames
2:CyclicRxSocket1
2:NetRxSocket0
2:NetRxSocket1
2:NetTxSocket
2Taskstats
2:ClockDiscount
2:ClockErr
2:ProcTimeHisto
2:ProcTimestats
2:sched

2:SchedEarly
2:schedErrHisto
2:schedErrstats
2:5chedLate
2:SchedMissed
2:SchedTimeout
2TotalTimeHisto

2TotalTimestats ns=2ii=15330
0Types. i=86
0:views i=87

uaclient.uaclient - INFO - Connecting to opc.tcp://192.168.30.2:4840/ with parameters None, None, None, None')
opcua.client.client - WARNING - Requested secure channel timeout to be 3600000ms, got 600000ms instead’)

FreeOpcUa Client

s&ubscriptions
DisplayName
1/Link
2 peerid
3 sched

4 schedTimeout

Attributes | Subscriptions

- = @
~ || Connect options| | Connect || Disconnect
ex
Value Timestamp
down 1970-01-01T06:47:46.386172
1 1970-01-01T06:47:46.386176
12500 1970-01-01T06:48:01.385799
0 1970-01-01T06:47:51.385824
Events = References = Graph
ex

Figure 67. FreeOPCUA GUI client

REALTIMEEDGEUG

All information provided in this document is subject to legal disclaimers.

© 2023 NXP B.V. All rights reserved.

User guide

Rev. 2.5 — 30 March 2023

175/ 332



NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

4.2.4 Configuration files

4.2.41 System

The system configuration file, located in /etc/genavb/system.cfg, lists system network interface names
and PTP hardware clock device names. The default values are used if the configuration file or the option key
are missing. The values in the installed file may also required to be updated to match the system configuration.

Table 57. Logical ports
This section lists network interface names.
Currently endpoint package supports a single endpoint and bridge package a single bridge (with up to 5 ports).

Name Key Default value Description

Endpoint network interface
name. Only valid for endpoint
package, otherwise should
be set to “off”’

Endpoint interface endpoint ethO

Bridge 0 network interface

SJA1105P_p0, SIA1105P_ |names (comma separated).
Bridge 0 interfaces bridge 0 p1, SJA1105P_p2, SIA1105 |Only valid for bridge

P_p3, SIA1105P_p4* package, otherwise should
be set to “off’

Table 58. Clock
This section lists clock device names.

Clocks names are either a PHC device name or a generic software clock (sw_clock). Local clock points to a PHC device,
target clocks point to either:

* The same PHC device as local clock (gPTP time is reflected in the local clock)
* A generic software clock (in which case gPTP time is not reflected in the local clock).

Name Key Default value Description
. Endpoint clock for gPTP
dorrlfgiipgltr;trg:t-rgock endpoint gptp 0 /dev/ptp0 domain 0 target clock. Only
valid for endpoint package.
. Endpoint clock for gPTP
Endpoint gPTP endpoint gptp 1 sw_clock domain 1 target clock. Only

domain 1 target clock valid for endpoint package.

Endpoint clock for the local

Endpoint local clock endpoint local /dev/ptp0 clock. Only valid for endpoint
package.
. . Bridge clock for gPTP
Bridge gPTP domain bridge gptp 0 sw clock domain 0 target clock. Only
0 target clock - - - . .
valid for bridge package.
. . Bridge clock for gPTP
Bridge gPTP domain bridge gptp 1 sw_clock domain 1 target clock. Only

1 target clock valid for bridge package.

Bridge clock for the local

Bridge local clock bridge local /dev/ptpl clock. Only valid for bridge
package.
REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.
User guide Rev. 2.5 — 30 March 2023

176/ 332



NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

4.2.4.2 gPTP

The gPTP general parameters as well as default domain (domain 0) parameters are defined in the following
configuration files depending on the package used:

* Endpoint package: /etc/genavb/fgptp.cfg

» Bridge package: /etc/genavb/fgptp-br.cfg

To enable other domains, new configuration files must be created with the associated domain instance
appended to the configuration file name e.g.:

* Endpoint package, domain 1: /etc/genavb/fgptp.cfg-1

* Bridge package, domain 1: /etc/genavb/fgptp-br.cfg-1

Attention:

By default the GenAVB/TSN gPTP stack is packaged with the general parameters configuration file

(fgptp.cfgor fgptp-br.cfg) and a reference configuration for domain 1 (fgptp.cfg-1 or fgptp-
br.cfg-1)

4.2.4.2.1 General

Profile
The gPTP stack can operate in two different modes known as 'standard' or 'automotive' profiles.

When the 'standard!' profile is selected, the gPTP stack operates following the specifications described in
IEEE 802.1AS. When the 'automotive' profile is selected, the gPTP stack operates following the specifications
described in the AVnu AutoCDSFunctionalSpec_1.4 which is a subset of the IEEE 802.1AS standard optimized
for automotive applications. IEEE 802.1AS-2020 features are not available in 'automotive' profile (e.g.
Multiple domains).

The automotive environment is unique in that it is a closed system. Every network device is known prior to
startup and devices do not enter or leave the network, except in the case of failures. Because of the closed
nature of the automotive network, it is possible to simplify and improve gPTP startup performance. Specifically,
functions like election of a grand master and calculations of wire delays are tasks that can be optimized for a
closed system.

Reverse sync feature control

The Reverse Sync feature (Avnu specification) should be used for test/evaluation purpose only. Usually, to
measure the accuracy of the clock synchronization, the traditional approach is to use a 1 Pulse Per Second
(1PPS) physical output. While this is a good approach, there may be cases where using a 1PPS output is not
feasible. More flexible and fully relying on software implementation the Reverse Sync feature serves the same
objective using the standard gPTP Sync/Follow-Up messages to relay the timing information, from the Slave
back to the GM.

Neighbor propagation delay threshold

The parameter neighborPropDelayThresh defines the propagation time threshold, above which a port
is not considered capable of participating in the IEEE 802.1AS protocol (see IEEE 802.1AS-2020 - 11.2.2
Determination of asCapable and asCapableAcrossDomains). If a computed neighborPropDelay exceeds
neighborPropDelayThresh, then asCapable is set to FALSE for the port. This setting does not apply to
Automotive profile where a link is always considered to be capable or running IEEE 802.1AS.

IEEE 802.1AS-2011 Compatibility

The parameter force 2011 defines if the gPTP Stack operates following the IEEE 802.1AS-2011 standard,
i.e. disabling the IEEE 802.1AS-2020 specifics features such as Multiple Domain support. The use of this option
may, in some cases, improve compatibility with gPTP equipment not supporting IEEE 802.1AS-2020 standard.

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.5 — 30 March 2023

177 1 332


https://avnu.org/wp-content/uploads/2014/05/AutoCDSFunctionalSpec-1_4-public_with_legal_notices.pdf

NXP Semiconductors

REALTIMEEDGEUG

Real-time Edge Software User Guide

Table 59. General parameters
General configuration parameters[ g

Name Key Default value Range Description
Set fgptp main profile.
Profile rofile sstandard” "standard" or |"standard" - IEEE 802.1AS
P "automotive" |specs, "automotive" - AVnu
automotive profile
Set static grandmaster ID in
Grandmaster ID gm_id "0x00012ffe0025fe" 64bits EUl | host order (used by automotive
- format profile, ignored in case of
standard profile)
0: for default domain Disable (-1) or assign a gPTP
Domains domain_number -1: for domains -1t0 127 domain number to a domain
different from O instance.
Set to "yes" to force 802.1AS-
802.1AS-2011 mode force_2011 no "no" or "yes" |2011 standard. "no" to enable
802.1AS-2020 full support.
Log outout level loq level info crit, err, init, |Set this configuration to dbg to
g outp 9 info, or dbg |enable debug mode
Reverse sync reverse sync 0 0 or 1 Set to 1 to enable reverse sync
feature control —SY feature.
Reversg sync reverse_sync. interval 112 32 to 10000 Reverse_sync transmit interval
feature interval in ms units
Neighbor . .
; . 32t010 Neighbor propagation delay
deplg;ptat‘w?-zgggl d neighborPropDelay Thresh 800 000000 threshold expressed in ns
Statistics Statistics output interval
output interval statsinterval 10 0 to 255 expressed in seconds. Use 0
P to disable statistics

[11  For domain instances other than 0, only domain_number is configurable in this section.

4.2.4.2.2 Grandmaster parameters

This section defines the native Grand Master capabilities of a time-aware system (see IEEE 802.1AS-2020 -
8.6.2 PTP Instance attributes). Grand Master capabilities parameters are defined in the main configuration file
for gPTP domain 0 (e.g. fgptp.cfg) and in the additional per domain configuration files for other domains (e.g.
fgptp.cfg-1).

gmCapable defines if the time-aware system is capable of being a grandmaster. By default gmCapable is set to
1 as in standard profile operation the Grand Master is elected dynamically by the BMCA. In case of automotive
profile gmCapable must be set on each AED node to match the required network topology (that is, within a
given gPTP domain only one node must have its gmCapable property set to 1).

priority1, priority2, clockClass, clockAccuracy and offsetScaledLogVariance are parameters used by the Best
Master Clock algorithm to determine which of the Grand Master capable node within the gPTP domain has the
highest priority/quality. Note that the lowest value for these parameters matches the highest priority/quality.

REALTIMEEDGEUG
User guide

All information provided in this document is subject to legal disclaimers.

Rev. 2.5 — 30 March 2023

© 2023 NXP B.V. All rights reserved.

178 /332



NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

Table 60. Grandmaster parameters
Grandmaster capabilities parameters[ K

Name Key Default value Range Description
Set to 1 if the device has
Grandmastfar gmCapable 1 0or1 grandmgster capaplllty. _
capable setting Ignored in automotive profile
if the port is SLAVE.
Grandmaster . 248 for AED-E and Set the priority1 value of this
priority1 value priority1 246 for AED-B 010255 | iock
G.rar)dmaster priority2 248 0 to 255 Set the priority2 value of this
priority2 value clock
Grandmaster clockClass 248 0 to 255 Set the class value of this
clock class value clock
Grandmaster clock clockAccuracy Oxfe 0x0 to Oxff Sgt the accuracy value of
accuracy value this clock
Gr_andmaster offsetScaledLogVariance 17258 0x0 to Oxffff Set. the offset scaleq log
variance value variance value of this clock

[1]  The parameters in this section are configurable for all supported domains.

4.2.4.2.3 Automotive parameters

The static pdelay feature is used only if the gPTP stack operates in automotive profile configuration.

At init time the gPTP stack's configuration file is parsed and based on neighborPropDelay _mode the specified
initial_neighborPropDelay is applied to all ports and used for synchronization until a pdelay response from the
peer is received. This is done only if no previously stored pdelay is available from the nvram database specified
by nvram_file. As soon as a pdelay response from the peer is received the 'real' pdelay value is computed, and
used for current synchronization. An indication may then be sent via callback up to the OS-dependent layer.
Upon new indication the Host may update its nvram database and the stored value will be used at next restart
for the corresponding port instead of the initial_neighborPropDelay. The granularity at which pdelay change
indications are sent to the Host is defined by the neighborPropDelay_sensitivity parameter.

In the gPTP configuration file the neighborPropDelay _mode parameter is set to 'static' by default, meaning that
a predefined propagation delay is used as described above while pdelay requests are still sent to the network.

The 'silent' mode behaves the same way as the 'static' mode except that pdelay requests are never sent at all to
the network.

Optionally the neighborPropDelay _mode parameter can be set to standard forcing the stack to operate
propagation delay measurements as specified in the 802.1AS specifications even if the automotive profile is
selected.

(see AutoCDSFunctionalSpec-1_4 - 6.2.2 Persistent gPTP Values)

Table 61. Automotive parameters

Name Key Default value Value & Range Description
Pdelay mode neighborPropDelay_mode static sta|t|c, S|Ien|t Defines pdelay mechanism
or 'standard used
Static Predefined pdelay value
initial_neighborPropDelay 250 0 to 10000 applied to all ports. Expressed
pdelay value in ns
REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.
User guide Rev. 2.5 — 30 March 2023

179/ 332



NXP Semiconductors

REALTIMEEDGEUG

Real-time Edge Software User Guide

Table 61. Automotive parameters...continued

Name Key Default value Value & Range Description
Amount of ns between two
Static pdelay | .ouorPropDelay_sensitivity 10 Oto1000  |Pdelay measurements required
sensitivity to trigger a change indication.
Expressed in ns.
.eram nvram_file fetc/genavb/ Path and nvram file name.
file name fgptp.nvram

4.2.4.2.4 Timing

Pdelay requests and Sync messages sending intervals have a direct impact on the system synchronization
performance. To reduce synchronization time while optimizing overall system load, two levels of intervals are
defined. The first level called 'Initial', defines the messages intervals used until pdelay values have stabilized
and synchronization is achieved. The second level called 'Operational’, defines the messages intervals used
once the system is synchronized.

initialLogPdelayReqInterval and operLogPdelayReqInterval define the intervals between the sending of
successive Pdelay_Req messages. initialLogSynclinterval and operLogSyncinterval define the intervals
between the sending of successive Sync messages. initialLogAnnouncelnterval defines the interval between the
sending of successive Announce messages

(see AutoCDSFunctionalSpec-1_4 - 6.2.1 Static gPTP Values, IEC-60802 section 5, 802.1AS-2020 sections
10.7 and 11.5)

Table 62. Timing parameters

Name Key Default value VELE e Description
Range
Set pdelay request initial
Initial pdelay request interval between the sending
ap yreq initialLogPdelayReqInterval 0 Oto3 of successive Pdelay_Req
interval value i
messages. Expressed in log2
unit (default 0 -> 1s).
Set sync transmit initial
Initial svnc interval between the
. y initialLogSynclinterval -3 -5t00 sending of successive Sync
interval value :
messages. Expressed in log2
unit (default -3-> 125ms).
Set initial announce transmit
i interval between the sending
Initial announce - .
. initialLogAnnouncelnterval 0 Oto3 of successive Announce
interval value i
messages. Expressed in log2
unit (default 0 -> 1s).
Set pdelay request transmit
Operat!onal pdelay operLogPdelayReginterval 0 0to3 |ntewgl used during normall
request interval value operation state. Expressed in
log2 unit (default 0 -> 1s).
Set sync transmit interval
Operational sync used during normal operation
interval value operLogSyncinterval -3 S0 e, Expressed in log2 unit
(default -3 -> 125ms).
REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.
User guide Rev. 2.5 — 30 March 2023

180 /332



NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

4.2.4.2.5 PORTn
This section describes the settings per port where n represents the port index starting at n=1.

Table 63. Port related parameters

Default

Name Key value

Value & Range Description

Static port role (ref. 802.1AS-2011,
Port role portRole disabled 'slave’, 'master’, 'disabled' |section 14.6.3, Table 10-1), applies to
"automotive" profile only.

Set to 1 if both time-synchronization
Ptp port and best master selection functions of
enabled ptpPortEnabled 1 Oor1 the port should be used (ref. 802.1AS-
2011, sections 14.6.4 and 10.2.4.12).

RX timest min=-100000 c tion delay subtracted f
imestamp rxDelayCompensation 0 max=100000 ompensafion detay subfracted from
compensation . ) receive timestamps.
(in ns units)
TX timest min=-100000 c ton del dded t
imestamp txDelayCompensation 0 max=100000 ompensation elay ~ adde °
compensation . ) transmit timestamps.
(in ns units)
Must be set to COMMON_P2P for all
Delay . , — , |domains others than Domain 0. For
Mechanism delayMechanism P2pP P2P"or 'COMMON_P2P Domain 0 the value can be either P2P

or COMMON_P2P.

The following table lists the recommended Rx and Tx compensation values to be applied to the supported NXP
boards for optimized gPTP synchronization.

Table 64. PHY Delay Compensation Values

Board Type rxDelayCompensation txDelayCompensation
LS1028ARDB -274 349

I.MX 8M Plus EVK -569 184

4.2.4.3 SRP

The SRP parameters are defined in the following configuration files, depending on the package used:

* Endpoint; /etc/genavb/srp.cfg

* Bridge: /etc/genavb/srp-br.cfg

The default values are used if the configuration file or the option key are missing. The values in the installed file
may also required an update to match the system configuration.

Table 65. SRP General
This section lists general SRP stack component parameters.

Name Key Default value Range Description
. crit, err, init, Log level for the SRP stack
Log output level log_level info :
- info, or dbg component.
REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.
User guide Rev. 2.5 — 30 March 2023

181 /332



NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

Table 66. MSRP
This section lists MSRP parameters.

Name Key Default value Range Description
Enabled enabled 1 O-disabled, Enable/disable MSRP at runtime.
1-enabled

4.2.5 Log files

Several log files are available at runtime to monitor the different stack components.

4.2.5.1 gPTP Endpoint

Logs are stored in /var/log/fgptp.

e Linux command:

# tail —-f /var/log/fgptp

* If the stack is configured in automotive mode, then the log contains:

Running fgptp in automotive profile on interface ethO

* Port Role, Port AS-capability and link Status are reported each time there is a change in the link state (link
is 802.1AS capable or not) or upon Grand Master (GM) change. This information is also displayed regularly
along with current synchronization and pdelay statistics for each of the enabled gPTP domain:

Port (0) domain (0,0): role changed from DISABLED to SLAVE

Port (0) domain(0,0): Slave - Link: Up - AS Capable: Yes

* Selected Grand Master (GM) capabilities are reported upon new GM selection. Root Identity represents the
clock ID of the currently selected GM. Priority1, Priority2, Class and Accuracy describe the clock quality of the
selected GM. Finally, the Source Port Identity of the peer master port (e.g. the bridge port the local slave port
is connected to). This information is displayed for each of the enabled gPTP domain:

domain (0, 0) Grand master: root identity 00049ffffe039e35

( )
domain (0,0) Grand master: priorityl 245 priority2
domain (0,0) Grand master: class 248 accuracy 248
domain (0,0) Grand master: variance 17258
domain (0, 0) Grand master: source port identity 0001f2fffe0025fe, port number 2

» Synchronization State is reported upon GM selection (SYNCHRONIZED) or when no GM is detected (NOT
SYNCHRONIZED). Synchronization Time expressed in ms represents the time it took for the local clock to
reach synchronization threshold starting from the first SYNC message received. This information is displayed
for each of the enabled domain.

Port (0) domain (0) SYNCHRONIZED - synchronization time (ms): 250

* Pdelay (propagation delay) and local clock adjustments are printed out every 5 seconds. PDelay is expressed
in ns units and represents the one-way delay from the endpoint and its peer master. Correction is expressed
in parts per billion and represents the frequency adjustment performed to the local clock. Offset is expressed
in ns represents the resulting difference between the locally adjusted clock and the reference gPTP
GrandMaster’s clock. (Min/Max/Avg and Variance are computed for both Correction and Offset statistics).
PDelay is displayed only for Domain 0. Correction and Offset are displayed for each of the enabled domain.

Port 0 domain (0,0): Propagation delay (ns): 37.60 min 34 avg 36 max 45
variance 17

REALTIMEEDGEUG All information provided in this document is subject to legal disclaimers. © 2023 NXP B.V. All rights reserved.

User guide Rev. 2.5 — 30 March 2023

182 /332



NXP Semiconductors

REALTIMEEDGEUG

Port 0 domain (0,0):

max 5538 wvariance 148
Port 0 domain (0,0) :
variance 111

Port 0 domain(1l,20):
32314 max 32574 variance 17695

Port 0 domain (1,20) :
70 variance 1149

Real-time Edge Software User Guide

Correction applied to local clock (ppb): min -5603 avg 5572

Offset between GM and local clock (ns) min -12 avg 4 max 22

Correction applied to local clock (ppb): min 32074 avg

Offset between GM and local clock (ns) min -61 avg 3 max

* The following per port per domain statistics (32 bits counters) are printed out every 15 seconds on slave and

master entities:

Table 67. Port statistics displayed on slave and master entities

Receive counters

PortStatRxPkts

Number of gPTP packets received (ether type 0x88F7)

PortStatRxSyncCount

Number of SYNC packets received

PortStatRxSyncReceiptTimeouts

Number of SYNC packets receive timeout

PortStatRxFollowUpCount

Number of FOLLOW-UP packets received

PortStatRxAnnounce

Number of ANNOUNCE packets received

PortStatAnnounceReceiptTimeouts

Number of ANNOUNCE packets timeout

PortStatAnnounceReceiptDropped

Number of ANNOUNCE packets dropped by the entity

PortStatRxSignaling

Number of SIGNALING packets received

PortStatRxPdelayRequest

Number of PDELAY REQUEST packets received

PortStatRxPdelayResponse

Number of PDELAY RESPONSE packets received

PortStatPdelayAllowedLostResponsesExceeded

Number of excess of allowed lost responses to PDELAY
requests

PortStatRxPdelayResponseFollowUp

Number of PDELAY FOLLOW-UP packets received

PortStatRxErrEtype

Number of ether type errors (not 0x88F7)

PortStatRxErrPortId

Number or port ID errors

Transmit counters

PortStatTxPkts

Number of gPTP packets transmitted

PortStatTxSyncCount

Number of SYNC packets transmitted

PortStatTxFollowUpCount

Number of FOLLOW-UP packets transmitted

PortStatTxAnnounce

Number of ANNOUNCE packets transmitted

PortStatTxSignaling

Number of SIGNALING packets transmitted

PortStatTxPdelayReques

Number of PDELAY REQUEST packets transmitted

PortStatTxPdelayResponse

Number of PDELAY RESPONSE packets transmitted

PortStatTxPdelayResponseFollowUp

Number of PDELAY FOLLOW-UP packets transmitted

PortStatTxErr

Number of transmit errors

PortStatTxErrAlloc

Number of transmit packets allocation errors

Miscellaneous counters

PortStatAdjustOnSync

Number of adjustments performed upon SYNC received

REALTIMEEDGEUG

All information provided in this document is subject to legal disclaimers.

© 2023 NXP B.V. All rights reserved.

User guide

Rev. 2.5 — 30 March 2023

183 /332



NXP Semiconductors REALTIMEEDGEUG

Real-time Edge Software User Guide

Table 67. Port statistics displayed on slave and master entities...continued

PortStatMdPdelayRegSmReset Number of reset of the PDELAY REQUEST state
machine

PortStatMdSyncRcvSmReset Number of reset of the SYNC RECEIVE state machine

PortStatHwTsRequest Number of egress timestamp requests

PortStatHwTsHandler Number of egress timestamp notification

PortStatNumSynchronizationLoss Number or synchronization loss on the slave endpoint
(e.g. GM change, GM reference clock discontinuity...)

PortStatNumNotAsCapable Number of transitions from AS_Capable=TRUE to AS_
Capable=FALSE

4.2.5.2 gPTP Bridge

Logs are stored in /var/log/fgptp-br.

e Linux command:

# tail —-f /var/log/fgptp-br

* The bridge stack statistics are similar to the endpoint stack ones except that they are reported for each of the
external ports of the switch (Port 0 to 3) and also for the internal port connected to the endpoint stack (Port 4)
in case of Hybrid setup.

* Pdelay (propagation delay) is printed only for Domain 0. Link status, AS capability and Port Role are printed
out for each port and each gPTP domain.

Port 0 domain(0,0): Role: Disabled Link: Up AS Capable: No neighborGptpCapable:
No DelayMechanism: P2P

Port 1 domain(0,0): Role: Disabled Link: Up AS Capable: No neighborGptpCapable:
No DelayMechanism: P2P

Port 2 domain(0,0): Role: Disabled Link: Up AS Capable: Yes
neighborGptpCapable: Yes DelayMechanism: P2P

Port 2 domain(0,0): Propagation delay (ns): 433.98 min 425 avg 438 max 457
variance 87

Port 3 domain(0,0): Role: Disabled Link: Up AS Capable: No neighborGptpCapable:
No DelayMechanism: P2P

Port 4 domain(0,0): Role Master Link: Up AS Capable: Yes neighborGptpCapable:
Yes DelayMechanism: P2P

Port 4 domain(0,0): Propagation delay (ns): 433.98 min 425 avg 438 max 457
variance 87

Port 0 domain(1l,20): Role: Disabled Link: Up AS Capable: No
neighborGptpCapable: No DelayMechanism: COMMON P2P

Port 1 domain(l,20): Role: Disabled Link: Up AS Capable: No
neighborGptpCapable: No DelayMechanism: COMM