

Document Number: SYNKROUG
Rev. 1.2
06/2011

SynkroRF Network
User’s Guide

How to Reach Us:

Home Page:
www.freescale.com

E-mail:
support@freescale.com

USA/Europe or Locations Not Listed:
Freescale Semiconductor
Technical Information Center, CH370
1300 N. Alma School Road
Chandler, Arizona 85224
+1-800-521-6274 or +1-480-768-2130
support@freescale.com

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
support@freescale.com

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064, Japan
0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor Hong Kong Ltd.
Technical Information Center
2 Dai King Street
Tai Po Industrial Estate
Tai Po, N.T., Hong Kong
+800 2666 8080
support.asia@freescale.com

For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
1-800-521-6274 or 303-675-2140
Fax: 303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com

Information in this document is provided solely to enable system and software implementers to use
Freescale Semiconductor products. There are no express or implied copyright licenses granted
hereunder to design or fabricate any integrated circuits or integrated circuits based on the information
in this document.
Freescale Semiconductor reserves the right to make changes without further notice to any products
herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the
suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any
liability arising out of the application or use of any product or circuit, and specifically disclaims any
and all liability, including without limitation consequential or incidental damages. “Typical” parameters
that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary
in different applications and actual performance may vary over time. All operating parameters,
including “Typicals”, must be validated for each customer application by customer’s technical
experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights
of others. Freescale Semiconductor products are not designed, intended, or authorized for use as
components in systems intended for surgical implant into the body, or other applications intended to
support or sustain life, or for any other application in which the failure of the Freescale Semiconductor
product could create a situation where personal injury or death may occur. Should Buyer purchase
or use Freescale Semiconductor products for any such unintended or unauthorized application,
Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries,
affiliates, and distributors harmless against all claims, costs, damages, and expenses, and
reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death
associated with such unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other
product or service names are the property of their respective owners.

© Freescale Semiconductor, Inc. 2008, 2009. All rights reserved.

SynkroRF Network User’s Guide, Rev. 1.2

Freescale Semiconductor 1

Contents
Audience . iii
Conventions . iii
Definitions, Acronyms, and Abbreviations . iii
Revision History . iv

Chapter 1
SynkroRF Network Software Overview

Chapter 2
Interfacing to the SynkroRF Network

2.1 Include Files . 2-1
2.2 Source Files. 2-1
2.3 SynkroRF Network API . 2-2
2.3.1 Synkro_Start API Function. 2-5
2.3.2 Synkro_SearchRequest API Function . 2-6
2.3.3 Synkro_PairRequest API Function. 2-7
2.3.4 Synkro_PairRemoteDevices API Function . 2-8
2.3.5 Synkro_CloneDevice API Function . 2-9
2.3.6 Synkro_SendCommand API Function . 2-10
2.3.7 Synkro_SetBulkBufferState API Function. 2-11
2.3.8 Synkro_GetBulkBufferState API Function . 2-11
2.3.9 Synkro_SendBulkData API Function. 2-12
2.3.10 Synkro_PollConfig API Function. 2-13
2.3.11 Synkro_PollDevice API Function . 2-13
2.3.12 Synkro_DataAvailable API Function . 2-14
2.3.13 Synkro_UpdateCapabilities API Function . 2-14
2.3.14 Synkro_RefreshCapabilities API Function. 2-15
2.3.15 Synkro_ClearPairingInformation API Function. 2-16
2.3.16 Synkro_SetNewMACAddress API Function . 2-17
2.3.17 Synkro_GetMACAddress API Function . 2-18
2.3.18 Synkro_Sleep API Function . 2-18
2.3.19 Synkro_Wake API Function . 2-19
2.3.20 Synkro_SetReceiveMode Function . 2-19
2.3.21 Synkro_SetPowerLevel API Function . 2-20
2.3.22 Synkro_IsFeatureSetAvailable API Function. 2-20
2.3.23 Synkro_GetPairedDeviceCapabilities API Function . 2-21
2.3.24 Synkro_GetPairedDeviceInfo API Function . 2-21
2.3.25 Synkro_GetLocalNodeInfo API Function . 2-22
2.3.26 Synkro_GenerateNewShortAddress API Function . 2-22
2.3.27 Synkro_GenerateNewSecurityKey API Function . 2-23
2.3.28 Synkro_AddEntryInControllerPairTable API Function . 2-23
2.3.29 Synkro_AddEntryInControlledPairTable API Function . 2-24
2.3.30 Synkro_SavePersistentDataInFlash API Function . 2-24
2.3.31 Synkro_SetSearchThreshold API Function . 2-25

SynkroRF Network User’s Guide, Rev. 1.2

2 Freescale Semiconductor

2.3.32 Synkro_SetPairingThreshold API Function . 2-25
2.3.33 Synkro_SetCloningThreshold API Function . 2-26
2.3.34 Synkro_GetLastLQI API Function. 2-26
2.3.35 Synkro_GetNwkStatus API Function. 2-27
2.3.36 Synkro_IsIdle API function . 2-27
2.4 SynkroRF Network SAP. 2-28
2.4.1 Synkro_Start Confirm Message . 2-30
2.4.2 Synkro_SearchRequest Confirm Message . 2-30
2.4.3 Synkro_SearchResponse Confirm Message . 2-31
2.4.4 Synkro_PairRequest Confirm Message . 2-31
2.4.5 Synkro_PairResponse Confirm Message . 2-32
2.4.6 Synkro_PairRemoteDevices Confirm Message . 2-32
2.4.7 Synkro_RemotePairResponse Confirm Message . 2-33
2.4.8 Synkro_Command Confirm Message . 2-33
2.4.9 Synkro_Command Indication Message . 2-34
2.4.10 Synkro_BulkData Confirm message . 2-34
2.4.11 Synkro_BulkDataStart Indication message . 2-35
2.4.12 Synkro_BulkData Indication Message . 2-35
2.4.13 Synkro_Poll Confirm Message . 2-36
2.4.14 Synkro_Poll Indication Message . 2-36
2.4.15 Synkro_UpdateCapabilities Confirm Message . 2-37
2.4.16 Synkro_UpdateCapabilities Indication Message . 2-37
2.4.17 Synkro_RefreshCapabilities Confirm Message . 2-38
2.4.18 Synkro_RefreshCapabilities Indication Message . 2-38
2.4.19 Synkro_CloneDevice Confirm Message . 2-39
2.4.20 Synkro_CloneResponse Confirm Message . 2-39
2.4.21 Synkro_Sleep Confirm Message . 2-40
2.4.22 Synkro_ChangeMacAddress Confirm Message . 2-40
2.5 SynkroRF Network Application Services. 2-41
2.5.1 CallbackSearch Application Service . 2-42
2.5.2 CallbackPairing Application Service . 2-43
2.5.3 CallbackRmtPairing Application Service . 2-44
2.5.4 CallbackCloneDevice Application Service . 2-44
2.5.5 CallbackCloneEntry Application Service . 2-45

Chapter 3
Creating an Application

3.1 Task Scheduler Overview. 3-1
3.1.1 Adding a Task. 3-1
3.1.2 SynkroRF Network Task Interaction . 3-2
3.2 Network Formation. 3-2
3.2.1 Network Configuration and Initialization. 3-2
3.3 Starting a SynkroRF Node . 3-3
3.4 Searching for Controlled Nodes . 3-4

SynkroRF Network User’s Guide, Rev. 1.2

Freescale Semiconductor 3

3.5 Pairing a Controller and a Controlled Node . 3-5
3.6 Remote Pairing Two Controlled Nodes . 3-6
3.7 Cloning a Controller Node . 3-7
3.8 Command Transfer . 3-8
3.8.1 Receiving Commands . 3-8
3.8.2 Transmitting Commands. 3-9
3.8.3 Creating Application Defined Commands . 3-10
3.9 BulkData Transfer. 3-10
3.9.1 Receiving Bulk Data . 3-10
3.9.2 Transmitting Bulk Data . 3-12
3.10 Low Power . 3-13
3.11 Flash Data Saving . 3-15

SynkroRF Network User’s Guide, Rev. 1.2

4 Freescale Semiconductor

SynkroRF Network User’s Guide, Rev. 1.2

Freescale Semiconductor iii

About This Book
This user’s guide provides a detailed description of the SynkroRF Network, its interfaces, usage and
examples of how to perform key activities utilizing the network.

Audience
This guide is intended for application designers and users of the SynkroRF Network.

Organization
This document contains the following chapters:
Chapter 1 SynkroRF Network Software Overview – Provides an introduction to SynkroRF..
Chapter 2 Interfacing to the SynkroRF Network – Provides a description of the SynkroRF

Network interfaces.
Chapter 3 Creating an Application – Provides a description of basic steps necessary for

building an application using the SynkroRF Network .

Conventions
This document uses the following conventions:
Courier Is used to identify commands, explicit command parameters, code examples,

expressions, data types, and directives.
Italic Is used for emphasis, to identify new terms, and for replaceable command

parameters.

All source code examples are in C.

Definitions, Acronyms, and Abbreviations
The following list defines the abbreviations used in this document.
API Application Programming Interface
CE Consumer Electronics
LQI Link Quality Indicator
NW Layer Network Layer
PAN Personal Area Network
NV Non volatile
NVM Non volatile memory

SynkroRF Network User’s Guide, Rev. 1.2

iv Freescale Semiconductor

Revision History
The following table summarizes revisions to this manual since the previous release (Rev. 1.1).

Revision History

Doc. Version Date / Author Description / Location of Changes

1.2 May 2011, Dev Team Updates for CodeWarrior 10

SynkroRF Network User’s Guide, Rev. 1.2

Freescale Semiconductor 1-1

Chapter 1
SynkroRF Network Software Overview
The SynkroRF Network is a software networking layer that sits on top of the IEEE® 802.15.4 MAC and
PHY layers. It is designed for Wireless Personal Area Networks (WPANs) and conveys information over
short distances among the participants in the network. It enables small, power efficient, inexpensive
solutions to be implemented for a wide range of applications. Some key characteristics of an SynkroRF
Network are:

• An over the air data rate of 250 kbit/s in the 2.4 GHz band.
• 3 independent communication channels in the 2.4 GHz band (15, 20, and 25).
• 2 network node types, controller and controlled nodes.
• Channel Agility mechanism.
• Low Latency Tx mode automatically enabled in conditions of radio interference.
• Fragmented mode transmission and reception, automatically enabled in conditions of radio

interference.
• Robustness and ease of use.
• Essential functionality to build and support a CE network.

Figure 1-1. SynkroRF Network Software Architecture

The SynkroRF Network layer uses components from the standard HC(S)08 Freescale platform, which is
also used by the Freescale’s implementations of 802.15.4. MAC and ZigBee™ layers. For more details
about the platform components, see the Freescale Platform Reference Manual.

MCU RFIC

802.15.4 PHY

802.15.4 MAC

Synkro Network

Applications

SynkroRF Network Software Overview

SynkroRF Network User’s Guide, Rev. 1.2

1-2 Freescale Semiconductor

SynkroRF Network User’s Guide, Rev. 1.2

Freescale Semiconductor 2-1

Chapter 2
Interfacing to the SynkroRF Network

2.1 Include Files
Table 2-1 shows which SynkroRF Network files must be included in the application C-files in order to
have access to the entire SynkroRF Network functionality.

2.2 Source Files
Table 2-2 shows which SynkroRF Network source files must be included in the application project.

Table 2-1. Required SynkroRF Network Include Files in Application Source Files

Include file name Description

NwkInterfacet.h Defines the interfaces of the SynkroRF Network API functions, SynkroRF Network SAP ,
SynkroRF Network Application Services and the structure of the SynkroRF Network Node Data
Database.

NwkCommands.h Defines the supported command sets.

Table 2-2. Required SynkroRF Network Source Files in Application Project

Include file name Description

NwkCommands.c Selects the supported command sets defined in the NwkCommands.h file and also contains
the proprietary application defined command set definitions.

Interfacing to the SynkroRF Network

SynkroRF Network User’s Guide, Rev. 1.2

2-2 Freescale Semiconductor

2.3 SynkroRF Network API
The SynkroRF Network API provides a simple and consistent way of interfacing to Freescale’s SynkroRF
Network. The number of API functions that the Freescale SynkroRF Network software exposes to the
application are limited in order to keep the interfaces as simple and consistent as possible. The API
functions available are used for starting a network, communicating in the network, setting and getting
values of different network functional properties. Table 2-3 shows the available API functions for the
SynkroRF Network layer.

Table 2-3. SynkroRF Network API Functions List

SynkroRF Network
API Function Name Description

O
ve

r t
he

 a
ir

A
ct

iv
ity

Sy
nc

hr
on

ou
s

C
al

l

Av
ai

la
bl

e
on

C

on
tr

ol
le

r

Av
ai

la
bl

e
on

co

nt
ro

lle
d

Se
ct

io
n

Synkro_Start This function starts a controller or controlled
node.

X X X 2.3.1

Synkro_SearchRequest This function implements the request of a
started controller node to search started
controlled nodes in its proximity.

X X 2.3.2

Synkro_PairRequest This function implements the request of a
started controller node to pair with a started
controlled node having a specified device type.

X X 2.3.3

Synkro_PairRemoteDevices This function implements the request of a
started controller node to pair two controlled
nodes it is already paired with.

X X 2.3.4

Synkro_CloneDevice This function implements the request of a
started controller node to be cloned by another
started controller node.

X X 2.3.5

Synkro_SendCommand This function implements the request of a
started node to send a defined command to one
or all the nodes in the Pair Table

X X X 2.3.6

Synkro_SetBulkBufferState This function sets the bulk buffer state to a
value according to the application constrains.

X X X 2.3.7

Synkro_GetBulkBufferState This function returns the bulk buffer state. X X X 2.3.8

Synkro_SendBulkData This function implements the request of a
started node to send bulk data to another node
(from the Pair Table).

X X X 2.3.9

Synkro_PollConfig This function sets the parameters needed to
start a periodic poll request.

X X 2.3.10

Synkro_PollDevice This function starts/stops a periodic poll request
to one or many of the nodes it is already paired
with.

X X 2.3.11

Interfacing to the SynkroRF Network

SynkroRF Network User’s Guide, Rev. 1.2

Freescale Semiconductor 2-3

Synkro_PollDataAvailable This function informs the SynkroRF Network
layer that the application layer has data to send
(immediately after a poll request) to a device
already in the pairing table.

X X 2.3.12

Synkro_UpdateCapabilities This function is used on a controlled node to
communicate to all devices it is paired with that
it has changed the supported Command Sets.

X X 2.3.13

Synkro_RefreshCapabilities This function is used on a controller node to get
the supported Command Sets from a controlled
node it is paired with.

X X 2.3.14

Synkro_ClearPairingInformation This function clears the pair information of a
specified device from the Node Data Database
of the node it is called on.

X 1) X X 2.3.15

Synkro_SetNewMACAddress This function changes the MAC address of an
SynkroRF Network node.

X X 2.3.16

Synkro_GetMACAddress This function returns the MAC address of the
SynkroRF node.

X X X 2.3.17

Synkro_Sleep This function is used to prepare the SynkroRF
Network layer for the platform transition in a low
power state.

X X 2.3.18

Synkro_Wake This function is wakes the SynkroRF Network
layer out of the Sleep state.

X X X 2.3.19

Synkro_SetReceiveMode This function is used to open or close the
SynkroRF Network node’s radio receiver.

X X X 2.3.20

Synkro_SetPowerLevel This function is used to set the transceiver
output power level of the SynkroRF Network
node.

X X X 2.3.21

Synkro_IsFeatureSetAvailable This function specifies if a certain defined
command is available on a specified node from
the list of paired nodes of the device it is called
on.

X X X 2.3.22

Synkro_GetPairedDeviceCapabilities This function retrieves the whole Command Set
availability map of a specified node in the list of
paired nodes of the device it is called on.

X X X 2.3.23

Synkro_GetPairedDeviceInfo This function retrieves some characteristic
information of a specified node in the list of
paired nodes of the device it is called on.

X X X 2.3.24

Synkro_GetLocalNodeInfo This function retrieves some network
information of the node it is called on.

X X X 2.3.25

Synkro_GenerateNewShortAddress This function is available only on controlled
nodes and generates a random short address
that is different from all the short addresses of
the entries in the pair table

X X 2.3.26

Table 2-3. SynkroRF Network API Functions List (continued)

Interfacing to the SynkroRF Network

SynkroRF Network User’s Guide, Rev. 1.2

2-4 Freescale Semiconductor

1) The call is synchronous only in certain conditions. See detailed information in Section 2.3.15

SynkroRF Network API functions are covered in the following sections.

Synkro_GenerateNewSecurityKey This function is available only on controlled
nodes and generates a random 128 bit security
key that is different from all the security keys of
the entries in the pair table

X X 2.3.27

Synkro_AddEntryInControllerPairTable This function enables the application running on
a SynkroRF controller node to add an entry in
the pair table

X X 2.3.28

Synkro_AddEntryInControlledPairTable This function enables the application running on
a SynkroRF controlled node to add an entry in
the pair table

X X 2.3.29

Synkro_SavePersistentDataInFlash This function enables the application running on
a SynkroRF node to trigger the saving of the
network information that needs to be stored
between CPU resets in Flash

X X X 2.3.30

Synkro_SetSearchThreshold This function set the minimum LQI necessary
for a Search Request command received by the
network layer to be forwarded to the application
layer.

X X 2.3.31

Synkro_SetPairingThreshold This function set the minimum LQI necessary
for a Pair Request command received by the
network layer to be forwarded to the application
layer..

X X 2.3.32

Synkro_SetCloningThreshold This function set the minimum LQI necessary
for a Clone Request command received by the
network layer to be forwarded to the application
layer.

X X 2.3.33

Synkro_GetLastLQI This function reads the LQI of the last received
packet by the nwk layer

X X X 2.3.34

Synkro_GetNwkStatus This function communicates to the application
the SynkroRF Network layer status

X X 2.3.35

Synkro_IsIdle This function is used to determine if SynkroRF’s
state is idle.

X X X 2.3.36

Table 2-3. SynkroRF Network API Functions List (continued)

Interfacing to the SynkroRF Network

SynkroRF Network User’s Guide, Rev. 1.2

Freescale Semiconductor 2-5

2.3.1 Synkro_Start API Function
The Synkro_Start API function is available for both controller and controlled nodes. It makes a request for
an SynkroRF Network node to start the network layer.

This function call requests the starting of a SynkroRF Network Start process, and for this reason this
function call is asynchronous. The value returned by its call only informs the calling entity if the request
is accepted to be processed or not, and in the second case it offers information about the reason why the
request was denied. If the return value is successful, the SynkroRF Network layer is accepting and already
starting to process the Start request. When the Start process is completed, the application layer will be
notified by a Start Confirm message which will be sent by the SynkroRF Network layer trough the
SynkroRF Network SAP.

NOTE
If the pointer to the MAC address parameter is not NULL, then the content
of the location it points to MUST NOT be modified until the StartCnf
message is received from network

For detailed information about the how the Start process takes place, see the Freescale SynkroRF Network
Reference Manual.

Prototype

The prototype of the Synkro_Start.API function is as follows:
uint8_t Synkro_Start (

uint8_t nodeType ,
uint8_t* pMACAddr ,
bool_t bUseDataFromNV,
bool_t bNwkAutoRePairResponse

)

Detailed information about description of the parameters, their valid ranges and also about the possible
return values of the API call can be found in the Freescale SynkroRF Network Reference Manual.

Interfacing to the SynkroRF Network

SynkroRF Network User’s Guide, Rev. 1.2

2-6 Freescale Semiconductor

2.3.2 Synkro_SearchRequest API Function
The Synkro_SearchRequest API function is available only for a controller node.

It makes a request for a SynkroRF Network running on a controller node to look for SynkroRF controlled
nodes that are activate in its proximity. The information exchanged during the search process can be
defined as application level information, which is delivered from first node’s application layer to the
second node’s application layer, and vice-versa, like a search request message, a search response message
or the description of the two nodes (encapsulated in NodeDescriptor structure). In addition, there is
network level information, like PAN IDs and MAC Addresses which can be used later for initiating a pair
process between the controller node and any of the controlled nodes found nearby.

This function call requests the starting of a SynkroRF Network Search process, and this function call is
asynchronous. The value returned by its call only informs the calling entity if the request is accepted to be
processed. When it is not accepted, information about the reason why the request was denied is provided.
If the return value is successful, the SynkroRF Network layer is accepting and already starting to process
the Search request. When the Search process completes, the application layer will be notified by a Search
confirm message which will be sent by the SynkroRF Network layer trough the SynkroRF Network SAP.

NOTENote
If the parameter pSearchData is not NULL, then the content of the location
it points to should not be modified until the SearchCnf message is received
from network

For detailed information about the how the Search process takes place on the two implied nodes, see the
Freescale SynkroRF Network Reference Manual.

Prototype

The prototype of the Synkro_SearchRequest.API function is as follows:
uint8_t Synkro_SearchRequest(

uint8_t deviceType ,
uint8_t* pSearchData,
uint8_t searchDataLength,
uint16_t timeout

);

Detailed information about description of the parameters, their valid ranges and also about the possible
return values of the API call can be found in the Freescale SynkroRF Network Reference Manual.

Interfacing to the SynkroRF Network

SynkroRF Network User’s Guide, Rev. 1.2

Freescale Semiconductor 2-7

2.3.3 Synkro_PairRequest API Function
The Synkro_PairRequest API function is only available for a controller node.

It makes a request for a SynkroRF Network controller node to exchange information with an already
started SynkroRF Network controlled node of a specified device type. The information exchanged during
the pairing process includes:

Application level information, which is delivered from first node’s application layer to the second node’s
application layer, and vice-versa, like a pair request message, a pair response message or the description
of the two nodes (encapsulated in NodeDescriptor structure).

Network level information, like PAN IDs and Short Addresses which will be used in the future
communication between the two nodes.

This function call requests the starting of a SynkroRF Network Pair process; this function call is
asynchronous. The value returned by its call only informs the calling entity if the request is accepted to be
processed or not, and in the latter case it offers information about the reason why the request was denied.
If the return value is successful, the SynkroRF Network layer is accepting and already starting to process
the Pair request. When the Pair process completes, the application layer will be notified by a pair confirm
message which will be sent by SynkroRF Network layer trough the SynkroRF Network SAP.

NOTE
If the parameter pPairingData is not NULL, then the content of the location
it points to should not be modified until the PairCnf message is received
from network.

For detailed information about the how the Pair process takes place on the two implied nodes, see the
Freescale SynkroRF Network Reference Manual.

Prototype

The prototype of the Synkro_PairRequest.API function is as follows:
uint8_t Synkro_PairRequest(

uint8_t deviceType ,
uint8_t* pMACAddr,
uint8_t deviceId,
uint8_t* pPairingData,
uint8_t pairingDataLength,
uint16_t timeout

);

Detailed information about description of the parameters, their valid ranges and also about the possible
return values of the API call can be found in the Freescale SynkroRF Network Reference Manual.

Interfacing to the SynkroRF Network

SynkroRF Network User’s Guide, Rev. 1.2

2-8 Freescale Semiconductor

2.3.4 Synkro_PairRemoteDevices API Function
The Synkro_PairRemoteDevices API function is available for a controller node only.

It makes a request for a SynkroRF Network controller node to make two already started controlled nodes
exchange pair information between each other. The two controlled nodes must both be already paired with
the controller node that initiates the RemotePair request. This service contains the particle ‘remote’
because the pair information is not really exchanged between the controlled nodes. The controller node
will send first controlled node’s information to the second controlled node and vice-versa. The information
exchanged during the pairing process can be includes:

Application level information, which is delivered from first controlled node’s application layer to the
second controlled node’s application layer, and vice-versa, like the description of the nodes (encapsulated
in NodeDescriptor structure).

Network level information, like PAN IDs and Short Addresses which will be used in the future
communication between the two controlled nodes.

This function call requests the starting of a SynkroRF Network RemotePair process; this function call is
asynchronous. The value returned by its call only informs the calling entity if the request is accepted to be
processed or not, and in the second case it offers information about the reason why the request was denied.
If the return value is successful, the SynkroRF Network layer is accepting and already starting to process
the RemotePair request. When the RemotePair process completes, the application layer will be notified by
a RemotePair confirm message which will be sent by SynkroRF Network layer trough the SynkroRF
Network SAP.

For detailed information about the how the RemotePair process takes place on the two implied nodes, see
the Freescale SynkroRF Network Reference Manual.

Prototype

The prototype of the Synkro_PairRequest.API function is as follows:
uint8_t Synkro_PairRemoteDevices(

uint8_tdeviceId1,
uint8_tdeviceId2,
uint16_ttimeout

) ;

Detailed information about description of the parameters, their valid ranges and also about the possible
return values of the API call can be found in the Freescale SynkroRF Network Reference Manual.

Interfacing to the SynkroRF Network

SynkroRF Network User’s Guide, Rev. 1.2

Freescale Semiconductor 2-9

2.3.5 Synkro_CloneDevice API Function
The Synkro_Clone API function is available for a controller node only.

It makes a request for a SynkroRF Network controller node to be identically copied by another started
controller node. The information exchanged during the cloning process can be includes:

Application level information, which is delivered from first controller node’s application layer to the
cloned node’s application layer, like the description of every paired node in the first controller node’s Node
Data database (encapsulated in NodeDescriptor structure).

Network level information, like PAN IDs and Short Addresses of every paired node in the first controller
node’s Node Data database.

This function call requests the starting of a SynkroRF Network Clone process; this function call is
asynchronous. The value returned by its call only informs the calling entity if the request is accepted to be
processed or not, and in the second case it offers information about the reason why the request was denied.
If the return value is successful, the SynkroRF Network layer is accepting and already starting to process
the Clone request. When the Clone process completes, the application layer will be notified by a clone
confirm message which will be sent by SynkroRF Network layer trough the SynkroRF Network SAP.

For detailed information about the how the Clone process takes place on the two implied nodes, see the
Freescale SynkroRF Network Reference Manual.

Prototype

The prototype of the Synkro_PairRequest.API function is as follows:
uint8_t Synkro_CloneDevice(

uint16_ttimeout
);

Detailed information about description of the parameters, their valid ranges and also about the possible
return values of the API call can be found in the Freescale SynkroRF Network Reference Manual.

Interfacing to the SynkroRF Network

SynkroRF Network User’s Guide, Rev. 1.2

2-10 Freescale Semiconductor

2.3.6 Synkro_SendCommand API Function
The Synkro_SendCommand API function is available for both controller and controlled nodes.

It makes a request for n SynkroRF Network node to transmit a defined command to one of the nodes it is
already paired with.

This function call requests the starting of a SynkroRF Network SendCommand process; this function call
is asynchronous. The value returned by its call only informs the calling entity if the request is accepted to
be processed or not, and in the second case it offers information about the reason why the request was
denied. If the return value is successful, the SynkroRF Network layer is accepting and already starting to
process the SendCommand request. When the SendCommand process finishes, the application layer will
be notified by a SendCommand confirm message which will be sent by SynkroRF Network layer trough
the SynkroRF Network SAP.

NOTE
If the parameter paramData is not NULL, then the content of the location it
points to should not be modified until the SendCommandCnf message is
received from network.

For detailed information about the how the SendCommand process takes place on the two implied nodes,
see the Freescale SynkroRF Network Reference Manual.

Prototype

The prototype of the Synkro_SendCommand API function is as follows:
uint8_t Synkro_SendCommand(

uint8_tdeviceId,
uint16_tcmdId,
uint8_tparamLength,
uint8_t*paramData,
uint8_t broadcastDeviceType,
uint8_ttxOptions

)

Detailed information about description of the parameters, their valid ranges and also about the possible
return values of the API call can be found in the Freescale SynkroRF Network Reference Manual.

Interfacing to the SynkroRF Network

SynkroRF Network User’s Guide, Rev. 1.2

Freescale Semiconductor 2-11

2.3.7 Synkro_SetBulkBufferState API Function
The Synkro_SetBulkBufferState API function is available for both controller and controlled nodes.

This function sets the bulk buffer state to a value according to the application constrains.

This function call does not request the starting of any SynkroRF process and for this reason its call is
synchronous. When the application layer returns from the API call, the Synkro_SetBulkBufferState
request is completely executed. There will be no later confirm message sent by SynkroRF trough the
SynkroRF SAP.

Prototype

The prototype of the Synkro_SetBulkBufferState API function is as follows:
uint8_t Synkro_SetBulkBufferState(

uint8_t new_state
);

Detailed information about the parameter description, its valid ranges and also about the possible return
values of the API call can be found in the Freescale SynkroRF Network Reference Manual.

2.3.8 Synkro_GetBulkBufferState API Function
The Synkro_GetBulkBufferState API function is available for both controller and controlled nodes.

This function returns the current bulk buffer state value.

Prototype

The prototype of the Synkro_GetBulkBufferState API function is as follows:
uint8_t Synkro_GetBulkBufferState(void);

Detailed information about the possible return values of the API call can be found in the Freescale
SynkroRF Network Reference Manual.

Interfacing to the SynkroRF Network

SynkroRF Network User’s Guide, Rev. 1.2

2-12 Freescale Semiconductor

2.3.9 Synkro_SendBulkData API Function
The Synkro_SendBulkData API function is available for both controller and controlled nodes.

It makes a request for a SynkroRF node to transmit bulk data to one of the nodes it is already paired with.
The bulk data transferred length depends on the transmitter bulk buffer length and receiver bulk buffer
length. If one node wants to transmit bulk data to another node, but the destination node has the bulk buffer
length smaller than the bulk data length that will be received, this node will not accept the transfer because
it has not space for saving the received data. For a given node, the bulk buffer length depends on the
maximum length that the application can allocate for the bulk buffer.

This function call requests the starting of a SynkroRF SendBulkData process; this function call is
asynchronous. The value returned by its call only informs the calling entity if the request is accepted to be
processed or not, and in the second case it offers information about the reason why the request was denied.
If the return value is successful, the SynkroRF layer is accepting and already starting to process the
SendBulkData request. When the SendBulkData process finishes, the application layer will be notified by
a SendBulkData confirm message which will be sent by SynkroRF layer trough the SynkroRF SAP.

NOTE
If the parameter data is not NULL, then the content of the location it points
to should not be modified until the BulkDataCnf message is received from
network.

For detailed information about the how the SendBulkData process takes place on the two implied nodes,
see the Freescale SynkroRF Network Reference Manual.

Prototype

The prototype of the Synkro_SendBulkData API function is as follows:
uint8_t Synkro_SendBulkdata(

uint8_tdeviceId,
uint8_t*data,
uint16_tlength

)

Detailed information about description of the parameters, their valid ranges and also about the possible
return values of the API call can be found in the Freescale SynkroRF Network Reference Manual.

Interfacing to the SynkroRF Network

SynkroRF Network User’s Guide, Rev. 1.2

Freescale Semiconductor 2-13

2.3.10 Synkro_PollConfig API Function
The Synkro_PollConfig API function is available only on controller nodes.

It makes a request for a SynkroRF Network node to set the parameters needed to perform periodic poll
requests.

This function call does not request the starting of any SynkroRF Network process and for this reason its
call is synchronous. When the application layer returns from the API call, the Synkro_PollConfig request
is completely executed. There will be no later confirm message sent by SynkroRF Network trough the
SynkroRF Network SAP.

Prototype

The prototype of the Synkro_PollConfig API function is as follows:
uint8_t Synkro_PollConfig(

uint32_t pollInterval,
uint16_t rxOnInterval

)

Detailed information about description of the parameters, their valid ranges and also about the possible
return values of the API call can be found in the Freescale SynkroRF Network Reference Manual.

2.3.11 Synkro_PollDevice API Function
The Synkro_PollDevice API function is available only on controller nodes.

It makes a request for a SynkroRF Network node to start periodic poll requests to one or many of the nodes
it is already paired with.

This function call requests the starting of a SynkroRF Network periodic poll process; this function call is
asynchronous. The value returned by its call only informs the calling entity if the request is accepted to be
processed or not, and in the second case it offers information about the reason why the request was denied.
If the return value is successful, the SynkroRF Network layer is accepting and already starting to process
the poll request. When the poll process completes, the application layer will be notified by a poll confirm
message which will be sent by SynkroRF Network layer trough the SynkroRF Network SAP.

For detailed information about the how the poll process takes place on the two implied nodes, see the
Freescale SynkroRF Network Reference Manual.

Prototype

The prototype of the Synkro_PollDevice API function is as follows:
uint8_t Synkro_PollDevice (

uint8_t deviceId,
bool_t bPollEnable,
bool_t bPollNow

)

Detailed information about description of the parameters, their valid ranges and also about the possible
return values of the API call can be found in the Freescale SynkroRF Network Reference Manual.

Interfacing to the SynkroRF Network

SynkroRF Network User’s Guide, Rev. 1.2

2-14 Freescale Semiconductor

2.3.12 Synkro_DataAvailable API Function
The Synkro_DataAvailable API function is available on controlled nodes only.

This function is used by the application layer to inform the SynkroRF Network layer that it has data to send
to a device already in the pairing table.

This function call does not request the starting of any SynkroRF Network process and for this reason its
call is synchronous. When the application layer returns from the API call, the Synkro_DataAvailable
request is completely executed. There will be no later confirm message sent by SynkroRF Network trough
the SynkroRF Network SAP.

Prototype

The prototype of the Synkro_DataAvailable API function is as follows:
uint8_t Synkro_DataAvailable(

uint8_tdeviceId,
bool_t bDataAvailable

)

Detailed information about description of the parameters, their valid ranges and also about the possible
return values of the API call can be found in the Freescale SynkroRF Network Reference Manual.

2.3.13 Synkro_UpdateCapabilities API Function
The Synkro_UpdateCapabilities API function is available on controlled nodes only.

It makes a request for a SynkroRF Network controlled node to inform all the SynkroRF Network nodes it
is paired with about the fact that it has changed his supported Application Command Sets. The notification
of changing the supported Application Command Sets is done by sending an defined command having a
special reserved CommandId to each paired device.

This function call requests the starting of a SynkroRF Network SendCommand process; this function call
is asynchronous. The value returned by its call only informs the calling entity if the request is accepted to
be processed or not, and in the second case it offers information about the reason why the request was
denied. If the return value is successful, the SynkroRF Network layer is accepting and already starting to
process the SendCommand request. When the SendCommand process completes, the application layer
will be notified by a SendCommand confirm message which will be sent by SynkroRF Network layer
trough the SynkroRF Network SAP.

NOTE
The content of the cmdCapabilities array should not be modified until the
UpdateCapabilitiesCnf message is received from network.

For detailed information about the how the SendCommand process takes place, see the Freescale
SynkroRF Network Reference Manual.

Prototype

The prototype of the Synkro_UpdateCapabilities API function is as follows:

Interfacing to the SynkroRF Network

SynkroRF Network User’s Guide, Rev. 1.2

Freescale Semiconductor 2-15

uint8_t Synkro_UpdateCapabilities(
uint8_tcmdCapabilities[MAX_DEVICE_CAPABILITIES]

)

Detailed information about description of the parameters, their valid ranges and also about the possible
return values of the API call can be found in the Freescale SynkroRF Network Reference Manual.

2.3.14 Synkro_RefreshCapabilities API Function
The Synkro_RefreshCapabilities API function is available on controller nodes only.

It makes a request for a SynkroRF Network controller node to ask a paired controlled node for its
supported Command Sets. The request is transmitted to the controlled node by sending an defined
command having a special reserved CommandId.

This function call requests the starting of a SynkroRF Network SendCommand process; this function call
is asynchronous. The value returned by its call only informs the calling entity if the request is accepted to
be processed or not, and in the second case it offers information about the reason why the request was
denied. If the return value is successful, the SynkroRF Network layer is accepting and already starting to
process the SendCommand request. When the SendCommand process completes, the application layer
will be notified by a SendCommand confirm message which will be sent by SynkroRF Network layer
trough the SynkroRF Network SAP.

For detailed information about the how the SendCommand process takes place, see the Freescale
SynkroRF Network Reference Manual.

Prototype

The prototype of the Synkro_ RefreshCapabilities API function is as follows:
uint8_t Synkro_RefreshCapabilities(

uint8_tdeviceId
)

Detailed information about description of the parameters, their valid ranges and also about the possible
return values of the API call can be found in the Freescale SynkroRF Network Reference Manual.

Interfacing to the SynkroRF Network

SynkroRF Network User’s Guide, Rev. 1.2

2-16 Freescale Semiconductor

2.3.15 Synkro_ClearPairingInformation API Function
The Synkro_ClearPairingInformation API function is available for both controller and controlled nodes.

It makes a request for a SynkroRF Network node to clear information in one or all positions in the Pair
Table of its NodeData Database. This means that information about a specific node or of all nodes paired
with it will be cleared.

This function behaves different depending of the node type of the device it is called on, and also on the
parameter received.

If the node type of the device where this function is called is controlled and the deviceId equals to
gInvalidDeviceId_c (which means that the whole pair table should be cleared) then the function requests
the starting of a SynkroRF Network Start process; this function call is asynchronous. The value returned
by its call only informs the calling entity if the request is accepted to be processed or not, and in the second
case it offers information about the reason why the request was denied. If the return value is successful,
the SynkroRF Network layer is accepting and already starting to process the Start request. When the Start
process finishes, the application layer will be notified by a Start confirm message which will be sent by
SynkroRF Network layer trough the SynkroRF Network SAP.

In all the other cases, the function does not request the starting of any SynkroRF Network process and for
this reason its call is synchronous. When the application layer receives the return value of the API call, the
Synkro_ClearPairingInformation request is completely executed. There will be no other confirm message
sent by SynkroRF Network trough the SynkroRF Network SAP.

For detailed information about the how the ClearPairingInformation process takes place, see the Freescale
SynkroRF Network Reference Manual.

Prototype

The prototype of the Synkro_ ClearPairingInformation API function is as follows:
uint8_t Synkro_ClearPairingInformation(

uint8_tdeviceId
)

Detailed information about description of the parameters, their valid ranges and also about the possible
return values of the API call can be found in the Freescale SynkroRF Network Reference Manual.

Interfacing to the SynkroRF Network

SynkroRF Network User’s Guide, Rev. 1.2

Freescale Semiconductor 2-17

2.3.16 Synkro_SetNewMACAddress API Function
The Synkro_SetNewMacAddress API function is available for both controller and controlled nodes.

It makes a request for an SynkroRF Network node to change its IEEE 802.15.4 MAC address.

This function call requests the starting of a SynkroRF Network SetNewMACAddress process; this
function is asynchronous. The value returned by its call only informs the calling entity if the request is
accepted to be processed or not, and in the second case it offers information about the reason why the
request was denied. If the return value is successful, the SynkroRF Network layer is accepting and already
starting to process the SetNewMACAddress request. When the SetNewMACAddress process finishes, the
application layer will be notified by a SetNewMACAddress confirm message which will be sent by
SynkroRF Network layer trough the SynkroRF Network SAP.

NOTE
The contents of the location pointed to by the pMACAddr parameter should
not be modified until the ChangeMacAddrCnf message is received from
network.

For detailed information about the how the SetNewMACAddress process takes place, see the Freescale
SynkroRF Network Reference Manual.

Prototype

The prototype of the Synkro_SetNewMACAddress API function is as follows:
uint8_t Synkro_SetNewMACAddress(

uint8_t*pMACAddr
)

Detailed information about description of the parameters, their valid ranges and also about the possible
return values of the API call can be found in the Freescale SynkroRF Network Reference Manual.

Interfacing to the SynkroRF Network

SynkroRF Network User’s Guide, Rev. 1.2

2-18 Freescale Semiconductor

2.3.17 Synkro_GetMACAddress API Function
The Synkro_GetMacAddress API function is available for both controller and controlled nodes.

It makes a request for a SynkroRF node to obtain its IEEE 802.15.4 MAC address.

This function call does not request the starting of any SynkroRF process and for this reason its call is
synchronous. When the application layer receives the return value of the API call, the
Synkro_GetMACAddress request is completely executed. There will be no other confirm message sent by
SynkroRF trough the SynkroRF SAP.

Prototype

The prototype of the Synkro_GetMACAddress API function is as follows:
void Synkro_GetMACAddress(

uint8_t*pMACAddr
)

Detailed information about description of the parameters, their valid ranges and also about the possible
return values of the API call can be found in the Freescale SynkroRF Network Reference Manual.

2.3.18 Synkro_Sleep API Function
The Synkro_Sleep API function is available for both controller and controlled nodes.

It makes a request for a SynkroRF Network node to prepare to enter a platform low power state. This
function is not affecting in any way the functioning mode of the MCU or radio transceiver.

This function call requests the starting of a SynkroRF Network Sleep process; this function call is
asynchronous. The value returned by its call only informs the calling entity if the request is accepted to be
processed or not, and in the second case it offers information about the reason why the request was denied.
If the return value is successful, the SynkroRF Network layer is accepting and already starting to process
the Sleep request. When the Sleep process completes, the application layer will be notified by a Sleep
confirm message which will be sent by SynkroRF Network layer trough the SynkroRF Network SAP.

For detailed information about the how the Sleep process takes place, see the Freescale SynkroRF Network
Reference Manual.

Prototype

The prototype of the Synkro_Sleep API function is as follows:
uint8_t Synkro_Sleep(void)

Detailed information about description of the parameters, their valid ranges and also about the possible
return values of the API call can be found in the Freescale SynkroRF Network Reference Manual.

Interfacing to the SynkroRF Network

SynkroRF Network User’s Guide, Rev. 1.2

Freescale Semiconductor 2-19

2.3.19 Synkro_Wake API Function
The Synkro_Wake API function is available for both controller and controlled nodes.

It makes a request for a SynkroRF Network node to exit the sleep mode, if this was previously entered.
This function is not affecting in any way the functioning mode of the MCU or radio transceiver.

This function call does not request the starting of any SynkroRF Network process and for this reason its
call is synchronous. When the application layer receives the return value of the API call, the Synkro_Wake
request is completely executed. There will be no other confirm message sent by SynkroRF Network trough
the SynkroRF Network SAP.

Prototype

The prototype of the Synkro_Wake API function is as follows:
uint8_t Synkro_Wake(void)

Detailed information about description of the parameters, their valid ranges and also about the possible
return values of the API call can be found in the Freescale SynkroRF Network Reference Manual.

2.3.20 Synkro_SetReceiveMode Function
The Synkro_SetReceiveMode API function is available for both controller and controlled nodes.

It makes a request for a SynkroRF Network node to open or close the Rx module of its radio transceiver.

This function call does not request the starting of any SynkroRF Network process and for this reason its
call is synchronous. When the application layer receives the return value of the API call, the
Synkro_SetReceiveMode request is completely executed. There will be no other confirm message sent by
SynkroRF Network trough the SynkroRF Network SAP.

Prototype

The prototype of the Synkro_SetReceiveMode API function is as follows:
uint8_t Synkro_SetReceiveMode(

uint8_t rxMode
)

Detailed information about description of the parameters, their valid ranges and also about the possible
return values of the API call can be found in the Freescale SynkroRF Network Reference Manual.

Interfacing to the SynkroRF Network

SynkroRF Network User’s Guide, Rev. 1.2

2-20 Freescale Semiconductor

2.3.21 Synkro_SetPowerLevel API Function
The Synkro_SetPowerLevel API function is available for both controller and controlled nodes.

It makes a request for a SynkroRF Network node to set the power level of the transceiver.

This function call does not request the starting of any SynkroRF Network process and for this reason its
call is synchronous. When the application layer receives the return value of the API call, the
Synkro_SetPowerLevel request is completely executed. There will be no other confirm message sent by
SynkroRF Network trough the SynkroRF Network SAP.

Prototype

The prototype of the Synkro_SetPowerLevel API function is as follows:
uint8_t Synkro_SetPowerLevel(

uint8_t level
)

Detailed information about description of the parameter, its valid ranges and also about the possible return
values of the API call can be found in the Freescale SynkroRF Network Reference Manual.

2.3.22 Synkro_IsFeatureSetAvailable API Function
The Synkro_IsFeatureSetAvailable API function is available for both controller and controlled nodes.

It makes a request for a SynkroRF Network node to confirm if a certain application defined command is
supported by a paired node.

This function call does not request the starting of any SynkroRF Network process and for this reason its
call is synchronous. When the application layer receives the return value of the API call, the
Synkro_IsFeatureSetAvailable request is completely executed. There will be no other confirm message
sent by SynkroRF Network trough the SynkroRF Network SAP.

Prototype

The prototype of the Synkro_IsFeatureSetAvailable API function is as follows:
uint8_t Synkro_IsFeatureSetAvailable(

uint8_t deviceId,
uint8_t cmdIndex

)

Detailed information about description of the parameters, their valid ranges and also about the possible
return values of the API call can be found in the Freescale SynkroRF Network Reference Manual.

Interfacing to the SynkroRF Network

SynkroRF Network User’s Guide, Rev. 1.2

Freescale Semiconductor 2-21

2.3.23 Synkro_GetPairedDeviceCapabilities API Function
The Synkro_GetPairedDeviceCapabilities API function is available for both controller and controlled
nodes.

It makes a request for a SynkroRF Network node to get the application defined command sets supported
by one of the nodes it is paired with.

This function call does not request the starting of any SynkroRF Network process and for this reason its
call is synchronous. When the application layer receives the return value of the API call, the
Synkro_GetPairedDeviceCapabilities request is completely executed. There will be no other confirm
message sent by SynkroRF Network trough the SynkroRF Network SAP.

Prototype

The prototype of the Synkro_GetPairedDeviceCapabilities API function is as follows:
uint8_t Synkro_GetPairedDeviceCapabilities(

uint8_tdeviceId,
uint8_tfeatureCapabilities[MAX_DEVICE_CAPABILITIES]

)

Detailed information about description of the parameters, their valid ranges and also about the possible
return values of the API call can be found in the Freescale SynkroRF Network Reference Manual.

2.3.24 Synkro_GetPairedDeviceInfo API Function
The Synkro_GetPairedDeviceInfo API function is available for both controller and controlled nodes.

It makes a request for a SynkroRF Network node to get the application defined values characteristic to a
specified node from the list of the nodes it is paired with. This information is encapsulated in the
NodeDescriptor structure.

This function call does not request the starting of any SynkroRF Network process and for this reason its
call is synchronous. When the application layer receives the return value of the API call, the
Synkro_GetPairedDeviceInfo request is completely executed. There will be no other confirm message sent
by SynkroRF Network trough the SynkroRF Network SAP.

Prototype

The prototype of the Synkro_GetPairedDeviceInfo API function is as follows:
uint8_t Synkro_GetPairedDeviceCapabilities(

uint8_t deviceId,
uint8_t* nwkVersion,
uint8_t* vendorId,
uint8_t* productId,
uint8_t* productVersion,
uint8_t supportedConnections

);

Detailed information about description of the parameters, their valid ranges and also about the possible
return values of the API call can be found in the Freescale SynkroRF Network Reference Manual.

Interfacing to the SynkroRF Network

SynkroRF Network User’s Guide, Rev. 1.2

2-22 Freescale Semiconductor

2.3.25 Synkro_GetLocalNodeInfo API Function
The Synkro_GeLocalNodeInfo API function is available for both controller and controlled nodes.

It makes a request for a SynkroRF Network node to get the values of some properties of the network
running on the node where it is issued, like the PAN ID, Short Address and network version.

This function call does not request the starting of any SynkroRF Network process and for this reason its
call is synchronous. When the application layer receives the return value of the API call, the
Synkro_GetLocalNodeInfo request is completely executed. There will be no other confirm message sent
by SynkroRF Network trough the SynkroRF Network SAP.

Prototype

The prototype of the Synkro_ GetLocalNodeInfo API function is as follows:
uint8_t Synkro_GetLocalNodeInfo(

uint8_t* nwkVersion,
uint8_t* panId,
uint8_t* shortAddress

);

Detailed information about description of the parameters, their valid ranges and also about the possible
return values of the API call can be found in the Freescale SynkroRF Network Reference Manual.

2.3.26 Synkro_GenerateNewShortAddress API Function
The Synkro_GenerateNewShortAddress API function is available for controlled nodes only.

It makes a request for the SynkroRF Network running on a controlled node to generate a random 2 bytes
short address that is not equal to any of the short addresses allocated to the devices already present in the
pair table of the node.

This function call does not request the starting of any SynkroRF Network process and for this reason its
call is synchronous. When the application layer receives the return value of the API call, the
Synkro_GenerateNewShortAddress request is completely executed. There will be no other confirm
message sent by SynkroRF Network trough the SynkroRF Network SAP.

Prototype

The prototype of the Synkro_GenerateNewShortAddress API function is as follows:
uint8_t Synkro_GenerateNewShortAddress(

uint8_t* newShortAddress
);

Detailed information about description of the parameters, their valid ranges and also about the possible
return values of the API call can be found in the Freescale SynkroRF Network Reference Manual.

Interfacing to the SynkroRF Network

SynkroRF Network User’s Guide, Rev. 1.2

Freescale Semiconductor 2-23

2.3.27 Synkro_GenerateNewSecurityKey API Function
The Synkro_GenerateNewSecurityKey API function is available for controlled nodes only.

It makes a request for the SynkroRF Network running on a controlled node to generate a random 128 bit
security key that is not equal to any of the security keys allocated to the devices already present in the pair
table of the node.

This function call does not request the starting of any SynkroRF Network process and for this reason its
call is synchronous. When the application layer receives the return value of the API call, the
Synkro_GenerateNewSecurityKey request is completely executed. There will be no other confirm
message sent by SynkroRF Network trough the SynkroRF Network SAP.

Prototype

The prototype of the Synkro_GenerateNewSecurityKey API function is as follows:
uint8_t Synkro_GenerateNewSecurityKey(

uint8_t* newSecurityKey
);

Detailed information about description of the parameters, their valid ranges and also about the possible
return values of the API call can be found in the Freescale SynkroRF Network Reference Manual.

2.3.28 Synkro_AddEntryInControllerPairTable API Function
The Synkro_AddEntryInControllerPairTable API function is available for controller nodes only.

It makes a request for the SynkroRF Network running on a controller node to add a new entry in its pair
table, at a specified position, containing specified information.

This function call does not request the starting of any SynkroRF Network process and for this reason its
call is synchronous. When the application layer receives the return value of the API call, the
Synkro_AddEntryInControllerPairTable request is completely executed. There will be no other confirm
message sent by SynkroRF Network trough the SynkroRF Network SAP.

Prototype

The prototype of the Synkro_AddEntryInControllerPairTable API function is as follows:
uint8_t Synkro_AddEntryInControllerPairTable(

uint8_t deviceId,
controllerNodeEntry_t* nodeEntry

);

Detailed information about description of the parameters, their valid ranges and also about the possible
return values of the API call can be found in the Freescale SynkroRF Network Reference Manual.

Interfacing to the SynkroRF Network

SynkroRF Network User’s Guide, Rev. 1.2

2-24 Freescale Semiconductor

2.3.29 Synkro_AddEntryInControlledPairTable API Function
The Synkro_AddEntryInControlledPairTable API function is available for controlled nodes only.

It makes a request for the SynkroRF Network running on a controlled node to add a new entry in its pair
table, at a specified position, containing specified information.

This function call does not request the starting of any SynkroRF Network process and for this reason its
call is synchronous. When the application layer receives the return value of the API call, the
Synkro_AddEntryInControlledPairTable request is completely executed. There will be no other confirm
message sent by SynkroRF Network trough the SynkroRF Network SAP.

Prototype

The prototype of the Synkro_AddEntryInControlledPairTable API function is as follows:
uint8_t Synkro_AddEntryInControlledPairTable(

uint8_t deviceId,
controlledNodeEntry_t* nodeEntry

);

Detailed information about description of the parameters, their valid ranges and also about the possible
return values of the API call can be found in the Freescale SynkroRF Network Reference Manual.

2.3.30 Synkro_SavePersistentDataInFlash API Function
The Synkro_SavePersistentDataInFlash API function is available for both controlled and controlled
nodes.

It makes a request for the SynkroRF Network to save in Flash all the sensitive information that shouldn’t
be lost between resets of the CPU.

This function call does not request the starting of any SynkroRF Network process and for this reason its
call is synchronous. When the application layer receives the return value of the API call, the
Synkro_SavePersistentDataInFlashrequest is completely executed. There will be no other confirm
message sent by SynkroRF Network trough the SynkroRF Network SAP.

Prototype

The prototype of the Synkro_SavePersistentDataInFlash API function is as follows:
void Synkro_SavePersistentDataInFlash(void);

The Synkro_SavePersistentDataInFlash call does not return any value.

Detailed information about description of the parameters and their valid can be found in the Freescale
SynkroRF Network Reference Manual.

Interfacing to the SynkroRF Network

SynkroRF Network User’s Guide, Rev. 1.2

Freescale Semiconductor 2-25

2.3.31 Synkro_SetSearchThreshold API Function
The Synkro_SetSearchThreshold API function is available for controlled nodes only.

It makes a request for a SynkroRF Network controlled node to set a minimum value for the LQI of the
future incoming search requests that should be accepted by the network layer.

This function call does not request the starting of any SynkroRF Network process and for this reason its
call is synchronous. When the application layer receives the return value of the API call, the
Synkro_SetSearchThreshold request is completely executed. There will be no other confirm message sent
by SynkroRF Network trough the SynkroRF Network SAP.

Prototype

The prototype of the Synkro_SetSearchThreshold API function is as follows:
void Synkro_SetSearchThreshold(

uint8_tthreshold
);

The Synkro_SetSearchThreshold call does not return any value.

Detailed information about description of the parameters and their valid can be found in the Freescale
SynkroRF Network Reference Manual.

2.3.32 Synkro_SetPairingThreshold API Function
The Synkro_SetPairingThreshold API function is available for controlled nodes only.

It makes a request for a SynkroRF Network controlled node to set a minimum value for the LQI of the
future incoming pair requests that should be accepted by the network layer.

This function call does not request the starting of any SynkroRF Network process and for this reason its
call is synchronous. When the application layer receives the return value of the API call, the
Synkro_SetPairingThreshold request is completely executed. There will be no other confirm message sent
by SynkroRF Network trough the SynkroRF Network SAP.

Prototype

The prototype of the Synkro_SetPairingThreshold API function is as follows:
void Synkro_SetPairingThreshold(

uint8_tthreshold
);

The Synkro_SetPairingThreshold call does not return any value.

Detailed information about description of the parameters and their valid can be found in the Freescale
SynkroRF Network Reference Manual.

Interfacing to the SynkroRF Network

SynkroRF Network User’s Guide, Rev. 1.2

2-26 Freescale Semiconductor

2.3.33 Synkro_SetCloningThreshold API Function
The Synkro_SetCloningThreshold API function is available for controller nodes only.

It makes a request for a SynkroRF Network controller node to set a minimum value for the LQI of the
future incoming clone requests that should be accepted by the network layer.

This function call does not request the starting of any SynkroRF Network process and for this reason its
call is synchronous. When the application layer receives the return value of the API call, the
Synkro_SetCloningThreshold request is completely executed. There will be no confirm message sent by
SynkroRF Network trough the SynkroRF Network SAP for this request.

Prototype

The prototype of the Synkro_SetCloningThreshold API function is as follows:
void Synkro_SetCloningThreshold(

uint8_tthreshold
)

The Synkro_SetCloningThreshold call does not return any value.

Detailed information about description of the parameters and their valid can be found in the Freescale
SynkroRF Network Reference Manual.

2.3.34 Synkro_GetLastLQI API Function
The Synkro_GetLastLQI API function is available for both controller and controlled nodes.

This function reads the value of the LQI of the last packet received by the nwk layer of the node where the
service is requested from.

This function call does not request the starting of any SynkroRF Network process and for this reason its
call is synchronous. When the application layer returns from the API call, the Synkro_GetLastLQI request
is completely executed. There will be no later confirm message sent by SynkroRF Network trough the
SynkroRF Network SAP.

Prototype

The prototype of the Synkro_GetLastLQI API function is as follows:
void Synkro_GetLastLQI (void);

The Synkro_GetLastLQI call returns the LQI of the last packet received.

Detailed information about description of the parameter and its valid range can be found in the Freescale
SynkroRF Network Reference Manual.

Interfacing to the SynkroRF Network

SynkroRF Network User’s Guide, Rev. 1.2

Freescale Semiconductor 2-27

2.3.35 Synkro_GetNwkStatus API Function
The Synkro_GetNwkStatus API function is available for both controller and controlled nodes.

This function attempts to find if the SynkroRF Network layer has run out of memory or not.

This function call does not request the starting of any SynkroRF Network process and for this reason its
call is synchronous. When the application layer returns from the API call, the Synkro_GetNwkStatus
request is completely executed. There will be no later confirm message sent by SynkroRF Network trough
the SynkroRF Network SAP.

Prototype

The prototype of the Synkro_GetDeviceCapabilities API function is as follows:
void Synkro_GetNwkStatus(

bool_t*bOutOfMemory
);

The Synkro_GetNwkStatus call does not return any value.

Detailed information about description of the parameter and its valid range can be found in the Freescale
SynkroRF Network Reference Manual.

2.3.36 Synkro_IsIdle API function
The Synkro_IsIdle API function is available for both controller and controlled nodes.

This function is used to determine if the SynkroRF Network layer is in the idle state or not.

This function call does not request the starting of any SynkroRF process and for this reason its call is
synchronous. When the application layer returns from the API call, the Synkro_IsIdle request is
completely executed. There will be no later confirm message sent by SynkroRF trough the SynkroRF SAP.

Prototype

The prototype of the Synkro_IsIdle API function is as follows:
bool_t Synkro_IsIdle (void)

Detailed information about the possible return values of the API call can be found in the Freescale
SynkroRF Network Reference Manual.

Interfacing to the SynkroRF Network

SynkroRF Network User’s Guide, Rev. 1.2

2-28 Freescale Semiconductor

2.4 SynkroRF Network SAP
SynkroRF Network SAP is the one of two communication interfaces between the SynkroRF Layer and
Application layer in this specified direction, and is based on service primitives passed from first layer to
the second one through a layer Service Access Point (SAP). The SAP is a dedicated callback function
which has the following prototype:

void Synkro_NWKSapHandler(SynkroToAppMessage_t *appMsg);

This function will be called by the network layer with a pointer to a dynamically allocated SynkroRF
Network-To-App message (SynkroToAppMessage_t)

The function implementation in the application should queue the message and send an event to the
application task as shown in the following code example:

void Synkro_NWKSapHandler(SynkroToAppMessage_t *appMsg)
{

/* Put the incoming Nwk message in the applications input queue. */
MSG_Queue(&mNwkAppInputQueue, appMsg);
 TS_SendEvent(gAppTaskID, gAppEvtMsgFromNwk_c);

}

Because there are multiple kind of messages being passed trough the SAP, each message needs to have an
identifier. These identifiers are shown in the following table. Some of the identifiers are unsupported for
some of the node types.

Table 2-4. SynkroRF Network SAP Messages List

Message identifier Message description
Supported on

controller
node

Supported on
controlled

node
Section

 gSynkroStartCnf_c Confirmation for a Start request
completely executed

x X 2.4.1

 gSynkroSearchCnf_c Confirmation for a Search request
completely executed

x 2.4.2

 gSynkroSearchResponseCnf_c Confirmation after sending a
Search response

X 2.4.3

 gSynkroPairCnf_c Confirmation for a Pair request
completely executed

x 2.4.4

 gSynkroPairRespCnf_c Pair response send confirmation X 2.4.5

 gSynkroPairRemoteDevicesCnf_c Confirmation for a Remote Pair
request completely executed

x 2.4.6

 gSynkroRmtPairRespCnf_c Remote Pair response send
confirmation

 x 2.4.7

 gSynkroCommandCnf_c Command send confirmation x x 2.4.8

 gSynkroCommandInd_c Command arrival indication x x 2.4.9

 gSynkroBulkDataCnf_c BulkData send confirmation x x 2.4.10

 gSynkroBulkDataStartInd_c BulkData start transfer indication x x 2.4.11

Interfacing to the SynkroRF Network

SynkroRF Network User’s Guide, Rev. 1.2

Freescale Semiconductor 2-29

 gSynkroBulkDataInd_c BulkData end transfer indication x x 2.4.12

gSynkroPollCnf_c Poll process completed
confirmation

x 2.4.13

gSynkroPollInd_c Poll request received x 2.4.14

gSynkroUpdateCapabilitiesCnf_c Confirmation for a
UpdateCapabilities request
completely executed

x 2.4.15

gSynkroUpdateCapabilitiesInd_c UpdateCapabilities request
received

x x 2.4.16

gSynkroRefreshCapabilitiesCnf_c Confirmation for a
RefreshCapabilities request
completely executed

x 2.4.17

gSynkroRefreshCapabilitiesInd_c RefreshCapabilities request
received

x 2.4.18

 gSynkroCloneDeviceCnf_c Confirmation for a Clone request
completely executed

x 2.4.19

 gSynkroCloneRespCnf_c Clone response send confirmation x 2.4.20

 gSynkroSleepCnf_c Confirmation for a Sleep request
completely executed

x x 2.4.21

 gSynkroChangeMacAddrCnf_c Confirmation for a ChangeMac
request completely executed

x x 2.4.22

Table 2-4. SynkroRF Network SAP Messages List (continued)

Interfacing to the SynkroRF Network

SynkroRF Network User’s Guide, Rev. 1.2

2-30 Freescale Semiconductor

2.4.1 Synkro_Start Confirm Message
The Synkro_Start Confirm message can be received by the application layer on controller and controlled
nodes.

This message notifies the application layer that a SynkroRF Network Start or a SynkroRF Network
ClearPairingInformation process previously requested has completed and also offers valuable information
about the way this request has been accomplished.

Message Structure

The structure of the Synkro_Start Confirm message is as follows:
typedef struct synkroStartCnf_tag {

 uint8_tresult;
 } synkroStartCnf_t;

Detailed information about the message fields and their possible values can be found in the Freescale
SynkroRF Network Reference Manual.

2.4.2 Synkro_SearchRequest Confirm Message
The Synkro_SearchRequest Confirm message can be received by the application layer only on controller
nodes.

This message notifies the application layer that a SynkroRF Network Search process previously requested
has completed and also offers valuable information about the way this request has been accomplished.

Message Structure

The structure of the synkro_Search Confirm message is as follows:
typedef struct synkroSearchCnf_tag {

uint8_t status;
uint8_t numNodes;
searchDescriptorBlock_t*_ pSearchDescriptorBlocks;

} synkroSearchCnf_t;

Detailed information about the message fields and their possible values can be found in the Freescale
SynkroRF Network Reference Manual.

Interfacing to the SynkroRF Network

SynkroRF Network User’s Guide, Rev. 1.2

Freescale Semiconductor 2-31

2.4.3 Synkro_SearchResponse Confirm Message
The Synkro_SearchResponse Confirm message can be received by the application layer only on controlled
nodes.

This message notifies the application layer that a search response sent by the network layer, as result of
the application acceptance to respond to a Search Request, has completed and also offers valuable
information about the way this response has been transmitted.

Message Structure

The structure of the Synkro_SearchResponse Confirm message is as follows:
typedef struct synkroPairRespCnf_tag{

 uint8_t status;
 uint8_t macAddr[8];
}synkroSearchRespCnf_t;

Detailed information about the message fields and their possible values can be found in the Freescale
SynkroRF Network Reference Manual.

2.4.4 Synkro_PairRequest Confirm Message
The Synkro_PairRequest Confirm message can be received by the application layer only on controller
nodes.

This message notifies the application layer that a SynkroRF Network Pair process previously requested
has completed and also offers valuable information about the way this request has been accomplished.

Message Structure

The structure of the synkro_Pair Confirm message is as follows:
typedef struct synkroPairCnf_tag {

uint8_t result;
uint8_t* pReceivedData;
uint8_t receivedDataLength ;

} synkroPairCnf_t;

Detailed information about the message fields and their possible values can be found in the Freescale
SynkroRF Network Reference Manual.

Interfacing to the SynkroRF Network

SynkroRF Network User’s Guide, Rev. 1.2

2-32 Freescale Semiconductor

2.4.5 Synkro_PairResponse Confirm Message
The Synkro_PairResponse Confirm message can be received by the application layer only on controlled
nodes.

This message notifies the application layer that a pair response sent by the network layer, as result of the
application acceptance of a Pair Request, has completed and also offers valuable information about the
way this response has been transmitted.

Message Structure

The structure of the Synkro_PairResponse Confirm message is as follows:
typedef struct synkroPairRespCnf_tag{

 uint8_t deviceId;
 uint8_t status;
}synkroPairRespCnf_t;

Detailed information about the message fields and their possible values can be found in the Freescale
SynkroRF Network Reference Manual.

2.4.6 Synkro_PairRemoteDevices Confirm Message
The Synkro_PairRemoteDevices Confirm message can be received by the application layer only on
controller nodes.

This message notifies the application layer that a SynkroRF RemotePair process previously requested has
completed and also offers valuable information about the way this request has been accomplished.

Message Structure

The structure of the Synkro_PairRemoteDevices Confirm message is as follows:
typedef struct synkroPairRemoteDevicesCnf_tag {

uint8_tresult;
} synkroPairRemoteDevicesCnf_t;

Detailed information about the message fields and their possible values can be found in the Freescale
SynkroRF Network Reference Manual.

Interfacing to the SynkroRF Network

SynkroRF Network User’s Guide, Rev. 1.2

Freescale Semiconductor 2-33

2.4.7 Synkro_RemotePairResponse Confirm Message
The Synkro_RemotePairResponse Confirm message can be received by the application layer only on
controlled nodes.

This message notifies the application layer that a remote pair response sent by the network layer, as result
of the application acceptance of a RemotePair request, has completed and also offers valuable information
about the way this response has been transmitted.

Message Structure

The structure of the Synkro_RemotePairResponse Confirm message is as follows:
typedef struct synkroPairRespCnf_tag{

 uint8_t deviceId;
 uint8_t status;
}synkroPairRespCnf_t;

Detailed information about the message fields and their possible values can be found in the Freescale
SynkroRF Network Reference Manual.

2.4.8 Synkro_Command Confirm Message
The Synkro_Command Confirm message can be received by the application layer on controller and
controlled nodes.

This message notifies the application layer that a SynkroRF Network SendCommand process previously
requested has completed and also offers valuable information about the way this request has been
accomplished.

Message Structure

The structure of the Synkro_Command Confirm message is as follows:
typedef struct synkroCommandCnf_tag {

uint8_t result;
uint8_t map[4];
} synkroCommandCnf_t;

Detailed information about the message fields and their possible values can be found in the Freescale
SynkroRF Network Reference Manual.

Interfacing to the SynkroRF Network

SynkroRF Network User’s Guide, Rev. 1.2

2-34 Freescale Semiconductor

2.4.9 Synkro_Command Indication Message
The Synkro_Command Indication message can be received by the application layer on controller and
controlled nodes.

This message notifies the application layer that an defined command has just been received and also offers
valuable information related to the sender of the packet and the way this packet has been received.

Message Structure

The structure of the Synkro_Command Indication message is as follows:
typedef struct synkroCommandInd_tag {

uint8_t deviceId;
uint16_t cmdId;
uint8_t* pDataPayload;
uint8_t dataPayloadLength;
uint8_t LQI;
uint8_t hasUpdatedCapabilities;
} synkroCommandInd_t;

Detailed information about the message fields and their possible values can be found in the Freescale
SynkroRF Network Reference Manual.

2.4.10 Synkro_BulkData Confirm message
The Synkro_BulkData Confirm message can be received by the application layer on controller and
controlled nodes.

This message notifies the application layer that a SynkroRF SendBulkData process previously requested
has completed and also offers valuable information about the way this request has been accomplished.

Message Structure

The structure of the Synkro_BulkData Confirm message is as follows:
typedef struct synkroBulkDataCnf_tag {

 uint8_t result;
 uint8_t deviceId;
} synkroBulkDataCnf_t;

Detailed information about the message fields and their possible values can be found in the Freescale
SynkroRF Network Reference Manual.

Interfacing to the SynkroRF Network

SynkroRF Network User’s Guide, Rev. 1.2

Freescale Semiconductor 2-35

2.4.11 Synkro_BulkDataStart Indication message
The Synkro_BulkDataStart Indication message can be received by the application layer on controller and
controlled nodes.

This message notifies the application layer that a bulk data transfer has just been started and also offers
valuable information related to the sender of the packet and to the bulk data length that will be transferred.

Message Structure

The structure of the Synkro_BulkDataStart Indication message is as follows:
typedef struct synkroBulkDataStartInd_tag {

 uint8_t deviceId;
 uint8_t dataPayloadLength;
 uint8_t LQI;
} synkroBulkDataStartInd_t;

Detailed information about the message fields and their possible values can be found in the Freescale
SynkroRF Network Reference Manual.

2.4.12 Synkro_BulkData Indication Message
The Synkro_BulkData Indication message can be received by the application layer on controller and
controlled nodes.

This message notifies the application layer that a bulk data transfer has just been ended and also offers
valuable information related to the transfer status, to the sender of the packet and to the bulk data length
that will be transferred.

Message Structure

The structure of the Synkro_BulkData Indication message is as follows:
typedef struct synkroBulkDataInd_tag {

 uint8_tresult;
 uint8_t deviceId;
 uint8_t dataPayloadLength;
 uint8_t LQI;

} synkroBulkDataInd_t;

Detailed information about the message fields and their possible values can be found in the Freescale
SynkroRF Network Reference Manual.

Interfacing to the SynkroRF Network

SynkroRF Network User’s Guide, Rev. 1.2

2-36 Freescale Semiconductor

2.4.13 Synkro_Poll Confirm Message
The Synkro_Poll Confirm message can be received by the application layer on controller nodes only.

This message notifies the application layer that:

A SynkroRF Network poll process previously requested has completed and also offers valuable
information about the way this request has been accomplished.

A polled device has data (only when the rxOnInterval parameter is different from 0)

Message Structure

The structure of the Synkro_Poll Confirm message is as follows:
typedef struct synkroPollCnf_tag {

 uint8_t deviceId;
 uint8_t status;

} synkroPollCnf_t;

Detailed information about the message fields and their possible values can be found in the Freescale
SynkroRF Network Reference Manual.

2.4.14 Synkro_Poll Indication Message
The Synkro_Poll Indication message can be received by the application layer on controlled nodes only.

This message notifies the application layer that a poll request has just been received and data can be sent
to the node that sent the poll request.

Message Structure

The structure of the Synkro_Poll Indication message is as follows:
typedef struct synkroPollInd_tag {

 uint8_t deviceId;
 uint16_t rxOnTime;

} synkroPollInd_t;

Detailed information about the message fields and their possible values can be found in the Freescale
SynkroRF Network Reference Manual.

Interfacing to the SynkroRF Network

SynkroRF Network User’s Guide, Rev. 1.2

Freescale Semiconductor 2-37

2.4.15 Synkro_UpdateCapabilities Confirm Message
The Synkro_UpdateCapabilities Confirm message can be received by the application layer of controlled
nodes only.

This message notifies the application layer that a SynkroRF Network UpdateCapabilities process
previously requested has completed and also offers valuable information about the way this request has
been accomplished.

Message Structure

The structure of the Synkro_UpdateCapabilities Confirm message is as follows:
typedef struct synkroUpdateCapabilitiesCnf_tag {

uint8_t result;
uint8_t map[4];

} synkroUpdateCapabilitiesCnf_t;

Detailed information about the message fields and their possible values can be found in the Freescale
SynkroRF Network Reference Manual.

2.4.16 Synkro_UpdateCapabilities Indication Message
The Synkro_UpdateCapabilities Indication message can be received by the application layer on controller
and controlled nodes.

This message notifies the application layer that an update capabilities command has just been received and
also offers valuable information related to the sender of the packet and to the new capabilities.

Message Structure

The structure of the Synkro_UpdateCapabilities Indication message is as follows:
typedef struct synkroUpdateCapabilitiesInd_tag {

uint8_t deviceId;
uint8_t* cmdCapabilities;

} synkroUpdateCapabilitiesInd_t;

Detailed information about the message fields and their possible values can be found in the Freescale
SynkroRF Network Reference Manual.

Interfacing to the SynkroRF Network

SynkroRF Network User’s Guide, Rev. 1.2

2-38 Freescale Semiconductor

2.4.17 Synkro_RefreshCapabilities Confirm Message
The Synkro_RefreshCapabilities Confirm message can be received by the application layer of controller
nodes only.

This message notifies the application layer that a SynkroRF Network RefreshCapabilities process
previously requested has completed and also offers valuable information about the way this request has
been accomplished.

Message Structure

The structure of the Synkro_RefreshCapabilities Confirm message is as follows:
typedef struct synkroRefreshCapabilitiesCnf_tag {

uint8_t result;
} synkroRefreshCapabilitiesCnf_t;

Detailed information about the message field and its possible values can be found in the Freescale
SynkroRF Network Reference Manual.

2.4.18 Synkro_RefreshCapabilities Indication Message
The Synkro_RefreshCapabilities Indication message can be received by the application layer of controlled
nodes only.

This message notifies the application layer that a refresh capabilities command has just been received and
also offers valuable information related to the sender of the packet.

Message Structure

The structure of the Synkro_RefreshCapabilities Indication message is as follows:
typedef struct synkroRefreshCapabilitiesInd_tag {

uint8_t deviceId;
} synkroRefreshCapabilitiesInd_t;

Detailed information about the message fields and their possible values can be found in the Freescale
SynkroRF Network Reference Manual.

Interfacing to the SynkroRF Network

SynkroRF Network User’s Guide, Rev. 1.2

Freescale Semiconductor 2-39

2.4.19 Synkro_CloneDevice Confirm Message
The Synkro_CloneDevice Confirm message can be received by the application layer of a controller node
only.

This message notifies the application layer that a Synkro_CloneDevice process previously requested has
completed and also offers valuable information about the way this request has been accomplished.

Message Structure

The structure of the Synkro_CloneDevice Confirm message is as follows:
typedef struct synkroCloneCnf_tag {

 uint8_t result;
} synkroCloneCnf_t;

Detailed information about the message fields and their possible values can be found in the Freescale
SynkroRF Network Reference Manual.

2.4.20 Synkro_CloneResponse Confirm Message
The Synkro_CloneDevice Confirm message can be received by the application layer of a controller node
only.

This message notifies the application layer that a clone response sent by the network layer, as result of the
application acceptance of a Clone Request, has completed and also offers valuable information about the
way this response has been transmitted.

Message Structure

The structure of the Synkro_CloneResponse Confirm message is as follows:
typedef struct synkroCloneRespCnf_tag {

 uint8_t result;
 uint8_tmacAddr[8];

} synkroCloneRespCnf_t;

Detailed information about the message fields and their possible values can be found in the Freescale
SynkroRF Network Reference Manual.

Interfacing to the SynkroRF Network

SynkroRF Network User’s Guide, Rev. 1.2

2-40 Freescale Semiconductor

2.4.21 Synkro_Sleep Confirm Message
The Synkro_Sleep Confirm message can be received by the application layer of controller and controlled
nodes.

This message notifies the application layer that a Synkro_Sleep process previously requested has
completed and also offers valuable information about the way this request has been accomplished.

Message Structure

The structure of the Synkro_Sleep Confirm message is as follows:
typedef struct synkroSleepCnf_tag {

 uint8_t result;
} synkroSleepCnf_t;

Detailed information about the message fields and their possible values can be found in the Freescale
SynkroRF Network Reference Manual.

2.4.22 Synkro_ChangeMacAddress Confirm Message
The Synkro_ChageMacAddress Confirm message can be received by the application layer of controller
and controlled nodes.

This message notifies the application layer that a SynkroRF Network SetNewMacAddress process
previously requested has completed and also offers valuable information about the way this request has
been accomplished.

Message Structure

The structure of the Synkro_Sleep Confirm message is as follows:
typedef struct synkroChangeMACAddressCnf_tag {

 uint8_t result;
} synkroChangeMACAddressCnf_t;

Detailed information about the message fields and their possible values can be found in the Freescale
SynkroRF Network Reference Manual.

Interfacing to the SynkroRF Network

SynkroRF Network User’s Guide, Rev. 1.2

Freescale Semiconductor 2-41

2.5 SynkroRF Network Application Services
The SynkroRF Network Application Services is the second of two communication interfaces between the
SynkroRF Layer and Application layer in this specified direction. An application using SynkroRF
Network will have to provide this layer a number of services to ensure its correct functioning. These
services should be implemented as callback functions in the application layer, based on the function
prototypes exported by the NwkInterface.h file. The network layer will directly call these callbacks with
the parameters described for each function. The calls are always asynchronous (without specific request
from application) and are done during some of the SynkroRF Network processes, when certain
parameters are requested from the application.

The callback function parameters must be used only locally into the function body. If one parameter is
needed outside the function, into a global scope, then a copy must be made. The network does not
guarantee the availability of these values outside of the scope of the callback functions. Some services
must return values to the network layer. The return value is specific for each individual service. The time
spent in the functions implementing the application services must be minimized as much as possible, as
these functions are called from the network execution context and thus affect overall network latency.

A listing of all the SynkroRF Network Application Services can be found in Table 2-5.
Table 2-5. SynkroRF Network Application Services List

Callback Function
Name Description Supported on

Controller

Supported
on

Controlled
Section

CallbackSearch Requests the application to choose whether
to respond or not to a search request
received from a controller node

x 2.6.1

CallbackPairing Requests the application a location in the
pair table where the information of a pair
requesting device should be copied, if pair is
accepted

 x 2.6.2

CallbackRmtPairing Requests the application a location in the
pair table where the information of a remote
pair requesting device should be copied, if
remote pair is accepted

 x 2.6.3

CallbackCloneDevice Requests the application the permission to
accept a clone request

X 2.6.4

CallbackCloneEntry Requests the application a location in the
pair table where the information of one paired
device in the pair list table of the device to
clone should be copied

X 2.6.5

Interfacing to the SynkroRF Network

SynkroRF Network User’s Guide, Rev. 1.2

2-42 Freescale Semiconductor

2.5.1 CallbackSearch Application Service
The CallbackSearch Application Service is available for controlled nodes only.

The purpose of this callback function is to allow the network layer to receive from application the decision
of responding to a search request received from a controller node.

This function call requests the starting of a SynkroRF Network Search process on a controlled node, as a
result of an arrived Search Request command; its call is asynchronous. There is no way for the application
layer on the controlled node device to know when this function will be called. The value returned by this
call informs the network if a search response should be transmitted or not to the node the search request
was received from. If the return value contains a successful status, the SynkroRF Network layer starts to
build the Search Response. When the transmission of the Search Response process completes, the
application layer will be notified by a SearchResponse Confirm message which will be sent by SynkroRF
Network layer trough the SynkroRF Network SAP. If the return value does not contain a successful status,
the received Search Request is ignored. As no Search process is started in this case, there will be no further
SearchResponse Confirm message to be received by the application.

NOTENote
If the parameter pData in the structure returned by the callback is not NULL,
then the content of the location it points to should not be modified until the
SearchResponseCnf message is received from network.

For detailed information about the how the Search process takes place on the two implied nodes, see the
Freescale SynkroRF Network Reference Manual.

Prototype

The prototype of the CallbackSearch Application Service function is as follows:
appSearchCallbackResponse_t CallbackSearch

(
uint8_t* macAddr,
uint8_t* nwkVersion,
nodeDescriptor_t* nodeDescriptor,
uint8_t LQI,
uint8_t dataLength,
uint8_t* pData

)

 The structure of the value to be returned by this function is as follows:
typedef struct appSearchCallbackResponse_tag
(

uint8_t status;
uint8_t* pData;
uint8_t dataLength;

)
appSearchCallbackResponse_t;

Detailed information about the return structure fields and their valid ranges, and also about possible values
of the function parameters can be found in the Freescale SynkroRF Network Reference Manual.

Interfacing to the SynkroRF Network

SynkroRF Network User’s Guide, Rev. 1.2

Freescale Semiconductor 2-43

2.5.2 CallbackPairing Application Service
The CallbackPairing Application Service is available for controlled nodes only.

The purpose of this callback function is to allow the network layer to receive an application provided
location in the pair table where information from a pair requesting device to be copied.

This function call requests the starting of a SynkroRF Network Pair process on a controlled node, as a
result of an arrived Pair Request command; its call is asynchronous. There is no way for the application
layer on the controlled node device to know when this function will be called. The value returned by this
call informs the network if the request is accepted to be processed or not. If the return value is successful,
the SynkroRF Network layer is accepting and already starting to process the Pair Request. When the Pair
process finishes, the application layer will be notified by a PairResponse Confirm message which will be
sent by SynkroRF Network layer trough the SynkroRF Network SAP. If the return value is not
successful, the received Pair Request is ignored. As no Pair process is started in this case, there will be no
further PairResponse Confirm message to be received by the application.

NOTE
If the parameter pData in the structure returned by the callback is not NULL,
then the content of the location it points to should not be modified until the
PairResponseCnf message is received from network.

For detailed information about the how the Pair process takes place on the two implied nodes, see the
Freescale SynkroRF Network Reference Manual.

Prototype

The prototype of the CallbackPairing Application Service function is as follows:
appPairCallbackResponse_t CallbackPairing
(

uint8_t* pData,
uint8_t length,
uint8_t LQI,
uint8_t deviceId,
nodeDescriptor_t* nodeDescriptor

)

The structure of the value to be returned by this function is as follows:
typedef struct appPairCallbackResponse_tag
{

 uint8_t deviceId;
 uint8_t* pData;
 uint8_t length;

}
appPairCallbackResponse_t;

Detailed information about the return structure fields and their valid ranges, and also about possible values
of the function parameters can be found in the Freescale SynkroRF Network Reference Manual.

Interfacing to the SynkroRF Network

SynkroRF Network User’s Guide, Rev. 1.2

2-44 Freescale Semiconductor

2.5.3 CallbackRmtPairing Application Service
The CallbackRmtPairing Application Service is available for controlled nodes only.

The purpose of this callback function is to allow the network layer to receive an application provided
location in the pair table where information from a remote pair requesting device to be copied.

This function call requests the starting of a SynkroRF Network RemotePair process on a controlled node,
as a result of an arrived Remote Pair Request command; its call is asynchronous. There is no way for the
application layer on the controlled node device to know when this function will be called. The value
returned by this call informs the network if the request is accepted to be processed or not. If the return value
is successful, the SynkroRF Network layer is accepting and already starting to process the RemotePair
Request. When the RemotePair process finishes, the application layer will be notified by a
RemotePairResponse Confirm message which will be sent by SynkroRF Network layer trough the
SynkroRF Network SAP. If the return value is not successful, the received RemotePair Request is ignored.
As no RemotePair process is started in this case, there will be no further RemotePairResponse Confirm
message to be received by the application.

For detailed information about the how the RemotePair process takes place on the three implied nodes, see
the Freescale SynkroRF Network Reference Manual.

Prototype

The prototype of the CallbackRmtPairing Application Service function is as follows:
uint8_t CallbackRmtPairing
(

uint8_t deviceId,
nodeDescriptor_t* nodeDescriptor

)

Detailed information about the return values and their valid ranges, and also about possible values of the
function parameters can be found in the Freescale SynkroRF Network Reference Manual.

2.5.4 CallbackCloneDevice Application Service
The CallbackCloneDevice Application Service is available for controller nodes only.

The purpose of this callback function is to allow the network layer to confirm whether or not it wants to
accept a received Clone Request command.

This function call requests the starting of a SynkroRF Network Clone process on a controller node, as a
result of an arrived Clone Request command; its call is asynchronous. There is no way for the application
layer on the controller node device to know when this function will be called. The value returned by this
call informs the network if the request is accepted to be processed or not. If the return value is successful,
the SynkroRF Network layer is accepting and already starting to process the Clone Request. When the
Clone process finishes, the application layer will be notified by a CloneResponse Confirm message which
will be sent by SynkroRF Network layer trough the SynkroRF Network SAP. If the return value is not
successful, the received Clone Request is ignored. As no Clone process is started in this case, there will be
no further CloneResponse Confirm message to be received by the application.

Interfacing to the SynkroRF Network

SynkroRF Network User’s Guide, Rev. 1.2

Freescale Semiconductor 2-45

For detailed information about the how the Clone process takes place on the two implied nodes, see the
Freescale SynkroRF Network Reference Manual.

Prototype

The prototype of the CallbackRmtPairing Application Service function is as follows:
uint8_t CallbackCloneDevice
(

uint8_t entriesCnt,
uint8_t LQI

)

Detailed information about the return values and their valid ranges, and also about possible values of the
function parameters can be found in the Freescale SynkroRF Network Reference Manual.

2.5.5 CallbackCloneEntry Application Service
The CallbackCloneEntry Application Service is available for controller nodes only.

The purpose of this callback function is to allow the network layer to receive an application provided
location in the pair table, where information from a device to clone regarding one of its paired devices to
be copied.

This function call is received during a Clone process already started on a controller node, as a result of the
arrival of one node’s (in the clone device’s table) information; this call is asynchronous. There is no way
for the application layer on the controller node device to know when this function will be called. The value
returned by this call informs the network if the information is accepted to be processed or not. If the return
value is successful, the SynkroRF Network layer is accepting the information and is copying it in the
NodeData Database. If the return value is not successful, the arrived information is dropped and the Clone
process aborted on the controller node. In both cases there will be no further confirm message to be
received by the application trough the SynkroRF Network SAP.

For detailed information about the how the Clone process takes place on the two implied nodes, see the
Freescale SynkroRF Network Reference Manual.

Prototype

The prototype of the CallbackCloneEntry Application Service function is as follows:
uint8_t CallbackCloneEntry
(

uint8_t deviceId,
nodeDescriptor_t* nodeDescriptor

)

Detailed information about the return values and their valid ranges, and also about possible values of the
function parameters can be found in the Freescale SynkroRF Network Reference Manual.

Interfacing to the SynkroRF Network

SynkroRF Network User’s Guide, Rev. 1.2

2-46 Freescale Semiconductor

SynkroRF Network User’s Guide, Rev. 1.2

Freescale Semiconductor 3-1

Chapter 3
Creating an Application

3.1 Task Scheduler Overview
The SynkroRF Network applications runs under the control of a priority based non-preemptive,
event-driven task scheduler. The tasks that are created by default are shortly described below in their
priority order:

• The idle task has the lowest priority and runs when all the other tasks are in Suspended state. The
TS_IdleTask root function must be implemented in the application.

• The SynkroRF Network task executes the SynkroRF Network state machine.
• The application task performs application specific operations. Its root function, AppTask needs to

be defined in the application. The application state machine is usually implemented here
• The timer task is responsible for maintaining the software timers
• All SynkroRF Network timer based operations are initiated and maintained by the Task Scheduler,

with the help of a platform timer used to generate events at specific moments in time. The platform
timer resolution is set to 4 ms. Modifying this value will lead to unpredictable behavior of the
SynkroRF Network layer.

3.1.1 Adding a Task
Adding a new Task is performed by calling the TS_CreateTask function specifying the task’s main
function and designated priority. The task initialization must be called directly.

gAppTaskID = TS_CreateTask(gTsAppTaskPriority_c, BeeAppTask);

When a task is created it will go in the Suspend state. By sending an event to a task, this will enter the
Ready state and will be scheduled for execution, based on its priority. The task scheduler determines the
highest priority task that has pending events and sends the events to the task as argument to its root
function. If there are no tasks with pending events, then the idle task will be executed.

The idle task’s root function, named TS_IdleTask, must be implemented in the application. It is a proper
place to perform background operations, such as power management or non-volatile memory writings.

Creating an Application

SynkroRF Network User’s Guide, Rev. 1.2

3-2 Freescale Semiconductor

3.1.2 SynkroRF Network Task Interaction
In the context of using a cooperative task scheduler for all the components of an SynkroRF Network based
application system, the network library provides a number of services and mechanisms for controlling the
network functionality:

• Synchronous functions — These are network provided functions with direct effect on the network
layer considering the requested service.

• Asynchronous functions — These are network provided functions which will schedule a network
process to be completed by the Network Task. The requested action will be finished with a
confirmation message sent by the network to the application.

• Messages — The messages are provided to the application upon an asynchronous event in the
network layer. One dedicated callback function (SynkroRF SAP) will add the network provided
message in the application message queue and will send an application defined event to the
application task.

• Application Services (callbacks) — These are application-defined functions which are called
directly from the network layer.

3.2 Network Formation
To form an SynkroRF Network, at least two devices of different node types (gNodeType_Controller and
gNodeType_Controlled) must be started and paired.

• The main steps to accomplish this are:
• Initialize network layer on the controller node and start the controller node.
• Initialize network layer on the controlled node and start the controlled node.
• Issue a pair request from the controller node asking for a response from a controlled node that has

the device type identical to the device type desired

3.2.1 Network Configuration and Initialization
The network initialization is performed with the TS_NwkTaskInit function. This function is called by the
task scheduler at initialization and should appear together with the TS_NwkTask function in the task table.

Task(gNwkTaskID_c, TS_NwkTaskInit, TS_NwkTask, gTsNwkTaskPriority_c)

The configuration of one SynkroRF Network node consists of setting the NodeDescriptor Database
contained in myNodeDescriptor structure with the application specific properties as follows:

/* NodeDescriptor Database structure */
typedef struct nodeDescriptor_tag
{

uint8_t deviceType;
uint8_t vendorId[2];
uint8_t productId[2];
uint8_t versionId;
uint8_t supportedConnections;
uint8_t capabilities[5];

}nodeDescriptor_t;

Creating an Application

SynkroRF Network User’s Guide, Rev. 1.2

Freescale Semiconductor 3-3

The NodeDescriptor Database is kept the ROM memory, and for this reason it is only configurable by the
application at compile time.

The myNodeDescriptor structure which implements the NodeDescriptor Database is accessed directly by
the network layer. The following code snippet is a configuration example.

#define VENDOR_ID {0x02, 0x01}
#define PRODUCT_ID {0x04, 0x03}
#define VERSION_ID {0xAB}
#define CAPABILITIES {0xFF, 0xFF, 0xFF, 0xFF, 0xFF}

const nodeDescriptor_t myNodeDescriptor =
{
#ifdef StartRemote_d
 gDeviceType_RemoteControl,
#endif
#ifdef StartTV_d
 gDeviceType_TV,
#endif
 VENDOR_ID,
 PRODUCT_ID,
 VERSION_ID,
 gMaxPairingTableEntries_c,
 CAPABILITIES
};

3.3 Starting a SynkroRF Node
Calling the Synkro_Start() function starts an SynkroRF Network node. The application can either start a
controller type node or a controlled type node.

The following code snippets illustrate both cases with examples.

/* start controller node
 the first parameter represents the type of the node (controller)
 the second parameter is a pointer to the specified MAC address (NULL for default
address)
 the 3rd parameter specifies whether the network should restore the previous saved NV
data.
 the 4th parameter selects if a pair response will be automatically (without demanding
application approval) sent to a pair requesting device that already exists in the NodeData
pair table. This parameter is ignored for controller nodes */
Synkro_Start(gNodeType_Controller, &localMACaddress[0], FALSE, FALSE);

/* start controlled node
 the first parameter represents the type of the node (controlled)
 the second parameter is a pointer to the specified MAC address (NULL for default
address)
 the 3rd parameter specifies whether the network should restore the previous saved NV
data.
 the 4th parameter selects if a pair response will be automatically (without demanding
application approval) sent to a pair requesting device that already exists in the NodeData
pair table. This parameter is ignored for controller nodes */

Synkro_Start(gNodeType_Controlled, &localMACaddress[0], FALSE, TRUE);

Creating an Application

SynkroRF Network User’s Guide, Rev. 1.2

3-4 Freescale Semiconductor

For more details about the Synkro_Start() function see Section Section 2.3.1, “Synkro_Start API Function.

If the application has started a controller type node (which should be able to receive data from a paired
controlled node) then its receiver should be set to the ON state by calling the Synkro_SetReceiveMode()
function with the parameter set to true.

Synkro_SetReceiveMode(TRUE)

For more details about the Synkro_SetReceiveMode() function see Section Section 2.3, “SynkroRF
Network API.

3.4 Searching for Controlled Nodes
The purpose of the search process is for a controller node to obtain network information about controlled
nodes that are active in its proximity. The received information will allow the controller node to initiate a
pair process with any of the controlled nodes that responds to the search.

The search process is always initiated from a controller node and completed automatically, without
intervention from the application layer.

On the controller device, the application should call the Synkro_SearchRequest() function to initiate a
search request for devices of a specified device type or of any device type .

The following code snippet illustrates a call of the Synkro_SearchRequest() API on the controller node:
result=Synkro_SearchRequest(gDeviceType_TV, "TV Remote Controller", 20, 500);

On the controlled node, the CallbackSearch() function is called if :
• A search request is received from a controller node
• The device type parameter in the Synkro_SearchRequest() matches the device type of the

controlled node
• The LQI of the packet received by the controlled node exceeds the LQI threshold set with

Synkro_SetSearchThreshold function.

The following code snippet illustrates how the controlled node application can handle the network call of
the CallbackSearch application service:

appSearchCallbackResponse_t CallbackSearch(
 uint8_t *MACAddress,
 uint8_t *nwkVersion,
 nodeDescriptor_t *nodeDescriptor,
 uint8_t LQI,
 uint8_t dataLength,
 uint8_t *pData
)
{
 appSearchCallbackResponse_t response = {gNWSuccess_c, deviceName, sizeof(deviceName)};
 /* Ignore compiler warning */
 (void)MACAddress;
 (void)nwkVersion;
 (void)nodeDescriptor;
 (void)LQI;
 (void)dataLength;

Creating an Application

SynkroRF Network User’s Guide, Rev. 1.2

Freescale Semiconductor 3-5

 /* Sending back search response */
 UartUtil_Print("Received search request from device: ", gNoBlock_d);
 UartUtil_Print(pData, gNoBlock_d);
 UartUtil_Print("\n\rSending search response...", gNoBlock_d);

 return response;
}

3.5 Pairing a Controller and a Controlled Node
The pairing process handles the association between two nodes of a SynkroRF Network (a controller node
to a controlled node). Because future data exchange between the two nodes is performed using the same
PAN ID, a Source Short Address and a Destination Short Address, the purpose of this process is for the
controller node to obtain a PAN ID and a Short Address from the controlled node to use in future
communications with this controlled device.

After the network parameters are passed to the controller node, the controlled node retains the allocated
address for future validation purposes (pass to upper layer only messages received from paired controller
node).

The pairing process is always initiated from a controller node and completed automatically, without
intervention from the application layer.

On the controller device, the application should call the Synkro_PairRequest() function to initiate a pairing
request with a given device type.

The following code snippet illustrates a call of the Synkro_PairRequest() API on the controller node:
result=Synkro_PairRequest(gDeviceType_TV, NULL, 0, "TV Remote Controller", 20, 200);

On the controlled node, the CallbackPairing() function is called if :
• a pair request is received from a controller node
• the device type parameter in the Synkro_PairRequest() matches the device type of the controlled

node
• the LQI of the packet received by the controlled node exceeds the LQI threshold set with

Synkro_SetPairingThreshold function.

The following code snippet illustrates how the controlled node application can handle the network call of
the CallbackPairing application service:

appPairCallbackResponse_t CallbackPairing(
 uint8_t* pData,
 uint8_t length,
 uint8_t LQI,
 uint8_t deviceId,
 nodeDescriptor_t* nodeDescriptor)
{
 // This is a pair request action
 if(deviceId == 0xFF)
 {
 // New device
 // Wrap around the max number of supported remotes
 if(curPairTblLoc + 1 == gMaxPairingTableEntries_c) curPairTblLoc = -1;

Creating an Application

SynkroRF Network User’s Guide, Rev. 1.2

3-6 Freescale Semiconductor

 curPairTblLoc ++;
 pairCallbackResponse.deviceId = curPairTblLoc;
 pairCallbackResponse.pData = “You are a new pair”;
 pairCallbackResponse.length = 19;
 }
 else
 {
 pairCallbackResponse.deviceId = deviceId;
 pairCallbackResponse.pData = “You are old pair”;
 pairCallbackResponse.length = 19;
 }

 return pairCallbackResponse;
}

3.6 Remote Pairing Two Controlled Nodes
The remote pairing process handles the association between two controlled nodes of a SynkroRF Network
which are already paired with the controller node initiating the process. The purpose of this process is for
the controlled nodes to obtain the other’s PAN ID and Short Address, in order for them to communicate
in the future without using the controller node as a third party.

The remote pairing process is always initiated from a controller node and completed automatically,
without intervention from the application layer.

On the controller device, the application should call the Synkro_RemotePairDevices() function to initiate
a remote pairing request of two of the nodes in its Pair Table.

The following code snippet illustrates a call of the Synkro_RemotePairDevices() API on the controller
node:

result=Synkro_RemotePairDevices(0, 1, 500);

On the controlled node, the CallbackRmtPairing() function is called if :
• A remote pair request is initiated by a controller node
• The controlled node where the callback is triggered is one of the two devices the controller node is

trying to pair

The following code snippet illustrates how the controlled node application can handle the network call of
the CallbackRmtPairing application service:

uint8_t CallbackRmtPairing(uint8_t deviceId, nodeDescriptor_t* nodeDesciptor)
{
 (void)nodeDescriptor; // Ignore compiler warning
 if(deviceId == 0xFF)
 {
 // New device
 // Wrap around the max number of supported paired devices
 if(curPairTblLoc + 1 == gMaxPairingTableEntries_c) curPairTblLoc = -1;
 curPairTblLoc ++;
 return curPairTblLoc;
 }
 else
{
 // request is from a device already paired

Creating an Application

SynkroRF Network User’s Guide, Rev. 1.2

Freescale Semiconductor 3-7

 // just return something. This value is anyway ignored. The remote pair response is
always automatically sent by the SynkroRF Network in this case.
 return 0;
 }
}

3.7 Cloning a Controller Node
The purpose of this process is for a controller to copy its whole SynkroRF Network functionality on
another controller node.

The clone process is always initiated from a controller node and completed automatically, without
intervention from the application layer.

On the controller device, the application should call the Synkro_CloneDevice() function to initiate a clone
request

The following code snippet illustrates a call of the Synkro_CloneDevice() API on the controller node:
result = Synkro_CloneDevice (500);

On clone request receiving controller node, the CallbackCloneDevice() function is called if :
• a clone request is initiated by a controller node
• the LQI of the packet received by the controller node exceeds the LQI threshold set with

Synkro_SetCloningThreshold function.

The following code snippet illustrates how the controlled node application can handle the network call of
the CallbackCloneDevice application service:

uint8_t CallbackCloneDevice(uint8_t entriesCnt, uint8_t LQI)
{
 (void)LQI;

 if(entriesCnt <= gMaxPairingTableEntries_c)
 {
 return TRUE;
 }
 else
 {
 return FALSE;
 }
}
On clone request receiving controller node, the CallbackCloneEntry() function is called
if:
a Clone process is already started on this node, as a result of previously accepted Clone
Request.
The following code snippet illustrates how the controlled node application can handle the
network call of the CallbackCloneDevice application service:

uint8_t CallbackCloneEntry(uint8_t deviceId, nodeDescriptor_t* nodeDescriptor)
{
 (void)nodeDescriptor; // ignore compiler warning
 // accept the node’s information
 return deviceId;
}

Creating an Application

SynkroRF Network User’s Guide, Rev. 1.2

3-8 Freescale Semiconductor

3.8 Command Transfer
This section describes command transfers which include receiving and transmitting commands and
creating application defined commands.

3.8.1 Receiving Commands
To enable the reception of command packets on a SynkroRF Network node, the Rx module of its radio
transceiver should be activated. The application can accomplish this by calling the
Synkro_SetReceiveMode synchronous API with the parameter set to TRUE. By default, a just started
SynkroRF Network controller has the radio receiver turned off, while a just started SynkroRF Network
controlled node has the radio receiver turned on.

When the network receives an application command, it passes it to the application trough the SynkroRF
Network SAP using a Command Indication message. The SynkroRF Network layer always checks and
discards the duplicated received commands.

The following code snippet is an example of checking for a Command Indication:

 if(events & gAppEvtMsgFromNwk_c)
 {
 pMsgIn = MSG_DeQueue(&mNwkAppInputQueue);
 if(pMsgIn != NULL)
 {
 synkroMsg = (synkroToAppMessage_t*)pMsgIn;

 switch(synkroMsg->msgType)
 {
 case gsynkroCommandInd_c:
 UartUtil_Print("\n\rCommand received", 0);
 if(gCmdNumN_c == synkroMsg-> msgData.synkroCommandInd.cmdId)
 {
 UartUtil_Print("\n\r", 0);
 UartUtil_Print(synkroMsg-> msgData.synkroCommandInd.pDataPayload, 0);
 UartUtil_Print("\n\r", 0);
 }
 break;
 }
 MSG_Free(pMsgIn);
 }
}

Creating an Application

SynkroRF Network User’s Guide, Rev. 1.2

Freescale Semiconductor 3-9

3.8.2 Transmitting Commands
The application should use the Synkro_SendCommand API function for transmitting an application
command to one of the nodes it is already paired with. This function call starts a SendCommand SynkroRF
Network process. The completion of this process will be signaled to the application by a SendCommand
Confirm message sent by the network trough the SynkroRF Network SAP.

The following is a code snippet example of sending a command.

void App_CommandRequest(void)
{
 mResult = Synkro_SendCommand(mCurrentDeviceId, TRUE, gCmdNumN_c_c,4,buf);

 if(gNWSuccess_c == mResult)
 {
 appState = appStateCommandWaitConfirm_c;
 }
 else
 {
 appState = appStateListen_c;
 }
}
/***/

void App_HandleCommandConfirm(event_t events)
{
 void *pMsgIn;

 if(events & gAppEvtMsgFromNwk_c)
 {
 pMsgIn = MSG_DeQueue(&mNwkAppInputQueue);
 if(pMsgIn != NULL)
 {
 if(gsynkroCommandCnf_c == ((synkroToAppMessage_t*)pMsgIn)->msgType)
 {
 mResult = ((synkroToAppMessage_t*)pMsgIn)-> msgData.synkroCommandCnf.result;
 appState = appStateListen_c;
 }
 MSG_Free(pMsgIn);
 }
 }
}

Creating an Application

SynkroRF Network User’s Guide, Rev. 1.2

3-10 Freescale Semiconductor

3.8.3 Creating Application Defined Commands
An application can use the SynkroRF Network public commands to exchange information between paired
nodes, or it can define its own private commands. The second option implies adding some lines in two
files: NwkCommands.h and respectively NwkCommands.c.

The Freescale BeeKit Wireless Connectivity Toolkit allows an application developer to visually and
automatically add application defined commands in the above mentioned files. This is done by clicking
the User Command Editor item in the “Misc.” section of the ‘Freescale SynkroRF Network Apps’ module.
The user only needs to do the following:

• Select an identifier for the command that should be in the range of [16385..32767], which is the
application defined commands range

• Select a name for the command
• Select a direction for the command (for example, from a controller to a controlled device). Note

that a command ready to be transmitted from a controller to a controlled node for example, will fail
to be transmitted from a controlled to a controller, or from a controlled to another controlled device.

• Select a payload type for the command. For more information about the supported payload types,
see the Freescale SynkroRF Network Reference Manual..

3.9 BulkData Transfer
This section describes receiving and sending bulk data.

3.9.1 Receiving Bulk Data
To enable the reception of bulk data packets on a SynkroRF node, the Rx module of its radio transceiver
should be activated. The application can accomplish this by calling the Synkro_SetReceiveMode
synchronous API with the parameter set to TRUE. By default, a just started SynkroRF controller has the
radio receiver turned off, while a just started SynkroRF controlled node has the radio receiver turned on.

When the destination network receives the first bulk data packet, it passes a message to the application
trough the SynkroRF SAP using a BulkDataStart Indication message. The SynkroRF layer always checks
and discards the duplicated received packets.

The following code snippet is an example of checking for a BulkDataStart Indication:

 if(events & gAppEvtMsgFromNwk_c)
 {
 pMsgIn = MSG_DeQueue(&mNwkAppInputQueue);
 if(pMsgIn != NULL)
 {
synkroMsg = (synkroToAppMessage_t*)pMsgIn;

 switch(synkroMsg->msgType)
 {
 case gSynkroBulkDataStartInd_c:

UartUtil_Print("\n\rBulk data start transfer", gAllowToBlock_d);
UartUtil_Print(" (received from device ", gAllowToBlock_d);

Creating an Application

SynkroRF Network User’s Guide, Rev. 1.2

Freescale Semiconductor 3-11

UartUtil_Print(currentParams.deviceName[pMsgIn->msgData.synkroBulkDataStartInd.deviceId
], gAllowToBlock_d);

UartUtil_Print(").\n\r", gAllowToBlock_d);

UartUtil_Print("Data length: ", gAllowToBlock_d);

UartUtil_PrintHex((uint8_t*)(&pMsgIn->msgData.synkroBulkDataStartInd.dataPayloadLength)
, 2, 1);

UartUtil_Print("\n\r", gAllowToBlock_d);
 break;
 }
MSG_Free(pMsgIn);
 }
}

When the network receives the last bulk data packet, it passes a message to the application trough the
SynkroRF SAP using a BulkData Indication message.

The following code snippet is an example of checking for a BulkData Indication:

 if(events & gAppEvtMsgFromNwk_c)
 {
 pMsgIn = MSG_DeQueue(&mNwkAppInputQueue);
 if(pMsgIn != NULL)
 {
synkroMsg = (synkroToAppMessage_t*)pMsgIn;

 switch(synkroMsg->msgType)
 {
 case gSynkroBulkDataInd_c:
 if(pMsgIn->msgData.synkroBulkDataInd.result != gNWSuccess_c)
 {
 UartUtil_Print("\n\rBulk data transfer (from device ", gAllowToBlock_d);

UartUtil_Print(currentParams.deviceName[pMsgIn->msgData.synkroBulkDataInd.deviceId],
gAllowToBlock_d);

UartUtil_Print(") failed. ", gAllowToBlock_d);
App_PrintResult(pMsgIn->msgData.synkroBulkDataInd.result);

 }
 else
 {
 UartUtil_Print("\n\rBulk data end transfer", gAllowToBlock_d);

UartUtil_Print(" (received from device ", gAllowToBlock_d);

UartUtil_Print(currentParams.deviceName[pMsgIn->msgData.synkroBulkDataInd.deviceId],
gAllowToBlock_d);

UartUtil_Print(").\n\r", gAllowToBlock_d);

UartUtil_Print("Data length: ", gAllowToBlock_d);

UartUtil_PrintHex((uint8_t*)(&pMsgIn->msgData.synkroBulkDataInd.dataPayloadLength), 2,
1);

UartUtil_Print("\n\r", gAllowToBlock_d);
 }
 break;
 }

Creating an Application

SynkroRF Network User’s Guide, Rev. 1.2

3-12 Freescale Semiconductor

MSG_Free(pMsgIn);
 }
}

3.9.2 Transmitting Bulk Data
The application should use the Synkro_SendBulkData API function for transmitting bulk data to one of
the nodes it is already paired with. This function call starts a SendBulkData SynkroRF process. The
completion of this process will be signaled to the application by a SendBulkData Confirm message sent
by the network trough the SynkroRF SAP.

The following is a code snippet example of sending a command.

static void App_BulkDataRequest(void)
{
 if (Synkro_SetBulkBufferState(gBufferBusyAppW_c) == gNWSuccess_c)
 {
 result = Synkro_SendBulkData(mCurrentDeviceId, (uint8_t*) bulkDataBuffer,
bulkDataBufferlength);
 if(gNWSuccess_c != result)
 appState = appStateListen_c;
 else
appState = appStateCommandWaitConfirm_c;
 }
 else
 {
UartUtil_Print("\n\rThe bulk buffer is busy\n", gAllowToBlock_d);
 }
}

/***/

void App_HandleBulkDataConfirm(event_t events)
{
 void *pMsgIn;

 if(events & gAppEvtMsgFromNwk_c)
 {
 pMsgIn = MSG_DeQueue(&mNwkAppInputQueue);
 if(pMsgIn != NULL)
 {
 if(gSynkroBulkDataCnf_c == ((synkroToAppMessage_t*)pMsgIn)->msgType)
 {
 mResult = ((synkroToAppMessage_t*)pMsgIn)-> msgData.synkroBulkDataCnf.result;
 appState = appStateListen_c;
 }
MSG_Free(pMsgIn);
 }
 }
}

Creating an Application

SynkroRF Network User’s Guide, Rev. 1.2

Freescale Semiconductor 3-13

3.10 Low Power
Two functions are provided by SynkroRF Network layer to be used when the application wants to pass the
platform in a low power functioning mode.

The prototypes of these two functions is as follows:
uint8_t Synkro_Sleep(void) ;
uint8_t Synkro_Wake(void) ;

In order to avoid confusion produced by the name of these API function is that the SynkroRF Network
layer does not have any access to change the functioning mode neither of the MCU nor the radio
transceiver and for this reason it will never be capable to put the MCU or transceiver in a low power mode.
This is the responsibility of the PWR module provided by Freescale in the platform code.

Two functions exist for entering the suspended mode and bringing the network up:

The Synkro_Sleep function call will trigger the start of a Sleep process. During this process, the network
will be prepared to enter a platform low power mode. The Channel Agility mechanism will be shut down
and the Rx module of the transceiver will be disabled. All SynkroRF Network timers will be stopped.
Basically the SynkroRF Network layer will stop functioning. It will not accept any further service request
from the application, except the Synkro_Wake one. The application has to wait for the SynkroRF Network
Sleep process to be completed, before requesting the PWR module to pass the platform in a low power
mode. The completion of the Sleep process will be indicated to the application by a Sleep Confirm
message sent trough the SynkroRF Network SAP.

The passing of the platform in a power related desired functioning mode is done by calling the
PWR_EnterLowPower() function in PWR module. Information about this platform module and how it is
used are beyond the scope of this document.

The following code snippet is an example of how the application should try to change the functioning
mode of the MCU or transceiver, in a manner that will not produce any damages to the SynkroRF Network
layer

1. The application should call the Synkro_Sleep service
void App_SleepRequest(void)
{
 mResult = Synkro_Sleep();
 if(gNWSuccess_c == mResult)
 appState = appStateSleepWaitConfirm_c;
 else
 appState = appStateListen_c;
}

2. After receiving a successful sleep confirm message, the application should allow the platform to
trigger the entering in low power mode
void App_HandleSleepConfirm(event_t events)
{
 void *pMsgIn;
 if(events & gAppEvtMsgFromNwk_c)
 {
 pMsgIn = MSG_DeQueue(&mNwkAppInputQueue);

Creating an Application

SynkroRF Network User’s Guide, Rev. 1.2

3-14 Freescale Semiconductor

 if(pMsgIn != NULL)
 {
 if(gSynkroSleepCnf_c == ((synkroToAppMessage_t*)pMsgIn)->msgType)
 {
 mResult = ((synkroToAppMessage_t*)pMsgIn)->
msgData.synkroSleepCnf.result;
 if(gNWSuccess_c == mResult)
 {
 /* Allow device to enter the low power mode. The low power mode
 is configured in PWR_Configuration.h */
 PWR_AllowDeviceToSleep(); }
 }
 MSG_Free(pMsgIn);
 }
 }
}

3. The actual entering in low power mode should be performed from the idle task, like in the snippet
code below:
static void EnterLowPower(void)
{
 PWRLib_WakeupReason_t WakeupReason;
 /* If device can enter low power mode, try to enter */
 if(PWR_CheckIfDeviceCanGoToSleep())
 {
 /* Clear the bit field cotaining the wake up reason */
 PWRLib_MCU_WakeupReason.AllBits = 0;
 /* Try to enter low power mode. This is a blocking function call */
 WakeupReason = PWR_EnterLowPower();
 /* Test if device has been waken up from low power by a keyboard press */

 if(WakeupReason.Bits.FromKBI)
 {
 /* At this point, the MCU and radio have exited the low power mode.
 Request SynkroRF Wake */
 NR Synkro_Wake();
 UartUtil_Print("\n\rDevice woken up.\n\r",gAllowToBlock_d);
 /* Do not allow device to enter low power mode again */
 PWR_DisallowDeviceToSleep();
 }
 }
}

The Synkro_Wake function call will exit the SynkroRF from the stop mode previously entered on a Sleep
Request. The Channel Agility mechanism will be started and the Rx module of the transceiver will be put
in the same state as before sleep. All SynkroRF Network timers will be activated.

Creating an Application

SynkroRF Network User’s Guide, Rev. 1.2

Freescale Semiconductor 3-15

3.11 Flash Data Saving
Even if SynkroRF Network layer does not offer any support for saving data in non volatile memory, this
paragraph will explain how the application can accomplish this task, as it is very much the same procedure
the SynkroRF Network layer by itself uses to store its NodeData database in the NV memory.

The NVM module in the Freescale platform has a number of two data sets it can store/restore in/from Flash
non volatile memory.

One data set is reserved for the network layer while the second one is reserved for the application layer.
This second data set is the place where application can keep information that have to be available after a
reset.

Each data set is initialized at compile time with a chain of pointers and lengths. The pointers point to some
variables, structures, buffers etc in RAM memory, and the lengths are the sizes of these variables,
structures, buffers, etc.

 An example of defining a data set is shown in the following snippet:
 NvDataItemDescription_t const gaNvAppDataSet[] = {
 {buffer1, 20},
 {buffer2, 10},
 {NULL, 0} /* Required end-of-table marker. */
};

The chain must always end with a NULL pointer and a zero length value. This chain specifies the NVM
module that it should move all the information before end-of-table marker starting at the specified pointers
and having the specified lengths into the NV memory.

The buffer1 and buffer2 variables must be declared in the RAM memory like for example:
uint8_t buffer1[20];
uint8_t buffer2[10];

The application can of course access these two buffers anytime, as they are kept inside RAM memory. It
can read them or write them. But after writing them, it may want to update their values in the NV memory,
so they be available after a reset. To inform the NVM module that the application data set should be saved
in the NV memory, the application should call the NvSaveOnIdle() function, having as parameter the
identifier of the data set to be updated.

NvSaveOnIdle(gNvDataSet_App_ID_c);

This function will inform the NVM module in the platform that an update of that data set values in the
NVM is requested. The first time the IdleTask is run, the NVM module will update the information in the
NV memory.

The following items must be considered:

Exiting the call to NvSaveOnIdle() function does not mean the data set is already saved in the FLASH
memory. It will only be updated during the first pass of the system operation trough the IdleTask.

Creating an Application

SynkroRF Network User’s Guide, Rev. 1.2

3-16 Freescale Semiconductor

On a NVM update, the whole data set information is copied in the NV memory. So even if the application
modifies only the content of buffer1 vector and then call NvSaveOnIdle(), both the contents of buffer1 and
buffer2 will be written in the NVM.

Anytime the application wants to fill a data set with the information from NVmemory (usually this is done
one time, at the start of the application), it should call the NvRestoreDataSet() function having as
parameter the identifier of the data set to restore from NVM.

result = NvRestoreDataSet(gNvDataSet_App_ID_c);

	Audience
	Conventions
	Definitions, Acronyms, and Abbreviations
	Revision History
	Chapter 1 SynkroRF Network Software Overview
	Chapter 2 Interfacing to the SynkroRF Network
	2.1 Include Files
	2.2 Source Files
	2.3 SynkroRF Network API
	2.3.1 Synkro_Start API Function
	2.3.2 Synkro_SearchRequest API Function
	2.3.3 Synkro_PairRequest API Function
	2.3.4 Synkro_PairRemoteDevices API Function
	2.3.5 Synkro_CloneDevice API Function
	2.3.6 Synkro_SendCommand API Function
	2.3.7 Synkro_SetBulkBufferState API Function
	2.3.8 Synkro_GetBulkBufferState API Function
	2.3.9 Synkro_SendBulkData API Function
	2.3.10 Synkro_PollConfig API Function
	2.3.11 Synkro_PollDevice API Function
	2.3.12 Synkro_DataAvailable API Function
	2.3.13 Synkro_UpdateCapabilities API Function
	2.3.14 Synkro_RefreshCapabilities API Function
	2.3.15 Synkro_ClearPairingInformation API Function
	2.3.16 Synkro_SetNewMACAddress API Function
	2.3.17 Synkro_GetMACAddress API Function
	2.3.18 Synkro_Sleep API Function
	2.3.19 Synkro_Wake API Function
	2.3.20 Synkro_SetReceiveMode Function
	2.3.21 Synkro_SetPowerLevel API Function
	2.3.22 Synkro_IsFeatureSetAvailable API Function
	2.3.23 Synkro_GetPairedDeviceCapabilities API Function
	2.3.24 Synkro_GetPairedDeviceInfo API Function
	2.3.25 Synkro_GetLocalNodeInfo API Function
	2.3.26 Synkro_GenerateNewShortAddress API Function
	2.3.27 Synkro_GenerateNewSecurityKey API Function
	2.3.28 Synkro_AddEntryInControllerPairTable API Function
	2.3.29 Synkro_AddEntryInControlledPairTable API Function
	2.3.30 Synkro_SavePersistentDataInFlash API Function
	2.3.31 Synkro_SetSearchThreshold API Function
	2.3.32 Synkro_SetPairingThreshold API Function
	2.3.33 Synkro_SetCloningThreshold API Function
	2.3.34 Synkro_GetLastLQI API Function
	2.3.35 Synkro_GetNwkStatus API Function
	2.3.36 Synkro_IsIdle API function

	2.4 SynkroRF Network SAP
	2.4.1 Synkro_Start Confirm Message
	2.4.2 Synkro_SearchRequest Confirm Message
	2.4.3 Synkro_SearchResponse Confirm Message
	2.4.4 Synkro_PairRequest Confirm Message
	2.4.5 Synkro_PairResponse Confirm Message
	2.4.6 Synkro_PairRemoteDevices Confirm Message
	2.4.7 Synkro_RemotePairResponse Confirm Message
	2.4.8 Synkro_Command Confirm Message
	2.4.9 Synkro_Command Indication Message
	2.4.10 Synkro_BulkData Confirm message
	2.4.11 Synkro_BulkDataStart Indication message
	2.4.12 Synkro_BulkData Indication Message
	2.4.13 Synkro_Poll Confirm Message
	2.4.14 Synkro_Poll Indication Message
	2.4.15 Synkro_UpdateCapabilities Confirm Message
	2.4.16 Synkro_UpdateCapabilities Indication Message
	2.4.17 Synkro_RefreshCapabilities Confirm Message
	2.4.18 Synkro_RefreshCapabilities Indication Message
	2.4.19 Synkro_CloneDevice Confirm Message
	2.4.20 Synkro_CloneResponse Confirm Message
	2.4.21 Synkro_Sleep Confirm Message
	2.4.22 Synkro_ChangeMacAddress Confirm Message

	2.5 SynkroRF Network Application Services
	2.5.1 CallbackSearch Application Service
	2.5.2 CallbackPairing Application Service
	2.5.3 CallbackRmtPairing Application Service
	2.5.4 CallbackCloneDevice Application Service
	2.5.5 CallbackCloneEntry Application Service

	Chapter 3 Creating an Application
	3.1 Task Scheduler Overview
	3.1.1 Adding a Task
	3.1.2 SynkroRF Network Task Interaction

	3.2 Network Formation
	3.2.1 Network Configuration and Initialization

	3.3 Starting a SynkroRF Node
	3.4 Searching for Controlled Nodes
	3.5 Pairing a Controller and a Controlled Node
	3.6 Remote Pairing Two Controlled Nodes
	3.7 Cloning a Controller Node
	3.8 Command Transfer
	3.8.1 Receiving Commands
	3.8.2 Transmitting Commands
	3.8.3 Creating Application Defined Commands

	3.9 BulkData Transfer
	3.9.1 Receiving Bulk Data
	3.9.2 Transmitting Bulk Data

	3.10 Low Power
	3.11 Flash Data Saving

