
UG10081
Layerscape Linux Distribution POC User Guide
Rev. 6.1.55_2.2.0 — 24 January 2024 User guide

Document Information
Information Content

Keywords UG10081, LLDPUG, Layerscape, LDP, LS1012ARDB, FRWY-LS1012A, TWR-LS1021A,
LS1028ARDB, LS1043ARDB, LS1046ARDB, FRWY-LS1046A, LS1088ARDB, LS2088ARDB,
LX2160ARDB Rev. 2, LX2162AQDS

Abstract Layerscape Linux Distribution POC (LDP) is a Linux enablement software for NXP Layerscape
processors that are based on Arm core(s).

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

1 Layerscape LDP overview

Layerscape Linux Distribution POC (LDP) is a Linux enablement software for NXP Layerscape processors that
are based on Arm core(s). It provides the necessary drivers, tools, and libraries for enabling the features of
the Layerscape processors. The Layerscape LDP build uses a Yocto-based meta layer to generate a Proof of
Concept (POC) image.

Layerscape LDP provides a fully operational bootloader, a Linux kernel, and board-specific modules. This
Layerscape LDP software together is ready to use in a flexible configuration for specific hardware reference
platforms. Layerscape LDP has been tested and qualified at NXP.

Layerscape LDP is a complete Linux system with the following major components:

• NXP firmware components which include:
– Trusted Firmware-A (TF-A), a reference implementation of secure world software for Armv7-A and Armv8-A
– NXP peripheral firmware components for DPAA1, DPAA2, and PPFE

• NXP bootloader:
U-Boot, based on denx.de plus patches

• NXP Linux kernel based on kernel.org upstream plus patches
• NXP added user space components
• Linux distro standard user space file set (userland) which includes compilers and cross compiler

The benefit of using NXP Layerscape LDP userland is the easy availability of thousands of standard Linux
user space packages. The experience of using the Layerscape LDP is similar to using Ubuntu, but the kernel,
firmware, and some special NXP packages are managed separately.

1.1 Accessing Layerscape LDP
Layerscape LDP is distributed through Git. To build the yocto component, you must clone the manifest and
install Layerscape LDP onto a mass storage device as an integration. This setup is ready for usage on an NXP
reference board or evaluation board.

You can now build the NXP components either from the source using a script called bitbake or install from
binaries of NXP components using flex-installer. For more information, see the links given below:

• Building NXP components: Section 3
• Yocto project: Yocto projects
• NXP Linux Yocto project: NXP Linux Yocto Project BSP for Desktop PoC

1.2 Supported Linux distributions
The current Yocto project release 4.2.999 (mickledore) supports the following distributions:

• Ubuntu 20.04 (LTS)
• Ubuntu 22.04 (LTS)
• Fedora 37
• Fedora 38
• CentOS Stream 8
• Debian GNU/Linux 11 (Bullseye)
• Debian GNU/Linux 12 (Bookworm)
• OpenSUSE Leap 15.4
• AlmaLinux 8.8
• AlmaLinux 9.2

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
2 / 1061

https://www.denx.de/
https://kernel.org/
https://docs.yoctoproject.org/brief-yoctoprojectqs/index.html
https://github.com/nxp-imx/meta-nxp-desktop#readme

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

1.3 Building host package
The Yocto build requires installation of essential host packages on your host build.

To build the host, use the command:

$ sudo apt install gawk wget git diffstat unzip texinfo gcc build-essential chrpath socat cpio python3 python3-pip
 python3-pexpect xz-utils debianutils iputils-ping python3-git python3-jinja2 libegl1-mesa libsdl1.2-dev pylint3
 xterm python3-subunit mesa-common-dev zstd liblz4-tool

For more information on how to build Layerscape LDP, see Section 3.5.

1.4 Layerscape LDP Git tags
Layerscape LDP Git repositories use the Git tags to indicate the component revisions that are release tested
together. Use the git tag command to examine them and chose a tag to checkout.

2 Release notes

2.1 What is new in this release
The following new features are added in the Layerscape LDP release 6.1.55_2.2.0:

• LX2160ARDB revD
• Linux kernel core and virtualization:

– Kernel v6.1.55
• Linux kernel driver:

– DPAA1-eth: Copper backplane support (10GBase-KR)
• Other Tools and Utilities

– MC 10.38.0
– OPTEE v4.0.0
– RCW to support QSPI secure boot on LS1021ATWR

2.2 Components
The following list of components are supported in the Layerscape LDP release 6.1.55_2.2.0:

• NXP Layerscape LDP userland
– NXP Layerscape LDP Userland including Linux distro main packages and NXP packages
– Toolchain: gcc-11.2, glibc-2.35, binutils-2.38, gdb-13.2

• Linux kernel core and virtualization
– LTS kernel 6.1.55 update (including KASLR)
– Arm Cortex-A53 and Cortex-A72 (AARCH64), Little Endian (default)
– 32-bit effective kernel addressing [Cortex-A53, Cortex-A72]
– 64-bit effective addressing [Cortex-A53, Cortex-A72]
– Direct device assignment in guest kernel [DPAA2 processors]
– Kexec support [except for DPAA1 platforms]
– Huge Pages (hugetlbfs)
– KVM and Containers, QEMU 4.2

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
3 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

– Libvirt 9.2.0
• Linux kernel drivers

– Customer Edge Egress Traffic Management (CEETM)
– Crypto driver via SEC 5 and 6 (CAAM)
– CAAM DMA
– DPAA1-eth: Copper backplane support (10GBase-KR)
– DPAA2-eth: Copper backplane support (10GBase-KR, 25Gbase-KR, 40GBase-KR, 100GBase-KR)
– DUART, DSPI [except for LS1028A, LX2160A], I2C, QSPI [except for LS1028A, LS2160A]
– Edge Virtual Bridge (EVB) [DPAA2 processors]
– Ethernet DPAA [DPAA1 processors]
– Ethernet DPAA2 [DPAA2 processors]
– Ethernet ENETC [LS1028A]
– FlexCAN [LS1028A, LX2160A, LX2162A]
– FlexSPI [LS1028A, LX2160A, LX2162A]
– Frame Manager (FMan) [DPAA1 processors]
– GIC-400, GIC-500, GIC-ITS
– Integrated Interchip Sound (I2S) / Synchronous Audio Interface (SAI)
– IEEE1588
– Integrated Flash Controller (IFC) NOR [except for LX2160A, LS1028A] and NAND flash [except for

LS1028A]
– L2Switch [LS1028A]
– LPUART [LS1043A]
– Management Complex Bus [DPAA2 processors]
– MDIO
– Multiprocessor Interrupt Controller (MPIC)
– Multimedia: GPU, LCD, eDP/DP [LS1028A]
– Open Portable Trusted Execution Environment (OP-TEE)
– PCIe Root Complex and Endpoint, MSI
– PFE Ethernet [LS1012A]
– Platform DMA
– PHY support: RGMII, SGMII, XFI, XAUI, USXGMII, XLAUI4, 25G-AUI
– Power Management (PM): CPU hotplug (PH20), CPU idle (PW15/20), Sleep (LPM20), Deep sleep (LPM35),

Auto-Response, Dynamic Frequency Scaling (DFS), Thermal Monitor, Power Monitor (board-specific)
– Queue Manager (QMan) and Buffer Manager (BMan) [DPAA1 processors]
– QUICC Engine UART, TDM, HDLC, PPPoHT
– SAI/I2S [LS1012A]
– SATA
– Secured Digital Host Controller (eSDHC) and SD/MMC support
– System Memory Management Unit (SMMU) [Arm processors]
– Time Sensitive Network (TSN) [LS1028A]
– Universal Serial Bus (USB)
– User space IO
– Virtual Function I/O (VFIO) - mmap PCI sources [Except for LS1021A]
– Watchdog Timers

• Data Plane Development Kit (DPDK)
– Support of DPDK v22.11

The following DPDK applications have been verified:
– l2fwd

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
4 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

– l3fwd
– l2fwd_crypto
– ipsecgateway

– Direct device assignment using VFIO for DPDK in VM [DPAA2 processors]
– DPDK on docker
– IPSEC protocol offload
– KNI support
– PFE with DPDK [LS1012A]
– PKTGEN 21.05.0
– QDMA driver [DPAA2 processors]

• Virtualization
– OVS-DPDK v3.1.0
– OVS-DPDK working with the vhost-virtio interfaces
– DPDK working in virtual machine
– VPP v2302

• Trust Firmware - A (TF-A)
– TF-A v2.8 update
– Power Management
– OP-TEE OS binary v3.21

• U-Boot Bootloader
– U-Boot: 2023.04 update
– Unified memory map
– On Arm platforms, the U-Boot image includes the device tree
– Non-secure and Secure Boot (ESBC)
– Trusted Firmware-A (TF-A) integration. See TF-A features in “Other Tools …” below
– Boot from FlexSPI NOR [LS1028A, LX2160A, LX2162A], NOR, NAND, QSPI [except for LS1028A,

LX2160A], SDHC
– CodeWarrior debug patch for U-Boot
– Clock, CPLD, DUART, DDR4, DSPI [except for LS1028A, LX2160A], eSDHC, GIC-400, GIC-500, I2C,

OCRAM, PCIe, USB 2 and 3, SATA, UART
– DCU, eMMC 4.5, I2C3, LPUART, QSPI [except for LS1028A, LX1260A]
– FlexSPI [LS1028A, LX2160A, LX2162A]
– HW load/store prefetch being disabled
– IFC access to NOR [except for LS1028A, LX2160A] and NAND flash [except for LS1028A]
– RTC
– Networking support using eTSEC, FMan Independent Mode, DPAA2 networking, PFE, ENETC, L2Switch
– Voltage ID (board-specific)

• Other Tools and Utilities
– Convenience scripts to create and manage common objects like network interfaces. These scripts are

packaged in ls2-scripts tarball
– Data Compression Engine in user space
– DPAA2 resource container and object management tool (RESTOOL)
– FLIB/RTA - SEC descriptor creation library [all processors with SEC 5]
– Frame Manager Configuration Tool (FMC) [DPAA1 processors]
– Frame Manager Ucode [DPAA1 processors]

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
5 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

– Management Complex (MC) Firmware version 10.38.0 – supporting DPAA2 resource containers and
network objects, Resource Manager and Link Manager, and DPDMUX basic configurations

– Platform Security
– OP-TEE client 4.0.0
– PKCS#11 Library

– Dynamic deployment of container-based applications
– Support of public and private apps
– Support for Multithreaded Applications
– Integration with PKCS#11 OpenSSL Engine from OpenSC/libp11

– PME Tools [DPAA1 processors]
– Python scripts to generate RCW binaries
– Soft Parser Configuration Tool
– Time Sensitive Network (TSN) support

– TSN configuration tool
– ENETC 1588 two steps timestamping
– ENETC TSN driver
– SWITCH TSN driver

– Yocto bitbake to build component and generate the boot firmware, fsl-image-kernel.itb and the NXP
Layerscape LDP userland containing the specified packages and applications
– Yocto mickledore bitbake

2.3 Feature support matrix
The following tables show the features that are supported in this release.

Refer to the legend below to decipher the entries.

Legend:

• Y - Feature is supported by software
• / - Feature is not supported by software
• na - Hardware feature is not available

Feature LS1012A LS1021A LS1028A LS1043A LS1046A LS1088A LS2088A LX2160A LX2162A

64-bit User space, BE / na / / / / / / /

32-bit User space, LE / Y / / / / / / /

64-bit User space, LE Y na Y Y Y Y Y Y Y

36b phys mem na Y na na na na na na na

40b phys mem Y na Y Y Y Y Y Y Y

Data Plane Development Kit
(DPDK)
- VPP excluded

Y / Y Y Y Y Y Y Y

Hugetlbfs Y Y Y Y Y Y Y Y Y

Management Complex na na na na na Y Y Y Y

Open Portable Trust
Execution Environment (OP-
TEE)

Y / Y Y Y Y Y Y Y

Table 1. Key features

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
6 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Feature LS1012A LS1021A LS1028A LS1043A LS1046A LS1088A LS2088A LX2160A LX2162A

Secure boot
(NXP CoT)

Y Y Y Y Y Y Y Y Y

Secure boot (Arm CoT) na na na na na na na Y Y

Time Sensitive Network (TSN) na na Y na na na na na na

USDPAA Applications na na na / / na na na na

Trusted Firmware-A (TF-A) Y na Y Y Y Y Y Y Y

Verified boot na na na na na na na na Y

Warm reset na na na na na na na na Y

Table 1. Key features...continued

Feature LS1012A LS1021A LS1028A LS1043A LS1046A LS1088A LS2088A LX2160A LX2162A

KVM/QEMU Y na Y Y Y Y Y Y Y

On-chip networking interfaces
Direct Assignment

/ na Y na na Y Y Y Y

PCI Devices Direct
Assignment

/ na Y / / Y Y Y Y

LXC Y Y Y Y Y Y Y Y Y

Libvirt Y Y Y Y Y Y Y Y Y

SMMU - default config na / Y / / Y Y Y Y

VFIO for Network Resources / na Y na na Y Y Y Y

Docker Y / Y Y Y Y Y Y Y

Table 2. Virtualization, Containers and Isolation

Feature LS1012A LS1021A LS1028A LS1043A LS1046A LS1088A LS2088A LX2160A LX2162A

Audio - I2S, SAI Y Y Y na na na na na na

CAAM DMA Y / / / / / / / /

DCE na na na na na na Y Y Y

DCU na Y na na na na na na na

Display - eDP/DP, LCD na na Y na na na na na na

DMA Y Y Y Y Y Y Y Y Y

DPAA1 - Ethernet, FMan,
QMan, BMan

na na na Y Y na na na na

DPAA2 - Ethernet, L2
Switching, QBMan

na na na na na Y Y Y Y

eSDHC Y Y Y Y Y Y Y Y Y

ENETC na na Y na na na na na na

FlexCAN na / Y na na na na Y Y

FlexSPI na na Y na na na na Y Y

GPU na na Y na na na na na na

Table 3. Linux kernel drivers

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
7 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Feature LS1012A LS1021A LS1028A LS1043A LS1046A LS1088A LS2088A LX2160A LX2162A

I2C Y Y Y Y Y Y Y Y Y

IEEE1588, linuxptp na Y Y Y Y Y Y Y Y

IFC na Y na Y Y Y Y na na

IMA-EVM Y / / Y Y Y Y / /

TSN Ethernet Switch na na Y na na na na na na

LPUART na Y / Y Y / / na na

QSPI Y Y na Y Y Y Y na na

PCIe RC Y Y Y Y Y Y Y Y Y

PCIe EP / / / Y Y Y Y Y Y

PFE Y na na na na na na na na

Power Management Y Y Y Y Y Y Y Y Y

SATA Y Y Y Y Y Y Y Y Y

SEC Y Y Y Y Y Y Y Y Y

dSPI / Y / Y Y / Y na Y

TDM (QE) na na na Y na na na na na

TSN na na Y na na na na na na

USB Y Y Y Y Y Y Y Y Y

VFIO for network resources / na Y na na Y Y Y Y

Watchdog Y Y Y Y Y Y Y Y Y

GPIO na na na na Y Y na na Y

EDAC Y Y Y Y Y Y Y Y Y

Table 3. Linux kernel drivers...continued

2.4 Open issues
Table 4 lists the open issues in the Layerscape LDP release 6.1.55_2.2.0. None of these issues currently has a
resolution.

ID Description Opened in

LF-3360 Functionalities that require PCI reset, such as VFIO, will
work only with PCI endpoints that support Function Level
Reset (FLR).

5.15.52-2.1.0

LF-3981 On LX2160ARDB, there is kernel panic when unbinding dpni
during Linux qos testing.

5.10.35_2.0.0

LF-4151 On LS1028ARDB and DPAA2 platforms, the system may
randomly reset after sleep.

LSDK 21.08

LF-6686 Openssl job ring interrupt does not increase after openssl
testing.

5.15.32_2.0.0

LF-8753 On LS043ARDB and LS1046ARDB, kexec_kdump: fail to
switch to the new kernel with default image or custom build
image.

6.1.1_1.0.0_LDP

Table 4. Open issues in Layerscape LDP release 6.1.55_2.2.0

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
8 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

ID Description Opened in

LF-8837 On LS1012ARDB, Display: desktop can't display normally on
specific monitor after login system.

6.1.1_1.0.0_LDP

Table 4. Open issues in Layerscape LDP release 6.1.55_2.2.0...continued

3 Getting started with Layerscape LDP

3.1 Host system requirements
Set up the host system as given below:

1. Install Ubuntu 22 on the host machine:
a. Obtain sudo permission by running the command:

sudoedit /etc/sudoers
b. Add a line:

<account-name> ALL=(ALL:ALL) NOPASSWD: ALL
2. To build the target NXP Layerscape LDP userland for arm64/armhf arch, the user network environment

must have access to the remote Ubuntu official server.

3.1.1 How to set HTTP proxy in Ubuntu

If your Linux host machine is in a subnet that needs HTTP(s) proxy to access external Internet, set the
environment variable http_proxy and https_proxy as given below:

1. Set proxy in ~/.bashrc (for current user) or in /etc/profile.d/proxy.sh (for global users), then run
source ~/.bashrc or source /etc/profile.d/proxy.sh to validate the settings.

export http_proxy="http://<account>:<password>@<domain>:<port>"
export https_proxy="https://<account>:<password>@<domain>:<port>"

2. Set proxy in /etc/apt/apt.conf

Acquire::http::Proxy "http://<account>:<password>@<domain>:<port>";
Acquire::https::Proxy "https://<account>:<password>@<domain>:<port>";

3.2 Download and deploy Layerscape LDP images in Linux environment using flex-
installer
You can build Layerscape LDP easily from source by using Yocto bitbake. It is a generic task execution engine
that allows to run the shell and Python tasks efficiently, while working within the complex inter-task dependency
constraints.

To build Layerscape LDP from source, see Section 3.5.

Table 5 lists and explains the command options used in the flex-installer commands.

Command option Description Supported values

-m <machine> Refers to board name. ls1012afrwy, ls1021atwr, ls1028ardb,
ls1043ardb, ls1046ardb, ls1046afrwy,
ls1088ardb, ls2088ardb, lx2160ardb_rev2,
lx2162aqds

-f <firmware> Refers to firmware image. firmware_<machine>_<boottype>.img

Table 5. flex-installer command options

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
9 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Command option Description Supported values

-b <boot_
partition>

Refers to bootpartition image. There is a set of
bootpartition images for each of the Linux kernel
versions and platform (64-bit) supported by
Layerscape LDP.

boot_LS_arm64_lts_<version>.tgz

-B, --bootpart Specify boot partition number to override default
(default boot partition is the 2nd one)

For example,
-B 1 or
--bootpart=1

-r <rootfs> Refers to NXP Layerscape LDP userland. There
are different rootfs images for default userland and
Edgescale userland.

ls-image-main-<machine>.tar.gz
For example, <machine> = ls1028ardb:
ls-image-desktop-ls1028ardb.tar.gz

-R, --rootpart Specify root partition number to override the default
(default root partition is the 4th partition)

For example, specify the third partition as
root partition:
-R 3 or
--rootpart=3

-d <device> Refers to storage device (SD, USB, or SATA)
Note:
• Use the command cat /proc/partitions to see

a list of devices and their sizes to make sure that the
correct device names have been chosen.

• The SD/USB/SATA storage drive in the Linux PC
is detected as /dev/sdX, where X is a letter such
as a, b, c. Make sure to choose the correct device
name, because data on this device will be replaced.

• If the Linux host machine supports read/write SD
card directly without an extra SD card reader device,
the device name of SD card is typically mmcblk0.

/dev/<device_name>

-e <dtb> -e dtb option is used for UEFI in DTB way. This
parameter installs grub.cfg, efi.fd
There is no need to add -e option in case of U-Boot as
bootloader by default

dtb, no need this option in case of U-Boot
as bootloader

-u <url> Specifies URL of distro web server to override the
default one for automatically downloading distro.

URL of distro web server

Table 5. flex-installer command options...continued

Note:

• The U-Boot based composite firmware must be programmed in flash device (not in SD card) on
LS2088ARDB/LS1012ARDB/LS1012AFRWY, no limitation on the other Layerscape boards.

• Users can install distro rootfs and bootpartition tarball into SD card (or USB/SATA disk) on all Layerscape
boards.

• To run flex-installer command on the target storage drive connected to a reference board, you must boot the
board with TinyLinux and bring up network interface.
For details, refer to Section 3.2.2.

3.2.1 To deploy locally the custom Layerscape LDP images to the target storage drive
connected to a Linux host machine or a reference board

Usage:

$ flex-installer -b <boot_partition> -r <rootfs> -f <firmware> -d <device>

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
10 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

For list of supported values for <boot_partition>, <rootfs>, <firmware>, and <device>, see Table 5.

Example:

For ls1043ardb:

$ flex-installer -b boot_ls1043ardb_lts_6.1.tgz -r ls-image-
mainls1043ardb.tar.gz -f firmware_ls1043ardb_sdboot.img -d /dev/sdX

3.2.2 To deploy the custom Layerscape LDP images on a reference board running TinyLinux

1. After booting the reference board automatically, check whether the reference board boots TinyLinux or
whether it boots Layerscape LDP userland based distribution.
TinyLinux is a non-customizable ramdisk rootfs deployed in flash media on the reference board. This
rootfs fits into the firmware image on flash and is therefore called tiny.
• If the reference board boots TinyLinux, proceed to step #3.
• If the reference board boots Layerscape LDP - based distribution, it means that an older Yocto based

distribution may already be present on the storage device that is plugged into the reference board. In this
case, go to step #2 first, to force the board to boot TinyLinux.

2. Force the reference board to boot TinyLinux.
• Reboot the board and stop autoboot to enter U-Boot prompt.
• Set Ethernet Interface

=>pri bootcmd
bootcmd=env exists mcinitcmd && mmcinfo; mmc read 0x80001000 0x6800 0x800;
 env exists mcinitcmd && env exists secureboot && mmc read 0x806C0000
 0x3600 0x20 && esbc_validate 0x806C0000;env exists mcinitcmd && fsl_mc
 lazyapply dpl 0x80001000;run distro_bootcmd;run sd_bootcmd;env exists
 secureboot && esbc_halt;
2, run bootcmd (from the info above)
=>mmc read 0x80001000 0x6800 0x800
=> fsl_mc lazyapply dpl 0x80001000

• Enter following command at the U-Boot prompt to boot the board to the TinyLinux environment for
executing flex-installer:

=> run sd_bootcmd (for SD/eMMC boot)
=> run nor_bootcmd (for IFC-NOR boot)
=> run qspi_bootcmd (for QSPI-NOR boot)
=> run xspi_bootcmd (for FlexSPI-NOR boot)

3. Log in to TinyLinux as root and bring up a network interface.
Dynamic IP address assignment:

#: ifconfig -a
 #: udhcpc -i eth0 (or eth1 ,etc.) c

Static IP address assignment:

$ ifconfig <port name in TinyLinux> <IP address> netmask <netmask address> up

The port name in Linux TinyLinux corresponding to each of the ports on the reference board chassis is
given in section "<board> reference information" in the board-specific Quick start guide section.

4. Use flex-installer to create and format the partitions for storage device (USB/SATA/SD).

$ flex-installer -i pf -d <device> # use default partition_list

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
11 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Or

$ flex-installer -i pf -d <device> -p <partition_list> # specify custom
 partition_list

For list of supported values for <device>, see Table 5.
5. Change current path to the Partition 4 of target storage device.

$ cd /mnt/mmcblk0p4 (or /mnt/sdx4)

6. Download bootpartition_<arch>_<version>.tgz and rootfs_<version>_<distrotype>_
<distroscale>_<arch>.tgz using the wget or scp command.

7. Deploy bootpartition and Layerscape LDP userland to the target device using the command given below:

flex-installer -f <firmware> -b <boottgz> -r <rootfs> -d <device>

For the list of supported values for <firmware>, <rootfs>, and <device>, see Table 5.
Example:
$ flex-installer -b boot_ls1043ardb_lts_6.1.tgz -r ls-image-
mainls1043ardb.tar.gz -f firmware_ls1043ardb_sdboot.img -d /dev/sdX

3.2.3 To only install the composite firmware to the target storage drive on a Linux host
machine or a reference board

You must install the flex-installer in the Linux host machine prior to the installation of the composite firmware.

Usage:

$ flex-installer -f <firmware> -d <device>

For the list of supported values for <firmware>, <device>, see Table 5.

Example:

$ flex-installer -f firmware_ls1046ardb_sdboot.img -d /dev/sdx

3.2.4 To partition and format target storage device with specified number and size of
partitions instead of using the default partitions

Usage:

flex-installer -i pf -p <partitions-list> -d <device>

For the list of supported values for <device>, see Table 5.

Example:

$ flex-installer -f firmware_ls1043ardb_sdboot.img -b
 boot_ls1043ardb_lts_6.1.tgz -r ls-image-
main-ls1043ardb.tar.gz -d /dev/sdX

3.3 Download and deploy Layerscape LDP composite firmware in Windows
environment
To download and deploy the Layerscape LDP composite firmware in Windows environment, perform the
following steps:
UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
12 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Note: The following steps are verified on Windows 10.

1. Download the DD for Windows tool and install it.
http://download.si-linux.co.jp/dd_for_windows/DDWin_Ver0998.zip

2. Create a folder (for example, C:/Layerscape_LDP) and copy the composite firmware you built in Windows
Subsystem Linux (WSL).

3. Run the Windows cmd command and change the current work directory to the created folder.

C:\Windows\System32> cd C:/LDP
C:\LDP> dir

4. Run Windows command copy /b sd_pt_4k.img + <composite_image>
<new_composite_image> to combine the partition table image with the composite firmware.

C:\LDP> copy /b sd_pt_4k.img + firmware_ls1028ardb_sdboot.img
 firmware_ls1028ardb_sdboot_4k.img

The new image firmware_ls1028ardb_sdboot_4k.img is generated.
5. Run the tool DD for Windows as administrator.
6. Click Choose disk Choose file , and then Restore to program the newly generated composite firmware into

the target SD card.
7. Unplug the SD card from Windows host machine and plug it on the target board.
8. Set the DIP switch for SD boot or run run sd_bootcmd at the U-Boot prompt.
9. Log in to TinyDistro as root and install Layerscape LDP distro using flex-installer.

For more instructions, see Section 3.6.

3.4 Deploying Layerscape LDP images to a board using flex-installer
Perform the following steps to deploy the Layerscape LDP images to a board using a removable storage device,
which can be connected to a local Linux host machine:

1. Connect the removable storage device to the Linux host machine.
2. Install flex-installer on host machine to deploy the Layerscape LDP images (this is a one-time activity):

$ git clone https://github.com/nxp-imx/meta-nxp-desktop.git -b
 lf-6.1.55_2.2.0-mickledore
$ cp meta-nxp-desktop/scripts/flex-installer_1.14.2110.lf /usr/bin/flex-
installer
$ sudo chmod a+x /usr/bin/flex-installer
$ which flex-installer

3. Execute the following flex-installer command to install Layerscape LDP:

$ flex-installer -i pf -d <device>;
$ flex-installer -f <firmware_xxx.img> -b <boot_xxx.tgz> -r <ls-image-
mainxxx.tar.gz> -d <device>

Note:
• Use the command cat /proc/partitions to view the list of devices and their sizes to ensure that the

correct device names are chosen.
• The SD/USB/SATA storage drive in the Linux PC is detected as /dev/sdX, where X is a letter such as a, b,

c. Ensure to choose the correct device name, as the data on this device is replaceable.
• If the Linux host machine supports read/write SD card directly without an extra SD card reader device, the

device name of SD card is typically mmcblk0.
4. Unplug removable storage device from the Linux host and plug into the reference board.

Ensure that the DIP switch settings on the board are correct to boot from the desired boot medium.
5. Power on the board. The system automatically boots up to the Layerscape distro system.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
13 / 1061

http://download.si-linux.co.jp/dd_for_windows/DDWin_Ver0998.zip

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Use the following default credentials to log on to the Layerscape distro system:

– user/user

3.5 Build Layerscape LDP with Yocto bitbake
This section introduces detailed steps to build Layerscape LDP with Yocto bitbake. The Layerscape LDP
build uses a Yocto-based meta layer to generate a Proof of Concept (POC) image and it works together with
Layerscape release layer (meta-qoriq). It reuses the Linux BSP release framework to manage and generate the
U-Boot bootloader, Linux kernel image, and Layerscape root file system in the image build.

Note: The release version is managed by the Layerscape Yocto SDK Manifest.

The Layerscape LDP build include main and desktop builds. The main build is applicable for all the Layerscape
SoCs and the desktop build is applicable for LS1028ARDB only.

3.5.1 Host packages

The Yocto Project build requires specific packages that must be installed to build the Yocto Project.

To set up the Yocto Project build, navigate to the Yocto Project Quick Start and check for the packages that
must be installed for your build machine.

The essential Yocto project host packages are given below:

$ sudo apt-get install gawk wget git-core diffstat unzip texinfo gcc-multilib \
build-essential chrpath socat cpio python python3 python3-pip python3-pexpect \
xz-utils debianutils iputils-ping python3-git python3-jinja2 libegl1-mesa
 libsdl1.2-dev \
pylint3 xterm rsync curl

3.5.2 Download Yocto bitbake

The Yocto project uses OpenEmbedded (OE) to build hosts, and the project uses bitbake to build a complete
Linux image. The bitbake and OE components are combined to form the reference build host, formerly known
as poky. Repo is a tool built on top of Git.

To avail poky, and bitbake tools, download the poky repository and bitbake tools using the repo tool.

$ repo init -u https://github.com/nxp-qoriq/yocto-sdk -b mickledore -m ls-6.1.55_2.2.0_distro.xml
$ repo sync
source ./distro-setup-env -m <boards>
Supported boards
================
ls1012ardb
ls1012afrwy
ls1021atwr
ls1043ardb
ls1046ardb
ls1046afrwy
ls1088ardb-pb
ls1028ardb
ls2088ardb
lx2160ardb-rev2
lx2162aqds

3.5.3 Build Layerscape LDP image using bitbake

To build custom images with different configurations instead of the default settings, you can directly deploy the
prebuilt Layerscape LDP composite firmware and distro userland to storage device on target board by Yocto
bitbake.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
14 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

To build the Layerscape LDP image, run the following command:

$ bitbkake ls-image-lite
$ bitbake ls-image-main # (if machine=ls1028ardb, should bitbake ls-image-desktop)

3.5.4 bitbake commands

The following table lists commands to build Layerscape LDP using bitbake.

S. No. Build object Command Description

1

Automated build for
specific board

Distro command:
$ DISTRO=fsl-qoriq-distro
 MACHINE=<machine> source distro-
setup-env
$ bitbake <distro_type>

For example:
$ DISTRO=fsl-qoriq-distro
 MACHINE=ls1028ardb source distro-
setup-env
$ bitbake ls-image-main

Automatically builds
Kernel, and app
components for the
specific board.
<machine> can be:
• ls1012ardb
• ls1012afrwy
• ls1021atwr
• ls1028ardb
• ls1043ardb
• ls1046ardb
• ls1088ardb_pb
• ls2088ardb
• lx2160ardb_rev2
• lx2162aqds
<distro_type> can
be:
• bitbake ls-image-main
• bitbake ls-image-

desktop
• bitbake ls-image-lite
• bitbake ls-image-tiny

2

Builds ATF and U-Boot bitbake qoriq-atf Automatically builds ATF
image with dependent
RCW and bootloader (U-
Boot or UEFI).

3

Builds specific
component

bitbake <component>
For example:

bitbake dpdk
bitbake vpp
bitbake perf
bitbake ovs-dpdk
bitbake fmc
bitbake openssl
bitbake opencv

To build single or
multiple components,
run the command:
bitbake
<component>

4

Builds multiple app
components for specific
subsystem

bitbake <subsystem>
For example:
bitbake packagegroup-
fsl-tools-core

User can modify or add
custom component in
the corresponding files,
for example, meta-
qoriq/recipes-
fsl/packagegroups/

Table 6. bitbake commands

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
15 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

S. No. Build object Command Description
packagegroup-fsl-
tools-core.bb

bitbake <distro_type> Generates distro rootfs
as per the specified
distro type and scale.

bitbake ls-image-lite Build lite image with the
optimized config.

bitbake ls-image-main Build main image for
networking feature.

bitbake ls-image-desktop Build desktop image for
a specific board only.

5

Builds various distro
userland

bitbake fsl-image-
mfgtool

Build yocto tiny image
with limited tools.

bitbake -c clean
<recipe_name/target_
name>

Removes all the output
files for a target.

bitbake -c cleanall
<recipe_name/target_
name>

Removes all the output
files, shared state cache,
and downloaded sources
files for a target.

6

Cleans various images

bitbake -c cleansstate
<recipe_name/target_
name>

Removes all the output
files and shared state
cache for a target.

Table 6. bitbake commands...continued

3.5.5 Generate Layerscape LDP composite firmware

Layerscape LDP composite firmware consists of RCW/PBL, ATF, Bootloader (U-Boot or UEFI), secure headers,
Ethernet MAC/PHY firmware, dtb, kernel and tiny initrd RFS. The composite firmware can be programmed at
offset 0x0 in flash device or at offset block# 8 in SD/eMMC card.

Note: Arm CoT is supported only for LX2160ARDB Rev2 and LX2162AQDS platforms.

Usage:

$ bitbake qoriq-composite-firmware

3.5.6 Generate tarball

In this tar ball, the boot image puts dtb, image, secure-boot header, and the kernel module. boottgz
writes in boot part2.

Use this command below to generate this tar ball in Yocto bitbake.

Usage:

$ bitbake generate-boottgz

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
16 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

3.5.7 Build TF-A with RCW and U-Boot/UEFI

Layerscape platforms support TF-A (Trusted Firmware-A) which provides a reference implementation of secure
world software for Armv7-A and Armv8-A.

bitbake can automatically build the dependent RCW, U-Boot/UEFI, OPTEE, and CST to generate TF-A
binaries, bl2.pbl and fip.bin images for Layerscape platforms.

Use the commands below to build ATF with RCW and U-Boot/UEFI in Yocto bitbake.

Note: Arm CoT is supported only for LX2160ARDB Rev2 and LX2162AQDS platforms.

Usage:

Usage:
bitbake qoriq-atf

Note: If you want to use different RCW instead of the default one, you can reconfigure rcw_<boottype>
variable in sources/meta-qoriq/recipes-bsp/secure-boot/secure-boot-qoriq//manifest, then
run bitbake linux-firmware -c cleanall; bitbake qoriq-atf to generate new ATF image with
the specified RCW, if you modified U-Boot, RCW or ATF source code, bitbake can automatically recompile them
with the modified source.

3.5.8 Build Linux kernel with bitbake

Besides building Layerscape LDP kernel in standalone way (see Section 6.4), it is easy to automatically build
Layerscape LDP kernel with the bitbake command.

To build kernel, use the following command:

bitbake linux-qoriq

3.5.9 Build application components in Yocto bitbake

The following commands are some examples of building application components.

Usage:

$ bitbake <component>

Example:

Usage:

bitbake dpdk
bitbake pktgen-dpdkbitbake vppbitbake fmcbitbake restoolbitbake tsntool
bitbake opencv

System reboots and automatically boot to Layerscape Linux system with the newly custom kernel.

3.5.10 Deploy new images after modifying the source code of NXP components locally

1. Clean the old apps images using the command:

$ bitbake <component_name> -c cleanall

2. Modify component bitbake files in directory components/apps/<subsystem>/<component-name>
according to demand. This step is optional.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
17 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

3. Build the component and generate the compressed app component tarball. You can find the compiled
images in build-desktop/tmp/deploy/images directory:

$ bitbake <component_name> -c compile -f

3.5.11 Build various userlands with custom packages

Layerscape LDP supports different types of distro userlands in various scales to adapt a variety of use cases,
you can select the appropriate distro userland as per your need.

• Layerscape LDP Main Userland.
• Layerscape LDP Lite Userland.
• Layerscape LDP Desktop Userland.

Layerscape LDP Main Userland

The Layerscape LDP default main userland consists of Linux distro-based main packages and NXP's packages,
which can be generated by the following command:

$ bitbake ls-image-main

Layerscape LDP Lite Userland

The Layerscape LDP lite userland consists of Linux distro packages and a few NXP's packages, which can be
generated by the following command:

$ bitbake ls-image-lite

Layerscape LDP Desktop Userland

The Layerscape LDP desktop userland consists of Linux distro GNOME desktop packages and some NXP's
packages for platforms with GPU (for example, LS1028A and i.MX platform).

The GOME desktop is launched automatically by default, it needs to manually launch weston in case weston is
needed. Users can generate and deploy Linux distro desktop userland by the following command:

$ bitbake ls-image-desktop

3.5.12 Add a custom machine in Yocto bitbake based on Layerscape LDP release

To add a custom machine, perform the steps given below:

For example, LS1043AXX based on the LS1043A SoC.

1. Run repo init and repo sync to fetch all Git repositories of Layerscape LDP components for the first
time.

2. Add configs in yocto bitbake for new machine:
Add ls1043axx node in conf/machine/ls1043axx.conf.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
18 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

3.5.13 Upgrade the existing Layerscape LDP distro with Yocto bitbake on host

To only update boot partition (with customized kernel and modules) on SD card connected to host machine or
target Arm board:

$ flex-installer -b boot_<machine>_lts_6.1.tgz -d /dev/mmcblk0 (or /dev/sdx)

To only update rootfs tarball on SD card connected to host machine or target Arm board:

$ flex-installer -r ls-image-main-<machine>.tar.gz -d /dev/mmcblk0 (or /dev/sdx)

To update both bootpartition and rootfs on SD card connected to host machine or target Arm board:

$ flex-installer -b <boot_partition> -r <rootfs> -d /dev/mmcblk0 (or /dev/sdx)

3.6 Downloading a TinyDistro image to a Layerscape board using flex-installer
Perform the following steps to download the TinyDistro image to a Layerscape board using flex-installer:

1. Connect the removable storage device to the Linux host machine.
2. Install flex-installer to deploy TinyDistro images (this is a one-time activity):

$ git clone https://github.com/nxp-imx/meta-nxp-desktop.git -b
 lf-6.1.55_2.2.0-mickledore
$ cp meta-nxp-desktop/scripts/flex-installer_1.14.2110.lf /usr/bin/flex-
installer
$ sudo chmod a+x /usr/bin/flex-installer
$ which flex-installer

3. Execute the following flex-installer command to install TinyDistro image:

$ flex-installer -i pf -d <device>;
$ flex-installer -f <firmware_xxx.img> -d <device>

4. Unplug removable storage device from the Linux host and plug into the reference board.
Ensure that the DIP switch settings on the board are correct to boot from the desired boot medium.

5. Power on the board and enter into U-Boot to allocate the Ethernet interface:

=> pri bootcmd
bootcmd=env exists mcinitcmd && mmcinfo; mmc read 0x80001000 0x6800 0x800;
 env exists mcinitcmd && env exists secureboot && mmc read
0x806C0000 0x3600 0x20 && esbc_validate 0x806C0000;env exists mcinitcmd &&
 fsl_mc lazyapply dpl 0x80001000;run distro_bootcmd;run sd_bootcmd;env
exists secureboot && esbc_halt;
=> mmc read 0x80001000 0x6800 0x800
=> fsl_mc lazyapply dpl 0x80001000

6. Run one of the following commands as applicable:
• => run sd_bootcmd (for SD/eMMC boot)

• => run nor_bootcmd (for IFC-NOR boot)

• => run qspi_bootcmd (for QSPI-NOR boot)

• => run xspi_bootcmd (for FlexSPI-NOR boot)

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
19 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

7. Log in to TinyDistro as root/root and bring up a network interface:

$ ifgonfig -a
Dynamic IP address assignment:
$ udhcpc -i <port_name_in_TinyDistro>
Static IP address assignment:
$ ifconfig <port_name_in_TinyDistro> <IP_address> netmask <netmask_address>
 up

8. Download the board image:

$ wget <httpserver>/flex-installer.sh && chmod a+x flex-installer.sh && sudo
 mv flex-installer.sh /usr/bin/flex-installer
$ wget <httpserver>/<firmware_xxx.img>
$ wget <httpserver>/<ls-image-main-xxx.tar.gz>

9. Execute the following flex-installer command to install the Layerscape image:

$ fdisk -l
$ flex-installer -i pf -d <device>;
$ flex-installer -f <firmware_xxx.img> -b <boot_xxx.tgz> -r <ls-image-
mainxxx.tar.gz> -d <device>

10. Reboot in the TinyDistro system:

$ reboot

3.7 Quick start guides for Layerscape boards
This section describes:

• Quick start guide for FRWY-LS1012A
• Quick start guide for LS1012ARDB
• Quick start guide for TWR-LS1021A
• Quick start guide for LS1028ARDB
• Quick start guide for LS1043ARDB
• Quick start guide for FRWY-LS1046A
• Quick start guide for LS1046ARDB
• Quick start guide for LS1088ARDB
• Quick start guide for LS2088ARDB
• Quick start guide for LX2160ARDB Rev2
• Quick start guide for LX2162AQDS

3.7.1 Quick start guide for FRWY-LS1012A

This section explains:

• Introduction
• FRWY-LS1012A reference information
• Program Layerscape LDP composite firmware image

3.7.1.1 Introduction

The following sections describe the procedure to program the Layerscape LDP composite firmware for
FRWY-LS1012A. Also, this section explains the most common use case procedure to download and deploy
Layerscape LDP default images to FRWY-LS1012A using flex-installer. For more information, see Section 3.2.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
20 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

For more information on the different components of the board, and on how to configure and boot the board,
see Layerscape LS1012A Freeway Board Getting Started Guide.

3.7.1.2 FRWY-LS1012A reference information

This section provides a general information about FRWY-LS1012A, which may come in handy as a reference
while completing the steps for deploying Layerscape LDP that follow.

3.7.1.2.1 Ethernet port map

The table below shows the mapping between the labels on the FRWY-LS1012A, port in U-Boot and port in
Linux.

Label on board Port in U-Boot Port in Linux

ETH1 pfe_eth0 eth0

ETH2 pfe_eth1 eth1

Table 7.  Ethernet port mapping

3.7.1.2.2 System memory map

In 64-bit U-Boot, there is a 1:1 mapping of physical address and effective address. After system startup, the
bootloader maps physical address and effective address as shown in the following table:

Start Physical Address End Physical Address Memory Type Size

0x00_0000_0000 0x00_000F_FFFF Secure boot ROM 1 MB

0x00_0100_0000 0x00_0FFF_FFFF CCSR 240 MB

0x00_1000_0000 0x00_1000_FFFF OCRAM1 64 KB

0x00_1001_0000 0x00_1001_FFFF OCRAM2 64 KB

0x00_4000_0000 0x00_47FF_FFFF QSPI 128 MB

0x00_8000_0000 0x00_FFFF_FFFF DRAM 2 GB

0x40_0000_0000 0x47_FFFF_FFFF PCI Express1 32G

3.7.1.2.3 Supported boot options

FRWY-LS1012A supports the following boot options:

• QSPI NOR Flash
Note: QSPI NOR flash is the only boot option available on the FRWY-LS1012A.

The FRWY-LS1012A supports onboard Winbond W25M161AWEIT single/dual/quad-SPI serial flash memory
with 16 Mbit NOR and 1 Gbit NAND space in a single chip.

U-Boot 2020.04-21450-gbde1a7f (Sep 18 2020 - 21:55:22 +0800)
SoC: LS1012AE Rev2.0 (0x87040020)
Clock Configuration:
 CPU0(A53):1000 MHz
 Bus: 250 MHz DDR: 1000 MT/s
Reset Configuration Word (RCW):
 00000000: 0800000a 00000000 00000000 00000000
 00000010: 33050000 c000000c 40000000 00001800
 00000020: 00000000 00000000 00000000 000c47f2

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
21 / 1061

https://www.nxp.com/support/developer-resources/software-development-tools/qoriq-developer-resources/layerscape-frwy-ls1012a-board:FRWY-LS1012A?fpsp=1&tab=Documentation_Tab

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

 00000030: 00000000 1082a120 00000096 00000000
DRAM: 958 MiB
Using SERDES1 Protocol: 13061 (0x3305)
MMC: FSL_SDHC: 0, FSL_SDHC: 1
Loading Environment from SPI Flash... SF: Detected w25q16dw with page size 256
 Bytes, erase size 4 KiB, total 2 MiB
OK
In: serial
Out: serial
Err: serial
Model: FRWY-LS1012A Board
Board: FRWY-LS1012A Version: RevC Net: SF: Detected w25q16dw with page size 256
 Bytes, erase size 4 KiB, total 2 MiB
PFE class pe firmware for Linux
PFE tmu pe firmware for Linux
PFE class pe firmware for u-boot
PFE tmu pe firmware for u-boot
eth0: pfe_eth0, eth1: pfe_eth1

3.7.1.3 Program Layerscape LDP composite firmware image

To program the Layerscape LDP composite firmware image in the QSPI NOR flash on FRWY-LS1012A:

1. Copy firmware on host machine to TFTP server:

cp <build>/tmp/deploy/image/ls1021afrwy/firmware_ls1012afrwy_qspiboot.img ~/
tftp/

2. Under U-Boot, download the firmware to the reference board using one of the following options:
• Load firmware from the TFTP server

=> tftp $load_addr firmware_ls1012afrwy_qspiboot.img

• Load firmware image from partition on mass storage device (SD, USB, or SATA)

=> load mmc <device:part> $load_addr firmware_ls1012afrwy_qspiboot.img

For example:

=> load mmc 0:2 $load_addr firmware_ls1012afrwy_qspiboot.img

Or

=> load usb <device:part> $load_addr firmware_ls1012afrwy_qspiboot.img

Or

=> load scsi <device:part> $load_addr firmware_ls1012afrwy_qspiboot.img

Note:
Use the following command if the SD card is formatted/created using Layerscape LDP flex-installer
command:

=> load <interface> [<dev[:part]> [<addr> [<filename> [bytes [pos]]]]]

For example:

=> load mmc 0:2 $load_addr firmware_ls1012afrwy_qspiboot.img

Use the following command if the SD card is formatted/created on a Windows PC:

=> fatload <interface> [<dev[:part]> [<addr> [<filename> [bytes [pos]]]]]

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
22 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

For example:

=> fatload mmc 0:2 $load_addr firmware_ls1012afrwy_qspiboot.img

Use the following command if the SD card is formatted/created on a Linux PC:

=> ext2load <interface> [<dev[:part]> [<addr> [<filename> [bytes [pos]]]]]

For example:

=> ext2load mmc 0:2 $load_addr firmware_ls1012afrwy_qspiboot.img

The Layerscape LDP flex-installer command puts the images on the second partition, so that 0:2 is used in
the load command. If the SD card is formatted on Windows PC or Linux PC for single partition only, then 0
should be used instead of 0:2 in the fatload/ext2load command.

3. Program the firmware to QSPI NOR flash:

=> sf probe 0:0
=> sf erase 0 +$filesize && sf write $load_addr 0 $filesize

4. Reset and boot the board from QSPI NOR flash:
Note: The system will automatically boot up TinyDistro (log in using root/root) or Layerscape LDP distro
(log in using user/user) available on the removable storage device.

=> reset

3.7.1.4 Downloading a TinyDistro image to a Layerscape board using flex-installer

Perform the following steps to download the TinyDistro image to a Layerscape board using flex-installer:

1. Connect the removable storage device to the Linux host machine.
2. Install flex-installer to deploy TinyDistro images (this is a one-time activity):

$ git clone https://github.com/nxp-imx/meta-nxp-desktop.git -b
 lf-6.1.55_2.2.0-mickledore
$ cp meta-nxp-desktop/scripts/flex-installer_1.14.2110.lf /usr/bin/flex-
installer
$ sudo chmod a+x /usr/bin/flex-installer
$ which flex-installer

3. Execute the following flex-installer command to install TinyDistro image:

$ flex-installer -i pf -d <device>;
$ flex-installer -f <firmware_xxx.img> -d <device>

4. Unplug removable storage device from the Linux host and plug into the reference board.
Ensure that the DIP switch settings on the board are correct to boot from the desired boot medium.

5. Power on the board and enter into U-Boot to allocate the Ethernet interface:

=> pri bootcmd
bootcmd=env exists mcinitcmd && mmcinfo; mmc read 0x80001000 0x6800 0x800;
 env exists mcinitcmd && env exists secureboot && mmc read
0x806C0000 0x3600 0x20 && esbc_validate 0x806C0000;env exists mcinitcmd &&
 fsl_mc lazyapply dpl 0x80001000;run distro_bootcmd;run sd_bootcmd;env
exists secureboot && esbc_halt;
=> mmc read 0x80001000 0x6800 0x800

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
23 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

=> fsl_mc lazyapply dpl 0x80001000

6. Run one of the following commands as applicable:
• => run sd_bootcmd (for SD/eMMC boot)

• => run nor_bootcmd (for IFC-NOR boot)

• => run qspi_bootcmd (for QSPI-NOR boot)

• => run xspi_bootcmd (for FlexSPI-NOR boot)

7. Log in to TinyDistro as root/root and bring up a network interface:

$ ifgonfig -a
Dynamic IP address assignment:
$ udhcpc -i <port_name_in_TinyDistro>
Static IP address assignment:
$ ifconfig <port_name_in_TinyDistro> <IP_address> netmask <netmask_address>
 up

8. Download the board image:

$ wget <httpserver>/flex-installer.sh && chmod a+x flex-installer.sh && sudo
 mv flex-installer.sh /usr/bin/flex-installer
$ wget <httpserver>/<firmware_xxx.img>
$ wget <httpserver>/<ls-image-main-xxx.tar.gz>

9. Execute the following flex-installer command to install the Layerscape image:

$ fdisk -l
$ flex-installer -i pf -d <device>;
$ flex-installer -f <firmware_xxx.img> -b <boot_xxx.tgz> -r <ls-image-
mainxxx.tar.gz> -d <device>

10. Reboot in the TinyDistro system:

$ reboot

3.7.2 Quick start guide for LS1012ARDB

This section explains:

• Introduction
• LS1012ARDB reference information
• Program Layerscape LDP composite firmware image

3.7.2.1 Introduction

The following sections describe the procedure to program Layerscape LDP composite firmware for
LS1012ARDB. Also, this section explains the most common use case procedure to download and deploy
Layerscape LDP default images to LS1012ARDB using flex-installer. For more information, see Section 3.2.

For more information on the different components of the board, and on how to configure and boot the board,
see LS1012A Reference Design Board Getting Started Guide.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
24 / 1061

https://www.nxp.com/products/processors-and-microcontrollers/arm-based-processors-and-mcus/qoriq-layerscape-arm-processors/qoriq-ls1012a-reference-design-board:LS1012A-RDB?tab=Documentation_Tab

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

3.7.2.2 LS1012ARDB reference information

This section provides general information about LS1012ARDB which may come in handy as a reference while
completing steps for deploying Layerscape LDP that follow.

3.7.2.2.1 Ethernet port map

The below table shows how the Ethernet ports map to Linux U-Boot, and labels on the 1U box.

Label on 1U box Port name in U-Boot Port name in Linux based
userland

Comments

ETH_1 pfe_eth0 eth0 1G SGMII

ETH_2 pfe_eth1 eth1 1G RGMII

The following figures show the LS1012ARDB chassis front and rear views:

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
25 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

3.7.2.2.2 System memory map

Start physical address End physical address Memory type Size

0x00_0000_0000 0x00_000F_FFFF Secure Boot ROM 1 MB

0x00_0100_0000 0x00_0FFF_FFFF CCSR 240 MB

0x00_1000_0000 0x00_1000_FFFF OCRAM1 64 KB

0x00_1001_0000 0x00_1001_FFFF OCRAM2 64 KB

0x00_4000_0000 0x00_5FFF_FFFF QSPI 512 MB

0x00_8000_0000 0x00_FFFF_FFFF DRAM 2 GB

0x08_8000_0000 0x0F_FFFF_FFFF DRAM2 30G

0x40_0000_0000 0x47_FFFF_FFFF PCI Express1 32G

3.7.2.2.3 Supported boot options

The supported boot option for LS1012ARDB is QSPI NOR flash.

3.7.2.2.4 Onboard switch options

The RDB has user-selectable switches for evaluating different boot options for the LS1012A device as given in
the tables below ('0' is OFF, '1' is ON).

1 2 3 4 5 6 7 8

SW1 1 0 1 0 0 1 1 0

SW2 0 0 0 0 0 0 0 0

Table 8. Booting from QSPI NOR flash bank1

1 2 3 4 5 6 7 8

SW1 1 0 1 0 0 1 1 0

SW2 0 0 0 0 0 0 1 0

Table 9. Booting from QSPI NOR flash bank2

3.7.2.2.5 Flash bank usage

The LS1012ARDB supports onboard Spansion S25FS512SAGMFI011 quad-SPI serial flash memory with 64
MB space. There are two virtual banks on the RDB that can be selected through DIP switch settings (see Table
1 and Table 2 above).

To protect the default U-Boot in QSPI NOR flash bank1, it is a convention employed by NXP to deploy work
images into QSPI NOR flash bank2, and then switch to QSPI NOR flash bank2 for testing. Switching to flash2
can be done in software using I2C commands and effectively swaps QSPI NOR flash bank1 with QSPI NOR
flash bank2. This protects QSPI NOR flash bank1 and keeps the board bootable under all circumstances.

U-Boot 2020.04-21450-gbde1a7f (Sep 18 2020 - 21:58:27 +0800)
SoC: LS1012AE Rev2.0 (0x87040020)
Clock Configuration:
 CPU0(A53):1000 MHz
 Bus: 250 MHz DDR: 1000 MT/s
Reset Configuration Word (RCW):
 00000000: 0800000a 00000000 00000000 00000000

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
26 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

 00000010: 35080000 c000000c 40000000 00001800
 00000020: 00000000 00000000 00000000 00014571
 00000030: 00000000 18c2a120 00000096 00000000
DRAM: 958 MiB
Using SERDES1 Protocol: 13576 (0x3508)
MMC: FSL_SDHC: 0, FSL_SDHC: 1
Loading Environment from SPI Flash... SF: Detected s25fs512s with page size 256
 Bytes, erase size 256 KiB, total 64 MiB
OK
In: serial
Out: serial
Err: serial
Model: LS1012A RDB Board
Board: LS1012ARDB Version: RevE, boot from QSPI: bank2
Net: SF: Detected s25fs512s with page size 256 Bytes, erase size 256 KiB,
 total 64 MiB
PFE class pe firmware for Linux
PFE tmu pe firmware for Linux
PFE class pe firmware for u-boot
PFE tmu pe firmware for u-boot
eth0: pfe_eth0, eth1: pfe_eth1
=>

How to boot from QSPI NOR flash bank2

Note:

To override the onboard DIP switch settings, use the I2C IO-expander.

1. To check which bank is booted, refer to the U-Boot log. The booted bank information, such as QSPI:
bank1 or QSPI: bank2 is printed in the log.
For example, Board: LS1012ARDB Version: unknown, boot from QSPI: bank1

2. Tto switch from QSPI NOR flash bank1 to QSPI NOR flash bank2, use the i2C command i2c mw 0x24
0x7 0xfc; i2c mw 0x24 0x3 0xf5.

3. Program the QSPI flash as per the flash layout.
4. To boot from QSPI NOR flash bank2, use the reset command.
5. To move back to QSPI NOR flash bank1 from QSPI NOR flash bank2, power on or power off the board or

use the i2c mw 0x24 0x3 0xf4 command and then enter the reset command.

3.7.2.3 Program Layerscape LDP composite firmware image

To program Layerscape LDP composite firmware image in QSPI NOR flash on LS1012ARDB:

1. Copy firmware on host machine to TFTP server:

cp <build>/tmp/deploy/image/ls1012ardb/firmware_ls1012ardb_qspiboot.img ~/
tftp/

2. Reset the board to boot from QSPI NOR flash 1. Check U-Boot log for the message:

Board: LS1012ARDB Version: unknown, boot from QSPI: bank1

3. Switch from QSPI NOR flash 1 to flash 2:

=> i2c mw 0x24 0x7 0xfc

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
27 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

=> i2c mw 0x24 0x3 0xf5

4. Under U-Boot, download the firmware to the reference board using one of the following options:
• Load firmware from the TFTP server

=> tftp $load_addr firmware_ls1012ardb_qspiboot.img

• Load firmware image from partition on mass storage device, such as SD, USB, or SATA:

=> load mmc <device:part> $load_addr firmware_ls1012ardb_qspiboot.img

For example, use the following load command based on the mass storage device selection:

=> load mmc 0:2 $load_addr firmware_ls1012ardb_qspiboot.img

Or

=> load usb <device:partition> $load_addr firmware_ls1012ardb_qspiboot.img

Or

=> load scsi <device:partition> $load_addr firmware_ls1012ardb_qspiboot.img

Note:
– Use the following command if the SD card is formatted/created:

– Use the following command if the SD card is formatted/created using Layerscape LDP flex-installer
command:

=> load <interface> [<dev[:part]> [<addr> [<filename> [bytes [pos]]]]]

For example:

=> load mmc 0:2 $load_addr firmware_ls1012ardb_qspiboot.img

– Use the following command if the SD card is formatted/created on a Windows PC:

=> fatload <interface> [<dev[:part]> [<addr> [<filename> [bytes
 [pos]]]]]

For example:

=> fatload mmc 0:2 $load_addr firmware_ls1012ardb_qspiboot.img

– Use the following command if the SD card is formatted/created on a Linux PC:

=> ext2load <interface> [<dev[:part]> [<addr> [<filename> [bytes
 [pos]]]]]

For example:

=> ext2load mmc 0:2 $load_addr firmware_ls1012ardb_qspiboot.img

– The Layerscape LDP flex-installer command puts the images on the second partition, so 0:2 is used
in the load command. If the SD card is formatted on Windows PC or Linux PC for single partition only,
then 0 should be used instead of 0:2 in the fatload/ext2load command.

5. Program the firmware to QSPI NOR flash 2:

=> sf probe 0:0
=> sf erase 0 +$filesize && sf write $load_addr 0 $filesize

6. Reset and boot the board from QSPI NOR flash 2:

=> reset

The system will automatically boot up TinyDistro (log in using root/root) or Layerscape LDP distro (log in
using user/user) available on the removable storage device.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
28 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

3.7.3 Quick start guide for TWR-LS1021A

This section explains:

• Introduction
• TWR-LS1021A reference information
• Program Layerscape LDP composite firmware image

3.7.3.1 Introduction

The following sections describe the procedure to program Layerscape LDP composite firmware for TWR-
LS1021A.

Also, this section explains the most common usecase procedure to download and deploy Layerscape LDP
default images to to TWR-LS1021A using flex-installer.

For more information, see Section 3.2.

For more information on the different components of the board, and on how to configure and boot the board,
see TWR-LS1021A Reference Design Board Getting Started Guide.

3.7.3.2 TWR-LS1021A reference information

This section provides general information about TWR-LS1021A which may come in handy as a reference while
completing steps for deploying Layerscape LDP that follow.

3.7.3.2.1 Port map

The table below shows the mapping between U-Boot port name and Linux TinyDistro port name.

Port name in U-Boot Port name in TinyDistro

eTSEC1 eth0

eTSEC2 eth1

eTSEC3 eth2

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
29 / 1061

https://www.nxp.com/products/processors-and-microcontrollers/arm-based-processors-and-mcus/qoriq-layerscape-arm-processors/qoriq-ls1021a-tower-system-module:TWR-LS1021A?tab=Documentation_Tab

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

3.7.3.2.2 System memory map

Start Physical Address End Physical Address Memory Type Size

0x0100_0000 0x0FFF_FFFF
CCSR 240 MB

0x1000_0000 0x1000_FFFF
OCRAM0 64 KB

0x1001_0000 0x1001_FFFF
OCRAM1 64 KB

0x2000_0000 0x20FF_FFFF
DCSR 16 MB

0x4000_0000 0x5FFF_FFFF
QSPI 512 MB

0x6000_0000 0x67FF_FFFF
NOR Flash 128 MB

0x7FB0_0000 0x7FB0_0FFF
Board CPLD 4 KB

0x8000_0000 0xFFFF_FFFF
DDR 2 GB

3.7.3.2.3 Supported boot options

TWR-LS1021A supports the following boot options:

• NOR
• SD

3.7.3.2.4 Onboard switch options

The RDB has user selectable switches for evaluating different boot options for the TWR-LS1021A device as
given in the table below ('0' is OFF, '1' is ON).

Boot source SW2[1:8] SW3[1:8]

NOR bank 0 (default) 10001111 01100101

NOR bank 1 10001111 01101101

SD card 00101111 01100101

Note that changing the boot device configuration from the default setting may require additional changes in
the RCW or in other code images. For information on RCW naming convention for TWR-LS1021A, see https://
github.com/nxp-qoriq/rcw/blob/master/ls1021atwr/README.

3.7.3.2.5 Flash Bank usage

TWR-LS1021A provides a special feature that allows a single NOR flash to be divided into multiple parts
called “banks”. This is done by board-level logic that modifies address signals. As there is only one NOR flash
physically, the banks are sometimes called "virtual" banks. The benefit of this feature is that it allows more than
one set of images to be independently deployed to one NOR flash. This is very helpful during development
because the U-Boot image in one bank can be used to program an image set into a different bank. If the new

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
30 / 1061

https://github.com/nxp-qoriq/rcw/blob/master/ls1021atwr/README
https://github.com/nxp-qoriq/rcw/blob/master/ls1021atwr/README

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

images are flawed, the old images are still functional. The NOR flash on TWR-LS1021A is divided into two
banks. The banks are called bank 0 and bank 1. To determine the current bank, refer to the example U-Boot log
given below:

U-Boot 2020.04-gbde1a7f952 (Sep 27 2020 - 17:36:54 +0800)
CPU: Freescale LayerScape LS1021E, Version: 2.0, (0x87081120)
Clock Configuration:
 CPU0(ARMV7):1200 MHz,
 Bus:300 MHz, DDR:800 MHz (1600 MT/s data rate),
Reset Configuration Word (RCW):
 00000000: 0608000c 00000000 00000000 00000000
 00000010: 30000000 00007900 e0025a00 21046000
 00000020: 00000000 00000000 00000000 18000000
 00000030: 00080000 481b7340 00000000 00000000
Model: LS1021A TWR Board
Board: LS1021ATWR
CPLD: V3.2
PCBA: V2.0
VBank: 1
DRAM: 1 GiB
Using SERDES1 Protocol: 48 (0x30)
Firmware 'Microcode version 0.0.1 for LS1021a r1.0' for 1021 V1.0
QE: uploading microcode 'Microcode for LS1021a r1.0' version 0.0.1
Flash: 128 MiB
MMC: FSL_SDHC: 0
Loading Environment from Flash... OK
EEPROM: NXID v16777216
In: serial
Out: serial
Err: serial
SEC0: RNG instantiated
Net: eth0: ethernet@2d10000, eth1: ethernet@2d50000, eth2: ethernet@2d90000
=>

3.7.3.2.6 Boot option switching

Boot option switching can be performed in U-Boot using the following commands:

• To switch to NOR bank 0 (default):

=>boot_bank 0

• To switch to NOR bank 1:

=>boot_bank 1

3.7.3.3 Program Layerscape LDP composite firmware image

This section provides the steps to program the NOR firmware image to the IFC NOR flash on the TWR-
LS1021A and SD firmware image to SD card on TWR-LS1021A.

3.7.3.3.1 Program Layerscape LDP composite NOR firmware image

To program the Layerscape LDP composite NOR firmware image to IFC NOR flash on TWR-LS1021A, perform
the following steps:

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
31 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

1. Copy firmware on host machine to TFTP server:

$ cp <build>/tmp/deploy/image/ls1021atwr/firmware_ls1021atwr_norboot.img ~/
tftp/

2. Reboot the board from NOR bank 0 and stop autoboot to enter U-Boot prompt.
3. Under U-Boot, download the firmware to the reference board using one of the following options:

• Load firmware from the TFTP server:

=> tftp $load_addr firmware_ls1021atwr_norboot.img

• Load the firmware image from partition on the mass storage device, such as SD, USB, or SATA:

=> load mmc <device:part> $load_addr firmware_ls1021atwr_norboot.img

For example, use any of the following command based on your mass storage device selection, such as
SD, USB, or SATA:

=> load mmc 0:2 $load_addr firmware_ls1021atwr_norboot.img

or

=> load usb <device:part> $load_addr firmware_ls1021atwr_norboot.img

or

=> load scsi <device:part> $load_addr firmware_ls1021atwr_norboot.img

Note:
– Use the following commands if the SD card is formatted/created:

– Use the following command if the SD card is formatted/created using Layerscape LDP flex-installer
command:

=> load <interface> [<dev[:part]> [<addr> [<filename> [bytes [pos]]]]]

For example:

=> load mmc 0:2 $load_addr firmware_ls1021atwr_norboot.img

– Use the following command if the SD card is formatted/created on a Windows PC:

=> fatload <interface> [<dev[:part]> [<addr> [<filename> [bytes
 [pos]]]]]

For example:

=> fatload mmc 0:2 $load_addr firmware_ls1021atwr_norboot.img

– Use the following command if the SD card is formatted/created on a Linux PC:

=> ext2load <interface> [<dev[:part]> [<addr> [<filename> [bytes
 [pos]]]]]

For example:

=> ext2load mmc 0:2 $load_addr firmware_ls1021atwr_norboot.img

– The Layerscape LDP flex-installer command puts the images on the second partition, so 0:2 is used in
the load command.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
32 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

If the SD card is formatted on Windows PC or Linux PC for single partition only, then 0 should be used
instead of 0:2 in the fatload/ext2load command.

4. Program the composite firmware into the IFC NOR flash using the following steps:
• To program the alternate bank:

=> protect off 64000000 +$filesize && erase 64000000 +$filesize && cp.b
 $load_addr 64000000 $filesize

• To program the current bank:

=> protect off 60000000 +$filesize && erase 60000000 +$filesize && cp.b
 $load_addr 60000000 $filesize

5. Reset and boot the board from IFC NOR flash:
• To boot from NOR flash bank 1.

=> boot_bank 1

• To boot from NOR flash bank 0.

=> boot_bank 0

The system will automatically boot up TinyDistro (log in using root/root) or Layerscape LDP distro (log in
using user/user) available on the removable storage device.

3.7.3.3.2 Program Layerscape LDP composite SD firmware image

To program Layerscape LDP composite SD firmware image to SD card on TWR-LS1021A, perform the
following steps:

1. Copy firmware on host machine to TFTP server.

cp <build>/tmp/deploy/image/ls1021atwr/firmware_ls1021atwr_sdboot.img ~/tftp/

2. Reboot the board from NOR bank 0 and stop autoboot to enter U-Boot prompt.
3. Under U-Boot, download the firmware to the reference board using one of the following options:

• Load firmware from the TFTP server:

=> tftp $load_addr firmware_ls1021atwr_sdboot.img

• Load the firmware image from partition on the mass storage device, such as SD, USB, or SATA:

=> load mmc <device:part> $load_addr firmware_ls1021atwr_sdboot.img

For example:

=> load mmc 0:2 $load_addr firmware_ls1021atwr_sdboot.img

or

=> load usb <device:partition> $load_addr firmware_ls1021atwr_sdboot.img

or

=> load scsi <device:part> $load_addr firmware_ls1021atwr_sdboot.img

Note:
– – Use the following command if the SD card is formatted/created using Layerscape LDP flex-installer

command:

=> load <interface> [<dev[:part]> [<addr> [<filename> [bytes [pos]]]]]

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
33 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

For example:

=> load mmc 0:2 $load_addr firmware_ls1021atwr_sdboot.img

– Use the following command if the SD card is formatted/created on a Windows PC:

=> fatload <interface> [<dev[:part]> [<addr> [<filename> [bytes
 [pos]]]]]

For example:

=> fatload mmc 0:2 $load_addr firmware_ls1021atwr_sdboot.img

– Use the following command if the SD card is formatted/created on a Linux PC:

=> ext2load <interface> [<dev[:part]> [<addr> [<filename> [bytes
 [pos]]]]]

For example:

=> ext2load mmc 0:2 $load_addr firmware_ls1021atwr_sdboot.img

– The Layerscape LDP flex-installer command puts the images on the second partition, so 0:2 is used
in the load command. If the SD card is formatted on Windows PC or Linux PC for single partition only,
then 0 should be used instead of 0:2 in the fatload/ext2load command.

4. Write the firmware to SD card:

=> mmc dev 0; mmc write $load_addr 8 1f000

Ensure the DIP switch settings on the board are for SD card.
5. Reset and boot the board from SD card:

=> reset

The system will automatically boot up TinyDistro (log in using root/root) or Layerscape LDP distro (log in
using user/user) available on the removable storage device.

3.7.4 Quick start guide for LS1028ARDB

This section explains:

• Introduction
• LS1028ARDB reference information
• Program Layerscape LDP composite firmware image

3.7.4.1 Introduction

The following sections describe the procedure to program Layerscape LDP composite firmware for
LS1028ARDB. Also, this section explains the most common use case procedure to download and deploy
Layerscape LDP default images to LS1028ARDB using flex-installer. For more information, see Section 3.2.

For more information on the different components of the board, and on how to configure and boot the board,
see LS1028A Reference Design Board Getting Started Guide.

3.7.4.2 LS1028ARDB reference information

This section provides general information about LS1028ARDB which may come in handy as a reference while
completing steps for deploying Layerscape LDP images that are mentioned in sections that follow.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
34 / 1061

https://www.nxp.com/support/developer-resources/software-development-tools/qoriq-developer-resources/ls1028a-reference-design-board:LS1028ARDB?tab=Documentation_Tab

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

3.7.4.2.1 Ethernet port map

Port name in chassis Port name in U-Boot Port name in Yocto
based TinyDistro

Port name in Linux
based userland

Description

1G MAC1 enetc-0 eno0 eno0 ENETC PF 0
connected over SGMII
on SoC lane A

1G SWP0 swp0 swp0 swp0 Ethernet switch port 0
Switch front panel
ports are all connected
over QSGMII on SoC
lane B

1G SWP1 swp1 swp1 swp1 Ethernet switch port 1

1G SWP2 swp2 swp2 swp2 Ethernet switch port 2

1G SWP3 swp3 swp3 swp3 Ethernet switch port 3

3.7.4.2.2 System memory map

Start address End address Size Allocation Comment

0x0000_0000_0000 0x0000_000F_FFFF 1 MB CCSR - Boot ROM 64 KB

0x0000_0010_0000 0x0000_00FF_FFFF 15 MB Reserved

0x0000_0100_0000 0x0000_0FFF_FFFF 240 MB CCSR

0x0000_1000_0000 0x0000_10FF_FFFF 16 MB Reserved

0x0000_1100_0000 0x0000_11FF_FFFF 16 MB Reserved

0x0000_1200_0000 0x0000_13FF_FFFF 32 MB Reserved

0x0000_1400_0000 0x0000_17FF_FFFF 64 MB Reserved

0x0000_1800_0000 0x0000_181F_FFFF 2 MB OCRAM 128 KB

0x0000_1820_0000 0x0000_182F_FFFF 1 MB Reserved

0x0000_1830_0000 0x0000_18FF_FFFF 13 MB Reserved

0x0000_1900_0000 0x0000_19FF_FFFF 16 MB CoreSight STM 16 MB

0x0000_1A00_0000 0x0000_1BFF_FFFF 32 MB Reserved

0x0000_1C00_0000 0x0000_1CFF_FFFF 16 MB Reserved

0x0000_1D00_0000 0x0000_1FFF_FFFF 48 MB Reserved

0x0000_2000_0000 0x0000_2FFF_FFFF 256 MB FlexSPI Region #1 More FlexSPI space
below

0x0000_3000_0000 0x0000_3FFF_FFFF 256 MB Reserved

0x0000_4000_0000 0x0000_5FFF_FFFF 512 MB Reserved

0x0000_6000_0000 0x0000_7FFF_FFFF 512 MB Reserved

0x0000_8000_0000 0x0000_9FFF_FFFF 512 MB GPP DRAM Region
#1(0-2 GB)

0x0000_A000_0000 0x0000_BFFF_FFFF 512 MB

0x0000_C000_0000 0x0000_DFFF_FFFF 512 MB

Table 10. System memory map

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
35 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Start address End address Size Allocation Comment

0x0000_E000_0000 0x0000_FFFF_FFFF 512 MB

0x0001_0000_0000 0x0001_EFFF_FFFF 3.75 GB Reserved

0x0001_F000_0000 0x0001_F07F_FFFF 8 MB ECAM config space Embedded RC
+EPECAM (256 MB)

0x0001_F080_0000 0x0001_F09F_FFFF 2 MB Register block space

0x0001_F0A0_0000 0x0001_F7FF_FFFF 118 MB Reserved

0x0001_F800_0000 0x0001_F83F_FFFF 4 MB Reserved

0x0001_F840_0000 0x0001_FBFF_FFFF 60 MB Reserved

0x0001_FC00_0000 0x0001_FC3F_FFFF 4 MB Reserved

0x0001_FC40_0000 0x0001_FFFF_FFFF 60 MB Reserved

0x0002_0000_0000 0x0003_FFFF_FFFF 8 GB Reserved

0x0004_0000_0000 0x0004_0FFF_FFFF 256 MB SPI Hole

0x0004_1000_0000 0x0004_FFFF_FFFF 3.75 GB FlexSPI Region #2
(256 MB - 4 GB)

3.75 GB

0x0005_0000_0000 0x0005_FFFF_FFFF 4 GB Reserved

0x0006_0000_0000 0x0006_FFFF_FFFF 4 GB Reserved

0x0007_0000_0000 0x0007_3FFF_FFFF 1 GB DCSR

0x0007_4000_0000 0x0007_FFFF_FFFF 3 GB Reserved

0x0008_0000_0000 0x0008_1FFF_FFFF 512 MB Reserved

0x0008_2000_0000 0x000B_FFFF_FFFF 15.5 GB Reserved

0x000C_0000_0000 0x000F_FFFF_FFFF 16 GB Reserved

0x0010_0000_0000 0x001F_FFFF_FFFF 64 GB Reserved

0x0020_0000_0000 0x0020_7FFF_FFFF 2 GB Reserved

0x0020_8000_0000 0x003F_FFFF_FFFF 126 GB GPP DRAM Region #2

0x0040_0000_0000 0x005F_FFFF_FFFF 128 GB Reserved

0x0060_0000_0000 0x007F_FFFF_FFFF 128 GB GPP DRAM Region #3

0x0080_0000_0000 0x0087_FFFF_FFFF 32 GB PCI Express 1 High-speed I/O
(0x0080_0000_0000 -
0x00FF_FFFF_FFFF)

0x0088_0000_0000 0x008F_FFFF_FFFF 32 GB PCI Express 2

Table 10. System memory map...continued

3.7.4.2.3 Supported boot options

LS1028ARDB supports the following boot options:

• FlexSPI NOR flash (referred to as "FSPI" or "FSPI flash" in the following sections). CS refers to Chip Select.
• eMMC
• SD card (SDHC1)

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
36 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

3.7.4.2.4 Onboard switch options

The LS1028ARDB board supports user selectable switches for evaluating different boot options for the
LS1028A device as given in the table below ('0' is OFF, '1' is ON).

Boot source SW2[1:8] SW3[1:8] SW5[1:8]

FSPI NOR (default) 1111_1000 1111_0000 0011_1001

SD Card (SDHC1) 1000_1000 1111_0000 0011_1001

eMMC 1001_1000 1111_0000 0011_1001

In addition to the above switch settings, make sure the following jumper settings are correct.

Jumper Type Name/function Description

J6 1x2-pin connector TA_BB_EN enable Open: TA_BB_TMP_DETECT_B pin is High
(default value)
Shorted: TA_BB_TMP_DETECT_B pin is Low

J7 1x2-pin connector VBAT_EN Open: Disable battery backup for TA_BB_VDD
(default value)
Shorted: Enable battery backup for TA_BB_
VDD

J27 1x2-pin connector PROG_MTR voltage control (for
NXP use only)

Open: PROG_MTR pin is powered off (default
value)
Shorted: PROG_MTR pin is powered by
OVDD (1.8 V)

J28 1x2-pin connector TA_PROG_SFP voltage control
(for NXP use only)

Open: TA_PROG_SFP pin is powered off
(default value)
Shorted: TA_PROG_SFP pin is powered by
OVDD (1.8 V)

Table 11. LS1028ARDB jumper settings

3.7.4.2.5 FlexSPI NOR Flash Chip-select

FlexSPI NOR flash is a simple and convenient destination for deploying images so it is frequently used.

The benefit of this feature is that it allows more than one set of images to be independently deployed to the
one NOR flash. This is very helpful during development because you can use the U-Boot image in one chip-
select to program an image set into a different chip-select. If the new images are flawed, the old images are still
functional to let you deploy corrected images.

The logic on the board usually allows the NOR flash to be accessed from different CS (chip select) option.
Each CS is connected to dedicated flash devices. U-Boot prints which CS is loaded from. The output looks like
following.

=> NOTICE: Fixed DDR on board
NOTICE: 4 GB DDR4, 32-bit, CL=11, ECC on
NOTICE: BL2: v1.5(release):LSDK-20.12-Internal
NOTICE: BL2: Built : 07:04:31, Nov 14 2020
NOTICE: BL2: Booting BL31
NOTICE: BL31: v1.5(release):LSDK-20.12-Internal
NOTICE: BL31: Built : 07:04:34, Nov 14 2020
NOTICE: Welcome to LS1028 BL31 Phase
U-Boot 2020.04-gc7ec91b1f4 (Nov 14 2020 - 07:04:19 +0800)
SoC: LS1028AE Rev1.0 (0x870b0010)

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
37 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Clock Configuration:
 CPU0(A72):1500 MHz CPU1(A72):1500 MHz
 Bus: 400 MHz DDR: 1600 MT/s
Reset Configuration Word (RCW):
 00000000: 3c004010 00000030 00000000 00000000
 00000010: 00000000 018f0000 0030c000 00000000
 00000020: 020031a0 00002580 00000000 00003296
 00000030: 00000000 00000010 00000000 00000000
 00000040: 00000000 00000000 00000000 00000000
 00000050: 00000000 00000000 00000000 00000000
 00000060: 00000000 00000000 200e705a 00000000
 00000070: bb580000 00000000
Model: NXP Layerscape 1028a RDB Board
Board: LS1028AE Rev1.0-RDB, Version: C, boot from NOR
FPGA: v5 (RDB)
SERDES1 Reference : Clock1 = 100.00MHz Clock2 = 100.00MHz
DRAM: 3.9 GiB
DDR 3.9 GiB (DDR4, 32-bit, CL=11, ECC on)
Using SERDES1 Protocol: 47960 (0xbb58)
PCIe1: pcie@3400000 Root Complex: no link
PCIe2: pcie@3500000 Root Complex: no link
WDT: Started with servicing (60s timeout)
MMC: FSL_SDHC: 0, FSL_SDHC: 1
Loading Environment from SPI Flash... SF: Detected mt35xu02g with page size 256
 Bytes, erase size 128 KiB, total 256 MiB
OK
EEPROM: NXID v1
In: serial
Out: serial
Err: serial
Net: eth0: enetc-0, eth2: enetc-2, eth4: swp0, eth5: swp1, eth6: swp2, eth7:
 swp3
=>

Boot option switching can be performed in U-Boot using the following statements.

• Switch to FlexSPI NOR flash (default):

=>qixis_reset

• Switch to SD:

=>qixis_reset sd

• Switch to eMMC:

=>qixis_reset emmc

3.7.4.3 Program Layerscape LDP composite firmware image

This section explains the steps to program the FlexSPI NOR firmware image to FlexSPI NOR flash on the
LS1028ARDB and SD/eMMC firmware image to SD/eMMC card on LS1028ARDB.

3.7.4.3.1 Program Layerscape LDP composite firmware image to FlexSPI NOR flash

To program Layerscape LDP composite firmware image to FlexSPI NOR flash on LS1028ARDB:

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
38 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

1. Copy firmware on host machine to TFTP server:

$ cp <build>/tmp/deploy/image/ls1028ardb/firmware_ls1028ardb_xspiboot.img ~/
tftp/

2. Reboot the board from FlexSPI NOR flash and stop autoboot to enter U-Boot prompt.
3. Under U-Boot, download the firmware to the reference board using one of the following options:

• Load firmware from the TFTP server

=> tftp $load_addr firmware_ls1028ardb_xspiboot.img

• Load firmware image from partition on mass storage device (SD, USB, or SATA)

=> load mmc <device:part> $load_addr firmware_ls1028ardb_xspiboot.img

For example:

=> load mmc 0:2 $load_addr firmware_ls1028ardb_xspiboot.img

Or

=> load usb <device:part> $load_addr firmware_ls1028ardb_xspiboot.img

Or

=> load scsi <device:part> $load_addr firmware_ls1028ardb_xspiboot.img

Note:
– Use the following command if the SD card is formatted/created:

– Use the following command if the SD card is formatted/created using Layerscape LDP flex-installer
command:

=> load <interface> [<dev[:part]> [<addr> [<filename> [bytes [pos]]]]]

For example:

=> load mmc 0:2 $load_addr firmware_ls1028ardb_xspiboot.img

– Use the following command if the SD card is formatted/created on a Windows PC:

=> fatload <interface> [<dev[:part]> [<addr> [<filename> [bytes
 [pos]]]]]

For example:

=> fatload mmc 0:2 $load_addr firmware_ls1028ardb_xspiboot.img

– Use the following command if the SD card is formatted/created on a Linux PC:

=> ext2load <interface> [<dev[:part]> [<addr> [<filename> [bytes
 [pos]]]]]

For example:

=> ext2load mmc 0:2 $load_addr firmware_ls1028ardb_xspiboot.img

– The Layerscape LDP flex-installer command puts the images on the second partition, so 0:2 is used
in the load command. If the SD card is formatted on Windows PC or Linux PC for single partition only,
then 0 should be used instead of 0:2 in the fatload/ext2load command.

4. Program the firmware to FlexSPI NOR flash:

=> sf probe 0:0
=> sf erase 0 +$filesize && sf write $load_addr 0 $filesize

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
39 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

5. Reset and boot the board from FlexSPI NOR flash:

=> qixis_reset

The system will automatically boot up TinyDistro (log in using root/root) or Layerscape LDP distro (log in
using user/user) available on the removable storage device.

3.7.4.3.2 Program Layerscape LDP composite firmware image to SD/eMMC

To program Layerscape LDP composite firmware image to SD/eMMC on LS1028ARDB:

1. Copy firmware on host machine to TFTP server.
• For SD boot:

$ cp <build>/tmp/deploy/image/ls1028ardb/firmware_ls1028ardb_sdboot.img ~/
tftp/

• For eMMC boot:

cp <build>/tmp/deploy/image/ls1028ardb/firmware_ls1028ardb_emmcboot.img ~/
tftp/

2. Reboot the board from FlexSPI NOR flash and stop autoboot to enter U-Boot prompt.
3. Under U-Boot, download the firmware to the reference board using one of the following options:

• Load firmware from the TFTP server
For SD boot:

=> tftp $load_addr firmware_ls1028ardb_sdboot.img

For eMMC boot:

=> tftp $load_addr firmware_ls1028ardb_emmcboot.img

• Load firmware image from partition on mass storage device (SD, USB, or SATA)
For SD boot:
=> load mmc <device:part> $load_addr firmware_ls1028ardb_sdboot.img

For example:

=> load mmc 0:2 $load_addr firmware_ls1028ardb_sdboot.img

or

=> load usb <device:part> $load_addr firmware_ls1028ardb_sdboot.img

or

=> load scsi <device:partition> $load_addr firmware_ls1028ardb_sdboot.img

For eMMC boot:
=> load mmc <device:part> $load_addr firmware_ls1028ardb_emmcboot.img

For example:

=> load mmc 0:2 $load_addr firmware_ls1028ardb_emmcboot.img

or

=> load usb <device:part> $load_addr firmware_ls1028ardb_emmcboot.img

or

=> load scsi <device:part> $load_addr firmware_ls1028ardb_emmcboot.img

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
40 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Note:
– Use the following command if the SD card is formatted/created

– Use the following command if the SD card is formatted/created using Layerscape LDP flex-installer
command:

=> load <interface> [<dev[:part]> [<addr> [<filename> [bytes [pos]]]]]

For example:

=> load mmc 0:2 $load_addr firmware_ls1028ardb_emmcboot.img

– Use the following command if the SD card is formatted/created on a Windows PC:

=> fatload <interface> [<dev[:part]> [<addr> [<filename> [bytes
 [pos]]]]]

For example:

=> fatload mmc 0:2 $load_addr firmware_ls1028ardb_emmcboot.img

– Use the following command if the SD card is formatted/created on a Linux PC:

=> ext2load <interface> [<dev[:part]> [<addr> [<filename> [bytes
 [pos]]]]]

For example:

=> ext2load mmc 0:2 $load_addr firmware_ls1028ardb_emmcboot.img

– The Layerscape LDP flex-installer command puts the images on the second partition, so 0:2 is used
in the load command. If the SD card is formatted on Windows PC or Linux PC for single partition only,
then 0 should be used instead of 0:2 in the fatload/ext2load command.

4. Program the firmware to SD card:

=> mmc dev 0;mmc write $load_addr 8 1fff8

5. Program the firmware to eMMC card:

=> mmc dev 1;mmc write $load_addr 8 1fff8

6. Reset and boot the board from SD/eMMC card.
The system will automatically boot up TinyDistro (log in using root/root) or Layerscape LDP distro (log in
using user/user) available on the removable storage device.
• For SD boot:

=> qixis_reset sd

• For eMMC boot:

=> qixis_reset emmc

3.7.5 Quick start guide for LS1043ARDB

This section explains:

• Introduction
• LS1043ARDB reference information
• LS1043ARDB recovery information
• Program Layerscape LDP composite firmware image
• Frame Manager Configuration (FMC) tool

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
41 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

3.7.5.1 Introduction

The following sections describe the procedure to program Layerscape LDP composite firmware for
LS1043ARDB. Also, this section explains the most common use case procedure to download and deploy
Layerscape LDP default images to LS1043ARDB using flex-installer. For more information, see Section 3.2.

For more information on the different components of the board, and on how to configure and boot the board,
see LS1043A Reference Design Board Getting Started Guide.

For a list of brief how-tos to help you modify/update individual Layerscape LDP components such as, TF-A
binaries, Linux kernel, DPAA1 FMan microcode on LS1043ARDB when booting the board from a specific boot
source, such as NOR, NAND, or SD, see NXP community.

3.7.5.2 LS1043ARDB reference information

This section provides general information about LS1043ARDB which may come in handy as a reference while
completing steps for deploying Layerscape LDP that follow.

3.7.5.2.1 Port map

The port name in Linux TinyDistro corresponding to each of the six ports on the reference board chassis is
given in the table below.

Port name on chassis Port name in U-Boot Port name in Tinydistro Port name in Linux

QSGMII.P0 FM1@DTSEC1 eth0 fm1-mac1

QSGMII.P1 FM1@DTSEC2 eth1 fm1-mac2

RGMII1 FM1@DTSEC3 eth2 fm1-mac3

RGMII2 FM1@DTSEC4 eth3 fm1-mac4

QSGMII.P2 FM1@DTSEC5 eth4 fm1-mac5

QSGMII.P3 FM1@DTSEC6 eth5 fm1-mac6

10G Copper FM1@TGEC1 eth6 fm1-mac9

3.7.5.2.2 System memory map

Start Physical Address End Physical Address Memory Type Size

0x00_0000_0000 0x00_000F_FFFF Secure Boot ROM 1 MB

0x00_0100_0000 0x00_0FFF_FFFF CCSRBAR 240 MB

0x00_1000_0000 0x00_1000_FFFF OCRAM0 64 KB

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
42 / 1061

https://www.nxp.com/support/developer-resources/software-development-tools/qoriq-developer-resources/qoriq-ls1043a-reference-design-board:LS1043A-RDB?tab=Documentation_Tab
https://community.nxp.com/docs/DOC-341706

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Start Physical Address End Physical Address Memory Type Size

0x00_1001_0000 0x00_1001_FFFF OCRAM1 64 KB

0x00_2000_0000 0x00_20FF_FFFF DCSR 16 MB

0x00_6000_0000 0x00_67FF_FFFF IFC - NOR Flash 128 MB

0x00_7E80_0000 0x00_7E80_FFFF IFC - NAND Flash 64 KB

0x00_7FB0_0000 0x00_7FB0_0FFF IFC - FPGA 4 KB

0x00_8000_0000 0x00_FFFF_FFFF DRAM1 2 GB

3.7.5.2.3 Supported boot options

LS1043ARDB supports the following boot options:

• NOR
• NAND
• SD

3.7.5.2.4 Onboard switch options

The RDB has user selectable switches for evaluating different boot options for the LS1043A device as given in
the table below ('0' is OFF, '1' is ON).

Boot source SW3[1:8] SW4[1:8] SW5[1:8]

NOR bank 0 (default) 10110011 00010010 10100010

NOR bank 4 10110011 00010010 10100110

SD card 10110011 00100000 00100010

NAND 10110011 10000010 10100110

3.7.5.2.5 NOR Flash (Virtual) Banks

LS1043ARDB provides a special feature that allows a single NOR flash to be divided into multiple parts
called “banks”. This is done by board-level logic that modifies address signals. As there is only one NOR flash
physically, the banks are sometimes called "virtual" banks. The benefit of this feature is that it allows more than
one set of images to be independently deployed to one NOR flash. This is very helpful during development
because the U-Boot image in one bank can be used to program an image set into a different bank. If the new
images are flawed, the old images are still functional. The logic on the board usually allows the NOR flash to be
divided into up to 8 banks, but the NOR flash on LS1043ARDB is divided into two halves. The halves are called
bank 0 and bank 4. Bank switching can be done in in software using cpld commands. To determine the current
bank, refer to the example U-Boot log given below:

U-Boot 2020.04-gc7ec91b1f4 (Nov 12 2020 - 06:46:07 +0800)
SoC: LS1043AE Rev1.1 (0x87920011)
Clock Configuration:
 CPU0(A53):1600 MHz
 CPU1(A53):1600 MHz
 CPU2(A53):1600 MHz
 CPU3(A53):1600 MHz
 Bus: 400 MHz DDR: 1600 MT/s FMAN: 500 MHz
Reset Configuration Word (RCW):
 00000000: 08100010 0a000000 00000000 00000000
 00000010: 14550002 80004012 e0025000 c1002000

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
43 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

 00000020: 00000000 00000000 00000000 00038800
 00000030: 00000000 00001101 00000096 00000001
Model: LS1043A RDB Board
Board: LS1043ARDB, boot from vBank 4
CPLD: V2.0
PCBA: V6.0
SERDES Reference Clocks:
SD1_CLK1 = 156.25MHZ, SD1_CLK2 = 100.00MHZ
DRAM: 1.9 GiB (DDR4, 32-bit, CL=11, ECC off)
Using SERDES1 Protocol: 5205 (0x1455)
SEC0: RNG instantiated
Firmware 'Microcode version 0.0.1 for LS1021a r1.0' for 1021 V1.0
QE: uploading microcode 'Microcode for LS1021a r1.0' version 0.0.1
Flash: 128 MiB
NAND: 512 MiB
MMC: FSL_SDHC: 0
Loading Environment from Flash... OK
EEPROM: NXID v1
In: serial
Out: serial
Err: serial
Net: Fman1: Uploading microcode version 106.4.18
PCIe1: pcie@3400000 disabled
PCIe2: pcie@3500000 Root Complex: no link
PCIe3: pcie@3600000 Root Complex: x1 gen1
e1000: 00:15:17:5c:63:d5
 FM1@DTSEC1, FM1@DTSEC2, FM1@DTSEC3, FM1@DTSEC4, FM1@DTSEC5, FM1@DTSEC6,
 FM1@TGEC1, e1000#0
[PRIME]
Warning: e1000#0 MAC addresses don't match:
Address in SROM is 00:15:17:5c:63:d5
Address in environment is 00:e0:0c:00:22:07
Warning: e1000#0 failed to set MAC address
=>
=>

3.7.5.2.6 Boot option switching

Boot switching can be performed in U-Boot using the following commands:

• Switch to NOR bank 0 (default):

=>cpld reset

• Switch to NOR bank 4:

=>cpld reset altbank

• Switch to NAND:

=>cpld reset nand

• Switch to SD:

=>cpld reset sd

3.7.5.3 LS1043ARDB recovery information

If LS1043ARDB board fails to boot from NOR bank 0, you can recover NOR bank 0 from NOR bank 4 by
following these steps:
UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
44 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

1. Run the command:

$ cp <build>/tmp/deploy/image/ls1043ardb/firmware_ls1043ardb_norboot.img ~/
tftp

2. Boot LS1043ARDB from NOR bank 4 with the following switch settings:
SW3 = 10110011, SW4 = 00010010, SW5 = 10100110

3. Program NOR bank 0 from NOR bank 4:

=> tftp $load_addr firmware_ls1043ardb_norboot.img => protect off 64000000 +
$filesize && erase 64000000 +$filesize && cp.b $load_addr 64000000 $filesize

4. Reset and boot the board from NOR bank 0:

=> cpld reset

Note: If LS1043ARDB fails to boot from both the NOR banks, you need to recover the board using
CodeWarrior for LS Series, Arm v8 ISA. For steps to recover the board using the CodeWarrior tool, see
section "8.6 Board Recovery" in ARM V8 ISA, Targeting Manual

3.7.5.4 Program Layerscape LDP composite firmware image

This topic explains steps to program NOR firmware image to IFC NOR flash on LS1043ARDB and SD firmware
image to SD card on LS1043ARDB.

To program Layerscape LDP composite NOR firmware image to IFC NOR flash on LS1043ARDB:

1. Copy firmware on host machine to TFTP server.

$ cp <build>/tmp/deploy/image/ls1043ardb/firmware_ls1043ardb_norboot.img ~/
tftp

2. Reboot the board from NOR flash bank 0 and stop autoboot to enter U-Boot prompt.
3. Under U-Boot, download the firmware to the reference board using one of the following options:

• Load firmware from the TFTP server

=> tftp $load_addr firmware_ls1043ardb_norboot.img

• Load firmware image from partition on mass storage device (SD, USB, or SATA)

=> load mmc <device:part> $load_addr firmware_ls1043ardb_norboot.img

For example:

=> load mmc 0:2 $load_addr firmware_ls1043ardb_norboot.img

or

=> load usb <device:part> $load_addr firmware_ls1043ardb_norboot.img

or

=> load scsi <device:partition> $load_addr firmware_ls1043ardb_norboot.img

Note:
Use the following command if the SD card is formatted/created using Layerscape LDP flex-installer
command:

=> load <interface> [<dev[:part]> [<addr> [<filename> [bytes [pos]]]]]

For example:

=> load mmc 0:2 $load_addr firmware_ls1043ardb_norboot.img

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
45 / 1061

https://www.nxp.com/docs/en/user-guide/CWARMv8TM.pdf

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Use the following command if the SD card is formatted/created on a Windows PC:

=> fatload <interface> [<dev[:part]> [<addr> [<filename> [bytes [pos]]]]]

For example:

=> fatload mmc 0:2 $load_addr firmware_ls1043ardb_norboot.img

Use the following command if the SD card is formatted/created on a Linux PC:

=> ext2load <interface> [<dev[:part]> [<addr> [<filename> [bytes [pos]]]]]

For example:

=> ext2load mmc 0:2 $load_addr firmware_ls1043ardb_norboot.img

Also note that Layerscape LDP flex-installer command puts the images on the second partition, so 0:2
is used in the load command. If the SD card is formatted on Windows PC or Linux PC for single partition
only, then 0 should be used instead of 0:2 in the fatload/ext2load command.

4. Program the composite firmware into IFC NOR flash.
• To program alternate bank:

=> protect off 64000000 +$filesize && erase 64000000 +$filesize && cp.b
 $load_addr 64000000 $filesize

• To program current bank:

=> protect off 60000000 +$filesize && erase 60000000 +$filesize && cp.b
 $load_addr 60000000 $filesize

5. Reset and boot the board from IFC NOR flash. The system will automatically boot up TinyDistro (log in
using root/root) or Layerscape LDP distro (log in using user/user) available on the removable storage
device.
• To boot from NOR flash bank 0.

=> cpld reset

• To boot from NOR flash bank 4.

=> cpld reset altbank

To program Layerscape LDP composite SD firmware image to SD card on LS1043ARDB:

1. Copy firmware on host machine to TFTP server.

$ cp <build>/tmp/deploy/image/ls1043ardb/firmware_ls1043ardb_sdboot.img ~/
tftp/

2. Reboot the board from NOR flash bank 0 and stop autoboot to enter U-Boot prompt.
3. Under U-Boot, download the firmware to the reference board using one of the following options:

• Load firmware from the TFTP server

=> tftp $load_addr firmware_ls1043ardb_sdboot.img

• Load firmware image from partition on mass storage device (SD, USB, or SATA)

=> load mmc <device:part> $load_addr firmware_ls1043ardb_sdboot.img

For example:

=> load mmc 0:2 $load_addr firmware_ls1043ardb_sdboot.img

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
46 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

or

=> load usb <device:partition> $load_addr firmware_ls1043ardb_sdboot.img

or

=> load scsi <device:part> $load_addr firmware_ls1043ardb_sdboot.img

Note:
Use the following command if the SD card is formatted/created using Layerscape LDP flex-installer
command:

=> load <interface> [<dev[:part]> [<addr> [<filename> [bytes [pos]]]]]

For example:

=> load mmc 0:2 $load_addr firmware_ls1043ardb_sdboot.img

Use the following command if the SD card is formatted/created on a Windows PC:

=> fatload <interface> [<dev[:part]> [<addr> [<filename> [bytes [pos]]]]]

For example:

=> fatload mmc 0:2 $load_addr firmware_ls1043ardb_sdboot.img

Use the following command if the SD card is formatted/created on a Linux PC:

=> ext2load <interface> [<dev[:part]> [<addr> [<filename> [bytes [pos]]]]]

For example:

=> ext2load mmc 0:2 $load_addr firmware_ls1043ardb_sdboot.img

Also note that Layerscape LDP flex-installer command puts the images on the second partition, so 0:2
is used in the load command. If the SD card is formatted on Windows PC or Linux PC for single partition
only, then 0 should be used instead of 0:2 in the fatload/ext2load command.

4. Write the firmware to SD card.

=> mmc dev 0; mmc write $load_addr 8 1f000

5. Reset and boot the board from SD card. The system will automatically boot up TinyDistro (log in using root/
root) or Layerscape LDP distro (log in using user/user) available on the removable storage device.

=> cpld reset sd

3.7.5.5 Frame Manager Configuration (FMC) tool

By default, FMan has been configured for Parse-Classify-Distribute (PCD). This means that without any further
action from the user, FMan enqueues received frames from a particular flow to the same receive queue. This
prevents Rx packet reorder issues and improves performance.

This default FMan configuration uses configuration and policy files that are provided in NXP Layerscape LDP to
perform PCD. These files are in xml format and are created with the objective of preserving packet ordering per
flow. For LS1043ARDB, these files are available at the following path:

/etc/fmc/config/private/ls1043ardb/RR_FQPP_1455

However, if a user wants to apply a configuration other than the one which is applied by default, the user needs
to run following command after the board boots to Linux.

1. Change directory to the parent directory of the user’s custom configuration and policy files

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
47 / 1061

https://source.codeaurora.org/external/qoriq/qoriq-components/eth-config/tree/private/ls1043ardb/RR_FQPP_1455?h=github.qoriq-os/integration

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

2. Run the FMC tool command:

$ fmc –c <config.xml> –p <policy.xml> –a

3.7.6 Quick start guide for FRWY-LS1046A

This section explains:

• Introduction
• FRWY-LS1046A reference information
• Program Layerscape LDP composite firmware image

3.7.6.1 Introduction

The following sections describe the procedure to program Layerscape LDP composite firmware for FRWY-
LS1046A. Also, this section explains the most common use case procedure to download and deploy
Layerscape LDP default images to FRWY-LS1046A using flex-installer. For more information, see Section 3.2.

For more information on the different components of the board, and on how to configure and boot the board,
see Layerscape FRWY-LS1046A Board Getting Started Guide.

3.7.6.2 FRWY-LS1046A reference information

This section provides general information about FRWY-LS1046A. The information may come in handy as a
reference while performing steps for deploying Layerscape LDP images that are mentioned in sections that
follow.

3.7.6.2.1 Ethernet port map

Port name
in chassis

Port name in U-Boot Port name in
Tinydistro

Port name in Linux Description

1G PORT1 FM1@DTSEC1 fm1-mac1 eth1 QSGMII copper
interface

1G PORT2 FM1@DTSEC5 fm1-mac5 eth2 QSGMII copper
interface

1G PORT3 FM1@DTSEC6 fm1-mac6 eth3 QSGMII copper
interface

1G PORT4 FM1@DTSEC10 fm1-mac10 eth4 QSGMII copper
interface

3.7.6.2.2 System memory map

Accessible with x-bit addressingStart address
(Hex)

Module name Size

32 36 40

00_0000_0000 Secure Boot ROM 1 MB Y Y Y

00_0010_0000 Extended Boot
ROM

15 MB Y Y Y

00_0100_0000 CCSR Register
Space

240 MB Y Y Y

Table 12. System memory map

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
48 / 1061

https://www.nxp.com/design/qoriq-developer-resources/ls1046a-freeway-board:FRWY-LS1046A#documentsandsoftware

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Accessible with x-bit addressingStart address
(Hex)

Module name Size

32 36 40

00_1000_0000 OCRAM1 64 KB Y Y Y

00_1001_0000 OCRAM2 64 KB Y Y Y

00_1004_0000 Reserved 65408 KB Y Y Y

00_1100_0000 Reserved 16 MB Y Y Y

00_1200_0000 STM 16 MB Y Y Y

00_1300_0000 Reserved 208 MB Y Y Y

00_2000_0000 DCSR 64 MB Y Y Y

00_2400_0000 Reserved 448 MB Y Y Y

00_4000_0000 QuadSPI 512 MB Y Y Y

00_6000_0000 IFC region 1(0 -
512 MB)

512 MB Y Y Y

00_8000_0000 DRAM1 (0 - 2 GB) 2 GB Y Y Y

01_0000_0000 Reserved 0.0625 GB N Y Y

01_0400_0000 Reserved 3.9375 GB N Y Y

02_0000_0000 Reserved 1 GB N Y Y

02_4000_0000 Reserved 7 GB N Y Y

04_0000_0000 Reserved 0.25 GB N Y Y

04_1000_0000 Reserved 0.25 GB N Y Y

04_2000_0000 Reserved 0.25 GB N Y Y

04_3000_0000 Reserved 1.25 GB N Y Y

04_8000_0000 Reserved 2 GB N Y Y

05_0000_0000 QMan S/W Portal 128 MB N Y Y

05_0800_0000 BMan S/W Portal 128 MB N Y Y

05_1000_0000 Reserved 4 GB - 256 MB N Y Y

06_0000_0000 Reserved 0.5 GB N Y Y

06_2000_0000 IFC region 2 (512
MB - 4 GB)

3.5 GB N Y Y

07_0000_0000 Reserved 4 GB N Y Y

08_0000_0000 Reserved 2 GB N Y Y

08_8000_0000 DRAM2 30 GB N Y Y

10_0000_0000 Reserved 64 GB N Y Y

20_0000_0000 Reserved 128 GB N N Y

40_0000_0000 PCI Express 1 32 GB N N Y

48_0000_0000 PCI Express 2 32 GB N N Y

50_0000_0000 PCI Express 3 32 GB N N Y

58_0000_0000 Reserved 160 GB N N Y

Table 12. System memory map...continued

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
49 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Accessible with x-bit addressingStart address
(Hex)

Module name Size

32 36 40

80_0000_0000 Reserved 32 GB N N Y

88_0000_0000 DRAM3 (32 - 512
GB)

480 GB N N Y

Table 12. System memory map...continued

3.7.6.2.3 Supported boot options

The FRWY-LS1046A board supports the following boot options:

• QSPI NOR flash (referred to as "QSPI" or "QSPI flash" in the following sections). CS refers to chip select.
• Micro-SD card (SDHC1)

3.7.6.2.4 Onboard switch options

The FRWY-LS1046A board has user selectable switches for evaluating different boot options for the LS1046A
device as given in the table below ('0' is OFF, '1' is ON).

Boot source SW1[1:10]

QSPI NOR (default) 0_0100_0100_0

Micro-SD card (SDHC1) 0_0100_0000_0

Note:

User can only switch between QSPI NOR to Micro-SD and vice versa using switch settings, there is no
command to switch between them.

In addition to the above switch settings, ensure that the following jumper settings are correct.

Part
identifier

Jumper type Description Jumper settings

J72 1x2 connector UART selection header • Open: UART1 port is accessed remotely
through a 1x4 header (J73)

• Shorted: A USB 2.0 micro AB connector
(J58) is connected to UART1 port through a
USB-to-UART bridge (default setting)

J8 1x2 connector VDD voltage selection header • Open: VDD = 0.9 V
• Shorted: VDD = 1 V (default setting)

J14 1x2 connector Reset mode selection header • Open: RESET_REQ_B pin of the processor
is disconnected

• Shorted: RESET_REQ_B pin triggers
system reset when asserted (default setting)

J11 1x2 connector PROG_MTR voltage control
header (NXP use only)

• Open: PROG_MTR pin of the processor is
powered off (default setting)

• Shorted: PROG_MTR pin is powered by
OVDD (1.8 V)

J9 1x2 connector TA_BB_VDD voltage control
header

• Open: TA_BB_VDD pin of the processor is
powered off

Table 13. FRWY-LS1046A jumper settings

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
50 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Part
identifier

Jumper type Description Jumper settings

• Shorted: TA_BB_VDD pin is powered by
VDD (1/0.9 V) (default setting)

Table 13. FRWY-LS1046A jumper settings...continued

3.7.6.2.5 QSPI NOR flash

QSPI NOR flash is a simple and convenient destination for deploying images; therefore, it is most common
medium for deploying images. When the board boots from QSPI, the U-Boot log looks as follows:

U-Boot 2020.04-gc7ec91b1f4 (Nov 17 2020 - 15:26:56 +0800)
SoC: LS1046AE Rev1.0 (0x87070010)
Clock Configuration:
 CPU0(A72):1600 MHz CPU1(A72):1600 MHz CPU2(A72):1600 MHz
 CPU3(A72):1600 MHz
 Bus: 600 MHz DDR: 2100 MT/s FMAN: 700 MHz
Reset Configuration Word (RCW):
 00000000: 0c150010 0e000000 00000000 00000000
 00000010: 30400506 00800012 40025000 c1000000
 00000020: 00000000 00000000 00000000 00038800
 00000030: 20044100 24003101 00000096 00000001
Model: LS1046A FRWY Board
Board: LS1046AFRWY, Rev: A, boot from QSPI
SD1_CLK1 = 100.00MHZ, SD1_CLK2 = 100.00MHZ
DRAM: 3.9 GiB (DDR4, 64-bit, CL=15, ECC on)
SEC0: RNG instantiated
Using SERDES1 Protocol: 12352 (0x3040)
Using SERDES2 Protocol: 1286 (0x506)
NAND: 512 MiB
MMC: FSL_SDHC: 0
Loading Environment from SPI Flash... SF: Detected mt25qu512a with page size 256
 Bytes, erase size 64 KiB, total 64 MiB
OK
EEPROM: NXID v1
In: serial
Out: serial
Err: serial
Net: SF: Detected mt25qu512a with page size 256 Bytes, erase size 64 KiB,
 total 64 MiB
Fman1: Uploading microcode version 106.4.18
PCIe1: pcie@3400000 disabled
PCIe2: pcie@3500000 Root Complex: no link
PCIe3: pcie@3600000 Root Complex: no link
FM1@DTSEC1, FM1@DTSEC5, FM1@DTSEC6, FM1@DTSEC10
=>

3.7.6.3 Program Layerscape LDP composite firmware image

This topic explains steps to program QSPI NOR firmware image to QSPI NOR flash on FRWY-LS1046A and
SD firmware image to SD card on FRWY-LS1046A.

To program Layerscape LDP composite firmware image to QSPI NOR flash on FRWY-LS1046A:

1. Copy firmware on host machine to tftp server.

$ cp <build>/tmp/deploy/image/ls1046frwy/firmware_ls11046afrwy_qspiboot.img
 ~/tftp/

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
51 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

2. Reboot the board from QSPI NOR flash and stop autoboot to enter U-Boot prompt.
3. Under U-Boot, download the firmware to the reference board using one of the following options:

• Load firmware from the TFTP server

=> tftp $load_addr firmware_ls1046afrwy_qspiboot.img

• Load firmware image from partition on mass storage device (SD or USB)

=> load mmc <device:part> $load_addr firmware_ls1046afrwy_qspiboot.img

For example:

=> load mmc 0:2 $load_addr firmware_ls1046afrwy_qspiboot.img

Or

=> load usb <device:part> $load_addr firmware_ls1046afrwy_qspiboot.img

Note:
Use the following command if the SD card is formatted/created using Layerscape LDP flex-installer
command:

=> load <interface> [<dev[:part]> [<addr> [<filename> [bytes [pos]]]]]

For example:

=> load mmc 0:2 $load_addr firmware_ls1046afrwy_qspiboot.img

Use the following command if the SD card is formatted/created on a Windows PC:

=> fatload <interface> [<dev[:part]> [<addr> [<filename> [bytes [pos]]]]]

For example:

=> fatload mmc 0:2 $load_addr firmware_ls1046afrwy_qspiboot.img

Use the following command if the SD card is formatted/created on a Linux PC:

=> ext2load <interface> [<dev[:part]> [<addr> [<filename> [bytes [pos]]]]]

For example:

=> ext2load mmc 0:2 $load_addr firmware_ls1046afrwy_qspiboot.img

Also note that Layerscape LDP flex-installer command puts the images on the second partition, so 0:2
is used in the load command. If the SD card is formatted on Windows PC or Linux PC for single partition
only, then 0 should be used instead of 0:2 in the fatload/ext2load command.

4. Program the firmware to QSPI NOR flash.

=> sf probe 0:0
=> sf erase 0 +$filesize && sf write $load_addr 0 $filesize

5. Ensure that switch settings on the board are for QSPI NOR flash and power cycle the board. The system
will automatically boot up TinyDistro (log in using root/root) or Layerscape LDP distro (log in using user/
user) available on the removable storage device.

To program Layerscape LDP composite firmware image to SD card on FRWY-LS1046A:

1. Copy firmware on host machine to tftp server.

$ cp <build>/tmp/deploy/image/ls1046afrwy/firmware_ls1046afrwy_sdboot.img ~/
tftp/

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
52 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

2. Reboot the board from QSPI NOR flash and stop autoboot to enter U-Boot prompt.
3. Under U-Boot, download the firmware to the reference board using one of the following options:

• Load firmware from the TFTP server

=> tftp $load_addr firmware_ls1046afrwy_sdboot.img

• Load firmware image from partition on mass storage device (SD or USB)

=> load mmc <device:part> $load_addr firmware_ls1046afrwy_sdboot.img

For example:

=> load mmc 0:2 $load_addr firmware_ls1046afrwy_sdboot.img

or

=> load usb <device:part> $load_addr firmware_ls1046afrwy_sdboot.img

Note:
Use the following command if the SD card is formatted/created using Layerscape LDP flex-installer
command:

=> load <interface> [<dev[:part]> [<addr> [<filename> [bytes [pos]]]]]

For example:

=> load mmc 0:2 $load_addr firmware_ls1046afrwy_sdboot.img

Use the following command if the SD card is formatted/created on a Windows PC:

=> fatload <interface> [<dev[:part]> [<addr> [<filename> [bytes [pos]]]]]

For example:

=> fatload mmc 0:2 $load_addr firmware_ls1046afrwy_sdboot.img

Use the following command if the SD card is formatted/created on a Linux PC:

=> ext2load <interface> [<dev[:part]> [<addr> [<filename> [bytes [pos]]]]]

For example:

=> ext2load mmc 0:2 $load_addr firmware_ls1046afrwy_sdboot.img

Also note that Layerscape LDP flex-installer command puts the images on the second partition, so 0:2
is used in the load command. If the SD card is formatted on Windows PC or Linux PC for single partition
only, then 0 should be used instead of 0:2 in the fatload/ext2load command.

4. Program the firmware to SD card.

=> mmc dev 0; mmc write $load_addr 8 1f000

5. Ensure that switch settings on the board are for SD boot and power cycle the board. The system will
automatically boot up TinyDistro (log in using root/root) or Layerscape LDP distro (log in using user/user)
available on the removable storage device.

3.7.6.4 Frame Manager Configuration (FMC) tool

By default, FMan has been configured for Parse-Classify-Distribute (PCD). This means that without any further
action from the user, FMan enqueues received frames from a particular flow to the same receive queue. This
prevents Rx packet reorder issues and improves performance.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
53 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

This default FMan configuration uses configuration and policy files that are provided in NXP Layerscape LDP to
perform PCD. These files are in xml format and are created with the objective of preserving packet ordering per
flow. For FRWY-LS1046A, these files are available at the following path:

/etc/fmc/config/private/ls1046afrwy/NN_NNQNNPNP_3040_0506

However, if a user wants to apply a configuration other than the one which is applied by default, the user needs
to run following command after the board boots to Linux.

1. Change directory to the parent directory of the user’s custom configuration and policy files.
2. Run the FMC tool command:

$ fmc –c <config.xml> –p <policy.xml> –a

3.7.7 Quick start guide for LS1046ARDB

This section explains:

• Introduction
• LS1046ARDB reference information
• LS1046ARDB recovery information
• Program Layerscape LDP composite firmware image
• Frame Manager Configuration (FMC) tool

3.7.7.1 Introduction

The following sections describe the procedure to program Layerscape LDP composite firmware for LS1046A.
Also, this section explains the most common use case procedure to download and deploy Layerscape LDP
default images to LS1046A using flex-installer. For more information, see Section 3.2.

For more information on the different components of the board, and on how to configure and boot the board,
see LS1046A Reference Design Board Getting Started Guide.

For a list of brief how-tos to help you modify/update individual Layerscape LDP components such as, U-Boot,
Linux kernel, DPAA1 FMan microcode on LS1046ARDB when booting the board from a specific boot source,
such as QSPI or SD, see NXP community.

3.7.7.2 LS1046ARDB reference information

This section provides general information about LS1046ARDB which may come in handy as a reference while
completing steps for deploying Layerscape LDP that follow.

3.7.7.2.1 Ethernet port map

The port name in Linux TinyDistro corresponding to each of the six ports on the reference board chassis is
given in the table below.

Port name on chassis Port name in U-Boot Port name in Linux (Tiny
Distro)

Port name in Linux (NXP
Layerscape LDP userland)

RGMII1 FM1@DTSEC3 eth0 fm1-mac3

RGMII2 FM1@DTSEC4 eth1 fm1-mac4

SGMII1 FM1@DTSEC5 eth2 fm1-mac5

SGMII2 FM1@DTSEC6 eth3 fm1-mac6

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
54 / 1061

https://source.codeaurora.org/external/qoriq/qoriq-components/eth-config/tree/private/ls1046afrwy/NN_NNQNNPNP_3040_0506?h=integration&id=6164664070e45810c793f112781ebcedc979e132
https://www.nxp.com/design/qoriq-developer-resources/qoriq-ls1046a-development-board:LS1046A-RDB?fpsp=1&tab=Documentation_Tabcommand#documentsandsoftware
https://community.nxp.com/docs/DOC-341706

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Port name on chassis Port name in U-Boot Port name in Linux (Tiny
Distro)

Port name in Linux (NXP
Layerscape LDP userland)

10G Copper FM1@TGEC1 eth4 fm1-mac9

10G SEP+ FM1@TGEC2 eth5 fm1-mac10

3.7.7.2.2 System memory map

Start Physical Address End Physical Address Memory Type Size
0x00_0000_0000 0x00_000F_FFFF Secure Boot ROM 1 MB
0x00_0100_0000 0x00_0FFF_FFFF CCSRBAR 240 MB
0x00_1000_0000 0x00_1000_FFFF OCRAM0 64 KB
0x00_1001_0000 0x00_1001_FFFF OCRAM1 64 KB
0x00_2000_0000 0x00_20FF_FFFF DCSR 16 MB
0x00_7E80_0000 0x00_7E80_FFFF IFC - NAND Flash 64 KB
0x00_7FB0_0000 0x00_7FB0_0FFF IFC - CPLD 4 KB
0x00_8000_0000 0x00_FFFF_FFFF DRAM1 2 GB
0x05_0000_0000 0x05_07FF_FFFF QMan S/W Portal 128 M
0x05_0800_0000 0x05_0FFF_FFFF BMan S/W Portal 128 M
0x08_8000_0000 0x09_FFFF_FFFF DRAM2 6 GB
0x40_0000_0000 0x47_FFFF_FFFF PCI Express1 32G
0x48_0000_0000 0x4F_FFFF_FFFF PCI Express2 32G
0x50_0000_0000 0x57_FFFF_FFFF PCI Express3 32G

3.7.7.2.3 Supported boot options

LS1046ARDB supports the following boot options:

• SD
• QSPI NOR flash

3.7.7.2.4 Onboard switch options

The RDB has user selectable switches for evaluating different boot options for the LS1046A device as given in
the table below ('0' is OFF, '1' is ON).

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
55 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Boot source SW3[1:8] SW4[1:8] SW5[1:8]

QSPI NOR flash0 (default) 01000110 00111011 00100010

QSPI NOR flash1 01001110 00111011 00100010

SD card 01000110 00111011 00100000

Note: Changing the boot device configuration from the default setting may require additional changes in the
RCW or in other code images.

For information on RCW naming convention for LS1046ARDB, see https://github.com/nxp-qoriq/rcw/blob/
master/ls1046ardb/README.

3.7.7.2.5 QSPI NOR flash banks

LS1046ARDB has two QSPI NOR flash connected over QSPI controller. Only one QSPI NOR flash is available
at a time depending upon the board switch settings as given in preceding topic. These switch settings can also
be overridden by CPLD commands. To protect the default U-Boot in flash0, it is a convention employed by NXP
to deploy work images into the flash1, and then switch to the flash1 for testing. Switching to the flash1 can be
done in software using CPLD command that effectively swaps the flash0 with the flash1. This protects flash0
and keeps the board bootable under all circumstances. To determine the current bank, refer to the example U-
Boot log given below (flash0 is displayed as vBank 0 and flash1 is displayed as vBank 4).

U-Boot 2020.04-21450-gbde1a7f (Sep 18 2020 - 22:10:28 +0800)
SoC: LS1046AE Rev1.0 (0x87070010)
Clock Configuration:
 CPU0(A72):1800 MHz
 CPU1(A72):1800 MHz
 CPU2(A72):1800 MHz
 CPU3(A72):1800 MHz
 Bus: 700 MHz DDR: 2100 MT/s FMAN: 800 MHz
Reset Configuration Word (RCW):
 00000000: 0e150012 10000000 00000000 00000000
 00000010: 11335559 40005012 40025000 c1000000
 00000020: 00000000 00000000 00000000 00238800
 00000030: 20124000 00003101 00000096 00000001
Model: LS1046A RDB Board
Board: LS1046ARDB, boot from QSPI vBank 4
CPLD: V2.2
PCBA: V2.0
SERDES Reference Clocks:
SD1_CLK1 = 156.25MHZ, SD1_CLK2 = 100.00MHZ
DRAM: 15.9 GiB (DDR4, 64-bit, CL=15, ECC on)
 DDR Chip-Select Interleaving Mode: CS0+CS1
SEC0: RNG instantiated
Using SERDES1 Protocol: 4403 (0x1133)
Using SERDES2 Protocol: 21849 (0x5559)
NAND: 512 MiB
MMC: FSL_SDHC: 0
Loading Environment from SPI Flash... SF: Detected s25fs512s with page size 256
 Bytes, erase size 256 KiB, total 64 MiB
OK
EEPROM: NXID v1
In: serial
Out: serial
Err: serial
Net: SF: Detected s25fs512s with page size 256 Bytes, erase size 256 KiB, total
 64 MiB

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
56 / 1061

https://github.com/nxp-qoriq/rcw/blob/master/ls1046ardb/README
https://github.com/nxp-qoriq/rcw/blob/master/ls1046ardb/README

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Fman1: Uploading microcode version 106.4.18
PCIe1: pcie@3400000 Root Complex: no link
PCIe2: pcie@3500000 Root Complex: no link
PCIe3: pcie@3600000 Root Complex: x1 gen1
e1000: 00:15:17:8a:c6:5b
 FM1@DTSEC3, FM1@DTSEC4, FM1@DTSEC5, FM1@DTSEC6, FM1@TGEC1, FM1@TGEC2,
 e1000#0 [PRIME]
Warning: e1000#0 MAC addresses don't match:
Address in SROM is 00:15:17:8a:c6:5b
Address in environment is 00:e0:0c:00:8e:06
Warning: e1000#0 failed to set MAC address
=>
=>

3.7.7.2.6 Boot option switching

Boot switching can be performed in U-Boot using the following commands:

• Switch to QSPI NOR flash0 (default):

=>cpld reset

• Switch to QSPI NOR flash1:

=>cpld reset altbank

• Switch to SD:

=>cpld reset sd

3.7.7.3 LS1046ARDB recovery information

If LS1046ARDB board fails to boot from QSPI NOR flash 0, you can recover QSPI NOR flash 0 from QSPI NOR
flash 1 by following these steps:

1. Download the prebuilt composite firmware image:

$ cp <build>/tmp/deploy/images/ls1043ardb/firmware_ls1046ardb_qspiboot.img ~/
tftp

2. Boot LS1046ARDB from QSPI NOR flash1 with the following switch settings:
SW3 = 01001110, SW4 = 00111011, SW5 = 00100010

3. Program QSPI NOR flash0 from QSPI NOR flash1:

=> tftp $load_addr firmware_ls1046ardb_qspiboot.img
=> sf probe 0:1
=> sf erase 0 +$filesize && sf write $load_addr 0 $filesize

4. Reset and boot the board from QSPI NOR flash0:

=> cpld reset

Note: If LS1046ARDB fails to boot from both the QSPI NOR flash banks, you need to recover the board using
CodeWarrior for LS Series, Arm v8 ISA. For steps to recover the board using the CodeWarrior tool, see
section "8.6 Board Recovery" in ARM V8 ISA, Targeting Manual

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
57 / 1061

https://www.nxp.com/docs/en/user-guide/CWARMv8TM.pdf

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

3.7.7.4 Program Layerscape LDP composite firmware image

This topic explains steps to program QSPI NOR firmware image to QSPI NOR flash on LS1046ARDB and SD
firmware image to SD card on LS1046ARDB.

To program Layerscape LDP composite firmware image to QSPI NOR flash on LS1046ARDB:

1. Copy firmware on host machine to tftp server.

$ cp <build>/tmp/deploy/image/ls1046ardb/firmware_ls1046ardb_qspiboot.img ~/
tftp/

2. Reboot the board from QSPI NOR flash 0 and stop autoboot to enter U-Boot prompt.
3. Under U-Boot, download the firmware to the reference board using one of the following options:

• Load firmware from the TFTP server

=> tftp $load_addr firmware_ls1046ardb_qspiboot.img

• Load firmware image from partition on mass storage device (SD, USB, or SATA)

=> load mmc <device:part> $load_addr firmware_ls1046ardb_qspiboot.img

For example:

=> load mmc 0:2 $load_addr firmware_ls1046ardb_qspiboot.img

Or

=> load usb <device:part> $load_addr firmware_ls1046ardb_qspiboot.img

Or

=> load scsi <device:part> $load_addr firmware_ls1046ardb_qspiboot.img

Note:
Use the following command if the SD card is formatted/created using Layerscape LDP flex-installer
command:

=> load <interface> [<dev[:part]> [<addr> [<filename> [bytes [pos]]]]]

For example:

=> load mmc 0:2 $load_addr firmware_ls1046ardb_qspiboot.img

Use the following command if the SD card is formatted/created on a Windows PC:

=> fatload <interface> [<dev[:part]> [<addr> [<filename> [bytes [pos]]]]]

For example:

=> fatload mmc 0:2 $load_addr firmware_ls1046ardb_qspiboot.img

Use the following command if the SD card is formatted/created on a Linux PC:

=> ext2load <interface> [<dev[:part]> [<addr> [<filename> [bytes [pos]]]]]

For example:

=> ext2load mmc 0:2 $load_addr firmware_ls1046ardb_qspiboot.img

Also note that Layerscape LDP flex-installer command puts the images on the second partition, so 0:2
is used in the load command. If the SD card is formatted on Windows PC or Linux PC for single partition
only, then 0 should be used instead of 0:2 in the fatload/ext2load command.

4. Program the firmware to QSPI NOR flash 1.

=> sf probe 0:1

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
58 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

=> sf erase 0 +$filesize && sf write $load_addr 0 $filesize

5. Reset and boot the board from QSPI NOR flash 1. The system will automatically boot up TinyDistro (log
in using root/root) or Layerscape LDP distro (log in using user/user) available on the removable storage
device.

=> cpld reset altbank

To program Layerscape LDP composite firmware image to SD card on LS1046ARDB:

1. Copy firmware on host machine to tftp server.

$ cp <build>/tmp/deploy/image/ls1046ardb/firmware_ls1046ardb_sdboot.img ~/
tftp/

2. Reboot the board from QSPI NOR flash 0 and stop autoboot to enter U-Boot prompt.
3. Under U-Boot, download the firmware to the reference board using one of the following options:

• Load firmware from the TFTP server

=> tftp $load_addr firmware_ls1046ardb_sdboot.img

• Load firmware image from partition on mass storage device (SD, USB, or SATA)

=> load mmc <device:part> $load_addr firmware_ls1046ardb_sdboot.img

For example:

=> load mmc 0:2 $load_addr firmware_ls1046ardb_sdboot.img

Or

=> load usb <device:part> $load_addr firmware_ls1046ardb_sdboot.img

Or

=> load scsi <device:part> $load_addr firmware_ls1046ardb_sdboot.img

Note:
Use the following command if the SD card is formatted/created using Layerscape LDP flex-installer
command:

=> load <interface> [<dev[:part]> [<addr> [<filename> [bytes [pos]]]]]

For example:

=> load mmc 0:2 $load_addr firmware_ls1046ardb_sdboot.img

Use the following command if the SD card is formatted/created on a Windows PC:

=> fatload <interface> [<dev[:part]> [<addr> [<filename> [bytes [pos]]]]]

For example:

=> fatload mmc 0:2 $load_addr firmware_ls1046ardb_sdboot.img

Use the following command if the SD card is formatted/created on a Linux PC:

=> ext2load <interface> [<dev[:part]> [<addr> [<filename> [bytes [pos]]]]]

For example:

=> ext2load mmc 0:2 $load_addr firmware_ls1046ardb_sdboot.img

Also note that Layerscape LDP flex-installer command puts the images on the second partition, so 0:2
is used in the load command. If the SD card is formatted on Windows PC or Linux PC for single partition
only, then 0 should be used instead of 0:2 in the fatload/ext2load command.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
59 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

4. Program the firmware to SD card.

=> mmc dev 0; mmc write $load_addr 8 1f000

5. Reset and boot the board from SD card. The system will automatically boot up Tinydistro (log in using root/
root) or Layerscape LDP distro (log in using user/user) available on the removable storage device.

=> cpld reset sd

3.7.7.5 Frame Manager Configuration (FMC) tool

By default, FMan has been configured for Parse-Classify-Distribute (PCD). This means that without any further
action from the user, FMan enqueues received frames from a particular flow to the same receive queue. This
prevents Rx packet reorder issues and improves performance.

This default FMan configuration uses configuration and policy files that are provided in NXP Layerscape LDP
for this release to perform PCD. These files are in xml format and are created with the objective of preserving
packet ordering per flow. For LS1046ARDB, these files are available at the following path:

/etc/fmc/config/private/ls1046ardb/RR_FFSSPPPH_1133_5559

However, if a user wants to apply a configuration other than the one which is applied by default, the user needs
to run following command after the board boots to Linux.

1. Change directory to the parent directory of the user’s custom configuration and policy files.
2. Run the FMC tool command:

$ fmc –c <config.xml> –p <policy.xml> –a

3.7.8 Quick start guide for LS1088ARDB

This section explains:

• Introduction
• LS1088ARDB and LS1088ARDB-PB reference information
• LS1088ARDB and LS1088ARDB-PB recovery information
• Program Layerscape LDP composite firmware image
• Bringing up DPAA2 network interfaces

3.7.8.1 Introduction

The following sections describe the procedure to program Layerscape LDP composite firmware for
LS1088ARDB and LS1088ARDB-PB. Also, this section explains the most common use case procedure to
download and deploy Layerscape LDP default images to LS1088ARDB and LS1088ARDB-PB using flex-
installer. For more information, see Download and deploy Layerscape LDP images with flex-installer in Linux
environment.

For more information on the different components of the board, and on how to configure and boot the board,
see LS1088A Reference Design Board (LS1088ARDB-PB) Getting Started Guide.

For a list of brief how-tos to help you modify/update individual Layerscape LDP components such as, U-Boot,
Linux kernel, DPL, DPC, on LS1088ARDB/LS1088ARDB-PB when booting the board from a specific boot
source, such as QSPI or SD, see NXP community.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
60 / 1061

https://source.codeaurora.org/external/qoriq/qoriq-components/eth-config/tree/private/ls1046ardb/RR_FFSSPPPH_1133_5559?h=github.qoriq-os/integration
https://www.nxp.com/design/qoriq-developer-resources/qoriq-ls1088a-development-board:LS1088A-RDB?fpsp=1&tab=Documentation_Tab#documentsandsoftware
https://community.nxp.com/docs/DOC-341706

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

3.7.8.2 LS1088ARDB and LS1088ARDB-PB reference information

This section provides general information about LS1088ARDB and LS1088ARDB-PB which may come in handy
as a reference while completing steps for deploying Layerscape LDP that follow.

Note:

LS1088ARDB-PB is a variant of LS1088ARDB, therefore most of the information should be the same as
LS1088ARDB. Following sections specify the differences if any.

3.7.8.2.1 Ethernet port map

The table below shows the mapping of Ethernet port names appearing on chassis front panel with the port
names in U-Boot and Linux.

Port name on chassis Port name in Linux (Tiny
Distro and Linux distro
userland)

Port name in U-Boot Description

ETH0 ethx DPMAC2@xgmii XFI copper interface

ETH1 ethx DPMAC1@xgmii XFI optical interface

ETH2 ethx DPMAC7@qsgmii QSGMII copper interface

ETH3 ethx DPMAC8@qsgmii QSGMII copper interface

ETH4 ethx DPMAC9@qsgmii QSGMII copper interface

ETH5 ethx DPMAC10@qsgmii QSGMII copper interface

ETH6 ethx DPMAC3@qsgmii QSGMII copper interface

ETH7 ethx DPMAC4@qsgmii QSGMII copper interface

ETH8 If there is a PCIe card
plugged in, it is detected as
eth1.
If there is no PCIe, it is
detected as eth0.

DPMAC5@qsgmii QSGMII copper interface

ETH9 ethx DPMAC6@qsgmii QSGMII copper interface

Note: For other ports, interfaces are created dynamically in Linux. So, the port name is determined by the creation order.

Table 14. Ethernet port names mapping

3.7.8.2.2 System memory map

Start address End address Size Allocation Comment

0x0000_0000_0000 0x0000_000F_FFFF 1 MB CCSR - Boot ROM 64 KB

0x0000_0010_0000 0x0000_00FF_FFFF 15 MB Reserved

0x0000_0100_0000 0x0000_0FFF_FFFF 240 MB CCSR

0x0000_1000_0000 0x0000_10FF_FFFF 16 MB Reserved SP alias this space to
DCSR. Do not allocate.

0x0000_1100_0000 0x0000_11FF_FFFF 16 MB Reserved SP alias this space to
DCSR. Do not allocate.

0x0000_1200_0000 0x0000_13FF_FFFF 32 MB Reserved SP alias this space to
DCSR. Do not allocate.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
61 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

0x0000_1400_0000 0x0000_17FF_FFFF 64 MB Reserved

0x0000_1800_0000 0x0000_181F_FFFF 2 MB OCRAM 128 KB

0x0000_1820_0000 0x0000_18FF_FFFF 14 MB Reserved

0x0000_1900_0000 0x0000_19FF_FFFF 16 MB CoreSight STM 16 MB

0x0000_1A00_0000 0x0000_1BFF_FFFF 32 MB Reserved

0x0000_1C00_0000 0x0000_1CFF_FFFF 16 MB Reserved

0x0000_1D00_0000 0x0000_1FFF_FFFF 48 MB Reserved

0x0000_2000_0000 0x0000_2FFF_FFFF 256 MB Quad SPI Region #1
(0-256 MB)

More QSPI space
below 256 MB

0x0000_3000_0000 0x0000_3FFF_FFFF 256 MB IFC Region #1 (0-256
MB)

More IFC space below
256 MB

0x0000_4000_0000 0x0000_5FFF_FFFF 512 MB Reserved

0x0000_6000_0000 0x0000_7FFF_FFFF 512 MB Reserved

0x0000_8000_0000 0x0000_9FFF_FFFF 512 MB

0c0000_A000_0000 0x0000_BFFF_FFFF 512 MB

0x0000_C000_0000 0x0000_DFFF_FFFF 512 MB

0x0000_E000_0000 0x0000_FFFF_FFFF 512 MB

GPP DRAM Region #1
(0-2 GB)

0x0001_0000_0000 0x0001_FFFF_FFFF 4 GB

0x0002_0000_0000 0x0003_FFFF_FFFF 8 GB

Reserved

0x0004_0000_0000 0x0004_0FFF_FFFF 256 MB Hole QSPI space #1 maps
on top of this space

0x0004_1000_0000 0x0004_FFFF_FFFF 3.75 GB Quad SPI Region #2
(256 MB-4 GB)

3.75 GB

0x0005_0000_0000 0x0005_0FFF_FFFF 256 MB Hole IFC space #1 maps on
top of this space

0x0005_1000_0000 0x0005_FFFF_FFFF 3.75 GB IFC Region #2 (256
MB-4 GB)

3.75 GB

0x0006_0000_0000 0x0006_FFFF_FFFF 4 GB Reserved

0x0007_0000_0000 0x0007_3FFF_FFFF 1 GB DCSR

0x0007_4000_0000 0x0007_FFFF_FFFF 3 GB Reserved

DPAA2 Portal Map

0x0008_0000_0000 0x0008_03FF_FFFF 64 MB Reserved

0x0008_0400_0000 0x0008_07FF_FFFF 64 MB Reserved

0x0008_0800_0000 0x0008_0BFF_FFFF 64 MB Reserved

0x0008_0C00_0000 0x0008_0FFF_FFFF 64 MB MC - 1024 portals 32 MB (512 portal)

0x0008_1000_0000 0x0008_17FF_FFFF 128 MB Reserved

0x0008_1800_0000 0x0008_1FFF_FFFF 128 MB QBMAN portals 128 MB

0x0008_0000_0000 0x000B_FFFF_FFFF 15.5 GB Reserved

0x000C_0000_0000 0x000F_FFFF_FFFF 16 GB Reserved

High-speed I/O (PCIe)

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
62 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

0x0010_0000_0000 0x0011_FFFF_FFFF 8 GB Reserved

0x0012_0000_0000 0x0013_FFFF_FFFF 8 GB Reserved

0x0014_0000_0000 0x0015_FFFF_FFFF 8 GB Reserved

0x0016_0000_0000 0x0017_FFFF_FFFF 8 GB Reserved

0x0018_0000_0000 0x0019_FFFF_FFFF 8 GB Reserved

0x001A_0000_0000 0x001B_FFFF_FFFF 8 GB Reserved

0x001C_0000_0000 0x001D_FFFF_FFFF 8 GB Reserved

0x001E_0000_0000 0x001F_FFFF_FFFF 8 GB Reserved

0x0020_0000_0000 0x0027_FFFF_FFFF 32 GB PCIe1

0x0028_0000_0000 0x002F_FFFF_FFFF 32 GB PCIe2

0x0030_0000_0000 0x0037_FFFF_FFFF 32 GB PCIe3

0x0038_0000_0000 0x003F_FFFF_FFFF 32 GB Reserved

DPAA2 External address map

0x0040_0000_0000 0x0040_FFFF_FFFF 4 GB Reserved

0x0041_0000_0000 0x0041_FFFF_FFFF 4 GB Reserved

0x0042_0000_0000 0x0042_FFFF_FFFF 4 GB Reserved

0x0043_0000_0000 0x0043_FFFF_FFFF 4 GB WRIOP access
window

0x0044_0000_0000 0x0047_FFFF_FFFF 16 GB Reserved

0x0048_0000_0000 0x0048_FFFF_FFFF 4 GB Reserved

0x0049_0000_0000 0x0049_FFFF_FFFF 4 GB Reserved

0x004A_0000_0000 0x004A_FFFF_FFFF 4 GB Reserved

0x004B_0000_0000 0x004B_FFFF_FFFF 4 GB Reserved

0x004C_0000_0000 0x004F_FFFF_FFFF 16 GB Packet Express Buffer 1 MB

0x0050_0000_0000 0x005F_FFFF_FFFF 64 GB Reserved

0x0060_0000_0000 0x007F_FFFF_FFFF 128 GB Reserved

0x0080_0000_0000 0x0080_7FFF_FFF 2 GB Hole

0x0080_8000_0000 0x00FF_FFFF_FFFF 510 GB GPP DRAM Region #2
(2-512GB)

3.7.8.2.3 Supported boot options

LS1088ARDB and LS1088ARDB-PB support the following boot options:

• SD
• QSPI NOR Flash

Note:
– When booting from SD, the RCW, U-Boot, and other firmware components are located on the SD card

starting at block 8.
– When booting from QSPI NOR flash, the RCW, U-Boot, and other firmware components are located in flash

starting at offset 0x0. See Layerscape LDP Memory Layout for additional information.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
63 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

3.7.8.2.4 Onboard switch options

The RDBs have user selectable switches for evaluating different boot options for the LS1088A device as given
in the table below ('0' is OFF, '1' is ON).

Note: Even though the onboard switch settings given in the table below are same for LS1088ARDB and
LS1088ARDB-PB, the significance of some of these settings may differ. See “Switch settings” in LS1088ARDB
Getting Started Guide and “Switch configuration” in LS1088ARDB-PB Getting Started Guide for detailed
description of each switch setting.

Boot source SW1[1:8] SW2[1:8] SW3[1:8] SW4[1:8] SW5[1:8]

QSPI NOR flash0
(default)

0011 0001 X100 0000 1110 0010 1001 0011 0111 0000

QSPI NOR flash1 0011 0001 X100 0001 1110 0010 1001 0011 0111 0000

SD card 0010 0000 0100 0000 1110 0010 1001 0011 0111 0000

Note that changing the boot device configuration from the default setting may require additional changes in
the RCW or in other code images. For information on RCW naming convention for LS1088ARDB, see https://
github.com/nxp-qoriq/rcw/blob/master/ls1088ardb/README.

3.7.8.2.5 QSPI NOR flash banks

LS1088ARDB and LS1088ARDB-PB have 2 QSPI NOR flash connected over QSPI controller. Only one QSPI
NOR flash is available at a time depending upon the board switch settings as given in preceding topic. These
switch settings can also be overridden using qixis_reset commands in U-Boot.

To protect the default U-Boot in flash0, it is a convention employed by NXP to deploy work images into
flash1, and then switch to flash1 for testing. Switching to flash1 can be done in software using qixis_reset
command that effectively swaps flash0 with flash1. This protects flash0 and keeps the board bootable under all
circumstances.

To determine the current bank, refer to the example U-Boot log given below:

U-Boot 2022.04+fsl+g181859317b (Nov 15 2022 - 06:28:05 +0000)
SoC: LS1088AE Rev1.0 (0x87030010)
Clock Configuration:
 CPU0(A53):1600 MHz CPU1(A53):1600 MHz CPU2(A53):1600 MHz
 CPU3(A53):1600 MHz CPU4(A53):1600 MHz CPU5(A53):1600 MHz
 CPU6(A53):1600 MHz CPU7(A53):1600 MHz
 Bus: 700 MHz DDR: 2100 MT/s
Reset Configuration Word (RCW):
 00000000: 4000541c 00000040 00000000 00000000
 00000010: 00000000 000a0000 00300000 00000000
 00000020: 016011a0 00002580 00000000 00000040
 00000030: 0000005b 00000000 00002403 00000000
 00000040: 00000000 00000000 00000000 00000000
 00000050: 00000000 00000000 00000000 00000000
 00000060: 00000000 00000000 00000011 000009e7
 00000070: 44110000 00509555
VID: Core voltage after adjustment is at 1026 mV
DRAM: 15.9 GiB
DDR 15.9 GiB (DDR4, 64-bit, CL=15, ECC on)
 DDR Chip-Select Interleaving Mode: CS0+CS1 Using SERDES1
Protocol: 29 (0x1d)

Boot option switching can be performed in U-Boot using the following statements.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
64 / 1061

https://github.com/nxp-qoriq/rcw/blob/master/ls1088ardb/README
https://github.com/nxp-qoriq/rcw/blob/master/ls1088ardb/README

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

• Switch to QSPI NOR flash 0 (default):

=> qixis_reset

• Switch to QSPI NOR flash 1:

=> qixis_reset altbank

• Switch to SD:

=> qixis_reset sd

3.7.8.2.6 U-Boot environment variables

• DPAA2-specific Environment Variables
– mcboottimeout: Defines Management Complex boot timeout in milliseconds. If this variable is not defined,

the compile-time value CONFIG_SYS_LS_MC_BOOT_TIMEOUT_MS will be the default. Normally, users
do not need to set this variable because the default is acceptable.

– mcmemsize: Defines amount of system DDR to be used by the Management Complex. If this variable is
not defined, the compile-time value 0x70000000 or 1.75 GB will be the default. Normally, users do not need
to set this variable because the default is acceptable.

– mcinitcmd: Contains commands to load and start the Management Complex automatically before the U-
Boot countdown to boot starts. If this variable is defined, its contents are run. The default value assumes
that the Management Complex (MC) firmware and Data Path Control file are stored in QSPI NOR/SD flash
at fixed addresses.

• Environment variables that are not specific to DPAA2
– bootcmd: Contains commands that are automatically executed when the U-Boot boot command is run. This

happens automatically when the user does not interrupt U-Boot initial count down.

For more information on U-Boot distro boot command, see Section 4.3.2.

3.7.8.3 LS1088ARDB and LS1088ARDB-PB recovery information

If LS1088ARDB/LS1088ARDB-PB board fails to boot from QSPI NOR flash 0, you can recover QSPI NOR flash
0 from QSPI NOR flash 1 by following these steps:

1. Download the prebuilt composite firmware image:
$ cp <build>/tmp/deploy/image/ls1043ardb/firmware_ls1088ardb_pb_qspiboot.img ~/tftp
Note: Note that LS1088ARDB is not supported Layerscape LDP 18.12 release onwards.

2. Boot LS1088ARDB/LS1088ARDB-PB from QSPI NOR flash 1 with the following switch settings:
• SW1[1:8] = 0011 0001
• SW2[1:8] = X100 0001
• SW3[1:8] = 1110 0010
• SW4[1:8] = 1001 0011
• SW5[1:8] = 0111 0000

3. Program QSPI NOR flash 0 from QSPI NOR flash 1:

=> sf probe 0:1
=> tftp $load_addr firmware_ls1088ardb_pb_qspiboot.img
=> sf erase 0x0 +$filesize && sf write $load_addr 0x0 $filesize

4. Reset and boot the board from QSPI NOR flash 0:

=> qixis_reset

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
65 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Note: If LS1088ARDB/LS1088ARDB-PB fails to boot from both the QSPI NOR flash banks, you need to
recover the board using CodeWarrior for LS Series, Arm v8 ISA. For steps to recover the board using the
CodeWarrior tool, see section "8.6 Board Recovery" in ARM V8 ISA, Targeting Manual

3.7.8.4 Program Layerscape LDP composite firmware image

This topic explains steps to program QSPI NOR firmware image to QSPI NOR flash on LS1088ARDB/
LS1088ARDB-PB and SD firmware image to SD card on LS1088ARDB/LS1088ARDB-PB.

To program Layerscape LDP composite firmware image to QSPI NOR flash on LS1088ARDB/LS1088ARDB-
PB:

1. Copy firmware on host machine to TFTP server.

$ cp <build>/tmp/deploy/image/ls1088ardb/firmware_ls1088ardb_qspiboot.img ~/
tftp/

2. Under U-Boot, download the firmware to the reference board using one of the following options:
• Load firmware from the TFTP server

=> tftp $load_addr firmware_ls1088ardb_pb_qspiboot.img

• Load firmware image from partition on mass storage device (SD, USB, or SATA)

=> load mmc <dev:part> $load_addr firmware_ls1088ardb_pb_qspiboot.img

For example:

=> load mmc 0:2 $load_addr firmware_ls1088ardb_pb_qspiboot.img

or

=> load usb <dev:part> $load_addr firmware_ls1088ardb_pb_qspiboot.img

or

=> load scsi <dev:part> $load_addr firmware_ls1088ardb_pb_qspiboot.img

Note:
Use the following command if the SD card is formatted/created using Layerscape LDP flex-installer
command:

=> load <interface> [<dev[:part]> [<addr> [<filename> [bytes [pos]]]]]

For example:

=> load mmc 0:2 $load_addr firmware_ls1088ardb_pb_qspiboot.img

Use the following command if the SD card is formatted/created on a Windows PC:

=> fatload <interface> [<dev[:part]> [<addr> [<filename> [bytes [pos]]]]]

For example:

=> fatload mmc 0:2 $load_addr firmware_ls1088ardb_pb_qspiboot.img

Use the following command if the SD card is formatted/created on a Linux PC:

=> ext2load <interface> [<dev[:part]> [<addr> [<filename> [bytes [pos]]]]]

For example:

=> ext2load mmc 0:2 $load_addr firmware_ls1088ardb_pb_qspiboot.img

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
66 / 1061

https://www.nxp.com/docs/en/user-guide/CWARMv8TM.pdf

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Also note that Layerscape LDP flex-installer command puts the images on the second partition, so 0:2
is used in the load command. If the SD card is formatted on Windows PC or Linux PC for single partition
only, then 0 should be used instead of 0:2 in the fatload/ext2load command.

3. re (from NXP website) to the Linux host machine.

$ Copy firmware on host machine to tftp server

Note: Note that prebuilt LS1088ARDB images are not available with Layerscape LDP 18.12 release
onwards.

4. Reboot the board from QSPI NOR flash 0 and stop autoboot to enter U-Boot prompt.
5. Program the firmware to QSPI NOR flash 1.

=> sf probe 0:1
=> sf erase 0 +$filesize && sf write $load_addr 0 $filesize

6. Reset and boot the board from QSPI NOR flash 1. The system will automatically boot up TinyDistro (log
in using root/root) or Layerscape LDP distro (log in using user/user) available on the removable storage
device.

=> qixis_reset altbank

To program Layerscape LDP composite firmware image to SD card on LS1088ARDB/LS1088ARDB-PB:

1. Copy firmware on host machine to tftp server.

$ cp <build>/tmp/deploy/image/ls1088ardb/firmware_ls1088ardb_sdboot.img ~/
tftp/

Note: Note that LS1088ARDB is not supported Layerscape LDP 18.12 release onwards.
2. Reboot the board from QSPI NOR flash 0 and stop autoboot to enter U-Boot prompt.
3. Under U-Boot, download the firmware to the reference board using one of the following options:

• Load firmware from the TFTP server

=> tftp $load_addr firmware_ls1088ardb_pb_sdboot.img

• Load firmware image from partition on mass storage device (SD, USB, or SATA)

=> load mmc <device:partition> $load_addr firmware_ls1088ardb_pb_sdboot.img

For example:

=> load mmc 0:2 $load_addr firmware_ls1088ardb_pb_sdboot.img

Or

=> load usb <device:part> $load_addr firmware_ls1088ardb_pb_sdboot.img

Or

=> load scsi <dev:part> $load_addr firmware_ls1088ardb_pb_sdboot.img

Note:
Use the following command if the SD card is formatted/created using Layerscape LDP flex-installer
command:

=> load <interface> [<dev[:part]> [<addr> [<filename> [bytes [pos]]]]]

For example:

=> load mmc 0:2 $load_addr firmware_ls1088ardb_pb_sdboot.img

Use the following command if the SD card is formatted/created on a Windows PC:

=> fatload <interface> [<dev[:part]> [<addr> [<filename> [bytes [pos]]]]]

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
67 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

For example:

=> fatload mmc 0:2 $load_addr firmware_ls1088ardb_pb_sdboot.img

Use the following command if the SD card is formatted/created on a Linux PC:

=> ext2load <interface> [<dev[:part]> [<addr> [<filename> [bytes [pos]]]]]

For example:

=> ext2load mmc 0:2 $load_addr firmware_ls1088ardb_pb_sdboot.img

Also note that Layerscape LDP flex-installer command puts the images on the second partition, so 0:2
is used in the load command. If the SD card is formatted on Windows PC or Linux PC for single partition
only, then 0 should be used instead of 0:2 in the fatload/ext2load command.

4. Program the firmware to SD card.

=> mmc dev 0; mmc write $load_addr 8 1f000

5. Reset and boot the board from SD card. The system will automatically boot up TinyDistro (log in using root/
root) or Layerscape LDP distro (log in using user/user) available on the removable storage device.

=> qixis_reset sd

3.7.8.5 Bringing up DPAA2 network interfaces

This section describes the procedure to bring up DPAA2 network interfaces.

3.7.8.5.1 Using Linux commands to list network interfaces

The Linux distribution boots with a default DPL file which enables only one network interface on DPAA2 by
default, as a standard kernel Ethernet interface.

Run the following standard Linux command to get a list of enabled interfaces.

$ ip link show

The default interface is named eth0 (or eth1 if a PCI Express network interface card is discovered first).

3.7.8.5.2 Using restool wrapper scripts to list DPAA2 objects

The user-friendly wrapper scripts are provided in the release rootfs to assist with dynamic creation of DPNIs
and the associated dependencies. The wrapper scripts call the restool commands.

To list the available wrapper scripts, enter the following command:

$ls-main

The Ethernet interfaces have the corresponding DPPA2 objects associated with them.

To list the enabled data path network interface (DPNI) associated with eth0 (or eth1), run the following restool
wrapper script:

$ ls-listni
dprc.1/dpni.0 (interface: eth1, end point: dpmac.5)

This indicates that the data path network interface named dpni.0 which belongs to the DPAA2 resource
container dprc.1 is present. This DPNI object corresponds to the interface named eth1 which is connected to
dpmac.5.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
68 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

The following command can be used to list all DPMAC objects present in the system and what they are
connected to (if anything).

$ ls-listmac
 dprc.1/dpmac.10
 dprc.1/dpmac.9
 dprc.1/dpmac.8
 dprc.1/dpmac.7
 dprc.1/dpmac.6
 dprc.1/dpmac.5 (end point: dpni.0)
 dprc.1/dpmac.4
 dprc.1/dpmac.3
 dprc.1/dpmac.2
 dprc.1/dpmac.1

For more information on DPAA2 objects and restool, see DPAA2-specific Software in Layerscape LDP
documentation.

3.7.8.5.3 Add and destroy network interfaces

As mentioned in previous sections, interface eth0 (or eth1) corresponds to the data path network interface
dpni.0 which is the only one enabled by default DPL file. However, users may need more than one network
interface enabled. Also, DPNI.0 is configured with a minimal set of resources – for example, it can only receive
traffic on one core via one queue. Additional and fully featured DPNI objects can be created using restool. Once
these objects are created, the configuration can be saved to a custom DPL file.

Running the command below is the simplest way of adding a DPNI object and connecting it to a DPMAC. In this
case DPNI object is being connected to dpmac.4 using default options and arguments.

$ ls-addni dpmac.4
Created interface: eth0 (object:dpni.1, endpoint: dpmac.4)

Run the following command to display information about the newly created dpni.1 interface. The number of
queues is shown to be 8, one queue per core for 8 cores which can receive traffic.

restool dpni info dpni.1

If you want to connect DPMAC5 (which is connected to dpni.0 by default) to a fully-featured data path network
interface, then you must first unbind and destroy the existing interface by using the commands below.

Unbind dpni.0 from the driver:

$ echo dpni.0 > /sys/bus/fsl-mc/drivers/fsl_dpaa2_eth/unbind

Destroy data path network interface dpni.0

$ restool dpni destroy dpni.0
dpni.0 is destroyed

Now add back dpmac.5 using the command below. Even though dpmac.5 is again connected to dpni.0, dpni.0
now uses 8 traffic queues for distribution.

$ ls-addni dpmac.5
Created interface: eth0 (object:dpni.0, endpoint: dpmac.5)

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
69 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Note: Note that on the LS1088A SoC using the ls-addni script default resource allocation is not possible to
create and connect DPNIs to all the 10 DPMACs available. This is because, by default, the ls-addni script
creates an interface with 64 flow steering entries and 16 MAC entries. Since the LS1088A SoC has a total of 2K
CTLU entries (resources used by the fs_entries and mac_entries parameters), resources are easily occupied
and the 10th DPNI is not created. This limitation is not encountered on any of the other DPAA2 based SoCs
(LS2088A or LX2160A) since the CTLU resources are not scarce.

A sequence for creating all 10 interfaces without any error would be the one below.

for i in `seq 1 9`; do ls-addni "dpmac.$i"; done
for the 10th interface use a lower number of pre-allocated resources (steering
 entries and mac entries)
ls-addni dpmac.10 -f=16 -m=8

A detailed example of how one can compute the CTLU resource allocation can be found below.

A classification key, depending on its size can stretch on multiple CTLU entries. For example a 56 byte key
(this is the key size for exact match flow steering entries) occupies three entries. By default, when an interface
is created with ls-addni, 64 fs_entries are preallocated. It means that a total of 64 * 3 = 192 entries are used
for one DPNI. For 10 DPNIs there are 10 times more, that is, 1920 entries. Another default parameter that
consumes CTLU resources is mac_entries. A mac_entry key consumes 1 CTLU entry. The default 16 MAC
entries consume 16 CTLU entries. For 10 DPNIs, 160 CTLU entries are consumed. If we sum up the above
numbers, we obtain a total of 2080 entries for 10 DPNIs, more than the maximum 2K.

3.7.8.5.4 Save configuration to a custom DPL file (Optional)

After the additional DPNI objects are created, you can create a custom DPL file using the following command:

$ restool dprc generate-dpl dprc.1 > <file_name>.dts

Note: This DPL file is in *.dts format and is created on the reference board.

You must compile the resulting *.dts file using the dtc tool to generate a *.dtb file.

To copy the DPL (*.dts) file to a Linux host machine or server using SCP and convert it to a *.dtb file, run the
following command:

$ dtc -I dts -O dtb <file_name>.dts -o <file_name>.dtb

Note: The newly created DPL file can be flashed on to the board and used to boot to Linux.

3.7.8.5.5 Assign IP addresses to network interfaces

Static IP addresses can be assigned to network interfaces using the standard ifconfig or ip commands.

ifconfig <interface_name_in_Linux> <ip_address>
OR
ip address add <ip_address> dev <interface_name_in_linux>

Alternatively, Static IP addresses can also be assigned using netplan. Create a file called “config.yaml” in /etc/
netplan. Using a text editor, add the following lines to this config file and save it.

network:
 version: 2
 renderer: networkd
 ethernets:
 <interface_name_in_Linux>:
 addresses:

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
70 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

 - <ip_address>/24

After saving this file, run the following command to apply this netplan configuration and then reboot the board.

sudo netplan apply

Once the board reboots, bring up the desired interface by using “ifconfig <interface_name_in_Linux>
up” or “ ip link set <interface_name_in_Linux> up” command. The interface is assigned the
IP address that was entered in the “ config.yaml” file.Netplan can also be used for dynamic IP address
assignment using DHCP. For dynamic IP assignment, replace the contents of the config.yaml file with the
following.

network:
 version: 2
 renderer: networkd
 ethernets:
 <interface_name_in_Linux>:
 dhcp4: true

Follow the same procedure as for the static IP assignment using Netplan after saving the “config.yaml” file.

3.7.9 Quick start guide for LS2088ARDB

This section explains:

• Introduction
• LS2088ARDB reference information
• LS2088ARDB recovery information
• Program Layerscape LDP composite firmware image
• Bringing up DPAA2 network interfaces

3.7.9.1 Introduction

The following sections describe the procedure to program Layerscape LDP composite firmware for
LS2088ARDB. Also, this section explains the most common use case procedure to download and deploy
Layerscape LDP default images to LS2088ARDB using flex-installer. For more information, see Section 3.2.

For more information on the different components of the board, and on how to configure and boot the board,
see LS2088ARDB board documentation.

3.7.9.2 LS2088ARDB reference information

This section provides general information about LS2088ARDB which may come in handy as a reference while
completing steps for deploying Layerscape LDP that follow.

3.7.9.2.1 Ethernet port map

Port name in Chassis Port name in U-Boot Port name in Linux (Tiny
Distro and Linux distro
userland)

Description

ETH0 DPMAC5@xgmii eth0 by default (or eth1 if PCI
Express network interface
card is discovered first)

XFI copper interface

ETH1 DPMAC6@xgmii not enabled by default XFI copper interface

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
71 / 1061

https://www.nxp.com/design/qoriq-developer-resources/layerscape-ls2088a-reference-design-board:LS2088A-RDB#documentation

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

ETH2 DPMAC7@xgmii not enabled by default XFI copper interface

ETH3 DPMAC8@xgmii not enabled by default XFI copper interface

ETH4 DPMAC1@xgmii not enabled by default XFI copper interface

ETH5 DPMAC2@xgmii not enabled by default XFI copper interface

ETH6 DPMAC3@xgmii not enabled by default XFI copper interface

ETH7 DPMAC4@xgmii not enabled by default XFI copper interface

3.7.9.2.2 System memory map

Start address End address Size Allocation Comment

0x0000_0000_0000 0x0000_000F_FFFF 1 MB CCSR - Boot ROM 64 KB

0x0000_0010_0000 0x0000_00FF_FFFF 15 MB Reserved

0x0000_0100_0000 0x0000_0FFF_FFFF 240 MB CCSR

0x0000_1000_0000 0x0000_10FF_FFFF 16 MB Reserved

0x0000_1100_0000 0x0000_11FF_FFFF 16 MB Reserved

0x0000_1200_0000 0x0000_13FF_FFFF 32 MB Reserved

0x0000_1400_0000 0x0000_17FF_FFFF 64 MB Reserved

0x0000_1800_0000 0x0000_181F_FFFF 2 MB OCRAM 128 KB

0x0000_1820_0000 0x0000_18FF_FFFF 14 MB Reserved

0x0000_1900_0000 0x0000_19FF_FFFF 16 MB CoreSight STM 16 MB

0x0000_1A00_0000 0x0000_1BFF_FFFF 32 MB Reserved

0x0000_1C00_0000 0x0000_1CFF_FFFF 16 MB Reserved

0x0000_1D00_0000 0x0000_1FFF_FFFF 48 MB Reserved

0x0000_2000_0000 0x0000_2FFF_FFFF 256 MB Quad SPI Region #1
(0-256 MB)

More QSPI space
below 256 MB

0x0000_3000_0000 0x0000_3FFF_FFFF 256 MB IFC Region #1 (0-256
MB)

More IFC space
below 256 MB

0x0000_4000_0000 0x0000_5FFF_FFFF 512 MB Reserved

0x0000_6000_0000 0x0000_7FFF_FFFF 512 MB Reserved

0x0000_8000_0000 0x0000_9FFF_FFFF 512 MB GPP DRAM Region
#1 (0-2 GB)

0c0000_A000_0000 0x0000_BFFF_FFFF 512 MB

0x0000_C000_0000 0x0000_DFFF_FFFF 512 MB

0x0000_E000_0000 0x0000_FFFF_FFFF 512 MB

0x0001_0000_0000 0x0001_FFFF_FFFF 4 GB Reserved

0x0002_0000_0000 0x0003_FFFF_FFFF 8 GB

0x0004_0000_0000 0x0004_0FFF_FFFF 256 MB Hole QSPI space #1 maps
on top of this space

0x0004_1000_0000 0x0004_FFFF_FFFF 3.75 GB Quad SPI Region #2
(256 MB-4 GB)

3.75 GB 0x0005_00
00_0000 0x0005_0
FFF_FFFF 256

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
72 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Start address End address Size Allocation Comment

MB Hole IFC space #1 maps
on top of this space

0x0005_1000_0000 0x0005_FFFF_FFFF 3.75 GB IFC Region #2 (256
MB-4 GB)

3.75 GB

0x0006_0000_0000 0x0006_FFFF_FFFF 4GB Reserved

0x0007_0000_0000 0x0007_3FFF_FFFF 1 GB DCSR

0x0007_4000_0000 0x0007_FFFF_FFFF 3 GB Reserved

DPAA2 Portal Map

0x0008_0000_0000 0x0008_03FF_FFFF 64 MB Reserved

0x0008_0400_0000 0x0008_07FF_FFFF 64 MB Reserved

0x0008_0800_0000 0x0008_0BFF_FFFF 64 MB Reserved

0x0008_0C00_0000 0x0008_0FFF_FFFF 64 MB MC - 1024 portals 32 MB (512 portal)

0x0008_1000_0000 0x0008_17FF_FFFF 128 MB Reserved

0x0008_1800_0000 0x0008_1FFF_FFFF 128 MB QBMAN portals 128 MB

0x0008_0000_0000 0x000B_FFFF_FFFF 15.5 GB Reserved

0x000C_0000_0000 0x000F_FFFF_FFFF 16 GB Reserved

High-speed I/O
(PCIe)

See details of specific
IPs below

0x0010_0000_0000 0x0011_FFFF_FFFF 8 GB Reserved

0x0012_0000_0000 0x0013_FFFF_FFFF 8 GB Reserved

0x0014_0000_0000 0x0015_FFFF_FFFF 8 GB Reserved

0x0016_0000_0000 0x0017_FFFF_FFFF 8 GB Reserved

0x0018_0000_0000 0x0019_FFFF_FFFF 8 GB Reserved

0x001A_0000_0000 0x001B_FFFF_FFFF 8 GB Reserved

0x001C_0000_0000 0x001D_FFFF_FFFF 8 GB Reserved

0x001E_0000_0000 0x001F_FFFF_FFFF 8 GB Reserved

0x0020_0000_0000 0x0027_FFFF_FFFF 32 GB PCIe1

0x0028_0000_0000 0x002F_FFFF_FFFF 32 GB PCIe2

0x0030_0000_0000 0x0037_FFFF_FFFF 32 GB PCIe3

0x0038_0000_0000 0x003F_FFFF_FFFF 32 GB PCIe4

DPAA2 Ext address
map

0x0040_0000_0000 0x0040_FFFF_FFFF 4 GB Reserved

0x0041_0000_0000 0x0041_FFFF_FFFF 4 GB Reserved

0x0042_0000_0000 0x0042_FFFF_FFFF 4 GB Reserved

0x0043_0000_0000 0x0043_FFFF_FFFF 4 GB WRIOP access
window

0x0044_0000_0000 0x0047_FFFF_FFFF 16 GB Reserved

0x0048_0000_0000 0x0048_FFFF_FFFF 4 GB Reserved

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
73 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Start address End address Size Allocation Comment

0x0049_0000_0000 0x0049_FFFF_FFFF 4 GB Reserved

0x004A_0000_0000 0x004A_FFFF_FFFF 4 GB Reserved

0x004B_0000_0000 0x004B_FFFF_FFFF 4 GB Reserved

0x004C_0000_0000 0x004F_FFFF_FFFF 16 GB Packet express buffer 4 MB

0x0050_0000_0000 0x005F_FFFF_FFFF 64 GB Reserved

0x0060_0000_0000 0x007F_FFFF_FFFF 128 GB DPAA2 DRAM

0x0080_0000_0000 0x0080_7FFF_FFF 2 GB Hole

0x0080_8000_0000 0x00FF_FFFF_FFFF 510 GB GPP DRAM Region
#2 (2-512 GB)

3.7.9.2.3 Supported boot options

LS2088ARDB supports the following boot options:

• Parallel NOR flash (referred to as "NOR" or "NOR flash" in the following sections)
• QSPI NOR flash (only available on RDB Rev E and later)

3.7.9.2.4 Onboard switch options

The RDBs have user selectable switches for evaluating different boot options for the LS2088A device as given
in the table below ('0' is OFF, '1' is ON).

Boot source SW5[1:8] SW3[1:8] SW4[1:8] SW6[1:8] SW7[1:8] SW9[1:8] SW8[1:8]

NOR flash
bank0
(default)

1111 1111 0001 0010 1111 1111 1111 1111 0100 0010 0100 0000 0111 1111

NOR flash
bank4

1111 1111 0001 0010 1111 1111 1111 1111 0100 0010 0110 0000 0111 1111

QSPI NOR
flash

1111 1111 0011 0001 0111 1111 1111 1111 0100 1010 0100 0000 0111 1111

Note that changing the boot device configuration from the default setting may require additional changes in
the RCW or in other code images. For information on RCW naming convention for LS2088ARDB see https://
github.com/nxp-qoriq/rcw/blob/master/ls2088ardb/README.

In addition to the above switch settings, make sure the following jumper settings are correct based on the
preferred type of boot (for RDB Rev E and later).

Jumper Settings

J8 For QSPI-boot, via onboard qspi flash: 1-2
For QSPI-boot, via qspi emulator: 2-3

J14 For NOR-boot: 1-2
For QSPI-boot: 2-3

3.7.9.2.5 NOR Flash Banks

LS2088ARDB provides a special feature that allows a single NOR flash to be divided into multiple parts
called “banks”. This is done by board-level logic that modifies address signals. As there is only one NOR flash
UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
74 / 1061

https://github.com/nxp-qoriq/rcw/blob/master/ls2088ardb/README
https://github.com/nxp-qoriq/rcw/blob/master/ls2088ardb/README

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

physically, the banks are sometimes called "virtual" banks. The benefit of this feature is that it allows more than
one set of images to be independently deployed to one NOR flash. This is very helpful during development
because the U-Boot image in one bank can be used to program an image set into a different bank. If the new
images are flawed, the old images are still functional. The logic on the board usually allows the NOR flash to be
divided into up to 8 banks, but the NOR flash on LS2088ARDB is divided into two halves. The halves are called
bank 0 and bank 4. Bank switching can be done in in software using qixis_reset commands. To determine the
current bank, refer to the example U-Boot log given below.

U-Boot 2022.04+fsl+g181859317b (Nov 15 2022 - 06:28:05 +0000)
SoC: LS2088AE Rev1.1 (0x87090011)
Clock Configuration:
 CPU0(A72):1800 MHz CPU1(A72):1800 MHz CPU2(A72):1800 MHz
 CPU3(A72):1800 MHz CPU4(A72):1800 MHz CPU5(A72):1800 MHz
 CPU6(A72):1800 MHz CPU7(A72):1800 MHz
 Bus: 700 MHz DDR: 1866.667 MT/s DP-DDR: 1600 MT/s
Reset Configuration Word (RCW):
 00000000: 483038b8 48480048 00000000 00000000
 00000010: 00000000 00000000 00a00000 00000000
 00000020: 01e01180 00002581 00000000 00000000
 00000030: 00400c0b 00000000 00000000 00000000
 00000040: 00000000 00000000 00000000 00000000
 00000050: 00000000 00000000 00000000 00000000
 00000060: 00000000 00000000 00027000 00000000
 00000070: 412a0000 00040000
Model: Freescale Layerscape 2080a RDB Board
Board: LS2088AE Rev1.1-RDB, Board Arch: V1,

Board version: F, boot from vBank: 4
FPGA: v1.22

Bank switching in NOR flash can be performed in U-Boot using the following statements.

• Boot from default bank (according to switch settings):

=>qixis_reset

• Switch to alternate bank:

=>qixis_reset altbank

Note:

Boot option switching between parallel NOR boot and QSPI NOR boot cannot be performed using commands.
Boot option switching can be done by adjusting DIP switch settings and jumper settings on the Reference
Design Board as given above.

3.7.9.2.6 U-Boot Environment Variables

• DPAA2-specific Environment Variables
– mcmemsize: Defines amount of system DDR to be used by the Management Complex. If this variable

is not defined, the compile-time CONFIG_SYS_LS_MC_DRAM_BLOCK_MIN_SIZE will be the default.
Normally, users do not need to set this variable because the default is acceptable.

• Environment variables that are not specific to DPAA2
– bootcmd: Contains commands that are automatically executed when the U-Boot boot command is

run. This happens automatically when the user does not interrupt U-Boot initial count down. In normal
usage, bootcmd should contain the command to apply the Management Complex Data Path Layout
(DPL) file because this must be done before booting Linux. When booting from NOR, When booting from
NOR, the default bootcmd is bootcmd=env exists mcinitcmd && env exists secureboot

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
75 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

&& esbc_validate 0x580780000; env exists mcinitcmd && fsl_mc lazyapply dpl
0x580d00000;run distro_bootcmd;run nor_bootcmd; env exists secureboot &&
esbc_halt;

For more information on U-Boot distro boot command, see Section 4.3.2.

3.7.9.3 LS2088ARDB recovery information

If LS2088ARDB board fails to boot from NOR bank 0, you can recover NOR bank 0 from NOR bank 4 by
following these steps:

1. Download the prebuilt composite firmware image:

$ cp <build>/tmp/deploy/image/ls1043ardb/firmware_ls2088ardb_norboot.img ~/
tftp

2. Boot LS2088ARDB from NOR bank 4 with the following switch settings:
• SW5[1:8] = 1111 1111
• SW3[1:8] = 0001 0010
• SW4[1:8] = 1111 1111
• SW6[1:8] = 1111 1111
• SW7[1:8] = 0100 0010
• SW9[1:8] = 0110 0000
• SW8[1:8] = 0111 1111

3. Program NOR bank 0 from NOR bank 4:

=> tftp $load_addr firmware_ls2088ardb_norboot.img
=> protect off 584000000 +$filesize && erase 584000000 +$filesize && cp.b
 $load_addr 584000000 $filesize

4. Reset and boot the board from NOR bank 0:

=> qixis_reset

Note: If LS2088ARDB fails to boot from both the NOR banks, you need to recover the board using
CodeWarrior for LS Series, Arm v8 ISA. For steps to recover the board using the CodeWarrior tool, see
section "8.6 Board Recovery" in ARM V8 ISA, Targeting Manual

3.7.9.4 Program Layerscape LDP composite firmware image

This topic explains steps to program NOR firmware image to IFC NOR flash on LS2088ARDB and QSPI
firmware image to QSPI NOR flash on LS2088ARDB.

To program Layerscape LDP composite NOR firmware image to IFC NOR flash on LS2088ARDB:

1. Copy firmware on host machine to tftp server.

$ cp <build>/tmp/deploy/image/ls2088ardb/firmware_ls2088ardb_norboot.img ~/
tftp/

2. Make sure the DIP switch and jumper settings on the board are for IFC NOR flash. (Refer to “
Section 3.7.9.2” for switch and jumper settings.)

3. Reboot the board from NOR flash bank 0 and stop autoboot to enter U-Boot prompt.
4. Under U-Boot, download the firmware to the reference board using one of the following options:

• Load firmware from the TFTP server

=> tftp $load_addr firmware_ls2088ardb_norboot.img

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
76 / 1061

https://www.nxp.com/docs/en/user-guide/CWARMv8TM.pdf

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

• Load firmware image from partition on mass storage device (SD, USB, or SATA)

=> load mmc <device:par> $load_addr firmware_ls2088ardb_norboot.img

For example:

=> load mmc 0:2 $load_addr firmware_ls2088ardb_norboot.img

or

=> load usb <device:part> $load_addr firmware_ls2088ardb_norboot.img

or

=> load scsi <device:part> $load_addr firmware_ls2088ardb_norboot.img

Note:
Use the following command if the SD card is formatted/created using Layerscape LDP flex-installer
command:

=> load <interface> [<dev[:part]> [<addr> [<filename> [bytes [pos]]]]]

For example:

=> load mmc 0:2 $load_addr firmware_ls2088ardb_norboot.img

Use the following command if the SD card is formatted/created on a Windows PC:

=> fatload <interface> [<dev[:part]> [<addr> [<filename> [bytes [pos]]]]]

For example:

=> fatload mmc 0:2 $load_addr firmware_ls2088ardb_norboot.img

Use the following command if the SD card is formatted/created on a Linux PC:

=> ext2load <interface> [<dev[:part]> [<addr> [<filename> [bytes [pos]]]]]

For example:

=> ext2load mmc 0:2 $load_addr firmware_ls2088ardb_norboot.img

Also note that Layerscape LDP flex-installer command puts the images on the second partition, so 0:2
is used in the load command. If the SD card is formatted on Windows PC or Linux PC for single partition
only, then 0 should be used instead of 0:2 in the fatload/ext2load command.

5. Program the composite firmware into IFC NOR flash.
• To program alternate bank:

=> protect off 584000000 +$filesize && erase 584000000 +$filesize && cp.b
 a0000000 584000000 $filesize

• To program current bank:

=> protect off 580000000 +$filesize && erase 580000000 +$filesize && cp.b
 a0000000 580000000 $filesize

6. Reset and boot the board from IFC NOR flash. The system will automatically boot up TinyDistro (log in
using root/root) or Layerscape LDP distro (log in using user/user) available on the removable storage
device.
• To boot from NOR flash bank 0.

=> qixis_reset

• To boot from NOR flash bank 4.

=> qixis_reset altbank

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
77 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

To program Layerscape LDP composite firmware image in QSPI NOR flash on LS2088ARDB:

1. Copy firmware on host machine to tftp server.

$ cp <build>/tmp/deploy/image/ls2088ardb/firmware_ls2088ardb-
rev2_qspiboot.img ~/tftp/

2. Make sure the DIP switch and jumper settings on the board are for QSPI NOR flash. (Refer to “
Section 3.7.9.2” for switch and jumper settings.)

3. Under U-Boot, download the firmware to the reference board using one of the following options:
• Load firmware from the TFTP server

=> tftp $load_addr firmware_ls2088ardb_qspiboot.img

• Load firmware image from partition on mass storage device (SD, USB, or SATA)

=> load mmc <device:part> $load_addr firmware_ls2088ardb_qspiboot.img

For example:

=> load mmc 0:2 $load_addr firmware_ls2088ardb_qspiboot.img

or

=> load usb <device:part> $load_addr firmware_ls2088ardb_qspiboot.img

or

=> load scsi <device:part> $load_addr firmware_ls2088ardb_qspiboot.img

Note:
Use the following command if the SD card is formatted/created using Layerscape LDP flex-installer
command:

=> load <interface> [<dev[:part]> [<addr> [<filename> [bytes [pos]]]]]

For example:

=> load mmc 0:2 $load_addr firmware_ls2088ardb_qspiboot.img

Use the following command if the SD card is formatted/created on a Windows PC:

=> fatload <interface> [<dev[:part]> [<addr> [<filename> [bytes [pos]]]]]

For example:

=> fatload mmc 0:2 $load_addr firmware_ls2088ardb_qspiboot.img

Use the following command if the SD card is formatted/created on a Linux PC:

=> ext2load <interface> [<dev[:part]> [<addr> [<filename> [bytes [pos]]]]]

For example:

=> ext2load mmc 0:2 $load_addr firmware_ls2088ardb_qspiboot.img

Also note that Layerscape LDP flex-installer command puts the images on the second partition, so 0:2
is used in the load command. If the SD card is formatted on Windows PC or Linux PC for single partition
only, then 0 should be used instead of 0:2 in the fatload/ext2load command.

4. Program the firmware to QSPI NOR flash.

=> sf probe 0:0
=> sf erase 0 +$filesize && sf write $load_addr 0 $filesize

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
78 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

5. Reset the board. The system will automatically boot up TinyDistro (log in using root/root) or Layerscape LDP
distro (log in using user/user) available on the removable storage device.

=> reset

3.7.9.5 Bringing up DPAA2 network interfaces

This section describes the procedure to bring up DPAA2 network interfaces.

3.7.9.5.1 Use Linux commands to list network interfaces

The Linux distribution boots with a default DPL file which enables only one network interface on DPAA2 by
default as a standard kernel Ethernet interface. Run the following standard Linux command to get a list of
enabled interfaces.

$ ip link show

The default interface is named eth0 (or eth1 if a PCI Express network interface card is discovered first).

3.7.9.5.2 Use restool wrapper scripts to list DPAA2 objects

User-friendly wrapper scripts are provided in the release rootfs to assist with dynamic creation of DPNIs and
associated dependencies. The wrapper scripts call restool commands.

Enter the following command for a list of the available wrapper scripts:

$ls-main

The Ethernet interfaces have corresponding DPPA2 objects associated with them. Run the following restool
wrapper script to list the enabled data path network interface (DPNI) associated with eth0 (or eth1).

$ ls-listni
dprc.1/dpni.0 (interface: eth1, end point: dpmac.5)

This indicates that the data path network interface named dpni.0 which belongs to the DPAA2 resource
container dprc.1 is present. This DPNI object corresponds to the interface named eth1 which is connected to
dpmac.5.

The following command can be used to list all DPMAC objects present in the system and what they are
connected to (if anything).

$ ls-listmac
 dprc.1/dpmac.8
 dprc.1/dpmac.7
 dprc.1/dpmac.6
 dprc.1/dpmac.5 (end point: dpni.0)
 dprc.1/dpmac.4
 dprc.1/dpmac.3
 dprc.1/dpmac.2
 dprc.1/dpmac.1

For more information on DPAA2 objects and restool, see Section 7.3.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
79 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

3.7.9.5.3 Add and destroy network interfaces

As mentioned in previous sections, interface eth0 (or eth1) corresponds to the data path network interface
dpni.0 which is the only one enabled by default DPL file. However, users may need more than one network
interface enabled. Also, DPNI.0 is configured with a minimal set of resources – for example, it can only receive
traffic on one core via one queue. Additional and fully featured DPNI objects can be created using restool. Once
these objects are created, the configuration can be saved to a custom DPL file.

Running the command below is the simplest way of adding a DPNI object and connecting it to a DPMAC. In this
example DPNI object is being connected to dpmac.4 using default options and arguments.

$ ls-addni dpmac.4
Created interface: eth0 (object:dpni.1, endpoint: dpmac.4)

Run the following command to display information about the newly created dpni.1 interface. The number of
queues is shown to be 8, one queue per core for 8 cores which can receive traffic.

restool dpni info dpni.1

If you want to connect DPMAC5 (which is connected to dpni.0 by default) to a fully-featured data path network
interface, then you must first unbind and destroy the existing interface by using the commands below.

Unbind dpni.0 from the driver

$ echo dpni.0 > /sys/bus/fsl-mc/drivers/fsl_dpaa2_eth/unbind

Destroy data path network interface dpni.0

$ restool dpni destroy dpni.0
dpni.0 is destroyed

Now add back dpmac.5 using the command below. Even though dpmac.5 is again connected to dpni.0, dpni.0
now uses 8 queues for traffic distribution.

$ ls-addni dpmac.5
Created interface: eth0 (object:dpni.0, endpoint: dpmac.5)

3.7.9.5.4 Save configuration to a custom DPL file (Optional)

After the additional DPNI objects are created, a custom DPL file can be generated using the following
command. This DPL file has a *.dts format and is created on the reference board.

$ restool dprc generate-dpl dprc.1 > <file_name>.dts

The resulting *.dts file must be compiled using the dtc tool to generate a *.dtb file. Copy this file to a Linux host
machine or server using SCP and run the following command to convert it to a *.dtb file.

$ dtc -I dts -O dtb <file_name>.dts -o <file_name>.dtb

The newly created DPL file can be flashed on to the board and used to boot to Linux.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
80 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

3.7.9.5.5 Assign IP addresses to network interfaces

Static IP addresses can be assigned to network interfaces using the standard ifconfig or ip commands.

ifconfig <interface_name_in_Linux> <ip_address>
OR
ip address add <ip_address> dev <interface_name_in_linux>

Alternatively, Static IP addresses can also be assigned using netplan. Create a file called “config.yaml” in /
etc/netplan. Using a text editor, add the following lines to this config file and save it.

network:
 version: 2
 renderer: networkd
 ethernets:
 <interface_name_in_Linux>:
 addresses:
 - <ip_address>/24

After saving this file, run the following command to apply this netplan configuration and then reboot the board.

sudo netplan apply

Once the board reboots, bring up the desired interface by using “ifconfig <interface_name_in_Linux>
up” or “ ip link set <interface_name_in_Linux> up” command. The interface is assigned the IP
address that was entered in the “ config.yaml” file.

Netplan can also be used for dynamic IP address assignment using DHCP. For dynamic IP assignment, replace
the contents of the config.yaml file with the following.

network:
 version: 2
 renderer: networkd
 ethernets:
 <interface_name_in_Linux>:
 dhcp4: true

Follow the same procedure as for the static IP assignment using Netplan after saving the “config.yaml” file.

3.7.10 Quick start guide for LX2160ARDB Rev2

This section explains:

• Introduction
• LX2160ARDB reference information
• LX2160ARDB recovery information
• Program Layerscape LDP composite firmware image
• Bringing up DPPA2 network interfaces

3.7.10.1 Introduction

The following sections describe the procedure to program Layerscape LDP composite firmware for
LX2160ARDB Rev2. Also, this section explains the most common use case procedure to download and
deploy Layerscape LDP default images to LX2160ARDB Rev2 using flex-installer. For more information, see
Section 3.2.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
81 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

For more information on the different components of the board, and on how to configure and boot the board,
see LX2160A Reference Design Board Getting Started Guide.

3.7.10.2 LX2160ARDB reference information

This section provides general information about LX2160ARDB Rev2 which may come in handy as a reference
while completing steps for deploying Layerscape LDP that follow.

3.7.10.2.1 Ethernet port map

Port name on chassis Port name in U-Boot Port name in TinyDistro Port name in Linux

40G MAC2 DPMAC2@xlaui4

10G MAC3 DPMAC3@xgmii

10G MAC4 DPMAC4@xgmii

25G MAC5 DPMAC5@25g-aui

25G MAC6 DPMAC6@25g-aui

1G MAC17 DPMAC17@rgmii-id

1G MAC18 DPMAC18@rgmii-id

Interface name will be ethn.
For example, eth0, eth1, and
so on.
Eth0 : If PCIe is connected,
else it will be any connected
DPAA2 interface.

PCIe : enp1s0
DPAA: ethx

Note: Interface name is not fixed in LX2160ARDB Rev2 , depending upon which interface is active, name will
be assigned. Interface names can be checked using ls-listni command.

root@TinyDistro:~# ls-listni
dprc.1/dpni.1 (interface: eth0, end point: dpmac.2)
dprc.1/dpni.0 (interface: eth1, end point: dpmac.17)

3.7.10.2.2 System memory map

Start address End address Size Allocation Comment

0x0000_0000_0000 0x0000_000F_FFFF 1 MB CCSR - Boot ROM 64 KB

0x0000_0010_0000 0x0000_00FF_FFFF 15 MB Reserved

0x0000_0100_0000 0x0000_0FFF_FFFF 240 MB CCSR

0x0000_1000_0000 0x0000_10FF_FFFF 16 MB Reserved SP alias this space to DCSR. Do
not allocate.

0x0000_1100_0000 0x0000_11FF_FFFF 16 MB Reserved SP alias this space to DCSR. Do
not allocate.

0x0000_1200_0000 0x0000_13FF_FFFF 32 MB Reserved SP alias this space to DCSR. Do
not allocate.

0x0000_1400_0000 0x0000_17FF_FFFF 64 MB Reserved

0x0000_1800_0000 0x0000_181F_FFFF 2 MB OCRAM 256 KB

0x0000_1820_0000 0x0000_18FF_FFFF 14 MB Reserved

0x0000_1900_0000 0x0000_19FF_FFFF 16 MB CoreSight STM

0x0000_1A00_0000 0x0000_1BFF_FFFF 32 MB Reserved

0x0000_1C00_0000 0x0000_1CFF_FFFF 16 MB Reserved

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
82 / 1061

https://www.nxp.com/support/developer-resources/software-development-tools/qoriq-developer-resources/qoriq-lx2160a-reference-design-board:LX2160A-RDB?tab=Documentation_Tab

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

0x0000_1D00_0000 0x0000_1FFF_FFFF 48 MB Reserved

0x0000_2000_0000 0x0000_2FFF_FFFF 256 MB FlexSPI Region #1

0x0000_3000_0000 0x0000_3FFF_FFFF 256 MB Reserved

0x0000_4000_0000 0x0000_5FFF_FFFF 512 MB Reserved

0x0000_6000_0000 0x0000_7FFF_FFFF 512 MB Reserved

0x0000_8000_0000 0x0000_9FFF_FFFF 512 MB

0x0000_A000_0000 0x0000_BFFF_FFFF 512 MB

0x0000_C000_0000 0x0000_DFFF_FFFF 512 MB

0x0000_E000_0000 0x0000_FFFF_FFFF 512 MB

GPP DRAM Region #1
(0-2 GB)

0x0001_0000_0000 0x0001_FFFF_FFFF 4 GB

0x0002_0000_0000 0x0003_FFFF_FFFF 8 GB

Reserved

0x0004_0000_0000 0x0004_0FFF_FFFF 256 MB FlexSPI Hole Collapsed away by remapping
logic to merge FlexSPI Region #1

0x0004_1000_0000 0x0004_FFFF_FFFF 3.75 GB FlexSPI Region #2 (256
MB-4 GB)

3.75 GB

0x0005_0000_0000 0x0005_FFFF_FFFF 4 GB Reserved

0x0006_0000_0000 0x0006_FFFF_FFFF 4 GB Reserved

0x0007_0000_0000 0x0007_3FFF_FFFF 1 GB DCSR

0x0007_4000_0000 0x0007_FFFF_FFFF 3 GB Reserved

DPAA2 Portal Map

0x0008_0000_0000 0x0008_03FF_FFFF 64 MB Reserved

0x0008_0400_0000 0x0008_07FF_FFFF 64 MB Reserved

0x0008_0800_0000 0x0008_0BFF_FFFF 64 MB Reserved

0x0008_0C00_0000 0x0008_0FFF_FFFF 64 MB MC - 1024 portals

0x0008_1000_0000 0x0008_17FF_FFFF 128 MB Reserved

0x0008_1800_0000 0x0008_1FFF_FFFF 128 MB QBMAN portals

512 MB (0x0008_0000_0000-
0x0008_
1FFF_FFFF)

0x0008_2000_0000 0x000B_FFFF_FFFF 15.5 GB Reserved

0x000C_0000_0000 0x000F_FFFF_FFFF 16 GB Reserved

DPAA2 External address map

0x0010_0000_0000 0x0010_FFFF_FFFF 4 GB Reserved

0x0011_0000_0000 0x0011_FFFF_FFFF 4 GB Reserved

0x0012_0000_0000 0x0012_FFFF_FFFF 4 GB Reserved

0x0013_0000_0000 0x0013_FFFF_FFFF 4 GB WRIOP access window

0x0014_0000_0000 0x001B_FFFF_FFFF 32 GB Reserved

0x001C_0000_0000 0x001C_001F_FFFF 2 MB Packet express buffer

0x001C_4000_0000 0x001F_FFFF_FFFF 79 GB Reserved

(0x0010_0000_0000-0x001F_
FFFF_FFFF)

0x0020_0000_0000 0x0020_7FFF_FFFF 2 GB DRAM Hole

0x0020_8000_0000 0x003F_FFFF_FFFF 126 GB GPP DRAM Region #2

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
83 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

0x0040_0000_0000 0x005F_FFFF_FFFF 128 GB Reserved DRAM Hole
Other "Normal" Memory

Collapsed by remap logic after
MemNoC to merge DRAM
Regions #1 and #2

0x0060_0000_0000 0x007F_FFFF_FFFF 128 GB GPP DRAM Region #3

High-speed I/O (PCI Express)

0x0080_0000_0000 0x0087_FFFF_FFFF 32 GB PCI Express 1

0x0088_0000_0000 0x008F_FFFF_FFFF 32 GB PCI Express 2

0x0090_0000_0000 0x0097_FFFF_FFFF 32 GB PCI Express 3

0x0098_0000_0000 0x009F_FFFF_FFFF 32 GB PCI Express 4

0x00A0_0000_0000 0x00A7_FFFF_FFFF 32 GB PCI Express 5

0x00A8_0000_0000 0x00AF_FFFF_FFFF 32 GB PCI Express 6

(0x0080_0000_0000-0x00FF_
FFFF_FFFF)

3.7.10.2.3 Supported boot options

LX2160ARDB Rev2 supports the following boot options:

• FlexSPI NOR flash (referred to as "FSPI" or "FSPI flash" in the following sections). CS refers to Chip Select.
• eMMC
• SD card (SDHC1)

3.7.10.2.4 Onboard switch options

The RDBs have user selectable switches for evaluating different boot options for the LX2160A device as given
in the table below ('0' is OFF, '1' is ON).

Boot source SW1[1:8] SW2[1:8] SW3[1:8] SW4[1:8]

FSPI NOR CS0
(default)

1111 1000 0000 0110 1111 1100 1011 1000

FSPI NOR CS1 1111 1001 0000 0110 1111 1100 1011 1000

SD Card (SDHC1) 1000 1000 0000 0110 1111 1100 1011 1000

eMMC 1001 1000 0000 0110 1111 1100 1011 1000

Note: SW4[2] switch should be turned on [1], if user wants to power on the board as soon as power supply is
turned on. This is useful in scenarios when the board is to be used remotely.

Changing the boot device configuration from the default setting may require additional changes in the RCW
or in other code images. For information on RCW naming convention for LX2160ARDB Rev2, see https://
github.com/nxp-qoriq/rcw/blob/master/lx2160ardb/README.

In addition to the above switch settings, make sure that the following jumper settings are correct.

Jumper Type Name/function Description

J6 1x2-pin connector TA_BB_TMP_DETECT_B enable Open: TA_BB_TMP_DETECT_B pin is
grounded
Shorted: TA_BB_TMP_DETECT_B pin is
powered (default setting)

Table 15. LX2160ARDB Rev2 jumpers

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
84 / 1061

https://github.com/nxp-qoriq/rcw/blob/master/lx2160ardb/README
https://github.com/nxp-qoriq/rcw/blob/master/lx2160ardb/README

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Jumper Type Name/function Description

J7 1x2-pin connector VBAT power for TA_BB_VDD
enable

Not supported. Do not install J7. See LX2160A
Reference Design Board Errata for more
details.

J8 1x2-pin connector PROG_MTR voltage control (for
NXP use only)

Open: PROG_MTR pin is powered off (default
setting)
Shorted: PROG_MTR pin is powered by
OVDD (1.8 V)

J9 1x2-pin connector TA_PROG_SFP voltage control
(for NXP use only)

Open: TA_PROG_SFP pin is powered off
(default setting)
Shorted: TA_PROG_SFP pin is powered by
OVDD (1.8 V)

J31 1x2-pin connector USB1 mode setting Open: USB1 works in Device mode
Shorted: USB1 works in Host mode (default
setting)

J33 1x2-pin connector USB2 mode setting Open: USB2 works in On-The-Go (OTG)
mode (default setting)
Shorted: USB2 works in Host mode

J56 2x3-pin connector Inphi CS4223 GUI access Normal: 1-2 short, 5-6 short (default setting)
GUI mode: 1-2 open, 5-6 open

J57 1x2-pin connector Inphi CS4223 GUI enable Normal: Open (default setting)
GUI mode: Short

J58 1x2-pin connector Fan speed Open: 100% speed
Short: 50% speed (default setting)

Table 15. LX2160ARDB Rev2 jumpers...continued

3.7.10.2.5 FlexSPI NOR Flash Chip-select

FlexSPI NOR flash is a simple and convenient destination for deploying images so it is frequently used.

The benefit of this feature is that it allows more than one set of images to be independently deployed to the
one NOR flash. It is helpful during development because you can use the U-Boot image in one chip-select
to program an image set into a different chip-select. If the new images are flawed, the old images are still
functional to let you deploy corrected images.

The logic on the board usually allows the NOR flash to be accessed from different CS (chip select) option. Each
CS is connected to dedicated NOR flash devices, those CSs are called, DEV#0 and DEV#1. U-Boot prints
which CS is loaded from.

The following is the sample output:

U-Boot 2022.04+fsl+g181859317b (Nov 15 2022 - 06:28:05 +0000)
SoC: LX2160ACE Rev2.0 (0x87360020)
Clock Configuration:
 CPU0(A72):2200 MHz CPU1(A72):2200 MHz CPU2(A72):2200 MHz
 CPU3(A72):2200 MHz CPU4(A72):2200 MHz CPU5(A72):2200 MHz
 CPU6(A72):2200 MHz CPU7(A72):2200 MHz CPU8(A72):2200 MHz
 CPU9(A72):2200 MHz CPU10(A72):2200 MHz CPU11(A72):2200 MHz
 CPU12(A72):2200 MHz CPU13(A72):2200 MHz CPU14(A72):2200 MHz
 CPU15(A72):2200 MHz
 Bus: 750 MHz DDR: 3200 MT/s
Reset Configuration Word (RCW):
 00000000: 5883833c 24580058 00000000 0000000

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
85 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

 00000010: 00000000 0c010000 00000000 00000000
 00000020: 390001a0 00002580 00000000 00000096
 00000030: 00000000 00000000 00000000 00000000
 00000040: 00000000 00000000 00000000 00000000
 00000050: 00000000 00000000 00000000 00000000
 00000060: 00000000 00000000 00027000 00000000
 00000070: 08b30010 00150020
Model: NXP Layerscape LX2160ARDB Board
Board: LX2160ACE Rev2.0-RDB, Board version: C, boot from SD
FPGA: v9.0

Boot option switching can be performed in U-Boot using the following statements.

• Switch to FlexSPI NOR flash 0 (default):

=>qixis_reset

• Switch to FlexSPI NOR flash 1:

=>qixis_reset altbank

• Switch to SD:

=>qixis_reset sd

• Switch to eMMC:

=>qixis_reset emmc

3.7.10.2.6 U-Boot Environment Variables

The environment variables specific and unspecific to DPAA2 are given below:

• DPAA2-specific Environment Variables
– mcboottimeout: Defines Management Complex boot timeout in milliseconds. If this variable is not defined

the compile-time value, CONFIG_SYS_LS_MC_BOOT_TIMEOUT_MS is the default. Normally, users do not
need to set this variable because the default is acceptable.

– mcmemsize: Defines amount of system DDR to be use by the Management Complex. If this variable is not
defined, the compile-time value CONFIG_SYS_LS_MC_DRAM_BLOCK_MIN_SIZE is the default. Normally,
users do not need to set this variable because the default is acceptable.

– mcinitcmd: Contains commands to load and start the Management Complex automatically before the U-
Boot count down to boot starts. If this variable is defined, its contents are run. The default value assumes
that the Management Complex (MC) firmware and Data Path Control file are stored in FlexSPI flash/
SD at fixed addresses. The default value for FlexSPI boot is mcinitcmd= sf probe 0:0 && sf
read 0x80640000 0x640000 0x80000 && env exists secureboot && esbc_validate
0x80640000 && esbc_validate 0x80680000; sf read 0x80a00000 0xa00000 0x300000 &&
sf read 0x80e00000 0xe00000 0x100000; fsl_mc start mc 0x80a00000 0x80e00000.
The default value for SD boot is mcinitcmd=mmc read 0x80a00000 0x5000 0x1200;mmc
read 0x80e00000 0x7000 0x800;env exists secureboot && mmc read 0x80640000
0x3200 0x20 && mmc read 0x80680000 0x3400 0x20 && esbc_validate 0x80640000 &&
esbc_validate 0x80680000 ;fsl_mc start mc 0x80a00000 0x80e00000. Users may change
this variable as needed to load the MC files from sources, other than FlexSPI into DDR, and then start the
MC using the fsl_mc command. For example, the files may be on a disk drive.

• Environment variables that are not specific to DPAA2
– bootcmd: Contains commands that are automatically executed when the U-Boot boot command is run.

This happens automatically when the user does not interrupt U-Boot initial count down. In normal usage,
bootcmd should contain the command to apply the Management Complex Data Path Layout (DPL) file

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
86 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

because this must be done before booting Linux. When booting from FlexSPI NOR, the default bootcmd
is sf probe 0:0; sf read 0x806c0000 0x6c0000 0x40000; env exists mcinitcmd
&& env exists secureboot && esbc_validate 0x806c0000; sf read 0x80d00000
0xd00000 0x100000; env exists mcinitcmd && fsl_mc lazyapply dpl 0x80d00000; run
distro_bootcmd; run xspi_bootcmd; env exists secureboot && esbc_halt;
When booting from SD, the default bootcmd is bootcmd=env exists mcinitcmd && mmcinfo; mmc
read 0x80d00000 0x6800 0x800; env exists mcinitcmd && env exists secureboot
&& mmc read 0x806C0000 0x3600 0x20 && esbc_validate 0x806C0000; env exists
mcinitcmd && fsl_mc lazyapply dpl 0x80d00000; run distro_bootcmd; run
sd_bootcmd; env exists secureboot && esbc_halt;

For more information on U-Boot distro boot command, see Section 4.3.2.

3.7.10.3 LX2160ARDB recovery information

If LX2160ARDB Rev2 board fails to boot from FSPI NOR bank #0 , you can recover FSPI NOR bank #0 from
FSPI NOR bank #1 by following these steps:

1. Download the prebuilt composite firmware image:

cp <build>/tmp/deploy/image/ls1043ardb/firmware_lx2160ardb_rev2_xspiboot.img
 ~/tftp

2. Boot LX2160ARDB Rev2 from FSPI NOR bank #1 with the following switch setting:
• SW1[1:8] = 1111 1001

3. Program FSPI NOR bank #0 from FSPI NOR bank #1:

=> sf probe 0:1
=> tftp $load_addr firmware_lx2160ardb_rev2_xspiboot.img
=> sf erase 0x0 +$filesize && sf write $load_addr 0x0 $filesize

4. Change switch setting back to default:
• SW1[1:8] = 1111 1000

5. Reset the board, board should boot from FSPI NOR bank #0:

=> reset

Note: If LX2160ARDB Rev2 fails to boot from both the FlexSPI NOR flash banks, you need to recover the
board using CodeWarrior for LS Series, Arm v8 ISA. For steps to recover the board using the CodeWarrior
tool, see section "8.6 Board Recovery" in ARM V8 ISA, Targeting Manual.

3.7.10.4 Program Layerscape LDP composite firmware image

This topic explains steps to program FlexSPI NOR firmware image to FlexSPI NOR flash on LX2160ARDB
Rev2 and SD/eMMC firmware image to SD/eMMC card on LX2160ARDB Rev2.

To program Layerscape LDP composite firmware image to FlexSPI NOR flash on LX2160ARDB Rev2:

1. Copy firmware on host machine to tftp server.

$ cp <build>/tmp/deploy/image/lx2160ardb/firmware_lx2160ardb-
rev2_xspiboot.img ~/tftp/

2. Reboot the board from FlexSPI NOR flash 0 and stop autoboot to enter U-Boot prompt.
3. Under U-Boot, download the firmware to the reference board using one of the following options:

Load firmware from the TFTP server

For LX2160A Rev2:

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
87 / 1061

https://www.nxp.com/docs/en/user-guide/CWARMv8TM.pdf

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

=> tftp $load_addr firmware_lx2160ardb_rev2_xspiboot.img

Load firmware image from partition on mass storage device (SD, USB, or SATA)

For LX2160A Rev2:
=> load mmc <device:partition> $load_addr
 firmware_lx2160ardb_rev2_xspiboot.img

For example:

For LX2160A Rev2:
=> load mmc 0:2 $load_addr firmware_lx2160ardb_rev2_xspiboot.img

or

For LX2160A Rev2:
=> load usb <device:part> $load_addr firmware_lx2160ardb_rev2_xspiboot.img

or

For LX2160A Rev2:
=> load scsi <device:part> $load_addr firmware_lx2160ardb_rev2_xspiboot.img

Note:
Use the following command if the SD card is formatted/created using Layerscape LDP flex-installer
command:

=> load <interface> [<dev[:part]> [<addr> [<filename> [bytes [pos]]]]]

For example:

For LX2160A Rev2:
=> load mmc 0:2 $load_addr firmware_lx2160ardb_rev2_xspiboot.img

Use the following command if the SD card is formatted/created on a Windows PC:

=> fatload <interface> [<dev[:part]> [<addr> [<filename> [bytes [pos]]]]]

For example:

For LX2160A Rev2:
=> fatload mmc 0:2 $load_addr firmware_lx2160ardb_rev2_xspiboot.img

Use the following command if the SD card is formatted/created on a Linux PC:

=> ext2load <interface> [<dev[:part]> [<addr> [<filename> [bytes [pos]]]]]

For example:

For LX2160A Rev2:
=> ext2load mmc 0:2 $load_addr firmware_lx2160ardb_rev2_xspiboot.img

Also note that Layerscape LDP flex-installer command puts the images on the second partition, so 0:2 is
used in the load command. If the SD card is formatted on Windows PC or Linux PC for single partition only,
then 0 should be used instead of 0:2 in the fatload/ext2load command.

4. Program the firmware to FlexSPI NOR flash 1.

=> sf probe 0:1 => sf erase 0 +$filesize && sf write $load_addr 0 $filesize

5. Reset and boot the board from FlexSPI NOR flash 1. The system will automatically boot up TinyDistro (log
in using root/root) or Layerscape LDP distro (log in using user/user) available on the removable storage
device.

=> qixis_reset altbank

To program Layerscape LDP composite firmware image to SD/eMMC on LX2160ARDB Rev2:

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
88 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

1. Copy firmware on host machine to tftp server.
For SD boot:

For LX2160A Rev2:
$ cp <build>/tmp/deploy/image/lx2160ardb/firmware_lx2160ardb-rev2_sdboot.img
 ~/tftp/

For eMMC boot:

$ cp <build>/tmp/deploy/image/lx2160ardb/firmware_lx2160ardb-
rev2_emmcboot.img ~/tftp/

2. Reboot the board from FlexSPI NOR flash 0 and stop autoboot to enter U-Boot prompt.
3. Under U-Boot, download the firmware to the reference board using one of the following options:

• Load firmware from the TFTP server
For SD boot:

=> tftp $load_addr firmware_lx2160ardb_rev2_sdboot.img

For eMMC boot:

=> tftp $load_addr firmware_lx2160ardb_rev2_emmcboot.img

Load firmware image from partition on mass storage device (SD, USB, or SATA)
For SD boot:

=> load mmc <dev:part> $load_addr firmware_lx2160ardb_rev2_sdboot.img

For example:

=> load mmc 0:2 $load_addr firmware_lx2160ardb_rev2_sdboot.img

or

=> load usb <dev:part> $load_addr firmware_lx2160ardb_rev2_sdboot.img

or

=> load scsi <dev:part> $load_addr firmware_lx2160ardb_rev2_sdboot.img

For eMMC boot:

=> load mmc <dev:part> $load_addr firmware_lx2160ardb_rev2_emmcboot.img

For example:

=> load mmc 0:2 $load_addr firmware_lx2160ardb_rev2_emmcboot.img

or

=> load usb <dev:part> $load_addr firmware_lx2160ardb_rev2_emmcboot.img

or

=> load scsi <dev:part> $load_addr firmware_lx2160ardb_rev2_emmcboot.img

Note:
Use the following command if the SD/eMMC card is formatted/created using Layerscape LDP flex-installer
command:

=> load <interface> [<dev[:part]> [<addr> [<filename> [bytes [pos]]]]]

For example:

=> load mmc 0:2 $load_addr firmware_lx2160ardb_rev2_sdboot.img

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
89 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Use the following command if the SD card is formatted/created on a Windows PC:

=> fatload <interface> [<dev[:part]> [<addr> [<filename> [bytes [pos]]]]]

For example:

=> fatload mmc 0:2 $load_addr firmware_lx2160ardb_rev2_sdboot.img

Use the following command if the SD card is formatted/created on a Linux PC:

=> ext2load <interface> [<dev[:part]> [<addr> [<filename> [bytes [pos]]]]]

For example:

=> ext2load mmc 0:2 $load_addr firmware_lx2160ardb_rev2_sdboot.img

Also note that Layerscape LDP flex-installer command puts the images on the second partition, so 0:2 is
used in the load command. If the SD card is formatted on Windows PC or Linux PC for single partition only,
then 0 should be used instead of 0:2 in the fatload/ext2load command.

4. Program the firmware to SD card.

=> mmc dev 0; mmc write $load_addr 8 1fff8

5. Program the firmware to eMMC card.

=> mmc dev 1; mmc write $load_addr 8 1fff8

6. Reset and boot the board from SD card. The system will automatically boot up TinyDistro (log in using root/
root) or Layerscape LDP distro (log in using user/user) available on the removable storage device.
For SD boot:

=> qixis_reset sd

For eMMC boot:

=> qixis_reset emmc

3.7.10.5 Bringing up DPPA2 network interfaces

This section describes the procedure to bring up DPAA2 network interfaces.

3.7.10.5.1 Use Linux commands to list network interfaces

The Linux distribution boots with a default DPL file which enables only one network interface on DPAA2 by
default as a standard kernel Ethernet interface. Run the following standard Linux command to get a list of
enabled interfaces.

$ ip link show

The default interface is named eth0 (or eth1 if a PCI Express network interface card is discovered first).

3.7.10.5.2 Use restool wrapper scripts to list DPAA2 objects

User-friendly wrapper scripts are provided in the release rootfs to assist with dynamic creation of DPNIs and
associated dependencies. The wrapper scripts call restool commands.

Enter the following command for a list of the available wrapper scripts:

$ls-main

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
90 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

The Ethernet interfaces have corresponding DPPA2 objects associated with them. Run the following restool
wrapper script to list the enabled data path network interface (DPNI) associated with ni0 (or ni1).

$ ls-listni
dprc.1/dpni.1 (interface: eth0, end point: dpmac.2)
dprc.1/dpni.0 (interface: eth1, end point: dpmac.17)

This indicates that the data path network interface named dpni.0 which belongs to the DPAA2 resource
container dprc.1 is present. This DPNI object corresponds to the interface named ni0 which is connected to
dpmac.17.

The following command can be used to list all DPMAC objects present in the system and what they are
connected to (if anything).

$ ls-listmac
dprc.1/dpmac.18
dprc.1/dpmac.17 (end point: dpni.0)
dprc.1/dpmac.6
dprc.1/dpmac.5
dprc.1/dpmac.4
dprc.1/dpmac.3
dprc.1/dpmac.2 (end point: dpni.1)

For more information on DPAA2 objects and restool, see Section 7.3.

3.7.10.5.3 Add and destroy network interfaces

As mentioned in previous sections, interface ni0 corresponds to the data path network interface dpni.0 which is
the only ones enabled by default DPL file. However, users may need more network interface enabled. Additional
and fully featured DPNI objects can be created using restool. Once these objects are created, the configuration
can be saved to a custom DPL file.

Running the command below is the simplest way of adding a DPNI object and connecting it to a DPMAC. In this
example DPNI object is being connected to dpmac.4 using default options and arguments.

$ ls-addni dpmac.4
Created interface: ni2 (object:dpni.2, endpoint: dpmac.4)

Run the following command to display information about the newly created dpni.2 interface. The number of
queues is shown to be 16, one queue per core for 16 cores which can receive traffic.

$ restool dpni info dpni.2
dpni version: 7.8
dpni id: 2
plugged state: plugged
endpoint state: 0
endpoint: dpmac.4, link is down
link status: 0 - down
mac address: ae:ff:05:f9:8e:02
dpni_attr.options value is: 0
num_queues: 16
num_rx_tcs: 1
num_tx_tcs: 1
mac_entries: 16
vlan_entries: 0
qos_entries: 0
fs_entries: 64

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
91 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

qos_key_size: 0
fs_key_size: 56
ingress_all_frames: 0
ingress_all_bytes: 0
ingress_multicast_frames: 0
ingress_multicast_bytes: 0
ingress_broadcast_frames: 0
ingress_broadcast_bytes: 0
egress_all_frames: 0
egress_all_bytes: 0
egress_multicast_frames: 0
egress_multicast_bytes: 0
egress_broadcast_frames: 0
egress_broadcast_bytes: 0
ingress_filtered_frames: 0
ingress_discarded_frames: 0
ingress_nobuffer_discards: 0
egress_discarded_frames: 0
egress_confirmed_frames: 0

If you want to connect DPMAC17 (which is connected to dpni.0 by default) to a fully-featured data path network
interface, then you must first unbind and destroy the existing interface by using the commands below.

Unbind dpni.0 from the driver

$ echo dpni.0 > /sys/bus/fsl-mc/drivers/fsl_dpaa2_eth/unbind

Destroy data path network interface dpni.0

$ restool dpni destroy dpni.0
dpni.0 is destroyed

Now add back dpmac.17 using the command below. Even though dpmac.17 is again connected to dpni.0,
dpni.0 now uses 16 queues for traffic distribution.

$ ls-addni dpmac.17
Created interface: ni0 (object:dpni.0, endpoint: dpmac.17)

3.7.10.5.4 Save configuration to a custom DPL file (Optional)

Once the additional DPNI objects are created, a custom DPL file can be generated using the following
command. This DPL file has a *.dts format and is created on the reference board.

$ restool dprc generate-dpl dprc.1 > <file_name>.dts

The resulting *.dts file must be compiled using the dtc tool to generate a .dtb file. Copy this file to a Linux host
machine or server using SCP and run the following command to convert it to a .dtb file.

$ dtc -I dts -O dtb <file_name>.dts -o <file_name>.dtb

The newly created DPL file can be flashed on to the board and used to boot to Linux.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
92 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

3.7.10.5.5 Assign IP addresses to network interfaces

Static IP addresses can be assigned to network interfaces using the standard ifconfig or ip commands.

$ ifconfig <interface_name_in_Linux> <ip_address>
OR
$ ip address add <ip_address> dev <interface_name_in_linux>

Alternatively, Static IP addresses can also be assigned using netplan. Create a file called “config.yaml” in /
etc/netplan. Using a text editor, add the following lines to this config file and save it.

network:
 version: 2
 renderer: networkd
 ethernets:
 <interface_name_in_Linux>:
 addresses:
 - <ip_address>/24

After saving this file, run the following command to apply this netplan configuration and then reboot the board.

$ sudo netplan apply

Once the board reboots, bring up the desired interface by using “ifconfig <interface_name_in_Linux>
up” or “ ip link set <interface_name_in_Linux> up” command. The interface is assigned the IP
address that was entered in the “ config.yaml” file.

Netplan can also be used for dynamic IP address assignment using DHCP. For dynamic IP assignment, replace
the contents of the config.yaml file with the following.

network:
 version: 2
 renderer: networkd
 ethernets:
 <interface_name_in_Linux>:
 dhcp4: true

Follow the same procedure as for the static IP assignment using Netplan after saving the “config.yaml” file.

3.7.11 Quick start guide for LX2162AQDS

This section explains:

• Introduction
• LX2162AQDS reference information
• LX2162AQDS recovery information
• Program Layerscape LDP composite firmware image

3.7.11.1 Introduction

The following sections describe the procedure to program Layerscape LDP composite firmware for
LX2162AQDS. Also, this section explains the most common use case procedure to download and deploy
Layerscape LDP default images to LX2162AQDS using flex-installer. For more information, see Section 3.2.

For more information on the different components of the board, and on how to configure and boot the board,
see LX2162A Reference Design Board Getting Started Guide.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
93 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

3.7.11.2 LX2162AQDS reference information

This section provides general information about LX2162AQDS which may come in handy as a reference while
completing steps for deploying Layerscape LDP that follow.

3.7.11.2.1 Ethernet port map

Mezzanine Card Port name dpmac Port name in U-
Boot

Port name in Tiny
Distro

Port name in
Linux

dpmac.3 DPMAC3@25g-aui eth5 eth5

dpmac.4 DPMAC4@25g-aui eth4 eth4

dpmac.5 DPMAC5@25g-aui eth3 eth3

X-M8-100G
(25G, 100G)

QSFP28 Cage

dpmac.6 DPMAC6@25g-aui eth2 eth2

Port 0 dpmac.3 DPMAC3@xgmii eth5 eth5

Port 1 dpmac.4 DPMAC4@xgmii eth4 eth4

Port 2 dpmac.5 DPMAC5@xgmii eth3 eth3

X-M11-USXGMII
(10G)

Port 3 dpmac.6 DPMAC6@xgmii eth2 eth2

SFP+ 1 dpmac.3 NA eth5 eth5

SFP+ 2 dpmac.4 NA eth4 eth4

SFP+ 3 dpmac.5 NA eth3 eth3

X-M12-XFI
(10G)

SFP+ 4 dpmac.6 NA eth2 eth2

NA
(1G)

RGMII1_BOTTOM dpmac.17 DPMAC17@rgmii-
id

eth1 eth1

NA
(1G)

RGMII2_TOP dpmac.18 DPMAC18@rgmii-
id

eth0 eth0

Note:

• Assume that there is no PCIe NIC connected.
• Interface name is not fixed in LX2162AQDS, depending upon which interface is active, name will be assigned.

Interface names can be checked using ls-listni command.

root@TinyDistro:~# ls-listni
dprc.1/dpni.5 (interface: eth1, end point: dpmac.18)
dprc.1/dpni.4 (interface: eth2, end point: dpmac.17)
dprc.1/dpni.3 (interface: eth3, end point: dpmac.6)
dprc.1/dpni.2 (interface: eth4, end point: dpmac.5)
dprc.1/dpni.1 (interface: eth5, end point: dpmac.4)
dprc.1/dpni.0 (interface: eth6, end point: dpmac.3)

3.7.11.2.2 System memory map

For LX2162A system map, see LX2162A Reference Manual.

LX2162A RM is available only under a non-disclosure agreement (NDA). To request access, contact your local
NXP field applications engineer (FAE) or sales representative.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
94 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

3.7.11.2.3 Supported boot options

LX2162AQDS supports the following boot options:

• FlexSPI NOR flash (referred to as "XSPI" or "XSPI flash" in the following sections). CS refers to Chip Select.
• eMMC

(SDHC2)
• SD card (SDHC1)

3.7.11.2.4 Onboard switch options

The board has user selectable switches for evaluating different boot options for the LX2162A device as given in
the table below ('0' is OFF, '1' is ON).

SW6[6:8] XSPI device map SW_XMAP[2:0]:

• 000: Boot the board from XSPI
device 0 (default setting)

• 001: Boot the board from XSPI
device 1

• 010: Boot the board from QSPI
emulator

SW1[5:8] RCW location

CFG_RCW_SRC[3:0]

SW_RCWSRC[3:0]

• 1000: SDHC1: SD card
• 1001: SDHC2: eMMC
• 1010: I2C (extended addressing)
• 1100: XSPI1A: XSPI serial NAND

2 kB pages
• 1101: XSPI1A: XSPI serial NAND

4 KB pages
• 1111: XSPI1A: XSPI serial NOR

24-bit addressing (default setting)
• 0xxx: Hardcoded RCW

In addition to the above switch settings, make sure that the following jumper settings are correct.

Jumper identifier Name Type Description

J3 FORCE ATX_ON 1x2-pin header • Open: For Normal operation (default setting)
• Short: To force ATX-PS ON at logic low

J8 VDD_LP_BAT 1x2-pin header • Open: VDD_LP_BAT disabled (default
setting)

• Short: VDD_LP_BAT enabled

J9 TA_BB_TMP_DET 1x2-pin header • Open: Disconnected (default setting)
• Short: Connected

J13 HOTRST 1x2-pin header • Open: Power-on FPGA reset (default setting)
• Short: Manual FPGA reset

J34 PROG_MTR 1x2-pin header • Open: LX2162A PROG_MTR pin powered
down (default setting)

Table 16. Default jumper settings

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
95 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Jumper identifier Name Type Description
• Short: Connect 1.8 V to LX2162A PROG_

MTR pin

J35 PROG_SFP 1x2-pin header • Open: LX2162A PROG_SFP pin powered
down (default setting)

• Short: Connect 1.8 V to LX2162A PROG_
SFP pin

J37 FA_VDD 1x2-pin header • Open: FA1_CVL = 0 V (default setting)
• Short: FA1_CVL = VDD

J38 USB1_ID 1x2-pin header • Open: Device mode
• Short: Host mode (default setting)

J58 UART_LOOPBACK 2x3-pin header • Short pins 1-3, 2-4: Self loopback for UART3
and UART4

• Short pins 1-2, 3-4: Cross connection
between UART3 and UART4

J135 6901_MODE_SEL 1x2-pin header • Open: 5P49V6901 is configured by I2C
programming (default setting)

• Short: Reserved

J136 FA_VDDH 1x2-pin header • Open: FA2_DVL = 0 V (default setting)
• Short: FA2_DVL = OVDD

Table 16. Default jumper settings...continued

3.7.11.2.5 FlexSPI NOR Flash Chip-select

FlexSPI NOR flash is a simple and convenient destination for deploying images so it is frequently used.

The benefit of this feature is that it allows more than one set of images to be independently deployed to the
one NOR flash. It is helpful during development because you can use the U-Boot image in one chip-select
to program an image set into a different chip-select. If the new images are flawed, the old images are still
functional to let you deploy corrected images.

The logic on the board usually allows the NOR flash to be accessed from different CS (chip select) option. Each
CS is connected to dedicated NOR flash devices, those CS are called, DEV#0 and DEV#1. U-Boot prints which
CS is loaded from. The output looks like following:

U-Boot 2022.04+fsl+g181859317b (Nov 15 2022 - 06:28:05 +0000)
SoC: LX2162ACE Rev2.0 (0x87360820)
Clock Configuration:
 CPU0(A72):2000 MHz CPU1(A72):2000 MHz CPU2(A72):2000 MHz
 CPU3(A72):2000 MHz CPU4(A72):2000 MHz CPU5(A72):2000 MHz
 CPU6(A72):2000 MHz CPU7(A72):2000 MHz CPU8(A72):2000 MHz
 CPU9(A72):2000 MHz CPU10(A72):2000 MHz CPU11(A72):2000 MHz
 CPU12(A72):2000 MHz CPU13(A72):2000 MHz CPU14(A72):2000 MHz
 CPU15(A72):2000 MHz
 Bus: 650 MHz DDR: 2900 MT/s
Reset Configuration Word (RCW):
 00000000: 50777734 20500050 00000000 00000000
 00000010: 00000000 0c010000 00000000 00000000
 00000020: 38c001a0 00002580 00000000 00000096
 00000030: 00000000 00000000 00000000 00000000
 00000040: 00000000 00000000 00000000 00000000
 00000050: 00000000 00000000 00000000 00000000
 00000060: 00000000 00000000 00027000 00000000
 00000070: 00510036 00050003

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
96 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Model: NXP Layerscape LX2160AQDS Board (DTS 17.x)
Board: LX2162ACE Rev2.0-QDS, Board version: A, boot from SD
FPGA: v1 (LX2162AQDS_2020_0609_0802), build 265 on Tue Jun 09 13:02:54 2020

Boot option switching can be performed in U-Boot using the following statements.

• Switch to FlexSPI NOR flash 0 (default):

=> qixis_reset

• Switch to FlexSPI NOR flash 1:

=> qixis_reset altbank

• Switch to SD:

=> qixis_reset sd

• Switch to eMMC:

=> qixis_reset emmc

3.7.11.2.6 U-Boot Environment Variables

For more information on U-Boot distro boot command, see Section 4.3.2.

DPAA2-specific Environment Variables

• mcboottimeout: Defines Management Complex boot timeout in milliseconds. If this variable is not defined
the compile-time value, CONFIG_SYS_LS_MC_BOOT_TIMEOUT_MS will be the default. Normally, users do not
need to set this variable because the default is acceptable.

• mcmemsize: Defines amount of system DDR to be use by the Management Complex. If this variable is not
defined, the compile-time value CONFIG_SYS_LS_MC_DRAM_BLOCK_MIN_SIZE will be the default. Normally,
users do not need to set this variable because the default is acceptable.

• mcinitcmd: Contains commands to load and start the Management Complex automatically before the U-
Boot count down to boot starts. If this variable is defined, its contents are run. The default value assumes
that the Management Complex (MC) firmware and Data Path Control file are stored in FlexSPI flash at
fixed addresses. The default value for FlexSPI boot is sf probe 0:0 && sf read 0x80640000
0x640000 0x80000 && env exists secureboot && esbc_validate 0x80640000 &&
esbc_validate 0x80680000; sf read 0x80a00000 0xa00000 0x300000 && sf read
0x80e00000 0xe00000 0x100000; fsl_mc start mc 0x80a00000 0x80e00000l_mc start mc
0x20a00000 0x20e00000. Users may change this variable as needed to load the MC files from sources
other than FlexSPI into DDR and then start the MC using the fsl_mc command. For example, the files may be
on a disk drive.

Environment variables that are not specific to DPAA2

bootcmd: Contains commands that are automatically executed when the U-Boot "boot" command is run. This
happens automatically when the user does not interrupt U-Boot initial count down. In normal usage, bootcmd
should contain the command to apply the Management Complex Data Path Layout (DPL) file because this must
be done before booting Linux. The default value of bootcmd assumes that the DPL file is stored in FlexSPI
flash at a fixed address. The default is sf probe 0:0; sf read 0x806c0000 0x6c0000 0x40000;
env exists mcinitcmd && env exists secureboot && esbc_validate 0x806c0000; sf
read 0x80d00000 0xd00000 0x100000; env exists mcinitcmd && fsl_mc lazyapply
dpl 0x80d00000; run distro_bootcmd;run xspi_bootcmd; env exists secureboot &&
esbc_halt

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
97 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

3.7.11.2.7 SDHC adapter cards configuration

The following tables show the RCW, QIXIS FPGA register details for various SDHC/eMMC adapters used with
LX2162AQDS.

Adapter Board MUX RCW

Agile P/N Agile
Name

CARD_
ID

BRD
CFG5

BRD
CFG11

IIC2_
PMUX
(RCW
[354-
352])

IIC5_
PMUX
(RCW
[363-
361])

SDHC1_
BASE_
PMUX
(RCW
[378-
376])

SDHC1_
DIR_
PMUX
(RCW
[381-
379])

SDHC1_
DS_
PMUX
(RCW
[839-
838])

SW9
[8]

HW
Changes

Remark

31421 EMMC-51-
ADAP

0b000 0x20 0x0 0b000 0bxxx 0b100
(8-bit)

0b100
(8-bit)

0b00 0 On
adapter,
put
shunt
across
pins
2 and
3 on
header
J1

28074 EMMC-45-
ADAP

0b001 0x20 0x0 0b000 0bxxx 0b000
or
0b011
(4-bit) /
0b100
(8-bit)

0bxxx
(4-bit) /
0b100(8-
bit)

0bxx 0 On
adapter,
put
shunt
across
pins
2 and
3 on
header
J1

28056 SD-MMC-
ADAPTOR

0b010 0x60 0x0 0b110 0bxxx 0b000
or
0b011
(4-bit)

0bxxx
(4-bit)

0bxx 1

28075 EMMC-44-
ADAP

0b011 0x20 0x0 0b000 0b010 0b000
or
0b011
(4-bit)

0bxxx
(4-bit)

0bxx 0 Unmount
R874
and
mount
R261

On
adapter,
put
shunt
across
pins
2 and
3 on
header
J1

29730 EMMC-50-
ADAP

0b100 0x20 0x0 0b000 0bxxx 0b100
(8-bit)

0b100
(8-bit)

0b00 0 On
adapter,
put
shunt
across
pins
2 and

Table 17. SDHC1 CONTROLLER#1

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
98 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Adapter Board MUX RCW

Agile P/N Agile
Name

CARD_
ID

BRD
CFG5

BRD
CFG11

IIC2_
PMUX
(RCW
[354-
352])

IIC5_
PMUX
(RCW
[363-
361])

SDHC1_
BASE_
PMUX
(RCW
[378-
376])

SDHC1_
DIR_
PMUX
(RCW
[381-
379])

SDHC1_
DS_
PMUX
(RCW
[839-
838])

SW9
[8]

HW
Changes

Remark

3 on
header
J1

28073 MMC-
ADAPTOR

0b101 0x60 0x0 0b110 0bxxx 0b000
or
0b011
(4-bit) /
0b100
(8-bit)

0bxxx
(4-bit) /
0b100(8-
bit)

0bxx 0

28072 SD-2-3-
ADAPTOR

0b110 0x60 0x30 0b110 0bxxx 0b000
(4-bit)

0bxxx
(4-bit)

0bxx 1

Table 17. SDHC1 CONTROLLER#1...continued

Adapter Board MUX RCW

Agile P/
N

Agile Name CARD_ID BRDCFG13 IIC6_PMUX
(RCW[366-
364])

SDHC2_
BASE_PMUX
(RCW[389-
387])

SDHC2_
DAT74_PMUX
(RCW[386-
384])

HW
Changes

Remark

31421 EMMC-51-
ADAP

0b000 0x0 0bxxx 0b000 0b000 On adapter,
put shunt
across pins
2 and 3 on
header J1

28074 EMMC-45-
ADAP

0b001 0x0 0bxxx 0b000 0b000 On adapter,
put shunt
across pins
2 and 3 on
header J1

28075 EMMC-44-
ADAP

0b011 0x0 0b010 0b000 0b000 Unmount
R875
and
mount
R260

On adapter,
put shunt
across pins
2 and 3 on
header J1

29730 EMMC-50-
ADAP

0b100 0x0 0bxxx 0b000 0b000 On adapter,
put shunt
across pins
2 and 3 on
header J1

28073 MMC-
ADAPTOR

0b101 0x0 0bxxx 0b000 0b000

Table 18. SDHC1 CONTROLLER#2

The following table shows the SDHC adapter cards supported by default software.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
99 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

SDHC adapter card Highest speed mode

eSDHC1 SD card revision 2.0/3.0 UHS-I

eMMC card revision 5.1 HS400

eMMC card revision 4.5 HS200

eMMC card revision 4.4 High speed

eMMC card revision 5.0 HS400

eSDHC2

MMC card and legacy (3.3V) SD card Default speed
(Adapter limits to use only MMC and
legacy SD card)

Other SDHC adapter cards and software configuration

The other SDHC adapter cards for eSDHC1 could work at 4-bit high-speed mode with default software (except
SD/MMC card needing configuration to work). To get the best r/w performance, refer the following table for
software configuration.

eSDHC1

SDHC adapter card RCW changes Device tree node changes Highest speed mode

eMMC card revision 5.1 SDHC1_DIR_PMUX=4 mmc-hs200-1_8v;
mmc-hs400-1_8v;
bus-width = <8>;

HS400

eMMC card revision 4.5 For 8-bit width
SDHC1_DIR_PMUX=4

mmc-hs200-1_8v;
For 8-bit width
bus-width = <8>;

HS200

SD/MMC card For 8-bit width
SDHC1_DIR_PMUX=4

Remove propertiessd-uhs-
sdr104;
sd-uhs-sdr50;
sd-uhs-sdr25;
sd-uhs-sdr12; For 8-bit
width
bus-width = <8>;

High speed

eMMC card revision 4.4 For 8-bit width
SDHC1_DIR_PMUX=4

For 8-bit width
bus-width = <8>;

High speed

eMMC card revision 5.0 SDHC1_DIR_PMUX=4 mmc-hs200-1_8v;
mmc-hs400-1_8v;
bus-width = <8>;

HS400

MMC card and legacy (3.3V)
SD card

For 8-bit width
SDHC1_DIR_PMUX=4

For 8-bit width
bus-width = <8>;

Default speed
(Adapter limits to use only
MMC and legacy SD card)

3.7.11.3 LX2162AQDS recovery information

If LX2162AQDS board fails to boot from XSPI NOR bank #0, you can recover XSPI NOR bank #0 from XSPI
NOR bank #1 by following these steps:

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
100 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

1. Download the prebuilt composite firmware image:

$ cp <build>/tmp/deploy/image/ls1043ardb/firmware_lx2162aqds_xspiboot.img ~/
tftp

2. Boot LX2162AQDS from XSPI NOR bank #1 with the following switch setting:
• SW1[1:8] = 00001111
• SW6[6:8] = 001

3. Program XSPI NOR bank #0 from XSPI NOR bank #1:

=> i2c mw 66 50 00; sf probe 0:0
=> tftp $load_addr firmware_lx2162aqds_xspiboot.img
=> sf erase 0x0 +$filesize && sf write $load_addr 0x0 $filesize

4. Change switch setting back to default:
• SW1[1:8] = 00001111
• SW6[6:8] = 000

5. Reset the board, board should boot from XSPI NOR bank #0:

=> reset

Note: If LX2162AQDS fails to boot from both the FlexSPI NOR flash banks, you need to recover the board
using CodeWarrior for LS Series, Arm v8 ISA. For steps to recover the board using the CodeWarrior tool, see
the Board Recover section in ARM V8 ISA, Targeting Manual.

3.7.11.4 Program Layerscape LDP composite firmware image

This topic explains steps to program FlexSPI NOR firmware image to FlexSPI NOR flash on LX2162AQDS and
SD/eMMC firmware image to SD/eMMC card on LX2162AQDS.

To program Layerscape LDP composite firmware image to FlexSPI NOR flash on LX2162AQDS:

1. Copy firmware on host machine to TFTP server.

$ cp <build>/tmp/deploy/image/lx2162aqds/firmware_lx2162aqds_qspiboot.img ~/
tftp/

2. Reboot the board from FlexSPI NOR flash 0 and stop autoboot to enter U-Boot prompt.
3. Under U-Boot, download the firmware to the reference board using one of the following options:

• Load firmware from the TFTP server

=> tftp $load_addr firmware_lx2162aqds_xspiboot.img

• Load firmware image from partition on mass storage device (SD, USB, or SATA)

=> load mmc <device:part> $load_addr firmware_lx2162aqds_xspiboot.img

For example:

=> load mmc 0:2 $load_addr firmware_lx2162aqds_xspiboot.img

or

=> load usb <device:part> $load_addr firmware_lx2162aqds_xspiboot.img

or

=> load scsi <device:part> $load_addr firmware_lx2162aqds_xspiboot.img

Note:

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
101 / 1061

https://www.nxp.com/docs/en/user-guide/CWARMv8TM.pdf

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Use the following command if the SD card is formatted/created using Layerscape LDP flex-installer
command:

=> load <interface> [<dev[:part]> [<addr> [<filename> [bytes [pos]]]]]

For example:

=> load mmc 0:2 $load_addr firmware_lx2162aqds_xspiboot.img

Use the following command if the SD card is formatted/created on a Windows PC:

=> fatload <interface> [<dev[:part]> [<addr> [<filename> [bytes [pos]]]]]

For example:

=> fatload mmc 0:2 $load_addr firmware_lx2162aqds_xspiboot.img

Use the following command if the SD card is formatted/created on a Linux PC:

=> ext2load <interface> [<dev[:part]> [<addr> [<filename> [bytes [pos]]]]]

For example:

=> ext2load mmc 0:2 $load_addr firmware_lx2162aqds_xspiboot.img

Also note that Layerscape LDP flex-installer command puts the images on the second partition, so 0:2
is used in the load command. If the SD card is formatted on Windows PC or Linux PC for single partition
only, then 0 should be used instead of 0:2 in the fatload/ext2load command.

4. Program the firmware to FlexSPI NOR flash 1.

=> i2c mw 66 50 20; sf probe 0:0 => sf erase 0 +$filesize && sf write
 $load_addr 0 $filesize

5. Reset and boot the board from FlexSPI NOR flash 1. The system will automatically boot up TinyDistro (log
in using root/root) or Layerscape LDP distro (log in using user/user) available on the removable storage
device.

=> qixis_reset altbank

To program Layerscape LDP composite firmware image to SD/eMMC on LX2162AQDS:

1. Copy firmware on host machine to tftp server.
For SD boot:

$ cp <build>/tmp/deploy/image/lx2162aqds/firmware_llx2162aqds_sdboot.img ~/
tftp/

For eMMC boot:

$ cp <build>/tmp/deploy/image/lx2162aqds/firmware_llx2162aqds_emmcboot.img ~/
tftp/

2. Reboot the board from FlexSPI NOR flash 0 and stop autoboot to enter U-Boot prompt.
3. Under U-Boot, download the firmware to the reference board using one of the following options:

• Load firmware from the TFTP server
For SD boot:

=> tftp $load_addr firmware_lx2162aqds_sdboot.img

For eMMC boot:

=> tftp $load_addr firmware_lx2162aqds_emmcboot.img

• Load firmware image from partition on mass storage device (SD, USB, or SATA)

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
102 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

For SD boot:

=> load mmc <device:part> $load_addr firmware_lx2162aqds_sdboot.img

For example:

=> load mmc 0:2 $load_addr firmware_lx2162aqds_sdboot.img

or

=> load usb <device:part> $load_addr firmware_lx2162aqds_sdboot.img

=> load scsi <device:part> $load_addr firmware_lx2162aqds_sdboot.img

For eMMC boot:

=> load mmc <device:part> $load_addr firmware_lx2162aqds_emmcboot.img

For example:

=> load mmc 0:2 $load_addr firmware_lx2162aqds_emmcboot.img

or

=> load usb <device:part> $load_addr firmware_lx2162aqds_emmcboot.img

or

=> load scsi <device:part> $load_addr firmware_lx2162aqd_emmcboot.img

Note:
Use the following command if the SD/eMMC card is formatted/created using Layerscape LDP flex-installer
command:

=> load <interface> [<dev[:part]> [<addr> [<filename> [bytes [pos]]]]]

For example:

=> load mmc 0:2 $load_addr firmware_lx2162aqds_sdboot.img

Use the following command if the SD card is formatted/created on a Windows PC:

=> fatload <interface> [<dev[:part]> [<addr> [<filename> [bytes [pos]]]]]

For example:

=> fatload mmc 0:2 $load_addr firmware_lx2162aqds_sdboot.img

Use the following command if the SD card is formatted/created on a Linux PC:

=> ext2load <interface> [<dev[:part]> [<addr> [<filename> [bytes [pos]]]]]

For example:

=> ext2load mmc 0:2 $load_addr firmware_lx2162aqds_sdboot.img

Also note that Layerscape LDP flex-installer command puts the images on the second partition, so 0:2
is used in the load command. If the SD card is formatted on Windows PC or Linux PC for single partition
only, then 0 should be used instead of 0:2 in the fatload/ext2load command.

4. Program the firmware to SD card.

=> mmc dev 0; mmc write $load_addr 8 1fff8

5. Program the firmware to eMMC card.

=> mmc dev 1; mmc write $load_addr 8 1fff8

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
103 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

6. Reset and boot the board from SD card. The system will automatically boot up TinyDistro (log in using root/
root) or Layerscape LDP distro (log in using user/user) available on the removable storage device.
For SD boot:

=> qixis_reset sd

For eMMC boot:

=> qixis_reset emmc

3.8 Layerscape LDP memory layout and userland

3.8.1 Flash layout

The following table shows the memory layout of various firmwares stored in NOR/NAND/QSPI/XSPI flash
device or SD card on all Layerscape Reference Design Boards.

Note: When the board boots from NOR flash, the NOR bank from which the board boots is considered as the
"current bank" and the other bank is considered as the "alternate bank". For example, if LS1043ARDB boots
from NOR bank 4, to update an image on NOR bank 0, you need to use the "alternate bank" address range,
0x64000000 - 0x64F00000.

Firmware Definition MaxSize Flash Offset
(QSPI/XSPI/
NAND flash)

Absolute
address (NOR
current bank
on LS1043
ARDB, TWR-
LS1021A)

Absolute
address
(NOR
alternate
bank on
LS1043
ARDB, TWR-
LS1021A)

Absolute
address
(NOR current
bank on
LS2088
ARDB)

Absolute
address
(NOR
alternate
bank on
LS2088
ARDB)

SD
start
block
no.

RCW + PBI + BL2
(bl2_<boot_mode>.
pbl)[1]

1MiB[2] 0x00000000 0x60000000 0x64000000 0x580000000 0x584000000 0x00008

TF-A FIP image (BL31
+ TEE (BL32) + U-
Boot/UEFI (Bl33)) (fip.
bin)[3]

4MiB 0x00100000 0x60100000 0x64100000 0x580100000 0x584100000 0x00800

Boot firmware
environment

1MiB 0x00500000 0x60500000 0x64500000 0x580500000 0x584500000 0x02800

Secure boot headers 128KiB 0x00600000 0x60600000 0x64600000 0x580600000 0x584600000 0x03000

DDR PHY FW or
reserved

512KiB 0x00800000 0x60800000 0x64800000 0x580800000 0x584800000 0x04000

Fuse provisioning
header

512KiB 0x00880000 0x60880000 0x64880000 0x580880000 0x584880000 0x04400

DPAA1 FMan
microcode

256KiB 0x00900000 0x60900000 0x64900000 0x580900000 0x584900000 0x04800

QE firmware or DP
firmware

256KiB 0x00940000 0x60940000 0x64940000 0x580940000 0x584940000 0x04A00

Ethernet PHY firmware 256KiB 0x00980000 0x60980000 0x64980000 0x580980000 0x584980000 0x04C00

Table 19. Unified 64 MiB memory layout of NOR/QSPI/XSPI/NAND/SD media for composite firmware on all
Layerscape platforms

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
104 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Firmware Definition MaxSize Flash Offset
(QSPI/XSPI/
NAND flash)

Absolute
address (NOR
current bank
on LS1043
ARDB, TWR-
LS1021A)

Absolute
address
(NOR
alternate
bank on
LS1043
ARDB, TWR-
LS1021A)

Absolute
address
(NOR current
bank on
LS2088
ARDB)

Absolute
address
(NOR
alternate
bank on
LS2088
ARDB)

SD
start
block
no.

Script for flashing
image

256KiB 0x009C0000 0x609C0000 0x649C0000 0x5809C0000 0x5849C0000 0x04E00

DPAA2-MC or PFE
firmware

3MiB 0x00A00000 0x60A00000 0x64A00000 0x580A00000 0x584A00000 0x05000

DPAA2 DPL 1MiB 0x00D00000 0x60D00000 0x64D00000 0x580D00000 0x584D00000 0x06800

DPAA2 DPC 1MiB 0x00E00000 0x60E00000 0x64E00000 0x580E00000 0x584E00000 0x07000

Device tree (needed by
UEFI)

1MiB 0x00F00000 0x60F00000 0x64F00000 0x580F00000 0x584F00000 0x07800

Kernel 16MiB 0x01000000 0x61000000 0x65000000 0x581000000 0x585000000 0x08000

Ramdisk
rfs

kernel-fsl-
<board>.itb 32MiB 0x02000000 0x62000000 0x66000000 0x582000000 0x586000000 0x10000

Table 19. Unified 64 MiB memory layout of NOR/QSPI/XSPI/NAND/SD media for composite firmware on all
Layerscape platforms...continued

[1] For any update in the BL2 source code or RCW binary, the bl2_<boot_mode>.pbl binary needs to be recompiled.
[2] For Flash device (non-SD boot), the MaxSize is 1 MB. For SD/eMMC device (SD boot), the MaxSize is 1 MB-4 KB=1020 kB
[3] For any update in the BL31, BL32, or BL33 binaries, the fip.bin binary needs to be recompiled.

Layerscape LDP composite firmware_<machine>_<bootloader>_<boottype>.img contains RCW, ATF, U-Boot/
UEFI, secure boot headers, Ethernet PHY firmware, device tree , kernel and tiny rootfs, shown in the table
above, the kernel-fsl-<board>.itb consists of kernel image, device tree of multiple reference boards, rootfs_lsdk_
yocto_tiny_arm64.cpio.gz.

Firmware definition Max size Location SD Start Block No.

RCW+PBI+BL2 (bl2_<boot_
mode>.pbl)

64 KB 0x0000_0000 - 0x0000_FFFF 0x00008

Reserved 64 KB 0x0001_0000 - 0x0001_FFFF 0x00080

PFE firmware 256 KB 0x0002_0000 - 0x0005_FFFF 0x00100

FIP (BL31+BL32+BL33) 1 MB 0x0006_0000 - 0x000D_FFFF 0x00300

Environment variables 64 KB 0x001D_0000 - 0x001D_FFFF 0x00E80

Reserved 64 KB 0x001E_0000 - 0x001E_FFFF 0x00F00

Secureboot headers 64 KB 0x001F_0000 - 0x001F_FFFF 0x00F80

Table 20. 2MB memory layout of QSPI/SD media on Layerscape platform LS1012AFRWY

Generally, do not change the default offset of the 1st image (RCW + PBI + BL2) and the second image (TF-A
FIP image) to avoid causing the target board bricked, you can change the default offset of other images to use
your own layout by modifying the offset of various firmware by editing <bitbake-dir>/configs/board/common/
memorylayout.cfg.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
105 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

3.8.2 Storage layout on SD/USB/SATA for Layerscape LDP images deployment

With command 'flex-installer -i auto -m <machine> -d <device>', the Layerscape LDP distro can be installed
into an SD/USB/SATA storage disk which should have at least 16 GB of memory space by default as per the
following layout.

Region
1 (RAW)
4KiB

Region 2 (RAW,
only SD Boot) 64
MiB

Region 3 (Partition-
1 FAT/EXT4) 128
MiB

Region 4 (Partition-
2 EXT4) 2 GiB Boot
Partition

Region 5
(Partition-3 EXT4)
5 GiB Backup
Partition

Region 6
(Partition-4 EXT4)
Primary RFS in
rest of disk

MBR/GPT • RCW
• U-Boot or UEFI
• TF-A

firmware
• QE/uQE firmware
• FMan or MC

firmware
• DPL and DPC

firmware
• DTB
• kernel-fsl-

<board>.itb

• BOOTAA64.EFI,
grub.cfg

• or for other uses

• kernel
• dtb
• distro bootscripts
• secure boot headers
• composite firmware
• kernel-fsl-<board>.itb
• rootfs

Backup partition
or
Second distro

Layerscape LDP
Userland (Default)

Table 21. The default layout of SD/USB/SATA storage device for Layerscape LDP distro images
deployment

The default layout of target disk is done as per default "-p 4P=128M:2G:5G:-1", if different layout is needed,
you can specify '-p' option in flex-installer command, for example, flex-installer -i auto -p 4P=50M:2G:100M:-1
-m ls1046ardb -d /dev/mmcblk0. Once you changed the default partitions, it needs to set U-Boot env variable
devpart_boot for boot partition (devpart_boot=2 by default) and devpart_root for rootfs partition (devpart_root=4
by default in distro bootscript <board>_boot.scr), for example, you can run 'setenv devpart_root 3; saveenv;
boot' in U-Boot prompt to boot the target distro from partition 3 instead from the default partition 4.

If you want to change the default bootargs for kernel, you can do 'setenv othbootargs <your_new_settings>' in
U-Boot prompt to append extra bootargs option, then do 'saveenv; boot' to boot distro.

3.8.3 Layerscape LDP userland

Layerscape LDP supports different types of distro userland in various scales to adapt to a variety of use cases,
Linux distro-based rich OS userland and Yocto-based tiny userland are supported by default.

The following three flavors of Linux distro-based userland is supported:

• Layerscape LDP-based main userland：Integrates abundant networking packages from upstream main repo
and NXP's custom packages, applicable to all Layerscape platforms (prebuilt binary is downloadable).

• Layerscape LDP-based desktop userland: Integrates custom GNOME desktop packages and and NXP's
custom packages with GPU acceleration libraries for multimedia applications, applicable to LS1028A and i.MX
platforms. no prebuilt binary is distributed, users can locally generate it by Yocto bitbake, GNOME desktop
automatically launches by default, Weston doesn't automatically launch during booting up, users can manually
launch it if needed.

• Layerscape LDP-based lite userland: Integrates Linux distro base packages for smaller footprint (prebuilt
binary is downloadable).

To boot large distro from default storage device under U-Boot:

=> boot

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
106 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

To boot Layerscape LDP userland from the specified USB/SD/SATA storage device under U-Boot:

=> run bootcmd_usb0
or
=> run bootcmd_mmc1
or
=> run bootcmd_scsi0

To boot TinyLinux under U-Boot:

=> run sd_bootcmd
or
=> run nor_bootcmd
or
=> run qspi_bootcmd
or
=> run xspi_bootcmd

3.8.4 TinyDistro

The default TinyDistro kernel-fsl-<board>.itb consists of kernel, dtb, and initramfs
(rootfs_tiny_<arch>.cpio.gz). U-Boot loads it from flash device (or SD card) to RAM and boot it up from
RAM. As the size of kernel modules is too large to install it in the tiny rootfs, there is no kernel modules in the
TinyLinux by default. You can install boot_LS_<arch>_lts_<version>.tgz (in which kernel and modules
are deployed for reuse by various distros) in SD card or USB stick by flex-installer, boot the TinyLinux and then
run the command mount-modules to automatically mount the boot partition to /boot directory and symlink /
lib/modules to /boot/modules. Now the kernel modules are available, that is run "modprobe flexcan" to load the
flexcan module.

The default Layerscape LDP main userland is an Linux distro-based 22.04 hybrid userland with NXP's
packages/components and system configurations. You can choose the appropriate distro userland according to
demand.

The various userlands are shown in the following table:

3.8.5 Various distro userland details

Layerscape LDP
Userland

Userland tarball Name Size Commands for build Description

Layerscape LDP
main userland

ls-image-main-
<machine>.tar.gz

~760M $ bitbake ls-image-main Include Layerscape LDP main
packages and full NXP's networking
and security packages (without
graphics packages) for Layerscape
platforms.

Layerscape LDP lite
userland

ls-image-lite-<machine>.tar.
gz

~160M $ bitbake ls-image-lite Include Layerscape LDP base
packages and part of NXP's
packages (restool, tsntool, fmc, net-
tools, flex-installer, ccsr, and so on).

Layerscape LDP
desktop userland

ls-image-desktop-
<machine>.tar.gz

~1.1G $ bitbake ls-image-
desktop

Include Layerscape LDP GNOME
desktop packages and part
of NXP's graphics packages,
applicable to platforms integrating
GPU (for example, LS1028A and
i.MX).

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
107 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Layerscape LDP
Userland

Userland tarball Name Size Commands for build Description

Yocto-based tiny
userland

fsl-image-mfgtool-
<machine>.tar.gz

~20M $ bitbake fsl-image-
mfgtool

Include Yocto-based basic
packages and part of NXP's
packages (restool, tsntool, fmc, net-
tools, flex-installer, ccsr, and so on).

To build specific userland from source, see the sections "How to build Layerscape LDP with Yocto bitbake",
"How to build various userland with custom packages".

All the apt packages in the prebuilt Layerscape LDP main userland are from LDP main repository which are
legally reviewed as trusted origin by NXP. You can install more apt packages by sudo apt install <package-
name> command by yourself. NXP will not undertake legal liability if you publically distribute distro which
contains packages from untrusted origin, such as gstreamer1.0, python, and so on located at /usr/share.

4 Bootloaders

4.1 General boot flow

4.1.1 NXP SoC Booting Principles

The high-level boot flow of an ARMv8-A SoC is:

1. SoC comes out of reset and reads RCW/PBL image from a boot source, such as a NOR flash, SD card, or
eMMC flash. The RCW/PBL image contains configuration bits that control:
• Pin muxing and the protocol selected for SerDes pins.
• Clock parameters and PLL multipliers.
• Device containing the first software (not in an internal BootROM) to run.

2. Code in the internal BootROM starts running and configures low-level aspects of the SoC.
3. The BootROM must then load the first external software (TF-A binaries) to run from a boot device, such as

NOR flash or SD/eMMC.
a. The BootROM transfers control to BL2.
b. BL2 loads and starts bootloader from NOR flash or SD/eMMC.

Note: For more details about TF-A, see Section 4.2.
4. Usually, the bootloader must also load peripheral firmware, firmware required to make peripherals, such as

Ethernet controllers work. The details of this differ from SoC to SoC.
5. When the bootloader finishes initialization, its job is to locate a Linux kernel image and a Linux device tree

image. The device tree is a description of the board and SoC hardware that Linux uses, for example, to
know which peripherals are available for use and to associate drivers with them. Often, bootloaders do
some on-the-fly “fixups” to the device tree to pass information to Linux.
Note: For example, if you want to use PCIe device such as INTEL e1000 card in U-Boot or Linux, you can
use command "pci enum" at the U-Boot prompt.

6. In summary, the bootloader reads kernel and device tree images from memory or mass storage device.
Because bootloaders have many drivers, there are many possible choices for the location of the images.
• NOR flash (serial QSPI or parallel)
• SD card/eMMC flash
• USB mass storage devices of all types
• SATA drives of all types
• Ethernet, normally via TFTP

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
108 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

7. After the bootloader loads the kernel and device tree and does fixups, it puts kernel boot parameters and
the device tree into DDR where the kernel can find them and passes control to the kernel. One of the key
kernel parameters is “root=”. It tells the Linux kernel what device contains the user space file set (userland).
U-Boot stores kernel parameters in environment variable bootargs.

8. Because the Linux kernel supports even more device drivers than bootloaders support, the array of choices
for the userland device is even larger.
• NOR flash (serial QSPI or parallel)
• SD card/eMMC flash
• USB mass storage devices of all types.
• SATA drives of all types.
• Ethernet, normally via NFS.
• RAM disks (which the bootloader populates)
• Third-party PCIe-based mass storage devices and controllers

a. SATA controllers
b. SAS controllers
c. Fibre Channel Host Bus Adaptors
d. NVMe cards
e. And more.

Once the kernel is up, it starts userland, starting with systemd. The startup process is part of the Ubuntu file set
and conforms to normal Ubuntu procedures.

4.1.2 Notes on General Boot Principles

• Secure boot does not change the overall sequence. The significant difference is that secure boot involves
each component (starting with the BootROM) validating the images it loads and starts. This sequence of
image validations is called the “chain of trust”.

Linux often resets peripherals and reloads their firmware. This process is specific to the SoCs.

4.2 TF-A
Trusted Firmware (TF-A) is an implementation of secure world software for Armv8-A. TF-A provides trusted
code base complying with the Arm specifications. The TF-A boot flow consists of 5 individual boot stages
running at different exception levels, as explained in the following table.

The exception levels are related with Arm TrustZone technology, a mechanism that allows for hardware
resources isolation in the Arm SoC. The Arm architectures support two TrustZone modes for the cores, Secure
and Non-Secure, and this is the relation with the different Exception Levels:

• EL0, EL1, EL2: the processor can be in Secure (for example, EL1S) or Non-Secure (for example, EL1) mode.
• EL3: the processor is only allowed to be in Secure mode.

Boot stage Exception level Description

BL1 EL3 Boot ROM firmware
Note: BL1 is embedded in hardware
(Boot ROM + PBL commands)

BL2 EL3 Platform initialization firmware

BL31 EL3 Resident runtime firmware

BL32 EL1S [Optional] Trusted operating system.
For example, OP-TEE.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
109 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

BL33 EL2 Normal world bootloader. For example,
U-Boot, UEFI

TF-A boot flow

1. BootROM (BL1)
a. When the CPU is released from reset, hardware executes PBL commands that copy the BL2 binary

(bl2.bin) for platform initialization to OCRAM. The PBI commands also populate the BOOTLOC ptr to
the location where bl2.bin is copied.

b. Upon successful execution of the PBI commands, Boot ROM passes control to the BL2 image at EL3.
2. BL2

a. BL2 initializes the DRAM, configures TZASC
b. BL2 validates BL31, BL32, and BL33 images to the DDR memory after validating these images. BL31,

BL32, and BL33 images form FIP image, fip.bin.
c. Post validation of all the components of the FIP image, BL2 passes execution control to the EL3 runtime

firmware image named as “BL31”,
3. BL31

a. Sets up exception vector table at EL3
b. Configures security-related settings (TZPC)
c. Provides services to both bootloader and operating system, such as controlling core power state and

bringing additional cores out of reset
d. [Optional] Passes execution control to Trusted OS (OP-TEE) image, BL32, if BL32 image is present.

4. BL32
a. [Optional] After initialization, BL32 returns control to BL31.

5. BL31
a. Passes execution control to bootloader U-Boot/UEFI, BL33 at EL2

6. BL33
a. Loads and starts the kernel and other firmware (if any) images.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
110 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Figure 1. TF-A boot flow - stages

4.2.1 TF-A features

4.2.1.1 TF-A DDR Driver

Introduction

DDR initialization is implemented in TF-A for following platforms: LS1012A, LS1028A, LS1043A, LS1046A,
LS1088A, LS2088A, LX2160A Rev2, and LX2162A

TF-A DDR driver is part of BL2 binary and high-level boot sequence is as follows:

Boot ROM -> BL2 (DDR Init) -> BL31 -> U-boot/UEFI -> Linux Kernel

It does both DDR controller and PHY initialization.

TF-A Versions

As two different TFA versions are supported, DDR driver directory hierarchy is different for each of the TFA
versions. The following table shows the TF-A versions supported by different platforms.

Platforms TFA version

LS1012A, LS1028A, LS1043A, LS1046A, LS1088A,
LS2088A

TFA 1.5

LX2160A Rev2, LX2162A TFA 2.3

DDR Board Parameters

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
111 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

For non-LX2 platforms, DDR board configuration can be specified with following macros in the DDR driver.

Macro File Path

DDRC_NUM_DIMM Plat/nxp/<SOC>/<Board>/platform_def.h

NUM_OF_DDRC Plat/nxp/<SOC>/include/soc.h

Steps To Add DDR Driver In TFA

_init_ddr

Each platform needs to define a function _init_ddr which is in a board-specific file, for instance plat/nxp/soc-
ls1043/ ls1043ardb/ddr_init.c.

The _init_ddr function calls dram_init which calls the NXP DDR drivers initialization routine.

This function can also be used to apply DDR errata, which needs to be applied post DDR configuration.

File: ddr_init.c

long long _init_ddr(void)
{
 int spd_addr[] = { 0x51, 0x52, 0x53, 0x54 };
 struct ddr_info info;
 struct sysinfo sys;
 long long dram_size;
 zeromem(&sys, sizeof(sys));
 get_clocks(&sys);
 debug("platform clock %lu\n", sys.freq_platform);
 debug("DDR PLL1 %lu\n", sys.freq_ddr_pll0);
 debug("DDR PLL2 %lu\n", sys.freq_ddr_pll1);
 zeromem(&info, sizeof(info));
 /* Set two DDRC. Unused DDRC will be removed automatically. */
 info.num_ctlrs = 2;
 info.spd_addr = spd_addr;
 info.ddr[0] = (void *)NXP_DDR_ADDR;
 info.ddr[1] = (void *)NXP_DDR2_ADDR;
 info.phy[0] = (void *)NXP_DDR_PHY1_ADDR;
 info.phy[1] = (void *)NXP_DDR_PHY2_ADDR;
 info.clk = get_ddr_freq(&sys, 0);
 if (!info.clk)
 info.clk = get_ddr_freq(&sys, 1);
 info.dimm_on_ctlr = 2;
 dram_size = dram_init(&info);
 if (dram_size < 0)
 ERROR("DDR init failed.\n");
 return dram_size;
}

DDR Board Level Applications

The DDR driver supports the following board level applications for DDR:

• DIMM: Driver reads SPD for configuring DDR timing parameters
• Mock DIMM: Hardcoded timing in place of reading SPD
• Discrete DDR: Driver requires a static DDR configuration to be added

DIMM

When a board design uses DIMM module for dynamic memory configuration.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
112 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

_init_ddr function uses DDR board parameters to read the attached SPD and configure the DDR controller.

MOCK DIMM

When a board design uses fixed or discrete DDR, hardcoded or static timing can be used to configure DDR
timing parameters.

Define macro “CONFIG_DDR_NODIMM” in plat/nxp/<SOC>/<Board>/platform_def.h to enable MOCK DIMM
support.

Define function “ddr_get_ddr_params” and structure dim_params in ddr_init.c file.

Example:

struct dimm_params ddr_raw_timing = {
 .n_ranks = 2,
 .rank_density = 4294967296u,
 .capacity = 8589934592u,
 .primary_sdram_width = 64,
 .ec_sdram_width = 8,
 .device_width = 8,
 .die_density = 0x4,
 .rdimm = 0,
 .mirrored_dimm = 1,
 .n_row_addr = 15,
 .n_col_addr = 10,
 .bank_addr_bits = 0,
 .bank_group_bits = 2,
 .edc_config = 2,
 .burst_lengths_bitmask = 0x0c,
 .tckmin_x_ps = 750,
 .tckmax_ps = 1600,
 .caslat_x = 0x00FFFC00,
 .taa_ps = 13750,
 .trcd_ps = 13750,
 .trp_ps = 13750,
 .tras_ps = 32000,
 .trc_ps = 457500,
 .twr_ps = 15000,
 .trfc1_ps = 260000,
 .trfc2_ps = 160000,
 .trfc4_ps = 110000,
 .tfaw_ps = 21000,
 .trrds_ps = 3000,
 .trrdl_ps = 4900,
 .tccdl_ps = 5000,
 .refresh_rate_ps = 7800000,
};
int ddr_get_ddr_params(struct dimm_params *pdimm,
 struct ddr_conf *conf)
{
 static const char dimm_model[] = "Fixed DDR on board";
 conf->dimm_in_use[0] = 1; /* Modify accordingly */
 memcpy(pdimm, &ddr_raw_timing, sizeof(struct dimm_params));
 memcpy(pdimm->mpart, dimm_model, sizeof(dimm_model) - 1);
 /* valid DIMM mask, change accordingly, together with dimm_on_ctlr. */
 return 0x5;
}

Discrete DDR

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
113 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

When a board design uses fixed or discrete DDR, static timing can be used to configure DDR timing
parameters.

Define macro “CONFIG_STATIC_DDR” in plat/nxp/<SOC>/<BOARD>/plafform_def.h to enable discrete DDR
timings.

Define board_static_ddr() function and structure ddr_cfg_regs in file ddr_init.c.

Example:

const struct ddr_cfg_regs static_1600 = {
 .cs[0].config = 0x80040322,
 .cs[0].bnds = 0x1FF,
 .cs[1].config = 0x80000322,
 .cs[1].bnds = 0x1FF,
 .sdram_cfg[0] = 0xE5004000,
 .sdram_cfg[1] = 0x401151,
 .sdram_cfg[2] = 0x0,
 .timing_cfg[0] = 0x91550018,
 .timing_cfg[1] = 0xBAB48E44,
 .timing_cfg[2] = 0x490111,
 .timing_cfg[3] = 0x10C1000,
 .timing_cfg[4] = 0x220002,
 .timing_cfg[5] = 0x3401400,
 .timing_cfg[6] = 0x0,
 .timing_cfg[7] = 0x13300000,
 .timing_cfg[8] = 0x1224800,
 .timing_cfg[9] = 0x0,
 .dq_map[0] = 0x32C57554,
 .dq_map[1] = 0xD4BB0BD4,
 .dq_map[2] = 0x2EC2F554,
 .dq_map[3] = 0xD95D4001,
 .sdram_mode[0] = 0x3010211,
 .sdram_mode[1] = 0x0,
 .sdram_mode[9] = 0x400000,
 .sdram_mode[8] = 0x500,
 .sdram_mode[2] = 0x10211,
 .sdram_mode[3] = 0x0,
 .sdram_mode[10] = 0x400,
 .sdram_mode[11] = 0x400000,
 .sdram_mode[4] = 0x10211,
 .sdram_mode[5] = 0x0,
 .sdram_mode[12] = 0x400,
 .sdram_mode[13] = 0x400000,
 .sdram_mode[6] = 0x10211,
 .sdram_mode[7] = 0x0,
 .sdram_mode[14] = 0x400,
 .sdram_mode[15] = 0x400000,
 .interval = 0x18600618,
 .zq_cntl = 0x8A090705,
 .ddr_sr_cntr = 0x0,
 .clk_cntl = 0x2000000,
 .cdr[0] = 0x80040000,
 .cdr[1] = 0xC1,
 .wrlvl_cntl[0] = 0x86750607,
 .wrlvl_cntl[1] = 0x8090A0B,
 .wrlvl_cntl[2] = 0xD0E0F0C,
};
long long board_static_ddr(struct ddr_info *priv)
{
 memcpy(&priv->ddr_reg, &static_1600, sizeof(static_1600));

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
114 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

 memcpy(&priv->dimm, &static_dimm, sizeof(static_dimm));
 priv->conf.cs_on_dimm[0] = 0x3;
 ddr_board_options(priv);
 compute_ddr_phy(priv);
 return ULL(0x400000000);
}

For LX2 platforms additional information is required, this is used by the PHY driver to identify DDR parameters.

const struct dimm_params static_dimm = {
 .rdimm = 0,
 .primary_sdram_width = 64,
 .ec_sdram_width = 8,
 .n_ranks = 2,
 .device_width = 8,
 .mirrored_dimm = 1,
};

Once these parameters are correct, rebuild the ATF components and the changes will be available in the bl2.pbl
files which combine the board’s RCW/PBL and the bl2 binary.

DDR Debug Options

The compile-time debug option is used to log all kinds of information that is useful in debugging the DDR issues.

Debug Flag Description Build Command

DDR_DEBUG Print all DDR PHY input configuration
information

make PLAT=<platform> pbl RCW=<rcw
file> fip BL33=<u-boot.bin> DEBUG=1
DDR_DEBUG=yes

DDR_BIST Enable built-in self test for DDR make PLAT=<platform> pbl RCW=<rcw
file> fip BL33=<u-boot.bin> DEBUG=1
DDR_BIST=yes

DDR Sanity Testing

DDR sanity testing can be done using following test features:

• BIST
• mtest (in U-Boot)

Built-In Self Test

Use DDR debug option DDR_BIST=yes during TFA compilation.

This debug option will enable BIST in DDR and driver will run BIST after DDR controller and PHY are initialized.

Board boot up logs:

Memory tester (Mtest)

mtest is a U-Boot command used to test the DDR memory.

Configure U-Boot to compile the mtest command, add mtest #defines in platform-specific config file and compile
U-Boot.

For example:

File: include/configs/lx2162aqds.h

#define CONFIG_CMD_MEMTEST
#define CONFIG_SYS_MEMTEST_START CONFIG_SYS_DDR_SDRAM_BASE

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
115 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

#define CONFIG_SYS_MEMTEST_END (CONFIG_SYS_DDR_SDRAM_BASE + 0x100)

U-Boot commands:

=> help mtest
mtest - simple RAM read/write test

Usage:

mtest [start [end [pattern [iterations]]]]

=> mtest 80000000 80000100 0xaabbccdd 3
Testing 80000000 ... 80000100:
Pattern AABBCCDD Writing... Reading...Tested 3 iteration(s) with 0 errors.

LX2 – TFA Driver

LX2 platforms LX2160ARDB rev2.0 and LX2162 uses TFA version - TFA 2.3.

Below are LX2 specific documents.

Warm Reset (LP3) Feature

LX2162AQDS support warm reset feature. For details, see Warm reset section.

DDR Board Parameters

File - plat/nxp/soc-lx2160//platform.def defines following macros:

• NUM_OF_DDRC
• DDRC_NUM_DIMM
• DDRC_NUM_CS

You can make changes as per your board configuration in this file.

DDR PHY Training Firmware

How To Update DDR PHY Training Firmware

Ensure to update DDR PHY training firmware to latest version. DDR PHY training firmware filename is
fip_ddr_all.bin (DDR FIP Image)

For steps to flash fip_ddr_all.bin on different boot mediums, see How to program TF-A binaries on specific
boot mode

To check DDR PHY firmware version, compile TFA with DDR debug option – DDR_PHY_DEBUG=yes. See
DDR debug options.

Refer the following PMU message to find out the DDR PHY training firmware (fip_ddr_all.bin) version 2019.04.

PMU10: **** Start DDR4 Training. PMU Firmware Revision 0x1001 ****

4.2.1.1.1 How to compile DDR FIP image (only applicable for LX2160ARDB Rev2 and
LX2162AQDS)

A pre-built FIP image is already provided in the release. To regenerate the DDR fip image for LX2160ARDB
Rev2 and LX2162AQDS, perform the following steps:

1. $ cd atf/tools/fiptool

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
116 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

2. $ Download DDR PHY binaries: git clone https://github.com/nxp-qoriq/ddr-phy-binary.
git

3. $ git checkout v2019.04
4. $ make
5. $./fiptool create --ddr-immem-udimm-1d ddr-phy-binary/lx2160a/ddr4_pmu_train_

imem.bin --ddr-immem-udimm-2d ddr-phy-binary/lx2160a/ddr4_2d_pmu_train_imem.
bin --ddr-dmmem-udimm-1d ddr-phy-binary/lx2160a/ddr4_pmu_train_dmem.bin --ddr-
dmmem-udimm-2d ddr-phy-binary/lx2160a/ddr4_2d_pmu_train_dmem.bin --ddr-immem-
rdimm-1d ddr-phy-binary/lx2160a/ddr4_rdimm_pmu_train_imem.bin --ddr-immem-
rdimm-2d ddr-phy-binary/lx2160a/ddr4_rdimm2d_pmu_train_imem.bin --ddr-dmmem-
rdimm-1d ddr-phy-binary/lx2160a/ddr4_rdimm_pmu_train_dmem.bin --ddr-dmmem-
rdimm-2d ddr-phy-binary/lx2160a/ddr4_rdimm2d_pmu_train_dmem.bin fip_ddr_all.bin
The DDR fip image, fip_ddr_all.bin, is generated at atf/tools/fiptool
List of DDR PHY binaries for each option:
• --ddr-immem-udimm-1d <ddr4_pmu_train_imem.bin>
• --ddr-immem-udimm-2d <ddr4_2d_pmu_train_imem.bin>
• --ddr-dmmem-udimm-1d <ddr4_pmu_train_dmem.bin>
• --ddr-dmmem-udimm-2d <ddr4_2d_pmu_train_dmem.bin>
• --ddr-immem-rdimm-1d <ddr4_rdimm_pmu_train_imem.bin>
• --ddr-immem-rdimm-2d <ddr4_rdimm2d_pmu_train_imem.bin>
• --ddr-dmmem-rdimm-1d <ddr4_rdimm_pmu_train_dmem.bin>
• --ddr-dmmem-rdimm-2d <ddr4_rdimm2d_pmu_train_dmem.bin>

For steps to flash fip_ddr_all.bin on different boot mediums, see Section 4.2.3.3.

For commands to generate DDR FIP for secure boot, see Section 5.1.1.5.3.

Debug flag Description Build command

DEBUG_PHY_IO Dumps all DDR PHY register reads/
writes during initialization. This includes
IMEM, DMEM, and CSR. This debug
option considerably increases the
board boot up time as it dumps all PHY
register reads/writes.

make PLAT=<platform> pbl RCW=<rcw
file> fip BL33=<u-boot.bin> DEBUG_
PHY_IO=yes
Here, <platform> can be LX2162AQDS
or LX2160ARDB_Rev2
For example:
make PLAT=LX2162AQDS pbl RCW=.
./lx2-rcw/lx2162aqds/GGGG_NNNN_
PPPP_PPPP_RR_17_2/rcw_2000_
650_2900_17_2.bin fip BL33=../lx2-
uboot/u-boot.bin DEBUG_PHY_IO=yes

DDR_DEBUG Prints all DDR PHY input configuration
information

make PLAT=<platform> pbl RCW=<rcw
file> fip BL33=<u-boot.bin> DEBUG=1
DDR_DEBUG=yes
Here, <platform> can be LX2162AQDS
or LX2160ARDB_Rev2
make PLAT=<platform> pbl RCW=../
lx2-rcw/lx2162aqds/GGGG_NNNN_
PPPP_PPPP_RR_17_2/rcw_2000_
650_2900_17_2.bin fip BL33=../lx2-
uboot/u-boot.bin DEBUG=1 DDR_
DEBUG=yes

Table 22. DDR Debug options and build examples

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
117 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Debug flag Description Build command

DDR_PHY_DEBUG Prints PMU 1D and 2D training
messages

make PLAT=<platform> pbl RCW=<rcw
file> fip BL33=<u-boot.bin> DEBUG=1
DDR_PHY_DEBUG=yes
Here, <platform> can be LX2162AQDS
or LX2160ARDB_Rev2
make PLAT=<platform> pbl RCW=../
lx2-rcw/lx2162aqds/GGGG_NNNN_
PPPP_PPPP_RR_17_2/rcw_2000_
650_2900_17_2.bin fip BL33=../lx2-
uboot/u-boot.bin DEBUG=1 DDR_
PHY_DEBUG=yes

DDR_BIST Enables built-in self test for DDR make PLAT=<platform> pbl RCW=<rcw
file> fip BL33=<u-boot.bin> DEBUG=1
DDR_BIST=yes
Here, <platform> can be LX2162AQDS
or LX2160ARDB_Rev2
make PLAT=<platform> pbl RCW=../
lx2-rcw/lx2162aqds/GGGG_NNNN_
PPPP_PPPP_RR_17_2/rcw_2000_
650_2900_17_2.bin fip BL33=../lx2-
uboot/u-boot.bin DEBUG=1 DDR_
BIST=yes

DEBUG_DDR_INPUT_CONFIG Prints input configuration in JSON
format

make PLAT=<platform> pbl RCW=<rcw
file> fip BL33=<u-boot.bin> DEBUG_
DDR_INPUT_CONFIG=yes
Here, <platform> can be LX2162AQDS
or LX2160ARDB_Rev2
make PLAT=<platform> pbl RCW=../
lx2-rcw/lx2162aqds/GGGG_NNNN_
PPPP_PPPP_RR_17_2/rcw_2000_
650_2900_17_2.bin fip BL33=../lx2-
uboot/u-boot.bin DEBUG_DDR_
INPUT_CONFIG=yes

Table 22. DDR Debug options and build examples...continued

4.2.2 TF-A key components

4.2.2.1 Warm reset boot support

Note: Warm reset is supported only for LX2162AQDS and enabled by default.

Warm reset support is required to:

• Retain the content on the DDR memory to analyze the reason for last reset and debug information.
• Reduce the boot-up time. This is because as part of warm reset, the DDR training is not done and DDR is

brought up by the last stored training data.

Warm Reboot execution flow

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
118 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

$:> reboot <cmd>

 (Linux console)

kernel_restart
(kernel/reboot.c)

Machine_restart
(aarch/arm64/process.c)

psci_sys_reset
(drivers/firmware/psci.c)

Kernel Space

EL0

EL1

EL2

EL3

UserSpace

TF-A psci_smc_handler()
(lib/psci/psci_main.c)

SMC ID = PSCI_SYSTEM_RESET2

psci_system_reset2()
(lib/psci/psci_system_off.c)

_soc_sys_warm_reset (new)
(plat/nxp/soc-lx2160/aarch64/lx2160_warm_rst.S)

∙ Function is not intended to return ,
∙ Write the flag ͞ warm_reset ͟ status as enabled in non -volatile memory .
∙ From memory other than DDR , do the following :

1. Putting the DDR in self -refresh .
2. Reset the entire SoC as detailed below :Putting the DDR in self -refresh .
3. Reset the entire SoC as detailed below :

Set the 0th bit of the Secure Register ͞ Reset Control Register
(RSTCNTL)* ͟ in the CCSR memory map (base address : 0x1E8_8000),
to generate the reset request in cop_rst block.

psci_plat_pm_ops-
system_reset2()

(Call the platform specific hook)
(plat/nxp/psci/plat_psci.c)

SMC

Normal World Secure World

_psci_system_reset2 (new)
(plat/nxp/psci/aarch64/psci_utils.S)

static void psci _sys_reset(enum reboot _mode reboot_mode*,
const char *cmd) {
if ((reboot_mode == REBOOT _WARM || reboot_mode ==
REBOOT _SOFT) psci_system _reset2_supported) {
invoke _psci_fn(PSCI_FN_NATIVE (1_1, SYSTEM _RESET2), 0, 0, 0);
} else { printk(Cold Reset is triggered ...\n) ;
 invoke _psci_fn(PSCI_0_2_FN_SYSTEM _RESET, 0, 0, 0);
} }

static void psci _sys_reset(enum
reboot_mode reboot_mode*,
const char *cmd) {
invoke _psci_fn(PSCI_0_2_FN_SYST
EM_RESET, 0, 0, 0); }

SMC

psci_smc_handler()
(lib/psci/psci_main.c)

SMC ID = PSCI_SYSTEM_RESET

By kernel 5.4, SMC
͞ PSCI_SYSTEM_RESET2͟ is raised.

In the SMC raised by kernel 4.19,
ignores the passed reboot_mode value,

send default as 0 (i.e., COLD_BOOT)

Note: Warm-reboot is not supported
for kernel < 5.4

Figure 2. Warm reboot execution flow

As per the warm reboot execution flow:

• From Linux kernel 5.x onwards, there is separate PSCI SMC called PSCI_SYSTEM_RESET2 for vendor-
specific handling. This same SMC ID is used to differentiate between warm boot and cold boot in Linux.

• As a part of _soc_sys_warm_reset():
– Warm-reset flag is set and saved in the non-volatile space in order to retrieve the reboot mode in the next

reset cycle.
– DDR memory is put in the self-refresh mode.
– RSTCNTL register is used to do software requested reset.

• Two non-volatile memories are supported:
– FlexSPI NOR flash.
– Low-power SecMon GPR registers, if backed by coined battery.

• Warm reset status flag is handled as shown in the following state machine:

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
119 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

False

True

Linux
triggered

Warm
Boot

Every time DRAM init is
done, this flag is cleared

Figure 3. Warm reset status flag state machine

Warm boot up execution flow

In warm boot, the DDR memory restores the last saved training data from the non-volatile memory and
initializes the DDR. As part of the current implementation, FlexSPI NOR flash is used to store the DDR training
data.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
120 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

is_warm_boot()

bl2_el3_early_platform_setup()

bl2_entrypoint()

Init_dram()
∙ Do the DDR training
∙ Initialize the DDR with the

freshly trained DDR value.

is
RTSRQSR1.

SW_RR
active

No

Init_dram()
∙ restore training value from

non-volatile memory
∙ Initialize the DDR without

DDR training

Clear the warm-reset flag

is
flag warm_reset

set

yes

No

yes

Figure 4. Warm boot up execution flow

Steps to enable Warm reset

At the time of binary compilation:

• TF-A
– Check following variables in plat/nxp/soc-lxxx/<platform_name>/platform.mk

– WARM_BOOT =
– yes - warm-reset is supported
– no - warm-reset is not supported

– NXP_COINED_BB =
– yes - Low-power SecMon GPR registers are backed by coined battery to retain the content across

reset.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
121 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

– no - FlexSPI NOR flash is used to save the status flag for warm reset.
• At the time of binary execution:

1. Set the variable reboot_mode in bootargs.
=> setenv bootargs 'console=ttyS0,115200 root=/dev/mmcblk0p4 reboot=w
 earlycon=uart8250,mmio,0x21c0500 mtdparts=1550000.spi-0:1m(rcw),15m(u-
boot),48m(kernel.itb);7e800000.flash:16m(nand_uboot),48m(nand_kernel),448m(nand_free)'

Here, reboot_mode = 0; //Warm boot
2. Boot-up to the Linux prompt.
3. Run reboot from the Linux prompt to trigger the warm reset.

$ reboot

4.2.3 Deploying TF-A binaries

To migrate to the TF-A boot flow from the old boot flow (with PPA), you need to compile the TF-A binaries,
bl2_<boot_mode>.pbl and fip.bin, and flash these binaries on the specific boot medium on the board.

The following table lists the new flash images in the boot flow with TF-A.

TF-A binary name Components

BL2 binary: <platform> initialization binarybl2_<boot_mode>.pbl

RCW binary for <boot_mode>

BL31: Secure runtime firmware

BL32: Trusted OS, for example, OP-TEE (optional)

fip.bin

BL33: U-Boot/UEFI image

Note:

• <platform> = ls1012ardb | ls1012afrdm | ls1012afrwy | ls1043ardb | ls1046ardb |
ls1088ardb | ls2088ardb | lx2160ardb_rev2 | lx2162aqds

• <boot_mode> = nor, nand, sd, emmc, qspi, flexspi_nor

Boot modesPlatforms

SD QSPI NOR NAND eMMC FlexSPI-NOR

LS1012ARDB Yes

FRDM-LS1012
A

Yes

FRWY-LS1012
A

Yes

FRWY-LS1012
A (512 MB)

Yes

LS1043ARDB Yes Yes Yes

LS1046ARDB Yes Yes Yes

LS1088ARDB Yes Yes

LS2088ARDB Yes Yes

LX2160ARDB
Rev2

Yes Yes Yes

Table 23. Supported boot modes for each platform

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
122 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Follow these steps to compile and deploy TF-A binaries (bl2_<boot_mode>.pbl and fip.bin) on the
required boot mode.

1. Compile PBL binary from RCW source file
2. Compile U-Boot binary
3. [Optional] Compile OP-TEE binary
4. Compile TF-A binaries (bl2_<boot_mode>.pbl and fip.bin)
5. Program TF-A binaries on specific boot mode

4.2.3.1 How to compile PBL binary from RCW source file

You need to compile the rcw_<boot_mode>.bin binary to build the bl2_<boot_mode>.pbl binary.

1. Clone the rcw repository and compile the PBL binary:

$ git clone https://github.com/nxp-qoriq/rcw.git
$ cd rcw
$ git checkout -b <new branch name> <LSDK tag> ;For example, $ git checkout -
b LSDK-19.03 LSDK-19.03
$ cd <platform>

2. If required, make changes to the RCW files:

$ make

This procedure builds the compiled PBL binary for all the boot modes, available for the selected platform.

For example: The compiled PBL binary for QSPI NOR flash on LS1088ARDB-PB, rcw_1600_qspi.bin, is
available at rcw/ls1088ardb/FCQQQQQQQQ_PPP_H_0x1d_0x0d/.

To build the bl2_<boot_mode>.pbl binary, see Section 4.2.3.2.1

Note: See the rcw/<platform>/README file for an explanation of the naming convention for the directories
that contain the RCW source and binary files.

4.2.3.2 How to compile TF-A binaries

Clone the atf repository and compile the TF-A binaries, bl2_<boot_mode>.pbl and fip.bin.

1. $ git clone https://github.com/nxp-qoriq/atf.git
2. $ cd atf
3. $ git checkout -b <new branch name> LSDK-<LSDK version>. For example, $ git

checkout -b LSDK-21.08 LSDK-21.08
4. $ export ARCH=arm64
5. $ export CROSS_COMPILE=aarch64-linux-gnu-

Follow the steps mentioned in Section 4.2.3.2.1 (bl2_<boot_mode>.pbl) and Section 4.2.3.2.2 (fip.bin) to
compile both TF-A binaries.

4.2.3.2.1 How to compile BL2 binary

To build BL2 binary with OPTEE, run this command:

$ make PLAT=<platform> bl2 SPD=opteed BOOT_MODE=<boot_mode> BL32=<optee_binary>
 pbl RCW=<path_to_rcw_binary>/<rcw_binary_for_specific_boot_mode>

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
123 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

The compiled BL2 binaries, bl2.bin and bl2_<boot_mode>.pbl are available at atf/
build/<platform>/release/. For any update in the BL2 source code or RCW binary, the
bl2_<boot_mode>.pbl binary needs to be recompiled.

Figure 5. bl2.pbl

Note:

To compile the BL2 binary without OPTEE:

make PLAT=<platform> bl2 BOOT_MODE=<boot_mode> pbl RCW=<path_to_rcw_binary>/
<rcw_binary_for_specific_boot_mode>

4.2.3.2.2 How to compile FIP binary

To build FIP binary with OPTEE and without trusted board boot, run this command:

$ make PLAT=<platform> fip BL33=<path_to_u-boot_binary>/u-boot.bin SPD=opteed
 BL32=<path_to_optee_binary>/tee.bin

The compiled BL31 and FIP binaries, bl31.bin, fip.bin, are available at atf/build/<platform>/
release/. For any update in the BL31, BL32, or BL33 binaries, the fip.bin binary needs to be recompiled.

Figure 6. fip.bin

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
124 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Note:

To compile the FIP binary without OPTEE and without trusted board boot:

make PLAT=<platform> fip BL33=<path_to_u-boot_binary>/u-boot.bin

Note:

To compile the FIP binary with trusted board boot, refer the read me at <tfa_repo>/plat/nxp/README.
TRUSTED_BOOT.

4.2.3.3 How to program TF-A binaries on specific boot mode

• QSPI NOR Flash
1. Boot from QSPI NOR flash0
2. Program QSPI NOR flash1: => sf probe 0:1
3. Flash bl2_qspi.pbl:

=> tftp 0xa0000000 bl2_qspi.pbl
=> sf erase 0x0 +$filesize && sf write 0xa0000000 0x0 $filesize

4. Flash fip.bin:

=> tftp 0xa0000000 fip.bin
=> sf erase 0x100000 +$filesize && sf write 0xa0000000 0x100000 $filesize

5. Flash DDR FIP binary (Supported only for LX2162AQDS or LX2160ARDB Rev2):

=> tftp 0x82000000 fip_ddr_all.bin
=> sf erase 0x800000 +$filesize; sf write 0x82000000 0x800000 $filesize

6. Boot from QSPI NOR flash1. The board will boot with TF-A
• SD/eMMC Card

1. Boot from QSPI NOR flash0.
2. Flash bl2_sd.pbl on SD/eMMC card:

=> tftp 82000000 bl2_sd.pbl
=> mmc write 82000000 8 <blk_cnt>

Here, blk_cnt refers to number of blocks in SD card that need to be written as per the file size. For
example, when you load bl2_sd.pbl from the TFTP server, if the bytes transferred is 82809 (14379 hex),
then blk_cnt is calculated as 82809/512 = 161 (A1 hex). For this example, mmc write command will be: =>
mmc write 82000000 8 A1.

3. Flash fip.bin on SD/eMMC card:

=> tftp 82000000 fip.bin
=> mmc write 82000000 800 <blk_cnt>

Here, blk_cnt refers to number of blocks in SD card that need to be written as per the file size. For
example, when you load fip.bin from the TFTP server, if the bytes transferred is 1077157 (106fa5 hex),
then blk_cnt is calculated as1077157/512 = 2103 (837 hex) . For this example, mmc write command will
be: => mmc write 82000000 800 837.

4. Flash DDR FIP binary (Supported only for LX2162AQDS or LX2160ARDB Rev2):

=> tftp 82000000 fip_ddr_all.bin
=> mmc write 82000000 0x04000 <blk_cnt>

Here, blk_cnt refers to number of blocks in SD card that need to be written as per the file size.
5. Boot from SD card. The board will boot with TF-A.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
125 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

• NOR Flash
1. Boot from default bank.
2. Flash bl2_nor.pbl on alternate bank:

=> tftp 82000000 $path/bl2_nor.pbl;
=> pro off all;erase <bl2_alternate_bank_address> +$filesize;cp.b 82000000
 <bl2_alternate_bank_address> $filesize

For LS1043ARDB, TWR-LS1021A, <bl2_alternate_bank_address> is 0x64000000.
For LS2088ARDB, <bl2_alternate_bank_address> is 0x584000000.

3. Flash fip.bin on alternate bank:

=> tftp 82000000 $path/fip.bin;
=> pro off all;erase <fip_alternate_bank_address> +$filesize;cp.b 82000000
 <fip_alternate_bank_address> $filesize

For LS1043ARDB, TWR-LS1021A, <fip_alternate_bank_address> is 0x64100000.
For LS2088ARDB, <fip_alternate_bank_address> is 0x584100000.
Note: For NOR bank current bank addresses for different boards, see Section 3.8.

4. Boot the board from alternate bank. The board will boot with TF-A.
• NAND Flash

1. Flash bl2_nand.pbl:

=> tftp 82000000 $path/bl2_nand.pbl
=> nand erase 0x0 $filesize;nand write 0x82000000 0x0 $filesize;

2. Flash fip.bin:

=> tftp 82000000 $path/fip.bin
=> nand erase 0x100000 $filesize;nand write 0x82000000 0x100000 $filesize;

3. Then boot from NAND flash. The board will boot with TF-A.

Note: For details about the boot modes supported by a hardware board and booting commands, see the
Section 3.7.

4.3 U-Boot

4.3.1 Changes in U-Boot

• In the TF-A boot flow, DDR initialization is not required in U-Boot. DDR initialization is a part of TF-A.
DDR init code can be added to <atf_dir>/plat/nxp/soc-<soc-name>/<soc-name>ardb/ddr_
init.c
For example, for LX2160ARDB Rev2, the DDR init code can be added to <atf_dir>/plat/nxp/soc-
lx2160/lx2160ardb/ddr_init.c
The DDR drivers for various controllers can be found at <atf_dir>/plat/nxp/drivers/ddr

• Any changes in the interconnect initialization can be added to the soc.c file at <atf_dir>/plat/nxp/
soc-<soc-name>/

• A single defconfig is created for all the boot sources, <platform>_tfa_defconfig. For example, for
LX2160ARDB Rev2, defconfig needs to be used is lx2160ardb_tfa_defconfig

• The TF-A defconfig is created with following considerations:
– PPA support is disabled

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
126 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

– Environment support is enabled for all the boot sources, such as FlexSPI, SD boot
• Other changes:

– Boot command changes done to support bitbake Linux autoboot. This is similar to changes required for
bitbake support. Following variables are defined:
– XSPI_NOR_BOOTCOMMAND
– SD_BOOTCOMMAND

– MC init command changes done to provide the MC init command as per boot source:
– XSPI_MC_INIT_CMD
– SD_MC_INIT_CMD

4.3.2 Layerscape LDP U-Boot uses distro boot feature

As in previous versions of the NXP SDK, the U-Boot variable bootcmd contains commands that represent the
default boot process. Layerscape LDP is different in that it uses a standard U-Boot feature called distro boot
to make automatic booting more flexible. In distro boot, bootcmd runs additional commands in the variable
distro_bootcmd. These commands are the heart of the distro boot process.

Distro boot sequential examines partitions on mass storage devices looking for a script file. When U-Boot finds
one, it loads and executes it to initiate the boot process.

The mass storage devices to be searched are defined in the U-Boot environment variable boot_targets. Set
it to control which mass storage devices are searched and the order in which they are searched. For example,

=> printenv boot_targets
boot_targets=usb0 mmc0 scsi0 dhcp

The command above shows the search order USB device 0, MMC (or SD) device 0, SCSI (SATA) device 0,
followed by DHCP.

The process of searching involves a number of U-Boot variables. It ends with the variables shown below in an
example from an LS2088ARDB.

=> printenv scan_dev_for_scripts
scan_dev_for_scripts=for script in ${boot_scripts}; do if test -e ${devtype}
 ${devnum}:${distro_bootpart} ${prefix}${script}; then echo Found U-Boot script
 ${prefix}${script}; run boot_a_script; echo SCRIPT FAILED: continuing...; fi;
 done => printenv boot_scripts boot_scripts=ls2088ardb_boot.scr => printenv
 boot_a_script boot_a_script=load ${devtype} ${devnum}:${distro_bootpart}
 ${scriptaddr} ${prefix}${script}; env exists secureboot && load ${devtype}
 ${devnum}:${distro_bootpart} ${scripthdraddr} ${prefix}${boot_script_hdr} &&
 esbc_validate ${scripthdraddr};source ${scriptaddr}

The process searches for a script named by the variable boot_scripts. In this example, the search is for
a script named ls2088ardb_boot.scr. When this script is located, it is loaded into RAM using the load
command and run using the source command. This causes Linux to boot.

Layerscape LDP puts bootscripts into a file system on the second partition of a mass storage device. U-Boot
can display files in a file system. Continuing the example, the following U-Boot commands list the files in the
second partition of USB device 0 (do a usb start first):

=> ls usb 0:2
 174096 config-4.19.68-00020-g5256accac243
 1030533 firmware_ls1012afrwy_qspiboot.img
 45346968 firmware_ls1012ardb_qspiboot.img
 45346968 firmware_ls1028ardb_xspiboot.img
 45346968 firmware_ls1043ardb_norboot.img

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
127 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

 45346968 firmware_ls1046afrwy_qspiboot.img
 45346968 firmware_ls1046ardb_qspiboot.img
 45346968 firmware_ls1088ardb_pb_qspiboot.img
 45346968 firmware_ls2088ardb_norboot.img
 45346968 firmware_ls2088ardb_qspiboot.img
 45346968 firmware_lx2160ardb_rev2_xspiboot.img
<DIR> 4096 flash_images
 20846 flash_images.scr
 14243 fsl-ls1012a-2g5rdb.dtb
 15257 fsl-ls1012a-frdm.dtb
 15267 fsl-ls1012a-frwy.dtb
 15923 fsl-ls1012a-qds.dtb
 14290 fsl-ls1012a-rdb.dtb
 20767 fsl-ls1028a-qds.dtb
 19986 fsl-ls1028a-rdb-dpdk.dtb
 20121 fsl-ls1028a-rdb.dtb
 32939 fsl-ls1043a-qds.dtb
 34451 fsl-ls1043a-qds-sdk.dtb
 30627 fsl-ls1043a-rdb.dtb
 40956 fsl-ls1043a-rdb-sdk.dtb
 33614 fsl-ls1043a-rdb-usdpaa.dtb
 29843 fsl-ls1046a-frwy.dtb
 31519 fsl-ls1046a-frwy-sdk.dtb
 32754 fsl-ls1046a-frwy-usdpaa.dtb
 32709 fsl-ls1046a-qds.dtb
 34269 fsl-ls1046a-qds-sdk.dtb
 29945 fsl-ls1046a-rdb.dtb
 40270 fsl-ls1046a-rdb-sdk.dtb
 32956 fsl-ls1046a-rdb-usdpaa.dtb
 18608 fsl-ls1088a-qds.dtb
 19175 fsl-ls1088a-rdb.dtb
 23524 fsl-ls2080a-qds.dtb
 23082 fsl-ls2080a-rdb.dtb
 21961 fsl-ls2081a-rdb.dtb
 23428 fsl-ls2088a-qds.dtb
 29733 fsl-ls2088a-rdb.dtb
 27720 fsl-lx2160a-qds.dtb
 32280 fsl-lx2160a-rdb.dtb
<DIR> 4096 grub
 2176 hdr_ls1012afrwy_bs.out
 2176 hdr_ls1012ardb_bs.out
 2176 hdr_ls1028ardb_bs.out
 2176 hdr_ls1043ardb_bs.out
 2176 hdr_ls1046afrwy_bs.out
 2176 hdr_ls1046ardb_bs.out
 2176 hdr_ls1088ardb_bs.out
 2176 hdr_ls2088ardb_bs.out
 2176 hdr_lx2160ardb_bs.out
 24852992 Image
 10814630 Image.gz
 964 ls1012afrwy_boot.scr
 962 ls1012ardb_boot.scr
 1038 ls1028ardb_boot.scr
 965 ls1043ardb_boot.scr
 968 ls1046afrwy_boot.scr
 965 ls1046ardb_boot.scr
 961 ls1088ardb_boot.scr
 961 ls2088ardb_boot.scr
 28569752 lsdk_linux_arm64_LS_tiny.itb
 980 lx2160ardb_boot.scr

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
128 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

 17462941 rootfs_yocto_arm64_tiny.cpio.gz
<DIR> 4096 secboot_hdrs
 992 srk_hash.txt
 10814630 vmlinuz-4.19.68-00020-g5256accac243

It shows that this USB drive contains scripts (and necessary images) to boot any of the boards LS1043ARDB,
LS1046ARDB, LS1088ARDB, and LS2088ARDB. For example, the LS2088ARDB bootscript is
ls2088ardb_boot.scr. The script files are binary. But one can boot Linux and look at them. Layerscape LDP
mounts the boot partition containing the scripts at mount point /boot.

root@ls1028ardb:~# ls /boot
Image
firmware_ls2088ardb_norboot.img
fsl-ls1028a-qds.dtb fsl-ls1046a-frwy.dtb
fsl-ls2081a-rdb.dtb hdr_ls1046afrwy_bs.out
ls1046afrwy_boot.scr Image.gz
firmware_ls2088ardb_qspiboot.img
fsl-ls1028a-rdb-dpdk.dtb
fsl-ls1046a-qds-sdk.dtb
fsl-ls2088a-qds.dtb
hdr_ls1046ardb_bs.out
ls1046ardb_boot.scr config-4.19.68-00020-g5256accac243
firmware_lx2160ardb_rev2_xspiboot.img
fsl-ls1028a-rdb.dtb
fsl-ls1046a-qds.dtb
fsl-ls2088a-rdb.dtb
hdr_ls1088ardb_bs.out
ls1088ardb_boot.scr
firmware_ls1012afrwy_qspiboot.img
flash_images
fsl-ls1043a-qds-sdk.dtb
fsl-ls1046a-rdb-sdk.dtb
fsl-lx2160a-qds.dtb
hdr_ls2088ardb_bs.out
ls2088ardb_boot.scr
firmware_ls1012ardb_qspiboot.img
flash_images.scr
fsl-ls1043a-qds.dtb
fsl-ls1046a-rdb-usdpaa.dtb
fsl-lx2160a-rdb.dtb
hdr_lx2160ardb_bs.out
lsdk_linux_arm64_LS_tiny.itb
firmware_ls1028ardb_xspiboot.img
fsl-ls1012a-2g5rdb.dtb
fsl-ls1043a-rdb-sdk.dtb
fsl-ls1046a-rdb.dtb
grub
lost+found
lx2160ardb_boot.scr
firmware_ls1043ardb_norboot.img
fsl-ls1012a-frdm.dtb
fsl-ls1043a-rdb-usdpaa.dtb
fsl-ls1088a-qds.dtb
hdr_ls1012afrwy_bs.out
ls1012afrwy_boot.scr
rootfs_yocto_arm64_tiny.cpio.gz
firmware_ls1046afrwy_qspiboot.img
fsl-ls1012a-frwy.dtb
fsl-ls1043a-rdb.dtb

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
129 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

fsl-ls1088a-rdb.dtb
hdr_ls1012ardb_bs.out
ls1012ardb_boot.scr
secboot_hdrs
firmware_ls1046ardb_qspiboot.img
fsl-ls1012a-qds.dtb
fsl-ls1046a-frwy-sdk.dtb
fsl-ls2080a-qds.dtb
hdr_ls1028ardb_bs.out
ls1028ardb_boot.scr srk_hash.txt
firmware_ls1088ardb_pb_qspiboot.img
fsl-ls1012a-rdb.dtb
fsl-ls1046a-frwy-usdpaa.dtb
fsl-ls2080a-rdb.dtb
hdr_ls1043ardb_bs.out
ls1043ardb_boot.scr
vmlinuz-4.19.68-00020-g5256accac243

The bootscripts are sophisticated due to secure boot. Ignore secure boot, and the key steps in a bootscript are:

part uuid $devtype $devnum:3 partuuid3
setenv bootargs console=ttyS1,115200 earlycon=uart8250,mmio,0x21c0600
 root=PARTUUID=$partuuid3 rw rootwait $othbootargs default_hugepagesz=2m
 hugepagesz=2m hugepages=256 load $devtype $devnum:2 $kernel_addr_r /Image; load
 $devtype $devnum:2 $fdt_addr_r /fsl-ls2088a-rdb.dtb; booti $kernel_addr_r -
 $fdt_addr_r

The distro boot search process sets the variables devtype and devnum. In this example, they would be "usb"
and "0".

The U-Boot part command sets variable partuuid3 to the partition universal unique identifier of partition 3 of
USB device 0. This value is used in bootargs to identify the root partition to the Linux kernel. This method is
better than using a device name (like /dev/sda3) because it is not dependent on probe order.

The next steps are to load the kernel image (vmlinuz) and device tree (fsl-ls2088a-rdb.dtb) into RAM
and then boot Linux using booti.

In summary (and ignoring secure boot), the distro boot processes searches for a partition with a file system
containing a bootscript. It loads and runs the bootscript. The bootscript does the five steps above to boot Linux.

To boot your own kernel, replace the kernel and device tree images in /boot and reboot your system. But also
install any needed kernel modules first.

There are two types of userland in Layerscape LDP:

• Large standard distro (Layerscape LDP rootfs) deployed on external SD/USB/SATA media storage.
• Prebuilt tiny ramdisk rootfs(currently non-customizable) deployed in flash media onboard for arm32/arm64

target.

If U-Boot is used as bootloader, after Layerscape LDP is installed by flex-installer and reboots the target
board, U-Boot will first automatically search for bootscript <platform>_boot.scr from SD/eMMC/USB/
SATA storage media, if a valid <platform>_boot.scr is found, U-Boot will boot the external distro (Ubuntu
as default) deployed on SD/USB/SATA media storage, otherwise U-Boot will fall back to boot the TinyDistro
deployed on flash media onboard.

In case of booting Layerscape LDP tiny rootfs from flash media: The default U-Boot environment bootargs is
used and user can directly modify bootargs for custom kernel on demand.

In case of booting Layerscape LDP distro from external SD/USB/SATA storage disk: The default U-Boot
environment 'bootargs' is NOT used by external distro, bootargs is preset in <platform>_boot.scr,

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
130 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

users can indirectly modify othbootargs on demand, for example, setenv othbootargs
fsl_fm_max_frm=9600 at the U-Boot prompt.

4.3.3 Layerscape LDP U-Boot flash image feature

• In case user needs to flash different image (for example, atf bl2, atf bl3, fip, dtb, kernel, and so on) to current
or other bank to evaluate certain feature on Layerscape board, for example, to evaluate TDM feature with the
non-default rcw_1600_qetdm.bin on LS1043ARDB:
1. Change default rcw_1600.bin to rcw_1600_qetdm.bin for rcw_nor variable in

ls1043ardb.manifest in bitbake.
2. Clean the obsolete ATF images.

$ bitbake qoriq-atf -c cleanall

3. Regenerate ATF image with new RCW specified in step 1.

$ bitbake qoriq-atf

4. Copy the new BL2 image <build_dir>/image/ to flash_images/ls1043ardb directory of boot
partition on the SD card.

5. Run the following commands at the U-Boot prompt on LS1043ARDB.

=> setenv board ls1043ardb
=> setenv bd_type mmc
=> setenv bd_part 0:2
=> setenv bank other
=> ls $bd_type $bd_part flash_images/ls1043ardb
to update RCW in BL2
=> setenv img bl2
=> setenv bl2_img flash_images/ls1043ardb/bl2_nor.pbl
=> load $bd_type $bd_part $load_addr flash_images.scr
=> source $load_addr
similarly, to update dtb
=> setenv img dtb
=> setenv dtb_img fsl-ls1043a-rdb-usdpaa.dtb
 => source $load_addr

• To flash all images to current or other bank, set environment variable img to all by executing commands
setenv img all and source $load_addr.

• To flash single image, set environment variable img to one of following: bl2, fip, mcfw, mcdpc, mcdpl,
fman, qe, pfe, phy, dtb or kernel

• If needed, you can override the default setting of variable bd_part, flash_type, bl2_img, fip_img,
dtb_img, kernel_itb, qe_img, fman_img, phy_img, mcfw_img, mcdpl_img, mcdpc_img before
running source $load_addr.

4.3.4 How to compile U-Boot binary

You must compile the u-boot.bin binary to build the fip.bin binary.

1. Clone the u-boot repository and compile the U-Boot binary for TF-A:

$ git clone https://github.com/nxp-qoriq/u-boot
$ cd u-boot
$ git checkout -b <new branch name> LSDK-<LSDK version> ;

For example, $ git checkout -b LSDK-21.08 LSDK-21.08

$ export ARCH=arm64
$ export CROSS_COMPILE=aarch64-linux-gnu-

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
131 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

$ make distclean
$ make <platform>_tfa_defconfig

Note: A single defconfig is created for all the boot sources, <platform>_tfa_defconfig. For example,
for LS1088ARDB, defconfig needs to be used is ls1088ardb_tfa_defconfig.

2. Run the make command

$ make

Note: If the make command shows the error *** Your GCC is older than 6.0 and is not
supported, ensure that you are using Ubuntu 18.04 64-bit version for building Layerscape LDP U-Boot
binary.

The compiled U-Boot image, u-boot.bin, is available at u-boot/.

4.3.5 Defining IOMMU mappings for PCIe SRIOV virtual functions

Support for specifying additional IOMMU mappings for PCIe controllers can be enabled through the
PCI_IOMMU_EXTRA_MAPPINGS Kconfig option, which can be found under the following items in U-Boot
menuconfig:

-> Device Drivers
-> PCI support (PCI [=y])
-> Layerscape PCIe support (PCIE_LAYERSCAPE [=y])

The pci_iommu_extra U-Boot environment variable or pci-iommu-extra device tree property (to be used,
for example, in more static scenarios, such as hardwired PCIe endpoints (EPs) that get initialized later in the
system setup) allows to:

• Specify the maximum number of virtual functions that can be created for an SRIOV-capable PCIe EP, which is
identified by its bus-device-function (BDF)

• Specify the BDF the device will show up with on the PCIe bus for hot-plug use case

For a given PCIe bus identified by its controller's base register address (as defined in the reg property in the
device tree), the pci_iommu_extra U-Boot environment variable consists of a list of <bdf>,<action> pairs
as given below:

pci_iommu_extra = pci@<addr1>,<bdf>,<action>,<bdf>,<action>,
 pci@<addr2>,<bdf>,<action>,<bdf>,<action>,...

where:

• <addr> is the base register address of the PCIe controller for which the subsequent <bdf>,<action> pairs
apply

• <bdf> identifies the BDF the action applies to
• <action> can be:

– vfs=<number>, which indicates the number of VFs (of the PCIe EP identified earlier by the <bdf>) for
which mappings will be included. Its variant noari_vfs=<number> is available to disallow counting of
alternative routing-id interpretation (ARI) VFs.

– hp, which indicates that a hot-plugged device will be attached on the BDF; therefore, the BDF needs a
mapping

The pci-iommu-extra device tree property must be placed under the correct PCIe controller node and then
only the <bdf>,<action> pairs need to be specified, as given below:

pci-iommu-extra = "<bdf>,<action>,<bdf>,<action>,...";

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
132 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Note: The environment variable has higher precedence as compared to the device tree property.

For example, for the following configuration on PCIe bus 6:

=> pci 6
Scanning PCIe devices on bus 6
BusDevFun VendorId DeviceId Device Class Sub-Class
__
06.00.00 0x8086 0x1572 Network controller 0x00
06.00.01 0x8086 0x1572 Network controller 0x00

The following command will create IOMMU mappings in pci_iommu_extra U-Boot environment variable for
three VFs of each physical function (PF):

=> setenv pci_iommu_extra pci@0x3800000,6.0.0,vfs=3,6.0.1,vfs=3

This can be specified as given below for the pci-iommu-extra device tree property:

pci-iommu-extra = "6.0.0,vfs=3,6.0.1,vfs=3";

For a hot-plugged device, an IOMMU mapping can be added in pci_iommu_extra U-Boot environment
variable as follows:

=> setenv pci_iommu_extra pci@0x3800000,2.16.0,hp

This can be specified as given below for the pci-iommu-extra device tree property:

pci-iommu-extra = "2.16.0,hp";

5 Security

5.1 Firmware/TF-A security features

5.1.1 Secure boot

5.1.1.1 Introduction

The secure boot process ensures that only trustworthy software is executed on a device. This is done by
digitally signing each image using an RSA key pair and authenticating the image before executing it on the
device. The secure boot process thus helps in establishing a chain of trust on the device. It also prevents the
unauthorized code from executing on the device, for example if any unauthorized modification of image is
detected or signature verification fails, the image cannot be executed on the device.

This section explains how images are validated in the secure boot process. The image validation process is split
into various boot stages, such as BL1, BL2 (at EL3), BL31, BL32, BL33, where each stage performs a specific
function and validates the subsequent stage before passing control to that stage. For details about various boot
stages, see TF-A.

Secure boot image validation is done using respective headers for each of the images.

The headers can be of two types:

• CSF headers (NXP Chain of Trust), and

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
133 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

• X.509 certificate (Arm Chain of Trust).

CSF headers are generated using the Code signing tool.

For details about X.509 certificate, see https://developer.arm.com/docs/den0006/latest/trusted-board-boot-
requirements-client-tbbr-client-armv8-a

The TF-A based secure boot flow is as follows:

1. When SoC comes out of reset, control is transferred to BL1, which is responsible for validation of BL2 image
using its header added with the BL2 image itself. BL1 reads the BOOTLOC pointer value to locate the BL2
image header and validates the image there after.

2. If the BL2 image is validated successfully, control is passed for its execution. BL2 image further validates
the components of FIP image using their respective headers. FIP image constitutes of following images:
• X.509 certificate/CSF header BL31 + BL31 image
• X.509 certificate/CSF header BL32 + BL32 image (optional)
• X.509 certificate/CSF header BL33 + BL33 image

3. BL33 (U-Boot) is responsible to perform the validation of the next level firmware to establish the chain of
trust.
The figures included in this section refer to CSF header implementation in NXP CoT. For details about
implementation of X.509 certificate in Arm CoT, see https://developer.arm.com/docs/den0006/latest/trusted-
board-boot-requirements-client-tbbr-client-armv8-a

Figure 7. Secure boot bl2.pbl image (NXP CoT)

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
134 / 1061

https://developer.arm.com/docs/den0006/latest/trusted-board-boot-requirements-client-tbbr-client-armv8-a
https://developer.arm.com/docs/den0006/latest/trusted-board-boot-requirements-client-tbbr-client-armv8-a
https://developer.arm.com/docs/den0006/latest/trusted-board-boot-requirements-client-tbbr-client-armv8-a
https://developer.arm.com/docs/den0006/latest/trusted-board-boot-requirements-client-tbbr-client-armv8-a

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Figure 8. Secure boot fip.bin image (NXP CoT)

Figure 9. TF-A boot flow (NXP CoT)

5.1.1.2 Secure boot process

The secure boot process uses a digital signature validation routine to authenticate an image. The routine
performs validation by decrypting the signed hash using a hardware bound RSA public key. The hash is then
compared to the freshly calculated hash for the same system image. If the comparison passes, the image is
considered as authentic.

The following figure explains the code signing and signature verification process.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
135 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Code Signing Signature Validation

Public Key(s)

Private Key
Private Key
Encryption

Public Key(s)

Message
Digest Hash Pass/Fail

Compare
Hash Sum

Fuse Box

Public Key/

List Hash

Signature

Public Key
Decryption

Public Key(s)

Signature

D, N

E, N Hash E mod N

Fuse Box
Public Key/
List Hash

CSF Header

Code Signing Tool

Digital Signature Validation Routine

Image Image

S/G Table

CSF Header

S/G Table

Message

Digest Hash

Hashed Key/List

Verify Key/List

Figure 10. Code signing and signature verification during secure boot

As a part of the code signing process (shown at the left side of the figure), the Code Signing Tool (CST) adds
following parameters while preparing the boot image. This process is performed off-chip.

CSF header Command Sequence File header
This header provides information required to perform image validation,
such as flags, pointers to image, offsets to key/signature, and their
lengths, to ISBC and ESBC.

Note: CSF headers vary for the ISBC and ESBC phases. For details
about the specific CSF header, see Section "TA 2.x platforms - ISBC
and ESBC CSF header structure definition, SRK table, SG table ",
Section "TA 3.x platforms - ISBC CSF header structure definition,
SRK table, SG table ", Section "TA 3.x platforms - ESBC CSF header
structure definition"

SG table Scatter Gather table
Optional (N/A for some stages that support only a single image)
Allows support for multiple non-contiguous images.

Note: SG table is supported only in ISBC. ESBC does not provide
support for the SG table.

Public key list Super Root Key (SRK) table
One or more public keys are appended to the image. The CSF header
indicates which of the keys is to be used in signature validation.

Signature The SHA-256 hash of the CSF header + SG table + Image + Public
Key(s), encrypted with an RSA private key corresponding to one of the
public keys in the key list.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
136 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

CST also supports:

Generating RSA public and private
key pairs

The RSA private key should be stored securely.

Hashing the public key or public
key list

This hash is stored in the SRK hash (SRKH) register in the Security
Fuse Processor (SFP).

Assuming that the device is configured to perform secure boot, the digital signature validation routine performs
following steps (as shown at the right side of the figure).

1. The routine locates and parses the CSF header to determine the size and location of the image, public
keys, and digital signature.

2. It hashes the public key and compares it to the hash of the public key or key list stored in the SRKH register
in SFP. If the hash comparison fails, secure boot fails.

3. It uses the validated public key to decrypt the digital signature, recovering the hash of the header + image +
public keys.

4. The routine then calculates hash over the header + image (ESBC/Trusted Firmware) + public keys and
compares the decrypted hash to the calculated hash. If the hash comparison fails, the secure boot fails.

5.1.1.3 Chain of Trust

Chain of Trust (CoT) ensures that only authentic/valid images are executed on the platform. The image
authentication in CoT is divided into following phases.

• Pre-boot and ISBC:
The validation code embedded in BootROM of a SoC is referred as Internal Secure Boot Code (ISBC). The
Root of Trust is already established in ISBC residing in BootROM. ISBC validates next executable code. In
NXP provided reference code, next executable is BL2.

• ESBC:
BL2 has the digital signature validation routine (ESBC) embedded in it, which validates the next executable(s)
before passing control to it.
External Secure Boot Code (ESBC) is NXP provided reference code available for image validation in the
trusted firmware image and the U-Boot image. U-Boot (Secure U-Boot or Verified U-Boot) image validates the
images it loads. For example, Linux, DTB, MC firmware.
The next executable further validates the next image it needs to pass control to, thus forming a Chain of Trust.

The ESBC phase has the same reference code for all the platforms. However, the pre-boot and ISBC phases
vary for different platforms. These platforms can be categorized into two Trust Architecture (TA) types based on
the differences.

• TA 2.x or hardware pre-boot loader (PBL) based platforms
• TA 3.x or Service Processor (SP) based platforms

Note: TA refers to Layerscape product line architecture for achieving secure boot, secure storage, and strong
partitioning. To use the information in this section, see QorIQ Trust Architecture 2.x User Guide or QorIQ Trust
Architecture 3.x User Guide as applicable to the SoC used. These documents are available only under a non-
disclosure agreement (NDA). To request access to these documents, contact your local NXP field applications
engineer (FAE) or sales representative.

The table below explains the high-level differences between the two categories of the platforms.

TA 2.x TA 3.x

Platforms LS1021A, LS1043A, LS1046A,
LS1012A

LS1088A, LS2088A, LX2160A, LS1028
A, LX2162A

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
137 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

TA 2.x TA 3.x

Pre-boot phase PBI command execution done by
hardware-based PBL block
No authentication of PBI commands

PBI command execution done by ROM
code running on Service Processor
Authentication of PBI commands done

ISBC phase Executed in BootROM on Arm GPP
core.
Authenticates the next level code

Executed on Service Processor
Authenticates PBI commands, next
level code

CSF header for ISBC phase 0x40 bytes in size
Supports 4 SRK keys
For details, see Section "TA 2.x
platforms - ISBC and ESBC CSF
header structure definition, SRK table,
SG table "

0x50 bytes in size
Supports 8 SRK keys
Supports Increment Security State
(ISS) flag
For details, see Section "TA 3.x
platforms - ISBC CSF header structure
definition, SRK table, SG table "

ESBC phase Unlike ISBC, which is in BootROM and cannot be modified, ESBC can be
modified by you. ESBC phase functionality is same with differences in CSF
headers

CSF header for ESBC phase Supports 4 SRK keys
For details see Section "TA 2.x
platforms - ISBC and ESBC CSF
header structure definition, SRK table,
SG table "

Supports 8 SRK keys
For details, see Section "TA 3.x
platforms - ESBC CSF header structure
definition"

Includes
ISBC

Barker Code

Public Key List

Signature

Image Pointer

Next executable (for example, BL2)

Includes
ESBC

2

Barker Code

Public Key List

Signature

Image Pointer

Next executable

Includes
ESBC

3

Validates Validates

BootROM

1

Figure 11. Chain of Trust

To preserve confidentiality of the images, the images can be encrypted and stored as blobs in the flash memory
of the device. The validated ESBC U-Boot image can use Cryptographic blob mechanism to create a chain of
trust with confidentiality.

For details about Cryptographic blob mechanism and chain of trust with confidentiality, see "Cryptographic
blobs" in QorIQ Trust Architecture 3.0 User Guide.

5.1.1.3.1 TA 2.x platforms

5.1.1.3.1.1 Pre-boot phase

In the development phase, set RCW[SB_EN] = 1 to boot the system in secure mode.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
138 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

In the production phase, set the ITS bit in SFP to ensure that the system operates in secure and trusted
manner. After the SFP ITS fuse is blown, it cannot be changed.

Hardware pre-boot loader

The pre-boot initialization commands, also known as PBI, executed by PBL are mandatory for performing
secure boot. The PBI must include a command to load a pointer to the ESBC's CSF header in the
SCRATCHRW1 register.

The ISBC later reads this register to determine the location of CSH header of next image to be validated. If
an alternate image is used, a second PBI command is required to load the pointer to the CSF header of the
alternate image, into the SCRATCHRW3 register.

In the reference code provided with Layerscape LDP, irrespective of the boot source, PBI commands are added
to RCW to copy the next executable (BL2) from the selected boot source to OCRAM. In case of secure boot,
the CSF header for authenticating BL2 is also copied to OCRAM along with BL2 using the PBI commands.

PBI commands are also added to update the location of the OCRAM where CSF header is copied in the
SCRATCHRW1 register.

5.1.1.3.1.2 ISBC phase

Note: For details about SecMon, see "7.2 Security Monitor (SecMon)" in QorIQ Trust Architecture 2.x User
Guide. For details about SFP, see "3.1.2.2 Security fuse processor" in QorIQ Trust Architecture 2.x User Guide.

When the SoC is powered on, Master core (CPU0) is released from boot hold off and it starts executing
instructions from a hard-coded location in the BootROM. As per the instructions in ISBC, CPU0 performs the
following actions:

1. Who am I check? - First step is to ensure that CPU0 is out of reset after Power-on Reset (POR), by reading
processor ID register. On failure, it enters into a spin loop.

2. SecMon check - CPU0 confirms that SecMon is in the Check state. If not, the state of SecMon is
transitioned to Fail. And the system enters into fail state.

3. ESBC pointer read - CPU0 reads the pointer to the ESBC's CSF header in the SCRATCHRW1 register
and then reads the word at the indicated address, which is the first word of the header. If the contents of
the word do not match the hard-coded preamble value, the ISBC assumes that it has not found a valid CSF
header and cannot proceed. This leads to a fail, as described in #2 above.

4. CSF header parsing and public key check - If CPU0 finds a valid CSF header, it parses the CSF header
to locate the public key, to be used to validate the code. There can be a single public key or a table of
4 public keys present in the header. The SFP register does not actually store a public key, it stores an
SHA-256 hash of the public key/table of 4 keys. This is done to allow support for up to 4096b keys without
an excessively large fuse block. If the comparison between SRKH stored in the SFP register and runtime
calculated hash over the public key/table fails, the secure boot fails.

5. Signature validation - With the validated public key, CPU0 decrypts the digital signature stored at the offset
specified in the CSF header. The offset is relative to the start address of CSF header. It then uses the ESBC
lengths and pointer fields in the CSF header to calculate a hash over the code. The ISBC checks that the
CSF header is included in the address range to be hashed. Option flags in the CSF header tell the ISBC
whether the NXP Unique ID (FUID) and the OEM Unique ID (OUID) (in the Secure Fuse Processor) are
included in the hash calculation. Including these IDs allows the image to be bound to a single platform. If the
decrypted hash and generated hash do not match, secure boot fails.

6. ESBC Pointer check - CSF header contains entry point address. If address is in valid range, then SecMon
transitions to the Trusted state and control is passed to the Entry point address.

7. In case of failure, for TA 2.x platforms, secondary flag is checked in the CSF header. If set, ISBC reads the
alternate image CSF header pointer from the SCRATCHRW3 register and repeats from step 4.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
139 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

If ISBC fails to validate the ESBC, error code is written in the SCRATCHRW2 register. If you have debug
access, you can check the SCRATCHRW2 register to obtain an error code. For a list and description of error
code, see ISBC Validation Error Codes

TA 2.x platforms - ISBC and ESBC CSF header structure definition, SRK table, SG table

The CSF header provides ISBC and ESBC with most of the information required to validate the image.

Note: Note that the CSF header differs for LS1021A vs. the other TA 2.x based platforms (LS1043A/LS1046A/
LS1012A).

The following figure shows the differences in the CSF header fields in the ISBC and ESBC phases, for
LS1043A/LS1046A/LS1012A.

Barker Code
Public Key / SRK Table Offset

Public Key / Length / SRK Flags

RSA Signature Offset

RSA Signature Length

Pointer to SG Table

entries in SG

ESBC Entry Point
Manufacturing Protection Flag

UID, SEC_IMG Flags
 FUID0

OUID0

Reserved

Reserved
 FUID1
OUID1

Header Size = 0x40

Barker Code

ISBC Phase ESBC Phase

Public Key / SRK Table Offset

Public Key / Length / SRK Flags

RSA Signature Offset

RSA Signature Length

Reserved

Size of ESBC Image

Reserved
Reserved

UID
 FUID0

OUID0

Reserved

Reserved
 FUID1
OUID1

Pointer to ESBC Image (Low)

Pointer to ESBC Image (High)
ISBC key Extension flag

IE Key Select

0x0
0x4

0x8

0xC

0x10

0x14

0x18

0x1C
0x20
0x24

0x28

0x2C
0x30

0x34
0x38

0x3C

0x0
0x4

0x8

0xC

0x10

0x14

0x18

0x1C
0x20
0x24

0x28

0x2C
0x30

0x34
0x38

0x3C

0x40

0x44
0x48
0x4C

Header Size = 0x50

Figure 12. CSF header for LS1043A/LS1046A/LS1012A (ISBC and ESBC phase)

CSF header format (LS1043A/LS1046A/LS1012A platforms)

Offset Data bits [0:31]

0x00 Barker code
This field should contain the value: 0x68392781. The ISBC code searches for this Barker code. If the
value in this field does not match the Barker code, the ISBC stops execution and reports error.

0x04 If srk_table_flag is not set:
• Public key offset: This field contains an address which is the offset of the public key from the start

of the CSF header. Using this offset and the public key length, the public key is read.
If srk_table_flag is set:
• SRK table offset: This field contains an address which is the offset of the SRK table from the start

of the CSF header. Using this offset and the number of entries in the SRK table, the SRK table is
read.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
140 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Offset Data bits [0:31]

0x08:
srk_table_flag
This flag indicates whether the hash burnt in SRK fuse is of a single key or of the SRK table.
• srk_table_flag = 1: Indicates SRK table is present
• srk_table_flag = 0: Indicates SRK table is not present, only single key is present

0x08

0x0b-0x09:
If srk_table_flag is not set:
• 0x0b-0x9 - Public key length, this field contains the length of the public key in bytes.
If srk_table_flag is set:
• 0x09 – Key number from SRK table, which is to be used for verification.
• 0x0b-0x0a – Number of entries in SRK table. Minimum number of entries in table = 1, Maximum

= 4.

0x0c RSA signature offset
This field contains an offset (in bytes) of the RSA signature from the start of the CSF header. Using
this offset and the signature length, the RSA signature is read. The RSA signature is calculated over
CSF header, SG table, and ESBC images.

0x10 RSA signature length in bytes.

0x14 For ISBC phase:
SG table offset
This field contains an address which is the offset of the SG table from the start of the CSF header.
Using this offset and the number of entries in the SG table, the SG table is read.
For ESBC phase:
Reserved

0x18 For ISBC phase:
Number of entries in SG table (Based on the SG table flag in the CSF header, this field shall either
be treated as number of entries in the SG table or the ESBC image size in bytes).
SG table flag indicates whether the SG table is present or not.
For ESBC phase:
Size of image to be validated.

0x1c For ISBC phase:
ESBC entry point.
ISBC transfers control to this field upon successful validation of ESBC image(s).
For ESBC phase: Reserved

0x20 Manufacturing Protection flag
Indicates if manufacturing protection has to be enabled or not in ISBC.
• mp_flag[16:31] - Manufacturing Protection flag
• sg_flag[0:15] - SG table flag
For ESBC phase: Reserved

0x24 For ISBC phase: UID
For ESBC phase: UID

0x25 For ISBC phase:
Secondary image flag
Indicates if user has a secondary image available in case of failure in validating the primary image.
For ESBC phase: Reserved

0x27-0x26 Unique ID usage
This field contains a flag which indicates whether to compare FUID and OUID in the CSF header field
with values in SFP registers: SFP_FUIDRn, SFP_OUIDRn

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
141 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Offset Data bits [0:31]
• 0x00 - No comparison done
• 0x01 - Both FUID and OUID are compared
• 0x02 - Only FUID is compared
• 0x04 - Only OUID is compared

0x28 FUID0
If the flag is set, this value is compared to corresponding FUID0 register.

0x2c OUID0
If the flag is set, this value is compared to corresponding OUID0 register.

0x30 Reserved

0x34 Reserved

0x38 FUID1
If the flag is set, this value is compared to corresponding FUID1 register.

0x3c OUID1
If the flag is set, this value is compared to corresponding OUID1 register.

0x40 For ISBC phase: Not Applicable
For ESBC phase: Lower 32 bits of 64 bits ESBC image address

0x44 For ISBC phase: Not Applicable
For ESBC phase: Higher 32 bits of 64 bits ESBC image address

0x48 For ISBC phase: Not Applicable
For ESBC phase:
ISBC key extension flag
If this flag is set, key to be used for validation needs to be picked up from the IE key table.

0x4c For ISBC phase: Not Applicable
For ESBC phase:
IE key select
Key Number to be used from the IE key table if ISBC key extension flag is set.

The following figure shows the differences in the CSF header fields in the ISBC and ESBC phases, for
LS1021A:

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
142 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Barker Code
Public Key / SRK Table Offset

Public Key / Length / SRK Flags

RSA Signature Offset

RSA Signature Length

Pointer to SG Table

entries in SG

ESBC Entry Point
Manufacturing Protection Flag

UID, SEC_IMG Flags

 FUID0

OUID0
Reserved
Reserved

Header Size = 0x40

Barker Code

ISBC Phase ESBC Phase

Public Key / SRK Table Offset

Public Key / Length / SRK Flags

RSA Signature Offset

RSA Signature Length

Pointer to Image

Size of ESBC Image

Reserved
Reserved
UID

 FUID0

OUID0
Reserved
Reserved

Reserved

Reserved

0x0
0x4

0x8

0xC

0x10

0x14

0x18

0x1C
0x20
0x24

0x28

0x2C
0x30
0x34
0x38
0x3C

0x0
0x4

0x8

0xC

0x10

0x14

0x18

0x1C
0x20
0x24

0x28

0x2C
0x30
0x34
0x38
0x3C

0x40

0x44
0x48
0x4C

Header Size = 0x50

Reserved

Reserved

FUID1

OUID1

FUID1
OUID1

Figure 13. CSF header for LS1021A (ISBC and ESBC phase)

Offset Data bits [0:31]

0x00 Barker code.
This field should contain the value: 0x68392781. The ISBC code searches for this Barker code. If the
value in this field does not match the Barker code, the ISBC stops execution and reports error.

0x04 If srk_table_flag is not set:
• Public key offset: This field contains an address, which is the offset of the public key from the start

of the CSF header. Using this offset and the public key length, the public key is read.
If srk_table_flag is set:
• SRK table offset: This field contains an address, which is the offset of the SRK table from the start

of the CSF header. Using this offset and the number of entries in the SRK table, the SRK table is
read.

0x08 srk_table_flag
This flag indicates whether hash fused in the SRKH register is of a single key or of SRK table.
• srk_table_flag = 1: Indicates SRK table is present
• srk_table_flag = 0: Indicates SRK table is not present, only single key is present

0x0b-0x09 If srk_table_flag is not set:
• 0x0b-0x9 -- Public key length: This field contains the length of the public key in bytes.
If srk_table_flag is set:
• 0x09 – This field contains Key number from SRK table which is to be used for verification.
• 0x0b-0x0a – This field contains the Number of entries in SRK table. Minimum number of entries

in table = 1, Maximum = 4.

0x0c RSA Signature offset.
This field contains an offset (in bytes) of the RSA signature from the start of the CSF header. Using
this offset and the Signature length, the RSA signature is read.

Table 24. CSF header format (LS1021A platform)

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
143 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Offset Data bits [0:31]

0x10 RSA Signature length in bytes.

0x14 For ISBC phase:
SG Table offset
This field contains an address which is the offset of the SG table from the start of the CSF header.
Using this offset and the number of entries in the SG table, the SG table is read.
For ESBC phase:
Address of the image to be validated.

0x18 For ISBC phase:
Number of entries in SG table (Based on the SG table flag in the CSF header, this field shall either
be treated as the number of entries in the SG table or the ESBC image size in bytes).
SG table flag indicates whether the SG table is present or not.
For ESBC phase
Size of image to be validated.

0x1c For ISBC phase:
ESBC entry point
ISBC transfers control to this field upon successful validation of the ESBC image(s).
For ESBC phase: Reserved

0x20 Manufacturing Protection flag
Indicates if manufacturing protection has to be enabled or not in ISBC.
• mp_flag[16:31] - Manufacturing Protection flag
• sg_flag[0:15] - SG table flag
For ESBC phase: Reserved

0x24 For ISBC phase: UID
For ESBC phase: UID

0x25 For ISBC phase
Secondary Image flag
Indicates if user has a secondary image available in case of failure in validating the primary image.
For ESBC phase: Reserved

0x27-0x26 Unique ID Usage
This field contains a flag which indicates whether to compare FUID and OUID in the CSF header field
with values in SFP registers: SFP_FUIDRn, SFP_OUIDRn
• 0x00 - No comparison done
• 0x01 - Both FUID and OUID are compared
• 0x02 - Only FUID is compared
• 0x04 - Only OUID is compared

0x28 FUID0
If the flag is set, this value is compared to corresponding FUID0 register.

0x2c OUID0
If the flag is set, this value is compared to corresponding OUID0 register.

0x30 Reserved

0x34 Reserved

0x38 FUID1
If the flag is set, this value is compared to corresponding FUID1 register.

0x3c OUID1

Table 24. CSF header format (LS1021A platform)...continued

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
144 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Offset Data bits [0:31]
If the flag is set, this value is compared to corresponding OUID1 register.

0x40 For ISBC Phase: Not Applicable
For ESBC Phase: Reserved

0x44 For ISBC Phase: Not Applicable
For ESBC Phase: Reserved

0x48 For ISBC phase: Not Applicable
For ESBC phase: Reserved

0x4c For ISBC phase: Not Applicable
For ESBC phase: Reserved

Table 24. CSF header format (LS1021A platform)...continued

The SG table supports 8 images and each image entry is in this format {Len, target, src_addr, dst_addr}

Offset Data Bits [0:31]

0x00 Length. This field specifies the length in bytes of the ESBC image.

0x04 Target where the ESBC Image can be found. This field is ignored for TA 2.x platforms.

0x08 Source Address of ESBC Image

0x0c Destination Address of ESBC Image
If the target address is 0xffffffff, the image is not copied to the target. This field is ignored for TA 2.x
platforms.

Table 25. SG table format

The SRK table for TA 2.x stores 4 keys. The size of key value fields of each key is 0x400.

Offset Data Bits [0:31]

0x00 Key 1 length

0x04 Key 1 value. (Remaining bytes shall be padded with zero)

0x404 Key 2 length

0x408 Key 2 value. (Remaining bytes shall be padded with zero)

0x808 Key 3 length

0x80c Key 3 value. (Remaining bytes shall be padded with zero)

0xc0c Key 4 length

0xc10 Key 4 value. (Remaining bytes shall be padded with zero)

Table 26. SRK table

Super Root Keys (SRKs) and signing keys

These are RSA public and private key pairs. Private keys are used to sign the boot images and public keys are
used to validate these images during ISBC and ESBC phases.

Public keys are embedded in the image and the calculated hash value of the SRK table must be fused into the
SRKH registers of SFP.

These are hardware bound keys. Once the hash is fused, the public-private key pair cannot be modified as the
content of the SFP registers is non-editable.

The secure boot process supports keys of sizes 1k, 2k, and 4k.
UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
145 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Note that it is important to control access to the RSA private signature key. If the key is exposed, attackers can
generate alternate images that will pass secure boot.

If the key is lost, you will not be able to update the images.

Key revocation

TA 2.x supports revocation of the RSA public keys used by ISBC for verification of ESBC. The RSA public keys
used for this purpose are called Super Root Keys (SRKs).

You can use either a single key or a list of up to 4 SRKs in the TA 2.x platforms.

You need to define in CST, if the device uses a single SRK or a list of SRKs. If the device uses single SRK, a
new flag bit in the CSF header indicates key, otherwise the flag bit indicates key List.

Assuming that device is using the list of SRKs, the user can populate a list of up to 4 SRKs for TA 2.x onwards
platforms and can calculate an SHA-256 hash over the list. This hash is written to the SRKH registers in the
SFP.

As a step in the code signing process, you need to define which key in the key list is to be used for validating
the image. This key number is included as a new field in the CSF header.

During secure boot, the ISBC determines whether a key list is in use. If the key list is valid, the ISBC checks
the key number indicated in the CSF header against the revocation fuses in the SFP’s OEM Security Policy
Register (SFP_OSPR). If the key is revoked, the image validation fails.

Note:

In order to prevent unauthorized revocation of keys, SFP provides a bit (Write Disable). If the bit is set, the Key
revocation bits cannot be written to.

In regular operation, the ESBC (early Trusted S/W) needs to set the SFP Write Disable bit. When circumstances
call for revoking a key, the user will use an ESBC image with “Write Disable” bit not set. So, the SFP will be in a
state in which key revocation fuses can be set.

Logically after revoking the required key(s), the user would then load a new signed ESBC image with code to
set the "Write Disable" bit, with new CSF header indicating which of the remaining non-revoked key to use.

So, only the possessor of a legitimate RSA private key can enable key revocation.

One possible motivation for a user to revoke an SRK is the loss of the associated RSA private key to an
attacker. If the attacker has gained access to a legitimate RSA private key, and the attacker can turn on power
to the fuse programming circuitry, then the attacker could maliciously revoke keys. To prevent this from being
used to permanently disable the system, one SRK does not have an associated revocation fuse.

For details about key revocation, see QorIQ Trust Architecture 2.x User Guide.

Alternate image support

If ISBC fails to find a valid image at the primary image location, it can optionally check an alternate location for
an alternate image.

To execute, the alternate image must be validated using a non-revoked public key as defined by its CSF header.
A valid alternate image has same rights and privileges as a valid primary image.

The alternate image support reduces any risks due to corruption of the primary image or wearing out of the flash
memory.

To enable this feature:

• Add PBI command to load pointer to the alternate image CSF header in the SCRATCHRW3 register.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
146 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

5.1.1.3.1.3 ISBC validation error codes

Errors in the system can be of following types:

1. Core exceptions
2. System State failures
3. Header Checking failures

a. General failures
b. Key/Signature/UID related errors

4. Verification failures
5. SEC/PAMU errors

Value Code Definition

0x1 ERROR_UNDEFINED_INSTRUCTION Occurs if neither the processor nor any attached coprocessor
recognizes the currently executing instruction.

0x2 ERROR_SWI Software Interrupt is a user-defined interrupt instruction.
It allows a program running in User mode, for example, to
request privileged operations that run in Supervisor mode.

0x3 ERROR_PREFETCH_ABORT Occurs when the processor attempts to execute an instruction
that has been prefetched from an illegal address.

0x4 ERROR_DATA_ABORT Occurs when a data transfer instruction attempts to load or
store data at an illegal address.

0x5 ERROR_IRQ Occurs when the processor external interrupt request pin is
asserted (LOW) and IRQ interrupts are enabled.

0x6 ERROR_FIQ Occurs when the processor external fast interrupt request pin
is asserted (LOW) and FIQ interrupts are enabled.

Table 27. Core exceptions (LS1021A platform)

Value Code Definition

0x320 ERROR_ESBC_HEADER_KEY_LEN Length of public key in header is not one of the supported
values.

0x321 ERROR_ESBC_HEADER_KEY_LEN_ NOT_
TWICE_SIG_LEN

Public key is not twice the length of the RSA signature

0x322 ERROR_ESBC_HEADER_KEY_MOD_1 Most significant bit of modulus in header is zero.

0x323 ERROR_ESBC_HEADER_KEY_MOD_2 Modulus in header is even number

0x324 ERROR_ESBC_HEADER_SIG_KEY_MOD Signature value is greater than modulus in header

0x325 ERROR_FSL_UID FSL_UID in ESBC Header did not match the FSL_UID in
SFP if FSL UID flag Is 1

0x326 ERROR_OEM_UID OEM_UID in ESBC Header did not match the OEM_UID in
SFP if OEM UID flag is 1

0x327 ERROR_INVALID_SRK_NUM_ENTRY Number of entries field in CSF header is > 4 (This is when
srk_table_flag in header is 1)

0x328 ERROR_INVALID_KEY_NUM Key number to be used from SRK table is not present in
table.(This is when srk_table_flag in header is 1)

Table 28. Key/Signature/UID related errors (TA 2.x platforms)

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
147 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Value Code Definition

0x329 ERROR_KEY_REVOKED Key selected from SRK table has been revoked (This is
when srk_table_flag in header is 1)

0x32a ERROR_INVALID_SRK_ENTRY_KEYLEN Key length specified in one of the entries in SRK table is
not one of the supported values (This is when srk_table_
flag in header is 1)

0x32b ERROR_SRK_TBL_NOT_IN_3_5 SRK table is not in 3.5G boundary (This is when srk_table_
flag in header is 1)

0x32b ERROR_SRK_TBL_ON_OCRAM SRK table is on OCRAM

0x32c ERROR_KEY_NOT_IN_3_5G Key is not in 3.5G boundary

0x32c ERROR_KEY_ON_OCRAM Key on OCRAM

Table 28. Key/Signature/UID related errors (TA 2.x platforms)...continued

Value Code Definition

0x340 ERROR_HASH_COMPARE_KEY Super Root Key Hash Comparison failure. Mismatch in the
hash of the public key/SRK table as present in the header
with the value in the SRKH fuse.

0x341 ERROR_HASH_COMPARE_EM RSA signature check failure. Signature provided by you in
the header doesn’t match with the signature of the ESBC
image generated by ISBC. The ESBC image loaded by
you may be different than the image used while generating
the signature(using CST)

0x350 ERROR_PRIVATE_KEY_DERIVATION Error in derivation of manufacturing private key when MP
flag in CSF header is set

Table 29. Verification failures (TA 2.x platforms)

Value Code Definition

ESDHC errors

0x500 ERROR_ESDHC_CARD_DETECT_FAIL Card detection failed

0x501 ERROR_ESDHC_UNUSABLE_CARD Card not responding to CMDs

0x502 ERROR_ESDHC_COMMUNICATION_ERROR Card did not reply to CMD and timeout occurred

0x503 ERROR_ESDHC_READ_UNALIGNED Address should be block length align

eSPI errors

0x600 ERROR_ESPI_READID Invalid FLASH ID

0x601 ERROR_ESPI_BOOT_SIGN BOOT signature mismatch

0x602 ERROR_ESPI_READ_TIMEOUT Read timeout occurred

CAAM
errors

0x700 ERROR_SEC_ENQ Error when enqueuing to SEC

0x701 ERROR_SEC_DEQ Sec Block returned some error when dequeuing from it.

0x702 ERROR_SEC_DEQ_TO Timeout when trying to deq from SEC

Table 30. Device error codes (TA 2.x platforms)

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
148 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Value Code Definition

0x800 ERROR_PAMU Error while programming PAACT/SPAACT tables in
PAMU (For PowerPC platforms only)

Table 30. Device error codes (TA 2.x platforms)...continued

5.1.1.3.2 TA 3.x platforms

5.1.1.3.2.1 Pre-boot and Internal Secure Boot Code (ISBC) phase

In the development phase, set RCW[SB_EN] = 1 to boot the system in secure mode.

In the production phase, set the ITS bit in SFP to ensure that the system operates in secure and trusted
manner. Once the SFP ITS fuse is blown, it cannot be changed.

The Service Processor is the first bus master that executes when the device exits reset. It is the starting point
for the secure boot chain of trust.

The Service Processor executes the PBI commands. The ISBC residing in Service Processor validates the PBI
commands before execution. The ISBC also validates BL2 and releases the SoC’s Armv8 master core (CPU 0)
to execute the validated BL2.

The main steps in the ISBC flow are defined below.

TA 3.x platforms - ISBC CSF header structure definition, SRK table, SG table

0x4C

0x48

0x44

0x40

0x3C

0x38

0x34

0x30

0x2C

0x28

0x24

0x20

0x1C

0x18

0x14

0x10

0xC

0x8

0x4

0x0

Header Size = 0x50

PBI & ISBC Phase

Barker Code

SRK Table Offset

Flags + Key Info

UID Flags

RSA Signature Offset

RSA Signature Length

Pointer to SG Table

entries in SG

64 bit Entry Point Low

FUID0

FUID1

OUID0

OUID1

OUID2

OUID3

OUID4

Reserved

Reserved

Reserved

64 bit Entry Point High

Figure 14. CSF header structure (ISBC TA 3.x)

Offset Description

0x00 Barker code

Table 31. CSF header structure (ISBC TA 3.x)

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
149 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Fixed value which the ISBC uses to confirm it has located the start of a CSF header. (0x12192001
in big endian)
0x00 – 0x12
0x01 – 0x19
0x02 – 0x20
0x03 – 0x01
It is numeric encoding of LSTA (LS Series Trust Architecture)

0x04 SRK table offset
This field contains an address which is the offset of the SRK table from the start of CSF header.
Using this offset and the number of entries in the SRK table, the SRK table is read.

0x08 No. of keys
This field specifies the no. of keys in the SRK table

0x09 Key No. for verification
Key number from the SRK table used by ISBC to verify the image signature.

0x0a Reserved

0x08

0x0b IE[0]: ISBC Extension (Reserved)
MP[4]: Execute Manufacturing Protection Routine
ISS[5]: Increment Security State; indicates whether the ISBC should increment the SNVS SSM
upon successful verification
B01[6]: Identifies whether this is the CSF header of a boot 0 image (PBI) or a BL2
LW[7]: Leave writable; when set; ISBC does not set the SFP Write Disable

0x0C Reserved

0x0D Reserved

0x0E Reserved

0x0C

0x0F OID[0:1]: Reserved
OID[2:6]: when set, the corresponding OEM UID field in the SFP is included in the digital
signature verification. For each bit set, the corresponding OUID field is included in the CSF
header.
FUID[7]: when set, the 64b FUID is included in the digital signature verification and the FUID is
included in the CSF header.

0x10 RSA signature offset
This field contains an address which is the offset of the RSA signature from the start of CSF
header. Using this offset and the signature length, the RSA signature is read. The RSA signature
is calculated over CSF header, SG table, and ESBC images.

0x14 RSA signature length
This field contains the length of the RSA signature in bytes.

0x18 SG table offset
This field contains an address which is the offset of the SG table from the start of CSF header.
Using this offset and the number of entries in SG table, the SG table is read.

0x1C No. of entries
This field specifies the number of entries present in SG table.

0x20 Entry point (64 bit)
ISBC transfers control to this field upon successful validation of ESBC image(s).

0x28 FUID0

0x2c FUID1

Table 31. CSF header structure (ISBC TA 3.x)...continued

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
150 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

0x30 OUID0

0x34 OUID1

0x38 OUID2

0x3c OUID3

0x40 OUID4

0x44 Reserved

0x48 Reserved

0x4C Reserved

Table 31. CSF header structure (ISBC TA 3.x)...continued

The SRK table for TA 3.x stores 8 keys. The size of key contents of each key is 0x400. The following table
shows the SRK table structure for Key 1 and Key 2.

Offset Description

0x00 Key 1 length

0x04 Key 1 content (Modulus, Exponent, Exponent+Modulus)

0x404 Key 2 length

0x408 Key 2 content (Modulus, Exponent, Exponent+Modulus)

Table 32. SRK table structure

Offset Description

0x00 Length

0x04 Reserved

0x08 SRC Address Low

0x0C SRC Address High

Table 33. SG table structure

ISBC for PBI validation

Note: For details about SecMon, see "9.2 Security Monitor (SecMon)" in QorIQ Trust Architecture 3.x User
Guide. For details about SFP, see "3.1.2.2 Security fuse processor" in QorIQ Trust Architecture 3.x User Guide.

1. SecMon check: Confirms that SecMon is in the Check state (OTPMK is fused). If SecMon is not in the
Check state, the SecMon is transitioned to the Fail state. And the system enters into fail state.

2. PBI command check: Verifies that the first PBI command is ‘Load Boot 1 CSF Header Ptr’. If not found, an
error is raised.

3. Valid header check: Checks for a valid preamble in the header. If valid preamble is not available, an error
is raised.

4. CSF parsing and public key check: If ISBC finds a valid CSF header, it parses the CSF header to locate
the public key, from the SRK table, to be used to validate the code. The header can include an SRK table
of maximum 8 public keys. The SFP hash register in SFP does not store a public key, it stores an SHA-256
hash calculated over the SRK table in the fuses. If the hash of the SRK table fails to match the stored hash,
secure boot fails.

5. Signature validation: With the validated public key, ISBC decrypts the hash or digital signature stored
in the CSF header. The ISBC then uses the PBI length field in the RCW to calculate a hash over all PBI
commands (CSF header is also a part of PBI commands) along with the SRK table. Optional flags in the
CSF header tell the ISBC whether the FSL Unique ID (FUID) and the OEM Unique ID (OUID in SFP are to

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
151 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

be checked or not. Including these IDs allows the image to be bound to a single platform. If the decrypted
hash and the calculated hash do not match, the secure boot fails.

6. SecMon Transition: If the Increment Security State (ISS) flag is set in the header, ISBC transitions the
SNVS state from Check to Trusted.

Note:

1. If ISBC fails to validate the PBI, check the SCRATCHRW3 register with a JTAG debugger to obtain an
error code. If ISBC fails to validate the alternate image, the corresponding error code can be found in the
SCRATCHRW4 register. For a list of error codes, see ISBC Validation Error Codes.

PBI structure

The following table shows an overview of the recommended PBI format as generated by Layerscape LDP.

Fields Offset Size (In 32-bit words)

Preamble (RCW) 0x00 1

Load RCW command 0x04 1

RCW words 0x08 – 0x87 32

RCW

RCW checksum 0x88 1

Load security header
CSF header

0x8c
0x90 – 0xdf

1
20

Load boot 1CSF header
Boot 1 pointer

0xe0
0xe4

1
1

Other PBI commands 0xe8 N

PBI commands

STOP command (With/
Without CRC)

0xe8 + (4*N) 2

SRK table SRK table 0x90 + SRK table offset in
CSF header

(No. of keys * Key content
length)

RSA signature Signature 0x90 + Sign offset in CSF
header

Sign length

Preamble The preamble is always the first element in a PBI image. It contains a
standard pattern that identifies the memory location as the beginning of a
valid PBI image. The preamble is a 4-byte pattern defined as “0xaa, 0x55,
0xaa, 0x55”.

Load RCW command The next word is load RCW command. This command loads the 1024-bit
Reset Configuration Word (RCW) from the interface specified by Power-
on-Reset (POR) configuration strapping pins. It has the following two
formats.
• Load RCW with checksum (0x10): Read Reset Configuration Word

performs simple 32-bit checksum, and update RCW registers.
• Load RCW without checksum (0x11): Read RCW and update RCW

registers without performing checksum. The version without the
checksum includes padding with zeroes in the place of the checksum
value.

RCW words 1024 RCW bits that are 32 words of 32 bits.

RCW

RCW checksum It is calculated as a 32-bit unsigned integer summation of the RCW
Preamble, the Load RCW with checksum command, and each of the

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
152 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

32 words (32-bit) of the RCW. A simple 32-bit checksum is used for the
validation of the command.

checksum(RCW_WORD[]){
 unsigned_32 sum = 0xAA55AA55 + 0x80100000 +
 Load RCW Command;
 for(i=0; i<32; i++)
 sum+=RCW_WORD[i];
 return (sum);
}

Note: Checksum has to be updated by the CST tool as the fields like
RCW[SB_EN], RCW[PBI_LEN] in the RCW words are changed.

Load security header This command loads information required for authentication of the PBI
image. The security header includes pointers to an SRK key table and
RSA signatures as well as other flags and IDs. The CSF header is part of
the command. Refer the CSF header structure in Trust 3.x devices - ISBC
CSF header structure definition, SRK table, SG table..

Load boot 1 CSF header This command loads a pointer to the CSF header used for authentication
of the Boot 1 Secondary Program Loader. This 32-bit value is used by the
Boot 0 ISBC and is required for secure boot.

Other PBI commands Other PBI commands input by user.

PBI commands

STOP command This command ends the PBI sequence and has two variants (with and
without CRC). The CRC check value covers all commands from the
first command after the RCW up to and including this CRC and Stop
command, regardless of whether any are skipped by Jump commands
during execution.
In Stop command without CRC, it ends the PBI sequence immediately.
It does not include a CRC value, but it instead has a 32-bit padding with
zeroes so that it is the same size as the Stop with CRC command.
Note: CST tool updates the PBI commands by adding Load Security
Header command and Load Boot 1 Security Header command. So, CRC
must also be updated.

SRK table Table of public keys is used in secure boot validation. It is kept at an offset
from the CSF header. The offset is specified in the CSF header.

RSA signature RSA signature is calculated over all PBI commands and SRK table. It is
kept at an offset from the CSF header. The offset is specified in the CSF
header.

ISBC for next executable (BL2) validation

1. Valid header check: Check for a valid preamble in the header. If na valid preamble is not present in the
header, an error is raised.

2. CSF parsing and public key check: If ISBC finds a valid CSF header, it parses the CSF header to locate
the public key, from the SRK table, to be used to validate the code. The header can include an SRK table
of maximum 8 public keys. The SFP hash register in SFP does not store a public key, it stores an SHA-256
hash calculated over the SRK table in the fuses. If the hash of the SRK table fails to match the stored hash,
secure boot fails.

3. Signature validation: With the validated public key, ISBC decrypts the digital signature stored in the CSF
header. The ISBC then calculates and checks the hash over the CSF, the SRK table, the SG table and all
entries the SG table points to. If the decrypted hash and the calculated hash do not match, the secure boot
fails.

4. Entry Point check: CSF header contains entry point address. If the address is in the valid range, then Entry
point is updated in the Boot Location Pointer (BOOTLOCPTRL/BOOTLOCPTRH) register.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
153 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

5. SecMon Transition: If the Increment Security State (ISS) flag is set in the header, ISBC transitions the
SNVS state from Check to Trusted or Trusted (if transitioned in the PBI validation phase) to Secure.

Note:

1. When ISBC ends, Entry Point parsed from header is written to the BOOTLOCPTRL/BOOTLOCPTRH
register.

2. GPP wakes up.
3. Service Processor goes to sleep.

If ISBC fails to validate the BL2, check the SCRATCHRW3 register with a JTAG debugger to obtain an
error code. If ISBC fails to validate the alternate image, the corresponding error code can be found in the
SCRATCHRW4 register. For a list of error codes, see ISBC Validation Error Codes.

5.1.1.3.2.2 ISBC validation error codes

Error handling in production environment (ITS = 1)

• Error codes are logged in the DCFG SCRATCH register.
• SNVS transitions to the soft fail state.
• LED is activated. If you have implemented an LED to indicate secure boot failure, the LED is connected to a

GPIO. The information of GPIO is specified via bits in RCW.

GPIO_LED_EN Bit(s): 311
The SP BootROM code sequence turns on the LED (if RCW[GPIO_
LED_EN] = 1) by configuring one GPIO direction (GPDIR) register bit
as an output and writing the corresponding output in a GPIO block data
(GPDAT) register.

GPIO_LED_NUM Bnoit(s): 310-304
If GPIO_LED_EN is set, these bits specify the GPIO number to which
LED is connected.
– 0x1f - 0x00 : GPIO_1
– 0x3f - 0x20 : GPIO_2
– 0x5f - 0x40 : GPIO_3
– 0x7f - 0x60 : GPIO_4

• Soft reset is issued
• Cores then enters in infinite loop (If Reset is disabled)1

Error handling in development environment (ITS = 0, RCW[SB_EN] = 1)

• Error codes are logged in the DCFG SCRATCH register.
• SNVS transitions to the non-secure state.
• Further actions depends on the type of failure:

Fatal Error Core in infinite Loop

Non-Fatal Error Application software is allowed to execute

Error codes

The error codes reported by SP BootROM are categorized as follows:

1 To debug the root cause of failure and view the error code, Reset has to be disabled on the SoC.
UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
154 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

• Core exceptions
• Device errors
• RCW/PBI errors
• Validation errors

When error
generated

Error code Value Description

Core exceptions

Random ERROR_UNDEFINED_INSTRUCTION 0x1 Occurs if neither the processor
nor any attached co-processor
recognizes the currently
executing instruction.

Random ERROR_SWI 0x2 Software Interrupt is a user-
defined interrupt instruction.
It allows a program running
in User mode, for example, to
request privileged operations
that run in Supervisor mode.

Random ERROR_PREFETCH_ABORT 0x3 Occurs when the processor
attempts to execute an
instruction that has been
prefetched from an illegal
address.

Random ERROR_DATA_ABORT 0x4 Occurs when a data transfer
instruction attempts to load or
store data at an illegal address.

Random ERROR_IRQ 0x5 Occurs when the processor
external interrupt request pin
is asserted (LOW) and IRQ
interrupts are enabled.

Random ERROR_FIQ 0x6 Occurs when the processor
external fast interrupt request
pin is asserted (LOW) and FIQ
interrupts are enabled.

Device errors – ESDHC

Random ERROR_ESDHC_CARD_DETECT_FAIL 0x31 When SD card detection fail

Random ERROR_ESDHC_UNUSABLE_CARD 0x32 When SD card does not
respond to initialization
commands

Random ERROR_ESDHC_COMMUNICATION_ERROR 0x33 For all SD card read/write
errors

Random ERROR_ESDHC_BLOCK_LENGTH 0x34 When SD card read block
length is greater than 0x400

Device errors – FlexSPI

Random ERROR_FLEXSPI_NOR_INVALID_OFFSET 0x41 Occurs when NOR offset or
offset + read_size is greater
than 0xFFFFFF

Table 34. ISBC error codes

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
155 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

When error
generated

Error code Value Description

Random ERROR_FLEXSPI_NAND_INVALID_OFFSET 0x42 Occurs when NAND offset or
offset + read_size is greater
than 0xFFFFFF

Random ERROR_FLEXSPI_INVALID_ADDR 0x43 Occurs when NAND get status
IPCMD sfar address is not
correct

Random ERROR_FLEXSPI_TIMEOUT 0x44 Occurs when NAND get status
IPCMD timeouts

Random ERROR_FLEXSPI_NAND_BBT_FULL 0x45 Occurs when bad block table
is FULL, that is 256 bad blocks
are found

Random ERROR_FLEXSPI_NAND_PAGE_READ_TIMEOUT 0x46 Occurs when NAND page read
timeouts

Random ERROR_FLEXSPI_NAND_IPCMD_DONE_TIMEOUT 0x47 Occurs when NAND IPCMD
done bit is not set and timeouts

Random ERROR_FLEXSPI_NAND_IP_IDLE_TIMEOUT 0x48 Occurs when NAND IP BUS is
not idle

Phase = RCW

RCW Phase ERROR_PREAMBLE 0x50 Preamble not found.

RCW Phase ERROR_RCW_CMD_NOT_FOUND 0x51 RCW command not found

RCW Phase ERROR_RCW_CHECKSUM_MISMATCH 0x52 Checksum mismatch in RCW

RCW Phase ERROR_RCW_SRC_INVALID 0x58 RCW_SRC is not a valid
source

RCW Phase ERROR_RCW_REQ_NOT_SET 0x59 RCW_REQ bit never set by
Reset state machine (RSM)

RCW Phase ERROR_PBI_REQ_NOT_SET 0x60 PBI_REQ bit never set (by
RSM)

Phase = PBI

PBI Phase ERROR_SEC_CAAM_INIT 0x61 CAAM init failed (Would rarely
occur)

PBI Phase ERROR_SEC_CAAM_NOT_FOUND 0x62 CAAM block not found in case
of secure boot

PBI Phase ERROR_PBI_SRC_NOT_SAME_AS_RCW_SRC 0x64 Mismatch between RCW_SRC
and PBI_SRC fields

PBI Phase ERROR_PBI_LENGTH 0x65 PBI length defined in
RCW[PBI_LEN] field is invalid

PBI Phase ERROR_PBI_LAST _CMD_NOT_STOP 0x66 STOP or CRC&STOP not
found at the end of the
specified PBI Length.

PBI Phase ERROR_PBI_ COMMAND_UNKNOWN 0x67 An invalid command parsed by
PBI Parser

PBI Phase ERROR_CAAM_SELF_TEST 0x6a CAAM self-test failed

Table 34. ISBC error codes...continued

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
156 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

When error
generated

Error code Value Description

PBI Phase ERROR_PBI_ COPY_INVALID_ SRC_TYPE 0x70 Copy command, src field does
not match the RCW_SRC field

PBI Phase ERROR_PBI_ COPY_INVALID_ DST_ADDR 0x71 Copy command, dest field is
not 0x00

PBI Phase ERROR_PBI_ COPY_INVALID_SRC_ADDR_ SRC_ADDR 0x72 SRC address is invalid (ROM/
OCRAM reserved for SP)

PBI Phase ERROR_PBI_CCSR_BYTE_COUNT 0x74 Byte count in CCSR Write not
valid

PBI Phase ERROR_PBI_CCSR_4_BYTE_ALLIGNED 0x75 Offset is not 4 bytes aligned

PBI Phase ERROR_PBI_CCSR_OFFSET_INVALID 0x76 Offset is invalid that is less than
allowed CCSR Base 0x0100_
0000

PBI Phase ERROR_PBI_ACSR_INVALID_ADDRESS 0x78 Source address in ACSR
invalid (invalid addresses -
OCRAM or ROM address)

PBI Phase ERROR_PBI_ACSR_BYTE_COUNT 0x79 Byte count in ACSR write
command not valid

PBI Phase ERROR_PBI_ACSR_WINDOW_NOT_SET 0x7a ATU Window is not configured

PBI Phase ERROR_PBI_ACSR_OFFSET_ALLIGNED 0x7b ACSR offset is invalid and
trying to write to Reserved
space on OCRAM.

PBI Phase ERROR_PBI_ALTCFG_WNDW_INVALID 0x7c ATU Window is invalid

PBI Phase ERROR_PBI_JUMP_OUT_LENGTH 0x80 Offset specified in JUMP
command does not lie in PBI
length range

PBI Phase ERROR_PBI_JUMP_4_BYTE_ALLIGNED 0x81 Offset specified in JUMP
command is not 4 bytes
aligned

PBI Phase ERROR_PBI_JUMP_OFFSET_0 0x82 Offset specified in JUMP
command is 0

PBI Phase ERROR_PBI_LOADC_4_BYTE_ALLIGNED 0x84 Address specified in LOAD
condition command is not 4
bytes aligned

PBI Phase ERROR_PBI_JUMPC_OUT_LENGTH 0x88 Offset specified in JUMP
command does not lie in PBI
length range

PBI Phase ERROR_PBI_JUMPC_4_BYTE_ALLIGNED 0x89 Offset specified in JUMP
conditional command is not 4
bytes aligned

PBI Phase ERROR_PBI_JUMPC_CONDITION_NOT_SET 0x8a Jump conditional command
encountered before condition is
set using Load Condition

PBI Phase ERROR_PBI_CRC_MISMATCH 0x90 CRC mismatch

PBI Phase ERROR_PBI_POLL 0x91 Poll timeout

Table 34. ISBC error codes...continued

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
157 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

When error
generated

Error code Value Description

PBI Phase ERROR_PBI_POLL_4_BYTE_ALLIGNED 0x92 Address being polled is not 4
bytes aligned

PBI Phase ERROR_PBI_BOOT1_CSF_INVALID_ADDR 0x94 Address of CSF header is not
valid

PBI Phase ERROR_PBI_BOOT1_CSF_ALLIGNED 0x95 Address of CSF header is not 4
bytes aligned

PBI Phase ERROR_PBI_CCSR_MASKLEN_INVALID 0xa0 When CCSR masklen = 0, valid
values are 1, 2, 3

PBI Phase ERROR_PBI_CCSR_ADDR_NOT2BYTE_ALIGN 0xa1 When CCSR address is not 2
bytes align

PBI Phase ERROR_PBI_CCSR_ADDR_NOT4BYTE_ALIGN 0xa2 When CCSR address is not 4
bytes align

PBI Phase ERROR_PBI_SP_CCSR_ADDR 0xa3 When CCSR address is less
than 0x01000000

PBI Phase ERROR_PBI_CCSR_OPS_TYPE_INVALID 0xa4 When operation type is 3, that
is reserved.Valid operations are
SET, CLEAR and REPLACE

PBI Phase ERROR_PBI_CCSR_WRITE_TYPE_INVALID 0xb0 When write register width is set
to 0x0.Valid values are 2 --- >
2 bytes register write3 --- > 3
bytes register write

PBI Phase ERROR_PBI_SCR_ADDR_NOT2BYTE_ALIGN 0xb1 When write type =2 and source
address is not 2 bytes align

PBI Phase ERROR_PBI_CCSR_ADDR_2BYTE_NOT_ALIGN 0xb2 When write type=2 and CCSR
destination address is not 2
bytes align

PBI Phase ERROR_PBI_SCR_ADDR_NOT4BYTE_ALIGN 0xb3 When write type =3 and source
address is not 4 bytes align

PBI Phase ERROR_PBI_CCSR_ADDR_4BYTE_NOT_ALIGN 0xb4 When write type= 3 and CCSR
destination address is not 4
bytes align

PBI Phase ERROR_PBI_SP_MIN_CCSR_ADDR 0xb5 When CCSR address is less
than 0x01000000

PBI Phase ERROR_PBI_CCSR_WRITE_LEN_ZERO 0xb6 When write length is zero

PBI Phase ERROR_PBI_CCSR_WRITE_FROM_INVALID_ADDR 0xb7 When source address is from
OCRAM reserved area

Phase = Verify (System State errors (Secure boot))

Before PBI
verification

ERROR_STATE_NOT_CHECK 0xf0 SecMon State Machine not in
CHECK state at start of ISBC
in primary flow. Some Security
violation could have occurred
or OTPMK is not fused.

Before PBI
verification

ERROR_STATE_NOT_CHECK_TRUSTED 0xf1 SecMon State Machine not in
CHECK/Trusted state at start of
ISBC in secondary flow.

Table 34. ISBC error codes...continued

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
158 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

When error
generated

Error code Value Description

Phase = Verify (Secure boot fatal errors)

Verify PBI ERROR_PBI_COMMANDS_NOT_FOUND 0xf4 Not having PBI commands
in RCW is error scenario for
secure boot

Verify PBI ERROR_SEC_HDR_NOT_FOUND 0xf5 Error if security header
command not found in RCW.
Expected location of Security
Header command
• After Preamble for hard

coded RCW
• After preamble and RCW for

other RCW sources

Phase = Verify (Secure boot fatal (Header parsing errors))

Verify PBI ERROR_HEADER_LOC 0xf8 Header location is invalid

Verify PBI ERROR_HEADER_BARKER 0xf9 Barker code in the header is
incorrect

Verify PBI ERROR_HEADER_INVALID 0xfa Flag B01 in the header
identifies this as SPL header

Phase = Verify (Secure boot non-fatal (Key/UID related errors))

Verify PBI ERROR_INVALID_SRK_ENTRY_KEYLEN 0x210 Length of public key specified
in one of the entries in
SRK table is not one of the
supported values.
(1k, 2k, or 4k)

Verify PBI ERROR_ KEY_LEN_ NOT_TWICE_SIG_LEN 0x211 Public key is not twice the
length of the RSA signature

Verify PBI ERROR_ KEY_MOD_1 0x212 Most significant bit of modulus
in header is zero.

Verify PBI ERROR_ KEY_MOD_2 0x213 Modulus in header is even
number

Verify PBI ERROR_ SIG_KEY_MOD 0x214 Signature value is greater than
modulus in header

Verify PBI ERROR_ INVALID_SRK_NUM_ENTRY 0x215 Number of entries field in CSF
header is > 8 (This is when
srk_table_flag in header is 1)

Verify PBI ERROR_ INVALID_KEY_NUM 0x216 Key number to be used from
SRK table is not present in
table. (This is when srk_table_
flag in header is 1)

Verify PBI ERROR_ KEY_REVOKED 0x217 Key selected from SRK table
has been revoked (This is
when srk_table_flag in header
is 1)

Verify PBI ERROR_ FSL_UID 0x220 FSL_UID in ESBC header did
not match the FSL_UID in SFP
if fsl uid flag Is 1

Table 34. ISBC error codes...continued

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
159 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

When error
generated

Error code Value Description

Verify PBI ERROR_ OEM_UID0 0x221 OEM_UID0 in ESBC header
did not match the OEM_UID0
in SFP if OEM UID0 flag is 1.

Verify PBI ERROR_ OEM_UID1 0x222 OEM_UID1 in ESBC header
did not match the OEM_UID1
in SFP if OEM UID1 flag is 1.

Verify PBI ERROR_ OEM_UID2 0x223 OEM_UID1 in ESBC header
did not match the OEM_UID1
in SFP if OEM UID1 flag is 1.

Verify PBI ERROR_ OEM_UID3 0x224 OEM_UID1 in ESBC header
did not match the OEM_UID1
in SFP if OEM UID1 flag is 1.

Verify PBI ERROR_ OEM_UID4 0x225 OEM_UID1 in ESBC header
did not match the OEM_UID1
in SFP if OEM UID1 flag is 1.

Phase = Verify (Header Verification failure) Secure boot non-fatal

Verify PBI ERROR_ HASH_COMPARE_KEY 0x240 Super Root Key Hash
Comparison failure. Mismatch
in the hash of the public key/
SRK table as present in the
header with the value in the
SRKH fuse.

Verify PBI ERROR_ HASH_COMPARE_EM 0x241 RSA signature check failure.
Signature provided by you in
the header does not match
with the signature of the ESBC
image generated by ISBC.
The ESBC image loaded by
you may be different than the
image used while generating
the signature (using CST)

Phase = Verify (Secure boot fatal (Header parsing errors))

Verify Boot1 ERROR_HEADER_LOC 0x100f8 Header location is invalid

Verify Boot1 ERROR_HEADER_BARKER 0x100f9 Barker code in the header is
incorrect.

Verify Boot1 ERROR_HEADER_INVALID 0x100fa Flag B01 in the header
identifies this as SPL header.

Phase = Verify (Secure boot fatal (SG table related errors))

Verify Boot1 ERROR_INVALID_SRK_ENTRY_KEYLEN 0x10210 Length of public key specified
in one of the entries in
SRK table is not one of the
supported values.
(1k, 2k, or 4k)

Verify Boot1 ERROR_ KEY_LEN_ NOT_TWICE_SIG_LEN 0x10211 Public key is not twice the
length of the RSA signature

Table 34. ISBC error codes...continued

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
160 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

When error
generated

Error code Value Description

Verify Boot1 ERROR_ KEY_MOD_1 0x10212 Most significant bit of modulus
in header is zero

Verify Boot1 ERROR_ KEY_MOD_2 0x10213 Modulus in header is even
number

Verify Boot1 ERROR_ SIG_KEY_MOD 0x10214 Signature value is greater than
modulus in header

Verify Boot1 ERROR_ INVALID_SRK_NUM_ENTRY 0x10215 Number of entries field in CSF
header is > 8 (This is when
srk_table_flag in header is 1)

Verify Boot1 ERROR_ INVALID_KEY_NUM 0x10216 Key number to be used from
SRK table is not present in
table. (This is when srk_table_
flag in header is 1)

Verify Boot1 ERROR_ KEY_REVOKED 0x10217 Key selected from SRK table
has been revoked (This is
when srk_table_flag in header
is 1)

Verify Boot1 ERROR_ FSL_UID 0x10220 FSL_UID in ESBC header did
not match the FSL_UID in SFP
if fsl uid flag Is 1

Verify Boot1 ERROR_ OEM_UID0 0x10221 OEM_UID0 in ESBC header
did not match the OEM_UID0
in SFP if OEM UID0 flag is 1.

Verify Boot1 ERROR_ OEM_UID1 0x10222 OEM_UID1 in ESBC Header
did not match the OEM_UID1
in SFP if OEM UID1 flag is 1.

Verify Boot1 ERROR_ OEM_UID2 0x10223 OEM_UID1 in ESBC Header
did not match the OEM_UID1
in SFP if OEM UID1 flag is 1.

Verify Boot1 ERROR_ OEM_UID3 0x10224 OEM_UID1 in ESBC Header
did not match the OEM_UID1
in SFP if OEM UID1 flag is 1.

Verify Boot1 ERROR_ OEM_UID4 0x10225 OEM_UID1 in ESBC Header
did not match the OEM_UID1
in SFP if OEM UID1 flag is 1.

Phase = Verify (Header Verification failure) Secure boot non-fatal

Verify Boot1 ERROR_ HASH_COMPARE_KEY 0x10240 Super Root Key Hash
Comparison failure. Mismatch
in the hash of the public key/
SRK table as present in the
header with the value in the
SRKH fuse.

Verify Boot1 ERROR_ HASH_COMPARE_EM 0x10241 RSA signature check failure.
Signature provided by you in
the header does not match
with the signature of the ESBC
image generated by ISBC.

Table 34. ISBC error codes...continued

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
161 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

When error
generated

Error code Value Description

The ESBC image loaded by
you may be different than the
image used while generating
the signature(using CST)

Table 34. ISBC error codes...continued

5.1.1.3.3 External Secure Boot Code (ESBC) phase

Unlike ISBC, which is in BootROM and cannot be modified, ESBC can be modified by you. ESBC includes:

• BL2 image which further validates BL31, BL32, and BL33 (U-Boot) images
• U-Boot image which validates the images it loads. For example, Linux, DTB, MC firmware

ESBC can be used as is, as it is provided in the NXP offered secure boot system as part of the Layerscape
LDP. Or, you can use ESBC as reference to modify your secure boot system.

NXP offers two secure boot systems:

• ESBC image validation using NXP CSF headers, also known as NXP CoT for ESBC images
• ESBC image validation using X509 certificates

– Enabled on NXP platform through TF-A
– meets Arm recommended Trusted Board Boot Requirements (TBBR)
– also known as Arm CoT for ESBC images
Note: Arm CoT is supported only for LX2160ARDB and LX2162AQDS platforms.

To establish Secure Boot Chain of Trust, ESBC includes U-Boot commands. The U-Boot commands are
explained in Section 5.2.1.2.

5.1.1.3.3.1 BL2 binary

As explained in the boot flow, BL2 binary which is loaded by BootROM loads three images from a FIP binary:

• BL31 binary
• BL32 binary (OPTEE code)
• BL33 binary (U-Boot/UEFI)

For the secure boot process, the images need to be authenticated before they are loaded.

NXP CoT for ESBC images

BL2 binary contains the ESBC code that is the digital signature validation routine and is responsible for
authenticating the three binaries using the CSF header. The CSF header for the binaries is generated using the
CST and is pre-pended with each of the binaries. The binaries are combined together in a FIP image.

BL2 binary locates the CSF header of each of the binaries to be loaded from FIP. The header is parsed and
image is authenticated. The signature validation process is similar to the one followed in the ISBC flow.

For details about code signing and signature verification process during secure boot, see Section 5.1.1.2.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
162 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

TA 3.x platforms - ESBC CSF header structure definition

Header Size = 0x50

ESBC Phase

Barker Code

SRK Table Offset

Flags + Key Info

UID Flags

RSA Signature Offset

RSA Signature Length

64 bit Image Address Low

FUID0

FUID1

OUID0

OUID1

OUID2

OUID3

OUID4

Reserved

Reserved

Reserved

64 bit Image Address High

Reserved

Image Size

ie_key_selectReserved

Figure 15. CSF header structure (ESBC TA 3.x)

Offset Description

0x00 Barker code
Fixed value which the ISBC uses to confirm it has located the start of a CSF header. (0x12192001
in big endian)
0x00 – 0x12
0x01 – 0x19
0x02 – 0x20
0x03 – 0x01
It is numeric encoding of LSTA (LS Series Trust Architecture)

0x04 SRK table offset
This field contains an address which is the offset of the SRK table from the start of CSF header.
Using this offset and the number of entries in the SRK Table, the SRK table is read.

0x08 No. of keys
This field specifies the number of keys in the SRK table.

0x09 Key No. for verification
Key number from the SRK table used by ISBC to verify the image signature.

0x0a Reserved

0x08

0x0b ISBC key extension flag

0x0C Reserved

0x0D Reserved

0x0C

0x0E Reserved

Table 35. CSF header structure (ESBC TA 3.x)

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
163 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

0x0F OIDx: when set, the corresponding OEM UID field in the SFP is included in the digital signature
verification. For each bit set, the corresponding OUID field is included in the CSF header.
FUID: when set, the 64b FUID is included in the digital signature verification and the FUID is
included in the CSF header
Other bits are reserved.

0x10 RSA signature offset
This field contains an address which is the offset of the RSA signature from the start of CSF
header. Using this offset and the signature length, the RSA signature is read. The RSA signature
is calculated over CSF header, SG table, and ESBC images.

0x14 RSA signature length
This field contains the length of the RSA signature in bytes.

0x18 Image address (64 bit)

0x20 Image size

0x24 Reserved

0x28 FUID0

0x2c FUID 1

0x30 OUID0

0x34 OUID1

0x38 OUID2

0x3c OUID3

0x40 OUID4

0x44 Reserved

0x48 Reserved

0x4c Reserved

Table 35. CSF header structure (ESBC TA 3.x)...continued

Arm CoT for ESBC images

Note: Arm CoT is supported only for LX2160ARDB and LX2162AQDS platforms.

The Trusted Board Boot Requirements (TBBR) process includes multiple stages and uses multiple firmware
images. The process ensures that the Chain of Trust is maintained between the different boot stages using
standard cryptography.

The TBBR process authenticates a series of cryptographically signed binary images. The signatures for each
image are stored in the X.509 certificates. Each image is authenticated by a public key, which is stored in a
signed certificate and can be traced back to the root key stored on the SoC in the OTP memory or BootROM.

Because the images are signed by public key cryptography, the TBBR process can authenticate the images
using the public key stored on the device. The private key used to generate the signature need never be
exposed on the SoC itself.

For details about the signature mechanism via the X.509 certificate , see https://developer.arm.com/docs/
den0006/latest/trusted-board-boot-requirements-client-tbbr-client-armv8-a

The following figure shows the certificate and key relationship as implemented on LX2160A.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
164 / 1061

https://developer.arm.com/docs/den0006/latest/trusted-board-boot-requirements-client-tbbr-client-armv8-a
https://developer.arm.com/docs/den0006/latest/trusted-board-boot-requirements-client-tbbr-client-armv8-a

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Figure 16. Certificate and key relationship

The sample implementation provided for LX2160A uses SFP OEMUID3 as Trusted Firmware Non-Volatile (NV)
counter and SFP OEMUID4 as Non-Trusted Firmware NV counter. Both of these counters support 32 states. In
order to set the counter, the device needs to be enabled for fuse writing. If fuse writing can be enabled in the
software running on your board, board-specific code can be added to the following functions.

void board_enable_povdd(void);
void board_disable_povdd(void);

For details about enabling POVDD using jumpers and switches, see Section 5.1.1.5.2.1

5.1.1.4 Code Signing Tool

To assist with signing of various images and creation of CSF header, NXP offers a Code Signing Tool (CST).
The CST is a collection of command-line applications. It is expected that the CST signs images in an offline
process.

CST consists of the following tools:

• Key generation
• Header creation
• Signature generation

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
165 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Figure 17. Tools in CST package

5.1.1.4.1 Key generation

5.1.1.4.1.1 gen_keys

This utility generates an RSA public and private key pair using the OpenSSL APIs. The key pair is built from 3
parts; N, E, and D.

• N – Modulus
• E – Encryption exponent
• D – Decryption exponent

Public key - It is a combination of E and N components.

Private key - It is a combination of D and N components.

It is your responsibility to tightly control access to the RSA private signature key. If this key is ever exposed,
attackers will be able to generate alternate images that will pass secure boot. If this key is ever lost, you will be
unable to update the image.

Features:

• Allows you to generate keys with 3 sizes. The key sizes are 1024 bits, 2048 bits, and 4096 bits.
• Generates RSA key pairs in PEM format.
• Generates and stores keys in files. You can provide filenames through command-line option.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
166 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Command usage:

./genkeys <Key length in bits >

<Key length in bits > can be 1024 or 2048 or 4096.

Option Description

-h,--help Usage of the command

-k,--pubkey File where public key will be stored in PEM format. By default, public key is stored in srk.pub.

-p,--privkey File where private key will be stored in PEM format. By default, private key is stored in srk.priv.

Table 36. Command options

Examples:

$./gen_keys 1024
#--#
#------- -------- -------- -------#
#------- CST (Code Signing Tool) Version 2.0 -------#
#------- -------- -------- -------#
#--#
===
This product includes software developed by the OpenSSL Project
for use in the OpenSSL Toolkit (http://www.openssl.org/)
This product includes cryptographic software written by
Eric Young (eay@cryptsoft.com)
===
Generated SRK pair stored in :
PUBLIC KEY srk.pub
PRIVATE KEY srk.pri

$./gen_keys 4096 -k my.pub -p my.pri
#--#
#------- -------- -------- -------#
#------- CST (Code Signing Tool) Version 2.0 -------#
#------- -------- -------- -------#
#--#
===
This product includes software developed by the OpenSSL Project
for use in the OpenSSL Toolkit (http://www.openssl.org/)
This product includes cryptographic software written by
Eric Young (eay@cryptsoft.com)
===
Generated SRK pair stored in :
PUBLIC KEY my.pub
PRIVATE KEY my.pri

5.1.1.4.1.2 gen_otpmk_drbg

This utility inserts Hamming code in a user-defined 256b hexadecimal string. Alternatively, it generates a 256b
hexadecimal random number and inserts the Hamming code in it, which can be used as an OTPMK value.

Note:

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
167 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

For random number generation, Hash_DRBG library is used. The Hash_DRBG is an implementation of the
NIST approved DRBG (Deterministic Random Bit Generator), specified in SP800-90A. The entropy source is
Linux /dev/random.

Features:

• Generates random numbers, which can be used if user-defined string is not provided, to generate OTPMK
value.

• Calculates and embeds the Hamming code in the hexadecimal string.

Command usage:

./gen_otpmk_drbg --b <bit_order> [--s <string>] [--u]

Option Description

--b <bit_order> (1 or 2) OTPMK Bit Ordering Scheme in SFP
• 1: BSC913x, P1010, P3, P4, P5, C29x
• 2: T1, T2, T4, B4, LS1021A, LS1043A, LS1046A, LS1012A, LS1088A, LS2088A,

LX2160A, LS1028A, LX2162A

--s <string> 32 bytes optional string () - Generates OTPMK using <string> as string

--u urand option flag - Generates OTPMK using entropy from /dev/urandom
By default, OTPMK using entropy is generated from /dev/random

--h Help

Table 37. Command options

Examples:

$./gen_otpmk_drbg --b 1 --s
 1111111122222222333333334444444455555555666666667777777788888888
$./gen_otpmk_drbg -b 1 --u
$./gen_otpmk_drbg -b 1

$ gen_otpmk_drbg -b 1
#--#
#------- -------- -------- -------#
#------- CST (Code Signing Tool) Version 2.0 -------#
#------- -------- -------- -------#
#--#
Input string not provided
Generating a random string

* Hash_DRBG library invoked
* Seed being taken from /dev/urandom

OTPMK[255:0] is:
d2f63a662f69a1faa4c2406f83eedde7647fbd3c62ac442c67fad2d4cda8b3a0
NAME | BITS | VALUE
_________|______________|____________
OTPMKR 0 | 31- 0 | cda8b3a0
OTPMKR 1 | 63- 32 | 67fad2d4
OTPMKR 2 | 95- 64 | 62ac442c
OTPMKR 3 | 127- 96 | 647fbd3c
OTPMKR 4 | 159-128 | 83eedde7
OTPMKR 5 | 191-160 | a4c2406f
OTPMKR 6 | 223-192 | 2f69a1fa

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
168 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

OTPMKR 7 | 255-224 | d2f63a66

$./gen_otpmk_drbg -b 2 --s
 1111111122222222333333334444444455555555666666667777777788888888
#--#
#------- -------- -------- -------#
#------- CST (Code Signing Tool) Version 2.0 -------#
#------- -------- -------- -------#
#--#
OTPMK[255:0] is:
 1111111122222222333333334444444455555555666666667777777788888888 NAME | BITS |
 VALUE
_________|______________|____________
OTPMKR 0 | 255-224 | 11111111
OTPMKR 1 | 223-192 | 22222222
OTPMKR 2 | 191-160 | 33333333
OTPMKR 3 | 159-128 | 44444444
OTPMKR 4 | 127- 96 | 55555555
OTPMKR 5 | 95- 64 | 66666666
OTPMKR 6 | 63- 32 | 77777777
OTPMKR 7 | 31- 0 | 88888888

5.1.1.4.1.3 gen_drv_drbg

This utility inserts Hamming code in a user-defined 64b hexadecimal string, or generates a 64b hexadecimal
random number and inserts the Hamming code in it, which can be used as Debug Response value.

Note: For random number generation, an Hash_DRBG library is used. The Hash_DRBG is an implementation
of the NIST approved DRBG (Deterministic Random Bit Generator), specified in SP800-90A. The entropy
source is Linux /dev/random.

Features:

• Generates random numbers, which can be used if user-defined string is not provided, to generate Debug
Response value.

• Calculates and embeds the Hamming code in the hexadecimal string.

Command usage:

./gen_drv_drbg <hamming_algo> [string]

Option Description

hamming_algo Platforms:
A1: T10xx, T20xx, T4xxx, P4080rev1, B4xxx
A2: LS1021A, LS1043A, LS1046A, LS1012A, LS1088A, LS2088A, LX2160A, LS1028A,
LX2162A
B: P10xx, P20xx, P30xx, P4080rev2, P4080rev3, P50xx, BSC913x, C29x

string 8 bytes string
In case string is not specified, the utility generates an 8 bytes random number and
embeds Hamming code in it.

Table 38. Command options

Examples:

$./gen_drv_drbg A2
#--#

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
169 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

#------- -------- -------- -------#
#------- CST (Code Signing Tool) Version 2.0 -------#
#------- -------- -------- -------#
#--#
Input string not provided
Generating a random string

* Hash_DRBG library invoked
* Seed being taken from /dev/random

Random Key Genearted is: f4bfc65e16284dbb
DRV[63:0] after Hamming Code is:
f4bfc65f16294daf
NAME | BITS | VALUE
_________|______________|____________
DRV 0 | 63 - 32 | f4bfc65f
DRV 1 | 31 - 0 | 16294daf

$./gen_drv_drbg A2 1652afe595631dec
#--#
#------- -------- -------- -------#
#------- CST (Code Signing Tool) Version 2.0 -------#
#------- -------- -------- -------#
#--#
DRV[63:0] after Hamming Code is:
1652afe495631cea
NAME | BITS | VALUE
_________|______________|____________
DRV 0 | 63 - 32 | 1652afe4
DRV 1 | 31 - 0 | 95631cea

5.1.1.4.2 Header creation

5.1.1.4.2.1 uni_pbi

Command usage:

$./uni_pbi [options] <input_file>

Option Description

options • --verbose: Displays header information after Creation. This option is invalid for TA
2.x platforms

• --out <file>: Output file name
• --in <file>: Input RCW file
• --sben: Enables RCW[SB_EN] in the RCW
• --hash: Prints the SRK (Public key) hash. This option is invalid for TA 2.x platforms
• --img_hash: Generates header without signature

Image hash is stored in a separate file. This option is invalid for TA 2.x platforms
• --help: Shows the help for the tool

input_file Contains all information required by the tool
Sample input files are present in the CST tool at location: input_files/uni_pbi/
<platform>/

Table 39. Command options

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
170 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Option Description
For example, input_files/uni_pbi/ls1/input_pbi_sd_secure for TA 2.x and
input_files/uni_pbi/ls2088_1088/input_pbi_sd_secure for TA 3.x

Table 39. Command options...continued

<input_file> specifies the platform, based on which there are two separate behaviors of the uni_pbi command.

If <input_file> specifies TA 2.x platform, uni_pbi is used:

• To add boot location pointer and set RCW[SB_EN] and RCW[BOOT_HO] value for secure boot
• (optional) To add PBI commands (ACS write commands to add U-Boot spl and its header to OCRAM from

Non-XIP memory).
• (optional) To append images (U-Boot, Boot script, and their headers) to the RCW file.

If <input_file> specifies TA 2.x platform, uni_pbi is used:

• To create signature and header over PBI commands.

See Section 5.1.1.3 for details about TA2.x and TA 3.x platforms.

Field Description Platform supported

PLATFORM The platform for which tool is used TA 2.x and TA 3.x

RCW_PBI_FILENAME Input image file name. The RCW file which is to be modified TA 2.x and TA 3.x

BOOT1_PTR Address of ISBC (Boot1) CSF header TA 2.x and TA 3.x

OUTPUT_RCW_PBI_FILENAME To identify the platform for which the tool is used. This field is
optional. If not specified, it takes default name

TA 2.x

BOOT_SRC Only to be specified in case of SD boot TA 2.x

SB_EN Field to enable or disable secure boot. Set RCW[SB_EN] = 1 to
enable secure boot

TA 2.x

BOOT_HO Set
RCW[BOOT_HO] = 1, to put core in hold-off state to fuse key
hash in case of secure boot

TA 2.x

COPY_CMD To add ACS write commands to write U-Boot spl and is header
to OCRAM. This is an optional field. If not mentioned, the tool
does not add the command

TA 2.x and TA 3.x

APPEND_IMAGES To append U-Boot, Boot script, and their headers to the newly
generated RCW. This is an optional field, if not specified, no
images is appended

TA 2.x and TA 3.x

KEY_SELECT Key to be used in signature generation from the SRK table TA 3.x

PRI_KEY Private key file name in PEM format. The maximum keys
supported are 8

TA 3.x

PUB_KEY Public key file name in PEM format. The maximum keys
supported are 8

TA 3.x

FSL_UID_x FSL UID(s) to be populated in the header TA 3.x

OEM_UID_x OEM UID(s) to be populated in the header TA 3.x

OUTPUT_HDR_FILENAME Output file name of the header. An output file name is
generated with RCW commands appended with signed PBI
commands

TA 3.x

Table 40. Description of fields in input files for both type of platforms (TA 2.x and TA 3.x)

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
171 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Field Description Platform supported

IMAGE_HASH_FILENAME Used with '--img_hash' option (Name of file in which image
hash is stored)

TA 3.x

RSA_SIGN_FILENAME Name of the RSA sign file to be used for RSA signature out TA 3.x

MP_FLAG Manufacturing Protection flag TA 3.x

ISS_FLAG Increment Security State flag TA 3.x

LW_FLAG Leave Writeable flag TA 3.x

VERBOSE Specify VERBOSE as 1, if you want to display header
information. This can also be done with '--verbose' option

TA 3.x

IE_TABLE_ADDR 64-bit address of IE table (used for IE key extension feature).
This field is available in <input_files> at location input_
files/uni_pbi/ls2088_1088/ie_keys

TA 3.x

Table 40. Description of fields in input files for both type of platforms (TA 2.x and TA 3.x)...continued

Note: In TA 3.x, RCW[SB_EN] and RCW[BOOT_HO] fields are by default set to 1 to enable secure boot.

Sample input file

For details about TA2.x and TA3.x platforms, see Section 5.1.1.3

Sample input file, /cst/input_files/uni_pbi/ls1/input_pbi_sd_secure, for TA 2.x platforms.

/*
 * Copyright 2017 NXP
 */
--
For PBI Creation
Name of RCW + PBI file [Mandatory]
RCW_PBI_FILENAME= u-boot-with-spl-pbl.bin
--
Specify the output file name [Optional].
Default Values chosen in Tool
OUTPUT_RCW_PBI_FILENAME=u-boot-with-spl-pbl-sec.bin
--
#Specify the boot_src
BOOT_SRC=SD_BOOT
Specify the platform
PLATFORM=LS1020
Specify the RCW Fields. (0 or 1) - [Optional]
SB_EN=1
BOOT_HO=1
BOOT1_PTR=10016000
--
Specify the PBI commands - [Optional]
Argument: COPY_CMD = (src_offset, dest_offset, Image name)
Split hdr_uboot_spl.out in PBI commads
COPY_CMD={ffffffff,10016000,hdr_uboot_spl.out;}
--
Specify the Images to be appended
Arguments: APPEND_IMAGES=(Image name, Offset from start)
APPEND_IMAGES={u-boot-dtb.bin,0001D000;}
APPEND_IMAGES={hdr_uboot.out,0011D000;}
--

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
172 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Sample input file, /cst/input_files/uni_pbi/ls2088_1088/input_pbi_sd_secure, for TA 3.x
platforms.

/* Copyright (c) 2015 Freescale Semiconductor, Inc.
 * Copyright 2017 NXP
 */

Specify the platform. [Mandatory]
Choose Platform -
TRUST 3.0: LS2085
TRUST 3.1: LS2088, LS1088
PLATFORM=LS2088

Specify the Key Information.
PUB_KEY [Mandatory] Comma Seperated List
Usage: <srk1.pub> <srk2.pub>
PUB_KEY=srk.pub
KEY_SELECT [Mandatory]
USAGE (for TRUST 3.x): (between 1 to 8)
KEY_SELECT=1
PRI_KEY [Mandatory] Single Key Used for Signing
USAGE: <srk.pri>
PRI_KEY=srk.pri

For PBI Signing
Name of RCW + PBI file [Mandatory]
RCW_PBI_FILENAME=rcw.bin
Address of ISBC (Boot1) CSF Header [Mandatory]
BOOT1_PTR=1801f000

Specify OEM AND FSL ID to be populated in header. [Optional]
e.g FSL_UID_0=11111111
FSL_UID_0=
FSL_UID_1=
OEM_UID_0=
OEM_UID_1=
OEM_UID_2=
OEM_UID_3=
OEM_UID_4=

Specify the output file names [Optional].
Default Values chosen in Tool
OUTPUT_HDR_FILENAME=rcw_sec.bin
IMAGE_HASH_FILENAME=
RSA_SIGN_FILENAME=

Specify The Flags. (0 or 1) - [Optional]
MP_FLAG=0
ISS_FLAG=1
LW_FLAG=0

Specify VERBOSE as 1, if you want to Display Header Information [Optional]
VERBOSE=1

#Block copy commands to write uboot-spl and its header to OCRAM
COPY_CMD={00080000,1801f000,hdr_uboot_spl.out}

Specify the Images to be appended
Arguments: APPEND_IMAGES=(Image name, Offset from start)
APPEND_IMAGES={hdr_uboot_spl.out,0007f000;}

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
173 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

APPEND_IMAGES={u-boot-spl.bin,000ff000;}
APPEND_IMAGES={u-boot-dtb.bin,00115000;}
APPEND_IMAGES={hdr_uboot.out,00215000;}

5.1.1.4.2.2 uni_sign

uni_sign tool can be used for the following functions:

• CSF header generation along with signature for both ISBC and ESBC phases
• CSF header generation without signature if private key is not provided
• uni_sign tool (with ESBC = 0 in input file) is used for creating signature and header over Boot1 image to be

verified by ISBC
• uni_sign tool (with ESBC = 1 in input file) is used for creating signature and header over images to be verified

by ESBC

Command usage:

./uni_sign [options] <input_file>

Option Description

--verbose Displays header information after creation

--hash Prints the SRK(Public key) hash

--img_hash Header is generated without signature. Image hash is stored in a separate file

--out <file> Header filename

--in <file> Input file for signature calculation. This option would override the filename in IMAGE_1 in input_file,
if present

--app <file> File to be appended to the header

--app_off <offset> Offset at which file will be appended to the header

--help Displays the help for tool usage

Table 41. Command options

Usage example:

./uni_sign --in <inp_file> --out <op file> --app_off <offset> --app <file>
 <input_file>

Note: There are scenarios when a build script using the tool needs to modify the input filename or the output
header filename. These command-line options provide a way to override the values as specified in the input file.

Field Field description Platform supported

PLATFORM To identify the platform/SoC for which CF header
needs to be created.

All

ESBC Do not set this flag when code signing is being
performed on the image directly verified by the ISBC.
For later images in the chain of trust, set this flag.

All

ENTRY_POINT Entry point address or Image start address field in
the header.

All

Table 42. Description of fields

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
174 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Field Field description Platform supported

PRI_KEY Private key filename to be used for signing the
image. (File has to be in PEM format) (default =
srk.pri generated by gen_keys command) FILE1
[,FILE2, FILE3, FILE4]. Multiple key support for TA
2.x platforms only.

All

PUB_KEY Public key filename in PEM format. (default = srk.pub
generated by gen_keys) FILE1 [,FILE2, FILE3,
FILE4]. Multiple key support for TA 2.x platforms
only.

All

KEY_SELECT Specify the key to be used in signature generation
when more than one key has been given as input.
(Default=1, first key will be selected)

All

IMAGE_1 - IMAGE_8 Create Entries for SG table in the format { IMAGE_
NAME, SRC_ADDR, DST_ADDR }

All

OEM_UID_x OEM UID to be populated in the header. All

FSL_UID_x FSL UID to be populated in the header. All

HK_AREA_POINTER House Keeping Area Starting Pointer required by
Sec (Required for TA 2.x platforms only when esbc
option is not provided)

TA 2.x

HKAREA_SIZE House Keeping Area Size (Required for TA 2.x
platforms only when esbc option is not provided)

TA 2.x

OUTPUT_HDR_FILENAME Name of the combined header binary to be created
by tool

All

SG_TABLE_ADDR Specify SG_TABLE Address where SG table is
present for 2041/3041/4080/5020/5040 when
ESBC=0.

TA 2.x

OUTPUT_SG_BIN Specify the output filename of the SG table. TA 2.x

IMAGE_TARGET Specify the target where image will be loaded. For
example,NOR_8B/NOR_16B/NAND_8B_512/NAN
D_8B_2K/NAND_8B_4K/ NAND_16B_512/NAND_
16B_2K/NAND_16B_4K/SD/MMC/SPI

TA 2.x

SIGN_SIZE Signature length TA 2.x

INPUT_SIGN_FILENAME Name of the signature file to be used for signature
out

TA 2.x

HASH_FILENAME Name of the hash file to be used of hash out TA 2.x and TA 3.x

RSA_SIGN_FILENAME Name of the RSA sign file to be used for RSA
signature out.

TA 3.x

SEC_IMAGE Flag for Secondary Image. Required for TA 2.x
platforms only

TA 2.x

MP_FLAG Specify Manufacturing Protection flag. Available for
LS1 only.

All, only needed in ISBC
phase

VERBOSE Specify Verbose option. Contents of header
generated will be printed.

All

IMAGE_HASH_FILENAME used with '--img_hash' option (Name of file in which
Image Hash is stored)

TA 3.x

Table 42. Description of fields...continued

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
175 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Field Field description Platform supported

ISS_FLAG Increment Security State Flag TA 3.x, only needed in
ISBC phase

LW_FLAG Leave Writeable Flag TA 3.x, only needed in
ISBC phase

ESBC_HDRADDR 32-bit address where header generated will be
placed. Used to calculate IE Key table address

TA 3.x, only to be
used in case of IE key
extension feature usage

IE_KEY Comma-separated list of files containing public
keys(IE Keys)

TA 3.x, only to be
used in case of IE key
extension feature usage

IE_REVOC Comma-separated list of numbers that are to be
revoked from IE table

TA 3.x, only to be
used in case of IE key
extension feature usage

IE_KEY_SEL No. of keys in IE table that is to be used to validate
image

TA 3.x, only to be
used in case of IE key
extension feature usage

Table 42. Description of fields...continued

Sample input file, input_bootscript_secure, is present in the CST tool at location: input_files/
uni_sign/<platform>/

See Section 5.1.1.3 for details about TA2.x and TA 3.x platforms.

Sample input file

Input file /proj/idcapps/usr/swatig/cst/input_files/uni_sign/ls2088_1088/input_
bootscript_secure

/* Copyright (c) 2015 Freescale Semiconductor, Inc.
 * Copyright 2017 NXP
 */
ESBC=1

Specify the platform. [Mandatory]
Choose Platform -
TRUST 3.0: LS2085
TRUST 3.1: LS2088, LS1088
PLATFORM=LS2088

Specify the Key Information.
PUB_KEY [Mandatory] Comma Seperated List
Usage: <srk1.pub> <srk2.pub>
PUB_KEY=srk.pub
KEY_SELECT [Mandatory]
USAGE (for TRUST 3.x): (between 1 to 8)
KEY_SELECT=1
PRI_KEY [Mandatory] Single Key Used for Signing
USAGE: <srk.pri>
PRI_KEY=srk.pri

Specify the IMAGE Information [Mandatory]
USAGE : IMAGE_NO = {IMAGE_NAME, SRC_ADDR, DST_ADDR}
Address can be 64 bit
IMAGE_1={bootscript,80000000,ffffffff}

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
176 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Specify OEM AND FSL ID to be populated in header. [Optional]
e.g FSL_UID_0=11111111
FSL_UID_0=
FSL_UID_1=
OEM_UID_0=
OEM_UID_1=
OEM_UID_2=
OEM_UID_3=
OEM_UID_4=

Specify the output file names [Optional].
Default Values chosen in Tool
OUTPUT_HDR_FILENAME=hdr_bs.out
IMAGE_HASH_FILENAME=
RSA_SIGN_FILENAME=

Specify The Flags. (0 or 1) - [Optional]
MP_FLAG=0
ISS_FLAG=1
LW_FLAG=0

Specify VERBOSE as 1, if you want to Display Header Information [Optional]
VERBOSE=1

5.1.1.4.3 Signature generation

The tools in this category are provided in case the user does not want to share the private key with CST. The
--img_hash option in Section 5.1.1.4.2 tools provides ability to perform code signing in a secure environment,
which does not run CST.

--img_hash option

• Generates hash file in binary format which contains SHA-256 hash of the components required for signature.
• Generates output header binary file based on the fields specified in input file.
• Output header binary file does not contain signature.
• Provides flexibility to manually append signature at the end of output header file. Users can use their own

custom tool to generate the signature. The signature offset chosen in the header is such that the signature
can be appended at the end of the header file.

• This option does not require private key to be provided. But the corresponding public key from the public/
private key pair must be provided to calculate correct SHA-256 hash.

• The SHA-256 hash generated over CF header (in case of TA1.x platforms)) is then signed using RSA
algorithm (OpenSSL APIs) with the private key. This encrypted hash is known as digital signature. This
signature is placed at an offset from the CF header, which is later read by IBR.

• The SHA-256 hash generated over the CSF header, the public Key, the SG table, and the ESBC are also
signed using RSA algorithm with the same private key. The signature generated is placed at an offset from the
CSF header, which is again later read by IBR.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
177 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Figure 18. Dual signature generation

Usage example:

./uni_sign --img_hash --verbose input_files/uni_sign/ls2088_1088/
input_kernel_secure
 #--#
 #------- -------- -------- -------#
 #------- CST (Code Signing Tool) Version 2.0 -------#
 #------- -------- -------- -------#
 #--#
==
This tool includes software developed by OpenSSL Project
for use in the OpenSSL Toolkit (http://www.openssl.org/)
This product includes cryptographic software written by
Eric Young (eay@cryptsoft.com)
==
Input File is input_files/uni_sign/ls2088_1088/input_kernel_secure version
 number1

- Dumping the Header Fields

- SRK Information
- SRK Offset : 200
- Number of Keys : 1
- Key Select : 1
- Key List :
- Key1 srk.pub(100)
- UID Information
- UID Flags = 00
- FSL UID = 00000000_00000000
- OEM UID0 = 00000000
- OEM UID1 = 00000000
- OEM UID2 = 00000000
- OEM UID3 = 00000000
- OEM UID4 = 00000000
- FLAGS Information
- MISC Flags = 00
- Image Information
- kernel.itb (Size = 00500000 SRC = 00000000_a0000000)
- RSA Signature Information
- RSA Offset : 800
- RSA Size : 80

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
178 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Image Hash:
094e71bd9072bfd9bfe9166203c0239cda0890f6b68503bba7b16f82cf4124ef
**
* Image Hash Stored in File: hash.out
* Header File is w/o Signature appended
**
Header File Created: hdr_kernel.out
SRK (Public Key) Hash:
67b37ae9808a60f372ee1530f19e4b373e89749742c6ff8740e89457538aebe5
 SFP SRKHR0 = 67b37ae9
 SFP SRKHR1 = 808a60f3
 SFP SRKHR2 = 72ee1530
 SFP SRKHR3 = f19e4b37
 SFP SRKHR4 = 3e897497
 SFP SRKHR5 = 42c6ff87
 SFP SRKHR6 = 40e89457
 SFP SRKHR7 = 538aebe5

The tools are provided to create the signature file and embed the signature at the end of header file.

5.1.1.4.3.1 gen_sign

This utility is provided for the user to calculate signature for a given hash using CST. The tool requires only the
hash file and the private key file as input. It generates signature file as output.

It uses RSA_sign API of OpenSSL to calculate signature over hash provided.

Command usage

./gen_sign [option] <HASH_FILE> <PRIV_KEY_FILE>

Option Description

[option] --sign_file SIGN_FILE: Provides filename for signature to be generated as operand.
SIGN_FILE is generated containing signature calculated over hash provided through
HASH_FILE using private key provided through PRIV_KEY_FILE. With this option,
HASH_FILE and PRIV_KEY_FILE are compulsory while SIGN_FILE is optional. The
default value of SIGN_FILE is sign.out

HASH_FILE Name of the hash file containing hash over signature needs to be calculated

PRIV_KEY_FILE Name of key file containing private key

Table 43. Command options

Usage example:

After the hash file has been created as described in Section 5.1.1.4.3, the tool can be used as described below.

$./uni_sign --img_hash --verbose input_files/uni_sign/ls2088_1088/
input_kernel_secure
.
.
.
**
* Image Hash Stored in File: hash.out
* Header File is w/o Signature appended
**
Header File Created: hdr_kernel.out
$./gen_sign hash.out srk.pri

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
179 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

 #--#
 #------- -------- -------- -------#
 #------- CST (Code Signing Tool) Version 2.0 -------#
 #------- -------- -------- -------#
 #--#
Signature Length = 80
Hash in hash.out is signed with srk.pri
Signature is stored in file : sign.out

5.1.1.4.3.2 sign_embed

This tool embeds signature in the header file generated using img_hash option. The img_hash option generates
header but does not embed signature in the header. sign_embed opens the header file and copies the signature
at the end of the file.

The header file generated with the img_hash option has padding added till signature offset, so that the signature
can be directly embedded at the end of the file.

Command usage

./sign_embed <hdr_file> <sign_file>

Option Description

hdr_file Name of header file in which signature needs to be embedded

sign_file Name of sign file containing signature which needs to be embedded

Table 44. Command options

Usage example:

$./sign_embed hdr_kernel.out sign.out
 #--#
 #------- -------- -------- -------#
 #------- CST (Code Signing Tool) Version 2.0 -------#
 #------- -------- -------- -------#
 #--#
hdr_kernel.out is appended with file sign.out (0x80)

Note: You can generate the complete header along with signature in single step using the uni_sign/uni_pbi tool
without any option.

./uni_sign <input_file>

Or

You can perform three separate steps:

1. ./uni_sign --img_hash <input_file> (Creates header file without signature and stores the hash in a separate
file)

2. ./gen_sign2 [option] <HASH_FILE> <PRIV_KEY_FILE> (Signs the image hash using private key)
3. ./sign_embed <hdr_file> <sign_file> (Embeds the signature at the end of the header file)

5.1.1.5 Procedure to run secure boot

This section describes the steps to run secure boot on the NXP Layerscape family SOC-based boards:

2 This may be done by your own tool in case you do not want to share the private key with the CST tool.
UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
180 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

1. Prepare board for secure boot:
a. Enable POVDD
b. Program OTPMK
c. Program SRK

2. Build the secure boot images for NXP CoT and Arm CoT manually using TF-A.
3. Program secure boot images for NXP CoT and Arm CoT
4. Steps to run chain of trust with confidentiality

5.1.1.5.1 Secure boot execution flow

You can execute Secure boot flow on a board using either of the following methods:

• Chain of Trust
• Chain of Trust with confidentiality

For details:

• About TA 2.x chain of trust, see Section 5.1.1.3.1.
• About TA 3.x chain of trust, see Section 5.1.1.3.2.

5.1.1.5.1.1 Secure boot execution flow for Chain of Trust

To run secure boot via Chain of Trust:

1. Setup the board based on whether you want to run secure boot in Development phase or Production phase.
a. Production phase - Set the ITS bit in SFP to ensure that the system operates in secure and trusted

manner. Once the SFP ITS fuse is blown, it cannot be changed.
Note: For details, see "Chapter 8 Trusted Manufacturing Process" in QorIQ Trust Architecture 3.0 User
Guide or "Section 5.5 Trusted Manufacturing Process" in QorIQ Trust Architecture 2.1 User Guide.

b. Development phase - Do not blow the ITS fuse, set RCW[SB_EN] = 1 to enable secure boot.
2. Blow other required fuses (OTPMK and SRKH) in SFP. For details, see Section 5.1.1.5.2.3 and

Section 5.1.1.5.2.4. Blowing of OTPMK is essential to run secure boot for both Production and Development
phases.
Note: SRK hash in the fuse should be same as the hash of the key pair being used to sign the PBI and U-
Boot images. For testing purpose, the SRK hash can be written in the mirror registers. gen_otpmk_drbg
utility in CST can be used to generate the OTPMK key.

3. Program secure boot images. For details, see Section 5.1.1.5.4
a. Production phase – Program secure boot images at the default bank addresses.
b. Development phase – For demo purpose, you can program the alternate bank addresses from the

default bank and then switch to the alternate bank.
4. Power on the board.

a. If secure boot images are flashed on default bank (for Production/Development phase) - On power-on,
ISBC code gets control and validates the ESBC image. ESBC image further validates the signed Linux,
rootfs, and dtb images. The board boots to Linux.

b. If secure boot images are flashed on alternate bank (for Development phase) - On power-on, the board
boots from default bank. When you switch to alternate bank, ISBC code gets control and validates the
ESBC image. ESBC image further validates the signed Linux, rootfs, and dtb images. The board boots
to Linux.

5.1.1.5.1.2 Secure boot execution flow for Chain of Trust with confidentiality

To run secure boot using Chain of Trust with confidentiality, perform the following steps:

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
181 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

1. Setup the board based on whether you want to run secure boot in the Development phase or Production
phase.
• Production phase: To ensure that the system operates in secure and trusted manner, set the ITS bit in

SFP. After the SFP ITS fuse is blown, it cannot be changed.
Note: For details, see "Chapter 8 Trusted Manufacturing Process" in QorIQ Trust 3.0 User Guide or
"Section 5.5 Trusted Manufacturing Process" in QorIQ Trust Architecture 2.1 User Guide.

• Development phase: Do not blow the ITS fuse, set RCW[SB_EN] = 1 to enable secure boot.
2. Blow other required fuses (OTPMK and SRKH) in SFP. For details, see Section 5.1.1.5.2.3 and

Section 5.1.1.5.2.4. Blowing of OTPMK is essential to run secure boot for both Production and Development
phases.
Note: SRK hash in the fuse should be same as the hash of the key pair being used to sign the PBI and U-
Boot images. For testing purpose, the SRK hash can be written in the mirror registers. gen_otpmk_drbg
utility in CST can be used to generate the OTPMK key.

3. Program secure boot images. For details, see Section 5.1.1.5.4
• Production phase: Program secure boot images at the default bank addresses.
• Development phase: For demo purpose, you can program the alternate bank addresses from the default

bank and then switch to the alternate bank.
4. Power on the board.

Note: For details about blob enc command, see Section 5.2.1.2.3. For details about blob dec command,
see Section 5.2.1.2.4. For details about encap and decap bootscripts, see Section 5.2.1.2.5.2
a. If secure boot images are flashed on default bank (for Production/Development phase) -

• On power-on, the ISBC code gets control and validates the ESBC image. The ESBC image further
validates the signed Linux, rootfs, and dtb images. The board boots to Linux.

• First boot: Encapsulation step
Note: This step is performed in the OEM(s) premise.

i. By default, the encap and decap bootscripts are installed in the boot partition.
ii. When the board boots up for the first time after all images have been generated, encap bootscript

executes.
This bootscript:

i. Authenticates and encapsulates Linux and dtb images and replaces the unencrypted Linux
and dtb images with newly encapsulated Linux and dtb.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
182 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

ii. Replaces the encap bootscript and header with the decap bootscript and its header, already
present in the boot partition.

iii. Issues reset.
• Subsequent boot:

i. U-Boot would execute script with decap commands
i. Un-blobify Linux and dtb image in DDR.
ii. Pass control to these images.

b. If secure boot images are flashed on alternate bank (for Development phase) - On power-on, the board
boots from default bank. When you switch to alternate bank, the secure boot flow as mentioned above
would execute.

5.1.1.5.2 Prepare board for Secure boot

To prepare a board for secure boot, you must perform the following steps:

1. Enable POVDD.
2. Blow fuses by using any of the following options:

• Program SFP registers:
a. Program OTPMK.
b. Program SRKH in production environment using one of the following options:

– Section "Program SRKH mirror registers in U-Boot environment"
– Section "Program SRKH mirror registers in CodeWarrior environment"

OTPMKR0..OTPMKR7 SRKHR0..SRKHR7

0x1e80234..0x1e80250 0x1e80254..0x1e80270

Table 45. SFP registers

• Build and deploy fuse provisioning image on the board.
This method is useful if you need to blow fuses on multiple boards.

3. Disable POVDD.
You must remove the jumpers that you have set in Section 5.1.1.5.2.1.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
183 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

5.1.1.5.2.1 Enable POVDD

To enable POVDD for different Layerscape platforms, perform the following steps:

1. TWR-LS1021A:
• Put J11 to enable SNVS in check state
• POVDD (J8 and J9)

2. LS1043ARDB:
• Put J13 to enable PWR_PROG_SFP

3. LS1012ARDB:
• Through I2C transactions, write to LDO1CT register to change LDO1EN bit in vr5100
• i2c mw 0x08 0x6c 0x10

4. FRWY-LS1012A:
• Put J37 to enable PROG_SFP
• Through I2C transactions, write to LDO1CT register to change LDO1EN bit in vr5100
• i2c mw 0x08 0x6c 0x10

5. LS1046ARDB:
• Put J21 to enable PWR_PROG_SFP

6. LS2088ARDB:
• Put J12 to enable PWR_PROG_SFP

7. LS1088ARDB:
• Put J10 to enable PWR_PROG_SFP

8. LX2160ARDB:
• Put J9 to enable PROG_SFP

9. LX2162AQDS:
• Put J35 to enable PROG_SFP
• Set SW9[4] = 1
• LED to verify - D15

5.1.1.5.2.2 Byte swap for reading and writing SRKH/OTPMK

SRKH and OTPMK should be carefully written keeping in mind the SFP Block Endianness. If SRKH and
OTPMK are written using Core, then swap SRKH and OTPMK. However, if SRKH and OTPMK are written using
DAP or SFP, swap is not required. Refer the following table for details.

Console SRKH/OTPMK
generated order from
CST

SRKH/OTPMK write
order

SRKH/OTPMK Read
order

Endianness

U-Boot order_1 reverse order_1 reverse order_1 Core endianness

CCS order_1 order_1 order_1 SFP endianness (DAP)

For example:

Assuming following SRKH values are generated:

SRK (Public Key) Hash:
fdc2fed4317f569e1828425ce87b5cfd34beab8fdf792a702dff85e132a29687
 SFP SRKHR0 = fdc2fed4
 SFP SRKHR1 = 317f569e
 SFP SRKHR2 = 1828425c
 SFP SRKHR3 = e87b5cfd
 SFP SRKHR4 = 34beab8f

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
184 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

 SFP SRKHR5 = df792a70
 SFP SRKHR6 = 2dff85e1
 SFP SRKHR7 = 32a29687

To permanently write SRKH using DAP/SFP, execute following commands at the CCS console :

ccs::write_mem 32 0x1e80254 4 0 0xfdc2fed4
ccs::write_mem 32 0x1e80258 4 0 0x317f569e
ccs::write_mem 32 0x1e8025c 4 0 0x1828425c
ccs::write_mem 32 0x1e80260 4 0 0xe87b5cfd
ccs::write_mem 32 0x1e80264 4 0 0x34beab8f
ccs::write_mem 32 0x1e80268 4 0 0xdf792a70
ccs::write_mem 32 0x1e8026c 4 0 0x2dff85e1
ccs::write_mem 32 0x1e80270 4 0 0x32a29687

To permanently write SRKH using core, execute the following commands at the U-Boot console:

mw.l 0x1e80254 0xd4fec2fd
mw.l 0x1e80258 0x9e567f31
mw.l 0x1e8025c 0x5c422818
mw.l 0x1e80260 0xfd5c7be8
mw.l 0x1e80264 0x8fabbe34
mw.l 0x1e80268 0x702a79df
mw.l 0x1e8026c 0xe185ff2d
mw.l 0x1e80270 0x8796a232
mw.l 0x1e80020 0x2

5.1.1.5.2.3 Program OTPMK

After enabling POVDD, follow these steps to program OTPMK at U-Boot:

1. Verify the SNVS register - HPSR to check whether OTPMK is fused already.

=> md $SNVS_HPSR_REG
88000900

Note: LX2162AQDS doesn’t support reading register via U-Boot (using the md command). To verify SNVS
register status for LX2162AQDS, access register 0x1e90014 via CCS command.
OTPMK_ZERO_BIT (second nibble) is 1, indicating that OTPMK is not fused.
In case it is read as 00000000, make sure that core is running in secure mode, and then read this register
using JTAG (in development mode only through CWTAP).

2. Fuse OTPMK, if not fused already.
a. Generate OTPMK.

i. cd cst
ii. ./gen_otpmk_drbg -b 2

3. Fuse OTPMK.

=> mw.l $OTPMKR0 <OTMPKR_0_32Bit_val> => mw.l $OTPMKR1 <OTMPKR_1_32Bit_val>
 => mw.l $OTPMKR2 <OTMPKR_2_32Bit_val> => mw.l $OTPMKR3 <OTMPKR_3_32Bit_val>
 => mw.l $OTPMKR4 <OTMPKR_4_32Bit_val> => mw.l $OTPMKR5 <OTMPKR_5_32Bit_val>
 => mw.l $OTPMKR6 <OTMPKR_6_32Bit_val> => mw.l $OTPMKR7 <OTMPKR_7_32Bit_val>

4. At the U-Boot prompt, verify that the SNVS registers for OTPMK are correctly written.
a. Check if OPTMK is fused.

=> md $SNVS_HPSR_REG
80000900

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
185 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

OTPMK_ZERO_BIT (second nibble) is 0, indicating that OTPMK is fused.
In case it is read as 00000000, then read this register using JTAG (in development mode only through
CWTAP).

b. Read OTPMK.

=> md $OTPMKR0 0x10
01e80234: ffffffff ffffffff ffffffff ffffffff
01e80244: ffffffff ffffffff ffffffff ffffffff

Note: OTPMK is not visible in plain.

5.1.1.5.2.4 Program SRKH mirror registers

Program SRKH mirror registers in CodeWarrior environment

To successfully execute any of the sequences described below on any TA 3.x platform, it is important to
reconfigure the target boards first so that a reset request from the SoC (HRESET_REQ) will not automatically
result in an SoC reset triggered by board logic like a CPLD. The NXP reference boards for TA 3.x platforms
have jumpers or DIP switches to disable the automatic HRESET_REQ handling and can put the board into
a Reset Sequence Pause (RSP). While some examples are given, details can be found in the board-specific
documentation on how to enable RSP behavior.

1. Platforms LS1021A, LS1012A, LS1043A, LS1046A (TA 2.x)
a. After copying images to flash, select the boot source by changing the switch settings, then boot the

board.
b. When the bitbake command is executed with -s option, the command uses secure RCW, with

RCW[BOOT_HO] = 1 and RCW[SB_EN]=1, for building images.
After booting the board, core would stop at its first instruction. This is done to allow the user to write
SRKH in the register. When using pre-built images, use the SRKH present in srk_hash.txt from GitHub.
If SRKH fuse is already blown, then set RCW[BOOT_HO] = 0 in RCW file in bitbake, else write the
SRKH value (displayed while signing images) in SFP mirror registers and then release the core out of
boot hold off by writing to Boot Release Register in DCFG using the below commands:

ccs::config_server 0 10000
ccs::config_chain {<platform> dap sap2}
display ccs::get_config_chain
Check Initial SNVS State and Value in SCRATCH Registers
ccs::display_mem <dap position> 0x1e90014 4 0 4
ccs::display_mem <dap position> 0x1ee0200 4 0 4
#Write the SRK Hash Value in Mirror Registers
ccs::write_mem <dap position> 0x1e80254 4 0 <SRKH0>
ccs::write_mem <dap position> 0x1e80258 4 0 <SRKH1>
ccs::write_mem <dap position> 0x1e8025c 4 0 <SRKH2>
ccs::write_mem <dap position> 0x1e80260 4 0 <SRKH3>
ccs::write_mem <dap position> 0x1e80264 4 0 <SRKH4>
ccs::write_mem <dap position> 0x1e80268 4 0 <SRKH5>
ccs::write_mem <dap position> 0x1e8026c 4 0 <SRKH6>
ccs::write_mem <dap position> 0x1e80270 4 0 <SRKH7>
#Get the Core Out of Boot Hold-Off
ccs::write_mem <dap position> 0x1ee00e4 4 0 0x00000001

Note:
• <platform> in the above commands to be used is in lowercase, ls1043a for ls1043a, ls1046a, and

ls1012a.
• TWR-LS1021A board uses config command as ccs::config_chain {ls1020a dap {8 1} }

2. Platforms LS1088A, LS2088A (TA 3.x)

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
186 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

In these platforms, key hash is written into registers by putting the core into RSP, after this, connect to the
board and blow SRKH using CCS. When using pre-built images, use the SRKH present in srk_hash.txt from
GitHub.
If running in production environment (refer the note below for more information), i.e if the SRKH fuses are
already blown, then no need to put the SoC into RSP, just change the bank/boot-source and boot, else
follow the steps below:
a. Steps to put SoC in RSP (Reset Sequence Pause)

i. LS2088A:
Rev1 RDB Board Switch (Rev B): SW3[8] – 0.
Switch (Rev C to Rev F): SW4[8] – 0.
To boot from vbank4, change SW9[3:5] to 100.

ii. LS1088A: U-Boot command to put SoC in RSP:

sd secure boot: i2c mw 66 60 20;i2c mw 66 66 7f;i2c mw 66 10 10;i2c mw
 66 10 21
qspi secureboot : i2c mw 66 50 20 ;i2c mw 66 66 7f;i2c mw 66 10 20;i2c
 mw 66 10 21

b. After putting the SoC into RSP, reset the board. Then, use the below commands to write SRKH in the
SFP mirror registers.

ccs::config_chain {<platform> sap2}
display ccs::get_config_chain
puts "Entry RSP: "
ccs::write_mem 2 0x7 0x001000D0 0x4 0x0 0x800
set ::littleendian(2) 1
ccs::write_mem <sap position> 0x1e80254 4 0 <SRKH0>
ccs::write_mem <sap position> 0x1e80258 4 0 <SRKH1>
ccs::write_mem <sap position> 0x1e8025c 4 0 <SRKH2>
ccs::write_mem <sap position> 0x1e80260 4 0 <SRKH3>
ccs::write_mem <sap position> 0x1e80264 4 0 <SRKH4>
ccs::write_mem <sap position> 0x1e80268 4 0 <SRKH5>
ccs::write_mem <sap position> 0x1e8026c 4 0 <SRKH6>
ccs::write_mem <sap position> 0x1e80270 4 0 <SRKH7>
set ::littleendian(2) 0
puts "Exiting RSP: "
ccs::write_mem 2 0x7 0x001000D0 0x4 0x0 0x400

Note: If RSP has been entered via a DIP switch that permanently pulls the corresponding configuration
signal on the IFC, the corresponding DIP switch must be reset before exiting RSP or the IFC will be
unusable!

3. Platform LX2160A (TA 3.x)
Note: Out of RSP is implemented in only specific FPGA versions (RDB version 1-4, 9 and newer). Check
the U-Boot log to confirm that the board has the correct FPGA version that supports this feature.
Below are the steps to put the LX2160A in RSP and write SRKH in SFP mirror registers:

ccs::config_chain {lx2160a dap}
jtag::lock
#To Read the Content of TPINSVSR SEL (TPINSVSR) register
jtag::scan_io 0 8 0x92
jtag::scan_io 1 64 0x0 # this will give the content of the register as output
To write to TAP Configuration Pin Override Control Register (TCPOVCR)
 jtag::scan_io 0 8 0x93
##Setting the override bit (bit 0) to 1 and the RSP enable bit (bit 42) to 0.
 #Bits 1-9 signifies RCW source. So, change the below command accordingly.
##Note : Read the value first using command "jtag::scan_io 0 8 0x92" and then
 set # the mentioned above bits with their corresponding value, keeping other
 bit values
same.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
187 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

jtag::scan_io 1 64 0x00000103713F001F # in case of FlexSPI NOR for LX2160ARDB
 #Or
jtag::scan_io 1 64 0x0000010271000011 # in case of RCW SRC as SD (ESDHC1)for
 LX2160ARDB
jtag::unlock
After executing the above steps, do POR , and then run the following commands
 ccs::config_chain {lx2160a sap2}
display ccs::get_config_chain
ccs::stop_core 1 # Coreindex of Cortex-A5 to be used.
ccs::write_mem 1 0x1E80254 4 0 <SRKH1>
ccs::write_mem 1 0x1E80258 4 0 <SRKH2>
ccs::write_mem 1 0x1E8025c 4 0 <SRKH3>
ccs::write_mem 1 0x1E80260 4 0 <SRKH4>
ccs::write_mem 1 0x1E80264 4 0 <SRKH5>
ccs::write_mem 1 0x1E80268 4 0 <SRKH6>
ccs::write_mem 1 0x1E8026c 4 0 <SRKH7>
ccs::write_mem 1 0x1E80270 4 0 <SRKH8>
To get the board out of RSP
ccs::write_mem 1 0x101000D0 0x4 0x0 0x000c0000
ccs::run_core 1

4. Platform LS1028A (TA 3.x)
Below are the steps to put the LS1028A in RSP and write SRKH in SFP mirror registers:

ccs::config_chain {ls1028a dap};
display ccs::get_config_chain;
ccs::config_chain testcore;
jtag::lock;
jtag::state_move test_logic_reset;
jtag::scan_out ir 4 3;
jtag::scan_out dr 6 1;
jtag::scan_io ir 8 0x93;
jtag::scan_io dr 64 0x0;
jtag::scan_io ir 8 0x92;
jtag::scan_io dr 64 0x0;
jtag::set_pin 0 0;
after 100;
puts [jtag::scan_io ir 8 0x93];
puts [jtag::scan_io dr 64 0x0000010071FF001F]; // For FlexSPI boot
jtag::set_pin 0 1;
jtag::unlock;
ccs::config_chain {ls1028a dap};
display ccs::get_config_chain;
ccs::write_mem 2 0x7 0x001000D0 4 0 0x00080000
ccs::stop_core 1 #Coreindex of Cortex-A5 to be used.
ccs::write_mem 1 0x1E80254 4 0 SRKH 0;
ccs::write_mem 1 0x1E80258 4 0 SRKH 1;
ccs::write_mem 1 0x1E8025c 4 0 SRKH 2;
ccs::write_mem 1 0x1E80260 4 0 SRKH 3;
ccs::write_mem 1 0x1E80264 4 0 SRKH 4;
ccs::write_mem 1 0x1E80268 4 0 SRKH 5;
ccs::write_mem 1 0x1E8026c 4 0 SRKH 6;
ccs::write_mem 1 0x1E80270 4 0 SRKH 7;
ccs::run_core 1;
ccs::write_mem 2 0x7 0x001000D0 4 0 0x00040000;

After implementing all the steps, the board will boot and user will get the Linux prompt after successful
validation of all the images.

Note:

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
188 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

• <platform> in the above commands to be used is in lowercase: ls2085a for ls2088 and ls1080a for ls1088.
• To blow SRKH in production environment, follow procedure similar to blowing OTPMK fuses.
• For detail about secure boot execution flow in production and development environments, refer

Section 5.1.1.5.1.

Program SRKH mirror registers in U-Boot environment

After enabling POVDD, follow these steps to program SRKH registers at U-Boot:

1. Check if SRKH is fused.

=> md $SRKHR0 0x10 01e80254: 00000000 00000000 00000000
 00000000 01e80264: 00000000 00000000 00000000
 00000000

Zero indicates that SRKH is not fused.
2. Fuse SRKH, if not fused already.

=> mw.l $SRKHR0 <SRKHR_0_32Bit_val>
=> mw.l $SRKHR1 <SRKHR_1_32Bit_val>
=> mw.l $SRKHR2 <SRKHR_2_32Bit_val>
=> mw.l $SRKHR3 <SRKHR_3_32Bit_val>
=> mw.l $SRKHR4 <SRKHR_4_32Bit_val>
=> mw.l $SRKHR5 <SRKHR_5_32Bit_val>
=> mw.l $SRKHR6 <SRKHR_6_32Bit_val>
=> mw.l $SRKHR7 <SRKHR_7_32Bit_val>

Note: SRKH should be carefully written considering the SFP block endianness.
3. Check if SRKH is fused.

For example, if following SRKH is written:

SFP SRKHR0 = fdc2fed4 SFP SRKHR1 = 317f569e SFP SRKHR2 = 1828425c SFP SRKHR3
 = e87b5cfd SFP SRKHR4 = 34beab8f SFP SRKHR5 = df792a70 SFP SRKHR6 = 2dff85e1
 SFP SRKHR7 = 32a29687

Then, following could be the value on dumping SRKH.

=> md $SRKHR0 0x10 01e80254: d4fec2fd 9e567f31 5c422818 fd5c7be81.V..(B
\.{\. 01e80264: 8fabbe34 702a79df e185ff2d 8796a232 4....y*p-...2...

Note: SRKH is visible in plain because of the SFP block endianness.

5.1.1.5.2.5 Write SFP_INGR register

CAUTION: Do not proceed to the steps in this topic, until you are sure that OTPMK and SRKH are correctly
fused, as explained in the topics above. After the next step, fuses are burnt permanently, which cannot be
undone.

1. Write SFP_INGR[INST] with the PROGFB(0x2) instruction to blow the fuses.

Platform SFP_INGR_REG SFP_WRITE_DATA_FRM_
MIRROR_REG_TO_FUSE

LS1021A, LS1012A, LS1043A,
LS1046A

0x01E80020 0x02000000

LS1088A, LS2088A, LX2160A,
LS1028A,

0x01E80020 0x2

Table 46. SFP_INGR register

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
189 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Platform SFP_INGR_REG SFP_WRITE_DATA_FRM_
MIRROR_REG_TO_FUSE

LX2162A

Table 46. SFP_INGR register...continued

=> mw $SFP_INGR_REG $SFP_WRITE_DATA_FRM_MIRROR_REG_TO_FUSE

2. Reset the board.
3. Check if OTPMK is fused.

=> md $SNVS_HPSR_REG
=> 80000900

OTPMK_ZERO_BIT (second nibble) is zero, indicating that OTPMK is fused.
In case it is read as 00000000, then read this register using JTAG (in development mode only through
CWTAP).

4. Read OTPMK.

=> md $OTPMKR0 0x10
01e80234: ffffffff ffffffff ffffffff ffffffff
01e80244: ffffffff ffffffff ffffffff ffffffff

Note: OTPMK is not visible in plain.
5. Read SRK hash.

=> md $SRKHR0 0x10 01e80254: d4fec2fd 9e567f31 5c422818 fd5c7be81.V..(B
\.{\. 01e80264: 8fabbe34 702a79df e185ff2d 8796a232 4....y*p-...2...

Note: SRKH is visible in plain because of the SFP block endianness.

5.1.1.5.3 Build secure boot TF-A images manually

5.1.1.5.3.1 Build secure boot TF-A images for NXP CoT

To build secure boot TF-A images for NXP CoT, you need to specify following options in the make command:

• Set TRUSTED_BOARD_BOOT=1 to enable trusted board boot.
NXP CoT is enabled automatically when TRUSTED_BOARD_BOOT=1 and MBEDTLS_DIR path is not
specified.

• Specify path of the CST repository as CST_DIR to generate CSF headers.
In NXP CoT, CSF header is embedded to the BL31, BL32, and BL33 images.
Default input files for CSF header generation are available in CST_DIR.
As per the default input file, you need to generate following RSA key pairs and add them to the ATF
repository:
– srk.pri
– srk.pub
The RSA key pairs can be generated using the gen_keys CST tool. To change the input file, you can use the
options BL33_INPUT_FILE, BL32_INPUT_FILE, BL31_INPUT_FILE.

The secure boot flow can be implemented in two modes:

• Development: In the development mode (RCW[SB_EN] = 1, ITS = 0), if ROTPK comparison fails, the boot
flow continues. However, SNVS is transitioned to the non-secure state.

• Production: In the production mode (ITS =1), any failure results in fatal failure.

TRUSTED_BOARD_BOOT can be enabled in non-secure boot flow also. However, ROTPK is ignored in non-
secure boot flow and failures do not result in SNVS transition.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
190 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

To build secure boot TF-A binaries, BL2 and FIP, for NXP CoT, run this command:

Note: To build RCW binary, see Section 4.2.3.1

To build OP-TEE binary, see Section 5.3.1.1.3

To build secure U-Boot binary, see Section 5.2.1.2.6

make PLAT=<platform> TRUSTED_BOARD_BOOT=1 CST_DIR=$CST_DIR_PATH \
 RCW=$RCW_BIN \
 BL32=$TEE_BIN SPD=opteed\
 BL33=$UBOOT_SECURE_BIN \
 pbl \
 fip

To build DDR FIP binary (Supported only for LX2162AQDS or LX2160ARDB):

make PLAT=<platform> TRUSTED_BOARD_BOOT=1 CST_DIR=$CST_DIR_PATH fip_ddr

To prepend CSF headers to BL31, BL32, and BL33 images:

make PLAT=<platform> all fip pbl SPD=opteed BL32=tee.bin BL33=u-boot.bin \
 RCW = <secure bot RCW> \
 TRUSTED_BOARD_BOOT=1 CST_DIR=<cst dir path> BL33_INPUT_FILE=<ip file>
 BL32_INPUT_FILE=<ip_file> \
 BL31_INPUT_FILE = <ip file>

The secure boot binaries for NXP CoT are available in the atf directory:

• build/<platform>/release/fip.bin
• build/<platform>/release/ddr_fip_sec.bin (Supported only for LX2162AQDS or LX2160ARDB)
• build/<platform>/release/bl2_flexspi_nor_sec.pbl

5.1.1.5.3.2 Build secure boot TF-A images for Arm CoT

Note: Arm CoT is supported only for LX2160ARDB and LX2162AQDS platforms.

To build secure boot TF-A images for Arm CoT, you need to specify following options in the make command:

• Set TRUSTED_BOARD_BOOT=1 to enable trusted board boot.
• Specify mbedtld dir path in MBEDTLS_DIR.
• Specify path of the CST repository as CST_DIR to generate CSF headers.

CSF header is embedded to the BL2 images.
• Set GENERATE_COT=1 to add the cert_create tool to the build environment. The cert_create tool

generates:
– X.509 certificates as (.crt) files
– X.509 Pem key file as (.pem) files

• Set SAVE_KEYS=1 to save the keys and certificates.
ROTPK for X.509 certificates is generated and embedded in bl2.bin. ROTPK is verified as part of Chain of
Trust process executed by BootROM during secure boot.
Note: SAVE_KEYS=1 saves the keys and certificates if GENERATE_COT=1
Note: If the filenames for keys and certificates are not provided as part of compilation or build command,
keys and certificates are saved in the default filenames at the default folder BUILD_PLAT.

To build secure boot TF-A binaries, BL2 and FIP, for Arm CoT, run this command:

Note: To build RCW binary, see Section 4.2.3.1

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
191 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

To build OP-TEE binary, see Section 5.3.1.1.3

To build secure U-Boot binary, see Section 5.2.1.2.6

make PLAT=<platform> TRUSTED_BOARD_BOOT=1 GENERATE_COT=1 MBEDTLS_DIR=
$MBEDTLS_PATH CST_DIR=$CST_DIR_PATH \
 BOOT_MODE=flexspi_nor \
 RCW=$RCW_BIN \
 BL32=$TEE_BIN SPD=opteed\
 BL33=$UBOOT_SECURE_BIN \
 pbl \
 fip

To build DDR FIP binary (Supported only for LX2162AQDS or LX2160ARDB):

make PLAT=<platform> TRUSTED_BOARD_BOOT=1 GENERATE_COT=1 MBEDTLS_DIR=
$MBEDTLS_PATH fip_ddr

The secure boot binaries for Arm CoT are available in the atf directory:

• build/<platform>/release/fip.bin
• build/<platform>/release/ddr_fip_sec.bin (Supported only for LX2162AQDS or LX2160ARDB)
• build/<platform>/release/bl2_flexspi_nor_sec.pbl

5.1.1.5.4 Program secure boot images

This topic explains steps to flash secure boot firmware image and secure boot TF-A images to the FlexSPI NOR
flash on LX2162AQDS.

For steps to program firmware image on different boot mediums on different boards, see the section "Program
Layerscape LDP composite firmware image" in the "Quick Start" section for the respective board.

For steps to program TF-A images, see Section 4.2.3.3

5.1.1.5.4.1 Program secure boot firmware images

1. Flash secure firmware:

=>tftp 0xa0000000 firmware_lx2162aqds_xspiboot_secure.img
=>i2c mw 66 50 20;sf probe 0:0;
=>sf erase 0x00 +$filesize
=>sf write 0xa0000000 0x00 $filesize

2. Switch to alternate bank:

=> qixis_reset altbank

5.1.1.5.4.2 Program secure boot TF-A images

1. Flash PBL binary:

=> tftp 0x82000000 bl2_flexspi_nor_sec.pbl;
=> i2c mw 66 50 20; sf probe 0:0; sf erase 0 +$filesize; sf write 0x82000000
 0x0 $filesize;

2. Flash FIP binary:

=> tftp 0x82000000 fip.bin;

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
192 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

=> i2c mw 66 50 20;sf probe 0:0; sf erase 0x100000 +$filesize; sf write
 0x82000000 0x100000 $filesize;

3. Flash DDR FIP binary:

=> tftp 0x82000000 ddr_fip_sec.bin;
=> i2c mw 66 50 20;sf probe 0:0; sf erase 0x800000 +$filesize; sf write
 0x82000000 0x800000 $filesize;

4. Switch to alternate bank:

=> qixis_reset altbank

• If board boots to the Linux prompt, then "NXP CoT" is successful. If "NXP CoT" fails, and kernel will not boot
up.

• If board boots to the U-Boot prompt, then "Arm CoT" is successful. If "Arm CoT" fails, U-Boot prompt will not
come up.

5.1.1.5.5 Program verified boot images for Arm CoT

Note: Verified boot is supported only for LX2162AQDS. For details, see Section 5.2.1.1

1. Flash PBL binary:
a. => tftp 0x82000000 bl2_flexspi_nor_sec.pbl;
b. => i2c mw 66 50 20; sf probe 0:0; sf erase 0 +$filesize; sf write 0x82000000

0x0 $filesize;
2. Flash FIP binary:

a. => tftp 0x82000000 fip_uboot_sec_verified_boot.bin;
b. => i2c mw 66 50 20;sf probe 0:0; sf erase 0x100000 +$filesize; sf write

0x82000000 0x100000 $filesize;
3. Flash DDR FIP binary:

a. => tftp 0x82000000 fip_ddr_sec.bin;
b. => i2c mw 66 50 20;sf probe 0:0; sf erase 0x800000 +$filesize; sf write

0xa0000000 0x800000 $filesize;
4. Switch to alternate bank:

=> qixis_reset altbank

5. Flash ITB image:
a. =>tftp a0000000 kernel-fsl-lx2162a-qds.itb
b. =>bootm 0xa0000000#lx2162aqds

If the board boots to Linux prompt, then "Arm CoT with Verified Boot" is successful. Else, the verification fails
and kernel will not boot up.

5.1.1.5.6 Steps to run chain of trust with confidentiality

1. Generate all images:

$ bitbake ls-image-main

2. Generate auto bootscript:

$ bitbake distrobootscr

3. Generating firmware image:

$ bitbake qoriq-composite-firmware

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
193 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

4. Writing image to SD card:

$ flex-installer -b tmp/deploy/image/<board>
bootp_xxx.tgz -r tmp/deploy/image/<board>/ls-image-main-xxx.tar.gz -f tmp/
deploy/image/<board>/firmware_sdboot_secure.img -d /dev/
sdx

First boot: Encapsulation step

Note: This step is performed in the OEM(s) premise.

1. By default, the encap and decap bootscripts are installed in the boot partition.
2. When the board boots up for the first time after all images have been generated, Encap bootscript will

execute. This bootscript:
a. Authenticates and encapsulates Linux and dtb images and replaces the unencrypted Linux and dtb

images with newly encapsulated Linux and dtb.
b. Replaces the encap bootscript and header with the decap bootscript and its header, already present in

the boot partition.
c. Issues reset.

Subsequent boot

1. U-Boot would execute script with decap commands.
2. Un-blobify Linux and dtb image in DDR.
3. Pass control to these images.

Note: Chain of trust with confidentiality is not supported for LS1012A in bitbake.

5.1.2 Fuse Provisioning User Guide

5.1.2.1 Introduction

NXP SoC’s TA provides non-volatile secure storage in form of on-chip fuse memory. Following information can
be programmed into fuse memory via Security Fuse Processor (SFP):

• One Time Programmable Master Key Registers (OTPMKRs)
• Super Root Key Hash Registers (SRKHRs)
• Debug Challenge and Response Value Registers (DCVRs and DRVRs)
• OEM Security Policy Registers (OSPRs)
• OEM Unique ID/Scratch Pad Registers (OUIDRs)

5.1.2.2 Fuse Programming Scenarios

Phase NXP Fuses OEM Fuses Software

NXP Manufacturing FUID, FSV, CSFF, WP
(+ On TA 3.x, DPL)
Can set RT&RDPL up
to 4x before shipping
part

Fuse programming
done on tester, no
software involved

Ship to contract manufactureOEM Manufacturing
(Can be split into two
stages if required Minimal Fuse

Provisioning
SPKH, DP, CSFF, ITS,
Minimal OTPMK and

Fuse provisioning Tool
doesn't need to pass
secure boot to execute,

Table 47. Fuse Programming Scenarios

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
194 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Phase NXP Fuses OEM Fuses Software
Optional OEM UID,
DRV/DCV

but must set up the
system so that the next
boot passes secure
boot

At contract manufacturer or in the field

Final Fuse Provisioning Final OTPMK and
DRV, WP Optional
OEM UIDs, DCV

Fuse Provisioning Tool
passes secure boot

In field, later in lifecycle

Lifecycle fuse update Key Revocation,
Monotonic Counter
Era, OEM Scratchpad,
Field Return

Currently no software
utility available, can be
done by custom app.

Table 47. Fuse Programming Scenarios...continued

5.1.2.2.1 Fuse Provisioning during OEM Manufacturing

This stage may be split into two stages:

Stage 1 (Non-secure boot) – Minimal Fuse Provisioning

The following few fuses (Minimal Fuse File) programmed for secure boot to run:

• SRKH
• CSFF
• Minimal OTPMK

This stage does not pass secure boot to execute, but must set up the system so that the next boot passes
secure boot. If this step happens in a trusted environment, OEM can choose to blow all the fuses in this stage
itself.

Stage 2 (Secure Boot) – Final Fuse Provisioning

Rest of the fuses can be programmed after secure boot is up and running. This step ends with OEM WP fuse
getting blown which renders most of the fuses as un-writable.

5.1.2.3 Fuse Provisioning Utility

Secure firmware provides support to do the fuse provisioning. By default, the support is enabled and requires a
built-in. Steps to do so using flex build are available in Section 5.1.2.4.2.

The information about the fuse values to be blown to be provided via a fuse file. The fuse file is a binary file with
bits to indicate what fuses to be blown and their corresponding values.

CST provides an input file where user can enter the required values. Tool generates a Fuse file which is parsed
in BL2 image to do fuse provisioning.

Secure firmware would have the required checks to determine if the provided input values are correct or not.

For example, OTPMK, SRKH cannot be programmed when OEM_WP is already set in SFP fuses.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
195 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

5.1.2.3.1 Fuse file structure

5.1.2.3.2 Sample input file for fuse provisioning tool

Specify the platform. [Mandatory]
Choose Platform - LS1/LS1043/LS1012/LS1046
PLATFORM=LS1046

GPIO Pin to be set for raising POVDD [Optional]
POVDD_GPIO=

One time programmable master key flags in binary form.[Mandatory]
0000 -> Program default minimal OTPMK value

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
196 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

0001 -> Program random OTPMK value
0010 -> Program user supplied OTPMK value
0101 -> Program random OTPMK value with pre-programmed minimal value
0110 -> Program user supplied OTPMK value with pre-programmed minimal value
1xxx -> Don't blow OTPMK
OTPMK_FLAGS=0000
One time programmable master key value.
[Optional dependent on flags, Mandatory in case OTPMK_FLAGS="0010" or "0110"]
OTPMK_0=
OTPMK_1=
OTPMK_2=
OTPMK_3=
OTPMK_4=
OTPMK_5=
OTPMK_6=
OTPMK_7=

Super root key hash [Optional]
SRKH_0=
SRKH_1=
SRKH_2=
SRKH_3=
SRKH_4=
SRKH_5=
SRKH_6=
SRKH_7=

Specify OEM UIDs. [Optional]
e.g OEM_UID_0=11111111
OEM_UID_0=
OEM_UID_1=
OEM_UID_2=
OEM_UID_3=
OEM_UID_4=

Specify Debug challenge and response values. [Optional]
e.g DCV_0=11111111
DCV_0=
DCV_1=
DRV_0=
DRV_1=

Specify Debug Level in binary form. [Optional]
000 -> Wide open: Debug portals are enabled unconditionally.
001 -> Conditionally open via challenge response, without notification.
01x -> Conditionally open via challenge response, with notification.
1xx -> Closed. All debug portals are disabled.
DBG_LVL=

System Configuration register bits in binary form [Optional]
WP (OEM write protect)
ITS (Intent to Secure)
NSEC (Non secure)
ZD (ZUC Disable)
K0,K1,K2 (Key revocation bits)
FR0 (Field return 0)
FR1 (Field return 1)
WP=
ITS=
NSEC=

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
197 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

ZD=
K0=
K1=
K2=
FR0=
FR1=

Specify the output fuse provisioning file name. (Default:fuse_scr.bin)
 [Optional]
OUTPUT_FUSE_FILENAME=fuse_scr.bin

5.1.2.4 Deploy and run fuse provisioning

5.1.2.4.1 Enable POVDD

To enable POVDD for different Layerscape platforms, perform the following steps:

1. TWR-LS1021A:
• Put J11 to enable SNVS in check state
• POVDD (J8 and J9)

2. LS1043ARDB:
• Put J13 to enable PWR_PROG_SFP

3. LS1012ARDB:
• Through I2C transactions, write to LDO1CT register to change LDO1EN bit in vr5100
• i2c mw 0x08 0x6c 0x10

4. FRWY-LS1012A:
• Put J37 to enable PROG_SFP
• Through I2C transactions, write to LDO1CT register to change LDO1EN bit in vr5100
• i2c mw 0x08 0x6c 0x10

5. LS1046ARDB:
• Put J21 to enable PWR_PROG_SFP

6. LS2088ARDB:
• Put J12 to enable PWR_PROG_SFP

7. LS1088ARDB:
• Put J10 to enable PWR_PROG_SFP

8. LX2160ARDB:
• Put J9 to enable PROG_SFP

9. LX2162AQDS:
• Put J35 to enable PROG_SFP
• Set SW9[4] = 1
• LED to verify - D15

5.1.2.4.2 Build fuse provisioning firmware image

Use following bitbake commands to build composite fuse provisioning firmware image. For details about the
usage of bitbake, see Section 3.5.

Build Code Signing Tool (CST):

$ bitbake qoriq-cst

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
198 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

$ bitbake qoriq-composite-firmware

The newly built composite firmware image is available at the following location:

<build-dir>/tmp/deploy/image/<board>/firmware_<machine>_<boottype>boot.img

<machine> can be ls1012ardb, ls1012afrwy, ls1021atwr, ls1028ardb, ls1043ardb, ls1046ardb, ls1046afrwy,
ls1088ardb_pb, ls2088ardb, lx2162aqds.

<boottype> can be nor, sd, emmc, qspi, xspi, nand.

5.1.2.4.3 Deploy and run fuse provisioning firmware image on board

Program composite firmware image built using Section 5.1.2.4.2 on the required boot medium.

The following example shows commands to flash firmware_ls1046ardb_sdboot.img on the SD card
plugged into LS1046ARDB.

=> tftp a0000000 firmware_ls1046ardb_sdboot.img => mmc write a0000000 8 1fff8 =>
 cpld reset sd

For steps to flash composite firmware on other boards and boot mediums, see board-specific Quick start guide
section.

5.1.2.4.4 Build and deploy fuse provisioning image manually

To build the fuse provisioning image manually

CST

1. Clone the cst directory from the Layerscape LDP components.
2. Run make command.

$:> make

3. Edit input file to select/change values to be programmed in fuses for a device.
• Edit “input_files/gen_fusescr/ls104x_1012/input_fuse_file” file for LS1021A, LS1043A, LS1046A, or

LS1012A
• Edit "input_files/gen_fusescr/ls2088_1088/input_fuse_file" file for LS1088A, LS2088A, LX2160A,

LX2162A, LS1028A
4. To generate fuse_scr.bin, execute the following command:

$:> ./gen_fusescr input_files/gen_fusescr/<platform>/input_fuse_file
platform: ls104x_1012 for LS1021A, LS1043A, LS1046A or LS1012A
platform: ls2088_1088 for LX2160A, LX2162A, LS1088A, LS1028A, or LS2088A

ATF

1. Clone the atf directory from the Layerscape LDP components.
2. Set the path.

$:> export CROSS_COMPILE=<aarch64-toolchain-path->

3. Run the following make command in cloned atf repository.

$:> make realclean; make all fip pbl PLAT=<platform> BOOT_MODE=<boot_mode>
 RCW=$path/rcw.bin BL33=$path/uboot.bin fip_fuse FUSE_PROG=1 FUSE_PROV_FILE=
$path/fuse_scr.bin

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
199 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Note:
• <platform> such as ls1046ardb, ls1088ardb, ls2088ardb
• <boot_mode> such as qspi, sd, nor as per boot mode supported by different platforms.
• Replace $path with the locations of the respective images to be used to build the image.

4. fip_fuse.bin will be available at location ./build/release/<platform>.

To program fuse provisioning image built manually on the required boot medium

For FlexSPI/QSPI NOR flash:

=> tftp 82000000 $path/fip_fuse.bin;
=> i2c mw 66 50 20;sf probe 0:0; sf erase 0x880000 +$filesize; sf write
 0x82000000 0x880000 $filesize;

For SD or eMMC [file_size_in_block_sizeof_512 = (Size_of_bytes_tftp / 512)]:

=> tftp 82000000 $path/fip_fuse.bin;
=> mmc write 82000000 0x4400 <file_size_in_block_sizeof_512>;

For IFC NOR flash:

To program alternate bank: => tftp 82000000 $path/fip_fuse.bin; => protect off
 64880000 +$filesize && erase 64880000 +$filesize && cp.b 82000000 64880000
 $filesize To program current bank: => tftp 82000000 $path/fip_fuse.bin; =>
 protect off 60880000 +$filesize && erase 60880000 +$filesize && cp.b 82000000
 60880000 $filesize

For NAND flash:

=> tftp 82000000 $path/fip_fuse.bin;
=> nand erase 0x880000 $filesize;nand write 0x82000000 0x880000 $filesize;

Boot the board from the required boot medium. For U-Boot command or switch settings to boot the board from a
specific boot medium, see Quick start guide section for the respective board.

5.1.2.4.5 Validate fuse provisioning

1. At the U-Boot prompt, check DCFG scratch 4 register for any Section 5.1.2.5.
For example, run the following command for LS1046ARDB to check for error codes.

=> md 1ee020c 1

Note: LX2162AQDS doesn’t support reading register via U-Boot (using the md command). To verify SNVS
register status for LX2162AQDS, access register 0x1e90014 via CCS command.
For addresses for other board, see the device-specific SoC Reference Manual.

2. If the md command does not show any error, then fuse provisioning is successful.

01ee020c: 00000000

5.1.2.5 Error Codes

Table 1: Error Codes

Error Code Value Description

ERROR_FUSE_BARKER 0x1 Occurs if fuse script not found.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
200 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

ERROR_READFB_CMD 0x2 Occurs if SFP Read Fuse Box (READFB)
command fails.

ERROR_PROGFB_CMD 0x3 Occurs if SFP Program Fuse Box (PROGFB)
command fails.

ERROR_SRKH_ALREADY_BLOWN 0x4 Occurs if SRKH is already blown.

ERROR_SRKH_WRITE 0x5 Occurs if write to SRKH mirror registers fails.

ERROR_OEMUID_ALREADY_BLOWN 0x6 Occurs if OEMUID is already blown.

ERROR_OEMUID_WRITE 0x7 Occurs if write to OEMUID mirror registers fails.

ERROR_DCV_ALREADY_BLOWN 0x8 Occurs if DCV is already blown.

ERROR_DCV_WRITE 0x9 Occurs if write to DCV mirror registers fails.

ERROR_DRV_ALREADY_BLOWN 0xa Occurs if DRV is already blown.

ERROR_DRV_HAMMING_ERROR 0xb Occurs if write to DRV mirror registers gives
hamming error.

ERROR_OTPMK_ALREADY_BLOWN 0xc Occurs if OTPMK is already blown.

ERROR_OTPMK_HAMMING_ERROR 0xd Occurs if write to OTPMK mirror registers gives
hamming error.

ERROR_OTPMK_USER_MIN 0xe Occurs if user supplied OTPMK does not have
minimal OTPMK bits set in case where OTPMK
flags represents to program user supplied OTPMK
value with pre-programmed minimal value.

ERROR_OSPR1_ALREADY_BLOWN 0xf Occurs if OSPR1 is already blown.

ERROR_OSPR1_WRITE 0x10 Occurs if write to OSPR1 mirror register fails.

ERROR_SC_ALREADY_BLOWN 0x11 Occurs if SysCfg is already blown.

ERROR_SC_WRITE 0x12 Occurs if write to SysCfg mirror register fails.

ERROR_POVDD_GPIO_FAIL 0x13 Occurs if gpio number configured is incorrect.

ERROR_GPIO_SET_FAIL 0x14 Occurs if the gpio bit is not set correctly

ERROR_GPIO_RESET_FAIL 0x15 Occurs if the gpio bit reset is not reset to initial
state.

5.2 Bootloader security features

5.2.1 U-Boot

5.2.1.1 Verified boot [only for LX2162AQDS]

This topic explains:

5.2.1.1.1 Introduction

Note: Verified Boot is applicable only for LX2162AQDS.

Verified Boot ensures all executed code is originated from a trusted source, for example device OEMs,
rather than from an attacker or corrupted source. It establishes a full chain of trust, starting from a hardware-
protected root of trust to the bootloader, boot partition, and other verified partitions, such as system, vendor,

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
201 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

and optionally OEM . During device boot up, each stage verifies the integrity and authenticity of the next stage
before handing over the execution.

5.2.1.1.2 Build U-Boot, Linux, and RCW binaries

Build U-Boot binary

A specific defconfig file lx2162aqds_tfa_verified_boot_defconfig is included in the U-Boot config for
the LX2162AQDS board.

To build U-Boot binaries:

1. Ensure following flags are enabled in configs/lx2162aqds_tfa_verified_boot_defconfig.
a. CONFIG_FIT_SIGNATURE=y
b. CONFIG_RSA=y

2. Set toolchain.
a. $ export PATH=/opt/gcc-linaro-7.4.1-2019.02-x86_64_aarch64-linux-gnu/bin:

$PATH
b. $ export CROSS_COMPILE=aarch64-linux-gnu-
c. $ export ARCH=arm64

3. Execute following commands to build U-Boot binaries.
a. $ make mrproper
b. $ make lx2162aqds_tfa_verified_boot_defconfig
c. $ make

The U-Boot binaries, u-boot.dtb and u-boot-nodtb.bin are available at u-boot.

Build Linux binary

To build Linux binaries:

1. Set toolchain :

$ export PATH=/opt/gcc-linaro-7.4.1-2019.02-x86_64_aarch64-linux-gnu/bin:
$PATH
$ export CROSS_COMPILE=aarch64-linux-gnu-
$ export ARCH=arm64

2. Execute following commands to build Linux binaries:

$ make distclean
$./scripts/kconfig/merge_config.sh
$ arch/arm64/configs/defconfig arch/arm64/configs/lsdk.config
$ make -j4

The Linux binary, Image.gz is available at arch/arm64/boot and fsl-lx2162a-qds.dtb is available at
arch/arm64/boot/dts/freescale.

Build RCW binary

To build RCW binary, use the following steps:

$ cd lx2162aqds/
$ make

The RCW binary is available at: lx2162aqds/FFGG_XXXX_PPPP_HHHHH_PPPP_PPPP_19_5_2/rcw_2000_
700_2900_19_5_2.bin.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
202 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

5.2.1.1.3 Generate fit image

The following code snippet shows the sample ITS file.

/*
 * copyright 2020 NXP
 *
 */
/dts-v1/;
/ {
 description = "arm64 kernel, ramdisk and FDT blob";
 #address-cells = <1>;
 images {
 kernel {
 description = "ARM64 Kernel";
 data = /incbin/("Image.gz");
 type = "kernel";
 arch = "arm64";
 os = "linux";
 compression = "gzip";
 load = <0x81080000>;
 entry = <0x81080000>;
 hash {
 algo = "sha1";
 };
 signature {
 algo = "sha1,rsa2048";
 key-name-hint = "dev";
 };
 };
 fsl-lx2162a-qds {
 description = "lx2162aqds-dtb";
 data = /incbin/("fsl-lx2162a-qds.dtb");
 type = "flat_dt";
 arch = "arm64";
 os = "linux";
 compression = "none";
 load = <0x90000000>;
 hash {
 algo = "sha1";
 };
 signature {
 algo = "sha1,rsa2048";
 key-name-hint = "dev";
 };
 };
 initrd {
 description = "initrd for arm64";
 data = /incbin/("fsl-image-core-lx2162aqds.ext2.gz");
 type = "ramdisk";
 arch = "arm64";
 os = "linux";
 compression = "none";
 load = <0x00000000>;
 entry = <0x00000000>;
 hash {
 algo = "sha1";
 };
 signature {
 algo = "sha1,rsa2048";

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
203 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

 key-name-hint = "dev";
 };
 };
 };
 configurations {
 default = "lx2162aqds";
 lx2162aqds {
 description = "config for lx2162aqds";
 kernel = "kernel";
 ramdisk = "initrd";
 fdt = "fsl-lx2162a-qds";
 signature {
 algo = "sha1,rsa2048";
 key-name-hint = "dev";
 sign-images = "kernel", "fdt","ramdisk";
 };
 };
 };
};

To generate fit image:

1. Create a new directory, for example “Verified boot or Work” and copy the following binaries to this new
directory.
• u-boot.dtb and u-boot-nodtb.bin (see Section 5.2.1.1.2)
• Image.gz and fsl-lx2162a-qds.dtb (see Section 5.2.1.1.2
• Rootfs file, fsl-image-core-lx2162aqds.ext2.gz (rootfs file can be generated by yocto)
• Prepare <its_file_name>.its file as per the sample ITS file

2. Generate fit image from ITS file using the mkimage command.

mkimage -f <its_file_name>.its <fit_image_to_be_generated>.fit

For example:

mkimage -f lx2162_qds_verified_boot.its lx2162_qds_verified_boot.fit

Output:

lx2162_qds_verified_boot.fit

Note: The mkimage utility is available at u-boot/tools/mkimage.

5.2.1.1.4 Generate keys with OpenSSL

Generate public/private keys using openssl command

$ openssl genpkey -algorithm RSA -out keys/dev.key -pkeyopt rsa_keygen_bits:2048
 -pkeyopt rsa_keygen_pubexp:65537

Generate public key certificate using openssl command

$ openssl req -batch -new -x509 -key keys/dev.key -out keys/dev.crt

View public key

$ openssl rsa -in keys/dev.key -pubout

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
204 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

5.2.1.1.5 Sign fit image and combine U-Boot DTB

Sign fit Image

The fit image generated in Section 5.2.1.1.3 needs to be signed using keys generated in Section 5.2.1.1.4 .

Command:

mkimage -F <path_to_fit_image>.fit -k <PATH_TO_KEYS_FOLDER> -K <path_to_u-
boot_dtb_file>.dtb -c "Comment about the image" -r

Example:

mkimage -F lx2_qds_verified_boot.fit -k keys -K u-boot.dtb -c "Sign the FIT
 Image" -r

Note: The mkimage utility is available at u-boot/tools/mkimage.

Combine U-Boot DTB

Make a common ‘dtb’ file with u-boot.dtb and u-boot-nodtb.bin

Command:

cat u-boot-nodtb.bin u-boot.dtb > <combined dtb.bin>

Example:

cat u-boot-nodtb.bin u-boot.dtb > u-boot-combine-dtb.bin

The following figure shows the generated binaries.

5.2.1.1.6 Generate fip binary

To build TF-A FIP binary:

1. Set toolchain
a. $ export PATH=/opt/gcc-linaro-7.4.1-2019.02-x86_64_aarch64-linux-gnu/bin:

$PATH
b. $ export CROSS_COMPILE=aarch64-linux-gnu-
c. $ export ARCH=arm64

2. Execute the following command to build FIP binary.

make -j8 all fip pbl PLAT=lx2160aqds BOOT_MODE=flexspi_nor RCW=<path to rcw
 bin> BL33=<path to combined u-boot-dtb bin>

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
205 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

For example:

make -j8 all fip pbl PLAT=lx2160aqds BOOT_MODE=flexspi_nor RCW=/home/ data/
source_code/verified_boot/lx2-rcw/lx2162aqds/FFGG_NNNN_PPPP_HHHH_RR_18_5/
rcw_2000_650_2900_18_5.bin BL33=/home/data/source_code/verified_boot/work/u-
boot-combine-dtb.bin

For path to RCW and BL33 (combined U-Boot DTB), see sections Section 5.2.1.1.2 and Section 5.2.1.1.5,
respectively.
The FIP binary generated is unsigned and available at build/lx2160aqds/release/fip.bin.

5.2.1.1.7 Flash FIP binary to FlexSPI NOR flash

Set up Ethernet connection

1. Boot the board from FlexSPI NOR flash 0 and stop autoboot to enter U-Boot prompt.

Load FIP binary from TFTP server

To flash image on the alternate bank:

1. Load FIP binary to the DDR memory.

=> tftp a0000000 <path to fip.bin>

For steps to generate fip.bin, see Section 5.2.1.1.6.
2. Switch to the alternate bank (FlexSPI NOR flash 1) on which FIP binary needs to be flashed.

=> i2c mw 66 50 20;sf probe 0:0;

3. Program the FIP binary to the alternate bank.

=> sf erase 0x100000 +$filesize && sf write 0xa0000000 0x100000 $filesize

4. Boot the board from alternate bank.

=> qixis_reset altbank

5. Load the fit image to the alternate bank.

=> tftp a0000000 <path to lx2162_qds_verified_boot.fit>

For steps to generate lx2162_qds_verified_boot.fit signed image, refer Section 5.2.1.1.5
6. Boot up the board with this fit image using the bootm command. In the bootm command, provide the name

of the configuration as the file location, for example lx2162aqds.

=> bootm 0xa0000000$ lx2162aqds

Note: The verified boot is successful if the board boots to the Linux prompt. If the verification fails, the
kernel will not boot.

5.2.1.2 U-Boot

To establish the secure boot Chain of Trust, some U-Boot commands have been added to the ESBC code.

5.2.1.2.1 esbc_validate command

esbc_validate <img_hdr> [<pub_key_hash>]

Input arguments:

img_hdr – Location of CSF header of the image to be validated.
UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
206 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

pub_key_hash – hash of the public key used to verify the image. This is optional parameter. If not provided,
code makes the assumption that the key pair used to sign the image is same as that used with ISBC. So the
hash of the key in the header is checked against the hash available in SRK fuse for verification.

Description:

Perform CSF header validation on the address passed in the image header. During parsing of the header, the
image address is stored in an environment variable which is later used in source command in default secure
boot command.

Signature checks on the image.

5.2.1.2.2 esbc_halt command

esbc_halt (no arguments)

Description:

This command puts core in spin loop.

5.2.1.2.3 blob enc command

blob enc <src location> <dst location> <length> <key_modifier address>

Input Arguments:

src location Address of the image to be encapsulated
dst location Address where the blob is created
length Size of the image to be encapsulated
key_modifier address Address where a random number 16 bytes long (key modifier) is placed

Description:

This command would create a cryptographic blob of the image placed at src location and place the blob at dst
location.

5.2.1.2.4 blob dec command

blob dec <src location> <dst location> <length> <key_modifier address>

Input Arguments:

src location Address of the image blob to be decapsulated
dst location Address where the decapsulated image is placed
length Expected Size of the image after decapsulation
key_modifier address Address where a random number 16 bytes long(key modifier) is placed

Description:

This command would decapsulate the blob placed at src location and place the decapsulated data of expected
size at dst location.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
207 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

5.2.1.2.5 Bootscript

Bootscript is a U-Boot script image that contains U-Boot commands. ESBC validates this bootscript before
executing commands in it.

1. Bootscript can have any commands which U-Boot supports. No checking is done on the allowed commands
in bootscript. Because it is a validated image, assumption is that commands in bootscript are correct.

2. If some basic scripting error is done in bootscript, such as unknown command, missing arguments, the
required usage of that command and core is put in infinite loop.

3. After execution of commands in bootscript, if the control unexpectedly comes back to U-Boot, an error
message is printed on the U-Boot console and the command esbc_halt is invoked.

4. Scatter gather images are not supported with the validate command.
5. If ITS fuse is blown, any error in verification of the image results in system reset. The error is printed on

console before system goes for a reset.

Where to place the bootscript?

ESBC U-Boot expects the bootscript to be loaded from flash. ESBC U-Boot code assumes that the public/
private key pair used to sign the bootscript is same as the one used while signing the U-Boot image. If the user
uses different key pair to sign the image, the hash of the N and E component of the key pair should be defined
in macro:

CONFIG_BOOTSCRIPT_KEY_HASH

5.2.1.2.5.1 Chain of Trust

The Bootscript contains information about the next level images, for example, MC, Linux ESBC validates
these images as per their public keys. MC is started with validated MC images if required and finally the bootm
command is executed to pass control to the Linux image.

MC Images(s)

Kernel Image(s)
bootm <Kernel Fit Image Address>

esbc_validate <Linux Img header add>
.
.

esbc_validate <MC Img header addr>
.
.

Boot Script

CSF HeaderCSF Header

U-Boot

Normal Boot Loader Stuff
.
.
.
.
.

End of Normal Boot Loader Stuff

esbc_validate
<bootscript Header Address>

source <bootscript Address>

esbc_halt
CSF Header

CSF Header

Figure 19. Secure boot flow (Chain of Trust from U-Boot)

Sample Bootscript

Get Images and Headers on DDR
.
.
.
Validate the Images. (<pub_key_hash> is optional)
esbc_validate <Image1 Header Address> <pub_key_hash>
esbc_validate <Image2 Header Address> <pub_key_hash>
.
.
.
Boot the Linux

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
208 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

bootm <Kernel Fit Image Address>

5.2.1.2.5.2 Chain of Trust with confidentiality

To establish chain of trust with confidentiality, cryptographic blob mechanism can be used. In this chain of
trust, validated image is allowed to use the One Time Programmable Master Key to decrypt system secrets.
Two bootscripts are to be used. First encapsulation bootscript is used which creates a blob of the next level
images (for example, MC, Linux) and saves them on flash. After this, the system is booted after replacing the
encapsulation bootscript with decapsulation bootscript which decapsulates the blobs and start MC and Linux.

MC Images(s)

Kernel Image (s)

Kernel Image (s) Blob
reset

blob enc <Img2 addr>
<Img2 dest addr>

<Img1 size> <key_modifier address>
.
.

blob enc <Img1 addr>
<Img1 dest addr>

<Img1 size> <key_modifier address>
.
.

Boot Script

CSF HeaderCSF Header

Boot Loader 1

Normal Boot Loader Stuff
.
.
.
.
.

End of Normal Boot Loader Stuff

esbc_validate
<bootscript Header Address>

source <bootscript Address>

esbc_halt

ISBC

MC Images (s) Blob

Figure 20. Chain of Trust with Confidentiality (Encapsulation)

Sample Encapsulation Bootscript

Get Images on DDR
.
.
.
Create the Blobs
blob enc <Img1 addr> <Img1 dest addr> <Img1 size> <key_modifier address>
blob enc <Img2 addr> <Img2 dest addr> <Img2 size> <key_modifier address>
blob enc <Img3 addr> <Img3 dest addr> <Img3 size> <key_modifier address>
.
.
.
Save The Blobs created on Flash
.
.
.
End of Encap Boot Script (This is one time only and must be replaced with
 decap Boot Script)

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
209 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

MC Images(s)

Kernel Image(s)

Kernel Image(s) Blob
bootm <Kernel Fit Image Address>

blob dec <Img2 addr>
<Img2 dest addr>

,<Img1 size> <key modifier address>

blob dec <Img1 addr>
<Img1 dest addr>

<Img1 size> <key_modifier address>

Boot Script

CSF HeaderCSF Header

Boot Loader 1

Normal Boot Loader Stuff
.
.
.
.
.

End of Normal Boot Loader Stuff

esbc_validate
<bootscript Header Address>

source <bootscript Address>

esbc_halt

ISBC

MC Images(s) Blob

<

Figure 21. Chain of Trust with Confidentiality (Decapsulation)

Sample Decapsulation Bootscript

Get Images Blobs on DDR
.
.
.
Decap the Blobs to get the actual images
blob dec <Img1 blob addr> <Img1 dest addr> <expected Img1 size> <key_modifier
 address>
blob dec <Img2 blob addr> <Img2 dest addr> <expected Img2 size> <key_modifier
 address>
blob dec <Img3 blob addr> <Img3 dest addr> <expected Img3 size> <key_modifier
 address>
.
.
.
Boot the Linux
bootm <Kernel Fit Image Address>

5.2.1.2.6 How to compile secure U-Boot binary

You need to compile the u-boot.bin binary to build the fip.bin binary.

Clone the u-boot repository and compile the U-Boot binary for TF-A:

$ git clone https://github.com/nxp-qoriq/u-boot.git
$ cd u-boot
$ git checkout -b <new branch name> <tag>

For example, $ git checkout -b LSDK-21.08 LSDK-21.08.

$ export ARCH=arm64
$ export CROSS_COMPILE=aarch64-linux-gnu-
$ make distclean
$ make <platform>_tfa_SECURE_BOOT_defconfig

Note: A single defconfig is created for all the boot sources, <platform>_tfa_defconfig.

For example, for LX2162AQDS, defconfig is lx2162aqds_tfa_SECURE_BOOT_defconfig.

$ make

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
210 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Note: If the make command shows the error "*** Your GCC is older than 6.0 and is not
supported", ensure that you are using Ubuntu 18.04 64-bit version for building 21.08 U-Boot binary.

The compiled secure U-Boot image, u-boot.bin-tfa-secure-boot, is available at u-boot/.

5.3 Trusted OS

5.3.1 Trusted Execution (OP-TEE)

5.3.1.1 Introduction

Trusted Execution Environment (TEE), for Arm-based chips supporting TrustZone technology.

NXP platforms are enabled with Open Portable TEE (OP-TEE). OP-TEE is an open source project that contains
full implementation to develop a complete Trusted Execution Environment. This component meets the Global
Platform TEE System Architecture specification. It also provides the TEE Internal core API v1.1 as defined by
the Global Platform TEE Standard for the development of Trusted Applications.

OP-TEE consists of three components.

• OP-TEE client, which is the client API running in normal world user space.
• OP-TEE Linux Kernel driver, which is the driver that handles the communication between normal world user

space and secure world.
• OP-TEE Trusted OS, which is the Trusted OS running in secure world.

OP-TEE OS is made of 2 main components: the OP-TEE core and a collection of libraries designed for being
used by Trusted Applications. While OP-TEE core executes in the Arm CPU privileged level (also referred to
as 'kernel land'), the Trusted Applications execute in the non-privileged level (also referred to as the 'userland').
The static libraries provided by the OP-TEE OS enable Trusted Applications to call secure services executing at
a more privileged level.

5.3.1.1.1 Support platform

OP-TEE is supported on the following NXP boards:

• LS1046ARDB
• LS1043ARDB
• LS2088ARDB
• LS1088ARDB
• LS1012ARDB
• LX2160ARDB Rev2
• LS1028ARDB
• LX2162AQDS

5.3.1.1.2 Test Sequence

Execute the test sequence specified below on target machine:

On the target NXP board:

1. To check if the OP-TEE kernel driver is successfully initialized (after successfully communicating with OP-
TEE OS running in OP-TEE), look for the following in Linux boot logs:

optee: probing for conduit method.
optee: revision <version> (git commit id)

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
211 / 1061

https://github.com/OP-TEE/optee_os
https://github.com/OP-TEE/optee_os

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

optee: initialized driver

Note: TF-A FIP image must be compiled with OP-TEE binary. Else, the following error appears:

optee: api uid mismatch

2. Run the tee-supplicant (binary generated from optee_client repo) binary
$>: tee-supplicant & (press enter)

3. Run the xtest (binary generated from optee_test repo) application as follows:

$>: xtest -l 15 (press enter and look for the below logs to verify app runs
 successfully):
 47123 subtests of which 0 failed
 79 test cases of which 0 failed
 0 test case was skipped
 OP-TEE test application done!

5.3.1.1.3 How to compile OP-TEE binary

This is an optional step. You may need to compile the tee.bin binary to build fip.bin with OP-TEE.
However, OP-TEE is optional, you can skip the procedure to compile OP-TEE if you want to build the FIP binary
without OP-TEE.

To clone the optee_os repository and build the OP-TEE binary, perform the following steps:

1. $ git clone https://github.com/nxp-qoriq/optee_os
2. $ cd optee_os
3. $ git checkout -b <new branch name>. For example, $ git checkout -b lf-6.1.55_2.2.0
4. $ export ARCH=arm
5. $ export CROSS_COMPILE64=aarch64-linux-gnu-
6. $ make CFG_ARM64_core=y PLATFORM=ls-<platform>. For example, $ make

CFG_ARM64_core=y PLATFORM=ls-ls1088ardb

The compiled OP-TEE image tee-raw.bin is available at optee_os/out/arm-plat-ls/core/.

5.4 PKCS#11 and Secure Object Library

5.4.1 Introduction

NXP SoCs such as LS1046A can store keys securely using built-in SoC capabilities - virtual HSM. With such
devices, sensitive private keys never leave the device and cryptographic operations are performed on this
virtual HSM.

The PKCS#11 is a standard programming interface to communicate with HSMs. This standard specifies an
application programming interface (API), called “Cryptoki” to devices which hold cryptographic information and
perform cryptographic functions.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
212 / 1061

https://github.com/OP-TEE/optee_client
https://github.com/OP-TEE/optee_test

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Figure 22. Block Diagram

Proprietary interfaces using Secure Object Library are provided to interact with the HSM for:

• Generating key pair within the HSM.
• Installing existing key in the HSM.
• Manufacturing Protection key operations.

The private keys are never visible to normal world.

Sensitive Cryptographic operations using these keys can only be done using PKCS#11 cryptographic token
standard.

An OpenSSL engine on Secure Object Library is also provided to interface directly with OpenSSL APIs

The PKCS#11 library release is compliant to v2.40. It is targeted for LS1046ARDB and supports

• RSA keys of size 1K and 2K.
• ECDSA keys curve prime256v1 and secp384r1.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
213 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Figure 23. Details of HSM

5.4.2 Supported APIs

5.4.2.1 PKCS#11 Library – libpkcs11.so

The PKCS#11 interfaces are exposed and implemented via a shared library with a name called libpkcs11.so
(Cryptoki Library). Any PKCS#11 library has a static CK_FUNCTION_LIST structure, and a pointer to it may be
obtained by the C_GetFunctionList() function.

Table summarizes the list of supported PKCS#11 interfaces. The return values and API behaviors are compliant
with the PKCS#11 standard v2.40. The PKCS#11 library expects the caller to use the interfaces in a standard
way.

API Description

C_Initialize Initialize Cryptoki library

C_Finalize Clean up cryptoki related resources

C_GetFunctionList Obtains entry points of Cryptoki library functions.

C_GetInfo Obtains general information about Cryptoki

C_GetSlotInfo Obtains information about a particular slot

C_GetTokenInfo Obtains information about a particular token

C_GetSlotList Obtain list of slots in the system.
Only a fixed slot with fixed token is supported. Dynamic slot or token addition is not
supported.

C_OpenSession
C_CloseSession
C_CloseAllSessions

Opens/Closes a session.
• All types of sessions are supported with Token.
• Only Token Objects can be created/destroyed, Session Objects are not supported.

C_Login Logs in to a token.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
214 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

C_Logout Logs out from a token

C_CreateObject Creates an object (RSA Keys of size up to 2048bits are supported)

C_DestroyObject Destroys an object

C_FindObjectsInit
C_FindObjects
C_FindObjectsFinal

Objects search operations.
RSA public and private key objects of size up to 2048bits are supported.
ECDSA public and private key objects of size 256 and 384 bits are supported.

C_GetAttributeValue Obtains the value of one or more attributes of the objects.

C_GetMechanismList Obtains List of mechanism supported by token.

C_GetMechanismInfo Obtains the information about a mechanism.

C_GenerateKeyPair Generates a public-key/private-key pair (RSA Keys of size up to 2048bits are supported)

C_SignInit
C_Sign
C_SignUpdate
C_SignFinal

Initialize a signature operation.
Signs single-part data.
Continues a multiple-part signature operation.
Finishes a multiple-part signature operation.
Mechanisms supported:
• RSA-based Mechanisms

– CKM_RSA_PKCS
– CKM_MD5_RSA_PKCS
– CKM_SHA1_RSA_PKCS
– CKM_SHA256_RSA_PKCS
– CKM_SHA384_RSA_PKCS
– CKM_SHA512_RSA_PKCS

• ECDSA-based Mechanisms (Single Part Only)
– CKM_ECDSA
– CKM_ECDSA_SHA1

C_DigestInit
C_Digest
C_DigestUpdate
C_DigestFinal

Initializes a message-digesting operation.
Digests single-part data.
Continues a multiple-part digesting operation.
Finishes a multiple-part digesting operation.
Mechanisms supported:
• CKM_MD5
• CKM_SHA1
• CKM_SHA256
• CKM_SHA384
• CKM_SHA512

C_DecryptInit
C_Decrypt

Initializes a decryption operation.
Decrypts single-part encrypted data.
Mechanisms supported:
• CKM_RSA_PKCS
• CKM_RSA_PKCS_OAEP

5.4.2.2 Secure Object Library – libsecure_obj.so

5.4.2.2.1 Secure Object Library

The following are the details of the supported interfaces to generate/import keys using the Secure Object library.

1. Import Keys:

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
215 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

SK_RET_CODE SK_CreateObject(SK_ATTRIBUTE *attr, uint16_t attrCount, SK_OBJECT_HANDLE
*phObject);
The API creates an Object on the HSM, and returns a handle to it. API always succeeds even if an object
with same attributes exists in HSM. Duplicate object is created. Application needs to take care that duplicate
objects should not be created.
attr is an array of attributes that the object should be created with. Some of the attributes may be
mandatory, such as SK_ATTR_OBJECT_TYPE and SK_ATTR_OBJECT_INDEX (the id of the object), and
some are optional.
Application needs to take care that valid attributes are passed, library does not return any error on receiving
inconsistent or incompatible attributes.
param[in] attr: The array of attributes to be used in creating the Object.
param[in] attrCount: The number of attributes in attr
param[in, out] phObject IN: A pointer to a handle (must not be NULL);
OUT: The handle of the created Object
Return Values:
SKR_OK: Successful execution, phObject filled with created object handle.
SKR_ERR_BAD_PARAMETERS: Invalid function arguments.
SKR_ERR_OUT_OF_MEMORY: Memory allocation failed.
SKR_ERR_NOT_SUPPORTED: The function and/or parameters are not supported by the library.
Note: Some internal error code other than the code mentioned above can be returned. Refer to
securekey_api_types.h for the error code description.

2. Generate Key:
SK_RET_CODE SK_GenerateKeyPair(SK_MECHANISM_INFO *pMechanism, SK_ATTRIBUTE *attr,
uint16_t attrCount, SK_OBJECT_HANDLE *phKey);
This API generates key pair on the HSM, and returns a handle to it. API always succeeds even if an object
with same attributes exists in HSM. Duplicate object is created. Application needs to take care that duplicate
objects should not be created.
pMechanism is a mechanism for key pair generation. For example: SKM_RSA_PKCS_KEY_PAIR_GEN.
attr is an array of attributes that the object should be created with. Some of the attributes may be
mandatory, such as SK_ATTR_OBJECT_INDEX (the id of the object), and some are optional.
Application needs to take care that valid attributes are passed, library does not return any error on receiving
inconsistent/incompatible attributes.
param[in] pMechanism: Mechanism for key pair generation.
param[in] attr: The array of attributes to be used in creating the Object.
param[in] attrCount: The number of attributes in attr.
param[in, out] phKey IN: A pointer to a handle (must not be NULL);
OUT: The handle of the created Object.
Return Values:
SKR_OK: Successful execution, phObject is filled with created object handle.
SKR_ERR_BAD_PARAMETERS: Invalid function arguments
SKR_ERR_OUT_OF_MEMORY: Memory allocation failed.
SKR_ERR_NOT_SUPPORTED: The function and/or parameters are not supported by the library.
Note: Some internal error code other than mentioned above can be returned. Refer to
securekey_api_types.h for error code description.

3. Erase Object:
SK_RET_CODE SK_EraseObject(SK_OBJECT_HANDLE hObject);
Erases an object from the HSM. It indicates that the object with the specified handle is not in usage.
param[in] hObject: The handle of the Object to be erased.
Return Values:
SKR_OK: Successful execution
SKR_ERR_BAD_PARAMETERS: Invalid function arguments.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
216 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Note: Some internal error code other than mentioned above to be returned. Refer to
securekey_api_types.h for the error code description.
Further details of the APIs and its types are available in the files <securekey_api.h> and
<securekey_api_types.h> in the secure_obj folder.
Note:
• Maximum of 50 objects can be created/generated.
• Secure Object Library does not generate any error, if multiple objects having same attributes are being

created. It is the applications responsibility to take care of the attributes that are passed during creation/
generation of objects.

5.4.2.2.2 Manufacturing Key APIs:

Following the secure boot, the system runs the key generation routine producing an ECC public and private Key
pair. This is referred to as Manufacturing Protection Key Pair.

Key Generation is performed by BootROM.

• For complete documentation on how to perform the key generation, public key export, and signing with the
ECC private key, refer to the Manufacturing-protection chip-authentication process section in the SoC’s
Security (SEC) Reference Manual.

• To work out this feature, boot the board in the secure boot mode and configure the ITS bit to 1.

The APIs for availing the MP public key, signing using the MP private key, and availing the MP Tag are
described below:

1. Get MP Public key: enum sk_status_code sk_mp_get_pub_key(struct sk_EC_point *pub_key);
Get Manufacturing Protection (MP) Public Key (ECC P256 Key).
param[in,out] pub_key: This is MP Public Key to be returned. Application needs to allocate memory
for sk_EC_point. Each of the coordinate x and y needs to allocate sk_EC_point.len memory.
sk_EC_point.len can be obtained using sk_mp_get_pub_key_len().
Return Values:
SK_SUCCESS on success, error value otherwise.

2. Sign using MP private key
enum sk_status_code sk_mp_sign(unsigned char * msg, uint8_t msglen,
struct sk_EC_sig * sig, uint8_t * digest, uint8_t digest_len)
Sign the msg using MP Priv Key. While signing MP Message, it will be prepended to message. Message
over which signature will be calculated = MP message + msg.
param[in] msg: Pointer to the message to be signed.
param[in] msglen: Length of the message to be signed.
param[in,out] sig: This is Signature calculated. Application needs to allocate memory for sk_EC_sig.
Each of the parts r and s needs to be allocated sk_EC_sig.len memory. sk_EC_sig.len can be
obtained using sk_mp_get_sig_len().
param[in, out] digest: Digest (SHA-256) of the message to be signed. Digest is calculated by prepending
MP Message to the msg.
param[in] digest_len: Length of digest. Application needs to allocate memory for sk_EC_point. Each
of the coordinate x and y needs to allocate sk_EC_point.len memory. sk_EC_point.len can be
obtained using sk_mp_get_pub_key_len().
Return Values:
SK_SUCCESS on success, error value otherwise.

3. Get MP Tag
enum sk_status_code sk_mp_get_mp_tag(uint8_t *mp_tag_ptr,uint8_t mp_tag_len);
Get the MP Message. While signing, the MP Message is prepended to message automatically. To avail the
MP message tag, you can call this function during the verification operation.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
217 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

param[in, out] mp_tag_ptr: Pointer to the message to be signed. Application needs to allocate memory of
length returned by sk_mp_get_tag_len().
param[in] mp_tag_len: Length of the mp_tag_ptr buffer.
Return Values:
SK_SUCCESS on success, error value otherwise.
The API definition can be found in file securekey_mp.h. The sample applications are provided to
demonstrate the usage of APIs.

5.4.3 Integrating applications with Secure Object

Applications can interact with Secure Objects stored in HSM/Token using the followings APIs:

• Secure Object
• OpenSSL

– Secure Object Library based OpenSSL Engine (libeng_secure_obj)

Note: For more information on how to use the Secure Object APIs, refer to the sobj_app application.

5.4.3.1 Using PKCS#11 APIs

Applications can directly use the PKCS#11 APIs to interact with the Secure Objects stored in HSM/Token.
Currently, we support PKCS#11 APIs mentioned in PKCS#11 APIs.

PKCS#11 library can also be used with any OpenSource PKCS#11 application such as p11tool, softhsm2-utils,
and so on.

We have tested this library with p11tool for following operations:

• Listing tokens: p11tool --list-tokens
• Initializing token: p11tool --initialize
• Initializing User pin: p11tool --initialize-pin
• Initializing SO pin: p11tool --initialize-so-pin
• Generating RSA Key: p11tool --generate-rsa
• Importing RSA Key: p11tool --write --load-privkey <rsa_key.pem>

For more information on p11tool commands, check here

We have also created a reference application pkcs11_app for showing how to use the PKCS#11 APIs for writing
your own application.

Commands to run pkcs11_app are shown here

5.4.3.2 Using Secure Object APIs

Applications can directly use the Secure Object Library APIs to interact with the Secure Objects stored in HSM/
Token. Currently we support APIs mentioned in Secure Object APIs.

We have also created a reference application sobj_app for showing how to use the Secure Object APIs.

Commands to run sobj_app are provided here.

5.4.3.3 Applications using OpenSSL APIs

This topic provides examples of usage with OpenSSL. It is recommended that you should familiarize yourself
with Open SSL.

Refer to the appropriate documents for Open SSL commands at the following location:

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
218 / 1061

https://www.gnutls.org/manual/html_node/p11tool-Invocation.html

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

http://www.openssl.org/docs/

Open SSL provides the support of engine (basically hardware devices) to store the keys on hardware devices to
make keys more secure.

There are 2 ways in which applications using the OpenSSL APIs can access the Secure Objects stored in HSM/
Token.

• Secure Object Library based OpenSSL Engine (libeng_secure_obj).
• PKCS#11 based OpenSSL Engine (Third-party OpenSC/libp11).

5.4.3.3.1 Secure Object Library based OpenSSL Engine (libeng_secure_obj)

NXP provides the Secure Object Library based OpenSSL Engine that is used to communicate with underlying
HSM. This engine is based on Secure Object Library. Using this engine, you can perform the following
operations:

• RSA Private Encryption
• RSA Private Decryption
• ECDSA Signing Operation

All the other RSA/ECDSA operations can be performed by OpenSSL itself.

This engine does not support generation of RSA Keys. Keys are generated by another app sobj_app and
these keys are used in the applications using this OpenSSL Engine.

Refer to the Section 5.4.4.2.5 section for the screenshots of application using OpenSSL engine.

5.4.3.3.1.1 Example usage with OpenSSL

This topic provides examples of usage with OpenSSL:

• Using the engine from command line, change the following in openssl.cnf (often in /etc/ssl/
openssl.cnf).
1. Add the following given line at the top, before any sections are defined:

openssl_conf = conf_section
2. Add following section at the bottom of the file:

[conf_section]
engines = engine_section
[engine_section]
secure_obj = sobj_section
[sobj_section]
engine_id = eng_secure_obj
dynamic_path = <path where lib_eng_secure_obj.so is placed>
default_algorithms = RSA
init = 1

This section shows only RSA examples. Same can be done for EC by changing default_algorithms in
openssl.cnf as shown below:

default_algorithms = RSA, EC

Testing the engine operation:
To verify that the engine is properly operating, use the following example:

user@Ubuntu:~#
user@Ubuntu:~# openssl engine
(dynamic) Dynamic engine loading support
(eng_secure_obj) secure object OpenSSL Engine.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
219 / 1061

http://www.openssl.org/docs/

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

user@Ubuntu:~#
user@Ubuntu:~#

If you do not update the OpenSSL configuration file, specify the engine configuration explicitly.

$: openssl engine -t dynamic -pre SO_PATH:<path-to-libeng_secure_obj.so> -pre
 ID:eng_secure_obj -pre LIST_ADD:1 -pre LOAD

user@Ubuntu:~#
user@Ubuntu:~# openssl engine -t dynamic -pre SO_PATH:/usr/lib/aarch64-linux-
gnu/openssl-1.0.0/
engines/libeng_secure_obj.so -pre ID:eng_secure_obj -pre LIST_ADD:1 -pre LOAD
(dynamic) Dynamic engine loading support
[Success] : SO_PATH:/usr/lib/aarch64-linux-gnu/openssl-1.0.0/engines/
libeng_secure_obj.SO
[Success] : ID:eng_secure_obj
[Success] : LIST_ADD:1
[Success] : LOAD
LOADED: (eng_secure_obj) Secure object OpenSSL Engine.
 [available]
user@Ubuntu:~#

• Using OpenSSL from the command line.
Generate RSA/ECDSA key-pair using the following commands and use them in signing any data and verifying
the signatures generated.

$: sobj_app -G -m rsa-pair -s 2048 -l "rsa_gen_2048" -i 1 -w rsa_2048.pem ##
 Generating RSA keypair ##
$: openssl rsa -in rsa_2048.pem -pubout -out rsa_pub_2048.pem ## Taking out
 Public Key for verifying signature ##
$: openssl dgst -sha1 -sign rsa_2048.pem -out sig.data data ## Generating
 Signature "sig.data" of "data" ##
$: openssl dgst -sha1 -verify rsa_pub_2048.pem -signature sig.data data ##
 Verifying the signature using Public Key ##

Similarly as in above step, generate for ECDSA keys of prime256v1 by using following commands:

$: sobj_app -G -m ec-pair -c prime256v1 -l "ecc_256" -i 2 -w ec256.pem
$: openssl ec -in ec256.pem -pubout -out ec_pub_256.pem
$: openssl dgst -sha1 -sign ec256.pem -out sig.data data
$: openssl dgst -sha1 -verify ec_pub_256.pem -signature sig.data data

For ECDSA secp384r1 curve, use the following commands:

$: sobj_app -G -m ec-pair -c secp384r1 -l "ecc_384" -i 3 -w ec384.pem
$: openssl ec -in ec384.pem -pubout -out ec_pub_384.pem
$: openssl dgst -sha1 -sign ec384.pem -out sig.data data
$: openssl dgst -sha1 -verify ec_pub_384.pem -signature sig.data data

• This section describes how to use the command line to create a self-signed certificate for "NXP
Semiconductor". The key for this certificate is generated in the Secure Object HSM and it is not exportable.
You can generate a private key in the HSM with sobj_app using the below examples. It also creates a fake
PEM file dev_key.pem, which contains the information to get the required key from HSM.
– To generate the RSA key-pair, use the command:

$: sobj_app -G -m rsa-pair -s 2048 -l "Test_Key" -i 1 -w dev_key.pem

– To generate the ECDSA key-pair, use the command:

$: sobj_app -G -m ec-pair -c prime256v1 -l "ecc_256" -i 30 -w dev_key.pem

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
220 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

– To generate a certificate with key in the Secure Object module, use the following commands:

$ openssl req -new -key dev_key.pem -out req.pem -text -x509 -subj "/CN=NXP
 Semiconductor"
$ openssl x509 -signkey dev_key.pem -in req.pem -out cert.pem

The first command creates a self-signed Certificate for “NXP Semiconductor". The signing is done using the
key specified by the fake PEM file.
The second command creates a self-signed certificate for the request. The private key used to sign the
certificate is the same as the private key used to create the request.

5.4.3.3.2 PKCS#11 based OpenSSL Engine (Third-party OpenSC/libp11)

libp11 is a library implementing a thin layer on top of PKCS#11 API to make using PKCS#11 implementations
easier.

You can get library from: https://github.com/OpenSC/libp11 .

This code repository produces two libraries:

• libp11 provides a higher-level (compared to the PKCS#11 library) interface to access PKCS#11 objects. It is
designed to integrate with applications that use OpenSSL.

• pkcs11 engine plugin for the OpenSSL library allows accessing PKCS#11 modules in a semi-transparent way.

pkcs11 engine for OpenSSL can be installed on board using command sudo apt-get install libengine-pkcs11-
openssl

Above command will install the libpkcs11.so (pkcs11 engine) in /usr/lib/aarch64-linux-gnu/engines-1.1/libpkcs11.
so and this will be dynamic_path in OpenSSL configuration file.

For running the PKCS#11 OpenSSL Engine with our PKCS#11 Library add following into your global OpenSSL
configuration file (often in /etc/ssl/openssl.cnf). This line must be placed at the top, before any sections are
defined:

openssl_conf = openssl_init

This should be added to the bottom of the file:

[openssl_init]
engines=engine_section
[engine_section]
pkcs11 = pkcs11_section
[pkcs11_section]
engine_id = pkcs11
dynamic_path = <path-to-pkcs11-engine>/libpkcs11.so
MODULE_PATH = <path-to-NXP-pkcs11-library>/libpkcs11.so
init = 0

The dynamic_path value is the pkcs11 engine plug-in, the MODULE_PATH value is the NXP PKCS#11 library.
The engine_id value is an arbitrary identifier for OpenSSL applications to select the engine by the identifier.

5.4.3.3.2.1

Testing the engine operation

To verify that the engine is properly operating you can use the following example.

$ openssl engine pkcs11 -t
(pkcs11) pkcs11 engine

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
221 / 1061

https://github.com/OpenSC/libp11

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

[available]

5.4.3.3.2.2

Using p11tool and OpenSSL from the command line:

This section demonstrates how to use the command line to create a self-signed certificate for "NXP
Semiconductor". The key of the certificate will be generated in the token and will not exportable.

p11tool from GnuTLS and this engine with OpenSSL work in combination.

p11tool is a tool that manipulates PKCS #11 tokens. Export/import data from PKCS #11 tokens. To use PKCS
#11 tokens with gnutls the configuration file /etc/gnutls/pkcs11.conf must exist and contain number lines of the
form "load=<pkcs-library-path>" or this PKCS#11 module can be provided directly as –provider in command line
as argument.

p11tool can be installed by running command sudo apt-get install gnutls-bin

For more configuration options check: https://www.gnutls.org/manual/html_node/p11tool-Invocation.html.

Check for key which is already created from sobj_app via p11tool.

The following commands utilize p11tool for that.

$ p11tool --provider <path-to-NXP-PKCS-library>/libpkcs11.so --list-privkeys

root@ls1028ardb:~# p11tool --provider /root/libpkcs11.so --list-privkeys
Object 0:
 URL: pkcs11:model=;manufacturer=NXP;serial=1;token=TEE_BASED_TOKEN;
%01%00%00%00;object=Device_Key3;type=private
 Type: Private Key
 Label: Device Key3
 Flags: CKA_NEVER_EXTRACTABLE; CKA_SENSITIVE;
 ID: 01:00:00:00
Object 1:
 URL: pkcs11:model=;manufacturer=NXP;serial=1;token=TEE_BASED_TOKEN;
%01%00%00%00;object=Device_Key2;type=private
 Type: Private Key
 Label: Device Key2
 Flags: CKA_NEVER_EXTRACTABLE; CKA_SENSITIVE;
 ID: 01:00:00:00
Object 0:
 URL: pkcs11:model=;manufacturer=NXP;serial=1;token=TEE_BASED_TOKEN;
%01%00%00%00;object=Device_Key3;type=private
 Type: Private Key
 Label: Device Key
 Flags: CKA_NEVER_EXTRACTABLE; CKA_SENSITIVE;
 ID: 01:00:00:00
root@ls1028ardb:~#

Note the PKCS #11 URL shown above and use it in the commands below.

To generate a certificate with its key in the PKCS #11 module, the following command can be used.

Following command creates a self-signed Certificate for "NXP Semiconductor". The signing is done using the
key specified by the URL.

$ openssl req -engine pkcs11 -new -key
"pkcs11:model=;manufacturer=NXP;serial=1;token=TEE_BASED_TOKEN;id=
%01%00%00%00;object=Device_Key3

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
222 / 1061

https://www.gnutls.org/manual/html_node/p11tool-Invocation.html

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

;type=private" -keyform engine -out req.pem -text -x509 -subj "/CN=NXP
 Semiconductor"

5.4.4 Board Bootup and Running applications

5.4.4.1 Board Bootup

1. Prepare the images using the Layerscape LDP documentation and boot up the board with secure-boot
and ITS set to 1.
ITS = 1 is required for BootROM to generate the Manufacturing Protection Private Key.
For setting ITS bit to 1, run following command after programming SRKH and before removing the boot hold
off. The test is performed on LS1046ARDB.
#To do ITS=1
ccs::write_mem 32 0x1e80200 4 0 0x00000004

2. After booting up the board with LDP images, check if the following images are placed in their corresponding
places.

Binary Place in rootfs

b05bcf48-9732-4efa-a9e0-141c7c888c34.ta /lib/optee_armtz/

libsecure_obj.so /usr/lib

sobj_app /usr/bin

mp_app /usr/bin

mp_verify /usr/bin

libeng_secure_obj.so /usr/lib/aarch64-linux-gnu/openssl-1.0.0/engines/

sobj_eng_app /usr/bin

This path depends on Linux Kernel Version:securekeydev.ko

Linux Kernel <version> - /lib/modules/<version>/extra/

libpkcs11.so /usr/lib

pkcs11_app /usr/bin

thread_test /usr/bin

For compilation steps, see Section 5.4.6
3. Run tee-supplicant & command from the Linux prompt.
4. Depending on the Linux kernel version used insmod securekeydev.ko from right folder.
5. Run the applications as described in Running the applications.

5.4.4.2 Running applications

Two applications are available with the package.

• sobj_app : Provides interface to generate/import key objects via Secure Object Library
• pkcs11_app: Provides interface to enumerate objects in the HSM and perform cryptographic operations.
• mp_app: This application demonstrates how to Get MP Public Key, sign a message using MP private key, Get

Message tag.
• mp_verify: This app uses OpenSSL APIs to verify the signature obtained by using mp_app application.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
223 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

• sobj_eng_app: This app uses OpenSSL APIs to show how to use Secure Object based OpenSSL Engine.
This application is loading the private key and then doing cryptographic operations using this key.

• thread_test: PKCS#11 application to test multithreading feature of PKCS#11 library.

Note: These are reference applications to demonstrate the usage of APIs as described in Supported APIs.

5.4.4.2.1 sobj_app

To create or generate objects, run the sobj_app application.

• sobj_app: This command shows help related to sobj_app.

• Importing an RSA key pair to HSM:
sobj_app -C -f <private.pem> -k <key-type> -o <obj-type> -s <key-size> -l <obj-label> -i <obj-ID>
This command helps in importing a key to the HSM. It creates an object in HSM reading key from
<private.pem> with object label <obj-label> and object ID <obj-ID>. This private.pem can be
generated by openssl using the command below:
openssl genrsa -out rsa_key_2048.pem 2048
Handle of the object created in the HSM is printed as an output to the command. This handle can be used for
further operations on the created object (for example, delete, printing attributes and so on).

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
224 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

• Importing an ECDSA key pair to HSM:
sobj_app -C -f <private.pem> -k <key-type> -o <obj-type> -l <obj-label> -i <obj-ID>
This command helps in importing a key to the HSM. It will create an object in HSM reading key from
<private.pem> with object label <obj-label> and object ID <obj-ID>.
This private.pem can be generated by openssl using below command:
openssl ecparam -genkey -name prime256v1 -noout -out ec_key_256.pem
Handle of the object created in the HSM is printed as an output to the command. This handle can be used for
further operations on the created object (for example, delete, printing attributes, and so on).

• Generating an RSA key pair in HSM:
sobj_app -G -m <mechanism-ID> -s <key-size> -l <key-label> -i <key-ID>
This command generates an object of type derived from mechanism-ID of size <key-size> with label <key-
label> and ID <key-ID>
Handle of the object created is printed as an output to the command. This handle can be used for further
operations on the created object (for example, delete, printing attributes and so on)

• Generating ECDSA key pair in HSM:
sobj_app -G -m <mechanism-ID> -c <curve> -l <key-label> -i <key-ID>
This command will generate an object of type derived from mechanism-ID of size <key-size> with label <key-
label> and ID <key-ID>
Handle of the object created is printed as an output to the command. This handle can be used for further
operations on the created object (for example, delete, printing attributes, and so on).

• Display attributes of an object in the HSM:

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
225 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

sobj_app -A -h <obj-handle>
This command shows some attributes related to object created. Pass the object handle <obj-handle> to
the command. This <obj-handle> is printed during generation or import of objects to HSM.

• List handles of the objects available in the HSM:
sobj_app -L [-n <num-of-obj> -k <key-type> -l <obj-label> -s <key-size> -i <obj-id>]
This command list handles the objects that are already created or generated based on some search criteria
(if given). You can then use this command handle to print the rest of the attributes. For more details, see the
above command.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
226 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

5.4.4.2.2 pkcs11_app

• pkcs11_app – This command shows commands available.

• pkcs11_app -I: Library Information
pkcs11_app -P -l: List the all available slots
pkcs11_app -P -i -p <slot-ID> : Provides the information about Slot with <slot-ID>
pkcs11_app -T -i -p <slot-ID> : Provides the information about Token inserted in Slot <slot-ID>

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
227 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

• pkcs11_app -M -l -p <slot-ID> : Lists the Mechanism List supported by token in Slot <slot-ID>
pkcs11_app -M -m <mech-ID> -i -p <slot-ID> : Gives information about the mechanism with <mech-ID> for
Slot <slot-ID>

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
228 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

• pkcs11_app -F -p <slot-ID>: List all objects associated with token present in slot <slot-ID>
We have 2 objects already created via the sobj_app, which will be shown here through pkcs11_app find
operation.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
229 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

• Currently search can be made based on 3 criteria via this app:
-o: Object type (Can be public key, private key, certificates and so on)(For now supports only public and
private keys)
-k: Key type (Can be RSA, EC, AES and so on)(For now supports only RSA)
-b: Object Label associated with object while creating/generating.
pkcs11_app -F -o <obj-type> -k <key-type> -b <label> -p <slot-ID> : List all objects which are having
object type <obj-type> of key type <key-type> and with label < label> on token present in slot <slot-ID>

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
230 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

• pkcs11_app -S -k <key-type> -b <key-label> -d <Data-to-be-signed> -m <mech-ID> -p <slot-ID>

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
231 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

This command will sign the <Data> with private key of type <key-type> having label <key-label> using
mechanism specified by <mech-ID> with functions provided by token in slot <slot-ID>
After successful signing, the signature will be saved in file “sig.data”
RSA signing:

ECDSA signing:

• pkcs11_app -V -k <key-type> -b <key-label> -d <Data-previously-signed> -s <signature-file> -m <mech-
ID> -p <slot-ID>
This command verifies the signature <signature-file> with public key of type <key-type> having label <key-
label> using mechanism specified by <mech-ID> with functions provided by token in slot <slot-ID> by
comparing the data recovered from signature to <Data-previously-signed>. This command uses OpenSSL
APIs to do the verification. Refer to the application code for details.
<mech-ID> passed must match with the <mech-ID> passed during signature otherwise verification fails, as
shown in following picture.
RSA Verification:

ECDSA Verification:

• pkcs11_app -E -k <key-type> -b <key-label> -d <Data> -m <mech-ID> -p <slot-ID>
This command will encrypt the <Data> with public key of type <key-type> having label <key-label> using
mechanism specified by <mech-ID> with functions provided by token in slot <slot-ID>
After successful signing, the signature will be saved in file “enc.data”

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
232 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

• pkcs11_app -D -k <key-type> -b <key-label> -e enc.data -m <mech-ID> -p <slot-ID>
This command will decrypt the encrypted data in "enc.data" with private key of type <key-type> having label
<key-label> using mechanism specified by <mech-ID> with functions provided by token in slot <slot-ID>
After successful signing, the signature will be saved in file “enc.data”

5.4.4.2.3 mp_app

This application demonstrates how to use the following APIs:

• Get MP public key.
• Sign a message using MP private key.
• Get Message tag.

The application source code at location “secure_obj/securekey_lib/app/mp_app.c” can be used as reference
for integration of these APIs.

mp_app - This application gives 3 options.

Usage:

• mp_app -p: Get the MP public key and store it in a file "pub_key"
• mp_app -s <MSG>: Sign <MSG> with MP private key and store signature in file "signature"
• mp_app -m: Get the MP Message tag and store it in file "mtag"

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
233 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

5.4.4.2.4 mp_verify

This app uses OpenSSL APIs to verify the signature obtained by using the mp_app application. For reference,
use the application source code at location secure_obj/securekey_lib/app/mp_verify.c.

mp_verify: This application verifies the signature generated by mp_app -s.

Usage:

mp_verify -p <pubkeyfile> -s <signaturefile> -m <mtagfile> -M <MSG>

This <MSG> must be same which is used in mp_app -s <MSG>

5.4.4.2.5 sobj_eng_app

This app uses OpenSSL APIs to show how to use Secure Object based OpenSSL Engine.

Code for this app is at “secure_obj/secure_obj-openssl-engine/app/sobj_eng_app.c “.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
234 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

This application is internally loading RSA private key and then doing cryptographic operations using this key.

Private key operations are offloaded to Secure Object Library via this engine, and Public Key operations are
done through OpenSSL itself.

The following figure shows steps to create a key via sobj_app. It will be used by sobj_eng_app (using
OpenSSL APIs) to do the cryptographic operations.

This sobj_eng_app is internally offloading the cryptographic operation to Secure Object Library using the
OpenSSL Engine based on Secure Object Library.

5.4.4.2.6 thread_test

PKCS#11 based application to test the multithreading support in PKCS#11 Library.

This application will be taking the number of threads to create as an argument, if not given by default it will
create 10 threads.

thread_test <num-of-threads>

This application is making threads and each thread is doing the signing operation.

As part of signing operation each thread is doing following operations:

• Opening a R/O session with token.
• Find an RSA private key from token.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
235 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

• Sign data using this RSA private key.
• Get the public part of the RSA private key.
• Verify the generated signature using OpenSSL.

All threads try to do this in parallel, but if one of the threads finished its work and “Finalized” the library, all other
threads will terminate, because library is not in initialized state now.

NOTE: This sequence of operations is used only for test purpose.

5.4.5 Validation

Above steps are fully validated and verified on LS1046ARDB platform.

5.4.6 Appendix

5.4.6.1 Appendix A: Steps to build the PKCS#11 Library

PKCS Library is using Secure Object Library.

For steps to build Secure object library, see Section 5.4.6.2.

From Yocto environment:

bitbake -c libpkcs11

Standalone Build:

1. Clone the libpkcs11 from: https://github.com/nxp-qoriq/libpkcs11.
2. Checkout tag lf-<release number>

For example, lf-6.1.55_2.2.0
3. Set path for cross-compile:

$:> export CROSS_COMPILE=<aarch64-toolchain>

4. Set path for Secure Object:

$:> export SECURE_OBJ_PATH=<path-to-secure_obj>/secure_obj/securekey_lib/out/
export/

5. Set path for OpenSSL:
Note: For interoperability, we are verifying the signature generated by PKCS Library via OpenSSL, so
reference application needs OpenSSL library, so exporting OPENSSL_PATH.
We have cloned and compiled the OpenSSL in “Steps to build the Secure Object Library”, therefore, only
give path of that folder in OPENSSL_PATH.

$:> export OPENSSL_PATH=<openssl-folder>

6. Run make:

$:> make

This compiles the libpkcs11 and reference applications and put it into “images” folder in libpkcs11. Following
images are generated:
• libpkcs11.so – PKCS#11 User space library.
• pkcs11_app – PKCS#11 Test App.
• thread_test - PKCS#11 application to test multithreading feature of PKCS#11 library

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
236 / 1061

https://github.com/nxp-qoriq/libpkcs11

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

5.4.6.2 Appendix B: Steps to build the Secure Object Library

From Yocto environment:

echo 'DISTRO_FEATURES:append = " secure"' >>conf/local.conf
bitbake qoriq-atf

Standalone Build:

Order of repo compilation for Secure Object Library.

1. OP-TEE OS
a. Clone optee_os from: https://github.com/nxp-qoriq/optee_os
b. Checkout tag lf-6.1.55_2.2.0
c. Set the path for the following:

$:> export CROSS_COMPILE64=<aarch64-toolchain>

d. Now make.

$:> make CFG_ARM64_core=y PLATFORM=ls-ls1046ardb ARCH=arm

2. OP-TEE Client
a. Clone optee_client from the linkhttps://github.com/nxp-qoriq/optee_client
b. Checkout tag lf-6.1.55_2.2.0
c. Set path for the following:

$:> export CROSS_COMPILE=<aarch64-toolchain-path->

d. Now make.

$:> make

3. OpenSSL:
a. Clone openssl from: https://github.com/nxp-qoriq/openssl
b. Checkout tag lf-6.1.55_2.2.0.
c. Set path for the following:

$:> export CROSS_COMPILE=<aarch64-toolchain-path->

d. Run configure as follows:

$:> ./Configure shared linux-aarch64

e. Run make

$:> make

4. Secure Object:
a. Clone secure_obj from: https://github.com/nxp-qoriq/secure_obj
b. Checkout tag lf-6.1.55_2.2.0

• Secure Object Library code - securekey_lib
• Secure Object Trusted Application code - secure_storage_ta
• Secure Key Dev Kernel Module - securekeydev
• Secure Object OpenSSL Engine - secure_obj-openssl-engine

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
237 / 1061

https://github.com/nxp-qoriq/optee_os
https://github.com/nxp-qoriq/optee_client
https://github.com/nxp-qoriq/openssl
https://github.com/nxp-qoriq/secure_obj

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

There is script “compile.sh” which compiles all above components and put all binaries in “images”.
c. Follow the below compilation steps:

• Export CROSS_COMPILE path:

$:> export CROSS_COMPILE= <aarch64-toolchain-path->

• Export ARCH path:

$:> export ARCH=arm64

• Set the paths from OP-TEE OS:

$:> export TA_DEV_KIT_DIR=<path-to-optee-os>/optee_os/out/arm-plat-ls/
export-ta_arm64/

• Set path for OP-TEE Client

$:> export OPTEE_CLIENT_EXPORT=<path-to-optee-client>/optee_client/out/
export/

• Set path for Secure Storage:

$:> export SECURE_STORAGE_PATH=<path-to-secure_obj>/secure_obj/
secure_storage_ta/ta/

• Set path for OpenSSL:

$:> export OPENSSL_PATH=<openssl-folder-path>

• Set path for Linux code using bitbake:

$:> export KERNEL_SRC=<path-in-kernel-source-code>
For example,
$:> export KERNEL_SRC=~/git_repo/linux-nxp

• Set path for Linux build directory using bitbake:

$:> export KERNEL_BUILD=<path-in-kernel-build>
For example,
$:> export KERNEL_BUILD=~/build/linux-nxp/output

• Set module installation path using bitbake:

$:> export INSTALL_MOD_PATH=<path-in-modules>
For example:
$:> export INSTALL_MOD_PATH=~/build/linux/arm64/LS/module/

• Run “./compile.sh”. It compiles TA, library, and kernel module.

$:> ./compile.sh

It compiles all the binaries and put them into the images folder in secure_obj. After compilation, the
images folder has the following:
• b05bcf48-9732-4efa-a9e0-141c7c888c34.ta: Trusted application for Secure Object library.
• libsecure_obj.so: User space Secure Object Library.
• sobj_app: Application for creating and erasing objects.
• mp_app: Application for getting MP public key, signing using MP private key and getting the MP tag.
• mp_verify: Application for verifying the signature generated through mp_app.
• securekeydev.ko: Kernel Module for offloading MP key feature to CAAM. Binaries to be placed at

following locations in rootfs.
• libeng_secure_obj: Secure Object based OpenSSL engine offloading Private key operations to the

Secure Object Library.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
238 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

• sobj_eng_app: This application uses OpenSSL APIs to show how to use Secure Object based
OpenSSL Engine. This application is loading the private key and then doing cryptographic operations
using this key.

6 Linux kernel

6.1 Introduction
The Linux kernel is a monolithic Unix-like computer operating system kernel. It is the central part of Linux
operating systems that are extensively used on PCs, servers, handheld devices, and various embedded
devices such as routers, switches, wireless access points, set-top boxes, smart TVs, DVRs, and NAS
appliances. It manages tasks/applications running on the system and manages system hardware. A typical
Linux system looks like this:

Figure 24. Typical Linux System

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
239 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

The Linux kernel was created in 1991 by Linus Torvalds and released as an open source project under GNU
General Public License(GPL) version 2. It rapidly attracted developers around the world. In 2015 the Linux
kernel has received contributions from nearly 12,000 programmers from more than 1,200 companies. The
software is officially released on http://www.kernel.org website through downloadable packages and Git
repositories. A general Linux kernel introduction from kernel.org can also be found at https://www.kernel.org/
doc/html/latest/admin-guide/README.html.

6.2 Kernel Releases and relationship with Layerscape LDP
There are different Linux kernel releases coming from different sources. Below we listed the ones that are
related to the Layerscape LDP kernel.

Kernel.org official kernel releases

• Mainline
Mainline tree is maintained by Linus Torvalds. It is the tree where all new features are introduced and where
all the exciting new development happens. New mainline kernels are released every 2-3 months.

• Long-term (LTS)
There are several "Long-term maintenance" kernel releases provided for the purposes of backporting bug
fixes for older kernel trees. Only important bug fixes are applied to such kernels and they do not see very
frequent releases, especially for older trees.
Refer to https://www.kernel.org/category/releases.html for the current maintained Long-term releases.

Linaro LSK kernel release

Linaro is an open organization focused on improving Linux on Arm. They are also providing a Linux kernel
release called Linaro Stable Kernel (LSK). It is based on kernel.org Long-term kernel releases and included
Arm related features developed by Linaro. Normally these features are generic kernel features for the Arm
architecture. Refer to https://wiki.linaro.org/LSK for more information about the LSK releases.

NXP Layerscape SDK kernel

NXP’s SDK kernel often contains patches that are not upstream yet so essentially the Layerscape LDP kernel
is an enhanced Linaro LSK which is in turn an enhanced kernel.org LTS. In order to fully utilize the Arm open
source eco-system. The kernel versions provided in NXP Layerscape LDP will be chosen from the kernel.org
Long-term releases to include the important bug fixes backported. It will also include generic Arm kernel
features provided by the Linaro LSK release which could be important for some users.

6.3 Getting the Layerscape LDP kernel source code
With Layerscape LDP, NXP owned or updated software components are published on Github.

You can use Git commands and get the latest kernel source code.

• Install Git command if not there already. For example, on Ubuntu:

$ sudo apt-get install git

• Clone the Linux kernel source code with Git.

$ git clone https://github.com/nxp-qoriq/linux.git

• Checkout the desired kernel version. It is possible that the default one is not your desired kernel version.

$ cd linux $ git branch

Check the name of the current branch. If it is not the Kernel version you want, use the following command to
check out your desired kernel version: x.y

$ git checkout -b lf-x.y origin/lf-x.y

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
240 / 1061

http://www.kernel.org
https://www.kernel.org/doc/html/latest/admin-guide/README.html
https://www.kernel.org/doc/html/latest/admin-guide/README.html
https://www.kernel.org/category/releases.html

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

6.4 Configuring and building
Configuring and building the Linux kernel is controlled by the Kbuild subsystem. You can find documents
describing the internal of Kbuild subsystem under the Documentation/kbuild/ folder in the Linux source
code tree if you are adding new files or new configure options to the kernel. Otherwise as a user of Linux kernel,
you probably only want to know how to fine-tune the kernel configuration base on your system requirements
and build new kernel image with updated configuration. These are done through make commands, this topic
explains the make commands that you probably need to know as a kernel user.

6.4.1 Environment setting for cross-compiling

These following settings are applicable when you are configuring and building kernel on a different architecture
from the target. For example, compiling an Armv8 kernel on an X86 computer. If you are compiling the kernel
natively on a machine of the same architecture as the target, you should skip this section.

1. Install the cross compiler of your distribution.
2. Specify the target architecture in ARCH environment variable.
3. Specify the prefix (and path) of a cross compiler in CROSS_COMPILE environment variable

$ export CROSS_COMPILE=/path/to/dir/tool-chain-prefix-

Or, the prefix if the cross-compiler commands are already in the execution PATH.

$ export CROSS_COMPILE=tool-chain-prefix-

For example, the commands needed on Ubuntu Linux will be like:
• 64-bit Arm:

$ sudo apt-get install gcc-aarch64-linux-gnu
$ export CROSS_COMPILE=aarch64-linux-gnu-
$ export ARCH=arm64

• 32-bit Arm (Armv7 / 32-bit mode of Armv8):

$ sudo apt-get install gcc-arm-linux-gnueabihf
$ export CROSS_COMPILE=arm-linux-gnueabihf-
$ export ARCH=arm

For the shell environment variables exported above, you can also include them directly in each make command
you use. For example $ ARCH=arm64 CROSS_COMPILE=aarch64-linux-gnu- make {targets}.
Exporting them will save effort if you are using make in kernel frequently.

6.4.2 Configuring kernel

The current kernel configuration for a kernel source tree will be kept in a hidden file named .config at the top
level of the kernel source code after you changed the configuration with any of the make config command
variants. You can copy it directly from one kernel source tree to another with the same kernel version to
duplicate the configuration exactly. Also, you can edit it with a text editor, in which you can see a list of
CONFIG_* symbols corresponding to each of the kernel configure option.

The following targets from the Linux kernel Kbuild framework are used to load the default kernel configuration
for Layerscape LDP:

• defconfig/${PLATFORM}_defconfig
Create the .config file by using the default config options of the architecture or platform defined in the
arch/$ARCH/configs/ directory. This normally includes all the device drivers needed for the architecture or
platform.

• ${FRAGMENT}.config

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
241 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Merge a configuration fragment that enables certain features into the .config file.

Specific command to load the default configuration of different platforms for Layerscape LDP will be:

• For Layerscape Armv8 platforms in 64bit mode:

$ make defconfig lsdk.config

• For Layerscape Armv7 platforms:

$ make multi_v7_defconfig multi_v7_lpae.config lsdk.config

• For Layerscape Armv8 platforms in 32bit mode:

$ make multi_v7_defconfig multi_v7_lpae.config multi_v8.config lsdk.config

To further fine-tune the configuration based on your system need, you can use the following make commands.

• $ make menuconfig
Choose configure options in text-based color menus, radio lists and dialogs. It is a good way to navigate
through all the selectable kernel configure options in a well-organized human-readable hierarchy and you can
get a description of every option when it is highlighted by selecting the <Help> button. In the device driver
part of this User’s Manual we also provided the path to the configure options needed for a feature to work in
the menuconfig.

• $ make ${FRAGMENT}.config
You can also utilize this capability to enable options for a specific feature in your custom kernel configuration
quickly without selecting each one of them in the menuconfig. In the device driver part of this User’s Manual,
we listed the CONFIG_* symbols needed by a specific feature/driver. Put these symbols with “=y” or “=m”
depending on if you want these features/drivers to be built in or built as loadable kernel module into a
${FEATURE}.config file under arch/$ARCH/configs/ directory. Run $ make ${FEATURE}.config
command, it will enable all these listed kernel configure options together.

6.4.3 Building kernel

Building the kernel is simple.

• To build kernel images and device tree images.

$ make

• To build loadable kernel modules:

$ make modules

You can supply -j <NUM> option to the above make commands to spin NUM concurrent threads to reduce build
time on multicore systems.

After a successful build:

• Compiled kernel images are in arch/${ARCH}/boot/ folder.
• Compiled device trees (dtb files) are in arch/${ARCH}/boot/dts folder.
• Compiled kernel modules are spread out in driver folders. You can extract them to a specific folder (For

example, /folder/to/install) by using command:

$ make modules_install INSTALL_MOD_PATH=/folder/to/install

6.4.4 Install new kernel and modules

The path or naming convention of kernel images and modules are different for different Linux distributions. The
following instructions are based on the convention of Layerscape LDP.
UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
242 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Using bitbake scripts

• Checkout kernel branch to your customized development branch.
Force compile:

$ bitbake linux-qoriq -c compile -f
$ bitbake linux-qoriq

• Regenerate the bootpartition and rootfs (for commands below: ${ARCH} = arm32 | arm64)

$ bitbake linux-qoriq

Update the target filesystem directly

This can be more convenient if you are compiling the kernel on the target device locally or you can easily
update the filesystem of target device remotely (For example, using scp, tftp, or so on).

• Copy your Image file to /boot folder on the target using cp if compiled locally; Use any available remote
update approach if compiled remotely.

• Copy dtb files to /boot folder on the target using cp if compiled locally; Use any available remote update
approach to do the same if compiled remotely.

• Update kernel modules.
Note: Kernel modules are required to be updated when you updated the kernel image
– If you compiled the kernel on the target device locally. Use the command below:

$ make modules_install

– If you compiled the kernel remotely. Do the following:
– Install the modules into a temporary folder (For example, /tmp/deploy/images).

$ make modules_install INSTALL_MOD_PATH=/tmp/deploy/images

– Transfer the lib/ directory from the temporary location above to the target device using any file transfer
approach and put it in the path of the filesystem.

6.5 Device Drivers

6.5.1 Enhanced Direct Memory Access (eDMA)

6.5.1.1 Description

The SoC integrates NXP's Enhanced Direct Memory Access module. Slave device such as I2C or SAI can
deploy the DMA functionality to accelerate the transfer and release the CPU from heavy load.

6.5.1.2 Kernel Configure Options

Tree View

Below are the configure options need to be set/unset while doing "make menuconfig" for kernel

Kernel Configure Tree View Options Description

Device Drivers --->
 [*] DMA Engine support ---> --->

DMA engine subsystem driver and eDMA driver
support

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
243 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Kernel Configure Tree View Options Description
 <*> Freescale eDMA engine
 support

Identifier

Below are the configure identifiers which are used in kernel source code and default configuration files.

Option Values Default Value Description
CONFIG_FSL_EDMA y/m/n n eDMA Driver

6.5.1.3 Device Tree Binding

Device Tree Node

Below is an example device tree node required by this feature. Note there may be differences among platforms.

edma0: edma@2c00000 {
 #dma-cells = <2>;
 compatible = "fsl,vf610-edma";
 reg = <0x0 0x2c00000 0x0 0x10000>,
 <0x0 0x2c10000 0x0 0x10000>,
 <0x0 0x2c20000 0x0 0x10000>;
 interrupts = <GIC_SPI 135 IRQ_TYPE_LEVEL_HIGH>,
 <GIC_SPI 135 IRQ_TYPE_LEVEL_HIGH>;
 interrupt-names = "edma-tx", "edma-err";
 dma-channels = <32>;
 big-endian;
 clock-names = "dmamux0", "dmamux1";
 clocks = <&platform_clk 1>,
 <&platform_clk 1>;
 };

Device Tree Node Binding for Slave Device

Below is the device tree node binding for a slave device which deploys the eDMA functionality.

i2c0: i2c@2180000 {
 #address-cells = <1>;
 #size-cells = <0>;
 compatible = "fsl,vf610-i2c";
 reg = <0x0 0x2180000 0x0 0x10000>;
 interrupts = <GIC_SPI 88 IRQ_TYPE_LEVEL_HIGH>;
 clock-names = "i2c";
 clocks = <&platform_clk 1>;
 dmas = <&edma0 1 39>,
 <&edma0 1 38>;
 dma-names = "tx", "rx";
 status = "disabled";
 };

6.5.1.4 Source Files

The following source files are related to this feature in Linux kernel.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
244 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Source File Description

drivers/dma/fsl-edma.c The eDMA driver file

Table 48. Source Files

6.5.1.5 Verification in Linux

1. Use the slave device which deploys the eDMA functionality to verify the eDMA driver, below is a verification
with the I2C salve.

root@ls1021aqds:~# i2cdetect 0
WARNING! This program can confuse your I2C bus, cause data loss and worse!
I will probe file /dev/i2c-0.
I will probe address range 0x03-0x77.
Continue? [Y/n]
 0 1 2 3 4 5 6 7 8 9 a b c d e f
00: -- -- -- -- -- -- -- -- -- -- -- -- --
10: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
20: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
30: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
40: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
50: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
60: -- -- -- -- -- -- -- -- -- 69 -- -- -- -- -- --
70: -- -- -- -- -- -- -- --
root@ls1021aqds:~# i2cdump 0 0x69 i
 0 1 2 3 4 5 6 7 8 9 a b c d e f 0123456789abcdef
00: 05 07 ff ff 5d 55 10 55 11 05 1e 00 e8 03 b5 ff ??..]U?U???.???.
10: ff e8 03 95 00 00 00 00 aa fe 9a 00 00 00 00 78 .???....???....x
20: 05 12 04 ff 00 7f 40 14 1d 60 3c 83 05 00 40 00 ???..?@??`<??.@.
30: fe 80 c6 29 00 00 00 7a 00 ff ff ff ff ff ff ff ???)...z........
40: 05 07 ff ff 5d 55 10 55 11 05 1e 00 e8 03 b5 ff ??..]U?U???.???.
50: ff e8 03 95 00 00 00 00 aa fe 9a 00 00 00 00 78 .???....???....x
60: 05 12 04 ff 00 7f 40 14 1d 60 3c 83 05 00 40 00 ???..?@??`<??.@.
70: fe 80 c6 29 00 00 00 7a 00 ff ff ff ff ff ff ff ???)...z........
80: 07 ff ff 5d 55 10 55 11 05 1e 00 e8 03 b5 ff ff ?..]U?U???.???..
90: e8 03 95 00 00 00 00 aa fe 9a 00 00 00 00 78 00 ???....???....x.
a0: 12 04 ff 00 7f 40 14 1d 60 3c 83 05 00 40 00 fe ??..?@??`<??.@.?
b0: 80 c6 29 00 00 00 7a 00 ff ff ff ff ff ff ff ff ??)...z.........
c0: 07 ff ff 5d 55 10 55 11 05 1e 00 e8 03 b5 ff ff ?..]U?U???.???..
d0: e8 03 95 00 00 00 00 aa fe 9a 00 00 00 00 78 00 ???....???....x.
e0: 12 04 ff 00 7f 40 14 1d 60 3c 83 05 00 40 00 fe ??..?@??`<??.@.?
f0: 80 c6 29 00 00 00 7a 00 ff ff ff ff ff ff ff ff ??)...z.........
root@ls1021aqds:~# cat /proc/interrupts
 CPU0 CPU1
 29: 0 0 GIC 29 arch_timer
 30: 5563 5567 GIC 30 arch_timer
112: 260 0 GIC 112 fsl-lpuart
120: 32 0 GIC 120 2180000.i2c
121: 0 0 GIC 121 2190000.i2c
167: 8 0 GIC 167 eDMA
IPI0: 0 1 CPU wakeup interrupts
IPI1: 0 0 Timer broadcast interrupts
IPI2: 1388 1653 Rescheduling interrupts
IPI3: 0 0 Function call interrupts
IPI4: 2 4 Single function call interrupts
IPI5: 0 0 CPU stop interrupts
Err: 0
root@ls1021aqds:~#

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
245 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

6.5.2 CAAM Direct Memory Access (DMA)

The CAAM DMA module implements a DMA driver that uses the CAAM DMA controller to provide both SG
and MEMCPY DMA capability to be used by the platform. It is based on the CAAM JR interface that must be
enabled in the kernel config as a prerequisite for the CAAM DMA driver.

The driver is based on the DMA engine framework and it is located under the DMA Engine support category in
the kernel config menu.

Note: This feature/driver is supported for LS1012A.

6.5.2.1 Kernel configure options

Tree overview

To enable the CAAM DMA module, set the following options for make menuconfig:

-*- Cryptographic API --->
 [*] Hardware crypto devices --->
 <*> Freescale CAAM-Multicore driver backend
 <*> Freescale CAAM Job Ring driver backend
Device Drivers --->
 <*> DMA Engine support --->
 <*> CAAM DMA engine support

Note: Be aware that the CAAM DMA driver depends on the CAAM and CAAM JR drivers, which also have to
be enabled.

6.5.2.2 Identifier

The following configure identifier is used in kernel source code and default configuration files.

Option Values Default value Description

CONFIG_CRYPTO_DEV_
FSL_CAAM_DMA

y/m/n n CAAM DMA engine support

6.5.2.3 Device tree node

Below is an example device tree node required by this feature.

caam_dma {
 compatible = "fsl,sec-v5.4-dma";
};

6.5.2.4 Source files

The following source file is related to this feature in the Linux kernel.

Source File Description

drivers/dma/caam_dma.c
The CAAM DMA driver

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
246 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

6.5.2.5 Verification in Linux

On a successful probing, the driver will print the following message in dmesg:

[1.964549] caam-dma caam-dma: caam dma support with 3 job rings

Additionally, you can also run the following commands:

root@ls1028ardb:~# ls -l /sys/class/dma
total 0
lrwxrwxrwx 1 root root 0 Jan 28 15:58 dma0chan0 -> ../../devices/platform/
soc/2c00000.edma/dma/dma0chan0
lrwxrwxrwx 1 root root 0 Jan 28 15:58 dma0chan1 -> ../../devices/platform/
soc/2c00000.edma/dma/dma0chan1
lrwxrwxrwx 1 root root 0 Jan 28 15:58 dma0chan10 -> ../../devices/platform/
soc/2c00000.edma/dma/dma0chan10
lrwxrwxrwx 1 root root 0 Jan 28 15:58 dma0chan11 -> ../../devices/platform/
soc/2c00000.edma/dma/dma0chan11
lrwxrwxrwx 1 root root 0 Jan 28 15:58 dma0chan12 -> ../../devices/platform/
soc/2c00000.edma/dma/dma0chan12
lrwxrwxrwx 1 root root 0 Jan 28 15:58 dma0chan13 -> ../../devices/platform/
soc/2c00000.edma/dma/dma0chan13
lrwxrwxrwx 1 root root 0 Jan 28 15:58 dma0chan14 -> ../../devices/platform/
soc/2c00000.edma/dma/dma0chan14
lrwxrwxrwx 1 root root 0 Jan 28 15:58 dma0chan15 -> ../../devices/platform/
soc/2c00000.edma/dma/dma0chan15
lrwxrwxrwx 1 root root 0 Jan 28 15:58 dma0chan16 -> ../../devices/platform/
soc/2c00000.edma/dma/dma0chan16
lrwxrwxrwx 1 root root 0 Jan 28 15:58 dma0chan17 -> ../../devices/platform/
soc/2c00000.edma/dma/dma0chan17
lrwxrwxrwx 1 root root 0 Jan 28 15:58 dma0chan18 -> ../../devices/platform/
soc/2c00000.edma/dma/dma0chan18
lrwxrwxrwx 1 root root 0 Jan 28 15:58 dma0chan19 -> ../../devices/platform/
soc/2c00000.edma/dma/dma0chan19
lrwxrwxrwx 1 root root 0 Jan 28 15:58 dma0chan2 -> ../../devices/platform/
soc/2c00000.edma/dma/dma0chan2
lrwxrwxrwx 1 root root 0 Jan 28 15:58 dma0chan20 -> ../../devices/platform/
soc/2c00000.edma/dma/dma0chan20
lrwxrwxrwx 1 root root 0 Jan 28 15:58 dma0chan21 -> ../../devices/platform/
soc/2c00000.edma/dma/dma0chan21
lrwxrwxrwx 1 root root 0 Jan 28 15:58 dma0chan22 -> ../../devices/platform/
soc/2c00000.edma/dma/dma0chan22
lrwxrwxrwx 1 root root 0 Jan 28 15:58 dma0chan23 -> ../../devices/platform/
soc/2c00000.edma/dma/dma0chan23
lrwxrwxrwx 1 root root 0 Jan 28 15:58 dma0chan24 -> ../../devices/platform/
soc/2c00000.edma/dma/dma0chan24
lrwxrwxrwx 1 root root 0 Jan 28 15:58 dma0chan25 -> ../../devices/platform/
soc/2c00000.edma/dma/dma0chan25
lrwxrwxrwx 1 root root 0 Jan 28 15:58 dma0chan26 -> ../../devices/platform/
soc/2c00000.edma/dma/dma0chan26
lrwxrwxrwx 1 root root 0 Jan 28 15:58 dma0chan27 -> ../../devices/platform/
soc/2c00000.edma/dma/dma0chan27
lrwxrwxrwx 1 root root 0 Jan 28 15:58 dma0chan28 -> ../../devices/platform/
soc/2c00000.edma/dma/dma0chan28
lrwxrwxrwx 1 root root 0 Jan 28 15:58 dma0chan29 -> ../../devices/platform/
soc/2c00000.edma/dma/dma0chan29
lrwxrwxrwx 1 root root 0 Jan 28 15:58 dma0chan3 -> ../../devices/platform/
soc/2c00000.edma/dma/dma0chan3

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
247 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

lrwxrwxrwx 1 root root 0 Jan 28 15:58 dma0chan30 -> ../../devices/platform/
soc/2c00000.edma/dma/dma0chan30
lrwxrwxrwx 1 root root 0 Jan 28 15:58 dma0chan31 -> ../../devices/platform/
soc/2c00000.edma/dma/dma0chan31
lrwxrwxrwx 1 root root 0 Jan 28 15:58 dma0chan4 -> ../../devices/platform/
soc/2c00000.edma/dma/dma0chan4
lrwxrwxrwx 1 root root 0 Jan 28 15:58 dma0chan5 -> ../../devices/platform/
soc/2c00000.edma/dma/dma0chan5
lrwxrwxrwx 1 root root 0 Jan 28 15:58 dma0chan6 -> ../../devices/platform/
soc/2c00000.edma/dma/dma0chan6
lrwxrwxrwx 1 root root 0 Jan 28 15:58 dma0chan7 -> ../../devices/platform/
soc/2c00000.edma/dma/dma0chan7
lrwxrwxrwx 1 root root 0 Jan 28 15:58 dma0chan8 -> ../../devices/platform/
soc/2c00000.edma/dma/dma0chan8
lrwxrwxrwx 1 root root 0 Jan 28 15:58 dma0chan9 -> ../../devices/platform/
soc/2c00000.edma/dma/dma0chan9
lrwxrwxrwx 1 root root 0 Jan 28 15:58 dma1chan0 -> ../../devices/platform/
soc/1700000.crypto/caam-dma/dma/dma1chan0
lrwxrwxrwx 1 root root 0 Jan 28 15:58 dma1chan1 -> ../../devices/platform/
soc/1700000.crypto/caam-dma/dma/dma1chan1
lrwxrwxrwx 1 root root 0 Jan 28 15:58 dma1chan2 -> ../../devices/platform/
soc/1700000.crypto/caam-dma/dma/dma1chan2

6.5.2.6 Component testing

To test both the SG and memcpy capability of the CAAM DMA driver use the dmatest module provided by the
kernel.

Build dmatest

Build the dmatest utility as a module by running the command:

$ make menuconfig

Then select from the kernel menuconfig to build the dmatest.ko as a module:

Device Drivers --->
 <*> DMA Engine support --->
 <M> DMA Test client

Configure dmatest

Before testing insert the module:

$ insmod dmatest.ko

Configure the dmatest. There is a general configuration that applies for both the sg and memcpy functionality:

$ echo 1 > /sys/module/dmatest/parameters/max_channels
$ echo 2000 > /sys/module/dmatest/parameters/timeout
$ echo 0 > /sys/module/dmatest/parameters/noverify
$ echo 4 > /sys/module/dmatest/parameters/threads_per_chan
$ echo 0 > /sys/module/dmatest/parameters/dmatest
$ echo 1 > /sys/module/dmatest/parameters/iterations
$ echo 2000 > /sys/module/dmatest/parameters/test_buf_size

The above configuration is self-explanatory except a few:

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
248 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

If you set the 'noverify' parameter to 0 it will not perform check of the copied buffer at the end of each testing
round. This should be used for performance testing. Set the 'noverify' parameter to 1 for functional testing.

Set the 'dmatest' parameter to 0 to test the memcpy functionality and to 1 to test the sg functionality.

Perform the test

To perform the test, simply run the command:

$ echo 1 > /sys/module/dmatest/parameters/run

Depending on the type of test performed (sg/memcpy) the output may vary. Here is an example of output
obtained with the above parameters:

[72.113769] dmatest: Started 4 threads using dma0chan0
[72.105334] dmatest: dma0chan0-copy0: summary 1 tests, 0 failures 9009 iops
 9009 KB/s (0)
[72.113649] dmatest: dma0chan0-copy1: summary 1 tests, 0 failures 119 iops
 119 KB/s (0)
[72.114927] dmatest: dma0chan0-copy2: summary 1 tests, 0 failures 24390 iops
 0 KB/s (0)
[72.115098] dmatest: dma0chan0-copy3: summary 1 tests, 0 failures 37037 iops
 0 KB/s (0)

6.5.3 DCU Display Device Driver User Manual

6.5.3.1 Description

This manual describes how to use the Two Dimensional Animation and Compositing Engine (2D-ACE or DCU)
and frame buffer on TWR-LS1021A board.

6.5.3.2 Module Loading

The DCU device driver supports kernel built-in and module.

6.5.3.3 U-Boot Configuration

Use ‘ls1021atwr_lpuart_config’ to build the U-Boot.

Runtime options.

Env Variable Description Sub Option Option Description

HDMI console=ttyLP0,115200
hdmi

bootargs Kernel command-line
argument passed to
kernel LCD console=ttyLP0,115200

select LPUART0 as the
system console

6.5.3.4 Kernel Configure Options

Tree View

Below are the Kernel Configure Tree View options need to be set/unset while doing "make menuconfig" for
kernel and enable DCU/HDMI drivers and Linux Penguin Logo picture.

Device Drivers --->
 < > Multimedia support ----

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
249 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

 Graphics support --->
 <*> Support for frame buffer devices --->
 <*> Si Image SII9022 DVI/HDMI Interface Chip
 <*> Freescale DCU framebuffer support
 …
 [] Exynos Video driver support ----
 [] Backlight & LCD device support ----
 Console display driver support --->
 <*> Framebuffer Console support
 [*] Map the console to the primary display device
 [*] Framebuffer Console Rotation
 [*] Bootup logo --->
 --- Bootup logo
 [*] Standard black and white Linux logo
 [*] Standard 16-color Linux logo
 [*] Standard 224-color Linux logo
 < > Sound card support ----

Identifier

Below are the configure identifiers which are used in kernel source code and default configuration files.

Special Configure needs to be enabled ("Y") for LS1021A. Find in below table with default value as "N"

Option Values Default Value Description

CONFIG_ FB_FSL_SII902X y/m/n y Si Image SII9022 DVI/HDMI
Interface Chip

CONFIG_FB_FSL_DCU y/m/n y NXP DCU frame buffer support

CONFIG_LOGO y/m/n y Bootup logo

CONFIG_LOGO_LINUX_MONO y/m/n y Standard black and white Linux
logo

CONFIG_LOGO_LINUX_VGA16 y/m/n y Standard 16-color Linux logo

CONFIG_LOGO_LINUX_CLUT224 y/m/n y Standard 224-color Linux logo

CONFIG_FRAMEBUFFER_CONSOLE y/m/n y Frame buffer Console support

6.5.3.5 Device Tree Binding

Special Configure needs to be enabled ("Y") for LS1021A. Find in below table with default value as "N".

The default configuration display through LCD, as specified below.

arch/arm/boot/dts/ls1021a.dtsi

dcu0: dcu@2ce0000 {
 compatible = "fsl,vf610-dcu";
 reg = <0x0 0x2ce0000 0x0 0x10000>;
 interrupts = <GIC_SPI 172 IRQ_TYPE_LEVEL_HIGH>;
 clocks = <&platform_clk 0>;
 clock-names = "dcu";
 scfg-controller = <&scfg>;
 big-endian;
 status = "disabled";
};

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
250 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

arch/arm/boot/dts/ls1021a-twr.dts

&dcu0 {
 display = <&display>;
 status = "okay";
 display: display@0 {
 bits-per-pixel = <24>;
 display-timings {
 native-mode = <&timing0>;
 timing0: nl4827hc19 {
 clock-frequency = <10870000>;
 hactive = <480>;
 vactive = <272>;
 hback-porch = <2>;
 hfront-porch = <2>;
 vback-porch = <2>;
 vfront-porch = <2>;
 hsync-len = <41>;
 vsync-len = <4>;
 hsync-active = <1>;
 vsync-active = <1>;
 };
 };
 };
};

Ramdisk:

Use the 'fsl-image-x11-ls1021a(XXXXX)rootfs.ext2.gz.gz' ramdisk from each release image, or you can use the
ramdisk image which has 'x11' label.

If you want to HDMI display, change the following configuration:

arch/arm/boot/dts/ls1021a-twr.dtscan
diff --git
a/arch/arm/boot/dts/ls1021a-twr.dts b/arch/arm/boot/dts/ls1021a-twr.dtsindex
cc351e3..928d376 100644---
a/arch/arm/boot/dts/ls1021a-twr.dts+++
b/arch/arm/boot/dts/ls1021a-twr.dts@@ -122,7 +122,7
@@
port {
 dcu_out: endpoint {
- remote-endpoint = <&panel_in>;
+ remote-endpoint = <&sii9022a_out>;
 };
 };
 };
@@ -204,6 +204,18 @@
 VDDIO-supply = <®_3p3v>;
 clocks = <&sys_mclk>;
 };
+
+ sii9022a: hdmi@39 {
+ compatible = "sil,sii9022";
+ reg = <0x39>;
+ interrupts = <GIC_SPI 167 IRQ_TYPE_EDGE_RISING>;
+
+ port@0 {
+ sii9022a_out: endpoint {
+ remote-endpoint = <&dcu_out>;

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
251 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

+ };
+ };
+ };
 };
 &ifc {

6.5.3.6 Source Files

The driver source is maintained in the Linux kernel source tree.

Source File Description
drivers/video/fsl-dcu-fb.c NXP DCU driver

6.5.3.7 Testing LCD/DHMI at U-Boot Level

1. Display with LCD:

=> setenv video-mode "fslfb:480x272-32@60,monitor=twr_lcd"
=> save
=> setenv stdout vga

2. Display with HDMI:

=> setenv video-mode "fslfb:640x480-32@60,monitor=hdmi"
=> save
=> setenv stdout vga

6.5.3.8 Testing LCD at Kernel Level

1. Configure and rebuild the kernel as configuration list above, let the DCU driver built into the Kernel Image.
2. Boot up Linux kernel, upon the kernel has been uncompressed, the TFT Panel will display the Linux

Penguin Logo.
3. And then after the root filesystem has been mounted, and the Xwindows Desktop will be display.
4. Or also you can start the Xwindow using:

root@ls1021atwr:~# killall matchbox-window-manager root@ls1021atwr:~# xinit /
etc/init.d/xserver-nodm restart

5. Plug out and plug in the HDMI to test the hot plug.

6.5.3.9 Testing HDMI at Kernel Level

1. 1.Configure and rebuild the kernel as configuration list above, let the HDMI and DCU drivers built into the
Kernel Image.

2. Boot up Linux kernel, upon the kernel has been uncompressed, the TFT Panel will not display any picture
correctly.

3. And then after the root filesystem has been mounted, and the Xwindows Desktop will be displayed on the
HDMI Monitor.

4. Or also you can start the Xwindow using:

root@ls1021atwr:~# killall matchbox-window-manager root@ls1021atwr:~# xinit /
etc/init.d/xserver-nodm restart
Note: Unplug the TWR-LDC_RGB daughter board when testing the HDMI.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
252 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

6.5.3.10 Known Bugs, Limitations, or Technical Issues

Unplug the SD card before testing the DCU/HDMI, or the system will hang.

6.5.4 Enhanced Secured Digital Host Controller (eSDHC)

6.5.4.1 Description

The enhanced secured host controller (eSDHC) provides an interface between the host system and the MMC/
SD/SDIO cards.

The eSDHC device driver supports either kernel built-in or module.

6.5.4.2 Kernel Configure Options

Tree View

Kernel Configure Options Tree View Description

Device Drivers --->
<*> MMC/SD/SDIO card support --->
<*> MMC block device driver
(32) Number of minors per
 block device

Enable MMC block device driver support

*** MMC/SD/SDIO Host Controller
 Drivers ***
<*> Secure Digital Host Controller
 Interface support
<*> SDHCI platform and OF driver
 helper
[*] SDHCI OF support for the
 Freescale eSDHC controller

Enable eSDHC driver support

6.5.4.3 Compile-time Configuration Options

Option Values Default Value Description

CONFIG_MMC y/n y Enable MMC bus protocol

CONFIG_MMC_BLOCK y/n y Enable MMC block device driver
support

CONFIG_MMC_BLOCK_MINORS integer 32 Number of minors per block
device

CONFIG_MMC_SDHCI y/n y Enable generic SDHC interface

CONFIG_MMC_SDHCI_PLTFM y/n y Enable common helper function
support for SDHCI platform and
OF drivers

CONFIG_MMC_SDHCI_OF_ESDHC y/n y Enable eSDHC support

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
253 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

6.5.4.4 Source Files

The driver source is maintained in the Linux kernel source tree.

Source File Description
drivers/mmc/host/sdhci.c SDHCI driver support
drivers/mmc/host/sdhci-pltfm.c SDHCI platform devices support driver
drivers/mmc/host/sdhci-of-esdhc.c eSDHC driver

6.5.4.5 Device Tree Binding

Property Type Status Description
compatible String Required Should be 'fsl,esdhc'
reg integer Required Register map

Example:

esdhc: esdhc@1560000 {
 compatible = "fsl,ls1046a-esdhc", "fsl,esdhc";
 reg = <0x0 0x1560000 0x0 0x10000>;
 interrupts = <GIC_SPI 62 IRQ_TYPE_LEVEL_HIGH>;
 clocks = <&clockgen 2 1>;
 voltage-ranges = <1800 1800 3300 3300>;
 sdhci,auto-cmd12;
 big-endian;
 bus-width = <4>;
};

6.5.4.6 Verification in U-Boot

=> mmcinfo
Device: FSL_SDHC
Manufacturer ID: 74
OEM: 4a45
Name: SDC
Tran Speed: 50000000
Rd Block Len: 512
SD version 3.0
High Capacity: Yes
Capacity: 7.5 GiB
Bus Width: 4-bit
Erase Group Size: 512 Bytes
=> mw.l 81000000 11111111 100
=> mw.l 82000000 22222222 100
=> cmp.l 81000000 82000000 100
word at 0x0000000081000000 (0x11111111) != word at 0x0000000082000000
 (0x22222222)
Total of 0 word(s) were the same
=> mmc write 81000000 0 2
MMC write: dev # 0, block # 0, count 2 ... 2 blocks written: OK
=> mmc read 82000000 0 2
MMC read: dev # 0, block # 0, count 2 ... 2 blocks read: OK
=> cmp.l 81000000 82000000 100
Total of 256 word(s) were the same
=>

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
254 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

6.5.4.7 Verification in Linux

Initialization information

...
[3.913163] sdhci: Secure Digital Host Controller Interface driver
[3.919339] sdhci: Copyright(c) Pierre Ossman
[3.931467] sdhci-pltfm: SDHCI platform and OF driver helper
[3.938900] sdhci-esdhc 1560000.esdhc: No vmmc regulator found
[3.944728] sdhci-esdhc 1560000.esdhc: No vqmmc regulator found
[3.978676] mmc0: SDHCI controller on 1560000.esdhc [1560000.esdhc] using
 ADMA 64-bit
[4.197784] mmc0: new high speed SDHC card at address b368
[4.203502] mmcblk0: mmc0:b368 SDC 7.45 GiB
...

Partition with fdisk

fdisk /dev/mmcblk0
Welcome to fdisk (util-linux 2.26.2).
Changes will remain in memory only, until you decide to write them.
Be careful before using the write command.
Device does not contain a recognized partition table.
Created a new DOS disklabel with disk identifier 0x5a5f34b3.
Command (m for help): n
Partition type
 p primary (0 primary, 0 extended, 4 free)
 e extended (container for logical partitions)
Select (default p):
Using default response p.
Partition number (1-4, default 1):
First sector (2048-15628287, default 2048):
Last sector, +sectors or +size{K,M,G,T,P} (2048-15628287, default 15628287):
Created a new partition 1 of type 'Linux' and of size 7.5 GiB.
Command (m for help): w
The partition table has been altered.
Calling ioctl() [410.501876] mmcblk0: p1
to re-read partition table.
Syncing disks.

Format with mkfs

mkfs.ext2 /dev/mmcblk0p1

Mount and r/w

mount /dev/mmcblk0p1 /mnt/
ls /mnt/
lost+found
cp -r /lib /mnt/
ls /mnt/
lib lost+found

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
255 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

6.5.4.8 Verification of eMMC RPMB

RPMB is Replay Protected Memory Block which is a hardware partition of eMMC. The verification uses mmc-
utils which provides a "mmc" tool. With the "mmc" tool, we can operate on RPMB partition such as writing key,
reading, writing and reading counter.

If mmc-utils is not installed, you can install it by running sudo apt install mmc-utils at the command
line.

mmc tool help information

mmc
...
mmc rpmb write-key <rpmb device> <key file>
 Program authentication key which is 32 bytes length and stored
 in the specified file. Also you can specify '-' instead of
 key file path to read the key from stdin.
 NOTE! This is a one-time programmable (unreversible) change.
 Example:
 $ echo -n AAAABBBBCCCCDDDDEEEEFFFFGGGGHHHH | \
 mmc rpmb write-key /dev/mmcblk0rpmb -
mmc rpmb read-counter <rpmb device>
 Counter value for the <rpmb device> will be read to stdout.
 mmc rpmb read-block <rpmb device> <address> <blocks count> <output file> [key
 file]
 Blocks of 256 bytes will be read from <rpmb device> to output
 file or stdout if '-' is specified. If key is specified - read
 data will be verified. Instead of regular path you can specify
 '-' to read key from stdin.
 Example:
 $ echo -n AAAABBBBCCCCDDDDEEEEFFFFGGGGHHHH | \
 mmc rpmb read-block /dev/mmcblk0rpmb 0x02 2 /tmp/block -
 or read two blocks without verification
 $ mmc rpmb read-block /dev/mmcblk0rpmb 0x02 2 /tmp/block
mmc rpmb write-block <rpmb device> <address> <256 byte data file> <key file>
 Block of 256 bytes will be written from data file to
 <rpmb device>. Also you can specify '-' instead of key
 file path or data file to read the data from stdin.
 Example:
 $ (awk 'BEGIN {while (c++<256) printf "a"}' | \
 echo -n AAAABBBBCCCCDDDDEEEEFFFFGGGGHHHH) | \
 mmc rpmb write-block /dev/mmcblk0rpmb 0x02 - -
...

RPMB operations

mmc rpmb read-counter /dev/mmcblk1rpmb
RPMB operation failed, retcode 0x0007
echo -n AAAABBBBCCCCDDDDEEEEFFFFGGGGHHHH | mmc rpmb write-key /dev/mmcblk1rpmb -
mmc rpmb read-counter /dev/mmcblk1rpmb
Counter value: 0x00000000
echo -n AAAABBBBCCCCDDDDEEEEFFFFGGGGHHHH | mmc rpmb read-block /dev/mmcblk1rpmb 0x02 2 /tmp/block -
cat /tmp/block
#
awk 'BEGIN {while (c++<256) printf "a"}' > ./data
ls -lh data
-rw-r--r-- 1 root root 256 May 7 10:59 data
echo -n AAAABBBBCCCCDDDDEEEEFFFFGGGGHHHH | mmc rpmb write-block /dev/mmcblk1rpmb 0x02 ./data -
echo -n AAAABBBBCCCCDDDDEEEEFFFFGGGGHHHH | mmc rpmb read-block /dev/mmcblk1rpmb 0x02 2 /tmp/block -
cat /tmp/block
aa
aa
aa
echo -n AAAABBBBCCCCDDDDEEEEFFFFGGGGHHHK | mmc rpmb read-block /dev/mmcblk1rpmb 0x02 2 /tmp/block -
RPMB MAC missmatch
mmc rpmb read-counter /dev/mmcblk1rpmb
Counter value: 0x00000001

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
256 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

6.5.4.9 Known Bugs, Limitations, or Technical Issues

1. Call trace of more than 120 seconds task blocking when running iozone performance test. This is not issue
and use below command to disable the warning.

echo 0 > /proc/sys/kernel/hung_task_timeout_secs

2. Layerscape boards could not provide a power cycle to SD card but according to SD specification, only a
power cycle could reset the SD card working on UHS-I speed mode. When the card is on UHS-I speed
mode, this hardware problem may cause unexpected result after board reset. The workaround is using
power off/on instead of reset when using SD UHS-I card.

3. Transcend 8G class 10 SDHC card has some compatibility issue. It is observed it could not work on 50
MHz high-speed mode on LS2 boards, but other brand SD cards (Sandisk, Kingston, Sony ...) worked fine.
Reducing SD clock frequency could also resolve the issue. The workaround is using other kind SD cards
instead.

4. After sleep of LS1046ARDB, the card will get below interrupt timeout issue. This is hardware issue. CMD18
(multiple blocks read) has hardware interrupt timeout issue.

mmc0: Timeout waiting for hardware interrupt.

5. Linux MMC stack does not have SD UHS-II support currently. It could not handle SD UHS-II card well. If
UHS-I support is enabled in eSDHC dts node, the driver may make SD UHS-II card enter 1.8v mode. Only a
power cycle could reset the card, so use power off/on instead of reset for SD UHS-II card if UHS-I support is
enabled in eSDHC dts node.

6. For LS1012ARDB RevD and later versions, I2C reading for DIP switch setting is not reliable so U-Boot
could not enable/disable SDHC2 automatically. If SDHC2 is used, "esdhc1" should be set in U-Boot
hwconfig environment to enable it manually.

7. On LX2160A eSDHC1 for SD card, when eSDHC operates at 3.3 V, damage can accumulate in an internal
level shifter at a higher than expected rate. The faster the interface runs, the more damage accumulates.
The recommended hardware workaround is to use an onboard level shifter that is 1.8 V on SoC side and
3.3 V on SD card side. For current LX2160ARDB boards without hardware workaround, below U-Boot
option could be enabled that ensures 1.8 V IO voltage and disables eSDHC if no card.

CONFIG_FSL_ESDHC_33V_IO_RELIABILITY_WORKAROUND

This option assumes no hotplug, and U-Boot has to make all the way to Linux to use 1.8 V UHS-I speed
mode if has card. If user does not want the workaround, user can choose not to select it, by running eSDHC
in unsafe mode.

6.5.5 IEEE 1588/802.1AS

6.5.5.1 Description

NXP’s QorIQ platform provides hardware assist for 1588 compliant time stamping with the 1588 timer module.
The software components required to run IEEE 1588/802.1AS protocol utilizing the hardware feature are listed
below:

1. Linux PTP Hardware Clock (PHC) driver
2. Linux Ethernet controller driver with hardware timestamping support
3. A software stack application for IEEE 1588/802.1AS

6.5.5.2 Kernel configure options

Tree view

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
257 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

1. eTSEC

Kernel configure tree view options Description

Device Drivers --->
 PTP clock support --->
 <*> Freescale QorIQ 1588 timer
 as PTP clock

QorIQ PTP clock driver

Device Drivers --->
 [*] Network device support --->
 [*] Ethernet driver support --->
 [*] Freescale devices
 <*> Gianfar Ethernet

eTSEC Ethernet driver

2. DPAA SDK

Kernel configure tree view options Description

Device Drivers --->
 PTP clock support --->
 <*> Freescale QorIQ 1588 timer
 as PTP clock

QorIQ PTP clock driver

Device Drivers --->
 [*] Network device support --->
 [*] Ethernet driver support --->
 [*] Freescale devices
 <*> DPAA Ethernet --->
 [*] Linux compliant
 timestamping

DPAA SDK Ethernet driver and HW timestamping support

3. DPAA upstream driver

Kernel configure tree view options Description

Device Drivers --->
PTP clock support --->
<*> Freescale QorIQ 1588 timer as PTP clock

QorIQ PTP clock driver

Device Drivers --->
[*] Network device support --->
[*] Ethernet driver support --->
[*] Freescale devices
<*> DPAA Ethernet --->

DPAA upstream version Ethernet driver

4. DPAA2

Kernel configure tree view options Description

Device Drivers --->
 PTP clock support --->
 <*> Freescale QorIQ 1588 timer
 as PTP clock

QorIQ PTP clock driver

Device Drivers --->
DPAA2 Ethernet driver and PTP clock driver

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
258 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Kernel configure tree view options Description
 [*] Network device support --->
 [*] Ethernet driver support
 --->
 [*] Freescale devices
 <*> Freescale DPAA2
 Ethernet
 <*> Freescale DPAA2 PTP
 clock

5. ENETC

Kernel configure tree view options Description

Device Drivers --->
 PTP clock support --->
 <*> Freescale QorIQ 1588 timer
 as PTP clock

QorIQ PTP clock driver

Device Drivers --->
 [*] Network device support --->
 [*] Ethernet driver support
 --->
 [*] Freescale devices
 <*> ENETC PF driver
 <*> ENETC PTP clock driver

ENETC Ethernet driver and PTP clock driver

6. Felix switch

Kernel configure tree view options Description

Device Drivers --->
 [*] Network device support --->
 Distributed Switch
 Architecture drivers --->
 <*> Ocelot / Felix Ethernet
 switch support

Felix switch driver

Compile-time configuration options

1. eTSEC

Option Values Default Value Description

CONFIG_GIANFAR y/n/m y eTSEC Ethernet driver

CONFIG_PTP_1588_CLOCK_QORIQ y/n/m y QorIQ PTP clock driver

2. DPAA SDK

Option Values Default Value Description

CONFIG_FSL_SDK_DPAA_ETH y/n/m y DPAA SDK Ethernet driver

CONFIG_FSL_DPAA_TS y/n n DPAA HW timestamping support

CONFIG_PTP_1588_CLOCK_QORIQ y/n/m y QorIQ PTP clock driver

3. DPAA upstream driver

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
259 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Option Values Default Value Description

CONFIG_FSL_DPAA_ETH y/n/m n DPAA upstream version
Ethernet driver

CONFIG_PTP_1588_CLOCK_QORIQ y/n/m y QorIQ PTP clock driver

4. DPAA2

Option Values Default Value Description

CONFIG_FSL_DPAA2_ETH y/n/m y DPAA2 Ethernet driver

CONFIG_FSL_DPAA2_PTP_CLOCK y/n/m y DPAA2 PTP clock driver

CONFIG_PTP_1588_CLOCK_QORIQ y/n/m y QorIQ PTP clock driver

5. ENETC

Option Values Default value Description

CONFIG_FSL_ENETC y/n/m y ENETC Ethernet driver

CONFIG_FSL_ENETC_PTP_CLOCK y/n/m y ENETC PTP clock driver

CONFIG_PTP_1588_CLOCK_QORIQ y/n/m y QorIQ PTP clock driver

6. Felix switch

Option Values Default value Description

CONFIG_NET_DSA_MSCC_FELIX y/n/m y Felix switch driver

6.5.5.3 Source files

The driver source is maintained in the Linux kernel source tree.

1. eTSEC

Source File Description

drivers/net/ethernet/freescale/gianfar.c eTSEC Ethernet driver

drivers/ptp/ptp_qoriq.c QorIQ PTP clock driver

2. DPAA SDK

Source File Description

drivers/net/ethernet/freescale/sdk_dpaa/dpaa_eth.c DPAA SDK Ethernet driver

drivers/ptp/ptp_qoriq.c QorIQ PTP clock driver

3. DPAA upstream driver

Source File Description

drivers/net/ethernet/freescale/dpaa/dpaa_eth.c DPAA upstream version Ethernet driver

drivers/ptp/ptp_qoriq.c QorIQ PTP clock driver

4. DPAA2

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
260 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Source File Description

drivers/net/ethernet/freescale/dpaa2/dpaa2-eth.c DPAA2 Ethernet driver

drivers/net/ethernet/freescale/dpaa2/dpaa2-ptp.c DPAA2 PTP clock driver

drivers/ptp/ptp_qoriq.c QorIQ PTP clock driver

5. ENETC

Source file Description

drivers/net/ethernet/freescale/enetc/enetc.c ENETC Ethernet driver

drivers/net/ethernet/freescale/enetc/enetc_ptp.c ENETC PTP clock driver

drivers/ptp/ptp_qoriq.c QorIQ PTP clock driver

6. Felix switch

Source file Description

drivers/net/dsa/ocelot/felix.c Felix switch driver

6.5.5.4 Device tree binding

1. eTSEC/DPAA SDK/DPAA2/ENETC

Property Type Status Description

compatible String Required “fsl,etsec-ptp”, “fsl,fman-
ptp-timer”, "fsl,dpaa2-ptp" or
"fsl,enetc-ptp"

reg Integer Required Register map

2. Felix switch
NA.

6.5.5.5 Verification

See “QorIQ networking technologies” -> “IEEE 1588/802.1AS” section.

6.5.6 Integrated Flash Controller (IFC)

6.5.6.1 Integrated Flash Controller NOR Flash User Manual

6.5.6.1.1 Description

NXP’s Integrated Flash Controller can be used to connect various types of flashes, For example NOR/NAND on
board for boot functionality as well as data storage.

6.5.6.1.2 U-Boot Configuration

Compile-time options

Below are major U-Boot configuration options related to this feature defined in platform-specific config files
under include/configs/ directory.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
261 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Option Identifier Description

CONFIG_FSL_IFC Enable IFC support

CONFIG_FLASH_CFI_DRIVER
CONFIG_SYS_FLASH_CFI
CONFIG_SYS_FLASH_EMPTY_INFO

Enable CFI Driver for NOR Flash devices

6.5.6.1.3 Source Files

The following source files are related to this feature in U-Boot.

Source File Description

./drivers/misc/fsl_ifc.c Set up the different chip select parameters from board
header file

drivers/mtd/cfi_flash.c CFI driver support for NOR flash devices

6.5.6.1.4 Kernel Configure Options

Tree View

Below are the configure options need to be set/unset while doing "make menuconfig" for kernel

Kernel Configure Tree View Options Description

Device Drivers --->
 <*> Memory Technology Device
 (MTD) support
 --->
 [*] MTD partitioning support
 [*] Command line partition
 table parsing
 <*> Flash partition map
 based
 on OF description
 <*> Direct char device
 access to
 MTD devices
 -*- Common interface to
 block
 layer for MTD 'translation
 layers'
 <*> Caching block device
 access
 to MTD devices
 < > FTL (Flash Translation
 Layer)
 support
 RAM/ROM/Flash chip drivers
 --->
 <*> Detect flash chips by
 Common Flash Interface (CFI)
 probe
 <*> Support for Intel/Sharp
 flash chips
 <*> Support for AMD/Fujitsu/
 Spansion flash chips

These options enable CFI support for NOR Flash under
MTD subsystem and Integrated Flash Controller support on
Linux

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
262 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Kernel Configure Tree View Options Description
 Mapping drivers for chip
 access ---
 >
 <*> Flash device in
 physical memory map based on
 OF description

 File systems --->
 [*] Miscellaneous
 filesystems --->
 <*> Journalling Flash
 File System v2 (JFFS2) support

This option enables JFFS2 file system support for MTD
Devices

Identifier

Below are the configure identifiers which are used in kernel source code and default configuration files.

Special Configure needs to be enabled("Y") for LS1021. Find in below table with default value as "N"

Option Values Default Value Description

CONFIG_FSL_IFC Y/N Y Integrated Flash Controller
support

CONFIG_MTD Y/N Y Memory Technology Device
(MTD) support

CONFIG_MTD_PARTITIONS Y/N Y MTD partitioning support

CONFIG_MTD_CMDLINE_PARTS Y/N Y Allow generic configuration of
the MTD partition tables via the
kernel command line.

CONFIG_MTD_OF_PARTS Y/N Y This provides a partition parsing
function which derives the
partition map from the children
of the flash nodes described in
Documentation/powerpc/booting-
without-of.txt

CONFIG_MTD_CHAR Y/N Y Direct char device access to MTD
devices

CONFIG_MTD_BLOCK Y/N Y Caching block device access to
MTD devices

CONFIG_MTD_CFI Y/N Y Detect flash chips by Common
Flash Interface (CFI) probe

CONFIG_MTD_GEN_PROBE Y/N Y NA

CONFIG_MTD_MAP_BANK_WIDTH_1 Y/N Y Support 8-bit bus width

CONFIG_MTD_MAP_BANK_WIDTH_2 Y/N Y Support 16-bit bus width

CONFIG_MTD_MAP_BANK_WIDTH_4 Y/N Y Support 32-bit bus width

CONFIG_MTD_PHYSMAP_OF Y/N Y Flash device in physical memory
map based on OF description

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
263 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Option Values Default Value Description

CONFIG_FTL Y/N N FTL (Flash Translation Layer)
support

CONFIG_MTD_CFI_INTELEXT Y/N Y Support for Intel/Sharp flash chips

CONFIG_MTD_CFI_AMDSTD Y/N Y Support for AMD/Fujitsu/Spansion
flash chips

6.5.6.1.5 Device Tree Binding

Documentation/devicetree/bindings/powerpc/fsl/ifc.txt

Documentation/devicetree/bindings/memory-controllers/fsl/ifc.txt

Flash partitions are specified by platform device tree.

6.5.6.1.6 Source Files

The driver source is maintained in the Linux kernel source tree.

Source File Description

drivers/memory/fsl_ifc.c Integrated Flash Controller driver to handle error interrupts

drivers/mtd/mtdpart.c Simple MTD partitioning layer

drivers/mtd/mtdblock.c Direct MTD block device access

drivers/mtd/mtdchar.c Character-device access to raw MTD devices.

drivers/mtd/ofpart.c Flash partitions described by the OF (or flattened) device
tree

drivers/mtd/ftl.c FTL (Flash Translation Layer) support

drivers/mtd/chips/cfi_probe.c Common Flash Interface probe

drivers/mtd/chips/cfi_util.c Common Flash Interface support

drivers/mtd/chips/cfi_cmdset_0001.c Support for Intel/Sharp flash chips

drivers/mtd/chips/cfi_cmdset_0002.c Support for AMD/Fujitsu/Spansion flash chips

6.5.6.1.7 Verification in U-Boot

Test the Read/Write/Erase functionality of NOR Flash

1. Boot the U-Boot with above config options to get NOR Flash access enabled. Check this in boot log,
FLASH: * MiB
where * is the size of NOR Flash

2. Erase NOR Flash
3. Make test pattern on memory, For example DDR
4. Write test pattern on NOR Flash
5. Read the test pattern from NOR Flash to memory, for example DDR
6. Compare the test pattern data to verify functionality.

Test Log:

Test log with initial U-Boot log removed

--

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
264 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

--
FLASH: 128 MiB
--
--
/* u-boot prompt */
=> mw.b 80000000 0xa5 10000
=> md 80000000
80000000: a5a5a5a5 a5a5a5a5 a5a5a5a5 a5a5a5a5
80000010: a5a5a5a5 a5a5a5a5 a5a5a5a5 a5a5a5a5
80000020: a5a5a5a5 a5a5a5a5 a5a5a5a5 a5a5a5a5
80000030: a5a5a5a5 a5a5a5a5 a5a5a5a5 a5a5a5a5
=> protect off all
Un-Protect Flash Bank # 1
=> erase 0x584100000 +0x10000
. done
Erased 1 sectors
=> cp.b 80000000 0x584100000 10000
Copy to Flash... 9....8....7....6....5....4....3....2....1....done
=> cmp.b 80000000 0x584100000 10000
Total of 65536 bytes were the same
=>

6.5.6.1.8 Verification in Linux

To cross-check whether IFC NOR driver has been configured in the kernel or not, see the kernel boot log with
following entries. Note mtd partition number can be changed depending upon device tree.

[2.368207] 60000000.nor: Found 1 x16 devices at 0x0 in 16-bit bank.
 Manufacturer ID 0x000001 Chip
ID 0x002801
[2.378219] Amd/Fujitsu Extended Query Table at 0x0040
[2.383374] Amd/Fujitsu Extended Query version 1.3.
[2.388427] number of CFI chips: 1
[2.391835] 8 cmdlinepart partitions found on MTD device 60000000.nor
[2.398277] Creating 8 MTD partitions on "60000000.nor":
[2.403591] 0x000000000000-0x000000100000 : "nor_bank0_rcw"
[2.409553] 0x000000100000-0x000001000000 : "nor_bank0_uboot"
[2.415653] 0x000001000000-0x000002000000 : "nor_bank0_kernel"
[2.421839] 0x000002000000-0x000004000000 : "nor_bank0_rootfs"
[2.428027] 0x000004000000-0x000004100000 : "nor_bank4_rcw"
[2.433948] 0x000004100000-0x000005000000 : "nor_bank4_uboot"
[2.440043] 0x000005000000-0x000006000000 : "nor_bank4_kernel"
[2.446228] 0x000006000000-0x000008000000 : "nor_bank4_rootfs"

Note: NOR address and number of partitions will vary from SoC to SoC supported in Layerscape LDP.

To verify NOR flash device accesses, see the following test:

[root@ root]# cat /proc/mtd dev: size erasesize name mtd0: 00100000 00020000
 "nor_bank0_rcw" mtd1: 00f00000 00020000 "nor_bank0_uboot" mtd2: 01000000
 00020000 "nor_bank0_kernel" mtd3: 02000000 00020000 "nor_bank0_rootfs" mtd4:
 00100000 00020000 "nor_bank4_rcw" mtd5: 00f00000 00020000 "nor_bank4_uboot"
 mtd6: 01000000 00020000 "nor_bank4_kernel" mtd7: 02000000 00020000
 "nor_bank4_rootfs" mtd8: 01000000 00040000 "nand_uboot" mtd9: 01000000 00040000
 "nand_kernel" mtd10: 02000000 00040000 "nand_free" mtd11: 00600000 00001000
 "uboot" mtd12: 00a00000 00001000 "free" mtd13: 00080000 00001000 "spi0.1"
 mtd14: 00800000 00001000 "spi0.2" [root@ root]# flash_eraseall -j /dev/mtd2
Erasing 128 Kibyte @ 1400000 -- 100% complete. Cleanmarker written at 13e0000.
[root@P1010RDB root]# mount -t jffs2 /dev/mtdblock2 /mnt/

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
265 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

JFFS2 notice: (1202) jffs2_build_xattr_subsystem: complete building xattr
 subsystem, 0 of xdatum (0 unchecked, 0 orphan) and 0 of xref (0 dead, 0 orphan)
 found.
[root@ root]# cd /mnt/
[root@ mnt]# ls -l
[root@ mnt]# touch flash_file
[root@ root]# umount mnt
//ls must list local_file
[root@ root]# ls mnt
//mount again
[root@ root]# mount -t jffs2 /dev/mtdblock2 /mnt/
JFFS2 notice: (1219) jffs2_build_xattr_subsystem: complete building xattr
 subsystem, 0 of xdatum (0 unchecked, 0 orphan) and 0 of xref (0 dead, 0 orphan)
 found.
//use ls ; it must show the created file
[root@ root]# ls /mnt/
flash_file
//unmount
[root@ root]# umount /mnt/

6.5.6.2 Integrated Flash Controller NAND Flash User Manual

6.5.6.2.1 Description

NXP’s Integrated Flash Controller can be used to connect various types of flashes (For example NOR/NAND)
on board for boot functionality as well as data storage.

6.5.6.2.2 U-Boot Configuration

Compile-time options

Below are major U-Boot configuration options related to this feature defined in platform-specific config files
under include/configs/ directory.

Option Identifier Description

CONFIG_FSL_IFC Enable IFC support

CONFIG_NAND_FSL_IFC Enable NAND Machine support on IFC

CONFIG_SYS_MAX_NAND_DEVICE No of NAND Flash chips on platform

CONFIG_MTD_NAND_VERIFY_WRITE Verify NAND flash writes

CONFIG_CMD_NAND Enable various commands support for NAND Flash

CONFIG_SYS_NAND_BLOCK_SIZE Block size of the NAND flash connected on Platform

6.5.6.2.3 Source Files

The following source files are related to this feature in U-Boot.

Source File Description

./drivers/misc/fsl_ifc.c Set up the different chip select parameters from board
header file

drivers/mtd/nand/fsl_ifc_nand.c IFC nand flash machine driver file

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
266 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

6.5.6.2.4 Kernel Configure Options

Tree View

Below are the configure options need to be set/unset while doing "make menuconfig" for kernel

Kernel Configure Tree View Options Description

Device Drivers --->
 <*> Memory Technology Device
 (MTD)
 support --->
 [*] MTD partitioning support
 [*] Command line partition
 table
 parsing=
 <*> Flash partition map
 based on OF
 description
 <*> Direct char device
 access to MTD
 devices
 -*- Common interface to
 block layer for
 MTD 'translation layers'
 <*> Caching block device
 access to MTD
 devices
 <*> NAND Device Support --->
 <*> NAND support for
 Freescale IFC
 controller
 Enable UBIFS filesystem in
 linux configuration
 Device Drivers --->
 <*> Memory Technology Device
 (MTD)
 support --->
 UBI - Unsorted block images
 --->
 <*> Enable UBI
 (4096) UBI wear-leveling
 threshold
 (1) Percentage of reserved
 eraseblocks for
 bad eraseblocks handling
 < > MTD devices emulation
 driver (gluebi)
 *** UBI debugging options

 [] UBI debugging
 File systems --->
 [*] Miscellaneous
 filesystems --->
 <*> UBIFS file system
 support
 [*] Extended attributes
 support
 [] Advanced compression
 options

These options enable Integrated Flash Controller NAND
support to work with MTD subsystem available on Linux.
Also UBIFS support needs to be enabled.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
267 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Kernel Configure Tree View Options Description
 [] Enable debugging

Identifier

Below are the configure identifiers which are used in kernel source code and default configuration files.

Option Values Default Value Description

CONFIG_FSL_IFC y/n y Enable Integrated Flash
Controller support

CONFIG_MTD_NAND_FSL_IFC y/n Y Enable Integrated Flash
Controller NAND Machine support

CONFIG_MTD_PARTITIONS y/n Y MTD partitioning support

CONFIG_MTD_CMDLINE_PARTS y/n Y Allow generic configuration of
the MTD partition tables via the
kernel command line.

CONFIG_MTD_OF_PARTS y/n Y This provides a partition parsing
function which derives the
partition map from the children
of the flash nodes described in
Documentation/powerpc/booting-
without-of.txt

CONFIG_MTD_CHAR y/n Y Direct char device access to MTD
devices

CONFIG_MTD_BLOCK y/n Y Caching block device access to
MTD devices

CONFIG_MTD_GEN_PROBE y/n Y NA

CONFIG_MTD_PHYSMAP_OF y/n Y Flash device in physical memory
map based on OF description

6.5.6.2.5 Device Tree Binding

Documentation/devicetree/bindings/memory-controllers/fsl/ifc.txt

Flash partitions are specified by platform device tree.

6.5.6.2.6 Source Files

The driver source is maintained in the Linux kernel source tree.

Source File Description

drivers/memory/fsl_ifc.c Integrated Flash Controller driver to handle error interrupts

drivers/mtd/nand/fsl_ifc_nand.c Integrated Flash Controller NAND Machine driver

include/linux/fsl_ifc.h IFC Memory Mapped Registers

6.5.6.2.7 Verification in U-Boot

Test the Read/Write/Erase functionality of NAND Flash

1. Boot the U-Boot with above config options to get NAND Flash driver enabled. Check this in boot log,
UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
268 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

NAND: * MiB
Where * is NAND flash size

2. Erase NAND Flash
3. Make test pattern on memory, For example DDR
4. Write test pattern on NAND Flash
5. Read the test pattern from NAND Flash to memory, for example DDR
6. Compare the test pattern data to verify functionality.

Test Log:

...

...
NAND: 512 MiB
...
...
/* U-boot prompt */
=> nand erase.chip
NAND erase.chip: device 0 whole chip
Bad block table found at page 65504, version 0x01 Bad block table found at page
 65472, version 0x01
Skipping bad block at 0x01ff0000
Skipping bad block at 0x01ff4000
Skipping bad block at 0x01ff8000
Skipping bad block at 0x01ffc000
OK
=> mw.b 80000000 0xa5 100000
=> md 80000000
80000000: a5a5a5a5 a5a5a5a5 a5a5a5a5 a5a5a5a5
80000010: a5a5a5a5 a5a5a5a5 a5a5a5a5 a5a5a5a5
80000020: a5a5a5a5 a5a5a5a5 a5a5a5a5 a5a5a5a5
80000030: a5a5a5a5 a5a5a5a5 a5a5a5a5 a5a5a5a5
=> nand write 80000000 0 100000
NAND write: device 0 offset 0x0, size 0x100000
1048576 bytes written: OK
=> nand read 90000000 0 100000
NAND read: device 0 offset 0x0, size 0x100000
1048576 bytes read: OK
=> cmp.b 80000000 90000000 100000
Total of 1048576 bytes were the same

6.5.6.2.8 Verification in Linux

To cross-check whether IFC NAND driver has been configured in the kernel or not, check the following. Note
mtd partition numbers can be changed depending upon board device tree

[root@(none) root]# cat /proc/mtd
dev: size erasesize name
mtd0: 00100000 00020000 "nor_bank0_rcw"
mtd1: 00f00000 00020000 "nor_bank0_uboot"
mtd2: 01000000 00020000 "nor_bank0_kernel"
mtd3: 02000000 00020000 "nor_bank0_rootfs"
mtd4: 01000000 00040000 "nand_uboot"
mtd5: 01000000 00040000 "nand_kernel"
mtd6: 02000000 00040000 "nand_free"
[root@(none) root]# flash_eraseall /dev/mtd4 Erasing 16 Kibyte @ f00000 -- 100%
 complete.
[root@(none) root]# ubiattach /dev/ubi_ctrl -m 4

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
269 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

UBI: attaching mtd4 to ubi0
UBI: physical eraseblock size: 16384 bytes (16 KiB)
UBI: logical eraseblock size: 15360 bytes
UBI: smallest flash I/O unit: 512
UBI: VID header offset: 512 (aligned 512)
UBI: data offset: 1024
UBI: empty MTD device detected
UBI: create volume table (copy #1)
UBI: create volume table (copy #2)
UBI: attached mtd4 to ubi0
UBI: MTD device name: "NAND Root File System"
UBI: MTD device size: 15 MiB
UBI: number of good PEBs: 960
UBI: number of bad PEBs: 0
UBI: max. allowed volumes: 89
UBI: wear-leveling threshold: 4096
UBI: number of internal volumes: 1
UBI: number of user volumes: 0
UBI: available PEBs: 947
UBI: total number of reserved PEBs: 13
UBI: number of PEBs reserved for bad PEB handling: 9
UBI: max/mean erase counter: 0/0
UBI: image sequence number: 0
UBI: background thread "ubi_bgt0d" started, PID 7541 UBI device number 0, total
 960 LEBs (14745600
bytes, 14.1 MiB), available 947 LEBs (14545920 bytes, 13.9 MiB), LEB size 15360
 bytes (15.0 KiB)
[root@(none) root]# ubimkvol /dev/ubi0 -N rootfs -s 14205KiB Volume ID 0, size
 947 LEBs (14545920
bytes, 13.9 MiB), LEB size 15360 bytes (15.0 KiB), dynamic, name "rootfs",
 alignment 1
[root@(none) root]# mount -t ubifs /dev/ubi0_0 /mnt/
UBIFS: default file-system created
UBIFS: mounted UBI device 0, volume 0, name "rootfs"
UBIFS: file system size: 14361600 bytes (14025 KiB, 13 MiB, 935 LEBs)
UBIFS: journal size: 721920 bytes (705 KiB, 0 MiB, 47 LEBs)
UBIFS: media format: w4/r0 (latest is w4/r0)
UBIFS: default compressor: lzo
UBIFS: reserved for root: 678333 bytes (662 KiB)
[root@(none) root]# cd /mnt/
[root@(none) mnt]# ls
[root@(none) mnt]# touch flash_file
[root@(none) mnt]# ls -l
total 0
-rw-r--r-- 1 root root 0 Jul 6 14:45 flash_file
[root@(none) mnt]# cd
[root@(none) root]# umount /mnt/
UBIFS: un-mount UBI device 0, volume 0
[root@(none) root]# mount -t ubifs /dev/ubi0_0 /mnt/
UBIFS: mounted UBI device 0, volume 0, name "rootfs"
UBIFS: file system size: 14361600 bytes (14025 KiB, 13 MiB, 935 LEBs)
UBIFS: journal size: 721920 bytes (705 KiB, 0 MiB, 47 LEBs)
UBIFS: media format: w4/r0 (latest is w4/r0)
UBIFS: default compressor: lzo
UBIFS: reserved for root: 678333 bytes (662 KiB)
[root@(none) root]# ls -l /mnt/
total 0
-rw-r--r-- 1 root root 0 Jul 6 14:45 flash_file

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
270 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

6.5.6.2.9 Known Bugs, Limitations, or Technical Issues

Boards which have NAND Flash with 512 byte page size, JFFS2 cannot be supported using H/W ECC support
of IFC, as there is not enough remaining space in the OOB area.

To use JFFS2, use SOFT ECC.

6.5.7 Low Power Universal Asynchronous Receiver/Transmitter (LPUART)

6.5.7.1 Description

Low Power Universal asynchronous receiver/transmitter (LPUART) is a high speed and low-power UART. Refer
to below table for the NXP SoCs that can support LPUART.

SoC Num of LPUART module

LS1021A 6

LS1043A 6

6.5.7.2 U-Boot Configuration Compile-time options

Below are major U-Boot configuration options related to this feature defined in platform-specific config files
under include/configs/ directory.

Option Identifier Description

CONFIG_LPUART Enable LPUART support

CONFIG_FSL_LPUART Enable NXP LPUART support

CONFIG_LPUART_32B_REG Select 32-bit LPUART register mode

Choosing predefined U-Boot board configs:

Make the defconfig include 'lpuart', such as: ls1021atwr_nor_lpuart_defconfig. This will support LPUART.

Runtime options

Env
Variable

Env Description Sub option Option Description

bootargs Kernel command-line argument
passed to kernel

console=ttyLP0,1152000 Select LPUART0 as the
system console

6.5.7.3 Kernel Configure Options

Tree View

Below are the configure options need to be set/unset while doing "make menuconfig" for kernel

Kernel Configure Tree View Options Description

Device Drivers --->
 Character devices --->
 Serial drivers --->
 <*> Freescale lpuart
 serial port support

LPUART driver and enable console support

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
271 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Kernel Configure Tree View Options Description
 [*] Console on
 Freescale lpuart serial port

Identifier

Below are the configure identifiers which are used in kernel source code and default configuration files.

Option Values Default Value Description

CONFIG_SERIAL_FSL_LPUART y/m/n n LPUART driver

6.5.7.4 Device Tree Binding

Below is an example device tree node required by this feature. Note that it may have differences among
platforms.

lpuart0: serial@2950000 {
 compatible = "fsl,vf610-lpuart";
 reg = <0x0 0x2950000 0x0 0x1000>;
 interrupts = <GIC_SPI 80 IRQ_TYPE_LEVEL_HIGH>;
 clocks = <&sysclk>;
 clock-names = "ipg";
 fsl,lpuart32;
 status = "okay";

6.5.7.5 Source Files

The following source files are related to this feature in U-Boot.

Source File Description
drivers/serial/serial_lpuart.c The LPUART driver file

The following source files are related to this feature in Linux kernel.

Source File Description

drivers/tty/serial/fsl_lpuart.c The LPUART driver file

6.5.7.6 Verification in U-Boot

1. Boot up U-Boot from bank0, and update rcw and U-Boot for LPUART support to bank4, first copy the rcw
and U-Boot binary to the TFTP directory.

2. Refer to the platform deploy document to update the rcw and U-Boot.
3. After all is updated, run U-Boot command to switch to alt bank, then will bring up the new U-Boot to the

LPUART console.

CPU: Freescale LayerScape LS1020E, Version: 1.0, (0x87081010)
Clock Configuration:
 CPU0(ARMV7):1000 MHz,
 Bus:300 MHz, DDR:800 MHz (1600 MT/s data rate),
Reset Configuration Word (RCW):
 00000000: 0608000a 00000000 00000000 00000000
 00000010: 60000000 00407900 e0025a00 21046000

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
272 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

 00000020: 00000000 00000000 00000000 08038000
 00000030: 00000000 001b7200 00000000 00000000
I2C: ready
Board: LS1021ATWR
CPLD: V2.0
PCBA: V1.0
VBank: 0
DRAM: 1 GiB
Using SERDES1 Protocol: 48 (0x30)
Flash: 0 Bytes
MMC: FSL_SDHC: 0
EEPROM: NXID v16777216
PCIe1: Root Complex no link, regs @ 0x3400000
PCIe2: disabled
In: serial
Out: serial
Err: serial
SATA link 0 timeout.
AHCI 0001.0300 1 slots 1 ports ? Gbps 0x1 impl SATA mode
flags: 64bit ncq pm clo only pmp fbss pio slum part ccc
Found 0 device(s).
SCSI: Net: eTSEC1 is in sgmii mode.
eTSEC2 is in sgmii mode.
eTSEC1, eTSEC2 [PRIME], eTSEC3
=>

6.5.7.7 Verification in Linux

1. After U-Boot startup, set the command-line parameter to pass to the linux kernel including
console=ttyLP0,115200 in bootargs. For deploy the ramdisk as rootfs, the bootargs can be set as: "set
bootargs root=/dev/ram0 rw console=ttyLP0,115200"

=> set bootargs root=/dev/ram0 rw console=ttyLP0,115200
=> dhcp 81000000 <tftpboot dir>/zImage.ls1021a;tftp 88000000 <tftpboot dir>/
initrd.ls1.uboot;tftp 8f000000 <tftpboot dir>/ls1021atwr.dtb;bootz 81000000
 88000000 8f000000
[...]
Starting kernel ...
Uncompressing Linux... done, booting the kernel.
Booting Linux on physical CPU 0xf00
Linux version 3.12.0+ (xxx@rock) (gcc version 4.8.3 20131202 (prerelease)
 (crosstool-NG
linaro-1.13.1-4.8-2013.12 - LinaroGCC 2013.11)) #664 SMP Tue Jun 24 15:30:45
 CST 2014
CPU: ARMv7 Processor [410fc075] revision 5 (ARMv7), cr=30c73c7d
CPU: PIPT / VIPT nonaliasing data cache, VIPT aliasing instruction cache
Machine: Freescale Layerscape LS1021A, model: LS1021A TWR Board
Memory policy: ECC disabled, Data cache writealloc
PERCPU: Embedded 7 pages/cpu @8901c000 s7936 r8192 d12544 u32768
Built 1 zonelists in Zone order, mobility grouping on. Total pages: 520720
Kernel command line: root=/dev/ram rw console=ttyLP0,115200
PID hash table entries: 4096 (order: 2, 16384 bytes)
[...]
ls1021atwr login: root
root@ls1021atwr:~#

2. After the kernel boot up to the console, you can type any shell command in the LPUART TERMINAL.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
273 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

6.5.8 PCI Express Interface Controller

6.5.8.1 PCIe Linux Driver

6.5.8.1.1 Module Loading

The MPC85xx/Layerscape PCIE host bridge support code is compiled into the kernel. It is not available as a
module.

6.5.8.1.2 Kernel Configure Tree View Options

Kernel Configure Tree View Options Description

Device Drivers --->
 [*] PCI support --->
 [*] PCI Express Port Bus support
 -*- Message Signaled Interrupts
 (MSI and MSI-X)

Enables PCIe Port Bus and MSI/MSI-X support

Device Drivers --->
 [*] PCI support --->
 PCI controller drivers --->
 DesignWare PCI Core Support --->
 [*] Freescale Layerscape PCIe
 controller - Host mode

Enables NXP Layerscape PCIe controller RC mode
driver

Device Drivers --->
 [*] Network device support --->
 [*] Ethernet driver support --->
 [*] Intel devices --->
 <*> Intel (R) PRO/1000 PCI-Express
 Gigabit Ethernet support

Intel PRO/1000 PCI-Express support

Device Drivers --->
 <*> Serial ATA and Parallel ATA
 drivers (libata) --->
 <*> Silicon Image 3124/3132 SATA
 support

Enables support for Silicon Image 3124/3132 Serial
ATA.

6.5.8.1.3 Compile-time Configuration Options

Option Values Default Value Description

CONFIG_PCI y/n y Enable PCI host bridge

CONFIG_PCIEPORTBUS y/n y Enables PCIe Port Bus support

CONFIG_PCI_MSI y/n y MSI/MSI-X support

CONFIG_PCI_LAYERSCAPE y/n y Enable PCIe controller RC mode
driver for Layerscape

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
274 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Option Values Default Value Description

CONFIG_E1000E y/m/n y Enable Intel Pro/1000 driver

CONFIG_SATA_SIL y/m/n y Silicon Image SATA support

6.5.8.1.4 Source Files

The driver source is maintained in the Linux kernel source tree.

Source File Description
arch/powerpc/sysdev/fsl_pci.c The MPC85XX platform PCIe host bridge support

source

drivers/pci/controller/dwc/pci-layerscape.c The Layerscape platform PCIe host bridge support
source

drivers/net/ethernet/intel/e1000e/ Intel Pro/1000 driver source code
drivers/ata/sata_sil.c Silicon Image source code

6.5.8.1.5 SATA Card Test Procedure

The user can use command fdisk, mke2fs mount to operate the ide disk.
After kernel boots up, please follow the log to operate:
[root@pX0XX /root]# fdisk -l
Disk /dev/sda: 85.8 GB, 85899345920 bytes
255 heads, 63 sectors/track, 10443 cylinders
Units = cylinders of 16065 * 512 = 8225280 bytes
Disk /dev/sda doesn't contain a valid partition table
[root@pX0XX /root]# fdisk /dev/sda
Device contains neither a valid DOS partition table, nor Sun, SGI or OSF
 disklabel
Building a new DOS disklabel. Changes will remain in memory only,
until you decide to write them. After that the previous content
won't be recoverable.
The number of cylinders for this disk is set to 10443.
There is nothing wrong with that, but this is larger than 1024,
and could in certain setups cause problems with:
1) software that runs at boot time (e.g., old versions of LILO)
2) booting and partitioning software from other OSs
(e.g., DOS FDISK, OS/2 FDISK)
Command (m for help): n
Command action
e extended
p primary partition (1-4)
p
Partition number (1-4): 1
First cylinder (1-10443, default 1): Using default value 1
Last cylinder or +size or +sizeM or +sizeK (1-10443, default 10443): 100
Command (m for help): w
The partition table has been altered!
Calling ioctl() to re-read partition table
sd 0:0:0:0: [sda] 167772160 512-byte hardware sectors (85899 MB)
sd 0:0:0:0: [sda] Write Protect is off
sd 0:0:0:0: [sda] Asking for cache data failed
sd 0:0:0:0: [sda] Assuming drive cache: write through
sda: sda1
[root@pX0XX /root]# mke2fs /dev/sda1

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
275 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

mke2fs 1.34 (25-Jul-2003)
Filesystem label=
OS type: Linux
Block size=4096 (log=2)
Fragment size=4096 (log=2)
100576 inodes, 200804 blocks
10040 blocks (5.00%) reserved for the super user
First data block=0
7 block groups
32768 blocks per group, 32768 fragments per group
14368 inodes per group
Superblock backups stored on blocks:
32768, 98304, 163840
Writing inode tables: done
Writing superblocks and filesystem accounting information: done
This filesystem will be automatically checked every 31 mounts or
180 days, whichever comes first. Use tune2fs -c or -i to override.
[root@pX0XX /root]# mkdir sda1_test
[root@pX0XX /root]# mount /dev/sda1 sda1_test/
[root@pX0XX /root]# cp /bin/tar sda1_test/
[root@pX0XX /root]#

6.5.8.1.6 Ethernet Card Test Procedure

Plug Intel Pro/1000e network card into standard PCI-E slot on a board. After Linux bootup, run ifconfig
ethx <IP address> netmask <netmask>, then do ping testing.

Here, x is the Ethernet interface number. For example, Ethernet interface number for Intel e1000 network card
is eth0.

For example:

After kernel boot up, bring up the board with the PCI Ethernet card.

ifconfig ethx 192.168.20.100

IP address should not conflict with other Ethernet port.

At the Linux prompt, run command ping 192.168.20.101

6.5.8.1.7 Known Bugs, Limitations, or Technical Issues

• LSI-SAS card cannot be used on the second PCIe controller when system enables more than one PCIe
controller. As a workaround for this issue, make following modifications in the code.

--- a/arch/powerpc/sysdev/fsl_pci.c
+++ b/arch/powerpc/sysdev/fsl_pci.c
@@ -549,7 +549,7 @@ int fsl_add_bridge(struct platform_device *pdev, int
 is_primary)
 printk(KERN_WARNING "Can't get bus-range for %pOF, assume"
 " bus 0\n", dev);
- pci_add_flags(PCI_REASSIGN_ALL_BUS);
+ pci_add_flags(PCI_ENABLE_PROC_DOMAINS);
 hose = pcibios_alloc_controller(dev);
 if (!hose)
 return -ENOMEM;
@@ -851,7 +851,7 @@ int __init mpc83xx_add_bridge(struct device_node *dev)
 " bus 0\n", dev);
 }

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
276 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

- pci_add_flags(PCI_REASSIGN_ALL_BUS);
+ pci_add_flags(PCI_ENABLE_PROC_DOMAINS);
 hose = pcibios_alloc_controller(dev);
 if (!hose)
 return -ENOMEM;

6.5.8.2 PCIe Advanced Error Reporting User Manual

6.5.8.2.1

This section explains steps to test the PCI Express Advanced Error Reporting (AER) function.

6.5.8.2.2

Testing the PCIe AER error recovery code in actual environment is difficult because it is hard to trigger real
hardware errors. So, a software tool is used for error injection to fake various kinds of PCIe errors.

6.5.8.2.3 Kernel Configure Tree View Options

Kernel Configure Tree View Options Description

Device Drivers --->
 [*] PCI support --->
 [*] PCI Express Port Bus support
 [*] Root Port Advanced Error
 Reporting support
 <*> PCIe AER error injector
 support

Enables PCI Express AER and AER-INJECTOR in
kernel.

6.5.8.2.4 Kernel compile-time Configuration Options

Option Values Default Value Description

CONFIG_PCIEAER y/n y Enable AER

CONFIG_PCIEAER_INJECT y/m/n n Enables AER INJECT

6.5.8.2.5 Source Files

The driver source is maintained in the Linux kernel source tree.

Source File Description

drivers/pci/pcie/aer* AER driver support

6.5.8.2.6 Prepare aer-inject test tool

1. Download aer-inject test utility.
2. Write a test config file. For example:

$ vi aer-cfg
 AER
 DOMAIN 0001
 BUS 1

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
277 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

 DEV 0
 FN 0
 COR_STATUS BAD_TLP
 HEADER_LOG 0 1 2 3

Note: Error type can be ["COR_STATUS", "UNCOR_STATUS"]
Corrected error can be: ["BAD_TLP", "RCVR", "BAD_DLLP", "REP_ROLL", "REP_TIMER"] Uncorrected
non-fatal error can be: ["POISON_TLP", "COMP_TIME", "COMP_ABORT", "UNX_COMP", "ECRC",
"UNSUP"] Uncorrected fatal error can be: ["TRAIN", "DLP", "FCP", "RX_OVER", "MALF_TLP"]

Test Steps

1. Insert a PCIe device in PCIe slot of board, ensure the PCIe device has AER capability, for example e1000e
PCIe NIC network card.

2. At the U-Boot prompt, add "pcie_ports=native" in bootargs command line.

=> setenv othbootargs pcie_ports=native

3. Boot the kernel and filesystem.
4. Check AER device and config.

zcat /proc/config.gz | grep -i CONFIG_PCIEAER_INJECT
CONFIG_PCIEAER_INJECT=y
cat /proc/cmdline
root=/dev/ram rw console=ttyS0,115200 pcie_ports=native
check "pcie_ports=native" has been set.
ls /dev/aer_inject
Check if the aer injector device is created.
lspci
00:00.0 Class 0604: 1957:0410
01:00.0 Class 0200: 8086:10d3
e.g. here device "01:00.0" is the PCIe NIC e1000 network card in the test
 scenario.

5. Download aer-inject and aer-cfg from host to test-board.

$ scp aer-inject aer-cfg root@test-board-ip:~

6. Ensure the PCIe device domain-number/bus-number/device-number/function-number in aer-cfg is as per
the output of lspci

7. Run aer-inject, the corresponding error information is reported as follows and AER recovers the PCIe device
according to the type of errors.

./aer-inject aer-cfg
example of error report as below:
pcieport 0000:00:00.0: AER: Corrected error received: id=0100
e1000e 0000:01:00.0: PCIe Bus Error: severity=Corrected, type=Data Link
 Layer, id=0100(Receiver ID)
e1000e 0000:01:00.0: device [8086:10d3] error status/mask=00000040/00002000
e1000e 0000:01:00.0: [6] Bad TLP
root@lsxxxx:~#

8. The PCIe device (e1000e PCIe NIC) should still work after AER error recovery.

ping 192.168.1.1 -c 2 -s 64
PING 192.168.1.1 (192.168.1.1): 64 data bytes
72 bytes from 192.168.1.1: icmp_seq=0 ttl=64 time=0.272 ms
72 bytes from 192.168.1.1: icmp_seq=1 ttl=64 time=0.210 ms
--- 192.168.1.1 ping statistics ---
2 packets transmitted, 2 packets received, 0% packet loss
round-trip min/avg/max/stddev = 0.210/0.241/0.272/0.031 ms

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
278 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Note:
On some legacy platforms with legacy PCI controller (for example, some non-DPAA platforms), hardware
does not support Fatal error type for AER, hardware only supports Non-Fatal error.
DPAA platforms with new PCIe controller can support both Fatal error and Non-Fatal error.

6.5.8.3 PCIe Remove and Rescan User Manual

6.5.8.3.1

This section explains how to remove and rescan a PCIe device under runtime Linux system.

6.5.8.3.2 U-Boot Configuration

Use the default configurations.

6.5.8.3.3 Kernel Configure Options

Use the default configurations. Ensure that the configure option is set while executing make menuconfig for
kernel.

Kernel Configure Tree View Options Description

Device Drivers --->
[*] Network device support --->
[*] Ethernet driver support --->
[*] Intel devices --->
<*> Intel (R) PRO/1000 PCI-Express
 Gigabit Ethernet support

This option enables kernel support for Intel PCIe
e1000e network card.

Below are the configure identifiers which are used in kernel source code and default configuration files.

Option Values Default Value Description
CONFIG_E1000E y/m/n y Intel PCIe e1000e network

card driver

6.5.8.3.4 Device Tree Binding

Use the default dtb file.

6.5.8.3.5 Verification in Linux

Ensure that the PCIe controller which you add the PCIe e1000e network card to works as RC mode. Use the
kernel, dtb, and ramdisk rootfs to boot the board.

1. Suppose the PCIe device under /sys/bus/pci/devices/0001\:03\:00.0 is the Intel PCIe e1000e
network card, recognized as eth0. The /sys/bus/pci/devices/0001\:02\:00.0 is the bus of network
card. Configure an ip and ping another host which is in the same subnet, make sure the network card works
well.

ls /sys/bus/pci/devices/0001\:03\:00.0/net
eth0
ifconfig eth0 10.193.20.100
ping -I eth0 10.193.20.31

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
279 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

2. Remove the PCIe network card from system.

echo 1 > /sys/bus/pci/devices/0001\:03\:00.0/remove
e1000e 0001:03:00.0 eth0: removed PHC

3. Check whether the PCIe network card still exists in system. All should fail.

ifconfig eth0
ls /sys/bus/pci/devices/0001\:03\:00.0

4. Rescan it from the bus.

echo 1 > /sys/bus/pci/devices/0001\:02\:00.0/rescan

5. Check whether the device is rescanned and works well.

ls /sys/bus/pci/devices/0001\:03\:00.0
ifconfig eth0 10.193.20.100
ping -I eth0 10.193.20.31

6. All the commands in step 5 should be successful.

6.5.8.3.6 Known Bugs, Limitations, or Technical Issues

None

6.5.8.4 PCIe Endpoint Mode Linux driver

The Layerscape Endpoint mode driver is developed based on the Endpoint framework to create endpoint
controller driver, endpoint function driver, and use configfs interface to bind the function driver to the controller
driver.

6.5.8.4.1 Kernel Configure Tree View Options

Kernel Configure Tree View Options Description

Device Drivers --->
[*] PCI support --->
PCI Endpoint --->
 [*] PCI Endpoint Support
 [*] PCI Endpoint Configfs
 Support
 <*> PCI Endpoint Test driver

Enables PCIe Endpoint framework driver.

Device Drivers --->
[*] PCI support --->
PCI controller drivers --->
DesignWare PCI Core Support --->
[*] Freescale Layerscape PCIe
 controller - Endpoint mode

Enables NXP Layerscape PCIe controller EP mode
driver.

Device Drivers --->
Misc devices --->
<*> PCI Endpoint Test driver

Enables host side test driver for PCI Endpoint.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
280 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

6.5.8.4.2 Compile-time Configuration Options

Option Values Default Value Description

CONFIG_PCI y/n y Enables PCI and PCIe local bus
support

CONFIG_PCI_ENDPOINT y/n y Enables PCI Endpoint support

CONFIG_PCI_ENDPOINT_CONFIGFS y/n y Enables PCI Endpoint configfs
support

CONFIG_PCI_EPF_TEST y/m/n m Enables PCI Endpoint test driver

CONFIG_PCI_LAYERSCAPE_EP y/n n Enables PCIe controller Endpoint
mode driver for Layerscape

CONFIG_PCI_ENDPOINT_TEST y/m/n m Enables host side test driver for
PCI Endpoint

6.5.8.4.3 Source Files

The driver source is maintained in the Linux kernel source tree.

Source File Description

drivers/pci/endpoint/* The PCI Endpoint framework source

drivers/pci/endpoint/functions/pci-epf-test.c The PCI Endpoint test driver source

drivers/pci/controller/dwc/pci-layerscape-ep.c The Layerscape platform PCIe Endpoint support source

drivers/misc/pci_endpoint_test.c The host side driver for PCI Endpoint source

6.5.8.4.4 Test Procedure (with LS1088A as example)

1. Update RCW to specify the PCIe controller to work as Endpoint.
For example:
Configurate the first PCIe controller as Endpoint, add the following line to the RCW file.

HOST_AGT_PEX1=1

2. Boot up Linux on Endpoint board and execute the following commands at the prompt.
Setup the first PF:

cd /sys/kernel/config/pci_ep/
mkdir functions/pci_epf_test/func1
echo 0x1957 > functions/pci_epf_test/func1/vendorid
echo 0x80c0 > functions/pci_epf_test/func1/deviceid
echo 2 > functions/pci_epf_test/func1/msi_interrupts
echo 8 > functions/pci_epf_test/func1/msix_interrupts
ln -s functions/pci_epf_test/func1 controllers/3400000.pcie_ep

If the controller supports 2 PFs, execute the following command to set up second PF:

cd /sys/kernel/config/pci_ep/
mkdir functions/pci_epf_test/func2
echo 0x1957 > functions/pci_epf_test/func2/vendorid
echo 0x80c0 > functions/pci_epf_test/func2/deviceid
echo 2 > functions/pci_epf_test/func2/msi_interrupts
echo 8 > functions/pci_epf_test/func2/msix_interrupts

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
281 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

ln -s functions/pci_epf_test/func2 controllers/3400000.pcie_ep

3. Boot up Linux on RC board and run the functionality tests
a. Get the pcitest application and script and install to /usr/sbin

Note: The pcitest application and script is at <Linux kernel>/tools/pci/
b. Run pcitest.sh.

Note: This script can only test the first PF. To test the second PF, you need to specify the second PF
by adding the option ‘-D /dev/pci-endpoint-test.1’ to each pcitest command in pcitest.sh and run the
script again.

./pcitest.sh
BAR tests
BAR0: OKAY
BAR1: NOT OKAY
BAR2: OKAY
BAR3: NOT OKAY
BAR4: OKAY
BAR5: NOT OKAY
Interrupt tests
SET IRQ TYPE TO LEGACY: OKAY
LEGACY IRQ: NOT OKAY
SET IRQ TYPE TO MSI: OKAY
MSI1: OKAY
MSI2: OKAY
SET IRQ TYPE TO MSI-X: OKAY
MSI-X1: OKAY
MSI-X2: OKAY
MSI-X3: OKAY
MSI-X4: OKAY
MSI-X5: OKAY
MSI-X6: OKAY
MSI-X7: OKAY
MSI-X8: OKAY
Read Tests
SET IRQ TYPE TO MSI: OKAY
READ (1 bytes): OKAY
READ (1024 bytes): OKAY
READ (1025 bytes): OKAY
READ (1024000 bytes): OKAY
READ (1024001 bytes): OKAY
Write Tests
WRITE (1 bytes): OKAY
WRITE (1024 bytes): OKAY
WRITE (1025 bytes): OKAY
WRITE (1024000 bytes): OKAY
WRITE (1024001 bytes): OKAY
Copy Tests
COPY (1 bytes): OKAY
COPY (1024 bytes): OKAY
COPY (1025 bytes): OKAY
COPY (1024000 bytes): OKAY
COPY (1024001 bytes): OKAY

6.5.8.4.5 Known Bugs, Limitations, or Technical Issues

Currently supported platforms: LS1028A, LS1046A, LS1088A, LX2160A rev2, and LX2162A.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
282 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

6.5.9 Quad Serial Peripheral Interface (QSPI)

6.5.9.1 U-Boot Configuration

Ensure that your board supports booting via QSPI.

For information about booting modes supported on your board and how to boot the board from the specific boot
option, see Layerscape Quick Start.

6.5.9.2 Kernel Configure Tree View Options

Device Drivers --->
 [*] SPI support --->
 <*> Freescale QSPI controller

6.5.9.3 Compile-time Configuration Options

Config Values Default Value Description

CONFIG_SPI_FSL_QUADSPI y/n y
Enable QSPI module

6.5.9.4 Verification in U-Boot

=> sf probe 0:0
SF: Detected s25fl512s with page size 256 Bytes, erase size 256 KiB, total 64
 MiB
=> sf erase 0x1000000 0x100000
SF: 1048576 bytes @ 0x1000000 Erased: OK
=> sf write 0x82000000 0x1000000 0x100000
device 0 offset 0x1000000, size 0x100000
SF: 1048576 bytes @ 0x1000000 Written: OK
=> sf read 0x81000000 0x1000000 0x100000
device 0 offset 0x1000000, size 0x100000
SF: 1048576 bytes @ 0x1000000 Read: OK
=> cmp.b 0x81000000 0x82000000 0x100000
Total of 1048576 byte(s) were the same
=>

6.5.9.5 Verification in Linux:

The booting log
......
spi-nor spi0.0: Failed to parse optional parameter table: ff81
spi-nor spi0.0: s25fs512s (65536 Kbytes)
spi-nor spi0.1: Failed to parse optional parameter table: ff81
spi-nor spi0.1: s25fs512s (65536 Kbytes)
......
Erase the QSPI flash
~# mtd_debug erase /dev/mtd1 0x1000000 0x100000
Erased 1048576 bytes from address 0x01000000 in flash
Write the QSPI flash

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
283 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

~# dd if=/dev/urandom of=data.hex count=1 bs=1M
1+0 records in
1+0 records out
1048576 bytes (1.0 MB) copied, 0.0132132 s, 79.4 MB/s
~# mtd_debug write /dev/mtd1 0x1000000 0x100000 data.hex
Copied 1048576 bytes from data.hex to address 0x01000000 in flash
Read the QSPI flash
~# mtd_debug read /dev/mtd1 0x1000000 0x100000 dump
Copied 1048576 bytes from address 0x01000000 in flash to dump
Check Read and Write
Use compare tools
~ # diff data.hex dump
~ #
If diff command has no print log, the QSPI verification is passed.

6.5.10 Flexible Serial Peripheral Interface (FlexSPI)

6.5.10.1 U-Boot Configuration

Ensure that your board supports booting via FlexSPI.

For information about booting modes supported on your board and how to boot the board from the specific boot
option, see Layerscape Quick Start.

6.5.10.2 Kernel Configure Tree View Options

Device Drivers --->
 [*] SPI support --->
 <*> NXP Flex SPI controller

6.5.10.3 Compile-time Configuration Options

Config Values Default Value Description

CONFIG_SPI_NXP_FLEXSPI y/n y
Enable FlexSPI module

6.5.10.4 Verification in U-Boot

=> sf probe 0:0
SF: Detected mt35xu512aba with page size 256 Bytes, erase size 128 KiB, total 64
 MiB
=> sf erase 0x1000000 0x100000
SF: 1048576 bytes @ 0x1000000 Erased: OK
=> sf write 0x82000000 0x1000000 0x100000
device 0 offset 0x1000000, size 0x100000
SF: 1048576 bytes @ 0x1000000 Written: OK
=> sf read 0x81000000 0x1000000 0x100000
device 0 offset 0x1000000, size 0x100000
SF: 1048576 bytes @ 0x1000000 Read: OK
=> cmp.b 0x81000000 0x82000000 0x100000
Total of 1048576 byte(s) were the same
=>

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
284 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

6.5.10.5 Verification in Linux:

The booting log
......
spi-nor spi0.0: found mt35xu512aba, expected m25p80
spi-nor spi0.0: mt35xu512aba (65536 Kbytes)
spi-nor spi0.1: found mt35xu512aba, expected m25p80
spi-nor spi0.1: mt35xu512aba (65536 Kbytes)
......
Erase the FlexSPI flash
~# mtd_debug erase /dev/mtd1 0x1000000 0x100000
Erased 1048576 bytes from address 0x01000000 in flash
Write the FlexSPI flash
~# dd if=/dev/urandom of=data.hex count=1 bs=1M
1+0 records in
1+0 records out
1048576 bytes (1.0 MB) copied, 0.00926398 s, 113 MB/s
~# mtd_debug write /dev/mtd1 0x1000000 0x100000 data.hex
Copied 1048576 bytes from data.hex to address 0x01000000 in flash
Read the FlexSPI flash
~# mtd_debug read /dev/mtd1 0x1000000 0x100000 dump
Copied 1048576 bytes from address 0x01000000 in flash to dump
Check Read and Write
Use compare tools
~# diff data.hex dump
~#
If diff command has no print log, the FlexSPI verification is passed.

6.5.11 Queue Direct Memory Access Controller (qDMA)

The qDMA controller transfers blocks of data between one source and one destination. The blocks of data
transferred can be represented in memory as contiguous or noncontiguous using scatter/gather table(s).
Channel virtualization is supported through enqueuing of DMA jobs to, or dequeuing DMA jobs from, different
work queues.

QDMA can support Layerscape platform with DPAA1 or DPAA2.

6.5.11.1 QDMA for platform with DPAA1

Kernel Configure Options

Below are the configure options need to be set/unset while doing "make menuconfig" for kernel.

Kernel Configure Tree View Options Description

Device Drivers --->
 [*] DMA Engine support --->
 --->
 <*> Freescale qDMA engine
 support

Support the Freescale qDMA engine with command queue
and legacy mode.
Channel virtualization is supported through enqueuing of
DMA jobs to,
or dequeuing DMA jobs from, different work queues.
This module can be found on Freescale LS SoCs.

Identifier

Below are the configure identifiers which are used in kernel source code and default configuration files.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
285 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Option Values Default Value Description

CONFIG_FSL_QDMA y/m/n n qDMA driver

Device Tree Binding

Device Tree Node

Below is an example device tree node required by this feature. Note that there may be differences among
platforms.

qdma: qdma@8380000 {
 compatible = "fsl,ls1046a-qdma", "fsl,ls1021a-qdma";
 reg = <0x0 0x8380000 0x0 0x1000>, /* Controller regs */
 <0x0 0x8390000 0x0 0x10000>, /* Status regs */
 <0x0 0x83a0000 0x0 0x40000>; /* Block regs */
 interrupts = <0 153 0x4>,
 <0 39 0x4>;
 interrupt-names = "qdma-error", "qdma-queue";
 channels = <8>;
 queues = <2>;
 status-sizes = <64>;
 queue-sizes = <64 64>;
 big-endian;
};

Source File

The following source files are related the feature in Linux kernel.

Source File Description

drivers/dma/fsl-qdma.c The qDMA driver file

Verification in Linux

root@ls1043ardb:~# echo 1024 > /sys/module/dmatest/parameters/test_buf_size;
root@ls1043ardb:~# echo 4 > /sys/module/dmatest/parameters/threads_per_chan;
root@ls1043ardb:~# echo 2 > /sys/module/dmatest/parameters/max_channels;
root@ls1043ardb:~# echo 100 > /sys/module/dmatest/parameters/iterations;
root@ls1043ardb:~# echo 1 > /sys/module/dmatest/parameters/run
[32.498138] dmatest: Started 4 threads using dma0chan0
[32.503430] dmatest: Started 4 threads using dma0chan1
[32.508939] dmatest: Started 4 threads using dma0chan2
[32.520073] dmatest: dma0chan0-copy0: summary 100 tests, 0 failures 4904 iops
 2452 KB/s (0)
[32.520076] dmatest: dma0chan0-copy2: summary 100 tests, 0 failures 4923 iops
 2461 KB/s (0)
[32.520079] dmatest: dma0chan0-copy3: summary 100 tests, 0 failures 4928 iops
 2661 KB/s (0)
[32.520176] dmatest: dma0chan0-copy1: summary 100 tests, 0 failures 4892 iops
 2446 KB/s (0)
[32.526438] dmatest: dma0chan1-copy0: summary 100 tests, 0 failures 4666 iops
 2240 KB/s (0)
[32.526441] dmatest: dma0chan1-copy2: summary 100 tests, 0 failures 4675 iops
 2291 KB/s (0)
[32.526469] dmatest: dma0chan1-copy3: summary 100 tests, 0 failures 4674 iops
 2197 KB/s (0)
[32.529610] dmatest: dma0chan2-copy1: summary 100 tests, 0 failures 5168 iops
 2791 KB/s (0)

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
286 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

[32.529613] dmatest: dma0chan2-copy0: summary 100 tests, 0 failures 5164 iops
 2478 KB/s (0)
[32.529754] dmatest: dma0chan2-copy3: summary 100 tests, 0 failures 5215 iops
 2555 KB/s (0)
[32.529756] dmatest: dma0chan2-copy2: summary 100 tests, 0 failures 5211 iops
 2709 KB/s (0)
[32.537881] dmatest: dma0chan1-copy1: summary 100 tests, 0 failures 3044 iops
 1461 KB/s (0) (0)
dmatest: dma0chan0-copy3: summary 1000 tests, 0 failures 4078 iops 33474 KB/s
 (0)
dmatest: dma0chan0-copy0: summary 1000 tests, 0 failures 3024 iops 24486 KB/s
 (0)
dmatest: dma0chan0-copy2: summary 1000 tests, 0 failures 2881 iops 23588 KB/s
 (0)

6.5.11.2 QDMA for platform with DPAA2

Kernel Configure Options

Below are the configure options need to be set/unset while doing "make menuconfig" for kernel.

Kernel Configure Tree View Options Description

Device Drivers --->
 [*] DMA Engine support ---> --->
 <*> NXP DPAA2 QDMA

NXP Data Path Acceleration
Architecture 2 QDMA driver, using the NXP MC bus driver.

Identifier

Below are the configure identifiers which are used in kernel source code and default configuration files.

Option Values Default Value Description

CONFIG_FSL_DPAA2_
QDMA

y/m/n n qDMA driver

Source Files

The following source files are related the feature in Linux kernel.

Source File Description

drivers/dma/dpaa2-qdma/* The qDMA driver file

Verification in Linux

Create DPDMAI object using restool:
restool dpdmai create --priorities=2,5
restool dprc assign dprc.1 --object=dpdmai.0 --plugged=1
Configure parameters for dmatest and run it:
echo 8 > /sys/module/dmatest/parameters/test_flag
echo 100 > /sys/module/dmatest/parameters/sg_size
echo 10000 > /sys/module/dmatest/parameters/iterations
echo 1 > /sys/module/dmatest/parameters/threads_per_chan
echo 8 > /sys/module/dmatest/parameters/max_channels
echo 64 > /sys/module/dmatest/parameters/test_buf_size
echo 1 > /sys/module/dmatest/parameters/run
Example log:

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
287 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

root@ls2085ardb:~# echo 8 > /sys/module/dmatest/parameters/test_flag
root@ls2085ardb:~# echo 10 > /sys/module/dmatest/parameters/iterations
root@ls2085ardb:~# echo 2 > /sys/module/dmatest/parameters/threads_per_chan
root@ls2085ardb:~# echo 32384 > /sys/module/dmatest/parameters/test_buf_size
root@ls2085ardb:~# echo 4 > /sys/module/dmatest/parameters/max_channels
root@ls2085ardb:~# echo 1 > /sys/module/dmatest/parameters/run
[68.460353] dmatest: Started 2 threads using dma0chan0
[68.465549] dmatest: Started 2 threads using dma0chan1
[68.465755] dmatest: dma0chan0-sg0: summary 10 tests, 0 failures 1847 iops
 422686 KB/s (0)
[68.465963] dmatest: dma0chan0-sg1: summary 10 tests, 0 failures 1786 iops
 367095 KB/s (0)
[68.470694] dmatest: dma0chan1-sg0: summary 10 tests, 0 failures 1938 iops
 608838 KB/s (0)
[68.470987] dmatest: dma0chan1-sg1: summary 10 tests, 0 failures 1843 iops
 517419 KB/s (0)
[68.503858] dmatest: Started 2 threads using dma0chan2
[68.509042] dmatest: Started 2 threads using dma0chan3
[68.509255] dmatest: dma0chan2-sg0: summary 10 tests, 0 failures 1849 iops
 549944 KB/s (0)
[68.509454] dmatest: dma0chan2-sg1: summary 10 tests, 0 failures 1789 iops
 473514 KB/s (0)
[68.514518] dmatest: dma0chan3-sg1: summary 10 tests, 0 failures 1830 iops
 414714 KB/s (0)
[68.515016] dmatest: dma0chan3-sg0: summary 10 tests, 0 failures 1670 iops
 512859 KB/s (0)

6.5.12 Real Time Clock (RTC)

6.5.12.1 Linux SDK for QorIQ Processors

6.5.12.2 Description

Provides the RTC function.

6.5.12.3 Kernel Configure Tree View Options

Kernel Configure Tree View Options Description

Device Drivers->
 Real Time Clock-->
 [*] Set system time from RTC on
startup and resume (new)
 (rtc0) RTC used to set the system
time (new)
 <[*] /sys/class/rtc/rtcN (sysfs)
 <[*] /proc/driver/rtc (procfs for
rtc0)
 <[*] /dev/rtcN (character devices)

Enable RTC driver

6.5.12.4 Compile-time Configuration Options

Option Values Default Value Description

CONFIG_RTC_LIB y/m/n y Enable RTC lib

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
288 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Option Values Default Value Description

CONFIG_RTC_CLASS y/m/n y Enable generic RTC class
support

CONFIG_RTC_HCTOSYS y/n y Set the system time from RTC
when startup and resume

CONFIG_RTC_HCTOSYS_DEVICE "rtc0" RTC used to set the system time

CONFIG_RTC_INTF_SYSFS y/m/n y Enable RTC to use sysfs

CONFIG_RTC_INTF_PROC y/m/n y Use RTC through the proc
interface

CONFIG_RTC_INTF_DEV y/m/n y Enable RTC to use /dev interface

6.5.12.5 Source Files

The driver source is maintained in the Linux kernel source tree.

Source File Description
drivers/rtc/ Linux RTC driver

6.5.12.6 Device Tree Binding

Preferred node name: rtc

Property Type Status Description
compatible string Required Should be "dallas,ds3232"

6.5.12.7 Default node:

i2c@3000 {
 #address-cells = <1>;
 #size-cells = <0>;
 compatible = "fsl-i2c";
 reg = <0x3000 0x100>;
 interrupts = <43 2>;
 interrupt-parent = <&mpic>;
 dfsrr;
 rtc@68 {
 compatible = "dallas,ds3232";
 reg = <0x68>;
 };
 };

6.5.12.8 Verification in Linux

Here is the RTC booting log

...
rtc-ds3232 1-0068: rtc core: registered ds3232 as rtc0
MC object device driver dpaa2_rtc registered
rtc-ds3232 0-0068: setting system clock to 2000-01-01 00:00:51 UTC (946684851)
...
NOTE: Please refer to the related DTS file to enable the RTC driver before
 building.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
289 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

For example, LS2080AQDS board, should enable the below option:
<*> Dallas/Maxim DS3232

Change the RTC time in Linux Kernel

~ # ls /dev/rtc -l
lrwxrwxrwx 1 root root 4 Jan 11 17:55 /dev/rtc -> rtc0
~ # date
Sat Jan 1 00:01:38 UTC 2000
~ # hwclock
Sat Jan 1 00:01:41 2000 0.000000 seconds
~ # date 011115502011
Tue Jan 11 15:50:00 UTC 2011
~ # hwclock -w
~ # hwclock
Tue Jan 11 15:50:36 2011 0.000000 seconds
~ # date 011115502010
Mon Jan 11 15:50:00 UTC 2010
~ # hwclock -s
~ # date
Tue Jan 11 15:50:49 UTC 2011
~ #
NOTE: Before using the rtc driver, make sure the /dev/rtc node in your file
 system is
correct. Otherwise, you need to make correct node for /dev/rtc

6.5.13 Synchronous Audio Interface (SAI)

6.5.13.1 Description

This document describes how to configure and test SAI audio driver for TWR-LS1021A and LS1028ARDB.
The integrated I2S module is NXP's Synchronous Audio Interface (SAI). The codec is SGTL5000 stereo audio
codec.

6.5.13.2 RCW configuration

Refer to the below table for the RCW for Audio on the TWR-LS1021A.

Board RCW

TWR-LS1021A Bit 364, EC1_EXT_SAI2_TX = 1; Bit 365, EC1_EXT_SAI2_
RX =1; Bit 366-367, EC1_BASE = 00

LS1028ARDB rcw_1300_audio.rcw, EC1_SAI4_5_PMUX = 2

6.5.13.3 Kernel Configure Options Tree View

Kernel Configure Tree View Options Description

Device Drivers --->
<*> I2C support --->
 [*] Enable compatibility bits for
 old user-space
 [*] I2C device interface
 [*] I2C bus multiplexing support

Enable ALSA SOC driver, I2C driver, and EDMA
driver.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
290 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Kernel Configure Tree View Options Description
 Multiplexer I2C Chip support
 --->
 <*> NXP PCA954x and PCA984x
 I2C Mux/switches
 [*] Autoselect pertinent helper
 modules
 I2C Hardware Bus support --->
 <*> IMX I2C interface
<*> Voltage and Current Regulator
 Support --->
 [*] Regulator debug support
 [*] Provide a dummy regulator if
 regulator lookups fail
 [*] Fixed voltage regulator
 support
<*> Sound card support
 <*> Advanced Linux Sound
 Architecture ->
 [*] OSS PCM (digital audio)
 API
 [*] OSS PCM (digital
 audio) API - Include plugin system
 [*] Support old ALSA API
 [*] Verbose procfs contents
 ALSA for SoC audio support
 --->
 SoC Audio for Freescale
 CPUs --->
 <*> Synchronous Audio
 Interface (SAI) module support
 CODEC drivers --->
 <*> Freescale SGTL5000
 CODEC
 <*> ASoC Simple sound card
 support
<*> DMA Engine support --->
 <*> Freescale eDMA engine support
 support

Identifier

Below are the configure identifiers which are used in kernel source code and default configuration files.

Option Values Default value Description

CONFIG_I2C_IMX y/m/n y I2C driver needed for
configuring SGTL5000

CONFIG_SOUND y/m/n y Enable sound card support

CONFIG_SND y/m/n y Enable advanced Linux sound
architecture supports

CONFIG_SND_PCM_OSS y/m/n y Enable OSS digital audio

CONFIG_SND_PCM_OSS_PLUGINS y/m/n y Support conversion of channels,
formats, and rates

CONFIG_SND_SUPPORT_OLD_API y/m/n y Enable support old ALSA API

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
291 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Option Values Default value Description

CONFIG_SND_SOC_FSL_SAI y/m/n y Enable SAI module support

CONFIG_SND_SOC_GENERIC_DMAENGINE_PCM y/m/n y Enable generic dma engine for
PCM

CONFIG_SND_SIMPLE_CARD y/m/n y Enable generic simple sound
card support

CONFIG_SND_SOC_SGTL5000 y/m/n y Enable codec sgtl5000 support

CONFIG_FSL_EDMA y/m/n y Enable EDMA engine support

6.5.13.4 Source files

The driver source is maintained in the Linux kernel source tree.

Source file Description

sound/soc/fsl ALSA SOC driver source

6.5.13.5 Verification in Linux

1. The following messages will be shown in the kernel boot process:

sgtl5000 5-000a: sgtl5000 revision 0x11
sgtl5000 5-000a: Using internal LDO instead of VDDD
......
asoc-simple-card sound: sgtl5000 <-> 2b60000.sai mapping ok
......
ALSA device list:
 #0: 2b60000.sai-sgtl5000

2. If the device nodes do not already exist, create directory /dev/snd/, and create device nodes with the
following commands in /dev/snd/ directory.

mknod controlC0 c 116 0
mknod pcmC0D0c c 116 24
mknod pcmC0D0p c 116 16

3. On TWR-LS1021A, the LineOut interface is J8 and the LineIn interface is J13
4. On LS1028ARDB, set the switches SW5[8] = ON. To configure BRDCFG3[2] = 1, use latest CPLD or run

this command “i2c mw 0x66 0x53 0x4” in U-Boot prompt. The lineout interface is J34.
5. Run the following aplay commands to test playback. Run the following arecord command to test record.

aplay -f S16_LE -r 44100 -t wav -c 2 44k-16bit-stereo.wav
arecord -d 10 -f S16_LE -r 44100 -t wav -c 2 44k-16bit-stereo-10s.wav
aplay -f S16_LE -r 44100 -t wav -c 2 44k-16bit-stereo-10s.wav

6. Use alsamixer to adjust the volume for playing by the option “PCM” and recording gain by the option "Mic" .
Use alsamixer to choose LINE IN or MIC.

6.5.14 Serial Advanced Technology Attachment (SATA)

6.5.14.1 Description

The driver supports NXP native SATA controller.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
292 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

6.5.14.2 Module Loading

SATA driver supports either kernel built-in or module.

Kernel Configure Tree View Options Description

Device Drivers--->
 <*> Serial ATA and Parallel ATA
 drivers --->
--- Serial ATA and Parallel ATA
 drivers
<*> AHCI SATA support
<*> Freescale QorIQ AHCI SATA
 support

Enables SATA controller support on Arm-based SoCs

6.5.14.3 Compile-time Configuration Options

Option Values Default Value Description

CONFIG_SATA_AHCI=y y/m/n y Enables SATA controller

CONFIG_SATA_AHCI_QORIQ=y y/m/n y Enables SATA controller

6.5.14.4 Source Files

The driver source is maintained in the Linux kernel source tree.

Source File Description
drivers/ata/ahci_qoriq.c Platform AHCI SATA support

6.5.14.5 Test Procedure

Please follow the following steps to use USB in Simics
(1) Boot up the kernel
...
fsl-sata ffe18000.sata: Sata FSL Platform/CSB Driver init
scsi0 : sata_fsl
ata1: SATA max UDMA/133 irq 74
fsl-sata ffe19000.sata: Sata FSL Platform/CSB Driver init
scsi1 : sata_fsl
ata2: SATA max UDMA/133 irq 41
...
(2) The disk will be found by kernel.
...
ata1: Signature Update detected @ 504 msecs
ata2: No Device OR PHYRDY change,Hstatus = 0xa0000000
ata2: SATA link down (SStatus 0 SControl 300)
ata1: SATA link up 1.5 Gbps (SStatus 113 SControl 300)
ata1.00: ATA-8: WDC WD1600AAJS-22WAA0, 58.01D58, max UDMA/133
ata1.00: 312581808 sectors, multi 0: LBA48 NCQ (depth 16/32)
ata1.00: configured for UDMA/133
scsi 0:0:0:0: Direct-Access ATA WDC WD1600AAJS-2 58.0 PQ: 0 ANSI: 5
sd 0:0:0:0: [sda] 312581808 512-byte logical blocks: (160 GB/149 GiB)
sd 0:0:0:0: Attached scsi generic sg0 type 0
sd 0:0:0:0: [sda] Write Protect is off

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
293 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

sd 0:0:0:0: [sda] Write cache: enabled, read cache: enabled, doesn't support DPO
or FUA
sda: sda1 sda2 sda3 sda4 < sda5 sda6 >
sd 0:0:0:0: [sda] Attached SCSI disk
(3)play with the disk according to the following log.
[root@ls1046 root]# fdisk -l /dev/sda
Disk /dev/sda: 160.0 GB, 160041885696 bytes
255 heads, 63 sectors/track, 19457 cylinders
Units = cylinders of 16065 * 512 = 8225280 bytes
Device Boot Start End Blocks Id System
/dev/sda1 1 237 1903671 83 Linux
/dev/sda2 238 480 1951897+ 82 Linux swap
/dev/sda3 481 9852 75280590 83 Linux
/dev/sda4 9853 19457 77152162+ f Win95 Ext'd (LBA)
/dev/sda5 9853 14655 38580066 83 Linux
/dev/sda6 14656 19457 38572033+ 83 Linux
[root@ls1046 root]#
[root@ls1046 root]# mke2fs /dev/sda1
mke2fs 1.41.4 (27-Jan-2009)
Filesystem label=
OS type: Linux
Block size=4096 (log=2)
Fragment size=4096 (log=2)
65280 inodes, 261048 blocks
13052 blocks (5.00%) reserved for the super user
First data block=0
Maximum filesystem blocks=268435456
8 block groups
32768 blocks per group, 32768 fragments per group
8160 inodes per group
Superblock backups stored on blocks:
32768, 98304, 163840, 229376
Writing inode tables: done
Writing superblocks and filesystem accounting information: done
This filesystem will be automatically checked every 22 mounts or
180 days, whichever comes first. Use tune2fs -c or -i to override.
[root@ls1046 root]#
[root@ls1046 root]# mkdir sata
[root@ls1046 root]# mount /dev/sda1 sata
[root@ls1046 root]# ls sata/
lost+found
[root@ls1046 root]# cp /bin/busybox sata/
[root@ls1046 root]# umount sata/
[root@ls1046 root]# mount /dev/sda1 sata/
[root@ls1046 root]# ls sata/
busybox lost+found
[root@ls1046 root]# umount sata/
[root@ls1046 root]# mount /dev/sda3 /mnt
[root@ls1046 root]# df
Filesystem 1K-blocks Used Available Use% Mounted on
rootfs 852019676 794801552 13937948 99% /
/dev/root 852019676 794801552 13937948 99% /
tmpfs 1036480 52 1036428 1% /dev
shm 1036480 0 1036480 0% /dev/shm
/dev/sda3 74098076 4033092 66300956 6% /mnt

6.5.14.6 Known Bugs, Limitations, or Technical Issues

• CD-ROM is not supported due to the silicon limitation

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
294 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

6.5.15 Security Engine (SEC)

SEC Device Drivers

6.5.15.1 Introduction and Terminology

The Linux kernel contains a Scatterlist Crypto API driver for the NXP SEC v4.x, v5.x security hardware blocks.

It integrates seamlessly with in-kernel crypto users, such as IPsec, in a way that any IPsec suite that configures
IPsec tunnels with the kernel will automatically use the hardware to do the crypto.

SEC v5.x is backward compatible with SEC v4.x hardware, so one can assume that subsequent SEC v4.x
references include SEC v5.x hardware, unless explicitly mentioned otherwise.

SEC v4.x hardware is known in Linux kernel as 'caam', after its internal block name: Cryptographic Accelerator
and Assurance Module.

There are several HW interfaces ("backends") that can be used to communicate (that is submit requests) with
the engine, their availability depends on the SoC:

• Register Interface (RI) - available on all SoCs (though access from kernel is restricted on DPAA2 SoCs)
Its main purpose is debugging (For example, single-stepping through descriptor commands), though it is
used also for RNG initialization.

• Job Ring Interface (JRI) - legacy interface, available on all SoCs; on most SoCs there are 4 rings
Note: there are cases when fewer rings are accessible / visible in the kernel - For example, when firmware
like Trusted Firmware-A (TF-A) reserves one of the rings.

• Queue Interface (QI) - available on SoCs implementing DPAA v1.x (Data Path Acceleration Architecture)
Requests are submitted indirectly via Queue Manager (QMan) HW block that is part of DPAA1.

• Data Path SEC Interface (DPSECI) - available on SoCs implementing DPAA v2.x
Similar to QI, requests are submitted via Queue Manager (QMan) HW block; however, the architecture is
different - instead of using the platform bus, the Management Complex (MC) bus is used, MC firmware
performing requires configuration to link DP objects. For more details, see DPAA2 Linux Software" section.

NXP provides device drivers for all these interfaces. Current section is focused on JRI, though some general /
common topics are also covered. For QI and DPSECI backends and compatible frontends, refer to the
dedicated chapters: for the DPAA1, Security Engine for DPAA2.

On top of these backends, there are the "frontends" - drivers that sit between the Linux Crypto API and backend
drivers. Their main tasks are to:

• register supported crypto algorithms
• process crypto requests coming from users (via the Linux Crypto API) and translate them into the proper

format understood by the backend being used
• forward the CAAM engine responses from the backend being used to the users

It is obvious that QI and DPSECI backends cannot co-exist (they can be compiled in the same "multi-platform"
kernel image, however runtime detection will make sure only the proper one is active). However, JRI + QI
and JRI + DPSECI are valid combinations, and both backends will be active if enabled; if a crypto algorithm is
supported by both corresponding frontends. For example, both caamalg and caamalg_qi register cbc(aes)), a
user requesting cbc(aes) will be bound to the implementation having the highest "crypto algorithm priority".

If the user wants to use a specific implementation:

• it is possible to ask for it explicitly by using the specific (unique) "driver name" instead of the generic
"algorithm name" - see official Linux kernel Crypto API documentation (section Crypto API Cipher References
And Priority); currently default priorities are: 3000 for JRI frontend and 2000 for QI and DPSECI frontends

• crypto algorithm priority could be changed dynamically using the "Crypto use configuration API" (provided that
CONFIG_CRYPTO_USER is enabled); one of the tools available that is capable to do this is "Linux crypto

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
295 / 1061

https://www.kernel.org/doc/html/latest/crypto/architecture.html#crypto-api-cipher-references-and-priority
https://www.kernel.org/doc/html/latest/crypto/architecture.html#crypto-api-cipher-references-and-priority
https://sourceforge.net/projects/crconf

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

layer configuration tool" and an example of increasing the priority of QI frontend based implementation of
echainiv(authenc(hmac(sha1),cbc(aes))) algorithm is:

$./crconf update driver "echainiv-authenc-hmac-sha1-cbc-aes-caam-qi" type 3
 priority 5000

Figure 25. Linux kernel - SEC device drivers overview

6.5.15.2 Source Files

The drivers source code is maintained in the Linux kernel source tree, under drivers/crypto/caam. Below is
a non-exhaustive list of files, mapping to Security Engine (SEC)(some files have been omitted since their
existence is justified only by driver logic / design):

Source File(s) Description Module name
ctrl.[c,h] Init (global settings, RNG, power

management, and so on.)
caam

desc.h HW description (CCSR registers,
and so on.)

N/A

desc_constr.h Inline append - descriptor
construction library

N/A

caamalg_desc.[c,h] (Shared) Descriptors library
(symmetric encryption, AEAD)

caamalg_desc

caamrng.c RNG (runtime) caamrng
jr.[c,h] JRI backend caam_jr
qi.[c,h] QI backend caam
dpseci.[c,h], dpseci_cmd.h DPSECI backend N/A (built-in)
caamalg.c JRI frontend (symmetric encryption,

AEAD)
caamalg

caamhash.c JRI frontend (hashing) caamhash
caampkc.c, pkc_desc.c JRI frontend (public key

cryptography)
caam_pkc

caamalg_qi.c QI frontend (symmetric encryption,
AEAD)

caamalg_qi

caamalg_qi2.[c,h] DPSECI frontend (symmetric
encryption, AEAD) dpaa2_caam

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
296 / 1061

https://sourceforge.net/projects/crconf

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

6.5.15.3 Module loading

CAAM device drivers can be compiled either built-in or as modules (with the exception of DPSECI backend,
which is always built in). See Section 6.5.15.2 for the list of module names and Section 6.5.15.4 for how kernel
configuration looks like and a mapping between menu entries and modules and / or functionalities enabled.

6.5.15.4 Kernel Configuration

CAAM device drivers are located in the "Cryptographic API" -> "Hardware crypto devices" submenu in the
kernel configuration. Depending on the target platform and / or configuration file(s) used, the output will be
different; below is an example taken from NXP Layerscape SDK for ARMv8 platforms with default options:

Kernel Configure Tree View Options Description

Cryptographic API --->
 [*] Hardware crypto devices
 --->
 <*> Freescale CAAM-Multicore
 platform driver backend (SEC)
 [] Enable debug output in
 CAAM driver
 <*> Freescale CAAM Job Ring
 driver backend (SEC)
 (9) Job Ring size
 [] Job Ring interrupt
 coalescing
 <*> Register algorithm
 implementations with the Crypto API
 <*> Queue Interface as
 Crypto API backend
 <*> Register hash
 algorithm implementations with
 Crypto API
 <*> Register public key
 cryptography implementations with
 Crypto API
 <*> Register caam device
 for hwrng API
 <M> QorIQ DPAA2 CAAM (DPSECI)
 driver

Enable CAAM device drivers, options:

• basic platform driver: Freescale CAAM-Multicore
platform driver backend (SEC); all non-DPAA2
suboptions depend on it

• backends / interfaces:
– Freescale CAAM Job Ring driver backend (SEC) -

JRI; this also enables QI (QI depends on JRI)
– QorIQ DPAA2 CAAM (DPSECI) driver - DPSECI

• frontends / crypto algorithms:
– symmetric encryption, AEAD, "stitched" AEAD, TLS;

Register algorithm implementations with the Crypto
API - via JRI (caamalg driver) or Queue Interface as
Crypto API backend - via QI (caamalg_qi drive)

– Register hash algorithm implementations with Crypto
API - hashing (only via JRI - caamhash driver)

– Register public key cryptography implementations
with Crypto API - asymmetric / public key (only via
JRI - caam_pkc driver)

– Register caam device for hwrng API - HW RNG (only
via JRI - caamrng driver)

– QorIQ DPAA2 CAAM (DPSECI) driver - DPSECI
• options: debugging, JRI ring size, JRI interrupt

coalescing

Networking support --->
 Network option --->
 <*> TCP/IP networking
 <*> IP: AH transformation
 <*> IP: ESP transformation
 <*> IP: IPsec transport mode
 <*> IP: IPsec tunnel mode

For IPsec support the TCP/IP networking option and
corresponding suboptions should be enabled.

6.5.15.5 Device Tree binding

Property Type Status Description
compatible String Required fsl,sec-vX.Y (preferred)

OR fsl,secX.Y

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
297 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

6.5.15.6 Sample Device Tree crypto node

crypto@30000 {
 compatible = "fsl,sec-v4.0";
 fsl,sec-era = <2>;
 #address-cells = <1>;
 #size-cells = <1>;
 reg = <0x300000 0x10000>;
 ranges = <0 0x300000 0x10000>;
 interrupt-parent = <&mpic>;
 interrupts = <92 2>;
 clocks = <&clks IMX6QDL_CLK_CAAM_MEM>,
 <&clks IMX6QDL_CLK_CAAM_ACLK>,
 <&clks IMX6QDL_CLK_CAAM_IPG>,
 <&clks IMX6QDL_CLK_EIM_SLOW>;
 clock-names = "mem", "aclk", "ipg", "emi_slow";
};

Note: See linux/Documentation/devicetree/bindings/crypto/fsl-sec4.txt file in the Linux kernel tree for more info.

6.5.15.7 How to test the drivers

To test the drivers, under the "Cryptographic API -> Cryptographic algorithm manager" kernel
configuration submenu, ensure that runtime self-tests are not disabled, that is the "Disable run-time self tests"
entry is not set. (CONFIG_CRYPTO_MANAGER_DISABLE_TESTS=n). This will run standard test vectors
against the drivers after they register supported algorithms with the kernel crypto API, usually at boot time.
Then run test on the target system. Below is a snippet extracted from the boot log of ARMv8-based LS1046A
platform, with JRI and QI enabled:

[...]
platform caam_qi: Linux CAAM Queue I/F driver initialised
caam 1700000.crypto: Instantiated RNG4 SH1
caam 1700000.crypto: device ID = 0x0a11030100000000 (Era 8)
caam 1700000.crypto: job rings = 4, qi = 1, dpaa2 = no
alg: No test for authenc(hmac(sha224),ecb(cipher_null)) (authenc-hmac-sha224-
ecb-cipher_null-caam)
alg: No test for authenc(hmac(sha256),ecb(cipher_null)) (authenc-hmac-sha256-
ecb-cipher_null-caam)
alg: No test for authenc(hmac(sha384),ecb(cipher_null)) (authenc-hmac-sha384-
ecb-cipher_null-caam)
alg: No test for authenc(hmac(sha512),ecb(cipher_null)) (authenc-hmac-sha512-
ecb-cipher_null-caam)
alg: No test for authenc(hmac(md5),cbc(aes)) (authenc-hmac-md5-cbc-aes-caam)
alg: No test for echainiv(authenc(hmac(md5),cbc(aes))) (echainiv-authenc-hmac-
md5-cbc-aes-caam)
alg: No test for echainiv(authenc(hmac(sha1),cbc(aes))) (echainiv-authenc-hmac-
sha1-cbc-aes-caam)
alg: No test for authenc(hmac(sha224),cbc(aes)) (authenc-hmac-sha224-cbc-aes-
caam)
alg: No test for echainiv(authenc(hmac(sha224),cbc(aes))) (echainiv-authenc-
hmac-sha224-cbc-aes-caam)
alg: No test for echainiv(authenc(hmac(sha256),cbc(aes))) (echainiv-authenc-
hmac-sha256-cbc-aes-caam)
alg: No test for authenc(hmac(sha384),cbc(aes)) (authenc-hmac-sha384-cbc-aes-
caam)
alg: No test for echainiv(authenc(hmac(sha384),cbc(aes))) (echainiv-authenc-
hmac-sha384-cbc-aes-caam)

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
298 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

alg: No test for echainiv(authenc(hmac(sha512),cbc(aes))) (echainiv-authenc-
hmac-sha512-cbc-aes-caam)
alg: No test for authenc(hmac(md5),cbc(des3_ede)) (authenc-hmac-md5-cbc-
des3_ede-caam)
alg: No test for echainiv(authenc(hmac(md5),cbc(des3_ede))) (echainiv-authenc-
hmac-md5-cbc-des3_ede-caam)
alg: No test for echainiv(authenc(hmac(sha1),cbc(des3_ede))) (echainiv-authenc-
hmac-sha1-cbc-des3_ede-caam)
alg: No test for echainiv(authenc(hmac(sha224),cbc(des3_ede))) (echainiv-
authenc-hmac-sha224-cbc-des3_ede-caam)
alg: No test for echainiv(authenc(hmac(sha256),cbc(des3_ede))) (echainiv-
authenc-hmac-sha256-cbc-des3_ede-caam)
alg: No test for echainiv(authenc(hmac(sha384),cbc(des3_ede))) (echainiv-
authenc-hmac-sha384-cbc-des3_ede-caam)
alg: No test for echainiv(authenc(hmac(sha512),cbc(des3_ede))) (echainiv-
authenc-hmac-sha512-cbc-des3_ede-caam)
alg: No test for authenc(hmac(md5),cbc(des)) (authenc-hmac-md5-cbc-des-caam)
alg: No test for echainiv(authenc(hmac(md5),cbc(des))) (echainiv-authenc-hmac-
md5-cbc-des-caam)
alg: No test for echainiv(authenc(hmac(sha1),cbc(des))) (echainiv-authenc-hmac-
sha1-cbc-des-caam)
alg: No test for echainiv(authenc(hmac(sha224),cbc(des))) (echainiv-authenc-
hmac-sha224-cbc-des-caam)
alg: No test for echainiv(authenc(hmac(sha256),cbc(des))) (echainiv-authenc-
hmac-sha256-cbc-des-caam)
alg: No test for echainiv(authenc(hmac(sha384),cbc(des))) (echainiv-authenc-
hmac-sha384-cbc-des-caam)
alg: No test for echainiv(authenc(hmac(sha512),cbc(des))) (echainiv-authenc-
hmac-sha512-cbc-des-caam)
alg: No test for authenc(hmac(md5),rfc3686(ctr(aes))) (authenc-hmac-md5-rfc3686-
ctr-aes-caam)
alg: No test for seqiv(authenc(hmac(md5),rfc3686(ctr(aes)))) (seqiv-authenc-
hmac-md5-rfc3686-ctr-aes-caam)
alg: No test for authenc(hmac(sha1),rfc3686(ctr(aes))) (authenc-hmac-sha1-
rfc3686-ctr-aes-caam)
alg: No test for seqiv(authenc(hmac(sha1),rfc3686(ctr(aes)))) (seqiv-authenc-
hmac-sha1-rfc3686-ctr-aes-caam)
alg: No test for authenc(hmac(sha224),rfc3686(ctr(aes))) (authenc-hmac-sha224-
rfc3686-ctr-aes-caam)
alg: No test for seqiv(authenc(hmac(sha224),rfc3686(ctr(aes)))) (seqiv-authenc-
hmac-sha224-rfc3686-ctr-aes-caam)
alg: No test for authenc(hmac(sha256),rfc3686(ctr(aes))) (authenc-hmac-sha256-
rfc3686-ctr-aes-caam)
alg: No test for seqiv(authenc(hmac(sha256),rfc3686(ctr(aes)))) (seqiv-authenc-
hmac-sha256-rfc3686-ctr-aes-caam)
alg: No test for authenc(hmac(sha384),rfc3686(ctr(aes))) (authenc-hmac-sha384-
rfc3686-ctr-aes-caam)
alg: No test for seqiv(authenc(hmac(sha384),rfc3686(ctr(aes)))) (seqiv-authenc-
hmac-sha384-rfc3686-ctr-aes-caam)
alg: No test for authenc(hmac(sha512),rfc3686(ctr(aes))) (authenc-hmac-sha512-
rfc3686-ctr-aes-caam)
alg: No test for seqiv(authenc(hmac(sha512),rfc3686(ctr(aes)))) (seqiv-authenc-
hmac-sha512-rfc3686-ctr-aes-caam)
caam algorithms registered in /proc/crypto
alg: No test for authenc(hmac(md5),cbc(aes)) (authenc-hmac-md5-cbc-aes-caam-qi)
alg: No test for echainiv(authenc(hmac(md5),cbc(aes))) (echainiv-authenc-hmac-
md5-cbc-aes-caam-qi)
alg: No test for echainiv(authenc(hmac(sha1),cbc(aes))) (echainiv-authenc-hmac-
sha1-cbc-aes-caam-qi)

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
299 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

alg: No test for authenc(hmac(sha224),cbc(aes)) (authenc-hmac-sha224-cbc-aes-
caam-qi)
alg: No test for echainiv(authenc(hmac(sha224),cbc(aes))) (echainiv-authenc-
hmac-sha224-cbc-aes-caam-qi)
alg: No test for echainiv(authenc(hmac(sha256),cbc(aes))) (echainiv-authenc-
hmac-sha256-cbc-aes-caam-qi)
alg: No test for authenc(hmac(sha384),cbc(aes)) (authenc-hmac-sha384-cbc-aes-
caam-qi)
alg: No test for echainiv(authenc(hmac(sha384),cbc(aes))) (echainiv-authenc-
hmac-sha384-cbc-aes-caam-qi)
alg: No test for echainiv(authenc(hmac(sha512),cbc(aes))) (echainiv-authenc-
hmac-sha512-cbc-aes-caam-qi)
alg: No test for authenc(hmac(md5),cbc(des3_ede)) (authenc-hmac-md5-cbc-
des3_ede-caam-qi)
alg: No test for echainiv(authenc(hmac(md5),cbc(des3_ede))) (echainiv-authenc-
hmac-md5-cbc-des3_ede-caam-qi)
alg: No test for echainiv(authenc(hmac(sha1),cbc(des3_ede))) (echainiv-authenc-
hmac-sha1-cbc-des3_ede-caam-qi)
alg: No test for echainiv(authenc(hmac(sha224),cbc(des3_ede))) (echainiv-
authenc-hmac-sha224-cbc-des3_ede-caam-qi)
alg: No test for echainiv(authenc(hmac(sha256),cbc(des3_ede))) (echainiv-
authenc-hmac-sha256-cbc-des3_ede-caam-qi)
alg: No test for echainiv(authenc(hmac(sha384),cbc(des3_ede))) (echainiv-
authenc-hmac-sha384-cbc-des3_ede-caam-qi)
alg: No test for echainiv(authenc(hmac(sha512),cbc(des3_ede))) (echainiv-
authenc-hmac-sha512-cbc-des3_ede-caam-qi)
alg: No test for authenc(hmac(md5),cbc(des)) (authenc-hmac-md5-cbc-des-caam-qi)
alg: No test for echainiv(authenc(hmac(md5),cbc(des))) (echainiv-authenc-hmac-
md5-cbc-des-caam-qi)
alg: No test for echainiv(authenc(hmac(sha1),cbc(des))) (echainiv-authenc-hmac-
sha1-cbc-des-caam-qi)
alg: No test for echainiv(authenc(hmac(sha224),cbc(des))) (echainiv-authenc-
hmac-sha224-cbc-des-caam-qi)
alg: No test for echainiv(authenc(hmac(sha256),cbc(des))) (echainiv-authenc-
hmac-sha256-cbc-desi-caam-qi)
alg: No test for echainiv(authenc(hmac(sha384),cbc(des))) (echainiv-authenc-
hmac-sha384-cbc-des-caam-qi)
alg: No test for echainiv(authenc(hmac(sha512),cbc(des))) (echainiv-authenc-
hmac-sha512-cbc-des-caam-qi)
platform caam_qi: algorithms registered in /proc/crypto
caam_jr 1710000.jr: registering rng-caam
caam 1700000.crypto: caam pkc algorithms registered in /proc/crypto
[...]

6.5.15.8 Crypto algorithms support

Algorithms Supported in the linux kernel scatterlist Crypto API

The Linux kernel contains various users of the Scatterlist Crypto API, including its IPsec implementation,
sometimes referred to as the NETKEY stack. The driver, after registering supported algorithms with the Crypto
API, is therefore used to process per-packet symmetric crypto requests and forward them to the SEC hardware.

Since SEC hardware processes requests asynchronously, the driver registers asynchronous algorithm
implementations with the crypto API: ahash, ablkcipher, and aead with CRYPTO_ALG_ASYNC set in .cra_flags.

Different combinations of hardware and driver software version support different sets of algorithms, so
searching for the driver name in /proc/crypto on the desired target system will ensure the correct report of what
algorithms are supported.

Authenticated Encryption with Associated Data (AEAD) algorithms
UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
300 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

These algorithms are used in applications where the data to be encrypted overlaps, or partially overlaps, the
data to be authenticated, as is the case with IPsec and TLS protocols. These algorithms are implemented in the
driver such that the hardware makes a single pass over the input data, and both encryption and authentication
data are written out simultaneously. The AEAD algorithms are mainly for use with IPsec ESP (however there is
also support for TLS 1.0 record layer encryption).

CAAM drivers currently support offloading the following AEAD algorithms:

• "stitched" AEAD: all combinations of { NULL, CBC-AES, CBC-DES, CBC-3DES-EDE, RFC3686-CTR-AES } x
HMAC-{MD-5, SHA-1,-224,-256,-384,-512}

• "true" AEAD: generic GCM-AES, GCM-AES used in IPsec: RFC4543-GCM-AES and RFC4106-GCM-AES
• TLS 1.0 record layer encryption using the "stitched" AEAD cipher suite CBC-AES-HMAC-SHA1

Encryption algorithms

The CAAM driver currently supports offloading the following encryption algorithms.

Authentication algorithms

The CAAM driver's ahash support includes keyed (hmac) and unkeyed hashing algorithms.

Asymmetric (public key) algorithms

Currently, RSA is the only public key algorithm supported.

Random Number Generation

caamrng frontend driver supports random number generation services via the kernel's built-in hwrng interface
when implemented in hardware. To enable:

1. verify that the hardware random device file, For example, /dev/hwrng or /dev/hwrandom exists. If it does not
exist, make it with:

$ mknod /dev/hwrng c 10 183

2. verify /dev/hwrng does not block indefinitely and produces random data:

$ rngtest -C 1000 < /dev/hwrng

3. verify the kernel gets entropy:

$ rngtest -C 1000 < /dev/random

If it blocks, a kernel entropy supplier daemon, such as rngd, may need to be run. See linux/Documentation/
hw_random.txt for more info.

Algorithm name / Backend Job Ring Interface Queue Interface DPSEC Interface

rsa Yes No No

pkcs1pad(rsa, sha*) Yes No No

tls10(hmac(sha1), cbc(aes)) No Yes Yes

authenc(hmac(md5), cbc(aes)) Yes (also echainiv) Yes (also echainiv) Yes (also echainiv)

authenc(hmac(sha1), cbc(aes)) Yes (also echainiv) Yes (also echainiv) Yes (also echainiv)

authenc(hmac(sha224), cbc(aes)) Yes (also echainiv) Yes (also echainiv) Yes (also echainiv)

authenc(hmac(sha256), cbc(aes)) Yes (also echainiv) Yes (also echainiv) Yes (also echainiv)

authenc(hmac(sha384), cbc(aes)) Yes (also echainiv) Yes (also echainiv) Yes (also echainiv)

authenc(hmac(sha512), cbc(aes)) Yes (also echainiv) Yes (also echainiv) Yes (also echainiv)

Table 49. Algorithms supported by each interface / backend

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
301 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Algorithm name / Backend Job Ring Interface Queue Interface DPSEC Interface

authenc(hmac(md5), cbc(des3_ede)) Yes (also echainiv) Yes (also echainiv) Yes (also echainiv)

authenc(hmac(sha1), cbc(des3_ede)) Yes (also echainiv) Yes (also echainiv) Yes (also echainiv)

authenc(hmac(sha224), cbc(des3_ede)) Yes (also echainiv) Yes (also echainiv) Yes (also echainiv)

authenc(hmac(sha256), cbc(des3_ede)) Yes (also echainiv) Yes (also echainiv) Yes (also echainiv)

authenc(hmac(sha384), cbc(des3_ede)) Yes (also echainiv) Yes (also echainiv) Yes (also echainiv)

authenc(hmac(sha512), cbc(des3_ede)) Yes (also echainiv) Yes (also echainiv) Yes (also echainiv)

authenc(hmac(md5), cbc(des)) Yes (also echainiv) Yes (also echainiv) Yes (also echainiv)

authenc(hmac(sha1), cbc(des)) Yes (also echainiv) Yes (also echainiv) Yes (also echainiv)

authenc(hmac(sha224), cbc(des)) Yes (also echainiv) Yes (also echainiv) Yes (also echainiv)

authenc(hmac(sha256), cbc(des)) Yes (also echainiv) Yes (also echainiv) Yes (also echainiv)

authenc(hmac(sha384), cbc(des)) Yes (also echainiv) Yes (also echainiv) Yes (also echainiv)

authenc(hmac(sha512), cbc(des)) Yes (also echainiv) Yes (also echainiv) Yes (also echainiv)

authenc(hmac(md5), rfc3686(ctr(aes))) Yes (also seqiv) Yes (also seqiv) Yes (also seqiv)

authenc(hmac(sha1), rfc3686(ctr(aes))) Yes (also seqiv) Yes (also seqiv) Yes (also seqiv)

authenc(hmac(sha224), rfc3686(ctr(aes))) Yes (also seqiv) Yes (also seqiv) Yes (also seqiv)

authenc(hmac(sha256), rfc3686(ctr(aes))) Yes (also seqiv) Yes (also seqiv) Yes (also seqiv)

authenc(hmac(sha384), rfc3686(ctr(aes))) Yes (also seqiv) Yes (also seqiv) Yes (also seqiv)

authenc(hmac(sha512), rfc3686(ctr(aes))) Yes (also seqiv) Yes (also seqiv) Yes (also seqiv)

authenc(hmac(md5), ecb(cipher_null)) Yes No No

authenc(hmac(sha1), ecb(cipher_null)) Yes No No

authenc(hmac(sha224), ecb(cipher_null)) Yes No No

authenc(hmac(sha256), ecb(cipher_null)) Yes No No

authenc(hmac(sha384), ecb(cipher_null)) Yes No No

authenc(hmac(sha512), ecb(cipher_null)) Yes No No

rfc7539(chacha20, poly1305) Yes (LX2160A only) No Yes (LX2160A only)

rfc7539esp(chacha20, poly1305) Yes (LX2160A only) No Yes (LX2160A only)

gcm(aes) Yes Yes Yes

rfc4543(gcm(aes)) Yes Yes Yes

rfc4106(gcm(aes)) Yes Yes Yes

ecb(aes) Yes No No

ecb(des3_ede) Yes No No

ecb(des) Yes No No

ecb(arc4) Yes No No

cbc(aes) Yes Yes Yes

cbc(des3_ede) Yes Yes Yes

cbc(des) Yes Yes Yes

Table 49. Algorithms supported by each interface / backend...continued

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
302 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Algorithm name / Backend Job Ring Interface Queue Interface DPSEC Interface

ctr(aes) Yes Yes Yes

rfc3686(ctr(aes)) Yes Yes Yes

chacha20 No No Yes (LX2160A only)

xts(aes) Yes Yes Yes

cmac(aes) Yes No No

xcbc(aes) Yes No No

hmac(md5) Yes No Yes

hmac(sha1) Yes No Yes

hmac(sha224) Yes No Yes

hmac(sha256) Yes No Yes

hmac(sha384) Yes No Yes

hmac(sha512) Yes No Yes

md5 Yes No Yes

sha1 Yes No Yes

sha224 Yes No Yes

sha256 Yes No Yes

sha384 Yes No Yes

sha512 Yes No Yes

Table 49. Algorithms supported by each interface / backend...continued

6.5.15.9 CAAM Job Ring backend driver specifics

CAAM Job Ring backend driver (caam_jr) implements and utilizes the job ring interface (JRI) for submitting
crypto API service requests from the frontend drivers (caamalg, caamhash, caam_pkc, caamrng) to CAAM
engine.

CAAM drivers have a few options, most notably hardware job ring size and interrupt coalescing. They can be
used to fine-tune performance for a particular use case.

The option Freescale CAAM-Multicore platform driver backend enables the basic platform driver (caam). All
(non-DPAA2) suboptions depend on this.

The option Freescale CAAM Job Ring driver backend (SEC) enables the Job Ring backend (caam_jr).

The suboption Job Ring Size allows the user to select the size of the hardware job rings; if requests arrive at the
driver enqueue entry point in a bursty nature, the bursts' maximum length can be approximated, and so on. One
can set the greatest burst length to save performance and memory consumption.

The suboption Job Ring interrupt coalescing allows the user to select the use of the hardware’s interrupt
coalescing feature. Note that the driver already performs IRQ coalescing in software, and zero-loss benchmarks
have in fact produced better results with this option turned off. If selected, two additional options become
effective:

• Job Ring interrupt coalescing count threshold (CRYPTO_DEV_FSL_CAAM_INTC_THLD)
Selects the value of the descriptor completion threshold, in the range 1-256. A selection of 1 effectively
defeats the coalescing feature, and any selection equal or greater than the selected ring size will force
timeouts for each interrupt.

• Job Ring interrupt coalescing timer threshold (CRYPTO_DEV_FSL_CAAM_INTC_TIME_THLD)
UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
303 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Selects the value of the completion timeout threshold in multiples of 64 SEC interface clocks, to which, if no
new descriptor completions occur within this window (and at least one completed job is pending), then an
interrupt will occur. This is selectable in the range 1-65535.

The options to register to Crypto API, hwrng API respectively, allow the frontend drivers to register their
algorithm capabilities with the corresponding APIs. They should be deselected only when the purpose is to
perform Crypto API requests in software (on the GPPs) instead of offloading them on SEC engine.

caamhash frontend (hash algorithms) may be individually turned off, since the nature of the application may be
such that it prefers software (core) crypto latency due to many small-sized requests.

caam_pkc frontend (public key / asymmetric algorithms) can be turned off too, if needed.

caamrng frontend (Random Number Generation) may be turned off in case there is an alternate source of
entropy available to the kernel.

6.5.15.10 Verifying driver operation and correctness

Other than noting the performance advantages due to the crypto offload, one can also ensure the hardware is
doing the crypto by looking for driver messages in dmesg.

The driver emits console messages at initialization time:
caam algorithms registered in /proc/crypto
caam_jr 1710000.jr: registering rng-caam
caam 1700000.crypto: caam pkc algorithms registered in /proc/crypto

If the messages are not present in the logs, either the driver is not configured in the kernel, or no SEC
compatible device tree node is present in the device tree.

6.5.15.11 Incrementing IRQs in /proc/interrupts

Given a time period when crypto requests are being made, the SEC hardware will fire completion notification
interrupts on the corresponding Job Ring:
$ cat /proc/interrupts | grep jr
 CPU0 CPU1 CPU2 CPU3
[...]
 78: 1007 0 0 0 GICv2 103 Level 1710000.jr
 79: 7 0 0 0 GICv2 104 Level 1720000.jr
 80: 0 0 0 0 GICv2 105 Level 1730000.jr
 81: 0 0 0 0 GICv2 106 Level 1740000.jr

If the number of interrupts fired increment, then the hardware is being used to do the crypto.

If the numbers do not increment, then first check the algorithm being exercised is supported by the driver.
If the algorithm is supported, there is a possibility that the driver is in polling mode (NAPI mechanism) and
the hardware statistics in debugfs (inbound / outbound bytes encrypted / protected - see below) should be
monitored.

6.5.15.12 Verifying the 'self test' fields say 'passed' in /proc/crypto

An entry such as the one below means the driver has successfully registered support for the algorithm with the
kernel crypto API:

name : cbc(aes) driver : cbc-aes-caam module : kernel priority : 3000 refcnt : 1
 selftest : passed internal : no type : givcipher async : yes blocksize : 16 min
 keysize : 16 max keysize : 32 ivsize : 16 geniv : <built-in>

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
304 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Note that although a test vector may not exist for a particular algorithm supported by the driver, the kernel will
emit messages saying which algorithms weren't tested, and mark them as 'passed' anyway:

[...]
alg: No test for authenc(hmac(sha224),ecb(cipher_null)) (authenc-hmac-sha224-
ecb-cipher_null-caam)
alg: No test for authenc(hmac(sha256),ecb(cipher_null)) (authenc-hmac-sha256-
ecb-cipher_null-caam)
[...]
alg: No test for authenc(hmac(md5),cbc(aes)) (authenc-hmac-md5-cbc-aes-caam)
alg: No test for echainiv(authenc(hmac(md5),cbc(aes))) (echainiv-authenc-hmac-
md5-cbc-aes-caam)
alg: No test for echainiv(authenc(hmac(sha1),cbc(aes))) (echainiv-authenc-hmac-
sha1-cbc-aes-caam)
[...]
alg: No test for authenc(hmac(sha512),rfc3686(ctr(aes))) (authenc-hmac-sha512-
rfc3686-ctr-aes-caam)
alg: No test for seqiv(authenc(hmac(sha512),rfc3686(ctr(aes)))) (seqiv-authenc-
hmac-sha512-rfc3686-ctr-aes-caam)
[...]

6.5.15.13 Examining the hardware statistics registers in debugfs

When using the JRI or QI backend, performance monitor registers can be checked, provided
CONFIG_DEBUG_FS is enabled in the kernel’s configuration. If debugfs is not automatically mounted at boot
time, then a manual mount must be performed in order to view these registers. This normally can be done with
a superuser shell command:

$ mount -t debugfs none /sys/kernel/debug

Once done, the user can read controller registers in /sys/kernel/debug/1700000.crypto/ctl. It should be noted
that debugfs will provide a decimal integer view of most accessible registers provided, with the exception of the
KEK/TDSK/TKEK registers; those registers are long binary arrays, and should be filtered through a binary dump
utility such as hexdump.

Specifically, the CAAM hardware statistics registers available are:

fault_addr, or FAR (Fault Address Register): holds the value of the physical address where a read or write error
occurred.

fault_detail, or FADR (Fault Address Detail Register): holds details regarding the bus transaction where the
error occurred.

fault_status, or CSTA (CAAM Status Register): holds status information relevant to the entire CAAM block.

ib_bytes_decrypted: holds contents of PC_IB_DECRYPT (Performance Counter Inbound Bytes Decrypted
Register)

ib_bytes_validated: holds contents of PC_IB_VALIDATED (Performance Counter Inbound Bytes Validated
Register)

ib_rq_decrypted: holds contents of PC_IB_DEC_REQ (Performance Counter Inbound Decrypt Requests
Register)

kek: holds contents of JDKEKR (Job Descriptor Key Encryption Key Register)

ob_bytes_encrypted: holds contents of PC_OB_ENCRYPT (Performance Counter Outbound Bytes Encrypted
Register)

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
305 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

ob_bytes_protected: holds contents of PC_OB_PROTECT (Performance Counter Outbound Bytes Protected
Register)

ob_rq_encrypted: holds contents of PC_OB_ENC_REQ (Performance Counter Outbound Encrypt Requests
Register)

rq_dequeued: holds contents of PC_REQ_DEQ (Performance Counter Requests Dequeued Register)

tdsk: holds contents of TDKEKR (Trusted Descriptor Key Encryption Key Register)

tkek: holds contents of TDSKR (Trusted Descriptor Signing Key Register)

For more information see section "Performance Counter, Fault and Version ID Registers" in the Security (SEC)
Reference Manual (SECRM) of each SoC (available on company's website).

Note: for QI backend there is also qi_congested: SW-based counter that shows how many times queues going
to / from CAAM to QMan hit the congestion threshold.

6.5.15.14 Kernel configuration to support CAAM device drivers

Using the driver

Once enabled, the driver will forward kernel crypto API requests to the SEC hardware for processing.

Running IPsec

The IPsec stack built in to the kernel (usually called NETKEY) will automatically use crypto drivers to offload
crypto operations to the SEC hardware. Documentation regarding how to set up an IPsec tunnel can be found in
corresponding open source IPsec suite packages, For example, strongswan.org, openswan, setkey, and so on.
DPAA2-specific section contains a generic helper script to configure IPsec tunnels.

Running OpenSSL

See Hardware Offloading with OpenSSL for more details on how to offload OpenSSL cryptographic operations
in the SEC crypto engine (via cryptodev).

Executing custom descriptors

SEC drivers have public descriptor submission interfaces corresponding to the following backends:

• JRI: drivers/crypto/caam/jr.c:caam_jr_enqueue()
• QI: drivers/crypto/caam/qi.c:caam_qi_enqueue()
• DPSECI: drivers/crypto/caam/caamalg_qi2.c:dpaa2_caam_enqueue()

caam_jr_enqueue()

Name

caam_jr_enqueue — Enqueue a job descriptor head. Returns 0 if OK, -EBUSY if the ring is full, -EIO if it cannot
map the caller's descriptor.

Synopsis

int caam_jr_enqueue (struct device *dev, u32 *desc,
 void (*cbk) (struct device *dev, u32 *desc, u32 status, void *areq),
 void *areq);

Arguments

dev: contains the job ring device that is to process this request.

desc: descriptor that initiated the request, same as “desc” being argued to caam_jr_enqueue.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
306 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

cbk: pointer to a callback function to be invoked upon completion of this request. This has the form:
callback(struct device *dev, u32 *desc, u32 stat, void *arg)

areq: optional pointer to a user argument for use at callback time.

caam_qi_enqueue()

Name

caam_qi_enqueue — Enqueue a frame descriptor (FD) into a QMan frame queue. Returns 0 if OK, -EIO if it
cannot map the caller's S/G array, -EBUSY if QMan driver fails to enqueue the FD for some reason.

Synopsis

int caam_qi_enqueue(struct device *qidev, struct caam_drv_req *req);

Arguments

qidev: contains the queue interface device that is to process this request.

req: pointer to the request structure the driver application should fill while submitting a job to driver, containing
a callback function and its parameter, Queue Manager S/Gs for input and output, a per-context structure
containing the CAAM shared descriptor, and so on.

dpaa2_caam_enqueue()

Name

dpaa2_caam_enqueue — Enqueue a frame descriptor (FD) into a QMan frame queue. Returns 0 if OK, -
EBUSY if QMan driver fails to enqueue the FD for some reason or if congestion is detected.

Synopsis

int dpaa2_caam_enqueue(struct device *dev, struct caam_request *req);

Arguments

dev: DPSECI device.

req: pointer to the request structure the driver application should fill while submitting a job to driver, containing
a callback function and its parameter, Queue Manager S/Gs for input and output, a per-context structure
containing the CAAM shared descriptor, and so on.

Refer to the source code for usage examples.

6.5.15.15 Supporting Documentation

DPAA1-specific Software: Section 7.2.7

DPAA2-specific Software: Section 7.3.2.6

6.5.16 Time Division Multiplexing (TDM)

6.5.16.1 Description

Time Division Multiplexing (TDM) is a type of digital or analog multiplexing in which two or more signals or bit
streams are transferred apparently simultaneously as subchannels in one communication channel, but are
physically taking turns on the channel. The time domain is divided into several recurrent timeslots of fixed
length, one for each subchannel. A sample byte or data block of subchannel 1 is transmitted during timeslot 1,
subchannel 2 during timeslot 2, and so on. One TDM frame consists of one timeslot per subchannel. After the

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
307 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

last subchannel the cycle starts all over again with a new frame, starting with the second sample, byte or data
block from subchannel 1, and so on.

TDM or Time Division Multiplexing is an essential component to run VoIP applications on NXP Platforms. Its
function is to receive and send time division multiplexed voice samples on the physical TDM lines.

This document explains the procedure to test the TDM on FSL MPC85xx platforms.

The test procedure shows the method to run a small TDM demo application which transfers voice from one
TDM channel to the other.

The overall TDM software stack and the data flow is depicted below. On the top, is a generic TDM framework
layer which can ideally integrate with any TDM driver beneath it.

Generally NXP platforms offer two types of TDM interfaces:

1. NXP TDM
2. QE based TDM

This manual specifically talks about NXP TDM

6.5.16.2 U-Boot Configuration

Compile-time options

Check the platform-specific document to check if any specific U-Boot configuration is required for TDM feature.

Also ensure if there is any requirement from pin mux perspective to enable TDM.

Runtime options

Refer to platform-specific document for any specific hwconfig or environment variables which may be required
for TDM functionality.

Also the FXS ports location will be mentioned in the platform-specific document.

6.5.16.3 Kernel Configure Options

Tree View

Below are the configure options need to be set/unset while doing "make menuconfig" for kernel

Kernel Configure Tree view options Description

Device Drivers --->
 <*> TDM support --->
 --- TDM support
 [] TDM Core debugging
 messages (NEW)
 <M> TDM test Module
 TDM Device support
 --->
 <*> Driver
 for Freescale TDM controller
 Line Control
 Devices --->
 <*> Zarlink
 Slic intialization Module

Enable TDM Framework

Enable TDM test as Module

Enable TDM driver

Enable SLIC driver

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
308 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Identifier

Below are the configure identifiers which are used in kernel source code and default configuration files.

Option Value Default value in BSP Description

CONFIG_TDM y/n/m N Enable / Disable TDM
Framework support

CONFIG_TDM_FSL y/n/m N Enable / Disable TDM driver,
depends on TDM framework
and CONFIG_FSL_SOC

CONFIG_SLIC_ZARLINK y/n/m N Enable / Disable SLIC driver ,
depends on TDM driver
and TDM framework, and
CONFIG_FSL_ESPI

CONFIG_TDM_TEST y/n/m N Enable / disable TDM test
module

Option Value Default value in
BSP

Description

CONFIG_TDM y/n/m N Enable / Disable TDM Framework
support

CONFIG_TDM_FSL y/n/m N Enable / Disable TDM driver,
depends on TDM framework and
CONFIG_FSL_SOC

CONFIG_SLIC_ZARLINK y/n/m N Enable / Disable SLIC driver , depends
on TDM driver and TDM framework,
and CONFIG_FSL_ESPI

CONFIG_TDM_TEST y/n/m N Enable / disable TDM test module

6.5.16.4 Device Tree Binding

Below is the definition of the device tree node required by this feature

TDM device dts entries.(as many entries as the number of TDM controllers on the platform)

Property Type Status Description
compatible = "fsl,tdm1.0"; <string> Should contain "fsl,tdm1.0"
reg = <0x16000 0x200
0x2c000 0x2000>;

<tdm-reg-offset tdm-reg-size
dmac-reg-offset dmac-reg-
size>

Offset and length of the register set
for the NXP TDM and TDM-DMAC

interrupts = <16 8 62 8>; <tdm-err-intr tdm-err-intr-type
dmac-intr dmac-intr-type>

Defines two interrupt specifiers
namely interrupt + number and
interrupt type for TDM error and TDM
DMAC

fsl-max-time-slots = <128> <u32> Maximum number of 8-bit time slots
in one TDM frame that hardware
supports.

SLIC device dts entries (As many entries as the number of SLICs on the platform)

Note that the below mentioned SLIC entry is for the Legerity SLIC which is connected to the chip through SPI
interface.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
309 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Property Type Status Description
compatible = "zarlink,le88266"; Should be "zarlink,le88266"
reg = <1>; Chip select number of the SPI bus SLIC is

connected to
spi-max-frequency =<8000000>; The maximum frequency the SLIC can

operate at.

Below is an example device tree node required by this feature. Note that it may have differences among
platforms.

 tdm@16000 {
 compatible = "fsl,tdm1.0";
 reg = <0x16000 0x200 0x2c000 0x2000>;
 clock-frequency = <0>;
 interrupts = <16 8 62 8>;
 phy-handle = <zarlink1>
 fsl-max-time-slots = <128>
 };
spi@7000 {
 cell-index = <0>;
 #address-cells = <1>;
 #size-cells = <0>;
 compatible = "fsl,espi";
 reg = <0x7000 0x1000>;
 interrupts = <59 0x2>;
 interrupt-parent = <&mpic>;
 mode = "cpu";
 ………….
 …………..
 …………..
 legerity@0{
 compatible = "zarlink,le88266";
 reg = <1>;
 spi-max-frequency = <8000000>;
 };
 legerity@1{
 compatible = "zarlink,le88266";
 reg = <2>;
 spi-max-frequency = <8000000>;
 };
};

6.5.16.5 Source Files

The following source files are related to this feature in Linux kernel.

Source file Purpose
include/linux/tdm.h Header file for TDM framework
drivers/tdm/tdm-core.c Source file for TDM framework
drivers/tdm/device/tdm_fsl.h Header file for TDM driver
drivers/tdm/device/tdm_fsl.c Source file for TDM driver
drivers/tdm/line_ctrl/slic_zarlink.h Header file for SLIC driver
drivers/tdm/line_ctrl/slic_zarlink.c Source file for SLIC driver

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
310 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Source file Purpose
drivers/tdm/test/tdm_test.c Source file for TDM test module

6.5.16.6 Verification in U-Boot

N/A

6.5.16.7 Verification in Linux

1. Attach two analog phones at the two FXS ports of the board. (In case there are two SLIC devices there
would be 4 FXS ports available).
Note: Refer to the platform documentation for specific information on FXS ports.

2. Bring up the platform with the kernel image and dts configured as explained above.
Look for the below mentioned messages in the kernel boot log.
This will ensure TDM and SLIC initialization.

...

...
EDAC MC: Ver: 2.1.0
fsl_tdm: Freescale TDM Driver Adapter:Init
adapter [fsl_tdm] registered
SLIC: Freescale DEVELOPED ZARLINK SLIC DRIVER
##
This driver was created solely by Freescale,
without the assistance, support or intellectual
property of Zarlink Semiconductor. No
maintenance or support will be provided by
Zarlink Semiconductor regarding this driver.
##
SLIC probed!
SLIC config success
SLIC: product code 1 read is 4
SLIC: product code 2 read is b3
SLIC: config read is ff
SLIC: config read is 8a
DEV reg is 82
DEV reg after is 2
Mask reg before setting is 3f bf
Mask reg after setting is f6 f6
Read Tx Timeslot for CH1 is 0
Read Tx Timeslot for CH2 is 2
Read Rx Timeslot for CH1 is 0
Read Rx Timeslot for CH2 is 2
Operating Fun for channel 1 is 82
Cadence Timer Reg for CH1 before is 7 ff0 0
Cadence Timer Reg for CH1 after is 1 903 20
Switching control for channel 1 is 20
Operating Fun for channel 2 is a0
Cadence Timer Reg for CH2 before is 7 ff0 0
Cadence Timer Reg for CH2 after is 1 903 20
Switching control for channel 2 is 20
SLIC 1 configuration success
TDM_TEST: Test Module for Freescale Platforms with TDM support
TDM_TEST module installed
...
...

3. Check /proc/device-tree/soc for tdm and slic nodes.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
311 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

4. Run cat /proc/interrupts to check for TDM interrupts. Following is an example log, details may vary over
different platforms.

[root@ /root]# insmod tdm_test.ko
TDM_TEST: Test Module for Freescale Platforms with TDM support
TDM Driver(ID=1)is attached with Adapterfsl_tdm(ID = 0) drv_count=1
TDM_TEST module installed
[root@ /root]# cat /proc/interrupts
 CPU0
 20: 0 OpenPIC Level fsldma-chan
 21: 0 OpenPIC Level fsldma-chan
 22: 0 OpenPIC Level fsldma-chan
 23: 0 OpenPIC Level fsldma-chan
 28: 0 OpenPIC Level ehci_hcd:usb1
 42: 57 OpenPIC Level serial
 43: 0 OpenPIC Level i2c-mpc, i2c-mpc
 59: 0 OpenPIC Level fsl_espi
 62: 993 OpenPIC Edge dmac_done_isr
LOC: 698 Local timer interrupts
SPU: 0 Spurious interrupts
CNT: 0 Performance monitoring interrupts
MCE: 0 Machine check exceptions

5. To test the TDM functionality Pick up both the phones. Anything spoken on one phone will be heard on the
other.

6.5.16.8 Benchmarking

Voice must be clearly audible and must not break.

6.5.16.9 Known Bugs, Limitations, or Technical Issues

1. TDM functionality is not supported in 36bit Physical address mode. This is because of hardware limitation
on current FSL platforms.

2. TDM_TEST is for demo purpose only and therefore, runs only for a small duration.

6.5.17 Universal Serial Bus Interfaces

See table below for USB controllers which are present on the SoCs:

SoC No. of USB 3.0 controllers present No. of USB 2.0 controllers present

LS1012A 1 1

LS1021A 1 1

LS1028A 2 0

LS1043A 3 0

LS1046A 3 0

LS1088A 2 0

LS2088A 2 0

LX2160A 2 0

Typical USB nodes on device trees:

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
312 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

• USB 3.0 controller

usb0: usb3@3100000 {
 compatible = "snps,dwc3";
 reg = <0x0 0x3100000 0x0 0x10000>;
 interrupts = <0 80
 IRQ_TYPE_LEVEL_HIGH>;
 dr_mode = "host";
 snps,quirk-frame-length-adjustment
 = <0x20>;
 snps,dis_rxdet_inp3_quirk;
 status = "disabled";
 snps,incr-burst-type-adjustment =
 <1>, <4>, <8>, <16>;
 };

• USB 2.0 controller

usb1: usb2@8600000 {
 compatible = "fsl-usb2-dr-v2.5",
 "fsl-usb2-dr";
 reg = <0x0 0x8600000 0x0 0x1000>;
 interrupts = <0 139 0x4>;
 dr_mode = "host";
 phy_type = "ulpi";
 };

6.5.17.1 USB 3.0 Controller (DesignWare USB3)

6.5.17.1.1 Description

The U-Boot and Linux kernel driver support DWC3 USB 3.0 Dual-Role-Device (DRD) controller.

6.5.17.1.2 U-Boot

Host Mode

With default configuration of Layerscape LDP, host mode should be ready to use, below are related CONFIG
files to select.

6.5.17.1.3 Configure Tree View Options

Configure Tree View Options Description

U-Boot-->
 USB support -->
 [*] Enable driver model for USB
 [*] xHCI HCD (USB 3.0) support
 [*] Designware USB3 DRD Core
 Support
 …
 [*] Support for NXP Layerscape
 on-chip xHCI USB controller
 …
 [*] USB Mass Storage support

Enables USB host controller support

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
313 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Device Tree (take arch/arm/dts/fsl-ls1012a.dtsi as example)

usb1: usb3@2f00000 {
 compatible = "fsl,layerscape-dwc3";
 reg = <0x0 0x2f00000 0x0 0x10000>;
 interrupts = <0 61 0x4>;
 dr_mode = "host";
 };

6.5.17.1.4 Source Files

The driver source is maintained in the Linux kernel source tree.

Source File Description
drivers/usb/host/xhci.c USB HOST xHCI Controller stack

drivers/usb/host/xhci-fsl.c FSL USB HOST xHCI Controller driver, basing on
dwc3 driver

drivers/usb/host/xhci-dwc3.c DWC3 controller driver

drivers/usb/host/usb-uclass.c USB host driver

common/usb.c USB generic driver

common/usb_hub.c USB hub driver

cmd/usb.c USB command-line support

Verification

• Enumeration
– Plug USB drive.
– Boot RDB board to U-Boot console, type below commands to scan USB devices

=USB

=> usb start
starting USB...
USB0: Register 200017f NbrPorts 2
Starting the controller
USB XHCI 1.00
scanning bus 0 for devices... 2 USB Device(s) found
 scanning usb for storage devices... 1 Storage Device(s) found
=> usb treed
USB device tree:
 1 Hub (5 Gb/s, 0mA)
 | U-Boot XHCI Host Controller
 |
 +-2 Mass Storage (5 Gb/s, 224mA)
 SanDisk Extreme 4C530001060207103322
=> usb info
1: Hub, USB Revision 3.0
 - U-Boot XHCI Host Controller
 - Class: Hub

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
314 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

 - PacketSize: 512 Configurations: 1
 - Vendor: 0x0000 Product 0x0000 Version 1.0
 Configuration: 1
 - Interfaces: 1 Self Powered 0mA
 Interface: 0
 - Alternate Setting 0, Endpoints: 1
 - Class Hub
 - Endpoint 1 In Interrupt MaxPacket 8 Interval 255ms
2: Mass Storage, USB Revision 3.0
 - SanDisk Extreme 4C530001060207103322
 - Class: (from Interface) Mass Storage
 - PacketSize: 512 Configurations: 1
 - Vendor: 0x0781 Product 0x558b Version 1.0
 Configuration: 1
 - Interfaces: 1 Bus Powered 224mA
 Interface: 0
 - Alternate Setting 0, Endpoints: 2
 - Class Mass Storage, Transp. SCSI, Bulk only
 - Endpoint 1 In Bulk MaxPacket 1024
 - Endpoint 2 Out Bulk MaxPacket 1024

6.5.17.1.5 Mass Storage device read write

=> md a0000000
a0000000: feffe7fd f3bfffff dfffefff bff77bf2 {..
a0000010: efefffee 7b7f33ff 7dffef7c 7effff77 3.{|..}w..~
a0000020: fdaefccf 737fffbf 75ffffdf febfbffa s...u....
a0000030: 7fccff4f f3ff7ffb fee6fcfc bffb3ff7 O............?..
a0000040: dfdebfcc 37bf7b37 ffefdfcc 3337fff3 7{.7......73
a0000050: ffeddeee 737333b7 fbefefdf fbf3f7f3 3ss........
a0000060: defcfffe f7bff7fb ffdfffce 3bbf77ff w.;
a0000070: dfcffbef b3fb7fb6 e2dfeede b7b3bff7
a0000080: feffbfec 73bf3fb3 dffaceff 3bb6b773 ?.s....s..;
a0000090: fdcffece 7bbfbf7b fdeefdfc f3eff7f7 {..{........
a00000a0: dfecdffe fb3733b7 d9deffdf 737f37bf 37......7.s
a00000b0: c76effde faf3bb3f deffdeeb 2f7fb37b ..n.?.......{../
a00000c0: fffcef5b 7bf333bf fedffefe 773f7377 [....3.{....ws?w
a00000d0: fbfdfdfd f7bb73f7 ffffeddd ff37bf3e s......>.7.
a00000e0: dfd9fecc 3f77fbb3 77cfdeee b3f77f73 w?...ws...
a00000f0: cfecffde bfff33fb ffe6ffdf fb73337f 3.......3s.
=> mw a0000000 ffffaaaa 100
=> md a0000000
a0000000: ffffaaaa ffffaaaa ffffaaaa ffffaaaa
a0000010: ffffaaaa ffffaaaa ffffaaaa ffffaaaa
a0000020: ffffaaaa ffffaaaa ffffaaaa ffffaaaa
a0000030: ffffaaaa ffffaaaa ffffaaaa ffffaaaa
a0000040: ffffaaaa ffffaaaa ffffaaaa ffffaaaa
a0000050: ffffaaaa ffffaaaa ffffaaaa ffffaaaa
a0000060: ffffaaaa ffffaaaa ffffaaaa ffffaaaa
a0000070: ffffaaaa ffffaaaa ffffaaaa ffffaaaa
a0000080: ffffaaaa ffffaaaa ffffaaaa ffffaaaa
a0000090: ffffaaaa ffffaaaa ffffaaaa ffffaaaa
a00000a0: ffffaaaa ffffaaaa ffffaaaa ffffaaaa
a00000b0: ffffaaaa ffffaaaa ffffaaaa ffffaaaa
a00000c0: ffffaaaa ffffaaaa ffffaaaa ffffaaaa
a00000d0: ffffaaaa ffffaaaa ffffaaaa ffffaaaa
a00000e0: ffffaaaa ffffaaaa ffffaaaa ffffaaaa
a00000f0: ffffaaaa ffffaaaa ffffaaaa ffffaaaa

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
315 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

=> usb write a0000000 0 100
usb write: device 0 block # 0, count 256 ... 256 blocks written: OK
=> md b0000000
b0000000: 77fdff79 c97cefdb a7dfffb3 fffeddff y..w..|.........
b0000010: fb9ff7f3 fdfeedef febf7db9 cffbccef }......
b0000020: ff7ebf7b fd6efffa 5efbbfbb cfffffff {.~...n....^....
b0000030: bbf7f7e7 fcfedcbd f7f3bff7 fedceded
b0000040: df7b3337 cfcefcef b7affb7f ddcddfce 73{.............
b0000050: ffb3bdf3 dedfefed ff3bfef3 fefffdff ;.....
b0000060: 333f9b37 efccffee f7bbffff 5fceefff 7.?3..........._
b0000070: f7bffa37 7edeeeff ffff3ff3 fffedfee 7......~.?......
b0000080: 7b37fb3a dffefecf ffff93f5 eeceffcf :.7{............
b0000090: ff3f1ffb fffcdcfa f77bf77b ddeffeef ..?.....{.{.....
b00000a0: 52b77bba acfffcff bfdfbf33 feffebff .{.R....3.......
b00000b0: ffffff7f fe6eeddd 7ffbbb3b 6dffceff n.;......m
b00000c0: 3bfbbd73 fd7fedef ff73f3ef fefaedde s..;......s.....
b00000d0: 7f77ff73 4ffdcdee 7f3b7f72 ecfbedef s.w....Or.;.....
b00000e0: f73b7f77 fffdfffd f7f5fffb eddefefc w.;.............
b00000f0: bfb3bfa3 cfdffcce 655fbfbb eeffcefd _e....
=> usb read b0000000 0 100
usb read: device 0 block # 0, count 256 ... 256 blocks read: OK
=> md b0000000
b0000000: ffffaaaa ffffaaaa ffffaaaa ffffaaaa
b0000010: ffffaaaa ffffaaaa ffffaaaa ffffaaaa
b0000020: ffffaaaa ffffaaaa ffffaaaa ffffaaaa
b0000030: ffffaaaa ffffaaaa ffffaaaa ffffaaaa
b0000040: ffffaaaa ffffaaaa ffffaaaa ffffaaaa
b0000050: ffffaaaa ffffaaaa ffffaaaa ffffaaaa
b0000060: ffffaaaa ffffaaaa ffffaaaa ffffaaaa
b0000070: ffffaaaa ffffaaaa ffffaaaa ffffaaaa
b0000080: ffffaaaa ffffaaaa ffffaaaa ffffaaaa
b0000090: ffffaaaa ffffaaaa ffffaaaa ffffaaaa
b00000a0: ffffaaaa ffffaaaa ffffaaaa ffffaaaa
b00000b0: ffffaaaa ffffaaaa ffffaaaa ffffaaaa
b00000c0: ffffaaaa ffffaaaa ffffaaaa ffffaaaa
b00000d0: ffffaaaa ffffaaaa ffffaaaa ffffaaaa
b00000e0: ffffaaaa ffffaaaa ffffaaaa ffffaaaa
b00000f0: ffffaaaa ffffaaaa ffffaaaa ffffaaaa
=>

6.5.17.1.6 Linux Kernel

Host Mode

With default configuration of Layerscape LDP, host mode should be ready to use, below are related CONFIGs
that should have been selected.

Configure Tree View Options

Configure Tree View Options Description

USB support --->
[*] xHCI HCD (USB3.0) support

USB host controller support.

USB mass storage support.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
316 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Configure Tree View Options Description
 [*] USB Mass Storage support

[*] DesignWare USB3 DRD Core support
 [*] DWc3 Mode Selection
 [X] Dual Role mode

DesignWare USB3 DRD Core Support.

Device Drivers
--> HID support
 --> USB HID support
 [*] USB HID transport layer USB
 HID support

USB HID support

Device Tree (take arch/arm/boot/dts/freescale/fsl-ls1012a.dtsi as example)

usb0: usb3@2f00000 { compatible =
 "snps,dwc3"; reg = <0x0
 0x2f00000 0x0 0x10000>; interrupts = <0
 60 0x4>; dr_mode = "host";
 snps,quirk-frame-length-adjustment = <0x20>;
 snps,dis_rxdet_inp3_quirk;
 };

6.5.17.1.7 Source Files

The driver source is maintained in the Linux kernel source tree.

Source File Description
drivers/usb/core/* USB subsystem/framework

drivers/usb/host/xhci.c xhci-mem.c xhci-ring.c xhci-
hub.c

USB xHCI (host) driver

drivers/usb/storage/scsiglue.c protocol.c transport.c
usb.c

USB Mass Storage (device) driver

6.5.17.1.8 Verification

Enumeration

• Plug USB drive
• Boot RDB board to Linux console, type below commands to list USB devices(s):

root@ls1012ardb:~# lsusb
Bus 002 Device 002: ID 0781:558b <-- Whose ‘Device’ is 002 should be a USB
 device we found
Bus 001 Device 001: ID 1d6b:0002
Bus 002 Device 001: ID 1d6b:0003

• Mass Storage device read write
• root@ls1012ardb:~# ls /dev/sd*
UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
317 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

/dev/sda /dev/sda1
root@ls1012ardb:~# udevadm info -q all -n /dev/sda | grep -e usb
P: /devices/platform/soc/2f00000.usb3/xhci-hcd.0.auto/usb2/2-1/2-1:1.0/host1/
target1:0:0/1:0:0:0/block/sda
S: disk/by-id/usb-SanDisk_Extreme_4C530001020308102474-0:0
S: disk/by-path/platform-xhci-hcd.0.auto-usb-0:1:1.0-scsi-0:0:0:0
E: DEVLINKS=/dev/disk/by-id/usb-SanDisk_Extreme_4C530001020308102474-0:0 /dev/
disk/by-path/platform-xhci-hcd.0.auto-usb-0:1:1.0-scsi-0:0:0:0 /dev/disk/by-
uuid/928B-C6D2
E: DEVPATH=/devices/platform/soc/2f00000.usb3/xhci-hcd.0.auto/usb2/2-1/2-1:1.0/
host1/target1:0:0/1:0:0:0/block/sda
E: ID_BUS=usb
E: ID_PATH=platform-xhci-hcd.0.auto-usb-0:1:1.0-scsi-0:0:0:0
E: ID_PATH_TAG=platform-xhci-hcd_0_auto-usb-0_1_1_0-scsi-0_0_0_0
E: ID_USB_DRIVER=usb-storage
root@ls1012ardb:~# mkfs.ext2 /dev/sda1 # Format USB drive partition 1 with
 EXT2
mke2fs 1.42.9 (28-Dec-2013)
[1032.401738] urandom_read: 1 callbacks suppressed
[1032.401745] random: mkfs.ext2: uninitialized urandom read (16 bytes read)
[1032.413812] random: mkfs.ext2: uninitialized urandom read (16 bytes read)
Filesystem label=
OS type: Linux
Block size=4096 (log=2)
Fragment size=4096 (log=2)
Stride=0 blocks, Stripe width=0 blocks
3833856 inodes, 15318784 blocks
765939 blocks (5.00%) reserved for the super user
First data block=0
Maximum filesystem blocks=4294967296
468 block groups
32768 blocks per group, 32768 fragments per group
8192 inodes per group
Superblock backups stored on blocks:
 32768, 98304, 163840, 229376, 294912, 819200, 884736, 1605632, 2654208,
 4096000, 7962624, 11239424
Allocating group tables: done
Writing inode tables: done
Writing superblocks and filesystem accounting information: done
root@ls1012ardb:~# mount /dev/sda1 /mnt # Manually mount USB drive to file
 system
root@ls1012ardb:~# cd /mnt
root@ls1012ardb:/mnt# dd if=/dev/zero of=./test_400MB bs=1M count=400 # Write
 test
400+0 records in
400+0 records out
419430400 bytes (419 MB) copied, 4.54194 s, 92.3 MB/s
root@ls1012ardb:/mnt# sync # Make sure ./test_400MB has been written to drive
root@ls1012ardb:/mnt# md5sum test_400MB # Read file out, do MD5 checksum
61eabaf2bf278703738b433ff884c91f test_400MB

6.5.17.1.9 HID use case

• – Boot RDB board to Linux console,
– Plug USB mouse/keyboard, then below message appears:

root@ls1012ardb:/mnt#
[3415.406370] usb 1-1: new low-speed USB device number 2 using xhci-hcd

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
318 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

[3415.582798] input: PixArt Dell MS116 USB Optical Mouse
 as /devices/platform/soc/2f00000.usb3/xhci-hcd.0.auto/
usb1/1-1/1-1:1.0/0003:413C:301A.0001/input/input0
[3415.600539] hid-generic 0003:413C:301A.0001: input: USB HID v1.11 Mouse
 [PixArt Dell MS116 USB Optical Mouse] on usb-xhci-hcd.0.auto-1/input0

– Type below commands to begin receiving data, then move mouse or press keys on keyboard, you see that
some unreadable data pops up.
▒f▒YRY▒▒▒▒▒f▒YRY▒f▒Y▒x▒▒▒▒▒f▒Y▒x▒f▒Y▒x▒f▒Yҗ▒f▒Yҗ▒f▒Y▒▒f▒Y▒▒f▒YQ▒▒f▒YQ▒▒f▒YQ▒▒f▒Y▒▒▒f▒Y▒▒▒f▒Y▒▒▒f▒Y▒▒f▒Y▒

• Ethernet Use case
– Rebuild Linux kernel, make sure your USB network card-related driver has been included. For example: TP-

LINK USB 3.0 to Gigabit Ethernet Network Adapter should select below CONFIG in menuconfig:

Symbol : USB_RTLL8152 [=y]
Type : tristate
Prompt : Realtek RTL8152/RTL8153 Based USB Ethernet Adapters
 Location:
 ->Device Drivers
 ->Network device support (NETDEVICES [=Y])
(1) -> USB Network Adapters (USB_NET_Drivers [=y])
Defined at drivers/net/usb/Kconfig:98
Depends on: NRYFRBOVRD [=y] && USB_NET_Drivers [=Y]
Selects: MII [=y]

– Boot RDB board to Linux console,
– Plug USB network, then below log appears:

root@ls1012ardb:~# [18.677661] usb 1-1: new
 high-speed USB device number 2 using xhci-hcd[19.529741] usb 1-1:
 reset
 high-speed USB device number 2 using xhci-hcd[19.706274] random:
 fast init
 done[19.742956] r8152 1-1:1.0 eth1:
 v1.09.9

– Configure IP and do ping test

root@ls1012ardb:~# ifconfig eth1 192.168.0.2
[110.365205] IPv6: ADDRCONF(NETDEV_UP): eth1: link is not ready
root@ls1012ardb:~# [110.394378] IPv6: ADDRCONF(NETDEV_CHANGE): eth1: link
 becomes ready
[110.401079] r8152 1-1:1.0 eth1: carrier on
root@ls1012ardb:~# ping 192.168.0.1
PING 192.168.0.1 (192.168.0.1) 56(84) bytes of data.
64 bytes from 192.168.0.1: icmp_seq=2 ttl=63 time=10.876 ms
64 bytes from 192.168.0.1: icmp_seq=3 ttl=63 time=10.829 ms
64 bytes from 192.168.0.1: icmp_seq=4 ttl=63 time=10.900 ms
64 bytes from 192.168.0.1: icmp_seq=5 ttl=63 time=10.844 ms
64 bytes from 192.168.0.1: icmp_seq=6 ttl=63 time=10.908 ms

6.5.17.1.10 Speaker and Microphone

• A play utility can be used to list the available sound cards, For example, Here Jabra 410 USB speaker is
detected as a second sound card and can be addressed as –D hw:1.0 OR –c1:

[root@freescale ~]$ aplay –l
**** List of PLAYBACK Hardware Devices ****
 card 0: FSLVF610TWRBOAR [FSL-VF610-TWR-BOARD], device 0: HiFi sgtl5000-0 []
 Subdevices: 1/1

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
319 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

 Subdevice #0: subdevice #0
 card 1: USB [Jabra SPEAK 410 USB], device 0: USB Audio [USB Audio]
 Subdevices: 1/1 Subdevice #0: subdevice #0

• Sample wav file can be played using the below command:

[root@freescale ~]$ aplay -D hw:1,0
LYNC_fsringing.wavPlaying WAVE 'LYNC_fsringing.wav' : Signed 16 bit Little
 Endian, Rate 48000 Hz, Stereo

• Sample wav file can be recorded using the below command:

[root@freescale ~]$ arecord -f S16_LE -t wav -Dhw:1,0 -r 16000 foobar.wav -d 5
Recording WAVE 'foobar.wav' : Signed 16 bit Little Endian, Rate 16000 Hz, Mono

Note: If recorded audio is not played, try to use "-D plughw:1,0" in above command.
• Audio controls can be checked using the below command, control details, and name of the controls can be

checked from output of “amixer –c1” as below:

[root@freescale ~]$ amixer –c1 controls
numid=3,iface=MIXER,name='PCM Playback Switch'
numid=4,iface=MIXER,name='PCM Playback Volume'
numid=5,iface=MIXER,name='Headset Capture Switch'
numid=6,iface=MIXER,name='Headset Capture Volume'
numid=2,iface=PCM,name='Capture Channel Map'
numid=1,iface=PCM,name='Playback Channel Map'
[root@freescale ~]$ amixer –c1
Simple mixer control 'PCM',0 Capabilities: pvolume pvolume-joined pswitch
 pswitch-joined penum
 Playback channels: Mono
 Limits: Playback 0 - 11
 Mono: Playback 4 [36%] [-20.00dB] [on]
Simple mixer control 'Headset',0 Capabilities: cvolume cvolume-joined cswitch
 cswitch-joined penum
 Capture channels: Mono
 Limits: Capture 0 - 7
 Mono: Capture 5 [71%] [0.00dB] [on]

For example, in above output there are two controls named “PCM” and “Headset” for Speaker and
microphone respectively. Sample Audio controls Usage: a. mute/unmute

[root@freescale ~]$ amixer -c1 set PCM mute
Simple mixer control 'PCM',0
Capabilities: pvolume pvolume-joined pswitch pswitch-joined
Playback channels: Mono
Limits: Playback 0 - 11
Mono: Playback 2 [18%] [-28.00dB] [off]
[root@freescale ~]$ amixer -c1 set PCM unmute
Simple mixer control 'PCM',0
Capabilities: pvolume pvolume-joined pswitch pswitch-joined
Playback channels: Mono
Limits: Playback 0 - 11
Mono: Playback 2 [18%] [-28.00dB] [on]
Aplay utility can be used to list the available sound cards e.g. Here Jabra 410
 USB speaker is
detected as a second sound card and can be addressed as –D hw:1,0 OR –c1:

Volume up/down – Below commands are trying to set volume to 11 and 2 performing volume up and down
respectively.

root@freescale ~]$ amixer -c1 set PCM 11
Simple mixer control 'PCM',0

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
320 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Capabilities: pvolume pvolume-joined pswitch pswitch-joined
Playback channels: Mono
Limits: Playback 0 - 11
Mono: Playback 11 [100%] [8.00dB] [on]
[root@freescale ~]$ amixer -c1 set PCM 2
Simple mixer control 'PCM',0
Capabilities: pvolume pvolume-joined pswitch pswitch-joined
Playback channels: Mono
Limits: Playback 0 - 11
Mono: Playback 2 [18%] [-28.00dB] [on]

Device mode (Gadget driver)

Important note: Device mode enabling requires manually insmod some ko files at runtime, make sure use the
ko files which built together with that kernel image, otherwise you might encounter failures like below:

root@ls1043a:/run/media/mmcblk0p1 # insmod libcomposite.ko
[2748.620682] libcomposite: version magic '4.14.47-50925-gd677346-dirty SMP
 preempt mod_unload aarch64' should be '4.14.47-50925-gd224085 SMP preempt
 mod_unload aarch64'
insmod: ERROR: could not insert module libcomposite.ko: Invalid module format

• Mass Storage gadget
Basing on default configuration of Layerscape LDP, also select below options in Linux kernel menuconfig
(follow the highlighted choice)

Configure Tree View Options

Configure Tree View Options Description

USB Gadget support --->
<M> USB Gadget functions configurable
 through configfs
 [*] Mass storage

USB host controller support.

 <M> USB Gadget precomposed
 configurations

USB configuration support.

<M> Mass Storage Gadget
Mass storage support.

Device Tree update, change property dr_mode’s data from “host” to “peripheral”, add property maximum-
speed = “super-speed”; as below:

usb0: usb3@2f00000 {
 compatible = "snps,dwc3";
 reg = <0x0 0x2f00000 0x0 0x10000>;
 interrupts = <0 60 0x4>;
 dr_mode = "peripheral";
 snps,quirk-frame-length-adjustment = <0x20>;
 snps,dis_rxdet_inp3_quirk;
 maximum-speed = “super-speed”;
 };

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
321 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Note: Make sure to modify the correct USB nodes that mapped to the physical USB port that you are verifying,
and you can only change one USB node.

6.5.17.1.11 Source Files

Source File Description
drivers/usb/gadget/function/storage_common.c Common definitions for mass storage functionality

drivers/usb/gadget/function/f_mass_storage.c Mass Storage USB Composite Function

drivers/gadget/legacy/mass_storage.c Mass Storage USB Gadget

6.5.17.1.12

Verification (test with Win7 as host)

• Build kernel, then copy below ko files to an SD card.
– ./drivers/usb/gadget/libcomposite.ko
– ./drivers/usb/gadget/function/usb_f_mass_storage.ko
– ./drivers/usb/gadget/legacy/g_mass_storage.ko

• Insert that SD card into RDB board SD slot.
• Boot RDB board with that Linux kernel
• In RDB board Linux console, execute below commands (assume that you copy those ko files at SD card root

folder, and mount to /run/media/mmcblk0p1/)

root@ls1043a:/ # df
Filesystem 1K-blocks Used Available Use% Mounted on
/dev/root 85352 65515 15430 81% /
devtmpfs 1940036 4 1940032 1% /dev
tmpfs 1961116 132 1960984 1% /run
tmpfs 1961116 172 1960944 1% /var/volatile
/dev/mmcblk0p1 3931136 32964 3898172 1% /run/media/mmcblk0p1
root@ls1043a:~#cd /run/media/mmcblk0p1/ # this is where you put your ko files
root@ls1043a:/run/media/mmcblk0p1/ # dd if=/dev/zero of=./test bs=1M count=500
root@ls1043a:/run/media/mmcblk0p1/ # insmod libcomposite.ko
root@ls1043a:/run/media/mmcblk0p1/ # insmod usb_f_mass_storage.ko
root@ls1043a:/run/media/mmcblk0p1/ # insmod g_mass_storage.ko file=/run/media/
mmcblk0p1/test
[780.758286] Mass Storage Function, version: 2009/09/11
[780.763465] LUN: removable file: (no medium)
[780.767791] LUN: file: /run/media/mmcblk0p1/test
[780.772406] Number of LUNs=1
[780.775355] g_mass_storage gadget: Mass Storage Gadget, version: 2009/09/11
[780.782322] g_mass_storage gadget: userspace failed to provide iSerialNumber
[780.789371] g_mass_storage gadget: g_mass_storage ready

• Connect USB cable with PC and RDB board
– You can see Windows Device Manager as Linux File-Stor Gadget USB Drive.

Note: Some times you need manually allocate a drive name/letter in My Computer. After that manually
format that disk to keep it in ready status.

• Ethernet gadget
– Basing on default configuration of Layerscape LDP, also select below options in Linux kernel menuconfig

(follow the highlighted choice)

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
322 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Configure Tree View Options

Configure Tree View Options Description

USB Gadget support --->
<M> USB Gadget functions configurable
 through configfs

USB host controller support.

<M> USB Gadget precomposed
 configurations

USB configuration support.

<M> Ethernet Gadget (with CDC Ethernet
 support)

Ethernet gadget support.

Device Tree update, change property dr_mode’s data from “host” to “peripheral”, add property maximum-
speed = “super-speed”; as below:

usb0: usb3@2f00000 {
 compatible = "snps,dwc3";
 reg = <0x0 0x2f00000 0x0 0x10000>;
 interrupts = <0 60 0x4>;
 dr_mode = "peripheral";
 snps,quirk-frame-length-adjustment = <0x20>;
 snps,dis_rxdet_inp3_quirk;
 maximum-speed = “super-speed”;
 };

Note: Make sure to modify the correct USB nodes that mapped to the physical USB port that you are verifying,
and you can only change one USB node.

6.5.17.1.13 Source Files

Source File Description
drivers/usb/gadget/function/u_ether.c Ethernet-over-USB link layer utilities for Gadget stack

drivers/usb/gadget/function/f_ecm.c USB CDC Ethernet (ECM) link function driver

drivers/usb/gadget/function/f_subset.c "CDC Subset" Ethernet link function driver

drivers/usb/gadget/function/f_rndis.c RNDIS link function driver

drivers/usb/gadget/function/rndis.c RNDIS MSG parser

drivers/usb/gadget/legacy/ether.c Ethernet gadget driver, with CDC and non-CDC
options

6.5.17.1.14 Verification

• Build Linux Kernel, then copy ko files to an SD card.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
323 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

• Insert that SD card into RDB board.
• Connect RDB board and Windows PC host port with USB cable.
• Boot RDB board with above kernel.
• Execute below shell commands to insmod related ko files on RDB board.

root@ls1043a:/run/media/mmcblk0p1# insmod libcomposite.ko
root@ls1043a:/run/media/mmcblk0p1# insmod u_ether.ko
root@ls1043a:/run/media/mmcblk0p1# insmod usb_f_ecm.ko
root@ls1043a:/run/media/mmcblk0p1# insmod usb_f_ecm_subset.ko
root@ls1043a:/run/media/mmcblk0p1# insmod usb_f_rndis.ko
root@ls1043a:/run/media/mmcblk0p1# insmod g_ether.ko
[138.046732] using random self ethernet address
[138.051188] using random host ethernet address
[138.055884] usb0: HOST MAC 5e:4a:86:d0:dc:b6
[138.060219] usb0: MAC c2:53:e1:5b:d0:d9
[138.064100] using random self ethernet address
[138.068549] using random host ethernet address
[138.073041] g_ether gadget: Ethernet Gadget, version: Memorial Day 2008
[138.079653] g_ether gadget: g_ether ready

• Install Microsoft RNDIS driver on Windows 7 for ping test
1. Right-click Computer and select Manage. From System Tools, select Device Manager.

It displays a list of devices currently connected with the development PC. In the list, you can see RNDIS
Kitl with an exclamation mark implying that driver has not been installed.

2. Right-click RNDIS Kitl and select Update Driver Software when prompted to choose how to search for
device driver software, choose Browse my computer for driver software.
Browse for driver software on your computer appears.

3. Select Let me pick from a list of device drivers on My Computer.
The Update Driver Software - RNDIS Kitl window appears.

4. Select the device type as Select Network adapters, as RNDIS emulates a network connection.
5. Select Microsoft Corporation from the Manufacturer list in the Select Network Adapter window.
6. Select Remote NDIS compatible device from the Network Adapter frame and click Next.

After, several minutes of installation you can see a message as "Windows has successfully updated your
driver software." and the RNDIS device is ready to use.
After, successful installation you can see RNDIS/Ethernet Gadget under Network adapters.

7. Allocate IP for USB interface to the ping test.
On RDB board Linux console configure the network interface as shown below:

root@ls1043a:/run/media/mmcblk0p1 # ifconfig -a
…… # <snip>
usb0 Link encap:Ethernet HWaddr c2:53:e1:5b:d0:d9
 BROADCAST MULTICAST MTU:1500 Metric:1
 RX packets:0 errors:0 dropped:0 overruns:0 frame:0
 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:1000
 RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)
root@ls1043a:/run/media/mmcblk0p1 # ifconfig usb0 192.168.5.3
root@ls1043a:/run/media/mmcblk0p1 # ifconfig usb0
usb0 Link encap:Ethernet HWaddr c2:53:e1:5b:d0:d9
 inet addr:192.168.5.3 Bcast:10.255.255.255 Mask:255.0.0.0
 UP BROADCAST MULTICAST MTU:1500 Metric:1
 RX packets:0 errors:0 dropped:0 overruns:0 frame:0
 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:1000

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
324 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

 RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)

• Configuring Network interface on Windows 7 PC host
1. Open Network and Sharing Center in Control Panel, click the Local Area Connection <number> .

Note: The number might be different in your ENV.
2. On the Local Area Connection <number> status pop-up window, click Properties.

The Local Area Connection Properties window opens.
3. Double-click TCP/IPv4 Version (TCP/IPv4).

The Internet Protocol Version 4 (TCP/IPv4) Properties window appears.
4. Enter the IP address, Subnet mask and click OK.

On the RDB board Linux console, the following ping test begins:

root@ls1043a:/run/media/mmcblk0p1/ # ping 192.168.5.2
PING 192.168.5.2 (192.168.5.2) 56(84) bytes of data.
64 bytes from 192.168.5.2: icmp_seq=1 ttl=128 time=3.17 ms
64 bytes from 192.168.5.2: icmp_seq=2 ttl=128 time=1.93 ms
64 bytes from 192.168.5.2: icmp_seq=3 ttl=128 time=1.04 ms
64 bytes from 192.168.5.2: icmp_seq=4 ttl=128 time=1.22 ms
64 bytes from 192.168.5.2: icmp_seq=5 ttl=128 time=1.81 ms
64 bytes from 192.168.5.2: icmp_seq=6 ttl=128 time=1.54 ms
64 bytes from 192.168.5.2: icmp_seq=7 ttl=128 time=1.84 ms
64 bytes from 192.168.5.2: icmp_seq=8 ttl=128 time=1.49 ms
64 bytes from 192.168.5.2: icmp_seq=9 ttl=128 time=0.633 ms
64 bytes from 192.168.5.2: icmp_seq=10 ttl=128 time=0.915 ms

OTG mode

USB On-The-Go (USB OTG or OTG) is a specification that allows USB devices, such as tablets or
smartphones, to act as a host. This allows other USB devices, such as USB flash drives, digital cameras, mice
or keyboards, to attach to host devices via an OTG cable. The Layerscape platform also allows automatic role
switching if a USB device is connected to host device via an ordinary micro-B plug USB at runtime.

Note:

• For OTG feature, only support High-speed connection is supported, super-speed is not supported.
• This sections provides an example for configuring Layerscape DWC3 controller to act as host or device (for

device mode, act as an Ethernet gadget). Note that HNP and SRP protocol is not supported.

Based on default configuration of Layerscape LDP, select highlighted options in Linux kernel menuconfig.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
325 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Figure 26. Linux kernel menuconfig

Device Tree

• In USB DWC3 node, change the value of property dr_mode from “host” to “otg”:

usb1: usb@3110000 {
 compatible = "fsl,ls1028a-dwc3", "snps,dwc3";
 reg = <0x0 0x3110000 0x0 0x10000>;
 interrupts = <GIC_SPI 81 IRQ_TYPE_LEVEL_HIGH>;
 dr_mode = "otg";
 snps,dis_rxdet_inp3_quirk;
 snps,quirk-frame-length-adjustment = <0x20>;
 snps,incr-burst-type-adjustment = <1>, <4>, <8>, <16>;
};

Note:
– You can only change one USB node. Make sure that you modify only the USB node mapped to the physical

USB port that you want to verify.
– The following USB ports on respective Layerscape boards are enabled for OTG feature. The other

Layerscape boards include Micro-AB port that can be enabled for OTG, if required.

Layerscape board OTG support? USB port supporting OTG

LS1028ARDB Y TYPE-C

LS1046ARDB Y USB3.0 MICRO-AB

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
326 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Layerscape board OTG support? USB port supporting OTG

LS2088ARDB Y USB3.0 MICRO-AB

Source files

• For host mode, see ‘Host mode’ of Linux Kernel part.
• For device mode, see ‘Ethernet gadget’ part.

Verification

• Act as host
– Make sure the board has the OTG port:

– USB 3.0 Micro-AB Receptacle

Figure 27. USB 3.0 Micro-AB Receptacle
– or TYPE-C Receptacle

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
327 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Figure 28. TYPE-C Receptacle
– Boot RDB board with customized kernel.
– Plug a USB 2.0/3.0 OTG or USB3.0 Type-C cable to the downstream port shown above.

– USB 2.0 OTG cable

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
328 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Figure 29. USB 2.0 OTG cable
– USB 3.0 OTG cable

Figure 30. USB 3.0 OTG cable
– USB 3.0 Type-C cable

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
329 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Figure 31. USB 3.0 Type-C cable
– Verify USB host function with a USB Mass Storage drive:

See the verification steps of Linux kernel’s ‘Host mode’ part for details.
• Act as device

– Make sure the board has the OTG port, see ‘Act as host’ for details.
– Boot RDB board with customized kernel.
– Plug a USB plug cable to the port shown above.

– USB 2.0 plug cable

Figure 32. USB 2.0 plug cable
– USB 3.0 plug cable

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
330 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Figure 33. USB 3.0 plug cable
– USB Type-C plug cable

Figure 34. USB Type-C plug cable
– Verify USB device mode with Ethernet gadget function:

See the verification steps of Linux kernel’s ‘Device mode’ part for details (search ‘Ethernet gadget’).

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
331 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

6.5.17.1.15 Known Bugs, Limitations, or Technical Issues

• Linux only allows one peripheral at one time. Make sure that when one of DWC3 controllers is set as
peripheral, then the others should not be set to the same mode.

• For USB host mode, some Pen drives such as Kingston / Transcend / SiliconPower / Samtec might have a
compatibility issue.

• Some USB micro ports might have OTG3.0 cable compatibility issue. An OTG 2.0 cable and USB standard
port works fine.

• If you are trying to port USB related patches and enable them on customer software base (U-Boot + Linux),
make sure that all USB nodes (or parent node, such as ‘SoC’) have been applied with property dma-
coherent; on the kernel device tree. And, ensure that following implementations are integrated into your
software source code:
– U-Boot:

– https://gitlab.denx.de/u-boot/u-boot/commit/3d23b6c5
– https://gitlab.denx.de/u-boot/u-boot/commit/d085c9ad
– https://gitlab.denx.de/u-boot/u-boot/commit/223c1907

– Linux kernel:
https://github.com/nxp-qoriq/linux

6.5.17.2 USB 2.0 Controller

(Freescale multi-port host and/or dual-role USB controller)

6.5.17.2.1 U-Boot

Host Mode

Basing on default configuration of Layerscape LDP, make sure to select the configs below:

Configure Tree View Options

Configure Tree View Options Description

USB support --->
[*] EHCI HCD (usb 2.0) Support

Enables USB host controller support

[*] USB Mass Storage Support
Enables USB host controller support.

Source Files

The driver source is maintained in the Linux kernel source tree.

Source File Description

drivers/usb/host/ehci-hcd USB HOST xHCI Controller stack

drivers/usb/host/ehci-fsl.c FSL USB HOST xHCI Controller driver, basing on
dwc3 driver

drivers/usb/host/usb-uclass.c USB host driver

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
332 / 1061

https://gitlab.denx.de/u-boot/u-boot/commit/3d23b6c5
https://gitlab.denx.de/u-boot/u-boot/commit/d085c9ad
https://gitlab.denx.de/u-boot/u-boot/commit/223c1907
https://github.com/nxp-qoriq/linux

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Source File Description

common/usb.c USB generic driver

common/usb_hub.c USB hub driver

cmd/usb.c USB command-line support

Verification

• Enumeration
– Refer to USB 3.0 controller test steps.

Mass Storage

• Refer to USB 3.0 controller test steps.

6.5.17.2.2 Linux Kernel

Host Mode

Basing on default Layerscape LDP config, make sure to select CONFIGs below:

Configure Tree View Options

Configure Tree View Options Description

USB support --->
[*] Support for Host-side USB

USB host controller support.

 [*] EHCI HCD (USB 2.0) support

USB HCD support.

[*] USB Mass Storage support
USB mass storage support.

<*> Support for Freescale PPC on-chip
 EHCI USB controller
[*] EHCI support for PPC USB
 controller on OF platform bus

USB EHCI support

Device Tree

usb@22000 {
 #address-cells = <1>;
 #size-cells = <0>;
 compatible = "fsl-usb2-<controller-type>-v<controller version>",
 "fsl-usb2-<controller-type>";
 reg = <0x22000 0x1000>;
 interrupt-parent = <&mpic>;
 interrupts = <28 0x2>;
 phy_type = "ulpi"; /* ulpi/utmi/utmi_dual */
 dr_mode = "host" /* host, peripheral */

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
333 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

};

Note: controller-type: dr(dual-role), mph(multi-port-host) controller-version: 1.6, 2.2, or earlier default mode is
always host.

Source Files

The driver source is maintained in the Linux kernel source tree.

Source File Description
drivers/usb/core/* USB subsystem/framework

drivers/usb/host/ehci-hcd.c USB EHCI (host) driver

drivers/usb/host/ehci-fsl.c fsl-mph-dr-of.c Freescale multi-port host and/or dual-role USB2.0
controller driver

drivers/usb/storage/scsiglue.c protocol.c transport.c
usb.c

USB Mass Storage (device) driver

Verification

• Refer to USB 3.0 controller test steps.

6.5.17.2.3

• Device mode (Gadget driver)

• Ethernet gadget
Basing on default configuration of Layerscape LDP config, make sure to select config files below:

Configure Tree View Options

Configure Tree View Options Description

<*> Freescale Highspeed USB DR
 Peripheral Controller

Freescale USB host controller support.

 <M> USB Gadget functions configurable
 through configfs

Configuration support.

<M> USB Gadget precomposed
 configurations

USG gadget support

<M> Ethernet Gadget (with CDC Ethernet
 support)

USB Ethernet support

[*] RNDIS support
USB RNDIS gadget support

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
334 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Device tree

usb@22000 {
 #address-cells = <1>;
 #size-cells = <0>;
 compatible = "fsl-usb2-<controller-type>-v<controller version>",
 "fsl-usb2-<controller-type>";
 reg = <0x22000 0x1000>; /* specifies register base addr, soc
 dependent */
 interrupt-parent = <&mpic>;
 interrupts = <28 0x2>; /* specifies usb interrupt line, soc
 dependent */
 phy_type = "ulpi"; /* phy can be ulpi(external)/utmi(internal)
 */
 dr_mode = "peripheral" /* this entry specifies usb mode */
 };

Note:

Controller-type: dr(dual-role), mph(multi-port-host) controller-version: 1.6, 2.2, or earlier default mode is always
host. It can be either changed to peripheral inside the dts entry like above. In this case recompilation of dts
is required. DR mode can also be changed to peripheral via U-Boot command line. This will not require DTS
recompilation, and can work with default DTS For USB1 controller.

=> setenv hwconfig 'usb1:dr_mode=peripheral,phy_type=<ulpi/utmi>

6.5.17.2.4 Source Files

Source File Description

drivers/usb/host/fsl-mph-dr-of.c Freescale dual-role USB2.0 controller driver

drivers/usb/gadget/function/u_ether.c Ethernet-over-USB link layer utilities for Gadget stack

drivers/usb/gadget/function/f_ecm.c USB CDC Ethernet (ECM) link function driver

drivers/usb/gadget/function/f_subset.c "CDC Subset" Ethernet link function driver

drivers/usb/gadget/function/f_rndis.c RNDIS link function driver

drivers/usb/gadget/function/rndis.c RNDIS MSG parser

drivers/usb/gadget/legacy/ether.c Ethernet gadget driver, with CDC and non-CDC
options

6.5.17.2.5

Verification

• Refer to USB 3.0 controller test steps.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
335 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

6.5.18 Graphics processing unit (GPU)

The GPU driver supports NXP Graphics Processing Unit (GPU). The GPU driver can be used as a module or
can be built into the kernel image by enabling config MXC_GPU_VIV.

1. Download GPU libraries:

$ wget https://www.nxp.com/lgfiles/NMG/MAD/YOCTO/imx-gpu-viv-6.4.11.p1.2d-
aarch64.bin
$ chomod a+x imx-gpu-viv-6.4.11.p1.2d-aarch64.bin
$./ imx-gpu-viv-6.4.11.p1.2d-aarch64.bin
Press Y to accept the EULA license.

All the GPU libraries and demos are included in this repository.

Note: If you are using Layerscape LDP release, all the above steps have already been executed.

6.5.18.1 Test procedure

Follow the below procedure to use GPU.

1. Boot up the kernel.
To check the kernel log, use the command:

user@ls1028ardb:~# dmesg | tail

The messages appear as follows:

...
Galcore version 6.4.3.336687
...

2. All the test cases shall be installed with apt-get:
a. OpenCL demo

user@ls1028ardb: apt-get install clinfo
root@ls1028ardb: clinfo

b. OpenGLES demo

user@ls1028ardb: apt-get install glmark2-es2-wayland
root@ls1028ardb: glmark2-es2-wayland

6.5.18.2 Known issue

GPU driver does not support SMMU feature. When SMMU is enabled, GPU will not work.

To disable SMMU, add the following to bootargs:

iommu.passthrough=1 arm-smmu.disable_bypass=0

6.5.19 LCD and display transmitter controller

Description

This section describes how to configure and test LCD and Display Transmitter Controller drivers for the
LS1028ARDB. The Display Transmitter Controller offers multiprotocol support of standards such as DisplayPort
v1.3 and eDP v1.4.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
336 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

The LCD and Display Transmitter Controller device drivers can be built in the kernel image or built as kernel
modules.

RCW configuration

The following table describes RCW for Display Transmitter and LCD controller on the LS1028ARDB.

Board RCW

LS1028ARDB HWA_CGA_M3_CLK_SEL = 2

Kernel configure options tree view

The following table describes the tree view of the kernel configuration options.

Options Description

Device Drivers --->
 Graphics support --->
 <M> IPUv3 core support
 <M> Direct Rendering Manager (XFree86
 4.1.0 and higher DRI support) --->
 Arm devices --->
 [M] Arm Mali Display Processor
 [M] DRM Support for Freescale i.mx
 [M] IMX8 HD Display Controller
Common Clock Framework--->
 [*] Clock driver for LS1028A Display
 output

Enable IPUv3 Core, LCD controller driver, DRM
driver, Display Transmitter Controller driver, and
Display pixel clock driver.

Identifier

Below are the configure identifiers which are used in kernel source code and default configuration files.

Option Description

CONFIG_DRM Enable DRM driver support

CONFIG_DRM_MALI_DISPLAY Enable LCD controller driver

CONFIG_DRM_IMX Display Transmitter controller driver needed for enable
i.MX DRM driver

CONFIG_DRM_IMX_HDP Enable Display Transmitter controller driver

CONFIG_MX8_HDP Enable Display Transmitter controller common API
driver

CONFIG_IPUV3_CORE i.MX DRM drivers needed to enable IPUV3_CORE

CONFIG_DRM_IMX_CDNS_MHDP Display Transmitter controller driver

CONFIG_DRM_CDNS_MHDP Display Transmitter controller common API driver

CONFIG_DRM_CDNS_HDMI Display Transmitter controller common API driver for
HDMI

CONFIG_DRM_CDNS_DP Display Transmitter controller common API driver for DP

CONFIG_DRM_CDNS_AUDIO Display Transmitter controller common API driver for
AUDIO

CONFIG_CLK_LS1028A_PLLDIG Display pixel clock driver

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
337 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Source files

The driver source is maintained in the Linux kernel source tree.

Source File Description

drivers/gpu/drm/arm/malidp_* LCD controller driver source

drivers/gpu/drm/imx/hdp Display Transmitter controller driver source

drivers/mxc/hdp/ Display Transmitter controller API common source

drivers/clk/clk-plldig.c Display output interface pixel clock driver source

Device Tree Binding

The following is default device tree configuration for LS1028A RDB board:

&hdptx0 {
 fsl,no_edid;
 resolution = "3840x2160@60",
 "1920x1080@60",
 "1280x720@60",
 "720x480@60";
 lane_mapping = <0x4e>;
 edp_link_rate = <0x6>
 edp_num_lanes = <0x4>;
 status = "okay";
};

If there is no Extended Display Identification Data (EDID) supported by display panel, “fsl, no_edid” is required
specify no_edid mode is used. For this case, kernel driver has some built-in display resolution list with related
display parameters which are defined in “edid_cea_modes” data structure in driver imx-hdp.c, these built-in
parameters can be modified if needed, or some new resolution can be added in this list. Device tree “resolution”
property is used to specify which resolutions in built-in resolution list is supported by the display panel.

For edid mode, EDID data is read from the display panel, then the display parameters together with display
capability can be gathered from EDID data, display driver uses these parameters to initialize DP and LCDC. In
this case, remove the “fsl, no_edid” and “resolution” property from dts.

Device Tree Configuration for eDP

Currently LS1028ARDB board has no eDP port available, the following information is only for your reference.

In order to connect to eDP panel, “fsl, edp” property has to be added in device tree display node and also need
to specify link rate by using “edp_link_rate” property, 0x14 is used for 4k resolution and 0xa is used for 1080p
resolution. “edp_num_lanes” is used to specify how many lanes are used by eDP port.

The following are dts example for 4k and 1080p eDP display panel:

• 4k@60

&hdptx0 {
 fsl,edp;
 fsl,no_edid;
 resolution = "3840x2160@60",
 "1920x1080@60",
 "1280x720@60",
 "720x480@60";
 lane_mapping = <0x4e>;
 edp_link_rate = <0x14>
 edp_num_lanes = <0x4>;

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
338 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

 status = "okay";
};

• 1080p@60

&hdptx0 {
 fsl,edp;
 fsl,no_edid;
 resolution = "3840x2160@60",
 "1920x1080@60",
 "1280x720@60",
 "720x480@60";
 lane_mapping = <0x4e>;
 edp_link_rate = <0xa>
 edp_num_lanes = <0x2>;
 status = "okay";
};

Display pixel clock configuration

LS1028A has a PLL to provide pixel clock both for LCDC and DP, the input reference clock frequency of PLL is
27 MHz, by using programmable digital interface, it can provide pixel clock with frequency from 27 MHz to 594
MHz.

Clock configure relationship are as seen below, further details can be found in LS1028A Reference Manual.

The relationship between input and output frequency is determined by programming the PLLDIG_PLLDV,
PLLDIG_PLLCAL3, and PLLDIG_PLLFD registers, and calculated according to the following equation:

Figure 35. PLL PHI frequency

The relationship between the VCO frequency (fVCO) and the output frequency of the PLL is determined by the
PLLDIG_PLLDV and PLLDIG_PLLFD registers, according to the following equation:

Figure 36. PLL VCO frequency

When programming the PLL, user software must not violate the maximum system clock frequency or max/min
VCO frequency specification of the PLL.

Currently, the fractional divider is supported on LS1028A. So, the PLL can cover almost any VCO frequency
from 650 MHz to 1300 MHz.

In the above two calculation formulas:

• The ‘fpll_phi’ value is equivalent to required pixel clock frequency.
• The ‘fpll_ref’ is the reference clock, it is 27 MHz.
• PLLDV[PREDIV] value is always '1'.
• By default, the MFD(PLLDV[MFD]) value is 44, PLLFD[MFN] is zero, VCO(fpll_vco) frequency value is 1188

MHz.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
339 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

• If VCO frequency is indivisible by required pixel clock frequency (fpll_phi), fractional function will be used, then
PLLFD[MFN] will be calculated to get VCO frequency which can be divisible by required pixel clock frequency.

• The range of VCO frequency is from 650 MHz to 1300 MHz.

For example, if required pixel clock frequency is 594 MHz, because default VCO frequency 1188 is divisible by
594, so PLLDV[RFDPHI] =2, PLLDV[MFD] = 44, and PLLFD[MFN] = 0. But if required pixel clock frequency is
533.25, because default VCO frequency 1188 is indivisible by 533.25, so fractional function need to be used,
the PLL software driver will get a best output pixel clock frequency, and finally PLLDV[MFD] = 39, PLLFD[MFN]
= 10240, PLLDV[RFDPHI] = 2, so the output VCO frequency will be 1066.5 MHz and pixel clock frequency will
be 533.25 MHz.

The VCO frequency of this PLL cannot be changed during runtime, it can be changed only at startup. Therefore,
the output frequencies are limited and might not match the requested frequency. To work around this restriction,
the user can specify the required VCO frequency value in DTS.

The following parameters for different pixel clock frequency with best MFD(44) value are verified:

Pixel Clock
Frequency (MHz)

MULT(MFD) DIV(rfdphi1) Actual Frequency
(MHz)

Differences (MHz)

27 44 44 27 0

54 44 22 54 0

74.25 44 16 74.25 0

99 44 12 99 0

148.5 44 8 148.5 0

198 44 6 198 0

297 44 4 297 0

594 44 2 594 0

40 40 27 40 0

108 44 11 108 0

135 40 8 135 0

162 42 7 162 0

396 44 3 396 0

536 39 2 526.5 9.5

533.25 39 2 526.5 6.27

74.44 44 16 74.25 0.19

27.027 44 44 27 0.027

User can specify the required VCO frequency:

• User can add VCO frequency as a DT node in the dts file to drive the request rate. For more information, refer
to DT bindings (fsl, plldig.yaml).
For example, add VCO frequency as a DT node for 4k resolution.

&dpclk {
 vco-frequency = <1066500000>;
 status = "okay";
};

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
340 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

or add VCO frequency as a DT node for 480p resolution.

&dpclk {
 vco-frequency = <1189188000>;
 status = "okay";
};

Verification in Linux

By default, DisplayPort drivers in Layerscape LDP support four resolutions: 480p (720x480p60), 720p
(1280x720p60), 1080p (1920x1080p60) and 4k (3840x2160p60).

Follow this procedure to provide support for 480p, 720p, 1080p, or 4k resolution with DisplayPort.

1. Build DP firmware by using bitbake. Execute the following command:

bitbake dp-firmware-cadence

Then DP firmware “ls1028a-dp-fw.bin” together with EULA file can be found in the directory build/
firmware/dp_firmware_cadence/dp/.

2. Loading DP firmware in U-Boot
HDP firmware binary is loaded during U-Boot. At U-Boot prompt, copy the firmware binary from any storage
medium (NOR flash or SD/eMMC) to DDR memory. Use the following command to load the binary:

=> hdp load <address > <offset>

where:
• address - address where the firmware binary starts in DDR memory
• offset - IRAM offset in the firmware binary (8192 default)
For example: =>hdp load 0x98000000 0x2000
If flash images are built by bitbake, DP firmware is burn in flash or SD card. To know about the location of
DP firmware, see LS1028A Memory Layout. Use the following commands to load DP firmware at U-Boot:
a. Get DP firmware with XSPI flash boot:

=> run xspi_hdploadcmd
Trying load HDP firmware from FlexSPI...
SF: Detected mt35xu02g with page size 256 Bytes, erase size 128 KiB, total
 256 MiB
device 0 offset 0x940000, size 0x30000
SF: 196608 bytes @ 0x940000 Read: OK
Loading hdp firmware from 0x00000000a0000000 offset 0x0000000000002000
Loading hdp firmware Complete

b. Get DP firmware with SD boot

=> run sd_hdploadcmd
Trying load HDP firmware from SD..
Device: FSL_SDHC
Manufacturer ID: 3
OEM: 5054
Name: SL16G
Bus Speed: 50000000
Mode : SD High Speed (50MHz)
Rd Block Len: 512
SD version 3.0
High Capacity: Yes
Capacity: 14.5 GiB
Bus Width: 4-bit
Erase Group Size: 512 Bytes
MMC read: dev # 0, block # 18944, count 512 ... 512 blocks read: OK
Loading hdp firmware from 0x00000000a0000000 offset 0x0000000000002000

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
341 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Loading hdp firmware Complete

c. Get DP firmware with EMMC boot

=> run emmc_hdploadcmd
Trying load HDP firmware from EMMC..
switch to partitions #0, OK
mmc1(part 0) is current device
Device: FSL_SDHC
Manufacturer ID: 13
OEM: 14e
Name: Q2J55
Bus Speed: 52000000
Mode : MMC High Speed (52MHz)
Rd Block Len: 512
MMC version 5.0
High Capacity: Yes
Capacity: 7.1 GiB
Bus Width: 4-bit
Erase Group Size: 512 KiB
HC WP Group Size: 8 MiB
User Capacity: 7.1 GiB WRREL
Boot Capacity: 2 MiB ENH
RPMB Capacity: 4 MiB ENH
MMC read: dev # 1, block # 18944, count 512 ... 512 blocks read: OK
Loading hdp firmware from 0x00000000a0000000 offset 0x0000000000002000
Loading hdp firmware Complete

3. Setting bootargs to specify the display resolution and CMA memory size
• To support 480p resolution, add the following argument to bootargs (the minimum CMA size is 64M

bytes):

video=720x480-32@60 cma=256M

• To support 720p resolution, add the following argument to bootargs:

video=1280x720-32@60 cma=256M

• To support 1080p resolution, add the following argument to bootargs:

video=1920x1080-32@60 cma=256M

• To support 4k resolution, add the following arguments to bootargs:

video=3840x2160-32@60 cma=256M

4. Loading the below display related modules when system boot up is done

insmod drm_panel_orientation_quirks.ko
insmod drm.ko
insmod drm_kms_helper.ko
insmod imx_hdp_common.ko
insmod mali-dp.ko
insmod imx-hdptx.ko

After executing the above steps, you can see “Please wait: booting” message on the DP.

Refer to the following boot up logs:

[42.501819] [drm] found Arm Mali-DP500 version r1p2
[42.506943] [drm] Resolution 3840x2160@60 is enabled
[42.511945] [drm] Resolution 1920x1080@60 is enabled
[42.516930] [drm] Resolution 1280x720@60 is enabled

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
342 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

[42.521832] [drm] Resolution 720x480@60 is enabled
[42.526645] i.mx8-hdp f1f0000.display: lane_mapping 0x4e
[42.531979] i.mx8-hdp f1f0000.display: edp_link_rate 0x06
[42.537398] i.mx8-hdp f1f0000.display: dp_num_lanes 0x04
[42.542796] [drm] Started firmware!
[42.546301] [drm] CDN_API_CheckAlive returned ret = 0
[42.551373] [drm] Firmware version: 23029, Lib version: 20691
[42.557162] [drm] CDN_API_MainControl_blocking (ret = 0 resp = 1)
[42.563314] [drm] CDN_API_General_Test_Echo_Ext_blocking (ret = 0 echo_resp =
 echo test)
[42.571444] [drm] CDN_API_General_Write_Register_blockin ... setting
 LANES_CONFIG
[42.579017] [drm] pixel engine reset
[42.582615] [drm] CDN_*_Write_Register_blocking ... setting LANES_CONFIG 4e
[42.591387] [drm] AFE_init
[42.594117] [drm] deasserted reset
[42.597616] Wait for A2 ACK
[42.622094] [drm] AFE_power exit
[42.625342] [drm] CDN_API_DPTX_SetVideo_blocking (ret = 0)
[42.631035] mali-dp f080000.display: bound f1f0000.display (ops
 imx_hdp_imx_ops [imx_hdptx])
[42.639685] [drm] Supports vblank timestamp caching Rev 2 (21.10.2013).
[42.646334] [drm] No driver support for vblank timestamp query.
[42.652655] [drm] Initialized mali-dp 1.0.0 20160106 for f080000.display on
 minor 0
[42.660407] i.mx8-hdp f1f0000.display: No EDID function, use default video
 mode
[42.672016] [drm] pixel engine reset
[42.672030] [drm] CDN_*_Write_Register_blocking ... setting LANES_CONFIG 4e
[42.673818] [drm] AFE_init
[42.673838] [drm] deasserted reset
[42.673928] Wait for A2 ACK
[42.695986] [drm] AFE_power exit
[42.695994] [drm] CDN_API_DPTX_SetVideo_blocking (ret = 0)
[42.696014] [drm] CDN_API_DPTX_SetHostCap_blocking (ret = 0)
[42.698821] [drm] INFO: Full link training started
[42.701245] [drm] INFO: Clock recovery phase finished
[42.702064] [drm] INFO: Channel equalization phase finished
[42.702066] [drm] (last part meaning training finished)
[42.702097] [drm] INFO: Get Read Link Status (ret = 0) resp: rate: 20,
[42.702099] [drm] lanes: 4, vswing 0..3: 2 2 2, preemp 0..3: 1 1 1
[42.702284] [drm] CDN_API_DPTX_Set_VIC_blocking (ret = 0)
[42.702290] [drm] CDN_API_DPTX_SetVideo_blocking (ret = 0)
[42.703462] Console: switching to colour frame buffer device 240x67
[42.812209] mali-dp f080000.display: fb0: mali-dpdrmfb frame buffer device
[42.832364] [drm] HDMI/DP Cable Plug In

6.5.20 FlexTimer (FTM)

Description

The module can provide functions, such as PWM, clock source, wake-up source. Currently, only wake-up
source and PWM are supported on Layerscape platforms.

Kernel Configure Tree View Options

• Use FlexTimer as wake-up source

-> Device Drivers
 -> Real Time Clock

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
343 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

 -> <*> Freescale FlexTimer alarm timer

• Use FlexTimer as PWM

-> Device Drivers
 -> Pulse-Width Modulation (PWM) Support
 -> <M> Freescale FlexTimer Module (FTM) PWM support

Compile-time Configuration Options

Config Values Default Value Description

CONFIG_RTC_DRV_FSL_FTM_ALARM y/m/n y Use FlexTimer as wake-up
source

CONFIG_PWM_FSL_FTM y/m/n m Use FlexTimer as PWM

Source Files

The driver source is maintained in the Linux kernel source tree.

Source File Description

drivers/rtc/rtc-fsl-ftm-alarm.c Linux FlexTimer alarm timer driver

drivers/pwm/pwm-fsl-ftm.c Linux FlexTimer PWM driver

Device Tree Binding

Property Type Status Description

compatible String Required Should be fsl,<soc>-
ftm-alarm

reg Integer Required Should contain Flex
Timer registers location
and length

interrupts Integer Required Should contain Flex
Timer interrupt

fsl, rcpm-wakeup Integer Required Should specify register’s
value of rcpm

Use FlexTimer as
wake-up source

big-endian String Optional It is little-endian if the
property is not specified.

compatible String Required Should be fsl,
vf610-ftm-pwm

#pwm-cells Integer Required Should be 3. See pwm.
yaml in this directory for
a description of the cells
format.

reg Integer Required Should contain Flex
Timer registers location
and length

Use FlexTimer as
PWM

clock-names Integer Required Should include the
following module clock
source entries:

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
344 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Property Type Status Description
• ftm_sys - module

clock, also can be
used as counter clock

• ftm_ext - external
counter clock

• ftm_fix - fixed
counter clock

• ftm_cnt_clk_en
- external and fixed
counter clock enable/
disable

clocks Integer Required Must contain a phandle
and clock specifier for
each entry in clock-
names. See clock/
clock-bindings.
txt for details of the
property values.

big-endian Boolean Optional It is little-endian if the
property is not specified.

Example (use FlexTimer as wake-up source):

aliases
 {
 rtc1 = &ftm_alarm0;
 };
rcpm: rcpm@1ee208c
 {
 compatible = "fsl,ls1046a-rcpm", "fsl,qoriq-rcpm-2.1+";
 reg = <0x0 0x1ee208c 0x0 0x4>;
 #fsl,rcpm-wakeup-cells = <1>;
 };
ftm_alarm0: timer@29d0000
 {
 compatible = "fsl,ls1046a-ftm-alarm";
 reg = <0x0 0x29d0000 0x0 0x10000>;
 fsl,rcpm-wakeup = <&rcpm 0x20000>;
 interrupts = <GIC_SPI 86 IRQ_TYPE_LEVEL_HIGH>;
 big-endian;
 };

Example (use FlexTimer as PWM on LS1028ARDB):

arch/arm64/boot/dts/freescale/fsl-ls1028a.dtsi
rtc_clk: rtc-clk
 {
 compatible = "fixed-clock";
 #clock-cells = <0>;
 clock-frequency = <32000>;
 clock-output-names = "rtc_clk";
 };
pwm0: pwm@2800000
 {
 compatible = "fsl,vf610-ftm-pwm";
 #pwm-cells = <3>;

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
345 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

 reg = <0x0 0x2800000 0x0 0x10000>;
 clock-names = "ftm_sys", "ftm_ext",
 "ftm_fix", "ftm_cnt_clk_en";
 clocks = <&clockgen 4 1>, <&clockgen 4 1>, <&fixed_clk>, <&clockgen 4 1>;
 status = "disabled";
 };
arch/arm64/boot/dts/freescale/fsl-ls1028a-rdb.dts
&pwm0
 {
 status = "okay";
 };

Verification in Linux (Use FlexTimer as wake-up source):

root@ls1046a:~# cat /sys/power/mem_sleep (check whether system support deep
 sleep mode)
s2idle [deep]
root@ls1046a:~# echo deep > /sys/power/mem_sleep (set deep sleep mode when
 suspend to memery,it’s optional)
root@ls1046a:~# echo 0 > /sys/class/rtc/rtc1/wakealarm;echo +10>/sys/class/rtc/
rtc1/wakealarm && echo mem > /sys/power/state (wake up system in deep sleep mode
 afer 10 seconds)
[32.844947] PM: suspend entry (deep)
[32.849256] Filesystems sync: 0.000 seconds
[32.853822] Freezing user space processes ... (elapsed 0.001 seconds) done.
[32.861900] OOM killer disabled.
[32.865128] Freezing remaining freezable tasks ... (elapsed 0.001 seconds)
 done.
[32.873596] printk: Suspending console(s) (use no_console_suspend to debug)
[32.898188] Disabling non-boot CPUs ...
[32.898389] IRQ 51: no longer affine to CPU1
[32.898392] IRQ 55: no longer affine to CPU1
[32.898395] IRQ 59: no longer affine to CPU1
[32.898418] CPU1: shutdown
[32.916673] psci: Retrying again to check for CPU kill
[32.916676] psci: CPU1 killed.
[32.917127] IRQ 52: no longer affine to CPU2
[32.917130] IRQ 56: no longer affine to CPU2
[32.917133] IRQ 60: no longer affine to CPU2
[32.917149] CPU2: shutdown
[32.936666] psci: Retrying again to check for CPU kill
[32.936669] psci: CPU2 killed.
[32.937101] IRQ 53: no longer affine to CPU3
[32.937104] IRQ 57: no longer affine to CPU3
[32.937107] IRQ 61: no longer affine to CPU3
[32.937130] CPU3: shutdown
[32.956665] psci: Retrying again to check for CPU kill
[32.956668] psci: CPU3 killed.
[32.957001] Enabling non-boot CPUs ...
[32.957255] Detected PIPT I-cache on CPU1
[32.957290] CPU1: Booted secondary processor 0x0000000001 [0x410fd082]
[32.957546] CPU1 is up
[32.957693] Detected PIPT I-cache on CPU2
[32.957712] CPU2: Booted secondary processor 0x0000000002 [0x410fd082]
[32.957896] CPU2 is up
[32.958044] Detected PIPT I-cache on CPU3
[32.958063] CPU3: Booted secondary processor 0x0000000003 [0x410fd082]
[32.958265] CPU3 is up
[34.282897] ata1: SATA link down (SStatus 0 SControl 300)
[34.284480] OOM killer enabled.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
346 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

[34.347864] Restarting tasks ...
[34.347959] usb 1-1: USB disconnect, device number 2
[34.348301] done.
[34.358237] PM: suspend exit

Verification in Linux (Use FlexTimer as PWM):

Enabling the pwm (FTM1_CH1, channel start from 0)
echo 1 > /sys/class/pwm/pwmchip0/export
Configuring the pwm period, duty cycle, and polarity
echo 1000000000 > /sys/class/pwm/pwmchip0/pwm1/period (1000000000 nanoseconds
 as period, 1 s)
echo 500000000 > /sys/class/pwm/pwmchip0/pwm1/duty_cycle (50% duty cycle, 0.5
 s)
echo 'normal' > /sys/class/pwm/pwmchip0/pwm1/polarity (whether the 'on' time
 of the signal is active high or active low. Set the polarity to active high.)
Enable pwm
echo 1 > /sys/class/pwm/pwmchip0/pwm0/enable
Disable pwm
echo 0 > /sys/class/pwm/pwmchip0/pwm0/enable

Note:

• Needs to be used as RTC1, unless system gets wrong time, because FlexTimer module is not an RTC.
• FlexTimer alarm timer driver depends on the RCPM driver.
• All FlexTimer modules cannot be used as PWM and wake-up source at the same time.

6.5.21 Inter-Integrated Circuit (I2C)

Description

This section provides details about I2C function.

Kernel configure tree view options

Kernel configure tree view options

-> Device Drivers
 -> I2C support
 -> I2C support (I2C [=y])
 -> I2C Hardware Bus support
 <*> IMX I2C interface

Compile-time configuration options

Option Value Default value Description

CONFIG_I2C_IMX y/m/n y Enable I2C module

Source files

The driver source is maintained in the Linux kernel source tree.

Source file Description

drivers/i2c/busses/i2c-imx.c Linux I2C driver

Device tree binding
UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
347 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

For more information on Device tree binding, see documentation/devicetree/bindings/i2c/i2c-
imx.txt.

Property Type Status Description

compatible string Required Should be 'fsl,vf610-i2c'

reg integer Required Should contain I2C/HS-I2C
registers location and length

interrupts integer Required Should contain I2C/HS-I2C
interrupt

clocks integer Required Should contain the I2C/HS-I2
C clock specifier

Example:
i2c1: i2c@2190000 {
 compatible = "fsl,vf610-i2c";
 #address-cells = <1>;
 #size-cells = <0>;
 reg = <0x0 0x2190000 0x0 0x10000>;
 interrupts = <GIC_SPI 57 IRQ_TYPE_LEVEL_HIGH>;
 clocks = <&clockgen 4 1>;
 status = "disabled";
};
&i2c1 {
 status = "okay";
};

Verification in U-Boot

U-Boot log:
=> help i2c
i2c - I2C sub-system
Usage:
i2c bus [muxtype:muxaddr:muxchannel] - show I2C bus info
i2c crc32 chip address[.0, .1, .2] count - compute CRC32 checksum
i2c dev [dev] - show or set current I2C bus
i2c loop chip address[.0, .1, .2] [# of objects] - looping read of device
i2c md chip address[.0, .1, .2] [# of objects] - read from I2C device
i2c mm chip address[.0, .1, .2] - write to I2C device (auto-incrementing)
i2c mw chip address[.0, .1, .2] value [count] - write to I2C device (fill)
i2c nm chip address[.0, .1, .2] - write to I2C device (constant address)
i2c probe [address] - test for and show device(s) on the I2C bus
i2c read chip address[.0, .1, .2] length memaddress - read to memory
i2c write memaddress chip address[.0, .1, .2] length [-s] - write memory
to I2C; the -s option selects bulk write in a single transaction
i2c flags chip [flags] - set or get chip flags
i2c olen chip [offset_length] - set or get chip offset length
i2c reset - re-init the I2C Controller
i2c speed [speed] - show or set I2C bus speed
=> i2c bus
Bus 0: i2c@2000000 (active 0)
77: i2c-mux@77, offset len 1, flags 0
66: generic_66, offset len 1, flags 0
57: generic_57, offset len 1, flags 0
Bus 1: i2c@2000000->i2c-mux@77->i2c@3
51: rtc@51, offset len 1, flags 0
Bus 2: i2c@2010000

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
348 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Bus 3: i2c@2020000
Bus 4: i2c@2030000
Bus 5: i2c@2040000
Bus 6: i2c@2050000
Bus 7: i2c@2060000
Bus 8: i2c@2070000
=> i2c dev 0
Setting bus to 0
=> i2c probe
Valid chip addresses: 00 50 52 53 57 66 67 77 7C
=> i2c speed
Current bus speed=100000
=> i2c dev 1
Setting bus to 1
=> i2c probe
Valid chip addresses: 00 4C 51 66 67 77 7C
=> i2c md 0x51 0
0000: 07 fb 17 21 14 05 04 09 19 80 80 80 80 80 00 03 ...!............

Verification in Linux

root@ls1028a:~# i2c
i2cdetect i2cdump i2cget i2cset
root@ls1028a:~# i2cdetect -l
i2c-3 i2c i2c-0-mux (chan_id 2) I2C adapter
i2c-1 i2c i2c-0-mux (chan_id 0) I2C adapter
i2c-8 i2c i2c-0-mux (chan_id 7) I2C adapter
i2c-6 i2c i2c-0-mux (chan_id 5) I2C adapter
i2c-4 i2c i2c-0-mux (chan_id 3) I2C adapter
i2c-2 i2c i2c-0-mux (chan_id 1) I2C adapter
i2c-0 i2c 2000000.i2c I2C adapter
i2c-7 i2c i2c-0-mux (chan_id 6) I2C adapter
i2c-5 i2c i2c-0-mux (chan_id 4) I2C adapter
root@ls1028a:~# i2cdetect -y 1
 0 1 2 3 4 5 6 7 8 9 a b c d e f
00: -- -- -- -- -- -- -- -- -- -- -- -- --
10: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
20: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
30: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
40: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
50: 50 -- 52 53 -- -- -- 57 -- -- -- -- -- -- -- --
60: -- -- -- -- -- -- 66 67 -- -- -- -- -- -- -- --
70: -- -- -- -- -- -- -- UU
root@ls1028a:~# i2cdump -y 1 0x66
No size specified (using byte-data access)
 0 1 2 3 4 5 6 7 8 9 a b c d e f 0123456789abcdef
00: 47 01 06 c9 36 00 00 00 00 00 00 2f ff 00 00 00 G???6....../....
10: 10 00 00 00 00 00 00 00 00 00 00 00 00 01 00 7f ?............?.?
20: 00 00 00 00 cb ff ff ff 00 00 00 00 00 00 00 00 ?...........
30: 02 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ?...............
40: 30 00 33 00 00 00 00 00 00 00 00 00 00 00 00 00 0.3.............
50: 00 02 00 04 08 e0 e0 00 00 00 00 00 00 00 00 00 .?.????.........
60: ff 7f ff ff ff ff ff 00 00 00 00 ff 00 00 00 00 .?..............
70: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
80: 1c 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ?...............
90: f7 ff ff 00 00 00 00 00 00 00 00 00 00 00 00 00 ?...............
a0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
b0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
c0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
d0: 00 00 00 00 00 00 00 00 00 03 00 00 00 00 00 00 ?......

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
349 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

e0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
f0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
root@ls1028a:~# i2cget -y 1 0x66 0x50
0x00
root@ls1028a:~# i2cset -y 1 0x66 0x50 0x4
root@ls1028a:~# i2cget -y 1 0x66 0x50
0x04

6.5.22 Watchdog

The Watchdog module is used to apply a reset to the system in an event of a software failure. It also provides a
way of recovering from software crashes.

6.5.22.1 U-Boot

With default configuration of Layerscape LDP, watchdog should be ready to use. Below are related CONFIG
files to select.

Configure Tree View Options

U-Boot configure tree view options Description

Device Drivers --->
[*] Watchdog Timer Support --->
[*] Enable driver model for watchdog timer drivers (WDT [=y])
[*] SBSA watchdog timer support

SBSA Watchdog Timer
(worked on LX2160A)

Device Drivers --->
[*] Watchdog Timer Support --->
[*] Enable driver model for watchdog timer drivers (WDT [=y])
[*] SP805 watchdog timer support

SP805 Watchdog Timer
(worked on LS1028A)

Device tree

SBSA:
 watchdog@23a0000 {
 compatible = "arm,sbsa-gwdt";
 reg = <0x0 0x23a0000 0 0x1000>,
 <0x0 0x2390000 0 0x1000>;
 timeout-sec = <30>;
 };
SP805:
 cluster1_core0_watchdog: wdt@c000000 {
 compatible = "arm,sp805-wdt";
 reg = <0x0 0xc000000 0x0 0x1000>;
 };

Source Files

Source File Description

drivers/watchdog/sbsa_gwdt.c SBSA Generic Watchdog Timer

drivers/watchdog/sp805_wdt.c SP805 Watchdog Timer

Verification

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
350 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

• Use wdt command to test under U-Boot
– Run command “wdt list” to list watchdog devices
– Run command “wdt dev [<name>]” to set current watchdog device
– Run command “wdt expire” to expire watchdog timer immediately

=> wdt list
watchdog@23a0000 (sbsa_gwdt)
=> wdt dev watchdog@23a0000
=> wdt expire

6.5.22.2 Kernel configure options

Kernel configure tree view options Description

Device Drivers --->
 [*] Watchdog Timer Support --->
 <*> IMX2+ Watchdog

IMX2 Watchdog Timer

(worked on LS1021A, LS1012A, LS1043A, and
LS1046A)

Device Drivers --->
 [*] Watchdog Timer Support --->
 <*> Arm SP805 Watchdog

SP805 Watchdog Timer

(worked on LS1088A, LS208xA, and LS1028A)

Device Drivers --->
 [*] Watchdog Timer Support --->
 <*> ARM SBSA Generic Watchdog

SBSA Generic Watchdog Timer

(worked on LX2160A)

6.5.22.3 Compile-time configuration options

Option Values Default value Description

CONFIG_IMX2_WDT y/m/n y IMX2 Watchdog Timer

CONFIG_ARM_SP805_WATCHDOG y/m/n y SP805 Watchdog Timer

CONFIG_ARM_SBSA_WATCHDOG y/m/n y SBSA Generic Watchdog Timer

6.5.22.4 Device tree

• IMX2 Watchdog Timer:

wdog0: wdog@2ad0000 {
 compatible = "fsl,ls1043a-wdt", "fsl,imx21-wdt";
 reg = <0x0 0x2ad0000 0x0 0x10000>;
 interrupts = <0 83 0x4>;
 clocks = <&clockgen 4 0>;
 clock-names = "wdog";
 big-endian;
};

• SP805 Watchdog Timer:

cluster1_core0_watchdog: wdt@c000000 {
 compatible = "arm,sp805", "arm,primecell";
 reg = <0x0 0xc000000 0x0 0x1000>;

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
351 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

 clocks = <&clockgen 4 15>, <&clockgen 4 15>;
 clock-names = "apb_pclk", "wdog_clk";
};

• SBSA Generic Watchdog Timer:

watchdog@23a0000 {
 compatible = "arm,sbsa-gwdt";
 reg = <0x0 0x23a0000 0 0x1000>,
 <0x0 0x2390000 0 0x1000>;
 interrupts = <GIC_SPI 59 IRQ_TYPE_LEVEL_HIGH>;
 timeout-sec = <30>;
 };

6.5.22.5 Source files

The driver source is maintained in the Linux kernel source tree.

Source file Description

drivers/watchdog/imx2_wdt.c IMX2 Watchdog Timer

drivers/watchdog/sp805_wdt.c SP805 Watchdog Timer

drivers/watchdog/sbsa_gwdt.c SBSA Generic Watchdog Timer

6.5.22.6 Verification in Linux

• Boot-up Linux with Ubuntu, user can install watchdog by commandsudo apt update; sudo apt
install watchdog if it is not installed.

• In /etc/watchdog.conf:
– Configure watchdog device to be used. Refer the third point in the Note below to identify the correct device.

Example: watchdog-device = /dev/watchdog0
– assign timeout to watchdog-timeout in seconds. Default value is 60 s, if watchdog-timeout is not

defined in Ubuntu.
Example: watchdog-timeout = 30

• Then kill watchdog daemon and the system will reset after timeout.

root@ls1028ardb:~# pkill -9 watchdog
root@ls1028ardb:~# pkill -9 wd_keepalive

Note:

• For SBSA watchdog, the first interrupt is not enabled by default. Setting sbsa-gwdt.action to 1 in U-Boot
bootargs could enable it.

• SBSA watchdog on LX2160A will not reset the kernel but get kernel panic.
• There may be more than one watchdog device, so need to check which device file (/dev/watchdogx, x can be

0, 1, 2 ...) can be used. PCF2127/9 which actually is RTC device may be registered as watchdog due to Linux
new feature. Use the following commands to check the relationship between watchdog hardware device and
device file.
– Use the command: cat /sys/class/watchdog/watchdog0/device/uevent For example:

root@rdb:/# cat /sys/class/watchdog/watchdog0/device/uevent
DRIVER=rtc-pcf2127-i2c
OF_NAME=rtc

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
352 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

OF_FULLNAME=/soc/i2c@2040000/rtc@51
OF_COMPATIBLE_0=nxp,pcf2129
OF_COMPATIBLE_N=1
MODALIAS=of:NrtcT(null)Cnxp,pcf2129
root@rdb:/# cat /sys/class/watchdog/watchdog1/device/uevent
DRIVER=sbsa-gwdt
OF_NAME=watchdog
OF_FULLNAME=/soc/watchdog@23a0000
OF_COMPATIBLE_0=arm,sbsa-gwdt
OF_COMPATIBLE_N=1
MODALIAS=of:NwatchdogT(null)Carm,sbsa-gwdt

– or use the command: ls -l sys/class/watchdog/watchdog0/device/driver For example:

root@rdb:/# ls -l sys/class/watchdog/watchdog0/device/driver
lrwxrwxrwx 1 root root 0 Feb 28 18:05 sys/class/watchdog/watchdog0/device/
driver -> ../../../../../../bus/i2c/drivers/rtc-pcf2127-i2c
root@rdb:/# ls -l sys/class/watchdog/watchdog1/device/driver
lrwxrwxrwx 1 root root 0 Feb 28 18:05 sys/class/watchdog/watchdog1/device/
driver -> ../../../../bus/platform/drivers/sbsa-gwdt

6.5.23 GPIO

The U-Boot and Linux kernel support MPC8XXX GPIO controllers.

U-Boot

• Kernel Configure Tree View Options

Kernel configure tree view options Description

Device Drivers --> GPIO Support --
> [*] Enable Driver Model for GPIO
 drivers [*] Freescale MPC8XXX GPIO
 driver Command line interface ->
 Device access commands -> [*] gpio

• Enable DM_GPIO
• Select GPIO MPC8XXX driver
• Enable CMD_GPIO option to test GPIO at U-Boot

• Source Files

Source File Description

drivers/gpio/mpc8xxx_gpio.c GPIO MPC8XXX driver

• Device Tree (arch/arm/dts/fsl-lx2160a.dtsi)

gpio3: gpio@2330000 {
 compatible = "fsl,qoriq-gpio";
 reg = <0x0 0x2330000 0x0 0x10000>;
 interrupts = <0 37 4>;
 gpio-controller;
 little-endian;
 #gpio-cells = <2>;
 interrupt-controller;
 #interrupt-cells = <2>;
 };

Linux kernel

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
353 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

• Kernel Configure Tree View Options

Kernel configure tree view options Description

Device Drivers -->
 -*- GPIO Support -->
 [*] /sys/class/gpio/... (sysfs
 interface)
 Memory mapped GPIO drivers -->
 [*] MPC512x/MPC8xxx/QorIQ
 GPIO support

• Add a sysfs interface for GPIOs
• Select GPIO MPC8XXX driver

• Source files
The driver source is maintained in the Linux kernel source tree.

Source File Description

drivers/gpio/gpio-mpc8xxx.c GPIO MPC8XXX driver

• Device Tree
Note: See Documentation/devicetree/bindings/gpio/gpio-mpc8xxx.txt and
Documentation/devicetree/bindings/gpio/gpio.txt for more details.

arch/arm64/boot/dts/freescale/fsl-lx2160a.dtsi
 gpio0: gpio@2300000 {
 compatible = "fsl,qoriq-gpio";
 reg = <0x0 0x2300000 0x0 0x10000>;
 interrupts = <GIC_SPI 36 IRQ_TYPE_LEVEL_HIGH>;
 gpio-controller;
 little-endian;
 #gpio-cells = <2>;
 interrupt-controller;
 #interrupt-cells = <2>;
 };

Verify on LX2160AQDS (Both U-Boot and Linux kernel)

• Update RCW to enable GPIO4
– LX2160ARM

Figure 37. EC2_PMUX
– For LX2162AQDS: Update RCW source file (for example, lx2160aqds/FFGG_XXXX_PPPP_HHHHH_PPPP
_PPPP_19_5_2/rcw_2000_700_2900_19_5_2.rcw)

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
354 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Because LX2160AQDS RCW file soft links LX2160ARDB RCW file, as follows:

lx2160aqds/FFGG_XXXX_PPPP_HHHHH_PPPP_PPPP_19_5_2/rcw_2000_700_2900_19_5_2.rcw
 -> ../../lx2160ardb/XGGFF_PP_HHHH_19_5_2/rcw_2000_700_2900_19_5_2.rcw

diff --git a/lx2160ardb/XGGFF_PP_HHHH_19_5_2/rcw_2000_700_2900_19_5_2.rcw b/
lx2160ardb/XGGFF_PP_HHHH_19_5_2/rcw_2000_700_2900_19_5_2.rcw
index 1ecf757..45a605a 100644
--- a/lx2160ardb/XGGFF_PP_HHHH_19_5_2/rcw_2000_700_2900_19_5_2.rcw
+++ b/lx2160ardb/XGGFF_PP_HHHH_19_5_2/rcw_2000_700_2900_19_5_2.rcw
@@ -40,6 +40,7 @@ SRDS_PLL_REF_CLK_SEL_S1=2
 SRDS_DIV_PEX_S1=1
 SRDS_DIV_PEX_S2=3
 SRDS_DIV_PEX_S3=1
+EC2_PMUX=1
 /* Errata to write on scratch reg for validation */
 #include <../lx2160asi/scratchrw1.rcw>

– For LX2160ARDB: Update RCW source file (lx2160ardb/XGGFF_PP_HHHH_RR_19_5_2/rcw_2000_
700_2900_19_5_2_sd.rcw)

diff --git a/lx2160ardb/XGGFF_PP_HHHH_RR_19_5_2/
rcw_2000_700_2900_19_5_2_sd.rcw b/lx2160ardb/XGGFF_PP_HHHH_RR_19_5_2/
rcw_2000_700_2900_19_5_2_sd.rcw
index b51072c..1aadf55 100644
--- a/lx2160ardb/XGGFF_PP_HHHH_RR_19_5_2/rcw_2000_700_2900_19_5_2_sd.rcw
+++ b/lx2160ardb/XGGFF_PP_HHHH_RR_19_5_2/rcw_2000_700_2900_19_5_2_sd.rcw
@@ -20,6 +20,7 @@ CGA_PLL1_RAT=20
 CGA_PLL2_RAT=20
 CGB_PLL1_RAT=20
 CGB_PLL2_RAT=7
+EC2_PMUX=1
 C5_PLL_SEL=0
 C6_PLL_SEL=0
 C7_PLL_SEL=0

• Flash rebuilt RCW image to LX2160ARDB, then boot to U-Boot console, execute below command to set
BRDCFG4 bit 7 to 1’b1

=> i2c mw 66 54 80

– LX2160ARDB PCB and Schematic:

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
355 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Figure 38. GPIO pin on LX2160ARDB

Figure 39. IEEE-1588 access header LX2160ARDB schematics diagram

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
356 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Figure 40. NX3DV221TK schematics diagram
– LX2160ARDBRM: Chip U66 NX3DV221TK’s select signal is connected to CPLD’s CFG_MUX_EC2

Figure 41. CFG_MUX_EC2 configuration signal
• Flash rebuilt RCW image to LX2160AQDS, then boot to U-Boot console, execute below command to set

BRDCFG5 bit 2 to 1’b1

=> i2c mw 66 55 64

– LX2160AQDS PCB and Schematic:

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
357 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Figure 42. GPIO pin on LX2160AQDS

Figure 43. IEEE-1588 access header LX2160AQDS schematics diagram

Figure 44. NX3DV221TK schematics diagram
– LX2160AQDSRM: Chip U136 NX3DV221TK’s select signal is connected to CPLD’s CFG_MUX_EC2_S

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
358 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Figure 45. CFG_MUX_EC2_S configuration signal
• Boot to U-Boot console.

– Set BRDCFG5[2] to 1’b1 and get status.

=> i2c mw 66 55 64
=> gpio
gpio - query and control gpio pins
Usage:
gpio <input|set|clear|toggle> <pin>
 - input/set/clear/toggle the specified pin
gpio status [-a] [<bank> | <pin>] - show [all/claimed] GPIOs
=> gpio status -a
Bank MPC@2320000_:
MPC@2320000_0: input: 0 []
MPC@2320000_1: input: 0 []
…

– Verify write.

=> gpio set mpc@2330000_15
gpio: pin mpc@2330000_15 (gpio 47) value is 1
=> gpio status mpc@2330000_15
Bank MPC@2330000_:
MPC@2330000_15: output: 1 []
// Measure LX2160AQDS board J60 pin 1 voltage is 1.8V
// Measure LX2160ARDB board J29 pin 1 voltage is 1.8V
=> gpio clear mpc@2330000_15
gpio: pin mpc@2330000_15 (gpio 47) value is 0
=> gpio status mpc@2330000_15
Bank MPC@2330000_:
MPC@2330000_15: output: 0 []
// Measure LX2160AQDS board J60 pin 1 voltage is 0V
// Measure LX2160ARDB board J29 pin 1 voltage is 0V
=> gpio toggle mpc@2330000_15
gpio: pin mpc@2330000_15 (gpio 47) value is 1
=> gpio status mpc@2330000_15
Bank MPC@2330000_:
MPC@2330000_15: output: 1 []
// Measure LX2160AQDS board J60 pin 1 voltage is 1.8V
// Measure LX2160ARDB board J29 pin 1 voltage is 1.8V
=> gpio toggle mpc@2330000_15
gpio: pin mpc@2330000_15 (gpio 47) value is 0
=> gpio status mpc@2330000_15
Bank MPC@2330000_:
MPC@2330000_15: output: 0 []
// Measure LX2160AQDS board J60 pin 1 voltage is 0V
// Measure LX2160ARDB board J29 pin 1 voltage is 0V

– Verify read.

// Short LX2160AQDS board J60 pin 1 and pin 11 (GND)
// Short LX2160ARDB board J29 pin 1 and pin 11 (GND)
=> gpio input mpc@2330000_15
gpio: pin mpc@2330000_15 (gpio 47) value is 0
// Short LX2160AQDS board J60 pin 1 with a +5V pin
// Short LX2160ARDB board J29 pin 1 with a +5V pin

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
359 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

=> gpio input mpc@2330000_15
gpio: pin mpc@2330000_15 (gpio 47) value is 1

• Boot to Linux kernel console.
– Check GPIO controller

cat /sys/kernel/debug/gpio
gpiochip3: GPIOs 384-415, parent: platform/2330000.gpio,2330000.gpio:
 (represent GPIO4)
gpiochip2: GPIOs 416-447, parent: platform/2320000.gpio, 2320000.gpio:
 (represent GPIO3)
gpiochip1: GPIOs 448-479, parent: platform/2310000.gpio, 2310000.gpio:
 (represent GPIO2)
gpiochip0: GPIOs 480-511, parent: platform/2300000.gpio, 2300000.gpio:
 (represent GPIO1)

– Export GPIO pin.

echo 399 > /sys/class/gpio/export (399 = 384 + 15, GPIO1_15)

– Verify write.

echo out > /sys/class/gpio/gpio399/direction
echo 1 > /sys/class/gpio/gpio399/value
// Measure LX2160AQDS board J60 pin 1 voltage is 1.8V
// Measure LX2160ARDB board J29 pin 1 voltage is 1.8V
echo 0 > /sys/class/gpio/gpio399/value
// Measure LX2160AQDS board J60 pin 1 voltage is 0V
// Measure LX2160ARDB board J29 pin 1 voltage is 0V

– Verify read.

echo in > /sys/class/gpio/gpio399/direction
// Short LX2160AQDS board J60 pin 1 and pin 11 (GND)
// Short LX2160ARDB board J29 pin 1 and pin 11 (GND)
cat /sys/class/gpio/gpio399/value
0
// Short LX2160AQDS board J60 pin 1 with a +5V pin
// Short LX2160ARDB board J29 pin 1 with a +5V pin
cat /sys/class/gpio/gpio399/value
1

– Verify interrupt.

echo in > /sys/class/gpio/gpio399/direction
echo falling > /sys/class/gpio/gpio399/edge
// On LX2160AQDS, short J60 pin 1 and VCC, wait a second, then short
 LX2160AQDS board J60 pin 1 and pin 11 (GND)
// On LX2160ARDB, short J29 pin 1 and VCC, wait a second, then short J29 pin
 1 and pin 11 (GND)
cat /proc/interrupts |grep gpio
21: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 GICv3 68 Level gpio-cascade, gpio-
cascade
22: 552 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 GICv3 69 Level gpio-cascade, gpio-
cascade
117: 552 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 mpc8xxx-gpio 15 Edge gpiolib

In conclusion:

1. Find a proper pin (the pin can be used as GPIO).
2. Modify and build RCW to convert function of pin to GPIO function.
3. Update RCW to flash SD card.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
360 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

4. Test it at U-Boot/Linux.

6.5.24 QUICC Engine HDLC/TDM User Manual

6.5.24.1 Linux SDK for QorIQ Processors

6.5.24.2 Description

HDLC, standing for High-level Data Link Control, is one of the most common protocols of the Layer 2 (Data Link
Layer) of the seven-layer OSI model. HDLC uses a zero insertion/deletion process (commonly known as bit
stuffing) to ensure that the bit pattern of the delimiter flag does not occur in the fields between flags. The HDLC
frame is synchronous and therefore relies on the physical layer for a method of clocking and of synchronizing
the transmitter/receiver.

The HDLC/TDM driver is implemented by UCC and TSA(HDLC is upper layer protocol of TDM). It enables
UCC1/3 to work in hdlc protocol, connected with X-TDM-DS26522 card to support T1/E1 function. It can work in
normal or loopback mode both for tdm controller and phy. connect X-TDM-DS26522 card to TDM Riser slot, it
can transmit data and receive data.

6.5.24.3 U-Boot Configuration

Compile-time options

Below are major U-Boot configuration options related to this feature defined in platform-specific config files
under include/configs/ directory.

Option Identifier Description
CONFIG_U_QE Enables QE support
CONFIG_SYS_QE_FW_ADDR Address of QE firmware

Choosing predefined U-Boot modes:

make ls1043ardb_deconfig

before doing the actually build

Runtime options

Env Variable Env Description Sub option Option Description
hwconfig Hardware configuration for

U-Boot
qe-hdlc Assign pins for HDLC;

QUICC Engine TDM
enabled in DTB

bootargs Kernel command-line
argument passed to kernel

6.5.24.4 Kernel Configure Options

Tree View

LS1043ARDB and X-TDM-DS26522 card:

Kernel Configure Tree View Options Description
Enable the QE TDM driver and X-TDM-DS26522 card
driver.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
361 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Kernel Configure Tree View Options Description
Device Drivers --->
 SOC (System On Chip) specific
 Drivers --->
 [*] Freescale QUICC Engine
 (QE) Support
 [*] Network device support --->
 [*] Wan interfaces support
 --->
 <*> Generic HDLC layer
 <*> Raw HDLC support
 <*> Freescale QUICC
 Engine HDLC support
 <*> SLIC MAXIM DS26522
 CARD SUPPORT

Identifier

Below are the configure identifiers which are used in kernel source code and default configuration files.

Option Values Default Value Description

CONFIG_QUICC_ENGINE y/n n QUICC Engine enabled

CONFIG_FSL_UCC_TDM y/n n QUICC Engine TDM lib

CONFIG_SLIC_MAXIM y/m/n n Enable x-tdm-ds26522 card
support

FSL_UCC_HDLC y/m/n n QUICC Engine driver driver

6.5.24.5 Device Tree Binding

Below is the definition of the device tree node required by this feature

Property Type Status Description
qe qe enable QUICC Engine node
ucc hdlc enable QE UCC HDLC node.
si si si QE TSA node

Below is an example device tree node required by this feature. Note that it may have differences among
platforms.

LS1040ARDB and X-TDM-DS26522 card:

ucc_hdlc: ucc@2000 {
 compatible = "fsl,ucc-hdlc";
 rx-clock-name = "clk8";
 tx-clock-name = "clk9";
 fsl,rx-sync-clock = "rsync_pin";
 fsl,tx-sync-clock = "tsync_pin";
 fsl,tx-timeslot-mask = <0xfffffffe>;
 fsl,rx-timeslot-mask = <0xfffffffe>;
 fsl,tdm-framer-type = "e1";
 fsl,tdm-id = <0>;
 fsl,siram-entry-id = <0>;
 fsl,tdm-interface;
 };

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
362 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

 slic@3 {
 compatible = "maxim,ds26522";
 reg = <3>;
 spi-max-frequency = <2000000>;
 fsl,spi-cs-sck-delay = <100>;
 fsl,spi-sck-cs-delay = <50>;
 };

6.5.24.6 Source Files

The following source files are related to this feature in Linux.

T1040RDB and X-TDM-DS26522 card:

Source File Description
drivers/soc/fsl/qe/qe_tdm.c QE UCC TDM lib
include/soc/fsl/qe/qe_tdm.h QE UCC TDM lib head file.
drivers/net/tdm/slic_ds26522.c X-TDM-DS26522 card driver.
drivers/net/wan/fsl_ucc_hdlc.* QE HDLC driver
arch/arm64/boot/dts/freescale/fsl-ls1043a.dtsi Define the device tree nodes for LS1043ARDB QE

arch/arm64/boot/dts/freescale/fsl-ls1043a-rdb.dts Define the device tree nodes for LS1043ARDB
ds26522

6.5.24.7 User Space Application

The following applications will be used during functional or performance testing. Refer to the SDK UM document
for the detailed build procedure.

Command Name Description Package Name
sethdlc A tool to get/set Linux HDLC packet

radio modem driver port information
sethdlc

6.5.24.8 Verification in U-Boot

N/A

6.5.24.9 Verification in Linux

1. After U-Boot startup,set "qe-hdlc" parameter in hwconfig.
2. After bootup kernel, Kernel boot log for hdlc:

hdlc: HDLC support module revision 1.22

3. QE HDLC T1/E1 test
a. Make X-TDM-DS26522 card connected to T1040RDB board Slot.
b. To test tdm external ports, plugin tdm t1/e1 loopback cable in the related port.

The following is HDLC port mapping with X-TDM-DS26522 card:

HDLC Port X-TDM-DS26522 Port
Port A CH1;
Port B CH2;

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
363 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

c. HDLC test using E1.
Use the default dts to test E1 function. Test module can receive ucc_num as parameter. This number
should be 1/3 related to the tdm port.

ls1043ardb login: root
root@ls1043ardb:~# ./sethdlc hdlc0 hdlc;
root@ls1043ardb:~# ifconfig hdlc0 192.168.0.1 up
[41.072590] hdlc0: Carrier detected
root@ls1043ardb:~# route add -net 192.168.0.0 netmask 255.255.255.0 gw
 192.168.0.1 hdlc0;
root@ls1043ardb:~# ping 192.168.0.2;
PING 192.168.0.2[52.208784] Tx data skb->len:86 (192.168.0.2) 56(84)
 bytes of d[52.213119]
[52.213119] Transmitted data:
ata.
[52.220324] ff
[52.222491] 44
[52.224154] 45
[52.225810] 00
[52.227472] 00
[52.229125] 54
[52.230778] c3
[52.232440] 89
[52.234094] 40
[52.235755] 00
[52.237408] 40
[52.239069] 01
[52.240722] f5
[52.242375] cb
[52.244038] c0
[52.245691] a8
[52.247844] irq ucce:20000
[52.250543] TxBD: 1c00
[52.252900] Received data length:88[52.256206] while entry times:0
[52.259338]
[52.259338] Received data:
[52.263512] ff
[52.265165] 44
[52.266818] 45
[52.268474] 00
[52.270127] 00
[52.271782] 54
[52.273435] c3
[52.275091] 89
[52.276744] 40
[52.278397] 00
[52.280052] 40
[52.281705] 01
[52.283361] f5
[52.285014] cb
[52.286667] c0
[52.288322] a8
[52.289980] skb->protocol:8
[52.292784] irq ucce:80000
[53.262909] Tx data skb->len:86 [53.265951]

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
364 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

6.6 kdump/kexec User Manual
This topic explains “kexec/kdump” feature on NXP Layerscape ARMv8 platforms.

Note: For more information about the kdump feature of Linux kernel, see following documents at kernel.org:

• Documentation/kdump/kdump.txt
• Documentation/kdump/gdbmacros.txt

Features and configurations supported

Kexec feature:

• The first kernel should be able to boot up another kernel using kexec-l and kexec -e commands.

Kdump feature:

• The first kernel should be able to support loading and booting of crash dump kernel in case of kernel panic.
• The vmcore of the first kernel should be available in /proc/vmcore of the dump capture kernel.
• There should be mechanism to copy the vmcore to a secondary storage, such as SD card partition or USB

disk partition.
• The vmcore should be interpretable using gdb on an x86 host.
• The vmcore should be interpretable using crash utility on an x86 host.

Only LE mode of the kernel is supported.

Note:

• The first kernel should be booted using nokaslr in the kernel bootargs.
• All the testing has been done using U-Boot as the bootloader in nonEFI mode.
• Recommended rootfs for second/crashdump kernel:

– Recommendation is to use rootfs on SD card partition, same as primary kernel.
– Using ramdisk can lead to some size constraints. The crash kernel size is ok to be kept as 512M. And rootfs

for the second kernel should be minimum rootfs. Bigger root filesystems may cause memory issues.
• From the dump-capture kernel perspective, it is preferable to have almost similar configurations in both the

kernels, unless there are any known limitations. Note that for DPAA1 platforms, DPAA1 Ethernet, QBMan and
FMan support should be compiled out in dump-capture kernel config otherwise the second kernel will crash.

• Dump capture kernel may be booted using the device tree of the system kernel, so no need to explicitly
provide dtb image for the dump capture kernel.

• The kexec-utils does not handle device tree fix-ups. So if a user needs to provide another device tree to boot
the secondary kernel, the user needs to copy the dtb of primary kernel from /sys/firmware/fdt, generate dts,
make edits as needed and recompile to get the dtb. In this case, the new dtb can be provided using the --dtb
option.

Test Status

Kernel version Same as in the Layerscape LDP

U-Boot version Same as in the Layerscape LDP

kexec-tools kexec-tools 2.0.17.git, kexec-tools-2.0.20

Gdb Same as in the Layerscape LDP

Crash crash 7.1.9, crash 7.2.7

Table 50. Software details

Test Method

Linux Compile-time Configuration options:

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
365 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

• System Kernel Configuration Options
1. Enable "kexec system call" in "Processor type and features."

CONFIG_KEXEC=y

2. Enable "sysfs file system support" in "Filesystem" -> "Pseudo filesystems." This is usually enabled by
default.

CONFIG_SYSFS=y

Note that "sysfs file system support" might not appear in the "Pseudo filesystems" menu if "Configure
standard kernel features (for small systems)" is not enabled in "General Setup." In this case, check
the .config file itself to ensure that sysfs is turned on, as follows:

grep 'CONFIG_SYSFS' .config

3. Enable "Compile the kernel with debug info" in "Kernel hacking."

CONFIG_DEBUG_INFO=Y

This causes the kernel to be built with debug symbols. The dump analysis tools require a vmlinux with
debug symbols in order to read and analyze a dump file.

• System Configuration for dump-capture kernel:
1. Enable "kernel crash dumps" support under "Processor type and features":

CONFIG_CRASH_DUMP=y

2. Enable "/proc/vmcore support" under "Filesystems" -> "Pseudo filesystems".

CONFIG_KCORE
CONFIG_PROC_VMCORE=y
CONFIG_PROC_VMCORE is set by default when CONFIG_CRASH_DUMP is selected.)

In case of LS1043, the second kernel should be built with DPAA driver compiled out.

Test Procedure: (example logs/will be updated by latest test report)

1. Boot up the “system kernel/first kernel”
2. Set system kernel bootargs to reserve memory for “dump-capture/second kernel”

=> print dl_debug
dl_debug=setenv bootargs “root=/dev/mmcblk0p3 rw rootdelay=10
 console=ttyS0,115200 earlycon=uart8250,0x21c0500 ramdisk_size=0x10000000
 crashkernel=512M nokaslr loglevel=8;tftpboot 81000000 ls1043-debug.itb;bootm
 81000000”

3. Boot second kernel using kexec (-l/-e)

root@ls1043ardb:~# cp /run/media/sda1/kexec /usr/sbin/
root@ls1043ardb:~# chmod +x /usr/sbin/kexec
root@ls1043ardb:~# ./kexec -l ./Image --append=" console=ttyS0,115200 root=/
dev/mmcblk0p3 earlycon=uart8250,0x21c0500,115200 "
root@ls1043ardb:~#./kexec -e

Note: It is recommended to enable early con for second kernel to debug early crashes/failures effectively
4. “Dump-capture” kernel loaded by kernel panic, (here only one core is enabled in the dump capture kernel,

see the maxcpus argument for dump-capture kernel)

root@ls1043ardb:~# cp /run/media/sda1/kexec /usr/sbin/
root@ls1043ardb:~# chmod +x /usr/sbin/kexec
root@ls1043ardb:~# kexec -p Image-remove-dpaa --append="root=/dev/mmcblk0p3
 rw rootdelay=10 console=ttyS0,115200 earlycon=uart8250,0x21c0500,115200
 maxcpus=1 reset_devices"

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
366 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Note: It is recommended to enable early con for second kernel to debug early crashes/failures effectively.

Trigger a crash.
root@ls1043ardb:~# echo c > /proc/sysrq-trigger
[210.085271] sysrq: SysRq : Trigger a crash
[210.089379] Unable to handle kernel NULL pointer dereference at virtual
 address 00000000
[210.097469] pgd = ffff80000190e000
[210.100862] [00000000] *pgd=00000000d2bc9003, *pud=0000000081c08003,
 *pmd=0000000000000000
[210.109139] Internal error: Oops: 96000046 [#1] PREEMPT SMP
[210.114700] Modules linked in:
[210.117748] CPU: 2 PID: 1809 Comm: sh Not tainted 4.4.39-00515-gf368a91-
dirty #12
[210.125218] Hardware name: LS1043A RDB Board (DT)
[210.129910] task: ffff800054f48680 ti: ffff8000019a8000 task.ti:
 ffff8000019a8000
[210.137386] PC is at sysrq_handle_crash+0x14/0x1c
[210.142080] LR is at __handle_sysrq+0x124/0x194
[210.146599] pc : [<ffff8000003bca48>] lr : [<ffff8000003bd418>] pstate:
 60000145
[210.153981] sp : ffff8000019abd40
Snip
 [210.446905] [<ffff8000001a6610>] vfs_write+0x90/0x194
[210.451946] [<ffff8000001a7104>] SyS_write+0x44/0xa0
[210.456900] [<ffff800000085e30>] el0_svc_naked+0x24/0x28
[210.462201] Code: 52800020 b903dc20 d5033e9f d2800001 (39000020)
[210.468328] Starting crashdump kernel...
[210.476756] Bye!
[0.000000] Booting Linux on physical CPU 0x0000000003 [0x410fd034]
[0.000000] Linux version 5.4.3-03944-ge0081bf-dirty
 (nxf56392@lsv03080.swis.in-blr01.nxp.com) (gcc version 7.3.0 (GCC)) #5 SMP
 PREEMPT Mon Dec 30 11:17:45 IST 2019
[0.000000] Machine model: LS1043A RDB Board
[0.000000] earlycon: uart8250 at MMIO 0x00000000021c0500 (options '')
[0.000000] printk: bootconsole [uart8250] enabled
root@ls1043ardb:~# ls /proc/vmcore -al
-r-------- 1 root root 1620045824 Sep 28 12:42 /proc/vmcore
root@ls1043ardb:~# cp /proc/vmcore /run/media/sda1/kdump_vmcore
root@ls1043ardb:~# umount /run/media/sda1
root@ls1043ardb:~#

Boot the first kernel again and the vmcore can be transferred to the host machine(X86) for crash and gdb
examination.

5. Interpret the crash logs using crash utility.

nxa19049@lsv03080:~/data/ups/crash$./crash ../../vmlinux ../../vmcore.9jan
crash 7.2.7++
Copyright (C) 2002-2019 Red Hat, Inc.
Copyright (C) 2004, 2005, 2006, 2010 IBM Corporation
Copyright (C) 1999-2006 Hewlett-Packard Co
Copyright (C) 2005, 2006, 2011, 2012 Fujitsu Limited
Copyright (C) 2006, 2007 VA Linux Systems Japan K.K.
Copyright (C) 2005, 2011 NEC Corporation
Copyright (C) 1999, 2002, 2007 Silicon Graphics, Inc.
Copyright (C) 1999, 2000, 2001, 2002 Mission Critical Linux, Inc.
This program is free software, covered by the GNU General Public License,
and you are welcome to change it and/or distribute copies of it under
certain conditions. Enter "help copying" to see the conditions.
This program has absolutely no warranty. Enter "help warranty" for details.
GNU gdb (GDB) 7.6

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
367 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Copyright (C) 2013 Free Software Foundation, Inc.
License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>
This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law. Type "show copying"
and "show warranty" for details.
This GDB was configured as "--host=x86_64-unknown-linux-gnu --target=aarch64-
elf-linux"...
 KERNEL: ../../vmlinux unum=0crash: test msg 2
 p=7b5bf050 cpunum=1crash: test msg 2 p=7b5d7050 cpunum=2crash: test msg 2
 p=7b5ef050 cpunum=3
 DUMPFILE: ../../vmcore.9jan
 CPUS: 4
 DATE: Sun Jan 28 21:30:08 2018
 UPTIME: 00:02:30
LOAD AVERAGE: 2.08, 1.24, 0.49
 TASKS: 188
 NODENAME: localhost
 RELEASE: 5.4.3-03991-g6bf2ce3-dirty
 VERSION: #10 SMP PREEMPT Thu Jan 9 14:31:21 IST 2020
 MACHINE: aarch64 (unknown Mhz)
 MEMORY: 1.9 GB
 PANIC: "Kernel panic - not syncing: sysrq triggered crash"
 PID: 1138
 COMMAND: "bash"
 TASK: ffff000030417000 [THREAD_INFO: ffff000030417000]
 CPU: 3
 STATE: TASK_RUNNING (PANIC)
crash> help
* extend log rd task
alias files mach repeat timer
ascii foreach mod runq tree
bpf fuser mount search union
bt gdb net set vm
btop help p sig vtop
dev ipcs ps struct waitq
dis irq pte swap whatis
eval kmem ptob sym wr
exit list ptov sys q
crash version: 7.2.7++ gdb version: 7.6
For help on any command above, enter "help <command>".
For help on input options, enter "help input".
For help on output options, enter "help output".
crash> dev
CHRDEV NAME CDEV OPERATIONS
 510 rpmb (none)
 1 mem ffff00004148bf00 memory_fops
 511 vfio (none)
 2 pty ffff0000410fcf00 tty_fops
 3 ttyp ffff00004112e080 tty_fops
 4 /dev/vc/0 ffff800011f5a878 console_fops
 4 tty ffff00004156aa80 tty_fops
 4 ttyS ffff000041138d00 tty_fops
 5 /dev/tty ffff800011f59388 tty_fops
 5 /dev/console ffff800011f593f0 console_fops
 5 /dev/ptmx ffff800011f59568 ptmx_fops
 7 vcs ffff000041443a80 vcs_fops
 10 misc ffff000041d72280 misc_fops
 13 input (none)
 29 fb ffff0000414a3580 fb_fops
 81 video4linux (none)

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
368 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

 89 i2c ffff000040c5b320 i2cdev_fops
 90 mtd ffff0000417b0780 mtd_fops
 116 alsa ffff000041d72f80 snd_fops
 128 ptm ffff000041138300 tty_fops
 136 pts ffff000041138480 tty_fops
 153 spi ffff0000417bda00 spidev_fops
 207 ttymxc (none)
 212 DVB ffff800011f6b198 dvb_device_fops
 216 rfcomm (none)
 226 drm ffff000041147d80 drm_stub_fops
 234 uio ffff000041f00980 uio_fops
 235 nvme (none)
 236 ttyLF (none)
 237 ttyLP (none)
 238 ttyTHS (none)
 239 ttyHS (none)
 240 ttyMSM (none)
 241 ttyMSM (none)
 242 ttyAML (none)
 243 bsg ffff800011f4ad20 bsg_fops
 244 watchdog ffff000040c4d608 watchdog_fops
 245 tee (none)
 246 iio (none)
 247 ptp ffff000041eca050 posix_clock_file_operations
 248 pps (none)
 249 cec (none)
 250 media (none)
 251 rtc ffff000040c43318 rtc_dev_fops
 252 tpm (none)
 253 ttyMV (none)
 254 gpiochip ffff000041f9e2e8 gpio_fileops
BLKDEV NAME GENDISK OPERATIONS
 259 blkext (none)
 7 loop ffff0000412b4000 lo_fops
 8 sd (none)
 31 mtdblock ffff0000412b7800 mtd_block_ops
 65 sd (none)
 66 sd (none)
 67 sd (none)
 68 sd (none)
 69 sd (none)
 70 sd (none)
 71 sd (none)
 128 sd (none)
 129 sd (none)
 130 sd (none)
 131 sd (none)
 132 sd (none)
 133 sd (none)
 134 sd (none)
 135 sd (none)
 179 mmc ffff000041522000 mmc_bdops
 254 virtblk (none)
crash> help
* extend log rd task
alias files mach repeat timer
ascii foreach mod runq tree
bpf fuser mount search union
bt gdb net set vm
btop help p sig vtop

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
369 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

dev ipcs ps struct waitq
dis irq pte swap whatis
eval kmem ptob sym wr
exit list ptov sys q
crash version: 7.2.7++ gdb version: 7.6
For help on any command above, enter "help <command>".
For help on input options, enter "help input".
For help on output options, enter "help output".
crash> list
list: starting address required
Usage:
 list [[-o] offset][-e end][-[s|S] struct[.member[,member] [-l offset]] -[x|
d]]
 [-r|-B] [-h|-H] start
Enter "help list" for details.
crash> mach
 MACHINE TYPE: aarch64
 MEMORY SIZE: 1.9 GB
 CPUS: 4
 HZ: 250
 PAGE SIZE: 4096
KERNEL VIRTUAL BASE: ffff000000000000
KERNEL MODULES BASE: ffff800008000000
KERNEL VMALLOC BASE: ffff800010000000
KERNEL VMEMMAP BASE: fffffe0000000000
 KERNEL STACK SIZE: 16384
 IRQ STACK SIZE: 16384
 IRQ STACKS:
 CPU 0: ffff800010000000
 CPU 1: ffff800010008000
 CPU 2: ffff800010010000
 CPU 3: ffff800010018000
crash> ps
 PID PPID CPU TASK ST %MEM VSZ RSS COMM
> 0 0 0 ffff800011cc1380 RU 0.0 0 0 [swapper/0]
> 0 0 1 ffff000041cb1c00 RU 0.0 0 0 [swapper/1]
> 0 0 2 ffff000041cb2a00 RU 0.0 0 0 [swapper/2]
 0 0 3 ffff000041cb3800 RU 0.0 0 0 [swapper/3]
<snip>
crash>
crash> sig
PID: 1138 TASK: ffff000030417000 CPU: 3 COMMAND: "bash"
SIGNAL_STRUCT: ffff00003042a200 NR_THREADS: 1
 SIG SIGACTION HANDLER MASK FLAGS
 [1] ffff0000304239e0 aaaad53e3f60 0000000043807efb 0
 [2] ffff000030423a00 aaaad53e3c50 0000000000000000 0
 [3] ffff000030423a20 SIG_IGN 0000000000000000 0
 [4] ffff000030423a40 aaaad53e3f60 0000000043807efb 0
 [5] ffff000030423a60 aaaad53e3f60 0000000043807efb 0
 [6] ffff000030423a80 aaaad53e3f60 0000000043807efb 0
 [7] ffff000030423aa0 aaaad53e3f60 0000000043807efb 0
 [8] ffff000030423ac0 aaaad53e3f60 0000000043807efb 0
 [9] ffff000030423ae0 SIG_DFL 0000000000000000 0
[10] ffff000030423b00 aaaad53e3f60 0000000043807efb 0
[11] ffff000030423b20 aaaad53e3f60 0000000043807efb 0
[12] ffff000030423b40 aaaad53e3f60 0000000043807efb 0
[13] ffff000030423b60 aaaad53e3f60 0000000043807efb 0
[14] ffff000030423b80 aaaad53e3f60 0000000043807efb 0
[15] ffff000030423ba0 aaaad53e36f0 0000000000000000 10000000 (SA_RESTART)
[16] ffff000030423bc0 SIG_DFL 0000000000000000 0

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
370 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

[17] ffff000030423be0 aaaad53cafa0 0000000000000000 10000000 (SA_RESTART)
[18] ffff000030423c00 SIG_DFL 0000000000000000 0
[19] ffff000030423c20 SIG_DFL 0000000000000000 0
[20] ffff000030423c40 SIG_IGN 0000000000000000 0
[21] ffff000030423c60 SIG_IGN 0000000000000000 0
[22] ffff000030423c80 SIG_IGN 0000000000000000 0
[23] ffff000030423ca0 SIG_DFL 0000000000000000 0
[24] ffff000030423cc0 aaaad53e3f60 0000000043807efb 0
[25] ffff000030423ce0 aaaad53e3f60 0000000043807efb 0
[26] ffff000030423d00 aaaad53e3f60 0000000043807efb 0
[27] ffff000030423d20 SIG_DFL 0000000000000000 0
[28] ffff000030423d40 aaaad53e36e0 0000000000000000 0
[29] ffff000030423d60 SIG_DFL 0000000000000000 0
[30] ffff000030423d80 SIG_DFL 0000000000000000 0
[31] ffff000030423da0 aaaad53e3f60 0000000043807efb 0
[32] ffff000030423dc0 SIG_DFL 0000000000000000 0
[33] ffff000030423de0 SIG_DFL 0000000000000000 0
[34] ffff000030423e00 SIG_DFL 0000000000000000 0
[35] ffff000030423e20 SIG_DFL 0000000000000000 0
[36] ffff000030423e40 SIG_DFL 0000000000000000 0
[37] ffff000030423e60 SIG_DFL 0000000000000000 0
[38] ffff000030423e80 SIG_DFL 0000000000000000 0
[39] ffff000030423ea0 SIG_DFL 0000000000000000 0
[40] ffff000030423ec0 SIG_DFL 0000000000000000 0
[41] ffff000030423ee0 SIG_DFL 0000000000000000 0
[42] ffff000030423f00 SIG_DFL 0000000000000000 0
[43] ffff000030423f20 SIG_DFL 0000000000000000 0
[44] ffff000030423f40 SIG_DFL 0000000000000000 0
[45] ffff000030423f60 SIG_DFL 0000000000000000 0
[46] ffff000030423f80 SIG_DFL 0000000000000000 0
[47] ffff000030423fa0 SIG_DFL 0000000000000000 0
[48] ffff000030423fc0 SIG_DFL 0000000000000000 0
[49] ffff000030423fe0 SIG_DFL 0000000000000000 0
[50] ffff000030424000 SIG_DFL 0000000000000000 0
[51] ffff000030424020 SIG_DFL 0000000000000000 0
[52] ffff000030424040 SIG_DFL 0000000000000000 0
[53] ffff000030424060 SIG_DFL 0000000000000000 0
[54] ffff000030424080 SIG_DFL 0000000000000000 0
[55] ffff0000304240a0 SIG_DFL 0000000000000000 0
[56] ffff0000304240c0 SIG_DFL 0000000000000000 0
[57] ffff0000304240e0 SIG_DFL 0000000000000000 0
[58] ffff000030424100 SIG_DFL 0000000000000000 0
[59] ffff000030424120 SIG_DFL 0000000000000000 0
[60] ffff000030424140 SIG_DFL 0000000000000000 0
[61] ffff000030424160 SIG_DFL 0000000000000000 0
[62] ffff000030424180 SIG_DFL 0000000000000000 0
[63] ffff0000304241a0 SIG_DFL 0000000000000000 0
[64] ffff0000304241c0 SIG_DFL 0000000000000000 0
SIGPENDING: no
 BLOCKED: 0000000000000000
PRIVATE_PENDING
 SIGNAL: 0000000000000000
 SIGQUEUE: (empty)
SHARED_PENDING
 SIGNAL: 0000000000000000
 SIGQUEUE: (empty)
crash>
crash>
crash>
crash>

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
371 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

crash> exit
nxa19049@lsv03080:~/data/ups/crash$

6. Interpret the crash logs using gdb.

nxa19049@lsv03080:~/data/ups$ aarch64-fsl-linux-gdb ../vmlinux ../vmcore.9jan
GNU gdb (GDB) 8.3.1
Copyright (C) 2019 Free Software Foundation, Inc.
License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>
This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law.
Type "show copying" and "show warranty" for details.
This GDB was configured as "--host=x86_64-fslsdk-linux --target=aarch64-fsl-
linux".
Type "show configuration" for configuration details.
For bug reporting instructions, please see:
<http://www.gnu.org/software/gdb/bugs/>.
Find the GDB manual and other documentation resources online at:
<http://www.gnu.org/software/gdb/documentation/>.
For help, type "help".
Type "apropos word" to search for commands related to "word"...
Reading symbols from ../vmlinux...
[New process 1]
[New process 1]
[New process 1]
[New LWP 1138]
#0 0xffff800010b2f274 in arch_local_irq_enable ()
at ./arch/arm64/include/asm/irqflags.h:36
36 asm volatile(ALTERNATIVE(
[Current thread is 3 (process 1)]
(gdb) bt
#0 0xffff800010b2f274 in arch_local_irq_enable ()
at ./arch/arm64/include/asm/irqflags.h:36
#1 cpuidle_enter_state (dev=0xffff00007b5b1c00, drv=0xffff000040c8f400,
index=<optimized out>) at drivers/cpuidle/cpuidle.c:247
#2 0xffff800010b2f5a4 in cpuidle_enter (drv=0xffff000040c8f400,
dev=0xffff00007b5b1c00, index=2069568512) at drivers/cpuidle/cpuidle.c:344
#3 0xffff800010114c50 in call_cpuidle (drv=<optimized out>,
dev=<optimized out>, next_state=<optimized out>) at kernel/sched/idle.c:117
Backtrace stopped: previous frame identical to this frame (corrupt stack?)
(gdb) list
31 u32 pmr = read_sysreg_s(SYS_ICC_PMR_EL1);
32
33 WARN_ON_ONCE(pmr != GIC_PRIO_IRQON && pmr != GIC_PRIO_IRQOFF);
34 }
35
36 asm volatile(ALTERNATIVE(
37 "msr daifclr, #2 // arch_local_irq_enable\n"
38 "nop",
39 __msr_s(SYS_ICC_PMR_EL1, "%0")
40 "dsb sy",
(gdb)

Known bugs, limitations or technical issues
• In second kernel, interfaces, such as qDMA, DPAA2 Ethernet, and PCIe do not work because of MSI

limitation. See known issues list.
• DPAA1 Ethernet kexec support is limited. DPAA1 Ethernet is functional under kexec with the upstream

kernel driver variant only.
In addition, DPAA1 Ethernet is functional in the second kernel if the same kernel image is loaded at the
same address. In other words, DPAA1 Ethernet is not supported under kdump. As part of kexec, when the

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
372 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

second kernel boots, the driver is required to reinitialize the private memory regions of QBMan within the
second kernel's memory ranges.
Due to hardware limitations, the QBMan memory ranges cannot be updated without a hard reset of the
SoC, which is not triggered as part of the kexec flow.
The QBMan, and DPAA1 Ethernet as a whole can be used in the second kernel, only if the memory
regions remain the same after kexec.

7 QorIQ networking technologies

7.1 Summary of networking technologies
NXP provides several different hardware networking architectures. Each SoC incorporates one of them. The
hardware architectures are:

HW networking architectures Blocks

DPAA1 QMan, BMan, and FMan

DPAA2 QBMan and WRIOP

DPAA2 and DPAA1 are relatives in that they both use generic hardware-based queues. Also, each supports additional
accelerators, such as SEC through these queues.

PFE PFE package engine block

veTSEC veTSEC traditional Ethernet controller block

ENETC TSN capable Ethernet controller integrated as a PCIe root
complex

TSN Switch TSN capable L2 Switch (that is Felix) integrated as PCIe
root complex

The following table shows which SoCs supported by Layerscape LDP use which networking hardware
architecture.

HW networking architectures SoCs

DPAA1 LS1023A, LS1043A, LS1026A, LS1046A

DPAA2 LS1044A, LS1048A, LS1084A, LS1088A, LS2044A, LS2048
A, LS2084A, LS2088A,
LX2160A

PFE LS1012A

veTSEC LS1021A

ENETC LS1028A

TSN switch LS1028A

7.2 DPAA1-specific software

7.2.1 DPAA1 software architecture overview

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
373 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

7.2.1.1 Introduction

Multicore processing, or multiple execution thread processing, introduces unique considerations to the
architecture of networking systems, including processor load balancing/utilization, flow order maintenance, and
efficient cache utilization. Herein is a review of the key features, functions, and properties enabled by the QorIQ
DPAA1 (Data Path Acceleration Architecture first generation) hardware and demonstrates how to best architect
software to leverage the DPAA1 hardware.

Note: In most hardware and other past documentation, DPAA first generation is referred to as DPAA. To avoid
confusion with DPAA2 (second generation), we will refer to the first generation as DPAA1 in this documentation
set.

By exploring how the DPAA1 is configured and leveraged in a particular application, the user can determine
which elements and features to use. This streamlines the software development stage of implementation
by allowing programmers to focus their technical understanding on the elements and features that are
implemented in the system under development, thereby reducing the overall DPAA1 learning curve required to
implement the application.

Our target audience is familiar with the material in QorIQ Data Path Acceleration Architecture (DPAA1)
Reference Manual.

7.2.1.1.1 Benefits of DPAA1

The primary intent of DPAA1 is to provide intelligence within the IO portion of the System-on-Chip (SOC) to
route and manage the processing work associated with traffic flows to simplify ordering and load balance
concerns associated with multicore processing. The DPAA1 hardware inspects ingress traffic and extracts user-
defined flows from the port traffic. It then steers specific flows (or related traffic) to a specific core or set of cores.

Architecting a networking application with a multicore processor presents challenges, such as workload balance
and maintaining flow order, which are not present in a single core design. Without hardware assistance, the
software must implement techniques that are inefficient and cumbersome, reducing the performance benefit
of multiple cores. To address workload balance and flow order challenges, DPAA1 determines and separates
ingress flows then manages the temporary, permanent, or semi-permanent flow-to-core affinity. DPAA1 also
provides a work priority scheme, which ensures ingress critical flows are addressed properly and frees software
from the need to implement a queuing mechanism on egress. As the hardware determines which core will
process which packet, performance is boosted by direct cache warming/stashing as well as by providing biasing
for core-to-flow affinity, which ensures that flow-specific data structures can remain in the core’s cache.

By understanding how the DPAA1 is leveraged in a particular design, the system architect can map out the
application to meet the performance goals and to utilize the DPAA1 features to leverage any legacy application
software that may exist. Once this application map is defined, the architect can focus on more specific details of
the implementation.

7.2.1.1.2 General architectural considerations

As the need for processing capability has grown, the only practical way to increase the performance on a
single silicon part is to increase the number of general-purpose processing cores (CPUs). However, many
legacy designs run on a single processor; introducing multiple processors into the system creates special
considerations, especially for a networking application.

7.2.1.1.3 Multicore design

Multicore processing, or multiple execution thread processing, introduces unique considerations. Most
networking applications are split between data and control plane tasks. In general, control plane tasks manage
the system within the broad network of equipment. While the control plane may process control packets

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
374 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

between systems, the control plane process is not involved in the bulk processing of the data traffic. This task is
left to the data plane processing task or program.

The general flow of the data plane program is to receive data traffic (in general, packets or frames), process or
transform the data in some way and then send the packets to the next hop or device in the network. In many
cases, the processing of the traffic depends on the type of traffic. In addition, the traffic usually exists in terms of
a flow, a stream of traffic where the packets are related. A simple example could be a connection between two
clients that, at the packet level, is defined by the source and destination IP address. Typically, multiple flows are
interleaved on a single interface port; the number of flows per port depends on the interface bandwidth as well
as on the bandwidth and type of flows involved.

7.2.1.1.4 Parse/classification software offload

DPAA1 provides intelligence within the IO subsection of the SoC to split traffic into user-defined queues. One
advantage is that the intelligence used to divide the traffic can be leveraged at a system level.

In addition to sorting and separating the traffic, DPAA1 can append useful processing information into the
stream; offloading the need for the software to perform these functions (see the following figure).

Note that DPAA1 is not intended to replace significant packet processing or to perform extensive classification
tasks. However, some applications may benefit from the streamlining that results from the parse/classify/
distribute function within DPAA1. The ability to identify and separate flow traffic is fundamental to how DPAA1
solves other multicore application issues.

Data Plane Programs

Protocol1_packet1+info

Protocol1_packet2+info

Protocol1_packet2+info

Protocol2_packet1+info

Protocol2_packet2+info

Protocol3_packet1+info

Protocol3_packet2+info

get_packet

xxxx

xxxx

process_protocol1

xxxx

xxxx

send_packet

xxxx

xxxx

get_packet

xxxx

xxxx

process_protocol2

xxxx

xxxx

send_packet

xxxx

xxxx

get_packet

xxxx

xxxx

process_protocol3

xxxx

xxxx

send_packet

xxxx

xxxx

Figure 46.  Hardware-sorted protocol flow

7.2.1.1.5 Flow order considerations

In most networking applications, individual traffic flows through the system require that the egress packets
remain in the order they are received. In a single processor core system, this requirement is easy to implement.
As long as the data plane software follows a run-to-completion model on a per-packet basis, the egress order
will match the ingress packet order. However, if multiple processors are implemented in a true Symmetrical
Multicore Processing (SMP) model in the system, the egress packet flow may be out of order with respect to the
ingress flow. This may be caused when multiple cores simultaneously process packets from the same flow.

Even if the code flow is identical, factors such as cache hits/misses, DRAM page hits/misses, interrupts, control
plane and OS tasks can cause some variability in the processing path, allowing egress packets to “pass” within
the same flow, as shown in the below figure.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
375 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Progam run duration
variability:

get_packet
xxxx
xxxx
transform_packet
xxxx
xxxx
send_packet
xxxx
xxxx

- Cache hit/miss
- DDR Page hit/miss
- Interrupts
- OS tasks
- Control plan tasks

CPU1

CPU2

CPU3

Data Plane Program

Out of Order
Flows

in
gr

es
s

pa
ck

et
 fl

ow
s

E
gress packet flow

s

F1_P1

F2_P1

F3_P1

F1_P2

F2_P2

F3_P2

F1_P3

F2_P3

F3_P3

F1_P1

F2_P1

F3_P2

F1_P2

F2_P3

F3_P1

F1_P3

F2_P2

F3_P3

Figure 47. Multicore Flow Reordering

For some applications, it is acceptable to reorder the flows from ingress to egress. However, most applications
require that order is maintained. When no hardware is available to assist with this ordering, the software must
maintain flow order. Typically, this requires additional code to determine the sequence of the packet currently
being processed, as well as a reference to a data structure that maintains order information for each flow in the
system. As multiple processors need to access and update this state information, access to this structure must
be carefully controlled, typically by using a lock mechanism that can be expensive with regard to program cycles
and processing flow (see the below figure). One of the goals of the DPAA1 architecture is to provide the system
designer with hardware to assist with packet ordering issues.

Flow state info:
Access must be controlled/locked

get_packet
xxxx
xxxx
check/reorder_packet
xxxx
xxxx
transform_packet
xxxx
xxxx
send_packet
xxxx
xxxx

CPU1

CPU2

CPU3

Data Plane Program

In
gr

es
s

pa
ck

et
 fl

ow
s

E
gress packet flow

s

F1_P1

F2_P1

F3_P1

F1_P2

F2_P2

F3_P2

F1_P3

F2_P3

F3_P3

F1_P1

F2_P1

F3_P1

F1_P2

F2_P2

F3_P2

F1_P3

F2_P3

F3_P3

Flow 1
xxxx
xxxx
Flow 2
xxxx
xxxx
Flow 3
xxxx
xxxx

Figure 48.  Implementing Order in Software

7.2.1.1.6 Managing flow-to-core affinity

Multicore processing, or multiple execution thread processing, introduces unique considerations to the
architecture of networking systems, including processor load balancing/utilization, flow order maintenance, and
efficient cache utilization. Herein is a review of the key features, functions, and properties enabled by the QorIQ
DPAA1 (Data Path Acceleration Architecture) hardware and demonstrates how to best architect software to
leverage the DPAA1 hardware.

In a multicore networking system, if the hardware configuration always allows a specific core to process a
specific flow then the binding of the flow to the core is described as providing flow affinity. If a specific flow is
UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
376 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

always processed by a specific processor core, then for that flow the system acts like a single core system. In
this case, flow order is preserved because there is a single thread of operation processing the flow; with a run-
to-completion model, there is no opportunity for egress packets to be reordered with respect to ingress packets.

Another advantage of a specific flow being affined to a core is that the cache local to that core (L1 and possibly
L2, depending on the specific core type) is less likely to miss when processing the packets because the
core’s data cache will not fetch flow state information for flows to which it is not affined. Also, because multiple
processing entities have no need to access the same individual flow state information, the system need not lock
the access to the individual flow state data. DPAA1 offers several options to define and manage flow-to-core
affinity.

CPU3

Flow state info:
No locks required

get_packet
xxxx
xxxx
transform_packet
xxxx
xxxx
send_packet
xxxx
xxxx

Data plane program:
No order checking required

In
gr

es
s

pa
ck

et
flo

w
s

E
gress packet

flow
s

F1_P1

F2_P1

F3_P1

F1_P2

F2_P2

F3_P2

F1_P3

F2_P3

F3_P3

F1_P1

F2_P1

F3_P1

F1_P2

F2_P2

F3_P2

F1_P3

F2_P3

F3_P3

Flow 1
xxxx
xxxx
Flow 2
xxxx
xxxx
Flow 3
xxxx
xxxx

DS
Flow3
xxxxx

CPU2

DS
Flow2
xxxxx

CPU1

DS
Flow1
xxxxx

Figure 49. Managing flow-to-core affinity

Many networking applications require intensive, repetitive algorithms to be performed on large portions of
the data stream(s). While software in the processor cores could perform these algorithms, specific hardware
offload engines often better address specific algorithms. Cryptographic and pattern matching accelerators
are examples of this in the QorIQ family. These accelerators act as standalone hardware elements that are
fed blocks or streams of data, perform the required processing, and then provide the output in a separate (or
perhaps overwritten) data block within the system. The performance boost is significant for tasks that can be
done by these hardware accelerators as compared to a software implementation.

In DPAA1-equipped SoCs, these offload engines exist as peers to the cores and IO elements, and they use the
same queuing mechanism to obtain and transfer data. The details of the specific processing performed by these
offload engines are beyond the scope of this document; however, it is important to determine which of these
engines will be leveraged in the specific application. DPAA1 can then be properly defined to implement the most
efficient configuration or definition of the DPAA1 elements.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
377 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

7.2.1.2 DPAA1 Goals

A brief overview of the DPAA1 elements in order to contextualize the application mapping activities. For more
details, on the DPAA1 architecture, see the QorIQ Data Path Acceleration Architecture (DPAA1) Reference
Manual

The primary goals of DPAA1 are as follows:

• To provide intelligence within the IO portion of the SoC.
• To route and manage the processing work associated with traffic flows.
• To simplify the ordering and load balance concerns associated with multicore processing.

DPAA1 achieves these goals by inspecting and separating ingress traffic into Frame Queues (FQs). In general,
the intent is to define a flow or set of flows as the traffic in a particular FQ. The FQs are associated to a specific
core or set of cores via a channel. Within the channel definition, the FQs can be prioritized among each other
using the Work Queue (WQ) mechanism. The egress flow is similar to the ingress flow. The processors place
traffic on a specific FQ, which is associated to a particular physical port via a channel. The same priority scheme
using WQs exists on egress, allowing higher priority traffic to pass lower priority traffic on egress without
software intervention.

7.2.1.3 FMan Overview

The FMan inspects traffic, splits it into FQs on ingress, and sends traffic from the FQs to the interface on
egress.

On ingress traffic, the FMan is configured to determine the traffic split required by the PCD (Parse, Classify,
Distribute) function. This allows the user to decide how the traffic needs to be defined, by flows or classes of
traffic. The PCD can be configured to route all traffic on one port to a single queue or with a higher level of
complexity where large numbers of queues are defined and managed. The PCD can identify traffic based on the
specific content of the incoming packets (usually within the header) or packet reception rates (policing).

The parse function is used to identify which fields within the data frame determine the traffic split. The fields
used may be defined by industry standards, or the user may employ a programmable soft parse feature to
accommodate proprietary field (typically header) definition(s). The results of the parse function may be used
directly to determine the frame queue; or, the contents of the fields selected by the parse function may be
used as a key to select the frame queue. The parse function employs a programmed mask to allow the use of
selected fields.

The resultant key from the parse function may be used to assign traffic to a specific queue based on a specific
exact match definition of fields in the header. Alternatively, a range of queues can be defined either by using the
resultant key directly (if there are a small number of bits in the key) or by performing a hash of the key to use a
large number of bits in the flow identifier and create a manageable number of queues.

The FMan also provides a policer function, which is rate-based and allows the user to mark or drop a specific
frame that exceeds a traffic threshold. The policing is based on a two-rate, three-color marking algorithm
(RFC2698). The sustained and peak rates as well as the burst sizes are user-configurable.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
378 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

F1_P1

F2_P1F3_P1F1_P2 F2_P2

F2_P3

F1_P1

F2_P1 F3_P1

F3_P2

F1_P3 F3_P3

F1_P2 F2_P2

FMan

Ingress flow

Traffic Enqueued to FQ's

Figure 50. Ingress FMan Flow

The figure above shows the FMan splitting ingress traffic on an external port into a number of queues. However,
the FMan works in a similar way on egress: it receives traffic from FQs then transmits the traffic on the
designated external port. Alternatively, the FMan can be used to process flows internally via the offline port
mechanism: traffic is dequeued (from some other element in the system), processed, then enqueued onto a
frame queue processing further within the system.

On ingress traffic, the FMan generates an internal context (IC) data block, which it uses as it performs the
PCD function. Optionally, some or all of this information may be added into the frames as they are passed
along for further processing. For egress or offline processing, the IC data can be passed with each frame to be
processed. This data is mostly the result of the PCD actions and includes the results of the parser, which may
be useful for the application software.

F1_P1

F1_P2

F1_P3

F2_P1

F2_P2

F2_P3

F2_P1

F2_P2

F2_P3

F3_P1

F3_P2

F3_P3

Traffic Dequeued from FQ's

FMan

Egress flow

F1_P2 F3_P1 F2_P2 F2_P1 F1_P1

Figure 51. FMan Egress Flow

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
379 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Traffic Dequeued from FQ's Traffic Enqueued to FQ's

F1_P1

F1_P2

F1_P3

F2_P1

F2_P2

F2_P3

F3_P1

F3_P2

F3_P3

F1_P1

F1_P2

F1_P3

F2_P1

F2_P2

F2_P3

F3_P1

F3_P2

F3_P3

FMan

Figure 52. FMan Offline Flow

7.2.1.4 QMan Overview

The QMan links the FQs to producers and consumers (of data traffic) within the SoC. The producers/consumers
are either FMan, acceleration blocks, or CPU cores.

All the producers/consumers have one channel, each of which is referred to as a dedicated channel.
Additionally, there are a number of pool channels available to allow multiple cores (not FMan or accelerators)
to service the same channel. Note that there are channels for each external FMan port, the number of which
depends on the SoC, as well as the internal offline ports.

Pool
Channel

Pool
Channel

Pool
Channel

Dedicated
Channel

Dedicated
Channel

Dedicated
Channel

Dedicated
Channel

Dedicated
Channel

Dedicated
Channel

Dedicated
Channel

Dedicated
Channel

FMan 1
Port N

FMan 1
Port 2

FMan 1
Port 1

Core 1 Core 2 Core N

SEC PME

Figure 53. DPAA1 Channel Types

Each channel provides for eight levels of priority, each of which has its own work queue (WQ). The two highest
level WQs are strict priority: traffic from WQ0 must be drained before any other traffic flows; then traffic from
WQ1 and then traffic from the other six WQs is allowed to pass. The last six WQs are grouped together in two
groups of three, which are configurable in a weighted round robin fashion. Most applications do not need to use
all priority levels. When multiple FQs are assigned to the same WQ, QMan implements a credit-based scheme
to determine which FQ is scheduled (providing frames to be processed) and how many frames (actually the
credit is defined by the number of bytes in the frames) it can dequeue before QMan switches the scheduling
to the next FQ on the WQ. If a higher priority WQ becomes active (that is, one of the FQs in the higher priority
WQ receives a frame to become non-empty) then the dequeue from the lower priority FQ is suspended until the

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
380 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

higher priority frames are dequeued. After the higher priority FQ is serviced, when the lower priority FQ restarts
servicing, it does so with the remaining credit it had before being preempted by the higher priority FQ.

When the DPAA1 elements of the SoC are initialized, the FQs are associated with WQs, allowing the traffic to
be steered to the desired core (dedicated connect channel), set of cores (pool channel), FMan, or accelerator,
using a defined priority.

F1_P2

F1_P3

F2_P1

F2_P2

F2_P3

F3_P1

F3_P2

F3_P3

F4_P1

F4_P2

F4_P3

WQ0 Highest

To core, set of
cores, FMan, SEC,
PME...

Weighted Round Robin

Low

Mid

Low

Notes:

- FQ1 (i.e. F1_Px) must be empty before
 any other traffic is enqueued to a
 consumer
- FQ2/3 (i.e. F2_Px and F3_Px) same
 priority, higher than FQ4 because they
 are in the higher priority group

WQ1

WQ2

WQ3

WQ4

WQ5

WQ6

WQ7

Hi

Weighted Round Robin

Mid

Hi

High

F1_P1

Figure 54. Prioritizing Work

7.2.1.4.1 QMan: Portals

A single portal exists for each non-core DPAA1 producer/consumer (FMan, SEC, and PME). This is a data
structure internal to the SoC that passes data directly to/from the consumer’s direct connect channel.

Software portals are associated with the processor cores and are, effectively, data structures that the cores use
to pass (enqueue) packets to or receive (dequeue) packets from the channels associated with that portal (core).
Each SoC has at least as many software portals as there are cores. Software portals are the interface through
which DPAA1 provides the data processing workload for a single thread of execution.

The portal structure consists of the following:

• The Dequeue Response Ring (DQRR) determines the next packet to be processed.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
381 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

• The Enqueue Command Ring (EQCR) sends packets from the core to the other elements.
• The Message Ring (MR) notifies the core of the action (for example, attempted dequeue rejected, and so on).
• The Management command and response control registers.

Dequeue Interface

CI
(Consumer)

PI
(Producer)

Interrupts

Dequeue
Commands

PI

CI
Message Ring

(MR)

Management
Command/Response

Registers

QMan

Core

CI

PI

Enqueue Interface

Figure 55. Processor Core Portal

On ingress, the DQRR acts as a small buffer of incoming packets to a particular core. When a section of
software performs a get packet type operation, it gets the packet from a pointer provided as an entry in the
DQRR for the specific core running that software. Note that the DQRR consolidates all potential channels
that may be feeding frames to a particular core. There are up to 16 entries in each DQRR. Each DQRR entry
contains:

• a pointer to the packet to be processed,
• an identifier of the frame queue from which the packet originated,
• a sequence number (when configured),
• and additional FMan-determined data (when configured).

When configured for push mode, QMan attempts to fill the DQRR from all the potential incoming channels.
When configured in pull mode, QMan only adds one DQRR entry when it is told to by the requesting core. Pull
mode may be useful in cases where the traffic flows must be very tightly controlled; however, push mode is
normally considered the preferred mode for most applications.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
382 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Core 1 Core 2 Core N

DQRR

Dedicated
Channel Pool

Channel

DQRR DQRR

Dedicated
Channel

Pool
Channel

Dedicated
Channel

Figure 56. Ingress Channel to Portal Options

The DQRRs are tightly coupled to a processor core. DPAA1 implements a feature that allows the DQRR
mechanism to pre-allocate, or stash, the L1 and/or L2 cache with data related to the packet to be processed by
that core. The intent is to have the data required for packet processing in the cache before the processor runs
the “get packet” routine, thereby reducing the overall time spent processing a particular packet.

The following is data that may be warmed into the caches:

• The DQRR entry
• The packet or portion of the packet for a single buffer packet
• The scatter gather list for a multi-buffer packet
• Additional data added by FMan
• FQ context (A and B)

The FQ context is a user-defined space in memory that contains data associated with the FQ (per flow) to be
processed. The intent is to place in this data area the state information required when processing a packet for
this flow. The FQ context is part of the FQ definition, which is performed when the FQ is initialized.

The cache warming feature is enabled by configuring the capability and some definition of the FQs and QMan
at system initialization time. This can provide a significant performance boost and requires little to no change in
the processing flow. When defining the system architecture, it is highly recommended that the user enable this
feature and consider how to maximize its impact.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
383 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

DQRR

Pool
Channel

Dedicated
Channel

Pool
Channel

Other
Cores

Other
Cores

Packet

Frame Context

Main Memory
L2 Cache

Core

L1 Cache

FQ

Figure 57. Cache Warming Options

In addition to getting packet information from the DQRR, the software also manages the DQRR by indicating
which DQRR entry it will consume next. This is how the QMan determines when the DQRR (portal) is ready
to process more frames. Two basic options are provided. In the first option, the software can update the ring
pointer after one or several entries have been consumed. By waiting to indicate the consumption of multiple
frames, the performance impact of the write doing this is minimized. The second option is to use the discrete
consumption acknowledgment (DCA) mode. This mode allows the consumption indication to be directly
associated with a frame enqueue operation from the portal (that is, after the frame has been processed and is
on the way to the egress queue). This tracking of the DQRR Ring Pointer CI (Consumer Index) helps implement
frame ordering by ensuring that QMan does not dequeue a frame from the same FQ (or flow) to a different core
until the processing is completed.

7.2.1.5 QMan Scheduling

The QMan links the FQs to producers and consumers (of data traffic) within the SoC.

7.2.1.5.1 QMan: Queue schedule options

The primary communication path between QMan and the processor cores is the portal memory structure. QMan
uses this interface to schedule the frames to be processed on a per-core basis. For a dedicated channel, the
process is straightforward: the QMan places an entry in the DQRR for the portal (processor) of the dedicated
channel and dequeues the frame from an FQ to the portal. To do this, QMan determines, based on the priority

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
384 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

scheme (previously described) for the channel, which frame should be processed next and then adds an entry
to the DQRR for the portal associated with the channel.

When configured for push mode, once the portal requests QMan to provide frames for processing, QMan
provides frames until halted. When the DQRR is full and more frames are destined for the portal, QMan waits
for an empty slot to become available in the DQRR and then adds more entries (frames to be processed) as
slots become available.

When configured for pull mode, the QMan only adds entries to the DQRR at the direct request of the portal
(software request). The command to the QMan that determines if a push or pull mode is implemented
and tells QMan to provide either one or from one to three (up to three if there are that many frames to be
dequeued) frames at a time. This is a tradeoff of smaller granularity (for one frame only) versus memory access
consolidation (if the up to three frames option is selected).

When the system is configured to use pool channels, a portal may get frames from more than one channel and
a channel may provide frames (work) to more than one portal (core). QMan dequeues frames using the same
mechanism described above (updating DQRR) and QMan also provides for some specific scheduling options to
account for the pool channel case in which multiple cores may process the same channel.

7.2.1.5.2 QMan: Default Scheduling

The default scheduling is to have an FQ send frames to the same core for as long as that FQ is active. An FQ is
active until it uses up its allocated credit or becomes empty. After an FQ uses its credit, it is rescheduled again,
until it is empty. For its schedule opportunity, the FQ is active and all frames dequeued during the opportunity go
to the same core. After the credit is consumed, QMan reactivates that FQ but may assign the flow processing
to a different core. This provides for a sticky affinity during the period of the schedule opportunity. The schedule
opportunity is managed by the amount of credit assigned to the FQ.

Note: A larger credit assigned to an FQ provides for a stickier core affinity, but his makes the processing work
granularity larger and may affect load balancing.

Pool
Channel

Core 1 Core 2 Core 3

''Sticky" affinity FQ2 schedule
opportunity but affinity may change
when FQ2 is rescheduled

Pooled Cores

''Sticky" affinity during FQ1's
schedule opportunity but affinity
may change when FQ1 rescheduled

Default Scheduling

FQ2 FQ1

Figure 58. Default Scheduling

7.2.1.5.3 QMan: Hold Active Scheduling

With the hold active option, when the QMan assigns an FQ to a particular core, that FQ is affined to that
core until it is empty. Even after the FQ’s credit is consumed, then it is rescheduled with the next schedule
opportunity, the frames go to the same core for processing. This effectively makes the flow-to-core affinity
stickier than the default case, ensuring the same flow is processed by the same core for as long as there
are frames queued up for processing. Because the flow-to-core affinity is not hardwired as in the dedicated
channel case, the software may still need to account for potential order issues. However, because of flow-to-

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
385 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

core biasing, the flow state data is more likely to remain in L1 or L2 cache, increasing hit rates and therefore
improving processing performance. Because of the specific QMan implementation, only four FQs may be in
held active state at a given time.

Pool
Channel

Core 1 Core 2 Core 3

Pooled Cores

HW assigns affinity with 1st frame, FQ1
stays with core 1 until the FQ is emptied

FQ2

FQ1

HW assigns affinity with 1st frame, FQ2
stays with core 3 until the FQ is emptied

Figure 59. Hold Active Scheduling

7.2.1.5.4 QMan: Avoid blocking scheduling

Avoid blocking scheduling QMan can also be scheduled in the avoid blocking mode, which is mutually exclusive
to hold active. In this mode, QMan schedules frames for an FQ to any available core in the pool channel. For
example, if the credit allows for three frames to be dequeued, the first frame may go to core 1. But, when that
dequeue fills core 1’s DQRR, QMan finds the next available DQRR entry in any core in the pool. With avoid
blocking mode there is no biasing of the flow to core affinity. This mode is useful if a particular flow either has
no specific order requirements or the anticipated processing required for a single flow is expected to consume
more than one core’s worth of processing capability.

Alternatively, software can bypass QMan scheduling and directly control the dequeue of frame descriptors
from the FQ. This mode is implemented by placing the FQ in parked state. This allows software to determine
precisely which flow will be processed (by the core running the software). However, it requires software to
manage the scheduling, which can add overhead and impact performance.

Pool
Channel

Core 1 Core 2 Core 3

Pooled Cores

Frames spread from FQ to all
cores in the pool, QMAN finds

any available DQRR slots

FQ1

Figure 60. Avoid Blocking Scheduling

7.2.1.5.5 QMan: Order Definition/ Restoration

The QMan provides a mechanism to strictly enforce ordering. Each FQ may be defined to participate in the
process of an order definition point and/or an order restoration point. On ingress, an order definition point
provides for a 14-bit sequence number assigned to each frame (incremented per frame) in an FQ in the order
in which they were received on the interface. The sequence number is placed in the DQRR entry for the
frame when it is dequeued to a portal. This allows software to efficiently determine which packet it is currently
UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
386 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

processing in the sequence without the need to access a shared (between cores) data structure. On egress,
an order restoration point delays placing a frame onto the FQ until the expected next sequence number is
encountered. From the software standpoint, once it has determined the relative sequence of a packet, it can
enqueue it and resume other processing in a fire-and-forget manner.

Note: The order definition points and order restoration points are not dependent on each other; it is possible to
have one without the other depending on application requirements. To effectively use these mechanisms, the
packet software must be aware of the sequence tagging.

Core 1

Core 2

Core 3

Core 4

FQ configured
as order

definition point

DQRR entries

IN
_F

4

Ingress flow

Egress flow

Hold off SN3/4
enqueue until

SN2 enqueued

Processing
delayed

Order
processed

FQ configured
as order

restoration
point

EG_F4 EG_F3 EG_F2 EG_F1

EG_F4

EG_F3

EG_F2

EG_F1

EG_F4

EG_F3

EG_F2

EG_F1

SN2

SN4

SN3

SN1

IN
_F

3

IN
_F

2

IN
_F

1

IN_F4 IN_F3 IN_F2 IN_F1

SN1

SN2

SN3

IN_F3

IN_F2

IN_F1

SN4

IN_F4

Figure 61. Order Definition/Restoration

As processors enqueue packets for egress, it is possible that they may skip a sequence number because of
the nature of the protocol being processed. To handle this situation, each FQ that participates in the order
restoration service maintains its own Next Expected Sequence Number (NESN). When the difference between
the sequence number of the next expected and the most recently received sequence number exceeds the
configurable ORP threshold, QMan gives up on the missing frame(s) and autonomously advances the NESN to
bring the skew within threshold. This causes any deferred enqueues that are currently held in the ORP link list
to become unblocked and immediately enqueue them to their destination FQ. If the “skipped” frame arrives after
this, the ORP can be configured to reject or immediately enqueue the late arriving frame.

7.2.1.6 BMan

The BMan block manages the data buffers in memory. Processing cores, FMan, SEC and PME all may get a
buffer directly from the BMan without additional software intervention. These elements are also responsible for
releasing the buffers back to the pool when the buffer is no longer in use.

Typically, the FMan directly acquires a buffer from the BMan on ingress. When the traffic is terminated in the
system, the core generally releases the buffer. When the traffic is received, processed, and then transmitted,
the same buffer may be used throughout the process. In this case, the FMan may be configured to release the
buffer automatically, when the transmit completes.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
387 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

The BMan also supports single or multi-buffer frames. Single buffer frames generally require the adequately
defined (or allocated) buffer size to contain the largest data frame and minimize system overhead. Multi-buffer
frames potentially allow better memory utilization, but the entity passed between the producers/consumers is a
scatter-gather table (that then points to the buffers within the frame) rather than the pointer to the entire frame,
which adds an extra processing requirement to the processing element.

The software defines pools of buffers when the system is initialized. The BMan unit itself manages the pointers
to the buffers provided by the software and can be configured to interrupt the software when it reaches a
condition where the number of free buffers is depleted (so that software may provide more buffers as needed).

7.2.1.7 Order Handling

DPAA1 helps address packet order issues that may occur as a result of running an application in a multiple
processor environment. And there are several ways to leverage DPAA1 to handle flow order in a system. The
order preservation technique maps flow such that a specific flow always executes on a specific processor core.

For the case that DPAA1 handles flow order, the individual flow will not have multiple execution threads and
the system will run much like a single core system. This option generally requires less impact to legacy, single-
core software but may not effectively utilize all the processing cores in the system because it requires using a
dedicated channel to the processors. The FMan PCD can be configured to either directly match a flow to a core
or to use the hashing to provide traffic spreading that offers a permanent flow-to-core affinity.

If the application must use pool channels to balance the processing load, then the software must be more
involved in the ordering. The software can make use of the order restoration point function in QMan, which
requires the software to manage a sequence number for frames enqueued on egress. Alternatively, the
software can be implemented to maintain order by biasing the stickiness of flow affinity with default or hold
active scheduling; lock contention and cache misses can be biased to increase performance.

If there are no order requirements, then load balancing can be achieved by associating the non-ordered traffic
to a pool of cores.

Note: All of these techniques may be implemented simultaneously on the same SoC; as long as the flow
definition is precise enough to split the traffic types, it is simply a matter of proper defining the FQs and
associating them to the proper channels in the system.

7.2.1.7.1 Using the exact match flow definition to preserve order

The simplest technique for preserving order is to route the ingress traffic of an individual flow to a particular
core. For the particular flow in question, the system appears as a legacy, single-core programming model and,
therefore, has minimal impact on the structure of the software. In this case, the flow definition determines the
core affinity of a flow.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
388 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

FQ2FQ1

Core 1 Core 2 Core 3

Dedicated
Channel

FQ3

FQ4 FQ5 FQ6

Dedicated
Channel

Dedicated
Channel

FMan
Split traffic into "N"

streams based on "N"
known values in packet

FMan

Egress
Traffic

Dedicated
Channel

Assign WQ
Depending on

Priority

Figure 62. Direct Flow-to-Core Mapping (Order Preserved)

This technique is completely deterministic: the DPAA1 forces specific flows to a specific processor, so it may
be easier to determine the performance assuming the ingress flows are completely understood and well-
defined. Notice that a particular processor core may become overloaded with traffic while another sits idle for
increasingly random flow traffic rates.

To implement this sort of scheme, the FMan must be configured to exactly match fields in the traffic stream.
This approach can only be used for a limited number of total flows before the FMan’s internal resources are
consumed.

In general, this sort of hardwired approach should be reserved for either critical out-of-band traffic or for systems
with a small number of flows that can benefit from the highly deterministic nature of the processing.

7.2.1.7.2 Using hashing to distribute flows across cores

The FMan can be configured to extract data from a field or fields within the data frame, build a key from that,
and then hash the resultant key into a smaller number. This is a useful technique to handle a larger number
of flows while ensuring that a particular flow is always associated with a particular core. An example is to
define a flow as an IPv4 source + IPv4 destination address. Both fields together constitute 64 bits, so there are
264 possible combinations for the flow in that definition. The FMan then uses a hash algorithm to compress
this into a manageable number of bits. Note that, because the hash algorithm is consistent, packets from a
particular flow always go to the same FQ. By utilizing this technique, the flows can be spread in a pseudo-
random, consistent (per flow) manner to a smaller number of FQs. For example, hashing the 64 bits down to 2
bits spreads the flows among four queues. Then these queues can be assigned to four separate cores by using
a dedicated channel; effectively, this appears as a single-core implementation to any specific flow.

This spreading technique works best with a large number of possible flows to allow the hash algorithm to evenly
spread the traffic between the FQs. In the example below, when the system is only expected to have eight flows
at a given time, there is a good chance the hash will not assign exactly two flows per FQ to evenly distribute the

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
389 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

flows between the four cores shown. However, when the number of flows handled is in the hundreds, the odds
are good that the hash will evenly spread the flows for processing.

FQ2FQ1

Core 1 Core 2 Core 3

Dedicated
Channel

FQ3

Dedicated
Channel

Dedicated
Channel

Hash 64 Bits to 2 Bits:
4 Possible FQ'sFMan

Egress
Traffic

Dedicated
Channel

Core 4

FQ4

FQ6FQ5 FQ7 FQ8

FMan

2^64 Possible IPv4
Flow Definitions

Dedicated
Channel

Figure 63. Simple flow distribution via hash (order preserved)

To optimize cache warming, the total number of hash buckets can be increased with flow-to-core affinity
maintained. When the number of hash values is larger than the number of expected flows at a given time, it
is likely though not guaranteed that each FQ will contain a single flow. For most applications, the penalty of a
hash collision is two or more flows within a single FQ. In the case of multiple flows within a single FQ, the cache
warming and temporary core affinity benefits are reduced unless the flow order is maintained per flow.

Note that there are 24 bits architected for the FQ ID, so there may be as many as 16 million FQs in the system.
Although this total may be impractical, this does allow for the user to define more FQs than expected flows in
order to reduce the likelihood of a hash collision; it also allows flexibility in assigning FQID’s in some meaningful
manner. It is also possible to hash some fields in the data frame and concatenate other parse results, possibly
allowing a defined one-to-one flow to FQ implementation without hash collisions.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
390 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Core 1 Core 2 Core 3

Dedicated
Channel

Dedicated
Channel

Dedicated
Channel

Hash 64 Bits to 7 Bits:
128 Possible FQ'sFMan Egress

Traffic

Dedicated
Channel

Core 4

FQ40FQ90 FQ80 FQ60

FMan

2^64 Possible IPv4
Flow Definitions

Dedicated
Channel

FQ2F FQ4F FQ6F FQ8F

FQ10 FQ50 FQ70FQ30

Figure 64. Using hash to assign one flow per FQ (order preserved and cache stashing effective)

7.2.1.8 Pool Channels

A user may employ a pool channel approach where multiple cores may pool together to service a specific set of
flows. This alternative approach allows potentially better processing balance, but increases the likelihood that
packets may be processed out of order allowing egress packets to pass ingress packets.

So far, the techniques discussed in this white paper have involved assigning specific flows to the same core
to ensure that the same core always processes the same flow or set of flows, thereby preserving flow order.
However, depending on the nature of the flows being processed (that is, variable frame sizes, difficulty efficiently
spreading due to the nature of the flow contents, and so on), this may not effectively balance the processing
load among the cores. Alternatively, a user may employ a pool channel approach where multiple cores may
pool together to service a specific set of flows. This alternative approach allows potentially better processing
balance, but increases the likelihood that packets may be processed out of order allowing egress packets to
pass ingress packets. When the application does not require flows to be processed in order, the pool channel
approach allows the easiest method for balancing the processing load. When a pool channel is used and order
is required, the software must maintain order. The hardware order preservation may be used by the software to
implement order without requiring locked access to shared state information. When the system uses a software
lock to handle order, then the default scheduling and hold active scheduling tends to minimize lock contention.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
391 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Core 1 Core 2 Core 3

Hash 64 Bits to 7 Bits:
128 Possible FQ'sFMan Egress

Traffic

Dedicated
Channel

Core 4

FQ40FQ90 FQ80 FQ60

FMan

264 Possible IPv4
Flow Definitions

Pool
Channel

FQ2F FQ4F FQ6F FQ8F

FQ10 FQ50 FQ70FQ30

Figure 65. Using pool channel to balance processing

7.2.1.8.1 Order preservation using hold active scheduling and DCA mode

As shown in the examples above, order is preserved as long as two or more cores never process frames from
the same flow at the same time. This can also be accomplished by using hold active scheduling along with
discrete consumption acknowledgment (DCA) mode associated with the DQRR. Although flow affinity may
change for an FQ with hold active scheduling when the FQ is emptied, if the new work (from frames received
after the FQ is emptied) is held off until all previous work completes, then the flow will not be processed by
multiple cores simultaneously, thereby preserving order.

When the FQ is emptied, QMan places the FQ in hold suspended state, which means that no further work
for that FQ is enqueued to any core until all previously enqueued work is completed. Because DCA mode
effectively holds off the consumption notification (from the core to QMan) until the resultant processed frame is
enqueued for egress, this implies processing is completely finished for any frames in flight to the core. After all
the in-flight frames have been processed, QMan reschedules the FQ to the appropriate core.

Note: After the FQ is empty and when in hold active mode, the affinity is not likely to change. This is because
the indication of “completeness” from the core currently processing the flow frees up some DQRR slots that
could be used by QMan when it restarts enqueuing work for the flow. The possibility of the flow-to-core affinity
changing when the FQ empties is only discussed as a worst case possibility with regard to order preservation.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
392 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Pool Channel

Core 1 Core 2 Core 3

Pooled Cores

FQ1 non-empty currently held
active to core1. DQRR indicates
frames dequeued from FQ1 are
stil being processed by core 1
using DCA.

Core 1 Core 2 Core 3

Pooled Cores

Pool Channel

FMAN
Held Active

DQRR EQCR DQRR DQRR

DQRR EQCR DQRR
DQRRFQ1 empties scheduling now

"held suspended" state. DQRR
indicates frames dequeued from
FQ1 are still being precessed by
core 1 using DCA.

FQ1

FQ1

Figure 66. Hold active to held suspended mode

Pool Channel

Core 1 Core 2 Core 3

Pooled CoresFQ1

FQ1 gets more frames from
FMAN, but core 1 is still working
on packets "in flight". DQRR
consumption notification from
core occurs as frames are
enqueued for egress.

FQ1

Core 1 Core 2 Core 3

Pooled Cores

Pool Channel

FMAN

DQRR EQCR DQRR DQRR

DQRR EQCR DQRR
DQRR

Core1 finishes all processing all
"n flight" frames, notification via
DCA mechanism. QMAN restarts
work scheduling, possibly to
another core, but FQ1 frames are
never processed by more than
one core at a time.

FMAN

EQCR

Held Active

Figure 67. Held suspended to hold active mode

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
393 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

7.2.1.8.2 Congestion management

From an overall system perspective, there are multiple potential overflow conditions to consider. The maximum
number of frames active in the system (the number of frames in flight) is determined by the amount of memory
allocated to the Packed Frame Queue Descriptors (PQFD’s). Each PQFD is 64 bytes and can identify up to
three frames, so the total number of frames that can be identified by the PQFDs is equal to the amount of
memory allocated for PQFD space divided by 64 bytes (per entry) multiplied by three (frames per entry).

A pool of buffers may deplete in BMan. This depends on how many buffers have been assigned by software
for BMan. BMan may raise an interrupt to request more buffers when in a depleted state for a given pool; the
software can manage the congestion state of the buffer pools in this manner.

In addition to these high-level system mechanisms, congestion management may also be identified specific
to the FQs. A number of FQs can be grouped together to form a congestion group (up to 256 congestion
groups per system for most DPAA1 SoCs). These FQs need not be on the same channel. The system may be
configured to indicate congestion by either considering the aggregate number of bytes within the FQ’s in the
congestion group or the aggregate number of frames within the congestion group. The frame count option is
useful when attempting to manage the number of buffers in a buffer pool as they are used by a particular core or
group of cores. The byte count is useful to manage the amount of system memory used by a particular core or
group of cores.

When the total number of frames/bytes within the frames in the congestion group exceeds the set threshold,
subsequent enqueues to any of the FQs in the group are rejected; in general, the frame is dropped. For the
congestion group mechanism, the decision to reject is defined by a programmed weighted random early discard
(WRED) algorithm programmed when the congestion group is defined.

In addition, a specific FQ can be set to a particular maximum allowable depth (in bytes); after the threshold is
reached enqueue attempts will be rejected. This is a maximum threshold: there is no WRED algorithm for this
mechanism. Note that, when the FQ threshold is not set, a specific FQ may fill until some other mechanism
(because it’s part of a congestion group or system PQFD depletion or BMAN depletion) prevents the FQ from
getting frames. Typically, FQs within a congestion group are expected to have a maximum threshold set for
each FQ in the group to ensure a single queue does not get stuck and unfairly consume the congestion group.
Note that, when an FQ does not have a queue depth set and/or is not a part of a congestion group, the FQ has
no maximum depth. It would be possible for a single queue to have all the frames in the system, until the PQFD
space or the buffer pool is exhausted.

7.2.1.9 Application Mapping

The first step in application mapping is to determine how much processing capability is required for tasks that
may be partitioned separately.

7.2.1.9.1 Processor core assignment

Consider a typical networking application with a set of distinct control and data plane functionality. Assigning two
cores to perform control plane tasks and six cores to perform data plane tasks may be a reasonable partition
in an eight-core device. When initially identifying the SoC required for the application, along with the number
of cores and frequencies required, the designer makes some performance assumptions based on previous
designs and/or applicable benchmark data.

7.2.1.9.2 Define flows

Next, define what flows are in the system. Key considerations for flow definition include the following:

• Total number of flows expected at a given time within the system
• Desired flow-to-core affinity, ingress flow destination
• Processor load balancing
UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
394 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

• Frame sizes (may be fixed or variable)
• Order preservation requirement
• Traffic priority relative to the flows
• Expected bandwidth requirement of specific flows or class of flows
• Desired congestion handling

Core 6

Core 5

Core 4

Core 3
Core 7 Core 8

Control Plane
Traffic

General Data
Plane Traffice

Psuedo Real
Time Traffic

Work Distribution Function

Port1

Physical Interfaces

Port2 Port3 Port4 Port5

Core 1

Core 2

Figure 68. Example Application with Three Classes

In the figure above, two cores are dedicated to processing control plane traffic, four cores are assigned to
process general data traffic and special time critical traffic is split between two other cores. In this case, assume
the traffic characteristics in the following table. With this system-level definition, the designer can determine
which flows are in the system and how to define the FQs needed.

Characteristic Definition

Control plane traffic • Terminated in the system and any particular packet sent has no dependency on
previous or subsequent packets (no order requirement).

• May occur on ports 1, 2 or 3.
• Ingress control plane traffic on port three is higher priority than the other ports.
• Any ICMP packet on ports 1, 2 or 3 is considered control plane traffic.
• Control plane traffic makes up a small portion of the overall port bandwidth.

General data plane traffic • May occur on ports 1, 2 or 3 and is expected to comprise the bulk of the traffic
on these ports.

• The function performed is done on flows and egress packets must match the
order of ingress packets.

• A flow is identified by the IP source address.
• The system can expect up to 50 flows at a time.
• All flows have the same priority and a lower priority than any control plane

traffic.

Table 51. Traffic characteristics

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
395 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Characteristic Definition
• It is expected that software is not able to keep up with this traffic and the

system should drop packets after some amount of packets are within the
system.

Pseudo real-time traffic • A high amount of determinism is required by the function.
• This traffic only occurs on port 4 and port 5 and is identified by a proprietary

field in the header; any traffic on these ports without the proper value in this
field is dropped.

• All valid ingress traffic on port 4 is to be processed by core 7, ingress traffic on
port 5 processed by core 8.

• There are only two flows, one from port 4 to port 5 and one from port 5 to port
4, egress order must match ingress order.

• The traffic on these flows is the highest priority.

Table 51. Traffic characteristics...continued

7.2.1.9.3 Identify ingress and egress frame queues (FQs)

For many applications, because the ingress flow has more implications for processing, it is easier to consider
ingress flows first. In the example above, the control plane and pseudo real-time traffic FQ definitions are fairly
straightforward. For the control plane ingress, one FQ for lower priority traffic on ports 1 and 2 and one for the
higher priority traffic would work. Note that two ports can share the same queue on ingress when it does not
matter for which core the traffic is destined. For ingress pseudo real-time traffic, there is one FQ on port 4 and
one FQ on port 5.

The general data plane ingress traffic is more complicated. Multiple options exist which maintain the required
ordering for this traffic. While this traffic would certainly benefit from some of the control features of the QMan
(cache warming, and so on), it is best to have one FQ per flow. Per the example, the flow is identified by the
IP source (32 bits), which consists of too many bits to directly use as the FQID. The hash algorithm can be
used to reduce the 32-bits to a smaller number; in this case, 6 bits would generate 64 queues, which are more
than the anticipated maximum flows at a given time. However, this is not significantly more than maximum flow
expected, so more FQs can be defined to reduce hash collisions. Note that, in this case, a hash collision implies
that two flows are assigned to the same FQ. As the ingress FQs fill directly from the port, the packet order is still
maintained when there is a collision (two flows into one FQ). However, having two flows in the same FQ tends
to minimize the impact of cache warming. There may be other possibilities to refine the definition of flows to
ensure a one-to-one mapping of flows to FQs (for example, concatenating other fields in the frame) but for this
example, assume that an 8-bit hash (256 FQs) minimizes the likelihood of two flows in the FQ to an acceptable
level.

Consider the case in which, on ingress, there is traffic that does not match any of the intended flow definitions.
The design can handle these by placing unidentifiable packets into a separate garbage FQ or by simply having
the FMan discard the packets.

On egress control traffic, because the traffic may go out on three different ports, three FQs are required. For the
egress pseudo real-time traffic, there is one queue for each port as well.

For the egress data plane traffic, there are multiple options. When the flows are pinned to a specific core, it
might be possible to simply have one queue per port. In this case, the cores would effectively be maintaining
order. However, for this example, assume that the system uses the order definition/order restoration mechanism
previously described. In this case, the system needs to define an FQ for each egress flow. Note that, since
software is managing this, there is no need for any sort of hash algorithm to spread the traffic; the cores
enqueue to the FQ associated with the flow. When there are no more than 50 flows in the system at one time,
and number of egress flows per port is unknown, the system could define 50 FQs for each port when DPAA1 is
initialized.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
396 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

7.2.1.9.4 Define PCD configuration for ingress FQs

This step involves defining how the FMan splits the incoming port traffic into the FQs. In general, this is
accomplished using the PCD (Parse, Classify, Distribute) function and results in specific traffic assigned to a
specific FQID. Fields in the incoming packet may be used to identify and split the traffic as required. For this key
optimization case, the user must determine the correct field. The example is as follows:

• For the ingress control traffic, the ICMP protocol identifier is the selector or key. If the traffic is from ports 1 or
2, then that traffic goes to one FQID. If it is from port 3, the traffic goes to a different FQID because this needs
to be separated and given a higher priority than the other two ports.

• For the ingress data plane traffic, the IP source field is used to determine the FQID. The PCD is then
configured to hash the IP source to 8 bits, which generates 256 possible FQs. Note that this is the same,
regardless of whether the packet came from ports 1, 2, or 3.

• For the ingress pseudo real-time traffic, the PCD is configured to check for the proprietary identifier. If there
is a match, then the traffic goes to an FQID based on the ingress port. If there is no match, then the incoming
packet is discarded. Also, the soft parser needs to be configured/programmed to locate the proprietary
identifier.

Note: The FQID number itself can be anything (within the 24 bits to define the FQ). To maintain meaning, use a
numbering scheme to help identify the type of traffic. For the example, define the following ingress FQIDs:

• High priority control: FQID 0x100
• Low priority control: FQID 0x200
• General data plane: FQID 0x1000 – 0x10FF
• Pseudo real-time traffic: FQID 0x2000 (port 4), FQID 0x2100 (port 5)

The specifics for configuring the PCDs are described in the DPAA1 Reference Manual and in the Software
Developer Kit (SDK) used to develop the software.

7.2.1.10 FQ/WQ/Channel

For each class of traffic in the system, the FQs must be defined together with both the channel and the WQ
to which they are associated. The channel association affines to a specific processor core while the WQ
determines priority.

Consider the following by class of traffic:

• The control traffic goes to a pool of two cores with priority given to traffic on port 3.
• The general data plane traffic goes to a pool of 4 cores.
• The pseudo real-time traffic goes to two separate cores as a dedicated channel.

When the FQ is defined in addition to the channel association, the other parameters may be configured. In the
application example, the FQs from 1000 to 10FF are all assigned to the same congestion group. This is done
when the FQ is initialized. Also, for these FQs it is desirable to limit the individual FQ length. This would also be
configured when the FQ is initialized.

Because the example application is going to use order definition/order restoration mode, this setting needs to be
configured for each FQ in the general data plane traffic (FQID 0x1000-0x10FF). Note that order is not required
for the control plane traffic and that order is preserved in the pseudo real-time traffic because the ingress traffic
flows are mapped to specific cores.

QMan configuration considerations include the congestion management and pool channel scheduling. A
congestion group must be defined as part of QMan initialization. (Note that the FQ initialization is where the
FQ is bound to a congestion group.) This is where the total number of frames and the discard policy of the
congestion group are defined. Also, consider the QMan scheduling for pool channels. In this case, the default of
temporarily attaching an FQ to a core until the FQ is empty will likely work best. This tends to keep the caches
current, especially for the general data plane traffic on cores 3-6.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
397 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Core 2

Core 1

Core 6

Core 5

Core 4

Core 3
Core 7 Core 8

Control Plane
Traffic

General Data
Plane Traffice

Pseudo Real
Time Traffic

FQ100

Port 1 Port 2 Port 3 Port 4 Port 5

FMan

Hash 3.2 Bits to
8 Bits 256
Possible FQsControl traffic

from port 3

FQ200

FQ1500 FQ2000 FQ2100

Pool Channel Pool Channel Dedicated Channel Dedicated Channel

FQ1000

W
Q

2

W
Q

3

W
Q

4

W
Q

2

W
Q

2

Figure 69.  Ingress application map

7.2.1.10.1 Define egress FQ/WQ/channel configuration

For egress, the packets still flow through the system using DPAA1, but the considerations are somewhat
different. Note that each external port has its own dedicated channel; therefore, to send traffic out of a specific
port, the cores enqueue a frame to an FQ associated with the dedicated channel for that port. Depending on the
priority level required, the FQ is associated with a specific work queue.

For the example, the egress configuration is as follows:

• For control plane traffic, there needs to be separate queues for each port this traffic may use. These FQs must
be assigned to a WQ that is higher in priority than the WQ used for the data plane traffic. The example shown
includes a strict priority (over the data plane traffic) for ports 1 and 2 with the possibility of WRED with the data
plane traffic on port 3.

• Because the example assumes that the order restoration facility in the FQs will be utilized, there must be
one egress FQ for each flow. The initial system assumptions are for up to 50 flows of this type; however, the
division by port is unknown, the FQs can be assigned so that there are at least 50 for each port. Note that
FQs can be added when the flow is discovered or they can be defined at system initialization time.

• For the pseudo real-time traffic, per the initial assumptions, core 7 sends traffic out of port 4 and core 8 sends
traffic out of port 5. As the flows are per core, the order is preserved because of this mapping. These are

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
398 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

assigned to WQ2, which allows definition for even higher priority traffic (to WQ1) or lower priority traffic for
future definition on these ports.

As stated before, the FQIDs can be whatever the user desires and should be selected to help keep track of
what type of traffic the FQ’s are associated. For this example:

• Control traffic for ports 1, 2, 3 are FQID 300, 400, 500 respectively.
• Data plane traffic for ports 1, 2, 3 are FQID 3000-303F, 4000-403F, and 5000-503F respectively, this provides

for 64 FQ’s per port on egress.
• The pseudo real-time traffic uses FQID 6000 for port 4 and 7000 for port 5.

Because this application makes use of the order restoration feature, an order restoration point must be defined
for each data plane traffic flow. Also, congestion management on the FQs may be desirable. Consider that the
data plane traffic may come in on multiple ports but may potentially be consolidated such that is egresses out
a single port. In this case, more traffic may be attempted to be enqueued to a port than the port interface rate
may allow, which may cause congestion. To manage this possibility, three congestion groups can be defined
each containing all the FQs on each of the three ports that may have the control plus data plane traffic. As
previously discussed, it may be desirable to set the length of the individual FQs to further manage this potential
congestion.

Core 6

Core 5

Core 4
Core 2

FQ50FFFQ40FFFQ30FF

Core 1
Core 3

Core 7 Core 8

Control Plane
Traffic

General Data
Plane Traffice

Psuedo Real
Time Traffic

Port 1 Port 2 Port 3 Port 4 Port 5

FMan

Dedicated Channel Dedicated Channel Dedicated Channel Dedicated Channel Dedicated Channel

FQ3000 FQ400 FQ4000 FQ500 FQ5000

FQ6000 FQ7000

W
Q

2
W

Q
3

W
Q

2
W

Q
3

W
Q

3
W

Q
4

W
Q

2

W
Q

2

FQ300

Figure 70. Egress application map

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
399 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

7.2.1.10.2 End of Document

7.2.2 Linux Ethernet

7.2.2.1 Introduction

An overview of the DPAA 1.x Ethernet network driver, in the more generic context of Linux device drivers.

The primary concepts of the DPAA 1.x Ethernet driver architecture are presented in the following sections
without going into too many details as code structure. These pages are not a Linux Device Drivers tutorial, but a
Quick start guide which provides context for users.

The following sections describe the Linux Ethernet driver running on data path Acceleration Architecture (DPAA
1.x) processors. The driver is shipped with the standard Layerscape SDK. The focus is on the theory and
operation behind using Ethernet. It provides a limited discussion of the BMan, QMan, and FMan, describing
the layer of software which allows all of these to interoperate. Enablement, configuration and debugging for the
DPAA 1.x Ethernet Driver is also described.

Purpose

The DPAA 1.x Ethernet Driver is meant to configure the data path hardware for communication via the Ethernet
protocol. This includes assisting in:

• Allocating buffer pools and buffers
• Allocating frame queues
• Assigning frame queues and buffer pools to specified FMan ports
• Transferring packets between frame queues and the Linux stack
• Controlling Link Management features

Overview

Ethernet features are enabled on DPAA 1.x hardware by interconnecting the BMan, QMan, and FMan. The
primary interactions are between the Linux Kernel and the QMan. Ethernet frames are exchanged between the
Ethernet driver and the hardware Frame Queues via QMan Portals.

Usually, the Frame Queues are connected to an ingress or egress FMan port. Each FMan port has at least two
queues assigned to it: a default queue and an error queue. This assignment can be specified in the device tree,
or created dynamically by the driver on initialization.

Ethernet frames are often stored in buffers acquired from a BMan Buffer Pool. The driver sets up this pool, and
either seeds it with buffers, or maps the buffers which are put into the pool. Depending on the use case, the
buffers may be allocated and freed by the Kernel during network activity, or they may be allocated once and
recycled by returning to the pool when not in use by the DPAA 1.x hardware.

DPAA 1.x Ethernet Driver types

The complexity of DPAA 1.x allows a variety of possible use cases. Although speed is the key factor for
performance in most use cases, customization or community support are preferred in others. Building a single
Ethernet driver to address all requests proved difficult without making compromises. Instead, we developed two
Ethernet driver variants to approach both performance driver and community driven scenarios:

• The Private DPAA 1.x Ethernet Driver resembles the common Linux Ethernet driver. It is highly improved for
performance and uses all the features that DPAA 1.x offers;

• The Upstream DPAA 1.x Ethernet Driver is integrated and maintained in the official Linux kernel tree. While
younger, it benefits from streamline ease of use and community support.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
400 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Both drivers reside in the Layerscape LDP Linux kernel tree and can be built independently. The drivers cannot
be enabled or used at the same time. The Private Ethernet driver is enabled by default in the Layerscape LDP.
Refer to the Upstream Ethernet driver section for details on enabling it instead.

7.2.2.2 The DPAA1-Ethernet view of the world

This section presents the primary concepts behind the DPAA1-Ethernet driver design.

As a Linux driver, one of DPAA1-Ethernet driver's main goals is proper integration with the Linux kernel
ecosystem. As a hardware device driver, the DPAA1-Ethernet driver integrates functions of several DPAA1 IP
blocks, within the scope of the defined/supported use cases.

7.2.2.2.1 The Linux kernel APIs

The DPAA1-Ethernet drivers interface with the Linux kernel via the latter’s networking stack APIs. This is a
strong requirement, mandated by the integration with the Linux kernel.

Another type of interaction with the kernel code is at boot time, via the Open-Firmware API. That API is used to
parse the Arm platform device tree and discover the hardware modules that need to be configured. In particular,
the DPAA1-Ethernet driver uses the platform device tree to discover:

• What net devices to probe and what type of hardware is underlying those devices;
• Which DPAA1 resources are involved; FQIDs, BPIDs, CGRIDs, FMan port IDs.

<<drivers>>

DPAA-Ethernet

<<core kernel>>

IP Stack

<<core kernel>>

Device Probing

<<run-time>>
Networking API

<<boot-time>>
Open Firmware API

The DPAA-Ethernet driver uses standard kernel APIs for:
- Device probing
- Interfacing with the IP networking stack.

Figure 71. Platform device tree

Generally, we prefer driver configurations to be dynamic and transparent to the rest of the system. Among the
benefits of dynamic resource allocations, we count:

• Portability of the drivers across multiple QorIQ platforms
• Seamless support of platform changes (For example, via booting with different RCWs)
• Seamless support of multiple partitions under the control of a hypervisor
• Cohabitation with other DPAA1 drivers (For example, a SEC driver) in the Layerscape SDK

7.2.2.2.2 The Driver's building blocks

This section presents the main structures and data entities with which the DPAA1-Ethernet driver operates.

The driver's building blocks are the relating components of the main entities with which it interacts, which are:

• The kernel’s IP stack
• The DPAA1 hardware blocks and their drivers

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
401 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

7.2.2.2.2.1 Net Devices

A net device (struct net_device in C representation) is the fundamental structure of any Linux network
device driver.

A net device describes a (physical or virtual) device capable of sending and receiving packets over a (virtual or
physical) network. All incoming and outgoing traffic is accounted and processed on behalf of the net device it
comes or goes on.

Each supported type of net device has its own kernel driver. If there are several such devices present in a
system, there will be as many device driver instances.

A net device is accessible to the Linux user via the standard tools, such as ‘ifconfig’ or ‘ethtool’.

Not all net devices have real underlying hardware; tunnel endpoints, for examples, are represented by net
devices but are not directly backed by hardware. Same holds for drivers such as “bonding” or “dummy”.

It is worth emphasizing, however, that every Linux interface is represented by a net device. This is a
fundamental design aspect of all Linux networking drivers, including DPAA1-Ethernet. One can describe the
Linux IP stack as being a netdev-centric construction. Nearly all of the kernel networking APIs receive a
struct net_device as a parameter. The net_device structure is the handle through which the driver and
the network stack communicate.

The following diagram illustrates what has just been described:

eth0

kernel

fm2-gb1

user-space

struct
net
device

network
driver

networking
stack API

The kernel networking APIs are generally netdevice-centric.
A network driver interfaces with the IP stack on behalf of a net device

struct
net
device

network
driver

fmX-macY

Figure 72. Every Linux Interface is Represented by a Net Device

7.2.2.2.2.2 Frame Queues

The Frame Queue is one of the fundamental concepts of DPAA1. In the case of DPAA1-Ethernet, it is the main
interface between the network driver and the hardware blocks.

Ingress frames received by the DPAA1-Ethernet driver on one of the Frame Queues it is servicing are sent to
the IP stack on behalf of the net device structure that the driver is associated with. Conversely, outgoing frames
coming from the IP stack into the driver are enqueued to one of the egress Frame Queues.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
402 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

7.2.2.2.2.3 Buffer Pools

Buffer pool configuration is another fundamental part of the DPAA1-Ethernet driver design.

Unlike the Frame Queue utilization – which is more flexible – the Buffer Pool utilization is conditioned by several
design assumptions:

• The source and ownership of the ingress frame buffers are presumed by the DPAA1-Ethernet driver.
For instance, the driver seeds the Buffer Pools at predefined checkpoints on the Rx path. There are also
buffer utilization counters maintained by the driver, which influence the buffer allocation logic.

• The layout of incoming frames is also presumed by the driver. The actual buffer layout is outside the scope of
this document and should not be assumed upon by driver users.

7.2.2.3 DPAA1 resources initialization

The rationale behind the “what”s, “why”s and “how”s of DPAA1 resource initializations made by the DPAA1-
Ethernet driver are presented. This description does not go into the full detail of driver configuration.

7.2.2.3.1 What, Why and How resources are initialized

Following are the DPAA1 resources initialized by the various configurations of the DPAA1-Ethernet driver.

• FQs and FQIDs (where static config applies)
• BPs and BPIDs (where static config applies)
• Buffers (not quite “DPAA1” resources, rather “system” resources)
• CGRs (CGRIDs are always dynamic)
• FMan’s online ports (Note that the offline ports are configured by a different driver than DPAA1-Ethernet)

Frame Queues and Buffer Pools have been covered at length in the previous sections. CGRs are of lesser
interest from the initialization viewpoint.

FMan online ports are initially probed by the FMan Driver (FMD) and later in the boot process, they are
configured by the DPAA1-Ethernet driver instances according to the specifications in the .dts.

7.2.2.3.2 Private Ethernet driver: Hashing/PCD frame queues

Among the frame queues initialized by the DPAA1-Ethernet driver, there is a predefined set of 128 core-
affined Rx FQs, automatically initialized by the driver. They are there because most performance-enhanced
setups must use a PCD configuration; to that end, the standard Layerscape SDK provides a “hashing PCDs”
configuration that can be applied by the user via the FMC tool. Since FMC does not support dynamic FQID
specification in its .xml configuration files, the “hashing PCD” Frame Queues also have static, hard-coded
FQIDs.

Furthermore, apart from the core-affined Rx FQs, there is another set of 128 core-affined Rx FQs, which have
a higher priority than the former. They are named throughout this documentation "Rx PCD High Priority Frame
Queues". Likewise, the queues in this set are also core-affined and have static, hard-coded FQIDs.

For details about the “hashing PCD” Frame Queues and the Rx PCD High Priority Frame Queues, refer to the
Section 7.2.2.5.3.8 section.

7.2.2.4 The (Simplified) Life of a packet

The following sections present a packet’s lifecycle in the DPAA1-Ethernet driver.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
403 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

7.2.2.4.1 Private net device: Tx

kernel

ndo_start_xmit

memory allocator

alloc_skb

Network

Stack

(SLAB)

DPAA-Eth driver

FMan port

Tx TxConfirm

recycle_Tx_buffer

BPool

kfree_skb

(free Tx buffer)

Figure 73. Buffers on the egress path

Arrows in the above diagram represent the direction of the buffer/packet flow.

A packet on the egress path is allocated by the network stack using the kernel’s standard memory allocator.
The DPAA1-Ethernet driver enqueues the packet to the FMan port with an indication to recycle the buffer if
possible. If recycling is not possible, the DPAA1-Ethernet driver itself frees the buffer memory back to the
kernel’s allocator, when Tx delivery is confirmed by FMan.

7.2.2.4.2 Private net device: Rx

kernel

netif_receive_skb

memory allocator

kfree_skb

Network

Stack

(SLAB)

DPAA-Eth driver

FMan port

Rx

acquire_buffer

BPool

alloc_skb

(free Rx buffer)

seed_pool

Figure 74. Buffers on the ingress path

Buffers on the ingress path are acquired by FMan directly from a Buffer Pool which was seeded by the DPAA1-
Ethernet driver. Buffer layout is important to the driver, which assumes ownership on the BP. Arrows in the
above diagram represent the direction of the buffer/packet flow.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
404 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

7.2.2.5 Private Ethernet Driver

The Private DPAA 1.x Ethernet driver manages the network interfaces which are fully owned by the Linux
partition who runs them. Therefore, it is possible to take advantage of the DPAA 1.x facilities in order to increase
the performance in both termination and forwarding scenarios.

The Private DPAA 1.x Ethernet driver will be further referenced as the Private driver.

7.2.2.5.1 Network driver

The main characteristics of the private driver are:

• The private driver is a multiqueue driver - it uses 1 TX queue per CPU
• All private interfaces use a single BPID - usually dynamically allocated
• The FQIDs for the common types of queues - RX, TX, RX Error, TX Error, TX Confirm - are dynamically

allocated
• The Hashing/PCD frame queues are hardcoded in the device tree. The private driver imports the PCD frame

queue configuration from the device tree at startup
• The above resources are allocated and visible only to the private driver

All network traffic takes place between the Linux kernel and the physical FMan port private to that partition.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
405 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

<<kernel>>
net_device

DPAA-Ethernet driver

Rx (Hashing) PCD

PCD

FM port

Tx

TxConfirm
RxDefault

RxError

replenish

consume

BufferPool

<<hashing PCD>>

/etc/fmc/config/8c-128fq-p/xml<<singleton>>

There is one Buffer Pool used by all driver instances from this Linux partition.

The buffer lifecycle is entirely between the DPA-Ethernet driver and the FMan port

and all buffers in the pool are dynamically allocated by the driver.

The BPID itself can be static, although this is not encouraged.

In the standard configuration, each driver instance dynamically allocates a

private set of default Rx and Tx FQs (in red).

Additionally, there are 128 "hashing PCD FQs" (in blue), statically allocated

for user's convenience. A standard FMC configuration file is shipped with

the SDK enabling the "hashing PCD FQ's".

FMC

Figure 75. Network traffic between the Linux kernel and the physical FMan port

7.2.2.5.2 Configuration

This section presents the configuration options for the Private DPAA1 Ethernet driver.

7.2.2.5.2.1 Device tree configuration

The compatible string used to define a private interface in device tree is "fsl,dpa-ethernet". The default
structure for the device tree node that specifies a private interface should be similar to the below snippet of a
LS1043ARDB device tree node:

ethernet@0 {
 compatible = "fsl,dpa-ethernet";
 fsl,fman-mac = <&enet0>;
};

“fsl,fman-mac” is the reference to the MAC device connected to this interface. This property is used to
determine which RX and TX ports are connected to this interface.

Buffer pools

A single buffer pool is currently defined and used by all the private interfaces. The buffer pool ID is dynamically
allocated and provided by the buffer manager. The number and size of the buffers in the pool are decided
internally by the private driver therefore no device tree configuration is accepted.

Frame queues

The frame queues are allocated by the private driver with IDs dynamically allocated and provided by the queue
manager. The frame queues can also be statically defined using two additional device tree properties.

ethernet@0 {

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
406 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

 compatible = "fsl,dpa-ethernet";
 fsl,fman-mac = <&enet0>;
 fsl,qman-frame-queues-rx = <0x100 1 0x101 1 0x180 128>;
 fsl,qman-frame-queues-tx = <0x200 1 0x201 1 0x300 8>;
};

Within the example above, a value of 0x100 was assigned to the RX error frame queue ID and 0x101 to the
RX default frame queue ID. In addition, 128 PCD frame queues raging between 0x180-0x1ff are defined and
assigned to the core-affined portals in a round-robin fashion.

There is exactly one RX error and one RX default queue, therefore a value of "1" for the frame count. Optionally,
one can specify a value of "0" for the base to instruct the driver to dynamically allocate the frame queue IDs.

Within the example above, a value of 0x200 was assigned to the TX error queue ID and 0x201 to the TX
confirmation queue ID. The third entry specifies the queues used for transmission.

If the qman-frame-queues-rx and qman-frame-queues-tx are not present in the device tree, the number of
dynamically allocated TX queues is equal to the number of cores available in the partition.

7.2.2.5.2.2 Kconfig options

The private driver has a number of parameters which can be tuned at compile time from menuconfig. These can
be found in:

Device Drivers
 +- Network device support
 +- Ethernet driver support
 +- Freescale devices
 +- DPAA Ethernet [CONFIG_FSL_SDK_DPAA_ETH]

FSL_DPAA_ETH_JUMBO_FRAME - "Optimize for jumbo frames"

Optimizes the DPAA1 Ethernet driver throughput for large frames termination traffic (For example, 4K and
above).

Using this option in combination with small frames increases significantly the driver's memory footprint and
may even deplete the system memory. Also, the skb truesize is altered and messages from the stack that warn
against this are bypassed.

FSL_DPAA_1588 - "IEEE 1588-compliant timestamping"

Enables IEEE1588 support code.

Note: The generic Freescale QorIQ 1588 timer as PTP clock kernel driver is the recommended method to
configure the 1588 timer. This driver is enabled by default by the PTP_1588_CLOCK_QORIQ kernel config. The
FSL_DPAA_1588 and FSL_SDK_FMAN_RTC_API drivers are present for maintaining backwards compatibility.

FSL_DPAA_TS - "Linux compliant timestamping"

Enables Linux API compliant timestamping support.

FSL_DPAA_CEETM - "DPAA1 CEETM QoS"

Enables QoS offloading support through the CEETM hardware block.

FSL_DPAA_CEETM_CCS_THRESHOLD_1G - "CEETM egress congestion threshold on 1G ports"

The size in bytes of the CEETM egress Class Congestion State threshold on 1G ports. The threshold needs to
be configured keeping in mind the following factors:

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
407 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

• A threshold too large will buffer frames for a long time in the TX queues, when a small shaping rate is
configured. This will cause buffer pool depletion or out of memory errors. This in turn will cause frame loss on
RX.

• A threshold too small will cause unnecessary frame loss by entering congestion too often.

FSL_DPAA_CEETM_CCS_THRESHOLD_10G - "CEETM egress congestion threshold on 10G ports"

The size in bytes of the CEETM egress Class Congestion State threshold on 10G ports.

FSL_DPAA_ETH_USE_NDO_SELECT_QUEUE - "Use driver's Tx queue selection mechanism"

The DPAA1-Ethernet driver defines a ndo_select_queue() callback for optimal selection of the egress FQ. That
will override the XPS support for this netdevice. If you want to be in control of the egress FQ-to-CPU selection
and mapping, or do not want to use the driver's ndo_select_queue() callback, then unselect this and use the
standard XPS support instead.

FSL_DPAA_ETH_MAX_BUF_COUNT - "Maximum number of buffers in private bpool"

Defaults to 128. The maximum number of buffers to be by default allocated in the DPAA1-Ethernet private port's
buffer pool. One need not normally modify this, as it has probably been tuned for performance already. This
cannot be lower than DPAA_ETH_REFILL_THRESHOLD.

FSL_DPAA_ETH_REFILL_THRESHOLD - "Private bpool refill threshold"

Defaults to 128. The maximum number of buffers to be by default allocated in the DPAA1-Ethernet private port's
buffer pool. One need not normally modify this, as it has probably been tuned for performance already. This
cannot be lower than DPAA_ETH_REFILL_THRESHOLD.

FSL_DPAA_CS_THRESHOLD_1G - "Egress congestion threshold on 1G ports"

The size in bytes of the egress Congestion State notification threshold on 1G ports. Ranges from 0x1000 to
0x10000000. Defaults to 0x06000000. This option can help when:

• The device stays congested for a prolonged time (risking the netdev watchdog to fire - see also the tx_timeout
module param)

• Preventing the Tx cores from tightly-looping (as if the congestion threshold was too low to be effective)

This might also imply some risks:

• Affecting performance of protocols such as TCP, which otherwise behave well under the congestion
notification mechanism

• Running out of memory if the CS threshold is set too high

FSL_DPAA_CS_THRESHOLD_10G - "Egress congestion threshold on 10G ports"

The size in bytes of the egress Congestion State notification threshold on 10G ports. Ranges from 0x1000 to
0x20000000. Defaults to 0x10000000.

FSL_DPAA_INGRESS_CS_THRESHOLD - "Ingress congestion threshold on FMan ports"

The size in bytes of the ingress tail-drop threshold on FMan ports. Defaults to 0x10000000. Traffic piling up
above this value will be rejected by QMan and discarded by FMan.

FSL_DPAA_ETH_DEBUG - "DPAA1 Ethernet debug support"

This option compiles debug code for the DPAA1 Ethernet driver.

7.2.2.5.2.3 Bootargs

The following bootarg parameters are defined for the Frame Manager driver. However, they also influence the
behavior of the Private driver:

• fsl_fm_max_frm

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
408 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

• fsl_fm_rx_extra_headroom

fsl_fm_max_frm

The Frame Manager discards both Rx and Tx frames that are larger than a specific Layer2 MAXFRM value.
The DPAA1 Ethernet driver won't allow one to set an interface’s MTU too high such that it would produce
Ethernet frames larger than MAXFRM. The maximum value one can use as the MTU for any interface is
(MAXFRM - 22) bytes, where 22 is the size of an Eth+VLAN header (18 bytes), plus the Layer2 FCS (4 bytes).

Currently, the value of MAXFRM is set at boot time and cannot be changed without rebooting the system.

The default MAXFRM is 1522, allowing for MTUs up to 1500. If a larger MTU is desired, one would have to
reboot and reconfigure the system as described next. The maximum MAXFRM is 9600.

The MAXFRM can be set in the following two ways.

• As a Kconfig option (CONFIG_FSL_FM_MAX_FRAME_SIZE):

Device Drivers
+-> Network device support
 +-> Ethernet driver support
 +-> Freescale devices
 +-> Frame Manager support
 +-> Freescale Frame Manager (datapath) support
 +-> Maximum L2 frame size

• As a bootarg: In the U-Boot environment, add "fsl_fm_max_frm=<your_MAXFRM>" directly to the "bootargs"
variable.

Note that any value set directly in the kernel bootargs overrides the Kconfig default. If not explicitly set in the
bootargs, the Kconfig value is used.

Symptoms of misconfigured MAXFRM

MAXFRM directly influences the partitioning of FMan's internal MURAM among the available Ethernet ports,
because it determines the value of an FMan internal parameter called FIFO Size. Depending on the value
of MAXFRM and the number of ports being probed, some of these may not be probed because there is not
enough MURAM for all of them. In such cases, you see an error message in the boot console.

fsl_fm_rx_extra_headroom

Configure this to communicate the Frame Manager to reserve some extra space at the beginning of a data
buffer on the receive path, before Internal Context fields are copied. This is in addition to the private data
area already reserved for driver internal use. The option does not affect in any way the layout of transmitted
buffers. The default value (64 bytes) offers best performance for the case when forwarded frames are being
encapsulated (For example, IPSec).

The RX extra headroom can be set in the following two ways.

• As a Kconfig option (CONFIG_FSL_FM_RX_EXTRA_HEADROOM):

Device Drivers
+-> Network device support
 +-> Ethernet driver support
 +-> Freescale devices
 +-> Frame Manager support
 +-> Freescale Frame Manager (datapath) support
 +-> Add extra headroom at beginning of data buffers

• As a bootarg: in the U-Boot environment, add "fsl_fm_rx_extra_headroom=< your_rx_extra_headroom>"
directly to the "bootargs" variable.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
409 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

7.2.2.5.2.4 ethtool options

The private driver implements the following ethtool operations.

-a --show-pause
 Queries the specified Ethernet device for pause parameter information.
-A --pause
 Changes the pause parameters of the specified private devices.
 rx on|off
 Specifies whether RX pause should be enabled.
 tx on|off
 Specifies whether TX pause should be enabled.
-k --show-features
 Lists the offloadable DPAA driver features. Specifies which features can be
 changed.
-K --features
 Changes a driver feature.
 feature on|off
 Specifies weather a certain feature should be enabled.
-s --change
 msglvl N
 msglvl type on|off ...
 Sets the driver message type flags by name or number. type names the type of
 message to enable or disable; N specifies the new flags numerically.
-S --statistics
 Shows driver statistics and counters: interrupt counter, packet counters,
 error counters, congestion state, and more.
--show-eee
 Shows the Energy-Efficient Ethernet configurations.
--set-eee
 Configures the EEE behavior.

7.2.2.5.3 Features

This section presents the private DPAA1 Ethernet driver features.

7.2.2.5.3.1 Congestion management

QMan offers the following three methods of managing congestion.

• WRED
• Congestion State Tail Drop (CSTD)
• FQ Tail Drop (FQTD)

The Private driver implements CSTD both on TX and RX. When the number of bytes residing in a TX FQ
congestion group reaches a congestion threshold (high watermark), the QMan rejects any further incoming
frames, until the sum of all the frames contained in the congestion groups drops under a low watermark, which
is 7/8 of the high watermark. The high watermark can be configured from menuconfig. For more details, see
Section 7.2.2.5.2.2.

7.2.2.5.3.2 Scatter/Gather support

On the Rx path, the first S/G entry is used to build the skb linear part and the other entries are used as
fragments.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
410 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

The Private driver can access the egress skbufs allocated in high memory (For example, mapped directly from
user-space, as is the case of the sendfile() system call). This eliminates the kernel need to copy such skbufs
into newly-allocated low memory buffers, allowing zero-copy on the egress path.

7.2.2.5.3.3 Jumbo frames support

Termination traffic with large frames performs better if only linear skbs (and single buffer frames) are used. The
driver has the option to allocate Rx buffers large enough to accommodate the entire frame (of max 9.6K).

This option needs to be used with caution, as the memory footprint can be a real problem when small frames
are used.

The option can be enabled from the menuconfig option:

Device Drivers
 +-> Network device support
 +-> Ethernet driver support
 +-> Freescale devices
 +-> DPAA Ethernet [CONFIG_FSL_SDK_DPAA_ETH]
 +-> Optimize for jumbo frames

In addition to enabling this feature from menuconfig, the user is required to set the L2 maximum frame size to
9600, otherwise the configuration is not valid. This can be achieved by either setting fsl_fm_max_frm=9600
in the bootargs, or configuring CONFIG_FSL_FM_MAX_FRAME_SIZE from menuconfig. For more details on
bootargs, see Section 7.2.2.5.2.3.

7.2.2.5.3.4 GRO/GSO Support

Generic Receive Offload (GRO) is tied to NAPI support and works by keeping a list of GRO flows per each
NAPI instance. These flows can then "merge" incoming packets, until some termination condition is met or the
current NAPI cycle ends, at which point the flows are flushed up the protocol stack. Flows merging several
packets share the protocol headers and coalesce the payload (without memcopying it). This results in a CPU
load decrease and/or network throughput increase. Packets which don't match any of the stored flows (in the
current NAPI cycle) are sent up the stack via the normal, non-GRO path.

GRO is commonly supported in hardware as a set of "GRO assists", rather than full packet coalescing. The
following features count as GRO assists:

• RX hardware checksum validation
• Receive Traffic Distribution (RTD)
• Multiple RX/TX queues
• Receive Traffic Hashing
• Header prefetching
• Header separation
• Core affinity
• Interrupt affinity

Note: With the exception of header separation, the DPAA1 platforms feature all other hardware assists. Most
notably, they are implicitly achieved through the mechanisms that accompany PCDs.

Generic Segmentation Offload (GSO) is also a well-established feature in the Linux kernel. Normally, a TCP
segment is composed in the Layer 4 of the Linux stack, based on the current MSS (Maximum Segment Size)
connection setting. It has been observed, though, that delaying segmentation is a better approach in terms

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
411 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

of CPU load, because fewer headers are processed. Linux has taken an optimization approach, called GSO,
whereby the L4 segments are only composed just before they are handed over to the L2 driver.

GRO and GSO support are available by default in the Private driver and can be independently switched on and
off at runtime, via ethtool -k.

Note: Older versions of ethtool do not support this. Ethtool version 3.0 does - and possibly others before it, too.

Generic optimizations that enhance the driver's performance in the general case also apply to the GRO/GSO-
enabled driver. PCD support is therefore recommended in this regard. We have found that these optimizations
yield the best results on 10 Gbit/s traffic, and to a lesser extent (if any) on 1 Gbit/s traffic. TCP tests, especially,
can benefit from GRO by shedding CPU load and upping the network throughput. The improvements are the
more visible with smaller network MTU - with MTU=1500 and below, the benefits are higher, while starting from
MTU=4k they are no longer observable.

One optimization that boosts GSO performance is the zero-copy egress path. That is available thanks to the
sendfile() system call, which may be used instead of the plain send() syscall, and which certain benchmark
applications know about. Netperf for instance has sendfile support in its TCP_SENDFILE tests.

GRO and GSO are no panacea, one-button-fix-all kind of optimization. While under most circumstances they
should be transparent (this being why GRO is by default enabled in the Linux kernel), there are scenarios and
configurations where they may in fact under-perform. Traffic on 1 Gbit/s ports sees little benefit from GRO/GSO.
Also, if the Private Driver detects that PCDs are not in place, GRO is automatically by-passed.

7.2.2.5.3.5 Transmit packet steering

The Private driver exposes to the Linux networking stack a TX-multiqueue interface. This provides the stack
with better control of the transmission queues and reduces the need for locking. The user may also control the
mapping of egress FQs to the CPUs via a standard Linux feature called Transmit Packet Steering (XPS) and
documented here: http://lwn.net/Articles/412062/

Note: The kernel transmission queues are different entities than the Private driver Frame Queues.

The Private driver, however, matches the two realms by mapping the DPAA1 FQs onto kernel's own
queue structures. To that end, the Private driver provides a standard callback (net-device operation, or
NDO) called ndo_select_queue(), which the stack can interrogate to find out the specific queue mapping
it needs for transmitting a frame. The existence of that NDO (which is otherwise optional) overrides the
kernel queue selection via XPS. This is why the Private driver provides a compile-time choice to disable the
ndo_select_queue() callback, leaving it to the stack to choose a transmission queue.

To use the Private driver's builtin ndo_select_queue() callback, select the Kconfig option
FSL_DPAA_ETH_USE_NDO_SELECT_QUEUE.

To disable the Private driver's queue selection mechanism and use XPS instead, unselect this Kconfig option.
Further on, the users can configure their own txq-to-cpu mapping, as described in the LWN article above.

7.2.2.5.3.6 TX and RX Hardware Checksum

Introduction

The FMan block supports calculation of the L3 and/or L4 checksum for certain standard protocols.

This can be used, on the TX path, for calculating the checksum of the outgoing frame, and on the RX path, for
validating the L3/L4 checksum of the incoming frame and making classification, or distribution decisions.

TX Checksum Support

On TX, the checksum computation is enabled on a per-frame basis by the Private driver. The TX checksum
support for standard protocols is as follows:

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
412 / 1061

http://lwn.net/Articles/412062/

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Header IPv4 IPv6 Other

IP header yes not available no

TCP header yes yes no

UDP header yes yes no

Table 52. TX checksum support

Note: IP Header checksum capability also exists in SEC block (see IPSEC).

Note: Ethernet CRC is calculated on a per frame basis during frame transmission.

Note: The main precondition for TX checksum to be enabled in hardware is that IP tunneling must not be
present (that is, not GRE, not MinEnc, not IPIP). Other conditions pertain to the validity and integrity of the
frame.

RX Checksum Support

This feature is disabled by default. In order to enable RX checksum computation for supported protocols, a PCD
scheme must be applied to the respective RX port. In the current release, L3 and L4 are both enabled if a PCD
is applied.

If enabled, L3 and L4 checksum validation is performed for TCP, UDP and IPv4.

Note: Controlling this feature via ethtool is not yet supported.

7.2.2.5.3.7 Priority Flow Control

The DPAA1 Ethernet Driver offers experimental support for IEEE standards 802.1Qbb (Priority Flow Control)
and 802.1p.

These standards aim to implement lossless Ethernet, in which the highest-priority classes of traffic benefit from
maximum bandwidth and minimum delay. Up to 8 classes of service can be used, but only a minimum of 3 is
required.

The terms “Class of Service (CoS)” and “priority” will be used interchangeably in this section.

 Enabling PFC Support

To enable PFC support, enable the following options from menuconfig

Device Drivers
+ Network device support
 + Ethernet driver support
 + Freescale devices
 + Frame Manager support
 + Freescale Frame Manager (datapath) support
 + FMan PFC support (EXPERIMENTAL)
 + (3) Number of PFC Classes of Service
 + (65535) The pause quanta for PFC CoS 0
 + (65535) The pause quanta for PFC CoS 1
 + (65535) The pause quanta for PFC CoS 2

The number of Classes of Service can range between 1 and 4. It defines the number of Work Queues used and
the number of priorities that are set when a PFC frame is issued. 3 is the default value. Changing this value also
changes the number of WQs and priorities.

The pause time can be adjusted for each CoS individually.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
413 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Enabling and disabling CoS and their pause time is unavailable at runtime. It is only possible at compile time in
this release.

 Selecting the Class of Service

When PFC support is enabled, the egress traffic flowing on a DPAA1 Private interface is distributed on the first 3
Work Queues of a TX port, namely WQ0, WQ1 and WQ2.

These function in strict priority. WQ0 has the highest priority and WQ2 the lowest priority. FMan cannot dequeue
frames from WQ1 unless WQ0 is empty and from WQ2 unless WQ1 and WQ0 are empty.

The work queue a frame will be enqueued on is determined from the socket buffer priority. skb_prio is just an
internal tag that the kernel applies to the frames on the egress path and is not visible to the receiver.

The default skb_prio is 0, which means all frames will be distributed to WQ0. skb_prio can be modified using a
number of methods, including traffic control.

To edit a socket buffer’s priority using tc, one needs to enable the following options from menuconfig.

Networking support
+ Networking options
 + QoS and/or fair queueing
 + Multi Band Priority Queueing (PRIO)
 + Elementary classification (BASIC)
 + Universal 32bit comparisons w/ hashing (U32)
 + Extended Matches
 + U32 key
 + Actions
 + SKB Editing

The following commands assign a skb_prio of 1 to traffic destined to TCP and UDP port 5000 and implicitly
direct it on WQ1.

tc qdisc del dev fm1-mac9.0 root
tc qdisc add dev fm1-mac9.0 root handle 1: prio
tc filter add dev fm1-mac9.0 parent 1: protocol ip u32 match ip dport 5000
 action skbedit priority 1

 VLAN tagging

In order to be classified by the receiver according to 802.1p the egress traffic must be VLAN tagged, with the
Class of Service contained in the PCP field. The PCP priority is also determined from skb_prio.

create a subinterface of fm1-mac9, with VLAN ID 0
vconfig add fm1-mac9 0

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
414 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

all frames tagged with skb_prio 1, will have PCP priority of 1.
vconfig set_egress_map fm1-mac9.0 1 1

If no mapping is specified, the PCP field will be set to 0 by default.

The dependence between skb_prio, work queues and VLAN PCP priority:

 Receiving PFC Frames

Unlike ordinary 802.3x PAUSE frames, PFC frames can selectively pause a certain priority/CoS.

WQ0 responds to PFC frames that have priority 0 set. Example: When a PFC frame arrives containing priority 0
and having a 100 pause time for priority 0, WQ0 that is all traffic from CoS 0 is ignored for dequeuing for 100-bit
times, and dequeuing is done from WQ1 and WQ2.

 Generating PFC frames

All DPAA1 Private interfaces share a single buffer pool which accounts for the buffers in which the frames are
stored upon receiving.

When the Buffer Pool reaches the refill/depletion threshold, PFC frames are sent back to the sender in order to
pause frames transmission and therefore avoid frame loss.

FMan sends PFC frames that pause all Classes of Traffic defined. The only difference between the classes is
the pause time.

The pause time can be configured from menuconfig. A pause time of 0 disables that Class of Service.

When the common buffer pool depletes, issued PFC frames look like this.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
415 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

 Enabling and disabling PFC using ethtool

Display PFC settings in use for an interface:

ethtool -a intf_name

Triggering PFC frames ON/OFF

PFC frames can be enabled/disabled on RX/Tx using ethtool -A, like in the following examples:

ethtool -A intf_name rx on
ethtool -A intf_name tx off
ethtool -A intf_name rx off tx off

Autonegotiation

When autonegotiation is enabled and the user enables/disables PFC frames on RX/Tx, these will not
automatically be triggered on/off. Instead, the local and the peer PFC symmetric/asymmetric capabilities will be
considered. If the peer does not match the local capabilities, the following commands may have no effect:

ethtool -A intf_name rx on
ethtool -A intf_name rx off
ethtool -A intf_name tx on
ethtool -A intf_name tx ff

When autonegotiation is disabled, ethtool settings override the results of link negotiation.

PFC frame autonegotiation can also be enabled/disabled using ethtool -A:

ethtool -A intf_name autoneg on
ethtool -A intf_name autoneg off

7.2.2.5.3.8 Core Affined Queues

The driver automatically creates 128 core-affined queues, intended to be used as RX PCD frame queues.
These frame queues can be used in PCD configuration files to process certain types of frames on particular
CPUs. In order to enhance the PCD files creation, the /etc/fmc/config/ directory from rootfs contains the default
configuration and policy files for each platform.

The driver calculates the frame queue IDs based on the address of the MAC registers corresponding to the port
using the following formula:

((MAC register address) & 0x1fffff) >> 6

Following are the values for various QorIQ DPAA1 platforms:

Interface FQID base LS1043A LS1046A

fm1-mac1 0x3800 Y

fm1-mac2 0x3880 Y

fm1-mac3 0x3900 Y Y

Table 53. FMan devices core affined queues

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
416 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Interface FQID base LS1043A LS1046A

fm1-mac4 0x3980 Y Y

fm1-mac5 0x3a00 Y Y

fm1-mac6 0x3a80 Y Y

fm1-mac9 0x3c00 Y Y

fm1-mac10 0x3c80 Y

Table 53. FMan devices core affined queues...continued

These queues are assigned to cores in a round-robin fashion. For instance, if there are 8 cores, 0x3800 will be
serviced by core 0, 0x3801 by core 1, 0x3808 by core 0, and so on. Currently, if one specifies extra RX PCD
queues in the device tree, these queues will also be assigned in this round-robin fashion.

High Priority Core Affined Queues

Starting with SDK 2.0, a new set of RX PCD frame queues has been added, to aid in implementing complex
traffic management scenarios. This set of frame queues has a higher priority than the normal RX PCD frame
queues, and as such, traffic coming in on these frame queues has a higher precedence than the traffic coming
on on the default RX PCD frame queues. One scenario where this is useful is the back-to-back IPsec testing
scenario, where the encrypted traffic (RX) is desirable to have a higher priority than the plain text traffic.

The driver calculates the high priority frame queue IDs based on the address of the MAC registers
corresponding to the port using the following formula:

65536 + ((MAC register address) & 0x1fffff) >> 6

Following are the values for various QorIQ DPAA1 platforms:

Interface FQID base LS1043A LS1046A

fm1-mac1 0x13800 Y

fm1-mac2 0x13880 Y

fm1-mac3 0x13900 Y Y

fm1-mac4 0x13980 Y Y

fm1-mac5 0x13a00 Y Y

fm1-mac6 0x13a80 Y Y

fm1-mac9 0x13c00 Y Y

fm1-mac10 0x13c80 Y

Table 54. FMan devices high priority core affined queues

7.2.2.5.4 Quality of Service

DPAA1 platforms can offload QoS functions such as policing, shaping, scheduling and prioritization to dedicated
hardware blocks.

Traffic policing is achieved on ingress through the FMan. A two rate three color marker algorithm can be
configured through the Frame Manager Configuration (FMC) tool.

Traffic scheduling, shaping, and prioritization is executed on the egress path in the QMan. Multiple algorithms,
such as dual rate shaping and strict prioritization, are implemented and can be configured through queuing
disciplines.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
417 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

7.2.2.5.4.1 Policing

The FMan's Policer sub block implements a two rate, three color marker (trTCM) traffic policing algorithm. The
algorithm has two configurable flavors: RFC2698 and RFC4115.

The FMC tool, described in detail in Frame Manager Configuration Tool User's Guide, is used to enable the
Policer and set up its parameters.

For more information regarding the FMan Policer and how it can be configured, see the Section 7.2.6.9.4.

7.2.2.5.4.2 Scheduling and Shaping

Description

Specific DPAA1 platforms offer scheduling, shaping and prioritization capabilities through CEETM (Customer
Edge Egress Traffic Management). The CEETM hardware block is a member of the QMan. Its purpose is to
enhance the performances of DPAA1 platforms by moving the egress QoS logic from software to hardware.

This section briefly describes the CEETM block and its capabilities. Furthermore, it presents how it can be
configured through the Linux traffic control tool (tc) by using a custom queuing discipline.

The CEETM architecture

CEETM is a sub block of the QMan and is an alternative to the regular frame queue - work queue - channel
scheduling mode. For more information regarding this workflow, or on DCPs and subportals, refer to the QMan
Overview section.

Refer the figure below for a CEETM block, which is available for each FMan and it is intended to be used by
FMan subportals linked to Ethernet interfaces.

DCP0

LNI 0

LNI 7

CQ
channel 0

CQ
channel n

CQ 0

CQ ... Sub-portal 0

Sub-portal n

CEETM

CQ 15

CQ 0

CQ ...

CQ 15

FMan

Port 0

Port n

Figure 76. CEETM block

CEETM uses 8 Logical Network Interfaces (LNIs) that can be mapped to the FMan’s DCP subportals.
Depending on the platform used, there are 8 or 32 class queue channels (or CQ channels) that can be mapped
to the LNIs. Multiple CQ channels can be mapped to the same LNI.

Each CQ channel contains 16 class queues. 8 CQs are independent while the other 8 can be grouped into 1
class group or 2 class groups of 4 queues each. The first group is called group A and the second is called group
B.

Features

CEETM implements the following algorithms:

• Strict Priority scheduling

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
418 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

• Weighted Bandwidth Fair Scheduling (WBFS)
• dual-rate shaping with committed and excess rates (CR/ER)
• shaped and unshaped Fair Queueing scheduling (shFQ, uFQ)

These algorithms are used together in specific combinations based on the CEETM’s architecture described
previously and shown below:

Strict Priority

E
R

C
R

LNI

Channel Scheduler

D
ual-rate shaper

E
R

C
R

shF
Q

uF
Q

CQ channel

Class Scheduler

E
R

C
R

D
ual-rate shaper

CQ channel

Class Scheduler

Strict Priority

CQ 0

CQ 1

CQ 2

CQ 3

CQ 4

CQ 5

CQ 6

CQ 7

CQ 8

CQ 9

CQ10

CQ11

CQ12

CQ13

CQ14

CQ15

W
B

FS

CQ 0

CQ 1

CQ 2

CQ 3

CQ 4

CQ 5

CQ 6

CQ 7

CQ 8

CQ 9

CQ10

CQ11

CQ12

CQ13

CQ14

CQ15

W
B

FS
W

B
FS

Strict Priority

G
roup B

G
roup A

G
roup A

Figure 77. CEETM architecture

All the CQs connected to a CQ channel pass through a Strict Priority scheduler. The lower the CQ’s ID, the
higher the CQ’s priority (For example, CQ#3 has a higher priority than CQ#4, therefore, as long as there are
frames queued to CQ#3, CQ#4 will not be dequeued).

The priority of the CQ groups is configurable. All frames coming from the grouped CQs pass through the
WBFS algorithm. Each CQ belonging to a group is assigned a weight. The weight is a value from 1 to 248,
and signifies a CQ's bandwidth share relative to the other CQs in the group. For example, a CQ with weight 20
will have a share of the bandwidth double the share of a CQ with weight 10. More details on how the WBFS
algorithm works can be found in the platform’s QorIQ DPAA Reference Manual.

The CQ channels can be shaped or unshaped. For CQs leading to a shaped channel, all frames will pass
through a dual-rate shaper before entering the LNI. The independent CQs, as well as the class groups, can be
configured to lead their frames through the CR shaper, the ER shaper, or both.

Each LNI aggregates frames from the CQ channels linked to it. All the unshaped frames from the unshaped CQ
channels mapped to the LNI pass through the uFQ algorithm. The CR/ER frames from the shaped CQ channels
pass through the shFQ algorithm and through another dual-rate shaper. Lastly, all frames pass through the
LNI’s Strict Priority module that schedules the unshaped frame (with high priority), the CR frames (with medium
priority) and the ER frames (with low priority).

The shFQ algorithm schedules a channel for transmitting if the channel’s shaper is time eligible (the shaper has
a positive number of tokens in its bucket). When a channel finishes its tokens, it is added to a waiting queue
where it must wait for any other time eligible channels ahead of it finish transmitting.

The uFQ algorithm is similar to the shFQ. In the uFQ algorithm, all channels are time eligible. After finishing to
transmit all their available data, they are added to the back of the time eligible waiting queue where their bucket
is instantly refilled. The token bucket limit of the unshaped channels is configurable.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
419 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

For more information regarding the CEETM’s capabilities and detailed descriptions of the mentioned algorithms,
take a look at your platform’s QorIQ DPAA Reference Manual.

Integration with queuing disciplines

The CEETM block can be configured through the ceetm queuing discipline. A comparison between the
hardware block and the traffic control’s terminology is shown in figure below.

root qdisc

root class
[unshaped]

root class
[shaped]

prio qdisc

prio class [1-8]

wbfs qdisc

wbfs class [4/8]

prio qdisc

prio class [1-8]

wbfs qdisc

wbfs class [4/8]

LNI

uFQ shFQ

CQ channel CQ channel

Strict Priority

CQs [1-8]

WBFS group

CQs [4/8]

Strict Priority

CQs [1-8]

WBFS group

CQs [4/8]

qdisc

class

leaf class

automatic
class

Figure 78. Comparison between CEETM and tc terminology

An LNI can be mapped to a FMan port by adding a rootceetm qdisc to a network interface. The LNI shaper's CR
and ER are configured by setting a rate, and optional ceil and overhead, on the qdisc.

A CQ channel can be linked to an LNI by creating a ceetm root class mapped to the root qdisc. For an
unshaped channel, the uFQ's token bucket limit (tbl) needs to be configured. For a shaped channel, the rate,
and optional ceil, set the CR and ER.

Note: Shaped CQ channels can be linked to the LNI only if the LNI's shaper is enabled.

A channel’s independent CQs are configured when a prio qdisc is linked to a root class. Between 1 and 8
prio classes are generated, each class corresponding to a CQ linked to the channel’s Strict Priority scheduler.
The qcount parameter indicates the number of child classes. If the channel is shaped, all generated classes
participate by default in both CR and ER shaping. In order to disable one or the other, the CQ's corresponding
prio class's cr and er parameters can be changed.

Note: CQs linked to a shaped CQ channel cannot have both CR and ER shaping disabled.

In order to configure the CQ groups, a wbfs qdisc is linked to one of the prio classes. Either 4 or 8 wbfs classes
are generated, depending on the number of CQs in the group indicated by the qcount parameter. The group is
placed right after its parent in the channel's Strict Priority list (For example, if the wbfs qdisc is linked to the prio
class #2, the priority list becomes: class #1, class #2, group, class #3, class #4, and so on). The CQ weights are
configured through the qweight parameter and can be changed for each CQ individually. For groups linked to
shaped CQ channels, the CR and ER shaping are enabled by the cr and er parameters.
UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
420 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Note: Groups linked to a shaped CQ channel cannot have both CR and ER shaping disabled.

For more details, on the ceetm qdisc's parameters and configuration, see the Section "Usage" section.

User guide

Supported platforms

The CEETM block is present and configurable through the ceetm qdisc on the LS1043A/LS1046A platforms.

Getting started

1. Enable the networking QoS support in the kernel along with any classifiers or other features that might be
needed, as well as the ceetm qdisc.

-> Networking support (NET [=y])
 -> Networking options
 -> QoS and/or fair queueing (NET_SCHED [=y])
 -> Universal 32bit comparisons w/ hashing (u32) (NET_CLS_U32
 [=y])
-> Device Drivers
 -> Network device support (NETDEVICES [=y])
 -> Ethernet driver support (ETHERNET [=y])
 -> Freescale devices (NET_VENDOR_FREESCALE [=y])
 -> DPAA Ethernet (FSL_SDK_DPAA_ETH [=y])
 -> DPAA CEETM QoS (FSL_DPAA_CEETM [=y])

2. Modify the Class Congestion State thresholds if necessary. The default values are chosen keeping in mind
the following factors:
• A threshold too large will buffer frames for a long time in the TX queues, when a small shaping rate is

configured. This will cause buffer pool depletion or out of memory errors. This in turn will cause frame loss
on RX.

• A threshold too small will cause unnecessary frame loss by entering congestion too often.

-> Device Drivers
 -> Network device support (NETDEVICES [=y])
 -> Ethernet driver support (ETHERNET [=y])
 -> Freescale devices (NET_VENDOR_FREESCALE [=y])
 -> DPAA Ethernet (FSL_SDK_DPAA_ETH [=y])
 -> CEETM egress congestion threshold on 1G ports
 (FSL_DPAA_CEETM_CCS_THRESHOLD_1G [=0x000a0000])
 -> CEETM egress congestion threshold on 10G ports
 (FSL_DPAA_CEETM_CCS_THRESHOLD_10G [=0x00640000])

3. Build the ceetm application with bitbake:

bitbake ceetm

Limitations

• CEETM is supported on DPAA1 Private Ethernet interfaces only.
• CEETM isn't supported on top of Linux bonding interfaces.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
421 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Usage

You can see the ceetm qdisc’s help message by running the following command:

~# tc qdisc add ceetm help
Usage:
... qdisc add ... ceetm type root [rate R [ceil C] [overhead O]]
... class add ... ceetm type root (tbl T | rate R [ceil C])
... qdisc add ... ceetm type prio qcount Q
... qdisc add ... ceetm type wbfs qcount Q qweight W1 ... Wn [cr CR] [er ER]
Update configurations:
... qdisc change ... ceetm type root [rate R [ceil C] [overhead O]]
... class change ... ceetm type root (tbl T | rate R [ceil C])
... class change ... ceetm type prio [cr CR] [er ER]
... qdisc change ... ceetm type wbfs [cr CR] [er ER]
... class change ... ceetm type wbfs qweight W
Qdisc types:
root - configure a LNI linked to a FMan port
prio - configure a channel's Priority Scheduler with up to eight classes
wbfs - configure a Weighted Bandwidth Fair Scheduler with four or eight classes
Class types:
root - configure a shaped or unshaped channel
prio - configure an independent class queue
Options:
R - the CR of the LNI's or channel's dual-rate shaper (required for shaping
 scenarios)
C - the ER of the LNI's or channel's dual-rate shaper (optional for shaping
 scenarios, defaults to 0)
O - per-packet size overhead used in rate computations (required for shaping
 scenarios, recommended value is 24 i.e. 12 bytes IFG + 8 bytes Preamble + 4
 bytes FCS)
T - the token bucket limit of an unshaped channel used as fair queuing weight
 (required for unshaped channels)
CR/ER - boolean marking if the class group or prio class queue contributes to
 CR/ER shaping (1) or not (0) (optional, at least one needs to be enabled for
 shaping scenarios, both default to 1 for prio class queues)
Q - the number of class queues connected to the channel (from 1 to 8) or in a
 class group (either 4 or 8)
W - the weights of each class in the class group measured in a log scale with
 values from 1 to 248 (when adding a wbfs qdisc, either four or eight, depending
 on the size of the class group; when updating a wbfs class, only one)

Filters need to be added on each qdisc layer in order to allow packets to reach the leaf classes. Likewise, all
filters need to be removed from each qdisc layer when no longer used.

Examples

Rate limit two streams

Setup

In the following example a platform with CEETM support (LS1043ARDB - Client) is connected to another board
(LS1046ARDB - Server) through a 1G link. The described setup is shown in the following figure.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
422 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

TCP 80

TCP 21

Client
LS1043ARDB

Server
LS1046ARDB

iperf clients

iperf servers

QoS rules 1G link

Figure 79. Rate example setup

The iperf clients run on the Client while the iperf servers run on the Server. The Server listens on 2 TCP ports
(21 and 80).

root@ls1046ardb:~# iperf -s -p 21 &
root@ls1046ardb:~# iperf -s -p 80 &

PCDs are applied on both platforms in advance.

root@ls1046ardb:~# fmc -c /etc/fmc/config/private/ls1046ardb/
RR_FFSSPPPH_1133_5559/config.xml -p /etc/fmc/config/private/ls1046ardb/
RR_FFSSPPPH_1133_5559/policy_ipv4.xml -a
root@ls1043ardb:~# fmc -c /etc/fmc/config/private/ls1043ardb/RR_FQPP_1455/
config.xml -p /etc/fmc/config/private/ls1043ardb/RR_FQPP_1455/policy_ipv4.xml -a

In order to keep this example minimal, ARP frames aren't filtered and classified. Therefore, MAC addresses
need to be exchanged and saved in advance as well.

root@ls1043ardb:~# arp -s <server IP address> <server HW address>
root@ls1046ardb:~# arp -s <client IP address> <client HW address>

After adding the qdiscs, the Client runs the iperf clients.

root@ls1043ardb:~# iperf -c <server IP address> -p 21 &
root@ls1043ardb:~# iperf -c <server IP address> -p 80 &

Execution

This example's corresponding qdisc and class hierarchy is shown in the following figure.

root qdisc 1:

root class 1:1 root class 1:2

prio qdisc 2: prio qdisc 3:

prio class 2:1 prio class 3:1

TCP 21TCP 80

qdisc

class

leaf class

automatic
class

Figure 80. Rate example class hierarchy

Add a ceetm qdisc to the interface and configure the LNI’s dual-rate shaper with a CR of 1 Gbit/s.

root@ls1043ardb:~# tc qdisc add dev fm1-mac3 root handle 1: ceetm type root
 rate 1000mbit overhead 24

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
423 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Add a shaped channel to the LNI and configure its dual-rate shaper with a CR of 150 Mbit/s.

root@ls1043ardb:~# tc class add dev fm1-mac3 parent 1: classid 1:1 ceetm type
 root rate 150mbit

Add another shaped channel to the LNI and configure its dual-rate shaper with a CR of 850 Mbit/s.

root@ls1043ardb:~# tc class add dev fm1-mac3 parent 1: classid 1:2 ceetm type
 root rate 850mbit

Configure one of the first channel’s priority classes (marked by default as both CR and ER eligible).

root@ls1043ardb:~# tc qdisc add dev fm1-mac3 parent 1:1 handle 2: ceetm type
 prio qcount 1

Configure one of the second channel’s priority classes (marked by default as both CR and ER eligible).

root@ls1043ardb:~# tc qdisc add dev fm1-mac3 parent 1:2 handle 3: ceetm type
 prio qcount 1

Add filters that will classify all packets with the destination port equal to 80 and lead them through the priority
class of the first channel.

root@ls1043ardb:~# tc filter add dev fm1-mac3 parent 1: prio 1 protocol ip u32
 match ip dport 80 0xffff flowid 1:1
root@ls1043ardb:~# tc filter add dev fm1-mac3 parent 2: prio 1 protocol ip u32
 match ip dport 80 0xffff flowid 2:1

Add filters that will classify all packets with the destination port equal to 21 and lead them through the priority
class of the second channel.

root@ls1043ardb:~# tc filter add dev fm1-mac3 parent 1: prio 1 protocol ip u32
 match ip dport 21 0xffff flowid 1:2
root@ls1043ardb:~# tc filter add dev fm1-mac3 parent 3: prio 1 protocol ip u32
 match ip dport 21 0xffff flowid 3:1

Prioritization of two streams

Setup

The same setup is used as for the rate limit example.

Execution

This example's corresponding qdisc and class hierarchy is pictured below:

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
424 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

root qdisc 1:

root class 1:1

prio qdisc 2:

qdisc

class

leaf class

prio class 2:2prio class 2:1

TCP 80 TCP 21

automatic
class

Figure 81. Prioritization example class hierarchy

Add a ceetm qdisc to the interface and configure the LNI’s dual-rate shaper with a CR of 1 Gbit/s.

root@ls1043ardb:~# tc qdisc add dev fm1-mac3 root handle 1: ceetm type root
 rate 1000mbit overhead 24

Add a shaped channel to the LNI and configure its dual-rate shaper with a CR of 1 Gbit/s.

root@ls1043ardb:~# tc class add dev fm1-mac3 parent 1: classid 1:1 ceetm type
 root rate 1000mbit

Configure two of the channel’s priority classes (marked by default as both CR and ER eligible).

root@ls1043ardb:~# tc qdisc add dev fm1-mac3 parent 1:1 handle 2: ceetm type
 prio qcount 2

Add filters that will classify all packets with the destination port equal to 80 and lead them through the highest
priority class of the channel.

root@ls1043ardb:~# tc filter add dev fm1-mac3 parent 1: prio 1 protocol ip u32
 match ip dport 80 0xffff flowid 1:1
root@ls1043ardb:~# tc filter add dev fm1-mac3 parent 2: prio 1 protocol ip u32
 match ip dport 80 0xffff flowid 2:1

Add filters that will classify all packets with the destination port equal to 21 and lead them through the second
(lowest) priority class of the channel.

root@ls1043ardb:~# tc filter add dev fm1-mac3 parent 1: prio 1 protocol ip u32
 match ip dport 8000 0xffff flowid 1:1
root@ls1043ardb:~# tc filter add dev fm1-mac3 parent 2: prio 1 protocol ip u32
 match ip dport 8000 0xffff flowid 2:2

Assigning weights to two streams

Setup

The same setup is used as for the rate limit example.

Execution

This example's corresponding qdisc and class hierarchy is pictured below:

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
425 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

root qdisc 1:

root class 1:1

prio qdisc 2:

wbfs qdisc 3:

wbfs class 3:2 wbfs class 3:4

TCP 21

wbfs class 3:1

TCP 80

wbfs class 3:3

prio class 2:1

qdisc

class

leaf class

automatic
class

Figure 82. WBFS example class hierarchy

Add a ceetm qdisc to the interface and configure the LNI’s dual-rate shaper with a CR of 1 Gbit/s.

root@ls1043ardb:~# tc qdisc add dev fm1-mac3 root handle 1: ceetm type root
 rate 1000mbit overhead 24

Add a shaped channel to the LNI and configure its dual-rate shaper with a CR of 1 Gbit/s.

root@ls1043ardb:~# tc class add dev fm1-mac3 parent 1: classid 1:1 ceetm type
 root rate 1000mbit

Configure one of the channel’s priority classes (marked by default as both CR and ER eligible).

root@ls1043ardb:~# tc qdisc add dev fm1-mac3 parent 1:1 handle 2: ceetm type
 prio qcount 1

Configure a class group of four classes, place it after the 2:1 class in the priority list, and assign different
weights to each class (10, 50, 120 and 200).

root@ls1043ardb:~# tc qdisc add dev fm1-mac3 parent 2:1 handle 3: ceetm type
 wbfs qcount 4 qweight 200 120 50 10 cr 1 er 1

Add filters that classify all packets with the destination port equal to 21 and lead them through the class with the
highest weight of the group.

root@ls1043ardb:~# tc filter add dev fm1-mac3 parent 1: prio 1 protocol ip u32
 match ip dport 21 0xffff flowid 1:1
root@ls1043ardb:~# tc filter add dev fm1-mac3 parent 2: prio 1 protocol ip u32
 match ip dport 21 0xffff flowid 2:1
root@ls1043ardb:~# tc filter add dev fm1-mac3 parent 3: prio 1 protocol ip u32
 match ip dport 21 0xffff flowid 3:1

Add filters that classify all packets with the destination port equal to 80 and lead them through other classes of
the group.

root@ls1043ardb:~# tc filter add dev fm1-mac3 parent 1: prio 1 protocol ip u32
 match ip dport 80 0xffff flowid 1:1
root@ls1043ardb:~# tc filter add dev fm1-mac3 parent 2: prio 1 protocol ip u32
 match ip dport 80 0xffff flowid 2:1

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
426 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

root@ls1043ardb:~# tc filter add dev fm1-mac3 parent 3: prio 1 protocol ip u32
 match ip dport 80 0xffff flowid 3:3

Unshaped Fair Queuing of two streams

Setup

In the following example a platform with CEETM support (LS1043ARDB - Main) is connected to two other
boards: a LS1043ARDB (Client) through a 10G link and a LS1046ARDB (Server) through a 1G link. The
described setup is shown below:

TCP 80

TCP 81

Client
LS1043ARDB

Main
LS1043ARDB

Server
LS1046ARDB

iperf clients
10G link

QoS rules
1G link

iperf servers

Figure 83. Unshaped Fair Queuing example setup

The iperf clients run on the Client while the iperf servers run on the Server. The Server listens on two TCP ports
(80 and 81).

root@ls1046ardb:~# iperf -s -p 80 &
root@ls1046ardb:~# iperf -s -p 81 &

PCDs are applied on all platforms in advance.

root@ls1043ardb:~# fmc -c /etc/fmc/config/private/ls1043ardb/RR_FQPP_1455/
config.xml -p /etc/fmc/config/private/ls1043ardb/RR_FQPP_1455/policy_ipv4.xml -a
root@ls1046ardb:~# fmc -c /etc/fmc/config/private/ls1046ardb/
RR_FFSSPPPH_1133_5559/config.xml -p /etc/fmc/config/private/ls1046ardb/
RR_FFSSPPPH_1133_5559/policy_ipv4.xml -a

In order to keep this example minimal, ARP frames aren't filtered and classified. Therefore, MAC addresses
need to be exchanged and saved in advance as well.

Server:
root@ls1046ardb:~# arp -s <main IP address> <main HW address>
Main:
root@ls1043ardb:~# arp -s <client IP address> <client HW address>
root@ls1043ardb:~# arp -s <server IP address> <server HW address>
Client:
root@ls1043ardb:~# arp -s <main IP address> <main HW address>

IP forwarding is enabled on the Main board. Routes are added on the Server and Client boards as well.

Main:
root@ls1043ardb:~# echo 1 > /proc/sys/net/ipv4/ip_forward
Client:
root@ls1043ardb:~# route add -net <server network address> <server network mask>
 gw <main IP address>
Server:
root@ls1046ardb:~# route add -net <client network address> <client network mask>
 gw <main IP address>

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
427 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

After adding the qdiscs, the Client runs the iperf clients.

root@ls1043ardb:~# iperf -c <server IP address> -p 80 &
root@ls1043ardb:~# iperf -c <server IP address> -p 81 &

Execution

This example's corresponding qdisc and class hierarchy is shown below.

prio qdisc 3:

root qdisc 1:

root class 1:1 root class 1:2

prio qdisc 2:

prio class 2:1 prio class 3:1

TCP 81TCP 80

qdisc

class

leaf class

 automatic
class

Figure 84. Unshaped Fair Queuing example class hierarchy

Add a ceetm qdisc to the interface and don’t configure the LNI’s dual-rate shaper.

root@ls1043ardb:~# tc qdisc add dev fm1-mac3 root handle 1: ceetm type root

Add an unshaped channel to the LNI and configure its CR’s token bucket limit to 1000 bytes.

root@ls1043ardb:~# tc class add dev fm1-mac3 parent 1: classid 1:1 ceetm type
 root tbl 1000

Add another unshaped channel to the LNI and configure its CR’s token bucket limit to 500 bytes.

root@ls1043ardb:~# tc class add dev fm1-mac3 parent 1: classid 1:2 ceetm type
 root tbl 500

Configure one of the first channel’s priority classes.

root@ls1043ardb:~# tc qdisc add dev fm1-mac3 parent 1:1 handle 2: ceetm type
 prio qcount 1

Configure one of the second channel’s priority classes.

root@ls1043ardb:~# tc qdisc add dev fm1-mac3 parent 1:2 handle 3: ceetm type
 prio qcount 1

Add filters that will classify all packets with the destination port equal to 80 and lead them through the priority
class of the first channel.

root@ls1043ardb:~# tc filter add dev fm1-mac3 parent 1: prio 1 protocol ip u32
 match ip dport 80 0xffff flowid 1:1
root@ls1043ardb:~# tc filter add dev fm1-mac3 parent 2: prio 1 protocol ip u32
 match ip dport 80 0xffff flowid 2:1

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
428 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Add filters that will classify all packets with the destination port equal to 81 and lead them through the priority
class of the second channel.

root@ls1043ardb:~# tc filter add dev fm1-mac3 parent 1: prio 1 protocol ip u32
 match ip dport 81 0xffff flowid 1:2
root@ls1043ardb:~# tc filter add dev fm1-mac3 parent 3: prio 1 protocol ip u32
 match ip dport 81 0xffff flowid 3:1

7.2.2.5.5 Debugging

This section describes the debugging capabilities of the DPAA1 Ethernet driver.

7.2.2.5.5.1 Ethtool support

Various counters and statistics are exported through ethtool such as the number of interrupts per core, the
number of frames per core, the number of available buffers, congestion detection, and so on.

Following is an example of an ethtool output:

root@ls1043ardb:~# ethtool -S fm1-mac1
NIC statistics:
 interrupts [CPU 0]: 1
 interrupts [CPU 1]: 1
 interrupts [CPU 2]: 2
 interrupts [CPU 3]: 2
 interrupts [TOTAL]: 6
 rx packets [CPU 0]: 0
 rx packets [CPU 1]: 0
 rx packets [CPU 2]: 0
 rx packets [CPU 3]: 0
 rx packets [TOTAL]: 0
 tx packets [CPU 0]: 0
 tx packets [CPU 1]: 0
 tx packets [CPU 2]: 6
 tx packets [CPU 3]: 0
 tx packets [TOTAL]: 6
 tx recycled [CPU 0]: 0
 tx recycled [CPU 1]: 0
 tx recycled [CPU 2]: 0
 tx recycled [CPU 3]: 0
 tx recycled [TOTAL]: 0
 tx confirm [CPU 0]: 1
 tx confirm [CPU 1]: 1
 tx confirm [CPU 2]: 2
 tx confirm [CPU 3]: 2
 tx confirm [TOTAL]: 6
 tx S/G [CPU 0]: 0
 tx S/G [CPU 1]: 0
 tx S/G [CPU 2]: 0
 tx S/G [CPU 3]: 0
 tx S/G [TOTAL]: 0
 rx S/G [CPU 0]: 0
 rx S/G [CPU 1]: 0
 rx S/G [CPU 2]: 0
 rx S/G [CPU 3]: 0
 rx S/G [TOTAL]: 0
 tx error [CPU 0]: 0
 tx error [CPU 1]: 0

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
429 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

 tx error [CPU 2]: 0
 tx error [CPU 3]: 0
 tx error [TOTAL]: 0
 rx error [CPU 0]: 0
 rx error [CPU 1]: 0
 rx error [CPU 2]: 0
 rx error [CPU 3]: 0
 rx error [TOTAL]: 0
 bp count [CPU 0]: 128
 bp count [CPU 1]: 128
 bp count [CPU 2]: 128
 bp count [CPU 3]: 128
 bp count [TOTAL]: 512
 rx dma error: 0
 rx frame physical error: 0
 rx frame size error: 0
 rx header error: 0
 rx csum error: 0
 qman cg_tdrop: 0
 qman wred: 0
 qman error cond: 0
 qman early window: 0
 qman late window: 0
 qman fq tdrop: 0
 qman fq retired: 0
 qman orp disabled: 0
 congestion time (ms): 0
 entered congestion: 0
 congested (0/1): 0

7.2.2.5.5.2 Read/Write of FMan Registers

Most of the FMan configuration registers are mapped into the system memory space. Efficient debugging and
testing can be done by making read/write operations on the registers through specialized tools. For example,
the number of pause frames received on a particular MAC device can be computed summing the base relative
address of every component:

0x1a00000 (FMan) +
 0xe8000 (MAC 5) +
 0x014 (Maximum frame length register) =

0x1ae8014

A memory print of the 0x1ae8014 address will display the maximum frame length configured for the fifth MAC
device from the FMan on a LS1046A platform.

The entire memory map for all mapped registers of the DPAA1 hardware components ca be found in each
platform's Reference Manual.

7.2.2.5.5.3 Sysfs support

To enable Sysfs in the Linux kernel one must set the CONFIG_SYSFS option in Kconfig. The DPAA1 Ethernet
Driver exports a series of information in Sysfs such as the buffer pool IDs, the frame queue IDs used by the
interface, and MAC registers and statistics, as shown in the following examples:

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
430 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

root@ls1046ardb:~# cat /sys/devices/platform/fsl,dpaa/fsl,dpaa:ethernet@2/net/
fm1-mac3/bpids
32
root@ls1046ardb:~# cat /sys/devices/platform/fsl,dpaa/fsl,dpaa:ethernet@2/net/
fm1-mac3/fqids
Rx error: 259
Rx default: 260
Rx PCD: 14592 - 14719
Rx PCD High Priority: 80128 - 80255
Tx confirmation (mq): 261 - 324
Tx error: 325
Tx default confirmation: 326
Tx: 327 - 390
root@ls1046ardb:~# cat /sys/devices/platform/fsl,dpaa/fsl,dpaa:ethernet@2/net/
fm1-mac3/mac_regs

FM MAC - MEMAC - 2 (0xFFFF8000801D6000)
--
0xFFFF8000801D6008: 0x00020840 command_config
0xFFFF8000801D600C: 0x38ca0568 mac_addr0.mac_addr_l
0xFFFF8000801D6010: 0x0000de30 mac_addr0.mac_addr_u
[...]
root@ls1046ardb:~# cat /sys/devices/platform/fsl,dpaa/fsl,dpaa:ethernet@2/net/
fm1-mac3/mac_rx_stats

FM MAC - MEMAC - 2 Rx stats (0xFFFF8000801D6000)
--
0xFFFF8000801D6100: 0x00000000 reoct_l
0xFFFF8000801D6104: 0x00000000 reoct_u
[...]
root@ls1046ardb:~# cat /sys/devices/platform/fsl,dpaa/fsl,dpaa:ethernet@2/net/
fm1-mac3/mac_tx_stats

FM MAC - MEMAC - 2 Tx stats (0xFFFF8000801D6000)
--
0xFFFF8000801D6200: 0x00000000 teoct_l
0xFFFF8000801D6204: 0x00000000 teoct_u
[...]

7.2.2.5.6 Frequently Asked Questions

1. How do I send a frame up the network stack?
The frame-processing network stack only exists in the context of a net device. So, “sending a frame into
the stack” is an inaccurate statement: the frame must first be associated to a net device, and then the
respective instance of the Ethernet driver will deliver the frame to the stack, on behalf of that net device. To
achieve that, the frame must arrive via the physical device that underlies the driver.

2. Can I allocate a buffer and inject it as a frame into a private interface’s ingress queues?
This is probably a mistake. The DPAA1-Ethernet driver makes hard assumptions on buffer ownership,
allocation and layout. In addition, the driver expects FMan Parse Results to be placed in the frame
preamble, at an offset which is implementation-dependent. In short, while a carefully crafted code might
work, it would make for very brittle design, and hard to maintain, too.

3. But can I acquire a buffer directly from a private interface’s Buffer Pool, and inject it as such into the private
interface’s RX FQs?
It is not an intended use case for private interfaces.

4. What format must an ingress frame have, from the standpoint of the DPAA1-Ethernet driver and the Linux
kernel stack?

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
431 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

The DPAA1-Ethernet driver is expected to perform an initial validation of the ingress frame, but does not
look at the Layer-2 fields directly. The current kernel networking code does make a check on the MAC
addresses of the frame and the protocol (Ethertype) field. One should not make assumptions on such
details of frame processing, because the kernel stack implementation is not bound by any contract.

5. What channel are the FQs assigned to?
Each interface uses by default one pool channel across all Software Portals and also the dedicated
channels of each CPU. Note that any of these channels may be shared with other DPAA1 Ethernet devices,
and even with other DPAA1 drivers such as SEC. The default and error FQs are assigned to the pool
channel. The Tx queues are assigned to the (direct connect) channel linked to the Tx port associated with
the interface. Any other statically-defined queues will be assigned in a round-robin fashion to the core-affine
portals.

6. What work queue are the FQs assigned to?
• Tx Confirmation FQs go to WQ1
• RX Error and Tx Error FQs go to WQ2
• RX Default, Tx and PCD FQs go to WQ3

7. How do I use the core-affined queues?
The anticipated way of using the core-affined queues is to use one of the default FMC policy files:

/etc/fmc/config/private/common/policy_ipv4.xml
/etc/fmc/config/private/common/policy_ipv6.xml

Default FMC configuration files are provided for each reference board:

/etc/fmc/config/private/<name of reference board>/<RCW directory>/<name of
 configuration file>

Here are two examples showing FMC commands using the default configuration and policy files:

(1) fmc -c /etc/fmc/config/private/ls1043ardb/RR_FQPP_1455/config.xml -p /
etc/fmc/config/private/ls1043ardb/RR_FQPP_1455/policy_ipv4.xml -a

Note that /etc/fmc/config/private/ls1043ardb/RR_FQPP_1455/policy_ipv4.xml is a soft link
to /etc/fmc/config/private/common/policy_ipv4.xml.

(2) fmc -c /etc/fmc/config/private/ls1043ardb/RR_FQPP_1455/config.xml -p /
etc/fmc/config/private/ls1043ardb/RR_FQPP_1455/policy_ipv6.xml -a

Note that /etc/fmc/config/private/ls1043ardb/RR_FQPP_1455/policy_ipv6.xml is a soft link
to /etc/fmc/config/private/common/policy_ipv6.xml.
If you create a configuration file instead of using one of the default configuration files, be sure to use the
appropriate policies found in the default policy files:

/etc/fmc/config/private/common/policy_ipv4.xml
/etc/fmc/config/private/common/policy_ipv6.xml

7.2.2.5.7 Known issues

• The MTU currently defaults to a maximum of 1522. If you want a higher MTU, it is necessary to pass
fsl_fm_max_frm=N on the kernel bootargs, where "N" is the desired maximum MTU + 22.

7.2.2.6 Upstream Ethernet Driver

The DPAA 1.x Upstream Ethernet driver variant has been actively maintained in the Linux kernel community
since v4.10. Most features and fixes have been back ported to the kernel versions of this current Layerscape
LDP release.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
432 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

An overview of the driver, along with its main features and configuration options, is written in the Linux kernel's
source tree in the documentation section at Documentation/networking/device_drivers/ethernet/freescale/dpaa.
rst.

7.2.2.6.1 Configuration

The Upstream and Private Ethernet driver variants are independent from one another and are built separately.
The Private driver variant is enabled by default by the Layerscape LDP. If you wish to build the Upstream driver
variant instead, enable the following build options:

CONFIG_FSL_DPAA=y
CONFIG_FSL_FMAN=y
CONFIG_FSL_DPAA_ETH=y
CONFIG_FSL_XGMAC_MDIO=y

7.2.2.6.2 Device Trees

The Upstream and Private Ethernet drivers use different Device Tree Source files. The Layerscape LDP
enables the device trees associated with the Private driver by default. These end with the -sdk flag. The device
trees that are used by the Upstream driver variant do not have a flag at the end. For example:

fsl-ls1043a-rdb.dts - used by the Upstream Ethernet driver
fsl-ls1043a-rdb-sdk.dts - used by the Private Ethernet driver

After building the kernel with the Upstream Ethernet driver enabled, also compile the correct Device Tree Blob
for your platform. For example:

make freescale/fsl-ls1043a-rdb-sdk.dtb - build the DTB for the Private Ethernet
 driver
make freescale/fsl-ls1043a-rdb.dtb - build the DTB for the Upstream Ethernet
 driver

7.2.2.7 Performance considerations

The performance of both the DPAA 1.x networking drivers and the entire system can be influenced by the
following factors. These can be tweaked in order to accommodate the desired use case and to increase the
performance when required.

• RX hashing
The hash distribution of traffic among cores guarantees load balancing when many flows are entering the
system. The distribution mechanism also maintains order between the frames in a flow, therefore maximizing
the throughput in TCP scenarios.
This feature is enabled by default at boot.
In the Private DPAA 1.x Ethernet Driver, RX hashing is configured through the fmc (Frame Manager
Configuration) tool. More details can be found in the Core Affined Queues section as well.
In the Upstream DPAA 1.x Ethernet Driver, RX hashing is configured through ethtool. More details can be
found in the Linux kernel's source tree at Documentation/networking/device_drivers/ethernet/freescale/dpaa.
rst.

For additional general performance optimization guidelines, see the Section 7.9 section.

7.2.3 Queue Manager (QMan) and Buffer Manager (BMan)

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
433 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

7.2.3.1 QMan/BMan Drivers Introduction

7.2.3.1.1 Description

This document describes Linux and USDPAA drivers for the QMan and BMan hardware blocks underlying
the QorIQ data path. QMan and BMan have independent drivers but their implementation and interfaces are
very much analogous due to the similar CCSR and Corenet programming interfaces for each. As such, we will
describe here "the driver", when in fact the description applies to both the QMan and BMan drivers equally and
independently.

The driver targets the Linux and USDPAA environments. The majority of the code is shared between the
environments. Environmental differences are dealt with by including a compatibility layer in the USDPAA
code. This code redefines Linux-specific functionality for use in the other environments (for example irqs and
spinlocks).

The driver has two parts to it, "config" and "portal", corresponding to the two complimentary programming
interfaces exposed by the device itself - these are described below. Additionally there is a self-test module for
each driver that uses the portal interface to perform some basic tests provided one or more portals are made
available to the OS via its device-tree.

7.2.3.1.2 CCSR, or "global config"

The CCSR map and associated registers allows the device to be configured and controlled in a global/un-
partitioned manner. This includes such basic notions as configuring the device's private memory region(s),
configuring the hardware interfaces that are exposed by QMan/BMan to the dependent hardware blocks
(CAAM, PME, FMan), managing global device error interrupts, and so on. Only one "control" operating system
should map to this CCSR register space in the case that a hypervisor is managing multiple guests. Other
operating systems like secondary Linux instances or USDPAA applications do not have access to CCSR
registers.

7.2.3.1.3 Functionality

Configuration

The QMan device is configured via device-tree nodes and by some compile-time options controlled via Linux's
Kconfig system. See the “QMan and BMan Kernel Configure Options” section for more info.

API

For the Linux kernel, the C interface of the QMan and BMan drivers provides access to portal-based
functionality for arbitrary higher-layer code, hiding all the mux/demux/locking details required for shared use
by multiple driver layers (networking, pattern matching, encryption, IPC, and so on.) The driver makes 1-to-1
associations between cpus and portals to improve cache locality and reduce locking requirements. The QMan
API permits users to work with Frame Queues and callbacks, independently of other users and associated
portal details. The BMan API permits users to work with Buffer Pools in a similar manner.

For USDPAA, the driver associates portals with threads (in the pthreads sense), so the above comments about
“shared use by multiple driver layers” only applies with respect to code executed within the thread owning
a portal. To benefit from cache locality, and particularly from portal stashing, USDPAA-enabled threads are
generally expected to be configured to execute on the same core that the portal is assigned to. Indeed, the
USDPAA API for threads to call to initialize a portal takes the core as a function parameter. See the USDPAA
User Guide for more information (as well as the “Section 7.2.3.2”).

DPAA1 allocator

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
434 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

The DPAA1 allocator is a purely software-based range-allocator, but this must be explicitly seeded with a hard-
coded range of values and is not shared between operating systems. The DPAA1 allocator is used to allocate
all QMan and BMan resource, i.e bman-bpid, qman-fqid, qman-pool, qman-cgrid, ceetm-sp, ceetm-lni, ceetm-
lfqid, ceetm-ccgrid.

Sysfs Interface

QMan and BMan have a sysfs interface. Refer to the Queue Manager, Buffer Manager API reference Manual for
details.

Debugfs Interface

Both the QMan and BMan have a debugfs interface available to assist in device debugging. The code can be
built either as a loadable module or statically.

7.2.3.1.4 Module Loading

The drivers are statically linked into the kernel. Driver self-tests and the debugfs interface may be built as
dynamically loadable modules.

7.2.3.1.5 QMan and BMan Kernel Configure Options

Common Kernel Configure Options Description
CONFIG_STAGING Required in order to make “staging” drivers such as QMan/

BMan available.
CONFIG_FSL_DPA Required to build either QMan and/or BMan drivers.
CONFIG_FSL_DPA_CHECKING Compiles in additional sanity-checks, at the expense of minor

performance degradation. Recommended for debugging, but
not for benchmarking.

CONFIG_FSL_DPA_CAN_WAIT Compiles in support for interfaces and functionality that allow
callers to optionally be put to “sleep” waiting for temporarily
blocked resources to become available rather than returning
errors. For example, enqueuing when an enqueue ring is full.
This is enabled unconditionally on linux.

CONFIG_FSL_DPA_CAN_WAIT_SYNC Similar to “_CAN_WAIT”, but supports additional API flags
for waiting for asynchronous operations to complete. For
example, after starting a volatile dequeue, wait for all dequeues
to complete. This is enabled unconditionally on linux.

CONFIG_FSL_DPA_PIRQ_FAST If set, causes portals to initialize with fast-path interrupt sources
enabled. (Otherwise, polling APIs must be called to perform
fast-path processing.) This is enabled unconditionally on linux.

CONFIG_FSL_DPA_PIRQ_SLOW If set, causes portals to initialize with slow-path interrupt
sources enabled. (Otherwise, polling APIs must be called to
perform slow-path processing.) This is enabled unconditionally
on linux.

CONFIG_FSL_DPA_PORTAL_SHARE Compiles in support for sharing one CPU's portal with all online
CPUs that do not have their own. Useful when assigning most
portals to USDPAA applications and leaving only a minimum for
kernel requirements, in which case Tx events on all CPUs can
be handled by the network driver. This is enabled by default, as
the microscopic performance overhead of checking this option
is not noticeable in the kernel environment.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
435 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

QMan Kernel Configure Options Description
CONFIG_FSL_QMAN Required to build the QMan driver
CONFIG_FSL_QMAN_CONFIG Handles config/CCSR nodes in the device-tree and initializes

the corresponding devices
CONFIG_FSL_QMAN_TEST Builds a self-test kernel module (static or dynamic) that will, if

QMan portal nodes are available in the device-tree, exercise
one of the portals and panic() the kernel if any errors are
detected.

CONFIG_FSL_QMAN_TEST_STASH_POTATOThis requires the presence of multiple unused cpu-affine
portals, and performs a "hot potato" style test enqueuing/
dequeuing a frame across a series of FQs scheduled to
different portals (and cpus). The intention is to test stashing.
The "potato" will visit each "spoon" (portal/cpu pair) during the
test. Each "potato" frame has a single cache line of data that is
read-modify-written by each cpu/portal before passing it to the
next.

CONFIG_FSL_QMAN_TEST_HIGH This requires the presence of cpu-affine portals, and performs
high-level API testing with them (whichever portal(s) are affine
to the cpu(s) the test executes on).

CONFIG_FSL_QMAN_TEST_ERRATA This requires the presence of cpu-affine portals, and performs
testing that handling for known hardware-errata is correct.

CONFIG_FSL_QMAN_DEBUGFS This option enables files in the debugfs filesystem.

BMan Kernel Configure Options Description
CONFIG_FSL_BMAN Required to build the BMan driver
CONFIG_FSL_BMAN_CONFIG Handles config/CCSR nodes in the device-tree and initializes

the corresponding devices
CONFIG_FSL_BMAN_TEST Builds a self-test kernel module (static or dynamic) that will, if

BMan portal nodes are available in the device-tree, exercise
one of the portals and panic() the kernel if any errors are
detected.

CONFIG_FSL_BMAN_TEST_HIGH Performs high-level API testing.
CONFIG_FSL_BMAN_TEST_THRESH Multi-threaded testing of BMan pool depletion handling.
CONFIG_FSL_BMAN_DEBUGFS This option enables files in the debugfs filesystem.

7.2.3.1.6 Device-tree nodes

Device tree nodes are used to describe QMan/BMan resources to the driver, some of which are specific to
control-plane s/w (that is, depending on CCSR access) and some of which relate to portal usage for control and
data plane s/w.

CCSR, or "global config"

The "fsl,qman" and "fsl,bman" nodes (that is, these "compatible" property types) indicate the presence and
location of the 4 Kb "Configuration, Control, and Status Register" (CCSR) space, for use by a single control-
plane driver instance to initialize and manage the device. The device-tree usually groups all such CCSR maps
as subnodes under a parent node that represents the SoCs entire CCSR map, usually named "soc" or "ccsr".
For example;

soc {
 #address-cells = <1>;
 #size-cells = <1>;

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
436 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

 device_type = "soc";
 compatible = "simple-bus";
 ddr1: memory-controller@8000{
 [...]
 };
 i2c@118000 {
 [...]
 };
 mpic: pic@40000 {
 [...]
 };
 qman: qman@318000 {
 compatible = "fsl,qman";
 reg = <0x318000 0x1000>;
 interrupts = <16 2 1 3>;
 /* Commented out, use default allocation */
 /* fsl,qman-fqd = <0x0 0x20000000 0x0 0x01000000>; */
 /* fsl,qman-pfdr = <0x0 0x21000000 0x0 0x01000000>; */
 };
 bman: bman@31a000 {
 compatible = "fsl,bman";
 reg = <0x31a000 0x1000>;
 interrupts = <16 2 1 3>;
 /* Same as fsl,qman-*, use default allocation */
 /* fsl,bman-fbpr = <0x0 0x22000000 0x0 0x01000000>; */
 };
 [...]
 };

Contiguous memory

The fsl,qman-fqd, fsl,qman-pfdr, and fsl,bman-fbpr properties can be used to specify which
contiguous subregions of memory should be used for the various memory requirements of QMan/BMan.
The properties use 64-bit values, so 4 cells express the address/size 2-tuple to use. In the above example, if
uncommented, the QMan/BMan resources would be allocated in the range 0x2000000-0x221fffff, with 16
MB each for QMan FQD and PFDR memory and BMan FBPR memory. If these properties are not specified (or
they are commented out) in the device tree, then default values hard-coded within the QMan and BMan drivers
are used instead. The Linux kernel will reserve these memory ranges early on boot-up. Note that in the case
of a hypervisor scenario, these memory ranges are relative to the partition memory space of the control-plane
guest OS.

QMan FQID-range allocation

The "fsl,fqid-range" node (that is, these "compatible" property types) indicates a range of FQIDs to use for FQID
allocation by the QMan driver. The range within the node is specified using a property of the same name, and
whose two cells are the starting FQID value and the count. Multiple nodes can be provided to seed the allocator
with a discontiguous set of FQIDs.

For example, to specify that the allocator use FQIDs between 256 and 512 inclusive;

qman-fqids@0 {
 compatible = "fsl,fqid-range";
 fsl,fqid-range = <256 256>;
};

BMan BPID-range allocation

The "fsl,bpool-range" node (that is, these "compatible" property types) indicates a range of BPIDs to use for
BPID allocation by the BMan driver. The range within the node is specified using a property of the same name,

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
437 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

and whose two cells are the starting BPID value and the count. Multiple nodes can be provided to seed the
allocator with a discontiguous set of BPIDs.

For example, to specify that the allocator use BPIDs between 32 and 64 inclusive;

bman-bpids@0 {
 compatible = "fsl,bpid-range";
 fsl,bpid-range = <32 32>;
};

7.2.3.1.7 Compile-time Configuration Options

The "Kernel Configure Options" above describe the compile-time configuration options for the kernel. The
device tree entries are also "compile-time", and are described above.

7.2.3.1.8 Source Files

As mentioned earlier, the QMan/BMan drivers support Linux and USDPAA environments. Many of the files have
the same contents between the different environments, though the files are located at different paths to satisfy
the different build systems for each.

For DPAA1 QBMan drivers, all the files are located in drivers/soc/fsl/qbman directory

USDPAA

Source Files Description
include/usdpaa/fsl_qman.h The QMan driver APIs
include/usdpaa/fsl_bman.h The BMan driver APIs
include/usdpaa/fsl_usd.h The USDPAA-specific APIs for QMan/BMan (For

example, Binding portals to threads, support for UIO-
based interrupt handling, and so on.)

include/usdpaa/compat.h The QMan/BMan driver compatibility shims
include/usdpaa/compat_list.h The QMan/BMan driver compatibility shims, linked-list

support.
src/qbman/qman_*.* The QMan driver
src/qbman/bman_*.* The BMan driver
src/qbman/dpa_sys.h USDPAA-specific definitions shared by the QMan/

BMan drivers.
src/qbman/dpa_alloc.c USDPAA support for dpa allocator.
src/qbman/06-usdpaa-uio.rules Udev rules to create appropriately named /dev entries

when the kernel registers portals as UIO devices.

7.2.3.1.9 Build Procedure

The procedure is a standard SDK build, which includes Linux kernel and USDPAA drivers by default.

7.2.3.1.10 Test Procedure

The QMan/BMan drivers are used by all Linux kernel software that communicates with data path functionality
such as CAAM, PME, and/or FMan. (The exception is that kernel cryptographic acceleration presently bypasses
QMan/BMan interfaces by using the device's own “job queue” interface.) Use of such data path-based
functionality provides test-coverage of user-facing features of the QMan/BMan drivers in the Linux environment.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
438 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

This complements the QMan/BMan unit tests that are run during development but are not part of the release.
For USDPAA, all applications and tests use QMan and BMan interfaces in a fundamental way, so all imply a
degree of test-coverage.

Additionally, for Linux, the QMan and BMan self-tests target QMan and BMan directly without involving other
data path blocks. If these are built statically into the kernel and the device-tree makes one or more QMan and/
or BMan portals available, then the self-tests will run during the kernel boots and log output to the boot console.
The output of both QMan and BMan tests resembles the following excerpts;

Detecting the CCSR and portal device-tree nodes;

[...] Qman ver:0a01,01,02 [...] Bman ver:0a02,01,00 [...] BMan err interrupt
 handler present BMan portal initialised, cpu 0 BMan portal initialised, cpu
 1 BMan portal initialised, cpu 2 BMan portal initialised, cpu 3 BMan portal
 initialised, cpu 4 BMan portal initialised, cpu 5 BMan portal initialised,
 cpu 6 BMan portal initialised, cpu 7 BMan portals initialised BMan: BPID
 allocator includes range 32:32 QMan err interrupt handler present QMan portal
 initialised, cpu 0 QMan portal initialised, cpu 1 QMan portal initialised, cpu
 2 QMan portal initialised, cpu 3 QMan portal initialised, cpu 4 QMan portal
 initialised, cpu 5 QMan portal initialised, cpu 6 QMan portal initialised, cpu
 7 QMan portals initialised QMan: FQID allocator includes range 256:256 QMan:
 FQID allocator includes range 32768:32768 QMan: CGRID allocator includes range
 0:256 QMan: pool channel allocator includes range 33:15 [...]

Running the QMan and BMan self-tests;

[...]
BMAN: --- starting high-level test ---
BMAN: --- finished high-level test ---
[...]
qman_test_high starting
VDQCR (till-empty);
VDQCR (4 of 10);
VDQCR (6 of 10);
scheduled dequeue (till-empty)
Retirement message received
qman_test_high finished
[...]

Running the BMan threshold test;

[...]
bman_test_thresh: start
bman_test_thresh: buffers are in
thread 0: starting
thread 1: starting
thread 2: starting
thread 3: starting
thread 4: starting
thread 5: starting
thread 6: starting
thread 7: starting
thread 0: draining...
cb_depletion: bpid=62, depleted=2, cpu=0
cb_depletion: bpid=62, depleted=2, cpu=1
cb_depletion: bpid=62, depleted=2, cpu=2
cb_depletion: bpid=62, depleted=2, cpu=3
cb_depletion: bpid=62, depleted=2, cpu=4
cb_depletion: bpid=62, depleted=2, cpu=5

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
439 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

cb_depletion: bpid=62, depleted=2, cpu=6
cb_depletion: bpid=62, depleted=2, cpu=7
thread 0: draining done.
thread 0: exiting
thread 1: exiting
thread 2: exiting
thread 3: exiting
thread 4: exiting
thread 5: exiting
thread 6: exiting
thread 7: exiting
bman_test_thresh: done
[...]

Running the QMan hot potato test;

[...]
qman_test_hotpotato starting
Creating 2 handlers per cpu...
Number of cpus: 8, total of 16 handlers
Sending first frame
Received final (8th) frame
qman_test_hotpotato finished
[...]

If the self-tests detect any errors, they will panic() the kernel immediately, so if the kernel gets beyond the
QMan/BMan self-tests then the tests passed.

7.2.3.2 QMan BMan API Reference

7.2.3.2.1 Introduction to the Queue Manager and the Buffer Manager

The Queue Manager (QMan) and Buffer Manager (BMan) devices each expose two interfaces to software
control. One interface is the Configuration and Control Status Register map (CCSR), which provides global
configuration of the device, registers related to global device errors, performance, statistics, debugging, and so
on. The other interface is the CoreNet interface, which provides a memory map with multiple "portals" located in
separable subregions for independent/parallel runtime use of the devices.

The software described in this document is targeted to the Linux kernel and Linux user-space (USDPAA)
system targets. However, only Linux supports operating as the controller for the devices, so all interfaces
related to CCSR access are Linux-only. Also, remember platform-specific considerations when working with the
interfaces described here. See Section 7.2.3.2.8for more details.

7.2.3.2.2 Buffer Manager

7.2.3.2.2.1 Buffer Manager (BMan) Overview

Function

The QorIQ Buffer Manager (BMan) SoC block manages pools of buffers for use by software and hardware in
the “data path” architecture.

In particular;

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
440 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

1. provides an efficient use of buffer resources because the output will only occupy as many buffers as
required (whereas pre-allocation must provide for the worst-case scenario each time if it wishes to avoid
truncation and information-loss),

2. software does not need to provision resources for every queued operation nor handle the complications of
recycling unused output buffers, and so on.,

3. the footprint for buffer resources for a variety of different flows (and even different guest operating systems)
can be "pooled".

With respect to "buffers", BMan really acts as an allocator of any 48-bit tokens the user wishes - BMan does not
interpret these tokens at all, it is only the software and hardware blocks that use BMan that may assume these
to be memory addresses. In many cases, the BMan acquire and release interfaces are likely to be more efficient
than software-managed allocators due to the proximity of BMan's corenet-based interfaces to each CPU and
its onboard caching and pre-fetching of pool data. Possible examples include; a BMan-oriented page-allocator
for operating system memory-management, a "frame queue" allocator to manage unused QMan frame queue
descriptors (FQD), and so on. In particular, the frame queue example provides a simple mechanism for sharing
a range of frame-queue IDs across different partitions/operating systems in a virtualized environment without
needing inter-partition communications in software.

Interfaces

The BMan block has a CCSR register space and interrupt line associated with the block for global configuration
and management, specifically;

• the private system memory range (invisible to software) needed by BMan,
• software and hardware depletion interrupt thresholds for each pool,
• device error handling uses the global interrupt line and the CCSR register space contains error-capture and

error-status registers.

The BMan block also exposes a Corenet memory space for low-latency interaction by the multiple SoC cores,
and this corenet region is divided into a geometry of "portals" to allow independent access to BMan functionality
in a partitioned (and/or virtualized) environment. Each portal consists of one 16KB cache-enabled and one 4
KB cache-inhibited subrange of the Corenet region, as well as a per-portal interrupt line. There are a variety of
possible reasons for using distinct portals;

• for partitioning between distinct guest operating systems,
• to dedicate a portal for each CPU to reduce locking and improve cache-affinity,
• to make distinct portal configurations available,
• to give certain applications their own portal rather than enforcing a mux/demux layer to share a portal between

applications,
• [and so on.]

Each portal presents the following BMan functionality;

• a "release command ring" (RCR), a pipelined mechanism for software to hardware commands that release
buffers to BMan-managed buffer pools,

• a "management command" interface (MC), a low-latency command/response interface for acquiring buffers
from buffer pools, and querying the status of all buffer pools,

• an interrupt line and associated status, disable, enable, and inhibit registers.

These portal interfaces will be described in more detail in their respective sections.

7.2.3.2.2.2 BMan configuration interface

The BMan configuration interface is an encapsulation of the BMan CCSR register space and the global/error
interrupt line. Whereas BMan portals provide independent channels for accessing BMan functionality, the

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
441 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

configuration interface represents the BMan device itself. The BMan configuration interface is presently limited
to the device-tree node that represents it, with one exception: an API exists to set per-buffer-pool depletion
thresholds. This API is only available in the Linux control-plane - that is, a kernel compiled with BMan control
support that has the BMan CCSR device-tree node present. In a hypervisor scenario, this implies that only the
control-plane Linux guest OS can set buffer pool depletion thresholds.

BMan Device-Tree Node

The BMan device tree node represents the BMan device and its CCSR configuration space. When a Linux
kernel has BMan control support compiled in, it reacts to this device tree node by configuring and managing the
BMan device. The device-tree node sits within the CCSR node ("soc") and is of the following form.

soc@fe000000 {
 [...]
 bman: bman@31a000 {
 compatible = "fsl,bman";
 reg = <0x31a000 0x1000>;
 fsl,liodn = <0x20>;
 };
 [...]
 };

'compatible' and 'reg' are standard ePAPR properties.

Free Buffer Proxy Records

As previously mentioned, BMan buffer pools needn't be used only for managing memory buffers, but in fact can
manage pools of arbitrary 48-bit token values, whatever those tokens might represent. This is possible because
BMan never uses those token values as memory locations - all management of buffer pools is maintained in
memory that is private to the BMan block. Specifically, BMan uses some internal memory together with a private
range of contiguous system memory for backing store. The internal units of the backing store memory are called
"free buffer proxy records" (FBPRs), each of which occupies a 64-byte cache line of memory, and can hold 8
tokens.

The current driver implementation allows this memory resource to be specified via the 'fsl,bman-fbpr' device-
tree property, or by resorting to a default allocation of contiguous memory early during kernel boot. The
'fsl,bman-fbpr' property specifies a 2-tuple of address and size, specifying the physical address range to assign
to BMan. The example given configures 16 MB for FBPR memory (262,144 FBPR entries or 2,097,152 buffer
tokens). These elements are expressed as 64-bit values, so take two cells each:

fsl,fbpr = <0x0 0x20000000 0x0 0x01000000>;

If the hypervisor is in use, this address range is "guest physical". If the given memory range falls within the
range used by the Linux control-plane OS, it will attempt to reserve the range against use by the OS.

Note: For all BMan and QMan private memory resources, the alignment of the memory region must match its
size.

Logical I/O Device Number (BMan)

Reads and writes to BMan's FBPR memory are subject to processing by the PAMU IO-MMU configuration of
the SoC. In particular, BMan has an LIODN (Logical I/O Device Number) register setting that will be used by

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
442 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

PAMU authorize and possibly translate memory accesses. The bootloader (U-Boot) will program BMan's LIODN
register and it will add this value as the "fsl,liodn" property before passing it along to the booted software.

 fsl,liodn = <0x20>;

This property is only used by the hypervisor, in order to ensure that any translation between guest physical and
real physical memory for the Linux guest OS is similarly applied to BMan transactions. If Linux is booted natively
(no hypervisor), then the PAMU is either left in bypass mode or it is configured without translation. In any case
the LIODN is of little practical importance to the configuration or use of BMan driver software.

Buffer Pool Node

The BMan buffer pool device tree node represents one of a BMan device's buffer pools and its associated
configuration. When a Linux kernel has BMan control support compiled in, it will react to this device tree node
by configuring and managing the BMan buffer pool, in particular the pool will be marked as reserved by the
driver so that it is not available for dynamic assignment. The device-tree nodes usually sit within a BMan portals
parent node ("bman-portals") and is of the following form.

 bman-portals@f4000000 {
 [...]
 buffer-pool@0 {
 compatible = "fsl,bpool";
 fsl,bpid = <0x0>;
 fsl,bpool-cfg = <0x0 0x100 0x0 0x1 0x0 0x100>;
 fsl,bpool-thresholds = <0x8 0x20 0x0 0x0>;
 };
 [...]
 };

Buffer Pool ID

The BMan device supports hardware managed buffer pools. Specifications and valid ID ranges vary between
SoC's. Refer to the appropriate SoC Reference Manual for more information. The example above configures
buffer pool 0, which is used by the QMan driver as an inter-partition allocator of unused QMan Frame Queue
IDs;

fsl,bpid = <0x0>;

Buffer pool nodes in the device-tree indicate that the corresponding buffer pool IDs are reserved, that is, that
they are not to be used for ad hoc allocation of unused pools.

Seeding Buffer Pools

It is also possible to have the control plane Linux BMan driver seed the buffer pool with an arbitrary arithmetic
sequence of values, using the "fsl,bpool-cfg" property. This property is a 3-tuple of 64-bit values (each taking 2
cells) defining the arithmetic sequence; the count, the increment, and the base.

fsl,bpool-cfg = <0x0 0x100 0x0 0x1 0x0 0x100>;

In this example, the QMan FQ allocator implemented using BMan buffer pool ID 0 is seeded with 256 FQIDs in
the range [256...511].

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
443 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Depletion Thresholds

Each of the 64 buffer pools has CCSR registers related to depletion-handling. A pool is considered "depleted"
once the number of buffers in that pool crosses a "depletion-entry" threshold from above, and this ends when
the number of buffers subsequently crosses a "depletion-exit" threshold from below (the depletion-exit threshold
should be higher than the depletion-entry threshold).

Each pool maintains two independent depletion states - one for software use and another for hardware blocks.
Hardware blocks (like CAAM, FMan, PME) use the hardware depletion state primarily for the purpose of
implementing push back (For example, by stalling input-processing, issuing "pause frames", and so on).
There is a depletion-entry and -exit threshold for each buffer pool related to this hardware depletion state. The
software depletion state serves two possible purposes - one is to allow software to implement push back too.
The other use of software depletion thresholds is to allow software to manage "replenishment" of buffer pools. It
is software that seeds buffer pools with blocks of memory initially and if desired, it can also use this mechanism
to selectively provide additional blocks at runtime during depletion.

fsl,bpool-thresholds = <0x8 0x20 0x0 0x0>;

Here, software depletion thresholds have been set for the buffer pool used for the FQ allocator, but hardware
depletion thresholds are disabled (the pool is for software use only). The pool will enter depletion when it drops
below 8 "buffers" (in this case, FQIDs), and exit depletion when it rises above 32.

BMan Portal Device-Tree Node

The BMan Corenet portal interface in QorIQ P4080 provides up to 10 distinct memory-mapped interfaces for
use by software to interact efficiently with BMan functionality. Specifically, each portal provides the following
subinterfaces; RCR (Release Command Ring), MC (Management Command), and ISR (Interrupt Status
Register). For non-P4080 specifications, refer to the appropriate QorIQ SoC Reference Manual.

The BMan driver determines the available corenet portals from the device tree. The portal nodes are at the
physical address scope (unlike the device-tree node for the BMan device itself, which is within the “soc” physical
address node that represents CCSR). These nodes indicate the physical address ranges of the cache-enabled
and cache-inhibited subregions of the portal (respectively), and look something like the following;

bman-portal@0 {
 compatible = "fsl,bman-portal";
 reg = <0xe4000000 0x4000 0xe4100000 0x1000>;
 interrupts = <0x69 2>;
 interrupt-parent = <&mpic>;
 cell-index = <0x0>;
 cpu-handle = <&cpu3>;
};

The most note-worthy property is "cpu-handle", which is used to express an affinity/association between the
given BMan portal and the CPU represented by the referenced device-tree node.

Portal Initialization (BMan)

The driver is informed of the BMan portals that are available to it via the device-tree passed to the system from
the boot process. For those portals that aren’t reserved for USDPAA usage via the “fsl,usdpaa-portal” property,
it will automatically create TLB entries to map the BMan portal corenet subregions as cpu-addressable and
cache-inhibited or cache-enabled as appropriate.

The BMan driver will automatically associate initialized BMan portals with the CPU to which they are configured,
only a one-per-CPU basis (if multiple portals are configured for the same CPU, only one is used). The purpose
of this is to provide a canonical portal that software can use for whichever CPU it is running on, with the

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
444 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

advantages of a cpu-affine interface being improved cache-locality and reduced locking. This requires that each
CPU have at least one portal device-tree node dedicated to it using the “cpu-handle” property.

Portal sharing

If there are CPUs that have no affine portal associated with them (for example if most portals have been
reserved for USDPAA use), then the driver will select the highest-index portal to be configured for “sharing” with
the CPUs that have no affine portal, otherwise called “slave CPUs” in this document. In this mode of operation,
a coarser locking scheme is used for the portal in order to properly synchronize use by more than one CPU.

One key point to understand with portal sharing is that hardware-instigated portal events will continue to be
processed only by the CPU to which the portal is affine, they are not shared. One consequence of this is that
slave CPUs cannot use *_irqsource_*() APIs to alter the interrupt-vs-polling state of the portal, nor can they call
poll() APIs to perform run-to-completion servicing of the portal. The sharing of the portal is only to allow
software-instigated portal functionality to be available to slave CPUs, such as creating and manipulating objects,
performing commands, and so on.

7.2.3.2.3 BMan CoreNet portal APIs

The following sections describe interfaces provided by the BMan driver for manipulating portals.

as defined in Section "BMan Portal Device-Tree Node".

7.2.3.2.3.1 BMan High-Level Portal Interface

Overview (BMan)

The high-level portal interface provides management and encapsulation of a portal hardware interface. The
operations performed on the portal are coordinated internally, hiding the user from the I/O semantics, and
allowing multiple users/contexts to share portals without collaboration between them. This interface also
provides an object representation for buffer pools, with optional assists for cases where the user wishes to track
depletion entry and exit events.

This interface provides locking and arbitration of portal operations from multiple software contexts and/or
threads (that is, the portal is shared). In cases where a resource is busy, the interface also gives callers the
option of blocking/sleeping until the resource is available. In any case where sleeping is an option, the caller can
also specify whether the sleep should be interruptible.

Portal management (BMan)

The portal management API provides bman_affine_cpus(), which returns a mask that indicates which CPUs
have auto-initialized portals associated with them. See Section "BMan Portal Device-Tree Node". All other
BMan API functions must be executed on CPUs contained within this mask, and any interactions they require
with h/w will be performed on the corresponding portals.

/**
 * bman_affine_cpus - return a mask of cpus that have portal access
 */
const cpumask_t *bman_affine_cpus(void);

Modifying interrupt-driven portal duties (BMan)

Portals have various servicing duties they must perform in reaction to hardware events. The portal management
API allows applications to control which of these duties/events are triggered by interrupt-handling versus those

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
445 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

which are performed at the application’s explicit request via bman_poll(). If portal-sharing is in effect,
refer to Section "Portal sharing". These APIs will not succeed when called from a slave CPU.

#define BM_PIRQ_RCRI 0x00000002 /* RCR Ring (below threshold) */
#define BM_PIRQ_BSCN 0x00000001 /* Buffer depletion State Change */
/**
 * bman_irqsource_get - return the portal work that is interrupt-driven
 *
 * Returns a bitmask of BM_PIRQ_**I processing sources that are currently
 * enabled for interrupt handling on the current cpu's affine portal. These
 * sources will trigger the portal interrupt and the interrupt handler (or a
 * tasklet/bottom-half it defers to) will perform the corresponding processing
 * work. The bman_poll_***() functions will only process sources that are not in
 * this bitmask. If the current CPU is sharing a portal hosted on another CPU,
 * this always returns zero.
 */
u32 bman_irqsource_get(void);
/**
 * bman_irqsource_add - add processing sources to be interrupt-driven
 * @bits: bitmask of BM_PIRQ_**I processing sources
 * Adds processing sources that should be interrupt-driven, (rather than
* processed via bman_poll_***() functions). Returns zero for success, or
* -EINVAL if the current CPU is sharing a portal hosted on another CPU.
*/
int bman_irqsource_add(u32 bits);
/**
* bman_irqsource_remove - remove processing sources from being interrupt-driven
* @bits: bitmask of BM_PIRQ_**I processing sources
*
* Removes processing sources from being interrupt-driven, so that they will
* instead be processed via bman_poll_***() functions. Returns zero for success,
* or -EINVAL if the current CPU is sharing a portal hosted on another CPU. */
int bman_irqsource_remove(u32 bits);

Processing non-interrupt-driven portal duties (BMan)

If portal-sharing is in effect, refer to Section "Portal sharing". These APIs will not succeed when called from a
slave CPU.

/**
 * bman_poll_slow - process anything that isn't interrupt-driven.
 *
 * This function does any portal processing that isn't interrupt-driven. NB,
 * unlike the legacy wrapper bman_poll(), this function will deterministically
 * check for the presence of portal processing work and do it, which implies
 * some latency even if there's nothing to do. The bman_poll() wrapper on the
 * other hand (like the qman_poll() wrapper) attenuates this by checking for
 * (and doing) portal processing infrequently. Ie. such that qman_poll() and
 * bmna_poll() can be called from core-processing loops. Use bman_poll_slow()
 * when you yourself are deciding when to incur the overhead of processing. If
* the current CPU is sharing a portal hosted on another CPU, this function will
* return -EINVAL, otherwise returns zero for success.
*/
int bman_poll_slow(void);
/**
 * bman_poll - process anything that isn't interrupt-driven.
 *
 * Dispatcher logic on a cpu can use this to trigger any maintenance of the

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
446 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

 * affine portal. This function does whatever processing is not triggered by
 * interrupts. This is a legacy wrapper that can be used in core-processing
 * loops but mitigates the performance overhead of portal processing by
 * adaptively bypassing true portal processing most of the time. (Processing is
 * done once every 10 calls if the previous processing revealed that work needed
 * to be done, or once very 1000 calls if the previous processing revealed no
 * work needed doing.) If you wish to control this yourself, call
 * bman_poll_slow() instead, which always checks for portal processing work.
 */
void bman_poll(void);

Recovery support (BMan)

Note that the following functions require the BMan portal to have been initialized in "recovery mode", which is
not possible with the current release. As such, these functions are for future use only (and documented here
only because they're declared in the API header).

/**
 * bman_recovery_cleanup_bpid - in recovery mode, cleanup a buffer pool
 */
int bman_recovery_cleanup_bpid(u32 bpid);
/**
 * bman_recovery_exit - leave recovery mode
 */
int bman_recovery_exit(void);

Determining if the release ring is empty

/**
 * bman_rcr_is_empty - Determine if portal's RCR is empty
 *
 * For use in situations where a cpu-affine caller needs to determine when all
 * releases for the local portal have been processed by BMan but can't use the
 * BMAN_RELEASE_FLAG_WAIT_SYNC flag to do this from the final bman_release().
 * The function forces tracking of RCR consumption (which normally doesn't
 * happen until release processing needs to find space to put new release
 * commands), and returns zero if the ring still has unprocessed entries,
 * non-zero if it is empty.
 */
int bman_rcr_is_empty(void);

Pool Management

To work with BMan buffer pools, a pool object must be created. As explained in Section "Depletion State", the
pool may be created with the BMAN_POOL_FLAG_DEPLETION flag and corresponding depletion-entry/exit
callbacks if the owner wishes to be notified of changes in the pool's depletion state. Creation of the pool object
can also modify the pool's depletion entry and exit thresholds with the BMAN_POOL_FLAG_THRESH flag, so
long as the BMAN_POOL_FLAG_DYNAMIC_BPID flag is specified (which will allocate an unreserved BPID)
and when running in the control-plane (where reserved BPIDs are tracked). Depletion thresholds for reserved
BPIDs can be set in the device-tree within the nodes that reserve them, so support for setting them in the API
is not provided. The pool object can also maintain an internal buffer stockpile to optimize releases and acquires
of buffers by specifying the BMAN_POOL_FLAG_STOCKPILE flag - actual releases to and acquires from h/w
will only occur when the stockpile needs flushing or replenishing, ensuring that the interactions with hardware
occur less often and are always optimized to release/acquire the maximum number of buffers at once. If a pool
object is being freed and it has been configured to use stockpiling, a flush operation must be performed on
UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
447 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

the pool object. This will ensure that all buffers in the stockpile are flushed to h/w. The pool object can then be
freed. The stockpiling option is recommended wherever possible. One implementation note is that applications
will sometimes want to create multiple pool objects for the same BPID in order to have one for each CPU (for
performance reasons) - this means that each pool object will have its own stockpile. As a consequence, to drain
a buffer pool empty would require that all pool objects for that BPID be drained independently (whereas without
stockpiling enabled, only one pool object needs to be drained).

struct bman_pool;
/* This callback type is used when handling pool depletion entry/exit. The
 * 'cb_ctx' value is the opaque value associated with the pool object in
 * bman_new_pool(). 'depleted' is non-zero on depletion-entry, and zero on
 * depletion-exit. */
typedef void (*bman_cb_depletion)(struct bman_portal *bm,
 struct bman_pool *pool, void *cb_ctx, int depleted);
/* Flags to bman_new_pool() */
#define BMAN_POOL_FLAG_NO_RELEASE 0x00000001 /* can't release to pool */
#define BMAN_POOL_FLAG_ONLY_RELEASE 0x00000002 /* can only release to pool */
#define BMAN_POOL_FLAG_DEPLETION 0x00000004 /* track depletion entry/exit */
#define BMAN_POOL_FLAG_DYNAMIC_BPID 0x00000008 /* (de)allocate bpid */
#define BMAN_POOL_FLAG_THRESH 0x00000010 /* set depletion thresholds */
#define BMAN_POOL_FLAG_STOCKPILE 0x00000020 /* stockpile to reduce hw ops */
/* This struct specifies parameters for a bman_pool object. */
struct bman_pool_params {
 /* index of the buffer pool to encapsulate (0-63), ignored if
 * BMAN_POOL_FLAG_DYNAMIC_BPID is set. */
 u32 bpid;
 /* bit-mask of BMAN_POOL_FLAG_*** options */
 u32 flags;
 /* depletion-entry/exit callback, if BMAN_POOL_FLAG_DEPLETION is set */
 bman_cb_depletion cb;
 /* opaque user value passed as a parameter to 'cb' */
 void *cb_ctx;
 /* depletion-entry/exit thresholds, if BMAN_POOL_FLAG_THRESH is set. NB:
 * this is only allowed if BMAN_POOL_FLAG_DYNAMIC_BPID is used *and*
 * when run in the control plane (which controls BMan CCSR). This array
 * matches the definition of bm_pool_set(). */
 u32 thresholds[4];
};
/**
 * bman_new_pool - Allocates a Buffer Pool object
 * @params: parameters specifying the buffer pool behavior
 *
 * Creates a pool object for the given @params. A portal and the depletion
 * callback field of @params are only used if the BMAN_POOL_FLAG_DEPLETION flag
 * is set. NB, the fields from @params are copied into the new pool object, so
 * the structure provided by the caller can be released or reused after the
 * function returns.
 */
struct bman_pool *bman_new_pool(const struct bman_pool_params *params);
/**
 * bman_free_pool - Deallocates a Buffer Pool object
 * @pool: the pool object to release
 */
void bman_free_pool(struct bman_pool *pool);
/**
 * bman_flush_stockpile - Flush stockpile buffer(s) to the buffer pool
 * @pool: the buffer pool object the stockpile belongs
 * @flags: bit-mask of BMAN_RELEASE_FLAG_*** options
 *

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
448 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

 * Adds stockpile buffers to RCR entries until the stockpile is empty.
 * The return value will be a negative error code if a h/w error occured.
 * If BMAN_RELEASE_FLAG_NOW flag is passed and RCR ring is full,
 * -EAGAIN will be returned.
 */
int bman_flush_stockpile(struct bman_pool *pool, u32 flags);
/**
 * bman_get_params - Returns a pool object's parameters.
 * @pool: the pool object
 *
 * The returned pointer refers to state within the pool object so must not be
 * modified and can no longer be read once the pool object is destroyed.
 */
const struct bman_pool_params *bman_get_params(const struct bman_pool *pool);
/**
 * bman_query_free_buffers - Query how many free buffers are in buffer pool
 * @pool: the buffer pool object to query
 *
 * Return the number of the free buffers
 */
u32 bman_query_free_buffers(struct bman_pool *pool);
/**
 * bman_update_pool_thresholds - Change the buffer pool's depletion thresholds
 * @pool: the buffer pool object to which the thresholds will be set
 * @thresholds: the new thresholds
 */
int bman_update_pool_thresholds(struct bman_pool *pool, const u32 *thresholds);

Releasing and Acquiring Buffers

The following API functions allow applications to release buffers to a pool and acquire buffers from a pool. Note
that the various "WAIT" flags for bman_release() are only available on linux.

/* Flags to bman_release() */
#define BMAN_RELEASE_FLAG_WAIT 0x00000001 /* wait if RCR is full */
#define BMAN_RELEASE_FLAG_WAIT_INT 0x00000002 /* if we wait, interruptible? */
#define BMAN_RELEASE_FLAG_WAIT_SYNC 0x00000004 /* if wait, until consumed? */
/**
 * bman_release - Release buffer(s) to the buffer pool
 * @pool: the buffer pool object to release to
 * @bufs: an array of buffers to release
 * @num: the number of buffers in @bufs (1-8)
 * @flags: bit-mask of BMAN_RELEASE_FLAG_*** options
 *
 * Releases the specified buffers to the buffer pool. If stockpiling is
 * enabled, this may not require a release command to be issued via the RCR
 * ring, otherwise it certainly will. If the RCR ring is full, the function
 * will return -EBUSY unless BMAN_RELEASE_FLAG_WAIT is selected, in which case
 * it will sleep waiting for space to become available in RCR. If
 * BMAN_RELEASE_FLAG_WAIT_SYNC is also specified then it will sleep until
 * hardware has processed the command from the RCR (otherwise the same
 * information can be obtained by polling bman_rcr_is_empty() until it returns
 * TRUE). If the BMAN_RELEASE_FLAG_WAIT_INT is set), then any sleeps will be
 * interruptible. If it is interrupted before producing the release command, it
 * returns -EINTR. Otherwise, it will return zero to indicate the release was
 * successfully issued. (In the case of interruptible sleeps and WAIT_SYNC,
 * check signal_pending() upon return to determine whether the wait was
 * interrupted.)
 */

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
449 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

int bman_release(struct bman_pool *pool, const struct bm_buffer *bufs,
 u8 num, u32 flags);
/**
 * bman_acquire - Acquire buffer(s) from a buffer pool
 * @pool: the buffer pool object to acquire from
 * @bufs: array for storing the acquired buffers
 * @num: the number of buffers desired (@bufs is at least this big)
 *
 * Acquires buffers from the buffer pool. If stockpiling is enabled, this may
 * not require an acquire command to be issed via the MC interface, otherwise
 * it certainly will. The return value will be the number of buffers obtained
 * from the pool, or a negative error code if a h/w error or pool starvation
 * was encountered.
 */
int bman_acquire(struct bman_pool *pool, struct bm_buffer *bufs, u8 num,
 u32 flags);

Depletion State

It is possible for portals to track depletion state changes to any of the 64 buffer pools supported in BMan. As
described in Section "Pool Management", a pool object can invoke callbacks to convey depletion-entry and
depletion-exit events if created with the BMAN_POOL_FLAG_DEPLETION flag.

Conversely, software can issue a portal management command to obtain a snapshot of the depletion and
availability status of all BMan 64 pools at once, which is what the following interface does. Here "availability"
implies that the pool is not completely empty. Depletion on the other hand is relative to the pools depletion-entry
and exit-thresholds. The state of all 64 buffer pools is represented by the following structure types, accessor
macros, and bman_query_pools() API;

struct bm_pool_state {
 [...]
};
/**
 * bman_query_pools - Query all buffer pool states
 * @state: storage for the queried availability and depletion states
 */
int bman_query_pools(struct bm_pool_state *state);
/* Determine the "availability state" of BPID 'p' from a query result 'r' */
#define BM_MCR_QUERY_AVAILABILITY(r,p) [...]
/* Determine the "depletion state" of BPID 'p' from a query result 'r' */
#define BM_MCR_QUERY_DEPLETION(r,p) [...]

7.2.3.2.4 Queue Manager

7.2.3.2.4.1 QMan Overview

Queue Manager's Function

The QorIQ Queue Manager (QMan) SoC block manages the movement of data (“frames”) along uni-directional
flows (“frame queues”) between different software and hardware end-points (“portals”). This allows software
instances to communicate with other software instances and/or data path hardware blocks (CAAM, PME, FMan)
using a hardware-managed queueing mechanism. QMan provides a variety of features in the way this data
movement can be managed, including tail-drop or weighted-red congestion/flow-control, congestion group
depletion notification, order restoration, and order preservation.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
450 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

It is beyond the scope of this document to fully explain all the QMan-related notions that are essential to using
data path functionality effectively. But unlike the BMan reference, we will cover at least some of the basic
elements here that are fundamental to the software interface, because QMan is more complicated than BMan
and some simplistic definitions can be helpful as a place to start. For any more information about what QMan
does and how it behaves, consult the appropriate QorIQ SoC Reference Manual.

Frame Descriptors

Frames are represented by "frame descriptors" (or "FD"s) which are 16-byte structures consisting of fields to
describe;

• contiguous or scatter-gather data,
• a 32-bit per-frame-descriptor token value (called "cmd/status" because of its common usage in processing

data to/from hardware blocks),
• trace-debugging bits,
• a partition ID, used for virtualizing memory access to frame data by data path hardware blocks (CAAM, PME,

FMan),
• a BMan buffer pool ID, used to identify frames whose buffers are sourced from (or are to be recycled to) a

BMan buffer pool.

A third ("nested") mode of the scatter-gather representation allows a frame-descriptor to reference more than
one frame - this is referred to as a compound frame, and is a mechanism for creating an indissociable binding of
more than one data descriptor, for example, this is used when sending an input descriptor to PME or CAAM and
providing an output descriptor to go with it.

Frame descriptors that are under QMan's control reside in QMan-private resources, comprised of dedicated
onboard cache as well as system memory assigned to QMan on initialization. When frames are enqueued
to (and dequeued from) frame queues by QMan on behalf of software portals or hardware blocks, the frame
descriptor fields are copied in to (and out of) these QMan-private resources.

As with BMan not caring whether the 48-bit tokens it manages are real buffer addresses or not, the same is
mostly true for QMan with respect to the frame descriptors it manages. QMan ignores the memory addresses
present in the frame descriptor, unless it is dequeued via a portal configured for data stashing and is dequeued
from a frame queue that is configured for frame data (or annotation) stashing. However QMan always pays
attention to the length field of frame descriptors. In general, the only field that can be safely used as a "pass-
through" value without any QMan consequences is the 32-bit cmd/status field.

Frame Queue Descriptors (QMan)

Frame queues are uni-directional queues of frames, where frames are enqueued to the tail of the frame queue
and dequeued from the head. A frame queue is represented in QMan by a "frame queue descriptor" (or "FQD"),
and these reside in a private system memory resource configured for QMan on initialization. A frame queue
is referred to by a "frame queue identifier" (or "FQID"), which is literally the index of that FQD within QMan's
memory resource. As such, FQIDs form a global name-space, even in an otherwise virtualized environment, so
two entities of software cannot simultaneously use the same FQID for different purposes.

Work Queues

Work queues (or "WQ"s) are uni-directional queues of "scheduled" frame queues. We will see shortly what is
meant here by a "scheduled" frame queue, but suffice it to say that QMan supports a fixed collection of work
queues, to which QMan appends frame queues when they are due to be serviced. To summarize, multiple FDs
can be linked to a single FQ, and multiple FQs can be linked to a single WQ.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
451 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Channels

A channel is a fixed, hardware-defined association of 8 work queues, also thought of as "priority work queues".
This grouping is convenient in that QMan provides sophisticated prioritization support for dequeueing from
entire channels rather than specific work queues. Specifically, the 8 work queues within a channel are divided
into 3 tiers according to QMan's "class scheduler" logic - work queues 0 and 1 form the high-priority tier and
are treated with a strict priority semantic, work queues 2, 3, and 4 form the medium-priority tier and are treated
with a weighted interleaved round-robin semantic, and work queues 5, 6, and 7 form the low-priority tier and are
also treated with a weighted interleaved round-robin semantic. Apart from the top-tier, the weighting within and
between the other two tiers is programmable.

Portals

A QMan portal is similar in nature to a BMan portal. There are hardware portals (also called "direct connect
portals", or "DCP"s) that allow QMan to be used by other hardware blocks, and there are software portals that
allow QMan to be used by logically separated units of software. A software portal consists of two subregions of
QMan's corenet region, in precisely the same way as with BMan.

Dedicated Portal Channels

Each software portal has its own dedicated channel (of 8 work queues), that only it may dequeue from. As a
shorthand, one sometimes says that a frame queue is "scheduled to a portal", when what is really meant is that
the frame queue is scheduled to a work queue within that portal's dedicated channel. Hardware portals also
have their own dedicated channels, though sometimes more than one (FMan blocks have multiple dedicated
channels).

Pool Channels

There are also 15 "pool channels" from which any software portal can dequeue - this is typically used for load-
balancing or load-spreading.

Portal Subinterfaces

Each portal exposes cache-inhibited and cache-enabled registers that can be read and/or written by software
to achieve various ends. With some necessary exceptions, the software interface hides most of these
details. However an important conceptual point regarding portals is that they have essentially four decoupled
subinterfaces;

• EQCR (Enqueue Command Ring), this is an 8-cache line ring containing commands from software to QMan.
These commands perform enqueues of frame descriptors to frame queues.

• DQRR (Dequeue Response Ring), this is a 16-cache line ring containing dequeue processing results from
QMan to software. These entries usually contain a frame descriptor (except when the dequeue action
produced no valid frame descriptor) as well as status information about the dequeue action, the frame
queue being dequeued from, and other context for software's use. This ring is unique in that QMan can be
configured to stash new ring entries to processor cache, rather than relying on software to (pre)fetch ring
entries into cache explicitly.

• MR (Message Ring), this is an 8-cache line ring containing messages from QMan to software, most notably
for enqueue rejection messages and asynchronous retirement processing events. Unlike DQRR, this ring
does not support stashing.

• Management commands, consisting of a Command Register (CR) and two Response Register locations (RR0
and RR1), used for issuing a variety of other commands to QMan. EQCR and DQRR (and to a lesser extent,
MR) are intended to provide the communications with QMan that represent the fast-path of data processing
logic, and the management command interface is where "everything else happens".

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
452 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Frame queue dequeuing

Enqueuing a frame to a frame queue is an unambiguous mechanism; an enqueue command in the EQCR
specifies a frame descriptor and a frame queue ID, and the intention is clear. Dequeuing is more subtle,
and falls into two general classes depending on what one is dequeuing from - these are "scheduled" or
"unscheduled" dequeues.

Unscheduled Dequeues

One can dequeue from a specific frame queue, but that frame queue must necessarily be "idle" - or in QMan
terminology, "unscheduled". It is an illegal action to attempt to dequeue directly from a frame queue that is
in a "scheduled" state. Specifically, unscheduled dequeues require the frame queue to be in the "Parked" or
"Retired" state (described in Section "Frame Queue States").

Scheduled Dequeues

Conversely, if a frame queue is "scheduled" then, by definition, management of the frame queue is (until further
notice) under QMan's control and may at any point change state according to events within QMan or via actions
on other software or hardware portals. So a "scheduled dequeue" does not target a specific FQ, but either
a specific WQ or collection of channels. QMan processes scheduled dequeue commands within a portal by
selecting from among the non-empty WQs, dequeueing an FQ from that selected WQ, and then dequeuing an
FD from that FQ.

QMan portals implement two dequeue command modes, "push" and "pull";

Pull Mode

The "pull" mode is the less conventional of the two, as it is driven by software writing a dequeue command to a
single cache-inhibited register that will, in response, perform a single instance of that command and publish its
result to DQRR. This "pull" command (PDQCR - Pull Dequeue Command Register) could generate anywhere
between 1 and 3 DQRR entries, and software must ensure that it does not write a new command to PDQCR
until it knows at least one of these DQRR entries has been published (otherwise writing a new command could
clobber the previous command before QMan has prepared its execution). The PDQCR command register can
perform scheduled and unscheduled dequeues.

Push Mode

The "push" mode is the mode that gives software a familiar "DMA-style" interface, that is, where hardware
performs work and fills in a kind of "RX ring" autonomously. In the case of the QMan portal's DQRR
subinterface, this push mode is driven by two dequeue command registers, one for scheduled dequeues
(SDQCR - Static Dequeue Command Register), and one for unscheduled dequeues (VDQCR - Volatile
Dequeue Command Register). The reason for the static/volatile terminology (rather than scheduled/
unscheduled), as well as the presence of two command registers instead of one, relates to how QMan
schedules execution of the dequeue commands.

Unlike "pull" mode, QMan is not prodded by a write to the command register each time a dequeue command
should occur, it must autonomously execute commands when appropriate. So it is clear that scheduled
dequeues can only be performed when the targeted work queue or channels have Truly Scheduled frame
queues available to dequeue from. Note that this is not an issue with "pull" mode, as a scheduled dequeue
command can be issued when there are no available frame queues and QMan will simply publish a DQRR
entry containing no frame descriptor to mark completion of the command - for "push" mode, this semantic
cannot work. When in "push" mode, the QMan portal has a (possibly NULL) scheduled dequeue command for
dequeuing from a selection of available channels. QMan executes this command only when there is matching
scheduled dequeue work available on one of of the channels - that is, the scheduled dequeue command (for

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
453 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

channels) is static. If software writes SDQCR with a command to dequeue from a specific WQ, the command
is executed only once (like the pull command), at which point it reverts to the static dequeue command for
channels.

For unscheduled dequeues, a single Parked or Retired frame queue is identified for dequeuing, and as QMan
does not manipulate the state of such frame queues in reaction to enqueue or dequeue activity (that is, there
is no "scheduling"), there is no mechanism for QMan to "know" when this frame queue becomes non-empty
some time in the future. So like "pull" mode, unscheduled dequeues must be done when explicitly demanded by
software, and as such they must also (a) expire after a configurable number of frame descriptors are dequeued
from frame queue or once it is empty, and (b) even if the frame queue is already empty, a DQRR entry with no
frame descriptor should be used to notify software that the unscheduled dequeue command has expired. That
is, the unscheduled command "goes live" when written and becomes inactive once completed - it is volatile.
Unlike "pull" mode however, the volatile command can perform more than a single dequeue action, and it can
even block or flow-control while active, however it always runs to completion and then stops.

As "push" mode supports two dequeue commands (in fact one of them, SDQCR, encompasses two commands
in its own right - it has a persistent channel-dequeue command, and an optional one-shot workqueue-dequeue
command can be issued without clobbering it), it is worth pointing out that it can service both at once. The
VDQCR command register contains a precedence option that QMan uses to determine whether SDQCR or
VDQCR work be favored in the situation where both are active.

Stashing to Processor Cache

When dequeueing frame queues and publishing entries in DQRR, QMan provides stashing features that involve
prepositioning data in the processor cache. The main benefit of hardware-instigated stashing is that the data
will already be in cache when the processor needs it, avoiding the need to explicitly prefetch it in advance or
stalling the processor to fetch it on-demand. As we will see, there is another benefit in the specific case of
DQRR stashing.

Each portal supports two types of stashing, for which distinct PAMU entries are configured.

DLIODN

The DLIODN setting configures PAMU authorization and/or translation of transactions to stash DQRR ring
entries as they are produced by QMan. The stashing of DQRR entries is not just a performance tweak, it
changes the way driver software operates the portal. Rather than needing to invalidate and prefetch the DQRR
cache lines to see (or poll for) new DQRR entries, software can simply reread the cached version until it
"magically changes". The stashing transaction is then the only implied traffic across the corenet bus (reducing
bandwidth) and it is initiated by hardware at the first instant at which a software-initiated prefetch could have
seen anything new (minimum possible latency).

Note that if the driver does not enable DQRR stashing, then it is a requirement to manipulate the processor
cache directly, so its runtime mode of operation must match device configuration. Note also that if DQRR
stashing is used, software cannot trust the DQRI interrupt source nor read PI index registers to determine that a
new DQRR entry is available, as they may race against the stash transaction. On the other hand, software may
use the interrupt source to avoid polling for DQRR production unnecessarily, but it does not guarantee that the
first read would show the new DQRR entry.

Note: P1023 supports DQRR stashing but since it doesn’t have Corenet and PAMU, the DLIODN is not
applicable to P1023.

FLIODN

QMan can also stash per-frame-descriptor information, specifically;

1. Frame data, pointed to by the frame descriptor
2. Frame annotations, which are anything prior to the data due to a non-zero offset
3. Frame queue context (for the frame queue from which the frame descriptor was dequeued).

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
454 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

In all cases, the FLIODN setting is used by PAMU to authorize/translate these stashing transactions.

Frame Queue States

Frame queues are managed by QMan via state-transitions, and some of these states are of interest to software.
From software's perspective, a simplification of the frame queue states is to group them as follows;

• Out of service: the frame queue is not in use and must be initialized. Neither enqueues nor dequeues are
permitted.

• Parked: the frame queue is initialized and in an idle state. Enqueues are permitted, as are unscheduled
dequeues, neither of which change the frame queue's state. Scheduled dequeues will not result in dequeues
from parked frame queues, as a parked frame queue is never linked to a work queue.

• Scheduled: the frame queue has been scheduled, implying that hardware will modify its state as/when
relevant events occur. Enqueues are permitted, but unscheduled dequeues are not. This is not a real state,
but actually a set of states that a frame queue moves between - as hardware performs these moves internally,
it's useful to treat them as one, because changes between them are asynchronous to software. The real
states are;
– Tentatively Scheduled: the frame queue is not linked to a work queue (yet), the frame queue must

therefore be empty and no retirement or force-eligible command has been issued against the frame queue.
– Truly Scheduled: the frame queue is linked to a work queue, either because it has become non-empty or a

force-eligible command has occurred.
– Active: the frame queue has been selected by a portal for scheduled dequeue and so is removed from the

work queue.
– Held Active: the frame queue is still held by the portal after scheduled dequeuing has been performed, it

may yet be dequeued from again, depending on scheduling configuration, priorities, and so on.
– Held Suspended: the frame queue is still held by the portal after scheduled dequeuing has been performed

but another frame queue has been selected "active" and so no further dequeuing will occur on this frame
queue.

• Retired: the frame queue is being "closed". A frame queue can be put into the retired state as a means of (a)
getting it back under software's control (not under QMan's control nor the control of another hardware block),
for example, for closing down "Tx" frame queues, and (b) blocking further enqueues to the frame queue so
that it can be drained to empty in a deterministic manner. Enqueues are therefore not permitted in this state.
Unscheduled dequeues are permitted, and are the only way to dequeue frames from a frame queue in this
state.

See the appropriate QorIQ SoC Reference Manual for more detailed information.

Hold active

The QMan portal subinterfaces are generally decoupled or asynchronous in their operation. For example: The
processing of software-produced enqueue commands in EQCR is asynchronous to the processing of dequeue
commands into DQRR, and both of these are asynchronous to the production of messages into MR and the
processing of management commands.

There is however a specific coupling mechanism between EQCR and DQRR to address a certain class
of requirements for data path processing. Consider first that it is possible for multiple portals to dequeue
independently from the same data source, for example, for the purposes of load-balancing, or perhaps idle-
time processing of low-priority work. This could occur because multiple portals issue unscheduled dequeue
commands from the same Parked (or Retired) frame queue, or because they issue scheduled dequeue
commands that target the same pool channels (or the same specific work queue within a pool channel). So
we describe here the "hold active" mechanisms that help maintain some synchronicity of hardware dequeue
processing (and optionally software post-processing) on multiple portals/CPUs.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
455 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

The unscheduled dequeue case is not covered by the mechanisms described here - QMan will correctly handle
multiple unscheduled dequeues from the same frame queue, but the "hold active" mechanisms have no affect in
this case. For scheduled dequeues however, there are two levels of "hold active" functionality that can be used
for software to synchronize multiple portals dequeuing from the same source.

Dequeue Atomicity

As described in the previous section ("Frame queue states"), the Active, Held Active, and Held Suspended
states are for frame queues that have been selected by a portal for scheduled dequeuing. These states imply
that the frame queue has been detached from the work queue that it was previously "scheduled" to, but not
yet moved to the Parked state nor rescheduled to the Tentatively Scheduled or Truly Scheduled state after the
completion of dequeuing.

Normally, a frame queue is rescheduled by QMan as soon as it is done dequeuing, potentially even before
the resulting DQRR entries are visible to software. However, if the frame queue has been configured for
"Held active" behavior, then this will not happen - the frame queue will remain in the Held Active or Held
Suspended state once QMan has finished dequeuing from it. QMan will only reschedule or park the frame
queue once software consumes all DQRR entries that correspond to that frame queue - the default behavior is
to reschedule, but this "held" state of the frame queue allows software an opportunity to request that the final
action for the frame queue be to park it instead.

A consequence of this mechanism is that if a DQRR entry is seen that corresponds to a frame queue configured
for "held active" behavior, software implicitly knows that there can be no other (unconsumed) DQRR entry on
any other portal for that same frame queue. (Proof: if there was, the frame queue would be currently "held"
in that portal and not in this one.) For an SMP system where each core has its own portal, this would obviate
the need to (spin)lock software context related to a frame queue when handling incoming frames - the "lock"
is implicitly obtained when the DQRR entry is seen, and it is implicitly released when the DQRR entries are
consumed. This is what is meant by "dequeue atomicity".

Parking Scheduled FQs

As noted above in Section "Dequeue Atomicity", if an FQ is currently "held active" in the portal, software can
request that it be move to the Parked state once its final DQRR entry is consumed, rather than rescheduled
which is the normal behavior. This is not necessarily limited to FQs that are configured for "hold active"
behavior, but can also be applied to regular FQs by issuing a Force Eligible command on them.

Order Preservation and Discrete Consumption Acknowledgment

In addition to the dequeue atomicity feature, it is possible to obtain a stronger property from QMan to aid with
data path situations that "spread" incoming data over multiple portals. Specifically, if incoming frames are to
be forwarded via subsequent enqueues, then dequeue atomicity does not prevent the forwarded frames from
getting out of order. That is, multiple CPUs (using multiple portals) may be using dequeue atomicity in order to
write enqueue commands to their EQCR rings before consuming the DQRR entries, and therefore ensuring that
EQCR entries are published in the same order as the incoming frames. But as there are multiple portals, this
does not ensure that QMan will necessarily process those EQCR entries in the same order. Indeed if the portals'
EQCR rings have significantly varied fill-levels, then there is a reasonable chance that two enqueue commands
published in quick succession via different portals could get processed in the opposite order by QMan.

Instead, software can elect to only consume DQRR entries when no forwarding is to be performed on the
corresponding frames (for example, when dropping a packet), and for the others, it can encode the EQCR
enqueue commands to perform an implicit "Discrete Consumption Acknowledgment" (or "DCA") - the result
of which is that QMan will consume the corresponding DQRR entry on software's behalf once it has finished
processing the enqueue command. This provides a cross-portal, order preservation semantic from end-to-end
(from dequeue to enqueue) using hardware assists.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
456 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Note, QMan has other functionality called Order Restoration that is completely unrelated to the above - Order
Restoration is a mechanism to restore frames into their intended order once they are allowed to get out of order,
using sequence numbers and "reassembly windows" within QMan, see Section "Order Restoration". The above
"hold active" mechanisms are to prevent frames from getting out of order in the first place.

Enqueue Rejections

Enqueues may be rejected, immediately or after any delay due to order restoration, and the enqueue
mechanisms themselves do not provide any meaningful way to convey the rejection event to the software
portal. For this reason, Enqueue Rejection Notifications (ERNs) are messages received on a message ring that
carry frames that did not successfully enqueue together with the reason for their rejection.

Order Restoration

Frame queue descriptors can serve one or both of two complimentary purposes. A small subset of fields in
the FQDs is used to implement an "Order Restoration Point", which allows an FQD to act as a reassembly
window for out-of-sequence enqueues. FQDs also contain a sequence number field that generates increasing
sequence numbers for all frames dequeued from the FQ. This dequeue activity sequence number is also called
an "Order Definition Point". The idea is that frames dequeued from a given FQ (ODP) may get out-of-sequence
during processing before they're enqueued onto an egress FQ, so the enqueue function allows one to not only
specify the destination FQD, but also an ORP that the enqueue command should first pass through - which
might hold up the intended enqueue until other, missing, sequence elements are enqueued. That is, an ORP-
enabled enqueue command requires 2 FQID parameters, which need not necessarily be the same - indeed in
many networking examples, the RX FQ serves as both the ODP and the ORP when enqueuing to the Tx FQ.
To see why this choice of ORP FQ makes sense, consider that many RX flows may need to be order-restored
independently, even if all of them are ultimately enqueued to the same destination Tx FQ. It's also possible to
enqueue using software-generated sequence numbers, that is, without any FQ dequeue activity acting as an
ODP. An ODP is any source of sequence numbers starting at zero and wrapping to zero at 0x3fff (214-1).

ORP-enabled enqueue functions provide various features, such as filling in missing sequence numbers (for
example, when dropping frames), advancing the "Next Expected Sequence Number" despite missing frames
(that may or may not show up later), and so on. These features are options in the enqueue interfaces, for
example, see Section "Enqueue Command (without ORP)", specifically the qman_enqueue_orp() API.

There are also numerous options that can be set in ORP-enabled FQDs, and these are achieved via the same
functions that allow you to manipulate FQDs for any other purpose. For example, see Section "Frame queue
management", specifically the qman_init_fq() API. Care should be taken when using an FQD as both an FQ
and an ORP - in particular, an FQD cannot be retired and put out-of-service while the ORP component of the
descriptor is still in use, and vice versa.

7.2.3.2.4.2 QMan configuration interface

The QMan configuration interface is an encapsulation of the QMan CCSR register space and the global/error
interrupt source. Whereas QMan portals provide independent channels for accessing QMan functionality, the
configuration interface represents the QMan device itself. The QMan configuration interface is presently limited
to the device-tree node that represents it.

QMan device-tree node

The QMan device tree node represents the QMan device and its CCSR configuration space (as distinct from its
corenet portals). When a Linux kernel has QMan control support built in, it will react to this device tree node by

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
457 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

configuring and managing the QMan device. The device-tree node sits within the CCSR node ("soc") and is of
the following form.

soc@fe000000 {
 [...]
 qman: qman@318000 {
 compatible = "fsl,qman";
 reg = <0x318000 0x1000>;
 fsl,qman-fqd = <0x0 0x22000000 0x0 0x00200000>;
 fsl,qman-pfdr = <0x0 0x21000000 0x0 0x01000000>;
 fsl,liodn = <0x1f>;
 };
 [...]
 };

'compatible' and 'reg' are standard ePAPR properties.

Frame Queue Descriptors

This property configures the memory used by QMan for storing frame queue descriptors. Each FQD occupies
a 64-byte cache line of memory, so as the above example configures 2 MB for FQD memory, the valid range of
FQIDs is [1...32767];

fsl,qman-fqd = <0x0 0x22000000 0x0 0x00200000>;

The treatment and alignment requirements of this property are the same as in Section "Free Buffer Proxy
Records".

Packed Frame Descriptor Records

This property configures the memory used by QMan for storing Packed Frame Descriptor Records. Each PFDR
occupies a 64-byte cache line of memory, and can hold 3 Frame Descriptors. QMan maintains an onboard
cache for holding recently enqueued (and/or soon to be dequeued) frames, and in responsive systems that
remain within their operating capacity (that is, no spikes) it can often be unnecessary for frames to ever be
stored in system memory at all. However, to handle spikes or buffering, a storage density of 3 enqueued frames
per-cache line can be used for estimating a suitable allocation of memory to QMan for PFDRs. In the case of
handling ERNs (for example, if congestion controls exist elsewhere than on an ingress network interface), then
a storage density of 1 ERN per-cache line should be used. The above example configures 16 MB for PFDR
memory (786,432 enqueued frames, or 262,144 ERNs);

fsl,qman-pfdr = <0x0 0x21000000 0x0 0x01000000>;

The treatment and alignment requirements of this property are the same as in Section "Free Buffer Proxy
Records".

Logical I/O Device Number (QMan)

This property is the same as described in Section "Logical I/O Device Number (BMan)", but for use by QMan
when accessing FQD and PFDR memory (rather than BMan's FBPR memory).

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
458 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

QMan pool channel device-tree node

Each QMan software portal has its own dedicated channel of work queues. QMan also provides "pool
channels" that all software portals can optionally dequeue from - this is described in Section "Portals". The
device-tree should declare pool channels using device-tree nodes as follows;

qman-pool@1 {
 compatible = "fsl,qman-pool-channel";
 cell-index = <0x1>;
 fsl,qman-channel-id = <0x21>;
};

Channel ID

When FQs are initialized for scheduling, the target work queue is identified by the channel id (a hardware-
assigned identifier) and by one of the 8 priority levels within that channel. Channel ids are hardware constants,
as conveyed by this device-tree property;

fsl,qman-channel-id = <0x21>;

QMan portal device-tree node

The QMan Corenet portal interface in P4080 provides up to 10 distinct memory-mapped interfaces for use by
software to interact efficiently with QMan functionality.These are described in Section "Portals" and Section
"Portal Subinterfaces". Refer to the appropriate SoC reference manuals for non-P4080 specifications.

The QMan driver determines the available corenet portals from the device tree. The portal nodes are at the
physical address scope (unlike the device-tree node for the BMan device itself, which is within the "soc"
physical address node that represents CCSR). These nodes indicate the physical address ranges of the cache-
enabled and cache-inhibited subregions of the portal (respectively), and look something like the following;

qman-portal@c000 {
 compatible = "fsl,qman-portal";
 reg = <0xf420c000 0x4000 0xf4303000 0x1000>;
 interrupts = <0x6e 2>;
 interrupt-parent = <&mpic>;
 cell-index = <0x3>;
 fsl,qman-channel-id = <0x3>;
 fsl,liodn = <0x7 0x8>;
};

As with BMan portal nodes, the "cpu-handle" property is used to express an affinity/association between the
given QMan portal and the CPU represented by the referenced device-tree node. Unlike BMan however,
the "cpu-handle" property is also used by PAMU configuration, to determine which CPU's L1 or L2 cache
should receive stashing transactions emanating from this portal. The "fsl,qman-channel-id" property is already
documented in Section "Channel ID", the other QMan-specific portal properties are described below.

Portal Access to Pool Channels

In P4080, P3041, P5020 hardware, all software portals can dequeue from any/all pool channels. Nonetheless,
the portal device-tree nodes allow the architect to specify this and optionally limit the range of pool channels
a given portal can dequeue from. This can be particularly useful when partitioning multiple guest operating

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
459 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

systems, it essentially allows the architect to partition the use of pool channels as they partition the use of
portals. In the above example, the portal is only able to dequeue from 2 pool channels;

fsl,qman-pool-channels = <&qpool1 &qpool2>;

Stashing Logical I/O Device Number

This property, when used in QMan portal nodes, declares two LIODN values for use by QMan when performing
dequeue stashing to processor cache. These are documented in Section "Stashing to Processor Cache". This
property is filled in automatically by U-Boot, and if hypervisor is in use then it will fill in this property for guest
device-trees also. PAMU drivers (linux-native or within the hypervisor) will configure the settings for these
LIODNs according to the CPU that stashing should be directed toward, as per the cpu-handle property;

fsl,liodn = <0x7 0x8>;
cpu-handle = <&cpu3>;

Portal Initialization (QMan)

The driver is informed of the QMan portals that are available to it via the device-tree passed to the system from
the boot process. For those portals that aren’t reserved for USDPAA usage via the “fsl,usdpaa-portal” property,
it will automatically create TLB entries to map the QMan portal corenet subregions as cpu-addressable and
cache-inhibited or cache-enabled as appropriate.

As with the BMan driver, the QMan driver will automatically associate initialized QMan portals with the CPU to
which they are configured, only one a one-per-CPU basis (if multiple portals are configured for the same CPU,
only one is used). See Section "Portal sharing" for an explanation of this behavior in the BMan documentation,
the QMan behavior is identical.

Auto-initialization

Similar to the BMan driver, by default, the QMan driver automatically initializes QMan portals as they are
parsed out of the device-tree. See Section "Portal sharing" for an explanation of this behavior in the BMan
documentation. The QMan behavior is identical.

7.2.3.2.5 QMan portal APIs

The following sections describe interfaces provided by the QMan driver for manipulating portals. These are
defined in Section "QMan portal device-tree node", and described in Section "Portals" and Section "Portal
Subinterfaces".

Note, unlike the BMan documentation, we will not include many of the QMan-related data structures within this
documentation as they are significantly more elaborate. It is presumed the reader will consult the corresponding
header files for structure data details that aren't sufficiently described here.

7.2.3.2.5.1 QMan High-Level Portal Interface

Overview (QMan)

The high-level portal interface provides management and encapsulation of a portal hardware interface. The
operations performed on the "portal" are coordinated internally, hiding the user from the I/O semantics, and
allowing multiple users/contexts to share portals without collaboration between them. This interface also
provides an object representation for congestion group records (CGRs), with optional assists for cases where
the user wishes to track congestion entry and exit events, for example, to apply back-pressure on the affected

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
460 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

frame queues, and so on. There is also an object representation for frame queues that internally coordinates FQ
operations, demuxes incoming dequeued frames and messages to the corresponding owner's callbacks, and
interprets hardware-provided indications of changes to FQ state.

This interface provides locking and arbitration of portal operations from multiple software contexts and/or
threads (that is, the portal is shared). In cases where a resource is busy, the interface also gives callers the
option of blocking/sleeping until the resource is available (and in the case of volatile dequeue commands, the
caller may also optionally sleep until the volatile dequeue command has finished). In any case where sleeping is
an option, the caller can also specify whether the sleep should be interruptible.

Note: Support for blocking/sleeping is limited to Linux, it is not available on run-to-completion systems such as
USDPAA.

The demux logic within the portal interface assumes ownership of the "contextB" field of frame queue
descriptors (FQDs), so users of this interface cannot modify this field. However, callers provide the cache
line of memory to be used within the driver for each FQ object when calling qman_create_fq(), so they can
extend this structure into adjacent cache lines with their own data and use this instead of contextB for their own
purposes. That is, when callbacks are invoked because of dequeued frames, enqueue rejections, or retirement
notifications, those callbacks will find their custom per-FQ data adjacent to the FQ object pointer they are
passed. Moreover, if context-stashing is enabled for the portal and the FQD is configured to stash 1 or more
cache lines of context, the QMan driver's demux function will be implicitly accelerated because the FQ object
will be prefetched into processor cache. Any adjacent data that is covered by the FQ's stashing configuration
could likewise lead to acceleration of the owner's dequeue callbacks, that is, by reducing or eliminating cache
misses in fast-path processing.

Frame and Message Handling

When DQRR or MR ring entries are produced by hardware to software, callbacks that have been provided
by the API user are invoked to allow those entries to be handled prior to the driver consuming them. These
callbacks are provided in the 'qman_fq_cb' structure type.

struct qman_fq_cb {
 qman_cb_dqrr dqrr; /* for dequeued frames */
 qman_cb_mr ern; /* for software ERNs */
 qman_cb_mr dc_ern; /* for diverted hardware ERNs */
 qman_cb_mr fqr; /* retirement messages */
};
typedef enum qman_cb_dqrr_result (*qman_cb_dqrr)(struct qman_portal *qm,
 struct qman_fq *fq, const struct qm_dqrr_entry
 *dqrr);
typedef void (*qman_cb_mr)(struct qman_portal *qm, struct qman_fq *fq,
 const struct qm_mr_entry *msg);
enum qman_cb_dqrr_result {
 /* DQRR entry can be consumed */
 qman_cb_dqrr_consume,
 /* Like _consume, but requests parking - FQ must be held-active */
 qman_cb_dqrr_park,
 /* Does not consume, for DCA mode only. This allows out-of-order
 * consumes by explicit calls to qman_dca() and/or the use of implicit
 * DCA via EQCR entries. */
 qman_cb_dqrr_defer
};

Portal management (QMan)

The portal management API provides qman_affine_cpus(), which returns a mask that indicates which CPUs
have auto-initialized portals associated with them.See Section "QMan portal device-tree node". All other QMan
UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
461 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

API functions must be executed on CPUs contained within this mask, and any interactions they require with h/w
will be performed on the corresponding portals.

/**
 * qman_affine_cpus - return a mask of cpus that have portal access
 */
const cpumask_t *qman_affine_cpus(void);

Modifying interrupt-driven portal duties (QMan)

Portals have various servicing duties they must perform in reaction to hardware events. The portal management
API allows applications to control which of these duties/events are triggered by interrupt-handling versus
those which are performed at the application's explicit request via qman_poll() (or more specifically, via
qman_poll_dqrr() and qman_poll_slow()). If portal-sharing is in effect (see Section "Portal sharing"), these APIs
won’t succeed when called from a slave CPU.

#define QM_PIRQ_CSCI 0x00100000 /* Congestion State Change */
#define QM_PIRQ_EQCI 0x00080000 /* Enqueue Command Committed */
#define QM_PIRQ_EQRI 0x00040000 /* EQCR Ring (below threshold) */
#define QM_PIRQ_DQRI 0x00020000 /* DQRR Ring (non-empty) */
#define QM_PIRQ_MRI 0x00010000 /* MR Ring (non-empty) */
#define QM_PIRQ_SLOW (QM_PIRQ_CSCI | QM_PIRQ_EQCI | QM_PIRQ_EQRI | \
 QM_PIRQ_MRI)
/**
 * qman_irqsource_get - return the portal work that is interrupt-driven
 *
 * Returns a bitmask of QM_PIRQ_**I processing sources that are currently
 * enabled for interrupt handling on the current cpu's affine portal. These
 * sources will trigger the portal interrupt and the interrupt handler (or a
 * tasklet/bottom-half it defers to) will perform the corresponding processing
 * work. The qman_poll_***() functions will only process sources that are not in
 * this bitmask. If the current CPU is sharing a portal hosted on another CPU,
 * this always returns zero.
 */
u32 qman_irqsource_get(void);
/**
 * qman_irqsource_add - add processing sources to be interrupt-driven
 * @bits: bitmask of QM_PIRQ_**I processing sources
 *
 * Adds processing sources that should be interrupt-driven (rather than
* processed via qman_poll_***() functions). Returns zero for success, or
* -EINVAL if the current CPU is sharing a portal hosted on another CPU.
*/
int qman_irqsource_add(u32 bits);
/**
* qman_irqsource_remove - remove processing sources from being interrupt-driven
* @bits: bitmask of QM_PIRQ_**I processing sources
*
* Removes processing sources from being interrupt-driven, so that they will
* instead be processed via qman_poll_***() functions. Returns zero for success,
* or -EINVAL if the current CPU is sharing a portal hosted on another CPU.
*/
int qman_irqsource_remove(u32 bits);

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
462 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Processing non-interrupt-driven portal duties (QMan)

If portal-sharing is in effect (see Section "Portal sharing"), these APIs won’t succeed when called from a slave
CPU.

/**
* qman_poll_dqrr - process DQRR (fast-path) entries
* @limit: the maximum number of DQRR entries to process
*
* Use of this function requires that DQRR processing not be interrupt-driven.
* Ie. the value returned by qman_irqsource_get() should not include
* QM_PIRQ_DQRI. If the current CPU is sharing a portal hosted on another CPU,
* this function will return -EINVAL, otherwise the return value is >=0 and
* represents the number of DQRR entries processed.
*/
int qman_poll_dqrr(unsigned int limit);
/**
QMan Portal APIs
QMan, BMan API RM, Rev. 0.13
6-34 NXP Confidential Proprietary NXP Semiconductors
Preliminary—Subject to Change Without Notice
* qman_poll_slow - process anything (except DQRR) that isn’t interrupt-driven.
*
* This function does any portal processing that isn’t interrupt-driven. If the
* current CPU is sharing a portal hosted on another CPU, this function will
* return -EINVAL, otherwise returns zero for success.
*/
void qman_poll_slow(void);
/**
 * qman_poll - legacy wrapper for qman_poll_dqrr() and qman_poll_slow()
 *
 * Dispatcher logic on a cpu can use this to trigger any maintenance of the
 * affine portal. There are two classes of portal processing in question;
 * fast-path (which involves demuxing dequeue ring (DQRR) entries and tracking
 * enqueue ring (EQCR) consumption), and slow-path (which involves EQCR
 * thresholds, congestion state changes, etc). This function does whatever
 * processing is not triggered by interrupts.
 *
 * Note, if DQRR and some slow-path processing are poll-driven (rather than
 * interrupt-driven) then this function uses a heuristic to determine how often
 * to run slow-path processing - as slow-path processing introduces at least a
 * minimum latency each time it is run, whereas fast-path (DQRR) processing is
 * close to zero-cost if there is no work to be done. Applications can tune this
 * behavior themselves by using qman_poll_dqrr() and qman_poll_slow() directly
 * rather than going via this wrapper.
 */
void qman_poll(void);

Recovery support (QMan)

Note that the following functions require the QMan portal to have been initialized in "recovery mode", which is
not possible with the current release. As such, these functions are for future use only (and documented here
only because they're declared in the API header).

/**
 * qman_recovery_cleanup_fq - in recovery mode, cleanup a FQ of unknown state
 */
int qman_recovery_cleanup_fq(u32 fqid);

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
463 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

/**
 * qman_recovery_exit - leave recovery mode
 */
int qman_recovery_exit(void);

Stopping and restarting dequeues to the portal

/**
 * qman_stop_dequeues - Stop h/w dequeuing to the s/w portal
 *
 * Disables DQRR processing of the portal. This is reference-counted, so
 * qman_start_dequeues() must be called as many times as qman_stop_dequeues() to
 * truly re-enable dequeuing.
 */
void qman_stop_dequeues(void);
/**
 * qman_start_dequeues - (Re)start h/w dequeuing to the s/w portal
 *
 * Enables DQRR processing of the portal. This is reference-counted, so
 * qman_start_dequeues() must be called as many times as qman_stop_dequeues() to
 * truly re-enable dequeuing.
 */
void qman_start_dequeues(void);

Manipulating the portal static dequeue command

/**
 * qman_static_dequeue_add - Add pool channels to the portal SDQCR
 * @pools: bit-mask of pool channels, using QM_SDQCR_CHANNELS_POOL(n)
 *
 * Adds a set of pool channels to the portal's static dequeue command register
 * (SDQCR). The requested pools are limited to those the portal has dequeue
 * access to.
 */
void qman_static_dequeue_add(u32 pools);
/**
 * qman_static_dequeue_del - Remove pool channels from the portal SDQCR
 * @pools: bit-mask of pool channels, using QM_SDQCR_CHANNELS_POOL(n)
 *
 * Removes a set of pool channels from the portal's static dequeue command
 * register (SDQCR). The requested pools are limited to those the portal has
 * dequeue access to.
 */
void qman_static_dequeue_del(u32 pools);
/**
 * qman_static_dequeue_get - return the portal's current SDQCR
 *
 * Returns the portal's current static dequeue command register (SDQCR). The
 * entire register is returned, so if only the currently-enabled pool channels
 * are desired, mask the return value with QM_SDQCR_CHANNELS_POOL_MASK.
 */
u32 qman_static_dequeue_get(void);

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
464 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Determining if the enqueue ring is empty

/**
 * qman_eqcr_is_empty - Determine if portal's EQCR is empty
 *
 * For use in situations where a cpu-affine caller needs to determine when all
 * enqueues for the local portal have been processed by QMan but can't use the
 * QMAN_ENQUEUE_FLAG_WAIT_SYNC flag to do this from the final qman_enqueue().
 * The function forces tracking of EQCR consumption (which normally doesn't
 * happen until enqueue processing needs to find space to put new enqueue
 * commands), and returns zero if the ring still has unprocessed entries,
 * non-zero if it is empty.
 */
int qman_eqcr_is_empty(void);

Frame queue management

Frame queue objects are stored in memory provided by the caller, which makes the API for this object
representation a little peculiar at first sight. The motivating factors are memory management and stashing of
frame queue context. Another factor is that frame queue objects are the only objects in the QMan (or BMan)
high-level interfaces that are essentially arbitrary in number, so having the caller provide storage relieves the
driver of having to know the best allocation scheme for all applications.

The qman_create_fq() API creates a new frame queue object, using the caller-supplied storage, and in which
the caller has already configured the callback functions to be used for handling hardware-produced data -
namely, DQRR entries and MR entries, the latter divided according to the type of message (software-enqueue
rejections, hardware-enqueue rejections, or frame queue state changes).

#define QMAN_FQ_FLAG_NO_ENQUEUE 0x00000001 /* can't enqueue */
#define QMAN_FQ_FLAG_NO_MODIFY 0x00000002 /* can only enqueue */
#define QMAN_FQ_FLAG_TO_DCPORTAL 0x00000004 /* consumed by CAAM/PME/FMan */
#define QMAN_FQ_FLAG_LOCKED 0x00000008 /* multi-core locking */
#define QMAN_FQ_FLAG_AS_I 0x00000010 /* query h/w state */
#define QMAN_FQ_FLAG_DYNAMIC_FQID 0x00000020 /* (de)allocate fqid */
struct qman_fq {
 /* Caller of qman_create_fq() provides these demux callbacks */
 struct qman_fq_cb {
 qman_cb_dqrr dqrr; /* for dequeued frames */
 qman_cb_mr ern; /* for s/w ERNs */
 qman_cb_mr dc_ern; /* for diverted h/w ERNs */
 qman_cb_mr fqs; /* frame-queue state changes*/
 } cb;
 /* Internal to the driver, don't touch. */
 [...]
};
/**
 * qman_create_fq - Allocates a FQ
 * @fqid: the index of the FQD to encapsulate, must be "Out of Service"
 * @flags: bit-mask of QMAN_FQ_FLAG_*** options
 * @fq: memory for storing the 'fq', with callbacks filled in
 *
 * Creates a frame queue object for the given @fqid, unless the
 * QMAN_FQ_FLAG_DYNAMIC_FQID flag is set in @flags, in which case a FQID is
 * dynamically allocated (or the function fails if none are available). Once
 * created, the caller should not touch the memory at 'fq' except as extended to
 * adjacent memory for user-defined fields (see the definition of "struct
 * qman_fq" for more info). NO_MODIFY is only intended for enqueuing to
 * pre-existing frame-queues that aren't to be otherwise interfered with, it

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
465 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

 * prevents all other modifications to the frame queue. The TO_DCPORTAL flag
 * causes the driver to honour any contextB modifications requested in the
 * qm_init_fq() API, as this indicates the frame queue will be consumed by a
 * direct-connect portal (PME, CAAM, or FMan). When frame queues are consumed by
 * software portals, the contextB field is controlled by the driver and can't be
 * modified by the caller. If the AS_SI flag is specified, management commands
 * will be used on portal @p to query state for frame queue @fqid and construct
 * a frame queue object based on that, rather than assuming/requiring that it be
 * Out of Service.
 */
int qman_create_fq(u32 fqid, u32 flags, struct qman_fq *fq);
#define QMAN_FQ_DESTROY_PARKED 0x00000001 /* FQ can be parked or OOS */
/**
 * qman_destroy_fq - Deallocates a FQ
 * @fq: the frame queue object to release
 * @flags: bit-mask of QMAN_FQ_DESTROY_*** options
 *
 * The memory for this frame queue object ('fq' provided in qman_create_fq()) is
 * not deallocated but the caller regains ownership, to do with as desired. The
 * FQ must be in the 'out-of-service' state unless the QMAN_FQ_DESTROY_PARKED
 * flag is specified, in which case it may also be in the 'parked' state.
 */
void qman_destroy_fq(struct qman_fq *fq, u32 flags);

Querying an FQ object

The following functions do not interact with h/w, they simply return the state that the QMan driver tracks within
the FQ object.

/** * qman_fq_fqid - Queries the frame queue ID of a FQ object * @fq: the
 frame queue object to query */ u32 qman_fq_fqid(struct qman_fq *fq); enum
 qman_fq_state { qman_fq_state_oos, qman_fq_state_parked, qman_fq_state_sched,
 qman_fq_state_retired }; #define QMAN_FQ_STATE_CHANGING 0x80000000 /* 'state'
 is changing */ #define QMAN_FQ_STATE_NE 0x40000000 /* retired FQ isn't empty
 / #define QMAN_FQ_STATE_ORL 0x20000000 / retired FQ has ORL */ #define
 QMAN_FQ_STATE_BLOCKOOS 0xe0000000 /* if any are set, no OOS */ #define
 QMAN_FQ_STATE_CGR_EN 0x10000000 /* CGR enabled */ /** * qman_fq_state - Queries
 the state of a FQ object * @fq: the frame queue object to query * @state:
 pointer to state enum to return the FQ scheduling state * @flags: pointer
 to state flags to receive QMAN_FQ_STATE_*** bitmask * * Queries the state
 of the FQ object, without performing any h/w commands. * This captures the
 state, as seen by the driver, at the time the function * executes. */ void
 qman_fq_state(struct qman_fq *fq, enum qman_fq_state *state, u32 *flags);

Initialize an FQ

The qman_init_fq() API requires that the caller fill in the details of the Initialize FQ command that they desire,
and uses the 'struct qm_mcc_initfq' structure type to this end. This structure is quite elaborate, consult the API
header file and SDK examples for more information.

#define QMAN_INITFQ_FLAG_SCHED 0x00000001 /* schedule rather than park */
#define QMAN_INITFQ_FLAG_NULL 0x00000002 /* zero 'contextB', no demux */
#define QMAN_INITFQ_FLAG_LOCAL 0x00000004 /* set dest portal */
/**
 * qman_init_fq - Initialises FQ fields, leaves the FQ "parked" or "scheduled"
 * @fq: the frame queue object to modify, must be 'parked' or new.
 * @flags: bit-mask of QMAN_INITFQ_FLAG_*** options

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
466 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

 * @opts: the FQ-modification settings, as defined in the low-level API
 *
 * @opts: the FQ-modification settings
*
* Select QMAN_INITFQ_FLAG_SCHED in @flags to cause the frame queue to be
* scheduled rather than parked. Select QMAN_INITFQ_FLAG_NULL in @flags to
* configure a frame queue that will not demux to a ’struct qman_fq’ object when
* dequeued frames or messages arrive at a software portal, but which will
* instead trigger the portal’s ’null_cb’ callbacks (see qman_create_portal()).
* NB, @opts can be NULL.
 *
 * Note that some fields and options within @opts may be ignored or overwritten
 * by the driver;
 * 1. the 'count' and 'fqid' fields are always ignored (this operation only
 * affects one frame queue: @fq).
 * 2. the QM_INITFQ_WE_CONTEXTB option of the 'we_mask' field and the associated
 * 'fqd' structure's 'context_b' field are sometimes overwritten;
 * - if @flags contains QMAN_INITFQ_FLAG_NULL, then context_b is initialized
 * to zero by the driver,
 * - if @fq was not created with QMAN_FQ_FLAG_TO_DCPORTAL, then context_b is
 * initialized to a value used by the driver for demux.
 * - if context_b is initialized for demux, so is context_a in case stashing
 * is requested (see item 4).
 * (So caller control of context_b is only possible for TO_DCPORTAL frame queue
 * objects.)
 * 3. if @flags contains QMAN_INITFQ_FLAG_LOCAL, the 'fqd' structure's
 * 'dest::channel' field will be overwritten to match the portal used to issue
 * the command. If the WE_DESTWQ write-enable bit had already been set by the
 * caller, the channel workqueue will be left as-is, otherwise the write-enable
 * bit is set and the workqueue is set to a default of 4. If the "LOCAL" flag
 * isn't set, the destination channel/workqueue fields and the write-enable bit
 * are left as-is.
 * 4. if the driver overwrites context_a/b for demux, then if
 * QM_INITFQ_WE_CONTEXTA is set, the driver will only overwrite
 * context_a.address fields and will leave the stashing fields provided by the
 * user alone, otherwise it will zero out the context_a.stashing fields.
 */
int qman_init_fq(struct qman_fq *fq, u32 flags, struct qm_mcc_initfq *opts);

Schedule an FQ

/** * qman_schedule_fq - Schedules a FQ * @fq: the frame queue object to
 schedule, must be 'parked' * * Schedules the frame queue, which must be Parked,
 which takes it to * Tentatively-Scheduled or Truly-Scheduled depending on its
 fill-level. */ int qman_schedule_fq(struct qman_fq *fq);

Retire an FQ

/** * qman_retire_fq - Retires a FQ * @fq: the frame queue object to retire *
 @flags: FQ flags (as per qman_fq_state) if retirement completes immediately * *
 Retires the frame queue. This returns zero if it succeeds immediately, +1 if *
 the retirement was started asynchronously, otherwise it returns negative for *
 failure. When this function returns zero, @flags is set to indicate whether *
 the retired FQ is empty and/or whether it has any ORL fragments (to show up *
 as ERNs). Otherwise the corresponding flags will be known when a subsequent *
 FQRN message shows up on the portal's message ring. * * NB, if the retirement
 is asynchronous (the FQ was in the Truly Scheduled or * Active state), the

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
467 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

 completion will be via the message ring as a FQRN - but * the corresponding
 callback may occur before this function returns!! Ie. the * caller should be
 prepared to accept the callback as the function is called, * not only once it
 has returned. */ int qman_retire_fq(struct qman_fq *fq, u32 *flags);

Put an FQ out of service

/** * qman_oos_fq - Puts a FQ "out of service" * @fq: the frame queue object to
 be put out-of-service, must be 'retired' * * The frame queue must be retired
 and empty, and if any order restoration list * was released as ERNs at the time
 of retirement, they must all be consumed. */ int qman_oos_fq(struct qman_fq
 *fq);

Query an FQD from QMan

The following functions perform query commands via the QMan software portal to obtain information about the
FQD corresponding to the given FQ object. The data structures used by the query are quite elaborate, consult
the API header file and SDK examples for more information.

/**
 * qman_query_fq - Queries FQD fields (via h/w query command)
 * @fq: the frame queue object to be queried
 * @fqd: storage for the queried FQD fields
 */
int qman_query_fq(struct qman_fq *fq, struct qm_fqd *fqd);
/**
 * qman_query_fq_np - Queries non-programmable FQD fields
 * @fq: the frame queue object to be queried
 * @np: storage for the queried FQD fields
 */
int qman_query_fq_np(struct qman_fq *fq, struct qm_mcr_queryfq_np *np);

Unscheduled (volatile) dequeuing of an FQ

#define QMAN_VOLATILE_FLAG_WAIT 0x00000001 /* wait if VDQCR is in use */
#define QMAN_VOLATILE_FLAG_WAIT_INT 0x00000002 /* if wait, interruptible? */
#define QMAN_VOLATILE_FLAG_FINISH 0x00000004 /* wait till VDQCR completes */
/**
 * qman_volatile_dequeue - Issue a volatile dequeue command
 * @fq: the frame queue object to dequeue from (or NULL)
 * @flags: a bit-mask of QMAN_VOLATILE_FLAG_*** options
 * @vdqcr: bit mask of QM_VDQCR_*** options, as per qm_dqrr_vdqcr_set()
 *
 * Attempts to lock access to the portal's VDQCR volatile dequeue functionality.
 * The function will block and sleep if QMAN_VOLATILE_FLAG_WAIT is specified and
 * the VDQCR is already in use, otherwise returns non-zero for failure. If
 * QMAN_VOLATILE_FLAG_FINISH is specified, the function will only return once
 * the VDQCR command has finished executing (ie. once the callback for the last
 * DQRR entry resulting from the VDQCR command has been called). If @fq is
 * non-NULL, the corresponding FQID will be substituted in to the VDQCR command,
 * otherwise it is assumed that @vdqcr already contains the FQID to dequeue
 * from.
 */
int qman_volatile_dequeue(struct qman_fq *fq, u32 flags, u32 vdqcr)

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
468 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Set FQ flow control state

/**
 * qman_fq_flow_control - Set the XON/XOFF state of a FQ
 * @fq: the frame queue object to be set to XON/XOFF state, must not be 'oos',
 * or 'retired' or 'parked' state
 * @xon: boolean to set fq in XON or XOFF state
 *
 * The frame should be in Tentatively Scheduled state or Truly Schedule sate,
 * otherwise the IFSI interrupt will be asserted.
 */
int qman_fq_flow_control(struct qman_fq *fq, int xon);

Enqueue Command (without ORP)

#define QMAN_ENQUEUE_FLAG_WAIT 0x00010000 /* wait if EQCR is full */
#define QMAN_ENQUEUE_FLAG_WAIT_INT 0x00020000 /* if wait, interruptible? */
#define QMAN_ENQUEUE_FLAG_WAIT_SYNC 0x00000004 /* if wait, until consumed? */
#define QMAN_ENQUEUE_FLAG_WATCH_CGR 0x00080000 /* watch congestion state */
#define QMAN_ENQUEUE_FLAG_DCA 0x00008000 /* perform enqueue-DCA */
#define QMAN_ENQUEUE_FLAG_DCA_PARK 0x00004000 /* If DCA, requests park */
#define QMAN_ENQUEUE_FLAG_DCA_PTR(p) /* If DCA, p is DQRR entry */ \
 (((u32)(p) << 2) & 0x00000f00)
#define QMAN_ENQUEUE_FLAG_C_GREEN 0x00000000 /* choose one C_*** flag */
#define QMAN_ENQUEUE_FLAG_C_YELLOW 0x00000008
#define QMAN_ENQUEUE_FLAG_C_RED 0x00000010
#define QMAN_ENQUEUE_FLAG_C_OVERRIDE 0x00000018
/**
 * qman_enqueue - Enqueue a frame to a frame queue
 * @fq: the frame queue object to enqueue to
 * @fd: a descriptor of the frame to be enqueued
 * @flags: bit-mask of QMAN_ENQUEUE_FLAG_*** options
 *
 * Fills an entry in the EQCR of portal @qm to enqueue the frame described by
 * @fd. The descriptor details are copied from @fd to the EQCR entry, the 'pid'
 * field is ignored. The return value is non-zero on error, such as ring full
 * (and FLAG_WAIT not specified), congestion avoidance (FLAG_WATCH_CGR
 * specified), etc. If the ring is full and FLAG_WAIT is specified, this
 * function will block. If FLAG_INTERRUPT is set, the EQCI bit of the portal
 * interrupt will assert when QMan consumes the EQCR entry (subject to "status
 * disable", "enable", and "inhibit" registers). If FLAG_DCA is set, QMan will
 * perform an implied "discrete consumption acknowledgement" on the dequeue
 * ring's (DQRR) entry, at the ring index specified by the FLAG_DCA_IDX(x)
 * macro. (As an alternative to issuing explicit DCA actions on DQRR entries,
 * this implicit DCA can delay the release of a "held active" frame queue
 * corresponding to a DQRR entry until QMan consumes the EQCR entry - providing
 * order-preservation semantics in packet-forwarding scenarios.) If FLAG_DCA is
 * set, then FLAG_DCA_PARK can also be set to imply that the DQRR consumption
 * acknowledgement should "park request" the "held active" frame queue. Ie.
 * when the portal eventually releases that frame queue, it will be left in the
 * Parked state rather than Tentatively Scheduled or Truly Scheduled. If the
 * portal is watching congestion groups, the QMAN_ENQUEUE_FLAG_WATCH_CGR flag
 * is requested, and the FQ is a member of a congestion group, then this
 * function returns -EAGAIN if the congestion group is currently congested.
 * Note, this does not eliminate ERNs, as the async interface means we can be
 * sending enqueue commands to an un-congested FQ that becomes congested before
 * the enqueue commands are processed, but it does minimise needless thrashing
 * of an already busy hardware resource by throttling many of the to-be-dropped

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
469 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

 * enqueues "at the source".
 */
int qman_enqueue(struct qman_fq *fq, const struct qm_fd *fd, u32 flags);

Enqueue Command with ORP

/* Same flags as qman_enqueue(), with the following additions;
 * - this flag indicates "Not Last In Sequence", ie. all but the final fragment
 * of a frame. */
#define QMAN_ENQUEUE_FLAG_NLIS 0x01000000
/* - this flag performs no enqueue but fills in an ORP sequence number that
 * would otherwise block it (eg. if a frame has been dropped). */
#define QMAN_ENQUEUE_FLAG_HOLE 0x02000000
/* - this flag performs no enqueue but advances NESN to the given sequence
 * number. */
#define QMAN_ENQUEUE_FLAG_NESN 0x04000000
/*
 * qman_enqueue_orp - Enqueue a frame to a frame queue using an ORP
 * @fq: the frame queue object to enqueue to
 * @fd: a descriptor of the frame to be enqueued
 * @flags: bit-mask of QMAN_ENQUEUE_FLAG_*** options
 * @orp: the frame queue object used as an order restoration point.
 * @orp_seqnum: the sequence number of this frame in the order restoration path
 *
 * Similar to qman_enqueue(), but with the addition of an Order Restoration
 * Point (@orp) and corresponding sequence number (@orp_seqnum) for this
 * enqueue operation to employ order restoration. Each frame queue object acts
 * as an Order Definition Point by providing each frame dequeued from it
 * with an incrementing sequence number, this value is generally ignored unless
 * that sequence of dequeued frames will need order restoration later. Each
 * frame queue object also encapsulates an Order Restoration Point (ORP), which
 * is a re-assembly context for re-ordering frames relative to their sequence
 * numbers as they are enqueued. The ORP does not have to be within the frame
 * queue that receives the enqueued frame, in fact it is usually the frame
 * queue from which the frames were originally dequeued. For the purposes of
 * order restoration, multiple frames (or "fragments") can be enqueued for a
 * single sequence number by setting the QMAN_ENQUEUE_FLAG_NLIS flag for all
 * enqueues except the final fragment of a given sequence number. Ordering
 * between sequence numbers is guaranteed, even if fragments of different
 * sequence numbers are interlaced with one another. Fragments of the same
 * sequence number will retain the order in which they are enqueued. If no
 * enqueue is to performed, QMAN_ENQUEUE_FLAG_HOLE indicates that the given
 * sequence number is to be "skipped" by the ORP logic (eg. if a frame has been
 * dropped from a sequence), or QMAN_ENQUEUE_FLAG_NESN indicates that the given
 * sequence number should become the ORP's "Next Expected Sequence Number".
 *
 * Side note: a frame queue object can be used purely as an ORP, without
 * carrying any frames at all. Care should be taken not to deallocate a frame
 * queue object that is being actively used as an ORP, as a future allocation
 * of the frame queue object may start using the internal ORP before the
 * previous use has finished.
 */
int qman_enqueue_orp(struct qman_fq *fq, const struct qm_fd *fd, u32 flags,
 struct qman_fq *orp, u16 orp_seqnum);

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
470 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

DCA Mode

As described in Section "Order Preservation and Discrete Consumption Acknowledgment", FQs initialized
for "hold active" behavior can have order-preservation behavior if their DQRR entries are consumed either
by implicit DCA in the enqueue command when forwarding, or by explicit DCA if the frame is not going to
be forwarded. The implicit DCA via enqueue is described in Section "Enqueue Command (without ORP)",
this section describes the API for performing an explicit DCA on a DQRR entry. As with the implicit DCA via
enqueue, explicit DCA commands also allow the caller to specify that the FQ be Parked rather than rescheduled
once all its DQRR entries are consumed.

/**
 * qman_dca - Perform a Discrete Consumption Acknowledgement
 * @dq: the DQRR entry to be consumed
 * @park_request: indicates whether the held-active @fq should be parked
 *
 * Only allowed in DCA-mode portals, for DQRR entries whose handler callback had
 * previously returned 'qman_cb_dqrr_defer'. NB, as with the other APIs, this
 * does not take a 'portal' argument but implies the core affine portal from the
 * cpu that is currently executing the function. For reasons of locking, this
 * function must be called from the same CPU as that which processed the DQRR
 * entry in the first place.
 */
void qman_dca(struct qm_dqrr_entry *dq, int park_request);

Congestion Management Records

QMan supports a fixed number3 of built-in resources called Congestion Group Records (CGRs), that can be
used as containers for related frame queues that should collectively benefit from congestion management. The
precise algorithms used for congestion management with these records are beyond the scope of the document,
see the Queue Manager section of the appropriate QorIQ SoC Reference Manual for details.

The CGR kernel structure enables access to the CGR hardware functionality. Each object refers to an
underlining hardware record via the cgrid field. Many CGR objects may reference the same cgrid, but care must
be taken when this object resides on different cores as no inter-core protection is provided.

The init frame queue functionality allows the caller to associate a CGR with the associated frame queue. The
interface permits the management and modification of the underlining CGRs and notifies the user of congestion
state changed. The current interface does not provide a mechanism to manage CGR ids. The application
software is expected to arbitrate use of CGR ids.

/* Flags to qman_modify_cgr() */
#define QMAN_CGR_FLAG_USE_INIT 0x00000001
/**
 * This is a qman cgr callback function which gets invoked when the
typedef void (*qman_cb_cgr)(struct qman_portal *qm,
 struct qman_cgr *cgr, int congested);
struct qman_cgr {
 /* Set these prior to qman_create_cgr() */
 u32 cgrid; /* 0..255 */
 qman_cb_cgr cb;
 enum qm_channel chan; /* portal channel this object is created on */
 struct list_head node;
};
/* When Weighted Random Early Discard (WRED) is used then the following
 * structure is used to configure the WRED parameters. Refer to the QMan

3 256 for P4080/P5020/P3041
UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
471 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

 * Block Guide for a detailed description of the various parameters.
 */
struct qm_cgr_wr_parm {
 union {
 u32 word;
 struct {
 u32 MA:8;
 u32 Mn:5;
 u32 SA:7; /* must be between 64-127 */
 u32 Sn:6;
 u32 Pn:6;
 } __packed;
 };
} __packed;
/* This struct represents the 13-bit "CS_THRES" CGR field. In the corresponding
 * management commands, this is padded to a 16-bit structure field, so that's
 * how we represent it here. The congestion state threshold is calculated from
 * these fields as follows;
 * CS threshold = TA * (2 ^ Tn)
 */
struct qm_cgr_cs_thres {
 u16 __reserved:3;
 u16 TA:8;
 u16 Tn:5;
} __packed;
/* This identical structure of CGR fields is present in the "Init/Modify CGR"
 * commands and the "Query CGR" result. It's suctioned out here into its own
 * struct. */
struct __qm_mc_cgr {
 struct qm_cgr_wr_parm wr_parm_g;
 struct qm_cgr_wr_parm wr_parm_y;
 struct qm_cgr_wr_parm wr_parm_r;
 u8 wr_en_g; /* boolean, use QM_CGR_EN */
 u8 wr_en_y; /* boolean, use QM_CGR_EN */
 u8 wr_en_r; /* boolean, use QM_CGR_EN */
 u8 cscn_en; /* boolean, use QM_CGR_EN */
 union {
 struct {
 u16 cscn_targ_upd_ctrl; /* use QM_CSCN_TARG_UDP_ */
 u16 cscn_targ_dcp_low; /* CSCN_TARG_DCP low-16bits
 */
 };
 u32 cscn_targ; /* use QM_CGR_TARG_* */
 };
 u8 cstd_en; /* boolean, use QM_CGR_EN */
 u8 cs; /* boolean, only used in query response */
 struct qm_cgr_cs_thres cs_thres;
 u8 mode; /* QMAN_CRG_MODE_FRAME not supported in rev1.0 */
} __packed
struct qm_mcc_initcgr {
 u8 __reserved1;
 u16 we_mask; /* Write Enable Mask */
 struct __qm_mc_cgr cgr; /* CGR fields */
 u8 __reserved2[2];
 u8 cgid;
 u8 __reserved4[32];
} __packed;
/**
 * qman_create_cgr - Register a congestion group object
 * @cgr: the 'cgr' object, with fields filled in

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
472 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

 * @flags: QMAN_CGR_FLAG_* values
 * @opts: optional state of CGR settings
 *
 * Registers this object to receiving congestion entry/exit callbacks on the
 * portal affine to the cpu portal on which this API is executed. If opts is
 * NULL then only the callback (cgr->cb) function is registered. If @flags
 * contains QMAN_CGR_FLAG_USE_INIT, then an init hw command (which will reset
 * any unspecified parameters) will be used rather than a modify hw hardware
 * (which only modifies the specified parameters).
 */
int qman_create_cgr(struct qman_cgr *cgr, u32 flags, struct qm_mcc_initcgr
 *opts);
/**
 * qman_create_cgr_to_dcp - Register a congestion group object to DCP portal
 * @cgr: the 'cgr' object, with fields filled in
 * @flags: QMAN_CGR_FLAG_* values
 * @dcp_portal: the DCP portal to which the cgr object is registered
 * @opts: optional state of CGR settings
 *
 */
int qman_create_cgr_to_dcp(struct qman_cgr *cgr, u32 flags, u16 dcp_portal,
 struct qm_mcc_initcgr *opts);
/**
 * qman_delete_cgr - Deregisters a congestion group object
 * @cgr: the 'cgr' object to deregister
 *
 * "Unplugs" this CGR object from the portal affine to the cpu on which this API
 * is executed. This must be excuted on the same affine portal on which it was
 * created.
 */
int qman_delete_cgr(struct qman_cgr *cgr);
/**
 * qman_modify_cgr - Modify CGR fields
 * @cgr: the 'cgr' object to modify
 * @flags: QMAN_CGR_FLAG_* values
 * @opts: the CGR-modification settings
 *
 * The @opts parameter can be NULL. Note that some fields and options within
* @opts may be ignored or overwritten by the driver, in particular the ’cgrid’
* field is ignored (this operation only affects the given CGR object). If
* @flags contains QMAN_CGR_FLAG_USE_INIT, then an init hw command (which will
* reset any unspecified parameters) will be used rather than a modify hw
* hardware (which only modifies the specified parameters).
 */
int qman_modify_cgr(struct qman_cgr *cgr, u32 flags, struct qm_mcc_initcgr
 *opts);
/**
 * qman_query_cgr - Queries CGR fields
 * @cgr: the 'cgr' object to query
 * @result: storage for the queried congestion group record
 */
int qman_query_cgr(struct qman_cgr *cgr, struct qm_mcr_querycgr *result);

Zero-Configuration Messaging

As described in Section "Overview (QMan)", the demux logic of the QMan portal driver uses the contextB field
of FQDs, as published in DQRR and MR entries, to determine the corresponding FQ object, and from there the
DQRR or MR callback to invoke. However, "default callbacks" can also be associated with a portal that will be
used if a "NULL" FQ is dequeued from, where NULL refers to an FQD whose contextB entry has been initialized
UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
473 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

to NULL (this occurs when using the QMAN_INITFQ_FLAG_NULL flag to the qman_init_fq() API, described in
Section "Initialize an FQ").

The purpose of this mechanism is to allow the user of one portal to enqueue frames on any frame queue that
is configured in this way and schedule it to another portal. For virtualization or AMP scenarios, it is a difficult
architectural problem to configure all guest operating systems to agree, in advance, on runtime parameters.
The use of NULL frame queues allows a control plane guest OS to use any frame queue, configured with a
NULL "contextB" field (see the QMAN_INITFQ_FLAG_NULL flag in the "Frame queue management" section
below), to send any and all such configuration to another guest by scheduling that NULL frame queue to one of
the target guest's portals. The target guest will have the portal's "NULL" callbacks invoked rather than those of
any frame queue objects, and as such this provides what could be considered a "zero-configuration" interface -
no agreement is required over what frame queue that configuration information will be arriving on, only that the
configuration will arrive via the portal as a message on a NULL frame queue.

Note: Unless the payload of FDs passed over a zero-config FQ fits entirely within the 32-bit cmd/status field,
buffers will presumably be required and the zero-configuration mechanism described here does not address
how the sending and receiving ends should agree on what memory resources and management to use for this.

/**
 * qman_get_null_cb - get callbacks currently used for "null" frame queues
 *
 * Copies the callbacks used for the affine portal of the current cpu.
 */
void qman_get_null_cb(struct qman_fq_cb *null_cb);
/**
 * qman_set_null_cb - set callbacks to use for "null" frame queues
 *
 * Sets the callbacks to use for the affine portal of the current cpu, whenever
 * a DQRR or MR entry refers to a "null" FQ object. (Eg. zero-conf messaging.)
 */
void qman_set_null_cb(const struct qman_fq_cb *null_cb);

FQ allocation

Ad hoc FQ allocator

As described in Section "Seeding Buffer Pools">, BMan buffer pool ID zero is currently reserved for use as
an ad hoc FQ allocator. As seen in Section "Frame queue management", this feature can be used implicitly
when creating an FQ object by passing the QMAN_FQ_FLAG_DYNAMIC_FQID flag to qman_init_fq(). The
advantage of this mechanism is that it works across all cpus/portals, independent of any hypervisor or other
system partitioning. The disadvantage of this mechanism is that it does not permit the atomic nor contiguous
allocation of more than one FQ at a time, and in particular most high-performance uses of FMan require
contiguous ranges of FQIDs that also meet certain alignment requirements (that is, that the FQID range begins
on an aligned FQID value).

FQ range allocator

The following APIs allow software to allocate and release arbitrary ranges of FQIDs, but it should be noted
that the current version of the NXP data path software implements this without any hardware interaction. As
such, multiple (guest) systems running on the same chip will each have their own allocator and are not aware
of each other's (de)allocations. The range allocator's default state is empty, and it can be seeded by calling
qman_release_fqid_range() on initialization with an appropriate FQID range to manage. The intention is for the

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
474 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

control-plane software to initialize this range and to perform all allocations and deallocations on behalf of any
software running on different system instances.

/**
 * qman_alloc_fqid_range - Allocate a contiguous range of FQIDs
 * @result: is set by the API to the base FQID of the allocated range
 * @count: the number of FQIDs required
 * @align: required alignment of the allocated range
 * @partial: non-zero if the API can return fewer than @count FQIDs
 * Returns the number of frame queues allocated, or a negative error code. If
 * @partial is non zero, the allocation request may return a smaller range of
 * FQs than requested (though alignment will be as requested). If @partial is
 * zero, the return value will either be 'count' or negative.
 */
int qman_alloc_fqid_range(u32 *result, u32 count, u32 align, int partial);
/**
 * qman_release_fqid_range - Release the specified range of frame queue IDs
 * @fqid: the base FQID of the range to deallocate
 * @count: the number of FQIDs in the range
 *
 * This function can also be used to seed the allocator with ranges of FQIDs
 * that it can subsequently use. Returns zero for success.
 */
void qman_release_fqid_range(u32 fqid, unsigned int count);

Future FQ allocator changes

Note that a future version of the NXP data path software will automatically seed the range allocator with all
FQIDs available to QMan, it will reimplement these APIs over an IPC layer such that all system instances share
a common allocator instance, and the BMan-based FQ allocator will be removed and the corresponding APIs
being reimplemented to use this range allocator.

Helper functions

In cases where software running on different CPUs communicate using QMan frame queues, there can arise an
initialization problem related to synchronization. If one side is termed the producer and the other the consumer,
then the question becomes one of when it is safe for the producer to enqueue to that FQ. It is normal for
software consumers to take care of initializing and scheduling FQs, because they must provide initialization and
scheduling details in order for dequeue-handling to function correctly. But on the producer side, any attempt to
enqueue to the FQ prior to the FQ being initialized will be rejected (enqueues are not permitted to OutOfService
FQs). The following inline function can be used directly or as an example of how to determine when an FQ has
changed state.

Note: It is safe for the producer to enqueue once the FQ has been initialized but not yet scheduled by the
consumer.

/** * qman_poll_fq_for_init - Check if an FQ has been initialized from
 OOS * @fqid: the FQID that will be initialized by other s/w * * In many
 situations, a FQID is provided for communication between s/w * entities,
 and whilst the consumer is responsible for initialising and * scheduling
 the FQ, the producer(s) generally create a wrapper FQ object using * and
 only call qman_enqueue() (no FQ initialisation, scheduling, etc). Ie; *
 qman_create_fq(..., QMAN_FQ_FLAG_NO_MODIFY, ...); * However, data can not
 be encannotto the FQ until it is initialized out of * the OOS state - this
 function polls for that condition. It is particularly * useful for users of IPC
 functions - each endpoint's Rx FQ is the other * endpoint's Tx FQ, so each side
 can initialise and schedule their Rx FQ object * and then use this API on the

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
475 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

 (NO_MODIFY) Tx FQ object in order to * synchronise. The function returns zero
 for success, +1 if the FQ is still in * the OOS state, or negative if there
 was an error. */ static inline int qman_poll_fq_for_init(struct qman_fq *fq)
 { struct qm_mcr_queryfq_np np; int err; err = qman_query_fq_np(fq, &np); if
 (err) return err; if ((np.state & QM_MCR_NP_STATE_MASK) == QM_MCR_NP_STATE_OOS)
 return 1; return 0; }

7.2.3.2.6 Sysfs and debugfs QMan/BMan interfaces

The following section describes the QMan and BMan interfaces available via sysfs and debugfs.

Note: Check the device-tree of each SoC to determine the interfaces available. For more information, see the
Reference Manual for the SoC, and/or examine the sysfs filesystem at runtime.

7.2.3.2.6.1 QMan sysfs

/sys/devices/platform/soc/1880000.qman/

Description:

This directory contains a snapshot of the internal state of the QMan device.

/sys/devices/platform/soc/1880000.qman/error_capture

Description:

This directory contains a snapshot of error related QMan attributes.

/sys/devices/platform/soc/1880000.qman/error_capture/sbec_<0..6>

Description:

Provides a count of the number of single bit ECC errors that have occurred when reading from one of the QMan
internal memories. The range <0..6> represent a QMan internal memory region defined as follows:

0: FQD cache memory

1: FQD cache tag memory

2: SFDR memory

3: WQ context memory

4: Congestion Group Record memory

5: Internal Order Restoration List memory

6: Software Portal ring memory

This file is read-reset.

 /sys/devices/platform/soc/1880000.qman/sfdr_in_use

Description:

Reports the number of SFDR currently in use. The minimum value is 1.

This file is read-only.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
476 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

/sys/devices/platform/soc/1880000.qman/pfdr_fpc

Description:

Total Packed Frame Descriptor Record Free Pool Count in external memory.

This file is read-only.

/sys/devices/platform/soc/1880000.qman/pfdr_cfg

Description:

Used to read the configuration of the dynamic allocation policy for PFDRs. The value is used to account for
PFDR that may be required to complete any currently executing operations in the sequencers.

This file is read-only.

 /sys/devices/platform/soc/1880000.qman/idle_stat

Description:

This file can be used to determine when QMan is both idle and empty. The possible values are:

0: All work queues in QMan are NOT empty and QMan is NOT idle.

1: All work queues in QMan are NOT empty and QMan is idle.

2: All work queues in QMan are empty

3: All work queues in QMan are empty and QMan is idle.

This file is read-only.

/sys/devices/platform/soc/1880000.qman/err_isr

Description:

QMan contains one dedicated interrupt line for signaling error conditions to software. This file identifies
the source of the error interrupt within QMan. The value is displayed in hexadecimal format. Refer to the
appropriate QorIQ SOC Reference Manual for a description of the QMAN_ERR_ISR register.

This file is read-only.

 /sys/devices/platform/soc/1880000.qman/dcp<0..3>_dlm_avg

Description:

These files contain an EWMA (exponentially weighted moving average) of dequeue latency samples for
dequeue commands received on the sub portal. The range <0..3> refers to each of the direct-connect portals.
The display format is as follows: <avg_integer>.<avg_fraction>

This file can be seeded with an integer value. The input integer is processed in the following manner:
<avg_fraction> = lowest 8 bits / 256 , <avg_integer> = next 12 bits

ex: echo 0x201 > dcp0_dlm_avg

cat dcp0_dlm_avg

0.00390625

This file is read-write.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
477 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

/sys/devices/platform/soc/1880000.qman/ci_rlm_avg

Description:

This file contains an EWMA (exponentially weighted moving average) of read latency samples for reads on
CoreNet initiated by QMan. The display format is as follows: <avg_integer>.<avg_fraction>r

This file can be seeded with an integer value. The input integer is processed in the following manner:
<avg_fraction> = lowest 8 bits / 256 , <avg_integer> = next 12 bits

ex: echo 0x201 > ci_rlm_avg

cat ci_rlm_avg

0.00390625

This file is read-write.

7.2.3.2.6.2 BMan sysfs

/sys/devices/platform/soc/1890000.bman.bman

Description:

This directory contains a snapshot of the internal state of the BMan device.

/sys/devices/platform/soc/1890000.bman/error_capture

Description:

This directory contains a snapshot of error related BMan attributes.

/sys/devices/platform/soc/1890000.bman/error_capture/sbec_<0..1>

Description:

Provides a count of the number of single bit ECC errors that have occurred when reading from one of the BMan
internal memories. The range <0..1> represent a BMAN internal memory region defined as follows:

0: Stockpile memory 0

1: Software Portal ring memory

This file is read-reset.

/sys/devices/platform/soc/1890000.bman/pool_count

Description:

This directory contains a snapshot of the number of free buffers available in any of the buffer pools.

 /sys/devices/platform/soc/1890000.bman/fbpr_fpc

Description:

This file returns a snapshot of the Free Buffer Proxy Record free pool size. Total Free Buffer Proxy Record Free
Pool Count in external memory.

This file is read-only.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
478 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

 /sys/devices/platform/soc/1890000.bman/err_isr

Description:

BMan contains one dedicated interrupt line for signaling error conditions to software. This file identifies the
source of the error interrupt within BMan. The value is displayed in hexadecimal format. Refer to the appropriate
QorIQ SOC Reference Manual for a description of the BMAN_ERR_ISR register.

This file is read-only.

7.2.3.2.6.3 QMan debugfs

/sys/kernel/debug/qman

Description:

This directory contains various QMan device debugging attributes.

/sys/kernel/debug/qman/query_cgr

Description:

Query the entire contents of a Congestion Group Record. The file takes as input the Congestion Group Record
ID. The output of the file returns the various CGR fields.

For example, if we want to query cgr_id 10 we would do the following:

echo 10 > query_cgr

cat query_cgr

Query CGR id 0xa

wr_parm_g MA: 0, Mn: 0, SA: 0, Sn: 0, Pn: 0

wr_parm_y MA: 0, Mn: 0, SA: 0, Sn: 0, Pn: 0

wr_parm_r MA: 0, Mn: 0, SA: 0, Sn: 0, Pn: 0

wr_en_g: 0, wr_en_y: 0, we_en_r: 0

cscn_en: 0

cscn_targ: 0

cstd_en: 0

cs: 0

cs_thresh_TA: 0, cs_thresh_Tn: 0

i_bcnt: 0

a_bcnt: 0

/sys/kernel/debug/qman/query_congestion

Description:

Query the state of all 256 Congestion Groups in QMan. This is a read-only file. The output of the file returns
the state of all congestion group records. The state of a congestion group is either "in congestion" or "not in
congestion". Since CGR are normally not in congestion, only CGR which are in congestion are returned. If no
CGR are in congestion, then this is indicated.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
479 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

For example, if we want to perform a query we would do the following:

cat query_congestion

Query Congestion Result

All congestion groups not congested.

/sys/kernel/debug/qman/query_fq_fields

Description:

Query the frame queue programmable fields. This file takes as input the frame queue id to be queried on a
subsequent read. The output of this file returns all the frame queue programmable fields. The default frame
queue id is 1.

Refer to the appropriate QorIQ SOC Reference Manual for detailed explanation on the return values.

For example, if we determine that our application is using frame queue 482 we could use this file in the following
manner:

echo 482 > query_fq_fields

cat query_fq_fields

Query FQ Programmable Fields Result fqid 0x1e2

orprws: 0

oa: 0

olws: 0

cgid: 0

fq_ctrl:

Aggressively cache FQ

Don't block active

Context-A stashing

Tail-Drop Enable

dest_channel: 33

dest_wq: 7

ics_cred: 0

td_mant: 128

td_exp: 7

ctx_b: 0x19e

ctx_a: 0x78b59e18

ctx_a_stash_exclusive:

FQ Ctx Stash

Frame Annotation Stash

ctx_a_stash_annotation_cl: 1

ctx_a_stash_data_cl: 2

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
480 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

ctx_a_stash_context_cl: 2

/sys/kernel/debug/qman/query_fq_np_fields

Description:

Query the frame queue non-programmable fields. This file takes as input the frame queue id to be queried on a
subsequent read. The output of this file returns all the frame queue non-programmable fields. The default frame
queue id is 1.

Refer to the appropriate QorIQ SOC Reference Manual for detailed explanation on the return values.

For example, if we determine that our application is using frame queue 482 we could use this file in the following
manner:

echo 482 > query_fq_np_fields

cat query_fq_np_fields

Query FQ Non-Programmable Fields Result fqid 0x1e2

force eligible pending: no

retirement pending: no

state: Out of Service

fq_link: 0x0

orp_nesn: 0

orp_ea_hseq: 0

orp_ea_tseq: 0

orp_ea_hptr: 0x0

orp_ea_tptr: 0x0

pfdr_hptr: 0x0

pfdr_tptr: 0x0

is: ics_surp contains a surplus

ics_surp: 0

byte_cnt: 0

frm_cnt: 0

ra1_sfdr: 0x0

ra2_sfdr: 0x0

od1_sfdr: 0x0

od2_sfdr: 0x0

od3_sfdr: 0x0

/sys/kernel/debug/qman/query_cq_fields

Description:

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
481 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Query all the fields of in a particular CQD. This file takes input as the DCP id plus the class queue id to be
queried on a subsequent read. The output of this file returns all the class queue fields. The default class queue
id is 1 of DCP 0

Refer to the appropriate QorIQ SOC Reference Manual for detailed explanation on the return values.

For example, if we determine that our application is using class queue 4 of DCP 1, we could use this file in the
following manner:

echo 0x01000004 > query_cq_fields

(The most left 8 bits are used to specify DCP id, and the rest of 24 bits are used to specify the class queue id)

cat query_fq_fields

Query CQ Fields Result cqid 0x4 on DCP 1

ccgid: 4

state: 0

pfdr_hptr: 0

pfdr_tptr: 0

od1_xsfdr: 0

od2_xsfdr: 0

od3_xsfdr: 0

od4_xsfdr: 0

od5_xsfdr: 0

od6_xsfdr: 0

ra1_xsfdr: 0

ra2_xsfdr: 0

frame_count: 0

/sys/kernel/debug/qman/query_ceetm_ccgr

Description:

Query the configuration and state fields within a CEETM Congestion Group Record that relate to congestion
management(CM). This file takes input as the DCP id(most left 8 bits) and CEETM Congestion Group Record
ID(most right 24 bits). The output of the file returns the various CCGR fields.

For example, if we want to query ccgr_id 7 of DCP 0, we would do the following:

echo 0x00000007 > query_ceetm_ccgr

cat query_ceetm_ccgr

Query CCGID 7

Query CCGR id 7 in DCP 0

wr_parm_g MA: 0, Mn: 0, SA: 0, Sn: 0, Pn: 0

wr_parm_y MA: 0, Mn: 0, SA: 0, Sn: 0, Pn: 0

wr_parm_r MA: 0, Mn: 0, SA: 0, Sn: 0, Pn: 0

wr_en_g: 0,
UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
482 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

wr_en_y: 0,

we_en_r: 0

cscn_en: 0

cscn_targ_dcp:

cscn_targ_swp:

td_en: 0

cs_thresh_in_TA: 0,

cs_thresh_in_Tn: 0

cs_thresh_out_TA: 0,

cs_thresh_out_Tn: 0

td_thresh_TA: 0,

td_thresh_Tn: 0

mode: byte count

i_cnt: 0

a_cnt: 0

/sys/kernel/debug/qman/query_wq_lengths

Description:

Query the length of the Work Queues in a particular channel. This file takes as input a specified channel id. The
output of this file returns the lengths of the work queues on the specified channel.

For example, if we want to query channel 1 we would do the following:

echo 1 > query_wq_lengths

cat query_wq_lengths

Query Result For Channel: 0x1

wq0_len : 0

wq1_len : 0

wq2_len : 0

wq3_len : 0

wq4_len : 0

wq5_len : 0

wq6_len : 0

wq7_len : 0

/sys/kernel/debug/qman/fqd/avoid_blocking_[enable | disable]

Description:

Query Avoid_Blocking bit in all frame queue descriptors. This is a read-only file. The output of this file returns all
the frame queue ids, in a comma-separated list, which have their Avoid_Blocking bit mask enabled or disabled.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
483 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

For example, if we want to find all frame queues with Avoid_Blocking enabled, we would do the following:

 # cat avoid_blocking_enable
 List of fq ids with: Avoid Blocking :enabled
 0x0001d2,0x0001d3,0x0001d4,0x0001d5,0x0001de,0x0001df,0x0001e0,0x0001e1,
 0x0001ea,0x0001eb,0x0001ec,0x0001ed,0x0001f6,0x0001f7,0x0001f8,0x0001f9,
 ...
 Total FQD with: Avoid Blocking : enabled = 528
 Total FQD with: Avoid Blocking : disabled = 32239

/sys/kernel/debug/qman/fqd/prefer_in_cache_[enable | disable]

Description:

Query Prefer_in_Cache bit in all frame queue descriptors. This is a read-only file. The output of this file returns
all the frame queue ids, in a comma-separated list, which have their Prefer_in_Cache bit mask enabled or
disabled.

For example, if we want to find all frame queues with Prefer_in_Cache enabled, we would do the following:

 # cat prefer_in_cache_enable
 List of fq ids with: Prefer in cache :enabled
 0x0001ca,0x0001cb,0x0001cc,0x0001cd,0x0001ce,0x0001cf,0x0001d0,0x0001d1,
 0x0001d2,0x0001d3,0x0001d4,0x0001d5,0x0001d6,0x0001d7,0x0001d8,0x0001d9,
 ...
 Total FQD with: Prefer in cache : enabled = 560
 Total FQD with: Prefer in cache : disabled = 32207

/sys/kernel/debug/qman/fqd/cge_[enable | disable]

Description:

Query Congestion_Group_Enable bit in all frame queue descriptors. This is a read-only file. The output of this
file returns all the frame queue ids, in a comma-separated list, which have their Congestion_Group_Enable bit
mask enabled or disabled.

For example, if we want to find all frame queues with Congestion_Group_Enable disabled, we would do the
following:

 # cat cge_disable
 List of fq ids with: Congestion Group Enable :disabled
 0x000001,0x000002,0x000003,0x000004,0x000005,0x000006,0x000007,0x000008,
 0x000009,0x00000a,0x00000b,0x00000c,0x00000d,0x00000e,0x00000f,0x000010,
 ...
 Total FQD with: Congestion Group Enable : enabled = 0
 Total FQD with: Congestion Group Enable : disabled = 32767

/sys/kernel/debug/qman/fqd/cpc_[enable | disable]

Description:

Query CPC_Stash_Enable bit in all frame queue descriptors. This is a read-only file. The output of this file
returns all the frame queue ids, in a comma-separated list, which have their CPC_Stash_Enable bit mask
enabled or disabled.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
484 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

For example, if we want to find all frame queues with CPC Stash disabled, we would do the following:

cat cpc_disable
List of fq ids with: CPC Stash Enable :disabled
0x000001,0x000002,0x000003,0x000004,0x000005,0x000006,0x000007,0x000008,
0x000009,0x00000a,0x00000b,0x00000c,0x00000d,0x00000e,0x00000f,0x000010,
...
Total FQD with: CPC Stash Enable : enabled = 0
Total FQD with: CPC Stash Enable : disabled = 32767

/sys/kernel/debug/qman/fqd/cred

Description:

Query Intra-Class Scheduling bit in all frame queue descriptors. This is a read-only file. The output of this file
returns all the frame queue ids, in a comma-separated list, which have their Intra-Class Scheduling Credit value
greater than 0.

cat cred
List of fq ids with Intra-Class Scheduling Credit > 0
Total FQD with ics_cred > 0 = 0

/sys/kernel/debug/qman/fqd/ctx_a_stashing_[enable | disable]

Description:

Query Context_A bit in all frame queue descriptors. This is a read-only file. The output of this file returns all the
frame queue ids, in a comma-separated list, which have their Context_A bit mask enabled or disabled.

For example, if we want to find all frame queues with Context_A enabled, we would do the following:

cat ctx_a_stashing_enable
List of fq ids with: Context-A stashing :enabled
0x0001d2,0x0001d3,0x0001d4,0x0001d5,0x0001de,0x0001df,0x0001e0,0x0001e1,
0x0001ea,0x0001eb,0x0001ec,0x0001ed,0x0001f6,0x0001f7,0x0001f8,0x0001f9,
...
Total FQD with: Context-A stashing : enabled = 528
Total FQD with: Context-A stashing : disabled = 32239

/sys/kernel/debug/qman/fqd/hold_active_[enable | disable]

Description:

Query Hold_Active bit in all frame queue descriptors. This is a read-only file. The output of this file returns all the
frame queue ids, in a comma-separated list, which have their Hold_Active bit mask enabled or disabled.

For example, if we want to find all frame queues with Hold_Active enabled, we would do the following:

cat hold_active_enable
List of fq ids with: Hold active in portal :enabled
Total FQD with: Hold active in portal : enabled = 0
Total FQD with: Hold active in portal : disabled = 32767

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
485 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

/sys/kernel/debug/qman/fqd/orp_[enable | disable]

Description:

Query ORP bit in all frame queue descriptors. This is a read-only file. The output of this file returns all the frame
queue ids, in a comma-separated list, which have their ORP bit mask enabled or disabled.

For example, if we want to find all frame queues with ORP enabled, we would do the following:

cat orp_enable
List of fq ids with: ORP Enable :enabled
Total FQD with: ORP Enable : enabled = 0
Total FQD with: ORP Enable : disabled = 32767

/sys/kernel/debug/qman/fqd/sfdr_[enable | disable]

Description:

Query Force_SFDR_Allocate bit in all frame queue descriptors. This is a read-only file. The output of this file
returns all the frame queue ids, in a comma-separated list, which have their Force_SFDR_Allocate bit mask
enabled or disabled.

For example, if we want to find all frame queues with Force_SFDR_Allocate enabled, we would do the
following:

cat sfdr_enable
List of fq ids with: High-priority SFDRs :enabled(1)
Total FQD with: High-priority SFDRs : enabled = 0
Total FQD with: High-priority SFDRs : disabled = 32767

sys/kernel/debug/qman/fqd/state_[active | oos | parked | retired | tentatively_sched |
truly_sched]

Description:

Query Frame Queue State in all frame queue descriptors. This is a read-only file. The output of this file returns
all the frame queue ids, in a comma-separated list, which are in the specified state: active, oos, parked, retired,
tentatively scheduled or truly scheduled.

For example, the following returns all the frame queues in the Tentatively Scheduled state:

cat state_tentatively_sched
List of fq ids in state: Tentatively Scheduled
0x0001ca,0x0001cb,0x0001cc,0x0001cd,0x0001ce,0x0001cf,0x0001d0,0x0001d1,
0x0001d2,0x0001d3,0x0001d4,0x0001d5,0x0001d6,0x0001d7,0x0001d8,0x0001d9,
...
Out of Service count = 32201
Retired count = 0
Tentatively Scheduled count = 566
Truly Scheduled count = 0
Parked count = 0
Active, Active Held or Held Suspended count = 0

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
486 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

/sys/kernel/debug/qman/fqd/tde_[enable | disable]

Description:

Query Tail_Drop_Enable bit in all frame queue descriptors. This is a read-only file. The output of this file returns
all the frame queue ids, in a comma-separated list, which have their Tail_Drop_Enable bit mask enabled or
disabled.

For example, the following returns all the frame queues with Tail_Drop_Enable bit enabled:

cat tde_enable
List of fq ids with: Tail-Drop Enable :enabled(1)
0x0001ca,0x0001cb,0x0001cc,0x0001cd,0x0001ce,0x0001cf,0x0001d0,0x0001d1,
0x0001d2,0x0001d3,0x0001d4,0x0001d5,0x0001d6,0x0001d7,0x0001d8,0x0001d9,
...
Total FQD with: Tail-Drop Enable : enabled = 560
Total FQD with: Tail-Drop Enable : disabled = 32207

/sys/kernel/debug/qman/fqd/wq

Description:

Query Destination Work Queue in all frame queue descriptors. This file takes as input work queue id combined
with channel id (destination work queue). The output of this file returns all the frame queues with destination
work queue number as specified in the input.

For example, the following returns all the frame queues with their destination work queue number equal to
0x10f:

echo 0x10f > wq
cat wq
List of fq ids with destination work queue id = 0x10f
0x0001d2,0x0001d3,0x0001d4,0x0001d5,0x0001de,0x0001df,0x0001e0,0x0001e1,
0x0001ea,0x0001eb,0x0001ec,0x0001ed,0x0001f6,0x0001f7,0x0001f8,0x0001f9,
0x0001fa,0x0001fb,0x0001fd,0x0001fe
Summary of all FQD destination work queue values
Channel: 0x0 WQ: 0x0 WQ_ID: 0x0, count = 32199
Channel: 0x0 WQ: 0x0 WQ_ID: 0x4, count = 1
Channel: 0x0 WQ: 0x3 WQ_ID: 0x7, count = 64
Channel: 0x1 WQ: 0x3 WQ_ID: 0xf, count = 64
Channel: 0x2 WQ: 0x3 WQ_ID: 0x17, count = 64
Channel: 0x3 WQ: 0x3 WQ_ID: 0x1f, count = 64
Channel: 0x4 WQ: 0x3 WQ_ID: 0x27, count = 64
Channel: 0x5 WQ: 0x3 WQ_ID: 0x2f, count = 64
Channel: 0x6 WQ: 0x3 WQ_ID: 0x37, count = 64
Channel: 0x7 WQ: 0x3 WQ_ID: 0x3f, count = 64
Channel: 0x21 WQ: 0x3 WQ_ID: 0x10f, count = 20
Channel: 0x42 WQ: 0x3 WQ_ID: 0x217, count = 8
Channel: 0x45 WQ: 0x0 WQ_ID: 0x228, count = 1
Channel: 0x60 WQ: 0x3 WQ_ID: 0x307, count = 8
Channel: 0x61 WQ: 0x3 WQ_ID: 0x30f, count = 8
Sysfs and Debugfs QMan/BMan interfaces
QMan, BMan API RM, Rev. 0.13
NXP Semiconductors NXP Confidential Proprietary 8-67
Preliminary—Subject to Change Without Notice
Channel: 0x62 WQ: 0x3 WQ_ID: 0x317, count = 8
Channel: 0x65 WQ: 0x0 WQ_ID: 0x328, count = 1

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
487 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Channel: 0xa0 WQ: 0x0 WQ_ID: 0x504, count = 1

/sys/kernel/debug/qman/fqd/summary

Description:

Provides a summary of all the fields in all frame queue descriptors. This is a read-only file.

cat summary
Out of Service count = 32201
Retired count = 0
Tentatively Scheduled count = 566
Truly Scheduled count = 0
Parked count = 0
Active, Active Held or Held Suspended count = 0

Prefer in cache count = 560
Hold active in portal count = 0
Avoid Blocking count = 528
High-priority SFDRs count = 0
CPC Stash Enable count = 0
Context-A stashing count = 528
ORP Enable count = 0
Tail-Drop Enable count = 560

/sys/kernel/debug/qman/ccsrmempeek

Description:

Provides access to Queue Manager ccsr memory map. This file takes as input an offset from the QMan CCSR
base address. The output of this file returns the 32-bit value of the memory address as specified in the input.

For example, to query the QM IP Block Revision 1 register (which is at offset 0xbf8 from the QMan CCSR base
address), we would do the following:

echo 0xbf8 > ccsrmempeek
cat cccsrmempeek
QMan register offset = 0xbf8
value = 0x0a010101

/sys/kernel/debug/qman/query_ceetm_xsfdr_in_use

Description:

Query the number of XSFDRs currently in use by the CEETM logic of the DCP portal. This file takes input as
the DCP id. The output of the file returns the number of XSFDR in use. Note this feature is only available in T4/
B4 rev2 silicon.

For example, if we want to query XSFDR in use number of DCP 0, we would do the following:

echo 0 > query_ceetm_xsfdr_in_use

cat query_ceetm_xsfdr_in_use

DCP0: CEETM_XSFDR_IN_USE number is 0

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
488 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

7.2.3.2.6.4 BMan debugfs

/sys/kernel/debug/bman

Description:

This directory contains various BMan device debugging attributes.

/sys/kernel/debug/bman/query_bp_state

Description:

This file requests a snapshot of the availability and depletion state of each of BMan's buffer pools. This is a
read-only file.

For example, if we want to perform a query we could use this file in the following manner:

cat query_bp_state

bp_id free_buffers_avail bp_depleted

0 yes no

1 no no

2 no no

3 no no

4 no no

5 no no

6 no no

7 no no

8 no no

9 no no

10 no no

11 no no

12 no no

13 no no

14 no no

15 no no

16 no no

17 no no

18 no no

19 no no

20 no no

21 no no

22 no no

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
489 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

23 no no

24 no no

25 no no

26 no no

27 no no

28 no no

29 no no

30 no no

31 no no

32 no no

33 no no

34 no no

35 no no

36 no no

37 no no

38 no no

39 no no

40 no no

41 no no

42 no no

43 no no

44 no no

45 no no

46 no no

47 no no

48 no no

49 no no

50 no no

51 no no

52 no no

53 no no

54 no no

55 no no

56 no no

57 no no

58 no no
UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
490 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

59 no no

60 no no

61 no no

62 no no

63 yes no

7.2.3.2.7 Error handling and reporting

This section describes the QMan and BMan error handling and reporting.

7.2.3.2.7.1 Handling and Reporting

The QMan and BMan error interrupt services routines log the occurrence of every error interrupt. Some error
interrupts can be triggered multiple times. To prevent a flood of error logging when these interrupts are raised,
they are only logged on their first occurrence at which time they are disabled. The logs are generated via the
pr_warning() kernel api. At the end of the interrupt service routine the ISR register is cleared. These logs are
available on the console, dmesg and related log file.

The following QMan error conditions are logged a single time:

QM_EIRQ_PLWI and QM_EIRQ_PEBI.

The following BMan error conditions are logged a single time:

BM_EIRQ_FLWI (low water mark).

7.2.3.2.8 Operating system specifics

This section captures OS-specific issues and distinctions, as the rest of the document essentially describes the
interfaces in a generalized manner.

7.2.3.2.8.1 Portal maintenance

By default, the Linux kernel initializes QMan and BMan portals to perform all processing via interrupt-handling.
As such there are no persistent threads or polling requirements in order to use portals in the Linux kernel.

Whereas for USDPAA (Linux user space), the default is for all processing to be driven by polling, and support
for the use of interrupts is disabled. The applications are required to call qman_poll() and bman_poll() within
their run-to-completion loops to ensure that portal processing occurs regularly.

As described in Section "Processing non-interrupt-driven portal duties (BMan)" (for BMan) and Section
"Processing non-interrupt-driven portal duties (QMan)" (for QMan), it is also possible to dynamically control
at runtime which portal duties are interrupt-driven versus poll-driven, so the aforementioned defaults for Linux
are start-up defaults. However, USDPAA needs to be built with "CONFIG_FSL_DPA_IRQ_SAFETY" defined in
order to allow any duties to be interrupt-driven, whereas it is disabled by default (in inc/public/conf.h) due to a
very slight performance improvement that it yields.

7.2.3.2.8.2 Callback context

In the Linux kernel, all interrupt-driven portal duties are handled in interrupt context, whereas all other portal
duties are invoked from within the qman_poll() and bman_poll() functions, which are invoked by the application.

In USDPAA, even interrupt-driven portal duties are handled in an application context. Interrupts are handled
within the kernel and locally disabled, and the presence of such interrupt events is available to the application
via the USDPAA file-descriptor representing the portal devices. Interrupt-driven portal duties are therefore
UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
491 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

processed when the application calls the qman_thread_irq() and bman_thread_irq() functions, and other portal
duties are processed when the application calls qman_poll() and bman_poll().

7.2.3.2.8.3 Blocking semantics

Many high-level QMan and BMan API functions provide "WAIT" flags, to allow the API to block as part of its
operation.

In the Linux kernel, "WAIT" behavior is implemented by allowing the calling thread to sleep until a given
condition is satisfied. The limitation then to using "WAIT" flags is that the caller be in atomic context - i. e.
not executing within an interrupt handler, tasklet, bottom-half, and so on, nor with any spinlocks held. One
consequence is that "WAIT" flags be used within a callback.

On run-to-completion systems such as USDPAA, "WAIT" behavior is unsupported and unavailable.

7.2.4 Configuring DPAA1 Frame Queues

7.2.4.1 Introduction

Describes configurations of Queue Manager (QMan) Frame Queues (FQs) associated with Frame Manager
(FMan) network interfaces for the QorIQ Data Path Acceleration Architecture (DPAA1). The relationship of the
FMan and the QMan channels and work queues are illustrated by examples.

The basic configuration examples for QMan FQs provided yield straightforward and reliable DPAA1
performance. These simple examples may then be fine-tuned for special use cases. For additional information
and understanding of advanced system level features, refer to the DPAA Reference Manual.

DPAA1 provides the networking-specific I/Os, accelerator/offload functions, and basic infrastructure to enable
efficient data passing, without locks or semaphores, within the multicore QorIQ SoC between:

1. The network and I/O interfaces through which that data arrives and leaves
2. The accelerator blocks used by the software to assist in processing that data.

Hardware-managed queues which reside in and are managed by the QMan provide the basic infrastructure
elements to enable efficient data path communication. The data resides in delimited work units of frames/
packets between cores, hardware accelerators and network interfaces. These hardware-managed queues,
known as Frame Queues (FQs), are FIFOs of related frames. These frames comprise buffers that hold a data
element, generally a packet. Frames can be single buffers or multiple buffers (using scatter/gather lists).

FQ assignment to consumers that is, cores, hardware accelerators, network interfaces, are programmable (not
hard coded). Specifically, FQs are assigned to work queues which in turn are grouped into channels. Channels
which represent a grouping of FQs from which a consumer can dequeue from, are of two types:

• Pool channel: a channel that can be shared between consumers which facilitates load balancing/spreading.
(Applicable to cores only. Does not apply to hardware accelerators or network interfaces)

• Dedicated channel: a channel that is dedicated to a single consumer.

Each pool or dedicated channel has eight (8) work queues. There are two high priority work queues that have
absolute, strict priority over the other six (6) work queues which are grouped into medium and low-priority tiers.
Each tier contains three work queues which are serviced using a weighted round robin based algorithm. More
than one FQ can be assigned to the same work queue as channels implementing a 2-level hierarchical queuing
structure. That is, FQs are enqueued/dequeued onto/from work queues. Within a work queue a modified deficit
round algorithm is used to determine the number of bytes of data that can be consumed from an FQ at the
head of a work queue. The FQ, if not empty, is enqueued back onto the tail of the same work queue once its
consumption allowance has been met.

Note:

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
492 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

• The configuration information provided in this document applies to the QorIQ family of SoCs built on DPAA1
technology

• The configuration information provided in this document assumes a top bin platform frequency.

7.2.4.2 FMan Network interface Frame Queue Configuration

Configuring the QMan Frame Queues (FQs) associated with the FMan network interfaces for QorIQ DPAA1.

Each network interface has an ingress and an egress direction. The ingress direction is defined as the direction
from the network interface to the cores. The egress direction is defined as the direction from the cores to the
network interfaces.

FQs associated with FMan network interfaces can be either ingress or egress FQs. Ingress FQs are referred
to FQs used in the ingress direction to store packets received from network interfaces to be processed by the
cores. Egress FQs are referred to FQs used in the egress direction to store packets to be transmitted by FMan
out of its network interfaces.

7.2.4.3 FMan network interface ingress FQs configuration

Dependencies for configuration of the ingress Frame Queues (FQs) are dependent on the QMan mechanism
used to load balance/spread received packets across the multiple cores in QorIQ DPAA1.

Two mechanisms are offered:

1. Dynamic load balancing
• Load spread the packets (from ingress FQs) to the cores based on actual core availability/readiness.
• Achieved through the use of QMan pool channel (that is, a channel which can be shared by multiple

cores).
• Maintaining packet ordering (For example, when packets are being forwarded) is achieved through the

following two mechanisms:
a. Order preservation; ensures that related packets (For example, a sequence of packets moving

between two end points) are processed in order (and typically one at a time).
b. Order restoration; allows packets to be processed out of order and then restores their order later on

before they are transmitted out to the network interfaces.
• Improves core work load balancing over a static distribution based approach scheme but will not maintain

core affinity because an FQ may get processed by multiple cores.
2. Static distribution

• Static association between FQs and cores; FQs are always processed by the same core.
• Achieved through the use of QMan dedicated channel (that is, a channel which supplies FQs to a specific

core).
• Static not dynamic, doesn't react to core load, assigns work to the cores in a static or fixed manner.
• Does not require any special order preservation/restoration mechanism as packet ordering is implicitly

preserved.

For all of these mechanisms, QMan requires that related packets, which must be processed and/or transmitted
in order, be placed on the same FQ. This does not mean that only related packets are placed on a given FQ;
many sets of related packets (“flows”) can be placed on a single FQ. FMan is responsible for achieving this
placement/FQ selection function through its distribution capabilities. For instance, FMan can be configured
to apply a hash function to a set of packet header fields and use the hash value to select the FQ. This set of
packet header fields can be for example, a 5-tuple consisting of:

• source IP address
• destination IP address
• protocol

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
493 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

• source port
• destination port

Note that the FMan processing may be out of order, but it has internal mechanism to ensure that packets are
enqueued in order of reception.

These mechanisms can be configured and used simultaneously on an SoC device.

7.2.4.4 Ingress FQs common configuration guidelines

Guidelines and examples for configuring ingress Frame Queues (FQs) in the QorIQ DPAA1 are shown.

Following guidelines apply regardless of the load balancing mechanism(s) configured:

• Maximum number of ingress FQs for all ingress interfaces on the device (including any of the separate FQs
that are used to serve as an order restoration point (ORP)): 1024

• Maximum number of ingress FQs per work queue (FIFO of FQs):
• – 64 if the aggregate bandwidth of the configured network interface(s) on the device is higher than 10 Gbit/s.

– 128 if the aggregate bandwidth of the configured network interface(s) on the device is 10 Gbit/s or lower.
• The aggregate bandwidth of the configured network interface(s) on the device receiving packets into FQs

associated to the same work queue should not exceed 10 Gbit/s. In other words, the recommended maximum
incoming rate into a single work queue is 10 Gbit/s. If the configured network interface(s) on the device is
higher than 10 Gbit/s, then multiple work queues should be used.

• Since the Single Frame Descriptor Record (SFDRs) reservation scheme is recommended for the egress FQs
(FMan network interface egress FQs configuration) and any other FQs assigned to high priority work queues
will also use these reserved SFDRs, careful consideration should be given to the required number of ingress
FQs assigned to the high priority work queues as SFDRs are a scarce QMan resource (there is a total of 2K
SFDRs). One needs to leave sufficient SFDRs for FQs not using the reserved SFDRs (For example, ingress
FQs assigned to medium or low-priority work queues).

As an example, if one allocates 1024 ingress FQs and the aggregate bandwidth of the configured network
interface(s) on the device is higher than 10 Gbit/s, then a minimum of 16 work queues would be required based
on the above guidelines. Assuming that all 1024 FQs are to be scheduled at the same priority using a dynamic
load balancing scheme, a minimum of 6 pool channels would need to be used (based on the fact that up to 3
work queues can be used within a medium or low-priority tier).

The guideline “maximum of 1024 ingress FQs for all ingress interfaces” results from the size of the internal
memory in QMan that is used to cache Frame Queue Descriptors (FQDs). This internal memory is sized to
2K entries. To achieve high, deterministic and reliable performance under worst-case packet workload (back-
to-back 64-byte packets enqueued to FQs on a rotating basis), all ingress FQDs must remain in the QMan
internal cache. FQD cache misses increase the time required to enqueue packets as the FQD may need to be
read from external memory. This in return could result in received packets being discarded by the MAC due
MAC FIFO overflow condition as a result of the back-pressure applied by the FMan to the MAC as there is little
buffering between the MAC and the point at which incoming packets are enqueued onto the ingress FQs.

Although a device configured with a number of ingress FQs higher than the size of the QMan FQD internal
cache would operate at high performance with no packet discards if the incoming traffic exhibited some level of
temporal locality, it is generally recommended that the device be engineered such that ingress path operates
at line rate under worst case packet workload to avoid unnecessary packets losses and to make effective use
of QMan to prioritize and apply appropriate QoS if there is congestion in a downstream element (For example,
cores). Since all FQs defined on the device shared the QMan 2K internal FQD cache, the recommended
maximum number of ingress and egress FQs is even more constrained so that there is adequate space left for
caching FQDs assigned to accelerators.

With regard to congestion management, the default mechanism for managing ingress FQ lengths is through
buffer management. Input to FQs is limited to the availability of buffers in the buffer pool used to supply buffers

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
494 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

to the FQs. Although very efficient and simple, when a buffer pool is shared by multiple FQs, there is no
protection between the FQs sharing the buffer pool and as a result an FQ could potentially occupy all the
buffers.

Queue management mechanisms can be configured (For example, tail drop/WRED) to improve congestion
control however appropriate software must be in place to handle enqueue rejections as a result of queue
congestion.

7.2.4.5 Dynamic load balancing with order preservation - ingress FQs configuration guidelines

Dynamic load balancing with order preservation provides a very effective workload distribution technique to
achieve optimal utilization of all cores as it distributes packets to the cores based on actual core availability/
readiness.

Order preservation allows FQs to be dynamically reassigned from one core to another while preserving per-FQ
packet ordering. It never allows packets from the same FQ to be processed at multiple cores at the same time;
a specific FQ is only processed by one core at any given time. Once the FQ is released by the core, it can be
processed by any of the cores. To keep multiple cores active there must be multiple FQs distributing packets to
the cores, each with a set of (potentially) related packets.

In packet-forwarding scenarios, Discrete Consumption Acknowledgment (DCA) embedded in the enqueue
commands should be used to forward packets as this ensures that QMan will release the ingress FQ on
software’s behalf once it has finished processing the enqueue command. This provides order preservation
semantic from end-to-end (from dequeue to enqueue). To support the above, software portals that will be
issuing DCA notifications to QMan must be configured with DCA mode enabled.

Following are specific configuration guidelines for ingress FQs used for dynamic load balancing with order
preservation:.

• FQ must be associated to a pool channel (that is, a channel which can be shared by multiple cores).
• Within a pool channel, minimum number of FQs per active portal (core): 4.
• Frame Queue Descriptor (FQD) attributes settings:

– Prefer in cache.
– Hold active set.
– Don’t set avoid blocking.
– Intra-class scheduling (ICS) credit set to 0 unless a more advanced scheduling scheme is required.
– Don’t set force SFDR allocate unless FQ needs performance optimization.
– FQD CPC stashing enabled.
– Dequeued Frame Data, Annotation, and FQ Context stashing: application dependent.
– Order Restoration Point (ORP) disabled.

7.2.4.6 Dynamic load balancing with order restoration - ingress FQs configuration guidelines

Dynamic load balancing with order restoration dispatches packets from the same Frame Queue (FQ) to
different processor cores without attempting to maintain order. QMan provides order restoration with specific
configurations shown.

The packet order in the original FQ (For example, ingress FQ) is restored once the cores complete its
processing and return the packets to QMan for sending to the next destination (For example, egress FQ for
transmission).

Dynamic load balancing with order restoration has the advantage that parallel processing of related traffic is
possible; allows to process without packet dropping a flow that exceeds the processing rate of a core. However
order restoration does make use of more resources than the other distribution schemes. Its usage must also be
balanced with applications need to atomically access shared data.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
495 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Order restoration is achieved through the following two QMan components:

• Order Definition Points (ODPs)
– A point through which packets pass, where their order or sequence relative to each other is defined.
– For convenience each FQ has an ODP for packets dequeued from that FQ.

• Order Restoration Points (ORPs)
– A point through which packets pass, where their order or sequence is restored to that defined at the related

ODP.
– If a packet is out of sequence it is held until it is in sequence.
– ORP data structure is maintained in an FQ; it is recommended that a dedicated/separate FQ be allocated

solely for this purpose.

Following are specific configuration guidelines for ingress FQs used for dynamic load balancing with order
restoration:

• FQ must be associated to a pool channel (that is, a channel which can be shared by multiple cores).
• For each ingress FQ supporting order restoration, a separate FQ should be allocated to serve as the ORP.
• Ingress FQ descriptor attributes settings.

– Prefer in cache
– Don’t set hold active.
– Set avoid blocking.
– Intra-class scheduling (ICS) credit set to 0 unless a more advanced scheduling scheme is required.
– Don’t set force SFDR allocate unless FQ needs performance optimization.
– FQD CPC stashing enabled.
– Dequeued Frame Data, Annotation, and FQ Context stashing: application dependent.
– ORP disabled.

Following are specific configuration guidelines for ORP FQs:

• FQs used for ORP don’t need to be associated with a pool or dedicated channel.
• ORP FQ descriptor attributes settings:

– Prefer in cache.
– Don’t set hold active.
– Don’t set avoid blocking.
– Intra-class scheduling credit set to 0.
– Don’t set force SFDR allocate.
– FQD CPC stashing enabled.
– ORP enabled.
– Recommended ORP restoration window size: 128.

7.2.4.7 Static distribution - Ingress FQs Configuration Guidelines

With a static distribution approach, a single FQ is always processed by the same processor core. Specific
guidelines for processor core affinity are presented.

Although not as effective as a dynamic based approach from a resource utilization aspect, static distribution
maintains core affinity meaning that the mapping from the flow to the core is preserved.

Distribution of packets (selection of FQ) can be based on hash keys, ensuring that packets from the same traffic
flow will always go to the same cores. The FQ selection function is achieved by FMan.

Following are specific configuration guidelines for ingress FQs used for static distribution:

• FQ must be associated to a dedicated channel (that is, a channel which supplies FQs to a specific core);
multiple FQs can be associated to a single dedicated channel.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
496 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

• Within a dedicated channel, minimum number of FQs: 1.
• FQ descriptor attributes settings:

– Prefer in cache.
– Don’t set hold active.
– Don’t set avoid blocking.
– Intra-class scheduling (ICS) credit set to 0 unless a more advanced scheduling scheme is required.
– Don’t set force SFDR allocate unless FQ needs performance optimization.
– FQD CPC stashing enabled.
– Dequeued Frame Data, Annotation, and FQ Context stashing: application dependent.
– ORP disabled.

7.2.4.8 FMan network interface egress FQs configuration

Configuration guidelines for egress Frame Queues (FQs) for QorIQ DPAA1

FQ Configurations:

• Maximum number of egress FQs for all network interfaces: 128.
• Minimum number of egress FQs per network interface: 1.
• Maximum number of egress FQs per work queue: 8.
• Egress FQ descriptor attributes settings:

– Prefer in cache.
– Don’t set hold active.
– Don’t set avoid blocking.
– Set force SFDR allocate to ensure that egress queues make use of the reserved SFDRs; the SFDR

reservation threshold field of the QMan SFDR configuration register must also be set accordingly (5 SFDRs
per egress FQ + 3 extra SFDRs as required by QMan).

– Intra-class scheduling set to zero (0) unless a more advanced scheduling scheme is required.
– FQD CPC stashing enabled.
– ORP disabled.

.

7.2.4.9 Accelerator Frame Queue Configuration

Configurations for Frame Queues (FQs) used to communicate with accelerators for QorIQ DPAA1 are shown.

FQ accelerator Guidelines:

• Since the Single Frame Descriptor Record (SFDRs) reservation scheme is recommended for the egress
FQs (FMan network interface egress FQs configuration) and any other FQs assigned to high priority work
queues also use these reserved SFDRs, careful consideration should be given to the required number of
accelerator FQs assigned to the high priority work queues as SFDRs are a scarce QMan resource (there is a
total of 2K SFDRs). One needs to leave sufficient SFDRs for FQs not using the reserved SFDRs (for example,
accelerator FQs assigned to medium or low priority work queues).

• Accelerator FQ descriptor attributes settings:
– Don’t set prefer in cache.
– Don’t set hold active.
– Don’t set avoid blocking.
– FQD CPC stashing enabled.
– Intra-class scheduling (ICS) credit set to 0 unless a more advanced scheduling scheme is required.
– Don’t set force SFDR allocate unless FQ needs performance optimization.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
497 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

– Dequeued Frame Data, Annotation, and FQ Context stashing: application dependent.
– ORP disabled.

Generally accelerators are used in a request/response manner and in cases where a pair of FQs is needed per
session/flow to communicate with accelerators, one may need to allocate a very large number of FQs (in the
order of thousands). At times when many FQs allocated to an accelerator are active, this situation can result in
having significant amount of cache consumed for storing the corresponding FQ descriptors. This in turn may
negatively impact overall system performance.

To ensure optimal resource utilization (for example, QorIQ caches), maximize throughput and avoid overload, it
is recommended that the number of outstanding requests/responses to an accelerator be regulated. Typically,
for a given accelerator, regulating the number of outstanding requests/responses across all its FQs to a few
hundredths should be sufficient to maintain high throughput without overloading the system. Regulating the
number of outstanding requests/responses to an accelerator can be achieved through various methods.

One method is to keep track in software of the total number of outstanding requests/responses to an accelerator
and once this number exceeds a threshold, software would stop sending requests to that accelerator.

Another method is to make use of the congestion management capabilities of QMan. Specifically, all FQs
allocated to an accelerator can be aggregated into a congestion group. Each congestion group can be
configured to track the number of Frames in all FQs in the congestion group. Once this number exceeds a
configured threshold, the congestion group enters congestion. When a congestion group enters congestion,
QMan can be configured to rejects enqueues to any FQs in the congestion group and/or sent notification
indicating that the congestion group has entered congestion. If a Frame (or request) is not going to be
enqueued, it is returned to the configured destination via an enqueue rejection notification. Congestion state
change notifications are generated when the congestion group either enters congestion or exits congestion. On
software portals, the congestion state change notification is sent via an interrupt.

7.2.4.10 DPAA1 Frame Queue Configuration Guideline Summary

Summary of Configurations for Frame Queue (FQ) communication with accelerators for QorIQ DPAA1

Four tables comprise this summary:

• Global Configuration settings
• Network interface ingress FQ guidelines
• Network interface egress FQ guidelines
• Accelerator FQ guidelines

Parameter or subject Guideline

FQD stashing Recommend QMan explicitly stash FQDs:
• QMan; both the global CPC stash enable bit in the QMan FQD_AR register and the CPC

stash enable bit in the FQD must be set.
• PAMU; PAACT tables used by PAMU also configured appropriately.

PFDR stashing Recommend QMan explicitly stash PFDRs:
• QMan; the global CPC stash enable bit in the QMan PFDR_AR register must be set.
• PAMU; PAACT tables used by PAMU must also be configured appropriately.

SFDR reservation threshold Set SFDR reservation threshold in QMan SFDR configuration register to:
• Total number of FQs using reserved SFDRs times 5 (5 SFDRs per FQ) plus 3 extra

SFDRs as required by QMan.
Recommend that all egress FQs use reserved SFDRs.

Table 55. Global Configuration Settings Summary

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
498 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Parameter or subject Guideline

Maximum number of ingress FQs for all ingress
interfaces on the device (including any of the separate
FQs that are used to serve as an order restoration
point (ORP))

1024 FQs

Maximum number of ingress FQs per work queue. • 64 FQs per work queue if the aggregate bandwidth of the
configured network interface(s) on the device is higher than 10
Gbit/s.

• 128 FQs per work queue if the aggregate bandwidth of the
configured network interface(s) on the device is 10 Gbit/s or
lower.

The maximum aggregate bandwidth of the configured
network interface(s) on the device receiving packets
into FQs associated to the same work queue

10 Gbit/s

Within a pool channel, minimum number of FQs per
active portal (cores).

4 FQs

Within a dedicated channel, minimum number of FQs: 1 FQ

Assignment to high priority work queues. Should be limited enough to leave sufficient SFDRs for FQs not
using the reserved SFDRs (for example, ingress FQs assigned to
medium or low priority work queues).

Order restoration point (ORP). A separate FQ should be allocated and dedicated to serve as the
ORP for each ingress FQ supporting order restoration.

Ingress FQ descriptor load balancing and
performance-related settings.

• Prefer_in_Cache: 1
• CPC Stash Enable: 1
• ORP_Enable: 0
• Avoid_Blocking:

– 0 if static distribution or dynamic load balancing with order
preservation.

– 1 if dynamic load balancing with order restoration.
• Hold_Active

– 0 if static distribution or dynamic load balancing with order
restoration.

– 1 if dynamic load balancing with order preservation.
• Force_SFDR_Allocate: 0 unless FQ needs performance

optimization.
• Intra-Class Scheduling Credit: 0 unless a more advanced

scheduling scheme is required.

ORP FQ descriptor order restoration and performance-
related settings.

• Prefer_in_Cache: 1
• CPC Stash Enable: 1
• ORP_Enable: 1
• Avoid_Blocking: 0
• Hold_Active: 0
• Force_SFDR_Allocate: 0
• ORP Restoration Window Size: 2 (corresponds to window size

of 128 frames).
• Class Scheduling Credit: 0

Table 56. Network Interface Ingress FQs Guidelines Summary

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
499 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Parameter or subject Guideline

Maximum number of egress FQs for all network
interfaces.

128 FQs

Minimum number of egress FQs per network interface. 1 FQ

Maximum number of egress FQs per work queue. 8 FQs

Egress FQ descriptor performance-related settings. • Prefer_in_Cache: 1
• CPC Stash Enable: 1
• ORP_Enable: 0
• Avoid_Blocking: 0
• Hold_Active: 0
• Force_SFDR_Allocate: 1
• Class Scheduling Credit: 0 unless a more advanced

scheduling scheme is required.

Table 57. Network Interface Egress FQs Guidelines Summary

Parameter or subject Guideline

Assignment to high priority work queues. Should be limited enough to leave sufficient SFDRs for FQs
not using the reserved SFDRs (for example, accelerator FQs
assigned to medium or low priority work queues).

Egress FQ descriptor performance-related settings. • Prefer_in_Cache: 0
• CPC Stash Enable: 1
• ORP_Enable: 0
• Avoid_Blocking: 0
• Hold_Active: 0
• Force_SFDR_Allocate: 0 unless FQ needs performance

optimization.
• Class Scheduling Credit: 0 unless a more advanced

scheduling scheme is required.

Table 58. Accelerator FQs Guidelines Summary

7.2.5 Frame Manager

7.2.5.1 Frame Manager Linux Driver User Guide

7.2.5.1.1 Introduction

This part is describing the Linux implementation of the driver for the Frame Manager, or FMD.

The Linux FMD implements a set of standard Linux character devices that rely on underlying OS-agnostic FMan
drivers to do the actual communication with the hardware. The figure below describes this best:

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
500 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

FMan 2

10G

FM-LIB

FMC

open () ; ioctl (); close ();

LINUX APPLICATION
(USERSPACE)

/* socket
interface */

LINUX KERNEL

LINUX FMD
(WRAPPER)

/ dev/ fm0 / dev / fm0_pcd
/ dev/ fm1 / dev / fm1_pcd
/ dev/ fm[0,1]_port_rx [0-4]
/ dev/ fm[0,1]_port_tx [0-4]
/ dev/ fm[0,1]_port_oh [0-6]

DPAA ETHERNET

fm0-gb0
fm0-gb1
fm0-gb2
fm0-gb3
fm0-10g

FM PORT PCD MAC RTC

NC SW LLD
QMan/BMan
DRIVERS

FMan 1

1G

BMan

QMan

fm1-gb0
fm1-gb1
fm1-gb2
fm1-gb3
fm1-10g

1G 1G 1G 10G

Figure 85. FMan-centric view of relationships between DPAA software and hardware blocks in the Linux
environment.

The features of the Linux FMan Driver are the following:

• Performs initialization of the Frame Manager based on platform configuration (device tree), and on probing of
the actual hardware;

• Supports Linux user space applications looking to create FMan PCD configurations;
• Attaches/detaches PCDs to/from FMan ports;
• Reports FMan and port status:

– FMan registers
– FMan statistics
– FMan port and MAC counters

The Linux FMan driver does not handle actual network traffic. Network traffic in Linux is being handled
exclusively by Linux network devices. Network traffic going through FMan can only be handled by the Linux
DPAA Ethernet driver. Although the DPAA Ethernet and the Linux FMan Driver share strong links and
interdependencies with the underlaying low-level FMD and with each other, their feature sets do not overlap.
The DPAA1 Ethernet driver is described in the Section 7.2.2 section.

7.2.5.1.2 The Linux FMD devices

The Linux interface to the FMD consists in several Linux character devices:

• /dev/fm[0,1]: Each corresponding to an actual Frame Manager;
• /dev/fm[0,1]-pcd : PCD devices, each corresponding to a Frame Manager;
• /dev/fm[0,1]-port-rx[0-4], and /dev/fm[0,1]-port-tx[0-4]; Each corresponding to the physical ports of FMan.

Each rx/tx device in a pair corresponds to the receive and transmit sides of a physical port.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
501 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

• /dev/fm[0,1]-port-oh[0-6]: Corresponds to the Offline Parsing ports.

These devices are created and initialized at boot time, based on probing of the physical hardware, as well as
on the parsing of the device tree. Each of the physical ports can therefore be disabled from the device tree, but
also from the Reset Configuration Word (RCW). See the SoC's Reference Manual for more details.

Note: The assumption for the remainder of this section is that the device tree and the RCW are immutable.

Depending on the SoC and RCW/.dts configuration, only certain devices are available .

Table 59 provides the mapping of the devices to the physical ports.

Linux Device Low-
Level ID

Identification

/dev/fm0-port-rx0/dev/fm0-port-
tx0

0 1st FMan's 1st 1GbE Receive, Transmit

/dev/fm0-port-rx1/dev/fm0-port-
tx1

1 1st FMan's 2nd GbE Receive, Transmit

/dev/fm0-port-rx2/dev/fm0-port-
tx2

2 1st FMan's 3rd GbE Receive, Transmit

/dev/fm0-port-rx3/dev/fm0-port-
tx3

3 1st FMan's 4th GbE Receive, Transmit

/dev/fm0-port-rx4/dev/fm0-port-
tx4

4 1st FMan's 5th GbE Receive, Transmit

/dev/fm0-port-rx5/dev/fm0-port-
tx5

5 1st FMan's 6th GbE Receive, Transmit

/dev/fm0-port-rx6/dev/fm0-port-
tx6

6 1st FMan's 1st 10 Gbit Receive, Transmit

/dev/fm0-port-rx7/dev/fm0-port-
tx7

7 1st FMan's 2nd 10 Gbit Receive, Transmit

N/A 0 1st FMan's Host Command

/dev/fm0-port-oh0 1 1st FMan's 1st Offline Parsing

/dev/fm0-port-oh1 2 1st FMan's 2nd Offline Parsing

/dev/fm0-port-oh2 3 1st FMan's 3rd Offline Parsing

/dev/fm0-port-oh3 4 1st FMan's 4th Offline Parsing

/dev/fm0-port-oh4 5 1st FMan's 5th Offline Parsing

/dev/fm0-port-oh5 6 1st FMan's 6th Offline Parsing

/dev/fm0-port-oh6 7 1st FMan's 7th Offline Parsing

/dev/fm1-port-rx0/dev/fm1-port-
tx0

0 2nd FMan's 1st 1GbE Receive, Transmit

/dev/fm1-port-rx1/dev/fm1-port-
tx1

1 2nd FMan's 2nd 1GbE Receive, Transmit

/dev/fm1-port-rx2/dev/fm1-port-
tx2

2 2nd FMan's 3rd 1GbE Receive, Transmit

/dev/fm1-port-rx3/dev/fm1-port-
tx3

3 2nd FMan's 4th 1GbE Receive, Transmit

Table 59. Mapping of Linux devices to low-level port IDs.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
502 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Linux Device Low-
Level ID

Identification

/dev/fm1-port-rx4/dev/fm1-port-
tx4

4 2nd FMan's 5th 1GbE Receive, Transmit

/dev/fm1-port-rx5/dev/fm1-port-
tx5

5 2nd FMan's 10Gb Receive, Transmit

/dev/fm1-port-rx6/dev/fm1-port-
tx6

6 2nd FMan's 1st 10Gb Receive, Transmit

/dev/fm1-port-rx7/dev/fm1-port-
tx7

7 2nd FMan's 2nd 10Gb Receive, Transmit

N/A 0 2nd FMan's Host Command

/dev/fm1-port-oh0 1 2nd FMan's 1st Offline Parsing Port

/dev/fm1-port-oh1 2 2nd FMan's 2nd Offline Parsing Port

/dev/fm1-port-oh2 3 2nd FMan's 3rd Offline Parsing Port

/dev/fm1-port-oh3 4 2nd FMan's 4th Offline Parsing Port

/dev/fm1-port-oh4 5 2nd FMan's 5th Offline Parsing Port

/dev/fm1-port-oh5 6 2nd FMan's 6th Offline Parsing Port

/dev/fm1-port-oh6 7 2nd FMan's 7th Offline Parsing Port

Table 59. Mapping of Linux devices to low-level port IDs....continued

The Low-Level IDs are the IDs that are used by the Low-Level Drivers (upon which the Linux FMan Driver is
based) to distinguish between the physical ports. It is obvious from the above table that the port ID alone does
not allow for uniquely identifying a single port. It has to be combined with the following information in order to
successfully point to the desired port:

• FMan ID: 0 or 1 for FMan1 or FMan2, respectively;
• Port type: 1G, 10G or O/H (Offline Parsing/Host Command).

Although all this may seem confusing at first, the LLD API provides convenient enums/macros to deal with
these aspects. Furthermore, the FMD driver API tries its best to hide these details from the user space Linux
programmer, specifically by using dedicated /dev entries for each port, and so on. However, not all user space-
visible API is free of such port IDs, so this is why we even mention them here.

The FMD LLD uses no distinct port IDs for RX and Tx, the distinction between Receive and Transmit being
made by calling distinct RX/Tx-specific functions, or by specifying the "RX" or "TX" direction as a separate
argument.

The Host Command ports are invisible to the Linux application. One needs to be aware, though, of their mere
existence at the least, since the LLD allocates the first physical O/H port of every FMan to this purpose ("O/H"
standing for "Offline Parsing/Host Command"). There are 8 such O/H ports on each FMan that can be used for
these purposes; the first of these having been dedicated by the LLD to Host Commands, while the remaining
7 being available for Offline Parsing. Host Commands are just one of the vehicles through which the LLD
exercises control of the FMan hardware.

Note: Note that depending on the platform, RCW, and .dts configuration not all the possible combinations of
devices and ports are possible, and most certainly some will be missing from any existing configuration. For
details regarding possible port and device configurations for a specific platform, consult the Reference Manuals
for that platform, as well as the relevant chapters from the SDK documentation for that platform.

Alongside these character devices, and out of the scope of this writing, are the Linux network devices, labeled
using the fm[1,2]-mac[1-10] (for example, fm1-mac1, fm2-mac3) scheme, which provides the means for
Linux to handle actual network traffic, that is, "traffic termination". These network devices are instances of the
UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
503 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Linux DPAA Ethernet Driver, which is architected as a separate entity from the Linux FMan Driver, but which
both make use at some point of the same Low-Level Driver FMD API. The feature sets of the DPAA Ethernet
and of the Linux FMan drivers are disjunct, though, which is the main reason for their coexistence.

Note: There is no requirement that these are the only network devices in the system. You may find the well
known eth0, eth1, and so on. devices alongside for example, fm1-mac1, except that these other network
devices will correspond to other vendors' NICs that may be installed in the system and will be serviced by
vendor-specific, non-DPAA, Ethernet drivers.

There are a few constants #defined in the headers that need to be included when working with the Linux FMD
(in both kernel and user spaces) that may come in handy when having to deal with devices and port IDs:

• FM_MAX_NUM_OF_1G_RX_PORTS
• FM_MAX_NUM_OF_10G_RX_PORTS
• FM_MAX_NUM_OF_1G_TX_PORTS
• FM_MAX_NUM_OF_10G_RX_PORTS
• FM_MAX_NUM_OF_RX_PORTS
• FM_MAX_NUM_OF_TX_PORTS
• FM_MAX_NUM_OF_OH_PORTS
• IOC_FM_MAX_NUM_OF_VALID_PORTS

that together with INTG_MAX_NUM_OF_FM can give the programmer the essential tools to get around in a
specific configuration (this list, though, is not exhaustive: consult the relevant API Reference/header files before
attempting to #define your own).

Also, the
$ ls /dev/fm*

Linux shell command can conveniently show all the FMD devices currently available in the target system.

7.2.5.1.3 Frame Manager Linux Driver API Reference

This document describes the interface (IOCTLs) to the Frame Manager Linux Driver as apparent to user space
Linux applications that need to use any of the Frame Manager's features. It describes the structure, concept,
functionality, and high-level API.

7.2.5.1.3.1 Linux FMan device

The Linux FMan device corresponds to an individual Frame Manager and it is required for performing FMan-
wide actions.

The FMan device merely acts as a portal for the IOCTLs that are listed in the Table 60:

IOCTL LLD Mapping Brief

FM_IOC_SET_PORTS_BANDWIDTH FM_SetPortsBandwidth() Sets ports' bandwidths as percentage
of total bandwidth.

FM_IOC_GET_REVISION FM_GetRevision() API to get the FMan's revision.

FM_IOC_GET_COUNTER FM_GetCounter() API to read FMan hardware counters
(also available through sysfs).

FM_IOC_SET_COUNTER FM_ModifyCounter() API to modify/reset FMan's counters.

FM_IOC_FORCE_INTR FM_ForceIntr() Forces an FMan interrupt (or
exception). Dangerous! Use for
debugging only!

Table 60. IOCTLs for the FMan Device

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
504 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

IOCTL LLD Mapping Brief

FM_IOC_GET_API_VERSION FM_GetApiVersion() Reads the FMD IOCTL API version.

FM_IOC_VSP_CONFIG FM_VSP_Config() Creates descriptor for the FM VSP
module.

FM_IOC_VSP_INIT FM_VSP_Init() Initializes the FM VSP module

FM_IOC_VSP_FREE FM_VSP_Free() Frees all resources that were assigned
to FM VSP module.

FM_IOC_VSP_CONFIG_POOL_
DEPLETION

FM_VSP_ConfigPoolDepletion() Calling this routine enables pause
frame generation depending on the
depletion status of BM pools. It also
defines the conditions to activate
this functionality. By default, this
functionality is disabled.

FM_IOC_VSP_CONFIG_BUFFER_
PREFIX_CONTENT

FM_VSP_ConfigBufferPrefixContent() Defines the structure, size and content
of the application buffer.

FM_IOC_VSP_CONFIG_NO_SG FM_VSP_ConfigNoScatherGather() Returns the pointer to the parse result
in the data buffer. In Rx ports this is
relevant after reception, if parse result
is configured to be part of the data
passed to the application. For non-
Rx ports it may be used to get the
pointer of the area in the buffer where
parse result should be initialized - if so
configured. See FM_VSP_ConfigBuffer
PrefixContent for data buffer prefix
configuration.

FM_IOC_CTRL_MON_START FM_CtrlMonStart() Start monitoring utilization of all
available FM controllers.

FM_IOC_CTRL_MON_STOP FM_CtrlMonStop() Stop monitoring utilization of all
available FM controllers.

FM_IOC_CTRL_MON_GET_COUNTERS FM_CtrlMonGetCounters() Obtain FM controller utilization
parameters.

Table 60. IOCTLs for the FMan Device...continued

All the IOCTL-mapped LLD APIs are what the LLD terms as "callable at runtime", that is, callable after the LLD
Init() function for the corresponding entity has been called. This is so because by the time the user app. gets to
invoke ioctl(), all the Init() functions have already been called by the initialization code of the Linux FMD at boot
time.

7.2.5.1.3.2 Linux PCD device

There is exactly one PCD device, or /dev/fmX-pcd, for each Frame Manager. The reason for that is that PCDs
are FMan-wide constructs, and are applied simultaneously to traffic being received on possibly more than one
port.

"PCD" is a generic term designating a Parse-Classify-Distribute configuration for a group of ports, as described
in detail in the QorIQ Data Path Acceleration Architecture (DPAA) Reference Manual. In short, what a PCD
does is to route incoming traffic from a set of RX ports onto several frame queues managed by the Queue
Manager. Such frame queues may be attached to a DPAA Ethernet network device, in which case the traffic
is received by the CPUs (or "terminated"), or they can be connected to a TX port, in which case the traffic is
being forwarded onto that port. Also, frame queues can be further grouped into work queues and policed, and
so on. (read the QMan documentation). However, one thing is not supported in the Linux environment, and that
UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
505 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

is: direct access to frame queues from user space (note that this is not a limitation of the Linux FMD, but one
enforced by design in the Linux driver for the QMan). Not in the classical meaning of "Linux environment", that
is.

There is still a lot that can be achieved with the Linux FMD, and the Linux PCD device is there to help. Its role
is to manage the PCDs for its associated FMan. The ioctls for this device are mapped to the similarly sounding
FM_PCD_*() LLD APIs:

IOCTL LLD Mapping Brief

FM_PCD_IOC_ENABLE FM_PCD_Enable() Should be called after PCD
is initialized for enabling all
PCD engines according to
their existing configuration.

FM_PCD_IOC_DISABLE FM_PCD_Disable() Disables an existing PCD.

FM_PCD_IOC_PRS_LOAD_SW[_
COMPAT]

FM_PCD_PrsLoadSw() This routine may be called
only when all ports in the
system are actively using
the classification plan
scheme. In such cases it
is recommended in order
to save resources. The
driver automatically saves
8 classification plans for
ports that do NOT use
the classification plan
mechanism; to avoid this
(in order to save those
entries) this routine may be
called.

FM_PCD_IOC_KG_SET_DFLT_VALUE FM_PCD_KgSetDfltValue() Sets a global default
value to be used by the
key generator when the
parser does not recognize
a required field/header
(default 0).

FM_PCD_IOC_KG_SET_ADDITIONAL_
DATA_AFTER_PARSING

FM_PCD_KgSetAdditionalDataAfterParsing() Calling this routine allows
the keygen to access data
past the parser finishing
point.

FM_PCD_IOC_SET_EXCEPTION FM_PCD_SetException() Enables/disables PCD
interrupts.

FM_PCD_IOC_GET_COUNTER N/A Unimplemented, do not
use!

FM_PCD_IOC_SET_COUNTER N/A Placeholder, do not use!

FM_PCD_IOC_FORCE_INTR FM_PCD_ForceIntr() Forces a PCD interrupt
(exception) of specified
type. Dangerous! Use only
for debugging!

FM_PCD_IOC_NET_ENV_
CHARACTERISTICS_SET[_COMPAT]

FM_PCD_NetEnvCharacteristicsSet() Establishes a minimal set
of networking protocols
("Network Environment
Characteristics") that can

Table 61. IOCTL List for the PCD Device

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
506 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

IOCTL LLD Mapping Brief
be discovered by this PCD
(refer to the Reference
Manual for details).

FM_PCD_IOC_NET_ENV_
CHARACTERISTICS_DELETE[_
COMPAT]

FM_PCD_NetEnvCharacteristicsDelete() Deletes a set of
"Network Environment
Characteristics".

FM_PCD_IOC_KG_SCHEME_SET[_
COMPAT]

FM_PCD_KgSchemeSet() Initializes or modifies and
enables a scheme for
the KeyGen. This routine
should be called for adding
or modifying a scheme.
When a scheme needs
modifying, the API requires
that it be rewritten. In such
a case modify should
be TRUE. If the routine is
called for a valid scheme
and modify is FALSE, it
will return error.

FM_PCD_IOC_KG_SCHEME_DELETE[_
COMPAT]

FM_PCD_KgSchemeDelete() Deletes an initialized
scheme.

FM_PCD_IOC_CC_ROOT_BUILD[_
COMPAT]

FM_PCD_CcRootBuild() This routine must be
called to define a complete
coarse classification tree.
This is the way to define
coarse classification to a
certain flow - the KeyGen
schemes may point only to
trees defined in this way.

FM_PCD_IOC_CC_ROOT_DELETE[_
COMPAT]

FM_PCD_CcRootDelete() Deletes an existing coarse
classification tree.

FM_PCD_IOC_MATCH_TABLE_SET[_
COMPAT]

FM_PCD_MatchTableSet() This routine should be
called for each CC (coarse
classification) node. The
whole CC tree should
be built bottom up so
that each node points to
already defined nodes.
p_node_id returns the
node Id to be used by other
nodes.

FM_PCD_IOC_MATCH_TABLE_
DELETE[_COMPAT]

FM_PCD_MatchTableDelete() Deletes a built node.

FM_PCD_IOC_CC_ROOT_MODIFY_
NEXT_ENGINE[_COMPAT]

FM_PCD_CcRootModifyNextEngine() Modifies the Next Engine
Parameters in the entry of
the tree (allowed only after
FM_PCD_CcBuildTree()).

FM_PCD_IOC_MATCH_TABLE_
MODIFY_NEXT_ENGINE[_COMPAT]

FM_PCD_MatchTableModifyNextEngine() Modifies the Next Engine
Parameters in the relevant
key entry of the node
(possible only after a call

Table 61. IOCTL List for the PCD Device...continued

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
507 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

IOCTL LLD Mapping Brief
to FM_PCD_MatchTable
Set()).

FM_PCD_IOC_MATCH_TABLE_
MODIFY_MISS_NEXT_ENGINE[_
COMPAT]

FM_PCD_MatchTableModifyMissNextEngine() Modifies the Next Engine
Parameters of the Miss key
case of the node (allowed
only after a previous call
to FM_PCD_MatchTable
Set()).

FM_PCD_IOC_MATCH_TABLE_
REMOVE_KEY[_COMPAT]

FM_PCD_MatchTableRemoveKey() Removes the key
(including its next engine
parameters) defined by
the index of the relevant
node (allowed only after a
previous call to FM_PCD_
MatchTableSet())

FM_PCD_IOC_MATCH_TABLE_ADD_
KEY[_COMPAT]

FM_PCD_MatchTableAddKey() Adds the key (including
next engine parameters
of this key) in the index
defined by key_index
(allowed only after a
previous call to FM_PCD_
MatchTableSet())

FM_PCD_IOC_MATCH_TABLE_
MODIFY_KEY_AND_NEXT_ENGINE[_
COMPAT]

FM_PCD_MatchTableModifyKeyAndNextEngine() Modifies the key and Next
Engine Parameters of this
key in the index defined by
key_index (allowed only
after a previous call to FM_
PCD_MatchTableSet()).

FM_PCD_IOC_MATCH_TABLE_
MODIFY_KEY[_COMPAT]

FM_PCD_MatchTableModifyKey() Modifies the key at the
index defined by key_
index (allowed only after a
previous call to FM_PCD_
MatchTableSet()).

FM_PCD_IOC_HASH_TABLE_SET[_
COMPAT]

FM_PCD_HashTableSet() Initializes a hash table
structure.

FM_PCD_IOC_HASH_TABLE_
DELETE[_COMPAT]

FM_PCD_HashTableDelete() Deletes the provided hash
table and released all its
allocated resources.

FM_PCD_IOC_HASH_TABLE_ADD_
KEY[_COMPAT]

FM_PCD_HashTableAddKey() Adds the provided key
(including next engine
parameters of this key) to
the hash table. The key is
added as the last key of the
bucket that it is mapped to.

FM_PCD_IOC_HASH_TABLE_REMOVE_
KEY[_COMPAT]

FM_PCD_HashTableRemoveKey() Removes the requested
key (including its next
engine parameters) from
the hash table.

FM_PCD_IOC_PLCR_PROFILE_SET[_
COMPAT]

FM_PCD_PlcrProfileSet() Sets a profile entry in
the policer profile table,

Table 61. IOCTL List for the PCD Device...continued

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
508 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

IOCTL LLD Mapping Brief
overriding any existing
value.

FM_PCD_IOC_PLCR_PROFILE_
DELETE[_COMPAT]

FM_PCD_PlcrProfileDelete() Deletes a profile entry in
the policer profile table. It
sets the entry to invalid.

FM_PCD_IOC_MANIP_NODE_SET[_
COMPAT]

FM_PCD_ManipNodeSet() This routine should be
called for defining a
manipulation node. A
manipulation node must
be defined before the CC
node that precedes it.

FM_PCD_IOC_MANIP_NODE_
REPLACE[_COMPAT]

FM_PCD_ManipNodeReplace() Change existing
manipulation node to
be according to new
requirement.

FM_PCD_IOC_MANIP_NODE_
DELETE[_COMPAT]

FM_PCD_ManipNodeDelete() Deletes an existing
manipulation node.

FM_PCD_IOC_SET_ADVANCED_
OFFLOAD_SUPPORT

FM_PCD_SetAdvancedOffloadSupport() This routine must be
called in order to support
the following features:
IP-fragmentation, IP-
reassembly, IPsec, header
manipulation, frame
replicator.

FM_PCD_IOC_FRM_REPLIC_GROUP_
SET[_COMPAT]

FM_PCD_FrmReplicSetGroup() Initialize a Frame
Replicator group.

FM_PCD_IOC_FRM_REPLIC_GROUP_
DELETE[_COMPAT]

FM_PCD_FrmReplicDeleteGroup() Delete a Frame Replicator
group.

FM_PCD_IOC_FRM_REPLIC_MEMBER_
ADD[_COMPAT]

FM_PCD_FrmReplicAddMember() Add the member in the
index defined by the
memberIndex.

FM_PCD_IOC_FRM_REPLIC_MEMBER_
REMOVE[_COMPAT]

FM_PCD_FrmReplicRemoveMember() Remove the member
defined by the index from
the relevant group.

FM_PCD_IOC_STATISTICS_SET_
NODE[_COMPAT]

FM_PCD_StatisticsSetNode() Not implemented in this
release. Do not use!

FM_PCD_IOC_KG_SCHEME_GET_CNTR FM_PCD_KgSchemeGetCounter() Reads scheme packet
counter.

Table 61. IOCTL List for the PCD Device...continued

Note: The _COMPAT variants of certain IOCTLs in the above table are required for supporting 32-bit user space
apps. on 64-bit Linux kernels. The specifics of the COMPAT mappings are documented by Linux.

The programming model for defining and managing PCDs for a group of ports is the same as described in the
FMD LLD User's Guide .

What follows is a step-by-step description of an example of ioctl() call mapping to an LLD API call.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
509 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

The example chosen for this walk-through is that of FM_PCD_IOC_MATCH_TABLE_SET. Here's a reminder of
the ioctl() prototype:

extern int ioctl (int __fd, unsigned long int __request, ...) __THROW;

and below is how it appears to kernel space:

struct file_operations {
 [...]
 long (*unlocked_ioctl) (struct file *, unsigned int, unsigned long);
 [...]
};

The ioctl() function is actually a pointer to a driver-supplied function having the specified signature. The glue
between the two is kernel code.

The semantics associated with the second and third function arguments are entirely the driver's business, but
usually the unsigned int argument is used to discriminate between various ioctl commands (actually, it
should obey some Linux good-behavior rules, which we are not going to detail here). In our case, it should be
FM_PCD_IOC_MATCH_TABLE_SET.

Linux attaches no predefined semantics to the third argument, the unsigned long one. In some cases it is
unused, or its semantics are those of an unsigned integer number, but in most cases it is treated as a (32-bit, on
most platforms) pointer to a driver-defined structure in user space. The driver defines the format, but the user
space allocates and fills in the data prior to invoking ioctl() on the open device fd. This is also the case with our
example.

The format of the third argument of the FM_PCD_IOC_MATCH_TABLE_SET ioctl is (as it actually appears in the
header file where it's defined):

/**//**
 @Description A structure for defining the CC node params
*//***/
typedef struct ioc_fm_pcd_cc_node_params_t {
 ioc_fm_pcd_extract_entry_t extract_cc_params;
 /**< params which defines
 extraction
 parameters */
 ioc_keys_params_t keys_params; /**< params which defines Keys
 parameters of the extraction
 defined
 in extract_cc_params */
 void *id; /**< output parameter;
 Returns the CC node Id to be used
 */
} ioc_fm_pcd_cc_node_params_t;

We'll detail the ioc_* types of the first two members later. The third member of this structure is apparently
a pointer to some data structure being returned back to user space. It is not the case. This actual pointer
should be handled as an opaque handle to some abstract item, in our case the "CC Node" that's being
created for us by this ioctl() call if successful. This handle can be later passed to for example, the
FM_PCD_IOC_MATCH_TABLE_DELETE IOCTL for deletion. It corresponds to an actual t_Handle, as defined
by the LLD.

Note: Failing to clean up FMan resources that the LLD allocates in this manner can cause serious hardware
resource leaks, which neither the Linux FMD, nor the LLD have the means to detect and clean up automatically!

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
510 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

The LLD function that this IOCTL maps to has the following prototype:

t_Handle FM_PCD_MatchTableSet(t_Handle, t_FmPcdCcNodeParams *);

The first argument corresponds to the LLD resource that the Linux PCD device maps to. Most of the LLD
resources are managed within the Linux FMD driver and not exposed to the user, but there are exceptions and
the FM_PCD_MatchTableSet() function here is the best example, as it returns a t_Handle to such an LLD
resource. This returned t_Handle is then passed over to the user space in the opaque id member of ioctl()'s
third argument.

The second argument is a pointer to a structure of type t_FmPcdCcNodeParams. This maps to the
ioc_fm_pcd_cc_node_params_t type that ioctl()'s third argument points to.

Note: Passing to ioctl() a pointer to something of a type other than the required one will cause the user
application to segfault, or an error, at best, but may also cause undefined FMan behavior from that point
onward, with errors being possibly reported only later downstream as the worst case. Linux/the FMD can do
very little to prevent this worst case from occurring, so hopefully one can catch such coding errors early during
the development cycle.

A side-by-side comparison of the two structures is given in the following table:

IOCTL Types LLD Types

typedef struct ioc_fm_pcd_cc_node_params_t {
 ioc_fm_pcd_extract_entry_t extract_cc_params;
 ioc_keys_params_t keys_params;
 void *id;
} ioc_fm_pcd_cc_node_params_t;

typedef struct t_FmPcdCcNodeParams {
 t_FmPcdExtractEntry extractCcParams;
 t_KeysParams keysParams;
} t_FmPcdCcNodeParams;

typedef struct ioc_fm_pcd_extract_entry_t {
 ioc_fm_pcd_extract_type type;
 union {
 struct {
 ioc_net_header_type hdr;
 bool ignore_protocol_validation;
 ioc_fm_pcd_hdr_index hdr_index;
 ioc_fm_pcd_extract_by_hdr_type type;
 union {
 ioc_fm_pcd_from_hdr_t from_hdr;
 ioc_fm_pcd_from_field_t from_field;
 ioc_fm_pcd_fields_u full_field;
 } extract_by_hdr_type;
 } extract_by_hdr;
 struct{
 ioc_fm_pcd_extract_from src;
 ioc_fm_pcd_action action;
 uint16_t ic_indx_mask;
 uint8_t offset;
 uint8_t size;
 } extract_non_hdr;
 } extract_params;
} ioc_fm_pcd_extract_entry_t;

typedef struct t_FmPcdExtractEntry {
 e_FmPcdExtractType type;
 union {
 struct {
 e_NetHeaderType hdr;
 bool ignoreProtocolValidation;
 e_FmPcdHdrIndex hdrIndex;
 e_FmPcdExtractByHdrType type;
 union {
 t_FmPcdFromHdr fromHdr;
 t_FmPcdFromField fromField;
 t_FmPcdFields fullField;
 } extractByHdrType;
 } extractByHdr;
 struct {
 e_FmPcdExtractFrom src;
 e_FmPcdAction action;
 uint16_t icIndxMask;
 uint8_t offset;
 uint8_t size;
 } extractNonHdr;
 };
} t_FmPcdExtractEntry;

typedef struct ioc_keys_params_t {
 uint16_t max_num_of_keys;
 bool mask_support;
 ioc_fm_pcd_cc_stats_mode statistics_mode;
 uint16_t num_of_keys;
 uint8_t key_size;
 ioc_fm_pcd_cc_key_params_t
 key_params[IOC_FM_PCD_MAX_NUM_OF_KEYS];
 ioc_fm_pcd_cc_next_engine_params_t
 cc_next_engine_params_for_miss;
} ioc_keys_params_t;

typedef struct t_KeysParams {
 uint16_t maxNumOfKeys;
 bool maskSupport;
 ioc_fm_pcd_cc_stats_mode statisticsMode;
 uint16_t numOfKeys;
 uint8_t keySize;
 t_FmPcdCcKeyParams
 keyParams[FM_PCD_MAX_NUM_OF_KEYS];
 t_FmPcdCcNextEngineParams
 ccNextEngineParamsForMiss;
} t_KeysParams;

Table 62. Side-by-side comparison of IOCTL and LLD types

While the structure members have resembling names on both sides, most are not identical. That's because
style has prevailed over the need to port existing LLD applications to the Linux environment, when the Linux
FMD was designed. Except for the occasional *id pointer, there is a 1:1 mapping between the struct members
on the two sides, and that is consistent throughout the FMD.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
511 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

The constituent structures of the two APIs' argument types given above are for illustration only. Their semantics
are documented in the Frame Manager Driver API Documentation .

Note: The existence of two separate definitions for otherwise two identical data structures may appear as
an unfortunate design decision. However, since a memcpy from user space to kernel space is unavoidable,
this design decision has no impact over performance. Moreover, the user space only sees one variant (that
is, the ioc_* one), therefore the even smaller user impact. The larger impact is on code maintenance and on
documentation.

7.2.5.1.3.3 Linux port devices

There is a pair of RX/TX Linux character devices for each physical port of every Frame Manager. These devices
are created irrespectively of the DPAA1 Ethernet network devices and they are strictly reflecting the available
Frame Manager hardware on the given platform. The port Linux devices are labeled as follows:

• /dev/fmX-port-rxY for receive, where X=[0,1] represents the FMan number, and Y=[0-7] represents the
physical port ID (0 corresponding to the first 1 Gbit port, and 6 to the first 10 Gbit port), and

• /dev/fmX-port-txY correspondingly for the transmit side.

Each FMan also has a number of Offline Parsing ports. These are labeled as /dev/fmX-port-ohY, where Y=[0-6].

The port devices are created based on configuration information taken from the relevant Linux device tree
section.

For instance, LS1043A has one FMan with 6 x 1 Gbit ports and one 10 Gbit port, while LS1046A has one FMan
with 6 x 1 Gbit and 2 x 10 Gbit ports. A side-by-side comparison of the corresponding port devices is given in
the following table:

LS1043A LS1046A

For the Receive side:

/dev/fm0-port-rx0 /dev/fm0-port-rx1 /
dev/fm0-port-rx2 /dev/fm0-port-rx4 /
dev/fm0-port-rx5 /dev/fm0-port-rx6

For the Receive side:

/dev/fm0-port-rx0 /dev/fm0-port-rx1 /
dev/fm0-port-rx2 /dev/fm0-port-rx3 /
dev/fm0-port-rx4 /dev/fm0-port-rx5 /
dev/fm0-port-rx6 /dev/fm0-port-rx7

For the Transmit side:

/dev/fm0-port-tx0 /dev/fm0-port-tx1 /
dev/fm0-port-tx2 /dev/fm0-port-tx3 /
dev/fm0-port-tx4 /dev/fm0-port-tx5 /
dev/fm0-port-tx6

For the Transmit side:

/dev/fm0-port-tx0 /dev/fm0-port-tx1 /
dev/fm0-port-tx2 /dev/fm0-port-tx3 /
dev/fm0-port-tx4 /dev/fm0-port-tx5 /
dev/fm0-port-tx6 /dev/fm0-port-tx7

For Offline Parsing:

/dev/fm0-port-oh0 /dev/fm0-port-oh1 /
dev/fm0-port-oh2 /dev/fm0-port-oh3 /
dev/fm0-port-oh4 /dev/fm0-port-oh5

For Offline Parsing:

/dev/fm0-port-oh0 /dev/fm0-port-oh1 /
dev/fm0-port-oh2 /dev/fm0-port-oh3 /
dev/fm0-port-oh4 /dev/fm0-port-oh5

Table 63. Side-by-side comparison of port devices for LS1043 and LS1046

The table below summarizes the IOCTLs available for the port device.

IOCTLS LLD Mapping Brief

FM_PORT_IOC_DISABLE FM_PORT_Disable() Disables the port: all port settings are
preserved, but all traffic stops.

Table 64. IOCTLs of the Port Device

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
512 / 1061

html/Fman_Driver_API_Ref/index.html

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

IOCTLS LLD Mapping Brief

FM_PORT_IOC_ENABLE FM_PORT_Enable() Enables the port: causes the port to
start processing traffic.

FM_PORT_IOC_SET_RATE_LIMIT FM_PORT_SetRateLimit() (TX & O/H Only) Activates the Rate
Limiting Algorithm for the port.

FM_PORT_IOC_DELETE_RATE_LIMIT FM_PORT_DeleteRateLimit() (TX & O/H Only) Deactivates any Rate
Limiting.

FM_PORT_IOC_SET_ERRORS_ROUTE FM_PORT_SetErrorsRoute() (RX & O/H Only) Instructs the FMD
to enqueue frames w/specific errors
onto the normal port queues, rather
than onto the error queue (that is, the
default).

FM_PORT_IOC_ALLOC_PCD_FQIDS N/A For testing/debugging. Do not use!

FM_PORT_IOC_FREE_PCD_FQIDS N/A For testing/debugging. Do not use!

FM_PORT_IOC_SET_PCD[_COMPAT] FM_PORT_SetPCD() (RX & O/H Only) Defines a PCD
configuration for the port.

FM_PORT_IOC_DELETE_PCD FM_PORT_DeletePCD() (RX & O/H Only) Deletes the port's
PCD configuration.

FM_PORT_IOC_DETACH_PCD FM_PORT_DetachPCD() (RX & O/H Only) Disables the PCD
configuration for the port (only allowed
after FM_PORT_SetPCD() has been
called for the port).

FM_PORT_IOC_ATTACH_PCD FM_PORT_AttachPCD() (RX & O/H Only) reenables the PCD
configuration for the port (only valid
after a call to FM_PORT_Detach
PCD()).

FM_PORT_IOC_PCD_PLCR_ALLOC_
PROFILES

FM_PORT_PcdPlcrAllocProfiles() (RX & O/H Only) Allocates private
policer profiles for the port (only allowed
before a a call to FM_PORT_Set
PCD()).

FM_PORT_IOC_PCD_PLCR_FREE_
PROFILES

FM_PORT_PcdPlcrFreeProfiles() (RX & O/H Only) Frees any private
policer profiles allocated for the port
(callable only before FM_PORT_Set
PCD()).

FM_PORT_IOC_PCD_KG_MODIFY_
INITIAL_SCHEME[_COMPAT]

FM_PORT_PcdKgModifyInitial
Scheme()

(RX & O/H Only) Modifies key
generation scheme following frame
parsing (callable only after FM_PORT_
SetPCD()).

FM_PORT_IOC_PCD_PLCR_MODIFY_
INITIAL_PROFILE[_COMPAT]

FM_PORT_PcdPlcrModifyInitialProfile() (RX & O/H Only) Changes the initial
policer profile for the port (callable only
after FM_PORT_SetPCD()).

FM_PORT_IOC_PCD_CC_MODIFY_
TREE[_COMPAT]

FM_PORT_PcdCcModifyTree() (RX & O/H Only) Replaces the coarse
classification tree if one is used for the
port (callable only after FM_PORT_
DetachPCD() and before FM_PORT_
AttachPCD()).

FM_PORT_IOC_PCD_KG_BIND_
SCHEMES[_COMPAT]

FM_PORT_PcdKgBindSchemes() (RX & O/H Only) Adds more KeyGen
schemes for the port to be bound to

Table 64. IOCTLs of the Port Device...continued

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
513 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

IOCTLS LLD Mapping Brief
(callable only after FM_PORT_Set
PCD()).

FM_PORT_IOC_PCD_KG_UNBIND_
SCHEMES[_COMPAT]

FM_PORT_PcdKgUnbindSchemes() (RX & O/H Only) Prevents the port
from using the specified KG schemes
(callable only after FM_PORT_Set
PCD())

FM_PORT_IOC_PCD_PRS_MODIFY_
START_OFFSET

FM_PORT_PcdPrsModifyStartOffset() (RX & O/H Only) Changes the frame
offset at which parsing starts (callable
only after FM_PORT_DetachPCD() and
before FM_PORT_AttachPCD()).

FM_PORT_IOC_ADD_CONGESTION_
GRPS

FM_PORT_AddCongestionGrps() (RX & O/H Only) Should be called
in order to enable pause frame
transmission in case of congestion
in one or more of the congestion
groups relevant to this port. Each call
to this routine may add one or more
congestion groups to be considered
relevant to this port.

FM_PORT_IOC_REMOVE_
CONGESTION_GRPS

FM_PORT_RemoveCongestionGrps() (RX & O/H Only) Should be called when
congestion groups were defined for
this port and are no longer relevant,
or pause frames transmitting is not
required on their behalf. Each call to
this routine may remove one or more
congestion groups to be considered
relevant to this port.

FM_PORT_IOC_ADD_RX_HASH_MAC_
ADDR

FM_MAC_AddHashMacAddr() Add an Address to the hash table. This
is for filter purpose only.

FM_PORT_IOC_REMOVE_RX_HASH_
MAC_ADDR

FM_MAC_RemoveHashMacAddr() Delete an Address to the hash table.
This is for filter purpose only.

FM_PORT_IOC_SET_TX_PAUSE_
FRAMES

FM_MAC_SetTxPauseFrames() Enable/Disable transmission of Pause-
Frames. The routine changes the
default configuration: pause-time -
[0xf000], threshold-time - [0]

FM_PORT_IOC_GET_MAC_
STATISTICS

FM_MAC_GetStatistics() Get all MAC statistics counters.

FM_PORT_IOC_CONFIG_BUFFER_
PREFIX_CONTENT

FM_PORT_ConfigBufferPrefixContent() Defines the structure, size and content
of the application buffer.

FM_PORT_IOC_VSP_ALLOC[_
COMPAT]

FM_PORT_VSPAlloc() This routine allocated VSPs per port
and forces the port to work in VSP
mode. Note that the port is initialized by
default with the physical-storage-profile
only.

Table 64. IOCTLs of the Port Device...continued

Note: The COMPAT variants of certain IOCTLs in the above table are required for supporting 32-bit user space
apps. on 64-bit Linux kernels. The specifics of the COMPAT mappings are documented by Linux.

The programming model for managing the FMan's ports is the same as described in the Frame Manager Driver
API Reference. A few notable mentions though:

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
514 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Although all the above IOCTLs are implemented by the Linux FMD, due to the asymmetry between RX and TX,
not all are available for any port type. For example, FM_PORT_IOC_SET_PCD will generate an error if called
on a TX port device. Similarly, FM_PORT_IOC_SET_RATE_LIMIT will fail for an RX port. That is because the
checking of the port type is being done late, inside the LLD, and not in the Linux FMD (that is, the ioctl() calls for
all port devices delegate to the same function inside the Linux kernel)!

The Offline Parsing ports have the best of both worlds. That is because conceptually, an O/H port is no different
from a "regular" FMan port that has the TX side looped back internally to its RX side.

7.2.5.2 Frame Manager Driver User Guide

7.2.5.2.1 Introduction

The Frame Manager is a hardware accelerator responsible for preprocessing and moving packets into and out
of the data path. It supports in-line/off-line packet parsing and initial classification to enable policing and flow/
QoS based packet distribution to the CPUs for further processing of the packets.

The Frame Manager consists of a number of packet processing elements (also referred to as engines) and
supports a flexible pipeline.

Usually, the main Rx flow (simplified) follows these steps:

1. The packets received from one of the Ethernet MACs are temporarily stored in the FMan internal memory
and then delivered to SoC memory via the FMan DMA.

2. The packet header (max size 256 bytes) is stored and the modules common database structure is allocated.
3. The packet is parsed by the parser or by the FMan controller.

According to parsing results a key may be extracted by KeyGen, a destination frame-queue-id may be set,
the packet may be classified by the FMan controller. In that stage, some offloads may be done, such as
reassembly, fragmentation, header-manipulation and frame-replication.
At the end of the classification and manipulations stage, the packet may be colored by policer.
At the end of this process, the packets are delivered to SoC memory via the FMan DMA and then they are
enqueued to a frame queue or dropped.
The processing order is Parse-Classify-Distribute (PCD) flow dependent, based on user configurations.
Each step is dependent on previous state results. This structure enables flexibility, which efficiently supports
many flows.

4. On Tx, the frames are transmitted via the desired MAC with optional checksum generation.

7.2.5.2.2 Frame Manager Features

The FMan driver aims to support the majority of the hardware features. It also includes exclusive software
features designed to provides facilitation through abstraction.

Following are the features of the FMan driver:

• Simple initialization and configuration API for the following FMan blocks: DMA, FPM, IRAM, QMI, BMI, and
RTC.

• Simple initialization and configuration for the following FMan PCD blocks: Parser, Keygen, Custom-Classifier
(CC), Manipulations (for example, Header-manipulations, IP-reassembly, IP-fragmentation, and so on.) and
Policer.

• FMan memory (MURAM) management.
• FMan-controller code loading.
• Software-Parser loading.
• Supported all FMan port types-Rx, Tx, Offline-Parsing, and Host-Command (internal use of the driver only)

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
515 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

• Common MAC API for dTSEC, 10G-MAC and mEMAC.
• Provides API for accessing the MII management interface.
• FMan Rx and Tx ports can run in one of the following modes:

– Independent-Mode
– Simple BMI-to-BMI (regular) mode
– Advance PCD mode (using FMan PCD blocks such as parser, Keygen, CC, and Policer).

• FMan Offline ports can run in one of the following modes:
– Simple BMI-to-BMI (regular) mode
– Advance PCD mode (using FMan PCD blocks such as parser, Keygen, CC, and Policer)

• Internal (optional) Host-Command port initialization, based on user's parameters.
• FMan IRQ handling - events and exceptions.
• Supports both SMP and AMP operation modes.

7.2.5.2.3 Frame Manager Driver Components

The FMan driver contains following low-level modules, as shown in this figure.

Figure 86. FMan Driver Modules (from a partition point of view)

The modules are as follows:

• Frame Manager (common)-The FMan module is a singleton module within its partition. It is responsible for
the common hardware modules: FPM, DMA, common QMI, common BMI, FMan controller's initialization, and
runtime control routines. This module must always be initialized when working with any FMan module. The
module will mainly be used internally by the other FMan modules except for its initialization by the user.
This module has an instance for each partition. However, only the driver that is on the master-partition has
access to the hardware registers.

• Frame Manager Parser-Classifier-Distributor (FMan-PCD)-The FMan PCD module is a singleton module
within its partition. It is responsible of all common parts of the PCD, such as the hardware parser, software
parser, Keygen, policer, and custom-classifier blocks. It is responsible for building the PCD graphs.
This module has an instance for each partition. However, only the driver on the master-partition has access to
the hardware registers.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
516 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

• Frame Manager Memory (FMan-MURAM)-This module is responsible for the specific memory partition of
the FMan Memory. Each partition may have its own FMan Memory partition that is managed by the FMan
Memory driver. For example, an FMan Memory instance will be created for each partition that has its own
FMan ports.
This module has an instance for each partition.

• Frame Manager Real-Time-Clock (FMan-RTC)-This module is responsible for the FMan RTC module.
This module is a "singleton" and should be created once only for the master-partition.

• Frame Manger Port (FMan-Port)-This module is responsible for all FMan port-related register space, such as
all registers related to a port in QMI or BMI.
This module can be run by each core or partition independently.

• Frame Manager MAC (FMan-MAC)-This module is responsible for the mEMAC dTSEC and the 10G MAC
controllers.
This module can be run by each core or partition independently.

• Frame Manager Virtual-Storage-Profile (FMan-VSP)-This module is responsible for allocating and managing
virtual storage profiles that may be used for virtualization purposes. More of the VSP is described in
Section 7.2.5.2.10.
This module can be run by each core or partition independently.

7.2.5.2.4 Driver Modules in the System

The FMan driver is designed to support single or multi partition environment. In addition, the FMan driver is
designed to support environment with multicore that are running in SMP mode.

The following figure shows a typical single-partition (maybe SMP or not) environment and its FMan driver
building blocks.

Note: In this environment:

• All FMan driver modules are available and should be initialized by the user (unless if it is unnecessary for the
user operation; for example, if PCD is not needed so it may not be called).

• The FMan driver modules have the full functionality of the hardware.
• Each module has full access to its hardware registers (that is, each module will access its registers directly).

Applications

Application
(Control, FWD, Bridge, etc.)

FMC Tool

Kernel-Drivers Network stack

FM

FM RTC

FM PCD

FM
Common

FM Port

FM NURAM FM MAC

FM FM Port FM MAC

Hardware

FM VSP

Figure 87. Single-Partition FM Building Blocks

7.2.5.2.4.1 Multicore Approach

The driver supports the Symmetric Multi-Processing (SMP) operation method.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
517 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

SMP

As a rule, driver routines are not SMP safe. It is user's responsibility to lock all routines that might be in risk in
user's environment, for example, if FM_PORT_Enable/FM_PORT_Disable may be used by several cores, it is
user's responsibility to protect the routine call using a spinlock.

An exception to this rule is the set of PCD routines. Due to the complexity of this module, and in order to
support SMP and maintain coherency, PCD routines are protected using two mechanisms, spinlocks and flags.

Each PCD resource (that is, software module such as scheme, CC Node, NetEnv, and so on.) may have one
or more spinlocks which are used to protect short code sections where specific resources such as hardware
registers or software structures are accessed. In some cases, a spinlock of a higher level is used (that is, CC
locks the whole PCD).

The second mechanism is defined globally. The PCD global module provides a PcdLock mechanism, which is a
list of lock objects containing a flag and a spinlock rotating that flag. On initialization of each PCD resource (that
is, software module such as scheme, CC Node, NetEnv, and so on.), a PcdLock is allocated for this module.
Critical sections that may not be protected by spinlocks (due to reasons of sections length, Host Commands
and other lengthy operations) are protected by these flags. Note that this is a try-lock mechanism and the calling
routine returns with E_BUSY error on failure. The try-locks are used by all PCD resources modification routines,
in which case the application is expected to recall the routine until it is not busy.

In Addition, PCD and FM Port inter-module complex sections may be protected by try-locking all the initialized
PcdLock modules in the global PCD, therefore providing a safe PCD environment where influence and
connections between modules may take effect.

On top of PCD routines, all FM Port PCD-related routines are also protected by Port try-lock, meaning no
two cores can access the same port to run a PCD routine. As in the PCD routines, these routines may return
E_BUSY on failure and should then be recalled.

The driver SMP protection mechanism assumes the following:

• Only one core may initialize and delete a specific PCD software module (that is, scheme x may not be
initialized by two cores).

• A core should not attempt to delete a PCD software module when there is a risk of another core operating on
that specific module.

7.2.5.2.5 FMan Driver Calling Sequence

Initialization of the FMan driver is carried out by the application according to the following sequence:

1. MURAM configuration and Initialization
2. FMan (common) configuration and Initialization
3. [Optional] FMan RTC configuration and Initialization
4. For each MAC required by the user:

a. MAC Configuration and Initialization
b. PHY Initialization

5. For each FMan Port required by the user:
a. FMan Port Configuration and Initialization
b. [optional] If the FMan Port required to be virtualized, a set of VSPs need to be allocated and one of

them should be set as the default.
c. [optional] If VSPs were allocated in previous step, the default VSP need to be configured and initialized
d. in that stage, user should configure and initialize everything that is needed for the operation of a port

outside the FMan; For example, buffer-pools, frame-queues, and so on.
e. Port Enablement
f. MAC Enablement

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
518 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

g. Calling 'AdjustLink' MAC API routine with the relevant link parameters
Note: Now, the FMan is operational. The ports operate in independent mode or BMI-to-BMI mode.
From that point, all the following steps are optional.

6. FMan PCD Configuration and Initialization
7. If a physical port is being "virtualized" into several software entities (using some classification to distribute

the traffic), user should configure and initialize the relevant buffer-pools and frame-queues.
8. If VSP is enabled, in that stage, user should configure and initialize the relevant profile.
9. FMan PCD Graph initialization:

a. Calling restricted runtime routines (that may be called only when PCD is disabled)
b. Calling the PCD enable routine
c. Initialization of a all PCD Graph objects (that is, KG-schemes, Match-Tables, and so on)

10. FMan port PCD-related initialization; calling the runtime control routines to set the PCD-related parameters
Note: In case the PCD is "set" to a FMan OP port, it should be disabled first (that is, before calling
'FM_PORT_SetPCD' routine).

11. FMan runtime routines
12. FMan Free sequence - in reverse order from initialization

7.2.5.2.6 Global FMan Driver

The Global FMan driver refers to the common FMan features - that is, functionality that is not defined per-port
and does not belong to a spany of the specific modules such as PCD, RTC, MURAM, MAC and so on.

7.2.5.2.6.1 FMan Hardware Overview

The following Frame Manager processing elements are considered general FMan components and are
controlled by the FMan common driver:

• The Frame Processor Manager (FPM) schedules frames for processing by the different elements to create the
appropriate pipeline.

• The BMI is intended to transfer data between network and internal FMan memory, generate frame descriptor
(FD), initialize the internal context (IC), manage the internal buffers, allocate/deallocate external buffers with
the help of BMan and activate the DMA to transfer data between internal and external RAMs

• The DMA is responsible for frames data transfer from and to external memory
• The queue manager interface (QMI) is responsible for transferring packet-based work assignments between

the queue manager (QMan) and the frame manager (FMan). It provides an interface to the QMan for
enqueuing and dequeuing new frames to/from the multicore system.

Global FMan Driver Software Abstraction

The FMan global driver covers all the logically common FMan functionality, i.e functionality which is not port
related. The different hardware modules within the FMan (that is, BMI, DMA, and so on.) are encapsulated
within the FMan module. The terms "BMI", "DMA" are used for resources identification such as exceptions,
counters and some configuration parameters, but logically, the only module used for functional operations is the
FMan.

7.2.5.2.6.2 How to use the Global FMan Driver?

The following sections provide practical information for using the software drivers.

Global FMan Driver Scope

This module represents the common parts of the FMan. It includes:

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
519 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

• FMan hardware structures configuration and enablement
• Resource allocation and management
• Interrupt handling
• Statistics support
• ECC support for the FMan RAM's
• Load balancing between ports

Global FMan Driver Sequence

• FMan config routine
• [Optional] FMan advance configuration routines
• FMan Init routine
• FMan runtime routines
• FMan free routine

Global FMan Driver Functional Description

The following sections describe main driver functionalities and their usage.

FMan Configuration and Initialization

On FMan driver initialization, the software configures all FMan registers and relevant memory. It supplies default
values where no other values are specified, it allocates MURAM, it loads FMan controller code. It defines IRQ's
and sets IRQ handles. It enables hardware mechanisms and initializes software data structures for software
management.

By the time initialization is done, FMan is ready to be used and any of the FMan submodules (FMan-Ports,
MACs, and so on.) may be initialized.

Resource Management and Tuning

The FMan provides resources used by its submodules. Generally, the driver selects default resource allocation,
but when initializing the global FMan module, the user may specify a different allocation for some or all of the
resources.

The resources relevant for this discussion are resources used by the BMI only. These resources should be
further distributed between the different ports, but the initial allocation is for the BMI in opposed to some internal
use of the FMan controller. The main and most important resources of the FMan are TNUMs (that is, the FMan
"tasks"), DMAs, FIFOs and "pipeline-depth".

The total available resources may vary based on SoC. The recommended default values are designed to
fit most applications but as the resource allocation depends on system configuration, it therefore may vary
between applications. That is, the default value that is being set by the driver will be sufficient in use cases
were the user utilizing most of the FMan bandwidth and the user application is mostly using the FMan. In other
cases such as if user uses some advance PCD settings and/or overloads the SoC (for example, PCI is being
massively used), the resources may need some special treatment and tuning by user as the default may not be
sufficient enough.

Most MURAM is used as a temporary location for data transaction. This part's size is referred to as "FIFO size".
The rest of the MURAM may be used for other utilizations such as Custom Classifier and its size is effected by
the use of these features, that is, if Custom Classifier is not used, "FIFO size" may be enlarged. The user may
call FM_ConfigTotalFifoSize in order to modify the default value of the MURAM. However, one should
bear in mind that when FIFO size is enlarged - Custom Classifier space is decreased.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
520 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Load Balancing

The FMan provides a mechanism to optimize the internal arbitration of different ports over the shared resources
of the hardware.

The driver supports this feature by providing an API for dividing the bandwidth between the different ports
(FM_SetPortsBandwidth). The API is given in terms of percentage - that is, for each port, the user should
specify its percentage relative to the other ports. This API is optional and may be modified at runtime. If not
used, or if all ports get the same bandwidth (whether its {50,50} or (25,25,25,25}), then no one port will have
priority over other ports. If ports get different values, for example 3 ports used and get {25,50,25}, then the first
and third ports will get the same access to shared resources but the second one will get twice as much. That is,
The numerical values given to each port are not important, but only the relation between the ports.

Statistics

The FMan API provides access to all the statistics gathered by the FMan hardware. The API routine
FM_GetCounter may be called at any time after initialization to retrieve any of the FMan counters.

7.2.5.2.7 FMan Parse-Classify-Distribute Driver

The Parse-Classify-Distribute (PCD) driver module refers to the parts of the drivers handling the different PCD
engines and services such as Parser, Keygen, Custom Classifier, Policer, Header Manipulation, Reassembly,
Fragmentation and Frame Replication. It deals both with the common configuration and runtime features and
the specific PCD resources such as Keygen Schemes, Custom Classifier graphs, and so on.

7.2.5.2.7.1 FMan PCD Hardware Overview

• Parser-The parser performs protocol header parsing and validation for a wide range of frame formats with
varying protocols and encapsulation. A hard-coded parser function is used for the known and stable protocols.
The hardware parser capabilities can be expanded by software parser functions to support protocols not
supported by the hardware parser including proprietary protocols and shim headers. The parser parses the
frame according to a per-port configuration. It reads the frame header from the FMan Memory and writes the
frame parse results to the Internal Context of the frame. The Lineup Confirmation Vector is a part of the parser
result. It represents a list of all the protocols recognized by the hardware parser, and may be extended to
contain information added by the software parser.

• Keygen-The Keygen is located on the FMan receive path, and enables high performance implementation of
pre-classification. It holds a SoC dependent number of key generation schemes in internal memory. Each
scheme can generate different frame queue ID (FQID), a Storage-Profile ID (SPID) and policer profile (PP).
One main function of the Keygen module is to separate network data into different flows, each requiring
different processing. Another function of the Keygen, is the Classification Plan. This is a mechanism provided
in order to mask LCV bits according to per-port definition. The Classification Plan is implemented as a table of
SoC dependent number of entries, logically divided or shared between the FMan Ports.

• Custom Classifier-The Frame Manager (FMan) Custom Classifier module performs a look-up using a
specific key from the received frame or internal frame context according to Parser results. The FMan Custom
Classifier logically occurs after the Keygen processing has completed and can be operational in both the
MAC receive flow and the offline parsing flow. The look-up produces an action descriptor which contains the
necessary information for the continuation of the frame processing in the next module or the next look-up
table.

• Policer-The Policer supports implementation of differentiated services at line speed on the Frame Manager
(FMan) receive or offline parsing paths. It holds a SoC dependent number of traffic profiles in internal memory,
each profile implementing RFC-2698 or RFC-4115 or Pass-Through mode. Each mode can work in either
color-blind or color aware mode, and pass or drop packets according to their resulting color.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
521 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

FMan PCD Software Abstraction

The FMan PCD driver aims to provide a high-level, abstract, network oriented, logical interface. It is designed
to allow a glue logic between the different PCD engines and the PCD "user" - the FMan port, and to define an
interface to these features to be used by the application. In this process, new non-hardware modules may be
created - such as "Network Environment", while existing hardware modules - such as "Classification Plan" -
may be hidden from the user. The following sections make an attempt to describe the driver design decisions in
abstracting the engines' hardware and the gap between the hardware programming model and the drivers API.

FMan PCD Flow

The FMan opens the FPM scheduling capabilities to the application, which allows significant flexibility in defining
the packet flow. At various points in the flow, the FMan user must configure the next engine to handle the packet
and the next operation it will perform. The driver minimizes this flexibility by assuming a basic flow for each
port. The driver can expand this flow to include all FMan PCD capabilities, but in a limited manner that will be
described below.

The basic flow reflects the expected use of the FMan PCD. When a port is initialized, the default setup that
received packets are passed to the port's default Rx frame queue, as configured by the user. When the PCD is
linked to the port, the user chooses one of the provided PCD support options which selects which PCD engines
(parser, Keygen, FMan-Controller, and Policer) are included in the frames. The selected PCD support option
adds the selected engine or engines to the flow according to the following PCD organization.

• When parser is used, it is always the first PCD engine working on the received frames.
• If parser is not activated, Keygen, and FMan-Controller may not be activated.
• Keygen's first use follows the parser, but it may be used again following the FMan-Controller or the policer.
• If FMan-Controller is used, it will follow the Keygen. It may not be activated if Keygen is not used.
• Policer may be activated by itself or follow any of the engines.

In all cases, the frame returns to the buffer manager interface (BMI) for enqueuing. The application may not
change the main flow at runtime.

The following figure shows the default ports flows (in terms of next invoked action (NIA) registers' initialization):

BMI

BMI QMI

QMI BMI

BMIQMIEND

Frame for
Parsing
(QM)

PCD

Figure 88. Default Rx Flow

Figure 89. Default Offline Parsing Flow

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
522 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Note: In independent mode, both Tx and Rx BMI NIA are FMan Controller. Other NIAs are not applicable.

After basic initialization, the default Rx flow, as shown in Figure 88, is the configured flow. A PCD flow is
initially defined by FMan Port level, although it is effected both by the port configuration and the PCD resources
configuration. Following figure shows the PCD flows supported by the driver.

BMI release internal buffers

END

NL=0

NIA=BMI Release

QMI

NIA=QMI_ENQ

BMI prepare to enqueue frame

Rx Frame

BMI (Rx)

NIA=BMI prepare to Enqueue NIA=Policer

NIA=Policer

NIA=Parser

NIA=BMI prepare to Enqueue

NIA=BMI prepare to Enqueue

Parser

NIA=KeyGen

KeyGen

NIA=BMI prepare to Enqueue

NIA=DMI DROP Frame

NIA=BMI prepare to Enqueue

NIA=BMI prepare to Enqueue NIA=Policer

Policer

NIA=Policer

KeyGen

NIA=KeyGen

Policer

NIA=KeyGen

NIA=Policer

FMan Controller Custom classifier.

NIA=Custom classifier.

NIA=Policer

FMan Controller continuous mode processing
not supported in P1023,P4080,P3041,
P5020,P5040 and P2041

 NIA=continuous mode
processing

&NI=1

Figure 90. Available flows

Global FMan PCD Module

The FMan PCD driver deals with the configuration initialization and runtime setting of the PCD resources.
The actual use of these resources is in fact activated only when an FMan-Port is enabled and is bound to the
initialized PCD resources. This section explains the initialization and organization of those resources.

The PCD driver is constructed by a global FMan-PCD module that must be initialized first, and a set of optional
PCD resources that can be initialized at runtime. The FMan-PCD module is responsible for enabling the
different engines, loading SW parser if required, registering PCD interrupts and other general configuration.

Global FMan-PCD Resources

PCD driver's resources are NOT identical to PCD hardware resources and provide an abstraction layer to the
hardware resources. PCD is viewed as a graph of PCD resources where FMan RX and OP Ports may be bound
to subsets of the PCD graph. Refer to Section "Port-PCD Binding".

The following are the driver's PCD resources:

• Network Environment Characteristics
• Software Parser
• Keygen Schemes

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
523 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

• Custom Classifier Roots
• Custom Classifier Match-Tables
• Custom Classifier Hahs-Tables
• Custom Classifier Manipulations
• Policer Profiles

The Network Environment (NetEnv) Characteristics are a pure SW resource. It is used in creating multiple
HW PCD resources. Logically, it represents the NetEnv of a port or a number of ports and supplies the glue
between the parser, the Keygen, the Custom Classifier and the port. It ensures they all "speak the same
language". Physically, it defines the LCV for all the participating protocols for each FMan Port.

Keygen Schemes and Policer Profiles are closely bound to their hardware programming model

Custom Classifier process is represented by a software graph. Each node in the graph represents a logical
action. The driver defines different types of Custom Classifier nodes. One type of node is one of an Exact-
Match which is a software representation of an Action-Descriptor (AD) that performs a lookup according to the
key defined. Another type of node is one of Indexed-Lookup which is again a software representation of an
Action-Descriptor of that type. A higher level of abstraction is performed on Hash-Table nodes, where the driver
manages a hash table. Each node, may also contain a handle to a Manipulation action - which is the software
abstraction for one or more AD's used for manipulating the frame by inserting and/or removing data. Generally,
any Custom Classifier software node may be translated to one or more HW action descriptors.

The driver defines a notion of a Custom Classifier graph. The CC graph is the total set of lookups and
manipulations performed by the Custom Classifier. The user builds the graph only after defining the CC Nodes.
The finalization of the graph is done by building the root nodes and defining their grouping. This refers to the 16
entries array that functions as the entry point of the CC. Generally, the indexing into this array is performed by
using 4 bits out of the LCV. This driver supports a division of this array into 2-16 unrelated groups to increase
the flexibility of the programming and allow usage of more LCV bits.

How to Associate PCD Resources

The NetEnv is the link between the port and all the PCD resources it is using.

• Parser-The driver configures the LCV (lineup confirmation vector) in the parser configuration for every FMan
Port according to the specific NetEnv it is bound to. When using SW parser, a private shim header should be
added as a NetEnv unit, and may be used later as a regular unit.

• Keygen-Classification plan: The driver hides this resource from the user and configures classification plan
entries to support and expand the HW parser capabilities according to the user definition of its NetEnv
Characteristics

• Keygen-Schemes: The user describes the scheme in terms of NetEnv units, and the match vector is
configured by the driver.

• Custom Classifier: The user describes the entry point of a CC root in terms of NetEnv units. The driver
internally passes this information to the Keygen that uses it in selecting the entry point in the CC root when
passing a frame from the Keygen to the Custom Classifier.

After defining PCD resources, the user may bind any FM Port to the initialized resources. A port must be bound
to a single NetEnv, and may be bound to a Custom Classifier root and KeyGen schemes.

The set of figures below demonstrate a single example of the use of the driver's resources and their interaction
with the hardware structures.

The following table demonstrates a NetEnv of 7 units. Unit 0, for example, is a simple unit recognizing Ethernet
frame, while unit 2 recognizes IP frames of either version.

Unit 0 Unit 1 Unit 2 Unit 3 Unit 4 Unit 5 Unit 6

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
524 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Ethernet Ethernet
[Broadcast]

IPv4 IPv4 UDP MPLS [stacked] IPv4 [Multicast]

IPv6 TCP

When a port is bound to a NetEnv, the driver translates its units into the parser's hardware Line-up Confirmation
Vector (LCV). The table below shows the LCV configured for a port that has the NetEnv above.

LCV[0] LCV[1] LCV[2] LCV[3] LCV[4] LCV[5] LCV[6] LCV[7-31]

Ethernet 1 1 0 0 0 0 0 0...0

IPv4 0 0 1 1 0 0 1 0...0

IPv6 0 0 1 0 0 0 0 0...0

UDP 0 0 0 0 1 0 0 0...0

TCP 0 0 0 0 1 0 0 0...0

MPLS 0 0 0 0 0 1 0 0...0

Based on the NetEnv, the driver also defines a set of Classification Plan entries to be used by each port using
that NetEnv.

Bit[0] Bit[1] Bit[2] Bit[3] Bit[4] Bit[5] Bit[6] Bits[7-31] Comments

0 1 0 1 1 1 0 0 1...1 No classification plan

1 1 1 1 1 1 0 0 1...1 Ethernet Broadcast

2 1 0 1 1 1 1 0 1...1 MPLS Stacked

3 1 1 1 1 1 1 0 1...1 1+2

4 1 0 1 1 1 0 1 1...1 IPv4 MC

5 1 1 1 1 1 0 1 1...1 1+4

6 1 0 1 1 1 1 1 1...1 2+4

7 1 1 1 1 1 1 1 1...1 1+2+4

When a frame is received, its LCV is masked by one of the vectors in the Classification Plan. The FMan selects
the entry based on the parser output and the port parameters.

To support this operation, the driver initializes the HXS plan offset field for each relevant header in the port
parser parameters. The table below, is the driver's translation of the Network environment above into the port
classification plan parameters. When a frame is being parsed, the classification plan offset for each header
found is accumulated to construct the offset of the result classification plan. For example, a hypothetic frame of
Ethernet BC/Stacked MPLS/IPv4 unicast frame, will have an LCV=0xF6000000 and a classification plan id of
2^(1-1)+ 2^(2-1) = 3, so its classification plan vector is 0xFDFFFFFF, and QLCV = 0xF4000000.

Ethernet Broadcast 1 2^(1-1)=1

MPLS Stacked 2 2^(2-1)=2

IPv6 0 0

UDP - -

TCP - -

IPv4 Multicast 3 2^(3-1)=4

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
525 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Given the driver's automatic initialization of the LCV and classification plan based on only the NetEnv, the
user may now initialize Keygen schemes by passing as match criteria only the NetEnv unit id's. As in the other
cases, the driver will translate the unit id's to the schemes' match vectors as can be seen in the figure below.

Scheme Match Criteria

0
1

2
3

Ethernet broadcast

IPV4 MC+MPLS stacked

IPV4 MC

IPV4 (TCP or UDP)

match on IPv4 or
IPv6 frames
Ethernet

Direct scheme

4

5

6

Units Match vector

1

5+6

6
3+4

2

0

0x40000000
0x06000000

0x02000000

0x18000000

0x20000000

0x80000000

0xffffffff

Id

--

+

Figure 91. Keygen schemes example

Finally, the driver will also take care of initializing the Keygen-to-Custom Classifier configuration registers. When
initializing a Custom Classifier root, the user may create groups based on NetEnv units (in opposed to a simple
group of a single entry; for more information, refer to Section " Custom Classifier Root ").

When initializing a scheme, the user should only pass the handle to the Custom Classifier root. The driver will
translate the group LCV dependent parameters into the scheme required register.

For example, Group 0 is a simple group that is not dependent on the NetEnv. Group 1 is based on a single
unit - so a frame may be forwarded to 1 of 2 root nodes, and group 2 is based on 3 units - so a frame may be
forwarded to 1 of 8 root nodes.

Figure 92. Keygen scheme configuration for CC next engine

The Policer Profiles are the one resource that does not rely on the Parser Results or the NetEnv. It is therefore
managed independent of the other PCD resources.

FMan Header Manipulation

The FMan controller defines a set of header manipulation commands, and supports listing of these commands.
The FMan driver allows limited listing by a single Manipulation node, limited to a single use of each command
and to a defined order (For example, remove + insert may be defined in a single node, but insert + remove
or remove + remove may not). Alternatively, full listing and ordering is supported by chaining more than one
Manipulation nodes. In such a case, the driver will unify HMCT's to optimize performance and MURAM usage
unless parsing is required in between the different commands.

The following list maps each FMan controller command to the driver parameters in the Header Manipulation
structure:

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
526 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

1. Generic removal-Set 'rmv' and use the corresponding parameters structure. Select generic enum and
parameters.

2. Generic insertion-Set 'insrt' and use the corresponding parameters structure. Select generic enum and
parameters.

3. Generic replace-Set 'insrt' and use the corresponding parameters structure. Select generic enum and
parameters and set 'replace'.

4. Protocol specific removal-Set 'rmv' and use the corresponding parameters structure. Select byHdr enum
and parameters.

5. Protocol specific insert-Set 'insrt' and use the corresponding parameters structure. Select byHdr enum and
parameters.

6. Vlan priority update-Set 'fieldUpdate' and use the corresponding parameters structure. Select vlan enum
and parameters.

7. IPv4 update-Set 'fieldUpdate' and use the corresponding parameters structure. Select IPv4 enum and
parameters.

8. IPv6 update-Set 'fieldUpdate' and use the corresponding parameters structure. Select IPv6 enum and
parameters.

9. TCP/UDP update-Set 'fieldUpdate' and use the corresponding parameters structure. Select TCP/UDP enum
and parameters.

10. TCP/UDP checksum calculation-Set 'fieldUpdate' and use the corresponding parameters structure. Select
TCP/UDP enum and parameters.

11. IP replace-Set 'custom' and use the corresponding parameters structure. Select TCP/UDP enum and
parameters.

Custom Classifier Hash-Table Node

The driver provides a high-level Hash-Table mechanism implemented over the FMan controller Custom
Classifier structures. The driver implements the Hash-Table by using a Match-Table node of type Indexed-
Hash, where each entry points to a hash bucket implemented by a Match-Table node of type Exact-Match (For
more information on these nodes, refer to Section " Custom Classifier Root "). The driver uses the Keygen
key and hash result as a key for the lookup. A selected part of the hash result is used to select the entry in the
Indexed-Hash table (that is, the bucket), and the full key possible values are used as the Match-Table keys in
the selected bucket.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
527 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Internal Context

N
um

be
r

O
f W

ay
s

N
um

be
r

O
f W

ay
s

N
um

be
r

O
f W

ay
s

N
um

be
r

O
f W

ay
s

N
um

be
r

of
 S

et
s

=
4

Number Of Ways = Max number of keys/Number of Sets = 12

64 bits hash

12 Bits Mask (starting at byte 2 of the hash) = 0x0030 (2 bits 4 entries table)

Hash bits = 00

Hash bits = 01

Hash bits = 10

Hash bits = 11

Keygen Key 0

Keygen Key 3

Keygen Key 7

Keygen Key 2

Keygen Key 5

Keygen Key 6

Keygen Key 1

Keygen Key 4

Keygen Key 10

Keygen Key 8

Keygen Key 9

Keygen Key 11

MISS

MISS

MISS

MISS

Next Engine

Next Engine

Next Engine

Next Engine

Next Engine

Next Engine

Next Engine

Next Engine

Next Engine

Next Engine

Next Engine

Next Engine

Next Engine

Next Engine

Next Engine

Next Engine

QM Fquid 0x400

QM Fquid 0x401

QM Fquid 0x402

QM Fquid 0x403

QM Fquid 0x404

FM Keygen Scheme 9

FM Keygen Scheme 6

FM Keygen Scheme 10

FM Keygen Scheme 7

FM Keygen Scheme 10

QM Keep KG Result

QM Keep KG Result

QM Keep KG Result

QM Keep KG Result

FM CC Node 1

FM CC Node 2

Figure 93. Hash_Table node example

7.2.5.2.7.2 How to use the FMan PCD Driver?

The following sections provide practical information for using the software drivers.

FMan PCD Driver Scope

• FMan Parser, Keygen, Custom Classifier and Policer configuration and initialization
• PCD Enable/Disable
• Resources allocation and management
• Interrupt handling
• Statistics support
• Support for FMan PCD operations

FMan PCD Driver Sequence

• FMan PCD Config routine
• [Optional] FMan PCD advance configuration routines
• FMan PCD Init routine
• Specific one-time pre-enable routines (for example, load SW parser)
• FMan PCD Enable routine
• FMan PCD runtime routines
• FMan PCD specific resources runtime routines (for defining, modifying and deleting Keygen schemes,

Custom Classifier nodes, and so on.)
• FMan PCD Free routine

FMan PCD Driver Functional Description

The following sections describe main driver functionalities and their usage.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
528 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Global PCD Initialization

PCD initialization is divided into two parts. During the first part of the initialization, FM_PCD_Config, advance
config routines, and FM_PCD_Init are called to configure and set all basic PCD capabilities, including
pre-defining which engines are supported and may be used later. This stage is done in the kernel, and
PCD is not yet enabled. During the second part of the initialization, PCD is enabled by a runtime routine
(FM_PCD_Enable).

This division creates a gap during which some functionality may be added. The most important is the loading of
the SW parser code. Note that this functionality is allowed only when PCD is disabled (that is, between init and
enable) or, with some restriction, in runtime after disable.

Once PCD basic initialization is complete (FM_PCD_Init and FM_PCD_Enable are called and returned), the
PCD capabilities of the frame manager are reflected by the driver as a set of API runtime routines designed to
define the PCD environment for a specific partition. PCD resources are defined per partition and may be used
by all ports within a specific partition. The different PCD resources are first initialized and only later may be used
by the FMan ports.

The order of PCD resources initialization is strict and relies on the PCD graph being initialized bottom up, which
means that no resource may be initialized before its next engine is initialized. However, the use of port relative
profiles is an exception to this rule. A scheme's next engine may be a port relative profile. In such a case, the
scheme is initialized but not yet bound to a port, that is, the actual policer profile is not yet specified. Therefore,
its validity may not be verified. It is the user's responsibility to ensure that when a port using that scheme is
activated (for using the PCD), its relative policer profile must be validated.

The PCD graph is partition based that is, may be shared by ports on the same partition. Refer to Section "Port-
PCD Binding" for more details on port-PCD binding.

PCD Resources

The following subsections describe each of the driver's PCD resources in detail. In a single-partition
environment, most resources are available and do not need explicit allocation. The port policer profiles are
an exception. They must be allocated by the user, using the FMan Port API. In multipartition, some of the
resources, specifically resources limited by hardware, must be first allocated by a partition and only then used
by the partition's ports. The following sections specify the requirements for each of the PCD resources:

 Network Environment Characteristics

The Network Environment (NetEnv) is a software entity that lists the network protocols used by the FM-PCD
for classification and distribution. The total number of NetEnvs defined depends on the system configuration. A
NetEnv may be defined per port or shared among some or all ports. The definition of a NetEnv must be done
with care while considering the use of the FM-PCD module. The NetEnv is, in fact, the key for frames parsing,
distribution, and classification.

The NetEnv is a list of distinction units. Each distinction unit consists of at least one or more headers. A header
may either be one header from the list of supported headers or one of the supported headers plus an option
(For more details on list and options available, refer to Section 7.2.5.2.13).

The hardware parser implements header recognition. If the software parser is used, a distinction unit may also
be one of the shim headers. The driver saves a number of units (that may be redefined in fm_pcd_ext.h) for
private use. The user may then use this unit ID to recognize the private header by the Keygen or CC.

The following figure shows an example of a NetEnv. It has four units, two of which consist of a single header.
One of the headers has an option. The final two units consist of two interchangeable headers. This example will
be used throughout the following sections

.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
529 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Figure 94. Network Environment Example

The distinction units list should reflect what the user wants to do with the PCD mechanisms to parse-classify-
distribute incoming frames. Specifying a distinction unit means that the user wants to use that specification
to either activate the parser on the specified headers or distinguish between frames with the Keygen or the
Custom Classifier. Using interchangeable headers to define a unit means that the user is indifferent to which
of the interchangeable headers is present in the frame, but instead wants the distinction to be based on the
presence of either one of them. For example, if it is required that a selection of scheme is based on having
L3 header of either IPv4 OR IPv6, but it is of no importance which of the two is present, then a unit should be
defined with 2 interchangeable headers: IPv4, IPv6.

The initialization routine retunes a NetEnv handle to be used later to specify that Network Environment.

Depending on context, there are limitations to the use of NetEnvs. A port using the PCD functionality is bound
to a NetEnv. Some, or even all, ports may share a NetEnv, but it is also possible to have one NetEnv per port.
When initializing a scheme, a Custom Classifier root, or when binding a port to the PCD, one of the required
parameters is the handle of an initialized NetEnv. The driver uses the definitions of that NetEnv to initialize that
scheme or Custom Classifier root. When a port is bound to a Keygen scheme or a Custom Classifier root, it
must be bound to the same NetEnv.

For the flow's definition, the different PCD modules may only rely on distinction units as defined by their
environment. When initializing a scheme for example, a PCD module may not choose to select IPv4 as a match
for recognizing flows unless IPv4 was defined in the relating environment. In fact, to guide the user through the
configuration of the PCD, each module's characterization in terms of flows is not done using protocol names,
but rather environment indices.

In terms of hardware implementation, the list of distinction units sets the Lineup Confirmation Vectors (LCVs)
and are later used for match vector and CC indexing. The shim header LCVs are conventionally assigned from
LSB up, so the first shim header is 0x0000_0001. For more details on the implementation, refer to Section
"Global FMan-PCD Resources".

Runtime Modifications: A Network Environment may not be changed at runtime. New NetEnvs may be set,
and unused NetEnvs may be deleted anytime.

Available API:

• FM_PCD_NetEnvCharacteristicsSet
• FM_PCD_NetEnvCharacteristicsDelete

 Software Parser

The PCD allows the extension of the hardware parser by loading the software parser code for further
manipulation. When this is required, the user passes the image of the software parser code and a table of
labels to the driver. This represents the entry-points in the software parser code. If more than one code piece
is required for a specific protocol (for example, to be used by different ports) an index is added to the labels
table. Later, when configuring a port that uses one or more software parsing attachments, each protocol header
may be bound to one of the previously declared labels. This is done by setting the software parser enable
indication for one or more protocols headers, and indicating the software parser index (relative to that protocol
header). The software parser code will run for that port after the hardware parser recognizes that header. In
other words, the specified protocol header is in fact the trigger for the software parser to be activated. It is
UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
530 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

typical for the software parser to parse a private header that was previously defined as a NetEnv unit and then
mark its existence for classification and distribution.

The software parser loading routine must be called only when the PCD is disabled and no ports in the system
are using the parser. On initialization this means that the routine, if needed, must be called after FM_PCD_Init
and before FM_PCD_Enable.

Runtime Modifications: Software parser may not be changed at runtime.

Available API:

• FM_PCD_PrsLoadSw

 Keygen Schemes

The scheme entity relies on the hardware entity. There are 32 Keygen schemes in a frame manager. When
a PCD is defined in a single partition environment, it is the owner of all 32 schemes. When a PCD is defined
in a multipartition environment, the user must specify how many schemes are required for this partition. Once
schemes are allocated for a specific partition, it may be used only by ports on that partition.

Within a partition, the schemes order is relevant. When initializing a scheme, the user must specify the
following:

• Relative index, relative to the partition's schemes.
• Network environment handle.
• Match criteria, or which frames should be processed by the scheme.
• Keygen action (such as hash, FQID mask, and manipulation).
• Distribution FQIDs.

The match criteria (if used), is based on the NetEnv characteristics units. Schemes that are to be used directly
should be configured as such, by specifying a scheme ID rather than using match criteria or specifying
distinction units. Upon initialization, the driver returns a handle to the initialized scheme. This handle can be
used later to specify the scheme.

Keygen schemes are dependent on parser results. They may be used immediately after the parser by direct
mode or by using the match criteria. Schemes may also be used after the Custom Classifier or the policer. This
flow is typically used for flow control redistribution. In this case, to avoid infinite loops the scheme is reached
only in direct manner and not by match criteria.

The keygen action consists of the construction of the key and the definition of the distribution. The key is
constructed by a set of extract actions arranged in the driver as an array of extractions. Extractions may be
done from data, from Parse Result, from default values, but most commonly - from the header. When extraction
is taken from the header,, it may be described generically by size and offset, or it may be an extraction of the full
field. For a full list of supported headers and fields, see Section 7.2.5.2.13.

When a scheme is initialized, the user must specify the next engine to which the frame should pass after it is
processed. The next specified engine must be initialized and valid at this point. Frames may pass to the Custom
Classifier or the policer, or they may be directly enqueued to an FQID.

Once schemes are defined, ports may be bound to them. A port may be bound to as many schemes as needed,
as long as they are from the same partition and the same NetEnv.

Following figure shows an example of scheme setting and connection to the NetEnv, as shown in Section "
Network Environment Characteristics".

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
531 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Schemeld: Scheme
match criteria

Keygen
schemes

Scheme action

0; Ethernet Broadcast frames

1; match on IP
frames

(Netenv unit0)

(NetEnv unit 1)

2; Control frames - (no
match criteria)

Enqueue to
FQIQ 0x20

Distributes on FQID's 0x10 -
0x17 according to hash on
IP SRC.

Go to coarse classification
Tree x group y

Go to policer, Port relative
profile 0

Partition x
schemes

Figure 95. Schemes Example

Runtime Modifications: Valid schemes may be modified at runtime by calling the scheme initialization routine
for an existing scheme with the following differences:

1. Passing the scheme handle as retuned by the original initialization routine (instead of the scheme's relative
ID).

2. Setting 'modify' to be 'TRUE'.

New schemes may be set and unused schemes may be deleted anytime.

Available API:

• FM_PCD_KgSchemeSet
• FM_PCD_KgSchemeDelete

 Custom Classifier Root

A Custom Classifier root (or actually the entire CC graph) may be defined per FMan Port or shared by ports on
the same partition. It is a set of lookups defined to classify, route and perform manipulation on a flow of frames.
The CC graph is built bottom up by connecting CC Nodes. When a node (which is not a leaf in the graph) is set,
it points to other nodes. These other nodes must already be initialized.

A CC root is defined by a set of entries that construct the root of the graph, and Custom Classifier Nodes of
different types.

Once all nodes in the graph are ready and connected, the root is built by calling the FM_PCD_CcRootBuild
routine. The root of the graph is in fact an array of up to 16 root entry nodes. The entry point for a frame is one
of the CC root entries, depending on the engine that precedes the CC which is the Keygen.

According to the parser results (which is defined by the NetEnv setting) and Keygen configuration, a frame is
directed to one of the entries in the CC root array.

When building the CC root, the user must specify its NetEnv id. Up to four distinction units may define the
selection of one node (out of the 16), in a simple bit selection method. The following table shows the CC Root
nodes selection (0 = unrecognized by parser, 1 = recognized by parser).

Unit0 Unit1 Unit2 Unit3 Selected Node

0 0 0 0 0

0 0 0 1 1

Table 65. CC Root Nodes Selection

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
532 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Unit0 Unit1 Unit2 Unit3 Selected Node

0 0 1 0 2

0 0 1 1 3

0 1 0 0 4

0 1 0 1 5

0 1 1 0 6

0 1 1 1 7

1 0 0 0 8

1 0 0 1 9

1 0 1 0 10

1 0 1 1 11

1 1 0 0 12

1 1 0 1 13

1 1 1 0 14

Table 65. CC Root Nodes Selection ...continued

To allow more than 4 units to be involved in the selection, the 16 entries may be divided into groups. The table
above demonstrates an organization of one group of 16 nodes, but other organizations are possible:

2 groups of 8 -> each group selected by 3 units (to select nodes 0-7 relative to this group's base)

4 groups of 4 -> each group selected by 2 units (to select nodes 0-3 relative to this group's base)

8 groups of 2 -> each group selected by 1 units (to select nodes 0-1 relative to this group's base)

16 groups of 1 -> indifferent to units (single node group always selected)

2-8 groups of varied sizes (8-1)

Figure 96. CC Root - 5 groups example

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
533 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

When building the CC Root, the user must specify the number and size of groups. Then, for each group, an
array of per-root-node parameters is passed. The array is ordered according to the table above.

A simplified way of using the CC, is to define up to 16 different groups of one root-node each. In this way, all
traffic from a specific Keygen scheme is going to the same group, which is a single node, and no NetEnv unit
are selected. Groups 3 and 4 in figure above are an example of a single root group.

The following figure shows a combined use of the NetEnv units in Keygen and Custom Classifier, based on the
previous NetEnv and Keygen scheme examples.

Keygen schemes

Schemeld, Scheme
match criteria

0; Ethemet Broadcast frames
(Netenv unit0)

1; match on IP
frames

(NetEnv Unit 1)

2; Control frames (no
match criteria)

Scheme action

Enqueue to
FQIQ 0x20

Distributes on FQID's 0X10-
0x17 according to hash on
IP SRC

Go to coarse classification
Tree x groupy

Go to policer, Port relative
profile 0

Coarse Classification Tree x root

Unit not
present(
IPv6)

Unit of
present(
IPv4

Match an
IPv6 field

Group y based
on Netenv unit
2 (IP v4)

Match an
IPV4 field

Figure 97. Keygen -> Custom Classifier Example

When a CC root or node is initialized, the driver returns a handle to the root or node respectively. This handle
may be used later for specifying the root or node. For example, to build a root, the nodes are specified by
passing their handles, and a root handle must be passed when defining a port that uses the Custom Classifier.
A port may be bound only to one root, from the same partition and NetEnv as the port.

Runtime Modifications: Custom Classifier nodes may be modified by using one of the routines listed in the
"Available API" below.

Custom Classifier Roots may not be changed at runtime. New nodes and roots may be defined and unused
ones may be deleted anytime.

Available API:

• FM_PCD_MatchTableSet
• FM_PCD_MatchTableDelete
• FM_PCD_HashTableSet
• FM_PCD_HashTableDelete
• FM_PCD_CcRootBuild
• FM_PCD_CcRootDelete

Specific runtime API:

• FM_PCD_CcRootModifyNextEngine
• FM_PCD_MatchTableModifyNextEngine
• FM_PCD_MatchTableModifyMissNextEngine
• FM_PCD_MatchTableRemoveKey
• FM_PCD_MatchTableAddKey
• FM_PCD_MatchTableModifyKey
• FM_PCD_MatchTableModifyKeyAndNextEngine

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
534 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

• FM_PCD_MatchTableFindNModifyNextEngine
• FM_PCD_MatchTableFindNRemoveKey
• FM_PCD_MatchTableFindNModifyKeyAndNextEngine
• FM_PCD_MatchTableFindNModifyKey
• FM_PCD_HashTableAddKey
• FM_PCD_HashTableRemoveKey
• FM_PCD_HashTableModifyNextEngine
• FM_PCD_HashTableModifyMissNextEngine

Match-Table Nodes

The driver defines two types of Match-Table nodes - Exact-Match nodes and Indexed-Lookup nodes. On both
types of nodes a table of entries is defined where each entry leads to a selected next-engine with a selected
action. The next-engines may be another CC Node, a Keygen scheme, a Policer profile or an enqueue action to
a QM queue. In the last case, the queue may be either an Fqid (frame queue id) that was previously defined -
typically by the Keygen, or an explicitly specified new Fqid that overrides any previous Fqid selection.

The difference between the two types of nodes is in the way an entry is selected in the node's table.

On an exact-match node, the user defines an extraction of data taken from the frame or the Internal-Context.
The table of entries represent different possible values (keys) for this extraction, so that for each key a next-
action is selected. An extra 'MISS' entry is also specified.

Figure 98. Exact-Match Node Example

On an Indexed-lookup node, up to 2^12 may be defined. The user selects 12 bits out of the Internal Context as
an index to an entry in the table. The 12 bits may be masked to select less bits and a smaller table.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
535 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Figure 99. Indexed-Lookup node example

Two methods for CC node allocation are available: dynamic and static. Static mode was created in order to
prevent runtime alloc/free of FMan memory (MURAM), which may cause fragmentation; in this mode, the driver
automatically allocates the memory according to maximal number of keys, as received from the user. The driver
calculates the maximal memory size that may be used for this CC node, taking into consideration whether key
masks are required and node's statistics mode.

In dynamic mode, maximal number of keys is not provided (equals zero). At initialization, all required structures
are allocated according to current number of keys. During runtime modification, these structures are reallocated
according to the updated number of keys.

Hash-Table Nodes

The Hash-Table node is a driver managed Hash table. It is defined as a next engine and may follow other CC
nodes. The Hash-Table module uses driver lower level CC structures and provides an abstraction layer API
consisting of AddKey/RemoveKey routines. By using this module, the user may easily use a hash table based
on Keygen key extraction and hash calculation. When initializing this node, the user should define parameters
regarding the basic key used for hashing and the structure and size of the hash table (sets/ways).

 Manipulations

On the structural aspect, Manipulation nodes are not graph nodes in the way that they do not affect the flow of
a frame, and they are not in fact a graph junctions. Manipulations nodes are defined as extensions to existing
CC nodes of all types. Any key on any CC node may have a manipulation characterization on top of the next
engine definition. This is realized by CC node parameter h_Manip which is a handle to a previously initialized
Manipulation node (according to the bottom-up principle). The Manipulation node itself does not have a next
engine definition and the frame's flow is determined by the last CC node.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
536 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Figure 100. CC Node With Manipulation

Available API:

• FM_PCD_ManipNodeSet
• FM_PCD_ManipNodeDelete

Specific runtime API:

• FM_PCD_ManipNodeReplace (only available for Header-manipulation)
• FM_PCD_ManipGetStatistics

Note:

• For all manipulation types below, the user must call 'FM_PCD_SetAdvancedOffloadSupport' before calling
'FM_PCD_Enable'.

• For each RX/OP-Ports that will work with the above FM-PCD, the user should have at least 16 tnums (num of
tasks). in order to set the tnums the user should call 'FM_PORT_ConfigNumOfTasks'.

• It is also required to set the DMA transactions to be per port by calling 'FM_ConfigDmaAidOverride' with
'FALSE' and calling 'FM_ConfigDmaAidMode' with 'e_FM_DMA_AID_OUT_PORT_ID'

Header Manipulation

The header manipulation is implemented by the FMan controller block, and is designed to change the incoming
frame header for termination or interworking flow requirements. Header modification can be configured on a
per-flow basis or for a user-determined group of flows.

The firmware defines some header manipulation structures which hold parameters for the definition of header
manipulation action. It defines a basic table descriptor (Header Manipulation Table Descriptor HMTD) and a
table of commands (HMCT), allowing a sequence of manipulations to be performed. The commands table may
reside in either internal or external memory. The manipulation may be performed at any stage of the Custom
Classifier process. As the manipulation changes the frame, the process allows an additional parsing of the
processed frame once the manipulation process had ended.

The Header Manipulation (HM) mechanism is viewed by the driver as an extension to other Custom Classifier
Nodes. It may take place at the beginning, the middle or the end of a CC graph, but it may not have an effect on
the flow, that is, the selection of the next action.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
537 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

C C Tree CC Node

Manip node

CC Node

CC Node

CC Node

CC Node

CC Node

CC Node

CC Node

Manip node
Manip node

Manip node

Figure 101. Header Manipulation CC Perspective

The HM action is represented by the driver's Manip node which is a driver submodule (that is, initialized by the
user, its initialization routine returns an HM handle).

A Header Manipulation node is an independent unit that has no external information regarding other modules in
the PCD graph, its users, its location in the flow, or the next engine it will be followed by.

A CC key or a CC root node may lead to a Header Manipulation node. The CC key/root node will define the
next engine that should follow the manipulation. The next engine may be Keygen, Policer, another CC node, or
PCD termination (enqueue).

In order to use the HM, the user should first create a Manip node, and then use its handle when defining the CC
Node that points to this manipulation action.

A Header Manipulation action may be defined as one of the following manipulations:

• Remove
• Insert
• Fields Update
• Custom

More than one manipulation is allowed only if they are to be performed in the order above and only one
manipulation of each type.

Other orders or a list of manipulations of the same type may be achieved by chaining some manipulation nodes
by using the h_NextManip handle of the Manipulation parameters structure.

HM nodes may be shared, so that the same HM handle can be passed to more than one CC key.

By default, each frame goes back to the parser to be reparsed after the manipulation. However this behavior
may be disabled and may have an effect on performance as will be explained in the restrictions note below. It is
controlled by the Header Manipulation node parameters.

The parsing option applies to whatever the user initializes as a Manip node - that is, if the node contains a
number of commands, the parsing can be done after all the commands and not between them. However, if the
set of commands is initialized as a number of nodes that are chained together, the parser may be run after each
node.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
538 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

The driver aims to optimize performance and MURAM utilization. It does so by internally creating a single
command table for chained nodes. Note that this optimization is NOT possible if parsing is required between
manipulations and in this case the manip nodes are cascaded.

Note that when manipulations are chained, some restrictions apply:

1. Sharing of chained nodes is only possible on the head of the manipulation and not on inner nodes, that is,
all the manipulation is shared and not parts of it.

2. When parsing is required between manip nodes, the optimization described above is NOT possible and in
this case the manip nodes are cascaded.

3. When parsing is required between manip nodes, the next engine of the last CC node may NOT be another
CC node; that is, chained nodes with parsing between them may only exist at the end (and not in the
middle) of the CC graph.

IP Reassembly

The FM supports IP reassembly for both IPv4 and IPv6. The FMan accumulates IP fragments until enough have
arrived to completely reconstitute the original datagram. IP Reassembly supports a maximum of 16 fragments
per frame. Each fragment must reside in a single buffer (not in a Scatter/Gather frame).

The IP Reassembly driver utilizes the FMan Controller and FMan PCD resources in order to provide a full IP
Reassembly solution.

The driver's interface is not identical to the hardware resources and provide an abstraction layer to the hardware
resources. All IP Reassembly hardware data structures used for IP reassembly manipulation are represented by
the software Custom Classifier Manipulation node. On top of the CC Manipulation, the driver internally defines
the other resources needed for the full flow.

IP Reassembly flow

Fragments arriving on an Rx (or offline parsing) FMan Port that was configured to support IP Reassembly are
recognized and marked by the software parser extension. These frames are steered to direct schemes the
Keygen and caught by dedicated schemes that pass them to the Custom Classifier. The CC Root object is
configured so that the IP fragments will reach a dedicated root entry node that contains a CC manipulation
node. At this point, the IP Reassembly is performed. When a full frame is gathered, it is passed by the
FMan controller back to the parser as a full reassembled frame. It is then passed to the Keygen and may be
distributed and classified as any other frame.

What should the user do?

The following sequence describes the steps the user must take in order for the flow above to work.

• Initialize general DPAA (BM, BM Portal, BM Pools, QM, QM Portal, FMan and FMan PCD)
• Initialize the Rx/Offline FMan Port on which reassembly should run
• Define PCD as follows:

– Set a Network Environment with one of the following options:
– HEADER_TYPE_IPV4 unit with IPV4_FRAG_1 option for IPv4 reassembly manipulation.
– HEADER_TYPE_IPV6 unit with IPV6_FRAG_1 option for IPv6 reassembly manipulation.
Note that if the user needs IPv4 or IPv6 units for other use, the fragmentation units may not be shared and
dedicated units must be defined.

– Allocate the first one or two schemes - one if only IPv4 is used, 2 if IPv6 is also used. The user should not
configure those schemes, just save these schemes from other usage. The driver will use the first scheme for
IPv4, and if needed, it will use the second for IPv6.

– Create reassembly manipulation using FM_PCD_ManipNodeSet routine. Pass the relative id's of the
schemes allocated above (A single manipulation module should be created for both IPv4 and IPv6
fragmented frames, passing all relevant parameters).

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
539 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

– If CC is used, it is user's responsibility to leave two unused entries when building the CC root nodes (that is,
the total number of entries between all groups should not exceed 14).

– Set at least one scheme to catch regular/reassembled frames.
• When binding the Rx/Offline FMan Port to the PCD properties (that is, calling FM_PCD_SetPCD), pass a

handle to the created Reassembly Manipulation node.

Note that in order to perform distribution or classification on IPv4/IPv6 frames (unrelated to reassembly of IPv4/
IPv6 fragments), independent IPv4/IPv6 units with no option must be explicitly defined.

What does the driver do?

In order to provide the required support for IP Reassembly, the driver performs some internal actions triggered
by the user configuration. The following information describes the actions the driver internally performs and has
no functional relevance to the user:

• When reassembly is required, the driver internally enables parser recognition of IPv4/IPv6 and shim2 -
which is the IP Reassembly extension. This is triggered by the user defining NetEnv units with options:
IPV4_FRAG_1/IPV6_FRAG_1.

• The driver loads the software parser that identifies IP fragments and enables its operation for the required
FMan Port.

• The driver defines one or two (one for each IP version) Keygen schemes that recognize IP fragments and
are programmed to generate an IP Reassembly key. When a frame is recognized as an IP fragment (by
the Parser), it is steered to these Keygen schemes. The user should allocate the first one or two (for IPv4
and/or IPv6) schemes and pass their relative id's to the driver. The driver will internally initialize the relevant
reassembly schemes when required.

• Each of the schemes above is programmed by the driver to point to a group in the Custom Classifier Root. If
the user did not create a CC Root, the driver internally creates a new one. In both cases, the driver creates
the needed group/s in the CC Root. It always uses the last two groups. It is user's responsibility to have at
least two empty entries (one for a single IP version, two for both).

• The driver attaches the Manipulation sequence (created by the user) to the appropriate root entry node in the
CC Root, causing the reassembly of IP fragments.

Note: The software parser code required to support reassembly may not coexist with user software parser
code. If the user supplies IPv4 or IPv6 software parser code, it must include the code for handling IPv4/IPv6
reassembly according to the FMan controller spec.

Suggestions of how to use IPR in a system

The PCD with the IPR should identify frames up to L3; that is, if the frame is IP or not.

In case it isn't an IP frame it should pass the desire PCD. IP frames should pass the reassembly process and
then be directed to OP-Port to be classified according to their L3 and above.

 IP Fragmentation

The FMan supports IP fragmentation for both IPv4 and IPv6. The fragmentation mechanism is implemented
by the PCD, specifically by the Custom Classifier. IP fragmentation may be performed using an Offline Parsing
FMan Port with a specific PCD configuration that will be described in this section.

The software driver provides API for initializing the IP fragmentation mechanism. driver's interface is not
identical to the hardware resources and provide an abstraction layer to the hardware resources. Both of the
AD (action descriptor) tables that used for IP fragmentation manipulation represented by the software Custom
Classifier nodes using CC Manipulation. IP Fragmentation manipulation is used for fragmentation of IPv4 and
IPv6 frames according to a specific MTU. This manipulation can be used on Offline Parsing ports only and as
a part of the port's PCD definition. CC Nodes should have an IP fragmentation manipulation characterization
in order to trigger this manipulation. This means that in order to create and initialize the IP fragmentation

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
540 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

hardware, the user should create a Custom Classifier Node with Manipulation (refer to Section " Custom
Classifier Root "). All relevant parameters such as MTU are defined during this module creation.

Following is the sequence that should be followed:

• Initialize general DPAA (BM, BM Portal, BM Pools, QM, QM Portal, FMan and FMan PCD)
• Initialize FMan Port of type Offline Parsing
• Define fragmentation PCD as follows:

– Initialize an empty Network Environment (without any units)
– Create fragmentation manipulation using FM_PCD_ManipNodeSet routine.
– Create CC Node by calling FM_PCD_MatchTableSet/FM_PCD_HashTableSet and attached the

fragmentation manipulation previously created to the desired key.
– Build a CC Root with 1 group that points to the previously defined CC Node .

• Bind the Offline Parsing FMan Port to the PCD properties by calling FM_PORT_SetPCD

Manipulation parameters

• MTU of the fragmentation manipulation.
• Scratch Buffer Pool ID is a buffer pool that is required by the fragmentation process in order to ensure correct

release operation of the frames and fragments. All IP Fragmentation Table Descriptors should use the same
Scratch Buffer Pool ID. This pool must not be used by any other process or engine in the system.

• Don't Fragment Action - by setting this parameter the user can determine the action to be taken in case the IP
packet is larger than the defined MTU and the 'Don't Fragment' (DF) bit of the frame is set.

Note: The software parser code required to support fragmentation may not coexist with user software parser
code. If the user supplies IPv6 software parser code, it must include the code for handling IPv6 fragmentation
according to the FMan controller spec.

Restrictions:

1. Tx confirmation is not supported.
2. Only Bman buffers shall be used for frames to be fragmented.
3. IP-Fragmentation will not work on OP-Port with VSP enabled.
4. fragmentation of IP-fragments is not supported
5. IPv4 packets containing header option field are fragments by copying all option fields to each fragment,

regardless of the copy bit value.
6. Maximum number of fragments per frame is 16.

Suggestions of how to use IPF in a system:

In case one of the #1-#2 3 restrictions above is critical, then it is suggested not to use IPF on OP-Ports that
receive frames from the GPP and to do it on the GPP itself. We also suggest to put the IPF on a OP-Port just
before the TX-Port.

IPSec Manipulation

The IPSec Manipulation is a specific instantiation of the special offload manipulation. It is designed to handle
IPSec traffic in order to support the following actions:

• Support of variable outer header size
The user should initialize a Manipulation node of this type passing the relevant parameters

• Support for both ipv4/ipv6 IP version within SA
The user should initialize a Manipulation node of this type passing the relevant parameters.

• ECN/DSCP copying from inner/outer IP header to outer/inner.
In order to use this functionality the user must follow the following steps:
– Define a Manipulation node of this type passing the relevant parameters

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
541 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

– For the relevant Rx/OP port, define a buffer prefix that includes at least the Keygen hash result.
– Use SEC parameters to support this operation

 Frame Replicator

The Frame Replicator (FR) is designed to duplicate incoming packets and route them to separate destinations.
It is defined as a next engine and may follow other CC nodes, that is, Match-table key, Hash-Table key or a CC-
Root entry.

A Frame Replicator is realized by a group of members, where each member defines a replication of the
incoming frame and a route to continue.

The next engine after FR is restricted to one of the following:

• Enqueue (PCD Termination)
• Policer
• Keygen (Direct scheme that leads to either Policer or PCD Termination)

When initializing an FR node, the user must define the maximum number of members this node may contain.
The actual number of members may be modified on runtime by adding and removing FR group members.

Runtime modifications of add/remove members to/from the group can be done at any point in the system and in
any location of the members group (first, middle or last). Note that runtime-modifications require the use of Host
Command.

The order of the members in the group is of significance as the implementation of the replication is serial.

Manipulation may be applied to:

1. The whole group. The manipulation node should be placed before the replication group. That means that
the FR is the next-engine of the Manip node. The Manip node is the next-engine of a key in a Match-table or
Hash-table.

2. The last member of an FR group. That means that the manip node is the next-engine of the last member of
the FR group.

Note: No support of Manip node after the "non-last" members.

The driver supports sharing of FR nodes means that FR group may be shared by more than one source.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
542 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Figure 102.  Frame Replicator Following a CC Node

Available API:

• FM_PCD_FrmReplicSetGroup
• FM_PCD_FrmReplicDeleteGroup

Specific runtime API:

• FM_PCD_FrmReplicAddMember
• FM_PCD_FrmReplicRemoveMember

Note:

• For all manipulation types below, the user must call 'FM_PCD_SetAdvancedOffloadSupport' before
calling 'FM_PCD_Enable'.

• For each RX/OP-Ports that will work with the above FM-PCD, the user should have at least 16 tnums (num of
tasks). In order to set the tnums, the user should call 'FM_PORT_ConfigNumOfTasks'.

• It is also required to set the DMA transactions to be per port by calling 'FM_ConfigDmaAidOverride' with
'FALSE' and calling 'FM_ConfigDmaAidMode' with 'e_FM_DMA_AID_OUT_PORT_ID'

 Policer Profiles

The policer profile entity relies on the hardware entity. It defines rules for policing for a certain flow. There are
256 different profiles in a frame manager that may be organized in per port windows. Some profiles may be
shared between ports on the same PCD. By default, the number of shared profiles is set by the driver, but the
user can also configure it to a different value. Shared profiles are typically used for aggregation.

When a PCD is defined in a single partition environment, it is the owner of all 256 profiles. When a PCD is
defined in a multipartition environment, it is the owner of its shared profiles along with all the profiles that will
be allocated per port for ports on this partition. The user must explicitly allocate per-port profiles for each port
(if required), after PCD is initialized and prior to the profile initialization. Note that per-port profiles are the only
PCD resource that is explicitly allocated and initialized for a specific port.

After profiles are mapped, the user may initialize each of the profiles by stating the following:

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
543 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

• Type
– Shared
– Per-port

• Offset relative to the port or to the shared group of profiles
• Characteristics

Once initialized, a handle is assigned to the profile for later use.

The Policer may be used after the Parser, Keygen or Custom Classifier, or solely - without activating any of
the other PCD engines. It is not dependent on any previous output such as parser result. The policer may be
used more than once in a frame flow. The next action after a police profile is either to pass the frame to a direct
Keygen scheme for a new distribution (typically for control frames coming from the Custom Classifier), to pass
the frame to another profile (always a shared profile, typically an aggregator), or to enqueue the frame to an
FQID.

When other engines select a policer profile as the next engine, its handle must be passed. An exception is
when a per-port profile is specified as the next engine of a scheme or of a "overrideParams" CC key. In these
cases a port-relative index is required instead. The reason for this is that the required Policer Profile may not
be initialized at this stage and therefore have no handle. This irregular behavior is because CC Roots and KG
schemes may be shared by ports, and at the time of scheme/root initialization, they are not yet bound to specific
ports. In this context, the profile selected may in fact be uninitialized and therefore cannot be verified by the
driver. It is therefore user's responsibility to make sure it is set prior to port- PCD binding.

Runtime Modifications: Valid profiles may be modified at runtime by calling the profile initialization routine
for an existing profile, passing the profile handle as retuned by the original initialization routine, and specifying
modify (instead of the profile's relative id). New profiles may be set and unused profiles may be deleted anytime.

Available API:

• FM_PCD_PlcrProfileSet
• FM_PCD_DeleteProfilePlcr

PCD Organization

By initializing PCD resources, the user creates a directed graph in which the parser is the source of the graph
and the FQIDs are its endpoints. Following figure shows a generalized example of a basic PCD graph.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
544 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Figure 103. PCD Organization

PCD Definition Sequence

When a PCD graph is defined, its resources must be initialized bottom up when there is a dependency between
them. Following figure shows the order of initialization (starting at the top of the figure) in a specific sequence.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
545 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Order

Next engine

Maybe done up
to this time
point

Set port
profile 0

Set port
profile 1

Alloc port
profiles

Set
Direct
Scheme
3

Set Network
environment

Build
Tree

Port-PCD Bind

Set
Direct
Scheme
4

Set
Direct
Scheme
5

Set port
profile 2

Set port
profile 3

Set port
profile 4

Set
node
0

Set
node
1

Set
node
2

Set
Scheme
0

Set
Scheme
1

Set
Scheme
2

Set shared
profile 0

Figure 104. Definition Sequence

Host Command

Some PCD functionalities may be managed by either memory-mapped registers or by the host command
mechanism to allow independent programming in a multipartition environment. In a single partition environment
in the FMan driver, the host command mechanism is optionally used, but in a multipartition environment,
wherever available, only the host command is used to prevent a risk of racing. The host command driver is a
part of the PCD driver and is initialized internally by the driver, using user parameters.

When PCD is first initialized in a single-partition environment, the user must specify whether the host command
should be used, and if so, host command parameters are required. In a multipartition environment, the use of
the host command is forced and all host command parameters are required. When PCD initialization routine is
called by the master/single partition driver, the user parameters include host command port parameters (such
as port id, virtual address, and default queues) and the FMan Port for the host command is internally initialized.

PCD Statistics

The FMan PCD API provides access to all the statistics gathered by the FMan PCD engines hardware.
Statistics is enabled by default but may be disabled/enabled at runtime using the dedicated API.

The following API routines may be called at any time after initialization to retrieve any of the following FMan
PCD counters:

• FM_PCD_GetCounter
• FM_PCD_KgSchemeGetCounter
• FM_PCD_PlcrProfileGetCounter

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
546 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Custom Classifier Statistics

A CC node supports statistics gathering on per-key basis. In order to enable statistics gathering by a CC node
(Match table or Hash table), statistics mode must be provided upon initialization of that node and this will
determine the statistics mode for all keys of the CC node.

Next, statistics should be enabled per-key, meaning statistics should be enabled for every key that the user
wishes to monitor.

After these steps, the following API routines may be called to retrieve the statistics:

• FM_PCD_MatchTableGetKeyCounter
• FM_PCD_MatchTableGetKeyStatistics
• FM_PCD_MatchTableFindNGetKeyStatistics
• FM_PCD_HashTableFindNGetKeyStatistics

7.2.5.2.8 FMan Port Driver

The FMan Port driver module refers to the per-port features of the FMan, including port configuration and
initialization, runtime functionalities and PCD binding.

7.2.5.2.8.1 FMan Port Hardware Overview

The FMan hardware supports a SoC dependent number of inline and offline FMan Ports of the following types:

• 1G Rx Ports
• 1G Tx Ports
• 10G Rx Ports (may be eliminated on some SoCs)
• 10G Tx Ports
• Offline/Host-command ports

Port configuration is controlled through a set of per-port, type-dependent memory mapped registers. That is,
Each port has its own memory map area. In addition, some FMan common registers also affect port behavior -
for example, global resources such as tasks number are declared in the common registers.

FMan Port Driver Software Abstraction

The FMan Port module is an independent module. On port configuration, the user selects the type and the
mode of each port (Tx/Rx, 1G/10G, online/offline/Host command, regular/independent), and specifies the port
index relative to its type. This index is not related to the hardware port id as described in the hardware spec.

The driver provides abstraction to the common/private division of registers location in the memory map. That
is, all registers that are logically relevant to the port are handled by the FMan Port driver, even if they physically
belong to the common FMan memory map.

7.2.5.2.8.2 How to use the FMan Port Driver?

The following sections provide practical information for using the software drivers.

FMan Port Driver Scope

• FMan Port hardware structures configuration and enablement
• Resource allocation and management
• FMan port types support
• Offline-Parsing ports

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
547 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

• Independent-Mode
• Simple BMI-to-BMI (regular) mode
• PCD Binding
• Rate limiting
• Interrupt handling
• Statistics support

FMan Port Driver Sequence

• FMan Port Config routine
• [Optional] FMan Port advance configuration routines
• FMan Port Init routine
• FMan Port runtime routines
• FMan Port Free routine

FMan Port Driver Functional Description

The following sections describe main driver functionalities and their usage.

FMan Port Configuration and Initialization

On FMan Port driver initialization, the software configures all FMan Port registers. It supplies default values
where no other values are specified, it enables hardware mechanisms and initializes software data structures
for software management.

By the time initialization is done, FMan is ready to be used and any of the FMan submodules (FMan-Ports,
MAC's and so on.) may be initialized.

FMan Port Types

The driver provides API for the initialization of the following port types/modes:

• Tx 1G port
• Tx 1G port - independent mode
• Rx 1G port
• Rx 1G port - independent mode
• Tx 10G port
• Tx 10G port - independent mode
• Rx 10G port
• Rx 10G port - independent mode
• Offline Parsing Port

The driver also holds a single host-command port internally when mandatory (multi-partition environments) or
when user explicitly requires it.

Independent-Mode

Dpaa-im is an Ethernet driver using Dpaa to implement in independent mode.

Dependence:

1. All the DPAA drivers in kernel have conflict with dpaa-im, should be disabled in kernel configuration file, the
list as below:

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
548 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

CONFIG_FSL_SDK_DPA

CONFIG_FSL_SDK_FMAN

CONFIG_FSL_SDK_DPAA_ETH

CONFIG_FSL_DPAA

CONFIG_FSL_FMAN

CONFIG_FSL_DPAA_ETH

2. Linux should be built before building dpaa-im

3. dpaa-im is based on dash-lts 1812 release for linux-4.9 and linux-4.14

Building

To build dpaa-im as a module

cd dpaa-im

make build KERNEL_DIR=<path-to-linux> ARCH=arm64 CROSS_COMPILE=<arm64-toolchain>

For example, make build KERNEL_DIR=~/linux ARCH=arm64 CROSS_COMPILE=aarch64-linux-gnu-

after building, you will see module file "dpaa_eth_im.ko"

In addition, use "make clean KERNEL_DIR=<path-to-linux> ARCH=arm64 CROSS_COMPILE=<arm64-
toolchain>" to clean

Using

1. FMan firmware should be loaded in U-Boot.

2. Boot up Linux.

3. In linux, run command "insmod dpaa_eth_im.ko", kernel will print:

[0.535089] fman_im: QorIQ FMAN Independent Mode Ethernet Driver load ed

[0.541782] DEV: FM1@DTSEC3, DTS Node: fsl,dpaa:ethernet@6

4. run command "ifconfig -a", dpaa-im ethernet(FM1@DTSEC3) could be saw, then use it as normal Ethernet.

FM1@DTSEC3 Link encap:Ethernet HWaddr 00:e0:0c:00:77:00

BROADCAST MULTICAST MTU:1500 Metric:1

RX packets:0 errors:0 dropped:0 overruns:0 frame:0

TX packets:0 errors:0 dropped:0 overruns:0 carrier:0

collisions:0 txqueuelen:1000

RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)

lo Link encap:Local Loopback

inet addr:127.0.0.1 Mask:255.0.0.0

inet6 addr: ::1/128 Scope:Host

UP LOOPBACK RUNNING MTU:65536 Metric:1

RX packets:0 errors:0 dropped:0 overruns:0 frame:0

TX packets:0 errors:0 dropped:0 overruns:0 carrier:0

collisions:0 txqueuelen:0

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
549 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)

Resource Management

FMan Port-related resources (TNUMs, DMAs, FIFOs, and so on.)- These resources are used by the BMI. The
driver selects default values for these resources but they may need some tuning depending on the specific
application, based on the total number of ports used and the performance requirements of the system. The
driver provides an API routine FM_PORT_AnalyzePerformanceParams that uses performance monitoring
mechanism in order to see the resources utilization at runtime.

The FMan Port driver allocates its resources by calling the FMan "front-end" driver. The FMan "front-end"
allocates the resources by calling the "back-end" through IPC if it is in guest mode or through direct call if it is
not in master mode. The port driver does not access those resources at runtime; the resources are being used
only by the hardware of a port.

PCD-related resources (Keygen-schemes, policer-profiles, and so on.)-During the initialization of the FMan-
PCD driver on each partition, the driver allocates all the required resources (configurable by the user) through
IPC call to the "back-end" driver. From that point, all the resources are being handled locally on the partition.
Note, that all access to these resources are still done through host-command and that assures proper
synchronization between different partitions (that is, one can access these resources by mistake from a different
partition in the system).

PCD Custom-Classifier tables-The CC tables are being allocated on the MURAM memory. This means that
upon initialization of this partition, piece of MURAM should be allocated to the partition (according to how much
the partition requires). From that point, the local PCD driver will manage the MURAM allocation by itself.

Virtual Storage Profiles Support

An FMan Port may use the legacy Physical Storage Profile or the Virtual Storage Profiles (VSP). This section
will discuss the usage of VSP by an FMan port, while more information about the VSP mechanism which is
implemented by the driver as separate entity FM_VSP, can be found in Section 7.2.5.2.10.

When a user wants to set an Rx or OP port to work in virtualization mode using VSP's rather than the
physical SP, user should call the function which allocates a storage profile window (range of VSPs allocated
in continuously manner) to a port. The user should also define which profile in this range should be used as
default SP; note that the default profile should be a relative index within the allocated window. Upon calling
the window allocation routine, the driver enables virtual mode (that is, using VSPs) for this port, allocates its
profiles and defines default SP. In order to redirect a packet into a certain VSP, user may set the 'relative-VSP-
id' within the PCD graph nodes (For example, in the match-table entries). The value in the PCD graph nodes is
port relative so if two ports are sharing the same PCD graph node (For example, a match-table), the actual VSP
will be selected by the 'relative-VSP-id' plus the port's base VSP as shown in the figure below.

Frame Queues

Port 1 Port N

PCD Graph

1 2 1 2 1 2

Per-Port Profiles VSPs
Ports 1 Ports 2 Ports n

i kj

Figure 105.  FMan PCD graph and the VSP selection

Rules and restrictions regarding the use of VSP:

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
550 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

• When called for Rx ports, the allocation routine expects also the handle of coupled Tx port as a parameter;
the driver sets automatically the Tx port to work in VSP mode also and use the same default profile for this
port.

• Storage Profiles windows may not overlap; that is, sharing of VSPs between FM ports is not allowed by the
driver.

• A call to the allocation routine requires that the FM port will be disabled. In the case of Rx port, coupled Tx
port should also be disabled. When an FM Port (that has VSP mechanism enabled) is enabled, at least the
default profile must be initialized.

• A call to the allocation routine may not be reverted, that is, it's impossible to disable virtualization mode.
• Number of profiles to be allocated must be a power-of-2. In addition, the "base-profile" that will be allocated by

the driver will be aligned to the number-of-profiles provided by the user.
• For FM-Port that works with VSP, its classification should also use VSP; that is, classification (For example,

KG scheme or CC-node) should NOT try to revert from VSP to the FM-Port "physical" SP.
• When user frees all resources of FM port, the driver frees automatically VSP window which has been

allocated for this port.

Initialization Sequence:

• Initialize FM Tx Port
• Initialize FM Rx Port
• Allocate VSP for FM Rx Port (therefore enabling virtualization mode)
• Initialize default VSP (See Section 7.2.5.2.10)
• Enable FM Ports

Free Sequence

• Disable Ports
• Free the default VSP
• Free FM Tx Port
• Free FM Rx Port

Rate Limiting

The driver supports the hardware mechanism of rate limiting for Tx ports. The runtime API consists of a number
of parameters including a definition of the required rate (in kB/s for Tx ports, in frame/sec for offline parsing
ports) and refers to data rate rather than line-rate.

Simple BMI-to-BMI (regular) mode

This is the default FMan Rx/Offline Parsing Port mode. After Port initialization and prior to Port-PCD binding, all
traffic will be received on the default Rx queue. This mode is called "BMI-To-BMI" as no PCD is involved in the
data reception.

This mode is useful for the early state of a port as well as when major runtime PCD modification takes place. In
such a case, sometimes the whole PCD functionality needs to be manipulated and the user should temporarily
detach the Port from the PCD, receive all frames on the default Rx queue and only reattach it to the PCD after
the modifications have completed.

Port LIODN

An FMan Port LIODN is constructed out of a base and offset.

Upon FMan Port configuration, the user must specify the port's base LIODN.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
551 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

For Rx ports, the user must also specify the LIODN offset for each port. No such configuration is required for Tx
and Offline Parsing ports since on transmission, the offset LIODN is taken from the frames' FD. The FD is set
according to the source of the frame - if transmitted by CPU, it is dynamically set by the QM SW portal. Another
scenario is frames forwarded by other engines, in such a case their FD must contain the correct LIODN offset.

Port-PCD Binding

Ports may be linked to the PCD graph according to their PCD binding specifications and considering partition
and Network Environment restrictions.

Following figure shows a schematic demonstration of possible port > PCD binding.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
552 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Figure 106. Port-To-PCD binding example

Once a set of PCD resources is set and organized as described above, a port may be bound to all or some
of the resources by calling the FM_PORT_SetPCD routine. This routine, is referred to as the Port-PCD bind
routine. It accepts a set of parameters that specify the PCD resources used by the port, configures PCD-
related parameters in the port, and bounds PCD resources to the port. The FM_PORT_DeletePCD should be
called when the port no longer needs the configured PCD functionality. This action is referred to as Port-PCD
unbinding.

Another possible action that affects the Port-PCD relationship is calling FM_PORT_DettachPCD for a port
that is bound to PCD. This causes the port to stop using the PCD functionalities, which results in all frames

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
553 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

being passed to the default FQID. Note that calling FM_PORT_DeletePCD unbinds the port from the PCD
functionalities by removing the connections, while FM_PORT_DetachPCD does not remove them but only
causes the port to stop using them. To return to using the PCD, FM_PORT_AttachPCD should be called.

Certain runtime modifications may not be done directly, but require either the unbinding of PCD functionalities
or PCD detaching. This should be done by calling the required delete/detach routines, making the desired
changes, and calling set or attach to return to using the PCD. These actions will be referred to as resetting/
detaching the Port-PCD. In the time between the calls of the two routines, the port continues to work, but its
PCD functionalities are disabled. In both cases, all frames arriving at this time are enqueued to the default
receive queue.

In the sections below, the relationship between the port and each of the PCD resources will be explained in
terms of initialization and runtime modifications.

General

The port-PCD binding affects the flow of received frames on that port in terms of PCD functionality. The user
must first define the general PCD for the port, using the following enumeration types, which define the superset
of engines that may be used.

• e_FM_PORT_PCD_SUPPORT_PRS_ONLY (Use only Parser)
• e_FM_PORT_PCD_SUPPORT_PLCR_ONLY (Use only Policer)
• e_FM_PORT_PCD_SUPPORT_PRS_AND_PLCR (Use Parser and Policer)
• e_FM_PORT_PCD_SUPPORT_PRS_AND_KG (Use Parser and Keygen)
• e_FM_PORT_PCD_SUPPORT_PRS_AND_KG_AND_CC (Use Parser, Keygen and Custom Classifier)
• e_FM_PORT_PCD_SUPPORT_PRS_AND_KG_AND_CC_AND_PLCR (Use all PCD engines)
• e_FM_PORT_PCD_SUPPORT_PRS_AND_KG_AND_PLCR (Use Parser, Keygen and Policer)

Runtime Modifications: The engines set may be changed at runtime only by resetting the Port-PCD.

Available General Port API:

• FM_PORT_SetPCD
• FM_PORT_DeletePCD

Network Environment

When calling the Port-PCD binding routine, the user must specify a single NetEnv by passing its handle. This
setting is used for the port parser and affects the PCD behavior.

Runtime Modifications: The NetEnv may not be modified at runtime. If the port requires a change of its
NetEnv, it must first reset its Port-PCD connection, then use the PCD routines to do the required changes, and
then reconnect to the PCD.

Parser

The hardware parser port configuration is taken directly from the NetEnv specified for the port. Other parsing
configurations are explicitly defined by the user at the parameter's structure.

The software parser may be used on a per-port-per-header basis. When PCD is set per port, there is an option
in the parser parameters to choose additional parameters per header. One of the optional per-header additional
parameters is to enable the software parser for that header. When set, an index should be declared to select
the software parser code. The header and index must be specified in the labels' table of the software parser
code that was loaded on PCD initialization. Software parser enablement may be done for as many headers as
required.

Runtime Modifications: Only the starting point of the parser may be changed on the fly. Any other changes
require PCD resetting.

Available Port API:

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
554 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

• FM_PORT_PcdPrsModifyStartOffset

Keygen Schemes

In order for a port to use Keygen schemes, the port must be bound to those resources. The port may be bound
to any number of schemes. At the port bind routine, the user passes a list of scheme handles, as returned
by the server at scheme setting, for binding to the port. At least one scheme must be specified. All specified
schemes must be valid at that time. If the initial scheme after the parser is used directly without using the match
criteria, its id should be passed as one of the parameters to the Port-PCD binding routine.

Runtime Modifications: During runtime, new schemes may be set and then bound to an existing enabled port
or existing schemes may be modified. Schemes that are not required by the port may be unbound. Note that
when modifying existing schemes, all ports bound to those schemes are affected. If specific schemes are not
required anymore, they must first be unbound from the port. If no other port is using them, they may be deleted.
The selection of the initial scheme after parser (from direct to indirect and vice versa) may be also changed at
runtime.

Available Port API:

• FM_PORT_PcdKgBindScheme
• FM_PORT_PcdKgUnbindScheme
• FM_PORT_PcdKgModifyInitialScheme

Custom Classifier graphs

If a port is using the Custom Classifier graph, an initialized Custom Classifier Root handle (as returned by the
RootBuild routine) must be passed when calling the port bind routine.

Runtime Modifications: The CC graph (as well as the CC Root) itself may be modified at runtime, but ports
binding to a CC Root may be changed only by detaching and then reattaching the Port-PCD.

• FM_PORT_PcdCcModifyTree

Policer Profiles

Before any port profile is set, the profile allocation routine must be called to bind the port to the policer profile.
This is required as the port's binding to the policer profile is not done using the port bind routine. It is only then
that per-port profiles may be set, and the port bind routine is subsequently called. If Keygen or parser is not
used (that is, policer is reached directly after parser or from BMI), the port bind routine parameters must specify
which policer profile is used (otherwise, no policer parameters are required).

Runtime Modifications: The initial profile selection may be changed during runtime. All profiles allocated
to a port are in fact bound to this port, so no runtime binding/unbinding is possible. Uninitialized port profiles
(profiles that were allocated for this port but not used) may also be set during runtime, or existing profiles
may be modified. If specific profiles are not required anymore, they may be deleted. If a change in port profile
allocation is required, follow the steps given below to reset the Port-PCD:

1. Port-PCD deleted
2. Profiles deleted and freed
3. New profiles allocated and set
4. Port-PCD set

Available Port API:

• FM_PORT_PcdPlcrModifyInitialProfile
• FM_PORT_PcdPlcrFreeProfiles
• FM_PORT_PcdPlcrAllocProfiles

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
555 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

 Port-PCD Binding Changes

There are three levels of Port-PCD binding changes:

• Basic Runtime Modifications-May be invoked while PCD is active and on enabled ports using PCD.
– Port routines responsible for binding/unbinding to/from the modified resources.

– FM_PORT_PcdKgBindScheme
– FM_PORT_PcdKgUnbindScheme

– Port routines responsible for PCD change of behavior.
– FM_PORT_PcdKgModifyInitialScheme
– FM_PORT_PcdPlcrModifyInitialProfile
– FM_PORT_PcdPrsModifyStartOfset

• Port-PCD DetachRuntime Modifications-For changes that require detaching the Port-PCD connection:
– FM_PORT_PcdCcModifyTree

For these modifications, take the following steps:
– Detach the port from its PCD resources by calling the Detach PCD routine (FM_PORT_DettachPCD).

After this action, the port continues to work enqueuing all frames to the default receive FQID.
– Call one of the two routines above.
– reattach port to PCD resources by recalling the set PCD routine (FM_PORT_AttachPCD).

• Port-PCD Reset Runtime Modifications-For changes that require resetting of the port-PCD binding.
The following steps should be taken for any modification that is not listed under the last two items:
– Unbind port from its PCD resources by calling the delete PCD routine (FM_PORT_DeletePCD). After this

action the port will continue to work, enqueuing all frames to the default receive FQID.
– Modify PCD resources-optional. The change may be only in the binding of the port and not on the

resources. Note that the freeing and deleting of resources, and then allocating and setting resources, must
be orderly, in the same manner as for initial PCD setting and final PCD deleting.

– Bind port to PCD resources by recalling the set PCD routine (FM_PORT_DeletePCD)

All PCD routines listed above may be used for deleting and setting PCD resources. The following two routines
below are used if a change of port profiles window is required (Other PORT routines are not needed as binding
is done using SetPCD routine.):

• FM_PORT_PcdPlcrFreeProfiles
• FM_PORT_PcdPlcrAllocProfiles

7.2.5.2.9 FMan MAC Driver

The FMan MAC driver module refers to the FMan MAC controller functionalities including configuration and
initialization as well as runtime and control.

7.2.5.2.9.1 FMan MAC Hardware Overview

The FMan hardware supports one or two kinds of MAC controllers - depending on SoC. All SoCs support
three-speed Ethernet controller (dTSEC) interfaces to 10 Mbit/s, 100 Mbit/s, and 1 Gbit/s Ethernet/IEEE 802.3
networks which interface the media through external phy or SerDes device. Some SoCs also support 10 Gigabit
Ethernet media access controller (10GEC) which interfaces to 10 Gbit/s Ethernet/IEEE 802.3ae networks via
XAUI using the high-speed SerDes interface.

FMan MAC Software Abstraction

The driver provides a unique API serving both interfaces. If user tries to configure features that are supported
only by one of the interfaces, an "unsupported" message will be displayed.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
556 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

7.2.5.2.9.2 How To Use The FMan MAC Driver?

The following sections provide practical information for using the software drivers.

FMan MAC Driver Scope

This module represents the FMan MAC. It includes:

• FMan MAC hardware structures configuration and enablement
• FMan MAC controller runtime support
• PTP IEEE 1588 support
• MAC hash addressing
• Interrupt handling
• Statistics support

FMan MAC Driver Sequence

• FMan MAC Config routine
• [Optional] FMan MAC advance configuration routines
• FMan MAC Init routine
• FMan MAC runtime routines
• FMan MAC Free routine

FMan MAC Driver Functional Description

The following sections describe main driver functionalities and their usage.

FMan MAC Configuration and Initialization

On FMan MAC driver initialization, the software configures all FMan MAC registers. If required, MAC may
be reset at that time. The driver supplies default values where no other values are specified, it defines IRQ's
and sets IRQ handles. It enables hardware mechanisms and initializes software data structures for software
management.

By the time initialization is done, FMan MAC is ready to be used and the relative FMan Ports may be initialized.

FMan MAC Addressing

On MAC initialization, the user must define a single MAC address. During runtime, the driver provides API for
modifying this address and adding other addresses (depending on the specific MAC hardware support).

In addition, the driver supports the addition and removal of addresses to the MAC hash mechanism.

IEEE1588 Support

The driver provides the API to support the hardware IEEE1588 time-stamping. In order to use this feature, the
user must first initialize the FM-RTC module. IEEE1588 functionality is always enabled on FM-MAC. Therefore,
no additional settings are required for the MAC. and the FM-MAC and only then they can enable this feature
by calling FM_MAC_Enable1588TimeStamp routine. Once enabled, the user may also set the exception for
receiving 1588 relevant interrupts on the MAC.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
557 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

MAC Statistics

The driver provides statistics gathering support for all the standard (MIB) counters. For some controllers, it is
necessary to use an interrupt driven mechanism for accounting for counters overflow and in order to keep track
on the accurate counters. This mechanism may have some influence on performance, and therefore the driver
supports statistics gathering in 3 levels:

• Full statistics-provides all standard counters but may reduce performance.
• Partial statistics-provides only special event counters (errors and so on.). If selected, regular counters (such

as byte/packet) will be invalid and will return -1.
• No statistics gathering.

7.2.5.2.10 FMan VSP Driver

The FMan VSP driver module refers to the software support provided for the Virtual Storage Profile mechanism.

7.2.5.2.10.1 FMan VSP Hardware Overview

VSPs may be used by user for virtualization. If a user is running with a multi-partitioned (or with a multiple
software entities) system where a single MAC may be used by several software partitions/entities
simultaneously, except for using a different FQID (that is already available in DPAA1.0), user may use a different
VSP for each SW partition/entity; that way, the buffer may be private (rather than being shared as in DPAA1.0).
It allows the virtualization of the buffer pool selection for frame storage (and other parameters related to storage
in external memory) from the physical hardware ports. Using this mechanism, different packets received on the
same physical port may be stored in different BM pools based on the frame header, in a similar way to FQID
selection. VSPs are replacing the legacy, "physical", per-port BM Pool selection. A backward compatible mode
exists and it is possible to use the original BM Pool selection, now referred to as "Physical SP".

Figure 107. Virtualization Using VSPs

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
558 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

The global FMan module is in charge of the Virtual Storage Profiles entries management. On FMan initialization,
the first VSP index dedicated to this partition must be defined (it should be an absolute index), and so is the
total number of VSP's for this partition. Later, for each port using VSP's, a window of entries should be defined.
VSPs may not be shared among FMan ports.

Each port has a default VSP. On each PCD classification, a VSP may be selected. Received packets will be
written into the destination buffer according to the VSP parameters, while the VSP is selected according to the
frame headers and the PCD configuration.

The VSP is implemented by the driver as separate entity, however, other modules of the FM driver are aware of
this entity and interact with it. An FM VSP module represents a single storage profile.

The global FMan module is in charge of the Virtual Storage Profiles entries management. On FMan port
initialization, if using VSP mode, it should allocate and bind to a range of VSP's. On the PCD, A decision is
being taken by user on every node of the PCD graph whether to continue to work with previously defined VSP
or to override with a new profile.

7.2.5.2.10.2 How To Use The FMan VSP Driver?

The VSP is implemented by the driver as separate entity, however, other modules of the FM driver are aware of
this entity and interact with it. An FM VSP module represents a single storage profile.

The global FMan module is in charge of the Virtual Storage Profiles entries management. On FMan port
initialization, if using VSP mode, it should allocate and bind to a range of VSP's. On the PCD, A decision is
being taken by user on every node of the PCD graph whether to continue to work with previously defined VSP
or to override with a new profile.

FMan VSP Driver Scope

This module represents the FMan VSP driver. It includes:

• FMan VSP hardware structures configuration and enablement
• Parsing of the buffer
• Statistics

FMan VSP Driver Sequence

This sequence includes other modules required for the VSP

• Definition of general VSP parameters on global FMan initialization
• FM Port initialization
• FM Port VSP window allocation
• FM Port enablement
• FMan VSP Config routine (for specific VSP's)
• [Optional] FMan VSP advance configuration routines (for specific VSP's)
• FMan VSP Init routine (for specific VSP's)

FMan VSP Driver Functional Description

The following sections describe main driver functionalities and their usage.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
559 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Virtual Storage Profile Initialization

The VSP's must be initialized prior to their usage. It is user's responsibility to initialize at least the default
VSP for each port before enabling it. Similarly, it is their responsibility to initialize all other VSPs before a
classification that may use some VSP is enabled.

Initializing a VSP defines the destination BM Pool buffer for a specific type of packets. It also defines the
structure of the buffer - that is, the data offset, the prefix content, and so on.

Virtual Storage Profile Parsing

On VSP initialization, the user defines the buffer prefix content. Based on these requirements, the driver then
defines the buffer prefix structure, that is, data offset, whether certain information such as parse result should be
copied to the external buffer and where it will be located. On buffer reception, the user may call VSP routines in
order to get the data, as well as the buffer prefix sections such as parse result, timestamp, or Keygen output.

7.2.5.2.11 FMan RTC (IEEE 1588) Driver

The FMan RTC driver module refers to the software support provided for the IEEE 1588 hardware of the FMan.

Note: The generic Freescale QorIQ 1588 timer as PTP clock kernel driver is the recommended method to
configure the 1588 timer. This driver is enabled by default by the PTP_1588_CLOCK_QORIQ kernel config. The
FSL_DPAA_1588 and FSL_SDK_FMAN_RTC_API drivers are present for maintaining backwards compatibility.

7.2.5.2.11.1 FMan RTC Hardware Overview

The 1588 timer module interfaces to up to four 10/100/1000 or one 10G Ethernet MACs, providing current time,
2 alarms, and 2 fiper periodic pulse generators.

7.2.5.2.11.2 How To Use The RTC Driver?

The following sections provide practical information for using the software drivers.

RTC Driver Scope

This module represents the FMan 1588 driver. It includes:

• IEEE 1588 hardware configuration and enablement
• Support for alarm mechanism
• Support for periodic pulse
• Support for external trigger
• Runtime compensation tuning
• Interrupt handling

RTC Driver Sequence

• FMan RTC Config routine
• [Optional] FMan RTC advance configuration routines
• FMan RTC Init routine
• FMan RTC Enable routine
• FMan RTC runtime routines
• FMan RTC Free routine

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
560 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

RTC Driver Functional Description

The following sections describe main driver functionalities and their usage.

FMan RTC 1588 module utilization

The driver API provides interface to the 1588 hardware module. It initializes its registers to define the clock
period and it supports the definition of the alarms and periodic pulses. Note that When setting periodic pulse,
the RTC module must be disabled.

Utilizing IEEE1588 for MAC frames time stamping

Several FMan driver modules are involved in having the 1588 time stamping functionality activated: FMan-RTC,
FMan-MAC, FMan-Port and FMan-PCD.

The initialization sequence is as described below:

After the Frame Manager is initialized, the FMan-RTC needs to be initialized by calling (with the appropriate
parameters):

• FM_RTC_Config
• FM_RTC_Init

Next, the following routine should be called, only after MAC is initialized.

• FM_MAC_Enable1588TimeStamp

From this point and on all the Ethernet frames on this MAC are time-stamped. In order to obtain the timestamp,
during the FMan Port configuration, the user must call the advance config routine:

• FM_PORT_ConfigBufferPrefixContent (with 'passTimeStamp' parameter set).

At runtime, for each received/confirmed frame, the user should call the following routine, passing it the frame's
data pointer:

• FM_PORT_GetBufferTimeStamp

The routine will return the pointer to the timestamp.

Utilizing IEEE1588 for PTP

The sequence described in the previous section causes all the frames that are being received or transmitted
by FMan to be time-stamped. However, if the user wants to distinguish PTP frames from other frames on a
specific port, PCD rules need to be applied on the PCD graph for this port; i.e using the parser to recognize
the PTP frame and then using an appropriate scheme to distinguish PTP frames and route them to the desired
destination queues.

7.2.5.2.12 FMan MURAM Driver

The FMan MURAM driver module refers to the memory management of the FMan Multiuser RAM.

7.2.5.2.12.1 FMan MURAM Hardware Overview

The MURAM is the internal memory of the FMan.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
561 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

FMan MURAM Driver Software Abstraction

The FMan MURAM driver is a memory manager that allows partitioning of the MURAM. Upon initialization the
user receives a handle that may be used by other modules in order to allocate and de-allocate memory blocks
out of that MURAM partition.

7.2.5.2.12.2 How To Use The FMan MURAM Driver?

The following sections provide practical information for using the software drivers.

FMan MURAM Driver Scope

This module manages the FMan MURAM. It includes MURAM allocation and de-allocation of different sizes of
required memory blocks.

FMan MURAM Driver Sequence

• FMan MURAM config and init routine
• FMan MURAM allot and free runtime routines
• FMan MURAM free routine

FMan MURAM Driver Functional Description

The FMan MURAM drivers support MURAM memory blocks allocation and de-allocation. After initializing an
MURAM partition, the user is normally required to pass its handle to other FMan driver modules. In this way,
these modules may allocate and de-allocate memory blocks from this partition.

7.2.5.2.13 Supported Network Protocols

The following sections show the protocols that may be selected when defining NetEnv characteristics.

7.2.5.2.13.1 L2 Protocols

The following list shows the L2 protocols:

• HEADER_TYPE_ETH, with the following two options
– ETH_BROADCAST
– ETH_MULTICAST

• HEADER_TYPE_VLAN, with the following option
– VLAN_STACKED

• HEADER_TYPE_MPLS, with the following option
– MPLS_STACKED

• HEADER_TYPE_PPPoE
• HEADER_TYPE_LLC_SNAP

7.2.5.2.13.2 L3 Protocols

The following list shows the L3 protocols:

• HEADER_TYPE_IPV4, with the following options
– IPV4_BROADCAST_1
– IPV4_MULTICAST_1
– IPV4_UNICAST_2

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
562 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

– IPV4_MULTICAST_BROADCAST_2
– IPV4_FRAG_1

• HEADER_TYPE_IPV6, with the following options
– IPV6_MULTICAST_1
– IPV6_UNICAST_2
– IPV6_MULTICAST_2
– IPV6_FRAG_1

• HEADER_TYPE_GRE
• HEADER_TYPE_MINENCAP
• HEADER_TYPE_USER_DEFINED_L3

7.2.5.2.13.3 L4 Protocols

The following list shows the L4 protocols:

• HEADER_TYPE_TCP
• HEADER_TYPE_UDP
• HEADER_TYPE_SCTP
• HEADER_TYPE_DCCP
• HEADER_TYPE_IPSEC_AH
• HEADER_TYPE_IPSEC_ESP
• HEADER_TYPE_USER_DEFINED_L4

7.2.5.2.13.4 Private Headers

• HEADER_TYPE_USER_DEFINED_SHIM1
• HEADER_TYPE_USER_DEFINED_SHIM2

7.2.5.2.13.5 Fields Supported By Driver for Keygen Extraction

Fields supported as "full fields":

• HEADER_TYPE_ETH
– NET_HEADER_FIELD_ETH_DA
– NET_HEADER_FIELD_ETH_SA
– NET_HEADER_FIELD_ETH_TYPE

• HEADER_TYPE_LLC_SNAP
– NET_HEADER_FIELD_LLC_SNAP_TYPE

• HEADER_TYPE_VLAN
– NET_HEADER_FIELD_VLAN_TCI
(index may apply:
– e_FM_PCD_HDR_INDEX_NONE/e_FM_PCD_HDR_INDEX_1,
– e_FM_PCD_HDR_INDEX_LAST)

• HEADER_TYPE_MPLS
– NET_HEADER_FIELD_MPLS_LABEL_STACK
(index may apply:
– e_FM_PCD_HDR_INDEX_NONE/e_FM_PCD_HDR_INDEX_1,
– e_FM_PCD_HDR_INDEX_2,

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
563 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

– e_FM_PCD_HDR_INDEX_LAST)
• HEADER_TYPE_IPv4

– NET_HEADER_FIELD_IPv4_SRC_IP
– NET_HEADER_FIELD_IPv4_DST_IP
– NET_HEADER_FIELD_IPv4_PROTO
– NET_HEADER_FIELD_IPv4_TOS
(index may apply:
– e_FM_PCD_HDR_INDEX_NONE/e_FM_PCD_HDR_INDEX_1,
– e_FM_PCD_HDR_INDEX_2/e_FM_PCD_HDR_INDEX_LAST)

• HEADER_TYPE_IPv6
– NET_HEADER_FIELD_IPv6_SRC_IP
– NET_HEADER_FIELD_IPv6_DST_IP
– NET_HEADER_FIELD_IPv6_NEXT_HDR
– NET_HEADER_FIELD_IPv6_VER | NET_HEADER_FIELD_IPv6_FL | NET_HEADER_FIELD_IPv6_TC
(must come together!)
(index may apply:
– e_FM_PCD_HDR_INDEX_NONE/e_FM_PCD_HDR_INDEX_1,
– e_FM_PCD_HDR_INDEX_2/e_FM_PCD_HDR_INDEX_LAST)

Note: NET_HEADER_FIELD_IPv6_NEXT_HDR with e_FM_PCD_HDR_INDEX_LAST indication, applies to
the very last next header indication, meaning the next L4, which may be present at the Ipv6 last extension. On
earlier revisions this field applies to the Next-Header field of the main IPv6 header)

• HEADER_TYPE_IP
– NET_HEADER_FIELD_IP_PROTO
(index may apply:
– e_FM_PCD_HDR_INDEX_LAST)

– NET_HEADER_FIELD_IP_DCSP
(index may apply:
– e_FM_PCD_HDR_INDEX_NONE/e_FM_PCD_HDR_INDEX_1)

• HEADER_TYPE_GRE
– NET_HEADER_FIELD_GRE_TYPE

• HEADER_TYPE_ETH
– NET_HEADER_FIELD_ETH_DA
– NET_HEADER_FIELD_ETH_SA
– NET_HEADER_FIELD_ETH_TYPE

• HEADER_TYPE_MINENCAP
– NET_HEADER_FIELD_MINENCAP_SRC_IP
– NET_HEADER_FIELD_MINENCAP_DST_IP
– NET_HEADER_FIELD_MINENCAP_TYPE

• HEADER_TYPE_TCP
– NET_HEADER_FIELD_TCP_PORT_SRC
– NET_HEADER_FIELD_TCP_PORT_DST
– NET_HEADER_FIELD_TCP_FLAGS

• HEADER_TYPE_UDP
– NET_HEADER_FIELD_UDP_PORT_SRC
– NET_HEADER_FIELD_UDP_PORT_DST

• HEADER_TYPE_UDP_LITE (relevant only if FM_CAPWAP_SUPPORT define)
– NET_HEADER_FIELD_UDP_LITE_PORT_SRC

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
564 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

– NET_HEADER_FIELD_UDP_LITE_PORT_DST
• HEADER_TYPE_IPSEC_AH

– NET_HEADER_FIELD_IPSEC_AH_SPI
– NET_HEADER_FIELD_IPSEC_AH_NH

• HEADER_TYPE_IPSEC_ESP
– NET_HEADER_FIELD_IPSEC_ESP_SPI

• HEADER_TYPE_SCTP
– NET_HEADER_FIELD_SCTP_PORT_SRC
– NET_HEADER_FIELD_SCTP_PORT_DST

• HEADER_TYPE_DCCP
– NET_HEADER_FIELD_DCCP_PORT_SRC
– NET_HEADER_FIELD_DCCP_PORT_DST

• HEADER_TYPE_PPPoE
– NET_HEADER_FIELD_PPPoE_PID
– NET_HEADER_FIELD_PPPoE_SID

Fields supported as "from fields":

• HEADER_TYPE_ETH (with or without validation):
– NET_HEADER_FIELD_ETH_TYPE

• HEADER_TYPE_VLAN (with or without validation):
– NET_HEADER_FIELD_VLAN_TCI
(index may apply:
– e_FM_PCD_HDR_INDEX_NONE/e_FM_PCD_HDR_INDEX_1,
– e_FM_PCD_HDR_INDEX_LAST)

• HEADER_TYPE_IPv4 (without validation):
– NET_HEADER_FIELD_IPv4_PROTO
(index may apply:
– e_FM_PCD_HDR_INDEX_NONE/e_FM_PCD_HDR_INDEX_1,
– e_FM_PCD_HDR_INDEX_2/e_FM_PCD_HDR_INDEX_LAST)

• HEADER_TYPE_IPv6 (without validation):
– NET_HEADER_FIELD_IPv6_NEXT_HDR
(index may apply:
– e_FM_PCD_HDR_INDEX_NONE/e_FM_PCD_HDR_INDEX_1,
– e_FM_PCD_HDR_INDEX_2/e_FM_PCD_HDR_INDEX_LAST)

7.2.6 Frame Manager Configuration Tool User's Guide

7.2.6.1 Introduction

The Frame Manager (FMan) is part of NXP's Data Path Acceleration Architecture (DPAA), a set of logical blocks
that lets multiple processors (cores) interact with multiple network interfaces and accelerators with low software
overhead.

The Frame Manager Configuration Tool (FMC Tool) is a command-line program that converts Parse-Classify-
Police-Distribute (PCD) descriptions of network packet flows into hardware configuration code for the FMan's
KeyGen, Controller, and Policer functions.

The tool provides an abstraction layer: You define your application's PCD requirements in a high-level,
XML markup language (NetPDL with NXP extensions). The tool translates these definitions into code that

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
565 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

initializes the FMan's registers and data structures. This abstraction makes learning low-level hardware
details unnecessary, allows new users to be productive more quickly, and simplifies the programming task for
everyone.

7.2.6.2 FMC Tool Features

The FMC Tool can analyze input NetPDL and NetPCD XML files that define the parse, classify, police, and
distribute behavior your application requires. The tool can then:

• Passes this information directly to the FMan by calling the appropriate FMan driver API functions. (See
Section 7.2.6.4.)

• Generate C source files containing this information that you can include in your application. (See
Section 7.2.6.5.)

In more detail, the FMC Tool can perform the tasks listed below. The particular actions taken depend upon your
application's requirements.

• Define the protocol stack
• Define a soft header examination sequence
• Configure the Policer sub block
• Configure frame distribution by defining how frames are assigned to particular frame queues
• Call hardware drivers to execute the current configuration
• Directly configure the FMan by executing on a target running embedded Linux (See Section 7.2.6.4.)
• Indirectly configure the FMan by executing on a Linux or Windows host by generating C source code that

configures the FMan. You include this code in your application. (See Section 7.2.6.5.)

7.2.6.3 FMC Tool Components and Packaging

The FMC Tool package contains these files:

• Host version of FMC Tool for desktop versions of Linux and Windows
• FMC Tool application for embedded Linux
• NetPDL file containing a description of each standard network protocol that the FMan's Hard Parser supports.

This file is named hxs_pdl_v3.xml and is in the directory /etc/fmc/config/.

Note: For detailed information on NetPDL, go to http://ftp.tuwien.ac.at/.vhost/analyzer.polito.it/30alpha/docs/
dissectors/NetPDLCore.htm.

For documentation of NXP's customized version of NetPDL, see Section 7.2.6.11.

7.2.6.4 FMC Tool - Runtime Environment Mode

In runtime environment mode, you run the FMC Tool on a target board from the Linux command line, passing
several configuration files as arguments. The tool then calls the FMan Driver API functions required to configure
the FMan block as specified in the supplied files.

When used in this way, the FMC Tool directly configures the FMan. In more detail, the FMC Tool passes the
configuration it finds in its input files (along with compiled Soft Parser firmware) to the FMan driver which, in
turn, modifies the FMan's configuration.

Note: The FMC Tool does not support dynamic FMan configuration; you can use the tool to configure the FMan
just once, typically at application initialization.

As Figure 108 shows you pass these files to the FMC Tool as command-line arguments:

• Standard Protocol file - Optional; included in Layerscape LDP; see Section 7.2.6.8.1 for more information.
• Custom Protocol file - Optional; user written; see Section 7.2.6.8.2 for more information.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
566 / 1061

http://ftp.tuwien.ac.at/.vhost/analyzer.polito.it/30alpha/docs/dissectors/NetPDLCore.htm
http://ftp.tuwien.ac.at/.vhost/analyzer.polito.it/30alpha/docs/dissectors/NetPDLCore.htm

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

• Policy file - Required; user written; see Section 7.2.6.9 for more information.
• Configuration file - Required; user written; see Section 7.2.6.10 for more information.

FMC policy (PCD)
definition
source file
(required)

FMC
configuration

source file
(required)

FMC custom
protocol definition

source file
(optional)

FMC standard
protocol definition

source file
(included in SDK)

(optional)

FMC Tool

User space API

FM high level driver (Linux)

FM Low level driver FM PCD FM Common

FM MURAM FM MAC FM Port

Kernel

User
IOCTL Calls

Figure 108. FMC Tool, Runtime Environment - Input XML Files / FMan Driver API Calls

See Section 7.2.6.6 for documentation of each of the tool's command-line arguments.

Note: You should configure the FMan before you enable your Rx/Tx ports to send/receive traffic. If you do not,
the FMan uses the default Rx and default Tx frame queues.

7.2.6.5 FMC Tool - Host Mode

In addition to running on a target board, the FMC Tool can execute on a host computer running Linux or
Windows. When run on a host, the FMC Tool accepts the same input files as in runtime environment mode.

However, in host mode, the FMC Tool generates C source code files. This code calls the FMan driver functions
required to implement the rules defined in the supplied input files. You can compile and link these files to
produce a standalone executable that you can run by itself, or you can add them to your application.

Note: The FMC Tool does not support dynamic FMan configuration; you can use the tool to configure the FMan
just once, typically at application initialization.

As Figure 109 shows, in host mode, the FMC Tool generates C source code files from the input files listed
below. (See Section 7.2.6.5.1 for more information.)

• Standard Protocol File - Optional; included in Layerscape LDP; see Section 7.2.6.8.1 for more information.
• Custom Protocol File - Optional; user written; see Section 7.2.6.8.2 for more information.
• Policy File - Required; user written; see Section 7.2.6.9 for more information.
• Configuration File - Required; user written; see Section 7.2.6.10 for more information.

You pass these files to the FMC Tool as command-line arguments.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
567 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

FMC policy (PCD)
definition
source file
(required)

FMC
configuration

source file
(required)

FMC custom
protocol definition

source file
(optional)

FMC standard
protocol definition

source file
(included in SDK)

(optional)

FMC Tool

fmc_config_data.c softparse.h

Figure 109. FMC Tool, Host Mode - Input XML Files / Generated C Source Code Files

See Section 7.2.6.6 for documentation of each of the tool's command-line arguments.

7.2.6.5.1 Host Mode Output - C Source Code Files

When run in host mode, the FMC Tool generates C language source code files that make calls to FMan Driver
API functions. These calls implement the behavior defined in the Configuration file, Policy file, and (optionally)
Custom Protocol file passed to the tool from the command line. Typically, you include these source files in your
project, so they are compiled and linked into your application binary. As a result, when you run your application,
it automatically sets up the FMan to behave as required.

In more detail:

• When you supply a Policy file and a Configuration file, the tool generates a single source code file named
"fmc_config_data.c".

• When you supply a Policy file, a Configuration file, and a Custom Protocol file, the tool generates two source
code files: "fmc_config_data.c" and "softparse.h".

Contents of fmc_config_data.c

• #include software parser configuration "softparse.h" at the top of the file
• Initialization of FMC model structure 'fmc_model_t' with configuration data - This structure represents the data

model for FMan hardware configuration according to input files

Using fmc_config_data.c

• FMC model structure must be used together with FMC model definition and FMC executer: 'fmc.h' and
'fmc_exec.c' files - These files are available in FMC source files location

• FMC model definition contains 'fmc_model' structure definition - This structure represents the FMC
configuration model

• FMC executer contains 'fmc_execute' routine - This function configures the FMan hardware to behave as
specified in the input files

Usage options:

• Compile and link these files together ('fmc_config_data.c', 'fmc.h', 'fmc_exec.c') and generate a standalone
binary and run this binary to configure the FMan - In this case, you must add a main() function that calls
fmc_execute()

• Have your application call fmc_execute() - In this case, you don't need to add a main() function

Contents of softparse.h

• Contains compiled firmware that controls the FMan sub blocks involved in parsing a custom protocol header
• Defines parameters such as code size, protocol to attach, and download base address

Using softparse.h - Automatically included in fmc_config.c if you pass the FMC Tool a Custom Protocol file

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
568 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Note: You should configure the FMan before you enable your Rx/Tx ports to send/receive traffic. If you do not,
the FMan uses the default Rx and default Tx frame queues.

7.2.6.6 FMC Tool Command-Line Arguments

The table below lists and describes the FMC Tool's command-line arguments.

Command-Line Argument Syntax
(Both the verbose and abbreviated
command forms are shown)

Description

-d <pdl_file>, --pdl <pdl_file> Path to and name of the Standard Protocol file.
(Optional)
You can use a full path or a relative path.
See Section 7.2.6.8.1 for more information.

-p <pcd_file>, --pcd <pcd_file> Path to and name of a Policy file.
(Required unless '--sp_only' is used)
You can use a full path or a relative path.
See Section 7.2.6.9 for more information.

-c <data_file>, --config <data_file> Path to and name of the Configuration file.
(Required unless '--sp_only' is used)
You can use a full path or a relative path.
See Section 7.2.6.10 for more information.

-s <custom_protocol_file>, --custom_
protocol <custom_protocol_file>

Path to and name of the Custom Protocol file.
(Optional unless the '--sp_only' flag is used, in which case, this Custom
Protocol filename is required.)
You can use a full path or a relative path.
See Section 7.2.6.8.2 for more information.

-a, --apply Apply the supplied configuration to the FMan rather than generating C source
code.
(Optional; valid only when FMC Tool is executed in runtime environment)

--sp_only Perform Soft Parser processing only.
When this argument is supplied, the FMC Tool compiles just the Custom
Protocol file, generates the file softparse.h, and exits. The file softparse.h
contains C source code and custom protocol offsets.
The tool creates softparse.h in the path from which the FMC Tool was
executed.
(Optional)

-w Do not report warnings.
(Optional)

--version Display version information, then exit.
(Optional)

-h, --help Display usage information, then exit.
(Optional)

Table 66. FMC Tool Command-Line Arguments

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
569 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

7.2.6.7 The NetPDL and NetPCD XML Markup Languages

The Network Protocol Description Language (NetPDL) is an XML dialect that defines elements for describing
protocols from OSI layer 2 to OSI layer 7. (For more information on NetPDL, see http://ftp.tuwien.ac.at/.vhost/
analyzer.polito.it/30alpha/docs/dissectors/NetPDLCore.htm).

NXP uses NetPDL to define the standard protocols that are parsed by the FMan's Hard Parser. You cannot
change these protocol descriptions. However, the SDK includes a Standard Protocol file that you can use as a
reference.

In addition, you can use NetPDL (with slight semantic and syntactic differences) to define custom protocols that
are parsed by the FMan's Soft Parser. This feature allows the FMan to handle any protocol that exists or that
you define yourself.

Finally, NXP has extended NetPDL to create a language called NetPCD. You use the elements and attributes
of NetPCD to define FMan parse, classify, police, and distribute behavior. The processing therefore defined
determines how frames move from block to block of the FMan.

The FMC Tool accepts files in NetPCD and NetPDL format as input.

7.2.6.8 Protocol files

For a protocol to be recognized by the FMC Tool, the protocol must be defined in one of two ways.

1. As a standard protocol within the Standard Protocol file (included in the SDK)
2. As a custom protocol within the Custom Protocol file.

Each file type is described in the sections that follow.

7.2.6.8.1 Standard Protocol File

The Layerscape LDP includes a file called the Standard Protocol file. This file contains NetPDL (Network
Protocol Description Language) markup that defines the fields in each standard protocol header that the FMan's
Hard Parser can handle. In addition, for each standard protocol, the file includes NetPDL statements that define
actions for the Hard Parser to take upon encountering an inbound instance of this protocol.

The Standard Protocol file is for the FMan's internal use only; you must therefore not change it. However, to
write a Custom Protocol file and/or a Policy file, you sometimes need information the Standard Protocol file
contains, such as the names of fields in a protocol's header.

For this reason, the SDK includes a copy of the Standard Protocol file in this directory: /etc/fmc/config/
hxs_pdl_v3.xml.

The general structure of an FMC Standard Protocol XML file is shown below.

<netpdl>
 <protocol> <!-- one or more -->
 <format> <!-- only one -->
 <fields> <!-- only one -->
 <field/> <!-- one or more -->
 </fields>
 </format>
 <execute-code>
 </execute-code>
 <encapsulation>
 </encapsulation>
 <visualization>
 </visualization>
 </protocol>

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
570 / 1061

http://ftp.tuwien.ac.at/.vhost/analyzer.polito.it/30alpha/docs/dissectors/NetPDLCore.htm
http://ftp.tuwien.ac.at/.vhost/analyzer.polito.it/30alpha/docs/dissectors/NetPDLCore.htm

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

</netpdl>

See the Section 7.2.6.13 topic to see a larger portion of the Standard Protocol file.

7.2.6.8.2 Custom Protocol File

The FMan's Hard Parser has built-in capability to handle a set of widely used, standard protocols, such as IPv4.
The FMan also has a Soft Parser, which has the ability to process custom protocols.

Of course, for the Soft Parser to recognize a custom protocol, you must first provide a definition of this protocol.
To do this, you create a Custom Protocol file, which consists of NetPDL markup that defines the fields in a
custom protocol's header along with the actions you want the Soft Parser to take upon these fields. You then
pass this file to the FMC Tool, which compiles it and passes the result to the FMan.

Note: Some elements in the NetPDL language are relevant only if used with a protocol analysis tool. The FMC
Tool does not support these elements; instead, the tool supports only those elements that are applicable to the
FMan block. Further, although it is based on NetPDL, the markup for a custom protocol does not strictly follow
NetPDL rules. As a result, it is highly recommended that you become familiar with the Section 7.2.6.11 topic,
which fully documents the custom version of NetPDL used in custom protocol definitions.

See Section 7.2.6.14, for an example of a custom protocol definition file containing XML that defines the GPRS
Tunneling Protocol (GTP).

Note: If your application does not use a custom protocol, you do not have to create a Custom Protocol file.
Further, if your application uses multiple custom protocols, you can (and must) define them in a single Custom
Protocol file; you can pass just one Custom Protocol file to the FMC Tool.

The general structure of a Custom Protocol file is shown below.

<netpdl> <!-- only one instance -->
 <protocol> <!-- one or more instances -->
 <format> <!-- only one instance -->
 <fields> <!-- only one instance -->
 <field/> <!-- one or more instances -->
 </fields>
 </format>
 <execute-code> <!-- zero or one instance -->
 <before> <!-- zero or one instance -->
 </before>
 <after> <!-- zero or one instance -->
 </after>
 </execute-code>
 </protocol>
</netpdl>

7.2.6.9 Policy file

The policy file defines how each inbound frame is parsed, classified, policed, and distributed by the various
FMan sub blocks.

A policy file consists of NetPCD markup, where NetPCD is NXP's extension to NetPDL, an XML markup
language for describing networking protocols. The elements and attributes of NetPCD let you define the
parse, classification, policing, and distribution behavior your application requires. See Section 7.2.6.12 for
documentation of each NetPCD element and its attributes.

A Policy file can have these sections:

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
571 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

• Distribution (required) - Contains one or more distribution definitions, each of which:
– Specifies the protocol(s) a frame must contain to match the distribution
– Defines how to handle matching frames

• Policy - (required) - Contains one or more policy definitions, each of which:
– Is associated with an FMan port
– Contains a prioritized list of distributions

• Classification (optional) - Contains one or more classification blocks, each of which:
– Defines key/value/action tuples, which the FMan's Controller sub block stores in a lookup table
– Compares the specified fields in the current frame header to each value in this table and, upon a match,

takes the specified action
• Policer (optional) - Contains up to 256 policer profiles, each of which can be used to:

– Take action upon frames without regard to traffic flow rate
– Take action upon frames based on the RFC-2698 two-rate, three-color policing scheme
– Take action upon frames based on the RFC-4115 two-rate, three-color, differentiated services scheme

Note: When you run the FMC Tool, you must pass it a Policy file or the '--sp_only' flag. Otherwise, the program
will exit and print an error message.

Figure 110. High-level Structure of a Policy File

<netpcd> <!-- only one instance -->
 <distribution> <!-- one or more instances -->
 </distribution>
 <policy> <!-- one or more instances -->
 <dist_order> <!-- one instance -->
 <distributionref/> <!-- one or more instances -->
 </dist_order>
 </policy>
 <classification> <!-- optional, may have more than one instance -->
 </classification>
 <policer> <!-- optional, may have more than one instance -->
 </policer>
</netpcd>

7.2.6.9.1 Distribution Section

The Distribution section of the Policy file contains one or more 'distribution' elements. While 'distribution'
elements can appear anywhere in the Policy file, they often appear at the top of the file.

Typically a 'distribution' contains child elements that define:

• Frame match rules
– These rules define the conditions an inbound frame must meet to match (and therefore be handled by) this

distribution
– Use the 'protocols' element and/or the 'key' element to define match rules

• Frame handling rules
– These rules determine what a distribution does with matching frames
– Use the 'queue' and 'key' elements to hash frames, so they are evenly spread over a range of frame queues
– Use the 'action' element to pass the frame to another element in the Policy file for further processing

Figure 111. Example Distribution Elements

<!-- distribution that matches all frames containing an IPv4 header -->
<!-- hashes these frames, so they are spread evenly over 32 frame queues -->

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
572 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

<distribution name="hash_ipv4_src_dst_dist0">
 <!-- frame match rule -->
 <key>
 <fieldref name="ipv4.src"/>
 <fieldref name="ipv4.dst"/>
 </key>
 <!-- frame handling rule -->
 <queue count="32" base="0x400"/>
</distribution>
<!-- distribution that matches frames containing Eth/VLAN/IPv4/UDP/GTP headers
 -->
<!-- passes all matching frames to the "dl_vlan_clasifif" classification element
 -->
<distribution name="dl_eth_vlan_ipv4_udp_gtp_dist">
 <!-- frame match rule -->
 <protocols>
 <protocolref name="ethernet"/>
 <protocolref name="vlan"/>
 <protocolref name="ipv4"/>
 <protocolref name="udp"/>
 <!--shim1 is custom protocol defined for GTP -->
 <protocolref name="shim1"/>
 </protocols>
 <!-- frame handling rule
 <action type="classification" name="dl_vlan_classif"/>
</distribution>

See Section 7.2.6.12.5 for complete documentation of this element.

Evenly Distributing Frames over a Range of Frame Queues

One frequent use of the 'distribution' element is to distribute frames evenly over a range of frame queues. If
each available core is configured to pull from the same number of queues in the range, this even spreading
balances the work each core must perform.

In this scenario, the FMan's KeyGen sub block uses values in the frame's header and in the child elements of
the distribution as inputs to a hash algorithm that generates a 24-bit FQID within a range of FQIDs. The KeyGen
sub block then places the frame on the frame queue identified by this FQID.

Here is the KeyGen's algorithm for generating a FQID:

1. Extract and concatenate the protocol header fields specified by the 'key' child element
2. Hash the resulting string to a 64-bit CRC
3. Shift the CRC right by the number of bits specified in the 'shift' attribute of the 'key' element to move the

desired bits to the 24 least significant bit positions
4. Zero-extend the bit mask specified by the 'queue' child element ('count' attribute – 1) to 24 bits
5. Bitwise AND the result with the shifted CRC
6. Bitwise OR the result with the value specified by the 'combine' child element - repeat for each 'combine'

element
7. Bitwise OR the result to the base FQID specified by the 'base' attribute of the 'queue' child element

Figure 112 shows the algorithm the KeyGen sub block uses to calculate a FQID.

Build
key

<= 56 Bytes

Hash
key

64-bit CRC

Shift right*
hash result

64-bit value

Bitwise AND
hash result

with bit mask

24-bit
FQID

Bitwise OR
with

combine

Add
base FQID

24-bit
FQID

24-bit
FQID

Figure 112. KeyGen Algorithm for FQID Calculation

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
573 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

* The 'key' element has an optional 'shift' attribute whose value defines the number of bits by which the hash
result is right shifted. The default value for the shift attribute is zero.

Example KeyGen FQID Calculation

The series of figures that follow shows which child elements and attributes of a distribution block the KeyGen
sub block uses in its FQID calculation.

Figure 113 shows where in the KeyGen sub block gets the inputs for the hash, shift right, bitwise AND, and "add
base" parts of its FQID calculation.

Figure 113. FQID Calculation - Elements/Attributes Used for Key, Bit Mask, and Base FQID

Figure 114shows a 'combine' element that includes a 'portid' attribute that is set to "true". In addition, the
element's 'offset' attribute is "10", and its 'mask' is "0xFF". This markup instructs the KeyGen sub block to
perform the "bitwise OR" part of the FQID calculation. In more detail, for this markup, the KeyGen does these
things:

• Bitwise ANDs the 8-bit logical port ID (defined in the Configuration file) of the port on which the current frame
arrived with the 8-bit mask in the 'combine' element.

• Bitwise ORs (inserts) the 8-bit result at the specified offset (10 bits) within the 24-bit FQID (where offset 0
signifies the FQID's most significant bit).

Note: Each FMan port can be assigned an 8-bit logical port ID by adding markup to the Configuration file. To do
this, assign an 8-bit value to the 'portid' attribute of each 'port' element to which you want to assign a logical port
ID. The Hard Parser puts this value (if defined) in the parse results array, where a KeyGen sub block can get it.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
574 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Figure 114. FQID Calculation - A 'combine' Element that Uses the 'portid' Attribute

Figure 115 shows a 'combine' element that includes a 'frame' attribute. This markup instructs the KeyGen sub
block to:

• Get the 8 bits at offset 112 in the current frame header.
• Bitwise AND this value with the 8-bit mask (0xFF) specified in the 'combine' element
• Bitwise OR (insert) the 8-bit result at the specified offset within the 24-bit FQID (where offset 0 signifies the

FQID's most significant bit).

Note: The value of the 'frame' attribute is an offset (in bits) from beginning of the current frame. The KeyGen
sub block gets the byte at this offset for its FQID calculation. The value of 'frame' must be divisible by 8, so the
bit it references is on a byte boundary.

Figure 115. FQID Calculation - A 'combine' Element that Uses the 'frame' Attribute

Finally, Figure 116 shows where the KeyGen sub block plugs the values from each of the combine elements into
the bitwise OR part of the FQID calculation.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
575 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Figure 116. FQID Calculation - combine Elements Used in Bitwise OR

FQID Formula

FQID[0:23] = (Shifted Hash Key[0:23] & Hash Mask) |
 Data0[0:23] | Data1[0:23] | … | Data7[0:23] |
 FQID Base Address

In sum, use the child elements/attributes of the 'distribution' element to provide the values on the right side of
the FQID equation.

7.2.6.9.2 Policy Section

The Policy section of the Policy file consists of one or more 'policy' elements. While 'policy' elements can appear
anywhere in the Policy file, they typically follow the last 'distribution' element in the file.

Each 'policy' element defines a set of candidate distributions that the FMan can apply to inbound frames. The
particular distribution the FMan applies to a given frame depends on these factors:

• The position of each distribution in the 'policy' element's distribution order list
• The definition of each of these distributions

Candidate distributions are listed in priority order. As a result, if two or more distributions in the list match the
current inbound frame, the FMan applies the first matching distribution because this distribution has higher
priority.

How does the FMan know which policy (that is, which prioritized list of distributions) to apply to the traffic
received on a particular Ethernet port? The Configuration file provides the connection.

In a Configuration file, you must enter one 'port' element for each FMan port your application uses. Further,
the port element has a required attribute - the 'policy' attribute - whose value must match the name of one of
the policy elements in the Policy file, thereby defining the policy (that is, the ordered list of distributions) that
the FMan will apply to all traffic received on a port. In sum, the value of a port element's policy attribute in the
Configuration file ties the port identified by this element to a policy element in the Policy file.

In a Configuration file:

• A port can be assigned a single policy
UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
576 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

• Multiple ports can be assigned the same policy
• A port can have just one active policy at a time

Typically, you assign one policy to each port your application uses.

Example 1 - Simple Use of the Policy Element

Configuration File

<!-- The port element assigns the dl_policy policy to the 10 Gbit/s port of
 FMan 0 --> <!-- Policy dl_policy is defined in the Policy file - see next
 code snippet --> <cfgdata> <config> <engine name="fm0"> <port type="MAC"
 number="9" policy="dl_policy"/>
 </engine>
 </config>
</cfgdata>

Policy File

<!-- A policy element that defines how to apply two distributions -->
<!-- These distributions are defined elsewhere in the Policy file -->
<!-- This policy is assigned to an Ethernet port by the Configuration file above
 -->
<policy name="dl_policy">
 <dist_order>
 <distributionref name="dl_eth_vlan_ipv4_udp_gtp_dist"/>
 <distributionref name="garbage_dist"/>
 </dist_order>
</policy>

In the example above, the Configuration file assigns the policy named 'dl_policy' to the 10 Gbit/s port of a
LS1043A chip's first FMan (fm0). As a result, the FMan first tries to match each frame that arrives on this port to
the 'dl_eth_vlan_ipv4_udp_gtp_dist' distribution since it appears first in the 'policy' element's distribution order
list. Whether the frame matches depends on the definition of the 'dl_eth_vlan_ipv4_udp_gtp_dist' distribution,
which is not shown. If the frame matches, it is handled according to the rules this distribution defines. If the
frame does not match, the FMan next compares it to the 'garbage_dist' distribution since it appears second in
the distribution order list. Because of this distribution's definition (also not shown), it matches all frames, thereby
guaranteeing that every frame is handled in one way or the other.

See Section 7.2.6.12.2 for complete documentation of this element.

Example 2 - More Complex Use of the Policy Element

Figure 117 shows the Policy file from the pktwire application. This application requires a more complex use of
policies and distributions than shown in the previous example.

This Policy file defines ten 'policy' elements - pktwr_policy_0, pktwr_policy_1, … pktwr_policy_9 - some of which
are shown in the figure.

A Configuration file (not shown) assigns each of these policies to one of an SoC's ten FMan ports - five on the
first FMan (fm0) and five on the second FMan (fm1).

Note: Not all QorIQ devices have two FMans. Nor does every FMan have five Ethernet ports. See the reference
manual for your QorIQ device to determine the number of FMans and FMan ports this device supports.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
577 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Figure 117. More Complex Policy File - 1

The Policy file also defines ten distributions - pktwr_dist_0, pktwr_dist_1, … pktwr_dist_9 - some of which are
shown in Figure 118.

As mentioned above, each of these distributions is assigned to a policy which, in turn, is assigned to a port. A
frame "matches" the distribution assigned to the port on which the frame arrived if its header contains both the
ipv4.src and ipv4.dst fields.

For each frame that matches, the KeyGen sub block computes a hash result using the concatenation of the
ipv4.src and ipv4.dist fields as the hash key. The KeyGen sub block then uses the hash result to compute a
FQID. (See the Section 7.2.6.9.1 topic for detailed coverage of the KeyGen's FQID calculation algorithm.)

The resulting FQID is in the range specified by the 'queue' element. For example, for distribution “pktwr_dist_0”,
the resulting FQID will be in range 0x2800 – 0x281F.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
578 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Figure 118. More Complex Policy File - 2

The Policy file also defines ten distributions - garbage_dist_0, garbage_dist_1, … garbage_dist_9 - some of
which are shown in Figure 119.

Note that these distributions do not have a 'key' element. As a result, all frames “match” these distributions. For
'garbage_dist_0', the resulting FQID is always 0xb1 since the queue element specifies just one frame queue
and the base FQID value is 0xb1.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
579 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Figure 119. More Complex Policy File - 3

Let’s say that an FMan port is tied to policy 'pktwr_policy_1' - highlighted in Figure 120.

This policy instructs the FMan to first attempt to distribute frames arriving on this port using the 'pktwr_dist_1'
distribution. If the current frame does not include the ipv4.src and ipv4.dst fields, the policy instructs the FMan to
try the next distribution in the policy's distribution order list.

In this example, the next distribution is “garbage_dist_1” which, due to the absence of a 'key' element, matches
all frames and enqueues them to the single frame queue defined by the 'count' and 'base' attributes of its queue
element.

Note: It is common for the last distribution in a distribution order list to be a "catch all", like the default case in a
C switch statement; however, this is not a requirement.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
580 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Figure 120. More Complex Policy File - 4

7.2.6.9.3 Classification Section

The Classification section of the Policy file is optional. Use it to specify exact match frame classification.

A classification specifies the action to perform on a frame when the values of the specified fields in a frame's
protocol header match a predefined value. You can specify as many predefined value/action pairs as desired,
as well as a default action.

A classification starts with a 'classification' element, which is a container for these child elements:

• A 'key' element that defines the header fields (in protocol.field form) to use in the exact match operation
• One or more 'entry' elements, each of which defines a value to which the specified fields are compared and a

'queue' and/or 'action' element that defines what to do with the frame upon a match
• An optional 'action' element that defines the default action to take if none of the exact match conditions are

met

The FMC Tool uses the information in these child elements to populate the FMan Controller's rules table. At
runtime, the Controller uses this information to extract the specified fields from the specified protocol header,
compare these fields to the specified values and, upon a match, take the specified action.

See Section 7.2.6.12.12 for complete documentation of this element.

Example

The example below shows a Policy file containing a 'classification' element.

The 'policy' element named 'policy_0' lists two distributions to try, 'udp_dist' and 'non_udp_dist'.

Note: For a classification block to be applied to a frame, the frame must first match a distribution that transfers
control to this classification via an 'action' element. In other words, the "source engine" of the Classifier is
always a 'distribution' element.

The 'udp_classif' classification element specifies an exact-match lookup on the ipv4.dst field. If this field's value
is:

• 0xC0A81402, the frame is placed on the queue whose FQID is 0x200
• 0xC0A81404, the frame is placed on the queue whose FQID is 0x400

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
581 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

• 0xC0A81406, the frame is placed on the queue whose FQID is 0x600
• 0xC0A81408, the frame is placed on the queue whose FQID is 0x800

Otherwise, the 'action' element passes the frame to the 'unknown_dist' distribution for handling.

description="Course Classification configuration">
<policy name="policy_0">
 <dist_order>
 <distributionref name="udp_dist"/>
 <distributionref name="non_udp_dist"/>
 </dist_order>
</policy>
<distribution name="udp_dist">
 <protocols>
 <protocolref name="udp"/>
 </protocols>
 <action type="classified" name="udp_classif"/>
</distribution>
<classification name="udp_classif">
 <key>
 <fieldref name="ipv4.dst">
 </key>
 <entry>
 <data>0xC0A81402</data>
 <queue base="0x200"/>
 </entry>
 <entry>
 <data>0xC0A81404</data>
 <queue base="0x400"/>
 </entry>
 <entry>
 <data>0xC0A81406</data>
 <queue base="0x600"/>
 </entry>
 <entry>
 <data>0xC0A81408</data>
 <queue base="0x800"/>
 </entry>
 <action type="distribution" condition="on-miss" name="unknown_dist"/>
<classification>
"cc_policy.xml" 108 lines --61%--

7.2.6.9.4 Policer Section

The Policer section of the Policy file is optional.

If used, the section consists of up to 256 policer profiles. Each profile starts with a 'policer' element, which is a
container for various child elements with which you implement a particular policing behavior.

Each profile works in one of these modes:

• Pass-through – Policer performs no traffic metering
• RFC-2698 - Policer employs a two-rate, three-color marker scheme
• RFC-4115 - Policer employs a differentiated service, two-rate, three-color marker scheme that efficiently

handles in-profile traffic

Each of these modes can be configured to be color-aware or color-blind.

For RFC-2698 and RFC-4115 modes, you must specify these values:

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
582 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

• unit, the unit to be used for the following numeric parameters. Valid values for unit are "packet" and "byte."
• CIR, Committed Information Rate4

• CBS, Committed Burst Size5

• PIR, Peak Information Rate6

• PBS, Peak Burst Size7

In all three modes, you can specify the next invoked action (NIA) for each color result (drop the frame, proceed
to the specified distribution, and so on.)

Example 1 - Policer Markup for RFC2698 Mode

<policer name="policer2">
 <algorithm>rfc2698</algorithm>
 <color_mode>color_aware</color_mode>
 <CIR>12000</CIR>
 <EIR>34000</EIR>
 <CBS>56000</CBS>
 <EBS>78000</EBS>
 <unit>byte</unit>
 <action condition="on-green" type="distribution" name="green_dist"/>
 <action condition="on-yellow" type="distribution" name="yellow_dist"/>
 <action condition="on-red" type="drop"/>
</policer>

Example 2 - Policer Markup for Pass-through Mode

<policer name=“vlan_congestion_control_green">
 <algorithm>pass_through</algorithm>
 <color_mode>color_blind</color_mode>
 <default_color>green</default_color>
 <action condition="on-green" type="distribution name="default_dist"/>
</policer>
<policer name=“vlan_congestion_control_yellow">
 <algorithm>pass_through</algorithm>
 <color_mode>color_blind</color_mode>
 <default_color>yellow</default_color>
 <action condition="on-yellow" type=“drop"/>
</policer>
<policer name=“vlan_congestion_control_red">
 <algorithm>pass_through</algorithm>
 <color_mode>color_blind</color_mode>
 <default_color>red</default_color>
 <action condition="on-red" type=“drop"/>
</policer>

7.2.6.10 Configuration File

The Configuration file contains markup that defines the FMan instances (for devices with more than one FMan)
and ports that are being used.

In addition, the Configuration file "connects" each port to the parse, classification, policing, and distribution
rules defined in the Policy file. How? Each 'port' element in the Configuration file has a 'policy' attribute whose

4 If "unit" attribute is "packet" specify CIR and PIR in packets/second. If "unit" attribute is "byte" specify CIR and PIR in Kbits/second
5 If "unit" attribute is "packet" specify CBS and PBS in packets. If "unit" attribute is "byte" specify CBS and PBS in bytes.
6 If "unit" attribute is "packet" specify CIR and PIR in packets/second. If "unit" attribute is "byte" specify CIR and PIR in Kbits/second
7 If "unit" attribute is "packet" specify CBS and PBS in packets. If "unit" attribute is "byte" specify CBS and PBS in bytes.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
583 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

value must be the name of one of the 'policy' elements in the Policy file. This information tells the FMan which
distributions to compare to each frame received on a given port.

Figure 121 shows the Configuration file's elements, attributes, and element hierarchy.

Note these element and attribute requirements:

• Valid engine names are "fm0" or "fm1"
• Valid values for the port type attribute are:

– "MAC" (1/10 Gbit/s Ethernet port)
• Port numbering corresponds to hardware port number (as in dts) for each port.
• The value of the 'policy' attribute of a 'port' element must match the name of a 'policy' element in the Policy

file.
• portid attribute (optional) - One-byte numeric value that is attached to the port and that can be used in the

'distribution' and 'combine' elements of the Policy file.

The Configuration file's general structure is shown below.

Figure 121 shows an example configuration file. It uses the optional 'portid' attribute for the 1 Gbit/s ports.

Figure 121. Example Configuration File

<cfgdata>
 <config>
 <engine name="fm0">
 <port type="MAC" number="1" policy="ipv4_policy"/>
 <port type="MAC" number="2" policy="ipv4_policy" portid="0x96"/>
 <port type="MAC" number="3" policy="ipv4_policy" portid="0x97"/>
 <port type="MAC" number="4" policy="ipv4_policy" portid="0x97"/>
 </engine>
 </config>
 </cfgdata>

7.2.6.11 NXP NetPDL Reference

The FMan's Soft Parser can process non-standard, custom protocols that you define. To define a custom
protocol, you enter NetPDL (Network Protocol Description Language) markup into a file called the Custom
Protocol file. This markup defines each field in the custom protocol's header, as well as actions for the Soft
Parser to take both before and after the custom header is loaded into the frame window.

Note: Although the markup used to define a custom protocol is based on NetPDL, this markup does not follow
NetPDL rules strictly. As a result, you cannot rely on non-NXP documentation of NetPDL as you write your
Custom Protocol file. Only the information in this appendix accurately explains how to write the NetPDL that
goes in a Custom Protocol file.

You pass the name of the Custom Protocol file to the FMC Tool from the command line. The tool, in turn, passes
the information in this file (directly or indirectly) to the FMan's Soft Parser.

7.2.6.11.1 Basic XML Rules

The Custom Protocol XML file follows standard XML rules.

The file is composed of several elements. Each element begins with a start tag and can contain attributes and/
or child elements. If the element contains child elements, it must have a matching end tag. An element without
child elements or text must end with a forward slash (/).

Note that element and attribute names are case-sensitive. In the Custom Protocol file, all element and attribute
names use only lowercase alphabetic.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
584 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Comments always begin with "<!--" and end with "-->"

Example

<one-element attribute1="value"> <!-- this is a comment -->
 <child-element myattribute="4"/>
</one-element>
<another-element attribute2="value2"/>

7.2.6.11.2 The netpdl Element

The Custom Protocol file always begins with the <netpdl> root element. As a result, the end netpdl tag must
appear at the end of the file.

Attributes: No required attributes

Child Elements: protocol

Example

<netpdl>
...
</netpdl>

7.2.6.11.3 The protocol element

Use the 'protocol' element to bracket the definition of each custom protocol in the Custom Protocol file. The
'protocol' element is a container for all the other elements required to define a custom protocol.

Attributes

name - (required) alphanumeric string; defines the unique name of the custom protocol.

longname - (optional) alphanumeric string; provides a user-friendly name for the protocol.

prevproto - (required) alphanumeric string. This attribute defines the previous protocol, that is, the protocol
whose header precedes the custom protocol's header.

Table 67 lists the values that you can assign to the 'prevproto' attribute.

Protocol Layer

Ethernet 2

llc_snap 2

vlan 2

pppoe 2

mpls 2

ipv4 3

ipv6 3

gre 3

minencap 3

Table 67. Valid values for the prevproto attribute

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
585 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Protocol Layer

otherl3
Note: The Custom Protocol file's NetPDL XML has a somewhat
different structure and behavior if either 'otherl3' or 'otherl4' is the
previous protocol. See Section 7.2.6.11.3.1.

3

tcp 4

udp 4

ipsec_ah 4

ipsec_esp 4

sctp 4

dccp 4

otherl4 1 4

Table 67. Valid values for the prevproto attribute...continued

Each time the frame window contains a header for a protocol specified in the 'prevproto' attribute of one of the
'protocol' elements in the Custom Protocol file, the Hard Parser transfers control to the Soft Parser.

The Soft Parser then executes the 'before' element code of the 'protocol' element whose prevproto attribute
matches the current protocol. As long as the 'before' element code is executing, the previous protocol's header
remains in the frame window. As a result, the 'before' element code can reference the fields in the previous
protocol header.

Typically, the 'before' element includes code that determines whether the next protocol header is an instance
of the custom protocol defined by this protocol element. If it is not, the 'before' code instructs the Soft Parser to
return to the Hard Parser; if it is, the Soft Parser continues to execute the 'before' code.

When the Soft Parser finishes executing the 'before' code (and if it does not return control to the Hard Parser),
the Soft Parser advances the frame window to the custom protocol header and starts executing the 'after'
element code (if any has been defined). Therefore, the code in the 'after' element can reference the fields in the
custom protocol header.

Child Elements: format, execute-code

Example

<protocol name="gtpu" longname="GTP-U" prevproto="udp">
 ...
</protocol>
<protocol name="tcpExt" longname="tcp extension" prevproto="cp">
 ...
</protocol>

7.2.6.11.3.1 Effect of Setting prevproto Attribute to otherl3 or otherl4

When the 'prevproto' attribute of the 'protocol' element is set to otherl3 (for other layer 3 protocol) or otherl4 (for
other layer 4 protocol), the first byte of the previous protocol header and the first byte of the custom protocol
header are at the position in the frame window. Because they are not real protocols, neither otherl3 nor otherl4
has a real protocol header with a defined size and defined fields; these "protocols" are used just to provide the
Soft Parser with an entry point (or a termination point) within the frame window. In effect, the size of the otherl3
and otherl4 "headers" is zero. Consequently, these "headers" have the same start offset in the frame window as
does the custom protocol's header.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
586 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Note: Because the otherl3 and otherl4 protocols do not have real headers, they provide nothing for the Soft
Parser to parse. As a result, you cannot use the 'before' element when either of these protocols is assigned to
the 'prevproto' attribute. You can only use the 'after' element in these cases.

7.2.6.11.4 The format element

Use the 'format' element to bracket the definition of the structure of a custom protocol header. The 'format'
element is a container for the 'fields' element which, in turn, is a container for the 'field' element. The 'field'
element lets you define each field in a custom protocol's header.

Attributes: none

Child Elements: fields

7.2.6.11.4.1 The fields Element

Use the 'fields' element to define the structure of a custom protocol's header. This element is a container for the
'field' element, which lets you define each field in a custom protocol header.

Attributes: none

Child Elements: field

7.2.6.11.4.2 The field Element

Use the 'field' element to define one of the fields in a custom protocol header.

Attributes

type - (required) string; Defines the field size as either "fixed" for a byte-length field or "bit" for a bit-length field.

size - (required) integer; Defines the size of the field in bytes.

name - (required) string; Defines the unique name for the field.

longname - (optional) string; Defines the name of the field for display purposes.

mask - (required only for bit field) integer; Defines the specific bits in the current bytes which belong to this field.

The field elements appear one after the other to define a custom protocol's header frame. The first field begins
in the first byte of the custom protocol's frame header and its size is determined by the size attribute. The
following fields conform to the following rules:

• A fixed field or a field following a fixed field begins in the next byte, which is the previous field's offset + the
previous field's size.

• A bit field following a bit field begins in the next byte only if the last bit in the previous field's mask is 1.
• If two fields share the same offset (which is possible only when both fields are bit fields and the mask of the

first field does not end with 1), they should have the same value for their size attributes.

Example

<format>
 <fields>
 <field type="bit" name="flags" mask="0xE0" size="1"/>
 <field type="bit" name="pt" mask="0x80" size="1"/>
 <field type="bit" name="version" mask="0x07" size="1"/>
 <field type="fixed" name="mtype" size="1"/>
 <field type="fixed" name="length" size="2"/>
 </fields>
</format>

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
587 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

<format>
 <fields>
 <field type="bit" name="version" mask="0xE0" size="1"/>
 <field type="bit" name="pt" mask="0x10" size="1"/>
 <field type="bit" name="flags" mask="0x07" size="1"/>
 <field type="bit" name="flags1" mask="0x01" size="1"/>
 <field type="bit" name="flags2" mask="0x10" size="1"/>
 <field type="bit" name="flags3" mask="0x02" size="1"/>
 <field type="fixed" name="mtype" size="1" longname="message type"/>
 <field type="fixed" name="length" size="2"/>
 </fields>
</format>

The fields will, therefore, be stored in the following bit offsets in the custom protocol header:

version: 0-2 pt: 3-3 flags: 5-7 flags1: 15-15 flags2: 19-19 flags3: 22-22 mtype: 24-31 length: 32-47

7.2.6.11.5 The execute-code element

Use the 'execute-code' element to define all code that should be executed for a custom protocol once the parser
reaches the specified previous protocol header.

This element contains two child elements, 'before' and 'after'. At least one of these child elements must be
defined. If both are defined, the 'before' element must appear before the 'after' element.

Attributes: none

Child Elements: before, after

Example

<execute-code>
 <before>
 ...
 </before>
 <after headersize="8">
 </after>
</execute-code>

7.2.6.11.5.1 The before Element

The Soft Parser executes the code in the 'before' element before it moves the frame window from the previous
protocol header to the custom protocol header. Therefore, use the 'before' element to specify logic that requires
access to fields in the previous protocol header. This code is often used to determine whether the next protocol
header is an instance of the custom protocol this protocol block defines. If it is not, the 'before' block instructs
the Soft Parser to return control to the Hard Parser; if it is, the Soft Parser continues processing.

While the code in the 'before' element is analyzed, the frame window points to the previous protocol header.
Therefore, the frame window variable ($FW) references the fields in the previous protocol header and the
header size variable ($headerSize) variable returns the size of the previous protocol's header.

Once it reaches the end of the 'before' element, the Soft Parser moves the frame window to the custom protocol
header. If no 'after' element has been defined, the Soft Parser then returns to the Hard Parser.

The 'before' element can only appear once in the 'execute-code' element and, if an 'after' element has been
defined, the 'before' element must appear before the 'after' element.

Attributes

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
588 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

confirm - (optional) string; Valid values are "yes" and "no". The default value is "no" if an 'after' element has
been defined. Otherwise, the default value is "yes". If confirm="yes", the Soft Parser confirms the presence
of the 'prevproto' header by bitwise OR'ing the previous protocol's line-up enable confirmation mask with the
current line-up confirmation vector (LCV) value.

confirmcustom - (optional) string; Valid values are "shim1", "shim2", and "no". The default value is "no". If
'confirmcustom' is set (!="no"), the Soft Parser confirms the presence of the custom protocol header by bitwise
OR'ing the custom protocol's mask with the current line-up confirmation vector (LCV) value. The custom
protocol can set one of the last two bits in the LCV. If "shim1" is selected, the least significant bit is set; if
"shim2" is selected, the second least significant bit is set.

Child Elements: if, switch, assign, action

Note: When the previous protocol is 'otherl3' or 'otherl4', the previous protocol and the custom protocol are
treated as if they are the same and each begins at the same offset within the frame window. Therefore, the
'before' element cannot be used when the 'prevproto' attribute is 'otherl3' or 'otherl4'; only an 'after' element be
used when the the 'prevproto' attribute is 'otherl3' or 'otherl4'. See Section 7.2.6.11.3.1 for more information.

7.2.6.11.5.2 The after Element

The 'after' element contains code which should be executed when a frame from the current custom protocol has
been encountered. In contrast to the 'before' element, in the 'after' section, it is possible to access fields from
the current protocol but not from the previous protocol. In the 'after' element the frame window variable ($FW)
manipulates the current custom protocol header and the header size variable ($headerSize) returns the size of
the current custom protocol header.

At the end of the 'after' element, the frame window jumps to the end of the custom protocol's header and control
returns to the Hard Parser.

The 'after' element can appear only once in an 'execute-code' element and if a 'before' element has been
defined, it must appear before the 'after' element.

Attributes

confirm - (optional) string; Valid values are "yes" and "no". The default value is "yes". If confirm ="yes", the Soft
Parser confirms the existence of the previous protocol header by bitwise OR'ing the previous protocol's line-up
enable confirmation mask with the current line-up confirmation vector (LCV) value.

confirmcustom - (optional) string; Valid values are "shim1", "shim2", and "no". The default value is "no". If
'confirmcustom' is set (!="no"), the Soft Parser confirms the presence of the custom protocol header by bitwise
OR'ing the custom protocol's mask with the current line-up confirmation vector (LCV) value. The custom
protocol can set one of the two last bits in the LCV. If "shim1" is selected, the least significant bit is set; if
"shim2" is selected, the second least significant bit is set.

headerSize - (optional) integer; Possible values: arithmetic expression. (See Section "Arithmetic Expressions")
The default value is calculated using the fields contained by the 'format' element. You can specify the custom
protocol's header size with this attribute. This information is needed so the parser returns to the right position
following the custom protocol header. If header size is not specified, the FMC Tool assumes that the fields
defined inside the 'format' element are the only fields in the custom protocol header and calculates the header
size using these fields. The $headerSize variable in the 'after' element returns the value defined in this attribute
(or the value calculated by default if the header attribute is not defined).

Child Elements: if, switch, assign, action

Example

<protocol name="gtp" prevproto="udp">
 <format>

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
589 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

 <fields>
 <field type="bit" name="version" mask="0xE0" size="1"/>
 </fields>
 </format>
 <execute-code>
 <before confirm="no">
 <assign-variable name="$GPR1" value="udp.dport"/>
 <!-- Note that this is ILLEGAL: <assign-variable name="GPR1"
 value="version" -->
 <assign-variable name="$shimr" value="$headerSize"/>
 <!-- shimresult now holds udp's header size -->
 </before>
 <after headersize="4" confirmcustom="shim1">
 <!-- Note that this is ILLEGAL: <assign-variable name="$GPR1"
 value="udp.dport"> -->
 <assign-variable name="$GPR1" value="version"/>
 <assign-variable name="$shimr" value="$headerSize"/>
 <!-- shimresult now equals 4 -->
 </after>
 </execute-code>
</protocol>

7.2.6.11.5.3 Child Elements of the before and after Elements

The assign-variable Element

The 'assign-variable' element assigns an expression to a variable.

Attributes

name - (required) string; The name of the variable to which a value will be assigned. Valid values: Variables
contained in the result array.

value - (required) integer; The expression assigned to the variable. Valid values: arithmetic expressions.

Child Elements: none

Example

<assign-variable name="$shimoffset_2" value="$shimoffset_1+12"/>

The if Element

This element tests the specified condition. If the condition is true, control transfers to the 'if-true' element; if the
condition is false, control transfers to the 'if-false' element (if one is defined).

Attributes

expr - (required) string; Defines the condition to be checked before selecting the code block to execute. Valid
values: logical expressions. (See Section "Logical Expressions" for more information.)

Child Elements: if-true (required), if-false

Example

<if expr="$shimoffset_1==1">
 <if-true>
 ...

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
590 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

 </if-true>
 <if-false>
 ...
 </if-false>
</if>

The if-true Element

This element defines code to execute if the expression defined in the parent 'if' element is true.

Attributes: none

Child Elements: if, switch, assign, action (the same child elements as for the 'before' and 'after' elements)

Example

<if expr="$shimoffset_1==1">
 <if-true>
 ...
 </if-true>
 <if-false>
 ...
 </if-false>
</if>

The if-false Element

This element defines the code to execute if the expression defined in the parent 'if' element is false.

Attributes: none

Child Elements: if, switch, assign, action (the same child elements as for the 'before' and 'after' elements)

Example

<if expr="$shimoffset_1==1">
 <if-true>
 ...
 </if-true>
 <if-false>
 ...
 </if-false>
</if>

The switch Element

This element defines an expression and a set of cases. Each case consists of a value (or set of values) and
code to be executed if the value equals the switch expression. Each 'switch' element must have at least one
'case' child element.

Note: Only the code of the first case that matches the swith expression is executed. Any following cases are
skipped. In C language terms, a break is automatically added after the code of each case.

Attributes

expr - (required) string; Defines the value being checked. Valid values: arithmetic expressions.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
591 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Child Elements: case, default

Example

<switch expr="$shimoffset_1+1">
 <case value="2">
 <assign-variable name="$GPR[1:1]" value="0"/>
 </case>
 <case value="3" maxvalue="4">
 <assign-variable name="$GPR[1:1]" value="1"/>
 </case>
 <default>
 <assign-variable name="$GPR[1:1]" value="2"/>
 </default>
</switch>

The case Element

This element matches a value or range of values against the switch expression.

Attributes

value - (required) integer; If the value equals the switch expression and no earlier case has been matched, the
code in the 'case' element is executed.

maxvalue - (optional) integer; If the switch expression is greater than or equal to the 'value' attribute and the
expression is less than or equal to the 'maxvalue' attribute (and no earlier case has been matched), the code in
the 'case' element is executed.

Child Elements: if, switch, assign, action (the same child elements as for the 'before' and 'after' elements)

Example

<switch expr="$shimoffset_1+1">
 <case value="2">
 <assign-variable name="$GPR[1:1]" value="0"/>
 </case>
 <case value="3" maxvalue="4">
 <assign-variable name="$GPR[1:1]" value="1"/>
 </case>
 <default>
 <assign-variable name="$GPR[1:1]" value="2"/>
 </default>
</switch>

The default Element

The 'default' element contains code that is executed if the expression in the 'switch' element is not matched by
any of the candidate cases.

Attributes: none

Child Elements: if, switch, assign, action (the same child elements as for the 'before' and 'after' elements)

Example

<switch expr="$shimoffset_1+1">
UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
592 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

 <case value="2">
 <assign-variable name="$GPR[1:1]" value="0"/>
 </case>
 <case value="3" maxvalue="4">
 <assign-variable name="$GPR[1:1]" value="1"/>
 </case>
 <default>
 <assign-variable name="$GPR[1:1]" value="2"/>
 </default>
</switch>

The action Element (for use in a Custom Protocol file)

Use the 'action' element in a 'before' or 'after' block to terminate soft parsing, jump to the specified next protocol
header, and continue hard parsing.

Note: This topic defines the 'action' element used in a Custom Protocol file. See Section 7.2.6.12.11 for the
definition of the 'action' element used in a Policy file.

Attributes

• type - (required) string; "exit" is the only valid value for the type attribute.
• advance - (optional) string; The 'advance' attribute controls whether the Soft Parser moves the frame window

to the next frame header. This attribute has different meanings in the 'before' and 'after' elements. In the
'before' element, the Soft Parser moves the frame window from the previous protocol header to the custom
protocol header. In the 'after' element, the Soft Parser moves the frame window from the custom protocol
header to the specified next protocol header. The frame window is advanced according to the header size.
The value of 'advance' must be 'yes' or 'no'. The default is 'yes' unless 'nextproto' is set to 'end_parse', 'return',
or not set at all. In these cases, the default value is 'no'.

• confirm - (optional) string; If confirm="yes", the Soft Parser bitwise OR's the previous protocol's line-up enable
confirmation mask with the current line-up confirmation vector (LCV) value. Valid values are "yes" and "no";
the default value is "yes".

• confirmcustom - (optional) string; Valid values are "shim1", "shim2", or "no". The default value is "no". If
confirmcustom is set to a value other than "no", the Soft Parser bitwise ORs the custom protocol's mask with
the current line-up confirmation vector (LCV) value. The custom protocol can set one of the two last bits in the
LCV. If shim1 is specified, the least significant bit is set; if shim2 is specified, the second least significant bit is
set.

• nextproto - (optional); If used, this attribute must be one of the values from the table below:. The default value
is 'return'.

If nextproto is ... The parse action is ...

Ethernet Jump to the Ethernet header and continue hard parsing

llc_snap Jump to the LLC_SNAP header and continue hard parsing

vlan Jump to the VLAN header and continue hard parsing

pppoe Jump to the PPPoE header and continue hard parsing

mpls Jump to the MPLS header and continue hard parsing

ipv4 Jump to the IPv4 header and continue hard parsing

ipv6 Jump to the IPV6 header and continue hard parsing

gre Jump to the GRE header and continue hard parsing

minencap Jump to the MinEncap header and continue hard parsing

Table 68. Parse Action for each Value of the nextproto Attribute

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
593 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

If nextproto is ... The parse action is ...

otherl3 Jump to the otherl3 header and continue hard parsing

tcp Jump to the TCP header and continue hard parsing

udp Jump to the UDP header and continue hard parsing

ipsec_ah Jump to the IPsec_ah header and continue hard parsing

ipsec_esp Jump to the IPsec_esp header and continue hard parsing

sctp Jump to the SCTP header and continue hard parsing

dccp Jump to the DCCP header and continue hard parsing

otherl4 Jump to the otherl4 header and continue hard parsing

after_ethernet Jump to the protocol that should follow the Ethernet header. The next protocol is
determined from the value of the $nxtHdr variable. See Table 69to find the next protocol
for each possible value of $nxtHdr.
Note:The 'advance' attribute must be set to 'yes' if 'nextproto' is set to 'after_ethernet'.

after_ip Jump to the protocol that should follow the IP header. The next protocol is determined
from the value of the $nxtHdr variable. See table: Next Protocol for each $nxtHdr
Value if nextproto is 'after_ethernet' to find the next protocol for each possible value
of $nxtHdr.
Note:The 'advance' attribute must be set to 'yes' if 'nextproto' is set to 'after_ip'.

return (default value) Return to the Hard Parser without advancing the frame window. In this case, the Hard
Parser starts parsing the frame header at the same position at which the Soft Parser
began. The 'advance' attribute cannot be 'yes' when 'nextproto is set to return.

none/end_parse Finish parsing the frame header; do not return to the Hard Parser.

Table 68. Parse Action for each Value of the nextproto Attribute...continued

If $nxtHdr is ... The next protocol is ...

0x05DC or less llc_snap

0x0800 ipv4

0x86DD ipv6

0x8847, 0x8848 mpls

0x8100, 0x88A8, ConfigTPID1, ConfigTPID2 vlan

0x8864 pppoe

other value otherl3

Table 69. Next Protocol for each $nxtHdr Value if nextproto is 'after_ethernet'

If $nxtHdr is ... The next protocol is ...

4 ipv4

6 tcp

17 udp

33 dccp

Table 70. Next Protocol for each $nxtHdr Value if nextproto is 'after_ip'

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
594 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

If $nxtHdr is ... The next protocol is ...

41 ipv6

50, 51 ipsec

47 gre

55 minencap

132 sctp

other value otherl4

Table 70. Next Protocol for each $nxtHdr Value if nextproto is 'after_ip' ...continued

Notes

• The frame window must be advanced when parsing jumps to the 'after_ethernet' or 'after_ip' protocols.
Therefore, the 'advance' attribute cannot be set to 'no' in these cases.

• The frame window must not be advanced before a 'return' to the Hard Parser. Therefore, the 'advance'
attribute cannot be set to 'yes' if nextproto is set to 'return' or not set at all (since 'return' is the default
'nextproto' value).

Child Elements: none

Example

<action type="exit"
 advance="yes"
 confirmcustom="shim2"
 confirm="no"
 nextproto="udp"/>

7.2.6.11.6 Expressions

Expressions are constructed of operands and operators. The simplest expression can contain just one operand.
Most operators are dyadic and separate two operands (such as +, -) and some operators are monadic and
operate on just the operand that follows them (such as 'not').

7.2.6.11.6.1 Operands

These are the supported types of operands: numbers, variables, fields, and expressions.

Note: The maximum size of an operand is 64 bits (8 bytes).

Numbers

Numbers can appear in decimal (no prefix), binary (prefixed by '0b'), or hexadecimal (prefixed by '0x') format.

All numbers are 64-bit unsigned integers. However, some operators only use the 32 LSB of a number.

Note: Immediate, primitive negative numbers are not supported. For example, the number -2 cannot appear
in an expression. However, artificial negative values can be created using arithmetic expressions such as 1-3
(which returns 0xfffffffe).

Fields

Fields are defined with the 'format' element in a custom protocol header definition. There are two ways to
access a field, by typing their name directly or by typing the name of the protocol header containing the field,
followed by a period, followed by the name of the field.
UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
595 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

In the 'before' element, it is only possible to access fields in the previous protocol header; in the 'after' element,
it is only possible to access fields in the current custom protocol header.

Note: Fields longer than 8 bytes cannot be accessed individually. You can work around this limit by accessing
the frame directly using the frame window ($FW) variable or by splitting the field into several shorter fields.

Example

<protocol name="gptu" prevproto="#ethernet">
 <format>
 <fields>
 <field type="fixed" name="example" size="2"/>
 </fields>
 </format>
 <execute-code>
 <before>
 <assign-variable name="$l2r" value="ethernet.type"/>
 </before>
 <after>
 <assign-variable name="$shimoffset_2" value="example"/>
 </after>
 </execute-code>
</protocol>

Variables

All variable names begin with the $ prefix and are case-sensitive. These variables are supported: frame window,
header size, prevprotoOffset, parameter array, and result array variables.

Result Array Variables

Result array variables return values contained in the parse results array.

Syntax for accessing result array variables:

• $variableName - returns the entire variable
• $variableName[byteOffset:byteNumber] - Returns the byteNumber number of bytes in the variable starting

from byteOffset. This access method is useful for accessing a subset of the bytes in the variable. In
bytesNumber equals zero, the entire variable is returned, starting from byteOffset.

Example: The variable $actiondescriptor returns result array bytes 64-71. The expression $actiondescriptor[2:4]
returns result array bytes 66-69 since 66 is at offset 2 of the actiondescriptor variable and the requested
size is 4. The expression $actiondescriptor[3:0] returns result array bytes 67-71 since 67 is at offset 3 of the
actiondescriptor variable and the requested size is 0, which means return the entire variable starting at the
specified offset (3).

Other usage: In addition to expressions, result array variables can be used in the left side of 'assign-variable'
elements to modify result array values.

Table 71shows the available result array variables .

Variable Name Result Array Bytes Referenced

gpr1 0-7

gpr2 8-15

logicalportid 16-16

Table 71. Result Array Variables

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
596 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Variable Name Result Array Bytes Referenced

shimr 17-17

l2r 18-19

l3r 20-21

l4r 22-22

classificationplanid 23-23

nxthdr 24-25

runningsum 26-27

flags 28-28

fragoffset 28-29

routtype 30-30

rhp 31-31

ipvalid 31-31

shimoffset_1 32-32

shimoffset_2 33-33

ip_pidoffset 34-34

ethoffset 35-35

llcs_napoffset 36-36

vlantcioffset_1 37-37

vlantcioffset_n 38-38

lastetypeoffset 39-39

pppoeoffset 40-40

mplsoffset_1 41-41

mplsoffset_n 42-42

ipoffset_1 43-43

ipoffset_n 44-44

minencapo 44-44

minencapoffset 44-44

greoffset 45-45

l4offset 46-46

nxthdroffset 47-47

framedescriptor1 48-55

framedescriptor2 56-63

actiondescriptor 64-71

ccbase 72-75

ks 76-76

hpnia 77-79

Table 71. Result Array Variables ...continued

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
597 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Variable Name Result Array Bytes Referenced

sperc 80-80

ipver 85-85

iplength 86-87

icp 90-91

attr 92-92

nia 93-95

ipv4sa 96-99

ipv4da 100-103

ipv6sa1 96-103

ipv6sa2 104-111

ipv6da1 112-119

ipv6da2 120-127

Table 71. Result Array Variables ...continued

Note: The $GPR2 variable is used internally by the FMC Tool to calculate complex expressions, including
checksum calculations. Using $GPR2 for other purposes is possible, but is not supported or recommended.

Parameter Array Variable

This variable returns data from the parameter array. Because the parameter array is more than 8 bytes long,
you must specify the particular bytes needed.

Accessing parameter array variables: $PA[byteOffset:byteNumber] - returns the byteNumber number of bytes in
the parameter array starting at byteOffset.

Example: The expression "$PA[4:2]" accesses the fifth and sixth bytes (indexed at PA[4] and PA[5]) of the
parameter array.

Header Size Variables

Header size variables return the header size or default header size of a protocol header.

Accessing header size variables: $headerSize or $defaultHeaderSize

• In the 'before' element, the $headerSize of the previous protocol header is returned. Accessing
$defaultHeaderSize is not allowed.

• In the 'after' element, the $defaultHeaderSize variable returns the number of bytes in the custom protocol's
format fields. The $headerSize variable returns the headerSize as defined by the 'headersize' attribute of the
'after' element. If the user has not specified a value for the 'headersize' attribute, $headerSize returns the
same value as $defaultHeaderSize.

Frame Window Variable

The frame window variable ($FW) returns data from the frame array. In the 'before' element, the frame window
variable returns data from the previous protocol's header. In the 'after' element, the frame window variable
returns data from the custom protocol header.

Using the frame window variable: $variableName[bitOffset:bitNumber] - Returns the bitNumber number of bits in
the frame header starting from bitOffset.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
598 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Note: The frame window uses similar syntax to the parameter array and result array variables; however, the
frame window variable accesses bits instead of bytes.

Examples

To access the tenth and eleventh bits in the frame array (indexed at FW[9], FW[10]), use "$FW[9:2]".

To access the entire third byte of the frame array, use "$FW[16:8]".

The conditions in the example below are always true because the same bits can be accessed using either the
$FW variable or header field names.

<format>
 <fields>
 <field type="bit" name="first" size="1" mask="0xE0"/>
 <field type="bit" name="second" size="1" mask="0x1"/>
 <field type="bit" name="third" size="1" mask="0xF"/>
 <field type="fixed" name="fourth" size="2"/>
 </fields>
</format>
...
<after>
 <if expr="first==$FW[0:3]"> ... </if>
 <if expr="second==$FW[7:1]"> ... </if>
 <if expr="third==$FW[8:4]"> ... </if>
 <if expr="fourth==$FW[16:16]"> ... </if>
</after>

The prevprotoOffset Variable

This variable returns the offset of the previous protocol's frame header. This variable has the same value in the
'before' and 'after' sections and always refers to the protocol defined in the 'prevproto' attribute of the protocol
element.

In the 'before' element, the frame window's current location is equal to prevprotoOffset. In the 'after' element. the
frame window's current location is equal to prevprotoOffset+headerSize.

Note: This variable is actually a "shortcut" to the result array and returns or modifies values taken directly from
this array.

If the previous protocol is ... The value returned from result array is ...

ethernet $ethoffset

gre $greoffset

ipv4, ipv6 $Ipoffset_n

llc_snap $llcsnapoffset

minencap $minencapoffset

mpls $mplsoffset_n

pppoe $pppoeoffset

tcp, udp, sctp, dccp, ipsec_ah, ipsec_esp $l4offset

vlan $vlanoffset_n

Table 72. Previous Protocol RA Return Values

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
599 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

If the previous protocol is ... The value returned from result array is ...

otherl3, otherl4 $NxtHdrOffset - When the previous protocol is otherl3 or other
l4, the custom protocol and the previous protocol have the same
offset. See Section 7.2.6.11.3.1.

Table 72. Previous Protocol RA Return Values...continued

7.2.6.11.6.2 Operators

The parser supports many operators. These operators can receive arithmetic or logical operands and return an
arithmetic or logical value. An arithmetic value is a number, while a logical value is true or false. (See Section
"Arithmetic Expressions" and Section "Logical Expressions" for more information.)

Table 73describes all operators and their associated properties. All dyadic operators (operators which receive
two parameters) appear between two operands. All monadic operators appear before an operand.

Name Parameters Description Symbol

Greater than Logical (Arithmetic, Arithmetic) Checks if the value of the first expression is
greater than the second

gt

Greater equal Logical (Arithmetic, Arithmetic) Checks if the value of the first expression is equal
to or greater than the second

ge

Less than Logical (Arithmetic, Arithmetic) Checks if the value of the first expression is less
than the second

lt

Less equal Logical (Arithmetic, Arithmetic) Checks if the value of the first expression is equal
to or less than the second

le

Equal Logical (Arithmetic, Arithmetic) Checks if the two expressions are equal ==

Not equal Logical (Arithmetic, Arithmetic) Checks if the two expressions are not equal !=

Logical AND Logical (Logical, Logical) Checks if both expressions are true and

Logical OR Logical (Logical, Logical) Checks if either one of the expressions is true or

Logical NOT Logical (Logical) Returns true if the expression is false; returns
false otherwise

not

Add 32-bit Arithmetic (32-bit
Arithmetic, 32-bit arithmetic)

Return the sum of the expressions +

Subtract 32-bit arithmetic (32-bit
Arithmetic, 32-bit arithmetic)

Return the difference between the two
expressions (result of subtraction)

-

Add carry 16-bit arithmetic (16-bit
arithmetic, 16-bit arithmetic)

Return the sum of the two expressions summed
with the carry after 32bit

addc

Bitwise OR Arithmetic (Arithmetic, Arithmetic) Returns the result of a bitwise OR operation on
the two expressions

bitwor

Bitwise XOR Arithmetic (Arithmetic, Arithmetic) Returns the result of a bitwise XOR operation on
the two expressions

bitwxor

Bitwise AND Arithmetic (Arithmetic, Arithmetic) Returns the result of a bitwise AND operation on
the two expressions

bitwand

Bitwise NOT Arithmetic (Arithmetic) Returns the result of a bitwise NOT operation on
the expression

bitwnot

Shift left Arithmetic (Arithmetic, Integer -
value up to 64 bits)

Return the left expression shifted left by the right
expression

shl

Table 73. Supported Operators and their Properties

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
600 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Name Parameters Description Symbol

Shift right Arithmetic (Arithmetic, Integer -
value up to 64 bits)

Return the left expression shifted right by the right
expression

shr

Concat Arithmetic (Arithmetic, Variable or
Integer)

Special operator
See Section "The concat Operator" for full
documentation

concat

Checksum Arithmetic (Arithmetic - value up
to 0xffff, Arithmetic - value up to
256, Arithmetic - value up to 256)

Special operator
See Section "The checksum Operator" for full
documentation

checksum

Table 73. Supported Operators and their Properties...continued

The concat Operator

The concat operator shifts its first argument left and inserts its second argument to its right. The concat
operation can be executed on variables or integers. If the second argument is a variable, the first argument is
shifted left according to the known size of the variable. Result array variables have constant sizes and the size
of the frame header's fields are set in the Custom Protocol file or the Standard Protocol file.

If the user accesses only specific bits in the second argument, the first argument is shifted left only by the
number of bits specified.

If the second argument is an integer, the first argument is shifted left by the smallest word size into which the
integer fits: 16, 32, 48, or 64.

Note: The second argument of a concat operation cannot be an expression because the FMC Tool does not
know the size of an expression and therefore cannot shift the first argument properly. However, for expressions,
you can replace the concat operation with a shift operation (as long as you know the number of bits to shift) and
a bitwise OR operation.

Note: You should use concat instead of shift/bitwise OR when working with variables and integers in order to
reduce code size.

For example, the following IF expression is true:

<assign-variable name="$shimr" value="2"/>
<assign-variable name="$GPR1[6:2]" value="3"/>
<if expr="1 concat $shimr concat $GPR1[6:2] concat 0x40000 ==
 0x102000300040000">

The checksum Operator

The checksum operator is a special operator with unique behavior and syntax. It appears before three
operands that have parentheses around them. As a result, the concat operator looks like a function call -
checksum(expression, integer, integer).

The first operand defines the initial checksum value. The second operand defines the frame window offset at
which to start the checksum (relative to the current frame window location). The third operand defines the length
of the data in bytes on which the checksum operation should be calculated.

Using these values, the checksum executes the add carry (addc) operation on 2-byte sized words in the frame
window range specified. If the range specified contains an odd number of bytes to be checksummed, the last
byte is padded on the right with zeros to form a 16-bit word for checksum purposes. The total sum is added to
the initial checksum value using another addc operation. Therefore, the first argument that defined the initial
sum value must be smaller than 0xffff. The result of the final addc operation is returned.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
601 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Note: Since it is only possible to access 256 bytes in the frame window, the last two arguments to the
checksum operator must be less than or equal to 256.

Example

Suppose we have the following frame and the custom protocol header begins at offset 0xE (where 4500
appears):

FFFF FFFF FFFF 0CCB CC0D DDDD 0800 4500 002E 0000 4000 402F
2AA2 1000 0000 FFFE 0001 0308 0900 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 DA95 36D6 6F15 778C

The following IF conditions will always be true:

<after>
 <if expr="checksum(0x30A2,2,7+2)==0xDAFF">
 ...
 </if>
 <if expr="checksum(0,0,20)==0xFFFF">
 ...
 </if>
</after>

The first checksum operation above performs the following calculation:

0x30A2 + (0x002E add 0x0000 addc 0x4000 addc 0x402F addc 0x2A00)

The second checksum operation performs the following calculation:

0x0000 + (0x4500 addc 0x002E addc 0x0000 addc 0x4000 addc 0x402F addc 0x2AA2
 addc 0x1000 addc 0x0000 addc 0xFFFE addc 0x0001)

Expression Priorities

Expressions containing multiple operators perform the operation according to the following rules, in the order
shown:

1. Operations in parentheses are performed
2. Operations that have a higher priority are performed
3. Multiple operations with the same priority are then executed from left to right

Note: Parentheses are recommended when several operators appear in the same expression to ensure correct
calculation.

Operator Precedence

If several operators appear in the same expression (without separating parentheses), they are performed in the
following order:

1. NOT, bitwise NOT, checksum
2. add, subtract, add carry
3. bitwise AND, bitwise OR, bitwise XOR
4. shift right, shift left, concat
5. greater than, greater equal, less than, less equal, equal, not equal
6. AND, OR

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
602 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Variable Size

In most operations, expression size is limited to 64 bits. However, there are a few exceptions:

• When shifting variables, the shift value must be less than or equal to 64 bits since there are only 64 bits in an
expression.

• The add carry operation can only be performed on 16-bit variables and always returns a 16-bit variable.
The Soft Parser reports an error if an add carry operation is performed on a constant larger than 16 bits, but
does not recognize a complex expression larger than 16 bits. Therefore, it is the responsibility of the user to
perform the operation on 16-bit variables only.

• The subtract and add operators can only be performed on 32-bit variables and they always return a 32-bit
result. If two 32-bit expressions are added and their result is larger than 32 bits, only the carry is returned,
such that the returned value is a 32-bit variable. The Soft Parser reports a warning if an add carry operation is
performed on a constant larger than 32 bits, but does not recognize a complex expression larger than 32 bits.
Therefore, it is the responsibility of the user to perform the operation on 32-bit variables only.

For example, the following IF expressions are always true:

• <if expr="0xFFFFFFFF+2==0x1">

• <if expr="0x123456781+3==0x123456784">

The following IF expression is false (and should not be used):

• <if expr="3+0x123456781==0x123456784">

7.2.6.11.6.3 Expression Types

There are two main types of expressions: Logical expressions, which return "true" or "false", and arithmetic
expressions, which return a numeric result.

Logical Expressions

Logical expressions appear in the 'expr' attribute of the 'if' element.

These expressions always return "true" or "false" and, therefore, must use at least one logical operator that
separates arithmetic and logical operators.

Examples

The following expressions are logical expressions:

• (4+1==$shimoffset_1 or 5!=$shimoffset_2)

• not($shimoffset_2 ge $shimoffset_1 or $shimoffset_1 lt $shimoffset_2)

The following expressions are NOT logical expressions:

• (7 gt 3 and 2+7)

• (5 lt 8 or 7)

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
603 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Arithmetic Expressions

Arithmetic expressions always have a numeric result. They can hold a single operand (a number, variable, or
arithmetic expression) or more than one operand separated by arithmetic operators. Logical operators are not
allowed in arithmetic expressions.

Arithmetic expressions can appear in the following places:

• The value attribute of the assign element
• The headersize attribute of the after element
• The expr attribute of the switch element

Examples

The following are arithmetic expressions:

• ($FW[0:16]+4)

• ($shimoffset_1 concat 3)

• (3+7+8+$shimoffset_2)

• 4

The following is NOT an arithmetic expression:

• 4==$shimoffset_2

7.2.6.11.7 Tips and Recommendations

7.2.6.11.7.1 Result Array Fields that Must be Manually Updated

The FMC Tool lets you define custom protocol headers, and the Soft Parser parses these headers. However,
the Soft Parser does not update header fields for you (other than advancing the frame window and updating the
line-up confirm vector (LCV) with the previous protocol). (See Section 7.2.6.11.5.1, Section 7.2.6.11.5.2, and
Section "The action Element (for use in a Custom Protocol file)" topics for more information.)

Therefore, some result array fields are left empty unless you manually update them. These fields might be
needed in later stages in order for the Soft Parser to correctly interpret the custom protocol header. A list of
result array fields that should be updated appears in the Frame Manager Parser section of the QorIQ Data
Path Acceleration Architecture (DPAA) Reference Manual. These fields include $Classificationplanid, $nxtHdr,
$Runningsum, HXS offsets, Last E Type Offset, and $nxtHdrOffset. Note that the HXS offsets, $nxtHdr, and
$nxtHdrOffset fields are also used internally by the Soft Parser; therefore, these fields should be modified
carefully.

The $nxtHdr fields should be modified only if the custom protocol does not jump to 'after_ip' or 'after_ethernet',
or if you want to change the next protocol when jumping to 'after_ip' or 'after_ethernet'. You should only modify
the HXS offsets and next header offsets in the 'after' element or in the 'before' element if the parser exits without
advancing the frame window.

Finally, the LCV should be manually updated when a custom protocol is being parsed. This can be done using
the 'confirmcustom' attribute, which is available in the 'before', 'after', and 'action' elements.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
604 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

7.2.6.11.7.2 Result Array Fields that Should Not be Modified

Some fields in the result array are for the Soft Parser's exclusive use and therefore should not be modified by
the user. These fields are:

• $GPR1 is used to store temporary values in complex operations; therefore, you should not modify it.
• $nxtHdr is used to calculate the position of the next protocol header when the 'protocol' element's 'nextproto'

attribute is set to 'next_ethernet' or 'next_ip'. Therefore, this variable should not be modified when 'nextproto'
equals one of these values.

• $prevprotoOffset is used to advance the frame window between the 'before' and 'after' elements or when
using the 'action' element with the 'advance' attribute in the 'before' element. Therefore, this variable
should not be modified in the 'before' element unless the Soft Parser exits this element without advancing
the frame window. In addition, $prevprotoOffset can equal these result array variables: $ethoffset,
$greoffset, $ipoffset_n, $llcsnapoffset, minencapoffset, mplsoffset_n, pppoeoffset, l4offset, vlanoffset_n, and
$nxtHdrOffset. As a result, these variables should also not be modified by code in the 'before' element.

• $nxtHdrOffset is used to advance the frame window between the 'before' and 'after' elements or when using
the 'action' element with the 'advance' attribute in the 'before' element. Therefore, this variable should not be
modified in the 'before' element unless the Soft Parser exits this element without advancing the frame window.

7.2.6.11.7.3 Setting the Next Protocol

The Soft Parser can be used to add code for an existing protocol or to define an entirely new protocol. When
it is used as an extension for an existing protocol and no new frame headers are being parsed, the 'nextproto'
attribute of the 'action' element should be set to 'return'. In this case, the nextproto attribute can also be left
empty since 'return' is the default value. If 'return' is set, the Soft Parser will execute its code and then the Hard
Parser will continue parsing at the same position in the frame header at which it stopped.

When the Soft Parser is used for a custom protocol with its own header, the Hard Parser must skip this header
(since it does not know how to parse it) and, therefore, the next protocol must be set to a specific protocol.
If the next protocol is unknown, the 'nextproto' attribute in the 'action' element can be set to 'after_ip' or
'after_ethernet'. In these cases, the next protocol header is determined using the value of the $nxtHdr field.

Example

1. If we want to execute the Soft Parser because when we parse the Ethernet protocol, our code will likely
include an action similar to the action below, which will appear in the 'before' element.

<action type="exit" advance="no" next="return">

2. If we want to add a custom protocol after Ethernet and then jump to IPv6, our code will likely include an
action similar to the action below, which will appear in the 'after' element...

<action type="exit" advance="yes" next="ipv6">

3. If we want to add a custom protocol after the Ethernet header, and we do not know where to jump next, our
code will likely include an action similar to the action shown below, which will appear in the 'after' element.
In this case, when "after_ethernet" is used as next protocol, $nxtHdr variable but be dynamically assigned
accordingly from custom protocol header by using next protocol and field names as value.

<assign-variable name="$nxtHdr" value="protocol.field"/>
<action type="exit" advance="yes" next="after_ethernet">

7.2.6.11.8 Limitations

This section discusses limitations you should consider when working with the FMC Tool's Soft Parser
functionality.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
605 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

7.2.6.11.8.1 Complex Expressions

Some expressions contain so many operations and parentheses that they are too complicated for the Soft
Parser. If you receive an error stating that an expression is too complex, it may be necessary to simplify the
expression by splitting it into multiple, smaller expressions, using parentheses, or storing temporary values in
the result array variables.

Note: $GPR1 is recommended for storing temporary variables. Do not use $GPR2 for temporary variables
because it is used internally by the tool).

Note that the checksum operation expressions can easily become too complex and must be simplified.

7.2.6.12 NetPCD Reference

7.2.6.12.1 The netpcd element

The 'netpcd' element is the root element of a NetPCD document (also known as a policy file). As a result, the
'netpcd' element must appear before any other NetPCD element.

7.2.6.12.1.1 netpcd Attribute Definitions

Attribute Requirement Description

name optional Free text. Use to describe the name and the purpose of the Policy file.

version="1.0" optional Version of the NetPCD DTD or XML schema.
Currently there is only one version - "1.0," which is the default.

creator optional Author's name

date optional Date the document was created

Table 74. netpcd Attribute Definitions

7.2.6.12.1.2 netpcd Example

<?xml version="1.0"?>
<netpcd version="1.0" name="Example" creator="Serge Lamikhov">
 <!-- Other NetPCD elements like 'policy', 'distribution', etc -->
 <policy name="ipv4">
 <dist_order>
 <distributionref name="eth_dist"/>
 <distributionref name="default_dist"/>
 </dist_order>
 </policy>
</netpcd>

7.2.6.12.2 The policy element

The 'policy' element defines a prioritized list of distributions.

A policy element is assigned (via its name attribute) to a port or ports using markup in the Configuration file.
Therefore, the 'policy' element is the means by which specific PCD rules defined in the Policy file are applied to
traffic arriving on particular FMan ports.

Upon receipt of a frame on given port, the Hard Parser tries to match this frame to the distribution listed first in
the policy assigned to this port. If the frame matches, this distribution handles the frame. If the frame does not

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
606 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

match, the Hard Parser next tries to match the frame to the second distribution in the policy list. This process
continues until a distribution in the list matches or no more distributions are left in the policy element's list, in
which case, the frame is placed on the FMan's default receive queue.

7.2.6.12.2.1 policy Attribute Definitions

Attribute Requirement Description

name required Name of the policy.
A port definition in the Configuration file references this name, thereby applying this
policy to all frames arriving on this port.

Table 75. policy Attribute Definitions

7.2.6.12.2.2 policy Example

Policy File
<policy name="ipv4"> <!-- policy name is ipv4 -->
 <dist_order>
 <distributionref name="eth_dist"/>
 <distributionref name="default_dist"/>
 </dist_order>
</policy>
Configuration File
<cfgdata>
 <config>
 <engine="fm0">
 <port type="MAC" number="1" policy="ipv4"/> <!-- policy name ipv4 goes
 here -->
 </engine>
 </config>
</cfgdata>

7.2.6.12.3 The dist_order element

The 'dist_order' element is a container for a list of distribution references.

The Hard Parser chooses a particular distribution in this list at the moment when the protocol set made from the
protocols participating in a distribution is a subset of the protocols found in the current network packet.

The distribution reference list contained within 'dist_order' element is processing sequentially, and the first
conforming distribution is the distribution that is used. Therefore, the order of distribution references is
important.

7.2.6.12.3.1 dist_order Attribute Definitions

Attribute Requirement Description

none n/a n/a

Table 76. dist_order Attribute Definitions

7.2.6.12.3.2 dist_order Example

<policy name="ipv4">
 <dist_order>

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
607 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

 <distributionref name="tcp_dist"/>
 <distributionref name="udp_dist"/>
 <distributionref name="ethernet_dist"/>
 <distributionref name="default_dist"/>
 </dist_order>
</policy>

Note: In this example, putting "ethernet_dist" (which is supposed to process network traffic other than TCP and
UDP) above "tcp_dist" will lead to all traffic be distributed according to "ethernet_dist" rule and no packets will
reach "tcp_dist" or "udp_dist" rules. This is because the Ethernet protocol is a part of TCP and UDP frames as
well.

7.2.6.12.4 The distributionref element

The 'distributionref' element references a 'distribution' element by its name.

The 'dist_order' element contains one or more 'distributionref' elements, thereby defining a prioritized list of
distributions.

7.2.6.12.4.1 distributionref Attribute Definitions

Attribute Requirement Description

name required Name of the referenced 'distribution' element

Table 77. distributionref Attribute Definitions

7.2.6.12.4.2 distributionref Example

<policy name="ipv4">
 <dist_order>
 <distributionref name="eth_dist"/>
 <distributionref name="default_dist"/>
 </dist_order>
</policy>

7.2.6.12.5 The distribution element

The 'distribution' element is a container for child elements that define frame match rules and frame handling
rules.

Frame match rules determine whether the current frame matches (and is therefore handled by) this distribution.
Frame handling rules define what action is performed on matching frames.

Use the 'protocols' element and/or the 'key' element to define frame match rules.

Use the 'action', 'key', 'queue', and 'combine' elements to define frame handling rules.

An 'action' element within the distribution passes the frame to the specified Policy file element for further
processing

The 'key', 'queue' and (optional) 'combine' elements within a distribution together provide inputs to a hash
algorithm that distributes frames evenly over a range of frame queues. The 'key' element defines the protocol
header fields to use as the hash key, the 'queue' element defines the base value and number of FQIDs in the
frame queue range, and the optional 'combine' elements give you fine control over the exact FQIDs that the
algorithm generates.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
608 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Note: You can use an 'action' element in the hash scenario described above to pass the frame to a policer
profile, which may abort the enqueue operation and drop the frame if traffic conditions warrant. In the absence
of an 'action' element, frame processing concludes (and the frame leaves the FMan) at the end of the
'distribution' element.

A distribution's frame queue ID calculation is performed as follows:

• A hash key is formed by extracting and concatenating the protocol header fields specified by the 'key'
element.

• The result value is hashed to a 64-bit CRC.
• The number of least significant bits is taken based on the 'count' attribute of the 'queue' element.
• The resulting value is ORed with the data retrieved according to the 'combine' elements.
• The resulting value is ORed with the 'base' attribute value of the 'queue' element.

All child elements are optional. Appropriate hardware dependent default values are used in cases where a child
element does not exist in the 'distribution' definition.

7.2.6.12.5.1 distribution Attribute Definitions

Attribute Requirement Description

name required Name of the distribution. Any references to a distribution are made using to this
name.

description optional Free text describing the element purpose.

comment optional Free text providing any other information.

Table 78. distribution Attribute Definitions

7.2.6.12.5.2 distribution Example

<distribution name="eth_dist" description="Ethernet protocol based
 distribution">
 <queue count="0x400" base="0x810000"/>
 <key>
 <fieldref name="ethernet.src"/>
 <fieldref name="ethernet.dst"/>
 </key>
 <combine portid="true" offset="10" mask="0xFF"/>
 <combine frame="112" offset="2" size="16" mask="0xFF"/>
 <action type="classification" name="eth_dest_clsf"/>
</distribution>

7.2.6.12.5.3 Default Groups

XML 'defaults' element is a container for parameters necessary for configuration of the default groups and
private default registers. The element, if it exists, can be used as a child of element 'distribution'. This element
contains a list of ‘default’ elements.

Attribute Requirement Description

private0 optional The scheme default register 0.

private1 optional The scheme default register 1.

Table 79. 'default' Elements Attributes:

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
609 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Element 'default' attributes. This element can appear as a child to the element 'defaults':

Attribute Requirement Description

type required Default type select. Possible values are:
1. "from_data” – any data extraction that is not one of the full fields

that can be used as type.
2. "from_data_no_v” – any data extraction without validation.
3. "not_from_data” – extraction from parser result or direct use of

default value.
4. "mac_addr” – MAC Address.
5. "tci” – TCI field.
6. "enet_type” – ENET Type.
7. "ppp_session_id” – PPP Session id.
8. "ppp_protocol_id” – PPP Protocol id.
9. "mpls_label” – MPLS Label.

10. "ip_addr” – IP Addr.
11. "protocol_type” – Protocol type.
12. "ip_tos_tc” – TOC or TC.
13. "ipv6_flow_label” – IPV6 flow label.
14. "ipsec_spi” – IPSEC SPI.
15. "l4_port” – L4 Port.
16. "tcp_flag” – TCP Flag

select required Default register select. Possible values are:
1. "gbl0” – Default selection is KG register 0.
2. "gbl1” – Default selection is KG register 1.
3. "private0” – Default selection is a per scheme register 0.
4. "private1” – Default selection is a per scheme register 1

Table 80. 'default' Element Attributes:

Here is an example of possible default groups and nonheader definition:

<distribution name="Distribution1">
 <queue base="1" count="8"/>
 <key>
 <fieldref name="ipv4.src"/>
 <fieldref name="ipv4.dst"/>
 <fieldref name="ipv4.nextp"/>
 <nonheader source="default" offset="0" size="4"/>
 </key>
 <defaults private0="0xAAAAAAAA">
 <default type="from_data" select="private0"/>
 <default type="from_data_no_v" select="private0"/>
 <default type="not_from_data" select="private0"/>
 </defaults>
 <action type="drop"/>
</distribution>

7.2.6.12.6 The key element

The 'key' element contains a list of 'fieldref' elements. The 'filedref' elements define the protocol header fields
whose values are concatenated to form a hash key. The Key Gen sub block hashes this key and uses a portion
of the result in its frame queue ID (FQID) calculation.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
610 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

7.2.6.12.6.1 key Attribute Definitions

Attribute Requirement Description

shift optional Defines the amount by which the concatenation of the fields in the 'key' element are
right shifted. The default value is zero.
Note: The 'shift' attribute is ignored if the 'key' elements appear within a
'classification' element.

symmetric optional Generate the same hash for frames with swapped source and destination fields on
all layers. If source is selected, destination must also be selected, and vice versa.

Table 81. key Attribute Definitions

7.2.6.12.6.2 key Example

<key shift="16">
 <fieldref name="ethernet.src"/>
 <fieldref name="ethernet.dst"/>
</key>

7.2.6.12.7 The fieldref element

The 'fieldref' element refers to a protocol header field by its name.

The Standard Protocol file contains the names of the available protocols and their fields. This file is named
hxs_pdl_v3.xml and is in the directory /etc/fmc/config/.

7.2.6.12.7.1 fieldref Attribute Definitions

Attribute Requirement Description

name required The referenced field name.
The field's name should be provided in the form of "protocolname.fieldname".

Table 82. fieldref Attribute Definitions

7.2.6.12.7.2 fieldref Example

<key>
 <fieldref name="ethernet.src"/>
 <fieldref name="ethernet.dst"/>
</key>

7.2.6.12.8 The queue element

The 'queue' element defines the number of queues (default is one) and the base value for the FQIDs for these
queues.

When used within a 'distribution' element, the 'queue' element defines a range of queues over which to evenly
distribute frames.

When used within other elements, such as a 'classification' element, the 'queue' element defines the single
queue on which to place a frame.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
611 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

7.2.6.12.8.1 queue Attribute Definitions

Attribute Requirement Description

base required The base frame queue ID value.

count optional This attribute is relevant only when a 'queue' element appears within a 'distribution'
element. In this case, the 'count' attribute defines the number of frame queues over
which to distribute frames.
Valid values for 'count' are powers of 2. The default value is 1.

Table 83. queue Attribute Definitions

7.2.6.12.8.2 queue Example

<distribution name="eth_dist">
 <queue count="0x400" base="0x810000"/>
 <key>
 <fieldref name="ethernet.src"/>
 <fieldref name="ethernet.dst"/>
 </key>
</distribution>

7.2.6.12.9 The protocols and protocolref elements

The 'protocols' and 'protocolref' elements are used together to extend a 'distribution' element's frame match
conditions.

As explained in the 'dist_order' description, a distribution is chosen based on the set of protocols specified in its
'key' element. The 'protocols' and 'protocolref' elements let you extend this set of protocols beyond those listed
in the 'key' element.

7.2.6.12.9.1 protocols and protocolref Attribute Definitions

Attribute Requirement Description

name required The name of the protocol.

opt optional Applicable only for protocolref attribute
Use it in a scheme for detecting protocols with the chosen options (for example, to
detect ETHERNET with BROADCAST or MULTICAST option)
Table 2 contains all possible values. The values are grouped, each group being
separated by a blank row. Values from different groups can be ORed

Table 84. protocols and protocolref Attribute Definitions

Value Description

0x80000000 Ethernet Broadcast

0x40000000 Ethernet Multicast

0x20000000 Stacked VLAN

0x10000000 Stacked MPLS

0x08000000 IPv4 Broadcast

Table 85. Protocol options. Groups are separated by empty rows.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
612 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Value Description

0x04000000 IPv4 Multicast

0x02000000 Tunneled IPv4 - Unicast

0x01000000 Tunneled IPv4 - Broadcast/Multicast

0x00000008 IPV4 reassembly option. When using this option, the IPV4 Reassembly manipulation requires
network environment with IPV4 header

0x00800000 IPv6 Multicast

0x00400000 Tunneled IPv6 - Unicast

0x00200000 Tunneled IPv6 - Multicast

0x00000004 IPV6 reassembly option. When using this option, the IPV6 Reassembly manipulation requires
network environment with IPV6 header. In case where fragment found, the fragment-extension
offset may be found at 'shim2' (in parser-result).

0x00000008 CAPWAP reassembly option. When using this option, the CAPWAP Reassembly manipulation
requires network environment with CAPWAP header. In case where fragment found, the fragment-
extension offset may be found at 'shim2' (in parser-result).

Table 85. Protocol options. Groups are separated by empty rows....continued

7.2.6.12.9.2 protocols and protocolref Example

<!-- The example demonstrates the case in which -->
<!-- frame queue ID calculation is done using Ethernet header fields, -->
<!-- but the condition for matching a frame to this distribution is -->
<!-- extended by also requiring the presence of a UDP protocol header -->
<distribution name="eth_dist">
 <protocols>
 <protocolref name="udp" opt="0x00000008"/>
 </protocols>
 <queue count="0x400" base="0x810000"/>
 <key>
 <fieldref name="ethernet.src"/>
 <fieldref name="ethernet.dst"/>
 </key>
</distribution>

7.2.6.12.10 The combine element

The 'combine' element (like the 'key' element) is used in a 'distribution' element's frame queue ID calculation.
The value built by the 'key' element is hashed, but the value of the 'combine' element is directly bitwised OR'd
with the previous 24-bit FQID result.

A single 'combine' element identifies just One-byte to retrieve and OR. To work around this limitation, you can
have multiple 'combine' elements in a 'distribution' element.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
613 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

7.2.6.12.10.1 combine Attribute Definitions

Attribute Requirement Description

portid required (in
absence of
frame attribute)

Valid values: true or false
If true, this attribute indicates that the logical port ID byte specified in the
Configuration file should be retrieved and used in the bitwise OR part of a
distribution's FQID calculation.
Note that portid and frame are mutually exclusive attributes.

frame required (in
absence of
portid attribute)

Valid values: numeric string
This attribute identifies the byte with the frame header to extract and use in the
bitwise OR part of the FQID calculation. The attribute's value indicates the bit offset
from the beginning of the frame. The specified value must be divisible by 8, so it
references the first bit of a byte.
Note that portid and frame are mutually exclusive attributes.

offset optional This attribute controls the placement of the extracted data in the result Frame
Queue ID. The offset starts at the FQID's most significant bit.

mask optional This attribute defines valid bits in the retrieved value. The extracted value is bitwise
ANDed with the mask prior to being ORed with the previous Frame Queue ID value.

Table 86. combine Attribute Definitions

7.2.6.12.10.2 combine Example

<distribution name="eth_dist">
 <queue count="0x400" base="0x810000"/>
 <key>
 <fieldref name="ethernet.src"/>
 <fieldref name="ethernet.dst"/>
 </key>
 <combine portid="true" offset="10" mask="0xFF"/>
 <combine frame="64" offset="2" mask="0xFF"/>
 <action type="classification" name="eth_dest_clsf"/>
</distribution>

7.2.6.12.11 The action element (for use in a policy file)

The 'action' element permits you to establish a topological parse, classify, police, distribute configuration by
defining the next processing element within a distribution, classification, or policer profile.

If there is no 'action' element within a distribution, classification, or policer profile, the default behavior is
the completion of PCD frame processing, allowing the frame to leave the Frame Manager. Some hardware
restrictions apply in the choice of the next processing element.

7.2.6.12.11.1 action Attribute Definitions

Attribute Requirement Description

type required The type of the 'action' element defines the next processing element.
Valid values are:
• "distribution"
• "classification"
• "policer"

Table 87.  action Attribute Definitions

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
614 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Attribute Requirement Description
• "drop" (Permitted only when the 'action' element is inside a 'policer' element.)

name required The name of the element of the type defined in the 'type' attribute. This attribute
is not relevant if type is "drop".

condition required (when used
within a 'policer' element)
optional (when used
within a 'distribution' or
'classification' element)

This attribute defines the condition under which the 'action' is to be taken. This
attribute is only relevant when used inside a 'policer' or a 'classification' element.
Valid values are:
• "on-green"
• "on-yellow"
• "on-red"
• "on-miss"

Table 87.  action Attribute Definitions ...continued

7.2.6.12.11.2 Statistics

Attribute 'statistics' for action element of the classification and classification entries. This tells if statistics are
made on that entry or on the on-miss.

Attribute Requirement Description

statistics optional Enable statistics for a particular action. Possible values
are:
• enable/yes/true – to enable it.
• disable

Table 88. 'statistics' Element Attributes:

7.2.6.12.11.3 action Example

<distribution name="special_dist">
 <queue count="1" base="0xABCD"/>
 <action type="policer" name="policer2"/>
</distribution>
<policer name="policer2">
 <algorithm>rfc2698</algorithm>
 <color_mode>color_aware</color_mode>
 <CIR>1000000</CIR>
 <EIR>1400000</EIR>
 <CBS>1000000</CBS>
 <EBS>1400000</EBS>
 <unit>packet</unit>
 <action condition="on-green" type="distribution" name="special2_dist"/>
 <action condition="on-yellow" type="drop"/>
 <action condition="on-red" type="drop"/>
</policer>

7.2.6.12.12 The classification element

The 'classification' element allows exact match frame processing.

A classification starts with a 'classification' element, which is a container for these child elements:

• A 'key' element that defines the header fields (in protocol.field form) to use in the exact match operation

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
615 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

• One or more 'entry' elements, each of which defines a value to which the specified fields are compared and a
'queue' and/or 'action' element that defines what to do with the frame upon a match

• An optional 'action' element that defines the default action to take if none of the exact match conditions are
met

7.2.6.12.12.1 classification Attribute Definitions

Attribute Requirement Description

name required The name of the classification

Table 89. classification Attribute Definitions

7.2.6.12.12.2 classification Statistics

The statistics are enabled on the Classification element. The parameters to set up the statistics are: - the
attribute statistics of the element classification, the attribute statistics of the actions on entries/on-miss and
the element framelength with attributes index and value.

Attribute ‘statistics’ for classification – this specifies the type of statistic used in the entire classification

Attribute Requirement Description

statistics optional Choose statistic mode for the particular entry. Possible
values are:
• none
• frame
• byteframe
• rmon

Table 90. 'statistics' Element Attributes:

7.2.6.12.12.3 classification Example

<classification name="eth_dest_clsf">
 <key>
 <fieldref name="ethernet.dst"/>
 </key>
 <entry>
 <data>0x1234567890AB1234567890AB</data>
 <queue base="0x550000"/>
 </entry>
 <entry>
 <data>0xFFFFFFFFFFFFFFFFFFFFFFFF</data>
 <action type="classification" name="eth_dest_2_clsf"/>
 </entry>
 <action condition="on-miss" type="distribution" name="default_dist"/>
</classification>

7.2.6.12.12.4 Frame Replicators

The element replicator is implemented in FMC as a standalone entity.

This element can follow a Classification in the flow, as a target for one of the actions of the entries or on the on-
miss. It is similar to Classification but it has no data/mask in entries, on-miss action and key element.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
616 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Attribute Requirement Description

name required Name of the element. The name is used to refer the
frame replicator.

max optional The maximum number of entries the frame replicator
can have (default and minimum is 2). If the value
entered is smaller than 2 or the attribute is not set, the
value is set to 2.

Table 91. 'fragmentation' Element Attributes:

The element entry has the same syntax as the element classification, but the data and mask are not needed
and therefore are ignored. The action targets of the entry are restricted to:

• policer
• enqueue
• direct distribution

replicator example:

<replicator name="frep_1" max="32">
 <entry>
 <action type="policer" name="policer_1"/>
 </entry>
 <entry>
 <queue base="0x0"/>
 <action type="distribution" name="dist_1"/>
 </entry>
 <entry>
 <queue base="0x220"/>
 <vsp name=”vsp01”>
 </entry>
 <entry>
 <queue base="0x240"/>
 <vsp base=”2”>
 </entry>
</replicator>

Using the frame replicator in an action:

<classification name="class_1" max="0" masks="yes">
 <key>
 <fieldref name="ethernet.type"/>
 </key>
 <entry>
 <data>0x8870</data>
 <queue base="0x01"/>
 <action type="replicator" name="frep_1"/>
 </entry>
 <action condition="on-miss" type="replicator" name="frep_1"/>
</classification>

7.2.6.12.12.5 framelength Statistics

Element framelength attributes (there can be up to 10 values set, in ascending order and last one must be
0xFFFF). The element framelength is valid only for RMON statistics.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
617 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Attribute Requirement Description

statistics required The index for the frame length value specified.
Possible values are from 0 to 9.

value required The value to be added at the specified index.
Maximum value is 0xFFFF and must be added at
index 9. (FMC sets it initially by default).

Table 92. 'framelength' Element Attributes:

7.2.6.12.12.6 Statistics Example

Statistics Example

<!-- Coarse classification -->
 <classification name="classif_1" max="32" masks="yes" statistics="rmon">
 <!-- Key value to be extracted from the packet -->
 <key>
 <fieldref name="ipv4.dst"/>
 </key>
 <framelength index="0" value="0x1100"/>
 <framelength index="1" value="0x1200"/>
 <framelength index="2" value="0x1300"/>
 <framelength index="3" value="0x1400"/>
 <framelength index="4" value="0x1500"/>
 <framelength index="5" value="0x1600"/>
 <framelength index="6" value="0x1700"/>
 <framelength index="7" value="0x1800"/>
 <framelength index="8" value="0x1900"/>
 <framelength index="9" value="0xFFFF"/>
 <!-- Entries in the lookup table -->
 <entry>
 <!-- 192.168.10.10 -->
 <data>0xC0A80A0A</data>
 <queue base="0x1010"/>
 <action statistics="enable"/>
 </entry>
 </classification>

7.2.6.12.12.7 Coarse Classification Resource Reservation

FMD API changes allow pre-allocation of MURAM memory for classification tables. This will be reflected in
NetPCD XML syntax extension by introducing attributes max and masks of the element classification as
shown in the example below. In addition, to allow proper order of PCD elements initialization, and for the
condition that not all entry elements are known at initialization time, the XML element may-use is introduced:

<!-- Coarse classification -->
<classification name="classif_1" max="32" masks="yes" statistics="mode">
 <!-- Key value to be extracted from the packet -->
 <key>
 <fieldref name="ipv4.dst"/>
 </key>
 <may-use>
 <action type="classification" name="fman_test_classif_1"/>
 <action type="distribution" name="default_dist"/>
 </may-use>
 <!-- Entries in the lookup table -->
 <entry>

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
618 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

 <!-- 192.168.10.10 -->
 <data>0xC0A80A0A</data>
 <queue base="0x1010"/>
 </entry>
</classification>

Resource Allocation Attributes:

Attribute Requirement Description

max optional If it exists, this parameter defines the maximum number of coarse
classification entries allocated for this PCD element.
Note: The element classification may still contain pre-initialized
entries, or, alternatively, be empty.
Note: For the case of empty or partially initialized element
classification, usage of the element may-use might be required .

masks optional If provided, indicates that MURAM allocation should be done with the
assumption that additional memory is required for an elements’ masks.
Possible values are:
• no – don’t allocate memory for masks (default)
• yes – allocate memory for masks.

Table 93. Resource Reservation Attributes:

'may-use Element Description:

Attribute Requirement Description

may-use optional Contains list of ‘action’ elements that may appear in the ‘classification’
entries or, be applied dynamically after partial initial configuration.
Note: Attention: the use of this element is required if initial
‘classification’ is empty and dynamic entries, added through FMD API,
use those PCD entities

Table 94. 'may-use' Element Attributes:

7.2.6.12.13 The entry element

The 'entry' element defines the value to use in an exact match comparison with the fields specified by the 'key'
element in a classification and the action to be taken upon a match.

An 'entry' element contains a 'data' element which, in turn, contains a numeric value written in hexadecimal form
(that is, with a "0x" prefix). The data length of this value is determined by length of the set of 'key' fields.

In addition to the 'data' element, each 'entry' element may also contain these elements:

• queue - causes the frame to be placed on the specified queue
• action - passes the frame to the specified element within the Policy file for further processing.
• mask - a value in hexadecimal format that is applied to the data element

7.2.6.12.13.1 entry Attribute Definitions

Attribute Requirement Description

none n/a n/a

Table 95. entry Attribute Definitions

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
619 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

7.2.6.12.13.2 entry Example

<classification name="eth_dest_clsf">
 <key>
 <fieldref name="ethernet.dst"/>
 </key>
 <entry>
 <data>0x1234567890AB1234567890AB</data>
 <queue base="0x550000"/>
 </entry>
</classification>

7.2.6.12.14 The policer element

The 'policer' element is a container whose child elements define a policer profile that performs network
bandwidth management.

7.2.6.12.14.1 policer Attribute Definitions

Attribute Requirement Description

name required Name of the policer profile.

algorithm required Algorithm used for policing. Valid values: "rfc2698", "rfc4115", pass_through".

color_mode required Color mode used for policing. Valid values: "color_aware", "color_blind".

default_color optional Use when algorithm is "pass_through" and color_mode is "color_blind". In this
mode, the policer recolors incoming packets with the specified default color.
Valid values: "red", "yellow", "green", or "override".
If the value is override, the next invoked action is that specified for "green".
The default value is "green".

unit required The unit to be used for numeric parameters. Valid values: "packet", "byte".

CIR required Committed information rate[1][1]

PIR required Peak (or excess) information rate[1]

CBS required Committed burst size[2][2]

PBS required Peak (or excess) burst size[2]

Table 96. policer Attribute Definitions

[1] If "unit" attribute is "packet" specify CIR and PIR in packets/second. If "unit" attribute is "byte" specify CIR and PIR in Kbits/second.
[2] If "unit" attribute is "packet" specify CBS and PBS in packets. If "unit" attribute is "byte" specify CBS and PBS in bytes.

7.2.6.12.14.2 policer Example

<policer name="policer2">
 <algorithm>rfc2698</algorithm>
 <color_mode>color_aware</color_mode>
 <CIR>1000000</CIR>
 <EIR>1400000</EIR>
 <CBS>1000000</CBS>
 <EBS>1400000</EBS>
 <unit>packet</unit>
 <action condition="on-green" type="distribution" name="default_dist"/>

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
620 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

 <action condition="on-yellow" type="distribution" name="special2_dist"/>
 <action condition="on-red" type="drop"/>
</policer>

7.2.6.12.15 The nonheader element

Use the 'nonheader' element within a 'key' element to select a non-header extraction source.

Note: The 'nonheader' element can appear within a 'classification' element only. Further, the 'nonheader'
element cannot be used at the same time as the 'fieldref' element.

7.2.6.12.15.1 nonheader Attribute Definitions

Attribute Requirement Description

source required Non-header extraction source
Valid values are:
• "frame_start" - Extract from beginning of frame.
• "key" - Extract from key value built by ‘distribution’ at preceding step (CC only).
• "hash" - Extract from hash value built by ‘distribution’ at preceding step (CC only).
• "parser" - Extract from parse result array.
• "fqid" - Use enqueue FQID as the key value.
• "flowid" - Use dequeue FQID as the key value (CC only)
• "default" - Extract from a default value (distribution only).
• "endofparse" - Extract from the point where parsing had finished (distribution

only).

action Required if
source is "hash",
"flowid" or "key".
In other cases,
this attribute
must not be
used.

The type of action for the extraction
Valid values are:
• "indexed_lookup" (permitted only for "hash" and "flowid" sources). The extracted

value is interpreted as an entry index of classification table
• "exact_match" (permitted only for "key" and "hash" sources). The extracted value

is compared with ‘key’ value of the entry.

offset required Byte offset. Offset of key from start of frame, internal frame context or parse result
array. Refer “Table 8-398. Table Descriptor (Type = 01)” of DPAA Reference Manual
for full description and possible values

size required Size of the key in bytes.

ic_index_mask Optional
(Valid only
if action is
"indexed_
lookup")

Internal context index mask. For the full description and possible values, refer “Table
8-399. Operation Code Description” of DPAA Reference Manual

Table 97.  nonheader Attribute Definitions

If the action is “indexed_lookup” and the source is “hash”, special checks are done in the drivers on the
configured entries and maximum number of entries according to the internal context index mask are specified.
FMC adjusts automatically the configured entries if they don’t match the provided mask. If the entry must be
initialized, but the user has not supplied it, a default one is created. And, if the entry must be uninitialized, it’s
deleted by FMC. Also, FMC adjusts the maximum number of entries if it’s not configured as 0.

7.2.6.12.15.2 nonheader Example

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
621 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

<classification name="ptp_condition_class">
 <key>
 <nonheader source="hash" action="indexed_lookup" offset="2" size="2"
 ic_index_mask="0x01b0">
 </key>
 <entry>
 <data>0x13F</data>
 <queue base="0x01"/>
 </entry>
</classification>

7.2.6.12.16 Hash Tables

The element 'hashtable' can be specified inside an element 'key' of a 'classification'. The element 'hashtable'
cannot appear in the same time with either elements 'fieldref' or 'nonheader' in the same 'key'. If the element
'hashtable' is used, the 'classification' may have no entries as these are supposed to be filled at runtime.

Attribute Requirement Description

mask required Mask that will be used on the hash-result; The number-of-sets for this
hash will be calculated as (2^(number of bits set in 'mask ')); The 4
lower bits must be cleared.

hashshift optional Byte offset from the beginning of the KeyGen hash result to the 2 bytes
to be used as hash index.(Default 0)

keysize required Size of the exact match keys held by the hash buckets.

Table 98. 'fragmentation' Element Attributes:

Hash table example:

<classification name="classif_1" max="2" statistics="none">
 <key>
 <hashtable mask="0x30" hashshift="0" keysize="24"/>
 </key>
</classification>

7.2.6.12.17 Virtual Storage Profiles Element

The element 'vsp' (Virtual Storage Profile) is implemented in FMC as a standalone entity or can be defined
directly in the element that uses it. The element 'vsp'can be used inside distributions, classification and entries
(both classification and replicator). When used directly in the ‘classification’ element (not in ‘entry’) it counts for
the on-miss action. If the 'action' of the 'entry' or on-miss goes to another 'classification' or 'replicator' the 'vsp' is
ignored.

7.2.6.12.17.1 vsp Attributes

Attribute Requirement Description

name required Name of the element. The name is used to refer the virtual storage
profile inside the elements that are using it.

type optional The type of the VSP. Values:
• direct – (default) the relative profile ID is selected directly by the

‘base’ attribute.

Table 99. 'vsp' Element Attributes:

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
622 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Attribute Requirement Description
• indirect – the relative profile ID is selected base on the

attributes fqshift, vspoffset, and vspcount can be used only in
distribution.

base required for direct. --

fqshift required for indirect. Shift of KeyGen results without the FQID base.

vspoffset optional for indirect OR of KeyGen results without the FQID base; should indicate the
storage profile offset within the port's storage profiles window.

vspcount optional for indirect Range of profiles starting at base.

Table 99. 'vsp' Element Attributes:...continued

7.2.6.12.17.2 vsp Examples

VSP examples (standalone, defined in element, direct/indirect): The action targets of the entry are restricted to:

<vsp name = "storage01" base = "6"/>
<vsp name = "storage02" type = "indirect" fqshift="2" vspoffset="3"
 vspcount="8"/>
<vsp name = "storage03" type = "direct" base = "7"/>
Usage:
...
<entry>
 <queue base="0x220"/>
 <vsp name=”storage01”>
</entry>
...
<distribution name="dist1">
 ...
 <queue count="8" base="0x230"/>
 <vsp type=”indirect” fqshift=”2” vspoffset=”0” vspcount=”4”/>
 ...
</distribution>
...
<classification name="eth_dest_clsf">
 <key>
 <fieldref name="ethernet.dst"/>
 </key>
...
 <vsp name=”storage03”>
 <action condition="on-miss" type="distribution" name="garbage"/>
</classification>

7.2.6.12.18 Manipulation Parameters

Frame Manager accelerator (FMan) attaches manipulation actions as an extension to Ethernet port and coarse
classification ‘next engine’ dispatch activity.

To reflect the frame data processing and manipulation capabilities of the hardware, which are propagated
through Frame Manager Driver (FMD) API, Frame Manager Configuration (FMC) Tool extends the syntax of the
NetPCD configuration language by introducing XML entities described in this document.

Manipulation entities are diverse in their purpose and configuration parameters sets. The same manipulation
entity can be referred, or attached, from/to several port or classification actions. That is why they are separated

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
623 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

from their usage into a separate group called manipulations. At the moment of use, an action refers to the
corresponding manipulation entity. For example:

<netpcd>
 <manipulations>
 <reassembly name=”name1”>

 </reassembly>
 <reassembly name=”name2”>

 </reassembly>
 <fragmentation name=”defrag1”>

 </fragmentation>
 </manipulations>
 <classification name=”clsf1”>

 <!-- 192.168.30.30 -->
 <data>0xC0A81E1E</data>
 <fragmentation name=”defrag1”/>

 </classification>
</netpcd>

Formal Definition:

XML element manipulation is a container for all types of manipulation algorithms. Configuration for each
algorithm has its own XML element name.

Currently three manipulations algorithms are available:

1. IP reassembly
2. IP fragmentation
3. header manipulation

Parameters for these entities are described next.

7.2.6.12.18.1 IP Fragmentation

XML element fragmentation is a container for parameters necessary for configuration of the corresponding
action modification. The element, if exists, can be used as a child of element classification.

Attention: If element fragmentation is present together with other ‘action’ of ‘classification’ element, the element
fragmentation is ignored. This is a subject of FMan firmware capabilities and may change in future.

Attribute Requirement Description

name required Name of the element. The name is used to refer the manipulation
algorithm.

Table 100. 'fragmentation' Element Attributes:

Attribute Requirement Description

size required IP fragmentation will be executed for frames with length greater than
this value.

Table 101. 'fragmentation' Child Elements:

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
624 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Attribute Requirement Description

dontFragAction optional If an IP packet is larger than MTU and its DF bit is set, then this field will
determine the action to be taken. Possible values are:
• discard - the packet (default action)
• fragment – fragment the packet and continue normal processing
• continue - continue normal processing without fragmenting the packet

scratchBpid required for existing
HW platforms, but not
for 9164

Absolute buffer pool id according to BM configuration (DPAA 1.0 only)

sgBpid optional Scatter/Gather buffer pool id. If used sgBpidEn will be set to TRUE.

optionsCounterEn optional Enables the counter if the value is set to ‘yes’, ‘true’ or ‘enable’.
Disabled for other values. Default is disabled.

Table 101. 'fragmentation' Child Elements:...continued

Here is an example of possible IP fragmentation definition:

<manipulations>
 <fragmentation name=”frag1”>
 <size>256</size>
 <dontFragAction>continue</dontFragAction>
 </fragmentation>
</manipulations>
<classification name=”clsf1”>

 <!-- 192.168.30.30 -->
 <data>0xC0A81E1E</data>
 <fragmentation name=”frag1”/>

</classification>

7.2.6.12.18.2 IP Reassembly

XML element reassembly is a container for parameters necessary for configuration of the corresponding action
modification. The element, if it exists, can be used as a child of the element policy.

Attention: Up to 2 additional KeyGen schemes will be constructed when using this manipulation action. Custom
protocol shim2 is reserved when element reassembly participates in a configuration.

Attribute Requirement Description

Name required Name of the element. The name is used to refer the manipulation
algorithm

Table 102. 'reassembly' Element Attributes:

Attribute Requirement Description

sgBpid required Absolute buffer pool id according to BM configuration
for scatter-gather (DPAA 1.0 only)

maxInProcess required Number of frames which can be processed by
reassembly at the same time. It has to be power of 2

dataLiodnOffset optional Offset of LIODN. Default value is 0

Table 103. 'reassembly' Child Elements:

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
625 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Attribute Requirement Description

dataMemId optional Memory partition ID for data buffers

ipv4minFragSize required Minimum fragmentation size for IPv4

ipv6minFragSize required EMinimum fragmentation size for IPv6. The value
must be equal or higher than 256

timeOutMode optional Expiration delay initialized by Reassembly process.
Possible values are:
• frame - limits the time of the reassembly process

from the first fragment to the last (default)
• fragment - limits the time of receiving the fragment

fqidForTimeOutFrames required FQID to assign for frames enqueued during Time Out
Process.

numOfFramesPerHashEntry (numOfFrames
PerHashEntry1)

required Number of frames per hash entry needed for
reassembly process – for ipv4. Possible values are:
numeric values from 1 to 8.

numOfFramesPerHashEntry2 optional Number of frames per hash entry needed for
reassembly process – for ipv6. Possible values are:
numeric values from 1 to 6.

timeoutThreshold required Represents the time interval in micro seconds which
defines if opened frame (at least one fragment was
processed but not all the fragments)is found as too
old

nonConsistentSpFqid optional Handles the case when other fragments of the frame
correspond to a different storage profile than the
opening fragment. (DPAA >= 1.1 only). Default is 0

Table 103. 'reassembly' Child Elements:...continued

Here is an example of possible IP reassembly definition:

<manipulations>
 <reassembly name=”reasm1”>
 <sgBpid>2</sgBpid>
 <maxInProcess>1024</maxInProcess>
 <timeOutMode>fragment</timeOutMode>
 <fqidForTimeOutFrames>1024</fqidForTimeOutFrames>
 <numOfFramesPerHashEntry>8</numOfFramesPerHashEntry>
 <timeoutThreshold>1000000</timeoutThreshold>
 <ipv4minFragSize>0</ipv4minFragSize>
 <ipv6minFragSize>256</ipv6minFragSize>
 </reassembly>
</manipulations>
<policy name="udp_port">
 <dist_order>
 <distributionref name="custom_dist"/>
 <distributionref name="udp_port_dist"/>
 <distributionref name="default_dist"/>
 </dist_order>
 <reassembly name=”reasm1”/>
</policy>

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
626 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

7.2.6.12.18.3 Header Manipulation

XML element header is a container for parameters necessary for configuration of the corresponding
action modification. The element, if it exists, can be used as parameter to the distribution action going to a
classification or inside a classification element entry.

The XML element header may contain:

• insert
• remove
• insert_header
• remove_header
• update
• custom

Certain combinations between them are possible, for example you can have a remove and an insert_header in
the same manipulation.

The header manipulation can be used inside the PCD by inserting an element header in the classification entry
that specifies the name of the header manipulation defined in the section manipulations. This makes sense in
an entry that goes to a policer, distribution or PCD done:

<entry>
 <data>0x9100</data>
 <queue base="0x01"/>
 <action type="policer" name="plcr_01"/>
 <header name="upd_hdr"/>
</entry>

Attribute Requirement Description

name required Name of the element. The name is used to refer the manipulation
algorithm

parse optional Activate the parser a second time after completing the manipulation of
the frame (if ‘yes’)

duplicate optional Will duplicate the header manipulation with the same setting a the
specified number of times. The names of the nodes will have “_x” added
at the end where x is the index of the node. For example <header
name=”upd_ipv4” duplicate=”3”> will create the nodes: upd_ipv4_1,
upd_ipv4_2 and upd_ipv4_3. This is only a simple tool to duplicate a
header manipulation, it does not allow defining chaining between the
elements created by duplication.

Table 104. 'header' Element Attributes:

Header Manipulation - Insert

XML element insert is a container for parameters necessary to configure a header insert manipulation
operation. The element, if it exists, can be used as a child of element header. There can be only one element
insert in a header manipulation.

Element Requirement Description

size required Size of inserted section

offset required Offset from beginning of header to the start location of the insertion.

Table 105. 'insert' Child Elements:

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
627 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Element Requirement Description

replace optional If provided, specifies to override (replace) existing data at 'offset' (if
‘yes’), ‘no’ to insert. Possible values:
• no - insert (default)
• yes - replace

data required Data to insert

Table 105. 'insert' Child Elements:...continued

Header Manipulation - Remove

XML element remove is a container for parameters necessary to configure a header remove manipulation
operation. The element, if it exists can be used as a child of element header. There can only be one element
remove in a header manipulation.

Element Requirement Description

size required Size of removed section

offset required Offset from beginning of header to the start location of the removal.

Table 106. 'remove' Child Elements:

Header Manipulation - Insert-Header

XML element insert_header is a container for parameters necessary to configure a header insert manipulation
operation of an entire header (different than generic element insert). The element insert_header, if it exists,
can be used as a child of element header. With some restrictions, there can be more than one element
insert_header in one header manipulation

Element Requirement Description

type required The type of the header inserted. Only ‘mpls’ is valid at this time.

header_index optional The header index of the header has possible values "1" and "2". The
restrictions on this attribute are:
• if the value is ‘2’ an ‘insert_header’ with ‘header_index’ 1 must be

present in the header manipulation.
• a value of header_index can be used only once per header

manipulation

Table 107. 'insert_header' Element Attributes

Element Requirement Description

data optional The data of the header to be inserted.

replace optional If provided, specifies to override (replace) existing data (if ‘yes’), ‘no’ to
insert.

Table 108. 'insert_header' Child Elements

insert_header example:

<header name="insert_2_l2">
 <insert_header type="mpls" header_index="1">
 <data>0x00000048</data>
 </insert_header>
 <insert_header type="mpls" header_index="2">

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
628 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

 <data>0x00000048</data>
 </insert_header>
</header>

Header Manipulation - Remove_Header

XML element remove_header is a container for parameters necessary to configure a header remove
manipulation operation of an entire header (different than element remove that is a generic one). The
element, if it exists, can be used as a child of element header'. There can be only one instance of element
remove_header in a manipulation and it cannot appear in the same time with the generic remove.

Element Requirement Description

type required The type of the header remove. Possible values:
• "qtags"
• "mpls"
• "ethmpls (or "ethernet_mpls")
• "eth" (or "ethernet")

Table 109. 'remove_header' Child Elements

remove_header example:

<header name="remove_l2">
 <remove_header type="qtags/>
</header>

Header Manipulation - Update

XML element update is a container for parameters necessary to configure a header update manipulation.
The element if exists can be used as a child of element header. There can be only one update in a header
manipulation.

update Element Attributes:

Element Requirement Description

type required The type of the update. Possible values:
• "vlan"
• "ipv4"
• "ipv6"
• "tcpudp"

Table 110. 'remove_header' Child Elements

update Child Elements:

Element Requirement Description

field required Specifies the field to be updated. There must be at least one inside
an update. For some types of updates the field element can appear
multiple times.

Table 111. 'remove_header' Child Elements

Field Element Attributes:

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
629 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Element Requirement Description

type required The type of the header remove. Possible values:
• for 'vlan'

– dscp - DSCP to VLAN priority bits translation.
– vpri - Replace VPri of outer most VLAN tag .

• for 'ipv4'
– tos - update TOS with the given value.
– id - update IP ID with the new 16-bit given value.
– ttl - Decrement TTL by 1.
– src - update IP source address with the given value.
– dst - update IP destination address with the given value.

• for 'ipv6'
– tc - update Traffic Class address with the given value.
– hl - Decrement Hop Limit by 1.
– src - update IP source address with the given value.
– dst - update IP destination address with the given value.

• for 'tcpudp'
– checksum - update TCP/UDP checksum.
– src - update TCP/UDP source address with the given value.
– dst - update TCP/UDP destination address with the given value.

value optional The value used for the update. It is not valid for:
• hl
• ttl
• checksum

fill optional Only valid for dscp - fills the entire array with the given value. The fill is
performed before the other dscp operations.

index optional Only valid for dscp. Specifies the index in the array where that value is
set. The index starts from 0.

Table 112. 'remove_header' Child Elements

'update' Example:

<header name="upd_checksum">
 <update type = "tcpudp">
 <field type="checksum"/>
 </update>
</header>
<header name="upd_ipv4src">
 <update type = "ipv4">
 <field type="src" value="0xC0A80101"/>
 </update>
</header>
<header name="upd_vpri">
 <update type = "vlan">
 <field type="dscp" fill="yes" value="4"/>
 <field type="dscp" index="20" value="2"/>
 <!--...-->
 <field type="dscp" index="30" value="2"/>
 </update>
</header>

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
630 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Header Manipulation - Custom

XML element custom is a container for parameters necessary to configure custom header manipulation. The
custom header manipulation supported by the drivers is now custom IP replace, and allows changing between
ipv4 and ipv6.

'custom' Element Attributes

Element Requirement Description

type required The type of the custom header manipulation. Possible values are:
• “ipv4byipv6” (or just “ipv4”) – Replaces ipv4 by ipv6.
• -“ipv6byipv4” (or just “ipv6”) – Replaces ipv6 by ipv4.

Table 113. 'custom' Element Attributes:

'custom' Child Elements

Element Requirement Description

size required Size of the header to be inserted. (max is 256)

data required The header data to be inserted.

decttl optional Decrement TTL by 1 (ipv4). Possible values:
• "yes"
• "no"

dechl optional Decrement Hop Limit by 1 (ipv6). Possible values:
• "yes"
• "no"

ip (or 'ipid') optional 16-bit New IP ID (ipv4)

Table 114. nextmanip Element Attributes:

'custom' Example:

<header name="custom_ex">
 <custom type="ipv6byipv4">
 <decttl>yes</decttl>
 <id>1</id>
 <size>0x20</size>
 <data>0x4500000012340000000100001011121314151617</data>
 </custom>
</header>

Header Manipulation - Nextmanip

XML element nextmanip Can be used to set up cascading header manipulations. It relates to the header
manipulation element and not subelements (insert, remove, and update).

Element Requirement Description

name required The name of the next header manipulation

Table 115. Nextmanip element attributes

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
631 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Header Manipulation - Example

Here is a general example of possible header manipulation definition:

<manipulations>
 <header name=”ins_rmv” parse=”yes”>
 <insert>
 <size>14</size>
 <offset>0</offset>
 <data>0x0102030405061112131415168100</data>
 </insert>
 <remove>
 <size>14</size>
 <offset>0</offset>
 </remove>
 </header>
 <header name="vpri_update">
 <update type="vlan">
 <field type="vpri" fill="yes" value="0"/>
 </update>
 </header>
 <header name=”ins_vlan” parse=”no”>
 <insert>
 <size>4</size>
 <offset>12</offset>
 <data>0x81004416</data>
 </insert>
 <nextmanip name="vpri_update"/>
 </header>
</manipulations>
<classification name="clsf_1" max="0" masks="yes" statistics="none">
 <key>
 <fieldref name="ethernet.type”/>
 </key>
 <entry>
 <data>0x8847</data>
 <queue base="0x01"/>
 <action type="policer" name="plcr_1"/>
 <header name="ins_vlan"/>
 </entry>
 <entry>
 <data>0x8848</data>
 <queue base="0x02"/>
 <header name="ins_rmv"/>
 </entry>
</classification>

7.2.6.13 Standard Protocol File - Excerpt

The SDK includes a file called the Standard Protocol file. This file uses the NetPDL (Network Protocol
Description Language) XML dialect to define the fields in each standard protocol header that the FMan can
parse with its Hard Parser. In addition, for each protocol, the NetPDL statement define the actions the Hard
Parser should take upon encountering this protocol header in the frame window.

For this reason, the SDK includes a copy of the Standard Protocol file here: /etc/fmc/config/hxs_pdl_v3.xml. In
addition, to give you an idea what the file is like, a small portion is shown below.

<?xml version="1.0" encoding="utf-8"?>

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
632 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

<netpdl name="nbee.org NetPDL Database"
 version="0.2" creator="nbee.org" date="28-05-2008">
<!-- This file is for reference only. -->
<!-- It describes the protocols and fields supported by the FMan's Hard Parser--
>
<!--
NetPDL description of the Ethernet Protocol
-->
<protocol name="ethernet" longname="Ethernet 802.3"
 comment="Ethernet DIX has been included in 802.3" showsumtemplate="ethernet">
 <execute-code>
 <!-- If we're on Ethernet IEEE 802.3, update the packet length -->
 <after when="buf2int(type) le 1500">
 <assign-variable name="$packetlength" value="buf2int(type) + 14"/>
 <!-- 14 is the size of the ethernet header -->
 </after>
 </execute-code>
 <format>
 <fields>
 <field type="fixed" name="dst" longname="MAC Destination" size="6"
 showtemplate="MACaddressEth"/>
 <field type="fixed" name="src" longname="MAC Source" size="6"
 showtemplate="MACaddressEth"/>
 <field type="fixed" name="type" longname="Ethertype - Length" size="2"
 </fields>
 </format>
 <encapsulation>
 <!-- We have four possible encapsulations for IPX:
 - Ethernet version II
 ==> type= 0x8137
 - Novell-specific framing (raw 802.3)
 ==> directly in Ethernet; check that IPX checksum is == 0xFFFF
 - Ethernet 802.3/802.2 without SNAP
 ==> directly in SNAP; check that IPX checksum is == 0xFFFF (after SNAP
 hdr)
 - Ethernet 802.3/802.2 with SNAP
 ==> type= 0x8137 (in SNAP)
 See the "IPX Ethernet and FDDI Encapsulation Methods" Cisco doc, at:
 http://www.cisco.com/en/US/tech/tk389/tk224/
 technologies_q_and_a_item09186a0080093d2e.shtml
 -->
 <if expr="buf2int($packet[$currentoffset:2]) == 0xFFFF">
 <if-true>
 <nextproto proto="#ipx"/>
 </if-true>
 </if>
 <switch expr="buf2int(type)">
 <case value="0" maxvalue="1500"> <nextproto proto="#llc"/> </case>
 <case value="0x800"> <nextproto proto="#ip"/> </case>
 <case value="0x806"> <nextproto proto="#arp"/> </case>
 <case value="0x8863"> <nextproto proto="#pppoed"/> </case>
 <case value="0x8864"> <nextproto proto="#pppoe"/> </case>
 <case value="0x86DD"> <nextproto proto="#ipv6"/> </case>
 <case value="0x8100"> <nextproto proto="#vlan"/> </case>
 <case value="0x8137"> <nextproto proto="#ipx"/> </case>
 <case value="0x81FD"> <nextproto proto="#ismp"/> </case>
 <case value="0x8847" comment="mpls-unicast">
 <nextproto proto="#mpls"/>
 </case>
 <case value="0x8848" comment="mpls-multicast">

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
633 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

 <nextproto proto="#mpls"/>
 </case>
 </switch>
 </encapsulation>
 <visualization>
 <showsumtemplate name="ethernet">
 <section name="next"/>
 <text value="Eth: "/>
 <protofield name="src" showdata="showvalue"/>
 <text value=" => "/>
 <protofield name="dst" showdata="showvalue"/>
 </showsumtemplate>
 </visualization>
</protocol> <!-- End Ethernet protocol definition -->
<!--
NetPDL description of the VLAN Protocol
-->
<protocol name="vlan" longname="Virtual LAN (802.3ac)" showsumtemplate="vlan">
 <format>
 <fields>
 <block name="vlan" size="2" longname="Tag Control Information">
 <field type="bit" name="pri" longname="User Priority"
 mask="0xE000" size="2" showtemplate="FieldHex"/>
 <field type="bit" name="cfi" longname="CFI"
 mask="0x1000" size="2" showtemplate="FieldDec"/>
 <field type="bit" name="vlanid" longname="VLAN ID"
 mask="0x0FFF" size="2" showtemplate="FieldDec"/>
 </block>
 <field type="fixed" name="type" longname="Ethertype - Length"
 size="2" showtemplate="eth.typelength"/>
 </fields>
 </format>
 <encapsulation>
 <switch expr="buf2int(type)">
 <case value="0" maxvalue="1500"> <nextproto proto="#llc"/> </case>
 <case value="0x800"> <nextproto proto="#ip"/> </case>
 <case value="0x806"> <nextproto proto="#arp"/> </case>
 <case value="0x8863"> <nextproto proto="#pppoed"/> </case>
 <case value="0x8864"> <nextproto proto="#pppoe"/> </case>
 <case value="0x86DD"> <nextproto proto="#ipv6"/> </case>
 </switch>
 </encapsulation>
 <visualization>
 <showsumtemplate name="vlan">
 <text value=" (VLAN-ID "/>
 <protofield name="vlanid" showdata="showvalue"/>
 <text value=")"/>
 </showsumtemplate>
 </visualization>
</protocol> <!-- End VLAN protocol definition -->
<!- snip - code removed ... -->
<!--
NetPDL description of the IPv6 Protocol
-->
<protocol name="ipv6" longname="IPv6 (Internet Protocol version 6)
 showsumtemplate="ipv6">
 <!-- We should check that 'version' is equal to '6' -->
 <execute-code>
 <after>

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
634 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

 <!-- Store ipsrc and ipdst in a couple of variables for the sake of speed
 -->
 <!-- Hids differences between IPv4 and IPv6 for session tracking -->
 <assign-variable name="$ipsrc" value="src"/>
 <assign-variable name="$ipdst" value="dst"/>
 <if expr="$ipsrc lt $ipdst" >
 <if-true>
 <assign-variable name="$firstip" value="src"/>
 <assign-variable name="$secondip" value="dst"/>
 </if-true>
 <if-false>
 <assign-variable name="$firstip" value="dst"/>
 <assign-variable name="$secondip" value="src"/>
 </if-false>
 </if>
 </after>
 </execute-code>
 <format>
 <fields>
 <field type="bit" name="ver" longname="Version"
 mask="0xF0000000" size="4" showtemplate="FieldDec"/>
 <field type="bit" name="tos" longname="Type of service"
 mask="0x0F000000" size="4" showtemplate="FieldHex"/>
 <field type="bit" name="flabel" longname="Flow label"
 mask="0x00FFFFFF" size="4" showtemplate="FieldHex"/>
 <field type="fixed" name="plen" longname="Payload Length"
 size="2" showtemplate="FieldDec"/>
 <field type="fixed" name="nexthdr" longname="Next Header"
 size="1" showtemplate="ipv6.nexthdr"/>
 <field type="fixed" name="hop" longname="Hop limit"
 size="1" showtemplate="FieldDec"/>
 <field type="fixed" name="src" longname="Source address"
 size="16" showtemplate="ip6addr"/>
 <field type="fixed" name="dst" longname="Destination address"
 size="16" showtemplate="ip6addr"/>
 <loop type="while" expr="1">
 <!-- Loop until we find a 'break' -->
 <switch expr="buf2int(nexthdr)">
 <case value="0">
 <includeblk name="HBH"/>
 </case>
 <case value="43">
 <includeblk name="RH"/>
 </case>
 <case value="44">
 <includeblk name="FH"/>
 </case>
 <case value="51">
 <includeblk name="AH"/>
 </case>
 <case value="60">
 <includeblk name="DOH"/>
 </case>
 <default>
 <loopctrl type="break"/>
 </default>
 </switch>
 </loop>
 </fields>
 <block name="HBH" longname="Hop By Hop Option">

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
635 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

 <field type="fixed" name="nexthdr" longname="Next Header"
 size="1" showtemplate="ipv6.nexthdr"/>
 <field type="fixed" name="helen"
 longname="Length (multiple of 8 bytes, not including first 8)"
 size="1" showtemplate="ipv6.hbhlen"/>
 <loop type="size" expr="(buf2int(helen) * 8) + 6">
 <!-- '6' because the first two bytes are nexthdr and helen -->
 <includeblk name="Option"/>
 </loop>
 </block>
 <block name="FH" longname="Fragment Header">
 <field type="fixed" name="nexthdr" longname="Next Header"
 size="1" showtemplate="ipv6.nexthdr"/>
 <field type="fixed" name="reserved"
 longname="Reserved (multiple of 8 bytes)"
 comment="This is in multiple of 8 bytes"
 size="1" showtemplate="FieldDec"/>
 <field type="bit" name="fragment offset" longname="Fragment Offset"
 mask="0xFFF0" size="2" showtemplate="FieldDec"/>
 <field type="bit" name="res" longname="Res"
 mask="0x0004" size="2" showtemplate="FieldHex"/>
 <field type="bit" name="m" longname="M"
 mask="0x0001" size="2" showtemplate="FieldBin"/>
 <field type="fixed" name="identification"
 longname="Identification" size="4" showtemplate="FieldDec"/>
 </block>
 <block name="AH" longname="Authentication Header">
 <field type="fixed" name="nexthdr" longname="Next Header"
 size="1" showtemplate="ipv6.nexthdr"/>
 <field type="fixed" name="payload len" longname="Payload Len"
 size="1" showtemplate="FieldDec"/>
 <field type="fixed" name="reserved" longname="Reserved"
 size="2" showtemplate="FieldDec"/>
 <field type="fixed" name="spi" longname="Security Parameters Index"
 size="4" showtemplate="FieldDec"/>
 <field type="fixed" name="snf" longname="Sequence Number Field"
 size="4" showtemplate="FieldDec"/>
 </block>
 <block name="DOH" longname="Destination Option Header">
 <field type="fixed" name="nexthdr" longname="Next Header"
 size="1" showtemplate="ipv6.nexthdr"/>
 <field type="fixed" name="helen"
 longname="Length (multiple of 8 bytes, not including first 8)"
 size="1" showtemplate="ipv6.hbhlen"/>
 <loop type="size" expr="(buf2int(helen) * 8)+6">
 <!-- '6' because the first two bytes are nexthdr and helen -->
 <includeblk name="Option"/>
 </loop>
 </block>
 <block name="RH" longname="Routing Header">
 <field type="fixed" name="nexthdr" longname="Next Header"
 size="1" showtemplate="ipv6.nexthdr"/>
 <field type="fixed" name="hlen"
 longname="Length (multiple of 8 bytes)"
 comment="This is in multiple of 8 bytes"
 size="1" showtemplate="FieldDec"/>
 <field type="fixed" name="rtype" longname="Routing Type"
 size="1" showtemplate="FieldDec"/>
 <field type="fixed" name="segment left" longname="Segment Left"
 size="1" showtemplate="FieldDec"/>

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
636 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

 <field type="variable" name="tsd" longname="Type Specific Data"
 expr="buf2int(hlen)" showtemplate="Field4BytesHex"/>
 </block>
 <block name="Option" longname="Option">
 <field type="fixed" name="opttype" longname="Option Type"
 size="1" showtemplate="ipv6.opttype">
 <field type="bit" name="act"
 longname="Action (action if Option Type is unrecognized)" mask="0xC0"
 size="1" showtemplate="ipv6.optact"/>
 <field type="bit" name="chg"
 longname="Change(whether or not option data can change while packet en-
route)"
 mask="0x20" size="1" showtemplate="ipv6.optchg"/>
 <field type="bit" name="res" longname="Option Code" mask="0x1F"
 size="1" showtemplate="FieldDec"/>
 </field>
 <switch expr="buf2int(opttype)">
 <case value="0">
 <!-- No fields are present if the option is not 'Pad1'--
>
 </case>
 <case value="5"><!-- Router Alert -->
 <field type="fixed" name="optlen" longname="Option Length"
 size="1" showtemplate="FieldDec"/>
 <field type="fixed" name="value" size="2" longname="Option Value"
 showtemplate="ipv6.optroutalert"/>
 </case>
 <default>
 <field type="fixed" name="optlen" longname="Option Length"
 size="1" showtemplate="FieldDec"/>
 <field type="variable" name="optval" longname="Option Value"
 expr="buf2int(optlen)" showtemplate="Field4BytesHex"/>
 </default>
 </switch>
 </block>
 </format>
 <encapsulation>
 <switch expr="buf2int(nexthdr)">
 <case value="4"> <nextproto proto="#ip"/> </case>
 <case value="6"> <nextproto proto="#tcp"/> </case>
 <case value="17"> <nextproto proto="#udp"/> </case>
 <!-- <case value="29"> <nextproto proto="#TP4"/> </case> -->
 <!-- <case value="45"> <nextproto proto="#IDRP"/> </case> -->
 <case value="50"> <nextproto proto="#ipsec_esp"/> </case>
 <case value="51"> <nextproto proto="#ipsec_ah"/> </case>
 <case value="58"> <nextproto proto="#icmp6"/> </case>
 <case value="89"> <nextproto proto="#ospf6"/> </case>
 <case value="103"> <nextproto proto="#pim6"/> </case>
 </switch>
 </encapsulation>
 <visualization>
 <showtemplate name="ipv6.nexthdr" showtype="dec">
 <showmap>
 <switch expr="buf2int(this)">
 <case value="0" how="Hop By Hop Option Header"/>
 <case value="43" show="Fragment Header"/>
 <case value="44" show="Authentication Header"/>
 <case value="51" show="Destination Option Header"/>
 <case value="60" show="Routing Header"/>
 <case value="50" show="Encapsulating Security Payload"/>

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
637 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

 <case value="58" show="Internet Control Message Protocol (ICMPv6)"/>
 <case value="59" show="No next Header"/>
 <default show="Upper Layer Header"/>
 </switch>
 </showmap>
 </showtemplate>
 <showtemplate name="ipv6.opttype" showtype="hex">
 <showmap>
 <switch expr="buf2int(this)">
 <case value="0" show="Pad1 Option"/>
 <case value="1" show="PadN Option"/>
 <case value="5" show="Router Alert Option"/>
 <default show="Error in IPv6 Option Type lookup"/>
 </switch>
 </showmap>
 </showtemplate>
 <showtemplate name="ipv6.optact" showtype="bin">
 <showmap>
 <switch expr="buf2int(this)">
 <case value="0" show="Skip over option"/>
 <case value="1" show="Discard packet silently"/>
 <case value="2" show="Discard packet-send ICMP"/>
 <case value="3" show="Discard packet-send ICMP if packet was unicast"/
>
 <default show="Error in IPv6 Option Action lookup"/>
 </switch>
 </showmap>
 </showtemplate>
 <showtemplate name="ipv6.optchg" showtype="bin">
 <showmap>
 <switch expr="buf2int(this)">
 <case value="0" show="Option data does not change en-route"/>
 <case value="1" show="Option data may change en-route"/>
 <default show="Error in IPv6 Option Change lookup"/>
 </switch>
 </showmap>
 </showtemplate>
 <showtemplate name="ipv6.optroutalert" showtype="dec">
 <showmap>
 <switch expr="buf2int(this)">
 <case value="0" show="Datagram contains Multicast Listener Disc msg"/>
 <case value="1" show="Datagram contains RSVP message"/>
 <case value="2" show="Datagram contains an Active Networks msg"/>
 <default show="Error in IPv6 Router Alert Option lookup"/>
 </switch>
 </showmap>
 </showtemplate>
 <!-- Length of the hop by hop option header -->
 <showtemplate name="ipv6.hbhlen" showtype="dec">
 <showdtl>
 <text expr="(buf2int(this) * 8) + 8"/>
 <text value=" (field value = "/>
 <protofield showdata="showvalue"/>
 <text value=")"/>
 </showdtl>
 </showtemplate>
 <showsumtemplate name="ipv6">
 <if expr="($prevproto == #ip) or ($prevproto == #ipv6) or
 ($prevproto == #ppp) or ($prevproto == #pppoe) or
 ($prevproto == #gre)">

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
638 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

 <if-true>
 <text value=" - "/>
 </if-true>
 <if-false>
 <section name="next"/>
 </if-false>
 </if>
 <text value="IPv6: "/>
 <protofield name="src" showdata="showvalue"/>
 <text value=" => "/>
 <protofield name="dst" showdata="showvalue"/>
 <text value=" (Len " expr="buf2int(plen) + 40"/>
 <text value=")"/>
 </showsumtemplate>
 </visualization>
</protocol> <!-- End IPv6 definition -->
<!- snip - code removed ... -->
</netpdl>
<!-- End of Standard Protocol file -->

7.2.6.14 Custom Protocol File - GTP Protocol Example

The following "GTP_example.xml" file describes the custom GTP protocol.

<?xml version="1.0" encoding="utf-8"?>
<netpdl name="GTP" description="GTP-U Example">
 <!-- Gtpu program is an extension to the udp hard shell -->
 <protocol name="gtpu" longname="GTP-U" prevproto="udp">
 <!-- fields in GTP header used for validation and calculating length -->
 <format>
 <fields>
 <field type="bit" name="flags" mask="0xE0" size="1" />
 <field type="bit" name="pt" mask="0x80" size="1" />
 <field type="bit" name="version" mask="0x07" size="1" />
 <field type="fixed" name="mtype" size="1" longname="message type"/
>
 <field type="fixed" name="length" size="2" />
 <field type="fixed" name="teid" size="4" />
 <field type="fixed" name="snum " size="2" longname="sequence
 number"/>
 <field type="fixed" name="npdunum" size="1" longname="N-PDU number"/
>
 <field type="fixed" name="next" size="1" longname="Next ext
 header type"/>
 </fields>
 </format>
 <execute-code>
 <!-- Check that UDP port is 2152 -->
 <before confirm="yes">
 <if expr="udp.dport == 2152">
 <if-true>
 </if-true>
 <if-false>
 <!-- Confirms UDP layer and exits-->
 <action type="exit" confirm="yes" advance="no" nextproto="return"/>
 </if-false>
 </if>
 </before>

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
639 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

 <!-- Done after UDP layer is confirmed-->
 <!--Check version and calculate length-->
 <after confirm="no">
 <if expr="version == 1">
 <if-true>
 <assign-variable name="$shimoffset_1" value="$NxtHdrOffset"/>
 </if-true>
 <if-false>
 <assign-variable name="$ShimR" value="0x23"/>
 <action type="exit" confirm="no" confirmcustom="no"
 nextproto="none"/>
 </if-false>
 </if>
 <if expr="flags != 0">
 <if-true>
 <assign-variable name="$NxtHdrOffset" value="$shimoffset_1+12"/>
 </if-true>
 <if-false>
 <assign-variable name="$NxtHdrOffset" value="$shimoffset_1+8"/>
 </if-false>
 </if>
 <action type="exit" confirm="no" confirmcustom="shim1" nextproto="none"/
>
 </after>
 </execute-code>
 </protocol>
</netpdl>

7.2.7 Security Engine (SEC)

SEC Device Driver for DPAA1

7.2.7.1 Introduction

Current section is focused on DPAA1-specific SEC details - Queue Interface (QI) backend and frontend drivers.
More information is provided in Section 6.5.15, including:

• JRI, the common Job Ring Interface on which QI is currently dependent
• crypto algorithms supported by each backend (RI, JRI, QI, DPSECI)
• kernel configuration - how to build backend and frontend drivers
• how to make sure the algorithms registered successfully
• how to check that crypto requests are being offloaded on SEC engine

On SoCs with DPAA v1.x, QI backend can be used to submit crypto API service requests from the frontend
drivers. The corresponding frontend compatible with QI backend is caamalg_qi, which supports symmetric
encryption and AEAD algorithms-based crypto API service requests.

The Linux driver automatically sets the enable bit for the SEC hardware's Queue Interface (QI), depending on
QI feature availability in the hardware. This enables the hardware to also operate as a DPAA component for
use by for example, USDPAA apps. This behavior does not conflict with normal in-kernel job ring operation,
other than the potential performance-observable effects of internal SEC hardware resource contention, and vice
versa.

7.2.7.2 Device Tree binding

There is no device tree node corresponding to SEC DPAA1. A platform device is created dynamically at
runtime, as a child of the crypto node.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
640 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

7.2.7.3 Module loading

Both QI backend and frontend drivers can be compiled either built-in or as modules. If compiled as modules, QI
backend driver is (part of) the caam module, while the corresponding frontend driver is the caamalg_qi module.

7.2.7.4 Verifying driver operation and correctness

Other than noting the performance advantages due to the crypto offload, one can also ensure the hardware is
doing the crypto by looking for driver messages in dmesg.

The driver emits console message at initialization time:
platform caam_qi: algorithms registered in /proc/crypto

If the message is not present in the logs, either the driver is not configured in the kernel, or no SEC compatible
device tree node is present in the device tree.

Another option is to examine the hardware statistics registers in debugfs.

7.2.7.5 Incrementing IRQs in /proc/interrupts

Given a time period when crypto requests are being made, the SEC hardware will fire completion notification
interrupts on the corresponding QMan (Queue Manager) portal IRQ:
$ cat /proc/interrupts | grep QMan
 CPU0 CPU1 CPU2 CPU3
[...]
 21: 0 0 0 22 GICv2 214 Level QMan portal 3
 22: 0 0 61 0 GICv2 216 Level QMan portal 2
 23: 0 29 0 0 GICv2 218 Level QMan portal 1
 24: 273 0 0 0 GICv2 220 Level QMan portal 0

If the number of interrupts fired increment, then the hardware is being used to do the crypto.

If the numbers do not increment, then first check the algorithm being exercised is supported by the driver.
If the algorithm is supported, there is a possibility that the driver is in polling mode (NAPI mechanism) and
the hardware statistics in debugfs (inbound / outbound bytes encrypted / protected - see below) should be
monitored.

Note: CAAM driver might be sharing the QMan portal with other drivers in the system; meaning that the interrupt
counters shown in /proc/interrupts are for all drivers sharing the portal.

7.2.7.6 Verifying the 'self test' fields say 'passed' in /proc/crypto

An entry such as the one below means the driver has successfully registered support for the algorithm with the
kernel crypto API:

name : cbc(aes)
driver : cbc-aes-caam-qi
module : kernel
priority : 2000
refcnt : 1
selftest : passed
internal : no
type : givcipher
async : yes
blocksize : 16
min keysize : 16
max keysize : 32
ivsize : 16

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
641 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

geniv : <built-in>

Note that although a test vector may not exist for a particular algorithm supported by the driver, the kernel will
emit messages saying which algorithms weren't tested, and mark them as 'passed' anyway:

[...]
alg: No test for authenc(hmac(md5),cbc(aes)) (authenc-hmac-md5-cbc-aes-caam-qi)
alg: No test for echainiv(authenc(hmac(md5),cbc(aes))) (echainiv-authenc-hmac-
md5-cbc-aes-caam-qi)
alg: No test for echainiv(authenc(hmac(sha1),cbc(aes))) (echainiv-authenc-hmac-
sha1-cbc-aes-caam-qi)
alg: No test for authenc(hmac(sha224),cbc(aes)) (authenc-hmac-sha224-cbc-aes-
caam-qi)
[...]
alg: No test for echainiv(authenc(hmac(sha384),cbc(des))) (echainiv-authenc-
hmac-sha384-cbc-des-caam-qi)
alg :No test for echainiv(authenc(hmac(sha512),cbc(des))) (echainiv-authenc-
hmac-sha512-cbc-des-caam-qi)
[...]

7.2.7.7 Supporting Documentation

For general SEC information and Job Ring Interface (JRI): Section 6.5.15.

DPAA2-specific SEC details - Data Path SEC Interface (DPSECI): Section 7.3.2.6.

7.3 DPAA2-specific Software

7.3.1 DPAA2 Software Overview

7.3.1.1 Introduction

The following section provides an overview of the software and tools for the DPAA2 networking hardware that
is provided on NXP SoCs such as LS2088A, LS1088A, LX2160A, LX2162A. These SoCs are called "DPAA2
SoCs" because they contain the hardware that is required to support the DPAA2 networking architecture. This
hardware includes Queue Manager/Buffer Manager (QBMan), the Wire Rate I/O Processor (WRIOP), and the
Management Complex (MC).

DPAA2 is an architecture in which some facilities (and therefore, the hardware that supports them) are optional.
For this reason, this document may describe features that are not available on all DPAA2 SoCs.

7.3.1.1.1 DPAA2 in the Layerscape SDK

NXP provides a Linux-based software development kit (SDK) for SoCs. The core of the SDK is an embedded-
oriented Linux distribution containing components such as:

• U-Boot bootloader
• Linux kernel with networking support
• GNU tool chain for Armv8
• Large set of standard Linux user space packages including shells, initialization scripts, and servers
• Yocto-based package management in an embedded-style source-based Linux distribution

NXP supports and builds upon standard Linux with drivers and additional packages and capabilities including
support for the DPAA2 networking hardware such as:

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
642 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

• Management complex firmware for the DPAA2 architecture. DPAA2 is a networking peripheral subsystem
architecture and will be discussed at length in later sections.

• Restool: a DPAA2 object management tool
• A DPAA2 Linux Ethernet driver
• Linux kernel support for treating DPAA2 containers as plug-and-play buses with VFIO support
• Integrated kernel-based control of DPAA2 L2 switch objects
• Kernel support for DPAA2 acceleration objects including cryptographic offload

7.3.1.2 DPAA2 Hardware

7.3.1.2.1 Introduction

This section introduces the DPAA2 hardware components and explains their relationship to the DPAA hardware
found on previous NXP SoCs. Finally, it shows the DPAA2 hardware blocks in the context of a specific SoC,
LS2088A, LS1088A.

Note that the DPAA2 hardware is configured via DPAA2 objects as will be described below. This section on
hardware provides background information to give context to the discussion of the DPAA2 objects. Most
developers will deal with the DPAA2 objects and not directly with all aspects of the DPAA2 hardware blocks.

7.3.1.2.2 DPAA2 hardware

The DPAA2 hardware provides network interfaces, hardware-based queuing, layer 2 switching, more general
switching, networking-related accelerators, and also memory dedicated to packet processing.

PEB
SEC

DCE

PMEMAC

WRIOP

Queue/Buffer Man

MACMAC

Mgmt
Complex

Figure 122. DPAA2 hardware components

The DPAA2 hardware contains the following components:

Management Complex (MC)

The DPAA2 hardware is abstracted by DPAA2 objects with the help of the Management Complex. This means
that users need not study the details of the DPAA2 hardware blocks in order to develop drivers for or use
DPAA2 capabilities. This software and solution oriented focus is one of the key differences between the first
DPAA1 and DPAA2.

Queue and Buffer Manager (QBMan)

QBMan provides hardware-based buffer and queue management.

WRIOP

WRIOP provides hardware that serves as the basis for network interfaces. It includes Ethernet MACs, packet
header key generators, parsers, table lookup units, and an interface to the buffer and queue managers.

Accelerators (optional)

Accelerators that interface to QBMan are a key part of DPAA2. They include a cryptographic and security
accelerator (SEC), a pattern matching accelerator (PME), a data compression/decompression accelerator
(DCE), and a generic DMA engine. The set of accelerators may vary from SoC to SoC and new types of
accelerators may be added.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
643 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

PEB (optional)

PEB is a memory devoted to high-performance packet processing. It can be used to store in-flight packets and
other items.

DPAA2 versus DPAA

DPAA2 is the latest generation of the Datapath Acceleration Architecture (DPAA) hardware. It is an evolution of
the DPAA present in previous SoCs.

DPAA2 changes relative to DPAA include:

• DPAA2 contains a hardware block called the Management Complex. It facilitates and simplifies hardware
resource allocation and hardware configuration.

• The hardware buffer and queue managers (QMan and BMan) are integrated into a single hardware block
called QBMan.

• DPAA2 session context can be maintained per frame, rather than per frame queue, which allows multiple
accelerator sessions to share a single frame queue pair. This single frame queue pair then reduces the
number of frame queues needed, making session establishment more efficient because frame queues do not
need to be initialized per session.

• Software portals are enhanced to make it easier and more efficient for General-purpose Processing (GPP)
core software to share them.

• WRIOP in DPAA2 replaces FMan as the hardware block that provides Ethernet interfaces. WRIOP is
designed to be more partitionable, in that it allows GPP software to more independently manage separate
network interfaces.

• WRIOP and QBMan contain new features that support autonomous L2 switching functionality:
– WRIOP: L2 address learning and forwarding unit.
– QBMan: packet replication facility.

7.3.1.2.3 LS2088A block diagram

The LS2088A is an Armv8-A 64-bit SoC. It contains eight Arm Cortex-A57 cores and numerous peripherals.
The LS2088A is an example of a DPAA2 SoC because it contains the required DPAA2 hardware blocks:
WRIOP, QBMan, and MC.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
644 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

48 KB
I-Cache

32 KB
D-Cache

48 KB
I-Cache

512 KB Coherent L2 Cache

ARM® A57 Core

64-bit DDR4

Cache Coherent Interconnect

SA
TA

 3
.0

System Control

Internal BootROM

Security Fuses

Security Monitor

Power Management

Core Complex

Basic Peripherals and Interconnect

Accelerators and Memory Control

Networking Elements

SA
TA

 3
.0

8-lane 10 GHz SerDes 8-lane 10 GHz SerDes

48 KB
I-Cache

32 KB
D-Cache

48 KB
I-Cache

512 KB Coherent L2 Cache

ARM® A57 Core

512 KB Coherent L2 Cache

32 KB
D-Cache

48 KB
I-Cache

32 KB
D-Cache

48 KB
I-Cache

1 MB Coherent L2 Cache

ARM® A72 Core ARM® A72 Core

1 MB
Platform
Cache

32-bit DDR4
Memory

Controller

Memory
Controller

64-bit DDR4
Memory

Controller

P
C

Ie

P
C

Ie

PC
Ie

 (
SR

-IO
V)

P
C

Ie

SMMU SMMU SMMU

System Interfaces
IFC Flash

QuadSPI Flash

1x SDXC / eMMC

2x DUART

4x I2C

4x FlexTimer

2x USB 3.0 + PHY

 SPI

Service Processor

DCE Security
Engine

4 MB PEB
memory

WRIOP

Queue /
Buffer

Manager

PME

Advanced
IO

Processor
(AIOP)

Management

Complex

DPAA2 Hardware

Layer 2
Switch Assist

8x 1/10G + 8x 1G

9x WDOG

4x GPIO

QDMA

Figure 123. LS2088A SoC

The LS2088A contains standard-Arm components in addition to the cores, such as:

• Arm generic timer

• GIC-500 interrupt controller

• MMU-500 System Memory Management Unit (I/O MMU)

It also contains conventional hardware blocks including:

• DDR controllers

• Flash controller

• SDxC/eMMC controller

• USB controller

• PCIe controller

• SATA controller

• Other blocks visible in the diagram.

Finally, the following DPAA2 components are highlighted in the figure:

• QMan/BMan: hardware queue and buffer management
• WRIOP: Ethernet interfaces
• Management complex: DPAA2 objects and their management
• Accelerators: SEC, PME, and DCE

7.3.1.3 DPAA2 Linux Software

7.3.1.3.1 Introduction

This section provides a high-level summary of the most important DPAA2 software associated with the Linux
operating system.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
645 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

7.3.1.3.2 Linux and DPAA2

This section summarizes major Linux DPAA2 software. See Linux DPAA2 software which shows the software in
relation to some standard Linux software.

Switch Integration

user

kernel
Net Stack Crypto API

Eth Driver SEC Driver

DPIO Services

hardware DPAA2 Objects

restool
User Space

Drivers
Virtual

Machine

VFIO
Key

hardware

DPAA2 SW

std SW

PEB
SEC

DCE

PMEMAC

WRIOP

Queue/Buffer Man

MACMAC

Mgmt
Complex

MC firmware

MC Bus

Figure 124. Linux DPAA2 software

Ethernet Driver

DPAA2 software includes a conventional Ethernet driver for use by the Linux network stack. This driver is
controlled via standard Linux means such as the "ifconfig" or "ip" commands and also "ethtool". It operates in
a manner that will be familiar to Linux users. Drivers in DPAA2 manage DPAA2 "objects" as will be described
below. These objects are best regarded as hardware. They are formed from hardware resources.

DPIO Services

DPAA2 drivers such as the Ethernet driver in the Linux kernel use the DPIO services Linux component to do I/
O. The DPIO services layer manages the kernel's DPIO objects. DPIO objects contain DPAA2 software portals
(which are hardware components). The software portals can be shared by multiple higher-level drivers.

DPAA2 Objects and Management Complex (MC) Firmware

The DPAA2 hardware is presented to software in terms of DPAA2 objects that are realized by means of
firmware running on the Management Complex. This will be explained in depth in Section 7.3.1.4 and also
immediately below.

MC Bus and Restool

The DPAA2 objects appear as devices on a special software-defined bus called the MC bus. Linux has a driver
for this bus (and interactions with VFIO). This software is analogous to PCIe bus software. Like PCIe, the MC
bus supports plug and play.

The "restool" utility is a Linux user space command that allows DPAA2 objects to be managed: created,
destroyed, queried for status, and so on.

SEC Driver

The SEC driver provides the standard Linux kernel cryptographic API but implemented by the SEC hardware by
means of a special DPAA2 object. Other accelerators can be handled in the same way, but Linux tends not to
provide standard (hardware-independent) kernel-level APIs for them so they are not discussed here.

Switch Integration

Finally, DPAA2 objects exist that perform L2 and more general network switching. These hardware elements
can be configured using standard Linux mechanisms such as "bridge". As will be discussed later, there are two

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
646 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

types of switch-related DPAA2 objects: DPSW and DPDMUX. There is kernel-based management support for
both.

7.3.1.3.3 DPAA2, Management Complex, and drivers

DPAA2 is the architecture that describes network interfaces and other networking services for an SoC with
DPAA2 hardware. It is discussed in depth in Section 7.3.1.4. For now, think of DPAA2 as hardware for
networking that is presented in terms of DPAA2 objects. The objects provide specific high-level features or
services such as network interfaces or L2 switches.

The objects are managed by means of firmware running on a hardware block called the Management Complex.
Software on general-purpose cores must load firmware onto the Management Complex before networking can
be done using DPAA2 hardware.

Normally, the MC firmware is loaded early in the boot process so that bootloaders can make use of DPAA2
objects and perform networking operations such as network-based booting.

Since the objects represent hardware, they require driver software on general-purpose cores. NXP provides
drivers for U-Boot and standard Linux and therefore, both support Ethernet networking out of the box. For
example, one can use Linux networking without delving into the details of DPAA2 and its objects just as one can
use Linux networking via a PCIe Ethernet card (whose manufacturer provides a driver) without delving into the
design of the card.

DPAA2 and its objects are fully documented so it is possible to write drivers for other operating systems,
applications, or bootloaders, for example, DPDK, UEFI firmware, and so on. Many of these drivers exist or are
roadmap items.

7.3.1.3.4 DPAA2 and plug-and-play

There is another analogy between DPAA2 objects and PCIe devices. PCIe devices appear to operating systems
as plug-and-play devices on a bus. The operating system can scan the bus to discover and identify the devices
on it. It can then use the device identities to associate drivers with devices and bring them into service.

DPAA2 objects work in a similar way. They are placed into datapath containers (DPRC) that can be scanned in
an analogous manner. Then objects are associated with drivers and placed into service.

The Linux kernel is provided with a container with its DPAA2 objects. Containers can also be provided to other
software including virtual machines and even arbitrary user space processes. This is how the hardware that
objects encapsulate can be directly assigned to virtual machines and user space processes. This allows them
highly efficient access to hardware but in a secure fashion due to the involvement of the SoC IO-MMU.

This, also, is analogous to PCIe devices in standard Linux; DPAA2 objects can be directly assigned to virtual
machines and user space processes using a standard Linux architecture called VFIO which allows devices
to be mapped into the address space of user space processes and also enables IO-MMU configuration to
constrain the memory to which devices can read and write data via their DMA engines.

Like PCIe devices, DPAA2 objects are also mapped using VFIO. NXP supplies the extensions to VFIO in Linux
that makes this possible.

7.3.1.3.5 Datapath layout files and restool

As mentioned elsewhere, DPAA2 containers are like PCIe buses in that they can be scanned for objects/
devices. But containers and PCIe buses are populated very differently. PCIe buses are populated physically, for
example, by plugging a card into a slot.

Objects are encapsulations of DPAA2 hardware resources that must be created via management complex
firmware and then assigned to a container. There are several ways to do this:

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
647 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

1. the datapath layout file
2. restool
3. Management Complex commands

7.3.1.3.5.1 Datapath layout (DPL) file

Containers and objects can be defined statically in a file called a datapath layout file (DPL) that is passed to
the management complex when it is initially booted. The DPL can specify containers, objects, and connections
between objects. When an OS such as Linux boots, it will discover the populated containers.

7.3.1.3.5.2 restool

The utility called “restool” is a NXP-created Linux user space command that allows inspection and dynamic
management of containers and objects. With it, one can

• Display the current set of containers and objects
• Create and destroy containers
• Create and destroy objects
• Assign objects to containers
• Create links among objects

One can use a sequence of restool command invocations to create the same container and object state that a
DPL might specify. The difference is that restool is dynamic.

7.3.1.3.5.3 Management Complex commands

Finally, objects and containers can be manipulated by software running on general-purpose cores by sending
commands to the Management Complex. This is, in fact, what restool does. Command-line arguments to restool
define an operation. The restool utility simply forms a command and passes it to the Management Complex.
Other drives can also do this.

7.3.1.4 DPAA2 Networking Subsystem Deeper Dive

This section provides additional detail on the DPAA2 architecture and the DPAA2 object services paradigm.

This paradigm simplifies using the DPAA2 hardware IP blocks through abstraction and encapsulation. DPAA2
objects are objects in the sense that they:

• Encapsulate specific abstract functionality, for example, L2 switching.
• Are composed of allocated hardware subcomponents of the DPAA2 hardware peripherals, and then mostly

abstract their functionality.
• Present functionality in terms of specific attributes and methods, meaning operations on the objects.

Note: DPAA2 objects are not associated with object-oriented programming languages, instead they are
collections of hardware resources allocated for a specific purpose. General-purpose processing (GPP) core
software can configure objects by sending them commands expressed in terms of hardware-level descriptors.
GPP software can also include C language functions that prepare and interpret the descriptors. No use of
object-oriented programming languages is required. For the most part, Linux drivers are written in C as usual

This section:

• Presents the DPAA2 object model at a concept level and describes how objects are created, destroyed,
conveyed, configured, and used

• Lists the objects types and their purposes
• Outlines how the Management Complex implements and provides the objects

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
648 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

• Explains what software components use the various DPAA2 object types, and how they use them. The users
are often application software running on general-purpose processors (cores).

Driver-level software on GPPs works with the abstracted objects, rather than directly with the hardware. For
example, the GPP software deals with L2 switch and network interface objects rather than WRIOPs.

DPAA2 objects express and abstract the DPAA2 hardware into software-managed objects that are:

• Application-oriented in terminology and use, rather than hardware-oriented
• Based on concepts that are generally familiar to programmers and system architects
• Simpler than direct management of the hardware
• Indicate the architectural intent of the hardware blocks

DPAA2 object services are provided by software that runs as firmware on a DPAA2 hardware block called the
Management Complex. Users do not need to program the Management Complex in order to use the Network
Object Services; they simply use the NXP-supplied firmware. This firmware runs on the Management Complex
instead of a general-purpose core in order to simplify the integration of the NXP software with customer
software. DPAA2 object concept below shows at a concept level how the Management Complex provides
objects that perform specific services; the objects have attributes and interfaces that appear as hardware.

Management
Complex

Hardware and
Firmware

Objects
 • Attributes
 • Methods (APIs)
 • Interfaces

Provides

Figure 125. DPAA2 object concept

7.3.1.4.1 DPAA2 hardware abstraction example

This section introduces the DPAA2 objects and the abstractions they provide by means of an example. Example
scenario shows a system constructed using the DPAA2 hardware on a DPAA2 SoC such as the LS2088A. The
goal is to run two KVM virtual machines (VMs) on the SoC. The two virtual machines each have a hardware
network interface that they can directly access (that is, a dedicated interface) connected to a DPAA2 L2 switch.
These VMs can communicate with each other via the L2 switch, and they can communicate externally via the
MAC on the L2 switch. So, the L2 switch has three ports, one for an off-SoC connection (connected to a MAC),
and two for the VMs.

In addition, there are two network interfaces with MAC addresses for off-SoC communication that are used
by the host Linux. The host Linux instance and the virtual machines all run on the Cortex-A72 cores on the
LS2088A. In this example, each network interface is associated with an Ethernet driver working with Linux.

Cortex-A57 Cores

Net
Interface

MAC MAC

Net
Interface

MAC

Net
Interface

KVM VM

L2 Switch

Net
Interface

KVM VMHost Linux

SoC Boundary

Figure 126. Example scenario

DPAA2 hardware shows the DPAA2 hardware blocks. This figure bears little resemblance to Example scenario.
It provides little guidance to how the example scenario could be realized because the hardware blocks are
conceptually distant from a natural statement of what is desired in the example. The DPAA2 objects are much
closer, as will be seen below.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
649 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

GPP

SEC

DCE

PME

WRIOP
Eth

QBMan
queues
buffers

Infrastructure

Etc

Programmable Devices
use DPAA2 peripherals

Bridges

DPAA2 Peripherals

Management Complex

GPP

GPP

GPP

General
Purpose
Processor
Cores

Accelerators

Figure 127. DPAA2 hardware

Example scenario based on DPAA2 objects shows how the example can be realized using the DPAA2 object
abstractions of the DPAA2 hardware; this figure is much closer to the goal expressed in Example scenario and
its components are described below:

• The host Linux is shown in more detail on the left. The network stack and two instances of the Ethernet
drivers appear in the figure above the hardware boundary. Also, the figure shows the stacks and drivers for
the two virtual machines.

• The DPAA2 objects appear below the hardware boundary
• The DPNI (Datapath Network Interface) objects correspond directly to the network interfaces in Example

scenario. The DPSW (Datapath Switch) object corresponds to the L2 switch.
• The DPMAC (Datapath MAC) objects represent Ethernet MACs within WRIOP. These are hardware

components that connect to PHY hardware, and provide Ethernet physical layer termination, that is, Ethernet
connections to the SoC.

• The DPIO (Datapath I/O) objects include QBMan software portals, and they allow GPP core software to read
and write packets from the DPNIs. DPIOs are described in more detail later in this document.

See Section 7.3.1.4.1.6 for a summary of the DPAA2 objects.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
650 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

OS Network Stack

Eth Driver 2

Hardware

Kernel

Eth Driver 1

Switch
Mgmt

DPIO Services

OS Net Stack

Eth Driver 3

DPIO Services

DPIO Services

OS Net Stack

Eth Driver 4

Boundary

VM 2

User
space

Data flow

Configuration
ownership

Data availability
notification

VM 1

DPIODPIO

DPMAC

DPNI

DPIO

DPSW

DPNI
DPNI

DPMAC DPMAC

DPNI

DPIO

Figure 128. Example scenario based on DPAA2 objects

7.3.1.4.1.1 Objects are partitioned among software owners

Software management of DPAA2 objects is distributed. Software components that use a particular set of objects
independently manage the objects in their set. The green boxes on the object icons in Example scenario
based on DPAA2 objects represent management interfaces, and the green dashed lines show what software
component owns the management of each object. For example, the DPSW is shown as managed by switch
management software running on the general-purpose processing cores.

7.3.1.4.1.2 Objects can be directly assigned

The virtual machines directly access and manage the objects their software uses, and they do this with minimal
host kernel involvement; this enhances efficiency while preserving access isolation. In the figure, the virtual
machines have directly assigned hardware-based network interfaces.

7.3.1.4.1.3 DPNI objects provide network interfaces

DPNI objects interact with drivers to allow software to send and receive network frames, usually Ethernet
frames. DPNIs are central to DPAA2’s concept of network interfaces, but they do not act alone. In general,
network drivers manage several objects as part of managing network interfaces. DPNI ingress shows a high-
level outline of DPNI ingress frame processing, and the following steps give insight into how objects work
together.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
651 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Queues for different traffic classes
with the same destination

Network frames
from somewhere,
DPMAC or other

object
Parse

Headers

Select
Traffic
Class

Select FQ
for

distribution

DPNI Ingress

Sets of queues for different destinations Data availability
notification

Read

DPIO

DPIO

DPIO

Figure 129. DPNI ingress

1. A frame arrives at DPNI from another object, a MAC (DPMAC), a switch (DPSW) or other object.
2. DPNI parses the packet to locate the header from which lookup keys can be generated.
3. A lookup selects a traffic class (priority) for the frame; this priority causes a specific set of queues

(implemented as QMan frame queues) to be selected.
4. DPNI must select a destination for the frame, using either another lookup or an RSS-style hashing

operation; this lookup causes a specific queue within the previously selected set to be selected.
5. The frame is enqueued onto the queue, and the queue represents the destination indirectly. At this point,

DPIO objects enter the process.
6. Every queue is configured to deliver data availability notifications to a specific DPIO, and these notifications

tell the driver software using the DPIO that one or more frames are available to read from a specific queue.
7. Driver software responds by using a DPIO (actually any of its DPIOs) to read a burst of one or more frames

from the queue.

Egress is simpler. The driver software uses a DPIO to enqueue a frame to a specific egress queue within DPNI;
the queue is selected based on the desired traffic class.

7.3.1.4.1.4 Multiple DPIOs provide parallelism

It is common to assign queues in network interfaces to specific cores, and then to distribute the traffic between
them using techniques like RSS or explicit flow steering. DPAA2 supports this process by using multiple DPIOs.
See DPIO parallelism for an example involving a single network interface and two cores.

Core 0 Core 1

OS Network Stack

Eth Driver

DPIO Services

Hardware

Software

Data availability
notification

Configuration
ownership

Data flow

DPNI

DPMAC

DPIO DPIO

Figure 130. DPIO parallelism

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
652 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

The DPNI is configured so that each of its egress queues sends its data availability notifications to one DPIO
or another in a balanced way. A core receives an interrupt from its DPIO telling it to read a data availability
notification, and then it uses its DPIO to read a burst of one or more frames. In Linux terms, it starts a NAPI
burst.

7.3.1.4.1.5 DPIO services

Notice in Example scenario based on DPAA2 objects that the host operating system on the left has two network
interfaces. It has two DPIOs also, but either DPIO can be used for I/O to either of the interfaces. DPIOs are
designed to be shared across network interfaces that belong to the same software component, such as the
Linux kernel. For this reason, the Linux kernel contains a software layer called DPIO Services that facilitates
driver instances performing I/O from a resource that might be shared across a network interface, and also
might be shared across cores or software threads. Giving more DPIOs to the DPIO Services layer can increase
performance, and using the same DPIO on a core for more than one network interface need not decrease
performance because each core is physically able to do only one thing at a time.

7.3.1.4.1.6 Object summary

DPNI

A DPNI object is the key to network interfaces. On ingress, it receives frames from a DPMAC or another object
such as a DPSW, parses headers, determines the frame’s traffic class, and enqueues the frame onto a frame
queue selected based on the traffic class and other header values. This supports both hash-based distribution
of frames to multiple cores, and also direct flow steering of frames to specific cores.

DPNI can generate a per-queue data availability notification when a frame is enqueued. On egress, the DPNI
dequeues frames from frame queues and transmits them to an external port using a DPMAC, or to another
DPAA2 object such as a DPSW.

DPMAC

The DPMAC object represents an Ethernet MAC, a hardware device that connects to a PHY and allows
physical transmission and reception of Ethernet frames.

DPSW

The DPSW object provides the functionality of a general layer 2 switch. It receives packets on one port and
sends them on another. It can also send packets out on multiple ports for the purposes of broadcast, multi-cast,
or mirroring.

DPDMUX

The DPDMUX is another type of switch. It differs from a DPSW in several ways. A DPDMUX may have only a
single uplink port. Also, it can be programmed to direct packets based on header values above layer 2.

DPCON

The DPCON object allows multiple DPNIs to be aggregated into a single device that appears to a GPP core as
single interface that carries frames from multiple DPNIs; it combines two or more network interfaces into one. It
provides a hardware-based scheduling off load because the hardware selects the order based on the priority in
which frames from the multiple DPNIs are provided to software on GPP cores.

DPCON is also useful for software that polls for input frames; it allows a single interface to be polled instead of
multiple interfaces.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
653 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

DPCON objects are also used by Linux Ethernet drivers for priority-based frame delivery.

DPIO

General-purpose processing core software uses a DPIO object to perform hardware queuing operations, such
as enqueue and dequeue, and hardware buffer management operations, such as acquire and release. It also
allows data availability notifications to be received. DPIOs can generate interrupts. The DPIO object is unusual
in that GPP core software is expected to directly access portions of the DPIO’s hardware (QBMan software
portals) for runtime operations, in addition to supporting configuration operations from the management
complex.

Note that DPIO are used only by software on the general-purpose processing cores.

DPBP

The Datapath Buffer Pool object represents a QBMan buffer pool. It is used mainly as a resource by network
drivers, but it is an active entity because it can send buffer pool depletion notifications to GPP core software.

DPRC

The DPRC object allows the Management Complex to track sets of objects in use by the same software
component. The objects in the set are said to be in the same container. It also facilitates the assignment of sets
of objects to specific software components, such as a virtual machine or a user space application using user
space drivers. The software component can query containers in order to discover objects at runtime, and this
enables plug-and-play drivers that interface to objects.

Some objects include DMA-capable hardware. All objects in the same DPRC share a common ICID, and a
common set of IO-MMU mappings. A number of key features of DPRCs include:

• Direct access. All the objects and resources in a container are private to the container, and software
components get direct access to the registers (as abstracted by the Management Complex) of the hardware
objects.

• Dynamic discovery. A software context that is given a DPRC can dynamically discover the objects and
resources placed in the container using MC commands.

• Hot plug/unplug. Objects can be dynamically plugged and unplugged into DPRCs.
• Security. A software context can only see the objects in its DPRC, and cannot affect other containers or the

proper operation of other software contexts. DMA transactions from MC objects are isolated using the system
IOM-MU.

DPMCP

The DPMCP object represents a Management Complex command portal and is used by drivers to send
commands to manage objects.

Objects for accelerators

There are also objects associated with accelerators such as SEC, PME, and DCE. These objects provide
software with interfaces to the accelerator hardware. For this reason, the accelerator interface objects end in "I".

• DPSECI - SEC (security/cryptographic coprocessor) interface.

• DPDCEI - DCE (data compression engine) interface.

• DPDMAI - DMA engine interface.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
654 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Software uses queues associated with an object to send a buffer to an accelerator for processing and to receive
the result.

New types of objects

NXP will create new types of objects over time to address new needs and use cases as they arise.

7.3.1.4.2 Management Complex: How DPAA2 objects are created and managed

This section outlines how the Management Complex creates and manages DPAA2 objects.

The best way to think of DPAA2 hardware, in particular WRIOP and QBMan, is that it provides many low-level
resources ranging from Ethernet MACs to lookup tables to frame queues and so on. Software's mission is to
assemble the right set of these low-level resources, and configure them collectively to achieve a goal.

Mgmt
ComplexDPAA2 HW

QBMan

WRIOP

SEC

PME

DCE

HW to
Objects

DPMAC

DPMAC
DPSW

DPNIDPMAC

Configuration

I/O

GPP

GPP

DPIO

DPIO

DPNI

DPNI

Figure 131. Management Complex creates objects from hardware subcomponents

Think of the low-level resources as “atom resources” because they are always allocated as a unit. DPAA2
objects are then “composite resources,” or collections of atom resources that are then configured to achieve a
common goal, like being an L2 switch as shown in Realizing an L2 switch.

WRIOP

IFP port

TLUMAC Addr Learn

L2 Sw Assist

L2 Switch example

QMan BMan

Bpool Cong Note
WQFQ

shaperchannel

SW portal

Mgmt Complex composes
complex “atom” resources
into easier objects that
abstract underlying HW.L2 Switch

Figure 132. Realizing an L2 switch

The creation method for a DPAA2 object involves allocating the necessary atom resources and configuring
them enough to place the object in an initial idle state. Object methods and other interfaces then allow it to be
further configured and used. For example, forming an L2 switch from DPAA2 atom resources is quite complex.
The NXP firmware running on the Management Complex implements the methods necessary, and hides this
complexity from GPP developers.

Continuing the example, an L2 switch object can also be shut down and disassembled by its methods. Its atom-
resources are then placed back into the pools of atom resources that the Management Complex firmware
manages.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
655 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

7.3.1.4.2.1 Hardware directly visible to software

Clearly, DPAA2 provides abstractions. The objects are best thought of as being hardware, and most actually are
collections or encapsulations of hardware resources that are allocated and configured to achieve a higher level
and more abstract purpose than would be clear from a direct view of the hardware resources. An example of an
abstract purpose is “be an L2 switch” (DPSW).

It can be helpful to focus on exactly what is visible to driver-level software running on the general-purpose
cores, especially since what is visible is a mixture of direct access to hardware and indirect access to hardware
via abstractions. This discussion will be biased toward the view of objects from drivers running on general-
purpose processing cores (such as in U-Boot and Linux).

Also the discussion will avoid details of individual objects since this is an overview with the purpose of clarifying
objects in general.

DPAA2 visibility boundary describes in one diagram what is directly visible to the driver layer software.

NXP or customer’s application or stack

NXP or customer’s drivers

Obj-specific desc
intint

QBMan

WRIOP

QBMan
SW

Portals

Init/configure

Legend

int

GPP software
above DPAA2

DPAA2 GPP
software (thin)

DPAA2 hardware
visible to GPP

DPAA2 hardware not
directly visible to GPP

DPAA2 software not
directly visible to GPP

Im
plem

entation

DPAA2 visibility

boundary

GPP
(Customer SW)

Enqueue
dequeue
Acquire
release

int
Accelerators

C
C

S
R

Management
Complex

Firmware

MC cmd portalsQBMan SW portals

DPIO runtime Object config

Figure 133. DPAA2 visibility boundary

There is quite a lot in the figure above, so it is best to break it down. What driver level software can see and do
is dictated by its function.

This begins with the Management Complex (MC) itself. The discussion below will focus on the services that the
MC provides to other software in the system. There will be no discussion of MC firmware's internal design.

See Management complex visibility in DPAA2. The first step is that general-purpose processing core software
(usually a bootloader) must load the opaque firmware image onto the Management Complex and then start
it running. This involves direct access to portions of the Management Complex hardware: registers defining
the location of the Management Complex’s portion of DDR, image location, address translation, and run state
control.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
656 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Cmd Portals
Firmware
load/run Status

Interrupts (global errors,
status indications)

Cmd Portals

Management Complex Hardware

Figure 134. Management Complex visibility in DPAA2

The driver software also requires visibility to global status, particularly to status for global errors. Changes in the
state of this status can be signaled by interrupts to the general-purpose processing cores so the Management
Complex can produce these interrupts.

Finally, the Management Complex exists to serve its masters, the general-purpose processor core software that
“owns” objects, that is has been allocated access rights to them via container ownership and hierarchy. The
service is provided by responding to commands so driver software needs a way to deliver commands to the
Management Complex. In addition, this process must be secure in that the Management Complex must know,
in a way that cannot be spoofed, an ID of the software sending the command. This is to allow the Management
Complex to enforce object access rights.

Driver software delivers commands to the Management Complex via hardware called Management Complex
command portals. SoC hardware provides significant numbers (at least 10s) of these portals because:

• They can be directly assigned to multiple different drivers, all of which independently use the Management
Complex’s services. If they each have their own command portal, they do not have to coordinate with each
other.

• Each independent driver instance has its own ID (ICID) that is securely associated with the command portal to
prevent spoofing. This prevents a driver from being able to access for configuration an object that it does not
"own".

To send a command to the Management Complex, driver software creates a descriptor and enqueues a pointer
to it to the command portal.

Next consider objects. See DPAA2 objects.

Interrupts (global errors,
status indications)Cmds

Objects (general)

Figure 135. DPAA2 objects

Objects are created either via the DPL file or driver software sending a command to the Management Complex
instructing it to create an object (as in restool). The Management Complex supplies a globally unique ID for the
new object.

Object command interfaces are abstractions. There is no hardware that directly represents object command
portals. Objects are usually hardware, but in most cases that hardware does not directly expose a hardware-
level programming model to driver software. Instead, driver software configures objects via an indirect
mechanism; it sends a command to the Management Complex. The command is a descriptor that includes the
ID of the object as well as the definition of the operation to be performed.

The Management Complex automatically gets the ID of the requestor when it reads the command. The
command portal securely adds it. The Management Complex then checks that the requestor is authorized to
configure the object and, if so, performs the configuration on behalf of the requestor.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
657 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

So, object configuration is a visible part of DPAA2, but the configuration of the individual hardware
subcomponents that make up an object is not.

The fundamental programming model for object configuration is the commands that can be sent to the
Management Complex to configure the object. Each object type has a different purpose so each object type’s
configuration programming model is defined by the descriptor set that describes the commands to configure the
particular type of object.

NXP also provides C callable APIs that basically allocate and populate descriptors and pass them as
commands to the Management Complex. The APIs bear a close relationship to the more fundamental
descriptors.

Many object types have nothing but a configuration space, but this is not always true. Some objects also
provide I/O interfaces. The DPIO object is a prime example. See DPIO object and I/O interfaces.

Interrupts (global
errors, status
indications)

Interrupts data
availability

Cmds SW Portal

DPIO Object

Figure 136. DPIO object and I/O interfaces

As has been stated before, DPAA2 objects are usually opaque bundles of hardware subresources allocated
and configured to achieve a more abstract purpose. A DPIO object includes a hardware subresource called a
QBMan software portal but this hardware is not opaque to the driver software running on the general-purpose
processing cores. The reason is performance. Software portals are the hardware mechanism for actually
doing I/O with DPAA2 peripherals so driver software must directly access them. There are also data availability
interrupts associated with DPIOs. These indicate availability of data to read using the software portals.

Note: Software portals actually support more than I/O (enqueue onto queues and dequeue from them). They
also support commands. The simplest examples are buffer acquires and releases. Without going into full detail,
software portals actually support commands that require privilege (example: initialize a frame queue) and
commands that do not (example: acquire a buffer). Driver software on general-purpose processing cores uses
only the unprivileged commands. The privileged commands are not part of the visible architecture. They are
used only by Management Complex firmware.

In summary, the visible architecture includes both hardware and abstractions as follows:

• Management Complex hardware associated with loading and running images
• Management Complex hardware associated with accessing global status
• Management Complex global interrupt
• Management Complex hardware command portals
• Objects themselves (abstraction):

– Object configuration interface and command set as defined by descriptors (abstraction)
– Object error interrupts
– Some objects (like DPIO) also have additional interfaces that are hardware directly accessed by driver

software. DPIO’s QBMan software portals are an example. They can produce interrupts.

7.3.1.4.2.2 Object creation, the datapath layout file, and restool

DPAA2 objects can be created in multiple ways. First, they can be specified in a Datapath Layout (DPL) file that
the Management Complex reads and applies before Linux boots. This file contains the specific list of objects
that are to be automatically created as the system initializes.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
658 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

DPAA2 objects also can be created and destroyed dynamically by sending commands to the Management
Complex through its command portals via a kernel driver. For Linux, a user space command-line tool called
“restool” uses this interface to allow interactive and dynamic creation of objects. It also allows destruction and
some additional configurations to be done.

Restool also shows information about objects and what they are connected to.

7.3.1.4.2.3 DPRC objects, plug and play, and the fsl-mc Linux “bus”

As mentioned previously, it is common for a GPP software component to manage multiple objects. The DPIO
parallelism diagram shows a simple example of the Linux kernel managing a set of objects to provide a pair of
network interfaces. The DPRC (Datapath Resource Container) is a special object that serves to organize other
objects, and also the hardware subcomponents from which objects can be dynamically created; the hardware
subcomponents include frame queues, channels, buffer pools, and so on. Containers can be created and filled
with objects and resources and then passed to the software component, such as a virtual machine, that will use
them.

The software that was assigned a DPRC can enumerate the objects inside it; this is a form of dynamic hardware
discovery that relates to plug-and-play. For example, an operating system can scan a DPRC and associate all
DPNI objects found within with an Ethernet driver that will use them to form network interfaces. The Ethernet
driver then uses a dynamic allocator within the kernel to acquire other objects such as DPBPs that it needs to
operate.

The device discovery analogy is strong enough that Linux exposes DPRCs assigned to it as a bus in sysfs--
much like physical buses like PCI. The same sysfs mechanism that allows a physical PCI device to be assigned
(bound) to virtual machines are also used to assign containers to virtual machines. Objects can even be
dynamically added and removed from DPRCs. This is analogous to hot plug and unplug on a bus.

Many DPAA2 objects are DMA-capable so that they can autonomously read and write memory. SoCs like
the LS2088A contain an IO-MMU, so objects must express an identifier (that they cannot control) when they
perform DMA operations. This identifier is called an ICID in DPAA2, and it serves as a key for the IO-MMU to
associate I/O virtual addresses with I/O physical addresses. In DPAA2, ICIDs are attributes of DPRCs, and all
objects in a DPRC express the same ICID value.

A GPP software context (a virtual machine or application) will typically be assigned a single DPRC that contains
all the fsl-mc resources that the software context can access or use. As mentioned elsewhere, there are two
general types of resources that can be in a container:

• Resources: Resources are primitive resources that cannot be further decomposed, and are uninitialized
and unpurposed. Some examples are MC portals, QBMan portals, frame queues, buffer pools, and so on.
Generally primitives are “fungible,” in that there is nothing distinctive among the same kind of primitives.
However, some primitives may be non-fungible, such as an external port or MAC.

• Objects: Objects are created and configured with a purpose, typically constructed of multiple resources.
Some examples of objects are network interfaces, an L2 switch, or a crypto instance. A DPRC is itself a fsl-mc
object.

Note: See documentation of the Linux restool facility for more information related to this topic.

Management Complex (MC) initialization and boot

The MC is normally enabled and initialized by system boot firmware such as U-Boot. The boot firmware is
responsible for reserving a region of memory (DDR) for the fsl-mc, and then loading the MC firmware into
memory, loading a datapath layout file (see below for DPL overview info), and writing a bit to enable/start the
MC. See Management Complex initialization and boot.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
659 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

U-Boot

GPP
Core

Interconnect

PCIe USB MC

GPP
Core

MC
Microcode

DPL

MC’s
Memory

Memory/DDR

Figure 137. Management Complex initialization and boot

Management Complex datapath layout file (DPL)

As mentioned above, a datapath layout file (DPL) must be supplied to the Management Complex when it is
booted. The DPL contains the definitions of initial objects and containers/DPRCs to create.

A DPL is defined in a text file in device tree syntax (DTS) format and then compiled into a standardized DTB
binary format (used by ePAPR compliant device trees).

See the DPAA2 User Manual for more information and examples on the datapath layout file.

Bootloader use of the MC

In typical usage, the bootloader loads the MC firmware image and starts the MC running. At this time, it supplies
a data path control (DPC) file that supplies the MC image with basic configuration information that allows it to
operate.

The bootloader can now use the services of the MC in order to access network devices. It is a good approach
to have the bootloader dynamically create the objects it needs and destroy them (releasing resources) before
starting the operating system. This way, the operating system is not forced to operate with the constraints of
objects and DPRCs established by the bootloader. The OS can see a "green field".

Optionally, the bootloader can apply the data path layout (DPL) file mentioned above just before starting
this OS. This approach allows the DPL to be written only to serve the operating system's needs and not the
bootloader's, which tend to be much simpler.

DPRCs are hierarchical

The MC manages DPRCs in a hierarchical relationship. There is a single root DPRC at the root of the hierarchy.
That DPRC can have child DPRCs, children can have grandchildren, and so on. The root DPRC belongs to
the root software context of the system, usually an OS or hypervisor and it should never be unbound from the
corresponding driver. The root DPRC can further allocate its resources to its child DPRCs and assign them to
other entities such as user space applications or virtual machines.

In this example there are 3 DPRCs/containers managed by the Management Complex: a root container
“root” with 2 children “foo” and “bar”. The DPRCs all contain 3 objects, a DPNI, DPBP, and DPIO. There are 3
software contexts: the host Linux, a user space application, and Linux in a KVM virtual machine. Each software
context is assigned a DPRC that it can use and manage; see DPRC hierarchy for a figure that illustrates this
example.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
660 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

User
space
app

KVM VM

Linux

Linux

GPP
core

GPP
core

GPP
core

interconnect

PCI USB FSL-MC

root

dpni dpio

dpbp

foo

dpni

dpbp

dpio dpni dpio

bar

dpbp

dprcdprc

dprc

Figure 138. DPRC hierarchy

The container hierarchy allows the parent to manage the resources of the children. If the OS in the KVM VM
crashes, the parent (Linux) can reset and clean up the VM's DPRC. If the user space application terminates, the
parent (Linux) has the option of destroying the container.

7.3.1.4.3 Objects and topology

As mentioned elsewhere, objects have a topological relationship with each other. See Object topology example
for an example.

OS Network Stack

Eth Driver Eth Driver

User space

Kernel

Hardware
Boundary

DPAA2 objects

DPIO Services

Switch
MgmtDPIO Services

User Space App

User space Eth Driver

DPIO

DPNIDPNIDPNI

DPSW

DPMACDPMAC

DPIO

Figure 139. Object topology example

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
661 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

• There are three network interfaces managed by the DPAA2 Linux Ethernet driver. Each of the network
interfaces uses a DPNI object.

• All of the Ethernet drivers happen to have a distribution width of one (an example), so they cannot load
balance to multiple cores or threads; this was done to simplify the diagram and discussion. If a network
interface has a distribution width greater than one, then many times it is connected to more than one DPIO but
this is not required.

• Two of the network interfaces are connected to a switch; two DPNIs are connected to a DPSW. This allows
both network interfaces to communicate outside SoC using the DPMAC that is also connected to the DPSW,
and they can also communicate with each other using the DPSW.

• One of the network interfaces is directly assigned to a user space process, and has a user space Ethernet
driver. This network interface could also be directly assigned to a KVM virtual machine under Linux.

• Two of the DPNIs have Linux network stack drivers; they interface to the Linux network stack. One of them
has its own DPMAC, and a traditional type of controller represented by its DPNI being directly connected to a
DPMAC.

• The two DPNIs connected to the Linux network stack share a single DPIO; this is possible when they can
cooperatively use a layer of GPP software that provides DPIO services. The hardware that makes up a
DPIO is a QBMan software portal and, optionally, a QMan channel for data availability notifications. QBMan
software portals are a relatively scarce hardware resource, so they are designed to be sharable, in particular
for NAPI-compliant Linux Ethernet drivers.

• It is a key assumption of DPAA2 that objects are managed (or “owned”) by a single software entity.
Independent software entities can independently manage the objects they own, and this allows software to be
decoupled from other entities.

• The management relationship between objects and software entities is not defined or imposed by DPAA2;
DPAA2 defines the objects and what they do, and not what software uses them. Customer GPP core software
is allowed to determine the management relationship; a single monolithic software entity that manages all of
the objects can be created.

• The Linux DPAA2 Ethernet driver design defines the set of objects needed to provide a network interface. The
green lines show the management relationships for Linux network interfaces and switches. Note that switches
are managed independently from the network interfaces that connect to it.

The DPAA2 User Manual provides a complete description of the rules that govern object topology.

7.3.2 DPAA2 Quick start guide

7.3.2.1 Data Path Resource Containers

Many sections refer to Data Path Resource Containers (DPRC), so a brief introduction to the concept may be
helpful. DPRCs are part of the DPAA2 object architecture that is described in the DPAA2 Software Overview.

DPRCs are communicated to software entities as a part of their startup process; this is true for software entities
such as:

• The host Linux kernel (that may provide KVM services to virtual machines)
• Linux kernel instances that run in virtual machines
• DPDK applications

DPRCs contain DPAA2 objects that are used by the software entity that owns the DPRC. For example, DPNI
objects are used as network interfaces.

As an example, see Section 7.3.2.2.3.1. The DPRC called “dprc@1” is supplied to the host Linux kernel. It
contains one DPNI object. The DPNI object binds to the DPAA2 Linux kernel Ethernet driver, and causes two
standard Linux Ethernet interfaces to exist and be visible using “ifconfig”. See later sections in this document for
additional details and explanations on the use of objects by various types of software entities.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
662 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

As mentioned previously, DPRCs must be created and populated with the initial set of DPAA2 objects prior to
the startup of the software entity that will use the DPRC.

7.3.2.1.1 Creating DPRCs

There are two ways to create and populate DPRCs:

1. Statically: by means of a control file called a datapath layout (DPL) file. Section 7.3.2.2 describes the DPL
files that are supplied as examples with the Linux SDK.

2. Dynamically: by means of the Linux command-line utility called restool. See DPRCs and restool section,
and also the document titled Standard Linux Documentation.

A software entity behaves exactly the same way on startup regardless of whether its DPRC was created
statically using a DPL or dynamically using restool. The DPL method is convenient for situations when the
desired DPRCs are known in advance. DPRCs defined within the DPL are created and populated automatically
with no need for a subsequent use of restool.

7.3.2.1.2 DPRCs and Hot Plug

A DPRC must be supplied to a software entity when the software entity is started; this implies prior creation of
the DPRC. However, it is also possible to dynamically alter the contents of a DPRC after the software entity that
is using it is already running; this is a form of hot plug.

For example, restool can be used to dynamically create a DPNI object and then assign it to a DPRC. If that
DPRC is being used by a Linux kernel instance, this will cause that kernel to dynamically detect a new network
interface and bind it to the Linux kernel Ethernet driver; the “ifconfig” command will now show a newly created
network interface.

It is also possible to dynamically destroy or unassign objects within an in-use DPRC; this is a form of hot
unplug. Hot plug and unplug are advanced topics, and not covered further here. The key take-away is that
dynamically creating and populating a DPRC before supplying it to software entity when it is started is a very
different use case than hot plug/unplug. The latter use case involves changing the contents of a DPRC while it
is in use by a software entity.

7.3.2.2 Key Release Files: RCW, DPC and DPL

This section describes the key binaries that are available on the RDB. These include the reset configuration
word (RCW), the data path configuration (DPC) and the data path layout (DPL) files.

7.3.2.2.1 RCW

The reset configuration word (RCW) resides in non-volatile memories (for example, NOR, QSPI, SDHC).
It gives flexibility to accommodate a large number of configuration parameters to support a high degree of
configurability of the SoC. Configuration parameters generally include:

• Frequencies of various blocks including cores/DDR/interconnect.
• IP pin-muxing configurations
• Other SoC configurations

The RCW's provided with the release enable the following features:

• Boot location as NOR flash
• Enables 4 UART without flow control
• Enables I2C1, I2C2, I2C3, I2C4, SDHC, IFC, PCIe, SATA

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
663 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

The figure below shows the SerDes configuration supported for DPAA2 platforms. Note that each platform
supports up to 5 ports out of the 8 available on the RDB at a time.

0x2A XFI1 (MS) XFI2 (MS) XFI3 (MS) XFI4 (MS) XFI5 XFI6 XFI7 XFI8

LEFT SERDES

0x41 PEX3[0] PEX3[1] PEX3[2] PEX3[3] PEX4[0] PEX4[1] SATA1 SATA2

RIGHT SERDES

Figure 140. SerDes

7.3.2.2.2 Data path configuration file (DPC)

The data path configuration (DPC) contains board-specific and system-specific information that overrides the
default DPAA hardware configuration.

The release provides one data path configuration (DPC) file per board type. This file specifies the following
information:

• default logging mode for the Management Complex (MC)
• default board MACs
• default number of DPAA channels with 2 and 8 work-queues

The DPC is based on a text source file similar to a device tree source file (DTS) and should be compiled using
the DTC utility to form a binary structure (blob, similar to DTB).

7.3.2.2.3 Data path layout file (DPL)

The data path layout file (DPL) defines the containers created during MC initialization. In order to compile the
DPL, the device tree compiler (DTC) tool needs to be installed on the host system.

As described in Section 7.3.2.1.1, the example DPL source code is provided in the dpl-examples package.

The DPL file specifies the basic resources needed for a simple use case; other resources are created and
managed dynamically using restool capabilities. For each of the use cases included in this document, there is a
diagram that depicts the objects that are necessary for that use case.

The DPL is based on a text source file (similar to a device tree source file (DTS)) and compiled with the DTC
utility to form a binary structure (blob, similar to DTB). The DPL file should be compiled to a binary blob using
standard DTC tool.

Using a static DPL is not a requirement since restool can be used to dynamically create/manage objects and
resources.

7.3.2.2.3.1 LS2088A RDB DPL

The source for the RDB DPL is in the dpl-examples package:

• dpl-examples/LS2088a/RDB/dpl-eth.0x2A_0x41.dts

The figure below shows a graphical view of the container configuration:

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
664 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

DPIO @0

Kernel-DPRC @01

DPIO @1 DPIO @7

DPCON @0

DPBP @0 DPMCP @1 DPMCP @16

DPNI@0

DPMAC@1DPMAC@2DPMAC@3DPMAC @4 DPMAC@5

ETH0ETH4ETH5ETH6ETH7

Optical ports Copper port

Figure 141. RDB DPL container configuration

7.3.2.2.3.2 LS1088A RDB DPL

The source for the RDB DPL is in the dpl-examples package:

• dpl-examples/ls1088a/RDB/dpl-eth.0x1D_0x0D.dts

The figure below shows a graphical view of the container configuration:

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
665 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

DPIO @0

Kernel-DPRC @01

DPIO @1 DPIO @7

DPCON @0

DPBP @0 DPMCP @1 DPMCP @16

DPNI@0

DPMAC@1DPMAC@2DPMAC@3DPMAC @4 DPMAC@5

ETH0ETH4ETH5ETH6ETH7

Optical ports Copper port

Figure 142. RDB DPL container configuration

7.3.2.2.3.3 DPRCs and restool

The release provides a Linux command-line tool called restool that can be used for examining the resource
containers used for managing DPAA2 objects and resources. See the DPAA2 Overview for an overview of
DPAA2 and the data path resource containers (DPRCs). Also see the Stardard Linux Documentation for details
about functionality and use of restool.

Given below is an example of using restool:

List dprc:

$ restool dprc list
dprc.1

List all objects in container dprc.1:

$ restool dprc show dprc.1
dprc.1 contains 33 objects:
object label plugged-state
dpio.7 plugged
dpio.6 plugged
dpio.5 plugged
dpio.4 plugged
dpio.3 plugged
dpio.2 plugged
dpio.1 plugged
dpio.0 plugged
dpni.0 plugged

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
666 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

dpbp.0 plugged
dpmac.5 plugged
dpmac.4 plugged
dpmac.3 plugged
dpmac.2 plugged
dpmac.1 plugged
dpcon.0 plugged
dpmcp.0 plugged
dpmcp.16 plugged
dpmcp.15 plugged
dpmcp.14 plugged
dpmcp.13 plugged
dpmcp.12 plugged
dpmcp.11 plugged
dpmcp.10 plugged
dpmcp.9 plugged
dpmcp.8 plugged
dpmcp.7 plugged
dpmcp.6 plugged
dpmcp.5 plugged
dpmcp.4 plugged
dpmcp.3 plugged
dpmcp.2 plugged
dpmcp.1 plugged

Get information about dpni.0:

$ restool dpni info dpni.0
dpni version: 8.4
dpni id: 0
plugged state: plugged
endpoint state: -1
endpoint: No object associated
link status: 0 - down
mac address: d6:b7:4b:0f:f4:0f
max frame length: 10240
dpni_attr.options value is: 0
num_queues: 16
num_cgs: 1
num_rx_tcs: 1
num_tx_tcs: 1
mac_entries: 16
vlan_entries: 0
qos_entries: 0
fs_entries: 64
qos_key_size: 0
fs_key_size: 56
num_channels: 1
num_opr: 0
ingress_all_frames: 0
ingress_all_bytes: 0
ingress_multicast_frames: 0
ingress_multicast_bytes: 0
ingress_broadcast_frames: 0
ingress_broadcast_bytes: 0
egress_all_frames: 0
egress_all_bytes: 0
egress_multicast_frames: 0
egress_multicast_bytes: 0
egress_broadcast_frames: 0

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
667 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

egress_broadcast_bytes: 0
ingress_filtered_frames: 0
ingress_discarded_frames: 0
ingress_nobuffer_discards: 0
egress_discarded_frames: 0
egress_confirmed_frames: 0
ceetm stats channel 0, TC 0
ceetm_dequeue_bytes: 0
ceetm_dequeue_frames: 0
ceetm_reject_bytes: 0
ceetm_reject_frames: 0
cgr_reject_frames: 0
cgr_reject_bytes: 0
policer_cnt_red: 0
policer_cnt_yellow: 0
policer_cnt_green: 0
policer_cnt_re_red: 0
policer_cnt_re_yellow: 0
tx_pending_frames_cnt: 0

7.3.2.3 Linux Ethernet

This section provides guidelines on exercising creation, functionality and statistics of Linux DPAA2 Ethernet
interfaces.

7.3.2.3.1 Features overview

The following is an overview of the functionality of the Linux DPAA2 Ethernet driver:

• Primary MAC address change
• Scatter-gather support
• Checksum offload
• MAC filtering
• Large frame support
• GRO – generic receive offload
• Egress traffic shaping
• Rx hashing
• Rx flow steering
• Flow control pause frames
• Interface statistics
• XDP
• MQPRIO qdisc support
• CEETM support
• Software TSO (TCP Segmentation Offload)
• Rx interrupt coalescing

7.3.2.3.2 Compiling and selecting Kconfig options

The DPAA2 Ethernet driver is by default selected by the kernel configuration shipped with the SDK,
with a set of sensible compile-time defaults. The driver path in the kernel config file is: " Device
Drivers -> Staging drivers -> Freescale DPAA2 devices -> Freescale DPAA2
Ethernet" (CONFIG_FSL_DPAA2_ETH).

The following Kconfig selects are also available, but not checked by default:

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
668 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

• Data Center Bridging (DCB) Support (CONFIG_FSL_DPAA2_ETH_DCB): This option depends on "Data
Center Bridging support" (CONFIG_DCB). It is required when configuring the Priority-based Flow Control
(PFC) scenarios.

• DPAA2 Ethernet CEETM QoS (CONFIG_FSL_DPAA2_ETH_CEETM): This option enables the use of a custom
CEETM qdics to offload egress Qos support.

7.3.2.3.3 Creating a DPAA2 network interface

This section documents the resource utilization and the necessary steps for creating a DPAA2 network interface
(DPNI) in Linux.

A DPNI can be created either statically through the DPL file or dynamically using the ‘restool’ utility.

7.3.2.3.3.1 DPAA2 objects dependencies

This section documents the steps to create a DPNI and related objects in order to have a fully functional
network interface. It describes the dependencies a DPNI has on other DPAA2 objects.

This is of interest to anyone who changes a static DPL file or uses restool commands to dynamically create:
restool to create a DPNI (For LS1088A see Using restool to create a DPNI).

The DPAA2 object definition allows for flexible software architectures. The Linux drivers, in particular the
Ethernet driver, are additionally bound by requirements from the kernel architecture. This enforces a certain
usage model of the DPAA2 objects that the DPNI interacts with; in particular, it affects the number of various
other DPAA2 objects that a DPNI need s.

Generally, the Linux Ethernet driver requires private DPAA2 resources (for example, Frame Queues) and
objects (for example, DPCON objects), distinct from other DPNIs. There are exceptions, such as the DPIO or
DPMAC, which are not owned by the DPNI. To create a DPNI, either statically in DPL or dynamically using
‘restool’, the following types of objects may need to be instantiated in the current container (that is, made
available if they are not already):

• DPBP
• DPMCP
• DPCON
• DPIO
• DPMAC

The significance and number of these objects per DPNI are detailed in the following table:

Object Private to
DPNI?

Cardinality Comments

DPBP Yes 1 per DPNI Each network interface (NI) has private buffer pools, not shared with
other NIs.

DPMCP Yes 1 per DPNI
1 per DPMAC
1 per DPIO

MC command portals (MCPs) are used to send commands to, and
receive responses from, the MC firmware. One such example is
configuring DPNI functionality like hashing or checksumming, but DPNI
statistics are also queried via the MCPs.
Like the DPNI, each DPMAC/DPIO object also requires one private
DPMCP.

DPCON Yes Rx hash size/
number of
transmitter
queues (“num_

DPCONs are used to distribute Rx or Tx Confirmation traffic to different
GPPs, via affine DPIO objects. The implication is that one DPCON must
be available for each GPP we want to distribute Rx or Tx Confirmation
traffic to. Rx and Tx Confirmation share the same DPCONs if they are

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
669 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Object Private to
DPNI?

Cardinality Comments

queues”) of the
DPNI.

available. (If, for example GPP #0 processes both types of traffic, one
DPCON is enough. If in addition GPP #1 processes only Tx Confirmation
traffic, then a second DPCON is necessary.)
Since we must be able to distinguish between traffic from different NIs
arriving on the same GPP, the DPCONs must be private to the DPNIs.
These design constraints may cause a relatively large consumption
of DPCONs by DPNIs with large Rx distribution width. The DPNI's Rx
distribution width is implemented by the "num_queues" property (see
Section 7.3.2.3.4.9 for extra information).
Notes:
DPCONs' main hardware resource are the Work Queues (WQs). The
DPCONs come in 2 flavors: 2-WQ and 8-WQ DPCONs, depending on
the number of traffic class priorities the object is going to support. (Note:
the Ethernet driver only supports one traffic class at the moment, so
using 2-WQ DPCONs is safe and enough.) The MC firmware can convert
any number of 8-WQ DPCONs to four times as many 2-WQ DPCONs,
depending on the static configuration provided at boot.
Since WQs are a limited hardware resource, DPCONs tend to be
limited, too, especially the 8-WQ flavor. The DPNIs being one of the
major consumers of DPCONs, the current SDK ships with a default
configuration where a number of the 8-WQ DPCONs are converted to 2-
WQ DPCONs, thereby increasing their availability.
Note that DPIO objects themselves transparently consume DPCONs
(one per DPIO object), which therefore must be subtracted from the total
number available to the DPNIs (they need not be explicitly declared in
the DPL, but they are simply not available to the rest of the system).
The system can provide up to 64 8-WQ DPCONs (and up to 256 2-
WQ DPCONs and combinations thereof). So for a container with 8
DPIOs, only up to 56 8-WQ DPCONs will be in fact available for DPNI
configuration.

DPIO No One per running
GPP

DPIOs are used to provide data availability notifications to the GPPs.
For each GPP that we want to distribute traffic to, there must be an
affine DPIO. While DPIOs are the source of data availability interrupts,
the DPCONs are used (among other things) to identify the NI that has
produced ingress data to that GPP.
Due to a known limitation, the number of DPIOs in a container must not
be less than the number of running GPPs. The static DPL in this release
defensively provides 8 DPIOs at boot-time, one for each running GPP.

DPMAC No User-defined. DPMACs are proxy objects which link DPNIs to external PHYs on the
board. DPMACs effectively decouple DPNIs from the PHYs they are
linked to (if they are indeed linked to an external PHY, which is in fact
transparent to the DPNI). As such, the DPMACs are not "owned" by a
DPNI, which is unaware of their presence, but they can be "connected"
to the DPNI, via the DPL file or 'restool'. DPMACs can be connected to
other types of objects, too, such as the EVB.
Having DPMACs connected to external PHYs depends on the board
wiring and is strictly confined to the SerDes configuration.
See also: Section 7.3.2.3.3.3.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
670 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

7.3.2.3.3.2 Static DPNI definition

The default DPL provides a simple DPNI object definition, under the dpni@0 node as follows:

dpni@0 {
 options = "";
 num_queues = <1>;
 num_tcs = <1>;
};

The DPNI object is linked to a DPMAC object, also created in the DPL, via the “connections” node as follows:

connections {
 connection@5{
 endpoint1 = "dpni@0";
 endpoint2 = "dpmac@5";
 };
};

The DPNI object can be more complex, as in the following enhanced example of a DPNI node:

dpni@1 {
 options = "DPNI_OPT_HAS_KEY_MASKING";
 num_tcs = <1>;
 num_queues = <8>;
 mac_filter_entries = <64>;
};

In this example, dpni@1 has more options declared than dpni@0 in the previous example. In addition, it can
distribute traffic to more GPPs than dpni@0, as declared by the “num_queues” attribute.

The following section describes the DPNI bindings in the DPL file.

DPNI bindings

• The num_queues attribute indicates the number of queues to be used for transmission as well as the
number of Rx queues (hash distribution size). This also implicitly defines the number of queues used for Tx
Confirmation, since each "sender" uses a dedicated queue for confirmations. This may impact the number of
necessary DPCON objects, see section "DPAA2 objects dependencies" for details on resourcing the DPNI.

• num_tcs represents the number of traffic classes; maximum supported value is 8.
• options allows the creation of a DPNI object with non-default options
• Other possible attributes are listed below. Unless otherwise stated, attributes with value <0> receive a default,

non-trivial, value from the MC firmware and can be skipped from the DPL altogether.
– fs_entries
– vlan_filter_entries
– mac_filter_entries

Note: See MC documentation for all available options and supported values.

7.3.2.3.3.3 DPMAC configuration

This section is a brief introduction to DPMAC objects and their relation to the DPNIs.

DPMACs are essentially proxies to external PHYs, which are board-level components and therefore not
managed by the MC firmware.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
671 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

DPMACs can be connected to other DPAA2 objects, such as DPNI, DPDMUX and DPSW. For example, to
statically connect a DPMAC to a DPNI in the DPL file, the “connections” node is used:

connection@5{
 endpoint1 = "dpni@0";
 endpoint2 = "dpmac@5";
};

In this DPL example, DPNI0 is connected to DPMAC5, which the MC thereon connects to a lane depending on
the current SerDes. Unlike most other DPAA2 objects, the id of the DPMAC (in this example, “5”) is relevant as
the MC uses it to identify a physical MAC (at the moment, there is no other property of the DPMAC object to do
that).

7.3.2.3.3.4 Dynamically creating a DPNI

This section explains the steps to create a DPNI using the restool utility and the restool wrapper scripts.

Using restool to create a DPNI

DPNIs can be dynamically created and plugged into the Linux container using the restool utility. Before creating
a DPNI, one must create a number of DPAA2 objects (dependencies), for which multiple restool commands are
needed. This section provides simple examples of commands that should be used to create a working DPNI
(Linux network interface) and its dependencies. Usage of the Restool Wrapper Script bundled with the SDK is
encouraged, because of their better ease-of-use.

In order to create an object, the “restool create” command must be executed and then the new object can be
assigned to a container. For example, to create a DPBP object:

$ restool dpbp create dpbp.1 is created under dprc.1 $ restool dprc assign
 dprc.1 --object=dpbp.1 –-plugged=1

For automation purposes, the “--script" flag can be used, reducing the verbosity of the command output. Object
properties can be specified at creation time as follows:

$ restool --script dpio create --channel-mode="DPIO_LOCAL_CHANNEL" --num-
priorities=8
dpio.8

To create a DPNI, a number of DPMCP, DPBP and other dependencies are required, if they do not exist already
in the container, see Section 7.3.2.3.3.1 for details on the types and number of DPNI dependencies. The static
DPL from the current release already defines 8 DPIO objects, one for each running GPP, so adding new DPIOs
is not normally required. Also, the maximum number of DPMACs supported on LS2088A and LS1088A are
already created in the static (default) DPLs, so adding new ones is not necessary in the default configuration.

The general steps to create and configure a DPNI using restool are:

1. Create DPAA2 object dependencies (DPBPs, DPCONs, DPMCPs, and so on);
2. Create and parametrize the DPNI;
3. Connect the DPNI to another object (typically but not necessarily a DPMAC).

The Restool Wrapper Script automatically takes care of the DPNI resourcing and parameterization, therefore we
encourage their use instead of bare restool for complex objects like the DPNI.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
672 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Restool Wrapper Scripts

User-friendly scripts are provided in the release rootfs to assist dynamic creation of DPNIs and associated
dependencies. They also implement parameter restrictions and workarounds related to known limitations of the
DPAA2 objects in the current SDK release.

The following scripts are available to interact with DPNI and DPMAC objects, respectively Linux network
interfaces: ls-addni, ls-listni, ls-listmac.

1. ls-addni
This script creates a new DPNI object, required dependencies (potentially DPBP, DPMCP, DPCON,
DPMAC, depending on the options being passed to the script) and an associated Linux network interface.
The script can be used to connect the newly created DPNI to another DPNI, DPMAC or DPDMUX, which
must be already created and not currently connected.
The script supports a multitude of parameters to fine-tune configuration of the DPNI; in fact, it is intended to
support every parameter as restool itself for creating DPNIs. An empty list of options will choose sensible
defaults for maximal performance of the new DPNI, such as Rx hashing to the maximum number of cores.
Adding a new DPNI has the effect of discovering the new object on the Linux mc-bus and probing it as a
new Ethernet device. This results in a new Linux network interface becoming available. The new interface
has the name eth<X>, where X depends on the order in which the interfaces are probed and on what other
interfaces (for example, PCIe NIC) are present. The mapping between the DPNI object and the interface
name is shown by the ls-listni command.
Utilization examples:
• # ls-addni dpmac.6

[70218.813064] fsl_dpaa2_eth dpni.4: Probed interface eth2
Created interface: eth2 (object:dpni.4, endpoint: dpmac.6)

This is probably the most typical usage example. It creates a network interface (eth2) and the underlying
dpni (dpni.4) and connects it to an external MAC (dpmac.6).
Connecting DPNIs to DPMACs is not the only option, though:

• # ls-addni -n
[70270.944458] fsl_dpaa2_eth dpni.5: Probed interface eth3
Created interface: eth3 (object:dpni.5, endpoint: none)

This command creates the unconnected object dpni.5 and the respective Linux interface eth3. Not being
connected to anything, there is little practical use for this interface; therefore, a command such as the
following would be used:

• # ls-addni dpni.5
[70312.255487] fsl_dpaa2_eth dpni.6: Probed interface eth4
Created interface: eth4 (object:dpni.6, endpoint: dpni.5)

This command creates another network interface eth4 (and the underlying dpni.6 object) and connects it
with the previously created eth3 (dpni.5) interface.
Notes:
ls-addni --help list all supported options.
Although it is technically possible to connect a DPNI to itself, the wrapper scripts do not support this. For
LS1088A-specific information, see the "Add and destroy network interfaces" subsection of the "Quick start
guide for LS1088ARDB" section.

2. ls-listni
This script lists all the dpni objects available in the root and child containers, the associated network
interface name, the end point and the label.
Output after running the above examples (dpni.0 through dpni.3 had been statically defined in the DPL):

ls-listni
dprc.1/dpni.6 (interface: eth4, end point: dpni.5)

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
673 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

dprc.1/dpni.5 (interface: eth3, end point: dpni.6)
dprc.1/dpni.4 (interface: eth2, end point: dpmac.6)
dprc.1/dpni.3
dprc.1/dpni.2
dprc.1/dpni.1
dprc.1/dpni.0 (interface: eth1, end point: dpmac.2)

3. ls-listmac
This script lists all the dpmac objects available in the root and child containers, the associated network
interface name, the end point and the label.
Output after running the above examples (dpni.0 had been connected to dpmac.2 in the static DPL):

ls-listmac
dprc.1/dpmac.10
dprc.1/dpmac.9
dprc.1/dpmac.8
dprc.1/dpmac.7
dprc.1/dpmac.6 (end point: dpni.4)
dprc.1/dpmac.5
dprc.1/dpmac.4
dprc.1/dpmac.3
dprc.1/dpmac.2 (end point: dpni.0)
dprc.1/dpmac.1

7.3.2.3.4 DPAA2 Ethernet features

This section presents the individual functions of the Linux DPAA2 Ethernet driver.

7.3.2.3.4.1 Bring up the bootstrap DPNI interface

From Linux, interfaces are visible through the 'ifconfig' command. The DPAA2 interfaces are named as “
eth<X> ”, where X depends on the order in which the interfaces are probed.

The default DPL file shipped with the current BSP release contains one statically defined DPNI object (DPNI.0).

DPNI.0 is configured with a minimal set of resources – for example, it can only receive traffic on GPP0 –
and its intended uses are network boot and low-bandwidth traffic. For fully featured DPNI objects, dynamic
configuration is recommended (see Section 7.3.2.3.3.4).

For IP connectivity between the default interface and an external host, first assign a valid IP address to it as in
the following example:

$ ifconfig eth1 192.168.1.2

Assuming the remote peer has address 192.168.1.1, ping to test as shown:

$ ping 192.168.1.1
PING 192.168.1.1 (192.168.1.1) 56(84) bytes of data.
64 bytes from 192.168.1.1: icmp_seq=1 ttl=64 time=87.0 ms

7.3.2.3.4.2 Primary MAC address change

Changing the primary MAC address of a Linux Ethernet interface is supported without the need to bring down
the interface.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
674 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

For example:

$ ifconfig eth1 hw ether 02:00:C0:01:02:0a

$ ip link set dev eth1 address 02:00:C0:01:02:0b

7.3.2.3.4.3 Scatter/gather configuration

The Ethernet driver supports scatter/gather (S/G) on both the transmit and receive side. The S/G option can
be configured through ethtool on Tx; on Rx, S/G support is always on. For example, in order to see the current
state of the device features and hardware offloads for device ni0:

$ ethtool –k eth1
Features for eth1:
[…]
scatter-gather: on
 tx-scatter-gather: on
[…]

In order to change the S/G status of the Linux Ethernet interface ni0:

$ ethtool –K eth1 sg off
Actual changes:
scatter-gather: off
 tx-scatter-gather: off
generic-segmentation-offload: off [requested on]
$ ethtool –K eth1 sg on
Actual changes:
scatter-gather: on
 tx-scatter-gather: on
generic-segmentation-offload: on

Notes:

• S/G support on the egress path, together with High DMA, which is also supported, allows for efficiently
transmitting TCP segments from user-space, without copying them to kernel-space first (“Tx zero-copy”).

• Egress S/G is necessary for other kernel features such as generic segmentation offload (GSO, implicitly
turned on).

• The Ethernet driver support for S/G frames on the ingress path is transparent to the user.

7.3.2.3.4.4 Checksum offload configuration

The Ethernet driver supports hardware offloading of both Rx checksum validation and Tx checksum generation
for TCP and UDP over IPv4/IPv6. The hardware checksum offload can be configured through ethtool.

For viewing the current state of the feature, use the “-k” flag:

$ ethtool –k eth1
Features for eth1:
[…]
rx-checksumming: on
tx-checksumming: on
 tx-checksum-ipv4: on
 tx-checksum-ipv6: on

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
675 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

[…]

The checksum offload can be controlled separately on Rx and Tx paths as follows:

$ ethtool –K eth1 rx on|off
$ ethtool –K eth1 tx on|off
$ ethtool -k eth1 | grep tx-checksumming
tx-checksumming: off

7.3.2.3.4.5 MAC filtering

The DPAA2 hardware supports unicast and multicast MAC filters on the ingress path. In Linux, MAC
unicast filtering can be accomplished with the help of MACVLAN interfaces. Kernel configuration and DPNI
configuration are required to enable this feature, as follows:

• To enable support in the kernel, CONFIG_MACVLAN must be selected at compile time, from the kernel
menuconfig: “Device Drivers -> Network device support -> Network core driver
support -> MAC-VLAN support” .

The Linux Ethernet driver allows adding and deleting of MAC filters via the standard “ip” command. An example
of adding/deleting a MAC unicast address is the following:

$ ip link add link eth1 address <macvlan_mac_addr> eth1.1 type macvlan
$ ifconfig eth1.1 up
[…]
$ ip link delete eth1.1 type macvlan

Adding a multicast address is also possible using the “ip” command as follows:

$ ip maddr add 01:00:00:00:00:01 dev eth1

7.3.2.3.4.6 Large frame support

The DPAA2 hardware supports large frames. The Ethernet driver correlates between the Layer-2 maximum
frame length (MFL) and Layer-3 MTUs. The maximum MTU that a Linux user can request on a DPAA2 Ethernet
interface is 10222 bytes.

Notes:

• Outgoing packets larger than the current MTU are going to be fragmented by the kernel stack.
• All Ethernet devices on the same LAN must have the same MTU
• Ingress frames larger than MTU are accepted by the Ethernet driver

7.3.2.3.4.7 Generic receive offload

The DPAA2 Ethernet driver is integrated with the kernel's generic receive offload (GRO) support. GRO is
enabled by default and is configurable via "ethtool":

$ ethtool -k eth1 | grep generic-receive-offload
 generic-receive-offload: on
$ ethtool -K eth1 gro off
$ ethtool -k eth1 | grep generic-receive-offload
 generic-receive-offload: off

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
676 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Note: For better performance, GRO should be disabled on the receiving interfaces in certain scenarios such as
IP Forwarding.

7.3.2.3.4.8 Egress traffic shaping

The DPAA2 Ethernet driver supports per port Tx traffic shaping by offloading the Token Bucket Filter (TBF)
qdisc. Support for the TBF qdisc is enabled by the following CONFIG_NET_SCH_TBF Kconfig option.

To setup Tx shaping on an interface, use the following command:

$ tc qdisc add dev ethX root tbf rate <rate> burst <burst> limit 1M

where:

• rate is the maximum throughput.
• burst is the maximum burst size, expressed in bytes, at most 63487.

For more information on the units used, and in general the TBF qdisc, see its manpage.

To remove the TBF qdisc from an interface, use the following command:

tc qdisc del dev ethX root

7.3.2.3.4.9 Rx hashing

The DPAA2 Ethernet driver supports hash distribution of ingress flows, based on some of the common L2/L3/L4
fields. Configuration is done via standard "ethtool" support as follows:

$ ethtool –N <ethX> rx-flow-hash <proto_type> <header_fields>

The set of header fields from which the hash key is extracted is configured globally for all protocols and the
protocol type parameter is ignored.

The following fields are supported:

• m - Ethernet destination address
• v - VLAN tag
• t - L3 protocol
• s - IPv4 source address
• d - IPv4 destination address
• f - L4 bytes 0 & 1 [TCP/UDP source port]
• n - L4 bytes 2 & 3 [TCP/UDP destination port]

The “r” flag (discard all packets of this flow type) is not supported.

For example, Rx hashing based on IP source and destination address can be configured with the following
command:

$ ethtool –N <ethX> rx-flow-hash udp4 sd

The current hashing configuration can be viewed using the “-n” flag:

$ ethtool –n <ethX> rx-flow-hash udp4

The protocol type parameter is ignored; the configuration applies to both UDPv4 and TCPv4.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
677 / 1061

https://man7.org/linux/man-pages/man8/tc-tbf.8.html

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Note: By default, Ethernet interfaces start with hashing enabled on a 5-tuple key (IP proto, IP src/dst addresses,
L4 src/dst ports). If an Ethernet interface is created with a single queue then hashing is not supported.

Interfaces created dynamically with "ls-addni" have a number of queues equal to the number of available CPUs,
unless explicitly requested otherwise, so they will have hashing enabled by default. For DPNIs statically defined
inside a DPL file, in order to allow hashing the "num_queues" property must have a value larger than 1 and
there must also be a sufficient number of DPCON objects available.

For full details and examples on dynamic DPNI creation, see Dynamically creating a DPNI.

7.3.2.3.4.10 Rx flow steering

The DPAA2 Ethernet driver supports steering of ingress traffic, directing flows to specific GPPs based on exact-
match operations on some of the common L2/L3/L4 fields. The advantage versus Section 7.3.2.3.4.9 is cache
locality of ingress data: the user-space applications that actually process the traffic make better use of the
local GPP's cache than if the traffic were processed on another GPP. The disadvantage stems from the static
configuration of flow affinity and from the fact that flow characteristics for example, L4 ports) must be known in
advance, which is not always possible in real scenarios.

Configuration is done via standard "ethtool" support as follows:

$ ethtool -N eth1 flow-type <proto_type> <header_field> <value> [m <mask>]
 action <cpu_id>

Steering is supported for the following protocols:

• ethernet (flow-type ether)
• IPv4 (flow-type ip4)
• TCP, UDP over IPv4 (flow-type tcp4, udp4)

Supported fields are as follows:

• src, dst (L2 source/destination address; only for ether flow type)
• dst-mac (only for ip4, udp4, tcp4 flow types)
• vlan (all flow types)
• l4proto (only for ip4)
• src-ip, dst-ip, src-port, dst-port (for ip4, udp4, tcp4)

Masking of header fields is also supported.

For example, in order to set up flow steering based on destination IP:

$ ethtool -N eth1 flow-type ip4 dst-ip 192.168.1.0 action 0

or subnet:

$ ethtool -N eth1 flow-type ip4 dst-ip 192.168.2.0 m 0.0.0.255 action 1

Note: The MC firmware and Linux Ethernet driver will only fully configure flow-steering if
DPNI_OPT_HAS_KEY_MASKING is set in the "options" list of the DPNI object either via the DPL node or via
restool - for example:

dpni@1 {
[…]
 options = "DPNI_OPT_HAS_KEY_MASKING";
[…]

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
678 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

};

respectively:

restool dpni create [...] --options=DPNI_OPT_HAS_KEY_MASKING

Note:

On LS1088A, only limited flow steering capabilities are offered. LS1088A does not support the
DPNI_OPT_HAS_KEY_MASKING option, therefore it won't allow rules with different keys in the classification
table. In other words, all rules in the classification table must be based on the same header field(s). Also, m
option is not supported and it will be silently ignored.

7.3.2.3.4.11 Flow Control Pause Frames

The DPAA2 Ethernet interfaces support sending and responding to pause frames, as part of the Ethernet flow
control mechanism. The behavior of the pause frames is described in the IEEE 802.3x standard. In a nutshell,
in a scenario involving a full duplex link, if the sender is sending at a higher rate than the receiver can process
frames, the receiver can choose to send a special kind of frame, called pause frame, which asks the sender to
halt the transmission of traffic for a specified period of time. Pause frame control is integrated into ethtool. To
interrogate the status, use the following command:

$ ethtool -a eth3
Pause parameters for eth3:
Autonegotiate: on
RX: off
TX: off
RX negotiated: off
TX negotiated: off

To change the pause frame status, use the following command:

$ ethtool -A eth3 rx on tx on
[349.381335] fsl_dpaa2_eth dpni.2 eth3: Link is Down
[355.362146] fsl_dpaa2_eth dpni.2 eth3: Link is Up - 10Gbps/Full - flow
control off
$ ethtool -a eth3
Pause parameters for eth3:
Autonegotiate: on
RX: on
TX: on
RX negotiated: off
TX negotiated: off

In the output above, even though pause frame is enabled on both directions of the link, the negotiated state
of pause frame is still disabled. This is observed when the link partner does not advertise pause frames and
autonegotiation is enabled.

To force the state of pause frames on our end, disable autoneg using the following command:

$ ethtool -A eth3 autoneg off
[552.230298] fsl_dpaa2_eth dpni.2 eth3: Link is Down
[552.242501] fsl_dpaa2_eth dpni.2 eth3: Link is Up - 10Gbps/Full - flow
control rx/tx

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
679 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Pause frames are interpreted at the MAC level and counters for both directions are visible in the ethtool stats:

$ ethtool -S eth3 | grep pause
[mac] rx pause: 0
[mac] tx b-pause: 0

• If the driver is configured with Tx pause frames on, the hardware will start sending pause frames when the
interface enters a congestion state on the Rx side.

• If the driver is configured with Rx pause frames on, it will respond to any pause frames received on the line by
reducing the send rate.

7.3.2.3.4.12 Ethernet Priority-based Flow Control

The DPAA2 Ethernet interfaces support sending and responding to 802.1Qbb PFC (Priority-based Flow Control)
frames, also known as CBFC (Class Based Flow Control) frames. PFC is a function of the 802.1 DCB (Data
Center Bridging) standard, enabling lossless semantics at L2 on the Ethernet medium. Eight different classes
of service (802.1p Ethernet priorities) are available as expressed through the 3-bit PCP field in an IEEE 802.1Q
(VLAN) header added to the frame.

The DPAA2 Ethernet driver supports enabling PFC for a subset of the traffic classes. This configuration is done
using a higher-level protocol, LLDP - Link Layer Discovery Protocol. In Ubuntu, this protocol is implemented by
the lldpad package, containing lldpad - the agent daemon - and lldptool - the client program.

Before attempting to configure PFC, make sure lldpad is installed and running:

~# apt-get update
~# apt-get install -y lldpad
~# service --status-all
~# service lldpad status
 lldpad.service - LSB: Start and stop the lldp agent daemon
Loaded: loaded (/etc/init.d/lldpad; bad; vendor preset: enabled)
Active: active (running) since Mon 2017-08-21 11:43:45 UTC; 2h 33min ago
Docs: man:systemd-sysv-generator(8)
CGroup: /system.slice/lldpad.service
─4542 /usr/sbin/lldpad -d

The LLDP agent daemon will register all the active interfaces in the system. In order to configure PFC for an
interface (for example, eth1), run the following commands:

• Set the LLDP operation mode - in this case, to send and receive LLDP packets. This is required in order for
PFC changes to take effect.

lldptool –L –i eth1 adminStatus=rxtx

• Enable PFC for priorities 1, 2, and 4 on ni0.

lldptool -T -i eth1 -V PFC -c enabled=1,2,4

• Display priorities enabled for PFC on ni0.

lldptool -t -i eth1 -V PFC -c enabled

In order to disable PFC, you can run the following command:

lldptool -T -i eth1 -V PFC -c enabled=none

When setting PFC for the first time since boot, the DPAA2 Ethernet driver will configure static ingress traffic
classification based on VLAN PCP. In order for this to work, you need to configure the DPNI with a number of

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
680 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

traffic classes that's greater than 1 - preferably num_tcs=8, since there are a total of 8 priorities handled by the
3-bit PCP VLAN field.

The LLDP interface configuration is persistent across reboot and stored in the lldpad configuration files.

It's not advised to change the PFC configuration when the interface is handling heavy traffic.

There is a current known limitation for PFC to work only with DPNIs created using the DPL. DPNIs created
with restool will not behave as expected.

7.3.2.3.4.13 XDP support

The DPAA2 Ethernet driver offers support for XDP (eXpress Data Path) programs. To compile an XDP capable
kernel, make sure that the generated .config file contains the following Kconfig options:

• CONFIG_BPF_SYSCALL=y
• CONFIG_BPF_JIT=y
• CONFIG_HAVE_EBPF_JIT=y
• CONFIG_BPF_JIT_ALWAYS_ON=y

XDP is a high performance data path in the Linux kernel, which allows for fast and programmable frame
processing.

XDP programs are based on eBPF (extended Berkeley Packet Filter) and some basic examples can be found in
the kernel source tree, in samples/bpf. Samples of the associated user space apps that load the XDP program
and attach it to the desired network interface can also be found there. For example, the "xdp1" sample program
can be loaded by running:

./samples/bpf/xdp1 -N <interface_index>

The user space applications that load XDP programs have to be built for arm64. XDP programs are compiled
using clang/llvm, with minimum required version being 6.0. We recommend building natively, following the steps
described in samples/bpf/README.rst.

The currently supported actions are:

• XDP_DROP: any frame for which this action is selected is dropped immediately by the driver
• XDP_PASS: frame follows the standard processing path and is sent to the network stack
• XDP_TX: frame is forwarded back to the same interface
• XDP_REDIRECT: frame is forwarded to another interface

The driver also supports header updates that change the frame header size. Scatter/gather frames are not
handled by the XDP program and will go through the regular path to the stack.

The DPAA2 Ethernet driver also supports AF_XDP zero-copy on plaftorms based on the LX2160A SoC.
This limitation comes from the fact that AF_XDP zero-copy imposes a 1:1 relationship between an AF_XDP
socket and a buffer pool, which the DPAA2 architecture can do only on the latest WRIOP version. Beside the
Kconfig options mentioned above, for AF_XDP support please make sure that the kernel used has the Kconfig
CONFIG_XDP_SOCKETS enabled. The AF_XDP zero-copy support is available only on DPNIs with a maximum
of 8 Rx queues.

For each AF_XDP socket attached to a particular DPAA2 Rx queue, the driver will try to allocated a new DPBP
(buffer pool) object. If there is no available DPBP in the system, zero-copy support will not be available and the
setup will fall back to copy mode.

To make sure that this not happens, either declare enough DPBP objects in the DPL file used or just create
them before starting the AF_XDP program.

$ restool dpbp create
UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
681 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

$ restool dprc assign dprc.1 --object=dpbp.X --plugged=1

The xdpsock sample application can be used to test the AF_XDP functionality on DPAA2 interfaces.

Building XDP Kernel Samples

In order to use XDP programs from the kernel bpf/samples folder, these are the steps for building them
natively:

1. Prerequisites:
Use a Layerscape board with latest Layerscape LDP images, that has external network conectivity at least
6GB of disk space.

2. Install dependent packages:

apt-get install git
git apt-get install make
apt-get install gcc
apt-get install bc
apt-get install elfutils
apt-get install libelf-dev
apt-get install bison
apt-get install flex
apt-get install cmake

3. Build the latest version of LLVM and clang (required to be >= 7.0):

git clone https://git.llvm.org/git/llvm.git/ LLVM
cd LLVM/tools
git clone https://git.llvm.org/git/clang.git/
cd ../..
mkdir <llvm-build-dir>; cd <llvm-build-dir>
cmake -DCMAKE_BUILD_TYPE=Release -DLLVM_TARGETS_TO_BUILD="BPF" ../LLVM/
make -j 8

4. Download kernel sources from the Layerscape LDP release
5. Build the bpf samples:

cd <kernel-src-dir>
make mrproper
make defconfig; make lsdk.config
make headers_install
make M=samples/bpf/ LLC=<llvm-build-dir>/bin/llc CLANG=<llvm-build-dir>/bin/
clang

The resulting binaries will be located in <kernel-src-dir>/samples/bpf.

7.3.2.3.4.14 MQPRIO qdisc support

The DPAA2 Ethernet driver supports the MQPRIO qdisc, configurable through the tc tool.

MQPRIO (Multiqueue Priority Qdisc) is a simple queuing discipline that allows mapping traffic flows to hardware
queue ranges, using priorities and a configurable priority to traffic class mapping. When creating the qdisc, the
user can pass the number of traffic classes handled by the netdevice, the skb priority to traffic class map, and
the hardware offloading flag.

For example:

$ tc qdisc add dev <ethX> root handle 1: mqprio num_tc 2 map 0 0 1 1 hw 1

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
682 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

The above translates to:

• The mqprio qdisc has 2 traffic classes (num_tc 2)
• The qdisc depends on hw offloading (hw 1)
• The skb prio to traffic class map is as follows:

– skb prio 0 -> tc 0
– skb prio 1 -> tc 0
– skb prio 2 -> tc 1
– skb prio 3 -> tc 1

Note: We only support the hardware offloading mode. Setting the "hw" param to 0 is not supported.

For setting the skb priority, the clsact qdisc can be used. Then we use the u32 filter to assign the skb priority
based on traffic flow characteristics. This requires a recent iproute2-tc with clsact support compiled in:

$ tc qdisc add dev <ethX> clsact
$ tc filter add dev <ethX> egress prio 1 u32 match ip dport 7776 0xffff action
 skbedit priority 0
$ tc filter add dev <ethX> egress prio 1 u32 match ip dport 7777 0xffff action
 skbedit priority 1
$ tc filter add dev <ethX> egress prio 1 u32 match ip dport 7778 0xffff action
 skbedit priority 2
$ tc filter add dev <ethX> egress prio 1 u32 match ip dport 7779 0xffff action
 skbedit priority 3

In the above example, the destination port is used to assign a skb priority level. Outgoing IPv4 frames with port
id 7778 and 7779 will be treated with highest priority.

Note: In order to use tc mqprio with the DPAA2 Ethernet driver, make sure the following kernel options are
enabled:

CONFIG_NET_SCHED=y
CONFIG_NET_SCH_MQPRIO=y

Also, in order to run above examples, the following kernel options are also needed:

CONFIG_NET_CLS=y
CONFIG_NET_CLS_ACT=y
CONFIG_NET_ACT_SKBEDIT=y
CONFIG_NET_CLS_U32=y
CONFIG_CLS_U32_PERF=y
CONFIG_CLS_U32_MARK=y
CONFIG_NET_EMATCH_U32=y

Note: The DPNI has to be configured with a number of traffic classes greater than one - the maximum
supported is num_tcs=8. Make sure the num_tc parameter passed at mqprio qdisc creation is not higher than
the number of traffic classes supported by the DPNI.

7.3.2.3.4.15 CEETM support

DPAA2 platforms offer scheduling, shaping and prioritization capabilities through CEETM (Customer Edge
Egress Traffic Management). The purpose of the CEETM block is to enhance networking performances by
moving the egress QoS logic from software to hardware.

This section briefly describes what is supported and how CEETM can be configured through the Linux traffic
control tool (tc) by using a custom queuing discipline.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
683 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Features

Each network interface (DPNI) can be associated with an LNI (logical network interface) containing a class
queue channel. We don't support more than one channel per LNI. The LNI channel allows dual-rate shaping,
which can be configured by specifying the CIR (committed information rate) and/or EIR (excess information
rate). CBS (committed burst size) and EBS (excess burst size) values can also be configured.

We also support scheduling of class queues inside the channel; the number of queues cannot be larger than the
configured number of traffic classes ("num_tcs" DPNI option), with a maximum value of 8.

Queues can be independent or part of a group:

• inside a group, queues are selected based on the WBFS (weighted bandwidth fair scheduling) algorithm. We
support at most two class queue groups (referred to as group A and group B) with up to 4 queues each; if a
single group is used (group A), up to 8 queues can be configured to be part of it.

• independent queues have fixed priorities and are subject to a strict priority scheduling (that is queue 1 will
always be higher priority than queue 2)

Weighted queues share the priority of the group they belong to. Groups have configurable strict priorities
relative to the independent queues. See the next section for an example on how to configure both weighted and
independent queues.

We consider 0 to be the highest priority level.

Prerequisites

In order to use the CEETM feature, it must first be enabled in the kernel config file:

CONFIG_FSL_DPAA2_ETH_CEETM=y

Also, the following kernel option is needed:

CONFIG_NET_SCHED=y

The CEETM TC library (q_ceetm.so) should be located under /usr/lib/tc. It is built and deployed by default,
without any user action needed.

Usage

You can see the ceetm qdisc’s help message by running the following command:

$ tc qdisc add ceetm help
Usage:
... qdisc add ... ceetm type root
... class add ... ceetm type root [cir CIR] [eir EIR] [cbs CBS] [ebs EBS]
 [coupled C]
... qdisc add ... ceetm type prio [prioA PRIO] [prioB PRIO] [separate SEPARATE]
... class add ... ceetm type prio [mode MODE] [weight W]
Update configurations:
... class change ... ceetm type root [cir CIR] [eir EIR] [cbs CBS] [ebs EBS]
 [coupled C]
Qdisc types:
root - associate a LNI to the DPNI
prio - configure the LNI channel's Priority Scheduler with up to eight classes
Class types:
root - configure the LNI channel
prio - configure an independent or weighted class queue
Options:

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
684 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

CIR - the committed information rate of the LNI channel
 dual-rate shaper (required for shaping scenarios)
EIR - the excess information rate of the LNI channel
 dual-rate shaper (optional for shaping scenarios, default 0)
CBS - the committed burst size of the LNI channel
 dual-rate shaper (required for shaping scenarios)
EBS - the excess of the LNI channel
 dual-rate shaper (optional for shaping scenarios, default 0)
C - shaper coupled, if both CIR and EIR are finite, once the
 CR token bucket is full, additional CR tokens are instead
 added to the ER token bucket
PRIO - priority of the weighted group A / B of queues
SEPARATE - groups A and B are separate
MODE - scheduling mode of class queue, can be:
 STRICT_PRIORITY
 WEIGHTED_A
 WEIGHTED_B
W - the weight of the class queue in the weighted group

Example

We present here an example of how tc ceetm qdisc can be used to create a complex egress shaping and
scheduling configuration.

We start by configuring the LNI channel to allow a maximum egress rate of 1 Gbit/s:

tc qdisc add dev <ethX> root handle 1: ceetm type root
tc class add dev <ethX> parent 1: classid 1:1 ceetm type root cir 1000mibit

We configure queue_1 and queue_2 to be part of group A, with a group priority of 3, and queue_4 and queue_5
to be part of group B with prio 1. Independent queues queue_0 and queue_3 are also configured. The resulting
order of priorities is as follows (highest to lowest): {queue_0, group_B, queue_3, group_A}

Inside group A, queue_1 and queue_2 have equal weights; inside group B, queue_5 is given three times more
bandwidth than queue_4. The weights are not absolute values, the relevant information is the ratio between
them; it's recommended to use the value 100 for the queue with the lowest bandwidth.

tc qdisc add dev <ethX> parent 1:1 handle 2: ceetm type prio prioA 3 prioB 1
 separate 1 tc class add dev <ethX> parent 2: classid 2:1 ceetm type prio mode
 STRICT_PRIORITY tc class add dev <ethX> parent 2: classid 2:2 ceetm type prio
 mode WEIGHTED_A weight 100 tc class add dev <ethX> parent 2: classid 2:3 ceetm
 type prio mode WEIGHTED_A weight 100 tc class add dev <ethX> parent 2: classid
 2:4 ceetm type prio mode STRICT_PRIORITY tc class add dev <ethX> parent 2:
 classid 2:5 ceetm type prio mode WEIGHTED_B weight 100 tc class add dev <ethX>
 parent 2: classid 2:6 ceetm type prio mode WEIGHTED_B weight 300

Additionally, we define flows based on IP destination address and match them to the class queues:

Flow 1 - queue 0
tc filter add dev <ethX> parent 1: protocol ip u32 match ip dst 192.85.2.2/32
 flowid 1:1
tc filter add dev <ethX> parent 2: protocol ip u32 match ip dst 192.85.2.2/32
 flowid 2:1
Flow 2 - queue 1
tc filter add dev <ethX> parent 1: protocol ip u32 match ip dst 192.85.2.3/32
 flowid 1:1
tc filter add dev <ethX> parent 2: protocol ip u32 match ip dst 192.85.2.3/32
 flowid 2:2

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
685 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Flow 3 - queue 2
tc filter add dev <ethX> parent 1: protocol ip u32 match ip dst 192.85.2.4/32
 flowid 1:1
tc filter add dev <ethX> parent 2: protocol ip u32 match ip dst 192.85.2.4/32
 flowid 2:3
Flow 4 - queue 3
tc filter add dev <ethX> parent 1: protocol ip u32 match ip dst 192.85.2.5/32
 flowid 1:1
tc filter add dev <ethX> parent 2: protocol ip u32 match ip dst 192.85.2.5/32
 flowid 2:4
Flow 5 - queue 4
tc filter add dev <ethX> parent 1: protocol ip u32 match ip dst 192.85.2.6/32
 flowid 1:1
tc filter add dev <ethX> parent 2: protocol ip u32 match ip dst 192.85.2.6/32
 flowid 2:5
Flow 6 - queue 5
tc filter add dev <ethX> parent 1: protocol ip u32 match ip dst 192.85.2.7/32
 flowid 1:1
tc filter add dev <ethX> parent 2: protocol ip u32 match ip dst 192.85.2.7/32
 flowid 2:6

Assuming the initial throughput of each flow was 200 Mbit/s, the final output is:

flow 1 (queue_0) - 200Mbps flow 2 (queue_1) - 100Mbps flow 3 (queue_2) - 100Mbps
 flow 4 (queue_3) - 200Mbps flow 5 (queue_4) - 200Mbps flow 6 (queue_5) -
 200Mbps

If initial throughput per flow was 600 Mbit/s, the final output is:

flow 1 (queue_0) - 600Mbps flow 2 (queue_1) - 0Mbps flow 3 (queue_2) - 0Mbps
 flow 4 (queue_3) - 0Mbps flow 5 (queue_4) - 100Mbps flow 6 (queue_5) - 300Mbps

Note: In order to run this example, the following kernel configs are also needed:

CONFIG_NET_CLS=y
CONFIG_NET_CLS_ACT=y
CONFIG_NET_CLS_U32=y
CONFIG_NET_EMATCH=y
CONFIG_NET_EMATCH_U32=y

7.3.2.3.4.16 Interface statistics

DPAA2 Ethernet interface counters can be read via either of two standard tools, but there is a subtle difference:

• ifconfig ethX: counters reflect packets received by the Ethernet driver – that is those frames that have
passed through the Rx filters (if any are active) and have been effectively processed by the Ethernet driver
on the GPP, and possibly by the kernel stack. These are software counters, maintained by the Ethernet driver
and the networking stack.

• ethtool -S ethX: counters reflect more detailed counters, from three categories:
– Statistics maintained by the DPAA2 hardware. These largely correspond in meaning to the standard

"ifconfig" counters, but the values may be different from the "ifconfig" counters - that is they may reflect
frames that have not been received on the GPP, such as those dropped by the ingress policer or due
to MAC filtering. Also noteworthy is that retrieving these counters requires a series of calls into the MC
firmware, which could make the operation potentially slower.

– Advanced counters, specific to the DPAA2 Ethernet driver. These are software-maintained driver-specific
counters which do not fit into the standard " ifconfig " set.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
686 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

– QBMan hardware counters showing instantaneous values for the frame queues and buffer pool associated
with the DPNI.

The following detailed counters are presented by the 'ethtool -S' command:

• Hardware-maintained counters (prefixed by the "[hw]" tag):
– rx frames: number of valid frames received from the DPNI hardware
– rx bytes: number of bytes comprised within the "rx frames" counter
– rx mcast frames: number of valid multicast frames
– rx mcast bytes: number of bytes included in "rx mcast frames"
– rx bcast frames: number of valid broadcast frames
– rx bcast bytes: number of bytes included in "rx bcast frames"
– tx frames: number of valid frames presented for transmission
– tx bytes: number of bytes included in "tx frames"
– tx mcast frames: number of valid egress multicast frames
– tx mcast bytes: number of bytes included in "tx mcast frames"
– tx bcast frames: number of valid egress broadcast frames
– tx bcast bytes: number of bytes included in "tx bcast frames"
– rx filtered frames: number of valid frames but dropped because for example, of MAC filtering
– rx discarded frames: number of frames with various physical errors
– rx nobuffer discards: number of frames discarded due to lack of buffers
– tx discarded frames: number of frames with Tx errors
– tx confirmed frames: number of Tx confirmed frames
– tx dequeued frames: number of Tx frames dequeued by WRIOP from the egress queues of this DPNI
– tx dequeued bytes: number of bytes included in "tx dequeued frames"
– tx rejected frames: number of Tx frames enqueued by the core but rejected by QMan
– tx rejected bytes: number of bytes included in "tx rejected frames"

• Software-maintained, driver-specific counters (prefixed by the "[sw]" tag):
– tx conf frames: number of frames presented back to the Ethernet driver in the Tx confirmation queues.

In an idle system, this counter should be equal to "tx frames"
– tx conf bytes: number of bytes comprised by the "tx conf frames" counter
– tx sg frames: number of egress frames in scatter-gather format these are a subset of "tx frames", the

difference being contiguous frames
– tx sg bytes : number of bytes comprised in "tx sg frames"
– tx realloc frames: number of frames which had to be reallocated in the driver due to insufficient

skb headroom if a significant number of Tx frames are realloc'ed, it may be an indicator of suboptimal
networking performance

– rx sg frames: number of frames received in scatter-gather format typically this reflects frames larger than
the largest buffer that can be used at the time of reception

– rx sg bytes: number of bytes comprised in "rx sg frames"
– enqueue portal busy: number of times the Ethernet driver had to retry the frame enqueue command

(on the egress path) due to QBMan portal being busy
– dequeue portal busy: number of times the Ethernet driver had to retry the frame dequeue command

(on the ingress path) due to QBMan portal being busy
– channel pull errors: number of dequeue errors which are not due to the portal being busy
– cdan : number of Channel Dequeue Available Notifications (CDANs) received by the Ethernet driver (Rx

and Tx Conf paths). Each CDAN corresponds to one DPIO interrupt and triggers a NAPI processing cycle
which can process Rx or Tx Conf frames (or both).

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
687 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

– tx congestion state: whether the Tx queues are currently congested or not if congestion state is 1,
it means one or more Tx queues have stopped and are waiting for the hardware to finish transmitting the
frames already enqueued from the Ethernet driver

– xdp drop: number of frames processed by an XDP program for which the XDP_DROP action was
selected

– xdp tx: number of frames processed by an XDP program for which the XDP_TX action was selected
– xdp tx errors: number of frames processed by an XDP program for which the XDP_TX action was

selected but an error occurred during actual transmission
– xdp redirect: number of frames processed by an XDP program for which the XDP_REDIRECT action

was selected
• QBMan counters:

– rx pending frames: total number of frames currently in the Rx FQs associated with the DPNI
– rx pending bytes: number of bytes included in "rx pending frames"
– tx conf pending frames: total number of frames currently in the Tx confirmation FQs associated with

the DPNI
– tx conf pending bytes: number of bytes included in "tx conf pending frames"
– buffer count: number of buffers currently in the buffer pool associated with the DPNI"

Extra debug information is available through the debug file system. Each DPNI object probed by the dpaa2-eth
driver will export a debugs folder which will contain per channel, per CPU and per FQ statistics.

$ ls -la /sys/kernel/debug/dpaa2-eth/dpni.2/
total 0
drwxr-xr-x 2 root root 0 Aug 26 14:20 .
drwxr-xr-x 6 root root 0 Jan 1 1970 ..
-r--r--r-- 1 root root 0 Aug 26 14:20 ch_stats
-r--r--r-- 1 root root 0 Aug 26 14:20 cpu_stats
-r--r--r-- 1 root root 0 Aug 26 14:20 fq_stats
--w--w--w- 1 root root 0 Aug 26 15:06 reset_mc_stats
--w------- 1 root root 0 Aug 26 15:06 reset_stats

For example, the driver keeps the following information on a per channel basis:

$ cat /sys/kernel/debug/dpaa2-eth/dpni.2/ch_stats
Channel stats for eth3:
CHID CPU Deqbusy Frames CDANs AvgFrm/CDAN Buf count
48 0 0 0 0 0 1281
47 1 0 2 2 1 1281
46 2 0 0 0 0 1281
45 3 0 2 2 1 1281
44 4 0 4 4 1 1281
43 5 0 0 0 0 1281
42 6 0 0 0 0 1281
41 7 0 13 13 1 1281
40 8 0 0 0 0 1281
39 9 0 0 0 0 1281
38 10 0 0 0 0 1281
37 11 0 0 0 0 1281
36 12 0 0 0 0 1281
35 13 0 0 0 0 1281
34 14 0 0 0 0 1281
33 15 0 2 2 1 1281

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
688 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

To find out how many frames and their type processed by each CPU, the cpu_stats debugs file is available.

$ cat /sys/kernel/debug/dpaa2-eth/dpni.2/cpu_stats
Per-CPU stats for eth3
CPU Rx Rx Err Rx SG Tx Tx Err Tx conf Tx SGTx converted to SG
 Enq busy
0 0 0 0 0 0 0 0 0 0
1 0 0 0 2 0 2 2 2 0
2 0 0 0 0 0 0 0 0 0
3 0 0 0 2 0 2 2 2 0
4 0 0 0 4 0 4 4 4 0
5 0 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0 0
7 0 0 0 14 0 14 14 14 0
8 0 0 0 0 0 0 0 0 0
9 0 0 0 0 0 0 0 0 0
10 0 0 0 0 0 0 0 0 0
11 0 0 0 0 0 0 0 0 0

Through the debugfs folder both software statistics kept by the driver and hardware ones can be reset. This can
be useful in circumstances when multiple tests need to be run back to back without rebooting the board.

$ echo 1 > /sys/kernel/debug/dpaa2-eth/dpni.2/reset_stats
$ echo 1 > /sys/kernel/debug/dpaa2-eth/dpni.2/reset_mc_stats

7.3.2.3.4.17 Software TSO (TCP Segmentation Offload)

The DPAA2 hardware does not support offloading of TCP Segmentation but the dpaa2-eth driver implements
TSO in software at the driver level to get a bit of performance in TCP termination circumstances.

The TCP segmentation offload is enabled by default in the dpaa2-eth driver:

$ ethtool -k eth3 | grep tcp
tcp-segmentation-offload: on
tx-tcp-segmentation: on
tx-tcp-ecn-segmentation: off [fixed]
tx-tcp-mangleid-segmentation: off
tx-tcp6-segmentation: off [fixed]

To disable any feature, use ethtool as given below (if required):

$ ethtool -K eth3 tso off
$ ethtool -k eth3 | grep tcp
tcp-segmentation-offload: off
tx-tcp-segmentation: off
tx-tcp-ecn-segmentation: off [fixed]
tx-tcp-mangleid-segmentation: off
tx-tcp6-segmentation: off [fixed]

7.3.2.3.4.18 Rx interrupt coalescing

The DPAA2 Ethernet driver is integrated with the generic dynamic interrupt moderation framework (NET DIM)
to implement adaptive interrupt coalescing on Rx. The root motivation for this feature is that with the per-packet
interrupt scheme, a high interrupt rate has been noted for moderate traffic flows leading to high CPU utilization.

Since the Channel Data Availability (CDAN) interrupt is per Software Portal (DPIO), the NET DIM framework is
used in such a way, that all packets/bytes received through the interrupt of a DPIO is taken into account when
UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
689 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

computing the delay of the IRQ. This means that if there are three DPAA2 network interfaces in the system
and all are using the same DPIO for receiving packets, all packets from all the thee interfaces are used in the
heuristic for determining the best delay.

To interrogate the current status of interrupt coalescing, use the following command:

$ ethtool -c eth3
Coalesce parameters for eth3:
Adaptive RX: off TX: n/a
stats-block-usecs: n/a
sample-interval: n/a
pkt-rate-low: n/a
pkt-rate-high: n/a

rx-usecs: 0
rx-frames: n/a
rx-usecs-irq: n/a
rx-frames-irq: n/a

tx-usecs: n/a
tx-frames: n/a
tx-usecs-irq: n/a
tx-frames-irq: n/a

rx-usecs-low: n/a
rx-frame-low: n/a
tx-usecs-low: n/a
tx-frame-low: n/a

rx-usecs-high: n/a
rx-frame-high: n/a
tx-usecs-high: n/a
tx-frame-high: n/a

To enable adaptive interrupt coalescing, the following ethtool command is helpful:

$ ethtool -C eth3 adaptive-rx on
$ ethtool -c eth3
Coalesce parameters for eth3:
Adaptive RX: on TX: n/a
stats-block-usecs: n/a
sample-interval: n/a
pkt-rate-low: n/a
pkt-rate-high: n/a

rx-usecs: 0
rx-frames: n/a
rx-usecs-irq: n/a
rx-frames-irq: n/a
...

Also, the number of microseconds to delay an RX interrupt after packet arrival can be statically setup.

$ ethtool -C eth3 rx-usecs 256 adaptive-rx off
$ ethtool -c eth3
Coalesce parameters for eth3:
Adaptive RX: off TX: n/a
stats-block-usecs: n/a
sample-interval: n/a

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
690 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

pkt-rate-low: n/a
pkt-rate-high: n/a

rx-usecs: 256
rx-frames: n/a
rx-usecs-irq: n/a
rx-frames-irq: n/a
...

Please note that since the interrupts for Rx frame processing are shared between all the DPAA2 interfaces
controlled by the Linux kernel, changing a setting related to interrupt coalescing through one interface leads to
all other interfaces now using the same setting.

For example, all the above commands executed through eth3 have also changed how eth4 (another DPAA2
interface) operates.

$ ethtool -c eth4
Coalesce parameters for eth4:
Adaptive RX: off TX: n/a
stats-block-usecs: n/a

sample-interval: n/a
pkt-rate-low: n/a
pkt-rate-high: n/a

rx-usecs: 256
rx-frames: n/a
rx-usecs-irq: n/a
rx-frames-irq: n/a
...

7.3.2.3.5 Performance considerations

This section presents several aspects that need to be taken into account when tuning a DPAA2 system for
kernel networking performance.

• Ingress flow distribution
Flows are defined by a distribution key (n-tuple) composed of several header fields. All ingress frames that
belong to a flow (they have the same value of the fields included in the key) are processed on the same core.
In order to achieve a balanced load among the system cores, two strategies may be employed:
– In scenarios with large number of flows or where ingress traffic characteristics are not known: rely on hash

distribution for load balancing; the default key is composed of {IP src address, IP dst address, IP next proto,
L4 src port, L4 dst port} but can be changed using ethtool. A well balanced distribution requires several
hundred flows on an 8-core system; the lower the number of flows, the higher the difference in number of
frames directed to each core. See Section 7.3.2.3.4.9 for more details.

– In scenarios where we have a low number of flows with well-known characteristics (for example: we know
beforehand or can determine at runtime the value of certain header fields, like source IP address), flows
can be manually affined to cores using exact match rules configured in ethtool. See Section 7.3.2.3.4.10 for
more information.

• Flow control
The DPAA2 Ethernet driver starts with flow control enabled by default.
For best performance, it is recommended that pause frames configuration matches the settings of the peer,
especially on the Tx side (that is should only have pause frame generation enabled if the peer can respond to
pause frames). When unsure of peer flow control capabilities, it's best to locally disable pause frames (ethtool
-A <ethX> tx off).
For more information on flow control support, see Section 7.3.2.3.4.11.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
691 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

• DPNI parameters at object creation
DPNI objects should be created with a maximal configuration if networking performance is desired.
For distribution of ingress traffic, the most important setting is num_queues, which should equal the number
of cores on which the DPNI can receive ingress frames. In case of DPNIs created statically using a DPL file,
sufficient DPCON objects (one per DPNI per core) must also be provided; for dynamically created DPNIs, the
ls-addni script handles both DPCON dependencies and optimal configuration of num_queues value.
In case flow steering is to be used on the DPNI, value of num_fs_entries (maximum number of classification
rules that can be added on the network interface) can be configured according to user requirements. Default
is 64 entries.

• Optimal test setups for performance measurements
For IP forwarded traffic, using affine flows (one per core per interface) is the setup that yields best results.
If zero-loss throughput is measured, it is important to avoid additional work in the system (unrelated peripheral
interrupt sources, system services running in the background), as spikes in activity on a core can lead to loss
of frames even at lower traffic rates.
One source of spikes in activity is the 25G interfaces found on the LX2160ARDB Rev2 which use an
IN112525 1st gen Inphi retimer for improving the signal integrity. For the interfaces to work, a prototype
driver for In112525 chip is used in Linux. This driver does retraining of retimer's internals each two seconds
when no signal is detected. This requires cpu-time and may bring a performance impact in certain conditions
(RFC2544 with a small frame size). It can be avoided if 25G ports have valid link partners or when driver is
disabled (CONFIG_INPHI_PHY=n).
For termination traffic, flow steering is also recommended with one flow per core, although in some scenarios
using a large number (for example: 256 flows on an 8 core system) of hashed flows yields similar results.
In case of TCP traffic, configuring flow affinity on the sender side (for ACK packets) may also help. When
possible, the user space application should be affined to the same core that performs the kernel frame
processing (for example: "-T" parameter for netperf, or use taskset).
Transmission of UDP frames is expected to perform slightly worse than TCP Tx due to a software limitation.
On the ingress side, there should be no obvious performance gap between the two.

For additional general performance optimization guidelines, see the Section 7.9 section.

7.3.2.4 Setting up Ethernet Switch Capability

7.3.2.4.1 Ethernet Switch overview

The DPAA2 Switch driver probes on the Datapath Switch (DPSW) object which can be instantiated on the
following DPAA2 SoCs and their variants: LS2088A and LX2160A.

The DPAA2 switch driver uses the switch device driver model and exposes each switch port as a network
interface. This can be included in a bridge or used as a standalone interface. Traffic switched between ports is
offloaded into the hardware.

The DPSW can have ports connected to DPNIs or to DPMACs for external access.

7.3.2.4.2 Switch object creation

The dpaa2-switch driver probes the DPSW devices found on the fsl-mc bus. These devices are either created
statically through the boot time configuration file DataPath Layout (DPL) or at runtime using the DPAA2
object APIs. These APIs are incorporated into the restool userspace tool in prior to creating the devices.

fsl_dpaa2_switch dpsw.0: The number of FDBs is lower than the number of ports,
 cannot probe

The minimum number of FDBs should be at least equal to the number of switch interfaces. This is required, if
the separation of switch ports should be required. Therefore, when not under a bridge, each switch port has its

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
692 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

own FDB. At the moment, the dpaa2-switch driver imposes the following restrictions on the DPSW object that it
will probe:

• Both the broadcast and flooding configuration should be as per FDB. This enables the driver to restrict the
broadcast and flooding domains of eachFDB depending on the switch ports that are sharing it (aka are under
the same bridge).

fsl_dpaa2_switch dpsw.0: Flooding domain is not per FDB, cannot probe
fsl_dpaa2_switch dpsw.0: Broadcast domain is not per FDB, cannot probe

• The control interface of the switch should not be disabled (DPSW_OPT_CTRL_IF_DIS not passed as a create
time option). Without the control interface, the driver is not capable to provide proper Rx/Tx traffic support on
the switch port netdevices.

• Apart from the configuration of the actual DPSW object, the dpaa2-switch driver requires the following DPAA2
objects:
– 1DPMCP: A management command portal object is required for any interraction with the MC firmware.
– 1DPBP: A buffer pool is used for seeding buffers intended for the Rx path on the control interface.

• Access to atleast one DPIO object (Software Portal) is required for any enqueue/dequeue operation to be
performed on the control interface queues. The DPIO object is shared and there is no need for a private
object.

7.3.2.4.2.1 Using restool for dynamic object creation

A switch can be created at runtime, using restool. Before creating the switch, a number of DPAA2 objects
(dependencies) should be added for which multiple restool commands are needed.The switch requires at least
a DPMCP object.

To create the switch for DPMCP object use the following command:

$ restool dpmcp create
$ restool dprc assign dprc.1 --object=dpmcp.X --plugged=1

To create the switch with DPBP object use the following command:

$ restool dpbp create
$ restool dprc assign dprc.1 --object=dpbp.X --plugged=1

Creating a DPSW

To create a DPSW switch object use the command given below:

$ restool dpsw create --num-ifs=4 --max-fdbs=4 --broadcast-
cfg=DPSW_BROADCAST_PER_FDB --flooding-cfg=DPSW_FLOODING_PER_FDB

The command specifies configuration options, which includes number of ports in the switch, the maximum
number of FDBs that can be used on the switch, and the flooding and broadcast configuration.

For all the configuration options and parameters, see the help output using the command:

$ restool dpsw create --help

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
693 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Connecting the switch

To connect the DPSW ports to other objects (DPNIs,and DPMACs) use the following commands:

$ restool dprc connect dprc.1 --endpoint1=dpsw.X.Y --endpoint2=dpmac.Z
$ restool dprc connect dprc.1 --endpoint1=dpsw.X.Y --endpoint2=dpni.Z

Enabling the switch

The switch driver probes the DPSW object only when its state is plugged. After issuing the following
command, the dpaa2-switch driver presents the DPSW associated network interfaces:

$ restool dprc assign dprc.1 --object=dpsw.X --plugged=1

After enabling the switch, it can be configured from Linux using the following supported switch management
commands:

• ifup/ifdown (using ifconfig or similar)
• setting large frame size limit (using ifconfig or similar)
• retrieving statistics (using ifconfig or similar)
• configuring FDB (using bridge fdb)
• configuring multicast groups (using bridge fdb)
• configuring VLANs (using bridge vlan)
• configuring learning (using bridge link set)

Restool wrapper scripts

For user convenience, the script ls-addsw is provided to assist creation of a new DPSW object. For example,
to create a 4 port DPSW object connected to two DPNIs and 2 DPMACs the following command is used:

ls-addsw --flooding-cfg=DPSW_FLOODING_PER_FDB --broadcastcfg=
DPSW_BROADCAST_PER_FDB dpmac.X dpmac.Y dpni.Z dpni.W

For all the script options and parameters see the help:

$ ls-addsw -h

The endpoints are connected in the specified order to switch the ports. If there are less endpoints than the
number of interfaces, you can later add the rest using ls-addni or restool commands.

7.3.2.4.2.2 Using the data path layout file (DPL)

A switch object may be defined statically in the DPL, allowing it to be created automatically during platform
initialization. Below is an example of switch definition in the DPL:

dpsw@0 {
 compatible = "fsl,dpsw";
 max_vlans = <0x10>;
 max_fdbs = <0x4>;
 num_fdb_entries = <0x400>;
 fdb_aging_time = <0x12c>;
 num_ifs = <0x4>;
 max_fdb_mc_groups = <0x20>;
 max_meters_per_if = <0x4>;
 flooding_cfg = "DPSW_FLOODING_PER_FDB";

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
694 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

 broadcast_cfg = "DPSW_BROADCAST_PER_FDB";
};

This example is for a 5-port switch that includes support for up to 16 VLAN IDs, including VLAN 1 (that is
internally used by the switch), up to 1024 FDB entries, and up to 32 multicast groups.

Links defined in the DPL connections section are given below:

connections {
 connection@1 {
 endpoint1 = "dpsw@0/if@0";
 endpoint2 = "dpmac@1";
 };
 connection@2 {
 endpoint1 = "dpsw@0/if@1";
 endpoint2 = "dpmac@2";
 };
 connection@3 {
 endpoint1 = "dpsw@0/if@2";
 endpoint2 = "dpmac@3";
 };
 connection@4 {
 endpoint1 = "dpsw@0/if@3";
 endpoint2 = "dpmac@4";
 };
 connection@5 {
 endpoint1 = "dpsw@0/if@4";
 endpoint2 = "dpni@1";
 };
};

This example is generated based on the DPSW created using the ls-addsw command above. Links defined in
the DPL connections section are given below:

connections {
 connection@1{
 endpoint1 = "dpni@Z";
 endpoint2 = "dpsw@0/if@2";
 };
 connection@2{
 endpoint1 = "dpni@W";
 endpoint2 = "dpsw@0/if@3";
 };
 connection@3{
 endpoint1 = "dpsw@0/if@0";
 endpoint2 = "dpmac@X";
 };
 connection@4{
 endpoint1 = "dpsw@0/if@1";
 endpoint2 = "dpmac@Y";
 };
};

7.3.2.4.3 Switching features

The driver supports the configuration of L2 forwarding rules in hardware for port bridging as well as standalone
usage of the independent switch interfaces.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
695 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

The hardware is not configurable with respect to VLAN awareness. Therefore, any DPAA2 switch port should be
used only in usecases with a VLAN aware bridge:

$ ip link add dev br0 type bridge vlan_filtering 1
$ ip link add dev br1 type bridge
$ ip link set dev ethX master br1
Error: fsl_dpaa2_switch: Cannot join a VLAN-unaware bridge

Topology and loop detection through STP is supported when stp_state 1 is used at bridge create:

$ ip link add dev br0 type bridge vlan_filtering 1 stp_state 1
L2 FDB manipulation (add/delete/dump) is supported.
$ bridge fdb add xx:xx:xx:xx:xx:xx dev ethY master static
$ bridge fdb del xx:xx:xx:xx:xx:xx dev ethY master static
$ bridge fdb

VLAN configuration is supported. Specific VLANs can be added to the switch ports as egress tagged or
untagged. By default, all switch ports have PVID 1. This indicates that all the untagged traffic received on switch
ports is classified to VLAN 1 and all frames classified in VLAN 1 are sent out untagged on all ports.

$ bridge vlan add vid X dev ethY [egress untagged]
$ bridge vlan del vid X dev ethY
$ bridge vlan

Multicast groups can be configured using the bridge mdb commands. The commands add multiple switch ports,
one by one to the multicast group 01:00:05:00:00:13 as given below:

$ bridge mdb add dev br0 port ethX grp 01:00:05:00:00:13 permanent offload
$ bridge mdb add dev br0 port ethY grp 01:00:05:00:00:13 permanent offload
$ bridge mdb
$ bridge mdb del dev br0 port ethY grp 01:00:05:00:00:13 permanent offload

HW FDB learning can be configured on each switch port independently through bridge commands. When the
HW learning is disabled, a fast age procedure is run and any previously learnt addresses are removed.

$ bridge link set dev ethX learning off
$ bridge link set dev ethX learning on

Restricting the unknown unicast and multicast flooding domain is supported, but not independently of each
other:

$ ip link set dev ethX type bridge_slave flood off mcast_flood off
$ ip link set dev ethX type bridge_slave flood off mcast_flood on
Error: fsl_dpaa2_switch: Cannot configure multicast flooding independently of
 unicast.

Broadcast flooding on a switch port can be disabled/enabled through the brport sysfs::

$ echo 0 > /sys/bus/fsl-mc/devices/dpsw.Y/net/ethX/brport/broadcast_flood

Statistics, both MAC level and switch port level, can be interrogated through the following ethtool command:

$ ethtool -S ethX
NIC statistics:
[hw] rx frames: 0
[hw] rx bytes: 0

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
696 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

[hw] rx filtered frames: 0
[hw] rx discarded frames: 0
[hw] rx bcast frames: 0
[hw] rx bcast bytes: 0
[hw] rx mcast frames: 0
[hw] rx mcast bytes: 0
[hw] tx frames: 0
[hw] tx bytes: 0
[hw] tx discarded frames: 0
[hw] rx nobuffer discards: 0
[mac] rx 64 bytes: 0
[mac] rx 65-127 bytes: 0
[mac] rx 128-255 bytes: 0
[mac] rx 256-511 bytes: 0
[mac] rx 512-1023 bytes: 0
[mac] rx 1024-1518 bytes: 0
[mac] rx 1519-max bytes: 0
[mac] rx frags: 0
[mac] rx jabber: 0
[mac] rx frame discards: 0
[mac] rx align errors: 0
[mac] tx undersized: 0
[mac] rx oversized: 0
[mac] rx pause: 0
[mac] tx b-pause: 0
[mac] rx bytes: 0
[mac] rx m-cast: 0
[mac] rx b-cast: 0
[mac] rx all frames: 0
[mac] rx u-cast: 0
[mac] rx frame errors: 0
[mac] tx bytes: 0
[mac] tx m-cast: 0
[mac] tx b-cast: 0
[mac] tx u-cast: 0
[mac] tx frame errors: 0
[mac] rx frames ok: 0
[mac] tx frames ok: 0

7.3.2.4.4 Switching offloads

7.3.2.4.4.1 Routing actions (redirect, trap, drop)

The DPAA2 switch can offload flow-based redirection of packets by using the ACL tables. The shared filter
blocks are supported by sharing a single ACL table between multiple ports.

The supported flow keys are:

• Ethernet: dst_mac/src_mac
• IPv4: dst_ip/src_ip/ip_proto/tos
• VLAN: vlan_id/vlan_prio/vlan_tpid/vlan_dei
• L4: dst_port/src_port

To redirect the entire traffic received on a port, use the matchall filter.

The supported flow actions are:

• drop
• mirred egress redirect

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
697 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

• trap

Note: Each ACL entry (filter) can be setup with only one of the listed actions.

Example 1: Send frames received on eth4 with a SA of 00:01:02:03:04:05 to the CPU

$ tc qdisc add dev eth4 clsact
$ tc filter add dev eth4 ingress flower src_mac 00:01:02:03:04:05 skip_sw action
 trap

Example 2: Drop frames received on eth4 with VID 100 and PCP of 3

$ tc filter add dev eth4 ingress protocol 802.1q flower skip_sw vlan_id 100
 vlan_prio 3 action drop

Example 3: Redirect all frames received on eth4 to eth1

$ tc filter add dev eth4 ingress matchall action mirred egress redirect dev eth1

Example 4: Use a single shared filter block on both eth5 and eth6

$ tc qdisc add dev eth5 ingress_block 1 clsact
$ tc qdisc add dev eth6 ingress_block 1 clsact
$ tc filter add block 1 ingress flower dst_mac 00:01:02:03:04:04 skip_sw \action
 trap
$ tc filter add block 1 ingress protocol ipv4 flower src_ip 192.168.1.1 skip_sw
 \action mirred egress redirect dev eth3

7.3.2.4.4.2 Mirroring

The DPAA2 switch supports only per port mirroring and per VLAN mirroring. In adition, it supports Adding the
mirroring filters in shared blocks

When using the tc-flower classifier with the 802.1q protocol, only the 'vlan_id key is accepted. Mirroring based
on any other fields from the 802.1q protocol are rejected:

$ tc qdisc add dev eth8 ingress_block 1 clsact
$ tc filter add block 1 ingress protocol 802.1q flower skip_sw vlan_prio 3
 action mirred egress mirror dev eth6
Error: fsl_dpaa2_switch: Only matching on VLAN ID supported.
We have an error talking to the kernel

If a mirroring VLAN filter is requested on a port, the VLAN must to be installed on the switch port in question
either using ''bridge'' or by creating a VLAN upper device if the switch port is used as a standalone interface:

$ tc qdisc add dev eth8 ingress_block 1 clsact
$ tc filter add block 1 ingress protocol 802.1q flower skip_sw vlan_id 200
 action mirred egress mirror dev eth6
Error: VLAN must be installed on the switch port.
We have an error talking to the kernel

$ bridge vlan add vid 200 dev eth8
$ tc filter add block 1 ingress protocol 802.1q flower skip_sw vlan_id 200
 action mirred egress mirror dev eth6

$ ip link add link eth8 name eth8.200 type vlan id 200

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
698 / 1061

NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

$ tc filter add block 1 ingress protocol 802.1q flower skip_sw vlan_id 200
 action mirred egress mirror dev eth6

Note: The mirrored traffic is subject to the same egress restrictions as any other traffic. This indicates that
when a mirrored packet reaches the mirror port and if the VLAN found in the packet is not installed on the port,
then it gets dropped.

The DPAA2 switch supports only a single mirroring destination. Therefore, the multiple mirror rules can be
installed but their ''to'' port should be same:

$ tc filter add block 1 ingress protocol 802.1q flower skip_sw vlan_id 200
 action mirred egress mirror dev eth6
$ tc filter add block 1 ingress protocol 802.1q flower skip_sw vlan_id 100
 action mirred egress mirror dev eth7Error: fsl_dpaa2_switch: Multiple mirror
 ports not supported.
We have an error talking to the kernel
```

7.3.2.5  Setting Up Edge Virtual Bridge Capability

7.3.2.5.1  EVB overview

An edge virtual bridge allows the sharing of a physical connection between multiple entities (virtual hosts). It can
act as a VEB or as a VEPA.

In VEB mode, traffic is forwarded between connected virtual hosts or between virtual hosts and uplink.

In VEPA mode, all traffic from virtual hosts is forwarded to uplink, bridging functions (including 'hairpin'
forwarding) being performed by an external device.

Features supported:

• VEB/VEPA mode
• Traffic steering according to MAC, VLAN (in VEPA mode only) or MAC+VLAN
• Static FDB entries management (add/delete/show)
• Static multicast FDB entries management (add/delete/show)
• Flooding of broadcast and multicast traffic

7.3.2.5.2  EVB object creation

EVB objects can be created as follows:

• Dynamically using the restool as described in Section 7.3.2.5.2.1
• Statically in a DPL file as described in Section 7.3.2.5.2.2

7.3.2.5.2.1  Using restool for dynamic object creation

A DPDMUX can be instantiated at runtime, using restool.

The following section describes the main commands to create an EVB and its dependencies starting from the
dpl-eth.0x2A_0x41.dtb DPL file.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
699 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

DPIO@0

Kernel-DPRC@01

DPIO@1 DPIO@7

DPCON@0

DPBP@0 DPMCP@1 DPMCP@16

DPNI@0

DPMAC@1DPMAC@2DPMAC@3DPMAC @4 DPMAC@5

DPDMUX@0 if@
1

DPCON @1 DPCON@2

DPBP @1 DPBP  @2 DPMCP @17

DPNI@1 DPNI@2

Dynamic Objects

if@
2

if@0 DPMCP  @19

ETH0ETH4ETH5ETH6ETH7

Optical ports Copper port

Figure 143. Dynamic DPDMUX demo

Note:  When a new object is created using restool, an object with the ID of the first available resource is
returned.

Note:  Depending on the board type, DPMAC availability varies. For more details, refer to Limitations and
Known Issues.

Creating a DPDMUX

The EVB is created by this command:

$ restool dpdmux create --num-ifs=2 --control-if=0                       \
          --options=DPDMUX_OPT_BRIDGE_EN --method=DPDMUX_METHOD_MAC      \
          --max-dmat-entries=8 --max-mc-groups=8 --manip=DPDMUX_MANIP_NONE

The command must specify the number of downlinks and the ID of the uplink (ranges for 0 to [number of
downlinks -1]). The other parameters are optional. For more information about the available options, see the
output of the command:

$ restool dpdmux create -h

Connecting the EVB

Linking the EVB ports to other objects is done with:

$ restool dprc connect "$RC" --endpoint1="$MUX".0 --endpoint2="$MAC"
$ restool dprc connect "$RC" --endpoint1="$MUX".1 --endpoint2="$NI1"
$ restool dprc connect "$RC" --endpoint1="$MUX".2 --endpoint2="$NI2"

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
700 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

$RC represents the container for the objects, $MUX is the object identified for the EVB. The uplink is the
endpoint with the id specified by control-if parameter at creation time.

Enabling the EVB

This command plugs the EVB object on the bus, in the Linux resource container. The EVB driver probes the
switch and presents the associated network interfaces in Linux.

$ restool dprc assign "$RC" --object="$MUX" --plugged=1

Restool wrapper scripts

For user convenience, the ls-addmux script is provided to assist creation of a new DPDMUX object.

Example to replicate setup in the Section "Connecting the EVB" section:

# ls-addmux -d=2 -u=0 dpmac.1
[ 4298.023745] dpaa2_evb dpdmux.0: probed evb device with 2 ports
Created EVB: evb0 (object: dpdmux.0, uplink: dpmac.1)

This command creates EVB evb0 (and the corresponding dpdmux.0 object) with two downlinks and the uplink
connected to dpmac.1.

After creating the DPDMUX, its downlinks can be connected to DPNIs using ls-addni script:

# ls-addni dpdmux.0.1
Will allocate 8 DPCON objects for this hash size
[ 5118.645253] fsl_dpaa2_eth dpni.1: Probed interface ni1
Created interface: ni1 (object:dpni.1, endpoint: dpdmux.0.1)
# ls-addni dpdmux.0.2
Will allocate 8 DPCON objects for this hash size
[ 5122.169030] fsl_dpaa2_eth dpni.2: Probed interface ni2
Created interface: ni2 (object:dpni.2, endpoint: dpdmux.0.2)

7.3.2.5.2.2  Using the data path layout file (DPL)

A DPDMUX instance can statically be defined in the DPL file:

dpdmux@0 {
       compatible = "fsl,dpdmux";
       options = "DPDMUX_OPT_BRIDGE_EN";
       method = "DPDMUX_METHOD_MAC";
       manip = "DPDMUX_MANIP_NONE";
       control_if = <0>;
       num_ifs = <2>;
       max_dmat_entries = <8>;
       max_mc_groups = <8>;
};

Links are defined in the DPL 'connections' section:

connection@1{
        endpoint1 = "dpdmux@0/if@0";
        endpoint2 = "dpmac@1";
};
connection@2{

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
701 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

        endpoint1 = "dpni@1";
        endpoint2 = "dpdmux@0/if@1";
};
connection@3{
        endpoint1 = "dpni@2";
        endpoint2 = "dpdmux@0/if@2";
};

Based on the above configuration the DPDMUX ports are linked to:

• evb0 (dpdmux@1/if@0) <-> dpmac@1
• evb0p0 (dpdmux@1/if@1) <-> dpni@1
• evb0p1 (dpdmux@1/if@2) <-> dpni@2

Note:  DPDMUX ports connected to a DPMAC must be configured before the others (for example, connected to
DPNIs).

7.3.2.5.3  Setting up the EVB driver

Driver compilation is enabled by default and is controlled by the FSL_DPAA2_EVB option in the kernel's config.
This can be found in menuconfig under the following items:

| -> Device Drivers
|     -> Staging drivers
|         -> Freescale Management Complex (MC) bus driver
|             -> Freescale DPAA2 devices
|                 -> DPAA2 Edge Virtual Bridge

The kernel log will display a message when an EVB is probed as follows:

dpaa2_evb dpdmux.0: probed evb device with 2 ports

After deploying the driver and configuring an EVB (via DLP or restool), the system should present the following
Linux interfaces after typing the 'ifconfig command':

evb0     Link encap:Ethernet HWaddr 00:00:00:00:00:00
         UP BROADCAST RUNNING MASTER MULTICAST MTU:1500 Metric:1
         RX packets:0 errors:0 dropped:0 overruns:0 frame:0
         TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
         collisions:0 txqueuelen:1000
         RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)
evb0p0   Link encap:Ethernet HWaddr 00:00:00:00:00:00
         UP BROADCAST RUNNING SLAVE MULTICAST MTU:1500 Metric:1
         RX packets:0 errors:0 dropped:0 overruns:0 frame:0
         TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
         collisions:0 txqueuelen:1000
         RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)
evb0p1   Link encap:Ethernet HWaddr 00:00:00:00:00:00
         UP BROADCAST RUNNING SLAVE MULTICAST MTU:1500 Metric:1
         RX packets:0 errors:0 dropped:0 overruns:0 frame:0
         TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
         collisions:0 txqueuelen:1000
         RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)

Interface evb0 represents the uplink and is also the handler for the EVB. Each other EVB port has its own
interface. They are used for management and cannot be used for I/O. Any I/O through the EVB must be
performed using the connected interfaces.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
702 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

An EVB only forwards traffic to links that are enabled (peer interface is up) and only if the filtering rules on the
peer interface do not lead to the frame being discarded. One way to ensure that all traffic subject to forwarding
rules is actually forwarded by the EVB is to set the peer interface in promiscuous mode, as follows:

$ ip link set ni0 up promisc on

7.3.2.5.4  EVB commands supported

EVB management can be performed using the following generic Linux networking tools:

• interface up/down (using ifconfig or similar)
• setting large frame size limit (using ifconfig or similar)
• configuring FDB (using bridge fdb)
• configuring VLANs (using bridge vlan)
• configuring multicast groups (using bridge fdb)
• port statistics retrieval (ethtool or similar)

7.3.2.5.4.1  EVB interface control

Any of the EVB ports, or the EVB as a whole, can be enabled/disabled using any of the following commands:

$ ifconfig { evb0pX | evb0 } { up | down }
$ ip link set { evb0pX | evb0 } { up | down }

7.3.2.5.4.2  Maximum frame size configuration

The DPAA2 hardware supports large frames. EVB driver correlates between the Layer-2 maximum frame length
(MFL) and Layer-3 MTUs. The maximum MTU that a Linux user can request on a DPAA2 EVB interface is
10222 bytes. Setting a value on a downlink port or uplink will update the value for all EVB interfaces.
$ ifconfig { evbX | evbXpy } mtu <NN>
$ ip link set { evbX | evbXpY | dev evbXpY } mtu <NN>

Notes:

• Frames larger than the configured MTU will be dropped, so connected Ethernet devices need to have the
same setting.

• All Ethernet devices on the same LAN must have the same MTU to avoid traffic loss.

7.3.2.5.4.3  EVB FDB entries

The EVB method DPDMUX_METHOD_MAC allows configuration of FDB entries via a bridge utility as follows:

$ bridge fdb add 02:00:c0:a8:50:01 dev evb0p0
$ bridge fdb show
02:00:c0:a8:50:01 self permanent
01:00:5e:00:00:01 self permanent

The EVB method DPDMUX_METHOD_C_VLAN_MAC also allows configuration of FDB entries via a bridge
utility as follows:

$ bridge fdb add 02:00:c0:a8:50:02 vlan 10 dev evb0p0 vlan 10
$ bridge fdb show dev evb0p0

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
703 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

02:00:c0:a8:50:02 self permanent
01:00:5e:00:00:01 self permanent

7.3.2.5.4.4  EVB VLAN assignment

The EVB method DPDMUX_METHOD_C_VLAN allows port VLAN assignment via a bridge utility as follows:

$ bridge vlan add vid 10 dev evb0p2
$ bridge vlan show dev evb0p2
port vlan ids
evb0p2 10
$ bridge vlan del vid 10 dev evb0p2

Note:  This method is allowed only for VEPA mode.

7.3.2.5.4.5  EVB port statistics

EVB port statistics are available through ip or similar tools as follows:

$ ip -s link
[...]
9: evb0: <BROADCAST,MULTICAST,MASTER,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast
 state UNKNOWN mode DEFAULT group default qlen 1000
       link/ether 00:00:00:00:00:00 brd ff:ff:ff:ff:ff:ff
       RX: bytes packets errors dropped overrun mcast
       0         0       0      0       0       0
       TX: bytes packets errors dropped carrier collsns
       384       6       0      0       0       0
10: evb0p0: <BROADCAST,MULTICAST,SLAVE,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast
 master evb0 state UNKNOWN mode DEFAULT group default qlen 1000
       link/ether 00:00:00:00:00:00 brd ff:ff:ff:ff:ff:ff
       RX: bytes packets errors dropped overrun mcast
       252       6       0      0       0       0
       TX: bytes packets errors dropped carrier collsns
       0         0       0      0       0       0
[...]

7.3.2.5.5  Forwarding methods overview

A DPAA2 DPDMUX instance can forward traffic using information from various fields in the frame headers:

• Forwarding by destination MAC address
• Forwarding by VLAN tag
• Forwarding by VLAN tag and destination MAC address

7.3.2.5.5.1  Forwarding by destination MAC address

This method forwards frames according to the destination MAC address and the static rules added into the EVB
forwarding database.

It is configured specifying --method="DPDMUX_METHOD_MAC" when the DPDMUX is created. It is the default
value for the ls-addmux script.

Entries are configured in the FDB using bridge fdb command. See Section 7.3.2.5.4.3 section for more
information.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
704 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Configuration example:

# Create a MUX with 2 downlinks and uplink connected to dpmac.1;
# forwarding method is by default DPDMUX_METHOD_MAC
$ ls-addmux -b -d=2 -u=0 dpmac.1
# Create a ni (dpni.1) and links it to evb0p0
$ ls-addni dpdmux.0.1
# Create a ni (dpni.2) and links it to evb0p1
$ ls-addni dpdmux.0.2
# Check MUX configuration
# $ restool dpdmux info dpdmux.0
# Configure ni1
$ ip netns add ns1
$ ip link set ni1 netns ns1
$ ip netns exec ns1 ifconfig ni1 192.168.10.10/24 up
$ ip netns exec ns1 ip link set ni1 promisc on
# Configure ni2
$ ip netns add ns2
$ ip link set ni2 netns ns2
$ ip netns exec ns2 ifconfig ni2 192.168.10.12/24 up
$ ip netns exec ns2 ip link set ni2 promisc on
# Connectivity checks [downlink - uplink ]
$ ip netns exec ns1 ping 192.168.10.13 -c 1
[..]
--- 192.168.10.13 ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
# Check EVB port statistics
$ ip -s link
[...]
4: evb0: <BROADCAST,MULTICAST,MASTER,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast
 state UNKNOWN mode DEFAULT group default qlen 1000
    link/ether 00:00:00:00:00:00 brd ff:ff:ff:ff:ff:ff
    RX: bytes  packets  errors  dropped overrun mcast
    436        6        0       0       0       0
    TX: bytes  packets  errors  dropped carrier collsns
    460        6        0       0       0       0
5: evb0p0: <BROADCAST,MULTICAST,SLAVE,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast
 master evb0 state UP mode DEFAULT group default qlen 1000
    link/ether 00:00:00:00:00:00 brd ff:ff:ff:ff:ff:ff
    RX: bytes  packets  errors  dropped overrun mcast
    364        6        0       0       0       0
    TX: bytes  packets  errors  dropped carrier collsns
    376        5        0       0       0       0
6: evb0p1: <NO-CARRIER,BROADCAST,MULTICAST,SLAVE,UP> mtu 1500 qdisc pfifo_fast
 master evb0 state DOWN mode DEFAULT group default qlen 1000
    link/ether 00:00:00:00:00:00 brd ff:ff:ff:ff:ff:ff
    RX: bytes  packets  errors  dropped overrun mcast
    0          0        0       0       0       0
    TX: bytes  packets  errors  dropped carrier collsns
    0          0        0       0       0       0

7.3.2.5.5.2  Forwarding by VLAN tag

This method forwards frames according to the VLAN tag of the frame, as set into the customer tag of the
double-tagged frames.

It is configured specifying --method="DPDMUX_METHOD_C_VLAN" when EVB is in VEPA mode (--
options="DPDMUX_OPT_BRIDGE_EN" is not set).

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
705 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

EVB port VLAN assignment is done with "bridge vlan command. See Section 7.3.2.5.4.4 section for more
information.

Configuration example:
# Create a MUX with DPDMUX_METHOD_C_VLAN forwarding method,
# configured as a VEPA and with 2 downlinks and uplink connected
# to dpmac.1
$ ls-addmux -v -m=DPDMUX_METHOD_C_VLAN -d=2 dpmac.1
# Create a ni (dpni.1) and link it to evb0p0
$ ls-addni dpdmux.0.1
# Create a ni (dpni.2) and link it to evb0p1
$ ls-addni dpdmux.0.2
# Configure ni1
$ ip netns add ns1
$ ip link set ni1 netns ns1
$ ip netns exec ns1 ip link add link ni1 name ni1.6 type vlan id 6
$ ip netns exec ns1 ifconfig ni1.6 192.168.6.10
$ ip netns exec ns1 ip link set ni1 up
$ ip netns exec ns1 ip link set ni1 promisc on
# Configure ni2
$ ip netns add ns2
$ ip link set ni2 netns ns2
$ ip netns exec ns2 ip link add link ni2 name ni2.7 type vlan id 7
$ ip netns exec ns2 ifconfig ni2.7 192.168.7.12
$ ip netns exec ns2 ip link set ni2 up
$ ip netns exec ns2 ip link set ni2 promisc on
# For the downlinks interfaces also add the VLAN ids
$ bridge vlan add vid 6 dev evb0p0
$ bridge vlan add vid 7 dev evb0p1
# Connectivity checkings [example for downlink - uplink ]
$ ip netns exec ns1 ping -I ni1.6 192.168.6.13 -c 1
# Check VLAN assignment
$ bridge vlan show

7.3.2.5.5.3  Forwarding by VLAN tag and destination MAC address

This method forwards frames according to the VLAN tag and the destination MAC address of the frame.

It is configured specifying --method="DPDMUX_METHOD_C_VLAN_MAC" when the DPDMUX is created.

Entries are configured in the FDB using bridge fdb command. See Section 7.3.2.5.4.3 section for more
information.

Configuration example:
# Create a MUX with DPDMUX_METHOD_C_VLAN_MAC forwarding method,
# configured as a VEB and with 2 downlinks and uplink connected
# to dpmac.1
$ ls-addmux -m=DPDMUX_METHOD_C_VLAN_MAC -d=2 dpmac.1
# Create a ni (dpni.1) and link it to evb0p0
$ ls-addni dpdmux.0.1
# Create a ni (dpni.2) and link it to evb0p1
$ ls-addni dpdmux.0.2
# Configure ni1
$ ip netns add ns1
$ ip link set ni1 netns ns1
$ ip netns exec ns1 ip link add link ni1 name ni1.6 type vlan id 6
$ ip netns exec ns1 ifconfig ni1.6 192.168.6.10
$ ip netns exec ns1 ip link set ni1 up
$ ip netns exec ns1 ip link set ni1 promisc on

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
706 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

# Configure ni2
$ ip netns add ns2
$ ip link set ni2 netns ns2
$ ip netns exec ns2 ip link add link ni2 name ni2.7 type vlan id 7
$ ip netns exec ns2 ifconfig ni2.7 192.168.7.12
$ ip netns exec ns2 ip link set ni2 up
$ ip netns exec ns2 ip link set ni2 promisc on
# For the downlinks interfaces, you would also need to add
# the downlinks MACs to fdb table
$ bridge fdb add 4a:64:0a:af:14:a2 dev evb0p0 vlan 6
$ bridge fdb add 62:9c:86:0f:f7:cf dev evb0p1 vlan 7
# Connectivity checkings [example for downlink - uplink ]
$ ip netns exec ns1 ping -I ni1.6 192.168.6.13 -c 1
# Check EVB FDB entries
$ bridge fdb show

7.3.2.6  Security Engine (SEC)

This section describes the software for the SEC hardware block that is part of the DPAA2 family of SoCs.

7.3.2.6.1  Introduction

This section focusses on DPAA2-specific SEC details - Data Path SEC Interface (DPSECI) backend and
frontend drivers.

• JRI - the common Job Ring Interface (on which QI is currently dependent)
• crypto algorithms supported by each backend (RI, JRI, QI, DPSECI)
• kernel configuration - how to build backend and frontend drivers
• how to make sure the algorithms registered successfully
• how to check that crypto requests are being offloaded on SEC engine

On SoCs with DPAA v2.x, DPSECI backend can be used to submit crypto API service requests from the
frontend drivers. The corresponding frontend compatible with DPSECI backend is caamalg_qi2, which supports
symmetric encryption and AEAD algorithms-based crypto API service requests.

The Linux driver automatically sets the enable bit for the SEC hardware's Queue Interface (QI), depending on
QI feature availability in the hardware. This enables the hardware to also operate as a DPAA component for
use by for example, USDPAA apps. This behavior does not conflict with normal in-kernel job ring operation,
other than the potential performance-observable effects of internal SEC hardware resource contention, and vice
versa.

7.3.2.6.2  Module loading

The DPSECI backend driver (dpseci) is compiled built-in, while the DPSECI frontend driver (dpaa2_caam) is
compiled, by default, as module (though it can also be compiled built-in). In this case, it has to be probed before
dynamically creating dpseci objects with restool:

$ modprobe dpaa2_caam

Without any parameter, the dpseci object being created has 2 pairs of (rx,tx) queues.

$ restool dpseci create $ restool dprc assign dprc.1 --object=dpseci.0 --
plugged=1

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
707 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

To create 8 (maximum) number of queues:

$ restool dpseci create --num-queues=8 --priorities=1,2,3,4,5,6,7,8 $ restool
 dprc assign dprc.1 --object=dpseci.0 --plugged=1

More options can be displayed by using:

$ restool dpseci create --help

The list of algorithms registered by the dpaa2_caam driver is available in /proc filesystem:

$ grep caam-qi2 /proc/crypto

7.3.2.6.3  Enabling congestion management

Congestion management can be enabled when working with an MC that has a DPSECI object version greater
or equal to 5.1. The first MC firmware version that supports the congestion management feature is 10.2.
Enabling congestion management is done when creating the DPSECI object:

$ restool dpseci create --num-queues=8 --priorities=1,2,3,4,5,6,7,8 --
options="DPSECI_OPT_HAS_CG" $ restool dprc assign dprc.1 --object=dpseci.0 --
plugged=1

7.3.2.6.4  Source files

The driver source files are maintained in the Linux kernel source tree: drivers/crypto/caam.

7.3.2.6.5  How to test the driver

To test the driver, in the kernel configuration menu, under "Cryptographic API -> Cryptographic
algorithm manager", ensure that run-time self-tests are not disabled, that is the "Disable run-time
self tests" entry is not set (CONFIG_CRYPTO_MANAGER_DISABLE_TESTS=n). This will run standard
test vectors against the driver after the driver registers its supported algorithms with the kernel crypto API. To
verify if the 'selftest' fields have 'passed', the /proc/crypto entries should be checked. An entry such as this:

name         : cbc(aes)
driver       : cbc-aes-caam-qi2
module       : kernel
priority     : 2000
refcnt       : 1
selftest     : passed
internal     : no
type         : givcipher
async        : yes
blocksize    : 16
min keysize  : 16
max keysize  : 32

means the driver has successfully registered support for the algorithm with the kernel crypto API. Note that
although a test vector may not exist for a particular algorithm supported by the driver, the kernel will emit
messages saying which algorithms weren't tested, and mark them as passed anyway. The driver's capabilities
can also be tested with tcrypt testing framework available in linux kernel by selecting "Cryptographic API
-> Testing module" (also Disable run-time self tests should be unchecked). A kernel module

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
708 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

will be generated: crypto/tcrypt.ko. This has to be copied on the target. Then on target, after a dpseci object is
registered:

$ insmod tcrypt.ko mode=10

Other ways to test with tcrypt:

• functional testing:
– mode=3, 4, 35, 150, 152, 155, 181-191;
– alg="algorithm_name"

• speed (sec - seconds parameter is optional):
– mode=500 [sec=1] - xxx(aes) acipher_speed
– mode=501 [sec=1] - xxx(3des) acipher_speed
– mode=502 [sec=1] - xxx(des) acipher_speed and so on

There is no need to rmmod, tcrypt does not stay "resident", it exits after running the tests. That's why you will
see:

insmod: ERROR: could not insert module tcrypt.ko: Resource temporarily

For algorithms not supported, errors like below will be shown:

[ 2650.067737] failed to load transform for rmd128: -2
[ 2650.076480] failed to load transform for rmd160: -2
[ 2650.085099] failed to load transform for rmd256: -2
[ 2650.093739] failed to load transform for rmd320: -2

These are expected. Algorithm names registered by dpaa2_caam frontend driver are ending in "-caam-qi2".

To verify the operation and correctness of the driver, other than noting the performance advantages due to the
crypto offload, one can also ensure the h/w is doing the crypto by looking for driver messages in dmesg. The
driver emits console messages at initialization time:

$ dmesg | grep dpaa2_caam
[ 1172.598591] dpaa2_caam dpseci.0: Opened dpseci object successfully
[ 1172.619979] dpaa2_caam dpseci.0: prio 0: rx queue 135, tx queue 119
[ 1172.626633] dpaa2_caam dpseci.0: prio 1: rx queue 136, tx queue 128
[ 1172.633278] dpaa2_caam dpseci.0: prio 2: rx queue 137, tx queue 129
[ 1172.639915] dpaa2_caam dpseci.0: prio 3: rx queue 138, tx queue 130
[ 1172.646555] dpaa2_caam dpseci.0: prio 4: rx queue 139, tx queue 131
[ 1172.653195] dpaa2_caam dpseci.0: prio 5: rx queue 140, tx queue 132
[ 1172.659831] dpaa2_caam dpseci.0: prio 6: rx queue 141, tx queue 133
[ 1172.666470] dpaa2_caam dpseci.0: prio 7: rx queue 142, tx queue 134
[ 1172.694319] dpaa2_caam dpseci.0: DPSECI version 3.0
[ 1172.700617] dpaa2_caam dpseci.0: algorithms registered in /proc/crypto

Given a time period when crypto requests are being made, the SEC h/w will fire completion notification
interrupts:

$ cat /proc/interrupts | grep DPIO

If the number of interrupts fired increment, then the h/w is being used to do the crypto. If the numbers do not
increment, then check if the algorithm being exercised is supported by the driver.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
709 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

7.3.2.6.6  Running OpenSSL

Some of the OpenSSL cryptographic operations (for example, TLS 1.0 record layer encryption, some non-
protocol-specific crypto algorithms) can be offloaded to Linux kernel (and then further to SEC crypto engine) via
cryptodev module.

Running IPsec

IPsec can be configured and used for NXP boards taking advantage of the cryptographic acceleration provided
by the CAAM engine. Below is the description of the setup used to test IPsec traffic between two LS2088ARDB
boards.

Figure 144. IPsec tunnels

Traffic is generated from the Test Center on Port 1 as 64 flows. A flow is defined as a stream of packets that
has a unique pair of values for IP source and IP destination. In our configuration the IP source ranges from
192.85.1.2 to 192.85.1.9 and the IP destination ranges from 192.86.1.2 to 192.86.1.9. The flows are received
on the network interface ni0 of the left board, encapsulated and then sent over the ni1 network interface to the
right board. Here the flows are decapsulated and routed to the network interface ni0 toward the Port 2 of the
Test Center. A similar traffic, of 64 flows, is sent from Port 2 to Port 1 of the Test Center.

Board Bootup

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
710 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Each LS2088ARDB board must be set up and configured properly. For more information about the booting
process, see NXP Soc Booting Principles. For more details on the specifics of LS2088ARDB board boot,
see Section 3.7.9. This paragraph only provides some custom values and configuration files used for booting
the LS2088ARDB board while testing IPSec. Although using the default configuration may work, we strongly
encourage using the values/configuration files chosen below.

• While in the U-Boot prompt, make sure that the variable "mcmemsize" is set to 0x80000000. This will ensure
that enough memory was allocated to MC. See DPAA2 specific Environment variables for more details.

• Use the files "dpl.dts" and "dpc.dts" provided under the title "Useful Resources". They provide a minimum
viable MC configuration that will enable IPSec testing. Both are in the .dts file format. To use them to configure
the MC,, you need to compile them using the "dtc" compiler to obtain the "dtb" files:

$ dtc -O dtb -I dts -o dpc.dtb dpc.dts
$ dtc -O dtb -I dts -o dpl.dtb dpl.dts

For more information about MC resource files,see Section 7.3.2.2.

Linux setup

When the Linux console prompt is presented to the user (after inserting the user name and password),, the
following actions must be taken:

• Create DPSECI object and assign them to a DPRC. Make sure to enable congestion management for the
DPSECI object.

$ restool dpseci create --num-queues=8 --priorities=1,2,3,4,5,6,7,8 --
options="DPSECI_OPT_HAS_CG" $ restool dprc assign dprc.1 --object=dpseci.0 --
plugged=1

• Create the IPSec tunnels for each board (left/right) using the script "iproute_128tunnels.sh". The script takes
as parameter the board position (left/write) and uses it to configure each board accordingly. The script can be
found in the "Useful Resources" section. You can create your own copy on the board by copying and pasting
the content to a local script file, preserving the name.
To create the tunnels on the left board run:

$ ./iproute_128tunnels.sh left

To create the tunnels on the right board run:

$ ./iproute_128tunnels.sh right

• Disable flow control on board for both ni0 and ni1.

$ ethtool -A ni0 rx off
$ ethtool -A ni0 tx off
$ ethtool -A ni1 rx off
$ ethtool -A ni1 tx off

Note:  The flow control must be either on or off but must match the settings of the Test Center. The situation
where the Test Control and the boards don't match causes resource in the boards to be oversubscribed which
in turn will lead to memory corruption.

Running the Test
After Spirent Test Center application is configured and the testing Ethernet interfaces are connected to the traffic
generator, start to generate traffic to measure IPv4 SEC & Forward throughput.

Useful resources

• The "iproute_128tunnels.sh" script
#!/bin/bash
eth0=ni0
eth1=ni1
make_esp_tunnel() {

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
711 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

echo "add $1 $2 esp 0x$3 -m tunnel
    -E $4  0x7aeaca3f87d060a12f4a4487d5a5c3355920fae69a96c831
    -A hmac-sha1 0xe9c43acd5e8d779b6e09c87347852708ab49bdd3;" | setkey -c
echo "add $2 $1 esp 0x`expr $3 + 100` -m tunnel
    -E $4  0xf6ddb555acfd9d77b03ea3843f2653255afe8eb5573965df
    -A hmac-sha1 0xea6856479330dc9c17b8f6c37e2a895363d83f21;" | setkey -c
}
make_esp_policy() {
if [ $1 == left ]
then
    dir1=out
    dir2=in
    echo "spdadd $2 $3 any -P $dir1 ipsec
           esp/tunnel/$4-$5/require;" | setkey -c
    echo "spdadd $3 $2 any -P $dir2 ipsec
           esp/tunnel/$5-$4/require;" | setkey -c
else
    dir1=in
    dir2=out
    echo "spdadd $2 $3 any -P $dir1 ipsec
           esp/tunnel/$4-$5/require;" | setkey -c
    echo "spdadd $3 $2 any -P $dir2 ipsec
           esp/tunnel/$5-$4/require;" | setkey -c
fi
}
# Flush the SAD and SPD
setkey -F
setkey -FP
# set ip address
left_addr_ip=192.85.1.1
right_addr_ip=192.86.1.1
left_src_mac=00:10:94:00:00:01
right_src_mac=00:10:94:00:00:02
proto="aes-cbc"
base1=200
base2=200
echo 1 > /proc/sys/net/ipv4/ip_forward
case $1 in
        left)
                ifconfig $eth0 $left_addr_ip
                i=2
                for((j=2;j<10;j++))
                do
                    arp -s 192.85.1.$j $left_src_mac -i $eth0
                    for((k=2;k<10;k++))
                    do
                    if [ $base2 == 256 ]
                    then
                        base2=`expr $base2 - 256`
                        base1=`expr $base1 + 1`
                    fi
                    ip addr add 200.$base1.$base2.10/24 dev $eth1
                        make_esp_policy $1 192.85.1.$j 192.86.1.$k 200.$base1.$base2.10 200.$base1.$base2.20
                        make_esp_tunnel 200.$base1.$base2.10 200.$base1.$base2.20 `expr 200 + $i` $proto
                        ((base2++))
                        ((i++))
                    done
                done
            ;;
        right)
                ifconfig $eth0 $right_addr_ip
                i=2
                for((j=2;j<10;j++))
                do
                    arp -s 192.86.1.$j $right_src_mac -i $eth0
                    for((k=2;k<10;k++))
                    do
                    if [ $base2 == 256 ]
                    then
                        base2=`expr $base2 - 256`
                        base1=`expr $base1 + 1`
                    fi
                    ip addr add 200.$base1.$base2.20/24 dev $eth1
                        make_esp_policy $1 192.85.1.$j 192.86.1.$k 200.$base1.$base2.10 200.$base1.$base2.20
                        make_esp_tunnel 200.$base1.$base2.10 200.$base1.$base2.20 `expr 200 + $i` $proto
                        ((base2++))
                        ((i++))
                    done
                done
            ;;
esac
ifconfig $eth1 up
route add default dev $eth1

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
712 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

• The "dpc.dts" configuration file
/dts-v1/;
/ {
  mc_general {
    log {
      mode = "LOG_MODE_ON";
      level = "LOG_LEVEL_WARNING";
    };
    console {
      mode = "CONSOLE_MODE_ON";
      uart_id = <3>;
    };
  };
  resources {
    icid_pools {
      icid_pool@1 {
        num = <0x64>;
        base_icid = <0x0>;
      };
    };
  };
  controllers {
    qbman {
      total_bman_buffers = <0xe0000>;
      wq_ch_conversion = <32>;
    };
  };
  board_info {
    ports {
    };
  };
};

• The "dpl.dts" configuration file
/dts-v1/;
/ {
  dpl-version = <10>;
    /*****************************************************************
         * Containers
         *****************************************************************/
    containers {
  dprc@1 {
      parent = "none";
      options = "DPRC_CFG_OPT_SPAWN_ALLOWED" , "DPRC_CFG_OPT_ALLOC_ALLOWED",
 "DPRC_CFG_OPT_IRQ_CFG_ALLOWED";
      objects {
    /* ------------- MACs --------------*/
    obj_set@dpmac {
        type = "dpmac";
        ids = <1 2 3 4 5 6 7 8>;
    };
    /* ------------ DPNIs --------------*/
    obj_set@dpni {
        type = "dpni";
        ids = <0 1>;
    };
    /* ------------ DPBPs --------------*/
    obj_set@dpbp {
        type = "dpbp";
        ids = <0 1>;
    };
    /* ------------ DPIOs --------------*/
    obj_set@dpio {
        type = "dpio";
        ids = <0 1 2 3 4 5 6 7>;
    };
    /* ------------ DPMCPs --------------*/
    obj_set@dpmcp {
        type = "dpmcp";
        ids = <1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16>;
    };
    /* ------------ DPCON --------------*/
    obj_set@dpcon {

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
713 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

        type = "dpcon";
        ids = <0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15>;
    };
      };
  };
    };
    /*****************************************************************
     * Objects
     *****************************************************************/
    objects {
  /* ------------ DPNI --------------*/
  dpni@0 {
    type = "DPNI_TYPE_NIC";
    options = "";
    num_queues = <8>;
    num_tcs = <1>;
    mac_filter_entries = <16>;
    vlan_filter_entries = <0>;
    fs_entries = <0>;
    qos_entries = <0>;
  };
  dpni@1 {
    type = "DPNI_TYPE_NIC";
    options = "";
    num_queues = <8>;
    num_tcs = <1>;
    mac_filter_entries = <16>;
    vlan_filter_entries = <0>;
    fs_entries = <0>;
    qos_entries = <0>;
  };
  /* ------------ DPBP --------------*/
  dpbp@0 {
  };
  dpbp@1 {
  };
  /* ------------ DPIO --------------*/
  dpio@0 {
      channel_mode = "DPIO_LOCAL_CHANNEL";
      num_priorities = <8>;
  };
  dpio@1 {
      channel_mode = "DPIO_LOCAL_CHANNEL";
      num_priorities = <8>;
  };
  dpio@2 {
      channel_mode = "DPIO_LOCAL_CHANNEL";
      num_priorities = <8>;
  };
  dpio@3 {
      channel_mode = "DPIO_LOCAL_CHANNEL";
      num_priorities = <8>;
  };
  dpio@4 {
      channel_mode = "DPIO_LOCAL_CHANNEL";
      num_priorities = <8>;
  };
  dpio@5 {
      channel_mode = "DPIO_LOCAL_CHANNEL";
      num_priorities = <8>;
  };
  dpio@6 {
      channel_mode = "DPIO_LOCAL_CHANNEL";
      num_priorities = <8>;
  };
  dpio@7 {
      channel_mode = "DPIO_LOCAL_CHANNEL";
      num_priorities = <8>;
  };
  /* ------------ DPMAC --------------*/
  dpmac@1 {
  };
  dpmac@2 {
  };
  dpmac@3 {

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
714 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

  };
  dpmac@4 {
  };
  dpmac@5 {
  };
  dpmac@6 {
  };
  dpmac@7 {
  };
  dpmac@8 {
  };
  /* ------------ DPMCP --------------*/
  dpmcp@1 {
  };
  dpmcp@2 {
  };
  dpmcp@3 {
  };
  dpmcp@4 {
  };
  dpmcp@5 {
  };
  dpmcp@6 {
  };
  dpmcp@7 {
  };
  dpmcp@8 {
  };
  dpmcp@9 {
  };
  dpmcp@10 {
  };
  dpmcp@11 {
  };
  dpmcp@12 {
  };
  dpmcp@13 {
  };
  dpmcp@14 {
  };
  dpmcp@15 {
  };
  dpmcp@16 {
  };
  /* ------------ DPCON --------------*/
  dpcon@0 {
      num_priorities=<2>;
  };
   dpcon@1 {
      num_priorities=<2>;
  };
  dpcon@2 {
      num_priorities=<2>;
  };
   dpcon@3 {
      num_priorities=<2>;
  };
  dpcon@4 {
      num_priorities=<2>;
  };
   dpcon@5 {
      num_priorities=<2>;
  };
  dpcon@6 {
      num_priorities=<2>;
  };
   dpcon@7 {
      num_priorities=<2>;
  };
  dpcon@8 {
      num_priorities=<2>;
  };
   dpcon@9 {
      num_priorities=<2>;
  };

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
715 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

  dpcon@10 {
      num_priorities=<2>;
  };
   dpcon@11 {
      num_priorities=<2>;
  };
  dpcon@12 {
      num_priorities=<2>;
  };
   dpcon@13 {
      num_priorities=<2>;
  };
  dpcon@14 {
      num_priorities=<2>;
  };
   dpcon@15 {
      num_priorities=<2>;
  };
   };
    /*****************************************************************
     * Connections
     *****************************************************************/
    connections {
  connection@0{
      /* First copper port (ETH0 on the RDB chassis) */
      endpoint1 = "dpni@0";
      endpoint2 = "dpmac@1";
  };
  connection@1{
      /* Second copper port (ETH1 on the RDB chassis) */
      endpoint1 = "dpni@1";
      endpoint2 = "dpmac@2";
  };
    };
};

7.3.2.6.7  Supporting Documentation

General SEC information, Job Ring Interface (JRI)

DPAA1-specific SEC details - Queue Interface (QI)

7.3.3  DPAA2 Standard Linux Documentation

Following is a summary of relevant documentation from standard Linux sources and formats. It provides links to
these documents, provides a snapshot of the document, or both.

7.3.3.1  Kernel Documentation Directory

The Linux kernel source code contains a documentation directory, and there is some information there that
is relevant to DPAA2. It is possible to see the upstream versions of these documents by going to https://
www.kernel.org/ and browsing the Linux source code trees.

7.3.3.2  DPAA2 Resource Management Tool (restool) User Manual

Restool is a Linux user space program that allows DPAA2 objects to be created, destroyed, and manipulated.
Its primary documentation is in the style of a Linux man page.

The Management Complex architecture uses a hardware object called a “container” (or DPRC) to hold I/O
resources and hardware objects for use by GPP software contexts.

DPRCs can be created and populated in two different ways:

• at MC initialization during system boot in a configuration file called a “DPL file”

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
716 / 1061

https://www.kernel.org/doc/html/latest/networking/device_drivers/ethernet/freescale/dpaa2/overview.html
https://www.kernel.org/doc/html/latest/networking/device_drivers/ethernet/freescale/dpaa2/overview.html


NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

• dynamically at runtime

This document describes how restool can be used to do dynamic management of MC resources in the context
of Linux. Key resource management operations include:

• Listing containers and their contents

$ restool dprc list
$ restool dprc show dprc.1 dprc.1 contains 106 objects:
object    label    plugged-state 
dpni.3 plugged     
dpni.2 plugged 
dpni.1 plugged 
(...)

• Creating/destroying containers

$ restool dprc create dprc.1 dprc.2 is created under dprc.1
$ restool dprc destroy dprc.2
dprc.2 is destroyed

• Creating/destroying new MC objects. Allthe DPAA2 MC objects can be created or destroyed using the
following format of a restool command. Depending on the type of object, there will be differentconfiguration
options available.

$ restool dpXY create
$ restool dpXY destroy dpXY.Z

For an up-to-date list of all possible create time options, please consult the help text available for each type of
object.

$ restool dpXY create --help

Foran easier setup, the restool package also provides some helper scripts to help in setting up the
environment:ls-addni,ls-addsw,ls-addmux,ls-debug. Consult their help texts as well for the full list of
options.

• Move object between parent container and child container:

$ restool dprc assign dprc.x --child=dprc.y --object=dpni.z

• Establishing connections between MC objects:

$ restool dprc connect dprc.x --endpoint1=dpxy.z --endpoint2=dpxy.z$ restool
 dprc connect dprc.x --endpoint1=dpxy.z --endpoint2=dpxy.z

7.3.4  DPAA2 User Manual

DPAA2 is a hardware-level networking architecture found on some NXP SoCs. This section provides technical 
information on this architecture mainly for software developers.

Click here to access the DPAA2 User Manual PDF.

7.3.5  Soft Parser Support

7.3.5.1  Soft Parser Configuration Tool

7.3.5.1.1  Introduction

The Soft Parser Configuration (SPC) tool allows users to extend the hard parser's capabilities to support custom 
protocols that are not supported by the hardware parser.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
717 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

7.3.5.1.2  Defining a custom protocol

The soft parser tool defines custom protocols using xml files, based on the NetPDL standard. It is important to
note that even though the language used in the xml files is based on NetPDL, it doesn't follow its rules strictly;
therefore, it is highly recommended to read this document.

XML rules: The xml document follows standard xml rules. The document is composed of several elements.
Each element begins with a start tag and can contain attributes or child elements. If the element contains child
elements, it must have a corresponding end-tag after them. An element without child elements, must end with a
slash (/). Note that element and attribute names are always case-sensitive.

In the custom protocol xml these names will not contain capital letters.

Comments always begin with "<!--" and end with "-->"

For example:

<element attribute1="value">    <!-- this is a comment -->
<child-element myAttribute="4"/>
</element>
<another-element attribute2="value2"/>

7.3.5.1.2.1  The <netpdl> element

The custom protocols document always begins with the <netpdl> root element. The end tag of the netpdl
element should appear in the end of the document.

Attributes: No required attributes

Child elements: protocol

For example:

<netpdl>
…
</netpdl>

7.3.5.1.2.2  The <protocol> element

Each document can define one or more protocols. Every protocol should be defined separately within its own
protocol element.

Attributes:

• Name – Required, possible value: string.

Defines a unique name for each protocol.

• Longname – Optional attribute, possible value: string.

Defines the name of the protocol for display purposes.

• Prevproto – Required, possible value: protocol name, the following previous protocols are supported:

The following table lists the protocols supported in the prevproto attribute:

Protocol Layer

ethernet 2

Table 116. Protocols supported in the prevproto attribute

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
718 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Protocol Layer

llc_snap 2

vlan 2

vxlan 2

pppoe 2

mpls 2

arp 2

ip 3

ipv4 3

ipv6 3

gre 3

minencap 3

otherl3* 3

tcp 4

udp 4

ipsec_ah 4

ipsec_esp 4

sctp 4

dccp 4

otherl4* 4

gtp 5

esp 5

finalshell 5

otherl5* 5

Table 116. Protocols supported in the prevproto attribute...continued

The prevproto attribute defines the previous protocol. The current custom protocol will be invoked only after the
parser encounters the defined previous protocol. In the before section, the soft parser will have access to all the
fields defined in the previous protocol.

Note:  * The softparser xml has a somewhat different structure and behavior when otherl3 or otherl4 are defined
as the previous protocol. See Section 2.2.1

Child Elements:

Format, execute-code

Example:

<protocol name="gtpu" longname="GTP-U" prevproto="#udp">
…
</protocol>
<protocol name="tcpExt" longname="tcp extension" prevproto="#tcp">
…
</protocol>

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
719 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Use of “otherl3/otherl4/otherl5” as previous protocols

When otherl3 or otherl4 are defined as previous protocols (in the prevproto attribute of the protocol element),
the custom protocol and previous protocol refer to the same position in the frame window. The otherl3 and
otherl4 protocols have no defined size or defined fields, they are considered only as entry points for the
softparser (or as termination points) and therefore they share the same starting offset with the custom protocol.

Since the otherl3/otherl4 only act as a link to the software parser, and hold no separate header which can be
parsed, the before element cannot exist when these protocols are defined as the previous protocol.

7.3.5.1.2.3  The <format> element

The format element defines the format of the protocol header.

Attributes: None

Child Elements: Field

7.3.5.1.2.4  The <fields> element

The fields element defines the fields of the protocol header.

Attributes: None

Child Elements: Field

7.3.5.1.2.5  The <field> element

The field element defines a specific field in the custom protocol.

Attributes:

• Type – Required, possible values: "fixed" (for fields of byte-length size), "bit" (for fields of bit-length size).
• Size – Required, possible values: integer. The size of the field is in bytes.

• Name – Required, possible values: string. Unique name for the field.

• longname – Optional, possible values: string. Defines the name of the field for display purposes.

• Mask - Required only for bit fields, possible values: integer. Defines the specific bits in the current bytes which
belong to this field.

The field elements appear one after the other and define the protocol's header frame. The first field begins
in the first byte of the custom protocol's frame header, and its size is determined by the size attribute. The
following fields follow the following rules:

• A fixed field or a field following a fixed field begins in the next byte which is the previous field's offset + the
previous field's size.

• A bit field following a bit field begins in the next byte only if the last bit in the previous field's mask is 1.
• If two fields share the same offset (possible only when both fields are bitfields and the mask of the first field

doesn't end with 1), they should have the same value in the size attribute.

Example:

<format>
<fields>
<field type="bit"     name="flags"      mask="0xE0" size="1"/>
<field type="bit"     name="pt"           mask="0x80" size="1"/>
<field type="bit"     name="version"  mask="0x07" size="1"/>

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
720 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

<field type="fixed" name="mtype"                           size="1"/>
<field type="fixed" name="length"                           size="2"/>
</fields>
</format
<format>
<fields>
<field type="bit" name="version" mask="0xE0" size="1"/>
<field type="bit" name="pt" mask="0x10" size="1"/>
<field type="bit" name="flags" mask="0x07" size="1"/>
<field type="bit" name="flags1" mask="0x01" size="1"/>
<field type="bit" name="flags2" mask="0x10" size="1"/>
<field type="bit" name="flags3" mask="0x02" size="1"/>
<field type="fixed” name="mtype"      size="1" longname="message type"/>
<field type="fixed” name="length"     size="2" />
</fields>
</format>
The fields will be stored in the following bit offsets in the custom protocols
 header:
Version – 0-2
Pt         - 3-3
Flags   - 5-7
flags1 – 15-15
flags2 – 19-19
flags3 – 22-22
mtype – 24-31
length – 32-47

7.3.5.1.2.6  The <execute-code> element

This section contains all the code which should be executed for this custom protocol once the previous protocol
has been reached. This element contains two child elements, before and after. At least one of the child
elements must exist. If both child elements exist, the before element must appear before the after element.

Attributes: None

Child elements: before and after.

Example:

<execute-code>
<before>
…
</before>
<after headersize = "8">
</after>
</execute-code>

7.3.5.1.2.7  The <before> element

This section contains code which should be executed once the previous protocol has been encountered but
before ensuring that the current frame belongs to the custom protocol. In other words, this code is usually used
to confirm that the next frame belongs to the custom protocol and to perform any necessary preparations that
are needed before processing the custom protocol header.

When the code in this section is analyzed, the frame window still points to the previous protocol's header and
therefore the $FW variable still accesses the previous protocol in the before sections and the $headerSize

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
721 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

variable returns the header size of the previous protocol. It is also possible to access specific fields from the
previous protocol's header but not from the current protocol.

After the softparser reaches the end of the before section, the frame window moves to the custom protocol (as
explained in the after section below). If no after element exists, the softparser jumps back to the hardparser at
end of the before section.

The before element may only appear once in the execute-code element, and if an after element exists, it
must appear after the before element.

Attributes: none

Child Elements: if, switch, assign, action

Note:  When the previous protocol is otherl3 or otherl4, the previous protocol and the custom protocol are
treated as the same and begin in the same offset in the frame window. Therefore, the before section cannot
exist when the previous protocol is otherl3 or otherl4, and only an after element can be defined. See section
2.2.1 for more details.

7.3.5.1.2.8  The <after> element

This section contains the code which should be executed when a frame from the current custom protocol has
been encountered. In contrast to the 'before' section, in the 'after' section it is possible to access fields from the
current protocol, but not from the previous protocol. In the after section, the $FW variable accesses the current
custom protocol and the $headerSize variable returns the header size of the current custom protocol.

After the end of the section, the frame window jumps to the end of the custom protocol's header and the
program jumps back to the hardparser.

The after element may only appear once in the execute-code element, and if a before element exists, it
must appear before the after element.

Attributes:

• headerSize – Optional, possible values: arithmetic expression, default value: calculated according to format
element.

The user can define the header size for the custom protocol in this attribute. This information is needed to return
to the parser exactly after the custom protocol header. If the header size isn't specified, the SPC assumes
that the fields defined in the format element are the only fields in the custom protocol header and calculates
the header size according to those fields. The $headerSize variable in the after section returns the value
defined in this attribute (or the value calculated by default if the attribute is missing).

Child Elements: if, switch, assign, action

For example:

<protocol name="gtp" prevproto="#udp">
<format>
<fields>
<field type="bit" name="version" mask="0xE0" size="1"/>
</fields>
</format>
<execute-code>
<before>
<assign-variable name="$GPR1" value="udp.dport"/>
<!--ILLEGAL: <assign-variable name="$GPR1" value="version" -->
<assign-variable name="$shimr" value="$headerSize"/>
<!-- shimresult now holds udp's header size -->
</before>

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
722 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

<after headersize="4">
<!--ILLEGAL:<assign-variable name="$GPR1" value="udp.dport"> -->
<assign-variable name="$GPR1" value="version"/>
<assign-variable name="$shimr" value="$headerSize"/>
<!-- shimresult now equals 4-->
</after>
</execute-code>
</protocol>

7.3.5.1.2.9  Elements in the before and after sections

This section describes the elements in the before and after sections.

The <assign-variable> element

The assign-variable element assigns an expression to a variable.

Attributes:

• name – Required, possible values: RA variables. The name of the variable which will be assigned a value.

• value – Required, possible value: arithmetic expression. The expression assigned to the variable.

Child Elements: None

Example:

<assign-variable name="$shimoffset_2" value="$shimoffset_1+12"/>

The <if> element

The if element makes it possible to execute parts of the code only if certain conditions are met.

Attributes:

• Expr – Required, possible values: logical expression. Defines the condition which should be checked before
executing the code.

Child Elements: if-true (required), if-false

Example

<if expr="$shimoffset_3==1">
<if-true>
…
</if-true>
<if-false>
</if-false>
</if>

<if-true>

The if-true element defines code which should be executed if the expression defined in the 'if' element is true.

Attributes: none

Child elements: If, switch, assign, action (same child elements as in the before/after sections)

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
723 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

<if-false>

The if-false element defines code which should be executed if the expression defined in the 'if' element is false.

Attributes: none

Child elements: If, switch, assign, action (same child elements as in the before/after sections)

The <switch> element

The switch element defines an expression and a set of cases with values and code which should be executed if
the value equals the expression. Each 'switch' element must have at least one 'case' child element.

Note: Only the code of the first case which matches the expression is executed, the rest of the values will be
skipped (in c language terms - a break is automatically added after the code of each case).

Attributes:

• expr – Required, possible values: arithmetic expression.

Defines the value being checked.

Child Elements: Case and Default

Example:

<switch expr="$ShimOffset_3+1">
<case value="2">
<assign-variable name="$GPR1[1:1]" value="0"/>
</case>
<case value="3" maxvalue="4">
<assign-variable name="$GPR1[1:1]" value="1"/>
</case>
<default>
<assign-variable name="$GPR1[1:1]" value="2">
</default>
</switch>

The <case> element

The case element matches a value or range of values against the switch expression.

Attributes:

• value – Required, possible values: Integer. If the value equals the switch expression and no earlier case has
been matched, the code in the case element is executed.

• maxvalue – Optional, possible values: Integer. If the switch expression is equals or is larger than value and
the expression equals or is smaller than maxvalue, and no earlier case has been matched, the code in the
case element is executed.

Child Elements: If, switch, assign, action (same child elements as in the before/after sections).

The <default> element

The default element contains code which should be executed if the expression in the switch element wasn't
matched by any of the cases.

Attributes: None

Child Elements: If, switch, assign, action (same child elements as in the before/after sections).

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
724 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

The <action> element

Jumps out of the custom protocol.

Attributes:

• type – Required, possible values: currently only 'exit' is supported for this attribute.
• nextproto – Optional, possible values protocol name. The following tables summarize the list of available

values for this attribute:

Protocol Application

ethernet Jump to ethernet and continue hard parsing

llc_snap Jump to llc_snap and continue hard parsing

vlan Jump to vlan and continue hard parsing

vxlan Jump to vxlan and continue hard parsing

pppoe Jump to pppoe and continue hard parsing

mpls Jump to mpls and continue hard parsing

ipv4 Jump to ipv4 and continue hard parsing

ipv6 Jump to ipv6 and continue hard parsing

gre Jump to gre and continue hard parsing

minencap Jump to minencap and continue hard parsing

otherl3 Jump to otherl3 and continue hard parsing

tcp Jump to tcp and continue hard parsing

udp Jump to udp and continue hard parsing

ipsec_ah Jump to ipsec and continue hard parsing

ipsec_esp Jump to ipsec and continue hard parsing

sctp Jump to sctp and continue hard parsing

dccp Jump to dccp and continue hard parsing

otherl4 Jump to otherl4 and continue hard parsing

after_ip Jump to the protocol which should follow the ip protocol. The next protocol is found according to
the $nxtHdr field (for details see the table below). The advance attribute cannot be set to 'no' when
using this option.

after_ethernet Jump to the protocol which should follow the ethernet protocol. The next protocol is found according
to the $nxtHdr field (for details see the table below). The advance attribute cannot be set to 'no'
when using this option.

after_tcp Jump to the protocol which should follow the TCP protocol. The next protocol is found according to
the $nxtHdr field (for details see the table below). The advance attribute cannot be set to 'no' when
using this option.

after_udp Jump to the protocol which should follow the UDP protocol. The next protocol is found according to
the $nxtHdr field (for details see the table below). The advance attribute cannot be set to 'no' when
using this option.

return (default value) Return to the hard parser. Continue parsing the frame header at the same position where soft
parsing started. The advance attribute cannot be set to 'yes' when using this option.

none/ end_parse Finish parsing the frame header, don't return to the hard parser.

Table 117. Possible values for the 'nextproto' attribute

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
725 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

$nxtHdr value Next Protocol

0x05DC of less llc_snap

0x0800 ipv4

0x0806 arp

0x86dd ipv6

0x8847, 0x8848 mpls

0x8100, 0x88A8,ConfigTPID1,ConfigTPID2 Vlan

0x8864 Pppoe

Other value otherl3

Table 118. Next protocol values when nextproto is set to 'after_ethernet'

$nxtHdr value Next Protocol

4 ipv4

6 tcp

17 udp

33 dccp

41 ipv6

50, 51 ipsec

47 gre

55 minencap

132 sctp

Other value otherl4

Table 119. Next protocol value when nextproto is set to 'after_ip'

$nxtHdr value Next Protocol

2123 GTP(GTP-C)

2152 GTP(GTP-U)

3386 GTP(GTP’)

4500 ESP

4789 VXLAN

Other value Otherl5+

Table 120. Next protocol values when nextproto is set to 'after_tcp' or 'after_udp'

• advance – Optional, possible values: "yes", "no". Default value: "yes", unless 'end_parse' or 'return' are set in
the nextproto attribute, or in case the nextproto attribute isn't set, in those cases the default value is 'no'.

The attribute specifies whether the parser should move to the next frame header before jumping. This attribute
has different meanings in the before and after sections. In the before section, the parser will move the FW
(frame window) past the previous protocol header until it reaches the header of the custom protocol. In the after
section, the parser will move the FW past the current custom protocol header until it reaches the header of the
next protocol. The FW is advanced according to the header size.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
726 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Notes:

• The frame window must advance when jumping to 'after_ethernet' or 'after_ip' and therefore the advance
attribute cannot be set to 'no' in those cases.

• The frame window cannot advance when returning to the hard parser and therefore the advance attribute
cannot be set to 'yes' when nextproto is set to 'return' or not set at all.

Example:

<action type="exit" advance = "yes" nextproto="#udp"/>

7.3.5.1.3  Expressions

Expressions are constructed of operands and operators. The simplest expression may contain only one
operand. Most operators are dyadic, and separate two operands (such as +, -) and some operators are monadic
and operate only on the operand following them (such as not).

7.3.5.1.3.1  Operands

The following operands exist: Numbers, variables, fields, and expressions.

Note:  All operands are limited to 64 bits (8 bytes).

Numbers

Numbers can appear in a decimal (no prefix), binary (begin with 0b), or hexadecimal (begin with 0x) format.

Numbers are always limited to a 64-bit unsigned type. However, some operators are only executed on the
32 LSB of the number. Note that immediate primitive negative numbers are not supported, for examples the
number -2 cannot appear in an expression. However, artificial negative value can be created using arithmetic
expressions such as 1-3 (which returns 0xfffffffe).

Fields

Fields are defined in the protocol's format element. There are two ways to access fields, either by typing their
name directly or by typing the name of protocol where the field is defined, then the dot character and then the
name of the field. In the before, section it is possible only to access fields from the previous protocol and in the
after section, it is possible only to access the current custom protocol's fields.

Note:  If the length of the field is longer than 8 bytes we cannot access it. This can be solved either by
accessing the frame directly using the $FW variable, or by splitting the field to several shorter fields.

Field example:

<protocol name="gtpu" prevproto="#ethernet">
<format>
<fields>
<field type="fixed" name="example" size="2"/>
</fields>
</format>
<execute-code>
<before>
<assign-variable name="$l2r" value="ethernet.type"/>
</before>
<after>

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
727 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

<assign-variable name="$shimOffset_2" value="example"/>  </after>
</execute-code>
</protocol>

Variables

All variables begin with the $ prefix, and their name are case insensitive. The following variables exist: Frame
window, header size, prevprotoOffset, parameter array, and result array variables.

Result Array Variables

These variables return specific bytes in the result array.

Accessing the variables:

• $variableName – returns the entire variable
• $variableName[byteOffset:bytesNumber] – Returns the bytesNumber number of bytes in the variable starting

from byteOffset. This is useful to access only specific bytes in the variable. In case bytesNumber equals zero,
the entire variable is returned starting from byteOffset.

Example: The variable $actiondescriptor returns result array bytes 64-71 in the results array. Typing
$actiondescriptor[2:4], will return result array bytes 66-69, since 66 is in offset 2 of the variable (64 is offset 0)
and the size requested is 4. The variable $actiondesciptor[3:0] will return result array bytes 67-71, since 67 is
in offset 3 of the variable, and size requested is 0 so the entire variable starting with the specified offset (3) is
returned.

Other usage: In addition to expressions, the result array variables can also be used in the left side of the assign-
variable elements which modify the result arrays values.

The following result array variables exist.

Variable Name Bytes referred to in Result Array

gpr1 0-7

gpr2* 8-15

nxthdr 16-17

fafext 18-19

fafflags 20-31

shimoffset_1 32-32

shimoffset_2 33-33

ip_pidoffset 34-34

ethoffset 35-35

l2offset 35-35

llc_snapoffset 36-36

vlantcioffset_1 37-37

vlantcioffset_n 38-38

lastetypeoffset 39-39

pppoeoffset 40-40

mplsoffset_1 41-41

Table 121. Result array variables

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
728 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Variable Name Bytes referred to in Result Array

mplsoffset_n 42-42

arpoffset 43-43

l3offset 43-43

ipoffset_1 43-43

ipoffset_n 44-44

minencapoffset 44-44

greoffset 45-45

l4offset 46-46

gtpoffset 47-47

espoffset 47-47

ipsecoffset 47-47

routhdroffset1 48-48

routhdroffset2 49-49

nxthdroffset 50-50

fragoffset 51-51

grossrunningsum 52-53

runningsum 54-55

parseerrcode 56-56

nxthdrfragoffset 57-57

ipnpidoffset 58-58

softparsectx 59-79

ipv4sa 80-83

ipv4da 84-87

ipv6sa1 80-87

ipv6sa2 88-95

ipv6da1 96-103

ipv6da2 104-111

sperc 112-113

iplength 114-115

routtype 116-116

fdlength 123-125

parseerrstat 127-127

Table 121. Result array variables...continued

* Note: The $GPR2 variable is used internally by the SPC Soft Parser Tool to calculate complex expression,
including checksum operations. This variable shouldn’t be used by the user. Use this variable only if necessary
at your own risk.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
729 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Parameter Array

This variable returns data from the parameter array. Since the parameter array is more than 8 bytes long, it is
required to specify the specific bytes needed.

Accessing the variable: $PA[byteOffset:byteNumber]. Returns the bytesNumber number of bytes in the
parameter array starting from byteOffset.

For example:

In order to access the fifth and sixth bytes (index at PA[4] and PA[5]) in the parameter array, type $PA[4:2]

Header size variables

Returns the header size, or the default header size.

Accessing the variables: $headerSize or $defaultHeaderSize

• In the before section, the $headerSize of the previous protocol will be returned and accessing the
$defaultHeaderSize is not allowed.

• In the after section, the $defaultHeaderSize will return the number of bytes in the custom protocol's
format fields. The $headerSize will return the headerSize as defined by the user in the after element. If no
headerSize has been defined by the user, the variable will return the same value as the $defaultHeaderSize

Frame Window

Returns data from the Frame Header. In the before section, data is returned starting with the previous protocol's
header. In the ‘after’ section data is returned starting with the custom protocol's header

Accessing the variable: $variableName[bitOffset:bitNumber] – Returns the bitsNumber number of bits in the
parameter array starting from bitOffset.

Note: The FW uses similar syntax to the PA and RA variables but accesses specific bits instead of bytes.

Examples:

• In order to access the tenth and eleventh bits in the frame array (indexed at FW[9], FW[10]), type $FW[9:2].
• In order to access the entire third byte in the frame array, type $FW[16:8].
• The conditions in the following example are always true since we access the same bits with the FW variable

and through the fields.

<format>
<fields>
<field type="bit"    name="first" size="1" mask = "0xE0"/>
<field type="bit"    name="second" size="1" mask = "0x1"/>
<field type="bit"    name="third" size="1" mask = "0xF"/>
<field type="fixed" name="fourth" size="2"/>
</fields>
</format>
…
<after>
<if expr = "first==$FW[0:3]" >        … </if>
<if expr = "second==$FW[7:1]" >   … </if>
<if expr = "third==$FW[8:4]" >      … </if>
<if expr = "fourth==$FW[16:16]" > … </if>
</after>

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
730 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Variable prevprotoOffset

Returns the previous protocol's frame header offset. The variable has the same value in the before and after
section, and always refers to the protocol defined in the prevproto attribute of the protocol element.

In the before section, the FW's current location is equal to prevProtoOffset, in the after section the FW's current
location is equal to prevProtoOffset+headerSize.

Note: This variable is a "shortcut" to the result array, and returns or modifies values taken directly from the RA.
The following tables summarize the RA value returned for each previous protocol.

Previous Protocol Returned value from RA

Ethernet $Ethoffset

Gre $Greoffset

ipv4, ipv6 $Ipoffset_n

llc_snap $Llcsnapoffset

Minencap $Minencapoffset

Mpls $mplsoffset_n

Pppoe $Pppoeoffset

tcp, udp, sctp, dccp, ipsec_ah, ipsec_
esp

$L4offset

Vlan $vlanoffset_n

otherl3, otherl4 $NxtHdrOffset – When the previous protocol is otherl3 or otherl3, the custom
protocol and the previous protocol have the same offset. See section 2.2.1

Table 122. 

7.3.5.1.3.2  Operators

Many types of operators exist. Operators can receive several operands (usually one or two) or arithmetic or
logical value and can return an arithmetic or logical value. An arithmetic value is a number, while a logical
value is true or false. The following table describes all the operators and their properties. All dyadic operators
(operators which receive two parameters) appear between two operands. All monadic operators appear before
an operand.

Name Parameters Description Syntax

Greater than Logical (Arithmetic, Arithmetic) Checks if the value of the first expression is greater than the
second expression

gt

Greater
equal

Logical (Arithmetic, Arithmetic) Checks if the value of the first expression equals or is greater
than the second expression

ge

Less than Logical (Arithmetic, Arithmetic) Checks if the value of the first expression is less than the
second expression

Lt

Less equal Logical (Arithmetic, Arithmetic) Checks if the value of the first expression equals or is less
than the second expression

le

Equal Logical (Arithmetic, Arithmetic) Checks if the two expressions are equal ==

Don't equal Logical (Arithmetic, Arithmetic) Checks if the two expressions aren't equal !=

Logical and Logical (Logical, Logical) Checks if both expressions are true and

Table 123. Types of operators

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
731 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Name Parameters Description Syntax

Logical or Logical (Logical, Logical) Checks if one of the expressions iss true or

Logical not Logical (Logical) Returns true if the expression if false and false otherwise Not

Add 32bit Arithmetic (32bit
Arithmetic, 32bit Arithmetic)

Return the sum of the expressions +

Subtract 32bit Arithmetic (32bit
Arithmetic, 32bit Arithmetic)

Return the difference between two expressions (result of
subtraction)

-

Add carry 16bit Arithmetic (16bit
Arithmetic, 16bit Arithmetic)

Return the sum of the two-expression summed with the carry
after 32 bit.

Addc

Bitwise or Arithmetic (Arithmetic,
Arithmetic)

Returns the result of a bitwise or operation on the two
expressions

bitwor

Bitwise xor Arithmetic (Arithmetic,
Arithmetic)

Returns the result of a bitwise xor operation on the two
expressions

bitwxor

Bitwise and Arithmetic (Arithmetic,
Arithmetic)

Returns the result of a bitwise and operation on the two
expressions

bitwand

Bitwise not Arithmetic (Arithmetic) Returns the result of a bitwise not operation on the
expression

bitwnot

Shift left Arithmetic (Arithmetic, Integer
– value up to 64)

Return the left expression shifted left by the right expression shl

Shift right Arithmetic (Arithmetic, Integer
– value up to 64)

Return the left expression shifted left by the right expression shl

Concat Arithmetic (Arithmetic, Variable
or Integer)

Special instruction explained below concat

Checksum Arithmetic (Arithmetic – value
up to 0xffff, Arithmetic – value
up to 256, Arithmetic – value
up to 256)

Special instruction explained below checksum

Table 123. Types of operators...continued

The concat operator

The concat operator shifts the first argument left and inserts the second argument to its right. The concat
operation can be executed on variables or integers. If the second argument is a variable, the first argument is
shifted left according to the known size of the variable. The result array variables have constant sizes and the
sizes of frame header's fields are set in the custom protocol document or the pdl document.

• If the user accesses only specific bits in the second argument, the first argument is shifted left only by the
exact number of bits accessed.

• If the second argument is an integer, the first argument is shifted left by the smallest word size the integer fits
in - 16, 32, 48 or 64.

Note:  The second argument of a concat operation cannot be an expression since the compiler doesn't know
at runtime the size of the expression and therefore cannot shift the first argument properly. However, for
expressions, the concat operation can simply be replaced by a shift operation (if the user knows the number
of bits to shift) and a bitwise or operation. It is still recommended to use concat instead of shift and bitwise left
when performing the operation on variables or integers, to keep the final code shorter.

For example, the following if expression is true:

<assign-variable name="$shimr" value="2"/>
<assign-variable name="$GPR1[6:2]" value="3"/>

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
732 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

<if expr="1 concat $shimr concat $GPR1[6:2] concat 0x40000 ==
0x102000300040000">

The checksum operator

The checksum operator is a special operator with different behavior and syntax than the rest of the operators.
It appears before three operands which have parentheses around them, and therefore, looks like a function
- checksum(expression, integer, integer). The first operand defines the initial checksum value, the second
operand defines the frame window offset in which to start the checksum (relative to the current frame window
location) and the third operand defines the length of the data, in bytes, on which the checksum operation should
be calculated. Since it is only possible to access 256 bytes in the Frame Window the last two arguments should
be smaller or equal to 256. Using these values, the checksum executes the add carry (addc) operation on 2
bytes sized words in the frame window range defined. If the range selected contains an odd number of bytes to
be check summed, the last byte is padded on the right with zeros to form a 16-bit word for checksum purposes.
The total sum is added to the initial checksum value using another addc operation. Therefore, the first argument
which defined the initial sum value must be smaller than 0xffff. The result of the final add operation is returned.

For example:

Suppose, we have the following frame, and the custom protocol starts in the 0xE offset (where 4500 appears).

FFFF FFFF FFFF 0CCB CC0D DDDD 0800 4500 002E 0000 4000 402F 2AA2 1000 0000 FFFE 0001 0308
0900 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 DA95 36D6 6f15 778c

The following if conditions will always be true:

<after>
<if expr="checksum(0x30a2,2,7+2) == 0xdaff">
…
<if expr="checksum(0,0,20) == 0xffff">
…
</after>

The first checksum operation above performs the following calculation:

0x30a2 + (0x002e add 0x0000 addc 0x4000 addc 0x402f addc 0x2a00)

The second checksum performs the following calculation:

0x0000 + (0x4500 addc 0x002e addc 0x0000 addc 0x4000 addc 0x402f addc 0x2aa2 addc 0x1000 addc
0x0000 addc 0xFFFE addc 0x0001)

Normally any protocol should update the $runningSum variable with its calculated checksum. This action
should be done on after block section of the execute-code element by using bitwise XOR operation.

Here is an example for the correct $runningSum update:

<after>
<if expr="checksum(0x30a2,2,7+2) == 0xdaff">
…
<if expr="checksum(0,0,20) == 0xffff">
…
</after>

• where 46 in this example is the length of the current custom header

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
733 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Expression priorities

Expressions containing multiple operators perform the operation according to the following rules, in the order
they appear below:

1. First operations in parentheses are performed.
2. Next operations which have a higher priority (see section 3.2.4) are performed.
3. Lastly, if there are several operations with the same priority, they are executed from left to right.

It is recommended to use parentheses when several operators appear in the same expression to make sure
they are calculated correctly.

Specific operator priorities

If several operators appear in the same expressions without any parentheses separating them, they should be
performed in the following order:

1. not, bitwise not, checksum
2. add, subtract, add carry
3. bitwise and, bitwise or, bitwise xor
4. shift right, shift left, concat
5. greater than, greater equal, less than, less equal, equal, not equal
6. and, or

Variables size

In most operations, the expression size is limited to 64 bits. However, there are a few exceptions: when shifting
variables, the shift value must be equal or lower than 64 since there are only 64 bits in an expression.

The add carry operation can only be performed on 16 bit variables and will always return a 16 bit variable. The
softparser will report an error if an a dd carry operation is performed on a constant larger than 16 bit but won't
be able to recognize a complex expression larger than 16 ,bit, therefore it is the user's responsibility to perform
the operation only on 16 bit variables.

The subtract and add operators can only be performed on 32bit variables, and they will only return a 32-bit
result. If two 32-bit expressions are added and their result is larger than 32 bits, only the carry will return, such
that the returned value is a 32-bit variable. The softparser will report a warning if an add carry operation is
performed on a constant larger than 32 bits but won't be able to recognize a complex expression larger than 32
bits.

There is an exception which allow performing add and subtract operations large values. Users can perform
these operations with one 64-bit variable and one 32-bit variable and receive a 64-bit result, as long as the
operation doesn't modify the 32 most significant bytes. In this case, the 64-bit variable must appear on the
left side of the operator. Working in this way in not recommended and should only be used if there is no other
option or if performance is crucial.

For example:

The following if expressions are always true:

<if expr="0xffffffff+2 == 0x1">
<if expr="0x123456781+3 == 0x123456784">
The following if expression is false (and shouldn't appear in the xml):
<if expr="3+0x123456781 == 0x123456784">

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
734 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

7.3.5.1.3.3  Expression types

There are two main types of expressions: Logical expressions, which return true or false and arithmetic
expressions, which return a numeric result.

Logical expressions

Logical expression appears in the expr attribute of the 'if' element.

These expressions always return a true or false value, and therefore they must use at least one logical operator
which will separate arithmetic or logical operators.

Examples:

The following are logical expressions -

• (4==$shimoffset_1 or 5!=$shimoffset_2)
• not($ShimOffset_2 ge $ShimOffset_1 or $ShimOffset_1 lt $ShimOffset_2)

The following are not logical expressions -

• (7 gt 3 and 2+7)
• (5 lt 8 or 7)

Arithmetic expressions

Arithmetic expressions always have a numeric result. The can hold a single operand (a number, variable or
arithmetic expression), or more than one operands separated by arithmetic operators. Logical operators are not
allowed in arithmetic expression.

Arithmetic expressions may appear in the following:

• The value attribute of the assign element.
• The headersize attribute of the after element.
• The expr attribute of the switch element

Examples:

The following are arithmetic expressions:

• ($FW[0:16] + 4)
• ($shimOffset_1 concat 3)
• (3 +7 + 8 + $shimOffset_2)
• 4

The following are not arithmetic expression:

4==$shimOffset_2

7.3.5.1.4  FAF – frame attribute flags

FAF support was introduced in DPAA 2.0 and they provide information about parsed frame fields. These flags
are populated by the Parser after frame parsing.

In SP for DPAA 2.0 was added the ability to access the FAF directly from FSL extension of NetPDL language.

For more detailed information about each FAF meaning and bit position inside Parse Results array, refer to
DPAA 2.0 Parser Guide.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
735 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

7.3.5.1.4.1  Inspect FAF

FAF can be inspected from FSL NetPDL code by using if instruction with attribute faf and specify desired FAF
name from the list of available FAF names presented below.

All frame attribute flags (HW FAFs and User defined FAFs) can be inspected by the Soft Parser.

<if faf="name">
<if-true>
…………..
</if-true>
<if-false>
…………..
</if-false>
</if>

7.3.5.1.4.2  Modify FAF

FAF can be modified by using new set / reset instructions introduced in FSL NetPDL for DPAA 2.0. Only user
defined flags, can be set or reset by the Soft Parser.

To set a FAF flag use:

<set faf="name"/>

To reset a FAF flag use:

<reset faf="name"/>

Available FAF attributes names

All available FAF names that can be used in FSL NetPDL as faf attributes and their meaning are listed in the
following tables:

User defined FAFs:

Can be both set and inspected by the Soft Parser.

custom_0 User Defined Flag 0

custom_1 User Defined Flag 1

custom_2 User Defined Flag 2

custom_3 User Defined Flag 3

custom_4 User Defined Flag 4

custom_5 User Defined Flag 5

custom_6 User Defined Flag 6

custom_7 User Defined Flag 7

Table 124. User defined FAFs attributes and their meaning

Hardware FAFs:

Can only be inspected by the Soft Parser (as they are set by the HW Parser).

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
736 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

IPv6_route_hdr2_present Routing header present in IPv6 header 2

GTP_primed_detected GTP Primed was detected

VLAN_prio_detected VLAN with VID = 0 was detected

PTP_detected A PTP frame was detected

VxLAN_present VXLAN was parsed

VxLAN_parsing_error A VXLAN HXS parsing error was detected

Ethernet_slow_protocol Ethernet control protocol (MAC DA is 01:80:C2:00:00:00-01:80:C2:00:00:00:FF)

IKE_present IKE was detected at UDP port 4500

shim_soft_parsing_error An SXS parsing error was found in the shim shell

parsing_error A Parsing error was found, the error code is reported in the Parse Result

Ethernet_MAC_present Ethernet MAC was parsed

Ethernet_unicast Ethernet MAC DA is Unicast

Ethernet_multicast Ethernet MAC DA is Multicast

Ethernet_broadcast Ethernet MAC DA is Broadcast

BPDU_frame MAC DA is 01:80:C2:00:00:00

FCoE_detected FC0E frame detected. Ether type is 0x8906 detected

FIP_detected FCoE initialization protocol detected. Ether type is 0x8914 detected

Ethernet_parsing_error An Ethernet HXS parsing error was found

LLC_SNAP_present LLC+SNAP was parsed

unknown_LLC_OUI (LLC is not AAAA03 or OUI is not zero or Ethernet Length is <= 8)

LLC_SNAP_error A LLC+SNAP HXS parsing error was found

VLAN_1_present At least one VLAN was parsed

VLAN_n_present More than one VLAN was parsed

VLAN_parsing_error A VLAN HXS parsing error was found

PPPoE_PPP_present PPPoE+PPP was parsed

PPPoE_PPP_parsing_error A PPPoE+PPP HXS parsing error was found

MPLS_1_present At least one MPLS was parsed

MPLS_n_present More than one MPLS was parsed

MPLS_parsing_error A MPLS HXS parsing error was found

ARP_present ARP frame with Ethertype 0x0806

ARP_parsing_error ARP HXS parsing error was found

L2_unknown_protocol set when next HXS to be executed is the Other L3 shell

L2_soft_parsing_error A L2 SXS parsing error was found

IPv4_1_present IPv4 was parsed as first IP, IPv4 SA IPv4 DA IPv4 Protocol

IPv4_1_unicast IPv4 was parsed as first IP, IPv4 DA is Unicast

IPv4_1_multicast IPv4 was parsed as first IP, IPv4 DA is Multicast

IPv4_1_broadcast IPv4 was parsed as first IP, IPv4 DA is Broadcast

Table 125. Hardware FAFs attributes and their meaning

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
737 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

IPv4_n_present IPv4 was parsed as last IP

IPv4_n_unicast IPv4 was parsed as last IP, IPv4 DA is Unicast

IPv4_n_multicast IPv4 was parsed as last IP, IPv4 DA is Multicast

IPv4_n_broadcast IPv4 was parsed as last IP, IPv4 DA is Broadcast

IPv6_1_present IPv6 was parsed as first IP, IPv6 SA IPv6 DA IPv6 NextHeader are populated

IPv6_1_unicast IPv6 was parsed as first IP, IPv6 DA is Unicast

IPv6_1_multicast IPv6 was parsed as first IP, IPv6 DA is Multicast

IPv6_n_present IPv6 was parsed as last IP

IPv6_n_unicast IPv6 was parsed as last IP, IPv6 DA is Unicast

IPv6_n_multicast IPv6 was parsed as last IP, IPv6 DA is Multicast

IP_1_option_present IP option present

IP_1_unknown_protocol not IP/GRE/MINENC/TCP/UDP/IPSec/SCTP/DCCP/ICMP/IGMP/ICMPv6UDP Lite

IP_1_packet_is_fragment IPv4 “more fragments” flag is set or the “fragment offset” field is non-zero or IPv6
Fragment Extension Header present. IPv6FragOffset is populated.

ip_1_packet_is_initial_fragment IPv4 “more fragments” flag is set and the “fragment offset” field is 0 or IPv6 Fragment
Extension Header present and “fragment offset” field is 0.

IP_1_parsing_error An IP 1 HXS parsing error was found

IP_n_option_present IP option present

IP_n_unknown_protocol not IP/GRE/MINENC/TCP/UDP/IPSec/SCTP/DCCP/ICMP/IGMP/ICMPv6UDP Lite

IP_n_packet_is_fragment IPv4 “more fragments” flag is set or the “fragment offset” field is non-zero or IPv6
Fragment Extension Header present.

IP_n_packet_is_initial_fragment IPv4 “more fragments” flag is set and the “fragment offset” field is 0 or IPv6 Fragment
Extension Header present and “fragment offset” field is 0.

ICMP_detected ICMP frame detected, IP Protocol is 1.

IGMP_detected IGMP frame detected, IP Protocol is 2 .

ICMPv6_detected ICMPv6 frame detected, IP Protocol is 3A.

UDP_light_detected UDP light detected, IP Protocol is 136

IP_n_parsing_error An IP n HXS parsing error was found

Min_encap_present Min. Encap was parsed, the parsed Original Destination Address replaces the IPv4
Destination Address

Min_encap_s_flag_set The S flag is set in Min. Encap, the parsed IP Src Address replaces the IPv4 Source
Address

Min_encap_parsing_error A Min. Encap HXS parsing error was found

GRE_present GRE was parsed

GRE_R_bit_set RFC1701 R bit set

GRE_parsing_error An GRE HXS parsing error was found

L3_unknown_protocol set when next HXS to be executed is the Other L4 shell

L3_soft_parsing_error A L3 SXS parsing error was found

UDP_present UDP was parsed

Table 125. Hardware FAFs attributes and their meaning...continued

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
738 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

UDP_parsing_error A UDP HXS parsing error was found

TCP_present TCP was parsed

TCP_options_present offset value higher than 5

TCP_control_bits_6_11_Set one or many of URG, ACK, PSH, RST, SYN, FIN bits are set

TCP_control_bits_3_5_Set one or many of NS, CWR, ECE bits are set

TCP_parsing_error A TCP HXS parsing error was found

IPSec_present IPSec was parsed

IPSec_ESP_found ESP found

IPSec_AH_found AH found

IPSec_parsing_error A IPSec HXS parsing error was found

SCTP_present SCTP was parsed

SCTP_parsing_error A SCTP HXS parsing error was found

DCCP_present DCCP was parsed

DCCP_parsing_error A DCCP HXS parsing error was found

L4_unknown_protocol Set when next HXS to be executed is the Other L5+ shell

L4_soft_parsing_error A L4 SXS parsing error was found

GTP_present GTP was parsed.

GTP_parsing_error A GTP HXS parsing error was found

ESP_present ESP was parsed

ESP_parsing_error An ESP HXS parsing error was found

iSCSI_detected iSCSI detected. Port# 860

Capwap_control_detected A Capwap-control frame was detected. Port# 5246

Capwap_data_detected A Capwap-data frame was detected. Port# 5247

L5_soft_parsing_error A L5SXS parsing error was found

IPv6_route_hdr1_present Routing header present in IPv6 header 1

Table 125. Hardware FAFs attributes and their meaning...continued

7.3.5.1.5  Subroutines support

In SP for DPAA 2.0 was added support to create and call subroutines in FSL NetPDL language for code
reusability purpose. Passing parameters is not allowed. Currently only a stack depth of one call is supported
since this is supported by DPAA 2.0.

7.3.5.1.5.1  Defining a subroutine

A subroutine can be defined by using tag <subroutine> inside <execute-code> tag on the same level with
<before> and <after> tags. The name of the subroutine must be specified by using attribute name.

<subroutine name="sub_name">
<!-- subroutine body -->
…………..
</subroutine>

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
739 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

A subroutine body can contain all instructions supported the same like <before> and <after> sections but it
cannot contain a call to another subroutine because DPAA 2.0 gosub instruction allows only one level of call
stack.

Multiple subroutines can be defined the only constraint is to have different names.

7.3.5.1.5.2  Calling a subroutine

A subroutine can be called by using the tag <gosub/> in FSL NetPDL language and specify the name of the
called subroutine by using attribute name inside this tag.

<gosub name="sub_name"/>

A subroutine can be called anywhere from inside sections <before> and <after>. The calls must substitute a set
of several instructions for code reusability purpose.

7.3.5.1.5.3  Example of a subroutine usage

<execute-code>
        <before>
        …………..
        <gosub name=" sub_1"/>
        <gosub name="sub_2"/>
        …………..
        </before>
        <after>
             …………..
            <gosub name="sub_2"/>
            …………..
        </after>
    <subroutine name="sub_1">
    <!-- subroutine 1 section -->
    <assign-variable name="$gpr1" value="5"/>
    <gosub name="sub_2"/> <!— warning displayed and gosub is ignored -->
    …………..
    </subroutine>
    <subroutine name="sub_2">
    <!-- subroutine 2 section -->
    <assign-variable name="$gpr1" value="6"/>
    …………..
</subroutine>
</execute-code>

7.3.5.1.6  SP Hardware configuration file

The Soft Parser Configuration also requires Hardware related settings. All these hardware configurations must
be specified in a separate XML file.

All hardware configurations are optional and in case they are not specified, the system uses default values. The
entire hardware configuration XML file is optional and can miss entirely in which case the system uses a set of
default values for all necessary hardware settings.

7.3.5.1.6.1  The <spconfig> element

The SP hardware configuration file always begins with the <spconfig> root element.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
740 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

The end tag of the spconfig element should appear in the end of the document.

Attributes: No required attributes

Child Elements: memorymap, device, parameters

For example:

<spconfig>
…
</spconfig >

7.3.5.1.6.2  SoC configuration

The SP hardware configuration file defines the SoC attributes.

Element: soc

Attributes:

• name – optional, possible value: string. Specifies the SoC name used to run SP bytecode

• rev – optional, possible value: string. Specifies the SoC revision used

Example:

<!-- SP configuration file -->
<!-- optional: this configuration file is optional -->
<spconfig>
        <!-- SoC configuration -->
        <!-- optional -->
        <soc name="LS2088" rev="1.0" />
</spconfig>

7.3.5.1.6.3  Memory map configuration

The SP hardware configuration file can define parser memory map. This is optional, and it is used to define how
protocols compiled bytecode is loaded in parser memory. This is useful for advanced users and provides full
control over the parser bytecode memory.

The <memorymap> element

The memorymap element is used to encapsulate the entire parser memory map definition for different bytecode
sections.

The <bytecode> element

The bytecode element is used to define all attributes for one bytecode section.

Attributes:

• offset – optional, possible value: numeric.
Specifies the base address where this bytecode section must be loaded in parser memory.

The <load-on-parser> element

The load-on-parser element is used to define on which parser this bytecode section must be loaded.

Attributes:
UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
741 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

name – optional, possible value: string.

Specifies the parser where this bytecode section must be loaded

Valid values: wriop_ingress, wriop_egress

The <load-protocol> element

The load-protocol element is used to define which protocols from the ones defined in NetPDL protocol definition
file must be included in this bytecode section.

Attributes:

• name – optional, possible value: string.

Specifies the protocol name to be included in this bytecode section

The protocol name must exist in NetPDL protocol definition file.

Example for memory map definition

<!-- SP configuration file -->
<!-- optional: this configuration file is optional  -->
<spconfig>
    <!-- optional  -->
    <!-- TODO: not implemented: 1 default bytecode section is used with all
 protocols -->
    <memorymap>
      <!-- bytecode section  -->
      <bytecode offset="0x40" >
        <!-- load this bytecode section on parsers  -->
        <load-on-parser name="wriop_ingress" />
        <load-on- parser name="wriop_egress" />
        <!-- protocols to be included in this bytecode section  -->
        <load-protocol name="afteth" />
        <load-protocol name="dap" />
      </bytecode>
    </memorymap>
</spconfig>

7.3.5.1.6.4  SP profiles configuration

The SP hardware configuration file can define Soft Parser profiles. SP profiles can contain multiple custom
protocols at different offsets. An SP profile represents a chain of HXS each one having a soft sequence
attachment. Several profile records (maximum up to 64) can be defined for a parser.

The <sp-profiles> element

The sp-profiles element is used to encapsulate all SP profiles definition for all available parsers.

The <profile> element

The profile element is used to define one SP profile configuration.

Attributes:

• name – required, possible value: string.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
742 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Specifies the profile name, must be unique, and can be maximum 8 characters long.

The <protocol> element

The protocol element used inside a profile tag is used to define all custom protocols to be included in this SP
profile configuration.

Attributes:

• name – required, possible value: string.
Specifies the protocol name to be attached on this profile. The protocol name must be defined in netpdl
section.

7.3.5.1.6.5  SP parameters configuration

The SP hardware configuration file can define parameters passed to SP. This is optional, and it is used to define
all the necessary attributes of the parameters passed to SP.

The <parameters> element

The parameters element is used to encapsulate the entire SP parameters definition for a specific SP profile and
can be used inside a profile tag.

The <parameter> element

The parameter element is used to define all attributes for one parameter.

Attributes:

• name – required, possible value: string. Specifies the name of this parameter.

• protocol – required, possible value: string. Specifies the protocol name for which this parameter is intended.
The protocol name must exist in NetPDL protocol definition file.

• offset – required, possible value: numeric/string. Specifies the offset in memory of this parameter. In case the
keyword ‘auto’ is used, the offset is automatically calculated based on the previous parameter offset and size

• size – required, possible value: numeric. Specifies the size in bytes of this parameter.

• value – optional, possible value: numeric. Specifies the default value of this parameter. In case this attribute is
missing, then the default value used for this parameter is zero.

• type – optional, possible value: string. Specifies the type of this parameter that defines its runtime behavior.

Valid options:

• read-write –used to specify the parameter can be both read and written.
• read-only – used to specify the parameter is read only so cannot be written.

In case this attribute is missing, then the default value used for this parameter is read-write.

7.3.5.1.6.6  Device configuration

The SP hardware configuration file can define Parser device related settings. This is optional, and it is used to
define all specific device parser settings (like what protocols should be enabled on initialization, by default on
each parser).

The <device> element

The device element is used to encapsulate the entire parser device definition for all available parsers.
UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
743 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

The <parser> element

The parser element is used to define all configurations for one parser.

Attributes:

• name – required, possible value: string.
Specifies the parser for which this device configuration section is intended
Valid values: wriop_ingress, wriop_egress

The <set-profile> element

The set-profile element is used to define which profiles are loaded on current parser. One of these profiles can
be selected as active by using the Networking API.

The first profile loaded on a parser is considered as the Active Profile by default and is automatically applied on
all networking objects at initialization.

Attributes:

• name – required, possible value: string.
Specifies the profile name to be loaded on this parser.
The profile name must be defined in the sp-profiles section.

Example to profile settings

<spconfig>
    <sp-profiles>
      <profile name="prf_0" >
        <!-- Empty profile: no SP protocols used -->
      </profile>
      <profile name="prf_1">
        <protocol name="proto_1" />
      </profile>
    </sp-profiles>
    <device>
      <parser name="wriop_ingress">
        <set-profile name="prf_0"/>
        <set-profile name="prf_1"/>
      </parser>
      <parser name="wriop_egress">
        <set-profile name="prf_0"/>
      </parser>
    </device>
</spconfig>

7.3.5.1.7  Tips and recommendations

This section lists the recommendations while using the Soft Parser Configuration tool.

7.3.5.1.7.1  Updating important fields

The Soft Parser Configuration Tool allows users to define custom protocols, parse these protocols, and update
any needed field. However, the tool does not update fields for the user (besides advancing the frame window–
see the explanations on the before/after and action elements). Therefore, when using the soft parser tool, some
fields are left empty unless the user manually updates them. These fields might be needed in later stages to
correctly interpret.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
744 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Most of these fields are set automatically by the hard HXS.

Only the "Running Sum" field (corresponding variable: $runningsum) must be updated explicitly by the soft
sequence on:

• Returning to the hard HXS
• Branching to the next soft or hard HXS
• Terminating

This field must be updated explicitly by the soft sequence if parsing happens beyond the window offset of the
hard HXS.

Note:  Some variables, such as $nxtHdr and $nxtHdrOffset are used internally by the soft parser.
Therefore, fields corresponding to such variables should be modified carefully. For more information, see
Section 7.3.5.1.7.2.

The $nxtHdr should be modified only if the custom protocol doesn't jump to 'after_ip'/'after_ethernet' or if the
user wants to change the next protocol when jumping to 'after_ip'/'after_ethernet'. The HXS and next header
offsets should only be modified in the after section or in the before section if the parser exits in that section
without advancing the frame header.

7.3.5.1.7.2  Refraining from modifying specific fields

Some fields in the RA are used internally by the soft parser and users should not modify these fields in certain
conditions:

• $GPR1 is used to store temporary values in complex operations, and therefore users should refrain from
modifying it.

• $nxtHdr is used to calculate the next protocol when jumping to 'next_ethernet' or 'next_ip'. Therefore, it
should not be modified when nextproto equals one of those values.

• $prevProtoOffset is used to advance the frame window between the before and after sections or
when using the action element with the advance attribute in the before section. Therefore, it shouldn't
be modified in the before section, unless softparser exits in that section without advancing the frame
window. $prevProtoOffset can equal the following RA variables (which also shouldn't be modified in
the same context): $ethoffset, $greoffset, $ipoffset_n, $llc_snapoffset, minencapoffset,
mplsoffset_n, pppoeoffset, l4offset, vlanoffset_n, and $nxtHdrOffset.

• $nxtHdrOffset is used to advance the frame window between the before and after sections or when
using the action element with the advance attribute in the before section. Therefore, it should not be
modified in the before section, unless softparser exits in that section without advancing the frame window.

7.3.5.1.7.3  Setting the next protocol

The softparser can be used to add code for an existing protocol or to define an entirely new protocol. When
it is used as an extension for an existing protocol and no new frame headers are being parsed, the nextproto
attribute of the action element should be set to 'return'. In this case, the nextproto attribute can also be left
empty since 'return' is the default value. If 'return' is set the soft parser will execute the soft parser code and
then the hardware parser will continue parsing at the same position in the frame header where it stopped earlier.

When the soft parser is used for a separate custom protocol with its own header, the hard parser should skip
this custom protocol (since it won't recognize it and know how to parse it) and therefore the next protocol should
be set to a specific protocol. If the next protocol is unknown the nextproto attribute in the action element can
also be set to 'after_ip' or 'after_ethernet', is such cases the next protocol will be determined according to the
value in the $nxtHdr field.

For example:

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
745 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

1. If we want to execute softparse code when we parse the ethernet protocol, our code will probably include an
action like action below which will appear in the 'before' section:

<action type="exit" advance="no" nextproto="return">

2. If we want to add a custom protocol after Ethernet and then jump to ipv6 our code will probably include an
action like action below which will appear in the 'after' section

<action type="exit" advance="yes" nextproto="ipv6">

3. If we want to add a custom protocol after Ethernet and we don't know where to jump next our code will
probably include an action like the action below which will appear in the 'after' section

<action type="exit" advance="yes" nextproto="after_ethernet">

7.3.5.1.8  Limitations

This section describes limitations users should consider when working with the Soft Parser Configuration tool.

7.3.5.1.8.1  Complex expressions

The Soft Parser tool has limited abilities and cannot process any expression. Some expressions that contain
many operations and parentheses might be too complicated for the Soft Parser. If you receive an error stating
that an expression is too complex, you can try simplifying it by splitting it to a few expressions, opening
parenthesis, or storing temporary values in the result array variables. ($GPR1 is recommended for storing
temporary variables but refrain from storing in $GPR2 which is used internally by the tool.) Notice that the
checksum operation is especially prone to participate in expressions that are too complex.

7.3.5.1.9  Running the Soft Parser tool

The Soft Parser Tool should be executed using the spc executable file. For information about obtaining spc
executable, see Section 3.5.

The following command-line options are relevant for the soft parser:

• -s <custom_protocol_file> - required. The file contains the xml with the description of all the custom
protocols, as explained in this document.

• -c <config_file> - required. Specifies the SP hardware configuration file.
• -d <pdl_file> – optional. This file contains information regarding the protocols supported by the hard

parser. If this option is missing, then the default pdl file will be used.
• -i – optional. Generate intermediate code.
• -l <level> – optional. Specify log level. The following choices are valid: none, err, warn, info, dbg1, dbg2,

dbg3.

For more information type: spc --help

7.3.5.1.10  Output of the SPC tool

The output received after running SPC Tool is a Soft Parser Blob (*.spb file). A soft parser blob is a binary
file that contains entire configuration required to configure the Soft Parser (custom protocols bytecode and SP
hardware configuration).

If the option -i is used, then additional files are generated: several levels of intermediate code (parsed, ir, code,
asm) and _blob.h file, which is the entire binary blob information dumped in human readable format as an array
of bytes.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
746 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

7.3.5.2  SPC on DPAA 2.x Based Platforms

7.3.5.2.1  Introduction

This section describes how to apply the Soft Parser configuration on the DPAA 2.x based platforms.

7.3.5.2.1.1   Solution overview

The architecture is based on using an offline tool to take in a text-based description of the protocol(s) to be
parsed and produce a blob for Management Complex (MC) to load.

Loading of the blob is done at system boot by U-Boot. There is one blob per system and the soft parser
sequence(s) can be used on any of the interfaces (physical ports or internal links).

Figure 145. High-level solution overview

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
747 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

A soft parser blob is a binary file that encapsulates the entire configuration required to configure the Soft Parser
HW module: custom protocols bytecode, SP protocols configuration, SP parameters, and soft parser hardware
configuration. The soft parser blob file is generated by the SPC (Soft Parser Configuration) Tool. MC can be
used to apply an SP Blob on hardware by using U-Boot command line.

7.3.5.2.1.2   System Architecture

The high-level architecture for Soft Parser programming is represented in the following picture with all modules
involved and their interaction.

Soft Parser programming

Figure 146. High-level system architecture

The architecture for SP programming on DPAA 2.x was designed to be used in a similar way as it is on DPAA
1.x platforms by taking as input an XML configuration file in NetPDL language.

This architecture is composed from the following modules:

• User space tools:
– SPC – Soft Parser Configuration Tool
– Restool

• User applications:
– DPDK apps

• Binary loader:
– U-Boot

• Firmware:
– MC – Management Complex

• Hardware:
WRIOP – Soft Parser

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
748 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

7.3.5.2.2  Applying Soft Parser Blob on hardware

In order to apply a Soft Parser Blob on hardware, use this command after MC is started:

fsl_mc apply spb <blob_address>

This command must be used before applying the DPL file (apply dpl) command.

Example: fsl_mc apply spb 0xac000000

This command invokes MC to load, parse, verify, and apply configuration from a soft parser blob file.

If the blob was applied and the command succeeded, then, this is confirmed at command line:

fsl-mc: Applying soft parser blob... SUCCESS

If an error occurred and the command failed, the error is displayed at command line:

fsl-mc: Applying soft parser blob... FAILED with error code = 1:
BLOB : Magic number does not match

Or:

fsl-mc: Applying soft parser blob... FAILED with error code = 29:
apply spb : Soft Parser BLOB is already applied

After applying Soft Parser Blob, you can apply DPL and boot Linux.

At this point, Soft Parser is configured according to configuration existent in blob applied above and can be
used.

After the Linux boot, the interfaces used to receive traffic must be configured from command line.

Optionally the MC console can be checked to verify soft parser actions performed. For this you have to enable
log level 'Info' in MC console by using the following option in DPC file:

level = "LOG_LEVEL_INFO";

• verify blob actions performed:
cat /dev/fsl_mc_console | grep BLOB
the log should contain similar line (otherwise the custom protocol is not
 usable):
[I, DPSPARSER] Soft Parser BLOB parsing : Completed
• verify DPSPARSER actions performed:
cat /dev/fsl_mc_console | grep DPSPARSER
the log should contain similar lines (otherwise the custom protocol is not
 enabled):
[I, DPSPARSER] Enable system WRIOP INGRESS SPs on PPID 0
[I, DPSPARSER] 'afteth' : HXS = 0x1 PC = 0x20 Parameters = 0

The interfaces used must be correctly configured by using ifconfig command.

An external traffic generator can be used to create test frames with custom protocols and then inject these
frames in configured interfaces. These frames are then processed by the Soft Parser according to configuration
applied.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
749 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

7.3.5.2.3  Limitations

This section describes the limitations users should consider when working with Soft Parser Blob:

• The U-Boot command to load, parse, and apply a soft parser blob SPB file (’apply spb’ ) can be used only
before applying the DPL file (’apply dpl’ ) command. Never try to use ’apply spb’ command after ’apply
dpl’command because this action results in an error and SPB configuration will not be applied.

• There is no support to load a soft parser blob (SPB) file from Linux. Currently this action can be performed
only from U-Boot.

• Networking object API (for network objects DPNI, DPDMUX, DPSW) is not currently supported (as it is
described in architecture document)

• For SPC Tool limitations, see Section 7.3.5.1.8

7.4  Packet Forward Engine (PFE) Network Driver

7.4.1  Introduction

This section describes the Linux driver which enables support for Ethernet on Packet Forward Engine (PFE)
hardware. EMACs are part of PFE IP, to receive/transmit packets through EMAC interface it should be accessed
through PFE interface by programing it.

7.4.1.1  Purpose

The purpose of this section is to provide a user guide and configuration details for the PFE driver, and a high-
level view of the driver’s structure, as well as to describe its major functionalities with a focus on the features
provided by the PFE IP.

7.4.1.2  Features

This section provides an overview of the major PFE features:

• MAC Layer.
• MAC Address Filter.
• Interrupt for Tx/Rx packets.
• Scatter/Gather support.
• Interrupt coalescing.
• TCP/UDP checksum verification and generation.

7.4.2  High-level decomposition and data flow

A system level block view, from a network device perspective, may be depicted as follows:

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
750 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

HIF/Ethernet client driver

Eth1

HIF driver layer

PFE

Eth0

Linux network stack

H

PHY PHY

MAC MAC
HW

Kernel

Network protocol handler/ioctl interface

User 
application

ethtool 
package

iproute2 
package

Figure 147. High-level decomposition and data flow block level view

The PFE, MAC and PHY are the hardware blocks, the kernel networking stack along with the network driver
are running in the Kernel space, and finally ethtool and iproute2 are examples of user space tools used for
configuring the network devices.

The PFE hardware supports one HIF RX and TX descriptor queues to send and receive packets through PFE.
Both network interface traffic is multiplexed and sent over Host Interface (HIF) queue.

User space packages like ethtool and iproute are used to configure the network device parameters. The ethtool
interface is extended to provide support for filer programming. The kernel space module for the network driver is
the most important block as it communicates with both the user space and the H/W IP to control the processing
of packets.

The basic functionality of any Ethernet driver is to handle the reception of packets from an ingress port (might
include checksum calculation, header verification, and so on), as well as the transmission of packets on the
egress port (might include checksum recalculation, header manipulation, and so on). There are also the device
configuration and control functionalities, and device status reporting. When the Ethernet driver is actually
implementing these functionalities, it needs to interact with the core (Kernel) as well as the hardware IP (the
Ethernet controller).

The PFE Linux kernel module has following two main parts:

• HIF driver layer:This part of the driver talks with HIF hardware interface and send and receive the packets
from it. It receives packets from HIF interface and identifies from which MAC interface it received and send
the packet to corresponding client driver queue. Similarly, if there is any pending packet from client queue to
transmit packet it takes and inserts the HIF header and put it into the HIF queue. It uses the NAPI to receive
packets and send it to corresponding client queues and triggers client to process packets from the queue.

• HIF/Ethernet client driver: Ethernet client driver is a hardware independent driver and registers with the HIF
driver to transmit and receive packet through HIF interface. For each interface one instance of client driver
should be register with the HIF driver layer, other side it registers with Linux kernel stack as network interface.
Each client driver will have software queues to communicate with HIF driver layer. Each client driver registers
with NAPI and indicate packets to the stack through the NAPI poll.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
751 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

7.4.3  NAPI support

PFE HIF driver layer uses NAPI handling for Rx path processing, the Linux polling mechanism being triggered
by frame receive interrupts. The driver registers irqs for receive and the NAPI (polling) handlers are provided to
the Kernel. Similarly, HIF Ethernet client driver also uses NAPI handling to process software queues and pass
them to the Kernel Network stack.

On the receive path:

• When the receive interrupt gets triggered, a softirq for the polling function on Rx is scheduled.
• The RX_SOFTIRQ thread is raised by the Kernel, and the HIF Rx queues will be processed by the driver's

polling function and the incoming packets are being passed to client Rx queues and triggers the client NAPI
handling.

• HIF/Ethernet client NAPI poll receives packets from client Rx queues and passes to the Network stack.

7.4.4  Interrupt coalescing

On a high-speed network interface the rate of packet reception and transmission can be as high as the CPUs
would be spending most of the time servicing these interrupts. With the interrupt coalescing feature, packets are
collected and one single interrupt is generated for multiple packets to avoid flooding the system with interrupts
from the Ethernet device.

PFE hardware supports hardware coalescing for receive interrupts, complemented by timer-based thresholds.
PFE driver provides basic support for setting the coalescing parameters via ethtool -C by implementing the “rx-
usec” option.

7.4.5  Checksum offloading

For large frames, offload of checksum verification saves a significant fraction of the CPU cycles that
would otherwise be spent by the TCP/IP stack. IP packet fragmentation and reassembly, and TCP stream
establishment and tear-down are not performed in hardware.

On Tx side, PFE hardware provides IPv4/IPv6 and TCP/UDP header checksum generation. On the Rx side,
PFE driver lets the Kernel know that checksum verification is not required if valid IP headers or TCP/UDP
headers were found and valid sums were verified, by setting the CHECKSUM_UNNECESSARY flag. On Tx
side, the checksum is generated (offloaded) for TCP/UDP packets over IPv4 based on the pseudo-header
checksum (phcs) provided by the Linux networking stack. PFE Linux driver instructs the stack about its ability
to provide partial checksumming, based on the phcs for TCP/UDP packets, by setting the NETIF_F_IP_CSUM
device capability flag. PFE hardware doesn’t support per packet-based checksum calculation control, it should
be enabled or disabled for all packets.

7.4.6  Scatter gather support

Scatter-Gather I/O is a method by which a single procedure call sequentially writes data from multiple buffers
to a single data stream or reads data from a data stream to multiple buffers. The buffers are given in a vector
of buffers. Scatter/gather refers to the process of gathering data from, or scattering data into, the given set of
buffers. The I/O can be performed synchronously or asynchronously to this procedure.

On the Tx side, PFE HIF interface supports "gathering" big packets from multiple buffers. This ability is signaled
by the driver to the Linux network stack by setting the NETIF_F_SG device hardware feature flag. The driver
takes into account the number of fragments composing the packet that is going to be transmitted, and places
each fragment into consecutive BD ring buffers before issuing the command to start sending the frame.

On the Rx side, the PFE HIF interface is capable of "scattering" big packets into multiple fixed size buffers
having consecutive buffer descriptors (BDs).

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
752 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

7.4.7  Ethtool support

Non-exhaustive list of the most notable ethtool commands implemented by PFE Linux driver:

-C | --coalesce DEVNAME [rx-usecs N]

Sets Rx interrupt coalescing in microsecs(‘usecs’).

-K | --offload DEVNAME

Sets UDP/TCP checksum offloading enabled or disabled.

• rx on|off - Specifies whether RX checksum is enabled or disabled.
• tx on|off  - Specifies whether TX checksum is enabled or disabled.

-S | --statistics DEVNAME

Queries the specified network device for NIC- and driver-specific statistics.

-s DEVNAME

Allows changing some or all settings of the specified network device. All following options only apply if -s was
specified.

• wol g - Sets Wake-on-LAN options. The argument to this option is a string of characters specifying which
options to enable.

-A|--pause devname

[tx on|off] Specifies whether TX pause should be enabled.

7.5  Linux Ethernet Driver for eTSEC

7.5.1  Linux Ethernet Driver for eTSEC

7.5.1.1  Introduction

Gianfar is the Linux driver that enables Ethernet support for the SoCs featuring eTSEC (Enhanced Three-Speed
Ethernet Controllers). Though the driver is designed to support the latest eTSEC2.0 features present on the
low-power QorIQ platforms, it also maintains backward compatibility with older IPs from the same family, like
eTSEC (eTSEC 1.x) and TSEC (present on the PowerQUICC III platforms) and FEC (Fast Ethernet Controller).

7.5.1.1.1  Purpose

The purpose of this document is to provide a user guide and configuration details for the Gianfar driver, and
a high-level view of the driver’s structure, as well as to describe its major functionalities with a focus on the
features provided by the eTSEC2.0 IP.

7.5.1.1.2  Features

This section provides an overview of the major eTSEC2.0 (“virtualized” eTSEC) features:

• o MAC Layer
• o Interrupt grouping mechanism
• o Virtualized register space

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
753 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

• o Rx Subsystem:
– MAC Address Filter
– L2/L3/L4 Parser
– Filer Engine
– Hash or RR Distribution
– Multiple Rx Interrupt

• o Tx Subsystem:
– Tx Scheduler
– L3/L4 Offload
– Multiple Tx Interrupt

Figure 148. “Virtualized” eTSEC Block Diagram

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
754 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

• o Interrupt virtualization:
– Each ring maps to one of two separate groups for interrupt and BD management; each group associated by

software with a CPU.
– Separate address spaces per group and for MDIO.
– Interrupt coalescing controls per ring in multi-group mode, packet-count based and timer-basedthresholds,

for both Rx and Tx.

• o TCP/IP Offload Engine (TOE):
– IP v4 and IP v6 header recognition on receive
– IP v4 header checksum verification and generation
– TCP and UDP checksum verification and generation
– Per-packet configurable offload
– Recognition of VLAN, stacked-VLAN, 802.2, PPPoE session, MPLS stacks, and ESP/AH IP-Security

headers

• o Quality of service (QoS) support:
– Transmission from up to eight queues: priority-based queue selection or modified weighted round-robin

(MWRR) queue selection with fair bandwidth allocation
– Reception to up to eight physical queues:

- Table-oriented queue filing strategy based on 16 header fields or flags
- Frame rejection support for filtering applications
- Filing based on Ethernet, IP, and TCP/UDP properties, including VLAN fields, Ether-type, IP protocol
type, IP TOS or differentiated services, IP source and destination addresses, TCP/UDP port number

7.5.1.1.3  Notes on high-level decomposition and data flow

A system level block view, from a network device perspective, may be depicted as follows:

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
755 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Figure 149. Gianfar High-level decomposition

The eTSEC2.0 and PHY are the hardware blocks, the kernel networking stack along with the network driver
are running in the Kernel space, and finally ethtool and iproute2 are examples of user space tools used for
configuring the network devices.

The eTSEC2.0 includes some additional support compared with the previous versions:

• it has support for interrupt virtualization
• on the TX side, it can distribute packets to the multiple queues based on simple hashing or round robin

mechanisms

The eTSEC2.0 has support for multiple RX and TX queues. On the receive side, an incoming packet will be
filed to one of the queues based on the rules programmed into the filer. By default, all the packets will be
filed to queue 0. On the transmit side, either a simple hash-based implementation or a round robin algorithm
distributes the packets to the available number of queues. User space packages like ethtool and iproute are
used to configure the network device parameters. The ethtool interface is extended to provide support for filer
programming.

The kernel space module for the network driver is the most important block as it communicates with both the
user space and the H/W IP to control the processing of packets. The eTSEC network device driver will be
referred to as Gianfar in the rest of the document.

The Gianfar driver may be divided into subblocks based on the number of independent threads that Linux
will run in order to completely transfer a packet from ingress to egress side. The basic functionality of any
Ethernet driver is to handle the reception of packets from an ingress port (might include checksum calculation,
header verification, and so on), as well as the transmission of packets on the egress port (might include
checksum recalculation, header manipulation, and so on). There are also the device configuration and

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
756 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

control functionalities, and device status reporting. When the Ethernet driver is actually implementing these
functionalities, it needs to interact with the core (Kernel) as well as the hardware IP (the Ethernet controller).

Figure 150. Gianfar Packet Flow

In the above figure, it can be noted that the receive side includes parsing/ filing before a packet is "put" into a
buffer descriptor. The transmit side includes an H/W queue scheduler for transmission of packets.

As already mentioned, eTSEC2.0 has support for multiple hardware queues for Rx and Tx in hardware. These
queues are basically divided into two groups; let’s say all odd-numbered queues correspond to one group
and even-numbered queues correspond to other group. In a multicore environment (for example, a dual core
system), each group of queues can be programmed to be handled by one of the two cores, which will result in
an increased performance.

For simplicity, we always assume that:

• All the even-numbered queues are mapped to Group 0 and odd-numbered queues are mapped to Group1.
• Group 0 interrupts can be assigned to be processed by Core 0 and Group 1 interrupts to be processed by

Core 1 (except for error the interrupts, which are always destined to Core 0, which is the master core).

From the above figure, it can be noticed that there will be a receive, and a transmit thread running on each core,
for processing the packets corresponding to the group assigned to that core. The receive thread processes
the received packets - handles the RX buffer descriptor (BD) rings, and passes the received packets to the
networking stack for further processing; the transmit thread schedules the packets passed down by the stack to
be transmitted out of the device. There is also a transmission cleanup thread, triggered by the TX confirmation
interrupts, to handle the TX BD rings and congestion.

Gianfar may be broadly decomposed into the following subblocks:

1. Initialization block
2. Receive block
3. Transmit block
4. Control block

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
757 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

So, the Receive and Transmit blocks handle processing of ingress and egress packets.

Before processing packets the driver needs to perform some initialization steps like:

• extracting the device tree parameters
• initialization of the multiple queues
• registering the driver with the kernel
• allocating buffer descriptors
• registering the interrupts (and so on.)

All these functionalities are implemented by the Initialization block.

Each of these submodules implements various functionalities, as detailed in the coming section.

7.5.1.2  Functionality

7.5.1.2.1  Multi-Queue support

eTSEC features multiple physical queues or BD rings. The multi-queue support (MQ) in the driver is enabled by
default for eTSEC2.0 IPs.

Hardware queue events are mapped to one of the two available CPUs via eTSEC Interrupt Groups. For
eTSEC2.0, each Rx/Tx hardware queue or BD ring is mapped to one of the two available Interrupt Groups, and
each group in turn has its Rx/Tx interrupt lines assigned to a given CPU. By default, the driver enables 1 Rx and
1 Tx queue per Interrupt Group.

eTSEC2.0 supports 2 Interrupt Groups, this is also known as the Multi-Group (MG) mode in Gianfar. Each
group has its own Rx, Tx, and Err interrupt lines which can be individually affined to any of the 2 CPUs, as a
measure to balance the processing load. Also, each interrupt group has its own block of registers, most notably
ievent, imask, tstat, and rstat, so queue events are handled at the interrupt group level. Having more
than 1 Rx and 1 Tx queue assigned to a single interrupt group would therefore incur a software processing
overhead that would not be justifiable for the majority of use cases. This is why the driver enables by default
only 1 set of Rx and Tx queues per Interrupt Group.

eTSEC1.x and other older eTSEC IPs support only one interrupt group (g0), meaning that they are working in
Single Group (SG) mode.

The mapping Rx/Tx queues to interrupt groups is by default: Rx Q0 and Tx Q0 assigned to Group0 (g0), and Rx
Q1 and Tx Q1 assigned to Group1 (g1).

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
758 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

CPU0 CPU1

Interrupt Controller

rx/tx/err_g0_int rx/tx/err_g1_int

Rx Q0 Tx Q0 Rx Q1Tx Q1

Interrupt Group 0 Interrupt Group 1

/proc/irq affinity
settings

Figure 151. Multi-Queue Multi-Group

Note:  Supporting more than one Rx/Tx queue per interrupt group has been obsoleted (see above). As a result,
the following device tree properties are obsolete: fsl,num-rx-queues, fsl,num-tx-queues, fsl,rx-
bit-map, and fsl,tx-bit-map.

7.5.1.2.2  Receive Side Scaling support

eTSEC supports multiple Rx and Tx descriptor queues (see multi-queue support). On reception, eTSEC can
send different packets to different queues to distribute processing among CPUs. This mechanism is generally
known as “Receive-side Scaling” (RSS).

In Gianfar, packets are distributed by applying "n-tuple" filters configured from ethtool -N (--config-
ntuple option). These filters are converted by Gianfar to eTSEC Filer H/W rules. Based on these
programmable filters, each packet is assigned to one of a small number of logical flows. Packets for each flow
are steered to separate receive queues, which in turn can be processed by separate CPUs.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
759 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Rx Q0

Rx Traffic

CPU0 CPU1

Rx Filer Engine

rx_g0_int rx_g1_int

Rx FIFO

eTSEC

Flow 1 Flow 2

Rx Q1

ethtool --config-ntuple
commands

/proc/irq affinity
settings

Figure 152. eTSEC RSS support

In Gianfar, Rx flows may be classified either by hashing various protocol header fields, see ethtool -N rx-
flow-hash option, or by specifying flow type classification rules, see ethtool -N flow-type option. Refer
to ethtool Linux man-pages for ethtool -N option details. A simple usage example is shown below.

root@ls1021aqds:~# ethtool -N eth0 flow-type udp4 src-ip 172.16.1.4 dst-port
 5000 action 0
fsl-gianfar ethernet.4 eth0: Receive Queue Filtering enabled
Added rule with ID 254
root@ls1021aqds:~# ethtool -N eth0 flow-type udp4 src-ip 172.16.1.4 dst-port
 5001 action 1
Added rule with ID 253
root@ls1021aqds:~# ethtool -n eth0
2 RX rings available
Total 2 rules
Filter: 253
        Rule Type: UDP over IPv4
        Src IP addr: 172.16.1.4 mask: 0.0.0.0
        Dest IP addr: 0.0.0.0 mask: 255.255.255.255
        TOS: 0x0 mask: 0xff
        Src port: 0 mask: 0xffff

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
760 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

        Dest port: 5001 mask: 0x0
        Action: Direct to queue 1
Filter: 254
        Rule Type: UDP over IPv4
        Src IP addr: 172.16.1.4 mask: 0.0.0.0
        Dest IP addr: 0.0.0.0 mask: 255.255.255.255
        TOS: 0x0 mask: 0xff
        Src port: 0 mask: 0xffff
        Dest port: 5000 mask: 0x0
        Action: Direct to queue 0
root@ls1021aqds:~# iperf -s -u -p 5000 &
[1] 1017
------------------------------------------------------------
Server listening on UDP port 5000
Receiving 1470 byte datagrams
UDP buffer size:  160 KByte (default)
------------------------------------------------------------
root@ls1021aqds:~# iperf -s -u -p 5001 &
[2] 1020
------------------------------------------------------------
Server listening on UDP port 5001
Receiving 1470 byte datagrams
UDP buffer size:  160 KByte (default)
------------------------------------------------------------
root@ls1021aqds:~# cat /proc/interrupts | grep eth
176:          7          0       GIC 176  eth0_g0_tx
177:          6          0       GIC 177  eth0_g0_rx
178:          0          0       GIC 178  eth0_g0_er
179:          0          0       GIC 179  eth0_g1_tx
180:          0          0       GIC 180  eth0_g1_rx
181:          0          0       GIC 181  eth0_g1_er
[  3] local 172.16.1.100 port 5000 connected with 172.16.1.4 port 52163
[ ID] Interval       Transfer     Bandwidth        Jitter   Lost/Total Datagrams
[  3]  0.0-10.0 sec  1.25 MBytes  1.05 Mbits/sec   0.003 ms    0/  893 (0%)
root@ls1021aqds:~# cat /proc/interrupts | grep eth
176:          9          0       GIC 176  eth0_g0_tx
177:        902          0       GIC 177  eth0_g0_rx
178:          0          0       GIC 178  eth0_g0_er
179:          1          0       GIC 179  eth0_g1_tx
180:          0          0       GIC 180  eth0_g1_rx
181:          0          0       GIC 181  eth0_g1_er
[  3] local 172.16.1.100 port 5001 connected with 172.16.1.4 port 46257
[ ID] Interval       Transfer     Bandwidth        Jitter   Lost/Total Datagrams
[  3]  0.0-10.0 sec  1.25 MBytes  1.05 Mbits/sec   0.004 ms    0/  893 (0%)
root@ls1021aqds:~# cat /proc/interrupts | grep eth
176:         10          0       GIC 176  eth0_g0_tx
177:        902          0       GIC 177  eth0_g0_rx
178:          0          0       GIC 178  eth0_g0_er
179:          1          0       GIC 179  eth0_g1_tx
180:        894          0       GIC 180  eth0_g1_rx
181:          0          0       GIC 181  eth0_g1_er
root@ls1021aqds:~# echo 1 > /proc/irq/177/smp_affinity
root@ls1021aqds:~# echo 2 > /proc/irq/180/smp_affinity
root@ls1021aqds:~# iperf -s -u -p 1000 &
[3] 1031
------------------------------------------------------------
Server listening on UDP port 1000
Receiving 1470 byte datagrams
UDP buffer size:  160 KByte (default)
------------------------------------------------------------

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
761 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

[  3] local 172.16.1.100 port 1000 connected with 172.16.1.4 port 58669
[ ID] Interval       Transfer     Bandwidth        Jitter   Lost/Total Datagrams
[  3]  0.0-10.0 sec  1.25 MBytes  1.05 Mbits/sec   0.002 ms    0/  893 (0%)
root@ls1021aqds:~# cat /proc/interrupts | grep eth
176:         13          0       GIC 176  eth0_g0_tx
177:       1798          0       GIC 177  eth0_g0_rx
178:          0          0       GIC 178  eth0_g0_er
179:          1          0       GIC 179  eth0_g1_tx
180:        894          0       GIC 180  eth0_g1_rx
181:          0          0       GIC 181  eth0_g1_er
[  4] local 172.16.1.100 port 5001 connected with 172.16.1.4 port 58876
[  4]  0.0-10.0 sec  1.25 MBytes  1.05 Mbits/sec   0.004 ms    0/  893 (0%)
root@ls1021aqds:~# cat /proc/interrupts | grep eth
176:         16          0       GIC 176  eth0_g0_tx
177:       1800          0       GIC 177  eth0_g0_rx
178:          0          0       GIC 178  eth0_g0_er
179:          1          0       GIC 179  eth0_g1_tx
180:        894        894       GIC 180  eth0_g1_rx
181:          0          0       GIC 181  eth0_g1_er
root@ls1021aqds:~# ethtool -n eth0
2 RX rings available
Total 2 rules
Filter: 253
        Rule Type: UDP over IPv4
        Src IP addr: 172.16.1.4 mask: 0.0.0.0
        Dest IP addr: 0.0.0.0 mask: 255.255.255.255
        TOS: 0x0 mask: 0xff
        Src port: 0 mask: 0xffff
        Dest port: 5001 mask: 0x0
        Action: Direct to queue 1
Filter: 254
        Rule Type: UDP over IPv4
        Src IP addr: 172.16.1.4 mask: 0.0.0.0
        Dest IP addr: 0.0.0.0 mask: 255.255.255.255
        TOS: 0x0 mask: 0xff
        Src port: 0 mask: 0xffff
        Dest port: 5000 mask: 0x0
        Action: Direct to queue 0
root@ls1021aqds:~# ethtool -N eth0 delete 254
root@ls1021aqds:~# ethtool -N eth0 delete 253
root@ls1021aqds:~# ethtool -n eth0
2 RX rings available
Total 0 rules
root@ls1021aqds:~#

7.5.1.2.3  NAPI support

Gianfar uses NAPI handling on both Rx and Tx paths, the Linux polling mechanism being triggered by frame
receive interrupts and, respectively, frame transmit confirmation interrupts. The driver registers irqs for both Rx
and Tx, and the NAPI (polling) handlers are provided to the Kernel.

On the receive path:

• When the receive interrupt gets triggered on a given CPU, a softirq for the polling function on Rx is scheduled.
• The RX_SOFTIRQ thread is raised by the Kernel, on the CPU on which it was triggered (and scheduled), and

the Rx queues mapped to the corresponding interrupt group will be processed by the driver's polling function
and the incoming packets are being passed to the networking stack.

Similarly on the transmit part:

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
762 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

• A frame transmit confirmation interrupt triggers the scheduling of a softirq under whose context the driver's
polling routine for cleaning the Tx rings is invoked.

• The Tx polling routine is also associated with a given interrupt group and it will handle only the transmit
queues that are affiliated to that interrupt group.

For packet forwarding, for instance, by mapping the per flow Rx and Tx queues to interrupt groups that are
associated to the same CPU, makes it possible to maintain per CPU buffer pools used for reclaiming buffers on
a per flow basis, improving cache locality at the same time.

7.5.1.2.4  Interrupt Coalescing

On a high-speed network interface, the rate of packet reception and transmission can be as high as the CPUs
would be spending most of the time servicing these interrupts. With the interrupt coalescing feature, packets are
collected and one single interrupt is generated for multiple packets to avoid flooding the system with interrupts
from the Ethernet device.

eTSEC supports hardware coalescing of interrupts for both receive and transmit, using packet-count-based
thresholds, complemented by timer-based thresholds. Gianfar provides basic support for setting the coalescing
parameters via ethtool -C, for each device instance, by implementing the following "set coalesce" options:

rx-frames
rx-usecs

tx-frames
tx-usesc

packet count threshold for receive (Rx)
time threshold in micro seconds, for receive (Rx)
packet count threshold for transmit confirmation (Tx)
time threshold in micro seconds, for transmit confirmation (Tx)

Table 126. ethtool –C options:

7.5.1.2.5  Header Recognition and Csum Offload

Header recognition on receive (feature provided by eTSEC), combined with parsing functions and/or hashing of
extracted property fields (in case of eTSEC2.0), is used to implement advanced TCP/IP offloading functionality
and QoS provisions by programming queue filing strategies into hardware.

Gianfar provides an API to program eTSEC's filer hardware block with packet filtering rules.

On Rx, the TCP/IP Offload Engine (TOE):

• can parse frames:
– at layer 2 of the stack only (Ethernet headers and switching headers)
– layers 2 to 3 (including IPv4 or IPv6)
– layers 2 to 4 (including TCP and UDP)

• provides protocol header recognition
• provides header verification (IPv4 header checksum verification)
• provides TCP/UDP payload checksum verification including verification of associated pseudo-header

checksums

For large frames, offload of checksum verification saves a significant fraction of the CPU cycles that
would otherwise be spent by the TCP/IP stack. IP packet fragmentation and reassembly, and TCP stream
establishment and tear-down are not performed in hardware.

On Tx side, TOE provides IPv4 and TCP/UDP header checksum generation. The eTSEC does not checksum
transmitted packets with IPv6 routing headers or calculates TCP/UDP checksums from IP fragments. If a
transmitted TCP segment requires checksum generation but IPv6 extension headers would prevent eTSEC
from calculating the pseudoheader checksum, software can calculate just the pseudoheader checksum in
advance and supply it to the eTSEC as part of per-frame TOE configuration.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
763 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

On the Rx side, Gianfar lets the Kernel know that checksum verification is not required if valid IP headers or
TCP/UDP headers were found and valid sums were verified, by setting the CHECKSUM_UNNECESSARY flag. On
Tx side, the checksum is generated (offloaded) for TCP/UDP packets over IPv4 based on the pseudo-header
checksum (phcs) provided by the Linux networking stack. Gianfar instructs the stack about its ability to provide
partial checksumming, based on the phcs for TCP/UDP packets, by setting the NETIF_F_IP_CSUM device
capability flag.

The Frame Control Blocks (FCBs) are 8-byte blocks of TOE control and/or status data that are passed between
the driver and each eTSEC. An FCB always precedes the frame it applies to, and is present only when TOE
functions are being used.

The first BD of each frame points to the initial data buffer and the FCB. Custom or received Ethernet preamble
sequences also follow the FCB if preambles are visible.

Figure 153. Location of Frame Control Blocks for TOE Parameters

For Tx, FCBs are inserted by Gianfar and TOE acceleration may be applied on a frame-by-frame basis. In the
case of RxBD rings, the FCBs are inserted by eTSEC and TOE acceleration is enabled for receive for all frames
in this case.

7.5.1.2.6  Scatter Gather Support

Scatter-Gather I/O is a method by which a single procedure call sequentially writes data from multiple buffers
to a single data stream or reads data from a data stream to multiple buffers. The buffers are given in a vector
of buffers. Scatter/gather refers to the process of gathering data from, or scattering data into, the given set of
buffers. The I/O can be performed synchronously or asynchronously to this procedure.

On the Tx side, Gianfar supports "gathering" big packets from multiple buffers. This ability is signaled by the
driver to the Linux network stack by setting the NETIF_F_SG device hardware feature flag. The driver takes
into account the number of fragments composing the packet that is going to be transmitted, and places each
fragment into consecutive BD ring buffers before issuing the command to start sending the frame.

On the Rx side, the eTSEC controller is capable of "scattering" big packets into multiple fixed size buffers
having consecutive buffer descriptors (BDs). Gianfar supports this feature by implementing paged allocation, so
that jumbo frames exceeding a fixed buffer size of 2048 bytes can be automatically received into multiple such
buffers. Instead of pre-allocating huge memory buffers to be able to support jumbo frame reception, the paged
allocation scheme implemented in Gianfar uses multiple half page sized buffers therefore reducing memory
allocation pressure. The driver is also managing a local cache of memory pages, reusing free pages from the
cache for future receptions, further improving Rx allocation overhead.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
764 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

7.5.1.3  Configuration & Control

7.5.1.3.1  Device Tree initialization

Gianfar complies with the device tree (DTS) based open firmware support requirements, and supports multiple
Ethernet device instances. The default configuration parameters that are passed via DTS for an Ethernet device
instance (node) include:

1. compatible and model fields defining the driver compatibility across multiple controller H/W IP
generations:

Device type (IP): .compatible .model

eTSEC2.0 (veTSEC) “fsl,etsec2” "eTSEC”

eTSEC (eTSEC1.x) “gianfar” “eTSEC”

TSEC “gianfar” “TSEC”

FEC “gianfar” “FEC”

Table 127. Gianfar compatibility

2. Interrupt grouping of multiple queues, for eTSEC2.0: queue-group subnode, including:
• Interrupt numbers assignment for the Rx, Tx and Error lines, interrupts property;
• Interrupt group register block address and size, reg property;

3. Power management capability properties:
• fsl,magic-packet: If present, indicates that the hardware supports waking up via magic packet;
• fsl,wake-on-filer: If present, indicates that the hardware supports waking up by Filer General

Purpose Interrupt (FGPI) asserted on the Rx int line. This is an advanced power management capability
allowing certain packet types (user) defined by filer rules to wake up the system.

4. For older DTs, number of supported TX and RX queues: fsl,num-rx-queues and fsl,num-tx-
queues; [obsolete]

5. Various link management properties.

Typical eTSEC2.0 device tree node (LS1021a example):

enet0: ethernet@2d10000 {
  compatible = "fsl,etsec2";
  device_type = "network";
  #address-cells = <2>;
  #size-cells = <2>;
  interrupt-parent = <&gic>;
  model = "eTSEC";
  fsl,magic-packet;
  fsl,wake-on-filer;
  queue-group@2d10000 {
    #address-cells = <2>;
    #size-cells = <2>;
    reg = <0x0 0x2d10000 0x0 0x1000>;
    interrupts = <GIC_SPI 144 IRQ_TYPE_LEVEL_HIGH>,
      <GIC_SPI 145 IRQ_TYPE_LEVEL_HIGH>,
      <GIC_SPI 146 IRQ_TYPE_LEVEL_HIGH>;
  };
  queue-group@2d14000  {
    #address-cells = <2>;
    #size-cells = <2>;
    reg = <0x0 0x2d14000 0x0 0x1000>;
    interrupts = <GIC_SPI 147 IRQ_TYPE_LEVEL_HIGH>,

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
765 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

      <GIC_SPI 148 IRQ_TYPE_LEVEL_HIGH>,
      <GIC_SPI 149 IRQ_TYPE_LEVEL_HIGH>;
  };
};

7.5.1.3.2  Ethtool support

Commands Description

ethtool
 -C

rx-usecs N rx-frames
 N tx-usecs N tx-
frames N

Set interrupt coalescing for a given device, packet count (‘frames’)
and time in microsecs (‘usecs’) thresholds, for Rx and resp. Tx.

ethtool
 -G

rx N  tx N
Set RxBD ring, resp. TxBD ring sizes for a given device.

ethtool
 -K

rxvlan on|off txvlan
 on|off

Turn on/off H/W VLAN tag extraction(rx) / insertion(tx).

ethtool
 -S

Show interface statistics, Linux-specific counters, and various eTSEC
H/W counters supporting RMON MIB group 1, group 2 (ifTable
counters), group 3, group 9, RMON MIB 2, and the 802.3 Ethernet
MIB statistics.

ethtool
 -N

rx-flow-hash tcp4|
udp4|tcp6|udp6 v|t|
s|d|f|n

Configure Rx network flow classification options. The classified flows
may be tcp/udp over ipv4/v6, and the hashing may be performed on
various header fields, according to the third parameter:
• s,d: src/dest IP addresses;
• v: VLAN id;
• t: L3 PROTO field,
• f,n: source and dest TCP/UDP ports.

ethtool
 -N

flow-type ether|ip4|
tcp4|udp4|sctp4

Inserts or updates a classification rule for the specified flow type.
Most IPv4 flow types are supported: raw IPv4, TCP, UDP, SCTP, as
well as L2 flow specifications (ether). For a detailed description of the
command suboptions refer to ethtool Linux man-pages.

Table 128. Non-exhaustive list of the most notable ethtool commands implemented by Gianfar:

Note:  For detailed description of ethtool command options, refer to ethtool Linux man-pages.

7.6  ENETC Ethernet and Felix switch drivers

7.6.1  LS1028A interface naming

This section describes the association between the physical interfaces and networking interfaces as presented
by software.

7.6.1.1  LS10128A interface naming in U-Boot

The following figure shows the Ethernet ports as presented in U-Boot. Note that not all ports are available.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
766 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

switch

swp3swp0 swp1 swp2

swp4 swp5

enetc-2 enetc-6enetc-0 enetc-1

S
G

M
II

x QSGMII

R
G

M
II

Figure 154. U-Boot network interfaces on LS1028ARDB

LS1028ARDB port U-Boot interface PCIe function Comments

1G MAC1 enetc-0 0000:00:00.0

N/A enetc-1 0000:00:00.1 enetc#1 is presented in U-
Boot on all boards. This
interface is not functional on
LS1028ARDB.

Internal enetc-2 0000:00:00.2 Connected internally (MAC to
MAC) to the Ethernet switch.
This interface can be used
to access remote hosts
connected to switch ports.

Internal enetc-6 0000:00:00.6 Connected internally (MAC to
MAC) to the Ethernet switch.
This interface is present if bit
851 is set in RCW.

1G SWP0 to
1G SWP3

swp0, swp1, swp2, swp3 0000:00:00.5 These switch ports can be
used in U-Boot to access
remote hosts (through
enetc#2) and to switch
between external ports.

7.6.1.2  LS1028A interface naming in Linux

The following figure shows how Ethernet ports are presented in Linux.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
767 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

switch

swp3swp0 swp1 swp2

swp4 swp5

eno2 eno3eno0 eno1

S
G

M
II

x QSGMII

R
G

M
II

Figure 155. Linux network interfaces on LS1028ARDB

LS1028ARDB port Linux netdev PCIe function Comments

1G MAC1 eno0 0000:00:00.0

N/A eno1 0000:00:00.1 RGMII interface is not
present on LS1028ARDB
board and the associated
ENETC interface is disabled
in device tree:
&enetc_port1 {
status = "disabled";
};

Internal eno2 0000:00:00.2 Connected internally (MAC
to MAC) to swp4. This is
used to carry traffic between
the switch and the software
running on Arm cores.

Internal eno3 0000:00:00.6 Connected internally (MAC to
MAC) to swp5. This is used
to carry switch controlled
traffic between the switch
and the Linux bridge. This
interface is present if bit 851
is set in RCW.

1G SWP0 to
1G SWP3

swp0 to swp3 By default, switching is not
enabled on these ports.
For detail on how to enable
switching across these ports,
see Felix Ethernet switch.

Internal swp4

0000:00:00.5

Connected internally (MAC to
MAC) to eno2.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
768 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

LS1028ARDB port Linux netdev PCIe function Comments

Internal swp5 Connected internally (MAC to
MAC) to eno3.

7.6.2  ENETC Linux Ethernet driver

7.6.2.1  Introduction

ENETC is a four-port virtualized Ethernet controller supporting gigabit Ethernet (GbE) designs and time-
sensitive networking (TSN) functionality.

ENETC offers fully integrated GbE media access controllers (MACs). It supports preemption and various offload
functions for protocols including IP, TCP, and UDP while maintaining wire speed on all interfaces.

Operating as a single root input/output virtualization (SR-IOV) multi-PF (physical function) capable root complex
integrated device, ENETC is discoverable by standard PCI Express.

This section provides operational details for the core ENETC Linux Ethernet driver and supported features. The
precision time protocol (PTP) and time sensitive networking (TSN) extensions are covered in separate sections.

Note:  For additional information, refer to LS1028A Reference Manual at nxp.com.

7.6.2.1.1  Acronyms, abbreviations, and terms

The table below lists and explains the acronyms, abbreviations, and terms used in this document.

Term Definition

ENETC The whole integrated Ethernet controller with multiple physical Ethernet ports (or MACs) and PCIe
endpoints.

ENETC port, or port The ENETC hardware device that controls a single physical Ethernet port (or MAC). Same as
ENETC PF, however, when used the focus of the term is on the underlying hardware resources,
such as the physical Ethernet port, and not necessarily on the PF Linux networking device. Also,
an ENETC port includes all underlying ENETC VF hardware resources (if existing).

ENETC PF, or PF PF stands for PCIe physical function. This is the Linux network device, exposed as a PCIe
endpoint device, the interface through which Linux manages an ENETC Port. Sometimes
interchangeably used with ENETC port.

ENETC VF, or VF VF stands for PCIe virtual function. This is the Linux network device, exposed as a PCIe endpoint
device, that is associated to an ENETC PF device. Shares the same Ethernet link with the
managing PF device. The PF can enable/disable the underlying VF devices.

PCIe See PCI Express standard specification.

SR-IOV See Single Root I/O Virtualization PCIe specification.

Table 129. Acronyms, abbreviations, and terms

7.6.2.2  Linux kernel configuration items

This section explains how to identify the ENETC driver modules, corresponding kernel configuration options,
and associated device tree nodes.

7.6.2.2.1  Driver modules and dependencies

The following table describes the Ethernet driver modules and related dependencies.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
769 / 1061

https://www.nxp.com/products/processors-and-microcontrollers/arm-processors/layerscape-multicore-processors/qoriq-layerscape-1028a-industrial-applications-processor:LS1028A?tab=Documentation_Tab


NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Module Runtime dependency Description

fsl-enetc.ko fsl-enetc-mdio.ko ENETC physical function (PF) Ethernet driver

fsl-enetc-vf.ko fsl-enetc-mdio.ko ENETC virtual function (VF) Ethernet driver

fsl-enetc-mdio.ko - ENETC central MDIO controller (PCIe PF 3)

Table 130. Driver modules and dependencies

7.6.2.2.2  Kernel configuration options

The kernel configuration tree view for enabling the ENETC PF and VF driver modules via make menuconfig
is as follows:

Device Drivers  --->
            [*] Network device support  --->
                [*] Ethernet driver support  --->
[*] Freescale devices
        <*> ENETC PF driver
        <*> ENETC VF driver

Option Values Modules

CONFIG_FSL_ENETC y/m/n fsl-enetc.ko

CONFIG_FSL_ENETC_VF y/m/n fsl-enetc-vf.ko

CONFIG_FSL_ENETC_MDIO y/m/n fsl-enetc-mdio.ko

Table 131. Driver kernel config options

7.6.2.2.3  Device tree nodes

The ENETC drivers are PCIe device drivers, and the ENETC PCI root complex integrated endpoint (RCIE) is
described through the following PCIe device tree node:

pcie@1f0000000 {/* Integrated Endpoint Root Complex */
  compatible = "pci-host-ecam-generic";
  reg = <0x01 0xf0000000 0x0 0x100000>;
  #address-cells = <3>;
  #size-cells = <2>;
  msi-parent = <&its>;
  device_type= "pci";
  bus-range= <0x0 0x0>;
  dma-coherent;
  msi-map = <0 &its ...>;
  iommu-map = <0 &smmu ...>;
  ranges = <…>
    /* PF0-6, BAR0 - non-prefetchable memory */
    /* PF0-6, BAR2 - prefetchable memory */
    /* PF0, VF-BAR0 - non-prefetchable memory */
    /* PF0, VF-BAR2 - prefetchable memory */
    /* PF1, VF-BAR0 - non-prefetchable memory*/
    /* PF1, VF-BAR1 - prefetchable memory */
    […]
  enetc_port0: ethernet@0,0 {
    compatible = “fsl,enetc”;
    reg = <0x000000 0 0 0 0>;
  };
  enetc_port1: ethernet@0,1 {

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
770 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

    compatible = “fsl,enetc”;
    reg = <0x000100 0 0 0 0>;
  };
  enetc_mdio_pf3: mdio@0,3 {
    compatible = "fsl,enetc-mdio";
    reg = <0x000300 0 0 0 0>;
    #address-cells = <1>;
    #size-cells = <0>;
  };
  enetc_port2: ethernet@0,2 {
    compatible = “fsl,enetc”;
    reg = <0x000200 0 0 0 0>;
    fixed-link {[…]};
  };
  […]
  enetc_port3: ethernet@0,6 {
    compatible = “fsl,enetc”;
    reg = <0x000600 0 0 0 0>;
    status = “disabled”;
    fixed-link {[…]};
  };
};

For device tree binding definitions of the ENETC nodes, refer to kernel document:

Documentation/devicetree/bindings/net/fsl-enetc.txt

7.6.2.2.4  Source files

The following table describes the ENETC and ENETC MDIO driver sources.

Source file Description

enetc_pf.c, enetc_pf.h ENETC PF driver, ENETC PSI, and Port-specific code

enetc_vf.c ENETC VF driver, ENETC VSI-specific code

enetc.c, enetc.h Packet processing and other PF and VF common logic

enetc_hw.h ENETC hardware specific defines (reg offsets, BDR structs, and so on)

enetc_ethtool.c ethtool support

enetc_cbdr.c ENETC control buffer descriptor ring support

enetc_msg.c ENETC VF-PF messaging support

include/linux/fsl/enetc_mdio.
h, enetc_mdio.c, enetc_pci_
mdio.c

ENETC MDIO driver. Provides PHY level services to the ENETC driver. It can
also be shared with other integrated IPs that use the same MDIO support.

enetc_ptp.c, enetc_qos.c,
enetc_tsn.c

Hardware timestamping (PTP) and TSN related support.

Table 132. Source files

7.6.2.3  Linux runtime usage

Overview of the major ENETC driver features and related usage instructions:

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
771 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

7.6.2.3.1  ENETC interfaces and probing

The following table lists supported ENETC interfaces. It describes the PCIe PF ID along with the interface type
information as well as the number of supported VF devices for each ENETC port.

Ethernet ports PCIe PF ID Interface type Number of supported VFs

Port 0 0 External - SGMII/USXGMII (10/100/1G/2.5 Gbit/s) 2

Port 1 1 External - RGMII (10/100/1 Gbit/s) 2

Port 2 2 Internal - Ethernet Switch @ 2.5 Gbit/s n/a

Port 3 6 Internal - Ethernet Switch @ 1 Gbit/s n/a

Table 133. PCIe PF endpoint IDs of ENETC ports

Successful probing of ENETC ports (if enabled) is met by the following boot log message:

fsl_enetc 0000:00:00.0 eth0: ENETC PF driver v1.0

Example - probing of ENETC PFs on the LS1028ARDB board:

fsl_enetc 0000:00:00.0: enabling device (0400 -> 0402)
fsl_enetc 0000:00:00.0 eth0: ENETC PF driver v1.0
[…]
fsl_enetc 0000:00:00.1: device is disabled, skipping
[…]
fsl_enetc 0000:00:00.2: enabling device (0400 -> 0402)
fsl_enetc 0000:00:00.2 eth1: ENETC PF driver v1.0
[…]
fsl_enetc 0000:00:00.6: device is disabled, skipping

Upon successful probing, each ENETC port (PF) will have a network device interface attached. A udev script
should trigger at this point to apply networking interface renaming rules for the ENETC interfaces, changing
the name from generic ethX format to enoX format. The new name format should help to identify the physical
ENETC interfaces easily on the board, as detailed in the Section 7.6.1.

Example – Renaming of the ENETC Port0 interface:

fsl_enetc 0000:00:00.0 eth126: renamed from eth0
udevd[396]: renamed network interface eth0 to eth126
fsl_enetc 0000:00:00.0 eno0: renamed from eth126
udevd[396]: renamed network interface eth126 to eno0

Probing of VF devices is achieved by requesting a given number of VFs (at least one) from a given PF device,
by setting sriov_numvfs via the PCI sysfs interface.

Note:  An ENETC VF is a separate network device that can be independently assigned to a virtualization
context. For instance, in a system setup consisting of a Host Linux machine running a Guest Linux in a Virtual
Machine (VM), one can assign a VF to the VM while the Host Linux includes the corresponding PF device. This
is a typical scenario targeted by the SR-IOV specification, where the VF provides hardware level fast networking
data path to the Guest Linux (that is, packet I/O) while insuring proper networking device isolation and secure
access rights for the VM.

Example - Probing ENETC VF0 of PF0 (Port0):

# echo 1 > /sys/bus/pci/devices/0000\:00\:00.0/sriov_numvfs
fsl_enetc_vf 0000:00:01.0: enabling device (0000 -> 0002)

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
772 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

fsl_enetc_vf 0000:00:01.0 eth1: ENETC VF driver v1.0

The udev script triggers in this case too, renaming the ENETC VF interface to the friendly format established for
ENETC VF interfaces in the Section 7.6.1.

Example – Renaming of VF0 interface of PF0:

fsl_enetc_vf 0000:00:01.0 eth112: renamed from eth1
udevd[1678]: renamed network interface eth1 to eth112
fsl_enetc_vf 0000:00:01.0 eno0vf0: renamed from eth112
udevd[1678]: renamed network interface eth112 to eno0vf0

7.6.2.3.2  Multi-queue support

The ENETC hardware features multiple Rx and Tx buffer descriptor rings for each ENETC port. For the ports
that have associated VFs, the rings are assignable between the PF and the VFs. Each ring in turn is also
assigned to an MSIX interrupt vector affined to a separate CPU.

ENETC port Total available h/w rings PF netdev queues VF0 netdev queues VF1 netdev queues

Port 0 16 Rx / 16 Tx 2 Rx / 8 Tx 2 Rx / 4 Tx 2 Rx / 4 Tx

Port 1 16 Rx / 16 Tx 2 Rx / 8 Tx 2 Rx / 4 Tx 2 Rx / 4 Tx

Port 2 8 Rx / 8 Tx 2 Rx / 8 Tx - -

Port 3 8 Rx / 8 Tx 2 Rx / 8 Tx - -

Table 134. Ring assignment for each ENETC Port

Each ring enabled in the ENETC driver is assigned to a kernel net device queue. Each PF and VF are assigned
to a netdevice interface owning the above Rx and Tx queues.

Note:  Only two Rx queues are currently used per netdevice since LS1028A has only two CPUs. By default,
even queues are assigned to CPU0 (MSIX interrupt vector 0) and odd queues to CPU1 (MSIX interrupt vector
1).

7.6.2.3.3  Rx checksum offload

ENETC can extract the “Internet checksum” (L3) for each received packet, calculated over the L2 payload (the
entire L3 packet) that does not include the L2 header nor FCS.

The ENETC driver forwards the hardware computed checksum for each received packet (regardless of packet
type) to the Linux networking stack as a “CHECKSUM_COMPLETE” checksum type, which is the most generic
way of computing checksum by a hardware device. Being protocol independent this checksum type can be
reused by the Linux stack in the most generic way, so that it can be employed by the stack to derive checksum
computation for a wide variety of protocols, including encapsulated protocols.

Rx checksum offload is enabled by default in the ENETC driver. However, it can also be switched off/on (for
testing purposes) via ethtool -K rx on|off command.

Example – Checking the Rx checksum offload status:

# ethtool -k eno0 | grep checksum | grep rx
rx-checksumming: on

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
773 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

7.6.2.3.4  Unicast and multicast MAC filtering

Filtering of unicast and multicast destination MAC (L2) addresses for incoming packets is enabled in the ENETC
driver, for every ENETC port. This means that the ENETC driver can receive packets that not only match
the primary MAC address of that port but also packets that match the unicast and multicast MAC addresses
programed into the filters for each PF netdevice, without the need to set the interface into promiscuous
mode. Packets that do not match the filters (nor the primary MAC address) will be dropped at hardware level,
therefore, greatly reducing the system load caused by the reception of unwanted packets that would have
occurred with the interface in promiscuous mode.

There are numerous use cases by which the Linux stack assigns multiple unicast and multicast MAC addresses
to a physical Ethernet port. For instance, configuring multiple Linux macvlan virtual interfaces on top of a given
ENETC PF interface, each macvlan interface having its own unicast MAC address. Multiple multicast MAC
addresses can be added to the same netdevice interface by simply invoking the ip maddr add command.

The ENETC hardware filters however rely on 64-bit hash tables, so false positives are possible. For unicast
addresses, there is a possibility to have exact match entries, however, their numbers are very limited (less than
eight per port, some of these being reserved). Once the number of available exact match entries is exceeded,
the unicast exact match filter is converted into a 64-bit hardware hash table filter as well.

7.6.2.3.5  VLAN filtering

The ENETC driver supports VLAN C-TAG filtering for PF instances. This feature is supported by a 64-bit hash
table for each port, used to match against hashed VLAN IDs. The VLAN ID to be matched is hashed into a
6-bit index which in turn is used to access a bit in the VLAN hash table. If the corresponding bit is set to one,
then this is considered a successful match. In this regard, the hardware VLAN ID filter is “imperfect” and false
positive matches are possible, so the networking stack needs to do further filtering to ensure that only frames
with the tag of interest are accepted.

The VLAN C-TAG filtering feature (offload) described above is enabled by default in the ENETC driver, and is
always on, For example:

# ethtool -k eno0 | grep vlan | grep filter
rx-vlan-filter: on [fixed]
rx-vlan-stag-filter: off [fixed]

7.6.2.3.6  VLAN insertion/ extraction

VLAN C-Tag insertion and extraction are supported based on the ENETC hardware’s ability to parse packets
and identify, extract, or insert IEEE 802.1Q VLAN tags, but also C-Tags for stacked VLAN packets (IEEE
802.1ad, “Q-in-Q”).

Figure 156. IEEE 802.1Q VLAN tag

This feature (offload) is also enabled by default in the ENETC driver and can be switched on/off by ethtool -
K rxvlan|txvlan on|off commands.

Examples:

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
774 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

• Enabling VLAN tag extraction (rxvlan) and insertion (txvlan) for eno0 (PF0):
# ethtool -K eno0 rxvlan on txvlan on

• Checking VLAN offload status:

# ethtool -k eno0 | grep vlan
rx-vlan-offload: on
tx-vlan-offload: on
[…]

7.6.2.3.7  Scatter-gather and jumbo frame support

Scatter-gather (S/G) of Ethernet frames is supported by the ENETC driver on both Rx and Tx paths.

On Rx, ENETC can receive Ethernet frames with a payload bigger that the standard 1500 bytes (jumbo
frames). Frames of up to 9600 bytes (including L2 header and FCS) can be broken up into multiple buffers and
forwarded to the Linux networking stack for processing.

Similarly, on Tx, the MAC can transmit Ethernet frames of up to 9600 bytes spanning multiple buffers. The
scatter-gather support is enabled by default in the driver. However, on Tx, since the networking stack controls
buffer allocation, this option can be switched off / on via the ethtool -K tx-scatter-gather command.

Example: Checking the status of Tx S/G support (offload):

# ethtool -k eno0 | grep scatter-gather
        scatter-gather: on
        tx-scatter-gather: on
        tx-scatter-gather-fraglist: off [fixed]

The maximum L2 payload size on Tx is controlled by the MTU setting, which defaults to 1500 bytes. The MTU
of an ENETC netdevice interface (both PF and VF) can be increased to up to (9600 – L2 header size – FCS
size) bytes.

Example: Increasing MTU for an ENETC netdevice interface:

# ip link set eno0 mtu 8000

While not recommended under traffic, updating the MTU with the interfaces up is allowed.

7.6.2.3.8  Rx flow hashing (RSS)

The ENETC hardware receive side scaling (RSS) feature is utilized in order to balance workloads among cores
and provides a method to select various Rx queues upon reception of a packet. Each queue or queue group
is then assigned to a different processor. RSS helps improve system performance by reducing processing
delays by distributing packets across multiple cores, reducing spin lock overhead by increasing probability that
software sharing data execute on the same core and reducing reloading of caches by increasing probability that
software share data on the same core.

The hardware support for RSS may be summarized by the following high-level diagram:

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
775 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Figure 157. RSS hardware diagram for ENETC

Hashing is done based on the Toeplitz hash function that requires a 40B random secret key as well as the
relevant pieces of the packet header (n-tuple). All 40B of the random keys are used for IPv6 packets while
only 16B are used for IPv4 packets. The packet type decides which fields are to be used to build the hash as
described in the following list.

• IPv4 with TCP [4-tuple]: Concatenates source IPv4 address, destination IPv4 address, source TCP port, and
destination TCP port

• IPv4 with UDP [4-tuple]: Concatenates source IPv4 address, destination IPv4 address, source UDP port, and
destination UDP port

• IPv4 [2-tuple]: Concatenates source IPv4 address and destination IPv4 address
• IPv6 with TCP [4-tuple]: Concatenates source IPv6 address, destination IPv6 address, source TCP port, and

destination TCP port
• IPv6 with UDP [4-tuple]: Concatenates source IPv6 address, destination IPv6 address, source UDP port, and

destination UDP port

The supported hashing fields for each flow type can also be verified at runtime via the ethtool -n rx-flow-
hash command.

Example – Displaying supported hashing fields for different flows (for example, tcp4):

# ethtool -n eno0 rx-flow-hash tcp4
TCP over IPV4 flows use these fields for computing Hash flow key:
L2DA
VLAN tag
L3 proto
IP SA
IP DA
L4 bytes 0 & 1 [TCP/UDP src port]
L4 bytes 2 & 3 [TCP/UDP dst port]

Example – Displaying hashing function information including secret hash key:

# ethtool -x eno2
RX flow hash indirection table for eno2 with 2 RX ring(s):
    0:      0     1     0     1     0     1     0     1
    8:      0     1     0     1     0     1     0     1
   16:      0     1     0     1     0     1     0     1

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
776 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

   24:      0     1     0     1     0     1     0     1
   32:      0     1     0     1     0     1     0     1
   40:      0     1     0     1     0     1     0     1
   48:      0     1     0     1     0     1     0     1
   56:      0     1     0     1     0     1     0     1
RSS hash key:
1a:8c:6c:16:24:7f:f4:63:94:71:6a:b4:76:a3:3c:22:19:a9:17:36:93:83:eb:06:f6:c9:d3:ca:09:ce:1c:1d:f7:06:71:57:05:ea:39:45
RSS hash function:
    toeplitz: on
    xor: off
    crc32: off

The RSS hash key and indirection table may be changed by the ethtool -X command.

The RSS hashing feature (hardware offload) can be enabled/disabled via ethtool -K.

Example – Enabling/disabling RSS:

# ethtool -K eno0 rxhash on
Checking RSS status:
# ethtool -k eno2 | grep hashing
receive-hashing: on

7.6.2.3.9  Rx flow steering (RFS)

Receive flow steering (RFS) is utilized to improve data locality essentially by steering packets of a given flow to
the core where the application thread consuming the flow is running. This mechanism relies on the availability
of multiple h/w rings onto which to direct flows, and the ability to affine the rings to different CPUs (see, “Multi-
queue support” section).

On the LS1028A SoC, the ENETC driver assigns by default one Rx queue to each CPU, so that Rx queue 0
is assigned to CPU#0 and Rx queue 1 to CPU#1. The Rx flows are steered based on flow classification rules,
specified via the ethtool -N flow-type tool.

Example – Steering packets based on IPv4 destination address:

// packets w/ dest ip addr 192.168.0.1 to queue 0, 192.168.1.1 to queue 1
# ethtool -N eno0 flow-type ip4 dst-ip 192.168.0.1 action 0
Added rule with ID 15
# ethtool -N eno1 flow-type ip4 dst-ip 192.168.1.1 action 1
Added rule with ID 15
// verifying the rules
# ethtool -n eno0
2 RX rings available
Total 1 rules
Filter: 15
        Rule Type: Raw IPv4
        Src IP addr: 0.0.0.0 mask: 255.255.255.255
        Dest IP addr: 192.168.1.2 mask: 0.0.0.0
        TOS: 0x0 mask: 0xff
        Protocol: 0 mask: 0xff
        L4 bytes: 0x0 mask: 0xffffffff
        Action: Direct to VF 0 queue 0
// there’s also the option to delete rules
# ethtool -N eno0 delete 15

The ENETC driver supports most of the IPv4 flow types, including: raw IPv4, TCP, UDP, SCTP, as well as L2
flow specifications (ether):

ethtool -N flow-type ether|ip4|tcp4|udp4|sctp4

Table 135. ethtool

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
777 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Classes of flows can be specified for all the supported flow types above by means of the mask attribute.

Example – Steering a class of IPv4 destination addresses from the same subnet:

// steer packets for subnet 192.168.0.* to queue 0
# ethtool -N eno0 flow-type ip4 dst-ip 192.168.0.0 m 255.255.255.0 action 0
Added rule with ID 15
# ethtool -n eno0
2 RX rings available
Total 1 rules
Filter: 15
        Rule Type: Raw IPv4
        Src IP addr: 0.0.0.0 mask: 255.255.255.255
        Dest IP addr: 192.168.1.0 mask: 255.255.255.0
        TOS: 0x0 mask: 0xff
        Protocol: 0 mask: 0xff
        L4 bytes: 0x0 mask: 0xffffffff
        Action: Direct to VF 0 queue 0

For further details on ethtool -N command options, refer to ethtool Linux man-pages.

7.6.2.3.10  QoS – TC offloading with h/w MQPRIO

According to the Linux man pages for the tc command (iproute2 package), the MQPRIO qdisc – “Multiqueue
Priority Qdisc (Offloaded Hardware QOS)” - is “a simple queuing discipline (qdisc) that allows mapping traffic
flows to hardware queue ranges using priorities and a configurable priority to traffic class mapping. A traffic
class in this context is a set of contiguous qdisc classes which map 1:1 to a set of hardware exposed queues.

Consequently, the ENETC hardware can prioritize the Tx rings (queues) assigned to any ENETC device (that
is, any PF or VF device) by associating a strict priority to each ring from the lowest priority class which is 0
(default value) to the highest one which is 7. The prioritization request is passed down from the Linux kernel to
the ENETC driver in the form of a request for up to eight traffic classes. The ENETC driver checks that there
are enough Tx rings to accommodate all the requested traffic classes, and updates the priorities of each ring
increasingly, starting with ring 0 (priority 0). The remaining rings that do not have a traffic class attached default
to the lowest priority (0).

Following example demonstrates how to create an MQPRIO qdisc with four traffic classes. The ‘map’ argument
simply maps each traffic class to a high-level ‘tc’ priority that can be used later by the filter commands to refer
to a specific traffic class. In this case, ‘tc’ priorities 0-1 are mapped to traffic class 0, 2-3 to traffic class 1, 4-5 to
traffic class 2, and 5-7 to traffic class 3:

# tc qdisc add dev eno0 root handle 1: mqprio num_tc 8 map 0 1 2 3 4 5 6 7 queues
1@0 1@1 1@2 1@3 1@4 1@5 1@6 1@7

Following example demonstrates how to prioritize different traffic flows in this setup. The following two filters
specify that traffic for destination port 6000 (tcp or udp) has priority 1 (assigned to traffic class 0) and traffic for
destination port 7000 has priority 2 (higher priority, traffic class 1):

# tc qdisc add dev eno0 clsact

# tc filter add dev eno0 egress prio 1 u32 match ip dport 6000 0xffff action
skbedit priority 1

# tc filter add dev eno0 egress prio 1 u32 match ip dport 7000 0xffff action
skbedit priority 2

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
778 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

7.6.2.3.11  Statistics and debug counters

ENETC hardware counters can be displayed via the ethtool -Scommand for each network device (that is,
every ENETC station interface). The counters include some standard MAC/Ethernet frames statistics, traffic-
related information for each Rx/Tx ring, and error event counters.

There is also a support for dumping a driver configured selection of device registers, to be used for debugging,
via ethtool -d.

7.6.2.3.12  Interrupt coalescing support

The ENETC driver uses the Dynamic Interrupt Moderation (Net DIM) generic algorithm provided by the Linux
kernel library to moderate the interrupt rate on the receive path. This feature improves CPU utilization for usual
traffic loads (like a normal TCP stream @1 Gbit/s) while preserving a good latency at the same time. The
algorithm analyzes ingress traffic and acts based on traffic load to reduce the rate of incoming packet interrupts
by increasing the time interval between consecutive interrupts, programmed in ENETC’s interrupt coalescing
registers. An Rx interrupt coalescing time value that is too high however leads to increased latency on the
packet processing path, so the algorithm balances interrupt coalescing (and interrupt rate) with latency based
on traffic profile.

The Net DIM feature is enabled by default on the Rx path of every ENETC device.

Example – checking the Net DIM feature status:

# ethtool -c eno0 | grep -i adaptive
Adaptive RX: on TX: off

On the Tx path, a default optimized time value for interrupt coalescing is being used, since the Tx interrupt rate
does not directly affect packet latency. The current interrupt coalescing time values (in micro seconds) can be
verified via `ethtool -c`.

Example – checking current interrupt coalescing time values:

# ethtool -c eno0 | grep usecs
[…]
rx-usecs: 256
tx-usecs: 600
[…]

rx-usecs is configured dynamically by the Net DIM algorithm and changes based on traffic type. The tx-
usecs value is preconfigured by default. Packet-based coalescing has fixed values and cannot be changed
(see rx-frames and tx-frames).

Note:  There is also the option to configure the coalescing time values manually by disabling the Net DIM
algorithm for Rx and overriding the default values for Rx and Tx, via the ethtool -C rx-usecs/ tx-usecs
options. While manual configuration of interrupt coalescing can help optimize certain traffic profiles or could be
used for benchmarking, it is not recommended. Interrupt coalescing can be disabled for a given interface via
ethtool -C by clearing the adaptive-rx flag and setting rx-usecs and tx-usecs to 0.

7.6.2.3.13  VF primary MAC address config

Configuring the primary MAC address of an ENETC VF device takes into consideration some restrictions
imposed by typical access rights given to PCIe VFs in relation with the owning PF. The workflow for configuring
the MAC address of a VF is as follows:

The Host needs to enable a VF first, for example, enabling VF0 for ENETC Port0 (PF0):

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
779 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

# echo 1 > /sys/bus/pci/devices/0000\:00\:00.0/sriov_numvfs

The PF0 interface also needs to be up so that the physical Ethernet link is initialized. For example: #
ifconfig eno0 up

Once the VF device is enabled it has a random MAC address assigned. At this point, changing the primary
MAC address in VM (Guest Linux) context is allowed provided the Host does not change the MAC address of
the same VF beforehand.

For example:

# ip link set eno0vf0 addr aa:bb:cc:dd:ee:ff

The Host owning a PF device can also configure the primary MAC address of VFs belonging to that PF, in which
case the Host configuration takes precedence over VF level configurations. For example:

# ip link set eno0 vf 0 mac aa:bb:cc:dd:ee:ff

At this point the VF MAC address can no longer be changed via the VF0 netdevice interface (that is, from the
Guest / VF context), and for any attempt to do so the Host will be notified via a warning message, For example:

fsl_enetc 0000:00:00.0: Attempt to override PF set mac addr for VF0

The VF primary MAC address configuration also comes with an anti-spoofing security feature, meaning that the
VF is denied transmission of packets whose source MAC address is different from VF’s primary MAC address if
this feature is on. Anti-spoofing can be turned on/off by the following command, For example:

# ip link set eno0 vf 0 spoofchk on

7.6.2.3.14  Flow control

ENETC supports standard IEEE 802.3 flow control, which means the MAC can generate and react to received
PAUSE frames, to achieve lossless packet processing.

Frames received by the ENETC MAC are first stored in a 256KB ’FIFO’ memory of the MAC, then transferred
to DRAM buffers populated by the driver in the receive rings. When there are no buffers available for the frame
to be stored in, ENETC can be configured in lossy mode (where the frames are immediately dropped), or in
lossless mode (where they are held back in the FIFO memory).

An occupancy threshold in the FIFO memory (which is usually mostly empty) triggers RX PAUSE frame
generation. The driver configures the MAC to use the maximum quanta value for the PAUSE frames, and a
subsequent PAUSE frame with a quanta of 0 will be generated when the congestion condition disappears.

On TX, the ENETC will not dequeue frames from the transmit rings as long as the link partner has signaled a
congestion condition.

Correct FIFO memory partitioning for large (jumbo) packets requires the LS1028A Integrated Endpoint Register
Block (IERB) driver, which is auto-selected when the CONFIG_FSL_ENETC driver option is enabled:

Symbol: FSL_ENETC_IERB [=y] Type : tristate
Defined at drivers/net/ethernet/freescale/enetc/Kconfig:29 Prompt: ENETC IERB
 driver
Depends on: NETDEVICES [=y] && ETHERNET [=y] && NET_VENDOR_FREESCALE [=y]
Location:
-> Device Drivers
-> Network device support (NETDEVICES [=y])
-> Ethernet driver support (ETHERNET [=y])
-> Freescale devices (NET_VENDOR_FREESCALE [=y])
-> ENETC IERB driver (FSL_ENETC_IERB [=y])

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
780 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

The IERB driver probes on the following node from arch/arm64/boot/dts/freescale/fsl-ls1028a.
dtsi, which is only available in device trees distributed with Linux v5.13 or later. If the /proc/device-tree/
soc/ierb@1f0800000/ node is not available, flow control is not available.

Flow control is advertised by default through the PHY registers. It can also be forcefully controlled, as follows:

ethtool --pause eno0 autoneg off rx off tx off

7.6.2.3.15  Driver support for XDP

ENETC has in-driver support for attaching BPF programs to the receive path of an interface and executing one
of the following actions per packet:

• XDP_DROP: drops the frame and recycles its buffer back into the RX ring
• XDP_PASS: transforms the XDP buffer into a regular network socket buffer and lets it pass to the network

stack
• XDP_TX: reflects the frame back into the TX path of the interface it came from, and recycles the RX buffer
• XDP_REDIRECT: forwards the frame to another interface or to a cpumap

When an XDP program is attached to an ENETC interface, all packets received on all RX queues pass through
the BPF program. For packets sent using XDP_TX or XDP_REDIRECT, a number of dedicated TX queues equal
to the number of CPUs is cropped from the queues presented to the network stack qdiscs (tc-mqprio, tc-
taprio). Therefore, whereas normally, the network stack can use up to 8 TX queues, with XDP it can use up to
6.

ENETC uses a split-page memory model, For the default PAGE_SIZE value of 4096, buffer sizes are 2048
bytes. Considering the XDP per-packet headroom and overhead, only 1472 bytes are available for RX buffers,
which is insufficient for the default MTU of 1500.

To address this, ENETC implements scatter/gather processing, where a packet of 1500 bytes is received in
a buffer of 1472 bytes and another one of 28 bytes. This works with the XDP_DROP, XDP_PASS and XDP_TX
actions, but currently, multi-buffer frames which get the XDP_REDIRECT verdict will be dropped.

7.6.2.3.15.1  Driver support for AF_XDP

ENETC has in-driver support for attaching zero-copy AF_XDP sockets to interrupt channels.

The libbpf library performs an ETHTOOL_GCHANNELS ioctl to find out the max number of queues a device has,
number which in turn is used for attaching XDP sockets to queues. A channel is an IRQ and the set of queues
that can trigger that IRQ.

In the LS1028A ENETC, the driver allocates a number of MSI-X interrupt vectors equal to the number of CPUs.
The number of interrupt vectors is reported as the number of channels to ethtool and therefore libbpf. Each
interrupt vector has 1 RX ring to process (there are more than 2 RX rings available on an ENETC port, but the
driver only uses up to 2). In addition, the up to 8 TX rings are distributed in a round-robing manner between the
up to 2 available interrupt vectors.

When an AF_XDP zero-copy socket is attached to a channel, the RX queue of the same number is seeded with
buffers from the kernel’s XSK (XDP socket) buffer pool, which in turn gets them from the UMEM provided by
user space. The same TX queues that are reserved for XDP are also used for AF_XDP transmission. Packet
transmission takes place through the TX queue associated with the channel number.

One of the following actions can be taken by the XDP program per packet:

• XDP_DROP: drops the frame and returns the buffer back to the XSK buffer pool
• XDP_PASS: copies the XSK buffer into a regular network socket buffer and lets it pass to the network stack,

while returning the original buffer back to the XSK buffer pool

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
781 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

• XDP_TX: reflects the frame back into the TX path of the interface it came from, and returns the buffer back to
the XSK buffer pool

• XDP_REDIRECT: forwards the frame to the XDP socket

7.6.2.4  Performance considerations and benchmarking provisions

Packet forwarding benchmarking for ENETC is based on the RFC2544 methodology. The maximum aggregated
throughput is being measured for multiple balanced opposite direction flows of IPv4 packets forwarded between
two ENETC interfaces.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
782 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Figure 158. Packet forwarding benchmarking setups

For meaningful and consistent results of this benchmark test across multiple kernel versions and platforms the
following configuration steps and setup guidelines are being enforced:

• Configuring switch ports on the forwarding path
Only non-CPU switch ports must be included on the forwarding path, see Figure 158. The setup (see the top
diagram of Figure 158) is the default benchmarking configuration, with swp5 configured as CPU port and
corresponding eno3 as DSA master interface. In this setup, the packet forwarding interfaces are eno0 and
eno2 and both 1G and 2.5G link speeds are possible.
However, for setups that enforce swp4 as CPU port (and so eno2 as DSA master) benchmarking is still
possible over eno3 and swp5 (see the bottom diagram of Figure 158) but only at 1G link speed (the internal
link to eno3 – ENETC Port3 – is a 1G link).
The internal non-CPU switch port and corresponding internal ENETC port need to be activated via device
tree, as they are disabled by default. Also, the switch needs to be configured in bridge mode so that packet
can be forwarded between the front panel port and the non-CPU internal switch port (refer to the Felix switch
document for details on these configurations).
Any front panel switch interface (swp0 – swp3) can be used as traffic input/output port on these setups.

• Balanced flow processing among CPUs
Rx and Tx queues are grouped into interrupt vectors and interrupt vectors are affined to separate CPUs. ID
0 queues (and remaining even queues for Tx) are affined to CPU0 and ID 1 queues (and remaining odd Tx
queues) to CPU1.
For the most stable results of the RFC2544 benchmark test a low number of predetermined flows is used, and
the number of flows in one direction equals the number of flows in the opposite direction. Traffic injection rates
in both directions should also be equal. The flows in this case can be individually steered (RFS) so that the
flows in one direction get processed on one CPU and the flows from the opposite direction by the other CPU,
according to the example below.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
783 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Example – Steering 2 opposite flows to separate CPUs:

# ethtool -N eno0 flow-type ip4 dst-ip 192.168.0.1 action 0
# ethtool -N eno2 flow-type ip4 dst-ip 192.168.1.1 action 1

The above setup based on balancing flow processing via receive flow steering (RFS) is synthetic and aims
for a very low variability of test results. If the flows are not predetermined, or individual steering of each flow is
impractical, then there’s the option to balance flow processing by hashing them to different CPUs. The results
are less predictable in this case since the flows are less likely to get evenly balanced among CPUs.
Example – Distributing incoming flows via hashing (RSS):

# ethtool -K eno0 rxhash on
# ethtool -K eno2 rxhash on

• Reduced system load kernel configuration
Additional CPU consuming kernel processes and kernel features that add processing overhead must be
reduced to a minimum. This ensures that packet forwarding performance is measured in isolation of other
kernel features and evens up benchmark environments among different kernel versions.
The table below lists the CPU consuming kernel options that are known to affect RFC2544 benchmark results
on LS1028A and should be disabled.

Kernel config Comments

CONFIG_FSL_ENETC_PTP_CLOCK,
CONFIG_MSCC_FELIX_SWITCH_PTP_CLOCK

Timestamping support in the ENETC and Felix switch drivers.

CONFIG_USB_SUPPORT, CONFIG_MMC,
graphics, and so on.

CPU consuming peripheral support, that is, USB, MMC, and
graphics.

Table 136. Kernel configs to disable for RFC2544

• Reduced root file system
Following the rationale from the previous point, the Linux root file system used should be minimal to restrict
the number of Linux runtime processes.
As a general guideline, when comparing performance results among different kernel version the list of kernel
process (that is, ‘ps ax’ command) should be about the same.

For additional general performance optimization guidelines, see the Section 7.9 section.

7.6.2.5  Known limitations

List of major known limitations for the current driver release.

7.6.2.5.1  External MDIO read issue

External MDIO reads 0 every now and then when ENETC registers are accessed concurrently with MDIO
accesses. This is a known hardware erratum (see H/W errata doc).

The current software workaround is to use a global lock across all ENETC register accesses. While the
workaround solves the hardware issue, it introduces limitations on the software side. One such limitation is
the impact on performance due to locking on the fast path. Another issue is that it limits the modularity and
virtualization of the ENETC VF driver. Since the VF driver needs to share a global lock with the PF driver, the
VF driver can no longer be run independently of the PF driver.

7.6.2.5.1.1  VF module link issues on some kernels

This issue is related to the MDIO read issue (see Section 7.6.2.5.1).

The global ENETC registers lock (enetc_mdio_lock) required by the MDIO read hardware issue workaround,
limits the modularity of the VF driver as the lock needs to be shared between the PF and the VF ENETC drivers.
UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
784 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

On Linux kernel v4.14, the ENETC VF driver fails to build separately as an external kernel module because of
this shared lock.

Note:  Workaround: Both the ENETC PF and VF drivers should be built as kernel built-in modules, instead of
external kernel modules.

7.6.2.5.1.2  VF module probing denied due to duplicate symbol

This issue is also related to the MDIO read issue (see Section 7.6.2.5.1).

The current MDIO read issue workaround is breaking the modularity of the VF driver by exporting the common
enetc_mdio_lock symbol from both the PF and the VF drivers. If the VF driver is built as an external module,
modprobe will issue the following error:

# modprobe fsl-enetc-vf
fsl_enetc_vf: exports duplicate symbol enetc_mdio_lock (owned by fsl_enetc)

Note:  Workaround: Both the ENETC PF and VF drivers should be built as kernel built-in modules, instead of
external kernel modules.

7.6.2.5.2  VF primary MAC address configuration issues

Changing the primary MAC address for a VF interface from VF context is currently not possible. The following
command returns an error code without changing the address:

# ip link set eno0vf0 addr aa:bb:cc:dd:ee:ff

Also, VF primary MAC address updates from PF context fail to register the new MAC address with the
networking stack.

# ip link set eno0 vf 0 mac aa:bb:cc:dd:ee:ff

Workaround:

Preconfigure all VF primary MAC addresses from U-Boot.

7.6.3  Felix Linux Ethernet driver

7.6.3.1  Introduction

The time sensitive networking (TSN) Gigabit Ethernet switch core, also referred as L2Switch, contains five
10/100/1000/2500 Mbit/s Ethernet ports and one 10/100/1000 Mbit/s Ethernet port. It provides a rich set of
Ethernet switching features, such as advanced TCAM-based VLAN and QoS processing as well as security
processing using a TCAM-based versatile content aware processor (VCAP).

The device provides precision time protocol (PTP) and TSN support. TSN support is also described in this
document.

Note:  For additional information, refer to LS1028A Reference Manual at nxp.com.

7.6.3.2  Linux kernel configuration items

This section explains how to identify the Felix driver modules and corresponding kernel configuration options, as
well as the associated device tree nodes.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
785 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

7.6.3.2.1  Driver modules and dependencies

The Felix driver has two layers:

• a library supporting common hardware features for Microsemi’s Ocelot product family of switch cores
• a DSA driver module (called Felix) to manage the VSC9959 switch core integrated as a PCIe endpoint device

on the LS1028A SoC

On the same SoC, the Felix switch relies on ENETC’s central MDIO controller for PHY level services. The
dependency on the ENETC’s MDIO driver module is summarized in the table below.

Module Runtime dependencies Description

mscc_ocelot_switch_
lib.ko

- Common hardware support library
for Microsemi Ocelot switch devices

mscc_felix.ko mscc_ocelot_common.
ko , fsl-enetc-mdio.ko

Felix DSA switch driver

fsl-enetc-mdio.ko - ENETC central MDIO controller (PCIe PF 3)

Table 137. Driver modules and dependencies

7.6.3.2.2  Kernel configuration options

The kernel configuration tree view for enabling the Felix driver modules through make menuconfig command:

Networking support --->
Networking options --->
Distributed Switch Architecture --->
-*- Tag driver for Ocelot family of switches, using NPI port
<*> Tag driver for Ocelot family of switches, using VLAN 

Device Drivers --->
[*] Network device support --->
Distributed Switch Architecture drivers --->
<*> Ocelot / Felix Ethernet switch support

Option Values Modules

CONFIG_FSL_ENETC_MDIO y/m/n fsl-enetc-mdio.ko

CONFIG_NET_DSA_MSCC_FELIX y/m/n mscc_felix.ko

CONFIG_MSCC_OCELOT_SWITCH_LIB y/m/n mscc_ocelot_switch_lib.ko

CONFIG_NET_DSA_TAG_OCELOT y/m/n (auto-
selected)

tag_ocelot.ko

CONFIG_NET_DSA_TAG_OCELOT_8021Q y/m/n (auto-
selected)

tag_ocelot_8021q.ko

Table 138. Driver kernel config options

7.6.3.2.3  Device tree nodes

The Felix switch uses PCIe Enhanced Allocation to present itself as a PCIe device. As a result, the ethernet-
switch node is a subnode of the ENETC PCIe root complex node and its reg property conforms to the PCI
bindings.

• reg: Specifies the PCIe device number and the function number of the endpoint device. In this case, it is
<0x000500 0 0 0 0> (function 5, device 0, bus 0).

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
786 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

The device tree bindings of the Felix switch comply with the common DSA switch bindings. For a complete
definition, see the schema at Documentation/devicetree/bindings/net/dsa/mscc,ocelot.yaml.

The main device tree file for the switch is in the common SoC dtsi, arch/arm64/boot/dts/freescale/
fsl-ls1028a.dtsi.

Individual board device trees need to enable the switch and the ports that are routed to pins, and provide
phy-mode and phy-handle values.

There are 2 internal switch ports connected to ENETC. Neither of them are selected as CPU port (which
handles DSA-tagged traffic) in the SoC dtsi. This is also handled by individual board device trees.

7.6.3.2.4  Source files

Felix and Ocelot driver sources:

Source files Description

drivers/net/dsa/ocelot:
felix.c, felix.h, felix_vsc9959.c

Felix DSA driver

net/dsa/tag_ocelot.c DSA tagging support for Ocelot devices

include/soc/mscc:
ocelot.h, ocelot_dev.h, ocelot_ana.h,
ocelot_sys.h, ocelot_qsys.h, ocelot_
hsio.h

Ocelot library’s external API

drivers/net/ethernet/mscc:
ocelot.c, ocelot.h, ocelot_*.c

Library for Ocelot switch core devices

Table 139. Source files

7.6.3.3  Linux runtime usage

This section describes the major Felix switch features and related usage instructions:

7.6.3.3.1  Felix interfaces and probing

On successful probing of the DSA Felix switch, each available front-panel switch port should have a network
device interface attached with the swpX name format. The ip link show command uses the swpX@enoY
name format to also indicate the associated master Ethernet interface for the DSA switch port, which
corresponds to an internal ENETC interface, usually the eno2 (Port2) for the LS1028A SoC. For detailed
description of the placement and naming of the front panel switch ports for LS1028ARDB, see Section 7.6.1.

Example – Switch port interfaces swpX and DSA master interface eno2 available after probing:

# ip link show
[…]
3: eno2: <BROADCAST,MULTICAST> mtu 1532 qdisc noop state DOWN mode DEFAULT group
 default qlen 1000
    link/ether 4e:c8:97:66:a9:6f brd ff:ff:ff:ff:ff:ff
[…]
6: swp0@eno2: <BROADCAST,MULTICAST,M-DOWN> mtu 1500 qdisc noop state DOWN mode
 DEFAULT group default qlen 1000
    link/ether 4e:c8:97:66:a9:6f brd ff:ff:ff:ff:ff:ff
7: swp1@eno2: <BROADCAST,MULTICAST,M-DOWN> mtu 1500 qdisc noop state DOWN mode
 DEFAULT group default qlen 1000
    link/ether 4e:c8:97:66:a9:6f brd ff:ff:ff:ff:ff:ff

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
787 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

8: swp2@eno2: <BROADCAST,MULTICAST,M-DOWN> mtu 1500 qdisc noop state DOWN mode
 DEFAULT group default qlen 1000
    link/ether 4e:c8:97:66:a9:6f brd ff:ff:ff:ff:ff:ff
9: swp3@eno2: <BROADCAST,MULTICAST,M-DOWN> mtu 1500 qdisc noop state DOWN mode
 DEFAULT group default qlen 1000
    link/ether 4e:c8:97:66:a9:6f brd ff:ff:ff:ff:ff:ff

7.6.3.3.2  Connecting to host CPU

On the LS1028A SoC, the switch is connected to the host CPU via two SoC internal MAC-to-MAC port
connections between the switch and the corresponding ENETC Ethernet endpoints:

• ENETC PF2 (or ENETC Port 2) and switch port #4 (2.5G link)
• ENETC PF6 (or ENETC Port 3) and switch port #5 (1G link)

CPU packet transmission and reception from a switch port are indirect through the attached ENETC port.

Out of these two MAC-to-MAC connections with the host CPU, the switch IP allows for a single switch port to
operate in NPI port mode. This allows the control traffic of the switch to be redirected to an Ethernet port.

These packets are tagged with an Ocelot proprietary frame header. The header contains information such as
packet trapping reason, switch port identification for multiplexing and demultiplexing, hardware timestamps for
PTP, QoS class, classified VLAN ID.

DSA can use the NPI port functionality to offer dedicated network interfaces with support for packet RX and TX.
DSA calls the NPI port "CPU port". Since the switch supports a single NPI port, the other internal switch port
connected to the CPU does not support these features. It is a configured as a regular switch port, which DSA
calls "user port".

The following table summarizes the differences between the NPI and non-NPI (user) port modes.

Feature NPI port Non-NPI port

Allows frame injection/extraction via Ocelot
proprietary header

Yes No

Is a destination for control frames, for example.
STP.

Yes No

Is a destination for data plane frames forwarded by
the switch

Yes Yes, if in a bridge

Visible as a network interface No Yes

Attached ENETC interface usable as IP termination
endpoint

No (sees DSA-tagged traffic) Yes

Supports flow control No Yes

In non-CPU mode, the user needs to use the peer network interface to send and receive packets instead of the actual switch
port interface.
In CPU port mode, the user will use the net device interface of the switch port or the bridge interface.

Table 140. NPI port and non-NPI port modes

The following figure shows the switch connections to L2Switch connection with the host CPU.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
788 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Figure 159. Host CPU connections to the L2Switch

Note:  By default, the LS1028A-RDB defines the 2.5G switch port (port #4) as CPU port while the last internal
switch port and corresponding ENETC port are disabled. However, these defaults can be changed by updating
the corresponding device tree nodes.

7.6.3.3.2.1  NPI port mode

The NPI port works by providing the means for the host CPU to choose a switch destination port for a frame and
address control frames from known protocols. For example, STP.

In the Felix DSA switch driver setup, the CPU port is connected directly to the master Ethernet interface. The
two important features of the CPU port mode are frame injection and frame extraction.

Frame injection

By using a custom tag or injection header of 128b length prepended before the Ethernet frame header, the
driver can instruct the L2Switch to forward the frame on a specific port and bypass the frame analyzer. The
analyzer determines the destination port, QoS class, and VLAN classification for the frame through normal
frame processing including lookups in the MAC table and VLAN table.

The tagged frame transmission is done from the peer network endpoint device. The peer net device is
designated by the Ethernet device tree property. On reception, the L2Switch will strip the header, apply the
frame updates (for example, write timestamp on PTP frames) and put the frame on the egress queue of the
destination port.

Once configured for injection, the switch port accepts only tagged frames.

Frame extraction

The L2Switch can intercept a variety of control frames or just normal frames (unicast or multicast) and redirect
them to the CPU port. When a frame exits the CPU port, it is also prepended, similar to injection, by a custom

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
789 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

tag or an extraction header (128b length). This header needs to be stripped off and decoded by the switch
driver to extract the ingress switch port number on which the frame was received.

Once configured for extraction, the switch port emits only tagged frames.

For frame extraction, the switch is configured to add a 128b prefix, called long prefix, on top of the normal
128b extraction header. The reason for this is that the long prefix adds a broadcast header to the frame so
that it is always guaranteed to be received by the DSA master device, regardless of the DSA master device’s
promiscuity mode.

Figure 160. CPU extraction header with long prefix format for extraction frames

7.6.3.3.2.2  Non-CPU port mode (L2 forwarding)

For the SoC internal port that works in the non-CPU mode, the decision to forward the frame to the host CPU
or to accept a frame from it depends exclusively on the frame analyzer and the MAC and VLAN tables. As
mentioned earlier, the frames transiting a non-CPU port are not carrying any custom tags. In this mode only, the
peer net device port (that is ENETC Port) acts like a proxy for the switch port, therefore the user is required to
use the peer’s Linux network interface for sending and receiving packets from/to the switch.

The internal non-CPU switch port is disabled by default, as part of the default Felix DSA switch setup which
covers most of the user use-cases. However, there are some L2Switch use cases (usually TSN related) that
require an internal switch port to work in non-CPU mode.

Example – Enabling the internal 2.5G switch port as non-CPU port for 802.1CB:

The switch core for 802.1CB FRER uses the MAC table (FDB) to assign packets to a seamless stream ID
(SSID). In turn, the MAC table needs the analyzer module (ANA) to inspect the frames. But traffic that passes
to/from the DSA CPU port bypasses the analyzer module, which means that CPU originated traffic would not
be correctly assigned to an SSID for 802.1CB if it is coming through a switch port in CPU mode (that is, having
injection/ extraction headers).

To work around this issue and provide a functional 802.1CB use case, the default DSA CPU port setup is
changed as follows for the LS1028RDB board, by patching the corresponding device tree nodes:

1. Internal ENETC Port 3 (eno3) is enabled.
2. Internal L2Switch port #4 (swp4, 2.5G link) is designated as non-CPU port.
3. Internal L2Switch port #5 (swp5, 1G link) is the new CPU port, and eno3 the new DSA master interface.

Changing the DSA master interface from ENETC port 2 (eno2@2.5G) to ENETC port 3 (eno3@1G):

diff --git a/arch/arm64/boot/dts/freescale/fsl-ls1028a-rdb.dts b/arch/arm64/
boot/dts/freescale/fsl-ls1028a-rdb.dts
[…]
+&enetc_port3 {
+  status = "okay";
+};
+
[…]
+
+  port@4 {
+    /delete-property/ ethernet;
+  };
+
+  port@5 {

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
790 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

+    status = "okay";
+    ethernet = <&enetc_port3>;
+  };
[…]

7.6.3.3.2.3  Tag_8021q CPU port mode

DSA supports dynamically changing the tagging protocol used by a particular DSA switch tree. Since the
hardware limitation in the A-050484 erratum lies in the use of the NPI mode (called ocelot DSA tagging
protocol), there exists an alternative DSA tagging protocol named ocelot-8021q which accomplishes most of
what the NPI mode is able to, in a way which does not make use of the NPI mode, and hence is not subject to
the flow control limitation.

Below is a summary of the similarities and differences between the NPI port mode and tag_8021q CPU port
mode.

Feature NPI port User port

Allows packet injection/extraction to standalone user ports yes, via proprietary headers yes, via VLAN headers

Allows data plane packet injection/extraction to bridged ports yes, via proprietary headers yes, via VLAN headers

Allows control plane packet injection/extraction yes, via proprietary headers yes, via registers

Is a destination for control frames, for example STP or PTP yes yes

Is a destination for data plane frames forwarded by the switch yes yes

Visible as a network interface no no

Attached ENETC interface usable as IP termination endpoint no (sees DSA-tagged traffic) no (sees DSA-tagged
traffic)

yes yes yes

Supports flow control no yes

Supports PTP over L2/L4 yes yes

QoS class available yes yes

Trap reason available yes no

Consumes TCAM entries no yes

Multiple CPU ports possible no yes

Table 141. NPI port mode and tag_8021q CPU port mode

The DSA tagging protocol is an implementation detail of a switch. User space applications are unaware of
the differences between one protocol and another, and there is no change in terms of packet data for sockets
opened on the DSA switch user interfaces. By default, the Felix DSA driver will boot using the NPI-based
ocelot tagging protocol even if ocelot-8021q is supported.

To view the tagging protocol in current use, a sysfs file exported by the DSA master can be read:

$ cat /sys/class/net/eno2/dsa/tagging ocelot

The sysfs is also writable with the name of the alternative tagging protocols that can be used for a certain switch
tree (the one attached to the DSA master):

$ echo "ocelot-8021q" > /sys/class/net/eno2/dsa/tagging

Note:  Note that the DSA master and all DSA user ports attached to it must be down while changing the tagging
protocol.
UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
791 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

To bring all DSA switch ports down, it is sufficient to bring their master down:

$ ip link set eno2 down

To bring a DSA switch port up, it is sufficient to bring its interface up and the master will be automatically
brought up as well, if found to be down:

$ ip link set swp0 up

If ports were brought down during the tagging protocol change procedure, it is necessary to manually
bring them up again. If the default switch tagging protocol is considered to be broken or there is a desire to
permanently change it, there is also the option of modifying the device tree to specify an alternative. The kernel
will switch over to this protocol during boot.

The syntax for doing this is described in the DT bindings document for a DSA port (CPU port, in this case):
https://www.kernel.org/doc/Documentation/devicetree/bindings/net/dsa/dsa-port.yaml

An example is given below:

&mscc_felix_port4 {
ethernet = <&enetc_port2>;
dsa-tag-protocol = "ocelot-8021q";
};

To validate the ability to perform lossless packet termination, perform the following steps:

1. Confirm that "ocelot-8021q" is the tagging protocol currently in use:

$ cat /sys/class/net/eno2/dsa/tagging ocelot-8021q

2. Send traffic at line rate and check the flow control counters. The TX PAUSE counters of the DSA master
should be equal to the RX PAUSE of the switch CPU port, and the RX PAUSE of the DSA master should be
equal to the TX PAUSE of the switch CPU port. The feature is functional if p04_tx_pause increases:

$ ethtool -S eno2 | grep pause 
MAC rx valid pause frames: N 
MAC tx valid pause frames: M 
p04_rx_pause: M 
p04_tx_pause: N

7.6.3.3.3  Single port mode

In this configuration mode, the traffic received on all external ports is forwarded to the CPU port. However, the
L2 forwarding is not enabled by default. Each switch port interface can be used independently to send and
receive packets.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
792 / 1061

https://www.kernel.org/doc/Documentation/devicetree/bindings/net/dsa/dsa-port.yaml


NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Figure 161. Single port mode switch setup

Example – Single port configuration of the Felix DSA switch driver:

#!/bin/bash
#
# configure external switch interfaces
ip addr add 192.168.0.1/24 dev swp0
ip addr add 192.168.1.1/24 dev swp1
ip addr add 192.168.2.1/24 dev swp2
ip addr add 192.168.3.1/24 dev swp3
# master interface to be brought up first
ip link set eno2 up
# bring up the slave interfaces
ip link set swp0 up
ip link set swp1 up
ip link set swp2 up
ip link set swp3 up

7.6.3.3.4  Bridge mode

The following diagram describes a basic bridge setup required to test the switch with CPU port configuration
and L2 forwarding at the same time. All external switch ports (DSA slave interfaces) are added to a bridge.
eno2 is brought up as the DSA master interface.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
793 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Figure 162. Bridge mode switch setup

Example - Bridge configuration of the Felix DSA switch driver:

#!/bin/bash
#
# bring up master interface before the slave ports (optional, also done
 automatically)
ip link set eno2 up
# bring up the slave interfaces
ip link set swp0 up
ip link set swp1 up
ip link set swp2 up
ip link set swp3 up
# create bridge
ip link add name br0 type bridge
# add the external switch ports to the bridge
ip link set dev swp0 master br0
ip link set dev swp1 master br0
ip link set dev swp2 master br0
ip link set dev swp3 master br0
# configure and bring up the bridge
ip addr add 192.168.2.1/24 dev br0
ip link set dev br0 up

7.6.3.3.5  Gateway mode

In this mode all external switch ports, except the one chosen as the upstream port, are added to a bridge. The
upstream port can be used as a separate network interface.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
794 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Example - Bridge configuration of the Felix DSA switch driver:

#!/bin/bash
#
# bring up master interface before the slave ports (optional, also done
 automatically)
ip link set eno2 up
# bring up the slave interfaces
ip link set swp0 up
ip link set swp1 up
ip link set swp2 up
ip link set swp3 up
# configure the upstream port
ip addr add 192.0.2.1/30 dev swp0
# create bridge
ip link add name br0 type bridge
# add the lan ports to the bridge
ip link set dev swp1 master br0
ip link set dev swp2 master br0
ip link set dev swp3 master br0
# configure and bring up the bridge
ip addr add 192.168.2.125/25 dev br0
ip link set dev br0 up

7.6.3.3.6  VLAN filtering

The following two components are used in the Linux kernel for dealing with 802.1Q VLAN tags:

• The 8021q module (activated by CONFIG_VLAN_8021Q) for creating VLAN subinterfaces of network devices
with tagged traffic

• The CONFIG_BRIDGE_VLAN_FILTERING support for implementing 802.1d bridging (port membership
enforcements)

The Felix switch on LS1028A is integrated with two frameworks:

• with 8021q module via DSA framework that sets the NETIF_F_HW_VLAN_CTAG_FILTER flag for each DSA
slave port (external switch port). With this, VLAN subinterfaces created on top of swpX networking devices will
have the process of pushing and stripping a VLAN header offloaded to the hardware;

• with the bridge vlan_filtering mode (switching with VLAN awareness) via the switchdev objects for VLAN
(SWITCHDEV_OBJ_ID_PORT_VLAN).

By default, a Linux bridge is created with VLAN awareness disabled:

# ip link add dev br0 type bridge
# for swp in swp0 swp1 swp2 swp3 swp4; do ip link set dev $swp master br0; done

"VLAN unaware" means that when the bridge is operating in this mode, it will ignore VLAN tags. If the bridge
receives VLAN-tagged frames, it will forward them as untagged and not perform any port membership check.

To make the bridge VLAN-aware, one can either delete the existing bridge and make another one that is VLAN-
aware:

# ip link del dev br0
# ip link add dev br0 type bridge vlan_filtering 1

Or simply toggle the vlan_filtering property on the bridge that already exists:

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
795 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

# ip link set dev br0 type bridge vlan_filtering 1

When VLAN filtering is enabled on the switch, the 'bridge' tool from iproute2 can be used to manipulate the
VLAN tables of the ports.

By default, only the default_pvid (1) of the bridge is installed on all the switch ports. Therefore, all VLAN-
tagged traffic, except that tagged with VID 1, will be dropped.

Note:  Since the pvid (port-based VLAN) is 1, all untagged traffic will also get internally processed by the
switch as having VID 1. Therefore, (a) untagged traffic is treated in same manner as traffic tagged with VID 1,
or any other value that the pvid may have, and (b) deleting VID 1 from the VLAN table of the switch port will
effectively block untagged and VID 0-tagged traffic too.

To install a rule by which the switch port accepts traffic tagged with VLAN 100:

# bridge vlan add dev swp0 vid 100

It is not enough for the switch to accept this traffic (or rather said: it will accept it, and then drop it due to lack
of valid destinations). The egress port must also be part of this VLAN. For example, consider the case where
these frames must be terminated on the CPU, assuming the internal port configuration from fsl-ls1028a-
rdb-dpdk.dts, where swp4/eno2 is the port pair with DSA tagging, and eno3 is a switch-unaware interface
connected to swp5. To terminate these frames on eno3, the egress port of the switch is swp5, and that needs
to be made a member of VLAN 100:

# bridge vlan add dev swp5 vid 100

The above command may be used in conjunction with creating a VLAN subinterface on top of eno3, the internal
ENETC host port without DSA headers:

# ip link add link eno3 name eno3.100 type vlan id 100 ingress-qos-map 0:0 1:1
 2:2 3:3 4:4 5:5 6:6 7:7 egress-qos-map 0:0 1:1 2:2 3:3 4:4 5:5 6:6 7:7
# ip link set dev eno3.100 up

The above setup may be useful for sending in-band QoS hints to the switch when transmitting traffic through the
switch ports. By altering the skb priority (by using the SO_PRIORITY API, for example), the VLAN PCP gets set
to a value corresponding to a traffic class in the range 0 (best effort) to 7 (highest priority) for packets sent over
eno3.100. The swp5 port then processes this VLAN tag, performs a 1-to-1 mapping between VLAN PCP and
one of its traffic class queues, and forwards the packet with the appropriate priority to the other port member of
the VLAN 100 (swp0).

In the setup above, packets will exit swp0 with the VLAN tag still present. If the tag is not desired, it can be
stripped on egress:

# bridge vlan del dev swp0 vid 100
# bridge vlan add dev swp0 vid 100 untagged

It is also possible for the switch to tag untagged traffic with a different VLAN ID on ingress:

# bridge vlan add dev swp0 vid 100 pvid

It is important to keep in mind that "pvid" is an ingress property of the VLAN, and "untagged" is an egress
one. They can also be combined as follows:

# bridge vlan add dev swp0 vid 100 pvid untagged

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
796 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

7.6.3.3.7  Jumbo frame support

The Felix driver supports transmission and reception of Ethernet frames with payloads greater than 1500 bytes
(standard Ethernet frames), also known as jumbo frames. The allowed maximum L2 payload size of an ingress
or egress Ethernet frame for a Felix DSA switch port is called the MTU value (“Maximum transmission unit” or
“Maximum transfer unit”) of that port and is configurable at runtime.

The upper limit for jumbo frame sizes is computed based on the maximum MTU supported by the DSA master
interface (an ENETC Ethernet interface in this case). Namely, the maximum allowed Felix DSA port MTU
is equal to the maximum MTU of the DSA master Ethernet interface (ENETC) minus the injection header
overhead (32 bytes with the long prefix). This also means that the maximum MTU value of all the DSA switch
ports is propagated to the DSA master interface (plus the DSA tagging overhead).

Example – Increasing the MTU of swp0 to 8000, leaving the other ports to their default MTU.

# ip link set mtu 8000 dev swp0

Verifying the MTU value of the switch port and the propagated MTU value of the master interface.

# ip link show dev swp0
6: swp0@eno2: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 8000 qdisc noqueue state UP
 mode DEFAULT group default qlen 1000
link/ether 00:00:0e:00:00:02 brd ff:ff:ff:ff:ff:ff
# ip link show dev eno2
3: eno2: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 8032 qdisc mq state UP mode
 DEFAULT group default qlen 1000
link/ether 00:00:0e:00:00:02 brd ff:ff:ff:ff:ff:ff

When two (or more) switch port interfaces are bridged together, the MTU values of the bridged interfaces are
equalized to the MTU value of the last interface to join the bridge or the last configured MTU value of a switch
port interface that is already bridged. This feature is called MTU auto-normalization of bridged switch port
interfaces.

Example – MTU auto-normalization of bridged switch port interfaces.

# ip link set dev swp0 master br0
# ip link set dev swp1 mtu 8000
# ip link set dev swp1 master br0

After this sequence swp0 will change its MTU value to 8000 (from swp1).

# ip link set dev swp0 master br0
# ip link set dev swp1 master br0
# ip link set dev swp0 mtu 8000

After this sequence swp1 will change its MTU value to 8000 (from swp0).

7.6.3.3.8  QoS – Port policers

Port policers can be used to limit the rate of the traffic received on a given switch port. For the Felix switch,
policing can be offloaded to the hardware. The hardware supports MEF-compliant dual leaky bucket policers
that are capable of handling committed and excess peak information rates. However, currently, only the
committed information rate (CIR) and bucket size (burst) is configurable.

To set up a port policer, the following kernel options are needed:

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
797 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

CONFIG_NET_ACT_POLICE

Symbol: NET_ACT_POLICE [=y]
Type  : tristate
  Prompt: Traffic Policing
  Depends on: NET [=y] && NET_SCHED [=y] && NET_CLS_ACT [=y]
  Location:
    -> Networking support (NET [=y])
      -> Networking options
        -> QoS and/or fair queueing (NET_SCHED [=y])
          -> Actions (NET_CLS_ACT [=y])

CONFIG_NET_CLS_MATCHALL

Symbol: NET_CLS_MATCHALL [=y]
Type  : tristate
  Prompt: Match-all classifier
  Depends on: NET [=y] && NET_SCHED [=y]
  Location:
    -> Networking support (NET [=y])
      -> Networking options
        -> QoS and/or fair queueing (NET_SCHED [=y])
Selects: NET_CLS [=y]

CONFIG_NET_SCH_INGRESS

Symbol: NET_SCH_INGRESS [=y]
Type  : tristate
  Prompt: Ingress/classifier-action Qdisc
  Depends on: NET [=y] && NET_SCHED [=y] && NET_CLS_ACT [=y]
  Location:
    -> Networking support (NET [=y])
      -> Networking options
(1)     -> QoS and/or fair queueing (NET_SCHED [=y])
Selects: NET_INGRESS [=y] && NET_EGRESS [=y]

Example

The following command can be used to install a port policer that limits ingress traffic to the rate of 10 Mbit/s.

# tc qdisc add dev swp2 clsact
# tc filter add dev swp2 ingress matchall skip_sw \
        action police rate 10mbit burst 64k

7.6.3.3.9  Statistic counters

The Felix switch driver supports ethtool -S statistics reporting for each DSA slave switch port through the
associated net devices. The DSA master Ethernet interface includes the stats of the internal switch port, the
CPU port, along with its own Ethernet controller’s statistics (ENETC Port), reported via ethtool -S.

7.6.3.3.10  Advanced packet classification

The Felix switch includes a packet filter/action TCAM-based engine named Versatile Content-Aware Processor
(VCAP). This allows inspecting packet headers up to L4 and performing various actions such as:

• trap (VCAP IS2 lookup 0)
• drop (VCAP IS2)

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
798 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

• redirect (VCAP IS2)
• mirror (VCAP IS2)
• police (VCAP IS2 lookup 0)
• push VLAN header (VCAP ES0)
• pop VLAN header (VCAP IS1)
• change VLAN header (VCAP IS1, ES0)
• change QoS classification (VCAP IS1)

The VCAP has an ingress pipeline and an egress pipeline.

The ingress pipeline is composed of 2 chained stages, IS1 and IS2:

Lookup 1

key & action
key & action

..

Lookup 2

key & action
key & action

..

Lookup 0

key & action
key & action

..

VCAP IS1

selects PAG

Lookup 1

key & action
key & action

..

Lookup 0

key & action
key & action

..

VCAP IS2

Lookup 1

key & action
key & action

..

Lookup 0

key & action
key & action

..

Lookup 1

key & action
key & action

..

Lookup 0

key & action
key & action

..

Lookup 1

key & action
key & action

..

Lookup 0

key & action
key & action

..

PAG 0

PAG 1

PAG 254

PAG 255

...

Figure 163. Ingress pipeline

Both the VCAP IS1 (Ingress Stage 1) and IS2 (Ingress Stage 2) are indexed (looked up) multiple times per
packet: IS1 3 times, and IS2 2 times. Each filter (key and action pair) can be configured to only match during the
first, or second, etc, lookup.

During one TCAM lookup, the filter processing stops at the first entry that matches, then the pipeline jumps to
the next lookup.

The driver allows programming the VCAP TCAM using tc-flower filters and the clsact classifier/action system.
Each lookup of each ingress TCAM has a corresponding chain number, as follows:

VCAP IS1 lookup 0:             10000
VCAP IS1 lookup 1:             11000
VCAP IS1 lookup 2:             12000
VCAP IS2 lookup 0 policy 0:    20000

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
799 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

VCAP IS2 lookup 0 policy 1:    20001
VCAP IS2 lookup 0 policy 255:  20255
VCAP IS2 lookup 1 policy 0:    21000
VCAP IS2 lookup 1 policy 1:    21001
VCAP IS2 lookup 1 policy 255:  21255

For correct rule offloading, it is mandatory that each filter installed in one TCAM is terminated by a non-optional
GOTO action to the next lookup from the fixed pipeline.

A chain can only be used if there is a GOTO action correctly set up from the prior lookup in the processing
pipeline. Setting up all chains is not mandatory.

It is also possible to not use chains, but install tc-flower filters directly to the default chain (chain 0) of the
ingress qdisc of a switch port. In this case, filters are programmed to VCAP IS2 lookup 0 policy 0. Filters which
have an action that cannot be offloaded by VCAP IS2 are rejected in chain 0.

Note:  VCAP IS1 currently uses S1_NORMAL half keys exclusively, and VCAP IS2 dynamically chooses
between MAC_ETYPE, ARP, IP4_TCP_UDP, IP4_OTHER, which are all half keys as well.

VCAP ES0 (Egress Stage 0) consists of a single table, therefore all filters go to the default chain 0 of the egress
qdisc. The examples below assume the following definitions, which are made for clarity:

IS1()
{
    local lookup=$1  
    echo $((10000 + 1000 * lookup))
}
IS2()
{
    local lookup=$1 local pag=$2
    echo $((20000 + 1000 * lookup + pag))
}
ES0()
{
    echo 0
}

Example of a VLAN popping rule on ingress for packets with VLAN ID 100, installed to VCAP IS1 lookup 0:

tc qdisc add dev $swp clsact
tc filter add dev $swp ingress chain 0 pref 49152 flower skip_sw action goto
 chain $(IS1 0)
tc filter add dev $swp ingress chain $(IS1 0) pref 49152 flower skip_sw action
 goto chain $(IS1 1)
tc filter add dev $swp ingress chain $(IS1 0) pref 1 protocol 802.1Q flower
 skip_sw vlan_id 100 action vlan pop action goto chain $(IS1 1)

Example of a policing rule for packets sent to UDP port 5201, installed to VCAP IS2 lookup 1, PAG 0:

tc qdisc add dev $swp clsact
tc filter add dev $swp ingress chain 0 pref 49152 flower skip_sw action goto
 chain $(IS1 0)
tc filter add dev $swp ingress chain $(IS1 0) pref 49152 flower skip_sw action
 goto chain $(IS1 1)
tc filter add dev $swp ingress chain $(IS1 1) pref 49152 flower skip_sw action
 goto chain $(IS1 2)
tc filter add dev $swp ingress chain $(IS1 2) pref 49152 flower skip_sw action
 goto chain $(IS2 0 0)

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
800 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

tc filter add dev $swp ingress chain $(IS2 0 0) pref 1 protocol ipv4 flower
 skip_sw ip_proto udp dst_port 5201 action police rate 50mbit burst 64k conform-
exceed drop/pipe action goto chain $(IS2 1 0)

Example of a rule which redirects all packets to the egress of another interface, installed to VCAP IS2 lookup 0,
PAG 0:

tc qdisc add dev $swp clsact
tc filter add dev $swp ingress chain 0 pref 49152 flower skip_sw action goto
 chain $(IS1 0)
tc filter add dev $swp ingress chain $(IS1 0) pref 49152 flower skip_sw action
 goto chain $(IS1 1)
tc filter add dev $swp ingress chain $(IS1 1) pref 49152 flower skip_sw action
 goto chain $(IS1 2)
tc filter add dev $swp ingress chain $(IS1 2) pref 49152 flower skip_sw action
 goto chain $(IS2 0 0)
tc filter add dev $swp ingress chain $(IS2 0 0) pref 49152 flower skip_sw action
 goto chain $(IS2 1 0)
tc filter add dev $swp ingress chain $(IS2 0 0) pref 1 protocol all flower
 skip_sw action mirred egress redirect dev $swp1

Example of a mirroring rule for packets with a given source IP address, installed to chain 0 (VCAP IS2 lookup 0,
PAG 0):

tc qdisc add dev $swp clsact
tc filter add dev $swp ingress protocol ipv4 flower skip_sw src_ip 10.0.0.1
 action mirred egress mirror dev $swp1

Note that in case of multiple mirroring rules, they all must share the same, single destination port. Example of a
rule which drops packets from a certain MAC address, installed to chain 0:

tc qdisc add dev $swp clsact
tc filter add dev $swp ingress flower src_mac 00:01:02:03:04:05 action drop

Example of a rule which traps packets to a certain MAC address to the CPU, installed to chain 0:

tc qdisc add dev $swp clsact
tc filter add dev $swp ingress flower dst_mac 00:01:02:03:04:05 action trap

Example of a rule installed to VCAP IS1 lookup 0 which changes the QoS classification of packets with a certain
source IP address:

tc qdisc add dev $swp clsact
tc filter add dev $swp ingress chain 0 pref 49152 flower skip_sw action goto
 chain $(IS1 0)
tc filter add dev $swp ingress chain $(IS1 0) pref 49152 flower skip_sw action
 goto chain $(IS1 1)
tc filter add dev $swp ingress chain $(IS1 1) pref 49152 flower skip_sw action
 goto chain $(IS1 2)
tc filter add dev $swp ingress chain $(IS1 0) pref 2 protocol ipv4 flower
 skip_sw src_ip 10.1.1.2 action skbedit priority 7 action goto chain $(IS1 1)

Example of a rule installed to VCAP IS1 lookup 0 which modifies the VLAN ID of packets on ingress. Notice that
the port must be under a VLAN-aware bridge, and that both the old and the new VLAN ID needs to be in the

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
801 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

membership table of the ingress port. Additionally, the new VLAN ID needs to be in the membership table of the
egress port:

ip link add br0 type bridge vlan_filtering 1 && ip link set br0 up 
 ip link set $swp master br0 && ip link set $swp up
 ip link set $swp1 master br0 && ip link set $swp1 up 
 bridge vlan add dev $swp vid 200 
 bridge vlan add dev $swp vid 300 
 bridge vlan add dev $swp1 vid 300
tc qdisc add dev $swp clsact
tc filter add dev $swp ingress chain 0 pref 49152 flower 
 skip_sw action goto chain $(IS1 0)
tc filter add dev $swp ingress chain $(IS1 0) pref 49152 
 flower skip_sw action goto chain $(IS1 1)
tc filter add dev $swp ingress chain $(IS1 0) pref 3 
 protocol 802.1Q flower skip_sw vlan_id 200 
 action vlan modify id 300 
 action goto chain $(IS1 1)

Example of a rule installed to VCAP ES0 which modifies the VLAN ID on egress. Note that only the old VLAN ID
needs to be in the bridge VLAN membership table of the egress port:

ip link set br0 type bridge vlan_filtering 1 
 bridge vlan add dev $swp1 vid 200 
 bridge vlan add dev $swp2 vid 200
tc filter add dev $swp2 egress chain $(ES0) pref 3 protocol 802.1Q flower
 skip_sw vlan_id 200 vlan_prio 0 action vlan modify id 300 priority 7

Example of a rule installed to VCAP ES0 which pushes a VLAN header on egress for packets forwarded from a
certain ingress port:

tc qdisc add dev $swp clsact
tc filter add dev $swp egress chain $(ES0) pref 1 flower skip_sw indev $swp2
 action vlan push protocol 802.1Q id 100

7.6.3.3.11  Basic QoS classification

Using the Linux DCB subsystem, it is possible to configure the QoS class assigned by default to frames by the
ingress port, as well as the QoS class corresponding to an IP DSCP value. It is not possible to configure QoS
classification based on VLAN PCP. The switch is configured to always trust the VLAN PCP and use it as the
QoS class.

Configuring and viewing the port-default QoS class can be done as follows:

dcb app replace dev $swp default-prio 5 
dcb app show dev $swp default-prio

By default, the switch does not trust any IP DSCP value. Individual DSCP values can be trusted or untrusted by
adding or removing them from the DCB Application Priority table:

dcb app add dev $swp dscp-prio CS4:4 
dcb app del dev $swp dscp-prio CS4:4

The "CS4" is syntactic sugar added by the iproute2 dcb program. For more details, see section 4.2.2.1, "Class
Selector Codepoints" at https://datatracker.ietf.org/doc/html/rfc2474.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
802 / 1061

https://datatracker.ietf.org/doc/html/rfc2474


NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

7.6.3.3.12  Port mirroring

Port mirroring can be configured using matchall filters (which require the CONFIG_NET_CLS_MATCHALL,
CONFIG_NET_SCH_INGRESS and CONFIG_NET_ACT_MIRRED kernel options):

tc qdisc add dev $swp clsact
# Port mirroring of ingress traffic 
tc filter add dev $swp ingress matchall skip_sw action mirred egress mirror dev
 $swp1 
# Port mirroring of egress traffic 
tc filter add dev $swp egress matchall skip_sw action mirred egress mirror dev
 $swp1

Per-flow mirroring available with VCAP IS2 filters and per-port mirroring send packets to the same mirror port,
therefore the same restriction of a single mirror port applies.

Frames injected over the NPI port are not egress-mirrored, since they are sent with the BYPASS bit in the
injection frame header, and this bypasses the analyzer module (effectively also the mirroring logic).

7.6.3.3.13  Link aggregation

The switch can offload the Linux bonding and team interfaces, which are network stack representations for
Link Aggregation Groups (LAG). LAGs can be offloaded only if their TX type is "hash", meaning that packets
are distributed among the LAG members based on a hash created from packet headers. Currently, the driver
hardcodes the hash to take into consideration the MAC SA, MAC DA, source IPv4 address, destination IPv4
address, TCP port, UDP port and IPv6 flow label.

A LAG can be configured to operate as either a standalone port, or be a part of a bridging domain with other
ports (also in a LAG, or not):

# Delete the bond0 interface that the kernel creates by default, it has
 parameters incompatible with offloading
ip link del bond0
ip link add bond0 type bond mode 802.3ad
ip link set swp1 down && ip link set swp1 master bond0 && ip link set swp1 up 
ip link set swp2 down && ip link set swp2 master bond0 && ip link set swp2 up 
ip link add br0 type bridge && ip link set br0 up
ip link set bond0 master br0 && ip link set bond0 up 
ip link set swp0 master br0 && ip link set swp0 up

When bridged, switch ports in a LAG operate as a single logical port. FDB entries learned dynamically by
hardware (having the self flag) towards a LAG bridge port are reported in bridge fdb show as pointing to the
numerically first physical port present in that LAG (in the example above, swp1).

It is also possible to install static FDB entries on offloaded LAG bridge ports:

bridge fdb add dev bond0 00:01:02:03:04:05 master static

7.6.3.3.14  Cut-through forwarding

Cut-through forwarding is the mechanism through which the switch starts the process of looking up the
destination ports for a packet, and forwards towards those ports, before the entire packet has been received (as
opposed to the store-and-forward mode).

The benefit is having lower forwarding latency for large packets. The downside is that frames with FCS errors
are forwarded instead of being dropped. However, erroneous frames do not result in incorrect updates of the
FDB or incorrect policer updates, since these processes are deferred inside the switch to the end of frame.
UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
803 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Since the switch starts the cut-through forwarding process after all packet headers (including IP, if any) have
been processed, packets with large headers and small payload do not see the benefit of lower forwarding
latency.

There are three cases that need special attention.

The first is when a packet is multicast (or flooded) to multiple destinations, one of which doesn’t have cut-
through forwarding enabled. The switch deals with this automatically by disabling cut-through forwarding for the
frame towards all destination ports.

The second is when a packet is forwarded from a port of lower link speed towards a port of higher link speed.
This is handled by the driver by only enabling cut-through forwarding on the egress ports that operate at the
lowest link speed within a bridging domain.

The third is the incompatibility of cut-through forwarding with some of the other features, like frame preemption
and Qbv queueMaxSDU (oversized frame dropping). The cut-through functionality is configurable per traffic
class, and the driver automatically detects the traffic classes with incompatible features, and disables cut-
through forwarding for them.

Cut-through forwarding is enabled by default, and its state is managed by the driver. It is possible to disable it
manually:

tsntool ctset --device $swp --queue_stat 0x0

7.6.3.3.15  Buffer reservation watermarks

The queue system of the switch tracks the consumption of four resources:

• Resource 0 (BUF_xxxx_I): Memory tracked per source port
• Resource 1 (REF_xxxx_I): Frame references tracked per source port
• Resource 2 (BUF_xxxx_E): Memory tracked per destination port
• Resource 3 (REF_xxxx_E): Frame references tracked per destination port

For each resource type, there are 4 types of watermarks:

• xxx_Q_RSRV_x: reservation per QoS class per port
• xxx_PRIO_SHR_x: sharing watermark per QoS class across all ports
• xxx_P_RSRV_x: reservation per port
• xxx_COL_SHR_x: sharing watermark per color (drop precedence) across all ports

Reservation Watermarks are partitions of the total amount of a resource which are guaranteed to be available
during congestion. Guarantees can be made per port (P_RSRV), as well as per port and QoS class pair
(Q_RSRV). By combining resource types with reservation watermarks, the following reservation watermarks are
available:

Amount of packet buffer
| per QoS class
| | reserved
| | | per egress port
| | | |
V V v v 
BUF_Q_RSRV_E

Amount of packet buffer
| for all port's traffic classes
| | reserved
| | | per egress port
| | | |

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
804 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

V V v v 
BUF_P_RSRV_E

Amount of packet buffer
| per QoS class
| | reserved
| | | per ingress port
| | | |
V V v v 
BUF_Q_RSRV_I

Amount of packet buffer
| for all port's traffic classes
| | reserved
| | | per ingress port
| | | |
V V v v 
BUF_P_RSRV_I

Amount of frame references
| per QoS class
| | reserved
| | | per egress port
| | | |
V V v v 
REF_Q_RSRV_E

Amount of frame references
| for all port's traffic classes
| | reserved
| | | per egress port
| | | |
V V v v 
REF_P_RSRV_E

Amount of frame references
| per QoS class
| | reserved
| | | per ingress port
| | | |
V V v v 
REF_Q_RSRV_I

Amount of frame references
| for all port's traffic classes
| | reserved
| | | per ingress port
| | | |
V V v v 
REF_P_RSRV_I

Sharing Watermarks are partitions of the total amount of a resource which can be used by all ports. Different
watermarks for sharing can be configured individually per QoS class (PRIO_SHR) and per drop precedence
(COL_SHR). There is no guarantee as to whether a shared resource will be available for a port, since all ports
consume from the same sharing watermark (if their reservation watermark has been exhausted). By combining
resource types with sharing watermarks, the following sharing watermarks are available:

Amount of buffer
| per QoS class

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
805 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

| | from the shared memory area
| | | for egress traffic
| | | |
V V v v 
BUF_PRIO_SHR_E

Amount of buffer
| per color (drop precedence level)
| | from the shared memory area
| | | for egress traffic
| | | |
V V v v 
BUF_COL_SHR_E

Amount of buffer
| per QoS class
| | from the shared memory area
| | | for ingress traffic
| | | |
V V v v 
BUF_PRIO_SHR_I

Amount of buffer
| per color (drop precedence level)
| | from the shared memory area
| | | for ingress traffic
| | | |
V V v v 
BUF_COL_SHR_I

Amount of frame references
| per QoS class
| | from the shared area
| | | for egress traffic
| | | |
V V v v 
REF_PRIO_SHR_E

Amount of frame references
| per color (drop precedence level)
| | from the shared area
| | | for egress traffic
| | | |
V V v v 
REF_COL_SHR_E

Amount of frame references
| per QoS class
| | from the shared area
| | | for ingress traffic
| | | |
V V v v
REF_PRIO_SHR_I

Amount of frame references
| per color (drop precedence level)
| | from the shared area
| | | for ingress traffic
| | | |
V V v v 

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
806 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

REF_COL_SHR_I

A diagram of the queue system’s usage of watermarks for a frame can be seen below:
|               Frame forwarding decision taken
|                                     |
|                                     v
|      +--------------------+--------------------+--------------------+
|      |                    |                    |                    |
|      v                    v                    v                    v
|Ingress memory         Egress memory      Ingress frame         Egress frame
|    check                check           reference check       reference check
|      |                    |                    |                    |
|      v                    v                    v                    v
|BUF_Q_RSRV_I     ok   BUF_Q_RSRV_E    ok    REF_Q_RSRV_I    ok    REF_Q_RSRV_E     ok
|(src port, prio) -+  (dst port, prio) -+   (src port, prio) -+   (dst port, prio)  -+
       |           |        |           |        |            |       |              | |
|      |exceeded   |        |exceeded   |        |exceeded    |       |exceeded      |
|      v           |        v           |        v            |       v              |        
|BUF_P_RSRV_I    ok|    BUF_P_RSRV_E  ok|   REF_P_RSRV_I    ok|   REF_P_RSRV_E     ok|
|(src port)    ----+   (dst port)   ----+  (src port)     ----+  (dst port)     -----+
|      |           |        |           |        |            |       |              |
|      |exceeded   |        |exceeded   |        |exceeded    |       |exceeded      |
|      v           |        v           |        v            |       v              |
|BUF_PRIO_SHR_I  ok|   BUF_PRIO_SHR_E ok|   REF_PRIO_SHR_I  ok|   REF_PRIO_SHR_E   ok|
|     (prio) ------+       (prio) ------+        (prio) ------+        (prio) -------+
|      |           |        |           |        |            |       |              |
|      |exceeded   |        |exceeded   |        |exceeded    |       |exceeded      |
|      v           |        v           |        v            |       v              |
|BUF_COL_SHR_I   ok|   BUF_COL_SHR_E  ok|   REF_COL_SHR_I   ok|   REF_COL_SHR_E    ok|
|      (dp) -------+        (dp) -------+         (dp) -------+         (dp) --------+
       |           |        |           |        |            |       |              |
|      |exceeded   |        |exceeded   |        |exceeded    |       |exceeded      |
|      v           v        v           v        v            v       v              v
|    fail       success   fail       success    fail       success   fail         success
|      |           |        |           |        |            |       |              |
|      v           v        v           v        v            v       v              v
|      +------+----+        +------+----+        +------+-----+       +------+-------+
|             |                    |                    |                    |
|             +-------> OR <-------+                    +-------> OR <-------+
|                       |               |
|                       v                                         v
|                       +-----------------> AND <-----------------+
|                                            |
|                                            v
|                                  FIFO drop / accept

Figure 164. Queue system watermark

The driver models each of the 4 parallel lookups as a devlink-sb pool. The following definitions can be made:

SB_BUF=0 # The devlink-sb for frame buffers
SB_REF=1 # The devlink-sb for frame references
POOL_ING=0 # The pool for ingress traffic. Both devlink-sb instances have one of
 these.
POOL_EGR=1 # The pool for egress traffic. Both devlink-sb instances have one of
 these.

At least one (ingress or egress) memory pool and one (ingress or egress) frame reference pool need to have
resources for frame acceptance to succeed.

The following watermarks are controlled explicitly through devlink-sb:

• BUF_Q_RSRV_I
UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
807 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

• BUF_Q_RSRV_E
• REF_Q_RSRV_I
• REF_Q_RSRV_E
• BUF_P_RSRV_I
• BUF_P_RSRV_E
• REF_P_RSRV_I
• REF_P_RSRV_E

They are mapped to devlink-sb pools in the following way:

• BUF_xxxx_I is accessed when sb=$SB_BUF and pool=$POOL_ING
• REF_xxxx_I is accessed when sb=$SB_REF and pool=$POOL_ING
• BUF_xxxx_E is accessed when sb=$SB_BUF and pool=$POOL_EGR
• REF_xxxx_E is accessed when sb=$SB_REF and pool=$POOL_EGR

The following watermarks are controlled implicitly through devlink-sb:

• BUF_COL_SHR_I
• BUF_COL_SHR_E
• REF_COL_SHR_I
• REF_COL_SHR_E

The following watermarks are unused and disabled:

• BUF_PRIO_SHR_I
• BUF_PRIO_SHR_E
• REF_PRIO_SHR_I
• REF_PRIO_SHR_E

By default, the driver disables all resource reservations and lets the sharing watermarks use all resources. This
is done in order to avoid overcommitting resources. The switch has 129840 bytes of frame buffer and 1092
frame references. This is visible when querying the pools:

$ devlink 
sb pci/0000:00:00.5:
        sb 0 size 129840 ing_pools 1 eg_pools 1 ing_tcs 8 eg_tcs 8
        sb 1 size 1092 ing_pools 1 eg_pools 1 ing_tcs 8 eg_tcs 8

Configuring the sharing watermarks for COL_SHR(dp=0) is done implicitly by modifying the corresponding pool
size. By default, the pool size has maximum size, so this can be skipped:

devlink sb pool set pci/0000:00:00.5 sb $SB_BUF pool $POOL_ING size 129840
 thtype static

Since by default there is no buffer reservation, the sharing watermark for drop precedence 0
(BUF_COL_SHR_I(dp=0)) takes up the entire resource. The sharing watermark for drop precedence 1 takes
none of it, and packets classified with a drop precedence of 1 are always dropped unless there is a reservation
watermark for them. This behavior is not configurable in the driver.

Configuring a reservation watermark per port (P_RSRV) can be done in the following way. This sets
BUF_P_RSRV_I(port 3) to 1000 bytes. After this command, the sharing watermarks are internally
reconfigured with 1000 bytes less. For example, 129840 bytes to 128840 bytes:

devlink sb port pool set pci/0000:00:00.5/3 sb $SB_BUF pool $POOL_ING th 1000

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
808 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Configuring the reservation watermarks per port-tc (Q_RSRV) can be done in the following way. This sets
BUF_Q_RSRV_I(port 0, tc 0..7) to 3000 bytes. The sharing watermarks are again reconfigured with
24000 bytes less, to avoid overcommitment:

for tc in {0..7}; do
        devlink sb tc bind set pci/0000:00:00.5/0 sb 0 tc $tc type ingress pool
 POOL_ING th 3000
done

It is also possible to monitor the occupancy of the reservation watermarks (the sharing watermarks are exposed
as pool sizes). Here we show the occupancy of the frame buffer (sb 0):

$ devlink sb occupancy show pci/0000:00:00.5 sb 0 
swp0:
        pool: 0: 0/0 1: 0/0
        itc:  0(0): 0/0 1(0): 0/0 2(0): 0/0 3(0): 0/0
              4(0): 0/0 5(0): 0/0 6(0): 0/0 7(0): 0/0
        etc:  0(1): 0/0 1(1): 0/0 2(1): 0/0 3(1): 0/0
              4(1): 0/0 5(1): 0/0 6(1): 0/0 7(1): 0/0

swp1:
        pool: 0: 0/0 1: 0/0
        itc:  0(0): 0/0 1(0): 0/0 2(0): 0/0 3(0): 0/0
              4(0): 0/0 5(0): 0/0 6(0): 0/0 7(0): 0/0
        etc:  0(1): 0/0 1(1): 0/0 2(1): 0/0 3(1): 0/0
              4(1): 0/0 5(1): 0/0 6(1): 0/0 7(1): 0/0

swp2:
        pool: 0: 0/0 1: 0/0
        itc:  0(0): 0/0 1(0): 0/0 2(0): 0/0 3(0): 0/0
              4(0): 0/0 5(0): 0/0 6(0): 0/0 7(0): 0/0
        etc:  0(1): 0/0 1(1): 0/0 2(1): 0/0 3(1): 0/0
              4(1): 0/0 5(1): 0/0 6(1): 0/0 7(1): 0/0

swp3:
        pool: 0: 0/420 1: 0/1560
        itc:  0(0): 0/420  1(0): 0/0 2(0): 0/0 3(0): 0/0
              4(0): 0/0    5(0): 0/0 6(0): 0/0 7(0): 0/0
        etc:  0(1): 0/1560 1(1): 0/0 2(1): 0/0 3(1): 0/0
              4(1): 0/240  5(1): 0/0 6(1): 0/0 7(1): 0/120

swp4:
        pool: 0: 0/0 1: 0/0
        itc:  0(0): 0/0 1(0): 0/0 2(0): 0/0 3(0): 0/0
              4(0): 0/0 5(0): 0/0 6(0): 0/0 7(0): 0/0
        etc:  0(1): 0/0 1(1): 0/0 2(1): 0/0 3(1): 0/0
              4(1): 0/0 5(1): 0/0 6(1): 0/0 7(1): 0/0

pci/0000:00:00.5/5:
        pool: 0: 0/1560 1: 0/420
        itc:  0(0): 0/1560 1(0): 0/0 2(0): 0/0 3(0): 0/0
              4(0): 0/240  5(0): 0/0 6(0): 0/0 7(0): 0/120
        etc:  0(1): 0/420  1(1): 0/0 2(1): 0/0 3(1): 0/0
              4(1): 0/0    5(1): 0/0 6(1): 0/0 7(1): 0/0

The syntax for each watermark is "currently in use / maximum in use since last reading". Interpreted, the output
states that:

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
809 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

• The ingress pool of swp3 consumed 420 bytes of the reservation watermark since the last reading, and the
egress pool consumed 1560 bytes of the reservation watermark. If reservation watermarks are exceeded, the
buffers are consumed from the sharing space. The current buffer usage is zero (there is no packet pending in
the queue system).

• The ingress pool of the CPU port (port 5 in this case, pci/0000:00:00.5/5) has the reverse situation: the
ingress pool consumed 1560 bytes from the reservation watermark, and the egress pool consumed 420 bytes.
Traffic was initiated over swp3 from the CPU port.

• Viewed per traffic class, swp3 consumed 420 octets on ingress for TC 0, 1560 octets on egress for TC 0, 240
octets on egress for TC 4, and 120 octets on egress for TC 7.

• Viewed per traffic class, the CPU port 5 consumed 1560 octets on ingress for TC 0, 240 octets on ingress for
TC 4, 120 octets on ingress for TC 7 and 420 octets on egress for TC 0.

It should be noted that the above resource consumptions indicate that only one packet was in flight through the
queue system at any given time, therefore there was no congestion. Frame buffer cells are 60 bytes in size, and
the buffer size consumed by a frame is rounded up to the nearest multiple of buffer cells. A 1538 byte frame,
corresponding to a full MTU plus IFH overhead, will consume 1560 bytes (26 buffer cells).

7.6.3.4  Known limitations

List of major known limitations for the current driver release.

7.6.3.4.1  Lack of flow control on NPI port

The LS1028A Felix switch suffers from the A-050484 erratum ("Ethernet flow control not functional on L2 switch
NPI port when XFH is used"). In the default configuration, where the control interface is configured to be the 2.5
Gbit/s eno2/swp4 port pair, and when the external ports are running at 1 Gbit/s, the switch enters congestion
for traffic sent to switch ports from the CPU. Traffic streams such as iperf3 TCP see low throughput (~300 Mbit/
s) due to bursty packet drops under congestion inside the switch which trigger the TCP congestion control
algorithms.

One possible workaround which partially masks the issue is to move the CPU port to the 1G port 5 through the
device tree. Depending on kernel version, the relevant nodes are either in arch/arm64/boot/dts/freescale/fsl-
ls1028a-rdb.dts or arch/arm64/boot/dts/freescale/fsl-ls1028a.dtsi.

The generalized steps are listed below:

1. Enable eno3 and swp5 (insert these new statements):

&enetc_port3 {
      status = "okay";
};
&mscc_felix_port5 {    
      status = "okay";
};

2. Delete the property of the mscc_felix_port4 node telling DSA that its attached master is eno2:

&mscc_felix_port4 {    
      ethernet = <&enetc_port2>; // delete this line
};

3. Add a new property beneath the newly created mscc_felix_port5 node, telling DSA that the master interface
is eno3:

&mscc_felix_port5 {
      ethernet = <&enetc_port3>;
};

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
810 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Alternatively, the use of the ocelot-8021q DSA tagging protocol bypasses the erratum completely. For more
details, see Section 7.6.3.3.2.3.

7.7  IEEE 1588/802.1AS

7.7.1  Introduction

IEEE 1588 is the IEEE standard for a precision clock synchronization protocol for networked measurement and
control systems.

IEEE 802.1AS is the IEEE standard for local and metropolitan area networks – timing and synchronization
for time-sensitive applications in bridged local area networks. It specifies the use of IEEE 1588 specifications
where applicable in the context of IEEE Std 802.1D-2004 and IEEE Std 802.1Q-2005. The NXP QorIQ platform
provides hardware assist for 1588 compliant time stamping with the 1588 timer module to support applications
of IEEE 1588/802.1AS.

Note:  In this document, IEEE 1588 mentioned is IEEE 1588-2008, and IEEE 802.1AS mentioned is IEEE
802.1AS-2011.

7.7.2  IEEE 1588 device types

There are five basic types of PTP devices in IEEE 1588:

• Ordinary clock: A clock that has a single Precision Time Protocol (PTP) port in a domain and maintains the
timescale used in the domain. It may serve as a source of time (be a master clock) or may synchronize to
another clock (be a slave clock).

• Boundary clock: A clock that has multiple Precision Time Protocol (PTP) ports in a domain and maintains
the timescale used in the domain. It may serve as a source of time (be a master clock) or may synchronize to
another clock (be a slave clock).

• End-to-end transparent clock: A transparent clock that supports the use of the end-to-end delay
measurement mechanism between slave clocks and the master clock.

• Peer-to-peer transparent clock: A transparent clock provides corrections for the propagation delay of the
link connected to the port receiving the PTP event message, in addition to providing the Precision Time
Protocol (PTP) event transit time information. In the presence of peer-to-peer transparent clocks, the delay
measurements between slave clocks and the master clock are performed using the peer-to-peer delay
measurement mechanism.

• Management node: A device that configures and monitors clocks.

Note:  Transparent clock is a device that measures the time taken for a Precision Time Protocol (PTP) event
message to transit the device and provides this information to clocks receiving this PTP event message.

7.7.3  IEEE 802.1AS time-aware systems

In gPTP, there are only two types of time-aware systems: end stations and Bridges. While, IEEE 1588 has
ordinary clocks, boundary clocks, end-to-end transparent clocks, and P2P transparent clocks.

A time-aware end station corresponds to an IEEE 1588 ordinary clock. A time-aware Bridge is a type of IEEE
1588 boundary clock, where its operation is very tightly defined that the time-aware Bridge with Ethernet ports is
shown mathematically equivalent to a P2P transparent clock in terms of how the synchronization is performed.

• Time-aware end station: An end station that is capable of acting as the source of synchronized time on the
network, or destination of synchronized time using the IEEE 802.1AS protocol, or both.

• Time-aware bridge: A bridge that is capable of communicating the synchronized time received on one port to
other ports using the IEEE 802.1AS protocol.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
811 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

7.7.4  linuxptp stack

Features of open source linuxptp

• Supports hardware and software time stamping via the Linux SO_TIMESTAMPING socket option.
• Supports the Linux PTP Hardware Clock (PHC) subsystem by using the clock_gettime family of calls,

including the clock_adjtimex system call.
• Implements Boundary Clock (BC), Ordinary Clock (OC) and Transparent Clock (TC).
• Transport over UDP/IPv4, UDP/IPv6, and raw Ethernet (Layer 2).
• Supports IEEE 802.1AS-2011 in the role of end station.
• Modular design allowing painless addition of new transports and clock servos.
• Implements unicast operation.
• Supports a number of profiles, including:

– The automotive profile.
– The default 1588 profile.
– The enterprise profile.
– The telecom profiles G.8265.1, G.8275.1, and G.8275.2.
– Supports the NetSync Monitor protocol.

• Implements Peer to peer one-step.
• Supports bonded, IPoIB, and vlan interfaces.

Note:  These are the features listed on linuxptp website. The linuxptp used in Layerscape LDP ubuntu installed
by "apt install" may be the old version, which does not support all these features.

7.7.5  Quick Start for IEEE 1588

7.7.5.1  Ordinary clock verification

To perform ordinary clock verification, Connect two network interfaces in back-to-back manner for two boards.
Make sure there is no MAC address conflict on the boards, the IP addresses are set properly and ping the test
network. Run linuxptp on each board. For example, eth0 is used on each board.

$ ptp4l -i eth0 -m

On running the above command, time synchronization starts and the slave linuxptp, which is selected
automatically synchronizes to master displaying the synchronization messages. For example, time offset, path
delay and so on.

A sample log is given below:

ptp4l[878.504]: master offset        -10 s2 freq   -2508 path delay      1826   
ptp4l[878.629]: master offset         -5 s2 freq   -2502 path delay      1826   
ptp4l[878.754]: master offset          0 s2 freq   -2495 path delay      1826   
ptp4l[878.879]: master offset          9 s2 freq   -2482 path delay      1826   
ptp4l[879.004]: master offset         -9 s2 freq   -2507 path delay      1826   
ptp4l[879.129]: master offset        -24 s2 freq   -2530 path delay      1826   
ptp4l[879.255]: master offset         -7 s2 freq   -2508 path delay      1826   
ptp4l[879.380]: master offset         -2 s2 freq   -2502 path delay      1826   
ptp4l[879.505]: master offset        -17 s2 freq   -2524 path delay      1827   
ptp4l[879.630]: master offset          6 s2 freq   -2493 path delay      1827   
ptp4l[879.755]: master offset          6 s2 freq   -2492 path delay      1827   
ptp4l[879.880]: master offset          0 s2 freq   -2500 path delay      1827

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
812 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Some other options of ptp4l

Delay Mechanism
-E        E2E, delay request-response (default)
-P        P2P, peer delay mechanism
Network Transport
-2        IEEE 802.3
-4        UDP IPV4 (default)
-6        UDP IPV6

Note:  You must keep the same delay mechanism and network transport protocol used on two boards.

Configure master mode

By default, the master clock is selected by BMC (Best Master Clock) algorithm.

To appoint a specific clock as master, a lower "priority1" attribute value than the other clock can be set. Lower
value takes precedence. For example in this current case, specify one clock as master with below option (the
other clock is using default priority1 value 128).

--priority1=127

One-step timestamping

Currently one-step timestamping is supported only on DPAA2. To use one-step timestamping, add below option
for ptp4l running:

--twoStepFlag=0

7.7.5.2  Boundary clock verification

To perform boundary clock verification, atleast three boards are needed.

Figure 165 shows three boards network connection. Ensure that there is no MAC address conflict on the
boards, the IP addresses are set properly and ping the test network.

Figure 165. Boards network connection

Perform the following steps to connect the boards:

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
813 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

1. Run linuxptp on Board1 (boundary clock).

$ ptp4l -i eth0 -i eth1 -m

2. Run linuxptp on Board2/Board3 (ordinary clock).

$ ptp4l -i eth0 -m

On running the above command, time synchronization will start, and the slaves linuxptp selected
automatically will synchronize to the unique master with synchronization messages displayed such as time
offset, path delay and so on. For example:

ptp4l[878.504]: master offset        -10 s2 freq   -2508 path delay      1826
ptp4l[878.629]: master offset         -5 s2 freq   -2502 path delay      1826
ptp4l[878.754]: master offset          0 s2 freq   -2495 path delay      1826
ptp4l[878.879]: master offset          9 s2 freq   -2482 path delay      1826
ptp4l[879.004]: master offset         -9 s2 freq   -2507 path delay      1826
ptp4l[879.129]: master offset        -24 s2 freq   -2530 path delay      1826
ptp4l[879.255]: master offset         -7 s2 freq   -2508 path delay      1826
ptp4l[879.380]: master offset         -2 s2 freq   -2502 path delay      1826
ptp4l[879.505]: master offset        -17 s2 freq   -2524 path delay      1827
ptp4l[879.630]: master offset          6 s2 freq   -2493 path delay      1827
ptp4l[879.755]: master offset          6 s2 freq   -2492 path delay      1827
ptp4l[879.880]: master offset          0 s2 freq   -2500 path delay      1827

Some other options of ptp4l

Delay Mechanism
-E        E2E, delay request-response (default)
-P        P2P, peer delay mechanism
Network Transport
-2        IEEE 802.3
-4        UDP IPV4 (default)
-6        UDP IPV6

Note:  You must keep same delay mechanism and network transport protocol used on these boards.

Configure master mode

By default, the master clock is selected by BMC (Best Master Clock) algorithm. To appoint a specific clock as
master, a lower "priority1" attribute value than the other clock can be set. Lower value takes precedence. For
example in the current case, specify one clock as master with below option (The other clocks is using default
priority1 value 128):

--priority1=127

One-step timestamping

Currently one-step timestamping is supported only on DPAA2.

To use one-step timestamping, add the below option for running ptp4l:

--twoStepFlag=0

7.7.6  Quick Start for IEEE 802.1AS

The following sections describe the steps for implementing IEEE 802.1AS on NXP boards.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
814 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

7.7.6.1  Time-aware end station verification

To perform time-aware end station verification, perform the following steps:

1. Connect two network interfaces in back-to-back way for two boards. Ensure that no MAC address conflict
on the boards, IP address set properly, and the ping test works.

2. Remove below option in /usr/share/doc/linuxptp/gPTP.cfg to use default larger value, because estimate path
delay including PHY delay may exceed 800ns since hardware is using MAC timestamping.

neighborPropDelayThresh 800

3. Run linuxptp on each board. For example, eth0 is used on each board.

$ ptp4l -i eth0 -f /usr/share/doc/linuxptp/gPTP.cfg -m

Time synchronization will start and the slave linuxptp, which is selected automatically synchronizes to
master with the synchronization messages printed. For example, time offset, path delay and so on.
The sample log is given below:

ptp4l[3453.972]: rms    5 max    8 freq   -325 +/-   6 delay   781 +/-   0
ptp4l[3454.973]: rms    5 max    9 freq   -321 +/-   7 delay   782 +/-   0
ptp4l[3455.973]: rms    4 max    6 freq   -321 +/-   6 delay   782 +/-   0
ptp4l[3456.974]: rms    4 max    6 freq   -317 +/-   4 delay   782 +/-   0
ptp4l[3457.975]: rms    3 max    4 freq   -322 +/-   3 delay   782 +/-   0
ptp4l[3458.976]: rms    4 max    6 freq   -320 +/-   5 delay   782 +/-   0
ptp4l[3459.976]: rms    4 max    9 freq   -322 +/-   6 delay   782 +/-   0
ptp4l[3460.977]: rms    5 max    9 freq   -324 +/-   6 delay   782 +/-   0
ptp4l[3461.978]: rms    5 max    9 freq   -326 +/-   7 delay   782 +/-   0
ptp4l[3462.978]: rms    3 max    6 freq   -320 +/-   3 delay   782 +/-   0
ptp4l[3463.979]: rms    3 max    6 freq   -317 +/-   3 delay   782 +/-   0
ptp4l[3464.980]: rms    5 max    9 freq   -321 +/-   7 delay   782 +/-   0

Configure master mode

By default, the master clock is selected by BMC (Best Master Clock) algorithm.

To appoint a specific clock as master, a lower "priority1" attribute value than the other clock can be set. Lower
value takes precedence. For example in the current case, specify one clock as master with below option (the
other clock is using priority1 248 in the gPTP.cfg file):

--priority1=247

7.7.7  Quick start for external signals

7.7.7.1  PPS signal

This topic of PPS (Pulses Per Second) signal applies to most network controllers of Layerscape, including
eTSEC, DPAA1, DPAA2, and ENETC. For PPS signal usage on TSN switch of LS1028A whose 1588 timer has
difference hardware implementation, refer to topic "Programmable PTP pins".

PPS signal is output through 1588 timer pulse out pin. The QorIQ PTP driver configured fixed interval period
pulse (FIPER) generator as PPS signal in default. The number of FIPERs supported by different network
controllers may be different.

• eTSEC/DPAA1 support 2 FIPERs
• DPAA2/ENETC support 3 FIPERs (FIPER3 not routed out on Layerscape LDP release boards)

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
815 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

PPS interrupt verification

A quick way to verify PPS working or not, is verifying PPS interrupt through sysfs. Check PTP clock index for
network controller

Below is an example, and the PTP clock index is 1 in the example.

# ethtool -T eth1
Time stamping parameters for eth1:   
Capabilities:
    hardware-transmit  (SOF_TIMESTAMPING_TX_HARDWARE)
    hardware-receive  (SOF_TIMESTAMPING_RX_HARDWARE)
    hardware-raw-clock  (SOF_TIMESTAMPING_RAW_HARDWARE)
PTP Hardware Clock: 1
Hardware Transmit Timestamp Modes:
    off      (HWTSTAMP_TX_OFF)
    on      (HWTSTAMP_TX_ON)
Hardware Receive Filter Modes:
    none      (HWTSTAMP_FILTER_NONE)           
    all      (HWTSTAMP_FILTER_ALL)

2. Enable PPS event

# echo 1 > /sys/class/ptp/ptp1/pps_enable

3. Check system clock timestamp of PPS event

Make sure operate on the right pps device.

# cat /sys/class/pps/pps0/name
ptp1

Check the latest timestamp of PPS event. The message format is <system clock timestamp>#<sequence
number>.

# cat /sys/class/pps/pps0/assert
1600654093.218484412#556
# cat /sys/class/pps/pps0/assert
1600654094.218469173#557
# cat /sys/class/pps/pps0/assert
1600654095.218467293#558

PPS signal

To use the actual PPS signal on the board pin. The signal multiplexing should be configured properly, through
RCW, or/and FPGA/CPLD. Refer to specific SoC and board reference manuals for that.

7.7.7.2  External trigger signal

This topic of external trigger signal applies to most network controllers of Layerscape, including eTSEC, DPAA1,
DPAA2, and ENETC. For external trigger signal usage on TSN switch of LS1028A whose 1588 timer has
difference hardware implementation, refer to topic "Programmable PTP pins".

The external trigger signal is an input signal supported by 1588 timer to capture 1588 timestamp of the trigger
signal. There are two external trigger signals supported on hardware.

External trigger verification (loopback mode)

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
816 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

A quick way to verify external trigger function is with loopback mode through sysfs. The controller supports
FIPERn pulse looped back to external trigger n internally. Here give the steps to verify external trigger 1, the
external trigger 2 could be verified similarly.

1. Check PTP clock index for network controller

Below is an example, and the PTP clock index is 1 in the example.

# ethtool -T eth1
Time stamping parameters for eth1:
Capabilities:
  hardware-transmit    (SOF_TIMESTAMPING_TX_HARDWARE)
  hardware-receive    (SOF_TIMESTAMPING_RX_HARDWARE)
  hardware-raw-clock    (SOF_TIMESTAMPING_RAW_HARDWARE)
PTP Hardware Clock: 1
Hardware Transmit Timestamp Modes:
  off        (HWTSTAMP_TX_OFF)
  on        (HWTSTAMP_TX_ON)
Hardware Receive Filter Modes:
  none        (HWTSTAMP_FILTER_NONE)
  all        (HWTSTAMP_FILTER_ALL)

2. Enable FIPER1 loopback mode

# echo 1 > /sys/kernel/debug/dprtc.0/fiper1-loopback

Note: in the example, the dprtc.0 is the device name of ptp1 which is DPAA2 1588 timer (DPRTC). If not sure
the 1588 timer device name, the find command could be used to find fiper1-loopback file for QorIQ 1588 timer.

# find /sys/kernel/debug/ -name fiper1-loopback

3. Enable external trigger 1

# echo 0 1 > /sys/class/ptp/ptp1/extts_enable

The first parameter "0" stands for the index of external trigger, using the first external trigger here.

The second parameter "1" stands for enable or not.

4. Check 1588 timestamp

The message format is "<external trigger index> <timestamp seconds> <timestamp nanoseconds>".

Since the FIPER1 is configured as PPS signal in default. The timestamp results are almost on integer seconds.

# cat /sys/class/ptp/ptp1/fifo
0 4860 4
# cat /sys/class/ptp/ptp1/fifo
0 4861 4
# cat /sys/class/ptp/ptp1/fifo
0 4862 4
# cat /sys/class/ptp/ptp1/fifo
0 4863 4

External trigger signal

To use the actual external trigger pin for signal input on the board. The signal multiplexing should be configured
properly, through RCW, or/and FPGA/CPLD. Refer to specific SoC and board reference manuals for that.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
817 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

7.7.7.3  Programmable PTP pins

This topic of programmable PTP pins applies to 1588 timer on TSN switch of LS1028A. The
SWITCH_1588_DATx signals are programmable to work as PPS, periodic clock, or external trigger. Currently
driver only supports PPS and periodic clock functions.

PPS/Periodic clock

Here are steps to configure SWITCH_1588_DAT0 signal. Similar method could be used to configure other
signals.

1. Check PTP clock index for network controller

The PTP clock index is 1 in the example.

# ethtool -T swp0
Time stamping parameters for swp0:
Capabilities:
        hardware-transmit     (SOF_TIMESTAMPING_TX_HARDWARE)
        software-transmit     (SOF_TIMESTAMPING_TX_SOFTWARE)
        hardware-receive      (SOF_TIMESTAMPING_RX_HARDWARE)
        software-receive      (SOF_TIMESTAMPING_RX_SOFTWARE)
        software-system-clock (SOF_TIMESTAMPING_SOFTWARE)
        hardware-raw-clock    (SOF_TIMESTAMPING_RAW_HARDWARE)
PTP Hardware Clock: 1
Hardware Transmit Timestamp Modes:
        off                   (HWTSTAMP_TX_OFF)
        on                    (HWTSTAMP_TX_ON)
        one-step-sync         (HWTSTAMP_TX_ONESTEP_SYNC)
Hardware Receive Filter Modes:
        none                  (HWTSTAMP_FILTER_NONE)
        all                   (HWTSTAMP_FILTER_ALL)

2. Set SWTICH_1588_DAT0 function as periodic clock

# echo 2 0 > /sys/class/ptp/ptp1/pins/switch_1588_dat0

The first parameter stands for pin function. Driver now supports only periodic clock function (PPS is a special
case of it) which value is 2.

The second parameter stands for the channel we set. It should be a value which has not been used.

3. Configure SWTICH_1588_DAT0 to PPS signal or periodic clock

# echo '0 0 0 1 0' > /sys/class/ptp/ptp1/period

The parameters' format is "<channel> <start.sec> <start.nsec> <period.sec> <period.nsec>".

So current command is configuring a PPS signal to start immediately. Similarly, other periodic clock could be
configured too.

Note: absolute start time is not supported by hardware, so the start time must be "0 0". But nsec could be
accepted for PPS phase adjustment if it's configuring PPS.

7.7.7.4  PTP device tree node configuration

This topic of PTP device tree node applies to most network controllers of Layerscape, including eTSEC, DPAA1,
DPAA2, and ENETC. The 1588 timer on these controllers is using QorIQ PTP clock driver, which initializes 1588
timer registers by calculating values for registers automatically, if no properties of dts node provided.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
818 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

If users want a custom configuration on the 1588 timer, they can provide related properties in dts node. In this
way, users could do things like, selecting other reference clock source, and configuring nominal clock period,
FIPERs period, and output clock period.

See kernel doc for how to configure QorIQ PTP device tree node.

See the kernel doc, Documentation/devicetree/bindings/ptp/ptp-qoriq.txt for steps to configure
the QorIQ PTP device tree node.

7.7.8  Known issues and limitations

1. If linuxptp has not been installed in ubuntu, install it. And make sure stop and disable the default ptp4l service
which may be using wrong configuration.

# apt update   
# apt install linuxptp   
# systemctl stop ptp4l.service   
# systemctl disable ptp4l.service

2. For L2 switch, like TSN switch on LS1028ARDB, once it is bridge mode working on L2 Ethernet layer,
linuxptp should also run over L2 protocol with -2 option.

3. If below error is reported during ptp4l running, just try to increase tx_timestamp_timeout. User space may
need to wait longer for TX timestamp. For example, use option --tx_timestamp_timeout=20 when run ptp4l.

ptp4l[1560.726]: timed out while polling for tx timestamp
ptp4l[1560.726]: increasing tx_timestamp_timeout may correct this issue, but it
 is likely caused by a driver bug

4. There may be smmu error reported when run ptp4l with upstream DPAA Ethernet driver. The workaround is
changing U-Boot bootargs.

setenv bootargs iommu.passthrough=1 $bootargs

5. The linuxptp version lower than v1.8 (including v1.8) does not support command line argument for
configuration option. Configuration option must be in cfg file.

For example, "--priority1=127" is not supported. To set this configuration option, just configure it in current cfg
file under [global] section. (If no cfg file is used, create one and use "-f <cfg_file>" argument during running.)

[global]
priority1 127

7.8  Time Sensitive Networking (TSN)
This section provides a complete overview of steps involved in running the TSN demo and possible scenario
and testing methods

Time Sensitive Networking (TSN) is an extension to traditional Ethernet networks, providing a set of
standards compatible with IEEE 802.1 and 802.3. These extensions are intended to address the limitations
of standard Ethernet in sectors ranging from industrial and automotive applications to live audio and video
systems.Applications running over traditional Ethernet must be designed very robust in order to withstand
corner cases such as packet loss, delay or even reordering. TSN aims to provide guarantees for deterministic
latency and packet loss under congestion, allowing critical and non-critical traffic to be converged in the same
network.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
819 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

This section describes the process and use cases for implementing TSN features on the LS1028ARDB boards.

7.8.1  Using TSN features on LS1028ARDB

The tsntool is an application configuration tool to configure the TSN capability on LS1028ARDB. The files /usr/
bin/tsntool and /usr/lib/libtsn.so are located in the rootfs. Run tsntool to start the setting shell.

7.8.1.1  Tsntool User Manual

Tsntool is a tool to set the TSN capability of the Ethernet ports of TSN Endpoint and TSN switch. This document
describes how to use tsntool for NXP's LS1028ARDB hardware platform.

Note:

• Tsntool supports only the LS1028ARDB platform. Other hardware platforms might be supported in future.
• Current tsntool binary and lib are default for kernel version v4.19. If you want to use kernel v4.13, you need to

clone the tsntool source code, and compile the tag point v0.2 source code.

7.8.1.1.1  Getting the source code

The tsntool source repo is located at https://github.com/nxp-qoriq/tsntool.git.

You can build it by using the following command:

bitbake tsntool

7.8.1.1.2  Tsn tool commands

The following table lists the TSN tool commands and their description.

Command Description

help Lists commands support

version Shows software version

verbose Debugs on/off for tsntool

quit Quits prompt mode

qbvset Sets time gate scheduling config for <ifname>

qbvget Gets time scheduling entries for <ifname>

cbstreamidset Sets stream identification table

cbstreamidget Gets stream identification table and counters

qcisfiset Sets stream filter instance

qcisfiget Gets stream filter instance

qcisgiset Sets stream gate instance

qcisgiget Gets stream gate instance

qcisficounterget Gets stream filter counters

qcifmiset Sets flow metering instance

qcifmiget Gets flow metering instance

cbsset Sets TCs credit-based shaper configure

Table 142. TSN tool commands and their description

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
820 / 1061

https://github.com/nxp-qoriq/tsntool.git


NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Command Description

cbsget Gets TCs credit-based shaper status

qbuset Sets one 8-bits vector showing the preemptable traffic class

qbugetstatus Not supported

tsdset Not supported

tsdget Not supported

ctset Sets cut through queue status (specific for ls1028 switch)

cbgen Sets sequence generate configure (specific for ls1028 switch)

cbrec Sets sequence recover configure (specific for ls1028 switch)

dscpset Sets queues map to DSCP of Qos tag (specific for ls1028 switch)

sendpkt Not supported

regtool Register read/write of bar0 of PFs (specific for ls1028 enetc)

ptptool ptptool get/set ptp timestamp. Useful commands:

#get ptp0 clock time
ptptool -g

#get ptp1 clock time
ptptool -g -d /dev/ptp1

dscpset Set queues map to DSCP of QoS tag (specific for ls1028 switch)

qcicapget Gets qci instance's max capability

tsncapget Gets device's tsn capability

Table 142. TSN tool commands and their description...continued

7.8.1.1.3  Tsntool commands and parameters

This section lists the tsntool commands along with the parameters and arguments, with which they can be used.

Parameter <argument> Description

--device <ifname> An interface such as eno0/swp0

--entryfile <filename> A file script to input gatelist format. It has the following arguments:
#'NUMBER' 'GATE_VALUE' 'TIME_LONG'
• NUMBER: # 't' or 'T' head. Plus entry number. Duplicate entry number will result in an

error.
• GATE_VALUE: # format: xxxxxxxxb . # The MSB corresponds to traffic class 7. The LSB

corresponds to traffic class 0. # A bit value of 0 indicates closed, whereas, a bit value of 1
indicates open.

• TIME_LONG: # nanoseconds. Do not input 0 time long. t0 11101111b 10000 t1 11011111b
10000

Note:  Entryfile parameter must be set. If not set, there will be a vi text editor prompt,
"require to input the gate list".

--basetime <value> AdminBaseTime
A 64-bit hex value means nanosecond until now.
OR a value input format as: Seconds.nanoSeconds
Example: 115.532038675

Table 143. qbvset

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
821 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Parameter <argument> Description

--cycletime <value> AdminCycleTime

--cycleextend <value> AdminCycleTimeExtension

--enable | --disable • enable: enables the qbv for this port
• disable: disables the qbv for this port
Default is set to enable, if no enable or disable input

--maxsdu <value> queueMaxSDU

--initgate <value> AdminGateStates

--configchange ConfigChange. Default set to 1.

--configchangetime <value> ConfigChangeTime

Table 143. qbvset...continued

Parameter <argument> Description

--device <ifname> An interface such as eno0/swp0

Table 144. qbvget 

Parameter <argument> Description

--enable | --disable • enable: Enables the entry for this index.
• disable: Disables the entry for this index. Default is set to enable if no enable or disable

input

--index <value> Index entry number in this controller. Mandatory parameter.

--device <string> An interface such as eno0/swp0

--streamhandle <value> tsnStreamIdHandle

--infacoutport <value> tsnStreamIdInFacOutputPortList

--outfacoutport <value> tsnStreamIdOutFacOutputPortList

--infacinport <value> tsnStreamIdInFacInputPortList

--outfacinport <value> tsnStreamIdOutFacInputPortList

--nullstreamid | --
sourcemacvid | --destmacvid
| --ipstreamid

tsnStreamIdIdentificationType:
• -nullstreamid:Null Stream identification
• -sourcemacvid: Source MAC and VLAN Stream identification
• -destmacvid: not supported
• -ipstreamid: not supported

--nulldmac <value> tsnCpeNullDownDestMac

--nulltagged <value> tsnCpeNullDownTagged

--nullvid <value> tsnCpeNullDownVlan

--sourcemac <value> tsnCpeSmacVlanDownSrcMac

--sourcetagged <value> tsnCpeSmacVlanDownTagged

--sourcevid <value> tsnCpeSmacVlanDownVlan

Table 145. cbstreamidset 

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
822 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Parameter <argument> Description

--device <ifname> An interface such as eno0/swp0

--index <value> Index entry number in this controller. Mandatory to have.

Table 146. cbstreamidget 

Parameter <argument> Description

--device <ifname> An interface such as eno0/swp0

--enable | --disable • enable: enable the entry for this index
• disable: disable the entry for this index
• default to set enable if no enable or disable input

--maxsdu <value> Maximum SDU size.

--flowmeterid <value> Flow meter instance identifier index number.

--index <value> StreamFilterInstance. index entry number in this controller.

--streamhandle <value> StreamHandleSpec
This value corresponds to tsnStreamIdHandle of cbstreamidset command.

--priority <value> PrioritySpec

--gateid <value> StreamGateInstanceID

--oversizeenable StreamBlockedDueToOversizeFrameEnable

--oversize StreamBlockedDueToOversizeFrame

Table 147. qcisfiset 

Parameter <argument> Description

--device <ifname> An interface such as eno0/swp0

--index <value> Index entry number in this controller. Mandatory to have.

Table 148. qcisfiget 

Parameter <argument> Description

--device <ifname> An interface such as eno0/swp0

--index <value> Index entry number in this controller. Mandatory to have.

--enable | --disable • enable: enable the entry for this index. PSFPGateEnabled
• disable: disable the entry for this index
• default to set enable if no enable or disable input

--configchange configchange

--enblkinvrx PSFPGateClosedDueToInvalidRxEnable

--blkinvrx PSFPGateClosedDueToInvalidRx

--initgate PSFPAdminGateStates

--initipv AdminIPV

Table 149. qcisgiset 

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
823 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Parameter <argument> Description

--cycletime Default not set. Get by gatelistfile.

--cycletimeext PSFPAdminCycleTimeExtension

--basetime PSFPAdminBaseTime
A 64-bit hex value means nanosecond until now.
OR a value input format as: Seconds.nanoSeconds
Example: 115.532038675

--gatelistfile PSFPAdminControlList. A file input the gate list: 'NUMBER' 'GATE_VALUE' 'IPV' 'TIME_
LONG' 'OCTET_MAX'
• NUMBER: # 't' or 'T' head. Plus entry number. Duplicate entry number will result in an

error.
• GATE_VALUE: format: xb: The MSB corresponds to traffic class 7. The LSB corresponds

to traffic class 0. A bit value of 0 indicates closed, A bit value of 1 indicates open.
• IPV: # 0~7
• TIME_LONG: in nanoseconds. Do not input time long as 0.
• OCTET_MAX: The maximum number of octets that are permitted to pass the gate. If

zero, there is no maximum. t0 1b -1 50000 10

Table 149. qcisgiset ...continued

Parameter <argument> Description

--device <ifname> An interface such as eno0/swp0

--index <value> Index entry number in this controller. Mandatory to have.

Table 150. qcisgiget 

Parameter <argument> Description

--device <ifname> An interface such as eno0/swp0

--index <value> Index entry number in this controller. Mandatory to have.

--disable If not set disable, then to be set enable.

--cir <value> cir. kbit/s.

--cbs <value> cbs. octets.

--eir <value> eir.kbit/s.

--ebs <value> ebs.octets.

--cf cf. couple flag.

--cm cm. color mode.

--dropyellow drop yellow.

--markred_enable mark red enable.

--markred mark red.

Table 151. qcifmiset 

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
824 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Parameter <argument> Description

--device <ifname> An interface such as eno0/swp0

--index <value> Index entry number in this controller. Mandatory to have.

Table 152. qcifmiget parameter

Parameter <argument> Description

--device <ifname> An interface such as eno0/swp0

--preemptable <value> 8-bit hex value. Example: 0xfe The MS bit corresponds to traffic class 7.
The LS bit to traffic class 0. A bit value of 0 indicates express. A bit value of 1 indicates
preemptable.

Table 153. qbuset parameter

Parameter <argument> Description

--device <ifname> An interface such as eno0/swp0

--tc <value> Traffic class number.

--percentage <value> Set percentage of tc limitation.

--all <tc-percent:tc-percent...> Not supported.

Table 154. cbsset command

Parameter <argument> Description

--device <ifname> An interface such as eno0/swp0

--tc <value> Traffic class number.

Table 155. cbsget

Parameter <argument> Description

pf number: pf number for the pci resource to act on

offset: offset into pci memory region to act upon

Usage: regtool { pf number }
{ offset } [ data ]

data: data to be written

Table 156. regtool

Parameter <argument> Description

--device <ifname> An interface such as swp0

--queue_stat <value> Specifies which priority queues have to be processed in cut-through mode of operation. Bit
0 corresponds to priority 0, Bit 1 corresponds to priority 1 so-on.

Table 157. ctset

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
825 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Parameter <argument> Description

--device <ifname> An interface such as swp0

--index <value> Index entry number in this controller. Mandatory to have.
This value corresponds to tsnStreamIdHandle of cbstreamidset command.

--iport_mask <value> INPUT_PORT_MASK: If the packet is from input port belonging to this port mask, then it's a
known stream and Sequence generation parameters can be applied

--split_mask <value> SPLIT_MASK: Port mask used to add redundant paths (or ports). If split is enabled
(STREAM_SPLIT) for a stream. This is OR'ed with the final port mask determined by the
forwarding engine.

--seq_len <value> SEQ_SPACE_LOG2: Minimum value is 1 and maximum value is 28.
tsnSeqGenSpace = 2**SEQ_SPACE_LOG2
For example, if this value is 12, then valid sequence numbers are from 0x0 to 0xFFF.

--seq_num <value> GEN_REC_SEQ_NUM: The sequence number to be used for outgoing packet passed to
SEQ_GEN function.
Note: Only lower 16-bits are sent in RED_TAG.

Table 158. cbgen

Parameter <argument> Description

--device <ifname> An interface such as swp0

--index <value> Index entry number in this controller. Mandatory to have.
This value corresponds to tsnStreamIdHandle of cbstreamidset command.

--seq_len <value> SEQ_SPACE_LOG2:Min value is 1 and maximum value is 28.
tsnSeqRecSeqSpace = 2**SEQ_REC_SPACE_LOG2
For example, if this value is 12, then valid sequence numbers are from 0x0 to 0xFFF.

--his_len <value> SEQ_HISTORY_LEN: Refer to SEQ_HISTORY, Min 1 and Max 32.

--rtag_pop_en REDTAG_POP: If True, then the redundancy tag is popped by rewriter.

Table 159. cbrec

Parameter <argument> Description

--device <ifname> An interface such as swp0

--disable Disable DSCP to traffic class for frames.

--index DSCP value

--cos Priority number of queue which is mapped to

--dpl Drop level which is mapped to

Table 160. dscpset

Parameter <argument> Description

--device <ifname> An interface such as swp0

Table 161. qcicapget

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
826 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Parameter <argument> Description

--device <ifname> An interface such as swp0

Table 162. tsncapget

Parameter <argument> Description

--device <ifname> An interface such as eno0/swp0

--enable Enable pcp to traffic class for frames.

Table 163. pcpmap

7.8.1.1.4  Input tips

While providing the command input, you can use the following shortcut keys to make the input faster:

• When you input a command, use the TAB key to help list the related commands.
For example:

tsntool> qbv

Then press TAB key, to get all related qbv* start commands.
If there is only one choice, it is filled as the whole command automatically.

• When you input parameters, if you don’t remember the parameter name. You can just input “--” then press
TAB key. It displays all the parameters.
If you input half the parameter’s name, pressing the TAB key lists all the related names.

• History: press the up arrow “↑” . You will get the command history and can reuse the command.

7.8.1.1.5  Non-interactive mode

Tsntool also supports non-interactive mode.

For example:

In the interactive mode:

tsntool> qbuset --device eno0 --preemptable 0xfe

In non-interactive mode:

tsntool qbuset --device eno0 --preemptable 0xfe

7.8.1.2  Kernel configuration

Before compiling the Linux kernel, we need to configure it. In the kernel, select the configuration settings
displayed below:

Symbol: TSN [=y]
   │ Type : boolean
   │ Prompt: 802.1 Time-Sensitive Networking support
   │ Location:
   │ -> Networking support (NET [=y])
   │ -> Networking options
   │ Depends on: NET [=y] && VLAN_8021Q [=y] && PTP_1588_CLOCK [=y]
│
 Symbol: ENETC_TSN [=y]

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
827 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

   │ Type : boolean
   │ Prompt: TSN Support for NXP ENETC driver
   │ Location:
   │ -> Device Drivers
   │ -> Network device support (NETDEVICES [=y])
   │ -> Ethernet driver support (ETHERNET [=y])
   │ -> Freescale devices (NET_VENDOR_FREESCALE [=y])
   │ Defined at drivers/net/ethernet/freescale/enetc/Kconfig:41
   │ Depends on: NETDEVICES [=y] && ETHERNET [=y] && NET_VENDOR_FREESCALE [=y]
 && FSL_ENETC [=m] && TSN [=y]
│
 Symbol: FSL_ENETC_PTP_CLOCK [=y]
   │ Type : tristate
   │ Prompt: ENETC PTP clock driver
   │ Location:
   │ -> Device Drivers
   │ -> Network device support (NETDEVICES [=y])
   │ -> Ethernet driver support (ETHERNET [=y])
   │ -> Freescale devices (NET_VENDOR_FREESCALE [=y])
|
  Symbol: MSCC_FELIX_SWITCH_TSN [=y]
   | Type : tristate
   | Prompt: TSN on FELIX switch driver
   | Location:
   | -> Device Drivers
   |   -> Network device support (NETDEVICES [=y])
   |    -> Ethernet driver support (ETHERNET [=y])
   |     -> Microsemi devices (NET_VENDOR_MICROSEMI [=y])
   |      -> Ocelot switch driver (MSCC_OCELOT_SWITCH [=y])
   |      -> FELIX switch driver (MSCC_FELIX_SWITCH [=y])
   | Defined at drivers/net/ethernet/mscc/Kconfig:38
Symbol: NET_PKTGEN [=y]
   | Type  : tristate
   | Prompt: Packet Generator (USE WITH CAUTION)
   | Location:
   |     -> Networking support (NET [=y])
   |     -> Networking options
   |     -> Network testing
   |  Defined at net/Kconfig:325
   |  Depends on: NET [=y] && INET [=y] && PROC_FS [=y]
Symbol: MSCC_FELIX_SWITCH_PTP_CLOCK [=y]
    | Type  : boolean
    | Prompt: FELIX switch PTP clock support
    | Location:
    | -> Device Drivers
    |    -> Network device support (NETDEVICES [=y])
    |        -> Ethernet driver support (ETHERNET [=y])
    |             -> Microsemi devices (NET_VENDOR_MICROSEMI [=y])
    |                   -> Ocelot switch driver (MSCC_OCELOT_SWITCH [=y])
    |                       -> FELIX switch driver (MSCC_FELIX_SWITCH [=y])
    | Defined at drivers/net/ethernet/mscc/Kconfig:38
    | Depends on: NETDEVICES [=y] && ETHERNET [=y] && NET_VENDOR_MICROSEMI
    | Selects: PTP_1588_CLOCK [=y]

7.8.1.3  Basic TSN configuration examples on ENETC

The tsntool is an application configuration tool to configure the TSN capability. You can find the file, /usr/
bin/tsntool and /usr/lib/libtsn.so in the rootfs. Run tsntool to start the setting shell. The following
sections describe the TSN configuration examples on the ENETC ethernet driver interfaces.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
828 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Before testing the ENETC TSN test cases, you need to enable mqprio by using the command:

tc qdisc add dev eno0 root handle 1: mqprio num_tc 8 map 0 1 2 3 4 5 6 7 hw 1

7.8.1.3.1  Linuxptp test

To test 1588 synchronization on ENETC interfaces, use the following procedure:

1. Connect ENETC interfaces on two boards in a back-to-back manner. (For example, eno0 to eno0.)
The linux booting log is as follows:

…
pps pps0: new PPS source ptp0
…

2. Check PTP clock and timestamping capability:

# ethtool -T eno0
Time stamping parameters for eno0:
Capabilities:
    hardware-transmit          (SOF_TIMESTAMPING_TX_HARDWARE)
    hardware-receive           (SOF_TIMESTAMPING_RX_HARDWARE)
    hardware-raw-clock         (SOF_TIMESTAMPING_RAW_HARDWARE)
PTP Hardware Clock: 0
Hardware Transmit Timestamp Modes:
     off         (HWTSTAMP_TX_OFF)
     on          (HWTSTAMP_TX_ON)Hardware Receive Filter Modes:
     none        (HWTSTAMP_FILTER_NONE)
     all         (HWTSTAMP_FILTER_ALL)

3. Configure the IP address and run ptp4l on two boards:

# ifconfig eno0 <ip_addr>
# ptp4l -i eno0 -p /dev/ptp0 -m

4. After running, one board would be automatically selected as the master, and the slave board would print
synchronization messages.

5. For 802.1AS testing, just use the configuration file gPTP.cfg in linuxptp source. Run the below command
on the boards, instead:

# ptp4l -i eno0 -p /dev/ptp0 -f gPTP.cfg -m

7.8.1.3.2  Qbv test

This test includes the Basic gates closing test, Basetime test, and the Qbv performance test. These are
described in the following sections.

7.8.1.3.2.1  Basic gates closing

The commands below describe the steps for closing the basic gates:

cat > qbv0.txt << EOF
t0      00000000b               20000
EOF

#Explanation:
# 'NUMBER'        :   t0
# 'GATE_VALUE'    :   00000000b

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
829 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

# 'TIME_LONG'     :   20000 ns

cp libtsn.so /lib
./tsntool
tsntool> verbose
tsntool> qbvset --device eno0 --entryfile ./qbv0.txt
ethtool -S eno0
ping 192.168.0.2 -c 1   #Should not pass any frame since gates are all off.

7.8.1.3.2.2  Basetime test

Base on case 1 qbv1.txt gate list.

#create 1s gate
cat > qbv1.txt << EOF
t0  11111111b      10000
t1  00000000b      99990000
EOF
tsntool> regtool 0 0x18
tsntool> regtool 0 0x1c
#read the current time
tsntool> ptptool -g
#add some seconds, for example, you get 200.666 time clock, then set 260.666 as
 result
tsntool> qbvset --device eno0 --entryfile qbv1.txt --basetime 260.666
tsntool> qbvget --device eno0 #You can check configchange time
tsntool> regtool 0 0x11a10 #Check pending status, 0x1 means time gate is working
#Waiting to change state, ping remote computer
ping 192.168.0.2 -A -s 1000
#The reply time is about 100 ms

Since 10000 ns is the maximum limit for package size 1250 B.

ping 192.168.0.2 -c 1 -s 1300 #frame should not pass

7.8.1.3.2.3  Qbv performance test

Use the setup described in the figure below for testing ENETC port0 (MAC0).

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
830 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Figure 166. Setup for testing ENETC port0

cat > qbv5.txt << EOF
t0  11111111b      1000000
t1  00000000b      1000000
EOF
qbvset --device eno0 --entryfile qbv5.txt
./pktgen/pktgen_twoqueue.sh -i eno0 -q 3 -n 0
#The stream would get about half line rate

7.8.1.3.2.4  Qbv setup using taprio Qdisc

Using taprio Qdisc you can set up Qbv.

LS1028ardb supports the taprio qdisc to set up Qbv. An example of Qbv setup is giveb below:

#Qbv test do not require the mqprio setting.
# If mqprio is enabled, try to disable it by below command:
tc qdisc del dev eno0 root handle 1: mqprio
# Enable the Qbv for ENETC eno0 port
# Below command set eno0 with gate 0x01, means queue 0 open,
the other queues gate close.
tc qdisc replace dev eno0 parent root handle 100 taprio num_tc
8 map 0 1 2 3 4 5 6 7 queues 1@0 1@1 1@2 1@3 1@4 1@5 1@6 1@7
base-time 0 sched-entry S 01 300000 flags 0x2
# Ping through eno0 port should be ok
# Then close the gate queue 0. Open gate queue 1. The other
queues gate close.
tc qdisc replace dev eno0 parent root handle 100 taprio num_tc
8 map 0 1 2 3 4 5 6 7 queues 1@0 1@1 1@2 1@3 1@4 1@5 1@6 1@7
base-time 0 sched-entry S 02 300000 flags 0x2
# Ping through eno0 port should be dropped

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
831 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

#Disable the Qbv for ENETC eno0 port as below
tc qdisc del dev eno0 parent root handle 100 taprio

7.8.1.3.3  Qci test cases

Use the following as the background setting:

• Set eno0 MAC address

ip link set eno0 address 10:00:80:00:00:00

TestCenter MAC address 99:aa:bb:cc:dd:ee as an example.
• Use the figure below as the hardware setup.

Figure 167. Qci test case setup

7.8.1.3.3.1  Test SFI No Streamhandle

To test no streamhandle for a stream filter, set a close gate stream id 2. Then no stream identifies the package
check and other streams would pass the gate, as shown in the following example:

tsntool> qcisfiset --device eno0 --index 2 --gateid 2

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
832 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

• Streams no streamhandle should pass this filter.

tsntool> qcisfiget --device eno0 --index 2

• Send a frame from the Test center.

tsntool> qcisfiget --device eno0 --index 2

• Set Stream Gate entry 2

tsntool> qcisgiset --device eno0 --index 2 --initgate 1

• Send a frame from the Test center.

tsntool> qcisfiget --device eno0 --index 2

• Set Stream Gate entry 2, gate closes permanently.

tsntool> qcisgiset --device eno0 --index 2 --initgate 0

• Send a frame from the Test center.

tsntool> qcisfiget --device eno0 --index 2
#The result should look like below:
 match  pass  gate_drop  sdu_pass  sdu_drop red
   1   0   1     1    0    0

7.8.1.3.3.2  Testing null stream identify entry

Use the following steps:

1. Set main stream by close gate.
2. Set Stream identify Null stream identify entry 1.

tsntool> cbstreamidset --device eno0 --index 1 --nullstreamid --nulldmac
0x000000800010 --nulltagged 3 --nullvid 10 --streamhandle 100

3. Get SID index 1.

tsntool> cbstreamidget --device eno0 --index 1

4. Set Stream filer entry 1.

tsntool> qcisfiset --device eno0 --streamhandle 100 --index 1 --gateid 1

5. Set Stream Gate entry 1.

tsntool> qcisgiset --device eno0 --index 1 --initgate 0

6. Send one frame from the Test center.

tsntool> qcisfiget --device eno0 --index 1

7. The result should look like the output below:

match pass gate_drop sdu_pass sdu_drop red
1 0 1 1 0 0

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
833 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

7.8.1.3.3.3  Testing source stream identify entry

Use the following steps for this test:

1. Keep Stream Filter entry 1 and Stream gate entry 1.
2. Add stream2 in test center: SMAC is 66:55:44:33:22:11 DMAC:20:00:80:00:00:00
3. Set Stream identify Source stream identify entry 3

tsntool> cbstreamidset --device eno0 --index 3 --sourcemacvid --sourcemac
 0x112233445566 --sourcetagged 3 --sourcevid 20 --streamhandle 100

4. Send frame from test center. The frame passes to stream filter index 1.

tsntool> qcisfiget --device eno0 --index 1

7.8.1.3.3.4  SGI stream gate list

Use the command below for this test:

cat > sgi1.txt << EOF
t0 0b -1 1000 0
t1 1b -1 1000 0
EOF
tsntool> qcisfiset --device eno0 --index 2 --gateid 2
tsntool> qcisgiset --device eno0 --index 2 --initgate 1 --gatelistfile sgi1.txt
#flooding frame size 64bytes at test center
tsntool> qcisfiget --device eno0 --index 2

Check the frames dropped and passed, they should be the same.

7.8.1.3.3.5  FMI test

Only send green color frames, set the test center speed to 10000000 bsp/s:

tsntool> qcisfiset --device eno0 --index 2 --gateid 2 --flowmeterid 2
tsntool> qcifmiset --device eno0 --index 2 --cm --cf --cbs 1500 --cir 5000 --ebs
 1500 --eir 5000

The below setting shows the dropped frames:

tsntool> qcifmiset --device eno0 --index 2 --cm --cf --cbs 1500 --cir 5000 --ebs
 1500 --eir 2000

To get information of color frame counters showing at application layer, use the code as in the below example:

tsntool> qcifmiget --device eno0 --index 2
=======================================================================
bytecount drop dr0_green dr1_green dr2_yellow remark_yellow dr3_red remark_red
1c89 0 4c 0 0 0 0 0
=======================================================================
index = 2
cir = c34c
cbs = 5dc
eir = 4c4b3c
ebs = 5dc
couple flag
color mode

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
834 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

7.8.1.3.4  Qbu test

Set the frame path from eno0 to external by linking enetc MAC0 - SWP0. Use the setup as shown in the
following figure for the Qbu test.

Figure 168. Qbu test

Before the test, you must set up the switch ports. See Section 7.8.1.4.1 for more information.

Note:  0x11f10 Port MAC Merge Frame Assembly OK Count Register

0x11f18 Port MAC Merge Fragment Count TX Register (MAC_MERGE_MMFCTXR)

For linking the ENETC port0 to SWP0, use the steps below:

1. Ensure to enable the priority for each traffic class:

tc qdisc add dev eno0 root handle 1: mqprio num_tc 8 map 0 1 2 3 4 5 6 7 hw 1

2. Make sure link speed is 1 Gbit/s by using the command:

ethtool eno0

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
835 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

3. If it is not 1 Gbit/s, set it to 1 Gbit/s by using the command:

ethtool -s swp0 speed 1000 duplex full autoneg on

Make sure that the swp0 and enec0 link is up.
4. Set the switch to enable merge:

devmem 0x1fc100048 32 0x111 #DEV_GMII:MM_CONFIG:ENABLE_CONFIG

5. Use the below ENETC port setting:

ip link set eno0 address 90:e2:ba:ff:ff:ff
tsntool> qbuset --device eno0 --preemptable 0xfe
./pktgen/pktgen_twoqueue.sh -i eno0 -q 0 -s 100 -n 20000 -m 90:e2:ba:ff:ff:ff

6. Check the tx merge counter, if it has a non-zero value, it indicates that the Qbu is working.

tsntool> regtool 0 0x11f18

7.8.1.3.5  Qav test

The following figure illustrates the hardware setup diagram for the Qav test.

Figure 169. Qav test setup

7.8.1.3.5.1  Tsntool usage

1. Ensure to enable the priority for each traffic class:

tc qdisc add dev eno0 root handle 1: mqprio num_tc 8 map 0 1 2 3 4 5 6 7 hw 1

2. Run the following commands:

cbsset --device eno0 --tc 7 --percentage 60

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
836 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

cbsset --device eno0 --tc 6 --percentage 20

3. Check the test center result, TC6 should have 1/3 frames of TC7.
4. Check one queue:

./pktgen/pktgen_sample01_simple.sh -i eno0 -q 7 -s 500 -n 0

It should get about 60% percentage line rate.
5. Check another queue:

/home/root/samples/pktgen/pktgen_sample01_simple.sh -i eno0 -q 6 -s 500 -n
 30000

Note:  Wait a few seconds later to check the result. The expected result in line rate is 20%.

7.8.1.3.5.2  tc-cbs usage

You can set up Qav using the CBS Qdisc. LS1028a supports the CBS qdisc to set up Credit-based Shaper.

The following commands are used to set CBS with 100 Mbit/s for queue 7 and 300 Mbit/s for queue 6:

$tc qdisc add dev eno0 root handle 1: mqprio num_tc 8 map 0 1 2 3 4 5 6 7 hw 1
$tc qdisc replace dev eno0 parent 1:8 cbs locredit -1350 hicredit 150 sendslope
 -900000 idleslope 100000 offload 1
$tc qdisc replace dev eno0 parent 1:7 cbs locredit -1050 hicredit 950 sendslope
 -700000 idleslope 300000 offload 1

7.8.1.4  Basic TSN configuration examples on the switch

The following sections describe examples for the basic configuration of TSN switch.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
837 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

7.8.1.4.1  Switch configuration

Figure 170. TSN switch configuration

Use the following commands for configuring the switch on LS1028ARDB:

ls /sys/bus/pci/devices/0000:00:00.5/net/

Get switch device interfaces: swp0 swp1 swp2 swp3>

ifconfig eno2 up
ip link add name switch type bridge vlan_filtering 1
ip link set switch up
ip link set swp0 master switch && ip link set swp0 up
ip link set swp1 master switch && ip link set swp1 up
ip link set swp2 master switch && ip link set swp2 up
ip link set swp3 master switch && ip link set swp3 up
ip link set swp4 master switch && ip link set swp4 up /* In Kernel-4.19*/

7.8.1.4.2  Linuxptp test

To test 1588 synchronization on felix-switch interfaces, use the following procedure:

1. Connect two boards back-to-back with switch interfaces. For example, swp0 to swp0.
The Linux booting log is displayed below:

…
pps pps0: new PPS source ptp1
…

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
838 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

2. Check PTP clock and timestamping capability

$ ethtool -T swp0
Time stamping parameters for swp0:
Capabilities:
     hardware-transmit  (SOF_TIMESTAMPING_TX_HARDWARE)
     hardware-receive   (SOF_TIMESTAMPING_RX_HARDWARE)
     hardware-raw-clock (SOF_TIMESTAMPING_RAW_HARDWARE)
PTP Hardware Clock: 1
Hardware Transmit Timestamp Modes:
      off   (HWTSTAMP_TX_OFF)
      on    (HWTSTAMP_TX_ON)
 Hardware Receive Filter Modes:
      none  (HWTSTAMP_FILTER_NONE)
      all   (HWTSTAMP_FILTER_ALL)

3. Set switch ip on two boards, and ping each other.

$ ifconfig switch 192.168.1.2 /* On board A */
$ ifconfig switch 192.168.1.3 /* On board B */
$ ping 192.168.1.3 /* On board A */

4. For 802.1AS testing, use the configuration file gPTP.cfg in linuxptp source. Run the below commands on
the two boards instead.

$ ptp4l -i swp0 -p /dev/ptp1 -f gPTP.cfg -2 -m

Note:

Install ptp4l (linuxptp), if not installed already in ubuntu rootfs. Also, stop and disable ptp4l.service in case of
failure; as used needs to write it as per the requirement. ptp4l v1.8 is used for Layerscape LDP verification.

# apt update
# apt install linuxptp
# systemctl stop ptp4l.service
# systemctl disable ptp4l.service

7.8.1.4.3  Qbv test

The following figure describes the setup for Qbv test on LS1028ARDB.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
839 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Figure 171. Qbv test

Reserve buffer for each queue on ingress and egress port to avoid resource depletion when Qbv gate is closed:

ingressport=0
egressport=1
for tc in {0..7}; do {
devlink sb tc bind set pci/0000:00:00.5/$ingressport sb 0
tc $tc type ingress pool 0 th 3000
devlink sb tc bind set pci/0000:00:00.5/$ingressport sb 1
tc $tc type ingress pool 0 th 10
devlink sb tc bind set pci/0000:00:00.5/$egressport sb 0 tc
$tc type egress pool 1 th 3000
devlink sb tc bind set pci/0000:00:00.5/$egressport sb 1 tc
$tc type egress pool 1 th 10
}
done

7.8.1.4.3.1  Closing basic gates

Use the set of commands below for basic gate closing.

echo “t0 00000000b 20000” > qbv0.txt
#Explaination:
# 'NUMBER'      :  t0
# 'GATE_VALUE'  :  00000000b
# 'TIME_LONG'   :  20000 ns
./tsntool
tsntool> verbose
tsntool> qbvset --device swp1 --entryfile ./qbv0.txt

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
840 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

#Send one broadcast frame to swp0 from TestCenter.
ethtool -S swp1
#Should not get any frame from swp1 on TestCenter.
echo “t0 11111111b 20000” > qbv0.txt
tsntool> qbvset --device swp1 --entryfile ./qbv0.txt
#Send one broadcast frame to swp0 on TestCenter.
ethtool -S swp1
#Should get one frame from swp1 on TestCenter.

7.8.1.4.3.2  Basetime test

For the basetime test, first get the current second time:

#Get current time:
tsntool> ptptool -g -d /dev/ptp1
#add some seconds, for example you get 200.666 time clock, then set 260.666 as
 result
tsntool> qbvset --device swp1 --entryfile ./qbv0.txt --basetime 260.666
#Send one broadcast frame to swp0 on the Test Center.
#Frame could not pass swp1 until time offset.

7.8.1.4.3.3  Qbv performance test

Use the following commands for the QBv performance test:

cat > qbv5.txt << EOF
t0 11111111b 1000000
t1 00000000b 1000000
EOF
qbvset --device swp1 --entryfile qbv5.txt

#Send 1G rate stream to swp0 on TestCenter.

#The stream would get about half line rate from swp1.

Note:  Each entry time must be larger than guard band, the guard band is set by --maxsdu, if it is not set, then
use default value as 1518Bytes. The least entry time is (1518*8)/1G≈12us.

7.8.1.4.3.4  Tc-taprio usage

LS1028ARDB supports the tarprio qdisc to set up Qbv.

An example for Qbv setup is given below:

1. Enable the Qbv for swp1 port, set queue 1 gate open, and set circle time to 300 μs:

$tc qdisc replace dev swp1 parent root handle 100 taprio num_tc 8 map 0 1 2 3
 4 5 6 7 queues 1@0 1@1 1@2 1@3 1@4 1@5 1@6 1@7 base-time 0 sched-entry S 02
 300000 flags 0x2

Note:  Since the hardware can only use PCP, DSCP or other methods to classify QoS, it cannot map QoS
to different hardware queues. mqprio is not implemented in the felix driver, so "map 0 1 2 3 4 5 6 7" in the tc-
taprio command is invalid.
Note:  Tc-taprio uses default port max SDU(1518B) as guard band value. Each entrytime must be larger
than guard band(1518*8/1G≈12us).

2. Send one frame with PCP=1 in vlan tag to swp0 from TestCenter, so as to capture the frame from swp1.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
841 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

3. Send one frame with PCP=2 in vlan tag to swp0 from TestCenter, gate is closed and the frame from swp1
cannot be captured.

4. Disable the Qbv for swp1 port as below:

$tc qdisc del dev swp1 parent root handle 100 taprio

7.8.1.4.4  Qbu test

The figure below illustrates the setup for performing the Qbu test using the TSN switch.

Figure 172. Qbu test on switch

1. Disable the Cut-through mode before enabling preemption on switch ports.

$tsntool> ctset --device swp3 --queue_stat 0x0

2. Set queue 1 to be preemptable.

tsntool> qbuset --device swp3 --preemptable 0x02

3. Send two streams from TestCenter, then check the number of additional mPackets transmitted by PMAC:

ethtool -S swp3 | grep tx_merge_fragments

7.8.1.4.5  Qci test cases

The figure below illustrates the Qci test case setup.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
842 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Figure 173. Qci test case

7.8.1.4.5.1  Stream identification

Use the following commands for stream identification:

1. Set a stream to swp0 on TestCenter.
2. Edit the stream, set the destination MAC as: 00:01:83:fe:12:01, Vlan ID : 1
3. Add the MAC to MAC table on LS1028a.

$bridge fdb add 00:01:83:fe:12:01 dev swp1 vlan 1 master static

Note:  This step is not required if the MAC is already configured on port.
4. Use the destination MAC 00:01:83:fe:12:01, vlan ID : 1 to set the stream identification on

LS1028A.

tsntool> cbstreamidset --device swp1 --nullstreamid --index 1
--nulldmac 0x000183fe1201 --nullvid 1 --streamhandle 1

Explanation:
• device: Set the device port which is the stream forwarded to. If the {destmac, VID} is already learned by

switch, switch will not care device port.
• nulltagged: Switch only support nulltagged=1 mode, so there is no need to set it.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
843 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

• nullvid: Use bridge vlan show to see the ingress VID of switch port.
5. Use the streamhandle to configure a stream filter:

tsntool> qcisfiset --device swp0 --index 1 --gateid 1 --
priority 0 --flowmeterid 68

Explanation:
• device: Can be any one of switch ports.
• flowmeterid: PSFP Policer id, ranges from 63 to 383.
• index: Value is same as streamhandle of cbstreamidset.
streamhandle: Value is same as streamhandle of cbstreamidset.

6. Send one frame, then check the frames.

ethtool -S swp1
ethtool -S swp2

Only swp1 can get the frame.
7. Use the following command to check and debug the stream identification status.

qcisfiget --device swp0 --index 1

Note:  The parameter streamhandle is the same as index in stream filter set, we use streamhandle
in cbstreamidset to set a stream filter entry, and use index to disable it. Also, we use index in
cbstreamidget to get this stream filter entry.

7.8.1.4.5.2  Stream gate control

1. Use the following commands for stream gate control:

echo "t0 1b 3 50000 200" > sgi.txt
tsntool> qcisgiset --device swp0 --enable --index 1 --initgate 1 --initipv 0
 --gatelistfile sgi.txt --basetime 0x0

Explanation:
• 'device': can be any one of switch ports.
• 'index': gateid
• 'basetime' : It is the same as Qbv set.

2. Send one frame on TestCenter.

ethtool -S swp1

Note that the frame could pass, and green_prio_3 has increased.
3. Now run the following commands:

echo "t0 0b 3 50000 200" > sgi.txtx
tsntool> qcisgiset --device swp0 --enable --index 1 --initgate 1 --initipv 0
 --gatelistfile sgi.txt --basetime 0x0

4. Next, send one frame on TestCenter.

ethtool -S swp1

Note that the frame could not pass.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
844 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

7.8.1.4.5.3  SFI maxSDU test

Use the following command to run this test:

tsntool> qcisfiset --device swp0 --index 1 --gateid 1 --priority 0 --flowmeterid
 68 --maxsdu 200

Now, send one frame (frame size > 200) on TestCenter.

ethtool -S swp1

You can observe that the frame could not pass.

7.8.1.4.5.4  FMI test

Use the following set of commands for the FMI test.

1. Reserve buffer for each queue on ingress port to receive yellow frames(dp=1) in switch.

ingressport=0
for tc in {0..7}; do {
devlink sb tc bind set pci/0000:00:00.5/$ingressport sb 0
tc $tc type ingress pool 0 th 3000
devlink sb tc bind set pci/0000:00:00.5/$ingressport sb 1
tc $tc type ingress pool 0 th 10
}    
done

2. Run the command:

tsntool> qcifmiset --device swp0 --index 68 --cir 100000 --cbs 4000 --ebs
 4000 --eir 100000

Note:
• The 'device' in above command can be any one of the switch ports.
• The index of qcifmiset must be the same as flowmeterid of qcisfiset.

3. Now, send one stream (rate = 100M) on TestCenter.

ethtool -S swp0

Note that all frames pass and get all green frames.
4. Now, send one stream (rate = 200M) on TestCenter.

ethtool -S swp0

Observe that all frames pass and get green and yellow frames.
5. Send one stream (rate = 300M) on TestCenter.

ethtool -S swp0

Note that not all frames could pass and get green, yellow, and red frames.
6. Send one yellow stream (rate = 100M) on TestCenter.

ethtool -S swp0

All frames pass and get all yellow frames.
7. Send one yellow stream (rate = 200M) on TestCenter.

ethtool -S swp0

Note that not all frames could pass and get yellow and red frames.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
845 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

8. Test cf mode.

tsntool> qcifmiset --device swp0 --index 68 --cir 100000 --cbs 4000 --ebs
 4000 --eir 100000 --cf

9. Send one yellow stream (rate = 200M) on TestCenter.

ethtool -S swp0

All frames pass and get all yellow frames (use CIR as well as EIR).
10. Send one yellow stream (rate = 300M) on TestCenter.

ethtool -S swp0

Note that not all frames could pass and get yellow and red frames.

7.8.1.4.5.5  Port-based SFI set

LS1028A switch can work on port-based PSFP set. This implies that when a nullidentified stream is received on
an ingress port, switch uses the port, default SFI.

Below example tests no streamhandle in qcisfiset to set a port, default SFI.

1. Use SFID 2 to set swp0 port as default SFI.

tsntool> qcisfiset --device swp0 --index 2 --gateid 1 --flowmeterid 68

After the port default SFI is set, any stream sent from swp0 port perfoms the gate 1 and flowmeter 68 policy.
2. Set stream gate control.

echo "t0 1b 4 50000 200" > sgi.txt
tsntool> qcisgiset --device swp0 --enable --index 1 --initgate 1 --initipv 0
 --gatelistfile sgi.txt

3. Send any stream to swp0.

ethtool -S swp1

Note:  The frame is passed, and green_prio_4 is increased.

7.8.1.4.5.6  Tc-flower usage

To use tc-flower, perform the following steps:

1. Add the MAC CA:9C:00:BC:6D:68 in the MAC table by using bridge fdb command, if it is not learned:

bridge fdb add dev swp3 CA:9C:00:BC:6D:68 vlan 1 master static

2. Register chains on ingress port swp0:

tc qdisc add dev swp0 clsact
tc filter add dev swp0 ingress chain 0 pref 49152 flower skip_sw action goto
 chain 10000
tc filter add dev swp0 ingress chain 10000 pref 49152 flower skip_sw action
 goto chain 11000
tc filter add dev swp0 ingress chain 11000 pref 49152 flower skip_sw action
 goto chain 12000
tc filter add dev swp0 ingress chain 12000 pref 49152 flower skip_sw action
 goto chain 20000
tc filter add dev swp0 ingress chain 20000 pref 49152 flower skip_sw action
 goto chain 21000

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
846 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

tc filter add dev swp0 ingress chain 21000 pref 49152 flower skip_sw action
 goto chain 30000

3. Set Qci on ingress port swp0:
a. Use the following commands to set Qci gate:

tc filter add dev swp0 ingress chain 30000 
protocol 802.1Q flower skip_sw dst_mac CA:9C:00:BC:6D:68 
vlan_id 1 action gate index 1 base-time 0 sched-entry CLOSE 
6000 -1 -1

b. Use the following commands to set Qci flow meter:

tc filter add dev swp0 ingress chain 30000 protocol 802.1Q 
flower skip_sw dst_mac CA:9C:00:BC:6D:68 vlan_id 1 action police index 1 
rate 10Mbit burst 10000 conform-exceed drop/ok

c. Use the following commands to set Qci SFI priority:

tc filter add dev swp0 ingress chain 30000 protocol 802.1Q 
flower skip_sw dst_mac CA:9C:00:BC:6D:68 vlan_id 1 vlan_prio 1 action gate
 index 1 base-time 0 sched-entry CLOSE 6000 -1 -1

d. Use the following commands to set both gate and flow meter:

tc filter add dev swp0 ingress chain 30000 protocol 802.1Q flower skip_sw
 dst_mac CA:9C:00:BC:6D:68 vlan_id 1 action gate
index 1 base-time 0 sched-entry OPEN 6000 2 -1 action police index 1 rate
 10Mbit burst 10000 conform-exceed drop/ok

4. Send a stream from TestCenter and set the stream destination MAC as CA:9C:00:BC:6D:68, set
vid=1, and vlan_prio=1 in the vlan tag.

5. Capture the stream from TestCenter, and check if packets are received.
6. Use the following commands to delete a stream rule:

tc -s filter show dev swp0 ingress chain 30000
tc filter del dev swp0 ingress chain 30000 pref 49152

Note:

• Each stream can only be added only once. If a user wants to update it, delete the rule and add a new one.
• MAC and VID of stream must have been learned in switch MAC table if the stream is required to be added.
• Qci gate cycle time is expected to be more than 5 μs.
• Qci flow meter can only set cir and cbs now, and the policers are shared with ACL VCAPs.

7.8.1.4.6  Qav test case

The below figure illustrates the Qav test case setup.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
847 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Figure 174. Qav test case

7.8.1.4.6.1  Tsntool usage

1. Set the percentage of two traffic classes:

tsntool> cbsset --device swp2 --tc 1 --percentage 20
tsntool> cbsset --device swp2 --tc 2 --percentage 40

2. Send two streams from Test center, then check the frames count.

ethtool -S swp2

Note that the frame count of queue1 is half of queue2.
Note:  Stream rate must larger than bandwidth limited of queue.

3. Capture frames on swp2 on TestCenter.
# The Get Frame sequence is: (PCP=1), (PCP=2), (PCP=2), (PCP=1), (PCP=2),
(PCP=2),…

7.8.1.4.6.2  Tc-cbs usage

LS1028A supports the CBS qdisc to setup Credit-based Shaper.

The below commands set CBS with 20 Mbit/s for queue 1 and 40 Mbit/s for queue 2:

1. Set the cbs of two traffic classes:

$tc qdisc add dev swp2 root handle 1: mqprio num_tc 8 map 0 1
2 3 4 5 6 7 queues 1@0 1@1 1@2 1@3 1@4 1@5 1@6 1@7 hw 0
$tc qdisc replace dev swp2 parent 1:2 cbs locredit -1470
hicredit 30 sendslope -980000 idleslope 20000 offload 1

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
848 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

$tc qdisc replace dev swp2 parent 1:3 cbs locredit -1440
hicredit 60
sendslope -960000 idleslope 40000 offload 1

2. Send one stream with PCP=1 from TestCenter to receive the stream bandwith of 20Mbit/s from swp2.
3. Send two streams from TestCenter, then check the frames count.

ethtool -S swp2

4. Delete the cbs rules.

tc qdisc del dev swp2 parent 1:2 cbs
tc qdisc del dev swp2 parent 1:3 cbs

7.8.1.4.7  Seamless redundancy test case

The following figure describes the test setup for the seamless redundancy test case.

Figure 175. Seamless redundancy test

7.8.1.4.7.1  Sequence Generator test

Use the following set of commands for the 'Sequence Generator' test.

1. Configure switch ports to be forward mode.
On board A:

ip link add name switch type bridge vlan_filtering 1
ip link set switch up
ip link set swp0 master switch && ip link set swp0 up
ip link set swp1 up
ip link set swp2 master switch && ip link set swp2 up
ip link set swp3 master switch && ip link set swp3 up
bridge vlan add dev swp0 vid 1 pvid
bridge vlan add dev swp1 vid 1 pvid
bridge vlan add dev swp2 vid 1 pvid
bridge vlan add dev swp3 vid 1 pvid

On board B
ip link add name switch type bridge vlan_filtering 1

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
849 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

ip link set switch up
ip link set swp0 master switch && ip link set swp0 up
ip link set swp1 master switch && ip link set swp1 up
ip link set swp2 master switch && ip link set swp2 up
ip link set swp3 master switch && ip link set swp3 up
bridge vlan add dev swp0 vid 1 pvid
bridge vlan add dev swp1 vid 1 pvid
bridge vlan add dev swp2 vid 1 pvid
bridge vlan add dev swp3 vid 1 pvid

2. On board A, run the commands:

bridge fdb add 7E:A8:8C:9B:41:DD dev swp2 vlan 1 master static
tsntool> cbstreamidset --device swp0 --nullstreamid --nulldmac 0x7EA88C9B41DD
 --nullvid 1 --streamhandle 1
tsntool> cbgen --device swp0 --index 1 --iport_mask 0x08 --split_mask 0x07 --
seq_len 16 --seq_num 2048

In the command above,
• device: can be any one of switch ports.
• index: value is the same as streamhandle of cbstreamidset.

3. Send a stream from TestCenter to swp3 of board A, set destination mac as 7E:A8:8C:9B:41:DD.
4. Capture frames on swp2 on TestCenter.

We can get frames from swp2 on TestCenter, each frame adds the sequence number: 23450801,
23450802, 23450803…

5. Capture frames from swp2 of board B on TestCenter, we can get the same frames.

7.8.1.4.7.2  Sequence Recover test

Use the following steps for the Sequence Recover test:

1. On board B, run the following commands:

bridge fdb add 7E:A8:8C:9B:41:DD dev swp0 vlan 1 master static
tsntool> cbstreamidset --device swp2  --nullstreamid --nulldmac
 0x7EA88C9B41DD --nullvid 1  --streamhandle 1
tsntool> cbrec --device swp0 --index 1 --seq_len 16 --his_len 31 --
rtag_pop_en

In the cbrec command mentioned above:
• device: can be any one of switch ports.
• index: value is the same as streamhandle of cbstreamidset.

2. Send a frame from TestCenter to swp3 of board A, set dest mac to be 7E:A8:8C:9B:41:DD.
3. Capture frames from swp2 of board B on TestCenter, we can get only one frame without sequence tag.

7.8.1.4.8  TSN stream identification

TSN module uses QoS class to identify and control streams. There are three ways to identify the stream to
different QoS class. These are explained in the following sections.

7.8.1.4.8.1  Stream identification based on PCP value of Vlan tag

The default QoS class is based on PCP of Vlan tag for a frame. If there is no Vlan tag for a frame, the default
QoS class is 0.

Set the PCP value on TestCenter.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
850 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Figure 176. Using PCP value of Vlan tag

7.8.1.4.8.2  Based on DSCP of ToS tag

Use the below steps to identify stream based on DSCP value of ToS tag.

1. Map the DSCP value to a specific QoS class using the command below:

tsntool> dscpset --device swp0 --index 1 --cos 1 --dpl 0

Explanation:
• index: DSCP value of stream, 0-63.
• cos: QoS class which is mapped to.
• dpl: Drop level which is mapped to.

2. Set the DSCP value on TestCenter. DSCP value is the upper six bits of ToS in IP header, set the DSCP
value on TestCenter as shown in the following figure.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
851 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Figure 177.  Setting DSCP value on TestCenter

7.8.1.4.8.3  Based on qci stream identification

The following steps describe how to use qci to identify the stream and set it to a QoS class.

1. Identify a stream.

tsntool> cbstreamidset --device swp1 --nullstreamid --nulldmac 0x000183fe1201
 --nullvid 1 --streamhandle 1

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
852 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

tsntool> qcisfiset --device swp0 --index 1 --gateid 1 --flowmeterid 68

2. Set to Qos class 3 by using stream gate control.

echo "t0 1b 3 50000 200" > sgi.txt
tsntool> qcisgiset --device swp0 --enable --index 1 --initgate 1 --initipv 0
 --gatelistfile sgi.txt

7.9  General networking performance considerations
The following factors should be regarded when configuring the system for high-performance scenarios, such as
RFC2544 benchmarking tests.

• The CONFIG_NR_CPUS kernel option
A value too high can lead to too many allocated resources that in turn can strain the system. Setting this
option to 16 is recommended. This is the maximum number of cores on NXP ARM64 platforms, and the
default value in the Layerscape LDP defconfig.

• The CONFIG_PREEMPT kernel option
The default configuration (PREEMPT=y) is intended for low-latency use cases, with a cost on throughput. If
maximum throughput is required, disabling this config by selecting "No Forced Preemption (Server)" at build is
recommended.

• Impact of IOMMU translations
IOMMU support has a significant impact on networking performance. For benchmarking purposes, it is
recommended to keep IOMMU in passthrough mode. For kernels newer than v4.18, this can be done
through the CONFIG_IOMMU_DEFAULT_PASSTHROUGH=y Kconfig option, which is enabled by default in the
Layerscape LDP defconfig, or by adding the iommu.passthrough=1 bootarg. For older kernels, such as
v4.14, only the bootarg option is available.

• Other CPU-intensive kernel features
Unnecessary CPU-intensive kernel features should be deactivated in order to eliminate their overhead when
networking performance is critical. A few recommended options to be disabled are:
– CONFIG_NETFILER
– CONFIG_CPU_FREQ
– CONFIG_USB_SUPPORT
– CONFIG_MMC
– other peripheral support that is not required

• The root file system size
Background processes consume resources and should be kept to a minimum. A stripped down root file
system will prevent unnecessary processes from starting up. For a fair networking performance comparison of
two kernels, the same processes should be running in the background. These can be investigated with the ps
ax command.

• The default queueing discipline
Starting with Linux kernel versions v5.6 and v5.4.24 stable, changes made to the default pfifo_fast qdisc
impacted the networking subsystem and decreased the performance of some networking scenarios. These
changes were made to prevent out-of-order frames. Changing the default qdisc to fq_codel can overcome
some of the degradation while avoiding out-of-order frames. This can be achieved by enabling the following
kernel configuration options:
– CONFIG_NET_SCH_FQ_CODEL=y
– CONFIG_NET_SCH_DEFAULT=y
– CONFIG_DEFAULT_FQ_CODEL=y
A more aggressive approach for maximizing performance is reverting the offending patch from the kernel
source tree, with the risk of introducing out-of-order frames. The patch in question is 63d5320a0c9b ("Revert
"net: dev: introduce support for sch BYPASS for lockless qdisc"").

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
853 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

For additional architecture-specific performance optimization guidelines, see the following sections:

• DPAA 1.x Section 7.2.2.7
• DPAA2 Section 7.3.2.3.5
• ENETC Section 7.6.2.4

8   Linux user space

8.1  Libraries
This topic explains OpenSSL and Runtime Assembler libraries.

8.1.1  OpenSSL

8.1.1.1  OpenSSL offload

The Secure Socket Layer (SSL) protocol is the most widely deployed application protocol to protect data during
transmission by encrypting the data using commonly used cipher algorithms such as AES, DES and 3DES.
Apart from encryption, it also provides message authentication services using hash/digest algorithms such as
SHA1 and MD5. SSL is widely used in application web servers (HTTP) and other applications such as SMTP
POP3, IMAP, and Proxy servers, where protection of data in transit is essential for data integrity. There are
various versions of SSL protocol such as TLSv1.0, TLSv1.1, TLSv1.2, TLSv1.3, and DTLS (Datagram TLS).
This document describes NXP SSL acceleration solution on i.MX platforms using OpenSSL:

• OpenSSL software architecture
• Building OpenSSL with hardware offload support
• Examples of OpenSSL Offloading

8.1.1.1.1  OpenSSL software architecture

The SSL protocol is implemented as a library in OpenSSL - the most popular library distribution in Linux and
BSD systems. The OpenSSL library has several sub-components such as:

• SSL protocol library
• SSL protocol library Crypto library (Symmetric and Asymmetric cipher support, digest support, etc.)
• Certificate Management

The following figure presents the general interconnect architecture for OpenSSL. Each relevant layer is
represented with a clear separation between Linux User Space and Linux Kernel Space.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
854 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Figure 178.  OpenSSL Software stack architecture

8.1.1.1.2  OpenSSL's ENGINE interface

OpenSSL Crypto library provides Symmetric and Asymmetric (PKI) cipher support that is used in a wide variety
of applications such as OpenSSH, OpenVPN, PGP, IKE, and XML-SEC. The OpenSSL Crypto library provides
software support for:

• Cipher algorithms
• Digest algorithms
• Random number generation
• Public Key Infrastructure

Apart from the software support, the OpenSSL can offload these functions to hardware accelerators through the
ENGINE interface. The ENGINE interface provides callback hooks that integrate hardware accelerators with

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
855 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

the crypto library. The callback hooks provide the glue logic to interface with the hardware accelerators. Generic
offloading of cipher and digests algorithms through Linux kernel is possible with cryptodev engine.

8.1.1.1.3  NXP solution for OpenSSL hardware offloading

The following layers can be observed in NXP's solution for OpenSSL hardware offloading:

• OpenSSL (user space): implements the SSL protocol
• cryptodev-engine (user space): implements the OpenSSL ENGINE interface; talks to cryptodev-linux

(/dev/crypto) through ioctls, offloading cryptographic operations in the kernel
• cryptodev-linux (kernel space): Linux module that translates ioctl requests from cryptodev-engine into

calls to Linux Crypto API
• AF_ALG is a netlink-based in the kernel asynchronous interface that adds an AF_ALG address family

introduced in 2.6.38.
• Linux Crypto API (kernel space): Linux kernel crypto abstraction layer
• CAAM driver (kernel space): Linux device driver for the CAAM crypto engine

The following are offloaded in hardware in current BSP:

• Symmetric Ciphering operations - AES (CBC, ECB), 3DES (CBC, ECB)
• Digest Operations - SHA (1, 256, 384, 512), MD5
• Public Key Operations - RSA Sign (1k, 2k, 4k) / RSA Verify (1k, 2k, 4k)

8.1.1.1.4  Deploying OpenSSL into rootfs

Typically, the imx-image-full includes the OpenSSL and cryptodev modules, but for other Yocto targets, users
need to update the conf file from the build directory. Update conf/local.conf by adding the following line:

CORE_IMAGE_EXTRA_INSTALL+="cryptodev-module openssl-bin"

Restart the build procedure:

bitbake imx-image-full

8.1.1.1.5  Running OpenSSL benchmarking tests with cryptodev engine

Probe the cryptodev-module:

root@imx8qxpmek:~# modprobe cryptodev
[17044.896494] cryptodev: driver 1.10 loaded.
root@imx8qxpmek:~# openssl engine
(devcrypto) /dev/crypto engine
(dynamic) Dynamic engine loading support
root@imx8qxpmek:~#

Note:

Starting from OpenSSL 1.1.1, the cryptodev engine is invoked by OpenSSL by default if the corresponding
module has been inserted in the kernel. Thus to perform only SW benchmark test using OpenSSL, remove the
cryptodev module by running rmmod cryptodev.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
856 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

8.1.1.1.5.1  Running OpenSSL benchmarking tests for symmetric ciphering and digest

In the speed test file, a series of performance tests are made to check the performance of the symmetric and
digest operations. The following is described in the OpenSSL test execution:

root@imx8qxpmek:~# openssl speed -engine devcrypto -multi 8 -elapsed -evp aes-128-cbc
Forked child 1
engine "devcrypto" set.
Forked child 2
engine "devcrypto" set.
...
Got: +F:22:aes-128-cbc:378616.72:1611328.00:5084501.33:13994666.67:10731793.98:16219060.40 from 6
Got: +H:16:64:256:1024:8192:16384 from 7
Got: +F:22:aes-128-cbc:120773.33:9344.00:3088298.67:13588480.00:31642965.33:16471967.79 from 7
OpenSSL 1.1.1b  26 Feb 2019
built on: Thu Nov 14 13:22:07 2019 UTC
options:bn(64,64) rc4(char) des(int) aes(partial) idea(int) blowfish(ptr)
compiler: aarch64-poky-linux-gcc  --sysroot=recipe-sysroot -O2 -pipe -g -feliminate-unused-debug-
types -fmacro-prefix-map=
-fdebug-prefix-map= -fdebug-prefix-map=  -fdebug-prefix-map= -DOPENSSL_USE_NODELETE -DOPENSSL_PIC -
DOPENSSL_CPUID_OBJ -DOPENSSL_BN_ASM_MONT
-DSHA1_ASM -DSHA256_ASM -DSHA512_ASM -DKECCAK1600_ASM -DVPAES_ASM -DECP_NISTZ256_ASM -DPOLY1305_ASM
-DNDEBUG
evp               2242.05k     9681.05k    35017.46k   106866.86k   127787.74k   130077.23k
root@imx8qxpmek:~#

Additional ciphers that could be benchmarked: aes-192-cbc, aes-256-cbc, aes-128-ecb, aes-192-ecb, 
aes-256-ecb, aes-128-ctr, aes-192-ctr, aes-256-ctr, des-cbc, des-cbc, des-ede3-cbc.

Additional digests that could be benchmarked: sha1, sha224, sha256, sha384, sha512, md5.

8.1.2  Runtime Assembler Library Reference

Use the Runtime Assembler Library to write SEC descriptors.

8.1.2.1  Runtime Assembler Library Reference

Use the Runtime Assembler Library to write SEC descriptors. This reference describes the structure, concept, 
functionality, and high-level API.

Click here to access the Writing descriptors for NXP CAAM using RTA library PDF.

8.2  Data Plane Development Kit (DPDK)

8.2.1  Introduction

DPDK is a user space packet processing framework.
This guide contains instructions for installing and configuring the user space Data Plane Development Kit
(DPDK) v21.11 software. Besides highlighting the applicable platforms, this guide describes steps for compiling 
and executing sample DPDK applications in a Linux application (linuxapp) environment over Layerscape 
boards.

OVS-DPDK is a software switching package which uses DPDK as the underlying platform. The guide also 
details methods to execute ovs-dpdk with DPDK over Layerscape boards.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
857 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

8.2.1.1  Supported platforms and platform-specific details

DPDK supports LS1012A, LS1028A, LS1043A, LS1046A, LS1088A, LS2088A, and LX2160 family of SoCs.
This section details the architectural and port layout of their Reference Design Boards. Port layout information is
especially relevant while executing DPDK applications - to map DPDK port number to physical ports.

Refer to the following for board-specific information:

8.2.1.1.1  LS1012A Reference Design Board (RDB)

LS1012A is a PPFE-based platform.

For more information on LS1012ARDB, see www.nxp.com/LS1012ARDB.

8.2.1.1.1.1  Hardware specification of LS1012ARDB

Figure 179 shows LS1012A hardware design.

Figure 179. LS1012A reference design

8.2.1.1.1.2  LS1012ARDB port layout

The port layout of LS1012ARDB is given below:

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
858 / 1061

http://www.nxp.com/LS1012ARDB


NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Figure 180. LS1012ARDB port layout

8.2.1.1.1.3  Ethernet ports

Table 164 lists the Ethernet ports and their corresponding DPDK port names.

Label on Case DPDK vdev port names

ETH1 eth_pfe0

ETH2 eth_pfe1

Table 164. Ethernet ports

8.2.1.1.2  LS1028A Reference Design Board (RDB)

The LS1028A industrial applications processor includes a TSN-enabled Ethernet switch and Ethernet
controllers to support converged IT and OT networks. For more information on LS1028ARDB, http://
www.nxp.com/LS1028ARDB.

Hardware specification

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
859 / 1061

http://www.nxp.com/LS1028ARDB
http://www.nxp.com/LS1028ARDB


NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Figure 181. LS1028A architecture

Figure 182. LS1028ARDB port layout

Label on Case PCI address of interface

1G MAC0 0000:00:00.0

1G SWP0 NA

1G SWP1 NA

1G SWP2 NA

1G SWP3 NA

8.2.1.1.3  LS1043A Reference Design Board (RDB)

LS1043A is a DPAA-based platform. For more information on LS1043ARDB, see www.nxp.com/LS1043ARDB

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
860 / 1061

http://www.nxp.com/LS1043ARDB


NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

8.2.1.1.3.1  Hardware Specification of LS1043ARDB

Figure 183. LS1043A Reference Design

8.2.1.1.3.2  LS1043ARDB Port Layout

Figure 184. LS1043A Port Layout

Label on Case FMan Port Names User space Ports Comment

QSGMII.P0 FM0-MAC1 0 1G Port

QSGMII.P1 FM0-MAC2 1 1G Port

RGMII1 FM0-MAC3 2 1G Port

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
861 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

RGMII2 FM0-MAC4 3 1G Port

QSGMII.P2 FM0-MAC5 4 1G Port

QSGMII.P3 FM0-MAC6 5 1G Port

10G FM0-MAC9 6 10G - Copper Port

Note:  Information provided in the "User space Ports" column above is conditional to default Device tree (DTB)
provided as part of Board Support Package. The ordering can change for a custom DTB.

8.2.1.1.4  LS1046A Reference Design Board (RDB) / LS1046A Freeway Board (FRWY)

LS1046A is a DPAA-based platform. For more information on LS1046ARDB, see www.nxp.com/LS1046ARDB
and for LS1046A Freeway, see www.nxp.com/FRWY-LS1046A.

8.2.1.1.4.1  Hardware specification of LS1046ARDB

Figure 185. LS1046A reference design

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
862 / 1061

http://www.nxp.com/LS1046ARDB
https://www.nxp.com/FRWY-LS1046A


NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

8.2.1.1.4.2  LS1046ARDB port layout

Figure 186. LS1046ARDB port layout

Label on case FMan port names User space ports Comment

RGMII1 FM0-MAC3 0 1G Port

RGMII2 FM0-MAC4 1 1G Port

SGMII1 FM0-MAC5 2 1G Port

SGMII2 FM0-MAC6 3 1G Port

10G-Copper FM0-MAC9 4 10G – Copper Port

10G-SFP+ FM0-MAC10 5 10G – SFP+ Optical Port

Note:  Information provided in the "User space Ports" column above is conditional to default Device tree (DTB)
provided as part of Layerscape LDP. The ordering can change for a custom DTB.

8.2.1.1.4.3  FRWY-LS1046A port layout

Figure 187. FRWY-LS1046A port layout

Label on case FMan port names User space ports Comment

1G PORT1 FM0-MAC1 0 1G Port

1G PORT2 FM0-MAC5 1 1G Port

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
863 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Label on case FMan port names User space ports Comment

1G PORT3 FM0-MAC6 2 1G Port

1G PORT4 FM0-MAC10 3 1G Port

8.2.1.1.5  LS1088A Reference Design Board (RDB)

LS1088A is a DPAA2 based platform. For more information on LS1088A, see www.nxp.com/LS1088ARDB.

8.2.1.1.5.1  Hardware Specifications of LS1088ARDB

Figure 188. LS1088A Architecture

8.2.1.1.5.2  LS1088ARDB Port Layout

Figure 189. LS1088ARDB Port Layout

Label on Case Physical Ports Comment

ETH0 DPMAC.1 10G - Copper port

ETH1 DPMAC.2 10G – SFP+ (Optical port)

ETH2 DPMAC.7 QSGMII port (1G)

ETH3 DPMAC.8 QSGMII port (1G)

ETH4 DPMAC.9 QSGMII port (1G)

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
864 / 1061

http://www.nxp.com/LS1088ARDB


NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

ETH5 DPMAC.10 QSGMII port (1G)

ETH6 DPMAC.3 QSGMII port (1G)

ETH7 DPMAC.4 QSGMII port (1G)

ETH8 DPMAC.5 QSGMII port (1G)

ETH9 DPMAC.6 QSGMII port (1G)

8.2.1.1.6  LS2088A Reference Design Board (RDB)

LS2088A is a DPAA2 based platform. For more information on LS2088A, see www.nxp.com/LS2088ARDB.

8.2.1.1.6.1  Hardware specifications

LS2088A Reference Design Board

48 KB
I-Cache

32 KB 
D-Cache

48 KB 
I-Cache

512 KB Coherent L2 Cache

ARM® A57 Core

64-bit DDR4

Cache Coherent Interconnect 

SA
TA

 3
.0

System Control

Internal BootROM

Security Fuses

Security Monitor

Power Management

Core Complex

Basic Peripherals and Interconnect

Accelerators and Memory Control

Networking Elements

SA
TA

 3
.0

8-lane 10 GHz SerDes 8-lane 10 GHz SerDes

48 KB
I-Cache

32 KB 
D-Cache

48 KB 
I-Cache

512 KB Coherent L2 Cache

ARM® A57 Core

512 KB Coherent L2 Cache

32 KB
D-Cache

48 KB
I-Cache

32 KB 
D-Cache

48 KB 
I-Cache

1 MB Coherent L2 Cache

ARM® A72 Core ARM® A72 Core

1 MB 
Platform
Cache

32-bit DDR4
Memory

Controller

Memory
Controller

64-bit DDR4
Memory

Controller

P
C

Ie

P
C

Ie

PC
Ie

 (
SR

-IO
V)

P
C

Ie

SMMU SMMU SMMU

System Interfaces
IFC Flash

QuadSPI Flash

1x SDXC / eMMC

2x DUART

4x I2C 

4x FlexTimer

2x USB 3.0 + PHY

 SPI 

Service Processor

DCE Security
Engine

4 MB PEB 
memory

WRIOP

Queue /
Buffer

Manager

PME

Advanced
IO

Processor
(AIOP)

Management

Complex

DPAA2 Hardware

Layer 2
Switch Assist

8x 1/10G + 8x 1G

9x WDOG

4x GPIO 

QDMA

Figure 190. LS2088A Architecture

8.2.1.1.6.2  LS2088ARDB Port Layout

Figure 191. LS2088ARDB Port Layout

Label on Case Physical Ports Comment

ETH0 DPMAC.5 10G - Copper port

ETH1 DPMAC.6 10G - Copper port

ETH2 DPMAC.7 10G - Copper port

ETH3 DPMAC.8 10G - Copper port

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
865 / 1061

http://www.nxp.com/LS2088ARDB


NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

ETH4 DPMAC.1 10G – SFP+ (Optical port)

ETH5 DPMAC.2 10G – SFP+ (Optical port)

ETH6 DPMAC.3 10G – SFP+ (Optical port)

ETH7 DPMAC.4 10G – SFP+ (Optical port)

8.2.1.1.7  LX2160A Reference Design Board (RDB)

LX2160A is a DPAA2 based platform. For more information on LX2160, see www.nxp.com/LX2160A.

8.2.1.1.7.1  Hardware specifications

LX2160A Reference Design Board

Figure 192. LX2160A Architecture

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
866 / 1061

http://www.nxp.com/LX2160A


NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

8.2.1.1.7.2  LX2160ARDB Port Layout

Ethernet ports

Figure 193. LX2160ARDB Port Layout

Label on Case Physical Ports Comment

40G MAC2 (*) dpmac.2 40G - Fiber port

10G MAC3 dpmac.3 10G - Copper port

10G MAC4 dpmac.4 10G - Copper port

25G MAC5 dpmac.5 25G - Fiber port

25G MAC6 dpmac.6 25G - Fiber port

10G MAC7 (*) dpmac.7 10G - Fiber port

10G MAC8 (*) dpmac.8 10G - Fiber port

10G MAC9 (*) dpmac.9 10G - Fiber port

10G MAC10 (*) dpmac.10 10G - Fiber port

1G MAC17 dpmac.17 1G - Copper port

1G MAC18 dpmac.18 1G - Copper port

Table 165. Port Layout

Note:  (*) Only one configuration between 40G or 4x10G would be available - thus depending on SerDes
configuration, only one of {dpmac.2} port or {dpmac.7, dpmac.8, dpmac.9, dpmac.10} would be available.
4x10G is available by using port-splitter on the 40G port (dpmac.2). For 4x10G configuration, use SerDes
protocol 18.

8.2.1.1.7.3  SerDes Configuration

Following table shows the SerDes protocol configuration application for LX2160A boards. Based on the
configuration of the protocol, either 4x10G ports, or 1x40G port is configured/visible. Detailed configurations and
protocol information is available in Quick start guide.

 

 

8.2.1.2  References

Sample Applications DPDK Web Manual Link Description
Table 166. DPDK Application References

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
867 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Layer-2 Forwarding (l2fwd) l2fwd usage Layer 2 Forwarding sample application
setup and usage guide.

Layer-2 Forwarding with Crypto
(l2fwd-crypto)

l2fwd-crypto Layer 2 Forwarding with Crypto sample
application setup and usage guide.

Layer-3 Forwarding (l3fwd) l3fwd usage Layer 3 Forwarding sample application
setup and usage guide.

IPSec Gateway (ipsec-secgw) ipsec-secgw usage IPSec Security Gateway sample
application setup and usage guide.

PMD Test Application (testpmd) testpmd usage Guide for test application which can be
used to test all PMD supported features.

DPDK Web Guide DPDK Documentation Link to DPDK Web Manual containing
information about all supported PMD and
Applications.

Table 166. DPDK Application References...continued

Component Base Upstream Release Versions

DPDK 2.11

OVS 2.16.90

PKTGEN 21.11.0

Table 167. Release References

8.2.2  DPDK overview

Key goal of the DPDK is to provide a simple, complete framework for fast packet processing in data plane
applications. Using the APIs provided as part of the framework, applications can leverage the capabilities of
underlying network infrastructure.

The framework creates a set of libraries for target environments, layered through an Environment Abstraction
Layer (EAL) which hides all the device glue logic beneath a set of consistent APIs. These environments are
created through the use of configuration files. Once the EAL library is created, the user may link with the library
to create their own applications. Various other libraries, outside EAL, including the Hash, Longest Prefix Match
(LPM) and rings libraries are also available for performing specific operations. Sample applications are also
provided to help understand various features and uses of DPDK framework.

DPDK implements a run-to-completion model for packet processing where all resources must be allocated
prior to calling data plane applications, running as execution units on logical processing cores. In addition, a
pipeline model may also be used by passing packets or messages between cores via rings. This allows work to
be performed in stages, resulting in more efficient use of code on cores.

More information on general working of DPDK can be found through DPDK website.

8.2.2.1  DPDK platform support

This section describes the NXP Data Path Acceleration Architecture, see the diagram below:

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
868 / 1061

https://doc.dpdk.org/guides-21.11/sample_app_ug/l2_forward_real_virtual.html
https://doc.dpdk.org/guides-21.11/sample_app_ug/l2_forward_crypto.html
https://doc.dpdk.org/guides-21.11/sample_app_ug/l3_forward.html
https://doc.dpdk.org/guides-21.11/sample_app_ug/ipsec_secgw.html
https://doc.dpdk.org/guides-21.11/testpmd_app_ug/index.html
https://doc.dpdk.org/guides-21.11/index.html
http://dpdk.org/doc


NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

ETHERNET
PMD

NICs

DPAA2

DPAA1

ENETC

PPFE

CRYPTO
DRIVERS

EVENT
PMD

Pl
at

fo
rm

 s
pe

ci
fic

Fr
am

ew
or

k
AP

I l
ay

er
Ap

pl
ic

at
io

ns

RAW DEV
PMD

RESOURCE
MGMT

DPDK APPLICATIONS

DPDK API

IO AND ACCELERATION RUN-TIME SERVICES

DPAA VFIO

PE
X

DPDK. ORG

NXP SUPPORT

CUSTOMER

FS
L-

M
C

 B
U

S

D
PA

A 
BU

S

EAL

NETWORK SERVICES

KERNAL NW
INTERFACE

TIMERS

BUFFERS

MEMORY

SYNC

DPAA2

DPAA2INTEL QAT

AESNI

ARMCE

DPAA-SEC

DPAA2-SEC

ARCH/x86

ARCH/POWER8

ARCH/ARMv8

QDMA

DPAA1
QDMA

Figure 194. DPDK Architecture with NXP Components

The NXP Data Path Acceleration Architecture comprises of a set of hardware components, which are integrated
via a hardware queue manager and use a common hardware buffer manager. Software accesses the DPAA via
hardware components called "Software Portals". These directly provide queue and buffer manager operations,
such as enqueues, dequeues, buffer allocations, and buffer releases and indirectly provide access to all of the
other DPAA hardware components via the queue manager.

NXP DPAA architecture-based PMD (Poll Mode Drivers) has been added to DPDK infrastructure to support
seamless working on NXP platform. With the addition of these drivers, DPDK framework on NXP platforms
permits Linux user space applications to be build using standard DPDK APIs in a portable fashion. The drivers
directly access the DPAA queue and buffer manager software portals in a high performance manner and the
internal details remains hidden from higher-level DPDK framework. Besides drivers for network interfaces,
drivers (PMDs) for interfacing with Crypto (CAAM) block have also been included in the DPDK source code.

Note:

Since this guide contains support for PPFE, DPAA2, ENETC, and DPAA platforms, the following markers are
used throughout the guide:

• DPAA2 – This marker marks the steps/text applicable only for DPAA2 platforms, for example, LS2088
• DPAA – This marker marks the steps/text applicable only for DPAA platforms, for example, LS1043
• PPFE - This marker marks the steps/text applicable only for PPFE platforms, for example, LS1012
• ENETC - This marker marks the steps/text applicable only for ENETC platforms, for example, LS1028

All other steps which don’t have any marker are applicable for both the platforms.

Note:

See Section 8.2.13 to tune the system for best DPDK performance on NXP platforms.

Note:

Multi-thread environment

DPDK was originally designed for Intel architectures, however efforts are underway to make it multiple
architecture friendly. There are still some restrictions which should be taken care when used on NXP platforms.

1. Multiple pthreads
DPDK usually pins one pthread per core to avoid the overhead of task switching. This allows for significant
performance gains, but lacks flexibility and is not always efficient. DPDK is composed of several libraries
- some of the functions in these libraries can be safely called from multiple threads simultaneously, while
others cannot.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
869 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

The runtime environment of the DPDK is typically a single thread per logical core. It is best to avoid sharing
data structures between threads and/or processes where possible. Where this is not possible, the execution
blocks must access the data in a thread-safe manner. Mechanisms such as atomic variables or locking
can be used to allow execution blocks to operate serially. However, this can affect the performance of the
application.

2. Fast-path APIs
Applications operating in the data plane are performance sensitive but certain functions within those
libraries may not be safe to call from multiple threads simultaneously.
The Hash, LPM, Mempool libraries, and RX/TX in the PMD are examples of such multi-thread
unsafe functions. The RX/TX of the PMD are the most critical aspects of a DPDK application and it is
recommended that no locking be used with these paths as it will impact performance. However, these
functions can be safely used from multiple threads when each thread is performing I/O on a different NIC
queue. If multiple threads are to use the same hardware queue on the same NIC port, then locking or some
other form of mutual exclusion is necessary. In the NXP implementation, each thread has to use a software
portal (DPIO) instance to access the underlying DPAA hardware. Thus, it is recommended that only one
thread per logical core should be created for RX/TX and other I/O access to DPAA hardware.

8.2.2.2  DPAA supported DPDK features

Following is the list of DPDK NIC features which DPAA driver supports:

• Allmulticast mode
• Basic and Extended stats
• Flow control
• Firmware Version information
• Jumbo frame
• L3 and L4 checksum offload
• Link status and update
• MTU update
• Promiscuous mode
• Queue start/stop
• Speed Capabilities
• Scattered RX and TX
• Unicast MAC filter
• RSS Hash
• Packet type parsing
• Interrupt mode
• Traffic splitting (VSP)
• Indirect and External buffers
• ARMv8

Following is the list of DPDK Crypto Device features which DPAA driver supports:

• Encryption/Descryption and Authentication
• Lookaside protocol offload support
• Multiple Algorithms as mentioned in <dpdk>/doc/guides/cryptodevs/features/dpaa_sec.ini
• PDCP protocol support
• IPSec RAW buffer support
• IPSec event mode support
• Scattered RX and TX

Other DPDK features supported on DPAA

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
870 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

• Event device support
• QDMA support
• IEEE1588 support

Applications validated on DPAA1

• dpdk-l2fwd
• dpdk-l3fwd
• dpdk-ipsec-secgw
• dpdk-testpmd

– RX only, TX only, fwd modes
– Jumbo Frame support
– Scatter Gather support
– Virtio net interfaces
– Link bonding
– RSS distributions
– External buffer support

• dpdk-l2fwd-event
• dpdk-ethtool
• dpdk-ip_fragmentation
• dpdk-ip_reassembly
• dpdk-kni
• dpdk-l2fwd-qdma
• dpdk-l3fwd-power
• dpdk-link_status_interrupt
• dpdk-pdump
• dpdk-proc-info
• dpdk-test-crypto-perf
• dpdk-test

8.2.2.3  DPAA2 supported DPDK features

The DPAA2 driver supports the following list of DPDK NIC features:

• Allmulticast mode
• Basic stats
• Firmware Version information
• Flow control
• Jumbo frame
• L3 checksum offload
• L4 checksum offload
• Link Status
• Link Status Events
• MTU update
• Packet type parsing
• Promiscuous mode
• Queue start/stop
• RSS hash
• Unicast MAC filter
• VLAN filter and offload

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
871 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

• Speed capabilities
• Timesync
• Timestamp offload
• ARMv8
• Linux VFIO
• Extended stats

The DPAA2 driver supports the following list of DPDK Crypto Device features:

• Encryption/Decryption and Authentication
• Lookaside protocol offload support
• Multiple Algorithms as mentioned in <dpdk>/doc/guides/cryptodevs/features/dpaa2_sec.ini
• PDCP protocol support
• IPSec RAW buffer support
• IPSec event mode support
• Scattered RX and TX

Other DPDK features supported on DPAA2 are:

• Event device support
• QDMA support
• Non-root user support
• Traffic Manager support

Applications validated on DPAA2 are:

• dpdk-l2fwd
• dpdk-l3fwd
• dpdk-ipsec-secgw
• dpdk-testpmd

– Rx only, TX only, fwd modes
– Jumbo Frame support
– Scatter Gather support
– Flow Classification
– Traffic Management
– Virtio net interfaces
– Link bonding
– RSS distributions
– External buffer support

• dpdk-l2fwd-event
• dpdk-ethtool
• dpdk-ip_fragmentation
• dpdk-ip_reassembly
• dpdk-kni
• dpdk-l2fwd-qdma
• dpdk-l3fwd-power
• dpdk-link_status_interrupt
• dpdk-mp_client
• dpdk-mp_server
• dpdk-ptpclient
• dpdk-qdma_demo

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
872 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

• dpdk-simple_mp
• dpdk-symmetric_mp
• dpdk-symmetric_mp_qdma
• dpdk-pdump
• dpdk-proc-info
• dpdk-test-crypto-perf
• dpdk-test

8.2.2.4  PPFE supported DPDK features

The PPFE driver supports the following list of DPDK NIC features:

• ALLmulticast mode
• Basic Stats
• MTU update
• Promiscuous mode
• Packet type parsing
• ARMv8

8.2.2.5  ENETC supported DPDK features

The ENETC driver supports the following list of DPDK NIC features:

• Packet type information
• Basic stats
• Promiscuous
• Multicast
• Jumbo packets
• Queue Start/Stop
• Deferred Queue Start
• CRC offload

ENETC-based DPDK features are not supported with Kernel 4.14.

8.2.3  Build DPDK

This section includes three subsections, which detail:

1. Building DPDK binaries (libraries and sample applications) with Yocto bitbake.
2. Building DPDK binaries as standalone package, through DPDK's own build system.
3. Building Pktgen application which can be used as a software packet generator using DPDK as underlying

layer.
4. Building OVS-DPDK - an Open Virtual Switch based over DPDK
5. Compilation of images required for Virtual Machines

8.2.3.1  Build DPDK using Yocto bitbake

This section details method to build DPDK as a standalone package within the Yocto environment. It is assumed
that the Yocto environment has already been configured before executing the commands below.

See Section 3 for complete details of using the Yocto build system.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
873 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Once the environment has been set up, following commands can be used to build DPDK and libraries:

bitbake dpdk
bitbake pktgen_dpdk
bitbake ovs_dpdk

Note:  DPDK is dependent on OpenSSL package for software crypto and OpenSSL PMD. It is necessary to
build OpenSSL before DPDK in bitbake environment to suffice this dependency. If building DPDK on target
platform, it is possible that OpenSSL libraries are already available in library path. In this case, building
OpenSSL library would not be required.

See Section 3.5 for packing these binaries into the target rootfs using the Yocto build system.

8.2.3.1.1  Layout of DPDK binaries

Single image of DPDK binary supports DPAA1, DPAA2, ENETC, and PPFE platforms. Once the DPDK package
has been installed, binaries would be available /usr/share/dpdk/examples/ folder in the rootfs. bitbake
system generates a single rootfs for all NXP platforms it supports.

/usr/share/dpdk/examples/            # Contains the sample applications listed
 in Table 166

DPDK binaries have been placed in the /usr/share/dpdk/examples/ folder to take advantage of the
binary search path set in the PATH variable. In case the PATH variable doesn't contain the /usr/share/dpdk/
examples/ by default, it can be added to it to enable BASH command completion.

At various places in this document, above binaries would be referred for representing execution as well as other
information. It is assumed that execution is being done either using the PATH variable set, as explained above,
or with absolute path to the binaries.

Besides the above folders, another set of files is also available in rootfs to support DPDK application execution.
These files are available in the /usr/bin folder in the rootfs.

The table below depicts various DPDK artifacts that are available in the Yocto-generated rootfs:

File/Image name related to /usr/share Description

./dpdk/examples/dpdk-l2fwd

./dpdk/examples/dpdk-l3fwd

./dpdk/examples/dpdk-l2fwd-crypto

./dpdk/examples/dpdk-ipsec-secgw

DPAA1, DPAA2, ENETC, and PPFE
DPDK Example applications and PMD test
application.

./dpdk/dpaa/usdpaa_config_ls<PLAT>.xml

./dpdk/dpaa/usdpaa_policy_hash_ipv4_1queue.xml

./dpdk/dpaa/usdpaa_policy_hash_ipv4_2queue.xml

./dpdk/dpaa/usdpaa_policy_hash_ipv4_4queue.xml

./dpdk/dpaa/usdpaa_policy_24g_classif_udp_ipsec_1queue.
xml
./dpdk/dpaa/usdpaa_policy_24g_classif_frag_gtp_1queue.
xml

DPAA Only.
FMC Configurations and Policy files.
<PLAT> is platform name for DPAA
platform, for example ls1043 or ls1046.
Each Policy file for defining the number of
queues per port as mentioned in its name.

./dpdk/dpaa2/dynamic_dpl.sh

./dpdk/dpaa2/destroy_dynamic_dpl.sh
DPAA2 Only.
Dynamic DPL container creation and
teardown script.

Table 168. DPDK artifacts available in Yocto-generated rootfs

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
874 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

./enable_performance_mode.sh

./disable_performance_mode.sh
When executing an Ubuntu OS over
Layerscape board, performance on core 0
can become non-deterministic because of
OS services and threads.
These scripts allow a special setting wherein
the DPDK application, which would run after
running the enable script, would get real-
time priorities.
Note:  These scripts should not be used
in general cases. For detailed use case,
refer to Performance Reproducibility Guide
section.

./examples/ipsec_secgw/ep0.cfg

./examples/ipsec_secgw/ep1.cfg

./ipsec/ep0_64X64.cfg

./ipsec/ep1_64X64.cfg

./ipsec/ep0_64X64_proto.cfg

./ipsec/ep0_64X64_sha256.cfg

./ipsec/ep1_64X64_proto.cfg

./ipsec/ep1_64X64_sha256.cfg

Configuration files for ipsec-gw example
application.
The ep0 and ep1 files are standard
configurations for 2 tunnels for encryption
and decryption, each. The ep0_64X64
and ep1_64X64 are for 64 tunnels for
encryption and decryption, each.

/usr/bin/pktgen Packet generation application

./debug_dump.sh Dumping the debug data for further analysis.

Table 168. DPDK artifacts available in Yocto-generated rootfs...continued

8.2.3.2  Build DPDK on host (Native)

This section lists the steps required to build DPDK binaries (libraries and example applications) on the host
environment. This environment is host enabled for building directly on the Layerscape target board.

Note:  This section focuses on building of DPDK on a host machine for Layerscape boards as target. Notes are
added to enable the compilation of DPDK applications directly on a host machine.

8.2.3.2.1  Set up proxies

Depending on the environment you are working in, proxies setting might be required to have Internet
connectivity. Use the following proxy commands:

$ export http_proxy=http://<proxy-server-name>.com:<port-number>
$ export https_proxy=https://<proxy-server-name>.com:<port-number>

8.2.3.2.2  Obtain the DPDK source code

The DPDK source code contains all the libraries for building example applications as well as test applications.
The source code includes configurations and scripts for supporting build and execution. Obtain the DPDK
source code using the link below:

git clone https://github.com/nxp-qoriq/dpdk.git
cd dpdk
git checkout remotes/origin/21.11-qoriq -b 21.11-qoriq

Once the above repository is cloned, DPDK source code will be available for compilation. This source is
common for DPAA1, DPAA2, ENETC, and PPFE platforms.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
875 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

8.2.3.2.3  Compiling DPDK using meson

Follow these steps to compile DPDK. In case of direct compilation on the target boards, it is assumed that
prerequisites are met using the root filesystem. Execute the following command:

meson arm64-build -Dexamples= <list of example applications to be compiled
 separated by commas>
ninja -C arm64-build install

Once the example application are compiled, the binaries are available in the following folder in the dpdk/
arm64-build/examples/ directory with prefix “dpdk-“.

DPDK compiled libraries are also available in the dpdk/arm64-build/lib/ directory.

Some applications, such as testpmd are generated as a part of the default build. These are available in the
dpdk/arm64-build/app/ directory.

8.2.3.3  Standalone build of DPDK libraries and applications

This section details steps required to build DPDK binaries (libraries and example applications) in a standalone
environment. This environment can either be on a host enabled for cross building for Layerscape boards or
directly on the Layerscape target board.

Note:  This section primarily focuses on standalone building of DPDK on a host machine using cross
compilation for Layerscape boards as target. Though, necessary notes have been added to enable compilation
directly on target boards. See Section 3.5 for creating an environment suitable for building DPDK on
Layerscape boards.

For steps detailing building DPDK using Yocto system, see Section 3.5 and Section 8.2.3.1.

8.2.3.3.1  Obtain the DPDK source code

The DPDK source code contains all the necessary libraries for build example applications as well as test
applications. The source code also includes various configuration and scripts for supporting build and execution.
Obtain the DPDK source code using the link below:

git clone https://github.com/nxp-qoriq/dpdk.git
cd dpdk
git checkout remotes/origin/21.11-qoriq -b 21.11-qoriq

Once the above repository has been cloned, DPDK source code is available for compilation. This source is
common for both, DPAA1, DPAA2, ENETC, and PPFE platforms.

8.2.3.3.2  Prerequisites of Compiling DPDK

Before compiling DPDK as a standalone build, the following dependencies need to be resolved independently:

• Platform compliant and compiled Linux Kernel source code so that KNI modules can be built.
– This is optional and if KNI module support is not required, this can be ignored.
– For details of compiling platform compliant Linux Kernel, see Section 3.5.
– For disabling KNI module, see notes below.

• OpenSSL libraries required for building software crypto driver (OpenSSL PMD).
– OpenSSL package needs to be separately compiled and libraries installed at a known path before DPDK

build can be done.
– This is optional and if software crypto driver support is not required, this dependency can be ignored.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
876 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Note:  See Section 3.5 for more information on how to build OpenSSL as part of Yocto system. If using
Yocto and referring to this link for building OpenSSL package, commands specified below can be skipped.
Following steps are for building OpenSSL as a standalone package, outside the Yocto system. This is not
a preferred way and should be used only if Yocto system is not available. Follow the steps given below to
build OpenSSL package.

git clone git://git.openssl.org/openssl.git
cd openssl
git checkout OpenSSL_1_1_0g

Export the Cross Compilation tool chain for building OpenSSL for target. The following step for exporting
cross compilation toolchain is required only when compiling on Host. On a target board, it is assumed
default build toolchain would be used.

export CROSS_COMPILE=<path to uncompressed toolchain archive>/bin/aarch64-
linux-gnu-

Configure the OpenSSL build system with following command. The --prefix argument specifies a path
where OpenSSL libraries would be deployed after build completes. This is also a path which would be
provided to DPDK build system for accessing the compiled OpenSSL libraries.

./Configure linux-aarch64  --prefix=<OpenSSL library path> shared

make depend
make
make install
export PKG_CONFIG_PATH=<OpenSSL lib path>/lib/pkgconfig:$PKG_CONFIG_PATH  

Note:  When building DPDK on target board, it is possible that OpenSSL libraries required by DPDK are
already available as part of the rootfs, in which case external compilation of OpenSSL package would not
be required.

– For disabling OpenSSL PMD support, see notes below.

8.2.3.3.3  Compiling DPDK using meson

Follow these steps to compile DPDK once the above prerequisites are met. These steps are common for all
platforms and are needed only when cross compiling on a host for Layerscape boards as target. In case of
direct compilation on target boards, it is assumed that prerequisites are met using the root filesystem.

1. Setup the environment for compilation
a. Setup cross compilation toolchain.

This step is required only in the host environment where default toolchain is not for target boards. When
compiling on a target board, this step can be skipped.

export CROSS_PATH=<path to cross-compile toolchain>
export PATH=$PATH:$CROSS_PATH

b. Setup OpenSSL path for software crypto drivers (OpenSSL PMD). This is optional and can be skipped
in case software crypto driver (OpenSSL PMD) support is not required. These external variables can
also be used to pass other required libraries for example libpcap

export PKG_CONFIG_LIBDIR="<path to installed OpenSSL>/lib/"
    export PKG_CONFIG_PATH=$PKG_CONFIG_LIBDIR/pkgconfig

2. Use DPDK build system for compiling DPDK.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
877 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Note:  DPDK binaries generated using these steps are compatible for DPAA1, DPAA2, ENETC, and PPFE
platforms. This is also valid when DPDK is built using Yocto build system. See Section 3.5 for steps to build
DPDK using Yocto build system.
a. Execute the following commands:

meson arm64-build --cross-file config/arm/arm64_dpaa_linux_gcc -Dexamples=
 <list of example applications to be compiled separated by commas> -
Dprefix=<location to install DPDK>
ninja -C arm64-build

Here, -Dprefix and -Dexamples are optional parameters. Dprefix parameter is used to deploy
all the DPDK binaries (libraries and example applications) to a standard Linux package-specific layout
within a directory represented by this parameter. Alternatively, a directory dpdk/arm64-build/ is also
created and binaries and libraries are also available in it. install parameter is also not required in the
ninja command, if installation is not required. Dexamples is used to compile required examples. In
case you need to compile only drivers, this parameter is not needed.
Note:  For PPFE (LS1012 platform), when using Crypto drivers,
CONFIG_RTE_LIBRTE_PMD_CAAM_JR_BE flag should be enabled while compiling DPDK.

b. Once the example applications are compiled, the binaries are available in the DPDK build directory with
prefix “dpdk-“:

dpdk/arm64-build/examples/*

Besides the above example application, DPDK also provides a testpmd binary which can be used for
comprehensive verification of the DPDK driver (PMD) features for available and compatible devices.
This binary is compiled by default during the DPDK source compilation. It is available in the dpdk/
arm64-build/examples/ directory.

Note:  For LS1028 platform, when using Crypto drivers, CAAM_JR_UIO flag should be enabled while
compiling DPDK.
Note:  For PPFE (LS1012 platform), when using Crypto drivers,
CONFIG_RTE_LIBRTE_PMD_CAAM_JR_BE flag should be enabled while compiling DPDK.

8.2.3.4  Build DPDK-based Packet Generator (pktgen) using Yocto

Pktgen is a packet generator powered by DPDK. It requires DPDK environment for compilation and DPDK-
compliant infrastructure for execution. DPAA1 and DPAA2 DPDK PMD (Poll Mode Drivers) can be used by
Pktgen for building a packet generator using the DPAA infrastructure.

Refer to Section 3 user guide for complete details of using the Yocto build system.

After the Yocto environment has been set up, following commands can be used to build pktgen package.

$ bitbake pktgen_dpdk

8.2.3.5  Build OVS-DPDK using Yocto

OVS is a multilayer virtual switch for enabling massive network automation through programmatic extensions.

OVS-DPDK is one of the application packages of the Yocto system which used DPDK as underlying framework.
This section details method to build OVS-DPDK as a standalone package within the Yocto environment. It is
assumed that the Yocto environment has already been configured before executing the commands below.

Refer to Section 3 for complete details of using the Yocto build system.

Once the Yocto environment has been set up, following commands can be used to build OVS-DPDK package.

$ bitbake ovs_dpdk

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
878 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

8.2.3.5.1  Layout of OVS-DPDK binaries

An OVS-DPDK binary image supports both the DPAA1 and DPAA2 platforms. Once the OVS-DPDK package
has been installed, binaries would be available in /usr/bin/ovs-dpdk/ folder in the rootfs. Yocto system
generates a single rootfs for all NXP platforms it supports.

Note:  OVS-DPDK binaries are deployed into the root filesystem as per the default layout of installation target
for OVS-DPDK build system.

Table below depicts various OVS-DPDK artifacts which are available in the Yocto generated rootfs:

S/No File/Image name related to /usr/bin/ovs-dpdk/ Description

1
./ovs-ofctl
./ovs-vsctl
./ovsdb-client
./ovsdb-server
./ovs-vswitchd

For both, DPAA1 and DPAA2, platforms.
Various OVS binaries.

8.2.3.6  Virtual machine (VM or guest) images

This section describes steps for deploying a Virtual Machine and executing DPDK applications in it. Additionally,
OVS-DPDK package is used for deploying a software switch on the host machine through which virtual
machines communicate with other virtual machine or external network.

Note:

For obtaining necessary artifacts (kernel image, rootfs) for booting up a virtual machine on Layerscape board,
refer Section 9.1.2 KVM/QEMU.

8.2.4  Executing DPDK applications on host

This section describes how to execute DPDK and related applications in both Host and VM environments.

Note:  IP_ADDR_BRD, IP_ADDR_IMAGE_SERVER, and TFTP_BASE_DIR are not U-Boot or Linux environment
variables. They are used in this document to represent:

1. IP_ADDR_BRD: IP address of target board in test setup.
2. IP_ADDR_IMAGE_SERVER: IP address of the machine where all the software images are kept. These

images are transferred to the board using either tftp or scp.
3. TFTP_BASE_DIR: TFTP base directory of TFTP server running on the machine where images are kept.

8.2.4.1  Booting up target board

Follow the instructions mentioned in Section 3.7 to get the target board up and working.

Note:  While bringing up various platforms, use the following boot arguments to obtain best performance.
This can be done by appending the following string to the othbootargs environment variable in U-Boot.
If othbootargs is not present, create a new variable. While booting up, the bootscripts would append the
othbootargs to the bootargs variable.

For LX2160ARDB Rev2
default_hugepagesz=1024m hugepagesz=1024m hugepages=8 isolcpus=1-15
 iommu.passthrough=1
For LS2088ARDB/LS1088ARDB
default_hugepagesz=1024m hugepagesz=1024m hugepages=8 isolcpus=1-7
 iommu.passthrough=1

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
879 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

For LS1046ARDB
default_hugepagesz=1024m hugepagesz=1024m hugepages=4 isolcpus=1-3 bportals=s0
 qportals=s0 iommu.passthrough=1
For LS1043ARDB
default_hugepagesz=2MB hugepagesz=2MB hugepages=512 isolcpus=1-3 bportals=s0
 qportals=s0 iommu.passthrough=1
For LS1028ARDB
default_hugepagesz=2MB hugepagesz=2MB hugepages=256 isolcpus=1
 iommu.passthrough=1
For LS1012ARDB
default_hugepagesz=2MB hugepagesz=2MB hugepages=256 iommu.passthrough=1 pfe.us=1

Above setting insures that available number of hugepages are available with the application depending on the
platform. isolcpus insures that Linux Kernel doesn't use these CPUs for scheduling its tasks - that prevents
context switching of any application running on these cores. If the installed memory is lesser, lower number of
hugepages can be used.

Note:  When running DPDK application on all the cores do not add isolcpus in the othbootargs.

iommu.passthrough=1 is to disable SMMU configuration by kernel which is ignored in case of DPDK user
space application. Though, this setting does impact security context of environment and should be done after
due diligence.

The bportals and qportals ensures that only 1 portal is available for kernel use (since only one core is for
kernel), rest are available for user space. This setting is needed only for DPAA1 platforms.

Note:  Depend on the available memory, hugepage may be added to the system from command line as well.

echo 256 > /proc/sys/vm/nr_hugepages
Check it with:
cat /proc/meminfo

Note:  For UEFI, to update the boot arguments refer to UEFI section in the user manual.

Update grub.cfg file for hugepage and isolcpus related changes.

On DPAA2 platforms: "rootwait=20 default_hugepagesz=1024m hugepagesz=1024m hugepages=8
isolcpus=1-7"

On DPAA1 platforms: "rootwait=20 default_hugepagesz=2MB hugepagesz=2MB hugepages=512
isolcpus=1-3 bportals=s0 qportals=s0"

Note:  User space mode for DPAA1: For the DPAA platform, DPDK-specific Device Tree file (for example, fsl-
ls1046a-rdb-usdpaa.dtb for LS1046ARDB, fsl-ls1046a-rdb-usdpaa.dtb for LS1046AFRWY and
fsl-ls1043a-rdb-usdpaa.dtb for LS1043A) should be used for booting up the board. This Device tree file
is configured to provide user space applications with network interfaces.

Also note that once the above mentioned Device Tree configuration is used, all FMan ports would be available
in the user space only. Changes to the Device Tree file would be required to assign some of the FMan ports to
Linux Kernel. To deploy dtb file on the board, see Section 3.7.

As an alternative, one can use the following method to replace default fsl-ls104xa-rdb-sdk.dtb with
fsl-ls104xa-rdb-usdpaa.dtb to support DPDK on LS104XRDB platforms, applicable only if images are
installed on a storage device..

Example 1: After entering Ubuntu on the board, run following instructions for LS1046ARDB:

cd /boot
mv fsl-ls1046a-rdb-sdk.dtb fsl-ls1046a-rdb-ori.dtb
ln -s fsl-ls1046a-rdb-usdpaa.dtb fsl-ls1046a-rdb-sdk.dtb

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
880 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Then, reboot the board.

An alternative method to boot from the fsl-ls1046a-rdb-usdpaa.dtb file is by executing these commands
at U-Boot:

=> setenv dtb fsl-ls1046a-rdb-usdpaa.dtb
=> saveenv
=> boot

Note:  Optionally follow the below instructions to assign one of the FMan ports on LS104x (DPAA) RDB boards
to Linux.
With standard Yocto generated dtb, all interfaces are assigned to either Linux or user space. When using fsl-
ls1043a-rdb-sdk.dtb or fsl-ls1046a-rdb-sdk.dtb, all network interfaces get assigned to Linux.
When using fsl-ls1046a-rdb-usdpaa.dtb or fsl-ls1046a-rdb-usdpaa.dtb, all network interfaces
get assigned to user space. The example below shows the changes that are required to assign one network
interface to Linux and configure FMan to support DPDK applications.
Example: Modify fsl-ls1046a-rdb-usdpaa.dts file to assign FMan ports to Linux by removing the
following Ethernet node that corresponds to fm0-mac3 (RGMII-1).

ethernet@2 { compatible = "fsl,dpa-ethernet-init"; fsl,bman-buffer-pools = <&bp7
 &bp8 &bp9>; fsl,qman-frame-queues-rx = <0x54 1 0x55 1>; fsl,qman-frame-queues-
tx = <0x74 1 0x75 1>; };

Then, modify the file usdpaa_config_ls1046.xml (located in /usr/share/dpdk/dpaa) by removing the
corresponding port entry. For example, the below entry needs to be removed for fm0-mac3 (RGMII-1):

<port type="MAC" number="3" policy="hash_ipsec_src_dst_spi_policy_mac3"/>

On DPAA1, the port numbers are decided in the sequence they are getting detected. In case one or more ports
are assigned to Linux kernel, the user space port numbering gets changed. For example, after the above code
change is done, fm0-mac4 becomes Port 0 in DPDK/User space.

8.2.4.2  Prerequisite for running DPDK applications

This section describes the procedures once the target platform is booted up and logged into the Linux shell.
This section is applicable to DPAA1, DPAA2, ENETC, and PPFE platforms and is organized as follows:

• To execute DPDK applications, you must log in with Super User credentials. Following commands can be
used to log in as "root" user:

/* Set new password for root */
sudo passwd root
/* Log in as root */
su root

• Generic setup contains common steps to be executed before executing any of DPDK sample application or
external DPDK applications. One of these sections would be relevant depending on the platform DPAA1,
DPAA2, ENETC, or PPFE being used.

• Application-specific sections contain steps on how to execute the DPDK example and related applications.
For more details, refer the following topics:
– Section 8.2.4.2.1
– Section 8.2.4.2.2
– Section 8.2.4.2.3
– Section 8.2.4.2.4
– Section 8.2.4.2.5

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
881 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

– Section 8.2.4.4

8.2.4.2.1  Test environment setup

8.2.4.2.1.1  Test Environment Setup

Various sample application execution steps are detailed in the following sections. Figure below describes the
setup containing the DUT (Device Under Test) and the Packet Generator (Spirent, Ixia or any other software/
hardware packet generator). This is applicable for the commands provided in following section.

The setup includes a one-to-one link between DUT and Packet generator unit. DPDK application running on the
DUT is expected to forward the traffic from one port to another. The setup below and commands described in
following sections can be scaled for more number of ports.

Figure 195. Test Setup

8.2.4.2.2  Generic setup - DPAA

This section details steps required to set up necessary environment for execution of DPDK applications on
DPAA platform. This section is applicable for sample as well as any external DPDK applications. For further
details about the applicable configuration file for DPAA platform, refer to Section 8.2.3.5. For DPAA2 platform-
specific setup, refer to Section 8.2.4.2.3.

8.2.4.2.2.1  DPAA hardware configuration files

Note:  For automatic or dynamic FMan queue configuration, run fmc -x and do not run any other FMC
command to configure DPDK queues. If FMC is not run for DPDK, DPDK-based DPAA driver would
automatically configure the number of queues as demanded by the application.

Default is non-dynamic mode which requires user to run the fmc tool with exact queue configuration before
running a DPDK application. This section provides details about this mode.

DPAA platforms support hardware acceleration of packet queues. These queues need to be configured in the
FMan (Frame Manager) prior to being used. This can be done by choosing the appropriate policy configuration
file packaged along with Yocto rootfs or DPDK source code.

Either of 1, 2, or 4 queue-based policy files can be selected before application is executed. For example, 1
queue policy file would define single queue per physical interface of DPAA. Similarly, 2 and 4 queues are for
defining 2 or 4 queues for each defined interface, respectively.

Note:  For switching between different number of queue configuration, fmc tool is required to be run each time
with new policy files. Before running fmc tool, fmc -x should be executed to clean old configuration.

Following are the available platform-specific configuration files:

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
882 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

• usdpaa_config_ls1043.xml for LS1043ARDB board
• usdpaa_config_ls1046.xml for LS1046ARDB board
• usdpaa_config_ls1046_frwy.xml for LS1046AFRWY board
• usdpaa_config_ls1046_shared_xxg.xml for LS1046ARDB board using Shared Mac (VSP)

Following are the available policy files:

• usdpaa_policy_hash_ipv4_1queue.xml for 1 queue per port
• usdpaa_policy_hash_ipv4_2queue.xml for 2 queues per port
• usdpaa_policy_hash_ipv4_4queue.xml for 4 queues per port
• usdpaa_policy_24g_classif_udp_ipsec_1queue.xml and usdpaa_policy_24g_classif_frag_
gtp_1queue.xmlfor Shared Mac (VSP)

Note:  It is important to execute the applications using the same queue configuration as per the policy file
used. This is because once the queue configuration is done, DPAA hardware would distribute packets across
configured number of queues. Not consuming packets from any queue would lead to queue buildup eventually
stopping the I/O.

8.2.4.2.2.2  Setting up DPAA environment

Based on the number of queues per port for which the application is required to be run, select the policy
configuration file and execute the fmc binary:

fmc -x  # Clean any previous configuration/setting
fmc -c <Configuration file> -p <Policy File> -a

For example, in case of LS1043A platform, using 1 queue, following would be the command to execute:

fmc -x
fmc -c ./usdpaa_config_ls1043.xml -p ./usdpaa_policy_hash_ipv4_1queue.xml -a

Note:  DPAA platforms enable the push mode by default. That is, first 4 queues of an interface would be
configured in Push mode, thereafter, all queues would use the default pull configuration. Push mode queues
support higher performance configuration than standard pull mode queues, but are limited in numbers. To toggle
the number of push mode queues, use the following environment variable:

#export DPAA_PUSH_QUEUES_NUMBER=0 <default value is 4>

Do note that configuring larger number of push mode queues than available (achievable), would lead to I/O
failure. Max possible value of DPAA_PUSH_QUEUES_NUMBER on DPAA (LS1043, LS1046) is 8.

Note:  The environment variable DPAA_PUSH_QUEUES_NUMBER enables and reserves PUSH queues for
Ethernet drivers. But for DPAA1 Eventdev functionality, push queues are required to be used. Therefore, this
environment variable DPAA_PUSH_QUEUES_NUMBER should be set to 0 when DPAA1 eventdev driver is being
used, so that no PUSH queues are reserved for DPAA1 Ethernet driver.

Setup hugepages for DPDK application to use for packet and general buffers. This step can be ignored if
hugepages are already mounted. Use command mount | grep hugetlbfs to check if hugepages are
already set up.

mkdir /dev/hugepages

mount -t hugetlbfs none /dev/hugepages

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
883 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Note:  For DPAA1 Crypto functionality, Linux CAAM driver must be enabled. In case Linux CAAM driver
has been built as a kernel module, it must be loaded (insmod caam.ko) in kernel before running DPDK
application.

Hereafter, DPDK sample applications are ready to be executed on the DPAA platform.

8.2.4.2.2.3  Cleaning up DPAA environment

To remove the configuration done using the fmc tool, use the -x parameter. It is a good practice to clean up the
configuration before setting up a new configuration. Even in cases where change of configuration is required,
for example, increasing the number of queues supported, following command can be used for cleaning up the
previous configuration.

fmc -x

8.2.4.2.3  Generic setup - DPAA2

This section details steps required to set up necessary environment for execution of DPDK applications over
DPAA2 platform. This section is applicable for sample as well as any external DPDK applications. For further
details about the applicable configuration file for DPAA2 platform, refer to Section 8.2.3.5. For DPAA platform-
specific setup, refer to Section 8.2.4.2.2.

These steps must be performed before running any of the DPDK applications on host.

8.2.4.2.3.1  Setting up DPAA2 environment

For executing DPDK application on DPAA2 platform, a resource container needs to be created which contains
all necessary interfaces to the DPAA2 hardware blocks. Necessary configuration scripts are provided with
DPDK package for creating and destroying containers.

1. Configure the DPAA2 resource container with dynamic_dpl.sh script. This script is available under /
usr/share/dpdk/dpaa2/ folder in the rootfs.

cd /usr/share/dpdk/dpaa2/     # Or, any other folder if custom installation
 of DPDK is done
./dynamic_dpl.sh <DPMAC1.id> <DPMAC2.id> ... <DPMACn.id>

In the above command, <DPMAC1.id> refers to the DPAA2 MAC resource, for example, dpmac.1 or
dpmac.2. Modify the above command as per the number of physical MAC ports required by the application
(constrained by availability and connectivity on the DUT).
Output of dynamic_dpl.sh command shows the name of the container created. This name is passed
to DPDK applications using the DPRC environment variable. Following block shows sample output of the
dynamic_dpl.sh command:

parent - dprc.1
Creating Non nested DPRC
NEW DPRCs
dprc.1
dprc.2
Using board type as 2088
Using High Performance Buffers

##################### Container  dprc.2  is created ####################

Container dprc.2 have following resources :=>

 * 3 DPMCP
 * 16 DPBP

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
884 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

 * 8 DPCON
 * 8 DPSECI
 * 1 DPNI
 * 18 DPIO
 * 8 DPCI
 * 64 DPDMAI
 * 0 DPRTC

######################### Configured Interfaces #########################

Interface Name        Endpoint              Mac Address
==============        ========              ==================
dpni.1                dpmac.2               -Dynamic-

The MAC addresses are auto-assigned by the DPDK applications after fetching information from the
firmware. These would be same as the one programmed by U-Boot. For creating flows, see the application
output or note the MAC addresses during board bootup. Testpmd application can also be used to find the
MAC address assigned.
Note:  In case of using UEFI-ACPI as bootloader, run export BOARD_TYPE=2160 or 2088 before running
dynamic_dpl.sh.
Note:  It is possible to modify the number of interfaces (DPBP, DPCON, DPNI) in a container. This can be
done by defining environment variable COMPONENT_COUNT=<number> before executing the script. For
example, to set number of DPBP to 4, use export DPBP_COUNT=4.
Note:  Though the flexibility has been provided to modify the interfaces in the container, note that resources
need to be balanced and changing any count will require corresponding changes to other interfaces.
Incorrect changes can render the DPDK application unable to execute.

2. Set up the environment variable using the container name reported by dynamic_dpl.sh command:

export DPRC=dprc.2

After the above setup is complete, DPDK application can be executed on the DPAA2 platform.

8.2.4.2.3.2  Teardown of DPAA2 environment

It might be required to change the configuration of the resource contain to modify the components included in
it. As the number of resources in the system are limited, number of containers which can be created as also
limited. It is possible to remove an existing container and create another.

Execute the following command to teardown a container:

cd /usr/share/dpdk/dpaa2/                   # Or, any other folder if custom
 installation of DPDK is done
./destroy_dynamic_dpl.sh <Container Name>  # for example, "dprc.2"

8.2.4.2.4  Generic setup - PPFE

This section provides steps required to set up necessary environment for execution of DPDK applications over
PPFE platform.

These steps must be performed before running any of the DPDK applications on host.

Setting up the PPFE Environment

PPFE is a builtin driver and by default enabled in kernel mode. For executing DPDK application on PPFE
platform, pfe.us=1 need to be added in the bootargs before booting linux to enable DPDK mode which will do
the necessary initialization to run the DPDK applications. User must ensure the value of  /sys/module/pfe/

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
885 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

parameters/us is 1 to check pfe driver is loaded in user space mode. If /sys/module/pfe/parameters/
us is not 1, then user shall reboot kernel and add pfe.us=1 in kernel command line.

Additionally, user must run the below commands to fulfill DPDK applications huge pages requirements.

mkdir /dev/hugepages
mount -t hugetlbfs none /dev/hugepages

Note:  For PPFE (LS1012 platform), when using Crypto drivers, CONFIG_RTE_LIBRTE_PMD_CAAM_JR_BE
flag should be enabled while compiling DPDK.

Note:  Also, for Crypto functionality, Linux CAAM Job Ring driver must be enabled. In case Linux CAAM driver
has been built as a kernel module, it must be loaded (insmod caam_jr.ko) in kernel before running DPDK
application.

Hereafter, DPDK sample applications are ready to be executed.

8.2.4.2.5  Generic setup – ENETC

This section details steps required to set up necessary environment for execution of DPDK applications over
ENETC platform. This section is applicable for sample as well as any external DPDK applications.

These steps must be performed before running any of the DPDK applications on host.

Setting up ENETC environment

For executing DPDK application on ENETC platform, Ethernet devices need to be bound to "vfio-pci" driver.
Necessary configuration script is provided with DPDK package.

This script is available under /usr/share/dpdk/enetc/ folder in the rootfs.

cd /usr/share/dpdk/enetc/     # Or, any other folder if custom installation of
 DPDK is done
./dpdk_configure_1028ardb.sh

This script enables two Ethernet devices to be used by DPDK applications by binding them to "vfio_pci" driver.
These devices on case are labeled as "1G MAC0" and "1G SWP0".

Note:  When using Crypto drivers on LS1028, CAAM_JR_UIO flag should be enabled while compiling DPDK.

Note:  For Crypto functionality, Linux CAAM Job Ring driver must be enabled. In case Linux CAAM driver
has been built as a kernel module, it must be loaded (insmod caam_jr.ko) in kernel before running DPDK
application.

Hereafter, DPDK sample applications are ready to be executed.

8.2.4.3  DPDK example applications

DPDK example application binaries are available in the /usr/share/dpdk/examples/ folder in Yocto-
generated rootfs.

Note:

• Command snippets below assume that commands are executed while being present in /usr/share/dpdk/
examples/ or appropriate PATH variable has been set. Also, a DPDK binary can be executed on both,
DPAA1 and DPAA2, platform without any modifications.

• Only a selected few DPDK example applications have been deployed in the root filesystem by default.
For non-deployed example application, compilation needs to be done using DPDK source code. See
Section 8.2.3.3 for more details.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
886 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

• For PPFE platform, since LS1012ARDB has only 1 core, so -c with 0x1 is only acceptable core mask for
all DPDK applications. Additionally, user must provide the —vdev argument with value net_pfe to enable
Ethernet device for DPDK applications.

• For ENETC platform, LS1028A has 2 cores. For performance numbers, -c with 0x2 is the only supported core
mask for all supported DPDK applications. User can verify functionality on both cores.

• Throughout the document below, -n 1 argument has been added to the commands. This argument
represents the splitting of buffers across the channels/ranks on DDR, if available. This is useful for NUMA
cases. But, in non-NUMA , as is the case with NXP SoCs. This might impact performance in case the
channel/ranks of DDR vary from standard/verified environment. Performance benchmarking should be done
after analyzing the impact of this configuration.

8.2.4.3.1  dpdk-l2fwd – Layer 2 forwarding application

Sample application to show forwarding between multiple ports based on the Layer 2 information (switching).

dpdk-l2fwd -c 0x2 -n 1 -- -p 0x1 -q 1 -T 0

Where:

-c refers to the core mask for cores to be assigned to DPDK.

-p is the port mask for ports to be used by application.

-q defines the number of queues to serve on each port.

The other command-line parameters may also be provided. For a complete list, see https://doc.dpdk.org/
guides-21.11/sample_app_ug/l2_forward_real_virtual.html.

Note:

• isolcpus provided as boot argument to U-Boot assures that isolated cores are not scheduled by Linux
kernel. Using Core 0 for DPDK application can lead to non-deterministic behavior, including drop in
performance. It is recommended that DPDK application core mask values avoid using Core 0. When
application is also executed on all the cores, then isolcpus shall not be used.

• DPDK L2fwd application periodically prints the I/O stats. To avoid CPU core to be interrupted because of
these scheduled prints, -T 0 option can be appended at the end of command line.

• Command to run dpdk-l2fwd on LS1012ARDB:

dpdk-l2fwd -c 0x1 -n 1 --vdev 'net_pfe0' --vdev='net_pfe1' -- -p 0x3 -q 3

For best performance on LS1046ARDB, use the following command.

dpdk-l2fwd -c 0x2 -n 1 -- -p 0x1 -q 1 -T 0 -b 7

This includes an option -b 7 which sets the optimal I/O burst size.

8.2.4.3.2  dpdk-l2fwd-event – Event-based Layer 2 forwarding application

A sample application to show an event-based forwarding between multiple ports based on the Layer 2
information (switching) is given below:

dpdk-l2fwd-event -c 0x2 -n 1 --vdev=event_dpaa2 -- -p 0x1 -q 1 -T 0 --
mode=eventdev --eventq-sched=atomic

Where:

-c refers to the core mask for cores to be assigned to DPDK.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
887 / 1061

https://doc.dpdk.org/guides-21.11/sample_app_ug/l2_forward_real_virtual.html
https://doc.dpdk.org/guides-21.11/sample_app_ug/l2_forward_real_virtual.html


NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

-p is the port mask for ports to be used by application.

-q defines the number of queues to serve on each port.

Change --vdev=event_dpaa for DPAA devices.

--mode can be poll or eventdev.

--eventq-sched can be ordered, atomic or parallel.

Other command-line parameters may also be provided. For a complete list, see https://doc.dpdk.org/guides-21.
11/sample_app_ug/l2_forward_event.html.

8.2.4.3.3  dpdk-l2fwd–qdma - Layer 2 forwarding application using QDMA (DPAA2 only)

A sample application to show forwarding between multiple ports based on the Layer 2 information (switching)
using QDMA is given below:

dpdk-l2fwd-qdma -c 0x2 -n 1 -- -p 0x1 -q 1 -m 1 -T 0

Note:  In this application, when a packet is Received, a corresponding packet buffer is allocated for TX. Data
from the RX packet is DMA copied over to the TX buffer using the QDMA block. Then, RX buffer is released by
the application and then the TX buffer is transmitted out.

Where:

-c refers to the core mask for cores to be assigned to DPDK.

-p is the port mask for ports to be used by application.

-q defines the number of queues to serve on each port.

-m mode specifies HW (-m is 0) or Virtual (-m is 1) mode for QDMA queues.

Apart from -m parameter, other parameters are similar to DPDK l2fwd application. For details, see https://doc.
dpdk.org/guides-21.11/sample_app_ug/l2_forward_real_virtual.html.

8.2.4.3.4  dpdk-l3fwd – Layer 3 forwarding application

Sample application to show forwarding between multiple ports based on the Layer 3 information (routing).

dpdk-l3fwd -c 0x6 -n 1 -- -p 0x3 --config="(0,0,1),(1,0,2)"

Where:

-c refers to the core mask for cores to be assigned to DPDK.

-p is the port mask for ports to be used by application.

--config is (Port, Queue, Core) configuration used by application for attaching cores to queues on each port.

Other command-line parameters may also be provided. For a complete list, see https://doc.dpdk.org/guides-21.
11/sample_app_ug/l3_forward.html.

Other variations of the above command described below change the configuration of ports, queue and cores
services them.

1. 4 core - 2 Port, 2 queues per port:

dpdk-l3fwd -c 0xF -n 1 -- -p 0x3 -P --config="(0,0,0),(0,1,1),(1,0,2),
(1,1,3)"

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
888 / 1061

https://doc.dpdk.org/guides-21.11/sample_app_ug/l2_forward_event.html
https://doc.dpdk.org/guides-21.11/sample_app_ug/l2_forward_event.html
https://doc.dpdk.org/guides-21.11/sample_app_ug/l2_forward_real_virtual.html
https://doc.dpdk.org/guides-21.11/sample_app_ug/l2_forward_real_virtual.html
https://doc.dpdk.org/guides-21.11/sample_app_ug/l3_forward.html
https://doc.dpdk.org/guides-21.11/sample_app_ug/l3_forward.html


NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

2. 4 core - 2 Port with destination MAC address:

dpdk-l3fwd -c 0xF -n 1 -- -p 0x3 -P --config="(0,0,0),(0,1,1),(1,0,2),
(1,1,3)" --eth-dest=0,11:11:11:11:11:11 --eth-dest=1,00:00:00:11:11:11

3. 8 core - 2 Port with 4 queues per port:

dpdk-l3fwd -c 0xFF -n 1 -- -p 0x3 -P --config="(0,0,0),(0,1,1),(0,2,2),
(0,3,3),(1,0,4),(1,1,5),(1,2,6),(1,3,7)"

Note:  Though the above command snippets use the Core 0 for DPDK application, Core 0 use is not
recommended for best performance, as the Linux OS schedules its tasks on it. It is also recommended that
isolcpus must be used in Linux boot argument to prevent Linux from scheduling tasks on other Cores. When
application is also executed on all the cores, then isolcpus should not be used.

Example command to run l3fwd on LS1012ARDB:

dpdk-l3fwd -c 0x1 --vdev='net_pfe0' --vdev='net_pfe1' -n 1 -- -p 0x3 --
config="(0,0,0),(1,0,0)" -P

For best performance on LS1046ARDB, use the following command:

dpdk-l3fwd -c 0xF -n 1 -- -p 0x3 -P -b 7 --config="(0,0,0),(0,1,1),(1,0,2),
(1,1,3)"

This includes an option -b 7 which sets optimal I/O burst size.

This is valid for any configuration of cores, queues and ports (--config option).

For LX2 Platform, while running on all available cores, the core mask parameters passed to dpdk-l3fwd
needs to be adjusted for 16 available cores. Following is an example of using all 16 cores on LX2, 2 Ports, 8
queues per port:

dpdk-l3fwd -c 0xffff -n 1 -- -p 0x3 -P --config="(0,0,0),(0,1,1),(0,2,2),
(0,3,3),(0,4,4),(0,5,5),(0,6,6),(0,7,7),(1,0,8),(1,1,9),(1,2,10),(1,3,11),
(1,4,12),(1,5,13),(1,6,14),(1,7,15)"

DPDK l3fwd can also be executed in the eventdev mode:

dpdk-l3fwd -c 0x6 -n 1 -- -p 0x3 --mode=eventdev --eventq-sched=atomic

Where:

Change --vdev=event_dpaa for DPAA devices.

--mode can be poll or eventdev

--eventq-sched can be ordered, atomic or parallel.

8.2.4.3.5  dpdk-l2fwd-crypto – Layer 2 forwarding using SEC hardware

This variation of Layer 2 forwarding application uses SEC block for encryption of packets.

• Layer 2 forwarding with Cipher only support:

dpdk-l2fwd-crypto -c 0x2 -n 1 -- -p 0x1 -q 1  --chain CIPHER_ONLY
  --cipher_algo aes-cbc --cipher_op ENCRYPT --cipher_key
 01:02:03:04:05:06:07:08:09:0a:0b:0c:0d:0e:0f:10

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
889 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

• Layer 2 forwarding with Cypher-Hash support:

dpdk-l2fwd-crypto -c 0x2 -n 1 -- -p 0x1 -q 1 --chain CIPHER_HASH
  --cipher_algo aes-cbc --cipher_op ENCRYPT --cipher_key
 01:02:03:04:05:06:07:08:09:0a:0b:0c:0d:0e:0f:10 --auth_algo sha1-hmac --
auth_op GENERATE --auth_key_random_size 64

• Layer 2 forwarding with Hash only support:

dpdk-l2fwd-crypto -c 0x2 -n 1 -- -p 0x1 -q 1 --chain HASH_ONLY --auth_algo
 sha1-hmac --auth_op GENERATE --auth_key_random_size 64

Note:  For LS1028, --iova-mode=pa should also be added as command-line parameter.

8.2.4.3.6  dpdk-l2fwd-crypto – Layer 2 forwarding using OpenSSL software instructions

This variation of Layer 2 forwarding application uses OpenSSL library for performing software crypto operations.
Internally, the OpenSSL library would use the ARMCE instructions specific for Arm CPUs. For DPDK, this
application uses the OpenSSL PMD as its underlying driver.

Note:  This command requires support of OpenSSL package while building the DPDK applications. Refer this
section of this document, for details about toggling compilation of software crypto support, which includes the
OpenSSL driver.

Note:  In all the commands described below, -T 0 has been appended which disables output on the console/
terminal. This is important for performance reasons. Though, for debugging purposes or for knowing the number
of packets transacted, remove the arguments or set a higher value in seconds.

• Cipher_only
– For DPAA Platform:

– 1 core: Depending on the platform being executed on, append the above blacklisting parameter to the
end of this command:

dpdk-l2fwd-crypto --vdev "crypto_openssl"  -c 0x2 -n 1 -- -p 0x1 -q 1 --
chain CIPHER_ONLY --cipher_algo aes-cbc --cipher_op ENCRYPT --cipher_key
 01:02:03:04:05:06:07:08:09:0a:0b:0c:0d:0e:0f:10 --cryptodev_mask 0x10 -T 0

– 2 core: Depending on the platform being executed on, append the above blacklisting parameter to the
end of this command:

dpdk-l2fwd-crypto --vdev "crypto_openssl0" --vdev "crypto_openssl1"
 -c 0x6 -n 1 -- -p 0x3 -q 1  --chain CIPHER_ONLY  --
cipher_algo aes-cbc --cipher_op ENCRYPT --cipher_key
 01:02:03:04:05:06:07:08:09:0a:0b:0c:0d:0e:0f:10 --cryptodev_mask 0x30 -T 0

– 4 core: Depending on the platform being executed on, append the above blacklisting parameter to the
end of this command:

dpdk-l2fwd-crypto --vdev "crypto_openssl0" --vdev "crypto_openssl1" --vdev
 "crypto_openssl2" --vdev "crypto_openssl3" -c 0xf -n 1 -- -p 0xf -q 1  --
chain CIPHER_ONLY  --cipher_algo aes-cbc --cipher_op ENCRYPT --cipher_key
 01:02:03:04:05:06:07:08:09:0a:0b:0c:0d:0e:0f:10 --cryptodev_mask 0xF0 -T 0

– For DPAA2 Platform
– 1 core: Depending on the platform being executed on, append the above blacklisting parameter to the

end of this command:

dpdk-l2fwd-crypto --vdev "crypto_openssl" -c 0x2 -n 1 -- -p 0x1 -q 1 --
chain CIPHER_ONLY --cipher_algo aes-cbc --cipher_op ENCRYPT --cipher_key
 01:02:03:04:05:06:07:08:09:0a:0b:0c:0d:0e:0f:10 --cryptodev_mask 0x100 -T
 0

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
890 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

– 2 core: Depending on the platform being executed on, append the above blacklisting parameter to the
end of this command:

dpdk-l2fwd-crypto --vdev "crypto_openssl0" --vdev "crypto_openssl1"
 -c 0x6 -n 1 -- -p 0x3 -q 1  --chain CIPHER_ONLY  --
cipher_algo aes-cbc --cipher_op ENCRYPT --cipher_key
 01:02:03:04:05:06:07:08:09:0a:0b:0c:0d:0e:0f:10 --cryptodev_mask 0x300 -T
 0

– 4 core: Depending on the platform being executed on, append the above blacklisting parameter to the
end of this command:

dpdk-l2fwd-crypto --vdev "crypto_openssl0" --vdev "crypto_openssl1" --vdev
 "crypto_openssl2" --vdev "crypto_openssl3" -c 0xf -n 1 -- -p 0xf -q 1  --
chain CIPHER_ONLY  --cipher_algo aes-cbc --cipher_op ENCRYPT --cipher_key
 01:02:03:04:05:06:07:08:09:0a:0b:0c:0d:0e:0f:10 --cryptodev_mask 0xF00 -T
 0

• Cipher_hash
– For DPAA Platform:

– 1 core: Append the above blacklisting parameter to the end of this command:

dpdk-l2fwd-crypto --vdev "crypto_openssl" -c 0x2 -n 1 -- -p 0x1 -q 1 --
chain CIPHER_HASH --cipher_algo aes-cbc --cipher_op ENCRYPT --cipher_key
 01:02:03:04:05:06:07:08:09:0a:0b:0c:0d:0e:0f:10 --auth_algo sha1-hmac --
auth_op GENERATE --cryptodev_mask 0x10 --auth_key_random_size 64 -T 0

– For DPAA2 Platform:
– 1 core: Append the above blacklisting parameter to the end of this command:

dpdk-l2fwd-crypto --vdev "crypto_openssl" -c 0x2 -n 1 -- -p 0x1 -q 1 --
chain CIPHER_HASH --cipher_algo aes-cbc --cipher_op ENCRYPT --cipher_key
 01:02:03:04:05:06:07:08:09:0a:0b:0c:0d:0e:0f:10 --auth_algo sha1-hmac --
auth_op GENERATE --cryptodev_mask 0x100 --auth_key_random_size 64 -T 0

In the above commands, for scaling to multiple cores or ports, toggle the -c and -p arguments as
described above.

An example command to run dpdk-l2fwd-crypto with openssl on LS1012ARDB (cipher only):

dpdk-l2fwd-crypto -c 0x1 --vdev='net_pfe0' --vdev='crypto_openssl' -n 1
 -- -p 0x1 -q 1 --chain CIPHER_ONLY --cipher_algo aes-cbc --cipher_key
 00:01:02:03:04:05:06:07:08:09:0a:0b:0c:0d:0e:0f --cipher_op ENCRYPT -T 0

• Hash_cipher
– For DPAA Platform:

1 core: Append the above blacklisting parameter to the end of this command:

dpdk-l2fwd-crypto --vdev "crypto_openssl" -c 0x2 -n 1 -- -p
 0x1 -q 1 --chain HASH_CIPHER --auth_algo sha1-hmac --auth_op
 GENERATE --cipher_algo aes-cbc --cipher_op ENCRYPT --cipher_key
 01:02:03:04:05:06:07:08:09:0a:0b:0c:0d:0e:0f:10 --cryptodev_mask 0x10 --
auth_key_random_size 64 -T 0

– For DPAA2 Platform:
1 core: Append the above blacklisting parameter to the end of this command:

dpdk-l2fwd-crypto --vdev "crypto_openssl" -c 0x2 -n 1 -- -p
 0x1 -q 1 --chain HASH_CIPHER --auth_algo sha1-hmac --auth_op
 GENERATE --cipher_algo aes-cbc --cipher_op ENCRYPT --cipher_key
 01:02:03:04:05:06:07:08:09:0a:0b:0c:0d:0e:0f:10 --cryptodev_mask 0x100 --
auth_key_random_size 64 -T 0

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
891 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

In the above commands, for scaling to multiple cores or ports, toggle the -c and -p arguments.
• Hash_only

– For DPAA Platform:
– 1 core: Append the above blacklisting parameter to the end of this command:

dpdk-l2fwd-crypto --vdev "crypto_openssl" -c 0x2 -n 1 -- -p 0x1 -q 1 --
chain HASH_ONLY --auth_algo sha1-hmac --auth_op GENERATE --cryptodev_mask
 0x10 --auth_key_random_size 64 -T 0

– For DPAA2 Platform:
– 1 core: Append the above blacklisting parameter to the end of this command:

dpdk-l2fwd-crypto --vdev "crypto_openssl" -c 0x2 -n 1 -- -p 0x1 -q 1 --
chain HASH_ONLY --auth_algo sha1-hmac --auth_op GENERATE --cryptodev_mask
 0x100 --auth_key_random_size 64 -T 0

For scaling to multiple cores or ports, toggle the -c and -p arguments as described above. For more
information on dpdk-l2fwd-crypto application, see https://doc.dpdk.org/guides-21.11/sample_app_ug/l2_
forward_crypto.html.

8.2.4.3.7  dpdk-ipsec-secgw – IPSec gateway using SEC hardware

For IPsec application, two DUTs need to be configured as endpoint 0 (ep0) and endpoint 1 (ep1).

Assuming that endpoint have 4 ports each:

• Connect Port 1 and Port 3 of the ep0 and ep1 to each other (back-to-back).
• Connect Port 0 and Port 2 of the ep0 and ep1 to packet generator (for example, Spirent).

The Stream generated by packet generator needs to have IP addresses in following pattern:

EP0:
    port 0: 32 flows with destination IP: 192.168.1.XXX,
 192.168.2.XXX, ..... ,192.168.31.XXX,192.168.32.XXX
    port 2: 32 flows with destination IP: 192.168.33.XXX,
 192.168.34.XXX, ..... ,192.168.63.XXX,192.168.64.XXX
EP1:
    port 0: 32 flows with destination IP: 192.168.101.XXX,
 192.168.102.XXX, ..... ,192.168.131.XXX,192.168.132.XXX
    port 2: 32 flows with destination IP: 192.168.133.XXX,
 192.168.134.XXX, ..... ,192.168.163.XXX,192.168.164.XXX

This represents default configurations for the endpoints in ep0_64X64.cfg and ep1_64X64.cfg. Custom
port mappings, SA/SP, and the routes can be configured in the corresponding configuration file named as
ep0.cfg and ep1.cfg for respective endpoint. These files are available in the Yocto-generated rootfs.

For further details, see Table 168.

For more information, see https://doc.dpdk.org/guides-21.11/sample_app_ug/ipsec_secgw.html.

• Endpoint 0 (ep0) configuration:

dpdk-ipsec-secgw -c 0xf -n 1 -- -p 0xf -P -u 0xa --config="(0,0,0),(1,0,1),
(2,0,2),(3,0,3)" -f ep0_64X64.cfg

• Endpoint 1 (ep1) configuration:

dpdk-ipsec-secgw -c 0xf -n 1 -- -p 0xf -P -u 0xa --config="(0,0,0),(1,0,1),
(2,0,2),(3,0,3)" -f ep1_64X64.cfg

Note:  For LS1028, --iova-mode=pa should also be added as command-line parameter.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
892 / 1061

https://doc.dpdk.org/guides-21.11/sample_app_ug/l2_forward_crypto.html
https://doc.dpdk.org/guides-21.11/sample_app_ug/l2_forward_crypto.html
https://doc.dpdk.org/guides-21.11/sample_app_ug/ipsec_secgw.html


NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

8.2.4.3.8  Running DPDK IPSec gateway application with hardware protocol offload

The DPAA/DPAA2 SEC hardware also supports IPSec protocol offload. The command and configurations
are exactly same except the cfg files. For protocol offload, the cfg files are ep0_64X64_proto.cfg and
ep1_64X64_proto.cfg. Performance with protocol offload would be much better than the standard case. In
case of platforms which have 8 cores, the command for 8 core will also be exactly same as non-offload case,
except the name of the cfg files.

• Endpoint 0 (ep0) configuration:

dpdk-ipsec-secgw -c 0xf -n 1 -- -p 0xf -P -u 0xa --config="(0,0,0),(1,0,1),
(2,0,2),(3,0,3)" -f ep0_64X64_proto.cfg

• Endpoint 1 (ep1) configuration:

dpdk-ipsec-secgw -c 0xf -n 1 -- -p 0xf -P -u 0xa --config="(0,0,0),(1,0,1),
(2,0,2),(3,0,3)" -f ep1_64X64_proto.cfg

Note:  For LS1028, --iova-mode=pa should also be added as command-line parameter.

8.2.4.3.9  Running DPDK IPSec gateway application with eight cores

For running IPsec application with multiple queues using 64x64 tunnels and with eight cores, the following
command and configuration must be done:

• Endpoint 0 (ep0) configuration:
Sample configuration for this is available in ep0_64X64_proto.cfg file which is available in the /usr/
share/dpdk/ipsec/ folder of root filesystem.

dpdk-ipsec-secgw -c 0xFF -n 1 -- -p 0xf -P -u 0xa --config="(0,0,0),(0,1,1),
(1,0,2),(1,1,3),(2,0,4),(2,1,5),(3,0,6),(3,1,7)" -f ep0_64X64_proto.cfg

• Endpoint 1 (ep1) configuration:
Sample configuration for this is available in ep1_64X64_proto.cfg file which is available in the /usr/
share/dpdk/ipsec/ folder of root filesystem.

dpdk-ipsec-secgw -c 0xFF -n 1 -- -p 0xf -P -u 0xa --config="(0,0,0),(0,1,1),
(1,0,2),(1,1,3),(2,0,4),(2,1,5),(3,0,6),(3,1,7)" -f ep1_64X64_proto.cfg

8.2.4.3.10  Running DPDK IPSec gateway application with 16 cores on LX2 platform

For running IPsec application with multiple queues using 64x64 tunnels and with 16 cores, following command
and configuration needs to be done:

• Endpoint 0 (ep0) configuration:
Sample configuration for this is available in ep0_64X64_sha256_proto.cfg file available in /usr/share/
dpdk/ipsec/ folder in root filesystem.

dpdk-ipsec-secgw -c 0xFFFF  -n 1 -- -p 0xf -P -u 0xa --config="(0,0,0),(0,1,1),
(0,2,2),(0,3,3),(1,0,4),(1,1,5),(1,2,6),(1,3,7),(2,0,8),(2,1,9),(2,2,10),
(2,3,11),(3,0,12),(3,1,13),(3,2,14),(3,3,15)" -f ep0_64X64_sha256_proto.cfg

• Endpoint 1 (ep1) configuration:
Sample configuration for this is available in ep1_64X64_sha256_proto.cfg file available in /usr/share/
dpdk/ipsec/ folder in root filesystem.

dpdk-ipsec-secgw -c 0xFFFF -n 1 -- -p 0xf -P -u 0xa --config="(0,0,0),(0,1,1),
(0,2,2),(0,3,3),(1,0,4),(1,1,5),(1,2,6),(1,3,7),(2,0,8),(2,1,9),(2,2,10),
(2,3,11),(3,0,12),(3,1,13),(3,2,14),(3,3,15)" -f ep1_64X64_sha256_proto.cfg

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
893 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

DPDK ipsec-secgw can also be executed in eventdev mode:

./dpdk-ipsec-secgw -c 0x3 --vdev="event_dpaa2" --vdev="event_dpaa2" -- -p 0x3 -
P -u 0x1 -f /usr/share/dpdk/ipsec/ep0_64X64_proto.cfg --transfer-mode=event --
event-schedule-type=parallel

Where:

Change --vdev="event_dpaa2" to --vdev="event_dpaa" for DPAA devices.

--event-schedule-type can have a value of ordered, atomic, or parallel

8.2.4.3.11  dpdk-ipsec-secgw – IPSec gateway using OpenSSL PMD

The command, flow stream, and port configuration is similar to the Section 8.2.4.3.7 command, flow stream and
port configuration, except that it uses OpenSSL PMD for crypto operations. Internally, the OpenSSL PMD uses
the ARMCE instructions for the Arm CPUs for performing crypto operations.

• For DPAA Platform:
– Endpoint 0 configuration

dpdk-ipsec-secgw -c 0xf -n 1 --vdev "crypto_openssl" -- -p 0xf -P -u
 0xa --config="(0,0,0),(1,0,1),(2,0,2),(3,0,3)" --cryptodev_mask 0x10 -f
 ep0_64X64.cfg

– Endpoint 1 configuration

dpdk-ipsec-secgw -c 0xf -n 1 --vdev "crypto_openssl" -- -p 0xf -P -u
 0xa --config="(0,0,0),(1,0,1),(2,0,2),(3,0,3)" --cryptodev_mask 0x10 -f
 ep1_64X64.cfg

• For DPAA2 Platform:
– Endpoint 0 configuration

dpdk-ipsec-secgw -c 0xf -n 1 --vdev "crypto_openssl" -- -p 0xf -P -u 0xa
 --config="(0,0,0),(1,0,1),(2,0,2),(3,0,3)" --cryptodev_mask 0x100 -f
 ep0_64X64.cfg

– Endpoint 1 configuration

dpdk-ipsec-secgw -c 0xf -n 1 --vdev "crypto_openssl" -- -p 0xf -P -u 0xa
 --config="(0,0,0),(1,0,1),(2,0,2),(3,0,3)" --cryptodev_mask 0x100 -f
 ep1_64X64.cfg

Note:  Example command to run ipsec-secgw with openssl on LS1012ARDB:

dpdk-ipsec-secgw -c 0x1 -n 1 --vdev='net_pfe0' --vdev='net_pfe1' --
vdev='crypto_openssl'  -- -p 0x3 -P -u 0x2 --config="(0,0,0),(1,0,0)" -f
 ep0_64X64.cfg

Port IDs given in route commands in configuration files (ep0_xxx.cfg & ep1_xxx.cfg) must be valid and aligned
with -p option of ipsec-secgw application.

8.2.4.3.12  dpdk-kni - Using Kernel Network Interface Module

The Kernel NIC Interface (KNI) is a DPDK control plane solution that allows user space applications to
exchange packets with the kernel networking stack. For details, refer to http://dpdk.org/doc/guides/sample_app_
ug/kernel_nic_interface.html.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
894 / 1061

http://dpdk.org/doc/guides/sample_app_ug/kernel_nic_interface.html
http://dpdk.org/doc/guides/sample_app_ug/kernel_nic_interface.html


NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

1. Loading the KNI kernel module without any parameter:

#insmod rte_kni.ko carrier=on

Note:  By default, only one kernel thread is created for all KNI devices for packet receiving in kernel side.
2. Affine the kni task to a single core. For example, core number #1:

#taskset -pc 1 `pgrep -fl kni_single | awk '{print $1}'`

3. Run the kni application as given below:

dpdk-kni [EAL options] -- -P -p PORTMASK --
config="(port,lcore_rx,lcore_tx[,lcore_kthread,..])
[,port,lcore_rx,lcore_tx[,lcore_kthread,..]]" # dpdk-kni -c 0xf -n 1 -- -
p 0x3 -P --config="(0,0,1),(1,0,1)" where config is : (PORT, kni lcore Rx
 core, kni lcore tx core )

4. On another console, check the interfaces with:

#ifconfig -a

5. Enable the given interface and assign IP address (if any).

8.2.4.3.13  dpdk-qdma-demo application

On DPAA1 and DPAA2, hardware QDMA block provides a generic DMA capability which has been exposed by
DPDK for its application to use. dpdk-qdma-demo application in DPDK is a demonstration application which
does a memory-to-memory, or memory to pci memory, or pci memory to memory transaction using this QDMA
block. It can be executed in following manner:

• For MEM-to-MEM use case, run the below command:

dpdk-qdma_demo -c 0x3 -n 1 -- --packet_size=512--test_case mem_to_mem

Note:  dpdk-qdma_demo requires more than one core to perform because it consumes at least one core for
printing the output. For more details on its usage, see nxp/README_qdma_demo in DPDK source code.
The following output appears on the screen:

Time Spend :4000.005 ms rcvd cnt:1310720 pkt_cnt:0
Rate: 1342.176 Mbps OR 327.680 Kpps
processed on core 7 pkt cnt: 1310720

This output demonstrates the count of memory chunks which have been moved through QDMA block by the
application. It also shows the time spent and the performance achieved, and packets sent per-core.

• For PCI-to-MEM and MEM-to-PCI use cases, run the following commands.
End Point steps
1. If LX2-EP PCI card, boot it to U-Boot prompt only.
2. For standard PCI NIC card, no change is required.

HOST - LX2 Root complex steps
1. Boot LX2 to Linux prompt.
2. Run lspci -v to check the address of BAR whose memory is targeted memory for test.

$ lspci -v
        0000:01:00.0 Ethernet controller: Intel Corporation 82574L Gigabit
 Network Connection
       Subsystem: Intel Corporation Gigabit CT Desktop Adapter
        Flags: bus master, fast devsel, latency 0, IRQ 106
        Memory at 30460c0000 (32-bit, non-prefetchable) [size=128K]
        Memory at 3046000000 (32-bit, non-prefetchable) [size=512K]
        I/O ports at 1000 [disabled] [size=32]
        Memory at 30460e0000 (32-bit, non-prefetchable) [size=16K]

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
895 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

        Expansion ROM at 3046080000 [disabled] [size=256K]
Kernel driver in use: e1000e

3. Assign PCI device to user space.
– Load the UIO module, if not loaded already.

#modprobe uio_pci_generic

– Assign the device to user space.

#/usr/share/dpdk/usertools/dpdk-devbind.py --bind=uio_pci_generic
 0000:01:00.1

4. Run qdma_demo application.
Note:  At least two cores are required to run the test - one core is used for printing results/stats, and the
other cores for running test.
For DPAA2 platform, execute the following commands to prepare the setup:

$export DPDMAI_COUNT=48
$./dynamic_dpl.sh dpmac.3
$export DPRC=dprc.2

• For MEM-to-PCI use case (using a Gen2-x1 - 1G PCI NIC), run the following command:

$ dpdk-qdma_demo -c 0x81 -- --pci_addr=0x3046000000 --packet_size=512 --
test_case=mem_to_pci

Note:  The current QDMA demo code reads/writes only 4 KB area, that yields best bandwidth number.
To test read/write for big memory size, you can optionally pass --pci_size (size in byte).
For example, use: --pci_size=2147483648 for 2 MB PCI and add --latency_test for testing latency.

8.2.4.3.14  Pktgen – DPDK-based software packet generator

Pktgen is a software packet generator based on DPDK. Refer Section 8.2.3.4 for steps required for building
Pktgen.

All the commands below assume that Pktgen application is either executed from current folder or appropriate
path environment variable has been set:

1. 3 Port, 1 Core each

pktgen -l 0-3 -n 1 --proc-type auto --file-prefix pg --log-level 8 -- -T -P -
m "[1].0, [2].1, [3].2"

2. 1 Port, 2 Core

pktgen -l 0-3 -n 1 --proc-type auto --file-prefix pg --log-level 8 -- -T -P -
m "[1:2].0"

3. To start or stop traffic on a specific port:

start 0 # start <port number>
stop 0  # stop <port number>

4. To start or stop traffic on all ports:

str
stp

8.2.4.4  Multiple parallel DPDK applications

This section describes steps for executing multiple parallel DPDK applications on DPAA2 platform.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
896 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

For executing multiple DPDK applications, each application instance should run with its own resource container
(DPRC). This constraint is because of the way DPDK framework is designed to use a given container for
exclusive use, irrespective of resources within, and bind it using VFIO layer. This design prevents parallel
access to single resource container from multiple parallel instances of a single DPDK application, multiple
parallel executions of different DPDK applications.

8.2.4.4.1  Creating multiple DPRC instances

Using the resource container script documented in this section, create multiple resource container instances
on host. Following command creates a resource container with 2 network interfaces (and all other resources
necessary to run a DPDK application).

The number of DMAI and I/O resources are limited. Therefore, the following commands are also limiting these
resources in a container before executing the dynamic_dpl.sh so that both the containers can get all the
required resources.

First DPRC (assuming name as dprc.2 through rest of the document):

export DPDMAI_COUNT=32
export DPIO_COUNT=10
cd /usr/share/dpdk/dpaa2
# Or, any other folder if custom installation of DPDK is done
./dynamic_dpl.sh <DPMAC1.id> <DPMAC2.id>
# For example, execute
./dynamic_dpl.sh dpmac.1 dpmac.2

Second DPRC (assuming name as dprc.3 through rest of the document):

export DPDMAI_COUNT=32
export DPIO_COUNT=10
cd /usr/share/dpdk/dpaa2
# Or, any other folder if custom installation of DPDK is done
./dynamic_dpl.sh <DPMAC3.id> <DPMAC4.id>
# For example, execute
./dynamic_dpl.sh dpmac.3 dpmac.4

8.2.4.4.2  Executing multiple DPDK applications

Once the resource containers are created, on two separate terminals, execute the following commands to run
l2fwd application, bridging traffic between both interfaces available in the container:

export DPRC=dprc.2
cd /usr/share/dpdk/examples/
./dpdk-l2fwd -c 0x3 -n 1 --file-prefix=p1 --socket-mem=1024 -- -p 0x3 -q 1

Some of the arguments, which are deviations from general dpdk-l2fwd command, are explained below:

--file-prefix: Each DPDK Application attempts to allocate some hugepages for DMA'd area. This
allocation is done in the hugepages through the use of hugepage mount, by creating and mapping a file. This
argument instructs the EAL to append a string to the filename. This way, multiple instances, having different
such arguments, wouldn't attempt to open same hugepage mapping file.

--socket-mem: Passed to EAL, this instructs the EAL to allocate only specified amount of memory from the
hugepages. By default, if this is not provided, a DPDK application would acquire all possible hugepages (all free
pages) available on the Linux system.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
897 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

For the second instance, command like following can be executed:

export DPRC=dprc.3
cd /usr/share/dpdk/examples/
./dpdk-l2fwd -c 0xc -n 1 --file-prefix=p2 --socket-mem=1024 -- -p 0x3 -q 1

Note the difference of values for -c and --file-prefix between the first and second command.

8.2.5  OVS-DPDK and DPDK in VM with VIRTIO interfaces

DPDK example and DPDK-based applications can also run inside the virtual machine. This section describes
steps to run these applications inside the virtual machine on both DPAA1 and DPAA2 platforms.

The virtual machine runs inside the host Linux system and is launched by an application called QEMU.

Note:

While using the virtual machine, the console logs for the guest Linux do not appear on the host Linux console
(for example, UART). The guest logs are exposed through telnet, and they can be accessed by doing
telnet on the host board's IP Address (IP_ADDR_BRD) and GUEST_CONSOLE_TELNET_PORT. Each Virtual
machine that is run on a single host is allocated a different GUEST_CONSOLE_TELNET_PORT, and this port
number is specified by user running virtual machine through the QEMU command-line.

Following is the brief overview of the subsections of this section:

• Section 8.2.5.1 describing steps required for QEMU setup for both, DPAA1 and DPAA2 platforms.
• Section 8.2.5.2 describing steps necessary to launch OVS-DPDK on the host machine for switching traffic

between VMs and external network.
• Various sections for launching a virtual machine and executing a DPDK application:

– Section 8.2.5.3 for launching a virtual machine.
– Section 8.2.5.4 for accessing a virtual machine console from a network connected machine over telnet.
– Section 8.2.5.5 for launching more than one virtual machine.
– Section 8.2.5.6 for running DPDK applications in the virtual machine.

• Section 8.2.5.7 describes steps for DPDK application using multiple queues.

8.2.5.1  Generic steps

See Section 9.1.2 KVM/QEMU for detailed information about deploying virtual machines using KVM/QEMU
using Layerscape boards.

The reference above serves as base for deploying virtual machines and DPDK application in them. All the
following sections assume that qemu-system-aarch64, kernel image, and virtual machine rootfs are available
with DPDK sample application.

Note:  Give IP address to the board so that virtual machine console can be accessed using Telnet.

ifconfig eth<x> <IP_ADDR_BRD>

8.2.5.2  Configuring OVS

OVS-DPDK application binary and configuration files are available in the /usr/bin/ovs-dpdk/ folder in the
Yocto-generated rootfs.

It is assumed that before executing command snippets in this section, necessary steps mentioned in
Section 8.2.5.1 have already been executed.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
898 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Note:  Command snippets below assume that commands are executed while being present in /usr/bin/
ovs-dpdk/ folder. Or, appropriate PATH variable has been set. As the OVS commands are spread across
multiple folders, each command snippet also shows the location of these binaries relative to above folder.

Command snippets below assume that commands are executed while being present in this folder or appropriate
PATH variable has been set.

OVS is used as a back-end for VHOST USER ports. The physical ports on the target platform and the vhost
user ports (virtio devices) are added to ovs-vswitch and the flows in OVS are programmed so as to establish
traffic switching between physical ports and vhost devices as follows:

• Incoming traffic Physical port1 => output to vhost-user port 1
• Incoming traffic on vhost-user port1 => output on physical port 1
• Incoming traffic on physical port 2 => output on vhost-user port 2
• Incoming traffic on vhost-user port 2 => output on physical port 2

The following steps must be followed to set up OVS as vhost switching back-end:

1. Reset the OVS environment.

pkill -9 ovs

rm /usr/local/etc/openvswitch/conf.db

rm -rf /usr/local/var/run/openvswitch/vhost-user-1

rm -rf /usr/local/var/run/openvswitch/vhost-user-2

2. Specify the initial Open vSwitch (OVS) database to use:

mkdir -p /usr/local/etc/openvswitch # If the folder doesn't already exist

mkdir -p /var/log/openvswitch        # to ensure that OVS logging can be done

mkdir -p /usr/local/var/run/openvswitch

ovsdb-tool create /usr/local/etc/openvswitch/conf.db ./vswitch.ovsschema

ovsdb-server --remote=punix:/usr/local/var/run/openvswitch/db.sock --
remote=db:Open_vSwitch,Open_vSwitch,manager_options --pidfile=/tmp/ovsdb-
server.pid --detach --log-file=/var/log/openvswitch/ovs-vswitchd.log

export DB_SOCK=/usr/local/var/run/openvswitch/db.sock

3. Configure the OVS to support DPDK ports:

ovs-vsctl --no-wait set Open_vSwitch . other_config:dpdk-init=true

4. Configure OVS to work with 1G memory (1024M) backed by hugepages

export SOCK_MEM=1024

ovs-vsctl --no-wait set Open_vSwitch . other_config:dpdk-socket-
mem="$SOCK_MEM"

5. Define Cores for OVS Operations

export OVS_SERVICE_MASK=0x1

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
899 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

export OVS_CORE_MASK=0x6

ovs-vsctl  --no-wait set Open_vSwitch . other_config:dpdk-lcore-mask=
$OVS_SERVICE_MASK

ovs-vsctl  --no-wait set Open_vSwitch . other_config:pmd-cpu-mask=
$OVS_CORE_MASK

Note:  OVS_CORE_MASK should be chosen such as to not include Core 0. OVS_SERVICE_MASK should
be any core which is not already assigned to OVS_CORE_MASK. This way, OVS services threads (defined
by OVS_SERVICE_MASK) will not compete for CPU scheduling with OVS I/O threads (OVS_CORE_MASK).
OVS_SERVICE_MASK can be set to Core 0 as defined in example above.

6. Set Exact Match Cache(EMC) Insertion probability to 1 so that cache insertion is performed for every flow.

$ ovs-vsctl --no-wait set Open_vSwitch . other_config:emc-insert-inv-prob=1

7. Start the ovs-vswitchd daemon:

ovs-vswitchd unix:$DB_SOCK --pidfile --detach

Note:  --detach option makes the daemon run in background. If this option is given same shell can be used
to run further commands, otherwise ssh to the target board and run further commands. Each time you
reboot or there is an OVS termination, you need to rebuild the OVS environment and repeat steps 1-6 of
this section

8. Create an OVS bridge.

ovs-vsctl add-br br0 -- set bridge br0 datapath_type=netdev

9. Create DPDK port
For creating DPDK ports with OVS, platform-specific port information needs to be provided to OVS.
• ovs-vsctl add-port br0 dpdk0 -- set Interface dpdk0 type=dpdk options:dpdk-

devargs=dpni.1

ovs-vsctl add-port br0 dpdk1 -- set Interface dpdk1 type=dpdk options:dpdk-
devargs=dpni.2

Above commands attach the DPAA2 ports dpni.1 and dpni.2 with OVS. In case different ports are
required, above command should be modified accordingly.
Note:  For DPAA ports, replace dpni.X with fm1-macX. For example, options:dpdk-devargs=fm1-
mac3.
Note:  Another way to pass device names to OVS is to pass along with bus name. For example,
for FSLMC/DPAA2 devices, options:dpdk-devargs=fslmc:dpni.1 can be used. For DPAA1,
options:dpdk-devargs=dpaa:fm1-mac3 can be used. DPDK would be able to parse either naming
style, whether provided with bus name or without.

10. Create vhost-user port

ovs-vsctl add-port br0 vhost-user1 -- set Interface vhost-user1
 type=dpdkvhostuser

ovs-vsctl add-port br0 vhost-user2 -- set Interface vhost-user2
 type=dpdkvhostuser

11. Configure the queues to have 1K RX descriptors

ovs-vsctl set Interface dpdk0 options:n_rxq_desc=1024
ovs-vsctl set Interface dpdk1 options:n_rxq_desc=1024

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
900 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

12. Commands to Configure Multi Queues

ovs-vsctl set Interface dpdk0 options:n_rxq=4
ovs-vsctl set Interface dpdk1 options:n_rxq=4
ovs-vsctl set Interface dpdk0 options:n_txq=4
ovs-vsctl set Interface dpdk1 options:n_txq=4

Note:  The above commands are required only in case of multi-queue use case (Four queues are used in
above reference commands). For single queue mode, no commands needed as OVS by default configures
single queue.

13. Delete OVS flow

ovs-ofctl del-flows br0

14. Set OVS flow rules for external-to-external path:
Note:  The commands below configure a hard-coded bidirectional data path between Port 1 and Port 2. Use
this step only for OVS external-to-external testing. For OVS Host-to-VM configuration, skip and continue
with next step.

ovs-ofctl add-flow br0 -O OpenFlow13 table=0,in_port=1,actions=output:2

ovs-ofctl add-flow br0 -O OpenFlow13 table=0,in_port=2,actions=output:1

15. Set OVS flow rules between Host to VM:
Note:  The steps below configure OVS such that Port 1 <=> Port 3 and Port 2 <=> Port 4 are
connected to each other. If a different configuration is required, the commands below should be altered as
well as VM configurations.

ovs-ofctl add-flow br0 -O OpenFlow13 table=0,in_port=1,actions=output:3

ovs-ofctl add-flow br0 -O OpenFlow13 table=0,in_port=3,actions=output:1

ovs-ofctl add-flow br0 -O OpenFlow13 table=0,in_port=2,actions=output:4

ovs-ofctl add-flow br0 -O OpenFlow13 table=0,in_port=4,actions=output:2

Note:  OVS Switch (ovs-vswitchd) must be run before launching the virtual machine using QEMU,
otherwise the virtual machine launch will fail.

16. Run the following command to enable emc-cache lookups in OVS. This helps in enhancing the lookup
speed to ensure better performance.

ovs-vsctl --no-wait set Open_vSwitch . other_config:emc-insert-inv-prob=1

17. Verify the Flows inserted:

ovs-ofctl dump-flows br0

Note:  Performance of OVS is highly dependent on the use case - which includes the configuration of
flows, the flows being pumped, SMC or EMC configuration and so on. It is important to analyze these
dependencies before performance measurement or benchmarking can be done. For performance
benchmarking it is preferred that 256 flows are configured in the environment. Distribution (RSS) maybe
impacted when number of flows are low; at the same time, if higher number of flows are used it would
impact the cache usage.

8.2.5.3  Launch Virtual Machine

This section describes necessary environment setup and commands for launching a Virtual Machine (VM).

It is assumed that before executing command snippets in this section, necessary steps mentioned in
Section 8.2.5.1 and Section 8.2.5.2 have already been executed.
UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
901 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

8.2.5.3.1  Setup the environment

For accessing the VM, telnet is used. This environment variable defines the telnet port to be used.

export GUEST_CONSOLE_TELNET_PORT=4446    # Telnet port to be used for accessing
 the virtual machine

export ROOTFS_IMG=<VM_ROOTFS_IMG>

Define other environment variables which are used by the QEMU command to configure the virtual machine
environment:

export VM_MEM=2048M
export VM_CORES=2
export NUM_QUEUES=1

Note:  VM_CORES are the number of cores to reserve for the virtual machine operation.

Export the following paths:

export VHOST1_PATH=/usr/local/var/run/openvswitch/vhost-user1
export VHOST2_PATH=/usr/local/var/run/openvswitch/vhost-user2

8.2.5.3.2  Launch QEMU and virtual machine

Launch the QEMU emulator using the following command.

qemu-system-aarch64 -nographic -object memory-backend-file,id=mem,size=
$VM_MEM,mem-path=/dev/hugepages,share=on -cpu host -machine
 type=virt -kernel /boot/Image -enable-kvm -serial tcp::
$GUEST_CONSOLE_TELNET_PORT,server,telnet -append 'root=/dev/vda rw
 console=ttyAMA0,115200 rootwait earlyprintk' -m $VM_MEM -numa node,memdev=mem
 -chardev socket,id=char1,path=$VHOST1_PATH -netdev type=vhost-
user,id=hostnet1,chardev=char1,vhostforce,queues=$NUM_QUEUES -device virtio-
net-pci,disable-modern=false,addr=0x3,netdev=hostnet1,id=net1,mrg_rxbuf=off
 -chardev socket,id=char2,path=$VHOST2_PATH -netdev type=vhost-
user,id=hostnet2,chardev=char2,vhostforce,queues=$NUM_QUEUES -device virtio-net-
pci,disable-modern=false,addr=0x4,netdev=hostnet2,id=net2,mrg_rxbuf=off -smp
 $VM_CORES -S -drive if=none,file=$ROOTFS_IMG,id=foo,format=raw -device virtio-
blk-device,drive=foo

Note:  For best performance, Core 0 in the VM should not be used for DPDK I/O threads.

Also, to avoid system services from using GPUs scheduled for DPDK I/O threads, it is recommended that
isolcpus be used for isolating cores from Linux Kernel scheduling in VM. The exact configuration is
dependent on number of CPU assigned by QEMU to VM using the VM_CORES environment variable.

Append isolcpus=1-$VM_CORES to the 'root=/dev/vda rw console=ttyAMA0,115200 rootwait
earlyprintk' string in the qemu-system-aarch64 command given above.

Note:  Extra care should be taken for value assigned to mem-path variable. It should point to a valid mounted
hugepage filesystem. In case the value assigned to mem-path is not a valid hugepage filesystem, QEMU would
create a mmap'd file for its work which might negatively impact performance.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
902 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Following logs appear on the host UART console:

QEMU 2.11.1 monitor - type 'help' for more information (qemu) QEMU waiting for
 connection on: disconnected:telnet::4446,server

Note:  Complete QEMU logs are visible only when telnet is used for logging into the guest machine, as
described in Section 8.2.5.4.

The –S option mentioned in the qemu command stops the virtual machine bootup after initial setup. Run the
info cpus command on QEMU CLI interface to see the QEMU threads.

(qemu) info cpus * CPU #0: thread_id=2559 CPU #1: (halted) thread_id=2560

SSH on the board (telnet to IP address IP_ADDR_BRD) from other console and affine the threads to the
cores using the taskset command:

taskset -p 0x4 <tid1>
taskset -p 0x8 <tid1>

Note:  It is recommended to affine the VCPUs to the cores on which OVS threads are not running. For better
performance, VCPU threads should be given one physical CPU each if possible.

Run the c command from the QEMU CLI to continue the VM boot-up:

(qemu) c

8.2.5.4  Accessing virtual machine console

Telnet to the IP_ADDR_BRD at port GUEST_CONSOLE_PORT from any machine, which can reach IP_ADDR_BRD
over network:

telnet  192.168.1.141 4446

8.2.5.5  Launching two virtual machines

This section describes steps for launching 2 virtual machine simultaneously for multiple VM use cases.

Note:

• Memory assigned to each virtual machine should not exceed the total number of huge pages assigned on
system. In following example, 2048 Mbit to each virtual machine has been specified and verified to be working
correctly.

• Console telnet port of both virtual machine must be different. In the below example, VM1 has port 4446 and
VM2 has port 4447 configured for telnet. Modify the command accordingly if different values are required.

Launch VM1:

qemu-system-aarch64 -nographic -object memory-backend-file,id=mem,size=
$VM_MEM,mem-path=/dev/hugepages,share=on -cpu host -machine type=virt -
kernel /boot/Image -enable-kvm -serial tcp::4446,server,telnet -append 'root=/
dev/vda rw console=ttyAMA0,115200 rootwait earlyprintk' -m $VM_MEM -numa
 node,memdev=mem -chardev socket,id=char1,path=$VHOST1_PATH -netdev type=vhost-
user,id=hostnet1,chardev=char1,vhostforce,queues=$NUM_QUEUES -device virtio-
net-pci,disable-modern=false,addr=0x3,netdev=hostnet1,id=net1,mrg_rxbuf=off
 -chardev socket,id=char2,path=$VHOST2_PATH -netdev type=vhost-
user,id=hostnet2,chardev=char2,vhostforce,queues=$NUM_QUEUES -device virtio-net-

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
903 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

pci,disable-modern=false,addr=0x4,netdev=hostnet2,id=net2,mrg_rxbuf=off -smp
 $VM_CORES -S -drive if=none,file=$ROOTFS_IMG,id=foo,format=raw -device virtio-
blk-device,drive=foo

Launch VM2:

qemu-system-aarch64 -nographic -object memory-backend-file,id=mem,size=
$VM_MEM,mem-path=/dev/hugepages,share=on -cpu host -machine type=virt -
kernel /boot/Image -enable-kvm -serial tcp::4447,server,telnet -append 'root=/
dev/vda rw console=ttyAMA0,115200 rootwait earlyprintk' -m $VM_MEM -numa
 node,memdev=mem -chardev socket,id=char1,path=$VHOST1_PATH -netdev type=vhost-
user,id=hostnet1,chardev=char1,vhostforce,queues=$NUM_QUEUES -device virtio-
net-pci,disable-modern=false,addr=0x3,netdev=hostnet1,id=net1,mrg_rxbuf=off
 -chardev socket,id=char2,path=$VHOST2_PATH -netdev type=vhost-
user,id=hostnet2,chardev=char2,vhostforce,queues=$NUM_QUEUES -device virtio-net-
pci,disable-modern=false,addr=0x4,netdev=hostnet2,id=net2,mrg_rxbuf=off -smp
 $VM_CORES -S -drive if=none,file=$ROOTFS_IMG,id=foo,format=raw -device virtio-
blk-device,drive=foo

8.2.5.6  Running DPDK applications in VM

All the DPDK applications mentioned in this section have been tested in following configuration:

• Two physical network interfaces
• Two virtio-net devices in the virtual machine

The figure below illustrates the test setup.

Figure 196. DPDK virtionet test setup

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
904 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

8.2.5.6.1  Generic setup

DPDK example application binaries are available in the /usr/share/dpdk/examples/ folder in the Yocto-
generated rootfs.

• Set up hugepages:

mkdir /dev/hugepages
mount -t hugetlbfs none /dev/hugepages
echo 512 > /proc/sys/vm/nr_hugepages ; for dpaa1 change change size as 256

Note:  For the below commands, it is assumed that they are executed from /usr/share/ folder. Modify the
commands for different path or PATH variable configuration.

• Set up the devices using DPDK scripts:

/usr/bin/dpdk-devbind.py --status
/usr/bin/dpdk-devbind.py -b uio_pci_generic 0000:00:03.0
/usr/bin/dpdk-devbind.py -b uio_pci_generic 0000:00:04.0

8.2.5.6.2  Run DPDK applications

Note:  Using Core 0 for DPDK application can lead to non-deterministic behavior, including drop in
performance. It is recommended that DPDK application core mask values avoid using Core 0.

Note:  dpdk-l3fwd cannot work in VM with Virtio interfaces as offload mode for IP protocol is not supported by
the DPDK Virtio driver

Note:  VM virtio is only functionally enabled and the performance is not comparable to the performance that we
get on host.

Executing dpdk-l2fwd application:

dpdk-l2fwd -c 0x2 -n 1 -- -p 0x1 -q 1 -T 0

Executing testpmd application:

• For TX only:

dpdk-testpmd -c 0x3 -n 1 -- -i --nb-cores=1  --portmask=0x1 --nb-ports=1 --
forward-mode=txonly --disable-hw-vlan --port-topology=chained

• For RX only:

dpdk-testpmd -c 0x3 -n 1 -- -i --nb-cores=1  --portmask=0x1 --nb-ports=1 --
forward-mode=rxonly --disable-hw-vlan --port-topology=chained

8.2.5.7  Multi Queue VIRTIO support

To scale the performance against the number of VM cores, the VIRTIO devices need to be configured with
multiple queues. This section explains the steps required for setup multi queue VIRTIO devices.

See Generic Setup of DPAA platform including configuration necessary for defining multiple queues before
DPDK application is executed. No special setup is required for DPAA2 before DPDK application start. See
Section 8.2.5.2 for setting OVS-DPDK on the host. Steps defined below build upon the configurations and steps
provided in these sections for multiqueue support.

QEMU commands for multiqueue vhost devices are different and are shown later in the section.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
905 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

8.2.5.7.1  Additional steps for OVS setup

Besides the steps mentioned in Section 8.2.5.2, following changes are required to modify the number of
supported queues in the virtual machine.

Run the following commands after adding DPDK and vhost-user ports to the bridge:

ovs-vsctl set Interface dpdk0 options:n_rxq=2
ovs-vsctl set Interface dpdk1 options:n_rxq=2
ovs-vsctl set Interface dpdk0 options:n_txq=2
ovs-vsctl set Interface dpdk1 options:n_txq=2
ovs-vsctl set Interface vhost-user1 options:n_rxq=2
ovs-vsctl set Interface vhost-user2 options:n_rxq=2
ovs-vsctl set Interface vhost-user1 options:n_txq=2
ovs-vsctl set Interface vhost-user2 options:n_txq=2

8.2.5.7.2  Launch VM with multiqueue VHOST devices

Similar to the steps mentioned in Section 8.2.5.3, following steps are required to start the virtual machine.
Changes are highlighted with bold:

Note:  Command snippets shown below are valid for DPAA2 platform. Replace dpaa2 with dpaa for equivalent
command on DPAA platform.

export GUEST_CONSOLE_TELNET_PORT=4446
export VM_MEM=2048M     # For DPAA1 use VM_MEM=650M
export VM_CORES=2
export NUM_QUEUES=2
export ROOTFS_IMG=<VM_ROOTFS_IMG>
export VHOST1_PATH=/usr/local/var/run/openvswitch/vhost-user1
export VHOST2_PATH=/usr/local/var/run/openvswitch/vhost-user2
qemu-system-aarch64 -nographic -object memory-backend-file,id=mem,size=$VM_MEM,mem-path=/mnt/
hugepages,share=on -cpu host -machine type=virt -kernel /boot/Image -enable-kvm  -serial tcp::
$GUEST_CONSOLE_TELNET_PORT,server,telnet -append 'root=/dev/vda rw console=ttyAMA0,115200 rootwait
 earlyprintk' -m $VM_MEM -numa node,memdev=mem -chardev socket,id=char1,path=$VHOST1_PATH -netdev
 type=vhost-user,id=hostnet1,chardev=char1,vhostforce,queues=$NUM_QUEUES -device virtio-net-pci,disable-
modern=false,addr=0x3,netdev=hostnet1,mq=on,id=net1,mrg_rxbuf=off,vectors=6 -chardev socket,id=char2,path=
$VHOST2_PATH -netdev type=vhost-user,id=hostnet2,chardev=char2,vhostforce,queues=$NUM_QUEUES -device virtio-net-
pci,disable-modern=false,addr=0x4,netdev=hostnet2,mq=on,id=net2,mrg_rxbuf=off,vectors=6 -smp $VM_CORES -S -drive
 if=none,file=$ROOTFS_IMG,id=foo,format=raw -device virtio-blk-device,drive=foo

8.2.5.7.3  DPDK applications in VM

Connect to VM terminal as explained in Section 8.2.5.4. After you are logged in as guest, DPDK applications
using multiple queues can be run in VM.

Note:  If the number of queues defined for DPDK application in VM is not equal to number of queues
(NUM_QUEUES) defined in QEMU command, the application may fail to start.

Note:  For the below commands, it is assumed that they are executed from /usr/share/ folder. Modify the
commands for different path or PATH variable configuration.

Besides the above steps, all steps are same as described in single queue VM usecase.

Set up the devices using DPDK scripts:

/usr/bin/dpdk-devbind.py --status
/usr/bin/dpdk-devbind.py -b uio_pci_generic 0000:00:03.0
/usr/bin/dpdk-devbind.py -b uio_pci_generic 0000:00:04.0

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
906 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Execute l3fwd application:

dpdk-l3fwd  -c 0x3 -n 1 --  -p 0x3 --config="(0,0,0),(0,1,0),(1,0,1),(1,1,1)"  -
P --parse-ptype

Execute testpmd application:

dpdk-testpmd -c 3 -n 1 -- -i --nb-cores=1 --nb-ports=1 --total-num-mbufs=1025 --
forward-mode=txonly --disable-hw-vlan --rxq=2 --txq=2 --port-topology=chained

8.2.5.8  OVS DPDK Performance Guide

OVS has a hierarchy of lookups. All the flows are initially added into the Openflow database (openflow block
shown in Figure 197). When a flow is received, its entries get populated into EMC/SMC/Megaflow.

Figure 197. OVS Flow Table hierarchy

The exact-match cache (EMC) is the first and fastest mechanism Open vSwitch* (OVS) uses to determine what
to do with an incoming packet. If the action for the packet cannot be found in the EMC, the search continues in
the SMC cache followed by Megaflow classifier, and failing that the OpenFlow* flow tables are consulted. This
can be thought of as similar to how a CPU checks increasingly slower levels of cache when accessing data.

By default, the EMC cache is enabled and SMC cache is disabled and both of them can be enabled or disabled
via command-line only.

EMC cache can support up to max of 8K flows at a time, whereas SMC cache can support up to 100K entries.

With respect to flows for performance of OVS host cases, it is recommended to use the flows as follows:

• Use 256 flows for scenarios with 4 cores or less than 4 cores
• Use 2K flows for scenarios with more than 4 cores
• In case flows are more than 8K, disable EMC cache and enable SMC cache

To disable EMC cache and enable SMC cache, use the commands:

ovs-vsctl --no-wait set Open_vSwitch . other_config:emc-insert-inv-prob=0
ovs-vsctl --no-wait set Open_vSwitch . other_config:smc-enable=true

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
907 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

To enable EMC cache and disable SMC cache, use the commands:

ovs-vsctl --no-wait set Open_vSwitch . other_config:emc-insert-inv-prob=1
ovs-vsctl --no-wait set Open_vSwitch . other_config:smc-enable=false

To use per core memory pool use the below command:

ovs-vsctl set Open_vSwitch . other_config:per-port-memory=true

8.2.6  Enabling DPAA2 direct assignment for DPDK

The DPAA2 architecture supports the assignment of direct dpaa2 resource access from the QEMU guest VM
(Kernel or user space app). See Direct assigned devices.

This section describes necessary environment setup and commands for launching a Virtual Machine (VM) with
VFIO device passthrough or direct device assignment support.

Note:  Arm-V8 currently support VM to work in NO-IOMMU mode only. Which means that all HW access will
use physical address mode only. The default sdk code is build with virtual addressing mode only. You will
need to rebuild the the dpdk for after by manually setting RTE_LIBRTE_DPAA2_USE_PHYS_IOVA as true in
config/arm/meson.build and then build DPDK and example applications through standard compilation
steps. Enabling RTE_LIBRTE_DPAA2_USE_PHYS_IOVA enables physical addressing mode (IOVA) which is
required for direct assignment functionality.

Then follow the instructions in Section 8.2.3.3 section to build DPDK applications.

You can transfer the applications manually to the virtual machine using the host-vm connections as suggested
to configure in next section.

8.2.6.1   Launch virtual machine

Perform the following steps to launch the virtual machine:

Ensure that kernel is enabled for direct assignment mode. For more details, see Section 9.1.2.5.

Note:  The default QEMU present in filesystem may not support the direct assignment feature.

1. Execute the following commands to build QEMU 4.2 with VFIO passthrough support locally:

git clone https://github.com/nxp-qoriq/qemu.git
cd qemu
git checkout qemu-4.2
git submodule update --init dtc

Ensure that your machine has the required packages to build QEMU.
Refer the example below:

#update your ubuntu m/c with required packages. apt-get install pkg-config
 apt-get install libglib2.0-dev apt-get install libpixman-1-dev apt-get
 install libaio-dev apt-get install libusb-1.0-0-dev

Now, build the QEMU:

./configure --prefix=/root/qemu-4.2 --target-list=aarch64-softmmu --enable-
fdt --enable-kvm
make
make install

The new QEMU will be installed in the /root/qemu-4.2 folder.
2. Create DPAA2 resources for the VM guest kernel and VM guest user space (dpdk) on the board.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
908 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

The dynamic scripts to support the dpaa2 resource creation are available in (/usr/share/dpdk/dpaa2/)
for Layerscape LDP rootfs. It is also part of the DPDK source code in the nxp folder.

export DPDK_SCRIPTS=/usr/share/dpdk/dpaa2/

Create a DPNI-based interface for file transfer and communication between host and VM guess kernel.

ls-addni -n
Output:---Created interface: eth0 (object:dpni.1, endpoint:)

Create the VM guest kernel container. For more details. see sections on "How to use DPAA2 direct
assignment without scripts" and "How to use DPAA2 direct assignment with scripts".
A sample vm_linux.conf file is provided in scripts to create the vm guest kernel container. In this, the
number of resources are good for 2 core VM. The previously created dpni object is also passed to connect
it with the guest kernel container.

source $DPDK_SCRIPTS/dynamic_dpl.sh -c $DPDK_SCRIPTS/vm_linux.conf <dpni.x>
Where, <dpni.x> is dpni interface created by "ls-addni" command.

In the next step, create the container for VM guest user space for DPDK:

source $DPDK_SCRIPTS/dynamic_dpl.sh -c $DPDK_SCRIPTS/vm_dpdk.conf <dpmac.x>
 <dpmac.y>
Where, <dpmac.x> & <dpmac.y> are required MAC interfaces.

Note:  Make sure to enter the created parent DPRC into vm_dpdk.conf
For the rest of the section, it is assumed that VM guest kernel container is dprc.2 and VM guest user space
child container is dprc.3 (nested).
Create an Ethernet connect between host and VM for communication/transfer. This was already created
and passed during the vm-linux container.

#assign IP to host interface created to communicate with VM (dprc.2, eth0)
ifconfig eth0 192.168.2.2

3. Create hugepages mount (if not already created):

echo hugetlbfs /dev/hugepages hugetlbfs defaults,mode=0777 0 0 >> /etc/fstab
mkdir /dev/hugepages
mount /dev/hugepages

4. Launch QEMU (version: 4.2.0) using the following command:
For generating a root filesystem image, refer to "Creating a guest Linux root filesystem".
Assign the ROOTFS_IMG in below command with the absolute path to the generated image:

export ROOTFS_IMG=/root/ls-image-main-<board>.ext4 
# Telnet port to be used for accessing this instance of virtual machine
 export GUEST_CONSOLE_TELNET_PORT=4446
export KERNEL_IMG=/root/Image

Define the other environment variables that are used by the QEMU command to configure the virtual machine
environment:

export VM_MEM=4096M # 2048M for LS1088ARDB

1. Add the device command below (for the GUEST KERNEL DPRC to be assigned) to the QEMU command-
line:

-device vfio-fsl-mc,host=dprc.2

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
909 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Ensure to specify the appropriate number of cores for the guest VM. It should match the number of dpio
objects created in the child container. In this case, it is 1 core.

-smp $VM_CORES

2. Start QEMU with -S option (the vcpu threads are not yet started).
We need this for the Ethernet drivers in the guest to bind the objects to the cores correctly.

# single core VM launch /root/qemu-4.2/bin/qemu-system-aarch64 -smp
 $VM_CORES -m $VM_MEM -mem-path /dev/hugepages -cpu host -machine
 type=virt,gic-version=3 -kernel $KERNEL_IMG -enable-kvm -display none -
serial tcp::$GUEST_CONSOLE_TELNET_PORT,server,telnet -drive if=none,file=
$ROOTFS_IMG,id=foo,format=raw -device virtio-blk-device,drive=foo -append
 'root=/dev/vda rw console=ttyAMA0 rootwait earlyprintk' -monitor stdio -
device vfio-fsl-mc,host=dprc.2 -S

# Two core VM launch 

(Check the isolcpus for core #1 in bootargs).
Note:
• For best performance, Core 0 in the VM should not be used for DPDK I/O threads.
• To avoid system services from using GPUs scheduled for DPDK I/O threads, it is recommended that

isolcpus be used for isolating cores from Linux Kernel scheduling in VM. The exact configuration is
dependent on number of CPU assigned by QEMU to VM using the VM_CORES environment variable.

Append isolcpus=1-$VM_CORES to the root=/dev/vda rw console=ttyAMA0,115200 rootwait
earlyprintk string in the qemu-system-aarch64 command given above:

/root/qemu-4.2/bin/qemu-system-aarch64 -smp $VM_CORES -m $VM_MEM -mem-path /
dev/hugepages
-cpu host -machine type=virt,gic-version=3 -kernel $KERNEL_IMG -enable-kvm -
display none
-serial tcp::$GUEST_CONSOLE_TELNET_PORT,server,telnet -drive
if=none,file=$ROOTFS_IMG,id=foo,format=raw -device virtio-blk-
device,drive=foo -append
'root=/dev/vda rw console=ttyAMA0 rootwait earlyprintk isolcpus=1' -monitor
 stdio
-device vfio-fsl-mc,host=dprc.2 -S

Note:  Make sure to specify the appropriate number of cores for the guest VM. It should match the number
of dpio objects that are created. Also, make sure that the /mnt/hugetlbfs folder exists and is mounted
when starting the QEMU.
Following logs appear on the host UART console:

QEMU 4.2.0 monitor - type 'help' for more information 
(qemu) qemu-system-aarch64: -serial tcp::4446,server,telnet: QEMU waiting for
 connection on: disconnected:telnet::4446,server 

3. Launch VM using:

telnet <Board ip addr> <GUEST_CONSOLE_TELNET_PORT>

For example, telnet localhost 4446
Ensure to assign each vcpu thread to one physical CPU only.
Get the VM thread IDs entering QEMU shell.

(qemu) info cpus
* CPU #0: thread_id=7211
CPU #1: (halted) thread_id=7212

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
910 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Assign one vcpu thread to one core only. Also, apart from the first vcpu thread put all other threads in
chrt priority for performance.

$ taskset -p 0x1 7211
pid 7211's current affinity mask: ff
pid 7211's new affinity mask: 1
$ taskset -p 0x2 7212
pid 7212's current affinity mask: ff
pid 7212's new affinity mask: 2
$ chrt -p 90 7212

Start the vcpu threads:

(qemu) c

8.2.6.2  Accessing the virtual machine console

user@ls2088ardb:~# telnet localhost 4446

Execute the following commands:

echo 1000 > /proc/sys/vm/nr_hugepages
# child DPRC container for VM guest userspace
export DPRC=dprc.3
echo 1 > /sys/module/vfio/parameters/enable_unsafe_noiommu_mode
echo vfio-fsl-mc > /sys/bus/fsl-mc/devices/$DPRC/driver_override
echo $DPRC > /sys/bus/fsl-mc/drivers/vfio-fsl-mc/bind

The Host core-index which is used as First Physical core in VM should be used as DPAA2_HOST_START_CPU
to run DPDK application. Where, core-index range is [ 0-7 ] for a 8 core platform.

For example, if you are running VM with two cores and Host core #4 and core #5 are given to VM, then the first
physical core for VM is core#4. Therefore, you must set the START CPU core as follows:

export DPAA2_HOST_START_CPU=4

Setup Hugepages

echo hugetlbfs /dev/hugepages hugetlbfs defaults,mode=0777 0 0 >> /etc/fstab
mkdir /dev/hugepages
mount /dev/hugepages

Configure the host connection for SCP, ssh, and file transfer.

ifconfig eth1 192.168.2.1

8.2.6.3  Running DPDK applications with direct device assignments

All the DPAA2 based dpdk application will work in VM similar to the host, but they need to be compiled after
enabling RTE_LIBRTE_DPAA2_USE_PHYS_IOVA flag in meson build file config/arm/meson.build.

If the dpdk example applications are not present, you can bring them via scp/tftp using the eth1 interface.

Note:  Using Core 0 for DPDK application can lead to non-deterministic behavior, including drop in
performance. It is recommended that DPDK application core mask values avoid using Core 0.

Refer to some example test commands given below:

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
911 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

• #one core VM (core #0 for dpdk)

dpdk-l3fwd -c 0x1 -n 1 --log-level=bus.fslmc,8 -- -p 0x1 -P --config="(0,0,0)"
dpdk-l2fwd-crypto -c 0x1 -n 1 --log-level=bus.fslmc,8 -- -p 0x1 -q 1 --chain
 HASH_ONLY
--auth_algo sha2-256-hmac --auth_op GENERATE --auth_key_random_size 64

• #two core VM (core #1 for DPDK)

dpdk-l3fwd -c 0x2 -n 1 -- -p 0x1 -P --config="(0,0,1)"
dpdk-l3fwd -c 0x2 -n 1 -- -p 0x3 -P --config="(0,0,1),(1,0,1)"
dpdk-testpmd -c 0x3 -n 1 -- -i --portmask=0x3 --nb-cores=1 --forward-
mode=txonly

8.2.7  DPDK on Docker

8.2.7.1  Docker Overview

Docker provides an environment for a given image, over which any user space application can be executed. An
image must contain/expose all the tools which are required to run any application.

For more information on Docker, see https://docs.docker.com/engine/userguide/.

8.2.7.2  DPAA1-Platform

8.2.7.2.1  Running Docker Container on DPAA1

To execute Docker, make sure you have completed the following prerequisites:

1. The Docker daemon must be running. If not, follow the instructions given at the link below to execute the
daemon.
https://docs.docker.com/engine/docker-overview/

2. The Docker tool must be installed, which will be working as the client to run the Docker container.

Download the required image, which should be run as an environment. Use the command below to get generic
prebuilt images:

docker pull ubuntu:latest  # Command template is 'docker pull
 <distribution>:<tag>'

All downloaded images can be verified using the command below:

docker images

Once images are downloaded, the Docker container can be started using the steps below. Below commands
will execute a docker container named as docker0:

docker run --privileged --interactive --env LD_LIBRARY_PATH=/usr/lib --
name=docker0 --hostname=docker0 --detach --volume=/usr:/usr --volume=/sys:/sys
 --volume=/dev:/dev ubuntu:latest

Arguments provided to the command above have been explained below:

-–privileged  # It provides privilege to docker container to access host
 completely

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
912 / 1061

https://docs.docker.com/engine/userguide/
https://docs.docker.com/engine/docker-overview/


NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

--interactive  # Docker container will be running state
--env LD_LIBRARY_PATH=/usr/lib  # Exporting host environment variable to docker
 container*/
--name=docker0 --hostname=docker0 # User defined name to docker container
--detach # container will be detached once it is launched and host prompt will
 be available for use
--volume=/XXX:/YYY # Exporting host partitions /XXX to docker container's mount
 point /YYY

Finally, following command attaches to the docker console which was run in previous command:

docker exec -it docker0 bash

8.2.7.2.2  Running the DPDK Application

Once Docker is launched and connected, then execute the DPDK application by running the respective
command. The command below is a sample to run dpdk-l3fwd:

dpdk-l3fwd -c 0x0C -n 1 – -p 0x30 --config="(4,0,2),(5,0,3)" -P

Note:  Make sure fmc -x is run on the host and FMC is not configured for DPDK as with docker only fmcless
mode is supported.

8.2.7.3  DPAA2-Platform

8.2.7.3.1  Traffic Multiplexer/De-Multiplexer

On the DPAA2 architecture, the MC provides various methods by which incoming traffic can be split of over the
multiple DPNIs. The sections below provide more information.

8.2.7.3.1.1  Using DPDMUX

MC provides an object (DPDMUX) which splits incoming traffic over the multiple DPNIs based on following
parameters:

1. MAC based classification
2. VLAN based classification
3. MAC + VLAN based classification
4. User defined key based classification.

DPDMUX has its own filter table which consists of default filtering rules. Default filtering rules are a combination
of MAC address configured on DPNI and port information as a destination. Once the DPDMUX object is
connected to a given DPNI, then the entry for a particular DPNI will be added to the filtering table. All incoming
default traffic will be distributed based on the destination MAC address in the packet. You may add more entries
to the filtering table as per your requirement.

The diagram below shows a sample use case for DPDMUX and associated links for a single DPMAC object. It
can be extended up-to a maximum number of DPMACs, each having its own DPDMUX object.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
913 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Figure 198. Sample use case for DPDMUX and associated links for a single DPMAC object

8.2.7.3.1.2  Using DPSW

MC also provides another object (DPSW) which internally implements DPAA2 H/W Switch. This Switch instance
can also be used for traffic forwarding to multiple hosts. On LS2088, there is only once instance of DPSW that
can be created and required ports will be connected to the same DPSW instance.

DPSW has its own filter table which populates dynamically with source MAC address and port on which packet
is received. Default incoming traffic is flooded to all ports except ingress port and filtering rules are learned into
filtering table. After learning, same packets are forwarded to the destined port only.

Below diagram shows a sample use case for DPSW and associated links for single DPMAC object. It can be
extended up-to maximum number of DPMACs with same DPSW instance.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
914 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Figure 199. Sample use case for DPSW and associated links for single DPMAC object

8.2.7.3.2  Single Docker Instance - Container Configuration (DPDMUX/DPSW)

For each Docker instance, a DPRC must be created containing DPAA2 hardware blocks necessary for the
Docker container.

A helper script dynamic_dpl.sh, part of the Layerscape LDP rootfs, can be used for creating such DPRC.
For example, following command snippet creates a DPRC containing 8 DPNI objects (logical network
interfaces) which are not backed by any physical link (DPMAC) and have MAC addresses starting from
00:00:00:00:05:00. For more details about creating DPRC, see Section 7.3.2.1.1.

Set the following environment variable which would be used by the dynamic_dpl.sh script:

export MAX_QOS=16
export DPNI_NORMAL_BUF=1 # This is optional

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
915 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Execute the dynamic_dpl.sh script:

/usr/share/dpdk/dpaa2/dynamic_dpl.sh dpni dpni dpni dpni dpni dpni dpni dpni -b
 00:00:00:00:05:00

The output of the above command would be similar to:

##################### Container  dprc.2  is created ####################
Container dprc.2 have following resources :=>
 * 16 DPBP
 * 8 DPCON
 * 8 DPSECI
 * 8 DPNI
 * 10 DPIO
 * 2 DPCI
 ######################### Configured Interfaces #########################
Interface Name        Endpoint              Mac Address
==============        ========              ==================
dpni.1                UNCONNECTED           00:00:00:00:05:01
dpni.2                UNCONNECTED           00:00:00:00:05:02
dpni.3                UNCONNECTED           00:00:00:00:05:03
dpni.4                UNCONNECTED           00:00:00:00:05:04
dpni.5                UNCONNECTED           00:00:00:00:05:05
dpni.6                UNCONNECTED           00:00:00:00:05:06
dpni.7                UNCONNECTED           00:00:00:00:05:07
dpni.8                UNCONNECTED           00:00:00:00:05:08

Each such DPRC would be assigned to a Docker container. Thus, multiple such DPRC would have to be
created as per the use case and Docker instances required for it.

Note:  Resources available on a DPAA2 system are limited and assigning them to DPRC can result in error
if requested resources are not available. For the above script output, if the script doesn't return any error and
all the DPNIs have different MAC addresses, result can be considered successful. In case of error or failure to
assign MAC addresses, resource assignment to the DPRCs need to be restructured.

Hereafter, based on whether DPDMUX or DPSW is being used, one of the below configuration is applicable:

8.2.7.3.2.1  Configuration using DPDMUX

Create DPDMUX objects with total number of required links that is, downlinks and uplinks both. Here dpdmux.0
object is created

restool dpdmux create --num-ifs=3 --method DPDMUX_METHOD_MAC --max-dmat-
entries=8 --max-mc-groups=8 --manip=DPDMUX_MANIP_NONE

Connecting downlinks and uplinks with above created DPDMUX:

restool dprc connect dprc.1 --endpoint1=dpmac.x --endpoint2=dpdmux.0.0
restool dprc connect dprc.1 --endpoint1=dpni.y --endpoint2=dpdmux.0.1
restool dprc connect dprc.1 --endpoint1=dpni.z --endpoint2=dpdmux.0.2

Where, x, y and z are object indices created in resource containers.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
916 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

8.2.7.3.2.2  Configuration using DPSW

Create DPSW object with total number of required links that is, downlinks and uplinks both. Here dpsw.0 object
is created:

restool dpsw create --num-ifs=3

Connecting downlinks and uplinks with above created DPSW:

restool dprc connect dprc.1 --endpoint1=dpmac.x --endpoint2=dpsw.0.0
restool dprc connect dprc.1 --endpoint1=dpni.y --endpoint2=dpsw.0.1
restool dprc connect dprc.1 --endpoint1=dpni.z --endpoint2=dpsw.0.2

Where, x, y and z are object indices created in resource containers.

8.2.7.3.3  Running Docker Container on DPAA2

Based on the explanation provided in the Section 8.2.7.2.1 the command is:

docker pull ubuntu:latest
export DPRC="dprc.<index>"
export VFIO_NO=`readlink /sys/bus/fsl-mc/devices/$DPRC/iommu_group | xargs
 basename`
docker run -–privileged --interactive --env DPRC=$DPRC --device=/dev/vfio/vfio:/
dev/vfio/vfio --device=/dev/vfio/$VFIO_NO:/dev/vfio/$VFIO_NO --name=docker0 --
hostname=docker0 --detach --volume=/usr:/usr --volume=/sys:/sys --volume=/dev:/
dev ubuntu:latest
docker exec -it docker0 bash

The following is the explanation for arguments that are not applicable for DPAA (specified in the above
commands):

export DPRC="dprc.<index>" # Where <index> is the DPRC container number created
 by dynamic_dpl.sh execution

--device=/XXX:/YYY # Exporting host device /XXX to docker container device /YYY

8.2.7.3.4  Running the DPDK Application

Once Docker is launched and connected, then execute the DPDK application by running the respective
command. The command below is a sample to run dpdk-l3fwd:

dpdk-l3fwd -c 0xFF -n 4 -- -p 0xFF -P --config="(0,0,0),(1,0,1),(2,0,2),(3,0,3),
(4,0,4),(5,0,5),(6,0,6),(7,0,7)" -P

8.2.7.3.5  Example Configuration for 2 Docker Instances: Using DPDMUX

Common Container settings:

export MAX_QOS=8
export DPNI_NORMAL_BUF=1

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
917 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Create container for docker0:

./dynamic_dpl.sh dpni dpni dpni dpni dpni dpni dpni dpni -b 00:00:00:00:05:00
##################### Container  dprc.2  is created ####################
Container dprc.2 have following resources :=>
 * 16 DPBP
 * 8 DPCON
 * 8 DPSECI
 * 8 DPNI
 * 10 DPIO
 * 2 DPCI
######################### Configured Interfaces #########################
Interface Name        Endpoint              Mac Address
==============        ========              ==================
dpni.1                UNCONNECTED           00:00:00:00:05:01
dpni.2                UNCONNECTED           00:00:00:00:05:02
dpni.3                UNCONNECTED           00:00:00:00:05:03
dpni.4                UNCONNECTED           00:00:00:00:05:04
dpni.5                UNCONNECTED           00:00:00:00:05:05
dpni.6                UNCONNECTED           00:00:00:00:05:06
dpni.7                UNCONNECTED           00:00:00:00:05:07
dpni.8                UNCONNECTED           00:00:00:00:05:08

Create container for docker1:

./dynamic_dpl.sh dpni dpni dpni dpni dpni dpni dpni dpni -b 00:00:00:00:05:08
##################### Container  dprc.3  is created ####################
Container dprc.3 have following resources :=>
 * 16 DPBP
 * 8 DPCON
 * 8 DPSECI
 * 8 DPNI
 * 10 DPIO
 * 2 DPCI
######################### Configured Interfaces #########################
Interface Name        Endpoint              Mac Address
==============        ========              ==================
dpni.9                UNCONNECTED           00:00:00:00:05:09
dpni.10               UNCONNECTED           00:00:00:00:05:0a
dpni.11               UNCONNECTED           00:00:00:00:05:0b
dpni.12               UNCONNECTED           00:00:00:00:05:0c
dpni.13               UNCONNECTED           00:00:00:00:05:0d
dpni.14               UNCONNECTED           00:00:00:00:05:0e
dpni.15               UNCONNECTED           00:00:00:00:05:0f
dpni.16               UNCONNECTED           00:00:00:00:05:10

Create DPDMUX objects with downlinks and uplinks

restool dpdmux create --num-ifs=2 --method DPDMUX_METHOD_MAC --max-dmat-
entries=8 --max-mc-groups=8 --manip=DPDMUX_MANIP_NONE
restool dpdmux create --num-ifs=2 --method DPDMUX_METHOD_MAC --max-dmat-
entries=8 --max-mc-groups=8 --manip=DPDMUX_MANIP_NONE
restool dpdmux create --num-ifs=2 --method DPDMUX_METHOD_MAC --max-dmat-
entries=8 --max-mc-groups=8 --manip=DPDMUX_MANIP_NONE
restool dpdmux create --num-ifs=2 --method DPDMUX_METHOD_MAC --max-dmat-
entries=8 --max-mc-groups=8 --manip=DPDMUX_MANIP_NONE

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
918 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Create uplink connections

restool dprc connect dprc.1 --endpoint1=dpdmux.0.0 --endpoint2=dpmac.1
restool dprc connect dprc.1 --endpoint1=dpdmux.1.0 --endpoint2=dpmac.2
restool dprc connect dprc.1 --endpoint1=dpdmux.2.0 --endpoint2=dpmac.3
restool dprc connect dprc.1 --endpoint1=dpdmux.3.0 --endpoint2=dpmac.4

Create downlink connections for docker0

restool dprc connect dprc.1 --endpoint1=dpni.1 --endpoint2=dpdmux.0.1
restool dprc connect dprc.1 --endpoint1=dpni.2 --endpoint2=dpdmux.1.1
restool dprc connect dprc.1 --endpoint1=dpni.3 --endpoint2=dpdmux.2.1
restool dprc connect dprc.1 --endpoint1=dpni.4 --endpoint2=dpdmux.3.1

Create downlink connections for docker1

restool dprc connect dprc.1 --endpoint1=dpni.5 --endpoint2=dpdmux.0.2
restool dprc connect dprc.1 --endpoint1=dpni.6 --endpoint2=dpdmux.1.2
restool dprc connect dprc.1 --endpoint1=dpni.7 --endpoint2=dpdmux.2.2
restool dprc connect dprc.1 --endpoint1=dpni.8 --endpoint2=dpdmux.3.2

Note:  The above commands are for 1G test. In case 10G port is to be used append the above commands to
create uplink and downlink with --committed-rate=10000 --max-rate=10000.

Running DPDK L2fwd on docker0

export DPRC="dprc.2"
export VFIO_NO=`readlink /sys/bus/fsl-mc/devices/$DPRC/iommu_group | xargs
 basename`
docker run --privileged --interactive --env DPRC=$DPRC --env LD_LIBRARY_PATH=/
usr/lib --device=/dev/vfio/vfio:/dev/vfio/vfio --device=/dev/vfio/$VFIO_NO:/dev/
vfio/$VFIO_NO --name=docker0 --hostname=docker0 --detach --volume=/usr:/usr --
volume=/sys:/sys --volume=/dev:/dev ubuntu:latest
docker exec -it docker0 bash
l2fwd -c 0xF0 -n 1 --file-prefix=docker0 --socket-mem=2048 -- -p 0x0F -q 1

Running DPDK L2fwd on docker1

export DPRC="dprc.3"
export VFIO_NO=`readlink /sys/bus/fsl-mc/devices/$DPRC/iommu_group | xargs
 basename`
docker run --privileged --interactive --env DPRC=$DPRC --env LD_LIBRARY_PATH=/
usr/lib --device=/dev/vfio/vfio:/dev/vfio/vfio --device=/dev/vfio/$VFIO_NO:/dev/
vfio/$VFIO_NO --name=docker1 --hostname=docker1 --detach --volume=/usr:/usr --
volume=/sys:/sys --volume=/dev:/dev ubuntu:latest
docker exec -it docker1 bash
l2fwd -c 0xF0 -n 1 --file-prefix=docker1 --socket-mem=2048 -- -p 0x0F -q 1

Note:  The above set of commands is for reference on LS2088A. On LS1088 DPDMUX object supports up to
4 downlinks (dpni's). These can be assigned to a docker instance as per requirement. For example, one use
case would assign two dpni's in each of the two docker container instances however other use case would be to
assign one dpni to each of four docker instances.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
919 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

8.2.7.3.6  Example Configuration for 2 Docker Instances: Using DPSW

Common Container settings:

export MAX_QOS=8
export DPNI_NORMAL_BUF=1

Create container for docker0:

./dynamic_dpl.sh dpni -b 00:00:00:00:05:00
##################### Container  dprc.2  is created ####################
Container dprc.2 have following resources :=>
 * 16 DPBP
 * 8 DPCON
 * 8 DPSECI
 * 1 DPNI
 * 10 DPIO
 * 2 DPCI
######################### Configured Interfaces #########################
Interface Name        Endpoint              Mac Address
==============        ========              ==================
dpni.1                UNCONNECTED           00:00:00:00:05:01

Create container for docker1:

./dynamic_dpl.sh dpni -b 00:00:00:00:05:01
##################### Container  dprc.3  is created ####################
Container dprc.3 have following resources :=>
 * 16 DPBP
 * 8 DPCON
 * 8 DPSECI
 * 1 DPNI
 * 10 DPIO
 * 2 DPCI
######################### Configured Interfaces #########################
Interface Name        Endpoint              Mac Address
==============        ========              ==================
dpni.2                UNCONNECTED           00:00:00:00:05:02

Create DPSW objects

restool dpsw create --num-ifs=3
restool dprc connect dprc.1 --endpoint1=dpsw.0.0 --endpoint2=dpmac.1

Create downlink connections for docker0

restool dprc connect dprc.1 --endpoint1=dpni.1 --endpoint2=dpsw.0.1

Create downlink connections for docker1

restool dprc connect dprc.1 --endpoint1=dpni.2 --endpoint2=dpsw.0.2

Running DPDK L2fwd on docker0

export DPRC="dprc.2"
export VFIO_NO=`readlink /sys/bus/fsl-mc/devices/$DPRC/iommu_group | xargs
 basename`

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
920 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

docker run --privileged --interactive --env DPRC=$DPRC --env LD_LIBRARY_PATH=/
usr/lib --device=/dev/vfio/vfio:/dev/vfio/vfio --device=/dev/vfio/$VFIO_NO:/dev/
vfio/$VFIO_NO --name=docker0 --hostname=docker0 --detach --volume=/usr:/usr --
volume=/sys:/sys --volume=/dev:/dev ubuntu:18.04
docker exec -it docker0 bash
cd /usr/bin
dpdk-l2fwd -c 0x04 -n 1 --file-prefix=docker0 --socket-mem=2048 -- -p 0x01 -q 1

Running DPDK L2fwd on docker1

export DPRC="dprc.3"
export VFIO_NO=`readlink /sys/bus/fsl-mc/devices/$DPRC/iommu_group | xargs
 basename`
docker run --privileged --interactive --env DPRC=$DPRC --env LD_LIBRARY_PATH=/
usr/lib --device=/dev/vfio/vfio:/dev/vfio/vfio --device=/dev/vfio/$VFIO_NO:/dev/
vfio/$VFIO_NO --name=docker1 --hostname=docker1 --detach --volume=/usr:/usr --
volume=/sys:/sys --volume=/dev:/dev ubuntu:18.04
docker exec -it docker1 bash
cd /usr/bin
dpdk-l2fwd -c 0x08 -n 1 --file-prefix=docker1 --socket-mem=2048 -- -p 0x01 -q 1

Note:  The above commands are for LX2160 and LS2088A. LS1088A doesn't support DPSW object.

8.2.8  DPDK DPAA2 flow control

To control the DPDK DPAA2 packets flow, prepare the soft parser image in the host and then test the flow
control using the testpmd application.

Note:  For more information about the DPAA2 flow control, contact your local NXP field applications engineer
(FAE) or sales representative.

Figure 200 shows flow control in DPDK DPAA2

Filter

TC-0

QoS

TC-1

TC-2

TC-3

Incoming
frames from
DPNI
connected to
DPMAC or
another object

Select
TC(Group)

RSS

Rx Queues

RSS

If neither RSS nor FS are
set,
all packets go to queue 0

Select flow
directed
to Rx queue

Filter by
MAC/VLA
N

MAC:
04-af-01-00-07-0c

0
1
2
3

0
1
2
3

0
1
2
3

0
1
2
3

Figure 200. DPDK DPAA2 flow control
UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
921 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

8.2.8.1  Preparing soft parser image

The default flow distribution of DPDK DPAA2 is RSS on TC0.

Note:

• export DPAA2_FLOW_CONTROL_LOG=1 is used to check extracts and rules.
• The default missed action of flow control is to drop the packets.
• export DPAA2_FLOW_CONTROL_MISS_FLOW=flow_id is used to receive missed packets from flow with

flow ID specified.
• To support vxlan, eCPRI and ROCEV2 flows, the soft parser image should be prelodaded in u-boot.

To prepare the soft parser image and load it in to u-boot, perform the following steps:

1. To generate the soft parser image in the host and identify the evolved Common Public Radio Interface
(eCPRI) protocol, run the following commands:

//Build generator tool in nxp/dpaa2:
gcc gen_sp_blob.c -o gen_sp_blob

//Generate soft parser image(sp.blob):
./gen_sp_blob -o sp.blob

//Default destination port of UDP followed by eCPRI is 0x1234,
//define new value by option: "--ecpri-port" or "-p":
//Example to generate soft parser image(sp.blob) to identify udp/eCPRI by udp
 destination port 0x5678:
./gen_sp_blob -p 0x5678 -o sp.blob

2. To load the generated soft parser image sp.blob in to the hardware in u-boot, run the following
commands:

=> tftp 0xac000000 sp.blob
=> fsl_mc apply spb 0xac00000

8.2.8.2  Testing flow control in testpmd

To test the DPDK flow control in the testpmd mode, run the following commands:

#Create dpni with 8 TCs, each TC has maximum 8 queues and 8 flow steering
 entries.
      export MAX_QUEUES=8
      export FS_ENTRIES=8
      export MAX_TCS=8
      source dynamic_dpl.sh dpmac.x

#Start dpdk-testpmd with 16 RXQs and 2 TXQs, RXQ0~RXQ7 are in TC0 and rest RXQs
 are in TC1..
      ./dpdk-testpmd  --lcores='0,1,2,3,4@0' --main-lcore 0 -n 1 -- -i --nb-
cores=4 --portmask=0x1 --nb-ports=1 --forward-mode=io --rxq=16 --txq=2

8.2.8.2.1  Testing ingress traffic

To test the same ingress traffic with multiple flows in TC0, run the following commands:

  #IPv4/UDP packets go to RXQ4, this flow is top priority.
      testpmd> flow create 0 group 0 priority 0 ingress pattern ipv4 / udp / end
 actions queue index 4 / end

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
922 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

  #IPv4 packets whose source IP address is 10.10.10.3 go to RXQ0, this flow is
 middle priority.
      testpmd> flow create 0 group 0 priority 1 ingress pattern ipv4 src is
 10.10.10.3 / end actions queue index 1 / end
  #Ethernet packets whose source mac address is 11:22:33:44:55:66 go to RXQ2,
 this flow is lowest priority.
      testpmd> flow create 0 group 0 priority 2 ingress pattern eth src is
 11:22:33:44:55:66 / end actions queue index 2 / end
  #Start the port
      testpmd> start

  #Inject the IPv4/UDP packets with 10.10.10.3 source IP and 11:22:33:44:55:66
 source mac.
  #Check the packet goes to the expected queue(RXQ4) by stop command.
     testpmd> stop
  #Remove the top priority flow and inject the same packet above.
     testpmd> flow destroy 0 rule 0
     testpmd> start
  #Check the packet go to the expected queue(RXQ1) by stop command.
     testpmd> stop
  #Remove the middle priority flow and inject the same packet above.
     testpmd> flow destroy 0 rule 1
     testpmd> start
  #Check the packet goes to the expected queue(RXQ2) by stop command.
     testpmd> stop
     testpmd> flow destroy 0 rule 2

8.2.8.2.2  Testing flow with RAW and standard protocols

To test the flow with RAW, combined with standard protocols, run the following commands:

  #Create flow with 11:22:33:44:55:66 ethernet source address and pattern
 0xbbbbbbbb located at offset 42.
     testpmd> flow create 0 group 0 priority 2 ingress pattern eth src is
 11:22:33:44:55:66 / raw relative is 0 search is 0 offset is 42 limit is 0
 pattern_hex spec bbbbbbbb pattern_hex mask ffffffff / end actions queue index
 1 / end
     testpmd> start
  #Inject UDP packet with 11:22:33:44:55:66 ETH src and 10.10.10.3 IP src and
 0xbbbbbbbb user data following UDP header.
  #Check the packet goes to the expected queue(RXQ1) by stop command.
     testpmd> stop

  #Create generic IPV4 raw flow with 10.10.10.3 IPV4 source address, extract
 from offset 26.
     testpmd> flow create 0 group 0 priority 1 ingress pattern raw relative is 0
 search is 0 offset is 26 limit is 0 pattern_hex spec 0a0a0a03 pattern_hex mask
 ffffffff / end actions queue index 2 / end
     testpmd> start
  #Inject same packet as above.
  #Check the packet goes to the expected queue(RXQ2) by stop command.
     testpmd> stop

  #Create vlan IPV4 raw flow with 10.10.10.3 IPV4 source address, extract from
 offset 12.
     testpmd> flow create 0 group 0 priority 0 ingress pattern raw relative is
 0 search is 0 offset is 12 limit is 0 pattern_hex spec 8100 pattern_hex mask
 ffff / end actions queue index 3 / end
     testpmd> start

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
923 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

  #Inject vlan IPV4 packet with 10.10.10.3 IP src.
  #Check the packet goes to the expected queue(RXQ3) by stop command.
     testpmd> stop
     testpmd> flow destroy 0 rule 0
     testpmd> flow destroy 0 rule 1
     testpmd> flow destroy 0 rule 2

8.2.8.2.3  Testing VXLAN flows

The soft parser extracts the Virtual eXtensible Local-Area Network (VXLAN) fields to identify the VXLAN traffic.

To test the VXLAN flows with soft parser, run the following commands:

  #Create multiple types of vXLan flow whose vni is 2.
     testpmd> flow create 0 group 0 priority 0 ingress pattern vxlan vni is 2 /
 end actions pf / queue index 2 / end
     testpmd> flow create 0 group 0 priority 1 ingress pattern ipv4 dst is
 10.10.10.4 / vxlan vni is 2 / eth dst is 01:02:03:04:05:06 / end actions pf /
 queue index 3 / end
     testpmd> start
  #Inject vxlan packet whose outer IPv4 dst address is 10.10.10.4, vni is 2 and
 inner ethernet dst address is 01:02:03:04:05:06.
  #Check if the packet goes to the expected queue(RXQ2) by stop command.
     testpmd> stop
  #Remove the higher priority flow:
     testpmd> flow destroy 0 rule 0
     testpmd> start
  #Inject above packet again and check if the packet goes to the expected
 queue(RXQ3) by stop command.
     testpmd> stop
     testpmd> flow destroy 0 rule 1

8.2.8.2.4  Testing eCPRI flow

The soft parser extracts eCPRI fields to identify the eCPRI traffic.

To test the eCPRI flow with soft parser, run the following commands:

  #Create ecpri flow whose message type is I/Q data and physical channel is
 0x000a.
     testpmd> flow create 0 group 0 priority 0 ingress pattern ecpri common type
 iq_data pc_id is 0x000a / end actions queue index 3 / end
  #Inject ecpri over ethernet packet whose message type is I/Q data and physical
 channel is 0x000a.
  #Inject ecpri over vlan packet whose message type is I/Q data and physical
 channel is 0x000a.
  #Inject ecpri over udp packet whose message type is I/Q data and physical
 channel is 0x000a. The UDP dst port is identical to the number specfied by soft
 parser generator.
  #Check if all these packets go to the expected queue(RXQ3) by stop command.
     testpmd> stop
     testpmd> flow destroy 0 rule 0

8.2.8.2.5  Testing ROCEv2 flow

The soft parser extracts ROCEv2 fields to identify the ROCEv2 traffic.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
924 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

To test the ROCEv2 flow with soft parser, run the following commands:

  #Create ROCEv2 flow whose pair queue ID is 0x123456.
     testpmd> flow create 0 group 0 priority 1 ingress pattern rocev2 qp is
 0x123456 / end actions queue index 3 / end
  #Inject rocev2 over UDP whose pair queue ID is 0x123456.
  #Check if all these packets go to the expected queue(RXQ3) by stop command.
     testpmd> stop
     testpmd> flow destroy 0 rule 0

8.2.8.2.6  Testing flow control on multiple TCs

To test the flow control on multiple TCs, run the following commands:

  #Add flows into TC0 and TC1, TC0 has higher priority.
      #IPv4/UDP packets go to RXQ4, this flow is top priority.
      testpmd> flow create 0 group 0 priority 1 ingress pattern ipv4 / udp / end
 actions queue index 4 / end
      #IPv4 packets whose source IP address is 10.10.10.3 go to RXQ0, this flow
 is middle priority.
      testpmd> flow create 0 group 0 priority 2 ingress pattern ipv4 src is
 10.10.10.3 / end actions queue index 1 / end
      #Ethernet packets whose source mac address is 11:22:33:44:55:66 go to
 RXQ2, this flow is lowest priority.
      testpmd> flow create 0 group 1 priority 0 ingress pattern eth src is
 11:22:33:44:55:66 / end actions queue index 12 / end
  #Start the port
      testpmd> start

  #Inject the IPv4/UDP packet with 10.10.10.3 source IP and 11:22:33:44:55:66
 source mac.
  #Check the packet go to the expected queue(RXQ4) by stop command.
     testpmd> stop
  #Remove the top priority flow and inject the same packet above.
     testpmd> flow destroy 0 rule 0
     testpmd> start
  #Check the packet goes to the expected queue(RXQ1) by stop command.
     testpmd> stop
  #Remove the middle priority flow and inject the same packet above.
     testpmd> flow destroy 0 rule 1
     testpmd> start
  #Check the packet goes to the expected queue(RXQ12) by stop command.
     testpmd> stop
  #Remove the lowest priority flow and inject the same packet above.
     testpmd> flow destroy 0 rule 2
     testpmd> start
  #Check the packet goes to the default queue(specified by
 DPAA2_FLOW_CONTROL_MISS_FLOW) or dropped by stop command.
     testpmd> stop

8.2.9  PCI Endpoint Framework

The NXP DPDK intelligent network interface card (iNIC) framework provides a basic level of functionality on
which a flexible network solution can be built. It can support the growing demands in the intelligent network
acceleration and application offload.

The iNIC framework includes the following components:

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
925 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

• iNIC card - LX21xx based board with a PCIe endpoint interface
• iNIC endpoint software - Deployed on the iNIC card includes iNIC and customer offload applications
• iNIC X86 software - Deployed on the X86 or Arm host and works with the iNIC card to provide the x86/ARM

host the Ethernet interfaces by the kernel module, DPDK, or pktgen-DPDK

Endpoint

RootComplex
(X86 or 
Arm64)

PCIe BUS

VM

PFx/VFx PFy/VFy

DPDK

DPDK

RC PMD driver

DPDK applications

Kernel

User-
space

UIO/VFIO

PCIe RC bus driver

VM

PCIe RC bus driver

PCIe-net driver Kernel

User-
space

User Application

PCIe EP bus driver

EP PMD driver EP PMD driver

Figure 201. PCI Endpoint

8.2.9.1  PCIe EndPoint implementation in DPDK

The following figures describe the PCIe EndPoint implementation in DPDK.

NXP support

DPDK.org

Customer

IO & Acceleration Kernel/linux

LSXINIC(RC)

EP PMD(SRIOV 
and virtIO)

MC

DPAA1/2

PMD

DPDK Applications

RC PMD(SRIOV)

DPDK API

LSXINIC_VDPA(RC)
BUS

DPAA1

UIO

PCI-EP

PCI

RAW

CMDIF

QDMA
EP framework

Figure 202. PCIe EndPoint implementation in DPDK

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
926 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Figure 203. PCIe data flow: RC -> EP

Figure 204. PCIe data flow: EP -> RC

8.2.9.2  DU offload example

The below figure shows the DU offload example.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
927 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Figure 205. DU offload example

8.2.9.3  Usages

8.2.9.3.1  DPDK Endpoint build

export CROSS=aarch64-linux-gnu-
meson arm64-build --cross-file config/arm/arm64_dpaa_linux_gcc -Dc_args="-
Werror" -Dexamples=port_fwd -Dprefix=/Your/install/folder
ninja -C arm64-build install
#Target image:
#Endpoint example image: "arm64-build/examples/dpdk-port_fwd".

8.2.9.3.2  DPDK Root Complex build

#X86_64:

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
928 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

meson x86_64-build -Denable_kmods=true -Dexamples=port_fwd -Dprefix=/Your/
install/folder
ninja -C x86_64-build install
#Target images:
#Root Complex kernel driver: "x86_64-build/kernel/linux/lsxinic/lsinic_kmod.ko".
#Root Complex DPDK UIO driver: "x86_64-build/kernel/linux/igb_uio/igb_uio.ko".
#Root Complex DPDK image: "x86_64-build/examples/dpdk-port_fwd".

#NXP ARM:
Based on Endpoint build, add kernel module build. This configuration and target
 dpdk image can be used for both EP/RC.
meson arm64-build --cross-file config/arm/arm64_dpaa_linux_gcc -Dc_args="-
Werror" -Denable_kmods=true -Dkernel_dir=/Your/kernel/folder -Dexamples=port_fwd
 -Dprefix=/Your/install/folder
ninja -C arm64-build install
#Target image:
#Root Complex kernel driver: "arm64-build/kernel/linux/lsxinic/lsinic_kmod.ko".
#Root Complex DPDK UIO driver: "arm64-build/kernel/linux/igb_uio/igb_uio.ko".
#Root Complex DPDK image: "arm64-build/examples/dpdk-port_fwd".

8.2.9.3.3  Basic test setup

 
         +---port_fwd---+
         |(Kernel ipfwd)|
         |              |
         |              |
    +----------+    +----------+
    | RC PF0   |    |  RC PF1  |
    +-----|----+    +-----|----+
----------|----PCIe-BUS---|----------
    +-----|----+    +-----|----+
    | EP PF0   |    | EP PF1   |
    +----------+    +----------+
          |               |
          |               |
          | +-----------+ |
           -| port_fwd  |-
          | +-----------+ |
          |               |
    +-----|----+    +-----|---+
    | DPNIx    |    | DPNIy   |
    +----------+    +---------+

8.2.9.3.3.1  Start Endpoint

export ENABLE_PL_BIT=1
export DPRC=dprc.2
export DPDMAI_COUNT=32
source ./dynamic_dpl.sh dpmac.5 dpmac.6
#forward traffic from dpmac5 to PF0
export PORT0_FWD=2
#forward traffic from PF0 to dpmac5
export PORT2_FWD=0
#forward traffic from dpmac6 to PF1
export PORT1_FWD=3
#forward traffic from PF1 to dpmac6

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
929 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

export PORT3_FWD=1
#single core example:
export P0_DIST_1='(0,0,2)'
export P1_DIST_1='(1,0,2)'
export P2_DIST_1='(2,0,2)'
export P3_DIST_1='(3,0,2)'
./dpdk-port_fwd -c 0x4 -n 1 -- -p 0xf --config="$P0_DIST_1,$P1_DIST_1,
$P2_DIST_1,$P3_DIST_1"

8.2.9.3.3.2  Start Root Complex

#For kernel driver:
insmod lsinic_kmod.ko

#For DPDK:
#Larger continue huge page setup to improve performance
echo 64 > /sys/kernel/mm/hugepages/hugepages-1048576kB/nr_hugepages
mount -t hugetlbfs hugetlbfs /mnt/hugepages -o "pagesize=1G"

#Option1: Igbuio mode:
insmod igb_uio.ko
echo "0x1957 0x8d80" > /sys/bus/pci/drivers/igb_uio/new_id

#Option2: VFIO mode:
dpdk-devbind.py -b vfio-pci 0000:06:00.0
dpdk-devbind.py -b vfio-pci 0000:06:00.1
echo "0x1957 0x8d80" > /sys/bus/pci/drivers/vfio-pci/new_id

#forward traffic from PF0 to PF1
export PORT0_FWD=1
#forward traffic from PF1 to PF0
export PORT1_FWD=0
#single core example:
export P0_DIST_1='(0,0,2)'
export P1_DIST_1='(1,0,2)'
./dpdk-port_fwd -c 0x4 -n 1 -- -p 0x3 --config="$P0_DIST_1,$P1_DIST_1"

8.2.9.4  Small packets across PCIe performance improvement on Endpoint

i) EP/RC build with additional meson configure parameter: "-
Dlsinic_pkt_merge_across_pcie=true"
ii) Run dpdk on Endpoint side:
#Following enviroments are set in EP.
#Merge burst small packets to large packet.
export LSINIC_MERGE_PACKETS=1
#Configure DPAA2 port as recycle port to merge small packets for PCIEx_PFy or
 PCIEx_PFy_VFz.
#This DPAA2 port may be one dpni self or one single lan serdes port.
export LSXINIC_PCIEx_PFy_HW_MERGE=portid
export LSXINIC_PCIEx_PFy_VFz_HW_MERGE=portid
#Configure DPAA2 port as recycle port to split packet merged with small packets
 from PCIe host.
#This DPAA2 recycle port will redirect traffic to DPAA2 MAC according to rule
 applied.
export LSXINIC_PCIEx_PFy_HW_SPLIT=portid
export LSXINIC_PCIEx_PFy_VFz_HW_SPLIT=portid
#Direct traffic from PCIE EP PMD port to DPAA2 port in egress direction.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
930 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

export LSXINIC_PCIEx_PFy_EGRESS=portid
export LSXINIC_PCIEx_PFy_VFz_EGRESS=portid

8.2.9.5  Multiple process

Multiple EP processes are used to communicate with fast path (host DPDK) and slow path (host kernel)
respectively. Each process is a standalone process and has its own DPAA2 resources/memory partition.

      +---------------+                 +------------+
      |RC kernel stack|                -|  port_fwd  |-
      +---------------+               | +------------+ |
              |                       |                |
        +----------+            +---------+     +----------+
        | RC PF0   |            | RC PF1  |     | RC PF1VF0|
        +-----|----+            +-----|---+     +------|---+
    ----------|-------PCIe-BUS-----------------------------------
        +-----|----+            +-----|---+     +------|---+
        | EP PF0   |            |EP PF1   |     |EP PF1VF0 |
        +----------+            +---------+     +----------+
              |                       |                |
        +-----------+                 |  +-----------+ |
        | port_fwd1 |                  - | port_fwd2 |-
        +-----------+                 |  +-----------+ |
              |                       |                |
        +-----|-----+           +-----|---+        +-------+
        |DPNIa(DPDK)|           | DPNIc   |        | DPNIc |
        +-----------+           +---------+        +-------+
              |
        +-------------+
        |DPNIb(Kernel)|
        +-------------+
              |
       +---------------+
       |EP kernel stack|
       +---------------+

#First EP process for slow path:
export ENABLE_PL_BIT=1
export PORT1_FWD=0
export PORT0_FWD=1
export DPDMAI_COUNT=10
export DPIO_COUNT=10
export DPRC=dprc.2
export P0_DIST_1='(0,0,2)'
export P1_DIST_1='(1,0,2)'
export LSX_PCIE2_PF1=0
export LSINIC_PCIE2_PF0_DEVICE_ID=0x8d90
source ./dynamic_dpl.sh dpni
#Assume dpni.3 is configure by dynamic_dpl.sh
ls-addni dpni.3
#Assume eth3 is kernel interface connected to dpni.3
ifconfig eth3 1.1.1.3 up
./dpdk-port_fwd -c 0x4 -n 1 -- -p 0x3 --config="$P0_DIST_1,$P1_DIST_1"

#Create RC kernel interface for slow path
echo 1 > /sys/bus/pci/devices/0000\:06\:00.0/remove
echo 1 > /sys/bus/pci/devices/0000\:06\:00.1/remove

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
931 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

echo 1 > /sys/bus/pci/rescan
insmod ./lsinic_kmod.ko lsinic_dev_id=0x8d90
#Assume enp6s0f0 is kernel interface of PF0
ifconfig enp6s0f0 1.1.1.1 up
#Check link between RC kernel and EP kernel
ping 1.1.1.3

#Second EP process for fast path
export ENABLE_PL_BIT=1
export DPDMAI_COUNT=10
export DPIO_COUNT=10
export DPRC=dprc.3
export PORT0_FWD=2
export PORT1_FWD=3
export PORT2_FWD=0
export PORT3_FWD=1
export P0_DIST_1='(0,0,4)'
export P1_DIST_1='(1,0,4)'
export P2_DIST_1='(2,0,4)'
export P3_DIST_1='(3,0,4)'
export LSX_PCIE2_PF0=0
export LSX_PCIE2_PF1_VF0=1
export LSINIC_PCIE2_PF1_DEVICE_ID=0x8da0
export LSINIC_PCIE2_PF1_VF_DEVICE_ID=0x8da0
export LSX_PCIE2_CLEAR_WINDOWS=0
source ./dynamic_dpl.sh dpmac.5 dpmac.6
./dpdk-port_fwd -c 0x10 -n 1 --file-prefix rte1 -- -p 0xf --config="$P0_DIST_1,
$P1_DIST_1,$P2_DIST_1,$P3_DIST_1"

#RC DPDK fast path for PF1 and PF1VF0
echo 64 > /sys/kernel/mm/hugepages/hugepages-1048576kB/nr_hugepages
mount -t hugetlbfs hugetlbfs /mnt/hugepages -o "pagesize=1G"
export P0_DIST_1='(0,0,2)'
export P1_DIST_1='(1,0,2)'
export PORT0_FWD=1
export PORT1_FWD=0
echo 1 > /sys/bus/pci/devices/0000\:06\:00.1/remove
echo 1 > /sys/bus/pci/rescan
insmod ./igb_uio.ko
echo "0x1957 0x8da0" > /sys/bus/pci/drivers/igb_uio/new_id
echo 1 > /sys/bus/pci/devices/0000\:06\:00.1/max_vfs
./dpdk-port_fwd -c 0x4 -n 1 -- -p 0x3 --config="$P0_DIST_1,$P1_DIST_1"

8.2.9.6  Primary process

A primary process is used to handle PCIe EP PMD and a secondary process is used to handle reset devices
(DPAA2, BBDEV, and so on).

 
         +-------port_fwd-----+
         |                    |
         |                    |
         |                    |
    +----------+            +----------+
    | RC PF0   |            |RC PF1    |
    +-----|----+            +-----|----+
----------|--------PCIe-BUS-------|-----------
    +-----|----+            +-----|----+
    | EP PF0   |            |EP PF1    |

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
932 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

    +----------+            +----------+
          |                         |
          |                         |
          | +--------------------+  |
           -| port_fwd_primary   |--
          | +--------------------+  |
       rte_ring                 rte_ring
          | +--------------------+  |
           -| port_fwd_secondary |--
          | +--------------------+  |
          |                         |
    +-----|----+              +-----|---+
    | DPNIa    |              | DPNIb   |
    +----------+              +---------+

#Primary proxy handles PCIe EP PMD ports only:
export DPIO_COUNT=10
export ENABLE_PL_BIT=1
export DPDMAI_COUNT=10
export DPMCP_COUNT=2
export DPRC=dprc.2
export P2_DIST_1='(2,0,2)'
export P3_DIST_1='(3,0,2)'
export PORT_FWD_RING_FWD=1
source ./dynamic_dpl.sh dpmac.5 dpmac.6
./dpdk-port_fwd -c 0x4 -b fslmc:dpio.22 -b fslmc:dpio.23 -b fslmc:dpio.24 -b
 fslmc:dpio.25 -b fslmc:dpmcp.38 -n 1 -- -p 0xc --config="$P2_DIST_1,$P3_DIST_1"

#Secondary process handles dpmac ports only:
export DPRC=dprc.2
export P0_DIST_1='(0,0,8)'
export P1_DIST_1='(1,0,8)'
export PORT_FWD_RING_FWD=1
./dpdk-port_fwd -c 0x100 -b fslmc:dpio.16 -b fslmc:dpio.17 -b fslmc:dpio.18 -b
 fslmc:dpio.19 -b fslmc:dpio.20 -b fslmc:dpio.21 -b fslmc:dpmcp.37 -n 1 --proc-
type=secondary -- -p 0x3 --config="$P0_DIST_1,$P1_DIST_1"

8.2.9.7  Secondary process

A secondary process is used to handle PCIe EP PMD and a primary process is used to handle reset devices
(DPAA2, BBDEV, and so on).

             +-------port_fwd-----+
             |                    |
             |                    |
             |                    |
        +----------+            +----------+
        | RC PF0   |            |RC PF1    |
        +-----|----+            +-----|----+
    ----------|--------PCIe-BUS-------|-----------
        +-----|----+            +-----|----+
        | EP PF0   |            |EP PF1    |
        +----------+            +----------+
              |                         |
              |                         |
              | +--------------------+  |
               -| port_fwd_secondary |--

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
933 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

              | +--------------------+  |
           rte_ring                 rte_ring
              | +--------------------+  |
               -| port_fwd_primary   |--
              | +--------------------+  |
              |                         |
        +-----|----+              +-----|---+
        | DPNIa    |              | DPNIb   |
        +----------+              +---------+

#Primary process handles dpmac ports only:
export DPIO_COUNT=10
export ENABLE_PL_BIT=1
export DPDMAI_COUNT=10
export DPMCP_COUNT=2
export DPRC=dprc.2
export P0_DIST_1='(0,0,2)'
export P1_DIST_1='(1,0,2)'
export PORT_FWD_RING_FWD=1
source ./dynamic_dpl.sh dpmac.5 dpmac.6
./dpdk-port_fwd -c 0x4 -b fslmc:dpio.22 -b fslmc:dpio.23 -b fslmc:dpio.24 -b
 fslmc:dpio.25 -b fslmc:dpmcp.38 -n 1 -- -p 0x3 --config="$P0_DIST_1,$P1_DIST_1"

#Secondary proxy handles PCIe EP PMD ports only:
export DPRC=dprc.2
export P2_DIST_1='(2,0,8)'
export P3_DIST_1='(3,0,8)'
export PORT_FWD_RING_FWD=1
./dpdk-port_fwd -c 0x100 -b fslmc:dpio.16 -b fslmc:dpio.17 -b fslmc:dpio.18 -b
 fslmc:dpio.19 -b fslmc:dpio.20 -b fslmc:dpio.21 -b fslmc:dpmcp.37 -n 1 --proc-
type=secondary -- -p 0xc --config="$P2_DIST_1,$P3_DIST_1"

8.2.9.8  PCIe EP/RC PMD simulator setup and traffic measurement on single board

This is used to develop, debug, and tune the PCIe EP framework if the PCIe EP environment is insufficient.

         +-----port_fwd----+
         | (Secondary RC)  |
         |                 |
         |                 |
    +----------+    +----------+
    | RC PF0   |    |  RC PF1  |
    +-----|----+    +------|---+
----------|Shared Huge TLB |--------
    +-----|----+    +------|---+
    | EP PF0   |    | EP PF1   |
    +----------+    +----------+
          |                |
          |                |
          | +------------+ |
           -|  port_fwd  |-
          | |(Primary EP)| |
          | +------------+ |
          |                |
    +-----|----+    +------|--+
    | DPNIx    |    | DPNIy   |

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
934 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

    +----------+    +---------+

#Primary EP process
export DPIO_COUNT=10
export ENABLE_PL_BIT=1
export DPDMAI_COUNT=10
export DPMCP_COUNT=2
export DPRC=dprc.2
export PORT0_FWD=2
export PORT2_FWD=0
export PORT1_FWD=3
export PORT3_FWD=1
export P0_DIST_1='(0,0,2)'
export P1_DIST_1='(1,0,2)'
export P2_DIST_1='(2,0,2)'
export P3_DIST_1='(3,0,2)'
export LSX_PCIE2_SIM=1
source ./dynamic_dpl.sh dpmac.5 dpmac.6
./dpdk-port_fwd -c 0x4 -n 1 --proc-type=primary -- -p 0xf --config="$P0_DIST_1,
$P1_DIST_1,$P2_DIST_1,$P3_DIST_1"

#Secondary RC process
export P0_DIST_1='(0,0,8)'
export P1_DIST_1='(1,0,8)'
export LSINIC_RC_SIM=1
export LSINIC_RC_PROC_SECONDARY_STANDALONE=1
export PORT_FWD_SECONDARY_STANDALONE=1
export PORT0_FWD=1
export PORT1_FWD=0
export SYSFS_PCI_DEVICES=/tmp
./dpdk-port_fwd -c 0x100 -n 1 --proc-type=secondary -- -p 0x3 --
config="$P0_DIST_1,$P1_DIST_1"

8.2.9.9  L1-TB (EP) / L2-SDB (RC) transfer across PCIe

EP(L1):
export ENABLE_PL_BIT=1
export DPDMAI_COUNT=32
export DPRC=dprc.2
source /usr/local/dpdk/dpaa2/dynamic_dpl.sh dpni
export LSINIC_RC_RECV_SEGMENT_OFFLOAD=1
export LSINIC_RC_XFER_SEGMENT_OFFLOAD=1
export L1_L2_PERF_STATISTICS=1
./dpdk-l1_l2_comm -c 0x2 -n 1 -- --port-nm="lsxep_nxp_2_pf0"

RC(L2):
echo 1 > /sys/bus/pci/devices/0001\:01\:00.0/remove
echo 1 > /sys/bus/pci/devices/0001\:01\:00.1/remove
echo 1 > /sys/bus/pci/rescan
echo 2 > /sys/kernel/mm/hugepages/hugepages-1048576kB/nr_hugepages
mount -t hugetlbfs hugetlbfs /mnt/hugepages -o "pagesize=1G"
export L1_L2_PERF_STATISTICS=1
insmod ./igb_uio.ko
echo "0x1957 0x8d80" > /sys/bus/pci/drivers/igb_uio/new_id
./dpdk-l1_l2_comm -c 0x2 -n 1 -- --port-nm="0001:01:00.0" --layer='2'

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
935 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

8.2.10  Known limitations and future work

8.2.10.1  Generic limitations

• Not all functionalities supported by DPDK framework have been implemented by PPFE, ENETC, DPAA1,
and DPAA2 drivers (PMDs). For list of supported features, refer PPFE: Supported DPDK Features,
Section 8.2.2.5, Section 8.2.2.2, and Section 8.2.2.3.

• Using Core 0 for I/O related work is known to impact performance - whether on host or in VM. Disabling
services or RT prioritization can result in optimal performance but the results are non-deterministic. Affining
Core 0 to I/O should be avoided as much as possible.

• It has been observed that PCI NIC card events can lead to performance drop on certain platforms. The
behavior is non-deterministic across platforms. For peak performance numbers, PCI NIC cards should be
disabled.

• DPDK docker support is currently only available for DPAA2 and DPAA platforms.

8.2.10.2  DPAA1-specific limitations

• Ports assigned to user space cannot be assigned dynamically to kernel space or vice versa.
• Default configuration for DPAA1 platform is to expect execution of FMC tools (see manual) before application

can be run. This adds a constraint on number of queues which would be initialized by application to be exactly
same as the queues which are configured by the FMC tool. In case, incorrect number of queues are used
(lesser than configured by FMC tool), RSS distribution can cause loss of packets or no I/O.

• On LS1043ARDB platform, performance may be lower in case of 6G setup as compared to 10G setup.
• DPDK multiprocess mode (that is, using DPDK secondary processes) is not supported on DPAA1.

8.2.10.3  DPAA2-specific limitations

LS1088A platform has limited CTLU features. This limits the device hardware classification capabilities leading
to reduced number of field combinations for flow matching/classification.

8.2.10.4  PPFE (LS1012)-specific limitations

• While using PPFE in user space, if the kernel mode PFE module is loaded before using the user space mode,
the HIF rings do not get cleaned sometimes and user need to restart the application again until the rings are
cleaned.

• Multiple buffer pools are not supported.
• User-defined RX/TX queue configuration is not supported. Driver configures queue with default attributes only.

8.2.10.5  ENETC (LS1028)-specific limitations

• Link Negotiation and Link status update are not supported
• Switch port should be connected and link should be up before booting linux.

8.2.11  Optimizing DPAA-based DPDK buffer management

Figure 206 shows optimizing the DPAA-based DPDK buffer management with respect to usecase:

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
936 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Figure 206. DPAA-based DPDK buffer management optimization

DPAAx has hardware-based buffer manager, which helps in allocating and freeing buffer while receiving and
transmitting packets in the hardware itself. This saves on the cost for packet allocation and freeing. Also, this
helps to avoid handling of the TX confirmation post transmission.

Figure 207. Termination case (TX only)

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
937 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

In a termination case, the application gets buffer from the DPDK packet mbuf pool and MAC (WRIOP or FMan)
frees the packets back to the HW buffer pool. Note that DPDK packet mbuf pool maintains per core cache of
buffers and it regularly refills the buffers at every cache limit (for example, 512).

Allocating or freeing the buffers may cause extra latency in accessing the hardware. To minimize the latency
impact:

• Spread the HW access cost with reduced and no cache.
– Reduce cache size to 0 or lower number, this will spread the cost of HW access. (for example, 4, 16, 64)

• Implement TX confirmation and let the application manage the buffer free.
• Use delay free mechanism, where application can free the buffer automatically after x time considering that

the buffer is no longer in use.

8.2.12  Troubleshooting

Following are some common steps and suggestions outlined for best performance from DPDK Applications:

1. To obtain best performance, ensure that the boot-up time command-line arguments are similar to below:
For DPAA2:

console=ttyS1,115200 root=/dev/mmcblk0p3 earlycon=uart8250,mmio,0x21c0600
 default_hugepagesz=1024m hugepagesz=1024m hugepages=8 isolcpus=1-7
 iommu.passthrough=1

Note:  In the above, change the isolcpus as required based on the cores which would be used by DPDK
applications.
For LS1046:

console=ttyS0,115200 root=/dev/mmcblk0p3 earlycon=uart8250,mmio,0x21c0500
 default_hugepagesz=1024m hugepagesz=1024m hugepages=4 isolcpus=1-3
 bportals=s0 qportals=s0 iommu.passthrough=1

For LS1043:

console=ttyS0,115200 root=/dev/mmcblk0p3 earlycon=uart8250,mmio,0x21c0500
 default_hugepagesz=20m hugepagesz=2m hugepages=512 isolcpus=1-3 bportals=s0
 qportals=s0 iommu.passthrough=1

isolcpus in the above ensures that only Linux Kernel schedules its threads on Core 0 only. Core 1-x
would be used for DPDK application threads.
Hugepage count defined by hugepages should also be modified to maximum possible so as to allow DPDK
applications to have larger buffers.
Note:  The value of hugepages is dependent on the size of RAM available on the board. Value should be
selected based on specific use case as any memory allocated for hugepage is not usable for Linux Kernel
OS operations.

2. If there is issue with reception of transmission of packets, verify the following points:
a. Ensure that no error has been reported by DPDK application at startup. Generally the output is

descriptive enough for cause of problem.
b. Check the mapping of ports against the physical ports:

• In case of DPAA platform, ensure that the mapping of physical interfaces with DPDK ports is correct.
Refer LS1043ARDB Port Layout or LS1046ARDB Port Layout.

• In case of DPAA2 platform, ensure that correct dpni.X has been used in the dynamic_dpl.sh
script while creating the dprc containers. A common pitfall is to use an incorrect dpni as against the
physical port being used for IO.

c. Ensure that traffic generator to board connectivity is proper. You may run testpmd in tx_only mode to
validate if the packets are going out on specific interfaces. For information about testpmd application
and its supported arguments, see https://doc.dpdk.org/guides-21.11/testpmd_app_ug/index.html.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
938 / 1061

https://doc.dpdk.org/guides-21.11/testpmd_app_ug/index.html


NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

d. Ensure that the traffic generator stream settings are correct and enough streams are being generated
for proper distribution between DPDK application cores.

e. Ensure that the MAC address of stream generated by traffic generator matches that of the dpni port, or
the interface is in promiscuous mode.

3. If the performance is not as expected:
a. Ensure that the stream configuration of the traffic generator is appropriate and that it can generate

multiple streams. In case the streams have all same IP destination and/or source, the distribution of
traffic across multiple cores wouldn't happen.
Note:  For obtaining best performance, it is important to configure the number of streams from packet
generator adequately. If the number of streams generated by packet generator are not adequate, it
would lead to improper distribution across the queues defined (especially in case of multiple queue
setup) and eventually lack of performance.

b. Using standard process tools in Linux, for example ps, top, verify that all the DPDK application threads
have been started (as per application configuration on command-line) and busy looping.

c. For DPAA2, in case any DPAA2 ports are assigned to Linux kernel, assure that the interrupt affinity is
not on any core which is assigned to DPDK. See the Section 8.2.13 for details about how to check and
affine cores to such interrupts.

4. For DPAA1 and DPAA2, certain functionality enhancement and troubleshooting parameters are available.
You can enable them according to your requirements. See https://github.com/NXPmicro/dpdk/blob/21.11-
qoriq/nxp/README for more details.

5. System tuning parameters can be checked with debug_dump.sh script located in /usr/share/dpdk/
directory. You can share the output with support team for further analysis.

6. DPAA2 port status can be checked from restool commands. for example restool dpni info dpni.1
for DPNI stats, restool dpmac info dpmac.1 for DPMAC stats and restool dpdmux info
dpdmux.0 for DPDMUX statistics.

7. DPAA1 port statistics can be checked using /sys/devices/platform/soc/1a00000.fman/*.port/
statistics/*.

8. DPAA2 - When using large number of buffers ( > 1 Million), the application may hang. This is due to
maximum limit of number of buffers configured by default for DPAA2 QBMAN. It is a configurable setting
in DPC file. To configure number of buffers, following node needs to be added or modified with the correct
number of buffers.

{ 
  qbman  {
    .... 
    total_bman_buffers=<number of buffers in HEX>;
   };
};

8.2.13  DPDK Performance Reproducibility Guide

This section describes various cases and points which are important for obtaining best performance from DPDK
software on the NXP platforms. This is a suggestive list of best practices and optimal configurations which can
help extract maximum performance of the NXP DPAA hardware.

Note:  The practices mentioned in this section are based on tests in controlled environment. These are not
intended for production or deployment without adequate analysis of the impact on use cases.

The subsections that follow explains:

• Steps required before booting up the Linux kernel
• Steps required before DPDK application execution

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
939 / 1061

https://github.com/NXPmicro/dpdk/blob/21.11-qoriq/nxp/README
https://github.com/NXPmicro/dpdk/blob/21.11-qoriq/nxp/README


NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

8.2.13.1  Before booting up Linux

1. Use Layerscape LDP GCC as the recommended toolchain for compiling DPDK.
2. CONFIG_QORIQ_THERMAL flag is enabled by default which tracks the temperature of SOC. In some cases

like LS1043A, the temperature may go up while running DPDK applications, which are CPU intensive and
the maximum CPU frequency is clamped to a lower value. This may result in lower performance numbers.
To disable this feature, you must disable the CONFIG_QORIQ_THERMAL flag while compiling the kernel
image.

3. Choosing Optimal Board Support Packages (BSP)
• Choosing a compatible board support package is critical for functionality as well as performance of DPDK

application.
For DPAA1 and DPAA2 platforms, select the top frequency RCW/PBL binaries stably supported by
boards.
For example, Rev 1.1 boards with frequency 2100x800x2133 in LS2088ARDB DPAA2 are known for their
best performance.
In case of other frequency, though it is stable, it would result in a slower performance.

4. Disabling hardware prefetching through U-Boot
• For LS2088A DPAA2 platform, it is possible to disable hardware prefetching through U-Boot. This can

enhance performance in multicore scenario.
• For disabling hardware prefetching, use the following command on U-Boot prompt:

setenv hwconfig 'fsl_ddr:bank_intlv=auto;core_prefetch:disable=0xFE'

Note:  Change the disable= parameter based on the platform being used. For example, for LS1046/
LS1043, having 4 cores, use disable=0xE, and for LX2 having 16 cores, use disable=0xFFFE.
After executing the above command, board bank needs to be reset for the setting to take place. In the
above command, field disable=0xFE defines the mask for disabling prefetching on specific cores. For
example, for disabling prefetching on 3rd and 4th core, use disable=0x0C.
Note:  Disabling prefetching on Core 0 is not supported. This setting does not have any impact on single
core case. Maximum performance gain is observed when all 8 cores of LS2088 board are being used (of
which 7 cores have prefetching disabled as Core 0 doesn't support this feature).

5. Linux Boot Argument
• For DPAA platform, if the onboard memory is limited (for example LS1043 RDB), following configuration

should be appended to default boot arguments:

default_hugepagesz=2m hugepagesz=2m hugepages=512 isolcpus=1-3 bportals=s0
 qportals=s0 iommu.passthrough=1

Through the above boot arguments, 1024 Mbit of hugepages have been assigned for all DPDK
applications (512 pages of 2M size each).
isolcpus isolates the CPUs 1, 2, 3 from Linux Kernel process schedulers' scheduling algorithm. All
System Service would be scheduled on Core 0 and that should be avoided in application configuration for
I/O threads.

• For DPAA2 platform, following configuration should be appended to default boot arguments:

default_hugepagesz=1024m hugepagesz=1024m hugepages=8 isolcpus=1-7
 iommu.passthrough=1

It is recommended to use 1G huge page size for DPAA2 platform.
Note:  While running DPDK for all core cases, isolcpus parameter should not be set in bootargs. 
enable_performance_mode.sh script reserves 99.6% CPU for DPDK application and the rest is given
to kernel on all cores, so isolcpus is not required. Ensure that the links are up for all interfaces before
running DPDK, as kernel tasks may get slowed down.
Note:  Change the value of isolcpus parameter based on the platform being used. For example, for LX2
platform use isolcpus=1-15

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
940 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

• In case UEFI-based booting is used, the boot arguments are changed from grub.cfg. Refer to UEFI
section on how to update the arguments.

Note:  It should be noted that CPU isolation configuration cannot be changed in a running Linux Kernel.
Whereas, huge page configuration can be changed from Linux prompt by writing to /proc/sys/vm/
nr_hugepages file. Thus, CPU isolation should be carefully decided before booting up Linux Kernel.
Note:  nousb can be appended to boot arguments to disable USB in Linux Kernel. This prevents any
interrupts from USB devices to be serviced by CPU cores. This is especially important when Core 0 is being
used for DPDK I/O performance. But, this option should only be used if there is no dependency of USB
devices for system execution, for example, a USB mass storage which contains either the root filesystem or
extra filesystem containing data necessary for execution.

6. For Best performance, use the data cores as isolated cpus and operate them in tickless mode on kernel
version 4.4 above. For this:
a. Compile the Kernel with CONFIG_NO_HZ_FULL=y
b. Add bootargs with 'isolcpus=1-7 rcu_nocbs=1-7 nohz_full=1-7' for 8 core platform and

'isolcpus=1-3 rcu_nocbs=1-3 nohz_full=1-3' for 4 core platform
Note:  The CONFIG_NO_HZ_FULL linux kernel build option is used to configure a tickless kernel. The idea
is to configure certain processor cores to operate in tickless mode and these cores do not receive any
periodic interrupts. These cores will run dedicated tasks (and no other tasks will be schedules on such cores
obviating the need to send a scheduling tick). A CONFIG_HZ based timer interrupt will invalidate L1 cache
on the core and this can degrade dataplane performance by a few % points (to be quantified, but estimated
to be 1-3%). Running tickless typically means getting 1 timer interrupt/sec instead of 1000/sec.

7. Setup of the Performance Validation Environment
• It is important that the environment for performance verification uses a balanced core loading approach.

Each core should be loaded with equal number of RX/TX queues, irrespective of their count. Images
below describe some of the I/O scenario using an example setup containing a target board and a packet
generator. In all the cases shown, it is assumed that each port has a single queue being serviced by a
CPU core. Also, even though below images show 8 ports, it is a generic representation. DPAA boards
may not have 8 equal ports (1G/10G) - this representation is assuming traffic is always distributed across
equal capacity ports.
 

 
Image above describes 2 cases: One for single port and another for 4 ports. It can be noted that all the
cores are equally loaded (equal number of cores, irrespective numbers of ports being serviced). Further,

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
941 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

the 4 port case shows that there is more than one way to move stream of packets. (Note the direction of
arrows in each case).
 

 
Image above describes a case with 4 ports where the CPU cores are not equally loaded. This is not a
recommended combination as this would mean some streams being served (packet per second) slower
than others. 8 port combination shown in the image above extends the mapping of 4 ports shown in image
before. Once again, it should be noted that there are multiple ways to create a balanced set of streams.
A performance setup should choose one baseline and all performance reports should be based on that
baseline.
Note:  For Performance measurement, performing I/O across non-equal capacity ports (1G=>10G, vice-
verse) is not a valid case. This would lead to build up of queues on higher capacity links eventually
stopping traffic when hardware is unable to obtain buffers for storing new incoming packets - eventually
stopping traffic.

8. Uninstalling PCI Ethernet (e1000) NIC Cards
• It has been observed that when PCI Ethernet cards (for example, on DPAA/DPAA2 RDB boards Intel

e1000) are installed, they have a tendency to poll frequently the CPU cores (Core 0, in case of isolation).
This has adverse impact on the application performance if DPDK I/O threads are scheduled on same
cores which service these interrupts.

• For best performance, such PCI Ethernet cards should be uninstalled from the hardware. If uninstallation
is not possible, see the comments mentioned in the section below to disable the interface by unlinking it
from the Linux Kernel.

Note:  nopci can be appended to boot arguments to completely disable PCI devices from being detected
by Linux Kernel. This prevents PCI interrupts from being serviced by CPU. But, this option should not be
used if there is dependency on any PCI device for system execution.

8.2.13.2  Before and while starting DPDK Application

1. Setting real-time priority for DPDK Application
• In full fledged distributions, like Ubuntu, the root filesystem contains various system services by default.

These services are targeted toward a generic environment. Many of these services require periodic CPU
cycles. DPDK I/O threads execute as a run-to-completion process, infinitely looping over CPUs they are
affined to. Services which require periodic CPU cycles can interrupt the DPDK I/O threads causing loss of

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
942 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

packets and/or latency. Ideally, such services should be disabled or a rootfs without such services should
be used for optimal performance. But, in case this cannot be done, real-time priority of application can
also achieve desired results.

• Execute the script /usr/share/dpdk/enable_performance_mode.sh. Care should be taken to
run the DPDK application from same shell as the one on which script was executed. This is because the
script sets some environment variables which are used by DPDK application to define real-time priorities
for its threads. This script is also designed to set to "performance" mode the CPU scaling governor. This
prevents the CPU from putting itself into lower power state when not busy. This causes loss of traffic in
initial I/O streams when the CPU is expected to spin up to its maximum frequency.
Note:
– This script sets the real-time priorities for any DPDK application which is run after the script has been

executed. This also applies to application configured to run on Core 0. Thus, it is important to consider
the implication. If the application is run on Core 0 and it is busy in I/O, it can lead to CPU stall causing
complete lock-up. DPDK sample applications like l2fwd, l3fwd, ipsec-secgw are designed to
relinquish the CPU when no I/O is being done. That way, using sample application, all core performance
can be calculated. Similar care should be taken while developing custom DPDK applications. As this
script was primarily designed for host applications, it may require modification for it to be used with
Virtualization cases (Qemu, VM) and OVS.

– Though this script doesn't necessarily require core isolation and tickless kernel, it is still recommended
that I/O cores be isolated and tickless kernel be used to get the best performance environment. Also,
this script assumes that it is an Ubuntu environment with power governor support and that no other
process is running in priority higher than DPDK application.

– An opposite script, /usr/share/dpdk/disable_performance_mode.sh, is also available. This
puts the processor back in the "on-demand" scaling governor configuration and also removed the
environment variables. It is important to run this script once performance verification of a DPDK sample
application has been completed. This would avoid issues with inadvertently executing DPDK application
on Core 0 and causing a lock-up.

2. Using High Performance (PEB) Buffer (Only for DPAA2)
• In DPAA2 platform, while creating the resource container using the dynamic_dpl.sh script, it is

possible to toggle between high performance PEB buffers and normal buffers (DDR). By default, the high
performance buffers are enabled for LS2088A; for LS1088A, default configuration is normal buffers.
Note:  For LS2088A, it is recommended to use high performance buffers which are enabled by default.
Though, there is caveat to this as described below.
PEB buffers are limited resources. Overusage of buffers, either through large number of queues or deep
taildrop settings, can cause the PEB buffers to overflow causing an interruption of I/O. The hardware
might also enter a state from which it will not recover until board is restarted.
Exact limitations of number of queues are based on various parameters and cannot be stated objectively
without defining the use case. As a thumb-rule, refrain from using PEB buffers if configuration requires
more than 1 queue per CPU core to be used, assuming all ports and CPU cores are being employed.
For toggling between normal and high performance buffers, use the following environment variable before
executing the dynamic_dpl.sh script:

export DPNI_NORMAL_BUF=1
# disables high performance buffers; enables normal buffers

3. Disabling PCI Ethernet (e1000) NICs
As mentioned in the above section, it is preferable if no PCI Ethernet hardware (like e1000 on DPAA/DPAA2
boards) is installed. But, if it is not possible to uninstall a hardware device, following command can be used
to unlink the Ethernet card from PCI driver in the Linux Kernel thereby preventing the CPU cores from being
interrupted with periodic interrupts. This is specially important when all core performance is to be recorded.

echo 1 > /sys/bus/pci/devices/<PCI device BDF address>/remove

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
943 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

In the above command, replace <PCI device BDF address> with appropriate BDF format bus
address of the PCI device, for example 0000:01:00.0, after properly bypassing the : character in
the name to avoid failure reported by Linux Bash prompt. For example, echo 1 > /sys/bus/pci/
devices/0000\:01\:00.0/remove.
This command would unlink the PCI device with BDF address 0000:01:00.0 from its PCI driver's control,
thereby disabling it from Linux Kernel.
Note:  Once the device is unlined from the PCI driver, it would not be usable through the Linux Kernel
interface until bound to same or another PCI driver. It is out of scope for this document to record steps
necessary for linking a PCI device to a PCI driver to bring it under Linux Kernel control.

4. Interrupt Assignment for DPIO (Only for DPAA2)
With the Linux cat /proc/interrupts command, interrupts being serviced by each CPU core can be
observed.

user@Ubuntu:~# cat /proc/interrupts r
           CPU0       CPU1       CPU2       CPU3       CPU4       CPU5      
 CPU6       CPU7
...
113:          0          0          0          0          0          0       
   0          0  ITS-fMSI 230000 Edge      dpio.7
114:          0          0          0          0          0          0       
   0          0  ITS-fMSI 230001 Edge      dpio.6
115:          0          0          0          0          0          0       
   0          0  ITS-fMSI 230002 Edge      dpio.5
116:          0          0          0          0          0          0       
   0          0  ITS-fMSI 230003 Edge      dpio.4
117:          0          0          0          0          0          0       
   0          0  ITS-fMSI 230004 Edge      dpio.3
118:          0          0          0          0          0          0       
   0          0  ITS-fMSI 230005 Edge      dpio.2
119:          0          0          0          0          0          0       
   0          0  ITS-fMSI 230006 Edge      dpio.1
120:          0          0          0          0          0          0       
   0          0  ITS-fMSI 230007 Edge      dpio.0
...

This is especially important in case when any interrupts are being serviced by CPUs being used by DPDK.
For example, in the above representation, the DPIO blocks shown are used by the Linux kernel assigned
DPAA ports. Thus, in case a port is assigned to Linux (and some are assigned to DPDK), if I/O is performed
on the ports assigned to Linux, there is a possibility that the interrupts for that I/O spread across the cores
which are being used by the DPDK. This should be avoided by setting the interrupt affinity. For example, if
the DPIO.7 interrupt is considered in from the above output, the following terminal snippet shows the affinity
of that interrupt:

user@Ubuntu:~# cd /proc/irq/113/
user@Ubuntu:/proc/irq/113# ls -la
total 0
dr-xr-xr-x   3 root root 0 Mar  2 23:09 .
dr-xr-xr-x 111 root root 0 Mar  1 17:49 ..
-r--r--r--   1 root root 0 Mar  2 23:09 affinity_hint
dr-xr-xr-x   2 root root 0 Mar  2 23:09 dpio.7
-r--r--r--   1 root root 0 Mar  2 23:09 effective_affinity
-r--r--r--   1 root root 0 Mar  2 23:09 effective_affinity_list
-r--r--r--   1 root root 0 Mar  2 23:09 node
-rw-r--r--   1 root root 0 Mar  2 23:09 smp_affinity
-rw-r--r--   1 root root 0 Mar  2 23:09 smp_affinity_list
-r--r--r--   1 root root 0 Mar  2 23:09 spurious
root@Ubuntu:/proc/irq/113# cat smp_affinity
01

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
944 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Output of cat smp_affinity is a mask for cores on which interrupt should be serviced. Affinity can be
set by running following command:

cat 03 > smp_affinity # for enabling Core 0 and Core 1 for serving interrupts
 on DPIO.7

5. DPDK Optimal Example Application Configuration
• Avoiding Core 0

– As mentioned above, distributions like Ubuntu have large number of system services. Though some of
these services can be disabled, there would always be cases of interrupts or uninterruptible services
which would require Core 0 cycles. Isolating the cores through Linux Kernel can be done using Linux
boot arguments. This would allow isolated cores to be used exclusively for DPDK I/O threads.

– Once a configuration of isolated cores is set, similar configuration should be done in DPDK application
using the -c or --coremask command-line option.

– If 4 core (in LS1043A or LS1046A) or 8 core (LS1088A or LS2088A) performance is required, system
services should be disabled. Though, it should be noted that performance number using Core 0 show
undeterministic behavior of latency and packet losses. For example, LS2088A has been observed
to perform fairly stable on 8 core configuration with services disabled, but same cannot be stated for
LS1088A boards.

• Avoiding Core 0 in case of Virtual Machine
– Core 0 impact on the DPDK I/O performance is valid for host as well as for Virtual Machine (VM). While

configuring DPDK application in VM, Core 0 should be avoided. The Qemu configuration should be such
as to avoid using the Host's Core 0 for any VM logical core which is running DPDK I/O threads.

– For a VM environment, OVS or similar switching stack maybe used on the host. Qemu configuration
should be such as to avoid mapping the logical cores (VCPU) assigned to VM with any of the CPU
cores which run the switching stack threads. taskset command is recommended for affining the Qemu
threads (serving VM VCPUs) to a particular core. Refer Launch QEMU and virtual machine for more
details.

• Using Multi-queue configuration to spread load across multiple CPUs
– DPDK applications can utilize RSS based spreading of incoming frames across multiple queues

servicing a particular port. This is especially helpful in obtaining better performance by utilizing 1:N
mapping of ports to CPU cores. That is, more than 1 CPU core serves a single port.
This requires adequate configuration of Port-Queue-Core combination through DPDK application
command-line. For example, dpdk-l3fwd application can be configured to use 8 ports on a LS2088A
board for serving 2 ports using the following command:

dpdk-l3fwd -c 0xFF -n 1 -- -p 0x3 --config="(0,0,0),(0,1,1),(0,2,2),
(0,3,3),(1,0,4),(1,1,5),(1,2,6),(1,3,7)"

In the above command, the --config argument takes multiple tuples of (port, queue, core). Note that
Port number 0 is being served by Core 0, 1, 2 and 3 using separate queue numbers.
Using similar configuration described for dpdk-l2fwd application above, optimal utilization of Cores
can be achieved. The command-line options vary with DPDK application and DPDK online web manual
should be referred for specific example applications.
Though the above command snippet utilizes Core 0, necessary care should be taken as described in
text above.

– As mentioned above, DPDK uses RSS (Receive Side Scaling) to spread the incoming frames across
multiple queues. Multi-queue setup must be supported by varying flows from the Packet Generator. The
flows created should be such as to have varying Layer-2 or Layer-3 field values.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
945 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

– As flow distribution is based on hash over Layer-2 and Layer-3 fields, it is possible that lower number
of flows would distribute unevenly across queues. Number of flows created should be large enough to
spread equally across all the configured queues.

• Consideration for CPU clusters
– SoC have multiple clusters housing one or more CPUs. Each cluster shares a L2 cache. In general, this

allows threads sharing data over CPUs from same cluster to perform better than threads sharing data
across CPUs from different clusters.

– For best performance, it is recommended that DPDK application configuration for selecting CPU cores
should be such to either use all CPUs from same cluster or spread queues equally across clusters.
When this is combined with Core 0 issue, it implies that using Cluster having Core 0 might perform
slightly worse than using cluster which doesn't use Core 0.

• Using limited number of I/O buffers
– DPDK allows an application to change the number of maximum in-flight buffers. This is especially useful

when there is memory constraint and DPDK application has limited resources.
– Each buffer, for processing, has to be fetched into the system caches (L2/L1). Larger the number of

buffers in-flight simultaneously, more would be the flushing of buffer addresses. To avoid excessive
pressure on the L2 caches (eviction, hit, miss cycle), lower number of buffers should be used. Exact
numbers would depend on the use case and resources available.
For example, in case of dpdk-l3fwd application, --socket-mem=1024 like EAL argument can be
provided to the application as shown in command snippet below. Note that the argument has been
provided before the -- - these are passed to DPDK framework rather than the application itself.

dpdk-l3fwd -c 0xFF -n 1 --socket-mem=1024 -- -p 0x1 --config="(0,0,0),
(0,1,1),(0,2,2),(0,3,3),(0,4,4),(0,5,5),(0,6,6),(0,7,7)"

• Degradation of OVS performance with increase in flows
– It has been observed that OVS doesn't perform well when the number of flows are large. This is

because of OVS's inherent design to use a flow matching table of size 8000. If larger than 8000 flows
are used, the overall performance degrades because of hash collisions. If more than 8000 flows are
required, use the following command after OVS bridge has been created:

ovs-vsctl set bridge br0 other-config:flow-eviction-threshold=65535

This command would set the size of OVS internal flow table to 65535.
• Use -n 1 as argument passed to DPDK EAL

– -n argument for DPDK application is for defining number of DDR channels for the system - which is
typically valid for NUMA architectures. This parameter is used for mempool memory alignments. For
NXP SoCs, this should be set to "1". NXP SoCs supported by DPDK are non-NUMA.

8.2.14  Use cases

8.2.14.1  Traffic bifurcation using VSP on DPAA

DPAA supports Hardware (FMan) based traffic splitting on different interfaces:

• Custom method to split the traffic can be programmed via FMan PCD interface configurations.
• Interface can receive packets on different buffer pools (Virtual Storage profile).

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
946 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Figure 208. Traffic bifurcation using VSP on DPAA

8.2.14.1.1  Environment setup

This section uses LS1046ARDB as an example platform for demonstrating the use case.

Figure 209. Use case

Figure 209 shows an NXP LS1046ARDB board connected to a packet generator (Spirent). The example uses
Spirent as packet generator, however, any other source of controlled packet transmission can also be used.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
947 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Figure 209 uses fm1-mac3 and fm1-mac4 interfaces for demonstration. Any other interface can also be used
after updating the commands described in the next section accordingly.

8.2.14.1.2  Steps to run VSP mode

To run DPAA in VSP mode:

1. Flash the board using Layerscape LDP images.
2. Reboot the board and set dtb as fsl-ls1046a-rdb-usdpaa-shared.dtb on the bank from which board

is being booted and boot up the board.
3. Cleanup the current fmc configuration:

$ fmc -x

4. Set the Ethernet ports to be used:

$ ifconfig fm1-mac3 <valid ip address>
$ ifconfig fm1-mac4 <valid ip address>

5. Set up hugepages:

$ mkdir /dev/hugepages
$ mount -t hugetlbfs hugetlbfs /dev/hugepages
$ echo 512 > /proc/sys/vm/nr_hugepages

6. Set up VSP fmc configuration:

$ fmc -c /usr/share/dpdk/dpaa/usdpaa_config_ls1046_shared_24g.xml -p /usr/
share/dpdk/dpaa/usdpaa_policy_24g_classif_udp_ipsec_1queue.xml -a

7. Run l2fwd application:

$ dpdk-l2fwd -c 0x3 -n 1 -- -p 0x3

Now DPDK will handle UDP or ESP traffic, and kernel will handle rest of the traffic.

Send following packet streams from the packet generator (in this case, Spirent):

1. Packets sent to fm1-mac3
a. UDP traffic: IPv4 packet with Protocol ID field (next protocol) = 0x11 (hex) or 17 (decimal); Size greater

than 82 bytes.
b. IPv4 traffic: IPv4 packet with Protocol ID field (next protocol) = 253 (Experimental); Size greater than or

equal to 64 bytes.
2. Packets sent to fm1-mac4

a. UDP traffic: IPv4 packet with Protocol ID field (next protocol) = 0x11 (hex) or 17 (decimal); Size greater
than 82 bytes.

b. IPv4 traffic: IPv4 packet with Protocol ID field (next protocol) = 253 (Experimental); Size greater than or
equal to 64 bytes.

8.2.14.1.3  Expected results

All traffic with Experimental Protocol set in IPv4 header is sent to Linux Kernel network stack and is available on
the Ethernet interface (fm1-mac3/4). Applications, such as tcp dump can demonstrate the packets coming in.
All the other traffic is visible in the packet generator reflected by the l2fwd application.

8.2.14.2  Traffic bifurcation using DPSW on DPAA2

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
948 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

8.2.14.2.1  DPSW in dprc.2

When the DPSW is in dprc.2, the DPAA2 object is controlled by DPDK. Therefore, any setup required,
for example adding FDB addresses, is configured using DPDK. Steps to configure the setup are same as
DPDMUX, you only need to replace DPDMUX with DPSW. For more details, see Section 8.2.14.3.

8.2.14.2.2  DPSW in dprc.1

When the DPSW is in dprc.1, it is driven by the Linux kernel driver. Linux kernel driver uses the switchdev
kernel framework and exposes an interface for each switch port. In Linux, no switching happens if the interfaces
are not added to the same bridge. So, once the ports are added to the bridge interface, DPDK application works
when DPSW is in dprc.1.

1. Create a DPNI for assigning to Linux kernel.

ls-addni --no-link
Output log:
Created interface: eth0 (object:dpni.1, endpoint: )

2. Create DPRC with DPNI attached.

source /usr/share/dpdk/dpaa2/dynamic_dpl.sh dpni
(...)
##################### Configured Interfaces ####################
Interface Name Endpoint Mac Address
============== ======== ==================
dpni.3 UNCONNECTED 00:00:00:00:5:1

Note:  The dpni.X naming is dynamically generated by the ls-addni command and the dynamic_dpl.sh
script. In case, they are different from what is described in this section, corresponding changes should be
done in the commands below.

3. Using the restool wrapper script, create a DPSW connected to the two DPNIs and a DPMAC.

ls-addsw dpni.1 dpni.3 dpmac.1
Created ETHSW object dpsw.0 with the following 3 ports: eth2,eth3,eth4

Note:  To display the DPNIs and DPMACs available, use the ls-listni command. For all the script
options and parameters, see the help using command ls-addsw -h

4. Configure the switch interfaces and add them to a bridge.

ip link set dev eth2 down
ip link set dev eth2 address 00:00:00:00:00:02
ip link set dev eth2 up
ip link set dev eth3 down
ip link set dev eth3 address 00:00:00:00:00:03
ip link set dev eth3 up
ip link set dev eth4 down
ip link set dev eth4 address 00:00:00:00:00:04
ip link set dev eth4 up
ip link add name br0 type bridge
ip link set dev br0 up
ip link set dev eth2 master br0
ip link set dev eth3 master br0
ip link set dev eth4 master br0

5. Start DPNI.1 (eth0), the Linux owned DPNI.

ip link set dev eth0 up
ip a a 1.1.1.2/24 dev eth0

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
949 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

6. Run the DPDK application.

./dpdk-l3fwd -c 0x6 -n 1 -- -p 0x1 --config="(0,0,1)"
EAL: Detected 8 lcore(s)
EAL: Detected 1 NUMA nodes
EAL: Multi-process socket /var/run/dpdk/rte/mp_socket
fslmc: Skipping invalid device (power)
EAL: Selected IOVA mode 'VA'
EAL: Probing VFIO support...
EAL: VFIO support initialized
EAL: PCI device 0000:01:00.0 on NUMA socket -1
EAL: Invalid NUMA socket, default to 0
EAL: probe driver: 8086:10d3 net_e1000_em
PMD: dpni.3: netdev created
LPM or EM none selected, default LPM on
Initializing port 0 ... Creating queues: nb_rxq=1 nb_txq=2...
 Address:00:00:00:00:05:01, Destination:02:00:00:00:00:00, Allocated mbuf
 pool on socket 0
LPM: Adding route 198.18.0.0 / 24 (0)
LPM: Adding route 2001:200:: / 48 (0)
txq=1,0,0 txq=2,1,0
Initializing rx queues on lcore 1 ... rxq=0,0,0
Initializing rx queues on lcore 2 ...
Checking link statusdone
Port0 Link Up. Speed 1000 Mbps -full-duplex
L3FWD: lcore 2 has nothing to do
L3FWD: entering main loop on lcore 1
L3FWD: -- lcoreid=1 portid=0 rxqueueid=0

7. Capture the packets.

tcpdump -nt -i eth0 &
IP 1.1.1.0 > 2.1.1.0: ip-proto-253 26
IP 1.1.1.0 > 2.1.1.0: ip-proto-253 26
IP 1.1.1.0 > 2.1.1.0: ip-proto-253 26
IP 1.1.1.0 > 2.1.1.0: ip-proto-253 26
IP 1.1.1.0 > 2.1.1.0: ip-proto-253 26
IP 1.1.1.0 > 2.1.1.0: ip-proto-253 26

8.2.14.3  Traffic bifurcation using DPDMUX on DPAA2

8.2.14.3.1  Environment setup

This section uses LS2088A board as an example platform for demonstrating the use case. This use case is
applicable to all DPAA2 platforms, including LS1088A and LX2160A.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
950 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Figure 210. External view of the setup

In the above image, an NXP LS2088A board has been shown connected to a packet generator (Spirent).

Note:

• Though the example uses Spirent as packet generator, any other source of controlled packet transmission
can also be used.

• The image uses dpmac.5 and dpmac.6 interfaces for demonstration. Any other other interface can also be
used - in which case, the commands described below would have to be altered accordingly.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
951 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Figure 211. NXP LS2088A Internal Block for traffic bifurcation setup

In the above environment setup, a DPRC container (dprc.2) is created containing DPAA2 dpmac.5 and dpmac.6
interfaces. DPDMUX dpdmux.0 is created with dpni.1 and dpni.3, while dpni.2 is connected with dpmac.2.

NXP LS2088A board has 8 10G links – 4 Fiber ports, and 4 Copper ports.

Figure 212. LS2088ARDB ports

On a standard Layerscape LDP configuration, these ports are represented using dpmac.X naming.
Corresponding to the image above describing the ports, following is the naming convention:

• dpmac.1, dpmac.2, dpmac.3 and dpmac.4 are ETH4, ETH5, ETH6, and ETH7, respectively
• dpmac.5, dpmac.6, dpmac.7 and dpmac.8 are ETH0, ETH1, ETH2, and ETH3, respectively.

Following are the commands to create the above setup:

Though this section uses dpmac.5 and dpmac.6 as interfaces; similar setup can be created using any other
ports of LS2088A (or any other DPAA2 DPDMUX supporting board). Replace dpmac.X in commands below with
equivalent port name.

1. Create DPRC with dpmac.5 and dpmac.6 attached. It creates dpni.1 and dpni.2 internally.

/usr/share/dpdk/dpaa2/dynamic_dpl.sh dpmac.5 dpmac.6

Output log:

##################### Container  dprc.2  is created ####################
Container dprc.2 have following resources :=>

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
952 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

* 1 DPMCP
* 16 DPBP
* 8 DPCON
* 8 DPSECI
* 2 DPNI
* 18 DPIO
* 2 DPCI
* 2 DPDMAI
######################### Configured Interfaces #########################
Interface Name        Endpoint              Mac Address
==============        ========              ==================
dpni.1                dpmac.5               -Dynamic-
dpni.2                dpmac.6               -Dynamic-

2. Create a DPNI for assigning to Linux Kernel. This would be used for forwarding the UDP traffic.

ls-addni --no-link

Output log:

Created interface: eth0 (object:dpni.3, endpoint: )

Note:
The dpni.X naming which is dynamically generated by the dynamic_dpl.sh script and ls-addni command. In
case they are different from what is described in this section, corresponding changes should be done in the
commands below.

3. Unplug the DPRC from VFIO, create a DPDMUX, assign DPNIs (dpni.1 and dpni.3) to it, and then plug
the DPRC back again to VFIO so that User space application can use it. This was already in plugged state
because of the dynamic_dpl.sh script.

# Unbinding dprc.2 from VFIO
echo dprc.2 > /sys/bus/fsl-mc/drivers/vfio-fsl-mc/unbind
# Remove dpni.2 from dprc.2 so that it can be assigned to dpdmux
restool dprc disconnect dprc.2 --endpoint=dpni.1
# Create dpdmux with CUSTOM flow creation; Flows would be created
# from the Userspace (DPDK) application
restool dpdmux create --default-if=1 --num-ifs=2 --method
 DPDMUX_METHOD_CUSTOM --
manip=DPDMUX_MANIP_NONE --option=DPDMUX_OPT_CLS_MASK_SUPPORT --
container=dprc.1
# Create DPDMUX with two DPNI connections and one DPMAC connection
restool dprc connect dprc.1 --endpoint1=dpdmux.0.0 --endpoint2=dpmac.5
restool dprc connect dprc.1 --endpoint1=dpdmux.0.1 --endpoint2=dpni.3
restool dprc connect dprc.1 --endpoint1=dpdmux.0.2 --endpoint2=dpni.1
restool dprc assign dprc.1 --object=dpdmux.0 --child=dprc.2 --plugged=1

Note:  The default queue has been configured as 0.1 in DPDK DPMUX driver. In the above commands,
dpni.3 has been configured to --endpoint1=dpdmux.0.1. Thus, all traffic which is not filtered would
be sent by dpdmux.0 to dpni.3. Further, the l2fwd application has currently configured UDP traffic (IPv4
Protocol Header field value 17) to be sent to --endpoint1=dpdmux.0.2, which corresponds to dpni.1.

# Bind the DPRC back to VFIO
echo dprc.2 > /sys/bus/fsl-mc/drivers/vfio-fsl-mc/bind
# Export the DPRC
export DPRC=dprc.2

If required, IP Address can be assigned to eth0, which would appear in Linux OS to represent the dpni.3.
Thereafter, external packet generator or a device can send ICMP traffic to confirm the bifurcation of traffic.

root@Ubuntu:~# ifconfig eth0 10.0.0.10/24 up
root@Ubuntu:~# ifconfig eth0
eth0: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
953 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

inet 10.0.0.10 netmask 255.255.255.0 broadcast 10.0.0.255
inet6 fe80::dce6:feff:fe3a:e105 prefixlen 64 scopeid 0x20<link>
ether de:e6:fe:3a:e1:05 txqueuelen 1000 (Ethernet)
RX packets 0 bytes 0 (0.0 B)
RX errors 0 dropped 0 overruns 0 frame 0
TX packets 6 bytes 516 (516.0 B)
TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
root@Ubuntu:~# restool dpni info dpni.3
dpni version: 7.8
dpni id: 3
plugged state: plugged
endpoint state: 1
endpoint: dpdmux.0.1, link is up
link status: 1 - up
mac address: de:e6:fe:3a:e1:05
dpni_attr.options value is: 0

4. Run the l3fwd application

dpdk-l3fwd -c 0xF0 -n 1 -- -p 0x3 --config="(0,0,4),(1,0,5)" -P --traffic-
split-config="(2,17,2)"

Note:
• In the above command, -c 0xF0 corresponds to the cores being used by the DPDK Application. In case

they are different, the mask should be changed.
• Further, --config="(0,0,4),(1,0,5)" represents (Port, Queue, Core) – which should align with

the core masks provided. The Port value is ‘0’ and ‘1’ assuming only dpmac.5 and dpmac.6 have been
assigned to the DPRC dprc.2. Only single queue per device has been considered. Numbering for all
elements of this tuple starts from 0.

• --traffic-split-config: (type, val, mux_conn_id): where type can be one of the following -
1:ETHTYPE, 2:IP_PROTO, 3:UDP_DST_PORT, 4: UDP Fragmented or GTP, 5: IP fragmented traffic with
particular Protocol. The DPDMUX device would split the traffic based on the type of the rule such that
packets having val value will be received on the mux_conn_id DPDMUX connection id (dpdmux.0.x
where x is the mux_conn_id). val is not relevant in case type is 4 (that is, UDP Fragmented or GTP)

Output log:

EAL: Detected 8 lcore(s)
EAL: Probing VFIO support...
EAL: VFIO support initialized
EAL: PCI device 0000:01:00.0 on NUMA socket -1
EAL: Invalid NUMA socket, default to 0
EAL: probe driver: 8086:10d3 net_e1000_em
PMD: dpni.1: netdev created
PMD: dpni.2: netdev created
PMD: dpsec-0 cryptodev created
PMD: dpsec-1 cryptodev created
PMD: dpsec-2 cryptodev created
PMD: dpsec-3 cryptodev created
PMD: dpsec-4 cryptodev created
PMD: dpsec-5 cryptodev created
PMD: dpsec-6 cryptodev created
PMD: dpsec-7 cryptodev created
^[[6~L3FWD: Promiscuous mode selected
L3FWD: LPM or EM none selected, default LPM on
Initializing port 0 ... Creating queues: nb_rxq=1 nb_txq=4...
 Address:00:00:00:00:00:01,
Destination:02:00:00:00:00:00, Allocated mbuf pool on socket 0
LPM: Adding route 0x01010100 / 24 (0)
LPM: Adding route 0x02010100 / 24 (1)

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
954 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

LPM: Adding route IPV6 / 48 (0)
LPM: Adding route IPV6 / 48 (1)
txq=4,0,0 txq=5,1,0 txq=6,2,0 txq=7,3,0
Initializing port 1 ... Creating queues: nb_rxq=1 nb_txq=4...
 Address:DA:CA:B2:78:68:19,
Destination:02:00:00:00:00:01, Allocated mbuf pool on socket 0
txq=4,0,0 txq=5,1,0 txq=6,2,0 txq=7,3,0
Initializing rx queues on lcore 4 ... rxq=0,0,0
Initializing rx queues on lcore 5 ... rxq=1,0,0
Initializing rx queues on lcore 6 ...
Initializing rx queues on lcore 7 ...
Checking link statusdone
Port0 Link Up. Speed 1000 Mbps -full-duplex
Port1 Link Up. Speed 10000 Mbps -full-duplex
L3FWD: entering main loop on lcore 5
L3FWD: -- lcoreid=5 portid=1 rxqueueid=0
L3FWD: lcore 7 has nothing to do
L3FWD: lcore 6 has nothing to do
L3FWD: entering main loop on lcore 4
L3FWD: -- lcoreid=4 portid=0 rxqueueid=0

5. Send following packet streams from the Packet generator (in this case, Spirent)
a. Packets sent to dpmac.5

i. UDP Traffic: IPv4 Packet with Protocol ID field (next protocol) = 0x11 (hex) or 17 (decimal); Size
greater than 82 bytes.

ii. IPv4 Only Traffic: IPv4 Traffic with any random Protocol ID (next protocol) = 253 (Experimental);
Size greater than equal to 64 bytes. Src IP: 1.1.1.1; Dst IP: 2.1.1.1 (so that packets can be
forwarded by l3fwd application from dpmac.5 to dpmac.6.

b. Packets sent to dpmac.2
i. IPv4 Only Traffic: IPv4 Traffic with any random Protocol ID (next protocol) = 253 (Experimental);

Size greater than equal to 64 bytes. Src IP: 2.1.1.1; Dst IP: 1.1.1.1 (so that packets can be
forwarded by l3fwd application from dpmac.6 to dpmac.5.

8.2.14.3.2  Expected results

Following is the expected output:

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
955 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Figure 213. Expected output on Linux User space and Packet Generator

1. All traffic with UDP Protocol set in IPv4 header would be sent to Linux Kernel network stack and would be
eventually available on the Ethernet interface (backed by dpni.3). Application like tcpdump would be able to
demonstrate the packets coming in:

root@ls1028ardb:~# ifconfig
…
eth0: flags=4163<UP,BROADCAST,RUNNING,MULTICAST>  mtu 1500
inet 10.0.0.10  netmask 255.255.255.0  broadcast 10.0.0.255
inet6 fe80::5885:a5ff:fe1c:76af  prefixlen 64  scopeid 0x20<link>
ether 5a:85:a5:1c:76:af  txqueuelen 1000  (Ethernet)
RX packets 0  bytes 0 (0.0 B)
RX errors 0  dropped 0  overruns 0  frame 0
TX packets 5  bytes 426 (426.0 B)
TX errors 0  dropped 0 overruns 0  carrier 0  collisions 0
…
tcpdump: verbose output suppressed, use -v or -vv for full protocol decode
listening on eth0, link-type EN10MB (Ethernet), capture size 262144 bytes
22:39:10.286502 IP 10.0.0.11 > Ubuntu.ls2088ardb:  ip-proto-200 90
22:39:11.286385 IP 10.0.0.11 > Ubuntu.ls2088ardb:  ip-proto-201 90
22:39:12.286286 IP 10.0.0.11 > Ubuntu.ls2088ardb:  ip-proto-202 90
22:39:13.286172 IP 10.0.0.11 > Ubuntu.ls2088ardb:  ip-proto-203 90
22:39:14.286075 IP 10.0.0.11 > Ubuntu.ls2088ardb:  ip-proto-204 90
22:39:15.285958 IP 10.0.0.11 > Ubuntu.ls2088ardb:  ip-proto-205 90
22:39:16.285845 IP 10.0.0.11 > Ubuntu.ls2088ardb:  ip-proto-206 90
22:39:17.285757 IP 10.0.0.11 > Ubuntu.ls2088ardb:  ip-proto-207 90
22:39:18.285636 IP 10.0.0.11 > Ubuntu.ls2088ardb:  ip-proto-208 90
22:39:19.285541 IP 10.0.0.11 > Ubuntu.ls2088ardb:  ip-proto-209 90
^C
10 packets captured

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
956 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

10 packets received by filter
0 packets dropped by kernel
root@Ubuntu:~#

In the above output, it can be observed that packets of different IPv4 Protocol fields are being received in
Linux. (This setting can be configured in Spirent). Ubuntu.ls2088ardb refers to the local machine IP
10.0.0.10 which was configured using ifconfig.

2. All other traffic would be visible in the packet generator being reflected by ‘l3fwd’ application. Below is
the screen-grab of Wireshark output of packet captured by Spirent which were reflected by the l3fwd
application:

Figure 214. Wireshark output of packet captured by Spirent

8.2.14.4  DPDK multi-process

8.2.14.4.1  DPDK Multiprocess Support

Supported Platforms (and their derivatives):

• DPAA2: LS108x, LS208x, LX2160

NXP DPDK provides a set of data plane libraries and network interface controller driver for Layerscape
platforms. This section provides information about multiprocess support in DPDK for NXP platforms.

• Multiprocess: In DPDK context, this is a deployment model where multiple independent processes are
executed each of which can functionally behave as threads of a parent process.

• Parent/Primary Process: The first DPDK process which is run. In the DPDK multiprocess model, this process
is responsible for configuration of the devices and any other common configuration to be used by the
secondary processes. This process can also perform I/O on the devices. While executing the process, if --
proc-type=primary is used as an EAL argument, the process is expected to be primary. In case this is not
the first DPDK process, then this would result in error.

• Child/Secondary Process: Every next DPDK process which is started with --proc-type=secondary EAL
argument. Another way is to add --proc-type=auto as EAL argument which automatically selects between
primary or secondary based on order of execution.

Note:  In case another instance of DPDK application is started but it is not expected to be part of a Multiprocess
model (separate DPDK instance), then adequate configuration of hugepages need to be done. By default,
DPDK maps all available hugepages which only be consumed by a single process, and its secondary
processes.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
957 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

8.2.14.4.2  Various Multiprocess Models

Note:  This section is only applicable for DPAA2 as this involves I/O in the secondary process. Refer to
following sections for DPAA support.

Based on the functionality of the processes, the multiprocess model can be categorized into two broad
spectrums:

• Symmetric: A model in which the Primary and Secondary processes have similar functionality. For example,
when Primary process is performing I/O over one eth device, while one or more secondary processes are
also performing I/O on separate eth devices. Or, if each device is equally shared across multiple processes
for I/O.

+----------+    +------------+   +------------+    +------------+
| Primary  |    | Secondary1 |   | Secondary2 |... | SecondaryN |
+-----XV---+    +------XV----+   +------XV----+    +-----XV-----+
      ||               ||               ||               ||
+-----||---+    +------||----+   +------||----+    +-----||-----+
| Device 1 |    | Device 2   |   | Device 3   |... | Device N   |
+----------+    +------------+   +------------+    +------------+

Where, { X = Rx and V = Tx } signifying I/O (RX/TX, both). Another way to visualize is where I/O (RX/TX) is
performed by each process on same device, maybe through separate queues:

+----------+    +------------+   +------------+    +------------+
| Primary  |    | Secondary1 |   | Secondary2 |... | SecondaryN |
+-----XV---+    +------XV----+  +------XV----+    +------XV-----+
      ||               ||              ||                ||
      ||  .-------------`              ||                ||
      ||  ||   .------------------------`                ||
      ||  ||   ||    .-----------------------------------`
      ||  ||   ||    ||
+-----||--||---||----||--+
|         Device 1       |
+------------------------+

• Asymmetric: A model in which the primary and secondary processes have dis-similar functionality in terms
of I/O. For example, primary process performing RX on a device, transferring data to a secondary process
through some internal process mechanism (IPC, for example, Ring), which in turn does TX on the same
device.

+----------+    +------------+
| Primary  >----X Secondary1 |
+-----X-V-V+    +------V-----+
      | | |            |         +------------+
      | |  `-----------)---------X Secondary2 |
      | |              |         +------V-----+
      | |              |                |
      | |              |                |           +------------+
      |  `-------------)----------------)-------...-X SecondaryN |
      |                |                |           +-----V------+
      |                |                |                 |
      |.---------------'                |                 |
      ||.-------------------------------`                 |
      |||.------------------------------------------------`
      ||||
+-----||||-+
| Device 1 |
+----------+

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
958 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Current implementation of NXP DPDK supports both mode on the supported platforms. The design of the
application drives the mode being used.

8.2.14.4.3  Environment Setup

Note:  This section is applicable for DPAA2 only.

Note:  For all DPDK multiprocess use cases, disable ASLR - Address Space Layout Randomization8This is
the default setting on various Linux distributions for preventing stack and other malicious address manipulation
attacks. This works by randomizing the address-space layout of the ELF binary. This impact secondary process
because the second or further process would attempt to find the same address space as the primary process
(hugepage). This should be disabled using:

echo 0 > /proc/sys/kernel/randomize_va_space

DPRC or DPAA2 Resource Container contains a number of resources which need to be segregated between
the primary and secondary process. Initializing all the I/O devices (dpni, dpseci, dpdmai, etc.) is done by primary
- secondary process is not expected to initialize any I/O device. Only control devices like dpio, dpmcp need to
be initialized by secondary for its own work.

While executing the primary or secondary processes, list of devices to blacklist (those which are not to be
configured) need to be passed. Alternatively, a list of all devices which are to be configured can be passed. This
list is important as overlap would result in incorrect configuration.

1. Create enough dpmcp devices: While creating the DPRC (through dynamic_dpl.sh script), create as
many dpmcp as the number of processes (primary and secondary) expected to use the DPRC.

$ export DPMCP_COUNT=3              # for 1 Primary, 2 Secondary
$ ./dynamic_dpl.sh dpmac.1 dpmac.2

2. Create enough dpio devices to suffice the total number of cores being used across primary and secondary,
plus one additional for each process. For example, in case primary is to be run with 2 cores, and secondary
with 2 Cores, total dpio required are: (Total Process = 3) x (3 dpio per process) = 9
Note:  A large number of dpio devices are already created in default container created by
dynamic_dpl.sh.

$ export DPIO_COUNT=10              # A larger number to accommodate conf
 changes
$ ./dynamic_dpl.sh dpmac.1 dpmac.2

Assuming that following DPRC is created:

$ restool dprc show dprc.2

dprc.2 contains 58 objects:
object          label           plugged-state
dpni.3                          plugged
dpni.2                          plugged
dpni.1                          plugged
dpbp.16                         plugged
dpbp.15                         plugged
dpbp.14                         plugged
dpbp.13                         plugged
dpbp.12                         plugged
dpbp.11                         plugged
dpbp.10                         plugged
dpbp.9                          plugged

8 https://en.wikipedia.org/wiki/Address_space_layout_randomization
UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
959 / 1061

https://en.wikipedia.org/wiki/Address_space_layout_randomization


NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

dpbp.8                          plugged
dpbp.7                          plugged
dpbp.6                          plugged
dpbp.5                          plugged
dpbp.4                          plugged
dpbp.3                          plugged
dpbp.2                          plugged
dpbp.1                          plugged
dpci.1                          plugged
dpci.0                          plugged
dpseci.7                        plugged
dpseci.6                        plugged
dpseci.5                        plugged
dpseci.4                        plugged
dpseci.3                        plugged
dpseci.2                        plugged
dpseci.1                        plugged
dpseci.0                        plugged
dpdmai.1                        plugged
dpdmai.2                        plugged
dpmcp.23                        plugged
dpmcp.22                        plugged
dpmcp.21                        plugged
dpio.17                         plugged
dpio.16                         plugged
dpio.15                         plugged
dpio.14                         plugged
dpio.13                         plugged
dpio.12                         plugged
dpio.11                         plugged
dpio.10                         plugged
dpio.9                          plugged
dpio.8                          plugged
dpcon.8                         plugged
dpcon.7                         plugged
dpcon.6                         plugged
dpcon.5                         plugged
dpcon.4                         plugged
dpcon.3                         plugged
dpcon.2                         plugged
dpcon.1                         plugged

Ignore dpni, dpbp, dpci, dpseci, dpcon - as they are all configured by the primary process only.
Secondary process is designed to skip them. But, dpio and dpmcp are important considerations.

3. Start primary application with EAL arguments for blacklisting

# Only allowing dpio.8, dpio.9, dpio.10, dpmcp.21 in primary; blacklisting
 all others
$ ./primary_process -c 0x3 -b fslmc:dpio.11 -b fslmc:dpio.12 -b fslmc:dpio.13
 \
      -b fslmc:dpio.14 -b fslmc:dpio.15 -b fslmc:dpio.16 -b fslmc:dpio.17 \
      -b fslmc:dpmcp.22 -b fslmc:dpmcp.23 -- <application arguments>
# Only allowing fslmc:dpio.11, fslmc:dpio.12, fslmc:dpio.13, fslmc:dpmcp.22
 in secondary process 1
$ ./secondary_process1 -c 0x3 -b fslmc:dpio.8 -b fslmc:dpio.9 -b
 fslmc:dpio.10 \
      -b fslmc:dpio.14 -b fslmc:dpio.15 -b fslmc:dpio.16 -b fslmc:dpio.17 \
      -b fslmc:dpmcp.21 -b fslmc:dpmcp.23 -- <application arguments>
# Only allowing fslmc:dpio.14, fslmc:dpio.15, fslmc:dpio.16, fslmc:dpmcp.23
 in secondary process 2; ignoring dpio.17

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
960 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

$ ./secondary_process1 -c 0x3 -b fslmc:dpio.8 -b fslmc:dpio.9 -b
 fslmc:dpio.10 \
      -b fslmc:dpio.11 -b fslmc:dpio.12 -b fslmc:dpio.13 -b fslmc:dpio.17 \
      -b fslmc:dpmcp.21 -b fslmc:dpmcp.22 -- <application arguments>

Note:
• In the above format <bus>:<device> is the way to provide the device identifier for blacklisting/

whitelisting.
• Another method would be to whitelist all devices - but, that would require listing even the dpni, dpci,
dpseci, and dpcon devices. That would increase the length of the argument to unmanageable
lengths.

8.2.14.4.4  Executing DPDK example application

Note:  This section is applicable for DPAA2 only.

Note:  Applications used in the snippets below are not available on the Layerscape LDP rootfs. For standalone
compilation of these applications, refer Compiling DPDK Example Applications

Note:  It important to note that before any secondary application execution, ASLR support should be disabled
by using echo 0 > /proc/sys/kernel/randomize_va_space.

DPDK provides two sample applications which can be used for I/O using multiprocess model.

./examples/multi_process/symmetric_mp             # symmetric model example

./examples/multi_process/client_server_mp         # asymmetric model example

Some other examples are also provided from NXP which use the available hardware support in DPAA2:

./examples/multi_process/symmetric_mp_qdma        # symmetric model with QDMA
 example

Detailed explanation can be seen from DPDK documentation: https://doc.dpdk.org/guides/sample_app_ug/
multi_process.html

Using the same DPRC shown as sample above.

1. Executing dpdk-symmetric_mp with 1 Primary, 1 Secondary:

# Running primary process with single Core, 2 ports; assigning 1 dpmcp and 5
 dpio to it.
dpdk-symmetric_mp -c 0x1 -n 1 -b fslmc:dpio.13 -b fslmc:dpio.14 -b
 fslmc:dpio.15 \
        -b fslmc:dpio.16 -b fslmc:dpio.17 -b fslmc:dpmcp.22 -b fslmc:dpmcp.23
 \
        -- -p 0x3 --num-procs=2 --proc-id=0

In the above, --num-procs=2 signifies 2 processes in total. --proc-id=0 is the identifier for the primary
process.

# Running secondary process with single core (not overlappping with primary),
 2 ports (same as primary); Assigning 1 dpmcp and 5 dpio to it. (We can
 ignore the extra dpmcp preserved for 3 process, if any)
dpdk-symmetric_mp -c 0x2 -n 1 --proc-type=secondary -b fslmc:dpio.8 \
        -b fslmc:dpio.9 -b fslmc:dpio.10 -b fslmc:dpio.11 -b fslmc:dpio.12 \
        -b fslmc:dpmcp.21 -b fslmc:dpmcp.23 -- -p 0x3 --num-procs=2 --proc-
id=1

In case more than one instance of application is to be executed, similar blacklisting has to be done to
distribute resources. Further, --num-procs and --proc-id too need to be changed.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
961 / 1061

https://doc.dpdk.org/guides/sample_app_ug/multi_process.html
https://doc.dpdk.org/guides/sample_app_ug/multi_process.html


NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Send I/O to the ports assigned to the processes and observe traffic being reflected back.
2. Executing dpdk-client_server_mp with 1 Primary, 1 Secondary:

This sample application has two different applications which are executed as server and client. Server
process is responsible for RX from interfaces (all) and distributing to Client for TX (one queue per device).

# Running server (primary) process with 1 Core, 2 ports; assigning 1 dpmcp
 and 5 dpio to it.
dpdk-mp_server -c 0x1 -n 1 -b fslmc:dpio.13 -b fslmc:dpio.14 -b fslmc:dpio.15
 \
        -b fslmc:dpio.16 -b fslmc:dpio.17 -b fslmc:dpmcp.22 -b fslmc:dpmcp.23
 \
        -- -p 0x3 -n 1

# Running client (secondary) process with 1 Core, 2 ports; assigning 1 dpmcp
 and 5 dpio to it.
dpdk-mp_client -c 0x2 -n 1 --proc-type=secondary -b fslmc:dpio.8 \
       -b fslmc:dpio.9 -b fslmc:dpio.10 -b fslmc:dpio.11 -b fslmc:dpio.12 \
       -b fslmc:dpmcp.21 -b fslmc:dpmcp.23 -- -n 0

Send I/O to the ports assigned to the processes and observe traffic being forwarded.
3. Executing QDMA example application:

dpdk-symmetric_mp_qdma application is similar to dpdk-symmetric_mp except that the mbuf (buffer)
transfers between RX and TX are done using the NXP DPAA2 QDMA (dpdmai) hardware block.

# Running primary process with single Core, 2 ports; assigning 1 dpmcp and 5
 dpio, 1 dpdmai to it:
# Assuming that there are two DPDMAI objects in the DPRC: dpdmai.1 and
 dpdmai.2, the command is very similar to the symmetric_mp example:
dpdk-symmetric_mp_qdma -c 0x1 -n 1 -b fslmc:dpio.13 -b fslmc:dpio.14 -b
 fslmc:dpio.15 \
        -b fslmc:dpio.16 -b fslmc:dpio.17 -b fslmc:dpmcp.22 -b fslmc:dpmcp.23
 \
        -b fslmc:dpdmai.1 -- -p 0x3 --num-procs=2 --proc-id=0

Notice the extra parameter -b fslmc:dpdmai.1 as compared the symmetric_mp command. This extra
parameter conveys this process to ignore the dpdmai.1 block and use dpdmai.2 in Primary.

# Running secondary process with single core (not overlappping with primary),
 2 ports (same as primary); Assigning 1 dpmcp and 5 dpio, 1 dpdmai to it. (We
 can ignore the extra dpmcp preserved for 3 process, if any)
dpdk-symmetric_mp_qdma -c 0x2 -n 1 --proc-type=secondary -b fslmc:dpio.8 \
        -b fslmc:dpio.9 -b fslmc:dpio.10 -b fslmc:dpio.11 -b fslmc:dpio.12 \
        -b fslmc:dpmcp.21 -b fslmc:dpmcp.23 -b fslmc:dpdmai.2 \
        -- -p 0x3 --num-procs=2 --proc-id=1

4. Executing dpdk-l2fwd-crypto example application:
dpdk-l2fwd-crypto is a standard DPDK crypto demonstration application, which also supports
multiprocess model.
Primary differences with usual execution of dpdk-l2fwd-crypto are the mp-emask and mp-cmask
arguments passed - signifying Ethernet ports and crypto ports, respectively, which would be used by l2fwd-
crypto instance.
Following can be a possible primary application command, using the same DPRC as used for examples
described above:

dpdk-l2fwd-crypto -c 0x3 -n 1 -b fslmc:dpio.13 -b fslmc:dpio.14 -b
 fslmc:dpio.15 \
        -b fslmc:dpio.16 -b fslmc:dpio.17 -b fslmc:dpmcp.22 -b fslmc:dpmcp.23
 \
        -- -p 0x3 -q 1 --mp-emask 0x1 --mp-cmask 0x1 --chain CIPHER_ONLY \
  --cipher_algo aes-cbc --cipher_op ENCRYPT \

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
962 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

  --cipher_key 01:02:03:04:05:06:07:08:09:0a:0b:0c:0d:0e:0f:10 \
  --cipher_iv 01:02:03:04:05:06:07:08:09:0a:0b:0c:0d:0e:0f:10

Secondary application can be executed like:

dpdk-l2fwd-crypto -c 0xc -n 1 --proc-type=secondary -b fslmc:dpio.8 \
        -b fslmc:dpio.9 -b fslmc:dpio.10 -b fslmc:dpio.11 -b fslmc:dpio.12 \
        -b fslmc:dpmcp.21 -b fslmc:dpmcp.23 -b fslmc:dpdmai.2 \
        -- -p 0x3 -q 1 --mp-emask 0x2 --mp-cmask 0x2 --chain CIPHER_ONLY \
  --cipher_algo aes-cbc --cipher_op ENCRYPT \
  --cipher_key 01:02:03:04:05:06:07:08:09:0a:0b:0c:0d:0e:0f:10 \
  --cipher_iv 01:02:03:04:05:06:07:08:09:0a:0b:0c:0d:0e:0f:10

5. Non-I/O performing applications: dpdk-pdump and dpdk-procinfo
Both, dpdk-pdump and dpdk-procinfo are examples of secondary applications can query the primary
application (the first one) for information, without performing any actual I/O over the network devices. Both
these are compiled as default as part of the DPDK framework, just like testpmd and can be obtained from
app/ folder in the compiled output.
a. dpdk-pdump for capturing packets

Note:  For PCAP support, 'libpcap' library has to be provided to DPDK during compilation. This needs to
be compiled for ARM64 target.
Execute the primary application (only testpmd currently supports interfacing with dpdk-pdump):

dpdk-testpmd -c 0xff -n 1 -- -i --portmask=0x3 --nb-ports=2
...
# Start I/O on application
testpmd> set fwd io
testpmd> start

Execute the secondary application, dpdk-pdump. Just like the dpdk-symmetric_mp and other
multiprocess application, isolation of DPRC resources like dpio and dpmcp needs to be done.

dpdk-pdump -n 1 -b fslmc:dpio.8 -b fslmc:dpio.9 -b fslmc:dpio.10 -b
 fslmc:dpio.11 \ -b fslmc:dpio.12 -b fslmc:dpio.13 -b fslmc:dpio.14 -
b fslmc:dpio.15 \ -b fslmc:dpio.16 -b fslmc:dpmcp.29 --mbuf-pool-ops-
name="ring_mp_mc" \ -- --pdump "port=0,queue=*,rx-dev=./rx.pcap"

In the above command, port=0, ... parameters convey `dpdk-pdump` app that capture should be
done on port 0 (for example, dpni.1) and packets being received on all queues queue=*. Further,
all the captured packets can be dumped to a PCAP file using rx-dev=<path to pcap file> if
LIBPCAP was enabled.
In the above example, only Rx'd packets are being written to PCAP. For Tx'd packets, use something
similar to port=0,queue=*,tx-dev=./... where the output PCAP file is different from Rx'd
packets. Both, RX and TX, options can be simultaneously provided.
Stop dpdk-pdump using Ctrl+C and copy the PCAP file for reading through external application like
Wireshark

b. dpdk-procinfo for dumping application information like memory or port statistics
dpdk-procinfo is an inbuilt application which allows dumping information like memory and statistics
of a running (primary) DPDK application.
Execute the primary application: (Unlike dpdk-pdump, dpdk-procinfo can be run along with any
primary application):

dpdk-testpmd -c 0xff -n 1 -- -i --portmask=0x3 --nb-ports=2
...
# Start I/O on application
testpmd> set fwd io
testpmd> start

Execute the secondary application, dpdk-procinfo:

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
963 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Note:  It is a good practice to isolate the resources of the application (dpio, dpmcp and dpdmai) for
all cases of secondary application. Though dpdk-procinfo can work without that isolation because it
doesn't necessarily access device-specific data, it is a good practice to do the isolation in this case as
well.

dpdk-procinfo -- -m

Above command dumps the memory layout of the primary DPDK application to the screen. There are
other switches also available like -s which can dump the statistics.

Note:

• dpdk-l2fwd/dpdk-l3fwd in their current design are not suited for multiprocess execution and therefore,
would not work with substantial modification of segregating the queues and RX/TX processing.

• For exiting the application, it is advisable to send SIGKILL to all the application. Similar to "killall <application
name>". If not, all secondary should be killed first (Ctrl+C or SIGKILL) before the primary process.

8.2.14.5  Traffic Policing in DPAA

On the DPAA SoCs (like LS1043, LS1046), using the FMC tool, traffic policing can be done using simple
configuration.

This is part of the Ingress Traffic Management in the FMan block which sits between the QMan and the
hardware in the overall vertical block layout of DPAA. Once the frames are ingressed from WRIOP into FMan,
post the Parser and Classify block, the Policer block can be configured to color (and drop) frames based on
the policy. Policer blocks pass along any non-dropped frame toward the QMan through the FMan<=>QMan
interface. FMan supports up to 256 policy profiles.

Note:  A sample XML has been added to DPDK source folder /usr/share/dpdk/dpaa/usdpaa_policy_
hash_ipv4_1queue_policer_ls1046.xml. This section uses snippets from this file. This is ONLY
applicable for LS1046A boards.

1. Define a Policer policy XML. In this example, a copy of usdpaa_policy_hash_ipv4_1queue_policer_
ls1046.xml has been used.

<policer name="policer9">
  <algorithm>rfc2698</algorithm>
  <color_mode>color_aware</color_mode>
  <CIR>5000000</CIR>
  <EIR>5500000</EIR>
  <CBS>5000000</CBS>
  <EBS>5500000</EBS>
  <unit>packet</unit>
  <action condition="on-red" type="drop"/>
</policer>

In the above configuration, a RFC2698 (Two Rate Three Color Marker) policer has been defined. This policy
is based on 2 token buckets representing two rates - PIR/EIR or Peak/Exceed Information Rate and CIR or
Committed Information Rate - and 3 colors - Red, Yellow and Green. Based on the information configured
above for CBS (Committed Burst Size) and EBS (Peak/Exceed Burst Size), streams are marked as being
colored for one of the 3 colors.
Note:  Based on the standard trTCM (Three Color Marker), CIR is rate of filling the committed bucket and
CBS being its initial size, EIR is the rate of filling the exceed bucket and EBS being its initial size. Thus, in
case a flow of packets is received which exceeds the EIR, it would be marked as Red; else if it exceeds CIR
but below EIR, it would be marked Yellow; otherwise Green.
The configuration above has following elements:
• policer name is the name of the Policer which would be used for assigning to the distribution policy

records

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
964 / 1061

https://tools.ietf.org/html/rfc2698


NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

• algorithm which has to be defined to rfc2968, or rfc4115 for trTCM for differentiated services or
pass-through to disable policing (default)

• color_mode which can be set to either of color_aware or color_blind. color_aware uses the pre-
colored information, if any, to make decisions, while color_blind ignores the existing color information.

• CIR, EIR - for Committed Information Rate and Exceed Information Rate, respectively. Metric for this is
defined by unit per second (explained below).

• CBS, EBS - for Committed Burst Size and Exceed Burst Size, respectively. Metric for this is defined by
unit per second (explained below).

• unit - defines the metric for all the four configuration parameters, namely CIR, CBS, EIR, EBS. For
information rate, it would be unit/second whereas for burst size it would unit.

2. Apply the policy to one or more distribution policies:

<distribution name="hash_ipv4_src_dst_dist9">
  <queue count="1" base="0xd00"/>
  <key>
    <fieldref name="ipv4.src"/>
    <fieldref name="ipv4.dst"/>
  </key>
  <action type="policer" name="policer9"/>
</distribution>

3. Apply the policy file using the FMC tool

root@LS1046ARDB:~# fmc -x
root@LS1046ARDB:~# fmc -c /usr/share/dpdk/dpaa/usdpaa_config_ls1046.xml -p /
usr/share/dpdk/dpaa/usdpaa_policy_hash_ipv4_1queue_policer_ls1046.xml -a

Perform I/O hereafter to see the effect of policing being implemented.

8.2.14.6  Precision Time Protocol (IEEE1588)

The Precision Time Protocol (PTP) is a protocol used to synchronize clock throughout a computer network. PTP
was originally defined in IEEE1588-2002 standard.

To test ptp functionality in DPDK, one can use DPDK example application “ptpclient” present in DPDK source
code. ptpclient application uses DPDK IEEE1588 API to communicate with a PTP master clock to synchronize
the time on NIC and, optionally, on the Linux system.

Note:  ptpclient application is based on assumption that it is single-threaded and it always works in slave mode.

8.2.14.6.1  Supported platforms

PTP is supported for DPAA2 and DPAA1 based family of SoCs.

8.2.14.6.2  Build procedure

1. By default, IEEE1588 is kept disabled in DPDK config file. To enable, set
'CONFIG_RTE_LIBRTE_IEEE1588' as true in config/arm/meson.build file.

2. By default, kernel is using software time-stamps on DPAA1 platform. While using the ptp server application
in HW mode, it may fail to create a clock.
To enable HW time-stamps, enable CONFIG_FSL_DPAA_1588 flag in kernel config and re-compile the
kernel Image.

3. Build DPDK using steps mentioned in Section 8.2.3 section.
4. ‘dpdk-ptpclient’ executable will be generated in arm64-build/examples directory.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
965 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

8.2.14.6.3  Test setup and prerequisite to test with ptpclient

dpdk-ptpclient test application works in slave mode. It can be tested with ptp4l test application running in Linux
on another machine in master mode.

Two machines are required to be connected back-to-back:

• Tester Machine: to run ptp4l test application. ptp4l test application can be directly installed on tester machine
via apt-install type commands or can be built by downloading linuxptp package.

• DUT (Board NXP platform): to run ptp4client test application.

DPAA2/DPAA1 port of DUT board on which ptpclient test application will be tested should be connected to one
of Ethernet port of Tester Machine (Tester_port).

8.2.14.6.4  DPAA1 test procedure with ptpclient

8.2.14.6.4.1  Non-VSP mode

Tester machine

Ensure that the Tester_port is up and connected to DPAA_port (fm<x>-mac<y>) of DUT board.

For confirmation, provide a valid IP to Tester_port and ping DPAA_port.

Start ptp server on tester machine. This acts as PTP Master.

Suppose eth1 is tester_port which is connect to DUT:

#./ptp4l -i eth1 -m -2

DUT machine

The DUT machine acts as ptp slave.

Boot the board with fsl-ls1046a-rdb-usdpaa.dtb file and on bootup, clean the fmc policy data using #
fmc -x.

Perform the following steps to run the ptpclient application on DUT_port:

1. To synchronize DUT PTP Hardware clock with Tester Machine PTP Hardware clock use the command:
#dpdk-ptpclient -l 1 -n 1 -- -p 0x1 -T 0

2. To synchronize DUT PTP Hardware clock with Tester Machine PTP Hardware clock and additionally update
system kernel clock, use the command:
#dpdk-ptpclient -l 1 -n 1 -- -p 0x1 -T 1

3. To verify if System kernel clock is updated, read time before and after execution of above ptpclient
command using date command:
#date

8.2.14.6.4.2  VSP mode

Tester machine

Ensure that the Tester_port is up and connected to DPAA_port (fm<x>-mac<y>) of DUT board.

For confirmation, provide a valid IP to Tester_port and ping DPAA_port.

Start ptp server on tester machine. This acts as PTP Master.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
966 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Suppose eth1 is tester_port which is connect to DUT:

#./ptp4l -i eth1 -m -2

DUT machine

The DUT machine acts as ptp slave.

Boot the board

To boot the board with fsl-ls1046a-rdb-usdpaa-shared.dtb file and on kernel bootup, run the following
commands:

1. To clean fmc policy data, use the command:
# fmc -x

2. To provide a valid IP to DPAA_port, use the command:
# ifconfig fm<x>-mac<y> <valid IP address>

3. To setup VSP fmc configuration, use the command:

# fmc -c /usr/share/dpdk/dpaa/usdpaa_config_ls1046_shared_24g.xml -p 
/usr/share/dpdk/dpaa/usdpaa_policy_vsp_24g_classif_ptp_1queue.xml -a

Run ptp client

To run ptpclient application on DUT_port, run the following commands:

1. To synchronize DUT PTP Hardware clock with Tester Machine PTP Hardware clock, use the command:
#dpdk-ptpclient -l 1 -n 1 -- -p 0x1 -T 0

2. To synchronize DUT PTP Hardware clock with Tester Machine PTP Hardware clock and additionally update
system kernel clock, use the command:
#dpdk-ptpclient -l 1 -n 1 -- -p 0x1 -T 1

3. To verify if System kernel clock is updated, read time before and after execution of above ptpclient
command using the date command:
#date

8.2.14.6.5  DPAA2 test procedure with ptpclient

1. Tester machine: Ensure the Tester_port is up and connected to DPAA2_port of DUT board. Confirm this
by testing ping. If the tester machine is NXP DPAA2 based board and the Tester_port does not show up in
ifconfig -a command, run command like below to create the interface:

#ls-addni dpmac.1
Created interface: eth1 (object:dpni.0, endpoint: dpmac.1)

For more information on interface creation, see Section 7.3.2.3.3.
Start ptp server on tester machine. This will act as PTP Master. Suppose eth1 is tester_port which is
connect to DUT

#./ptp4l -i eth1  -m -2
ptp4l[581.659]: selected /dev/ptp1 as PTP clock
ptp4l[581.718]: port 1: INITIALIZING to LISTENING on INIT_COMPLETE
ptp4l[581.718]: port 0: INITIALIZING to LISTENING on INIT_COMPLETE
ptp4l[587.813]: port 1: LISTENING to MASTER on
 ANNOUNCE_RECEIPT_TIMEOUT_EXPIRES
ptp4l[587.813]: selected local clock b26433.fffe.beb68c as best master

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
967 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

ptp4l[587.813]: assuming the grand master role

2. DUT machine: This machine will act as ptp slave. Create DPRTC instance and attach DPAA2 port to DPDK
using dynamic_dpl script.

#export DPRTC_COUNT=1
#source ./dynamic_dpl.sh dpmac.1

Confirm from dynamic_dps.sh output that one DPRTC object is created.
Run ptpclient application on DUT_port
a. To synchronize DUT PTP Hardware clock with Tester Machine PTP Hardware clock

#dpdk-ptpclient -l 1 -n 1 -- -p 0x1 -T 0

b. To synchronize DUT PTP Hardware clock with Tester Machine PTP Hardware clock and additionally
update system kernel clock

#dpdk-ptpclient -l 1 -n 1 -- -p 0x1 -T 1

c. To verify if System kernel clock is updated, read time before and after execution of above ptpclient
command using date command

#date

LS2088ARDB DUT logs:
root@ls1028ardb:~# export DPRTC_COUNT=1
root@ls1028ardb:~# source ./dynamic_dpl.sh dpmac.5
parent - dprc.1
Creating Non nested DPRC
NEW DPRCs
dprc.1
dprc.2
Using board type as 2088
Using High Performance Buffers
##################### Container dprc.2 is created ####################
Container dprc.2 have following resources :=>
* 1 DPMCP
* 16 DPBP
* 8 DPCON
* 8 DPSECI
* 1 DPNI
* 18 DPIO
* 2 DPCI
* 2 DPDMAI
* 1 DPRTC
######################### Configured Interfaces #########################
Interface Name Endpoint Mac Address
============== ======== ==================
dpni.1 dpmac.5 -Dynamicroot@
localhost:~# date
Mon Jul 1 21:41:26 UTC 2019
root@ls1028ardb:~# ./ptpclient -l 1 -n 1 -- -p 0x1 -T 0
EAL: Detected 8 lcore(s)
EAL: Detected 1 NUMA nodes
EAL: Multi-process socket /var/run/dpdk/rte/mp_socket
fslmc: Skipping invalid device (power)
EAL: Probing VFIO support...
EAL: VFIO support initialized
EAL: PCI device 0000:01:00.0 on NUMA socket -1
EAL: Invalid NUMA socket, default to 0
EAL: probe driver: 8086:10d3 net_e1000_em

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
968 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

PMD: dpni.1: netdev created
dpaa2_net: Rx offloads non configurable - requested 0x0 ignored 0x2000
dpaa2_net: Tx offloads non configurable - requested 0x18000 ignored
 0x1c000
Core 1 Waiting for SYNC packets. [Ctrl+C to quit]
Master Clock id: 32:70:3e:ff:fe:ff:a6:59
T2 - Slave Clock. 207s 560468378ns
T1 - Master Clock. 19324s 999662036ns
T3 - Slave Clock. 0s 0ns
T4 - Master Clock. 19324s 999702684ns
Delta between master and slave clocks:19221219448171ns
Comparison between Linux kernel Time and PTP:
Current PTP Time: Thu Jan 1 05:23:48 1970 780202685 ns
Current SYS Time: Mon Jul 1 21:42:10 2019 317847 ns
Delta between PTP and Linux Kernel time:-1561997901537542450ns
[Ctrl+C to quit]
root@ls1028ardb:~# date
Mon Jul 1 21:42:18 UTC 2019
root@ls1028ardb:~# ./ptpclient -l 1 -n 1 -- -p 0x1 -T 1
EAL: Detected 8 lcore(s)
EAL: Detected 1 NUMA nodes
EAL: Multi-process socket /var/run/dpdk/rte/mp_socket
fslmc: Skipping invalid device (power)
EAL: Probing VFIO support...
EAL: VFIO support initialized
EAL: PCI device 0000:01:00.0 on NUMA socket -1
EAL: Invalid NUMA socket, default to 0
EAL: probe driver: 8086:10d3 net_e1000_em
PMD: dpni.1: netdev created
dpaa2_net: Rx offloads non configurable - requested 0x0 ignored 0x2000
dpaa2_net: Tx offloads non configurable - requested 0x18000
ignored 0x1c000
Core 1 Waiting for SYNC packets. [Ctrl+C to quit]
Master Clock id: 32:70:3e:ff:fe:ff:a6:59
T2 - Slave Clock. 20845s 385135978ns
T1 - Master Clock. 19339s 999998152ns
T3 - Slave Clock. 0s 0ns
T4 - Master Clock. 19340s 23532ns
Delta between master and slave clocks:8917307442853ns
Comparison between Linux kernel Time and PTP:
Current PTP Time: Thu Jan 1 08:16:02 1970 692874689 ns
Current SYS Time: Thu Jan 1 08:16:02 1970 692915 ns
Delta between PTP and Linux Kernel time:52105ns
[Ctrl+C to quit]
root@ls1028ardb:~# date
Thu Jan 1 05:16:17 UTC 1970
root@ls1028ardb:~#

8.2.14.7  Traffic Management Support in DPAA2

DPDK traffic management framework add support of generic APIs for the Quality of Service (QoS) Traffic
Management of Ethernet devices. It includes main features, such as hierarchical scheduling, traffic shaping, and
congestion management.

For details, see DPDK traffic management document.

8.2.14.7.1  Supported Features

The supported features are:
UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
969 / 1061

https://doc.dpdk.org/guides/prog_guide/traffic_management.html


NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

• Level0(root node), level1 (channels) and level2 (queues) in hierarchy are supported.
• Private shapers at level0 and level1 are supported.
• 8 TX queues per channel(level1 node) and maximum 15 channels per port supported.
• Both SP and WFQ scheduling mechanisms are supported on all 8 queues.
• Level0 and level2 statistics are supported.
• Congestion notification is supported.

8.2.14.7.2  Testing

DPDK dpdk-testpmd application supports traffic management functionality and same can be used to verify on
DPAA2.

To test with dpdk-testpmd application, refer to README_TM file.

For command details and to know the platform capabilities, refer to DPDK testpmd Traffic Management
document.

8.2.14.8  Flow Control Support in DPAA2

The default distribution among the RX queues on the DPAA2 platform is RSS. DPAA2 also supports flow
APIs to control RX traffic. The RX traffic can be distributed between the queues based on various rules and
parameters. For example, Packet type, source IP, destination IP, and UDP/TCP port value. For detail steps to
enable distribution using flow APIs, see README_FLOW_CONTROL.

8.3  Vector Packet Processing (VPP)
This section describes the VPP v22.02 support with DPDK v21.11-qoriq. It can be used as additional
component on Layerscape LDP.

8.3.1  Introduction

The Vector Packet Processing (VPP) platform is an extensible framework that provides out-of-the-box
production quality switch/router functionality. It is the open source version of VPP technology: a high
performance, packet-processing stack that can run on commodity CPUs. The benefits of this implementation
of VPP are its high performance, proven technology, its modularity and flexibility, and rich feature set. It is a
modular design. The framework allows anyone to "plug in" new graph nodes without the need to change core/
kernel code.

Bare Metal/VM/Container

Data Plane Management Agent

Packet Processing

Network IO

Figure 215. VPP platform architecture

VPP reads the largest available vector of packets from the network IO layer.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
970 / 1061

https://github.com/NXPmicro/dpdk/blob/21.11-qoriq/nxp/dpaa2/README_TM
https://doc.dpdk.org/guides/testpmd_app_ug/testpmd_funcs.html#traffic-management
https://doc.dpdk.org/guides/testpmd_app_ug/testpmd_funcs.html#traffic-management
https://github.com/NXPmicro/dpdk/blob/21.11-qoriq/nxp/dpaa2/README_FLOW_CONTROL


NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Packet Vector

P
ac

ke
t-

1

P
ac

ke
t-

2

P
ac

ke
t-

3

P
ac

ke
t-

4

P
ac

ke
t-

n

Figure 216. Packet vector

VPP then processes the vector of packets through a Packet Processing graph.

ethernet-input

dpdk-input

mpls-ethernet-input
ip6-input

ip4-input arp-input IIc-input

ip6-lookup

P
ac

ke
t-

1

P
ac

ke
t-

2

P
ac

ke
t-

3

P
ac

ke
t-

4

P
ac

ke
t-

n

Figure 217. Packet processing graph

Rather than processing the first packet through the whole graph, and then the second packet through the whole
graph, VPP instead processes the entire vector of packets through a graph node before moving on to the next
graph node.

Because the first packet in the vector warms up the instruction cache, the remaining packets tend to be
processed at extreme performance. The fixed costs of processing the vector of packets are amortized across
the entire vector. This leads not only to very high performance, but also statistically reliable performance. If VPP
falls a little behind, the next vector contains more packets, and therefore the fixed costs are amortized over a
larger number of packets, bringing down the average processing cost per packet, causing the system to catch
up. As a result, throughput and latency are very stable. If multiple cores are available, the graph scheduler can
schedule (vector, graph node) pairs to different cores.

The graph node architecture of VPP also makes for easy extensibility. You can build an independent binary
plugin for VPP from a separate source code base (you need only the headers). Plugins are loaded from the
plugin directory. A plugin for VPP can rearrange the packet graph and introduce new graph nodes. This allows
new features to be introduced via the plugin, without needing to change the core infrastructure code.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
971 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

ethernet-input

P
ac

ke
t-

1

P
ac

ke
t-

2

P
ac

ke
t-

3

P
ac

ke
t-

4

P
ac

ke
t-

n

dpdk-input

mpls-ethernet-input
ip6-input

ip4-input arp-input IIc-input

ip6-lookup

Plugin
Node A

Plugin
Node B

Plug in to create new nodes

Figure 218. Packet processing graph

For more details see, https://wiki.fd.io/view/VPP.

8.3.2  Supported platform

VPP supports LS1043A, LS1046A, LS1088A, LS2088A, and LX2160A family of SoCs. This section details the
architectural and port layout of their Reference Design Boards.

VPP v22.02 Upstream + NXP Patches is supported by this Layerscape LDP release.

Refer to the following for board-specific information:

• LS1043A Reference Design Board
• LS1046A Reference Design Board
• LS1088A Reference Design Board
• LS2088A Reference Design Board
• LX2160A Reference Design Board

8.3.3  Supported use cases

• vRouter: VPP as virtual router
• vSwitch: VPP as virtual switch
• VPP Cross-connect
• IPsec: VPP can perform the IPsec in DPDK OpenSSL crypto driver mode.

8.3.4  Build VPP

8.3.4.1  Standalone build steps

This section details steps required to build VPP in a standalone environment.

Prerequisites before compiling VPP
UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
972 / 1061

https://wiki.fd.io/view/VPP
http://www.nxp.com/LS1043ARDB
http://www.nxp.com/LS1046ARDB
http://www.nxp.com/LS1088ARDB
http://www.nxp.com/LS2088ARDB
http://www.nxp.com/LX2160ARDB


NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Before compiling VPP as a standalone build, following dependencies need to be resolved independently:

1. DPDK libraries required for packets processing. For more details on DPDK compilation, see
Section 8.2.3.2.3. It is required to add -Dc_args="-g -Ofast -fPIC -ftls-model=local-
dynamic" in DPDK compilation command to make DPDK libraries compatible with VPP. Following is
example DPDK compilation command

meson arm64-build --cross-file config/arm/arm64_dpaa_linux_gcc -Dexamples=all
 -Dc_args="-g -Ofast -fPIC -ftls-model=local-dynamic" -Dprefix=/path/to/dpdk/
dpdk_lib_install -Ddefault_library=static -Doptimization=3
ninja -C arm64-build install

2. OpenSSL libraries.
Example to build openssl (tag: OpenSSL_1_1_1k):

export CROSS_COMPILE=/path/to/gcc-linaro-7.5.0-2019.12-x86_64_aarch64-linux-
gnu/bin/aarch64-linux-gnu-
mkdir openssl_lib_install
./Configure linux-aarch64  --prefix=/path/to/openssl/openssl_lib_install
 shared
make depend
make
make install
export PKG_CONFIG_PATH=openssl_lib_install/lib/pkgconfig:$PKG_CONFIG_PATH

VPP compilation

git clone https://github.com/nxp-qoriq/vpp.git
git checkout
-b <local_branch_name> <release_tag> # Replace "<local_branch_name/release_tag>"
with Layerscape LDP release tag specific information
export DPDK_PATH=<DPDK installed path>
export CROSS_TOOLCHAIN= <Path to Toolchain> 
export CROSS_SYSROOT= <Path
to sysroot directory>(Optional)
export CROSS_PREFIX=aarch64-linux-gnu
export PLATFORM=dpaa
export PATH=<toolchain path>/bin:<toolchain path>/aarch64-linuxgnu/bin:$PATH
export OPENSSL_PATH=<openssl lib path>
export NUMA_PATH=<numa
lib path> 
cd vpp 
make install-dep 
cd build-root 
make distclean 
make PLATFORM=dpaa TAG=dpaa vpp-package-deb V=0

After compilation, some deb packages are generated in vpp/build-root directory. Copy all the *.deb
packages to the /usr/share/vpp directory in rootfs.

8.3.4.2  Build VPP using Yocto

VPP is one of the application packages of the Yocto build system. This section details method to build VPP
as a standalone package within the Yocto environment. It is assumed that the Yocto environment has already
been configured before executing the commands below. For more details on using the Yocto build system, see
Download Yocto layers.

After the Yocto environment is set up, use the following commands to build VPP applications and libraries.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
973 / 1061

https://docs.nxp.com/bundle/GUID-E5527A77-2F97-4244-BF9C-D08F068EFD16/page/GUID-0FE0ADA3-4DA0-4994-A8CF-424A31BE58FC.html#GUID-0FE0ADA3-4DA0-4994-A8CF-424A31BE58FC


NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

The generated files are available in the <yocto_sdk>/bld-<Name>/tmp/work/-poky-linux/vpp/
<Machine> folder.

After the rootfs (root filesystem) is generated, the binaries merge into it.

bitbake vpp     # it is assumed setup-env was run before running this command

For packing these binaries into the target rootfs using the Yocto build system, see Build Yocto images. By
default, the Yocto environment compiles VPP and places it in the rootfs when bitbake imx-image-
multimedia is run.

Layout of VPP binaries

Single image of VPP binary supports DPAA and DPAA2 platforms. After the VPP package is installed, binaries
are available in the usr/bin/vpp and /usr/share/vpp folders in the rootfs.

/usr/share/vpp      # Contains the sample applications                          
   

At various places in this document, above binaries would be referred for representing execution as well as other
information. It is assumed that execution is being done either using the PATH variable set, as explained above,
or with absolute path to the binaries.

Table 169 below depicts various VPP example applications which are available in the Yocto generated rootfs:

VPP File name or VPP Image name Description

/usr/bin/vpp VPP application binary.

/etc/vpp/startup.conf VPP configuration file.

/etc/vpp/README_nxp.txt README for DPAA & DPAA2 platforms.

Table 169. Sample VPP applications

8.3.5  Executing VPP

8.3.5.1  Setup VPP environment

Following are the steps for running VPP:

• LS2088, LS1088A, and LX2160A board setup
cd /usr/share/dpdk/dpaa2
. ./dynamic_dpl.sh dpmac.1 dpmac.2
mkdir /mnt/hugepages
mount -t hugetlbfs none /mnt/hugepages

• LS1046 and LS1043 board setup:
mkdir /mnt/hugepages
mount -t hugetlbfs none /mnt/hugepages
fmc -x
cd /usr/share/dpdk/dpaa

Run the FMC script for board-specific configuration. For example, for LS1046, run the following command:

fmc -c usdpaa_config_ls1046.xml -p usdpaa_poolicy_hash_ipv4_1queue.xml -a

Return to original working folder

cd -

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
974 / 1061

https://docs.nxp.com/bundle/GUID-E5527A77-2F97-4244-BF9C-D08F068EFD16/page/GUID-1309777B-41FC-491B-85D5-D3D5D29F73E4.html#GUID-1309777B-41FC-491B-85D5-D3D5D29F73E4


NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Note:  <int0> and <int1> in the following commands are the interface names and must be replaced with
the actual interface names. Run the command vppctl show int after running vpp -c /etc/vpp/
startup.conf.dpkg-new or vpp -c /etc/vpp/startup.conf to check the interface names. To check
the associated MAC address of an interface, run the command vppctl show hard.

Warning:  For achieving performance, enable_performance_mode.sh script can be executed before VPP
execution. This script helps in setting VPP threads with RT priority, setting CPU governor to performance mode,
and disabling any watchdog interrupts. This script is not recommended for production or formal environments. It
might also lead to CPU hogging as I/O threads are given RT priority stalling other OS threads/services. Use with
caution.

The script is available at /usr/share/dpdk/ folder in rootfs.

8.3.5.2  Execute VPP

VPP Cross-connect:

vpp -c /etc/vpp/startup.conf.dpkg-new  &
vppctl set interface state <int0> up
vppctl set interface state <int1> up
vppctl set interface l2 xconnect <int0> <int1>
vppctl set interface l2 xconnect <int1> <int0>

VPP vRouter:

vpp -c /etc/vpp/startup.conf.dpkg-new &
vppctl
set int ip address <int0> 1.1.1.2/16
set int ip address <int1> 2.1.1.2/16
set int state <int0> up
set int state <int1> up
set ip neighbor static <int0> 1.1.1.3 <interface mac of next hop>
set ip neighbor static <int1> 2.1.1.3 <interface mac of next hop>
ip route add 10.1.0.0/16 via 1.1.1.3 <int0>
ip route add 20.1.0.0/16 via 2.1.1.3 <int1>
set int mtu 1500 <int0>
set int mtu 1500 <int1>

VPP IPSec

Commands to run on board 1:

vpp -c /etc/vpp/startup.conf.dpkg-new &
vppctl
ipsec select backend esp 1
set interface ip address <int0> 1.1.1.2/24
set interface ip address <int1> 192.168.100.2/24
set interface state <int0> up
set interface state <int1> up
set ip neighbor static <int1> 192.168.100.3 <interface mac of next hop>
ipsec sa add 10 spi 1001 esp crypto-alg aes-cbc-l28 crypto-key
 4a506a794f574265564551694d653768 integ-alg shal-96 integ-key
 4339314b55523947594d6d3547666b45764e6a58 tunnel src 192.168.100.2 dst
 192.168.100.3
ipsec sa add 11 spi 1002 esp crypto-alg aes-cbc-l28 crypto-key
 4a506a794f574265564551694d653768 integ-alg shal-96 integ-key
 4339314b55523947594d6d3547666b45764e6a58 tunnel src 192.168.100.3 dst
 192.168.100.2

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
975 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

ipsec spd add 1
set interface ipsec spd <int1> 1
set interface promiscuous on <int0>
set interface promiscuous on <int1>
ipsec policy add spd 1 priority 10 outbound action protect sa 10 local-ip-range
 1.1.1.3 - 1.1.1.3
remote-ip-range 2.1.1.3 - 2.1.1.3
ipsec policy add spd 1 priority 10 inbound action protect sa 11 local-ip-range
 1.1.1.3 - 1.1.1.3
remote-ip-range 2.1.1.3 - 2.1.1.3
ip route add count 1 2.1.1.3/32 via 192.168.100.3 <int1>
set ip neighbor static <intO> 1.1.1.3 <interface mac of next hop>
ipsec policy add spd 1 priority 100 inbound action bypass protocol 50
ipsec policy add spd 1 priority 100 outbound action bypass protocol 50

Commands to run on board 2:

vpp -c /etc/vpp/startup.conf.dpkg-new &
vppctl
ipsec select backend esp 1
set interface ip address <intO> 2.1.1.2/24
set interface ip address <int1> 192.168.100.3/24
set interface state <intO> up
set interface state <int1> up
set ip neighbor static <int1> 192.168.100.2 <interface mac of next hop>
ipsec sa add 20 spi 1001 esp crypto-alg aes-cbc-l28 crypto-key
 4a506a794f574265564551694d653768 integ-alg shal-96 integ-key
 4339314b55523947594d6d3547666b45764e6a58 tunnel src 192.168.100.2 dst
 192.168.100.3
ipsec sa add 21 spi 1002 esp crypto-alg aes-cbc-l28 crypto-key
 4a506a794f574265564551694d653768 integ-alg shal-96 integ-key
 4339314b55523947594d6d3547666b45764e6a58 tunnel src 192.168.100.3 dst
 192.168.100.2
ipsec spd add 1
set interface ipsec spd <int1> 1
set interface promiscuous on <int0>
set interface promiscuous on <int1>
ipsec policy add spd 1 priority 10 inbound action protect sa 20 local-ip-range
 2.1.1.3 - 2.1.1.3 remote-ip-range 1.1.1.3 - 1.1.1.3
ipsec policy add spd 1 priority 10 outbound action protect sa 21 local-ip-range
 2.1.1.3 - 2.1.1.3
remote-ip-range 1.1.1.3 - 1.1.1.3
ip route add count 1 1.1.1.3/32 via 192.168.100.2 <int1>
set ip neighbor static <intO> 2.1.1.3 <interface mac of next hop>
ipsec policy add spd 1 priority 100 inbound action bypass protocol 50
ipsec policy add spd 1 priority 100 outbound action bypass protocol 50

8.3.6  Known Limitations

In DPAA1 platform, only available FMC configuration files are for 1, 2, 4 queues per port.

8.4  mTCP
This section describes the mTCP support with DPDK 21.11 version.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
976 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

8.4.1  Introduction

Scaling the performance of short TCP connections on multicore systems is fundamentally challenging. Although
many proposals have attempted to address various shortcomings, inefficiency of the kernel implementation
still persists. For example, even state-of-the-art designs spend 70% to 80% of CPU cycles in handling TCP
connections in the kernel, leaving only small room for innovation in the user-level program.

This work presents mTCP, a high-performance user level TCP stack for multicore systems. mTCP addresses
the inefficiencies from the ground up—from packet I/O and TCP connection management to the application
interface. In addition to adopting well-known techniques, Its design (1) translates multiple expensive system
calls into a single shared memory reference, (2) allows efficient flow level event aggregation, and (3) performs
batched packet I/O for high I/O efficiency.

8.4.2  Supported Platforms

mTCP supports LS1043A, LS1046A, LS1088A, LS2088A, and LX2160A family of SoCs. This section details the
architectural and port layout of their Reference Design Boards.

Refer to the following for board-specific information:

• LS1043A Reference Design Board
• LS1046A Reference Design Board
• LS1088A Reference Design Board
• LS2088A Reference Design Board
• LX2160A Reference Design Board

8.4.3  Supported Applications

The following applications support mTCP:

• Client
• Webserver – epserver, epwget

8.4.4  Build Steps

8.4.4.1  Standalone build steps

This section details steps required to build mTCP in a standalone environment.

8.4.4.2  Prerequisites before compiling mTCP

Before compiling mTCP as a standalone build, following dependencies need to be resolved independently:

• DPDK: We are using DPDK for packets processing, so DPDK libraries are required for mTCP compilation.
See section Standalone build of DPDK libraries and applications for DPDK compilation. Following is example
DPDK compilation command:

meson arm64-build --cross-file config/arm/arm64_dpaa_linux_gcc -Dexamples=all -Dprefix=/path/to/dpdk/dpdk_
lib_install -Ddefault_library=static -Doptimization=3

ninja -C arm64-build install

• Numa: The libnuma library offers a simple programming interface to the

NUMA (Non Uniform Memory Access) policy supported by the Linux

Kernel. Following are the steps to build Numa:

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
977 / 1061

https://nxp.com/ls1043ardb
https://nxp.com/ls1046ardb
https://nxp.com/ls1088ardb
https://nxp.com/ls2088ardb
https://nxp.com/lx2160ardb


NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

sudo apt install libtool-bin

git clone https://github.com/numactl/numactl.git

cd numactl

git checkout v2.0.13 -b v2.0.13

./autogen.sh

autoconf -i

./configure --host=aarch64-linux-gnu --prefix=<install path>

make

make install

• GMP: GMP is a library for arbitrary precision arithmetic, operating on signed integers, rational numbers, and
floating-point numbers. There is no practical limit to the precision except the ones implied by the available
memory in the machine GMP runs on. GMP has a rich set of functions, and the functions have a regular
interface. Following are the steps to compile libgmp:

curl -O https://gmplib.org/download/gmp/gmp-6.2.1.tar.xz

tar Jxf gmp-6.2.1.tar.xz

export CFLAGS="-O3"

export CXXFLAGS="-O3"

cd gmp-6.2.1/

./configure --host=aarch64-linux-gnu --prefix=<install path>

make -j4

make install

mTCP Compilation:

export RTE_SDK=<DPDK base directory Path>

export CFLAGS=<path of gmp and numa header files>

export LDFLAGS=<path of gmp and numa libraries>

export CC=<Cross Compile GCC path>

./configure --host=aarch64-linux-gnu --with-dpdk-lib=<DPDK installation path>

make setup-dpdk /* Need to execute for only once */

make

mTCP application compilation:

make -C <app path>

e.g.:

8.4.5  Executing mTCP

Setup mTCP environment

mTCP applications works on 2 board setup. Following are the steps for running mTCP on both boards:

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
978 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

• LS2088, LS1088A, and LX2160A board setup
cd /usr/share/dpdk/dpaa2. ./dynamic_dpl.sh dpmac.1
mkdir /mnt/hugepagesmount -t hugetlbfs none /mnt/hugepages
echo 256 > /proc/sys/vm/nr_hugepages

• LS1046 and LS1043 board setup:
mkdir /mnt/hugepagesmount -t hugetlbfs none /mnt/hugepagesecho 256 > /proc/sys/
vm/nr_hugepages
fmc -x
cd /usr/share/dpdk/dpaa

Run the FMC script for board-specific configuration. For example, for LS1046, run the following command:

fmc -c usdpaa_config_ls1046.xml -p usdpaa_poolicy_hash_ipv4_1queue.xml -a 

Return to original working folder:

cd –

Prepare a setup with ethernet ports of both boards connected with each other physically.
Execute “Client” Application
Setup:
– DPAA2:

Run the dynamic_dpl.sh script on both boards with at least 1 DPMAC object.
– DPAA1:

fmc -x

Execute the fmc script files on both boards.

Note:  Following steps are common for both platforms and boards.

1. Connect ethernet ports of both boards with each other (back to back).

cd /usr/bin/mtcp/

2. Update the configuration of client application in file client.conf like port name

mkdir ./config

3. Create one route and one arp configuration file and add below information:

Vim config/arp.conf

4. Add ARP information in below format:

ARP_ENTRY 1
10.0.0.16/24 00:00:00:00:00:01
Vim config/route.conf

5. Add route information in below format:

ROUTES 1
10.0.0.1/24 dpni.8

Note:  Route and ARP information can be obtained by executing the application.

Running steps:

1. On first board run below command:

#. ./client send <destination IP> <port> <time in seconds>

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
979 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

2. On 2nd board run below command:

#. ./client wait <destination IP> <port> <time in seconds>

Example Webserver:

Setup:

• DPAA2:
Run the dynamic_dpl.sh script on both boards with at least 1 DPMAC object.

• DPAA1:

fmc -x

Execute the fmc script files on both boards.

Note:  Following steps are common for both platforms and boards.

1. Connect ethernet ports of both boards with each other (back to back).

cd /usr/bin/mtcp/

2. Copy client.conf file to epserver.conf on board 1:

cp client.conf epserver.conf

3. Copy client.conf file to epwget.conf on board 2:

cp client.conf epwget.conf

4. Update the port names and configuration as per the requirement.

mkdir ./config

5. Create one route and one arp configuration files and add below information:

Vim config/arp.conf

6. Add ARP information in below format:

ARP_ENTRY 1
10.0.0.16/24 00:00:00:00:00:01
Vim config/route.conf

7. Add route information in below format:

ROUTES 1
10.0.0.1/24 dpni.8

Note:  Route and ARP information can be obtained by executing the application.

Running steps:

1. On first board run below command:

#. ./epserver -p /home/www -f epserver.conf -N 8

2. On 2nd board run below command:

#. ./epwget <IP/file name> <number of requests> -N 1 -c 8000 -f epwget.conf

For example:

./epwget 10.0.0.112/a.txt 1000000 -N 1 -c 8000 -f epwget.conf

Where:
-p is path of server home directory where all the files are present.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
980 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

-f is configuration file name.
-N is number of cores.
-c is number of concurrent connections.
Note:  epwget can work only on 1 core.

8.5  USDPAA

USDPAA is no longer supported as an API for direct customer use. All non-NXP software should use one of the
standard APIs, DPDK instead of USDPAA. Some of the USDPAA software components may still exist as a layer
below other software components such as DPDK, but do not assume that this will continue in future software
releases.

9   Virtualization

Virtualization provides an environment that enables running multiple operating systems on a single computer
system. Virtualization uses hardware and software technologies together to enable this by providing an
abstraction layer between system hardware and the OS. The isolated environment in which the operating
systems run is known as a virtual machine (or VM). The abstraction layer that manages all this is referred to
as a hypervisor or virtual machine manager. The hypervisor layer operates at a privilege level higher than that
of the operating systems, therefore enabling it to enforce system security, ensure that virtual machines cannot
interfere with each other, and transparently provide other services such as I/O sharing to the VM.

Figure 219. Virtualization

This section explains:

• KVM/QEMU
• Linux Containers (LXC) for NXP QorIQ User's Guide
• Docker Containers
• NFV OpenStack

9.1  KVM/QEMU

This document is a guide and tutorial to building and using KVM (Kernel-based Virtual Machine) on NXP QorIQ
SoCs.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
981 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

9.1.1  KVM/QEMU Overview

KVM is a Linux kernel driver that together with QEMU, an open source machine emulator, provides an open
source virtualization platform based on Linux. KVM and QEMU together act as a virtual machine manager that
can boot and run operating systems in virtual machines. See figure below:

Figure 220. Kernel-based Virtual Machine

In this document, the term host kernel refers to the underlying instance of Linux with the KVM driver that acts as
the hypervisor. The term guest refers to the operating system, such as Linux, that runs in a virtual machine. A
virtual machine is referred to as "VM".

NXP QorIQ SoCs based on Arm v8 CPUs are supported.

9.1.1.1  Using QEMU and KVM

9.1.1.1.1  Overview of Using QEMU

QEMU is used to start virtual machines. The QEMU application is named qemu-system-aarch64 (for 64-bit
platforms).

In addition to the QEMU executable itself, the following is a list of the minimum components that must be
available on the target system to launch a virtual machine using QEMU:

• The host Linux kernel on the target must be built with virtualization support for KVM enabled
• A guest OS kernel image (Image for Linux)
• A guest root filesystem (If needed by the guest OS. For example, a Linux guest requires a rootfs.)
• Recommended: A working network interface (to interface to the guest's console and the QEMU monitor)

The QEMU Emulator User Documentation [1] (see Section 9.1.1.5) contains complete documentation for all
QEMU command-line arguments. The table below summarizes some of the flags and arguments for basic
operation.

Argument Descriptions

-enable-kvm Specifies that the Linux KVM should be used for the virtual machine's CPUs.

Table 170. QEMU command-line arguments

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
982 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Argument Descriptions

-nographic Disables graphical output-console on the emulated serial port.

-M machine Specifies the type of virtual machine. One value is supported:
• virt

-smp cpu_count Specifies the number of CPUs for the virtual machine.
The number of virtual CPUs allowed is the same as the value of the CONFIG_NR_CPUS
config option in the host Linux kernel. To see this value issue the following command from
Linux on the target board:

zcat /proc/config.gz | grep NR_CPUS

-kernel file Specifies the guest OS image. The supported image types are in Image format (the
generic Linux kernel binary image file) and zImage (a compressed version of the Linux
kernel image).

-initrd file Specifies a root filesystem image.

-append cmdline Use cmdline as the guest OS kernel command-line (passed in the bootargs property of
the /chosen node in the guest device tree).

-serial dev Redirects the virtual serial port to the host device dev. QEMU supports many possible host
devices. Refer to the QEMU User Documentation [1] (see Section 9.1.1.5) for complete
details.
Note: If using a TCP device with the server option, QEMU will wait for a connection to the
device before continuing unless the nowait option is used.

-m megs Specifies the size of the VM's RAM in megabytes. This option is ignored if using direct
mapped memory.
See Section 9.1.1.1.2 for further details on options for allocating memory.

-mem-path path Specifies the path to a file from which to allocate memory for the virtual machine. This
option should be used to allocate memory from hugetlbfs.
See Section 9.1.1.1.2 for further details on options for allocating memory.

-monitor dev Redirects the QEMU monitor to the host device dev. QEMU supports many possible
host devices. See the QEMU User Documentation [1] (see Section 9.1.1.5) for complete
details.
Note: if using a tcp device with the server option QEMU will wait for a connection to the
device before continuing unless the nowait option is used.

-S Do not start CPU at startup (you must type 'c' in the monitor). This can be useful if
debugging.

-gdb dev Wait for gdb connection on device dev.

-drive [args] Used to create a virtual disk in a virtual machine.
See Section 9.1.1.1.4 for additional information.

-netdev [args]
-device virtio-net-device [args]

The -netdev and -device virtio-net-device arguments specify the network backend and
front end for creating virtual network devices in virtual machines.
See Section 9.1.1.1.3 for additional information.

-cpu model Select CPU model. Only one model is supported:
• host

Table 170. QEMU command-line arguments...continued

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
983 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Below is an example command-line a user would run from the host Linux to start virt virtual machine booting a
Linux guest:

qemu-system-aarch64 -smp 8 -m 1024 -cpu host -machine type=virt,gic-version=3
 -kernel /boot/Image -enable-kvm -display none -serial tcp::4446,server,telnet
 -drive if=none,file=/root/ls-image-main-<board>.ext4, -kernel /root/Image,
 id=foo,format=raw -device virtio-blk-device,drive=foo -append 'root=/dev/vda rw
 console=ttyAMA0 rootwait earlyprintk' -monitor stdio

9.1.1.1.2  Virtual Machine Memory

QEMU allocates and loads images into a VM's memory prior to starting the VM. The amount of memory needed
for a virtual machine depends on the workload to be run in the VM. There are two ways to allocate memory:

1. Allocation via hugetlbfs
Hugetlbfs is a Linux mechanism that allows applications to allocate memory backed large physically
contiguous regions of memory. QEMU can take advantage of hugetlbfs for allocation of memory for virtual
machines, which can provide a significant performance improvement over malloc allocated memory.
Hugetlbfs allocated memory provides the flexibility of memory that can be allocated and freed with
performance comparable to direct mapped memory.
The -mem-path argument to QEMU specifies the path to the hugetlbfs mount point where the huge pages
should be allocated from.
The -m argument to QEMU specifies the amount of memory to allocate to the virtual machine. There are
no constraints on the size passed to this argument other than that the amount of memory must fit within the
constraints of the system and be enough for the workload in the VM.
See the how-to article Section 9.1.3.2 for an example of how to use hugetlbfs.

2. Allocation via malloc
The default for QEMU is to allocate guest memory by the standard malloc facility available to user space
applications in Linux. The amount of memory is specified with the -m command-line argument. Malloc'ed
memory has the flexibility of being allocated and freed by QEMU as needed. However, malloc'ed memory
is backed by 4 KB physical pages that are not contiguous and emulation is required by KVM to present a
contiguous guest physical memory region to the VM. This approach is discouraged since the emulation can
result in a substantial performance penalty for certain workloads.

The guest device tree generated by QEMU contains a memory node that specifies the total amount of memory.

Note:  A virtual machine's memory is part of the address space of the QEMU process. This means that the
amount of memory allocated to a VM is limited by the standard limits that exist for Linux processes.

9.1.1.1.3  Virtual network interfaces

QEMU provides a number of options for creating virtual network interfaces in virtual machines. Virtual network
interfaces are specified using the QEMU command-line and guest software sees them as memory mapped
devices.

There are two aspects of virtual network interfaces with QEMU:

1. The network “front-end”, which is the network card as seen by the guest. This is specified with the -device
QEMU argument. The argument to specify a virtio network front end would look like: -device virtio-net-pci

2. The network "backend", which connects the network card to some network. Network backend options
include user mode networking, a host TAP interface, sockets, or virtual distributed Ethernet. The network
backend is specified using the -netdev command-line argument of QEMU. Note: It is possible to connect
two virtual machines using virtual network interfaces. Normally QEMU user space process emulates I/O
accesses from the guest. However, there is an in-kernel implementation: vhost-net which puts the data
plane emulation code into the kernel.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
984 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

For example, to use a virtio NIC card with a TAP interface back-end the QEMU command-line argument would
look like:

-netdev tap,id=tap0,script=/root/qemu-ifup -device virtio-net-pci,netdev=tap0

The script “/root/qemu-ifup” is a script that QEMU invokes and passes the TAP interface name as an argument.
For example, the script could add the TAP interface to an Ethernet bridge.

See the QEMU Users Manual [1] (see Section 9.1.1.5) for detailed information about command-line options and
the types of network interfaces and backends. For best performance, the virtio front-end is recommended.

For additional information about QEMU networking, see the references in Section 9.1.1.6.

For a detailed example, see the how-to article Section 9.1.3.3 .

9.1.1.1.4  Virtual block devices

There are a number of approaches to provide a virtual disk to a KVM/QEMU virtual machine. A guest disk
image can be a single raw file on the host filesystem, a file in a virtual disk format such as qcow2 and vdi, or a
block device on the host Linux system. The virtual disk is assigned on the QEMU command-line. In the example
below, the file my_guest_disk is a disk image and is assigned to the VM when QEMU is launched: -drive
file=my_guest_disk,cache=none,if=virtio

Refer to the QEMU Users manual [1] (see Section 9.1.1.5) for details on the types of virtual disk images that
may be created and the related arguments to QEMU.

QEMU allows for various storing caching attributes to be set for the guest. The cache option is specified with
cache= property. The following options are supported:

• writethrough: The host page cache is used, but the data is written to the physical device. This mode
ensures data integrity.

• writeback: This is the default mode (when the cache property is missing). The host page cache is used, the
normal page cache management handles the write to the storage device.

• none: The host page cache is bypassed, the guests writes go directly to the storage device. The storage
device may have a write cache.

• directsync: The host page cache is bypassed and the data is written to the physical device.
• unsafe: The flush commands to ensure the data integrity is ignored.

For a detailed example, see How to use Virtual Disks Using Virtio.

9.1.1.1.5  Direct assigned devices

9.1.1.1.5.1  VFIO - Virtual Function I/O

The VFIO is a Linux user space driver infrastructure, an IOMMU/device agnostic framework for exposing direct
device access from user space. For the highest possible I/O performance, virtual machines make use of direct
device access, also called device assignment. From a host and device perspective, the VFIO framework turns
the virtual machines - QEMU - into a user space driver, with the benefits of significantly reduced latency and
direct use of device drivers.

The VFIO framework provides:

• device access
• IOMMU programming interface
• high performance interrupt support

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
985 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Furthermore, the VFIO framework supports several bus infrastructures, such as PCI, platform devices and also
the LS2 MC bus. In the following paragraphs, both PCI and LS2 MC bus infrastructure support is presented.

9.1.1.1.5.2  VFIO PCI

The VFIO driver abstracts PCI devices as regions and IRQs. The regions component includes the PCI
configuration space, MMIO and I/O port BAR spaces, and MMIO PCI ROM access, while the IRQs  include
INTx, legacy interrupts, but also Message Signaled Interrupts.

You can follow the Control path, Data path, and IRQ path through a VFIO PCI infrastructure in the below image.
Also, more information on how to use the PCI Direct Assignment feature can be found in Section 9.1.3.9.

Figure 221. VFIO PCI infrastructure

9.1.1.1.5.3  VFIO for LS2 MC Bus

The DPAA2 architecture works with the concept of MC containers - DPRCs. From the point of view of the OS,
a DPRC behaves similar to a plug and play bus, such as PCI. DPRC commands can be used to enumerate the
contents of the DPRC and discover the hardware objects present (including mappable regions and interrupts).
The VFIO infrastructure for the FSL MC Bus can be found below:

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
986 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Figure 222. VFIO infrastructure for FSL MC Bus

The root container always belongs to the Linux host, while any child container can be assigned to user-space
applications such as DPDK or virtual machines - QEMU. In the context of direct device assignment, this means
that any DPAA2 object that needs to be made available to a guest VM should be places in a child container and,
furthermore, the child container should be bound to the VFIO FSL MC driver. You can find more on how to use
this feature in Section 9.1.3.7.

9.1.1.1.6  VMs and the Linux Scheduler

Each virtual machine appears to the host Linux as a process with each virtual CPU in the VM implemented as a
thread. A VM appears as an instance of QEMU when looking at Linux processes as can be seen in the example
below:

$ ps -ef
                o
                o
root      1333     1  0 Oct01 ttyS0 00:00:00       -sh
root      1336     2  0 08:24 ?        00:00:00    [kworker/u4:2]
root      1372  1333 18 08:27 ttyS0    00:00:17    qemu-system-aarch64   -
enable-kvm -m
root      1361  1304  0 08:28 ?        00:00:00    sshd: root@pts/0
root      1363  1361  0 08:28 pts/0    00:00:00    -sh
                o
                o

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
987 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

CPUs appear as threads. To see thread IDs use the info cpus command in the QEMU monitor. Example of a
VM with 8 virtual CPUs:

(qemu) info cpus
* CPU #0: thread_id=1984
  CPU #1: (halted) thread_id=1985
  CPU #2: (halted) thread_id=1986
  CPU #3: (halted) thread_id=1987
  CPU #4: (halted) thread_id=1988
  CPU #5: (halted) thread_id=1989
  CPU #6: (halted) thread_id=1990
  CPU #7: (halted) thread_id=1991

To see the QEMU threads using the ps command:

root@ls_machine:~# ps -eL | grep qemu
 1981  1981 ttyS1    00:00:00 qemu-system-aar
 1981  1982 ttyS1    00:00:00 qemu-system-aar
 1981  1983 ttyS1    00:00:00 qemu-system-aar
 1981  1984 ttyS1    00:00:00 qemu-system-aar
 1981  1985 ttyS1    00:00:00 qemu-system-aar
 1981  1986 ttyS1    00:00:00 qemu-system-aar
 1981  1987 ttyS1    00:00:00 qemu-system-aar
 1981  1988 ttyS1    00:00:00 qemu-system-aar
 1981  1989 ttyS1    00:00:00 qemu-system-aar
 1981  1990 ttyS1    00:00:00 qemu-system-aar
 1981  1991 ttyS1    00:00:00 qemu-system-aar

Being a Linux thread means that standard Linux mechanisms can be used to control aspects of how the threads
are scheduled relative to other threads/processes. These mechanisms include:

• process priority
• CPU affinity
• isolcpus
• cgroups

9.1.1.2  Virtual Machine Overview

A guest OS running in a KVM/QEMU virtual machine "sees" a hardware environment similar to running on a
physical board. The guest sees CPUs, memory, and a number of I/O devices. Some aspects of this environment
are virtualized (emulated in software by KVM/QEMU) but this virtualization is mostly transparent to the guest,
and changes to the guest are typically not required to run in a virtual machine.

The number of virtual machines that can be run simultaneously is only limited by the amount of available
resources (like any other application on Linux).

KVM/QEMU implements a generic virt machine which is described completely by the device tree. The virtual
machine contains the following resources:

• one or more Arm-v8 virtual CPUs
• memory
• virtual console based on an emulated PL011
• virtio over PCI (used for virtual devices such as block and network devices)
• Arm Virtual Generic Interrupt Controller
• Arm virtual timer and counter

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
988 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

9.1.1.3  Introduction to KVM and QEMU

QEMU (pronounced KYOO-em-yoo) is a software-based machine emulator that emulates a variety of CPUs and
hardware systems. KVM is a Linux kernel device driver that provides virtual CPU services to QEMU. The two
software components work together as a virtual machine manager.

Figure 223. QEMU and KVM working together

QEMU is a Linux user-space application that runs on the host Linux instance and is used to start and manage a
virtual machine. QEMU provides the following:

• A command-line interface that provides extensive customization and configuration of a virtual machine when it
is started-- for example, type of VM, which images to load, and how virtual devices are configured

• Loading of all images needed by the guest-- e.g kernel images, root filesystem, guest device tree
• Setting the initial state of the VM and booting the guest
• Virtual I/O services, such as virtual network interfaces and virtual disks
• Debug services-which provide the capability to debug a guest OS using GDB (similar to a virtual JTAG)

KVM is a device driver in the Linux kernel whose key role in the VM architecture is to provide virtual CPU
services. These services involve two aspects:

1. First, KVM provides an API set that QEMU uses to set and get the state of virtual CPUs and run them. For
example, QEMU sets the initial values of the CPU's registers before starting the VM.

2. Second, after KVM starts a guest OS, certain operations (such as privileged instructions) performed by the
OS cause an exception (or exit) into the host Linux kernel that must be handled and processed by KVM.
This handling of traps is referred to as "emulation". These traps are transparent to the guest.

The KVM API is documented in the Linux kernel-- Documentation/virtual/kvm/api.txt.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
989 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

KVM/QEMU supports virtual I/O which allows sharing of physical I/O devices by multiple VMs. Virtual network
and block I/O are supported. See Section 9.1.1.6 for references that provide additional information on virtio.

9.1.1.4  Device Tree Overview

A device tree is a data structure that describes hardware resources such as CPUs, memory, and I/O devices.
A device tree aware OS is passed a device tree, which it reads to determine what hardware resources are
available.

The host Linux kernel is booted first by a bootloader, for example, U-Boot (an open source bootloader). U-Boot
passes the kernel a hardware device tree that lists and describes all system hardware resources available to
the host kernel (CPUs/cores, memory, interrupt controller, and I/O).

Similarly, when a guest OS is booted in a KVM/QEMU virtual machine, QEMU passes it a guest device tree that
describes all the hardware resources in the VM. See figure below.

Figure 224. Guest OS gets a guest device tree from QEMU

The guest device tree is generated by QEMU and is used to define the resources a virtual machine will see. The
guest device tree defines CPUs, memory, and I/O devices. QEMU places the guest device tree in the virtual
machine's memory prior to starting the virtual machine.

9.1.1.5  References

[1] QEMU Emulator User Documentation: https://qemu.weilnetz.de/doc/4.2/qemu-doc.html

[2] The Linux usage model for device tree data: https://www.kernel.org/doc/Documentation/devicetree/usage-
model.txt

[3] Specification for virtio devices: http://docs.oasis-open.org/virtio/virtio/v1.0/csprd01/virtio-v1.0-csprd01.pdf

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
990 / 1061

https://qemu.weilnetz.de/doc/4.2/qemu-doc.html
https://www.kernel.org/doc/Documentation/devicetree/usage-model.txt
https://www.kernel.org/doc/Documentation/devicetree/usage-model.txt
http://docs.oasis-open.org/virtio/virtio/v1.0/csprd01/virtio-v1.0-csprd01.pdf


NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

9.1.1.6  For More Information

KVM

• KVM website: http://www.linux-kvm.org
• Arm VM specification: http://lwn.net/Articles/589122/
• Supporting KVM on Arm architecture: http://lwn.net/Articles/557132/

QEMU

• QEMU website: http://www.qemu.org

Device Trees

• devicetree.org website: http://devicetree.org
• DTC, the device tree compiler is available at: https://git.kernel.org/pub/scm/utils/dtc/dtc.git . DTC also includes

a library called libfdt which can be used by software to parse device trees.

Virtio-- a framework for doing virtual I/O using KVM/QEMU

• http://www.ibm.com/developerworks/linux/library/l-virtio/
• http://ozlabs.org/~rusty/virtio-spec/virtio-paper.pdf
• http://docs.oasis-open.org/virtio/virtio/v1.0/csprd01/virtio-v1.0-csprd01.pdf

Virtual Networking with QEMU

• http://wiki.qemu.org/Documentation/Networking
• http://www.linux-kvm.org/page/Networking

9.1.1.7  Virtual machine reference

9.1.1.7.1  VM Overview

The architecture of KVM/QEMU is such that few changes are required in the guest software to run in a VM, that
is a full virtualization approach is used, which means that virtual CPUs and virtual I/O devices behave like the
physical hardware they are emulating.

However, there are some differences between virtual machines and native hardware that should be considered
when targeting an OS to a KVM virtual machine. These differences can be divided into 2 general categories that
are discussed in further detail in this section:

1. Initial state and boot
2. CPUs

9.1.1.7.2  Memory Map of Virtual I/O Devices

The virt virtual machine contains a small subset of the devices found on a SoC. The available devices are
represented in the device tree passed to the guest at boot (for example, virtual interrupt controller, virtual PCIe
controller).

9.1.1.7.3  Virtual machine state at initialization

9.1.1.7.3.1  Initial State and Boot

When booting the Host, kernel is entered into the EL2 privilege level for ARMv8. After the boot, the kernel uses
a stub to install KVM and switches back to EL1. The virtual machine has no virtualization extensions available,
so the guest kernel enters in EL1 (ARMv8).

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
991 / 1061

http://www.linux-kvm.org
http://lwn.net/Articles/589122/
http://lwn.net/Articles/557132/
http://www.qemu.org
http://devicetree.org
https://git.kernel.org/pub/scm/utils/dtc/dtc.git
http://www.ibm.com/developerworks/linux/library/l-virtio/
http://ozlabs.org/~rusty/virtio-spec/virtio-paper.pdf
http://docs.oasis-open.org/virtio/virtio/v1.0/csprd01/virtio-v1.0-csprd01.pdf
http://wiki.qemu.org/Documentation/Networking
http://www.linux-kvm.org/page/Networking


NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

In case of a real hardware, the boot program provides some services before giving control to the OS.
The necessary steps needed to be done by the bootloader are described in the kernel documentation:
Documentation/arm64/booting.txt. In case of virtualization, KVM/QEMU makes the necessary actions to put
hardware into the initial state (as seen by the guest) and also takes the role of the bootloader and makes the
necessary settings.

It is recommended that a guest OS is minimally device tree aware. The libfdt library (available with the DTC
tool) provides a full range of APIs to parse and manipulate device trees and makes the process of adding
device tree awareness to an OS straightforward.

9.1.1.7.3.2  Initial State of Virtual CPUs

In a VM with multiple virtual CPUs, CPU #0 is the boot CPU and all other vcpus in the partition are considered
secondary. The boot method for the secondary CPUs is PSCI.

The virtual CPU entry conditions comply with the entry conditions specified in Documentation/ arm64/
booting.txt.

9.1.1.7.4  Virtual CPUs

9.1.1.7.4.1  Virtual CPU Specification

Software running in a virtual machine sees a virtual CPU that emulates an ARMv8 core without virtualization
extensions.

The virtual CPU type will match that of the host hardware platform.

9.1.1.7.4.2  Time in the Virtual CPU

Arm architecture has an optional extension, the generic timers, which provide:

• a counter (physical counter) that measures passing of time in real time
• a timer (physical timer) for each CPU. The timer is programmed to raise an interrupt to the CPU after a certain

amount of time has passed.

The generic timers include virtualization support by introducing:

• a new counter, the virtual counter
• a new timer, the virtual timer.

This allows the virtual machine to have direct access to reading (virtual) counters and programming (virtual)
timers without trapping.

KVM uses the physical timers in the host, the virtual machine access to the physical timers being disabled.

The virtual machine accesses the virtual timer and can, in this way, directly access the timer hardware without
trapping to the hypervisor. However, the virtual timers do not raise virtual interrupts, but hardware interrupts
which trap to the hypervisor. KVM injects a corresponding virtual interrupt into the VM when it detects that the
virtual timer expired.

9.1.1.7.5  VGIC

The Arm Generic Interrupt Controller (GIC) provides hardware support for virtualization. The guest is able to
mask, acknowledge, and EOI interrupts without trapping to the hypervisor. However, there is a central part of
the GIC called distributor which is responsible for interrupt prioritization and distribution to each CPU which
UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
992 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

does not provide virtualization extensions and for this part KVM provides an in-kernel emulation. Also, all the
physical interrupts cannot be directly received by the guest. Instead, the KVM will program a virtual interrupt
which will be raised in the guest. But, with the virtualization support in the GIC controller, when the guest is
ACK-ing and EOI-ing the virtual interrupt, there is no need to trap into KVM.

QEMU/KVM provides 2 flavors of an emulated GIC:

• a GICv2 emulation which is the default option. Example command line:-machine type=virt
• a GICv3 emulation selected by the gic-version property. Example command line: -machine
type=virt,gic-version=3. The GICv3 emulated interrupt controller is available only for platforms that
have a physical GICv3 interrupt controller.

9.1.2  Configuring and Building

9.1.2.1  Overview

Linux with KVM enabled and QEMU can be built as part of the standard build process used to build the NXP
Layerscape LDP.

The build instructions in the sections that follow assume a successful build/installation of the host. Refer to the
Layerscape LDP documentation for the host installation steps.

By default, the QEMU package installed on the target board is the one retrieved from the Ubuntu userland
sources.

9.1.2.2  Quick Start - Recommended Configuration Options

The steps below show all the recommended configuration options to enable in order to build a kernel with virtual
I/O enabled with the same kernel image serving as both host and guest. The sections that follow explain these
options in further detail.

Note:  The configuration options to run virtual machines are enabled by default in the Layerscape LDP.
However they are listed here for reference.

1. From the main menuconfig window, enable virtualization.

[*] Virtualization

2. In the virtualization menu, enable the following options.

[*] Kernel-based Virtual Machine (KVM) support

3. Enable network bridging.

Networking support  --->
    Networking options  --->
        <*> 802.1d Ethernet Bridging

4. Enable virtio PCI.

Device Drivers  --->
    Virtio drivers  --->
    <*> PCI driver for virtio devices

5. Enable virtio for block devices.

Device Drivers  --->
    [*] Block devices  --->
        <*>   Virtio block driver

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
993 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

6. Enable virtio for network devices.

Device Drivers --->
  [*] Network device support
  [*] Network core driver support
          <*>   Universal TUN/TAP device driver support
          <*>   Virtio network driver

7. Enable vhost for virtio network devices.

[*] Virtualization
    <*>   Host kernel accelerator for virtio net

8. Enable Huge TLB file support.

File Systems --->
    Pseudo filesystems --->
        [*] Huge TLB file system support

9. Enable guest serial support.

Device Drivers --->
    Character devices --->
        Serial drivers --->
             <*> Arm AMBA PL011 serial port support
             [*]   Support for console on AMBA serial port

10. Enable VFIO support.

Device Drivers --->
    <*> VFIO Non-Privileged userspace driver framework

11. Enable VFIO support for QorIQ DPAA2 fsl-mc (Management Complex) devices.

Device Drivers --->
    <*> VFIO Non-Privileged userspace driver framework (VFIO [=y]) --->
        [*]   VFIO No-IOMMU support  ----
        <*>   VFIO support for QorIQ DPAA2 fsl-mc bus devices

12. Enable support for PCI VFIO.

Device Drivers --->
    <*> VFIO Non-Privileged userspace driver framework (VFIO [=y]) --->
        [*]   VFIO No-IOMMU support  ----
        <*>   VFIO support for PCI devices

9.1.2.3  Host Kernel: Enabling KVM

This section describes the core, basic options needed to enable KVM in the host kernel. KVM is enabled in the
host kernel under the virtualization menu of the main kernel menuconfig window.

[*] Virtualization

Core KVM support is enabled as follows:

[*] Kernel-based Virtual Machine (KVM) support

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
994 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

9.1.2.4  Host Kernel: Enabling Virtual Networking

Section 9.1.1.1.3 describes how virtual networking can be used to give each VM a virtual network interface,
which shares physical network interfaces in Linux.

One common approach to configuring virtual networking is for QEMU to use a tun/tap interface bridged to a
physical network interface. To do this Ethernet bridging and the kernel's tun/tap features must be enabled in the
host kernel:

Networking support  --->
          Networking options  --->
                    <*> 802.1d Ethernet Bridging
Device Drivers --->
          [*] Network device support
          [*] Network core driver support
                    <*>   Universal TUN/TAP device driver support

In order to enable vhost-net, the following config option should be enabled:

[*] Virtualization
    <*>   Host kernel accelerator for virtio net

9.1.2.5  Host kernel: Enabling DPAA2 direct assignment

Section 9.1.1.1.5 describes the mechanism used to passthrough fsl-mc bus devices to guest VMs using the
VFIO framework. This section lists the Kconfig options that should be enabled in the Linux host kernel in order
to support DPAA2 Direct Assignment.

Enable VFIO framework support

Device Drivers ---> <*> VFIO Non-Privileged userspace driver framework

Enable VFIO support for QorIQ DPAA2 fsl-mc (Management Complex) devices

Device Drivers ---> <*> VFIO Non-Privileged userspace driver framework (VFIO
 [=y]) ---> [*] VFIO No-IOMMU support ---- <*> VFIO support for QorIQ DPAA2 fsl-
mc bus devices

Note:  "VFIO No-IOMMU support" option is needed (only) for VFIO support in guest (for example, DPDK in
guest user space).

9.1.2.6  Host kernel: Enabling PCIe direct assignment

Section 9.1.1.1.5 describes the mechanism used to pass though PCI devices using the VFIO framework.

This section lists the required Kconfig options in the host Linux kernel in order to use the aforementioned
feature.

Enable VFIO framework support

Device Drivers --->
    <*> VFIO Non-Privileged userspace driver framework

Enable support for PCI VFIO

Device Drivers --->

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
995 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

    <*> VFIO Non-Privileged userspace driver framework (VFIO [=y]) --->
        <*>   VFIO support for PCI devices

9.1.2.7  Guest kernel: Enabling console

QEMU emulates an AMBA/PL011 console.

Below the kernel configuration options are shown to enable console:

Device Drivers --->
    Character devices --->
        Serial drivers --->
             <*> Arm AMBA PL011 serial port support
             [*]   Support for console on AMBA serial port

9.1.2.8  Guest Kernel: Enabling Network and Block Virtual I/O

Virtio is a framework for doing paravirtualized I/O using QEMU/KVM. In order to support communication
between guest and hypervisor, virtio uses a PCI transport protocol.

Below the kernel configuration options are shown to enable virtio-pci:

Device Drivers  --->
    Virtio drivers  --->
    <*> PCI driver for virtio devices

Below the kernel configuration options are shown to enable virtio drivers in the Linux kernel to support
networking I/O and block (disk) I/O.

Device Drivers --->
          [*] Network device support
                [*] Network core driver support
                          <*>   Virtio network driver
Device Drivers  --->
          [*] Block devices  --->
                    <*>   Virtio block driver

9.1.2.9  Building kernel with KVM support using Yocto

To build kernel, use the following command:

bitbake linux-qoriq

If the kernel configuration needs to be changed, the custom option should be invoked and the necessary
changes performed:

bitbake linux-qoriq -c compile –f

The same kernel image will be used by both guest and host.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
996 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

9.1.2.10  Creating a host Linux root filesystem

Creating a Linux root filesystem is out of the scope of this document. See Section 3.5 for steps to create root
filesystems with bitbake installer script. This section describes the software components needed on the host
root filesystem to use KVM/QEMU.

The host root filesystem is the filesystem booted by the host kernel. The host rootfs is distinct from a guest root
filesystem which may be needed by certain guest, such as Linux.

A host root filesystem capable of running Linux as a guest needs the following components:

• Guest Linux kernel image (for example, Image)
• QEMU executable (qemu-system-aarch64)
• Guest root filesystem

Example host root filesystem layout with the required components to boot a Linux guest:

/root/Image                          # guest Linux kernel
/root/ls-image-main-<board>.ext4                # guest virtual disk image

9.1.2.11  Creating a guest Linux root filesystem

In order to run a virtual machine, a guest Linux root filesystem is needed. There are various possibilities to host
a guest root filesystem: a ramdisk, a virtual disk image, a block device on the host Linux system.

Also there are multiple virtual disk formats. qemu-img command can be used to generate, alter and convert
between various virtual disk image formats.

$ bitbake ls-image-main

The command generates a compressed rootfs:

ls-image-main-<board>.tar.gz

Extract the rootfs:

tar -xvzf ls-image-main-<board>.tar.gz

9.1.3  KVM/QEMU How-to's

9.1.3.1  Quick-start steps to build and deploy KVM

The following steps show how to build and deploy the necessary components in order to run virtual machines:

1. Build and install the Layerscape LDP on the board (for details see Section 3).
2. Build the guest virtual disk (for details see Section 9.1.2.11)
3. Transfer the guest virtual image and the guest image on the host. The guest image (Image or zImage) is

already in the /boot partition on the host system.

9.1.3.2  Quick-start steps to run KVM using Hugetlbfs

This example assumes that the host Linux kernel is booted, has a working network interface, and the following
images are present in the host root filesystem:

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
997 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Image Location

Guest kernel /root/Image

Guest virtual disk /root/ls-image-main-<board>.ext4

QEMU /usr/bin/qemu-system-aarch64

Table 171. Images location

Mount the HugeTLB filesystem on the host:

echo 512 >  /proc/sys/vm/nr_hugepages
mkdir /mnt/hugetlbfs     #any mount point can be used
mount -t hugetlbfs none /mnt/hugetlbfs/

This example uses 512 2M pages (2M is the default huge page size).

Start QEMU specifying the 2 MB huge page pool as the file from which to allocate memory. In this example, 512
MB of memory is allocated to the VM:

64-bit ARMv8:

qemu-system-aarch64 -smp 8 -m 1024 -mem-path /mnt/hugetlbfs -cpu host -
machine type=virt,gic-version=3 -kernel /root/Image -enable-kvm -display none
 -serial tcp::4446,server,telnet -drive if=none,file=/root/ls-image-main-
<board>.ext4,id=foo,format=raw -device virtio-blk-device,drive=foo -append
 'root=/dev/vda rw console=ttyAMA0 rootwait earlyprintk' -monitor stdio

Note:

• On the GICv3 capable platforms the following emulated GIC controllers can be used:
– An emulated GICv3 interrupt controller can be used:
-machine type=virt,gic-version=3
The ITS emulation is supported only with a GICv3 emulated interrupt controller.

– An emulated GICv2 interrupt controller can be used:
-machine type=virt
On the GICv2 capable platforms only an emulated GICv2 interrupt controller can be used:
-machine type=virt

• Ensure that the /mnt/hugetlbfs folder exists and is mounted when starting QEMU.

Explanation of the command-line options:

• -smp 2: specifies the number of virtual CPUs.
• -m 512: the amount of memory for the VM
• -mem-path /mnt/hugetlbfs: allocates from hugetlbfs based memory
• -cpu host: the type of the CPU. In this case, it is the same as the host CPU
• -machine type=virt,gic-version=3: the type of the virtual machine: virt machine + an GICv3

emulated interrupt controller
• -machine type=virt: the type of the virtual machine: virt machine + an GICv2 emulated interrupt

controller
• -kernel /root/Image : name of guest Linux kernel
• -enable-kvm: specifies the KVM that should be used
• -serial tcp::4446,server,telnet : provides an emulated serial port (telnet server) on port 4446 on

the host Linux system.
The default behavior for QEMU is to wait until the user connects to this port before booting the VM.

• -drive if=none,file=/root/ls-image-main-<board>.ext4,id=foo,format=raw -device
virtio-blk-device,drive=foo: creates a virtio based virtual disk (for details see Section 9.1.1.1.4)

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
998 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

• -append 'root=/dev/vda rw console=ttyAMA0 rootwait earlyprintk': guest Linux boot args
• -display none: do not display video output
• -monitor stdio: start QEMU monitor

At this point, QEMU is waiting for a telnet connection to the virtual machine console (port 4446 of the target
board) prior to starting the virtual machine.

Connect to QEMU through telnet and start the virtual machine booting. In this example, the target board has IP
address 192.168.4.100

root@ls1028ardb:~# telnet 192.168.4.100 4446

9.1.3.3  How to Use Virtual Network Interfaces Using Virtio

As discussed in Section 9.1.1.1.3, there are two aspects of virtual network interfaces-- 1) the "front end" (the
device as seen by the guest OS) and 2) the "backend" (the means by the virtual device is connected to the
network).

This example uses a "virtio" model NIC card and a tap network backend. The virtual network interface is bridged
via a TAP interface to the physical network. The guest OS is Linux.

When starting QEMU, add the following arguments to create the virtual network interface:

-netdev tap,id=tap0,script=/home/root/qemu-ifup,downscript=no,ifname="tap0" -
device virtio-net-pci,netdev=tap0

Perform the following steps:

1. Enable virtio networking in the host and guest Linux kernels.
2. On the host Linux create a bridge to the physical network interface to be used by the virtual network

interface in the virtual machine using the brctl command. In this example, the physical interface being used
is eth2:

brctl addbr br0
ifconfig br0 192.168.3.30 netmask 255.255.248.0
ifconfig eth2 0.0.0.0
brctl addif br0 eth2

3. Create a qemu-ifup script on the host Linux system. For the TAP backend type, when QEMU creates the
virtual network interface it invokes a user-created script that allows customization of how the TAP interface
is to be handled. The name of the TAP interface created by QEMU is passed as an argument. In this
example, the TAP interface is bridged to the bridge created in step #2. See the example qemu-ifup script
below:

#!/bin/sh
# TAP interface will be passed in $1
bridge=br0
guest_device=$1
ifconfig $guest_device 0.0.0.0 up
brctl addif $bridge $guest_device

4. When starting QEMU specify that the network device type is "virtio" and specify the path to the script
created in step #3:

qemu-system-aarch64 -smp 8 -m 1024 -cpu host -machine type=virt,gic-
version=3 -kernel /boot/Image -enable-kvm -display none -serial
 tcp::4446,server,telnet -drive if=none,file=/root/ls-image-main-
<board>.ext4, -kernel /root/Image, id=foo,format=raw -device
 virtio-blk-device,drive=foo  -netdev tap,id=tap0,script=qemu-

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
999 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

ifup,downscript=no,ifname="tap0" -device virtio-net-pci,netdev=tap0 -append
 'root=/dev/vda rw console=ttyAMA0 rootwait earlyprintk' -monitor stdio

5. In the guest OS the virtual network interface will appear and can be brought up and assigned an IP address
in the normal way. In the example below (the commands are run from the guest command shell), the virtio
interface is eth0.

root@ls1028ardb:~# ip addr
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group
 default qlen 1
   link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
   inet 127.0.0.1/8 scope host lo
       valid_lft forever preferred_lft forever
   inet6 ::1/128 scope host
       valid_lft forever preferred_lft forever
2: enp0s1: <BROADCAST,MULTICAST> mtu 1500 qdisc noop state DOWN group default
 qlen 1000
   link/ether 52:54:00:12:34:56 brd ff:ff:ff:ff:ff:ff
3: sit0@NONE: <NOARP> mtu 1480 qdisc noop state DOWN group default qlen 1
   link/sit 0.0.0.0 brd 0.0.0.0
6: docker0: <BROADCAST,MULTICAST> mtu 1500 qdisc noop state DOWN group
 default
   link/ether 02:42:a5:57:0b:85 brd ff:ff:ff:ff:ff:ff
   inet 172.17.0.1/16 scope global docker0
       valid_lft forever preferred_lft forever
root@ls1028ardb:~# ethtool -i enp0s1
driver: virtio_net
version: 1.0.0
firmware-version:
expansion-rom-version:
bus-info: 0000:00:01.0
supports-statistics: no
supports-test: no
supports-eeprom-access: no
supports-register-dump: no
supports-priv-flags: no
$ ifconfig enp0s1 192.168.3.31 netmask 255.255.248.0

9.1.3.4  How to use vhost-net with virtio

vhost-net is a character device that can be used to reduce the number of system calls involved in virtio
networking. vhost-net moves network packets between the guest and the host system using the Linux kernel,
bypassing QEMU.

In order to use vhost-net, perform the following steps:

1. Enable virtio networking and vhost-net in the host and guest Linux kernels.
2. On the host Linux, create a bridge to the physical network interface to be used by the virtual network

interface in the virtual machine using the brctl command. In this example, the physical interface being used
is eth2:

brctl addbr br0
ifconfig br0 192.168.3.30 netmask 255.255.248.0
ifconfig eth2 0.0.0.0
brctl addif br0 eth2

3. Create a qemu-ifup script on the host Linux system. For the TAP backend type, when QEMU creates the
virtual network interface it invokes a user-created script that allows customization of how the TAP interface
is to be handled. The name of the TAP interface created by QEMU is passed as an argument. In this

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
1000 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

example, the TAP interface is bridged to the bridge created in step #2. See the example qemu-ifup script
below:

#!/bin/sh
# TAP interface will be passed in $1
bridge=br0
guest_device=$1
ifconfig $guest_device 0.0.0.0 up
brctl addif $bridge $guest_device

4. When starting QEMU specify that the network device type is "virtio" and that vhost-net (vhost=on
parameter) is used:

qemu-system-aarch64 -smp 8 -m 1024 -cpu host -machine type=virt,gic-
version=3 -kernel /boot/Image -enable-kvm -display none -serial
 tcp::4446,server,telnet -drive if=none,file=/root/ls-image-main-
<board>.ext4" and "-kernel /root/Image,id=foo,format=raw -device
 virtio-blk-device,drive=foo  -netdev tap,id=tap0,script=qemu-
ifup,downscript=no,ifname="tap0",vhost=on -device virtio-net-pci,netdev=tap0
 -append 'root=/dev/vda rw console=ttyAMA0 rootwait earlyprintk' -monitor
 stdio

5. In the guest, the virtual interface will come up as described in Section 9.1.3.3. In the Host kernel, the vhost
thread can be seen consuming CPU:

2928 root      20   0 3258364 458340  19956 S 109.3  3.1   1:59.36 qemu-
system-aar
2944 root      20   0       0      0      0 R  99.7  0.0   1:43.52 vhost-2928
3020 root      20   0  225660   1224   1068 S  88.7  0.0   0:05.75 iperf

9.1.3.5  How to Use Virtual Disks Using Virtio

As discussed in Section 9.1.1.1.4, there are a number of formats available for virtual disk images.

The example below uses a raw file. The steps below go through the process of creating a virtual disk image,
assigning it to a VM, partitioning the disk, creating a filesystem on it, and mounting it.

1. On the host Linux, create a binary image to represent the guest disk. For example, to create a 16 MB disk:

$ dd if=/dev/zero of=my_guest_disk bs=4K count=4K

2. Start QEMU, specifying the name of the virtual disk file for the -drive argument:

qemu-system-aarch64 -smp 8 -m 1024 -cpu host -machine
 type=virt,gic-version=3 -kernel /boot/Image -enable-kvm -display
 none -serial tcp::4446,server,telnet -drive if=none,file=/
root/ls-image-main-<board>.ext4, -kernel /root/Image,
 id=foo,format=raw -device virtio-blk-device,drive=foo -drive
 if=none,file=my_guest_disk,cache=none,id=user,format=raw -device virtio-
blk-pci,drive=user -append 'root=/dev/vda rw console=ttyAMA0 rootwait
 earlyprintk' -monitor stdio

3. After the guest has booted the virtual disk is visible as a block device in /dev with the name vda, vdb. In this
example, there are actually two virtual disks: one for the guest rootfs (vda) and one for my_guest_disk.

$ ls -l /dev/vdb
brw-rw---- 1 root disk 254, 0 Jan  1  1970 /dev/vdb

A virtual block device can be treated like any other hard disk. It can be partitioned, formatted, and mounted.
4. Configure a partition on the disk with fdisk:

root@ls1028ardb:~# fdisk /dev/vdb

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
1001 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Welcome to fdisk (util-linux 2.27.1).
Changes will remain in memory only, until you decide to write them.
Be careful before using the write command.
Device does not contain a recognized partition table.
Created a new DOS disklabel with disk identifier 0xc9820d64.
Command (m for help):

Display the partition table:

Command (m for help): p
Disk /dev/vdb: 16 MiB, 16777216 bytes, 32768 sectors
Units: sectors of 1 * 512 = 512 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes
Disklabel type: dos
Disk identifier: 0xc9820d64
Command (m for help):

Create a partition:

Command (m for help): n
Partition type
   p   primary (0 primary, 0 extended, 4 free)
   e   extended (container for logical partitions)
Select (default p): p
Partition number (1-4, default 1):
First sector (2048-32767, default 2048):
Last sector, +sectors or +size{K,M,G,T,P} (2048-32767, default 32767):
Created a new partition 1 of type 'Linux' and of size 15 MiB.
Command (m for help):

Display the new partition:

Command (m for help): p
Disk /dev/vdb: 16 MiB, 16777216 bytes, 32768 sectors
Units: sectors of 1 * 512 = 512 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes
Disklabel type: dos
Disk identifier: 0xc9820d64
Device     Boot Start   End Sectors Size Id Type
/dev/vdb1        2048 32767   30720  15M 83 Linux

Write the partition table to disk and exit:

Command (m for help): w
The partition table has been altered.
Calling ioctl() to re-read partition table.
Syncing disks.

5. Create a filesystem on the new partition:

root@ls1028ardb:~# mkfs.ext4 /dev/vdb1
mke2fs 1.42.13 (17-May-2015)
Creating filesystem with 15360 1k blocks and 3840 inodes
Filesystem UUID: 8f0c49e4-2737-498e-a984-c5f05ba59b99
Superblock backups stored on blocks:
  8193
Allocating group tables: done
Writing inode tables: done
Creating journal (1024 blocks): done
Writing superblocks and filesystem accounting information: done

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
1002 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

6. Mount the filesystem:

root@ls1028ardb:~# mount /dev/vdb1 /boot/
root@ls1028ardb:~# echo "A virtual disk" > /boot/test.txt
root@ls1028ardb:~# cat /boot/test.txt
A virtual disk

9.1.3.6  How to use virtual disks using virtio-blk-dataplane

Virtio-blk-dataplane was developed for high performance disk I/O, especially for high IOPS devices. The QEMU
performs the disk I/O in a dedicated thread that is optimized for I/O performance.

In this example an SD card is used, a block device on the Linux host.

1. Start QEMU:

qemu-system-aarch64 -smp 8 -m 1024 -cpu host -machine type=virt,gic-
version=3 -kernel /boot/Image -enable-kvm -display none -serial
 tcp::4446,server,telnet -drive if=none,file=/root/ls-image-main-
<board>.ext4, -kernel /root/Image,id=foo,format=raw -device virtio-blk-
device,drive=foo -object iothread,id=iothread0 -drive if=none,file=/dev/
mmcblk0,cache=none,id=drive0,format=raw,aio=native -device virtio-blk-
pci,drive=drive0,scsi=off,iothread=iothread0 -append 'root=/dev/vda rw
 console=ttyAMA0 rootwait earlyprintk' -monitor stdio

2. After the guest boots, the virtual disk is visible as a block device with the name vda, vdb, and so on.

root@ls1028ardb:~# fdisk /dev/vdb
Welcome to fdisk (util-linux 2.27.1).
Changes will remain in memory only, until you decide to write them.
Be careful before using the write command.
Command (m for help): p
Disk /dev/vdb: 16 MiB, 16777216 bytes, 32768 sectors
Units: sectors of 1 * 512 = 512 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes
Disklabel type: dos
Disk identifier: 0xc9820d64
Device     Boot Start   End Sectors Size Id Type
/dev/vdb1        2048 32767   30720  15M 83 Linux

In this case, the disk has 1 partition. The partition can be mounted and used.

9.1.3.7  How to use DPAA2 direct assignment without scripts

As presented in the introductory Section 9.1.1.1.5, the DPAA2 architecture has the concept of MC containers
which are arranged in a tree structure. While the root container always belongs to the host Linux, the child
containers can be directly assigned to a user-space application such as DPDK or, as in this case, to a QEMU
guest VM.

In the pursuit of creating a guest VM with one DPAA2 network interface directly assigned, you first need to
create the child container and all the necessary MC objects.

In order to determine the number of DPAA2 objects needed to create a network interfaceSection 7.3.2.3.3.1. For
this example, the following rule applies:

• the DPIO number should be equal to the number of cores for the guest VM to be deployed (for better
performance)

• the DPCON number is equal to the number of cores multiplied by the number of interfaces

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
1003 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

• one DPBP object for each network interface
• one DPMCP object for each network interface and for each DPIO object

The following section describes the steps to be followed in order to create a single core VM with one DPAA2
network interface assigned. The objects are created using the restool user space program. For more details
about the restool usage, see Section 7.3.2.2.3.3.

Steps to create single core VM with one DPAA2 network interface assigned:

1. Create and populate the child container
• Create the necessary MC objects

– create the child container (this container will be assigned to the guest)

$ restool dprc create dprc.1
dprc.2 is created under dprc.1

– create the necessary objects in the child container

$ restool dpio create --container=dprc.2
dpio.11 is created under dprc.2
$ restool dpcon create --num-priorities=2 --container=dprc.2
dpcon.3 is created under dprc.2
$ restool dpmcp create --container=dprc.2
dpmcp.25 is created under dprc.2
$ restool dpmcp create --container=dprc.2
dpmcp.26 is created under dprc.2
$ restool dpbp create --container=dprc.2
dpbp.4 is created under dprc.2
$ restool dpni create --container=dprc.2
dpni.3 is created under dprc.2

• Change the plugged state of the newly created objects to plugged.

$ restool dprc assign dprc.2 --object=dpio.11 --plugged=1
$ restool dprc assign dprc.2 --object=dpcon.3 --plugged=1
$ restool dprc assign dprc.2 --object=dpmcp.25 --plugged=1
$ restool dprc assign dprc.2 --object=dpmcp.26 --plugged=1
$ restool dprc assign dprc.2 --object=dpbp.4 --plugged=1
$ restool dprc assign dprc.2 --object=dpni.3 --plugged=1

• Check if objects were created properly by listing the contents of the child container:

$ restool dprc show dprc.2
dprc.2 contains 6 objects:
object          label           plugged-state
dpni.3                          plugged
dpbp.4                          plugged
dpmcp.25                        plugged
dpmcp.26                        plugged
dpio.11                         plugged
dpcon.3                         plugged

• Connect the dpni object to the required dpmac in your scenario:

$ restool dprc connect dprc.1 --endpoint1=dpni.3 --endpoint2=dpmac.3

2. Bind the newly created DPRC device to the vfio-fsl-mc driver

$ echo vfio-fsl-mc > /sys/bus/fsl-mc/devices/dprc.2/driver_override
$ echo dprc.2 > /sys/bus/fsl-mc/drivers/vfio-fsl-mc/bind

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
1004 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

3. Add the device command below (for the DPRC to be assigned) to the QEMU command-line:

-device vfio-fsl-mc,host=dprc.2

Also, make sure to specify the appropriate number of cores for the guest VM. It should match the number of
dpio objects created in the child container. In this case, 1 core.

-smp 1

4. Make sure to assign each vcpu thread to one physical CPU only
• Start QEMU with -S option (the vcpu threads are not yet started). You need this in order for the Ethernet

drivers in the guest to correctly bind the objects to the cores.

qemu-system-aarch64 -smp 1 -m 1024 -cpu host -machine type=virt,gic-
version=3 -kernel /boot/Image -enable-kvm -display none -serial
 tcp::4446,server,telnet -drive if=none,file=/root/ls-image-main-
<board>.ext4,id=foo,-kernel /root/Image,format=raw -device virtio-blk-
device,drive=foo -append 'root=/dev/vda rw console=ttyAMA0 rootwait
 earlyprintk' -monitor stdio -device vfio-fsl-mc,host=dprc.2 -S

Get the VM thread IDs entering QEMU shell

(qemu) info cpus
* CPU #0: thread_id=4952

• Assign one vcpu thread to one core only.

$ taskset -p 0x1 4952
pid 4952's current affinity mask: ff
pid 4952's new affinity mask: 1

• Start the vcpu threads.

(qemu) c

Note:  In case you do not want to modify the child container configuration after starting QEMU, use the restool
dprc set-locked command: restool dprc set-locked dprc.2 --locked=1. The child container will be locked by its
parent and will not be able to mount a denial of service attack by creating multiple objects.

9.1.3.8  How to use DPAA2 direct assignment with scripts

The previous Section 9.1.3.7, explained how to use the DPAA2 Direct Assignment feature manually, by creating
each individual DPAA2 object needed in the child DPRC, this section explains a second method to create the
desired configuration for a child container that will be assigned to the guest VM.

In order to describe the DPAA2 object configuration for a guest VM, therefore a child DPRC, you can employ
the DPL - Data Path Layout syntax. The restool package has a new helper script, ls-append-dpl, that can parse
DPL files which describe a child DPRC configuration and create that scenario using the restool tool.

You can check if the aforementioned script is available:

$ which ls-append-dpl
$ ls-append-dpl --help
Usage: /usr/bin/ls-append-dpl [options] <dpl-file>
Options:
  -h, --help
          Print this help and exit
          root@ls1028ardb:~#

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
1005 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

The next section will describe how to use the ls-append-dpl script in order to create the child container that will
be assigned to the guest VM. The next section will cover only the DPRC creation process, step #1 from the
previous section, while the remaining steps are still the same.

9.1.3.8.1  Single core guest with one network interface

Applying the rule presented before, you already know that in order to assign a network interface to a single core
guest  the child container should contain:

• DPNI - 1
• DPBP - 1
• DPMCP - 2
• DPIO - 1
• DPCON - 1

• Create the DPL file:
The file vm_1_core.dts is a text file that uses the DPL syntax and describes the required configuration for a
child container that will be used for a single core, one network interface guest.
It has the exact same syntax as a DPL file used to describe the static host configuration. In the vm_1_core.dts
file, you can see that a dprc object is described:

dprc@2 {
        compatible = "fsl,dprc";
        parent = "dprc.1";

The parent property is mandatory and it should describe the parent container for the new one.
In this simple configuration, the single dpni created is connected to the dpmac@1 in the connections section
as follows:

connection@1{
        endpoint1 = "dpni@1";
        endpoint2 = "dpmac@1";
};

If you want to connect the dpni@1 with any other object just change the value of endpoint2. For example, for
a connection to be established with dpmac@2 change the fragment to:

endpoint2 = "dpmac@2";

• Deploy the DPL configuration:

$ ls-append-dpl vm_1_core.dts Created the following objects: dpmcp.50 dpmcp.51
 dpni.1 dpio.8 dpcon.1 dprc.2 dpbp.1

9.1.3.8.2  Multicore guest with one network interface

In order to transition from 1 core guest to a multicore one, only the number of dpio and dpcon objects described
in the DPL file need to be changed. Therefore, in the case of a guest VM with 8 cores and one DPAA2 network
interface, the DPL files should list and describe: 8 dpio, 8 dpcon, 9 dpmcp, 1 dpbp, 1 dpni.

The vm_8_core.dts describes the configuration required for an 8 core guest VM with one DPAA2 interface. You
can use it in a similar fashion:

$ ls-append-dpl vm_8_core.dts

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
1006 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

9.1.3.8.3  ANNEX 1 - vm_1_core.dts

/dts-v1/;
/ {
   dpl-version = <10>;
   /*****************************************************************
    * Containers
    *****************************************************************/
   containers {
     dprc@2 {
       compatible = "fsl,dprc";
       parent = "dprc.1";
       options = "DPRC_CFG_OPT_SPAWN_ALLOWED", "DPRC_CFG_OPT_ALLOC_ALLOWED",
 "DPRC_CFG_OPT_OBJ_CREATE_ALLOWED", "DPRC_CFG_OPT_IRQ_CFG_ALLOWED";
       objects {
         /* -------------- DPBPs --------------*/
         obj_set@dpbp {
           type = "dpbp";
           ids = <1>;
         };
         /* -------------- DPCONs --------------*/
         obj_set@dpcon {
           type = "dpcon";
           ids = <1>;
         };
         /* -------------- DPIOs --------------*/
         obj_set@dpio {
           type = "dpio";
           ids = <1>;
         };
         /* -------------- DPMCPs --------------*/
         obj_set@dpmcp {
           type = "dpmcp";
           ids = <1 2>;
         };
         /* -------------- DPNIs --------------*/
         obj_set@dpni {
           type = "dpni";
           ids = <1>;
         };
       };
     };
   };
   /*****************************************************************
    * Objects
    *****************************************************************/
   objects {
     dpbp@1 {
       compatible = "fsl,dpbp";
     };
     dpcon@1 {
       compatible = "fsl,dpcon";
       num_priorities = <0x2>;
     };
     dpio@1 {
       compatible = "fsl,dpio";
       channel_mode = "DPIO_LOCAL_CHANNEL";
       num_priorities = <0x8>;
     };
     dpmcp@1 {

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
1007 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

       compatible = "fsl,dpmcp";
     };
     dpmcp@2 {
       compatible = "fsl,dpmcp";
     };
     dpni@1 {
       compatible = "fsl,dpni";
       type = "DPNI_TYPE_NIC";
       options = "DPNI_OPT_NO_FS";
       num_queues = <8>;
       num_tcs = <1>;
       mac_filter_entries = <16>;
       vlan_filter_entries = <0>;
       fs_entries = <0>;
       qos_entries = <0>;
     };
   };
   /*****************************************************************
    * Connections
    *****************************************************************/
   connections {
     connection@1{
       endpoint1 = "dpni@1";
       endpoint2 = "dpmac@1";
     };
   };
 };

9.1.3.8.4  ANNEX 2 - vm_8_core.dts

/dts-v1/;
 / {
   dpl-version = <10>;
   /*****************************************************************
    * Containers
    *****************************************************************/
   containers {
     dprc@2 {
       compatible = "fsl,dprc";
       parent = "dprc.1";
       options = "DPRC_CFG_OPT_SPAWN_ALLOWED", "DPRC_CFG_OPT_ALLOC_ALLOWED",
 "DPRC_CFG_OPT_OBJ_CREATE_ALLOWED", "DPRC_CFG_OPT_IRQ_CFG_ALLOWED";
       objects {
         /* -------------- DPBPs --------------*/
         obj_set@dpbp {
           type = "dpbp";
           ids = <1>;
         };
         /* -------------- DPCONs --------------*/
         obj_set@dpcon {
           type = "dpcon";
           ids = <1 2 3 4 5 6 7 8>;
         };
         /* -------------- DPIOs --------------*/
         obj_set@dpio {
           type = "dpio";
           ids = <1 2 3 4 5 6 7 8>;
         };
         /* -------------- DPMCPs --------------*/
         obj_set@dpmcp {
           type = "dpmcp";
           ids = <1 2 3 4 5 6 7 8 9>;
         };
         /* -------------- DPNIs --------------*/
         obj_set@dpni {
           type = "dpni";

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
1008 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

           ids = <1>;
         };
       };
     };
   };
   /*****************************************************************
    * Objects
    *****************************************************************/
   objects {
     dpbp@1 {
       compatible = "fsl,dpbp";
     };
     dpcon@1 {
       compatible = "fsl,dpcon";
       num_priorities = <0x2>;
     };
     dpcon@2 {
       compatible = "fsl,dpcon";
       num_priorities = <0x2>;
     };
     dpcon@3 {
       compatible = "fsl,dpcon";
       num_priorities = <0x2>;
     };
     dpcon@4 {
       compatible = "fsl,dpcon";
       num_priorities = <0x2>;
     };
     dpcon@5 {
       compatible = "fsl,dpcon";
       num_priorities = <0x2>;
     };
     dpcon@6 {
       compatible = "fsl,dpcon";
       num_priorities = <0x2>;
     };
     dpcon@7 {
       compatible = "fsl,dpcon";
       num_priorities = <0x2>;
     };
     dpcon@8 {
       compatible = "fsl,dpcon";
       num_priorities = <0x2>;
     };
     dpio@1 {
       compatible = "fsl,dpio";
       channel_mode = "DPIO_LOCAL_CHANNEL";
       num_priorities = <0x8>;
     };
     dpio@2 {
       compatible = "fsl,dpio";
       channel_mode = "DPIO_LOCAL_CHANNEL";
       num_priorities = <0x8>;
     };
     dpio@3 {
       compatible = "fsl,dpio";
       channel_mode = "DPIO_LOCAL_CHANNEL";
       num_priorities = <0x8>;
     };
     dpio@4 {
       compatible = "fsl,dpio";
       channel_mode = "DPIO_LOCAL_CHANNEL";
       num_priorities = <0x8>;
     };
     dpio@5 {
       compatible = "fsl,dpio";
       channel_mode = "DPIO_LOCAL_CHANNEL";
       num_priorities = <0x8>;
     };
     dpio@6 {
       compatible = "fsl,dpio";
       channel_mode = "DPIO_LOCAL_CHANNEL";
       num_priorities = <0x8>;
     };
     dpio@7 {

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
1009 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

       compatible = "fsl,dpio";
       channel_mode = "DPIO_LOCAL_CHANNEL";
       num_priorities = <0x8>;
     };
     dpio@8 {
       compatible = "fsl,dpio";
       channel_mode = "DPIO_LOCAL_CHANNEL";
       num_priorities = <0x8>;
     };
     dpmcp@1 {
       compatible = "fsl,dpmcp";
     };
     dpmcp@2 {
       compatible = "fsl,dpmcp";
     };
     dpmcp@3 {
       compatible = "fsl,dpmcp";
     };
     dpmcp@4 {
       compatible = "fsl,dpmcp";
     };
     dpmcp@5 {
       compatible = "fsl,dpmcp";
     };
     dpmcp@6 {
       compatible = "fsl,dpmcp";
     };
     dpmcp@7 {
       compatible = "fsl,dpmcp";
     };
     dpmcp@8 {
       compatible = "fsl,dpmcp";
     };
     dpmcp@9 {
       compatible = "fsl,dpmcp";
     };
     dpni@1 {
       compatible = "fsl,dpni";
       type = "DPNI_TYPE_NIC";
       options = "DPNI_OPT_NO_FS";
       num_queues = <8>;
       num_tcs = <1>;
       mac_filter_entries = <16>;
       vlan_filter_entries = <0>;
       fs_entries = <0>;
       qos_entries = <0>;
     };
   };
   /*****************************************************************
    * Connections
    *****************************************************************/
   connections {
     connection@1{
       endpoint1 = "dpni@1";
       endpoint2 = "dpmac@1";
     };
   };
 };

9.1.3.9  How to use PCIe direct assignment

Select the PCIe device that will be assigned to Virtual Machine. For example, it is e1000e PCI network device
(0000.01.00.0).

1. Bind the PCI device to the VFIO driver:
• Assume e1000e device with identity 0000.01.00.0

echo vfio-pci > /sys/bus/pci/devices/0000\:01\:00.0/driver_override
echo 0000:01:00.0 > /sys/bus/pci/drivers/e1000e/unbind

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
1010 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

echo 0000:01:00.0 > /sys/bus/pci/drivers/vfio-pci/bind

2. All device in the iommu-group must be assigned to same virtual machine.
• The command below will list all devices in the same iommu-group:

ls -l /sys/bus/pci/devices/0000:01:00.0/iommu_group/devices

• All devices must be bound to VFIO using step (1) above.
3. Add the device command below to the QEMU command-line for all devices in the iommu-group:

-device vfio-pci,host=0000:01:00.0

4. Device will be available in Virtual Machine.

9.1.3.10  Passthrough of USB Devices

USB devices can be assigned to virtual machines. When the device is assigned to the virtual machine it
becomes the private resource of the VM and it cannot be used by the host Linux. The virtual machine sees an
XHCI USB controller on its PCI bus. The XHCI controller supports USB 3.0 devices.

There are 2 approaches for passing through a USB device:

1. by specifying the USB vendor ID and product ID of the device
2. by specifying the USB bus and port number

In the examples below, the -device nec-usb-xhci argument specifies that a PCI-based XHCI USB
controller should be added to the PCI bus. The -device usb-host identifies the specific USB device being
passed through.
To assign the device by vendor and product ID, first identify the device using the lsusb command. For
example:

root@ls1028ardb:~# lsusb
Bus 004 Device 001: ID 1d6b:0003 Linux Foundation 3.0 root hub
Bus 003 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub
Bus 002 Device 001: ID 1d6b:0003 Linux Foundation 3.0 root hub
Bus 001 Device 002: ID 13fe:3600 Kingston Technology Company Inc. flash drive
 (4GB, EMTEC)
Bus 001 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub

To assign the Kingston USB disk, specify the following -device arguments to QEMU:

-device nec-usb-xhci,id=xhci
-device usb-host,bus=xhci.0,vendorid=0x13fe,productid=0x3600

To assign the device by USB bus and host number, use the lsusb command:

root@ls1028ardb:~# lsusb -t
/:  Bus 04.Port 1: Dev 1, Class=root_hub, Driver=xhci-hcd/1p, 5000M
/:  Bus 03.Port 1: Dev 1, Class=root_hub, Driver=xhci-hcd/1p, 480M
/:  Bus 02.Port 1: Dev 1, Class=root_hub, Driver=xhci-hcd/1p, 5000M
/:  Bus 01.Port 1: Dev 1, Class=root_hub, Driver=xhci-hcd/1p, 480M
    |__ Port 1: Dev 2, If 0, Class=Mass Storage, Driver=usb-storage, 480M

In this example, the storage device can be seen on bus 1, port 1. The info usbhost in the QEMU monitor
can also be used to display the host USB bus and port numbers for all USB devices.
To assign the Kingston USB disk by bus and port number, specify the following -device arguments to
QEMU:

-device nec-usb-xhci,id=xhci
-device usb-host,bus=xhci.0,hostbus=1,hostport=1

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
1011 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

9.1.3.11  Debugging: How to Examine Initial Virtual Machine State with QEMU

It can be helpful when debugging to examine the state of the virtual machine prior to executing the first
instruction of the guest OS.

To do this, start QEMU with the -S option.

Example:

qemu-system-aarch64 -smp 8 -m 1024 -cpu host -machine type=virt,gic-version=3
 -kernel /boot/Image -enable-kvm -display none -serial tcp::4446,server,telnet
 -drive if=none,file=/root/ls-image-main-<board>.ext4,-kernel /root/
Image,id=foo,format=raw -device virtio-blk-device,drive=foo -append 'root=/dev/
vda rw console=ttyAMA0 rootwait earlyprintk' -monitor stdio -S

The console was started with the "-serial tcp::4446,server,telnet" option so QEMU waits for a connection prior to
starting initialization. Use telnet to connect to port 4446 of the target.

At this point QEMU initializes the VM, but does not execute the entry point to the guest OS. The monitor prompt
can now be used to examine initial state:

QEMU 4.2.1 monitor - type 'help' for more information (qemu) QEMU waiting for
 connection on: disconnected:telnet::4446,server (qemu)

To see where boot images are loaded and placed by QEMU use the info roms command:

(qemu) info roms
addr=0000000000000000 size=0x000038 mem=ram name="smpboot"
addr=0000000040000000 size=0x000028 mem=ram name="bootloader"
addr=0000000040080000 size=0x15fba00 mem=ram name="/root/Image"
addr=0000000048000000 size=0x010000 mem=ram name="dtb"
/rom@etc/acpi/tables size=0x200000 name="etc/acpi/tables"
/rom@etc/table-loader size=0x000980 name="etc/table-loader"
/rom@etc/acpi/rsdp size=0x000024 name="etc/acpi/rsdp"
(qemu)

A trivial bootloader is loaded at the start of guest memory at 0x40000000

The kernel image (Image) is loaded at 0x40080000.

To examine the initial state of registers use the info registers command:

(qemu) info registers
PC=0000000040000000  SP=0000000000000000
X00=0000000000000000 X01=0000000000000000 X02=0000000000000000
 X03=0000000000000000
X04=0000000000000000 X05=0000000000000000 X06=0000000000000000
 X07=0000000000000000
X08=0000000000000000 X09=0000000000000000 X10=0000000000000000
 X11=0000000000000000
X12=0000000000000000 X13=0000000000000000 X14=0000000000000000
 X15=0000000000000000
X16=0000000000000000 X17=0000000000000000 X18=0000000000000000
 X19=0000000000000000
X20=0000000000000000 X21=0000000000000000 X22=0000000000000000
 X23=0000000000000000
X24=0000000000000000 X25=0000000000000000 X26=0000000000000000
 X27=0000000000000000

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
1012 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

X28=0000000000000000 X29=0000000000000000 X30=0000000000000000
PSTATE=400003c5 -Z-- EL1h
q00=0000000000000000:0000000000000000 q01=0000000000000000:0000000000000000
q02=0000000000000000:0000000000000000 q03=0000000000000000:0000000000000000
q04=0000000000000000:0000000000000000 q05=0000000000000000:0000000000000000
q06=0000000000000000:0000000000000000 q07=0000000000000000:0000000000000000
q08=0000000000000000:0000000000000000 q09=0000000000000000:0000000000000000
q10=0000000000000000:0000000000000000 q11=0000000000000000:0000000000000000
q12=0000000000000000:0000000000000000 q13=0000000000000000:0000000000000000
q14=0000000000000000:0000000000000000 q15=0000000000000000:0000000000000000
q16=0000000000000000:0000000000000000 q17=0000000000000000:0000000000000000
q18=0000000000000000:0000000000000000 q19=0000000000000000:0000000000000000
q20=0000000000000000:0000000000000000 q21=0000000000000000:0000000000000000
q22=0000000000000000:0000000000000000 q23=0000000000000000:0000000000000000
q24=0000000000000000:0000000000000000 q25=0000000000000000:0000000000000000
q26=0000000000000000:0000000000000000 q27=0000000000000000:0000000000000000
q28=0000000000000000:0000000000000000 q29=0000000000000000:0000000000000000
q30=0000000000000000:0000000000000000 q31=0000000000000000:0000000000000000
FPCR: 00000000  FPSR: 00000000
(qemu)

The program counter is set to 0x40000000 which is the effective address of the entry point of the kernel.

9.1.3.12  Debugging: How to Profile Virtualization Overhead with KVM

Running software in a virtual machine can cause additional overhead that affects performance. The
virtualization overhead is directly related to the number of times the hypervisor (KVM) is invoked to handle
exception conditions that may occur in the virtual machine. These exception handling events are referred to as
'exits', because guest context is exited.

Examples of exits include things such the guest executing a privileged instruction, access a privileged CPU
register, accessing a virtual I/O device, or a hardware interrupt such as a decrementer interrupt.

The type and number of exits that occur is workload dependent.

KVM implements a mechanism in which different events are logged. These events are actually tracepoint
events, and perf nicely integrates with them. You have to compile the host kernel with the following options:

Kernel hacking  --->
     [*] Tracers  --->
         [*]   Trace process context switches and events

Counting Events

A count of a subset of KVM events that occur can be seen under debugfs. To see this first mount debugfs:

mount -t debugfs none /sys/kernel/debug

The statistics can be seen using perf tool:

# perf stat -e "kvm:*" -p 1395
^C
 Performance counter stats for process id '1395':
              5678 kvm:kvm_entry
              5678 kvm:kvm_exit
              3121 kvm:kvm_guest_fault
              2278 kvm:kvm_irq_line

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
1013 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

                 0 kvm:kvm_mmio_emulate
                 0 kvm:kvm_emulate_cp15_imp
              2438 kvm:kvm_wfi
                 0 kvm:kvm_unmap_hva
                 2 kvm:kvm_unmap_hva_range
                 0 kvm:kvm_set_spte_hva
                 0 kvm:kvm_hvc
              3119 kvm:kvm_userspace_exit
                 0 kvm:kvm_set_irq
                 0 kvm:kvm_ack_irq
              4068 kvm:kvm_mmio
                 0 kvm:kvm_fpu
                 0 kvm:kvm_age_page
      59.316709040 seconds time elapsed

Tracing events

Detailed traced can be generated using ftrace:

[enable ftrace in kernel: events and system calls]
$echo 1 > /sys/kernel/debug/tracing/events/kvm/enable
$cat /sys/kernel/debug/tracing/trace_pipe
qemu-system-arm-1366  [000] ....   716.115891: kvm_guest_fault: ipa 0x9000000,
 hsr 0x93430046, hxfar 0xa084c030, pc 0x80266a9c
qemu-system-arm-1366  [000] ....   716.115892: kvm_mmio: mmio write len 2 gpa
 0x9000030 val 0xf01
qemu-system-arm-1366  [000] ....   716.115895: kvm_userspace_exit: reason
 KVM_EXIT_MMIO (6)
qemu-system-arm-1366  [000] d...   716.115907: kvm_entry: PC: 0x80266aa0
qemu-system-arm-1366  [000] d...   716.116234: kvm_exit: PC: 0x800cf508
qemu-system-arm-1366  [000] d...   716.118274: kvm_entry: PC: 0x800cf508
qemu-system-arm-1366  [000] d...   716.118704: kvm_exit: PC: 0x0000981c
qemu-system-arm-1366  [000] d...   716.120737: kvm_entry: PC: 0x0000981c
qemu-system-arm-1366  [000] d...   716.121159: kvm_exit: PC: 0x800bb104
qemu-system-arm-1366  [000] d...   716.123197: kvm_entry: PC: 0x800bb104
qemu-system-arm-1366  [000] d...   716.123620: kvm_exit: PC: 0x8009cae0
qemu-system-arm-1366  [000] d...   716.125696: kvm_entry: PC: 0x8009cae0
qemu-system-arm-1366  [000] d...   716.126091: kvm_exit: PC: 0x800c90f4
qemu-system-arm-1366  [000] d...   716.128130: kvm_entry: PC: 0x800c90f4
qemu-system-arm-1366  [000] d...   716.128561: kvm_exit: PC: 0x801f37f4
qemu-system-arm-1366  [000] d...   716.130594: kvm_entry: PC: 0x801f37f4
qemu-system-arm-1366  [000] d...   716.130623: kvm_exit: PC: 0x8020576c
qemu-system-arm-1366  [000] d...   716.130635: kvm_entry: PC: 0x8020576c
qemu-system-arm-1366  [000] d...   716.131018: kvm_exit: PC: 0x43014750
qemu-system-arm-1366  [000] d...   716.133053: kvm_entry: PC: 0x43014750
qemu-system-arm-1366  [000] d...   716.133478: kvm_exit: PC: 0x80205778
qemu-system-arm-1366  [000] d...   716.135555: kvm_entry: PC: 0x80205778

9.1.3.13  Debugging virtual machines

9.1.3.13.1  QEMU Monitor

When starting QEMU, a monitor shell is available that can be used to control and see the state of VM. By
default this monitor is started in the Linux shell where QEMU is invoked.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
1014 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

See example below of the output when starting QEMU. The user can interact with the monitor at the (qemu)
prompt.

QEMU 4.2.1 monitor - type 'help' for more information (qemu) QEMU waiting for
 connection on: disconnected:telnet::4446,server

The monitor can also be exposed over a network port by using the -monitor dev command-line option. See
Section 9.1.1.1.1 and the QEMU user's manual [1] (see Section 9.1.1.5).

Refer to the QEMU user's manual [1] for a complete listing of the monitor commands available. Below is a list of
some useful commands supported in the NXP SDK implementation of QEMU:

• help - lists all the available commands with usage information
• info cpus - displays the state and thread ID of all virtual CPUs
• info registers - displays the contents of the default vcpu's registers
• cpu cpu_number - sets the default vcpu number
• system_reset - resets the VM
• x/fmt addr -- virtual memory dump starting at 'addr'
• xp/fmt addr -- physical memory dump starting at 'addr'

9.1.3.13.2  QEMU GDB Stub

QEMU supports debugging of a VM using gdb. QEMU contains a gdb stub that can be attached to from a host
system and allows standard source level debugging capabilities to examine the state of the VM and do run
control.

Figure 225. VM debugging by QEMU using GDB

To use the gdb stub, start QEMU with the -gdb dev option where dev specifies the type of connection to be
used. See the QEMU user's manual [1] (see Section 9.1.1.5) for details.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
1015 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

One useful option when debugging is the -S argument to QEMU which causes QEMU to wait to start the first
instruction of the guest until told to start using the monitor (continue command).

In the example below the tcp device type is used. A gdb stub will be active on port 4445 of the host Linux kernel
when starting QEMU:

qemu-system-aarch64 -smp 8 -m 1024 -cpu host -machine type=virt,gic-version=3
 -kernel /boot/Image -enable-kvm -display none -serial tcp::4446,server,telnet
 -drive if=none,file=/root/ls-image-main-<board>.ext4,-kernel /root/
Image,id=foo,format=raw -device virtio-blk-device,drive=foo -append 'root=/dev/
vda rw console=ttyAMA0 rootwait earlyprintk' -monitor stdio -gdb tcp::4444

After the guest has been started normally, gdb can be used to connect to the VM (in this example the host
kernel has an ip address of 192.168.3.30):

(gdb) target remote 192.168.4.100:4444
Remote debugging using 192.168.4.100:4444
0xffff000008096258 in ?? ()

Debugging with gdb can then proceed normally:

(gdb) p/x $pc
$4 = 0xffff000008096258

9.2  Linux Containers (LXC) for NXP QorIQ User's Guide

9.2.1  Introduction to Linux Containers

9.2.1.1  Overview

This document is a guide and tutorial to using Linux Containers on NXP ARMv7 and ARMv8-based SoCs.

Linux Containers is a lightweight virtualization technology that allows the creation of environments in Linux
called "containers" in which Linux applications can be run in isolation from the rest of the system and with fine
grained control over resources allocated to the container (for example, CPU, memory, network).

There are 2 implementations of containers in the Layerscape LDP:

• LXC. LXC is a user space package that provides a set of commands to create and manage containers and
uses existing Linux kernel features to accomplish the desired isolation and control.

• Libvirt. The libvirt package is a virtualization toolkit that provides a set of management tools for managing
virtual machines and Linux containers. The libvirt driver for containers is called "lxc", but the libvirt "lxc" driver
is distinct from the user space LXC package.

Applications in a container run in a "sandbox" and can be restricted in what they can do and what visibility they
have. In a container:

• An application "sees" only other processes that are in the container.
• An application has access only to network resources granted to the container.
• If configured as such, an application "sees" only a container-specific root filesystem. In addition to limiting

access to data in the system's host rootfs, by limiting the /dev entries that exist in the containers rootfs this
limits the devices that the container can access.

• The file POSIX capabilities available to programs are controlled and configured by the system administrator.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
1016 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

• The container's processes run in what is known as a "control group" which the system administrator can use
to monitor and control the container's resources.

Why are containers useful? Below are a few examples of container use cases:

• Application partitioning -- control CPU utilization between high-priority and low-priority applications, control
what resources applications can access.

• Virtual private server -- boot multiple instances of user space, each which effectively looks like a private
instance of a server. This approach is commonly used in website infrastructure.

• Software upgrade -- run Linux user space in a container, when it becomes necessary to upgrade applications
in the system, create and test upgraded software in a new container. The old container can be stopped and
the new container can be started as desired.

• Terminal servers -- user accesses the system with a thin client, with containers on the server providing
applications. Each user gets a private, sandboxed workspace.

There are two general usage models for containers:

• application containers: Running a single application in a container. In this scenario, a single executable
program is started in the container.

• system containers: Booting an instance of user space in a container. Booting multiple system containers
allows multiple isolated instances of user space to run at the same time.

Containers are conceptually different than virtual machine technologies such as QEMU/KVM. Virtual machines
emulate a hardware platform and are capable of booting an operating system kernel. A container is a
mechanism to isolate Linux applications. In a system using containers there is only one Linux kernel running the
host Linux kernel.

9.2.1.2  For Further Information

Linux container is an approach to virtualization similar to OS virtualization solutions, such as Linux VServer
and OpenVZ that are widely used for virtual private servers. Documentation for these projects has helpful and
relevant information:

• http://linux-vserver.org/Overview
• http://wiki.openvz.org/Main_Page

The LXC package is an open source project and much information is available online.

General Information

• libvirt LXC driver: http://libvirt.org/drvlxc.html
• Getting started with LXC using libvirt : https://www.berrange.com/posts/2011/09/27/getting-started-with-lxc-

using-libvirt/
• LXC: Official webpage for the LXC project: https://linuxcontainers.org/
• LXC: Overview article on LXC on IBM developerWorks (2009): https://developer.ibm.com/tutorials/l-lxc-

containers/
• LXC man pages: https://linuxcontainers.org/lxc/manpages/
• SUSE LXC tutorial: https://documentation.suse.com/sles/11-SP4/html/SLES-all/art-lxcquick.html
• LXC Linux Containers, presentation: http://www.slideshare.net/samof76/lxc-17456998
• Stephane Graber's LXC 1.0 blog posts: https://www.stgraber.org/2013/12/20/lxc-1-0-blog-post-series/
• Linux Plumbers 2013 videos: https://www.youtube.com/channel/UCIxsmRWj3-795FMlrsikd3A/videos
• Control Groups: https://www.kernel.org/doc/Documentation/cgroup-v1/cgroups.txt

Containers and Security

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
1017 / 1061

http://linux-vserver.org/Overview
http://wiki.openvz.org/Main_Page
http://libvirt.org/drvlxc.html
https://www.berrange.com/posts/2011/09/27/getting-started-with-lxc-using-libvirt/
https://www.berrange.com/posts/2011/09/27/getting-started-with-lxc-using-libvirt/
https://linuxcontainers.org/
https://developer.ibm.com/tutorials/l-lxc-containers/
https://developer.ibm.com/tutorials/l-lxc-containers/
https://linuxcontainers.org/lxc/manpages/
https://documentation.suse.com/sles/11-SP4/html/SLES-all/art-lxcquick.html
http://www.slideshare.net/samof76/lxc-17456998
https://www.stgraber.org/2013/12/20/lxc-1-0-blog-post-series/
https://www.youtube.com/channel/UCIxsmRWj3-795FMlrsikd3A/videos
https://www.kernel.org/doc/Documentation/cgroup-v1/cgroups.txt


NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

If using containers to sandbox untrusted applications, a thorough understanding is needed of the capabilities
granted to a container and the security vulnerabilities they may imply. The following references are helpful for
understanding container security:

• Ubuntu's security issues and mitigations with LXC, https://wiki.ubuntu.com/LxcSecurity
• Emeric Nasi, Exploiting capabilities, https://blog.sevagas.com/IMG/pdf/exploiting_capabilities_the_dark_side.

pdf
• Secure containers with SELinux and Smack, http://www.ibm.com/developerworks/linux/library/l-lxc-security/

index.html
• Seccomp and sandboxing, http://lwn.net/Articles/332974/

Mailing Lists

For LXC, there are two mailing lists available which can be subscribed to. Archives of the lists are also
available.

https://lists.linuxcontainers.org/listinfo/lxc-devel

https://lists.linuxcontainers.org/listinfo/lxc-users

9.2.2  Additional information

9.2.2.1  Containers with Libvirt

This section provides an overview to using libvirt-based containers.

For general introduction to libvirt, see the container information available on the libvirt website: http://libvirt.org/
drvlxc.html.

With libvirt, a container "domain" is specified in an XML file. The XML is used to "define" the container, which
then allows the container to be managed with the standard libvirt domain lifecycle.

Libvirt XML

The XML for the simplest functional container would look like the example below:

<domain type='lxc'>
  <name>container1</name>
  <memory>500000</memory>
  <os>
    <type>exe</type>
    <init>/bin/sh</init>
  </os>
  <devices>
    <console type='pty'/>
  </devices>
</domain>

Refer to the XML reference information available on the libvirt website for detailed reference information: http://
libvirt.org/formatdomain.html

The <domain> element must specify a type attribute of "lxc" for a container/lxc domain. There are 4 additional
sub-nodes required:

• <name> - specifies the name of the container

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
1018 / 1061

https://wiki.ubuntu.com/LxcSecurity
https://blog.sevagas.com/IMG/pdf/exploiting_capabilities_the_dark_side.pdf
https://blog.sevagas.com/IMG/pdf/exploiting_capabilities_the_dark_side.pdf
http://www.ibm.com/developerworks/linux/library/l-lxc-security/index.html
http://www.ibm.com/developerworks/linux/library/l-lxc-security/index.html
http://lwn.net/Articles/332974/
https://lists.linuxcontainers.org/listinfo/lxc-devel
https://lists.linuxcontainers.org/listinfo/lxc-users
http://libvirt.org/drvlxc.html
http://libvirt.org/drvlxc.html
http://libvirt.org/formatdomain.html
http://libvirt.org/formatdomain.html


NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

• <memory> - specifies the maximum memory the container may use
• <os> - identifies the initial program to run. In the example, this is /bin/sh. For an application-based container,

this is the name of the application. If booting an instance of Linux user space, this would typically be /sbin/init.
• <devices> - specifies any devices, in the above example there is just a console

Filesystem mounts (from http://libvirt.org/drvlxc.html)

In the absence of any explicit configuration, the container will inherit the host OS filesystem mounts. A number
of mount points will be made read only, or remounted with new instances to provide container-specific data. The
following special mounts are set up by libvirt:

• /dev a new "tmpfs" pre-populated with authorized device nodes
• /dev/pts a new private "devpts" instance for console devices
• /sys the host "sysfs" instance remounted read-only
• /proc a new instance of the "proc" filesystem
• /proc/sys the host "/proc/sys" bind-mounted read-only
• /sys/fs/selinux the host "selinux" instance remounted read-only
• /sys/fs/cgroup/NNNN the host cgroups controllers bind-mounted to only expose the sub-tree associated with

the container
• /proc/meminfo a FUSE backed file reflecting memory limits of the container

Additional filesystem mounts can be created using the <filesystem> node under the <devices> node. See the
libvirt.org documentation referenced above for further details.

Device nodes from http://libvirt.org/drvlxc.html

The container init process will be started with CAP_MKNOD capability removed and blocked from reacquiring
it. As such it will not be able to create any device nodes in /dev or anywhere else in its filesystems. Libvirt itself
will take care of pre-populating the /dev filesystem with any devices that the container is authorized to use. The
current devices that will be made available to all containers are:

• /dev/zero
• /dev/null
• /dev/full
• /dev/random
• /dev/urandom
• /dev/stdin symlinked to /proc/self/fd/0
• /dev/stdout symlinked to /proc/self/fd/1
• /dev/stderr symlinked to /proc/self/fd/2
• /dev/fd symlinked to /proc/self/fd
• /dev/ptmx symlinked to /dev/pts/ptmx
• /dev/console symlinked to /dev/pts/0

9.2.2.2  Linux Control Groups (cgroups)

Linux control groups (or cgroups) is a feature of the Linux kernel that allows the allocation, prioritization, control,
and monitoring of resources such as CPU time, memory, network bandwidth among groups of Linux processes.

Cgroups is one of the underlying Linux kernel features that LXC is built upon. LXC automatically creates
a cgroup for each container when it is started. A pre-requisite for using LXC is mounting the cgroup virtual
filesystem.

Cgroups encompass a number of different subsystems or "controllers" that are used for managing and
controlling different resources. The following subsystems/controllers are supported:

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
1019 / 1061

http://libvirt.org/drvlxc.html
http://libvirt.org/drvlxc.html


NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

• cpu - controls CPU allocation for tasks in a cgroup
• cpuset - assigns individual CPUs and memory nodes to tasks in a cgroup
• cpuacct - generates automatic reports on CPU resources used by the tasks in a cgroup
• memory - isolates the memory behavior of a group of tasks from the rest of the system
• devices - allows or denies access to devices by tasks in a crgroup
• freezer - suspends or resumes tasks in a cgroup
• net_cls - tags packets with a class identifier that allows the Linux traffic controller to identify packets

originating from a particular cgroup
• net_prio - provides a way to dynamically set the priority of network traffic per each network interface for

applications within various cgroups
• blkio - controls and monitors access to I/O on block devices by tasks in cgroups

9.2.2.3  Linux Namespaces

Linux namespaces is a feature in the Linux kernel that allows you to unshare and isolate resources of a
process, such as UTS, PID, IPC, file system mount and network from their parent. To achieve this, the kernel
places the resources in different namespaces.

When LXC spawns the container's main process it unshares all these resources except the network. The
network is controlled from the configuration file and is shared by default.

A network namespace provides an isolated view of the networking stack (network device interfaces, IPv4 and
IPv6 protocol stacks, IP routing tables, firewall rules, the /proc/net and /sys/class/net directory trees, sockets,
and so on). A physical network device can live in exactly one network namespace. A virtual network device
("veth") pair provides a pipe-like abstraction that can be used to create tunnels between network namespaces,
and can be used to create a bridge to a physical network device in another namespace. When a network
namespace is freed (that is, when the last process in the namespace terminates), its physical network devices
are moved back to the initial network namespace (not to the parent of the process).

Each namespace is documented in the Linux clone man page. See: clone (2)

9.2.2.4  POSIX Capabilities

Linux supports the concept of file "capabilities", which provides fine grained control over what executable
programs are permitted to do. Instead of the "all or nothing" paradigm where a super-user or "root" has the
power to perform all operations, capabilities provide a mechanism to grant program-specific capabilities.

LXC uses this feature of the kernel to implement containers. By default processes running in a container will
have all capabilities, but this can be configured. Capabilities can be dropped in the container's configuration file.

Each capability is documented in the Linux capabilities man page. See: capabilities (7)

In order to fully isolate a container, the capabilities to be dropped must be carefully considered. The Linux
Vserver project considers only the following capabilities as safe for virtual private servers:

CAP_CHOWN
CAP_DAC_OVERRIDE
CAP_DAC_READ_SEARCH
CAP_FOWNER
CAP_FSETID
CAP_KILL
CAP_SETGID
CAP_SETUID
CAP_NET_BIND_SERVICE
CAP_SYS_CHROOT
CAP_SYS_PTRACE

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
1020 / 1061

http://man7.org/linux/man-pages/man2/clone.2.html
http://man7.org/linux/man-pages/man7/capabilities.7.html


NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

CAP_SYS_BOOT
CAP_SYS_TTY_CONFIG
CAP_LEASE

(see: http://linux-vserver.org/Paper#Secure_Capabilities)

9.2.3  Libvirt

This document is a guide and tutorial to using libvirt on NXP SoCs. Libvirt is an open source toolkit that enables
the management of Linux-based virtualization technologies such as KVM/QEMU virtual machines and Linux
containers. The goal of the libvirt project (see https://libvirt.org) is to provide a stable, standard, hypervisor-
agnostic interface for managing virtualization domains such as virtual machines and containers. Domains
can be remote and libvirt provides full security for managing remote domains over a network. Libvirt is a layer
intended to be used as a building block for higher-level management tools and applications.

Libvirt provides:

• An interface to remotely manage the lifecycle of virtualization domains – provisioning, start/stop, monitoring
• Support for a variety of hypervisors – KVM/QEMU and Linux Containers are supported in the NXP SDK
• libvirtd – a Linux daemon that runs on a target node/system and allows a libvirt management tool to manage

virtualization domains on the node
• virsh – a basic command shell for managing libvirt domains
• A standard XML format for defining domains

9.2.3.1  Libvirt Domain Lifecycle

Two types of libvirt domains are supported – KVM/QEMU virtual machines and Linux containers. The following
state diagram illustrates the lifecycle of a domain, the states that domains can be in and the virsh commands
that move the domain between states.

Undefined

define
Running

restore

Paused

Saved

save

resume suspend

destroyundefine

start

create

destroy

Defined

Figure 226. VM debugging by QEMU using GDB

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
1021 / 1061

http://linux-vserver.org/Paper#Secure_Capabilities
https://libvirt.org


NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

9.2.3.2  Domain States

• Undefined. There are two types of domains – persistent and transient domains. All domains begin in the
undefined state where they are defined in XML definition file, and libvirt is unaware of them.

• Defined. Persistent domains begin with being defined. This adds the domain to libvirt, but it is not running.
This state can also be conceptually thought of as stopped. The output of virsh list –all shows the domain as
being shut off.

• Running. The running state is the normal state of an active domain after it has been started. The start
command is used to move persistent domains into this state. Transient domains go from being undefined to
running through the create command.

• Paused. The domain execution has been suspended. The domain is unaware of being in this state.
• Saved. The domain state has been saved and could be restored again.

9.2.3.3  Libvirt URIs

Because libvirt supports managing multiple types of virtualization domains (possibly remote) it uses uniform
resource identifiers (URIs) to describe the target node to manage and the type of domain being managed.

An URI is specified when tools such as virsh make a connection to a target node running libvirtd. Two types of
URIs are supported – QEMU/KVM and LXC.

QEMU/KVM URIs are in the form:

• for a local node: qemu:///system
• for a remote node: qemu[+transport]://[hostname]/system

Linux containers URIs:

• for a local node: lxc:///
• for a remote node: lxc[+transport]://[hostname]/

A default URI can be specified using the environment variable LIBVIRT_DEFAULT_URI or in the /etc/libvirt/
libvirtd.conf config file.

For further information on URIs:

• https://libvirt.org/uri.html
• https://libvirt.org/remote.html#Remote_URI_reference

9.2.3.4  Virsh

The virsh command is a command-line tool provided with the libvirt package for managing libvirt domains. It can
be used to create, start, pause, shutdown domains. The general command format is:

virsh [OPTION]... <command> <domain> [ARG]...

9.2.3.5  Libvirt XML

The libvirt XML format is defined at http://libvirt.org/format.html.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
1022 / 1061

https://libvirt.org/uri.html
https://libvirt.org/remote.html#Remote_URI_reference
http://libvirt.org/format.html


NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

9.2.3.6  Running libvirtd

The libvirtd daemon is installed as part of a libvirt packages installation. By default the target system init scripts
should start libvirtd. Running libvirtd on the target system is a pre-requisite to running any management tools
such as virsh. The libvirtd daemon can be manually started like this:

$ /etc/init.d/libvirtd start

In some circumstances, the daemon may need to be restarted, such as after mounting cgroups or hugetlbfs.
Daemon restart can be done like this:

$ /etc/init.d/libvirtd restart

The libvirtd daemon can be configured in /etc/libvirt/libvirtd.conf. The file is self-documented and has detailed
comments on the configuration options available.

The libvirt daemon logs data to /var/log/libvirt/:

• General libvirtd log messages are in: /var/log/libvirt/libvirtd.log
• QEMU/KVM domain logs are in: /var/log/libvirt/qemu/[domain-name].log
• LXC domains logs are in: /var/log/libvirt/lxc/[domain-name].log

The verbosity of logging can be controlled in /etc/libvirt/libvirtd.conf.

In order to be able to start virtual machines the user used to manage virtual machines need to be added to the
libvirt group:

sudo adduser <USER> libvirt

9.2.3.7  Examples

9.2.3.8  Libvirt KVM/QEMU Examples

9.2.3.9  Virtio Block scenario

1. You can define a domain by using a libvirt XML format file:

$ virsh define kvm_virtio_blk.xml
Domain kvm_virtio_blk defined from kvm_virtio_blk.xml
$ virsh list --all
 Id    Name                           State
 ----------------------------------------------------
  - kvm_virtio_blk                 shut off

Note:
You can find the full XML for this configuration in Annex 1.

2. Start the domain. This starts the VM and boots the Linux Guest from the rootfs_<lsdk_version>_ubuntu_
<distro_scale>_arm64.ext4 image.

$ virsh start kvm_virtio_blk
Domain kvm_virtio_blk started
$ virsh list
 Id    Name                           State
 ----------------------------------------------------
  16    kvm_virtio_blk                 running

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
1023 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

3. The virsh console command can be used to connect to the console of the running Linux domain.

$ virsh console kvm_virtio_blk
Connected to domain kvm_virtio_blk
Escape character is ^]
Ubuntu 16.04.3 LTS localhost ttyAMA0
localhost login: root
Password:
Welcome to Ubuntu 16.04.3 LTS (GNU/Linux 4.9.62 aarch64)
*Documentation: https://help.ubuntu.com
*Management: https://landscape.canonical.com
*Support: https://ubuntu.com/advantage

4. To stop the domain, use the destroy command:

$ virsh destroy kvm_virtio_blk
Domain kvm_virtio_blk destroyed
$ virsh list --all
  Id    Name                           State
  ----------------------------------------------------
   - kvm_virtio_blk                 shut off

5. To remove the domain from libvirt, use the undefine command:

$ virsh undefine kvm_virtio_blk
Domain kvm_virtio_blk has been undefined
$ virsh list --all
 Id    Name                           State
 ----------------------------------------------------

9.2.3.10  Virtio Net scenario

This example uses a virtio model NIC card and a tap network backend. The virtual network interface is bridged
via a TAP interface to the physical network.

Perform the following steps:

1. Enable virtio networking in the host and guest Linux kernels.
2. On the host, create a bridge to the physical network interface to be used by the virtual network interface in

the virtual machine using the brctl command. In this example, the physical interface being used is enp1s0:

$ brctl addbr br0
$ ifconfig br0 192.168.1.10 netmask 255.255.248.0
$ ifconfig enp1s0 0.0.0.0
$ brctl addif br0 enp1s0

3. Create a qemu-ifup script on the host Linux system:

#!/bin/sh
#TAP interface will be passed in $1
bridge=br0
guest_device=$1
ifconfig $guest_device 0.0.0.0 up
brctl addif $bridge $guest_device

4. Define and start the domain. Check if the virtual network interface is created.

$ virsh define kvm_virtio_net.xml
Domain kvm_virtio_net defined from kvm_virtio_net.xml
$ virsh start kvm_virtio_net
Domain kvm_virtio_net started
$ virsh console kvm_virtio_net

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
1024 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Connected to domain kvm_virtio_net
Escape character is ^]
Ubuntu 16.04.3 LTS localhost ttyAMA0
localhost login: root
Password:
$ dmesg | grep virtio_net
[ 4.121280] virtio_net virtio1 enp0s2: renamed from eth0
$ ip a
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group
 default qlen 1
link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
inet 127.0.0.1/8 scope host lo
valid_lft forever preferred_lft forever
inet6 ::1/128 scope host
valid_lft forever preferred_lft forever
2: enp0s2: <BROADCAST,MULTICAST> mtu 1500 qdisc noop state DOWN group default
 qlen 1000
link/ether 52:54:00:12:34:56 brd ff:ff:ff:ff:ff:ff
3: sit0@NONE: <NOARP> mtu 1480 qdisc noop state DOWN group default qlen 1
link/sit 0.0.0.0 brd 0.0.0.0
4: docker0: <BROADCAST,MULTICAST> mtu 1500 qdisc noop state DOWN group
 default
link/ether 02:42:81:50:d5:f5 brd ff:ff:ff:ff:ff:ff
inet 172.17.0.1/16 scope global docker0
valid_lft forever preferred_lft forever

The libvirt XML generated and used in this scenario differs from the previous one by the following lines:

<qemu:commandline>
  <qemu:arg value='-netdev'/>
  <qemu:arg value='tap,id=tap0,script=/root/qemu-
ifup,downscript=no,ifname=tap0'/>
  <qemu:arg value='-device'/>
  <qemu:arg value='virtio-net-pci,netdev=tap0'/>
</qemu:commandline>

Note:

• Currently libvirt has no support for PCI transport, but it can be used using passthrough QEMU command-line
arguments (as seen in the previous xml).

• If you get the following error when starting the domain, use the steps from this thread to fix it.

could not open /dev/net/tun: Operation not permitted

• If you encounter the following error, a possible workaround is to add "seccomp_sandbox = 0" in /etc/libvirt/
qemu.conf

error: Failed to start domain kvm_virtio_blk_dataplane
error: internal error: qemu unexpectedly closed the monitor:
 2021-07-06T03:48:09.082357Z qemu-system-aarch64: network script /root/qemu-
ifup failed with status 31

• You can find the full XML for this configuration in Annex 2.

9.2.3.11  Virtio Block Dataplane

Virtio-blk-dataplane was developed for high performance disk I/O, especially for high IOPS devices. QEMU
performs the disk I/O in a dedicated thread that is optimized for I/O performance.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
1025 / 1061

https://bugzilla.redhat.com/show_bug.cgi?id=770020#c13


NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Even though the scenario can use also a block device on the Linux host, the next steps will show how to
implement this using a raw disk file.

Note: A direct translation between the qemu args is not possible using virsh that is why in this example, start
from the XML used in the previous scenario and build on it.

1. Create the raw disk file:

$ dd if=/dev/zero of=/root/fake-dev0-backstore.img bs=1M count=300

2. Copy the libvirt XML file from the previous example:

$ cp kvm_virtio_net.xml kvm_virtio_blk_dataplane.xml

3. Change the name and uuid of the new domain. Define the number of IOThreads to be assigned to the
domain and used by the new storage device. Add the storage disk and assign it to the iothread=‘1’.

$ diff kvm_virtio_blk_dataplane.xml kvm_virtio_net.xml

2,3c2,3
<   <name>kvm_virtio_blk_dataplane</name>
<   <uuid>5c30747a-a2c9-485e-b814-2a503fef8657</uuid>
---
>   <name>kvm_virtio_net</name>
>   <uuid>5c30747a-a2c9-485e-b814-2a503fef8653</uuid>
22d21
<   <iothreads>1</iothreads>
29,34d27
<     </disk>
<     <disk type='file' device='disk'>
<       <driver name='qemu' type='raw' cache='none' io='native' iothread='1'/
>
<       <source file='/root/fake-dev0-backstore.img'/>
<       <target dev='vdb' bus='virtio'/>

4. Start the new domain and check if virtio-blk-dataplane works properly.

$ virsh define kvm_virtio_blk_dataplane.xml
Domain kvm_virtio_blk_dataplane defined from kvm_virtio_blk_dataplane.xml
$ virsh start kvm_virtio_blk_dataplane
Domain kvm_virtio_blk_dataplane started
# After the guest boots, the virtual disk is visible as a block device with
 the name vdb.
$ virsh console kvm_virtio_blk_dataplane
root@ls1028ardb:~# ls -la /dev/vd*
brw-rw---- 1 root disk 254, 0 Aug 23 12:00 /dev/vda
brw-rw---- 1 root disk 254, 16 Aug 23 12:00 /dev/vdb
# We can also check if the IOThread is correctly assigned to the domain.
$ virsh iothreadinfo kvm_virtio_blk_dataplane
IOThread ID CPU Affinity
---------------------------------------------------
1     0-7

Note:

You can find the full XML for this configuration in Annex 3.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
1026 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

9.2.3.12  Libvirt LXC Examples

9.2.3.13  Basic Example

The following example shows the lifecycle of a simple LXC libvirt domain called lxc_basic.

1. Install the libvirt-daemon-driver-lxc package. This can be done with the apt install libvirt-daemon-driver-lxc
command. Restart the libvirt daemon: systemctl restart libvirtd.

2. Create a libvirt XML file defining the container. The example below shows a very simple container defined in
lxc_basic.xml that runs the command /bin/sh and has a console:

$ cat lxc_basic.xml
<domain type='lxc'>
  <name>lxc_basic</name>
  <memory>500000</memory>
  <os>
    <type>exe</type>
    <init>/bin/sh</init>
  </os>
  <devices>
    <console type='pty'/>
  </devices>
</domain>

$ virsh -c lxc:/// define lxc_basic.xml
Domain lxc_basic defined from lxc_basic.xml
$ virsh -c lxc:/// list --all
 Id    Name                           State
 ----------------------------------------------------
  - lxc_basic                      shut off
$ virsh -c lxc:/// start lxc_basic
Domain lxc_basic started
$ virsh -c lxc:/// console  lxc_basic
Connected to domain lxc_basic
Escape character is ^]
#ps -ef
UID        PID  PPID  C STIME TTY          TIME CMD
root         1     0  0 13:14 ?        00:00:00 /bin/sh
root         3     1  0 13:14 ?        00:00:00 ps -ef

Note:

The processes inside the container are running in a separate namespace, therefore the different process
hierarchy. Since, no network configuration for the domain is explicitly specified, all networking interfaces are
shared with the host (all the other interfaces are present too - br0 is mentioned as an example). Since, no
filesystem configuration is specified for the domain, the filesystem is shared with the host– all host mounts are
present in the container as well.

9.2.3.14  Further Information

Libvirt is an open source project and a great deal of technical and usage information is available on the
libvirt.org website:

Additional references:

• Architecture: http://libvirt.org/intro.html
• Deployment: http://libvirt.org/deployment.htmlXML

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
1027 / 1061

https://libvirt.org
http://libvirt.org/intro.html
http://libvirt.org/deployment.htmlXML


NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

• Format: http://libvirt.org/format.html
• Virsh command reference: http://linux.die.net/man/1/virsh
• User generated content: http://wiki.libvirt.org/page/Main_Page

Mailing Lists. There are three libvirt mailing lists available which can be subscribed to. Archives of the lists are
also available:

• https://www.redhat.com/archives/libvir-list
• https://www.redhat.com/archives/libvirt-users
• https://www.redhat.com/archives/libvirt-announce

9.2.3.15  Annex 1: kvm_virtio_blk.xml

<domain type='kvm'>
<name>kvm_virtio_blk</name>
<uuid>b8ec80c1-4fd6-4e08-aec7-02150fab316d</uuid>
<memory unit='KiB'>1048576</memory>
<currentMemory unit='KiB'>1048576</currentMemory>
<vcpu placement='static'>2</vcpu>
<os>
<type arch='aarch64' machine='virt'>hvm</type>
<kernel>/root/Image</kernel>
<cmdline>root=/dev/vda rw console=ttyAMA0 rootwait earlyprintk</cmdline>
</os>
<features>
<gic version='3'/>
</features>
<cpu mode='custom' match='exact'>
<model fallback='allow'>host</model>
</cpu>
<clock offset='utc'/>
<on_poweroff>destroy</on_poweroff>
<on_reboot>restart</on_reboot>
<on_crash>destroy</on_crash>
<devices>
<emulator>/usr/bin/qemu-system-aarch64</emulator>
<disk type='file' device='disk'>
<driver name='qemu' type='raw'/>
<source file='/root/ls-image-main-<board>.ext4'/>
<target dev='vda' bus='virtio'/>
</disk>
<controller type='pci' index='0' model='pcie-root'/>
<controller type='pci' index='1' model='dmi-to-pci-bridge'/>
<controller type='pci' index='2' model='pci-bridge'/>
<serial type='pty'>
<target port='0'/>
</serial>
<console type='pty'>
<target type='serial' port='0'/>
</console>
<memballoon model='none'/>
</devices>
</domain>

9.2.3.16  Annex 2: kvm_virtio_net.xml

<domain type='kvm' xmlns:qemu='http://libvirt.org/schemas/domain/qemu/1.0'>

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
1028 / 1061

http://libvirt.org/format.html
http://linux.die.net/man/1/virsh
http://wiki.libvirt.org/page/Main_Page
https://www.redhat.com/archives/libvir-list
https://www.redhat.com/archives/libvirt-users
https://www.redhat.com/archives/libvirt-announce


NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

<name>kvm_virtio_net</name>
<uuid>5c30747a-a2c9-485e-b814-2a503fef8653</uuid>
<memory unit='KiB'>1048576</memory>
<currentMemory unit='KiB'>1048576</currentMemory>
<vcpu placement='static'>2</vcpu>
<os>
<type arch='aarch64' machine='virt'>hvm</type>
<kernel>/root/Image</kernel>
<cmdline>root=/dev/vda rw console=ttyAMA0 rootwait earlyprintk</cmdline>
</os>
<features>
<gic version='3'/>
</features>
<cpu mode='custom' match='exact'>
<model fallback='allow'>host</model>
</cpu>
<clock offset='utc'/>
<on_poweroff>destroy</on_poweroff>
<on_reboot>restart</on_reboot>
<on_crash>destroy</on_crash>
<devices>
<emulator>/usr/bin/qemu-system-aarch64</emulator>
<disk type='file' device='disk'>
<driver name='qemu' type='raw'/>
<source file='/root/ls-image-main-<board>.ext4'/>
<target dev='vda' bus='virtio'/>
</disk>
<controller type='pci' index='0' model='pcie-root'/>
<controller type='pci' index='1' model='dmi-to-pci-bridge'/>
<controller type='pci' index='2' model='pci-bridge'/>
<serial type='pty'>
<target port='0'/>
</serial>
<console type='pty'>
<target type='serial' port='0'/>
</console>
<memballoon model='none'/>
</devices>
<qemu:commandline>
<qemu:arg value='-netdev'/>
<qemu:arg value='tap,id=tap0,script=/root/qemu-ifup,downscript=no,ifname=tap0'/>
<qemu:arg value='-device'/>
<qemu:arg value='virtio-net-pci,netdev=tap0'/>
</qemu:commandline>
</domain>

9.2.3.17  Annex 3: kvm_virtio_blk_dataplane.xml

<domain type='kvm' xmlns:qemu='http://libvirt.org/schemas/domain/qemu/1.0'>
 <name>kvm_virtio_blk_dataplane</name>
 <uuid>5c30747a-a2c9-485e-b814-2a503fef8657</uuid>
 <memory unit='KiB'>1048576</memory>
 <currentMemory unit='KiB'>1048576</currentMemory>
 <vcpu placement='static'>2</vcpu>
 <os>
  <type arch='aarch64' machine='virt'>hvm</type>
  <cmdline>root=/dev/vda rw console=ttyAMA0 rootwait earlyprintk</cmdline>
 </os>
 <features>

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
1029 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

   <gic version='3'/>
 </features>
 <cpu mode='custom' match='exact'>
   <model fallback='allow'>host</model>
 </cpu>
 <clock offset='utc'/>
<on_poweroff>destroy</on_poweroff>
<on_reboot>restart</on_reboot>
<on_crash>destroy</on_crash>
<iothreads>1</iothreads>
<devices>
 <emulator>/usr/bin/qemu-system-aarch64</emulator>
 <disk type='file' device='disk'>
  <driver name='qemu' type='raw'/>
  <source file='/root/ls-image-main-<board>.ext4'/>
  <target dev='vda' bus='virtio'/>
 </disk>
 <disk type='file' device='disk'>
  <driver name='qemu' type='raw' cache='none' io='native' iothread='1'/>
  <source file='/root/fake-dev0-backstore.img'/>
  <target dev='vdb' bus='virtio'/>
 </disk>
 <controller type='pci' index='0' model='pcie-root'/>
 <controller type='pci' index='1' model='dmi-to-pci-bridge'/>
 <controller type='pci' index='2' model='pci-bridge'/>
 <serial type='pty'>
  <target port='0'/>
 </serial>
 <console type='pty'>
  <target type='serial' port='0'/>
 </console>
 <memballoon model='none'/>
 </devices>
 <qemu:commandline>
  <qemu:arg value='-netdev'/>
  <qemu:arg value='tap,id=tap0,script=/root/qemu-
ifup,downscript=no,ifname=tap0'/>
  <qemu:arg value='-device'/>
  <qemu:arg value='virtio-net-pci,netdev=tap0'/>
 </qemu:commandline>
 </domain>

9.3  Docker Containers

9.3.1  Introduction to Docker Containers

9.3.1.1  Overview

This section is a guide and tutorial to building and using Docker Containers. Docker Containers are only
available on ARM64 platforms, with the exception of LS1043A Big Endian.

Docker is a different set of user space tools implementing Linux containers and focusing on a different set
of use cases. The highlights of this open source project are ease of use, shared contributions, and fast
deployment. In the Docker ecosystem, containers are application environment packages, which can be
easily distributed and developed collaboratively, and are guaranteed to be reproducible on any supporting
platform, from the development stage to production. Currently, Docker containers are mainly targeting cloud
environments.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
1030 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Docker can be viewed as a set of separate components:

• Images: the "build" component of Docker. These are read-only copies of container root filesystems, consisting
of the designed application and its userspace dependencies. For example, an image can contain an Ubuntu
application, an Apache server and a user web app. This image can be used to get a web server running.

• Registries: the "distribution" component of Docker. These are public or private stores where users can
upload / download images. The images are versioned, and are built from layers. When sharing images, the
layers are first downloaded separately, and the image is assembled at runtime. Each layer corresponds to a
specific user commit. Images can also be built using build files. The most representative registry example is
the Docker Hub. The current Docker installation does not support registry configuration.

• Containers: the "run" component of Docker. These are very similar to the containers provided by the LXC
package. The main difference is that Docker containers use an overlay filesystem as container support. The
layers are taken as is from the image and marked read-only, with a topmost read-write layer on top. This
means that no container makes any persistent changes to the image by default - these need to be explicitly
committed by the user when the environment is in the desired state. Docker containers are designed to work
as application containers by default.

Docker uses a client-server architecture. The client takes the user commands and talks to a daemon, which
does the entire container management work. A Linux host running the daemon is called a Docker Host. The
client and daemon can run on the same machine, or on different ones, communicating through sockets or a
RESTful API.

The Docker official page advertises a set of use cases, mostly relevant in cloud environments: continuous
integration, continuous delivery, devops, big data, and infrastructure optimization. These can be easily adapted
to embedded distributions as well. As for the containers themselves, the Linux Containers section use cases
apply, with a focus on ease of use, fast deployment, and distributed usage.

9.3.2  Docker How To's

9.3.2.1  Running a web server container

The following article describes the necessary steps to deploy a web server service using a Docker container.
This is based on downloading a prepared image from the Docker hub and using it to start a container.

1. Verify if the docker daemon is running. Ensure that the board has Internet access. This is required to
download the image from the Docker Hub. The daemon configures a Linux bridge for the containers with
a private network and NAT. To verify whether the docker daemon is running, use any of the following
commands:

$ docker info
$ docker version

In this case, the docker daemon is configured to start at boot time. But, if for any reason the daemon is not
running, then use the following command:

root@ls1028ardb:~# dockerd

2. You can search the registry for the available arm64 images, or use any other keywords.
root@ls1028ardb:~# docker search arm64
NAME             DESCRIPTION           STARS      OFFICIAL   AUTOMATED
ericvh/arm64-ubuntu             Base image for arm64 (armv8 aka aarch64) U...  6
owlab/alpine-arm64         This is Alpine Linux for arm64 (or aarch64)    3
necrose99/gentoo-arm64          Arm64 with qemu-arm64 static AMD64 host h...   1      [OK]
mickaelguene/arm64-debian       Arm64 debian base with umeq install so you...  1      [OK]
markusk/arm64-crosscompile      A debian image with the necessary tools in...  1      [OK]
snapcraft/zesty-arm64           Docker image for building Ubuntu snaps         0      [OK]

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
1031 / 1061

https://HUB.DOCKER.COM/
https://docs.docker.com/v1.9/engine/introduction/understanding-docker/
https://www.docker.com/


NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

mickaelguene/arm64-debian-jenkins-slave   arm64 with java and sshd with umeq so you ...  0     
 [OK]
containerstack/alpine-arm64          Alpine Linux (arm64/aarch64) Docker image      0      [OK]
arm64el/helloworld-arm64el      hello world for arm64 el platform         0      [OK]
arm64el/busybox-arm64el         busybox image for arm64         0      [OK]
eqw3rty/minecraft-server-arm64       Dockerized Minecraft server for arm64     0      [OK]
arm64el/unshare-arm64el         unshare image for arm64el platform        0      [OK]
mickaelguene/arm64-debian-dev arm64       debian images with development tool ...   0      [OK]
necrose99/gentoo-arm64-chroot        base Gentoo AMD64 + ARM64 CHROOT volume. ...   0      [OK]
marcust/jessie-arm64-rust       Debian Jessie (arm64) image containing a R...  0
ip4368/node-arm64          Node.js is a JavaScript-based platform for...  0
marcust/bionic-arm64-rust       Ubuntu bionic (arm64) image containing a R...  0
snapcraft/bionic-arm64          Docker image for building Ubuntu snaps         0      [OK]
jefby/arm64           arm64 develop              0
dil001/nginx-arm64         These are the arm64 version of the officia...  0
knjcode/arm64-node         arm64-compatible Docker base image with No...  0
parity/rust-arm64          RUST for GitLab CI runner (ARM64 architect...  0      [OK]
thenatureofsoftware/mc-arm64         Minio client for arm64          0
thenatureofsoftware/ubuntu-arm64     Ubuntu slim images for arm64         0
dil001/fluentd-arm64       arm64 fork of the offical docker images   0

3. In this example, qoriq/arm64-ubuntu is used. It is a standard Ubuntu compiled for ARM64, with a
lighttpd web server installed and with a homepage configured to display some information on the board,
processes, and networking in the container. First download the image.
root@ls1028ardb:~# docker pull qoriq/arm64-ubuntu
Using default tag: latest
latest: Pulling from qoriq/arm64-ubuntu
a3ed95caeb02: Pull complete
9025035f8d16: Pull complete
d54663dfcaf9: Pull complete
b940f6a4f33c: Pull complete
688957367bc4: Pull complete
88ca67eab938: Pull complete
f5f1c1a40562: Pull complete
688957367bc4: Pull complete
88ca67eab938: Pull complete
f5f1c1a40562: Pull complete
357cdf8f1a01: Pull complete
de8e5d34ebd8: Pull complete
811aa6d4eba3: Pull complete
0dc75b6c54d0: Pull complete
654cadd8a53b: Pull complete
40d300e17719: Pull complete
ce42abd87d1e: Pull complete
Digest: sha256:eaef3a08336f59155e6cfb61bf55688711214561ddf00817b5c848211ac66b00
Status: Downloaded newer image for qoriq/arm64-ubuntu:latest

You can check the image is available using docker images:

root@ls1028ardb:~# docker images
REPOSITORY    TAG   IMAGE ID   CREATED   SIZE
qoriq/arm64-ubuntu      latest     903eaef3b724    12 months ago  326.4 MB
root@ls1028ardb:~#

4. Start a container using the following command:

root@ls1028ardb:~# docker run -d -p 30081:80 --name=sandbox1 \
-h sandbox1 qoriq/arm64-ubuntu \
bash -c "lighttpd -f /etc/lighttpd/lighttpd.conf -D"

• run - create and start the container. Optionally, download the image if not available on the host.
• -d - start the container as a daemon.
• -p 30081:80 - forward port 80 in the container to port 30081 on the board.
• --name=sandbox1 - the name of the container (as visible to Docker).
• -h sandbox1 - the host name inside the container.
• qoriq/arm64-ubuntu - the base image for the container.
• bash -c "lighttpd -f /etc/lighttpd/lighttpd.conf -D" - the command to execute as PID

1 in the container.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
1032 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

The command will return a unique SHA for the container. You can check that the web server is up and
running by accessing http://BOARD_IP:30081/ from a browser. You can also check the container is
running using docker:
root@ls1028ardb:~# docker ps -a
CONTAINERID   IMAGE     COMMAND       CREATED   STATUS       PORTS    NAMES
b5b8a45db81c  qoriq/arm64-ubuntu  "bash -c 'lighttpd -f"  16 hours ago   Exited (0)16 hours ago         
 sandbox1

5. Stopping and deleting the container are easy operations:

root@ls1028ardb:~# docker stop sandbox1
sandbox1
root@ls1028ardb:~# docker rm sandbox1
sandbox1

6. A similar command can be used to delete the image from the board.
root@ls1028ardb:~# docker rmi qoriq/arm64-ubuntu
Untagged: qoriq/arm64-ubuntu:latest
Untagged: qoriq/arm64-ubuntu@sha256:eaef3a08336f59155e6cfb61bf55688711214561ddf00817b5c848211ac66b00
Deleted: sha256:903eaef3b7240612111df4308f4d598ae1dee14b696a4b01654175b6771520f1
Deleted: sha256:48e73c491543279a59d202470394f0f91acd9b3a8a6f5f9befa933bc4cf4776a
Deleted: sha256:e21b9d6aa0007e242abb10948b13c93e4471694695a91a47d639f45927f25eb6
Deleted: sha256:7ec2184e81ef396a206e965e6dae42a122c4348dd7cfee1b731aa59931a5ec82
Deleted: sha256:0b081c8c711c2d14522ea1b5763e5ead19ab2975e4c28864a0ee2c0942ebae43
Deleted: sha256:b256d9ce72b40a1dc9dfdb13003a44976ba81e4fb31e774e913ed57241424231
Deleted: sha256:e07c8e0adb08295db7e3f2e13f41be622d5b8590575f87813922dd4ef0914e8f
Deleted: sha256:09ec9672e9e6d30855f1274415edf6a023b86764261b6cd88fc2b692f997977d
Deleted: sha256:d29d57006e3df9a03fb3d430183166c9337378404c1ad66db391251ea24592fd
Deleted: sha256:84be8839209cbbecd3b3f064b9593e16d30468d71c788fc3ab8f3125990002bf
Deleted: sha256:09be261c306e6c01756d16c31e2a9d4b638e8d205a068b767cb0a078480633a9
Deleted: sha256:47d9e04c91309d23f8135f579a302c2309b206cb392c42c55ec13b2c26fb317f
Deleted: sha256:8495eed3352e7d2a237f179e3a3a6e449a56821a77e2efd943bc9ccf8d6d964c
Deleted: sha256:423a2c50f96dad2f267bbbe11a8a9efc21e776419fbd618ec1a9a21e918c918b
Deleted: sha256:67629909bfc67e60ba87451caf1f98b375e8b81f21a87bab5f5e2740a78c025b
Deleted: sha256:f821f1edfff4c38033e84024e844e503d5e0e470155c4bd69ec3f0af04f01b6b
Deleted: sha256:837a3e2cff861610e7672192dac0342041c30b2548a3a63a47b92d964a862c8a
Deleted: sha256:129149fe5b4dc97f940c38cd37cfa3fc06bbdc12a8d9d22e4aa3b3e4ff709346

10   Power management

10.1  Power management user manual

10.1.1  Linux SDK for QorIQ Processors

QorIQ Processors have features to minimize power consumption at several different levels. All processors
support sleep mode (LPM20/SWLPM20). Some processors, such as T1040, LS1021, also support deep sleep
mode (LPM35).

The following power management features are supported on various QorIQ processors:

• Dynamic power management
• Shutting down unused IP blocks
• Cores support low-power modes (such as PW15)
• Processors enter low-power state (LPM20/SWLPM20, LPM35)

– LPM20/SWLPM20 mode: most parts of processor clocks are shut down
– LPM35 mode: power is removed to cores, cache and IP blocks of the processor, such as DIU, eLBC, PEX,

eTSEC, USB, SATA, eSDHC
• CPU hotplug: If cores are down at runtime, they enter low-power state.

The wake-up event sources caused quitting from low-power mode are listed as below:

• Wake on LAN (WoL) using magic packet

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
1033 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

• Wake by MPIC timer or FlexTimer
• Wake by Internal and external interrupts, such as GPIO

For more information on a specific processor, see the SoC Reference Manual.

10.1.2  Kernel configure tree view options

For Arm platforms

Kernel configure tree view options Description

Power management options  -->
  [*] Suspend to RAM and standby

Enable sleep feature

Device Drivers --->
   Real Time Clock  --->
     [*] Freescale FlexTimer alarm timer

Enable Flextimer alarm driver
(for Flextimer wakeup case
only)

Device Drivers --->
     -*- GPIO Support   -->
       [*] /sys/class/gpio/…(sysfs interface)
           Memory mapped GPIO drivers  --->
              [*] MPC512x/MPC8xxx/QorIQ GPIO support

Enable GPIO driver (for GPIO
wakeup case only)

CPU Power Management  --->
CPU Idle  --->
[*] CPU idle PM support
[*]   Ladder governor (for periodic timer tick)
-*-   Menu governor (for tickless system)
      Arm CPU Idle Drivers  --->
       [*] Generic Arm/Arm64 CPU idle Driver

Enable the CPU Idle driver

10.1.3  Compile-time configuration options

Linux
framework

Hardware feature Platform Kernel config

Suspend LPM20/SWLPM20 LS1012A,
LS1021A,
LS1046A,
LS1043A,
LS1088A,
LS2088A,
LX2160A,
LS1028A

CONFIG_SUSPEND

RTC wake Wake by Flextimer LS1012A,
LS1021A,
LS1046A,
LS1043A,
LS1088A,

CONFIG_RTC_DRV_FSL_FTM_ALARM

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
1034 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Linux
framework

Hardware feature Platform Kernel config

LS2088A,
LX2160A,
LS1028A

GPIO wake Wake by GPIO pin LS1012A,
LS1021A,
LS1046A,
LS1043A,
LS1088A,
LS2088A,
LX2160A,
LS1028A

CONFIG_GPIO_MPC8XXX

CPU idle PH20/PW20/PW15 LS1012A,
LS1021A,
LS1046A,
LS1043A,
LS1088A,
LS2088A,
LX2160A,
LS1028A

CONFIG_ARM_CPUIDLE

10.1.4  Device tree binding

Property Type Description
fsl, #rcpm-wakeup-cells unsigned int The number of cells in "rcpm-wakeup" except the pointer to

"rcpm"
little-endian bool Present if RCPM register is little-endian (such as LS1088A,

LS2088A, LX2160A)
fsl, rcpm-wakeup unsigned int Specify how to program register IPPDEXPCRn to prevent

wakeup source related IP (RTC/GPIO/…) from being off
(clock gated) during LPM20

For processors with integrated RCPM

aliases {
  rtc1 = &ftm_alarm0;
};
rcpm: rcpm@1ee208c {
  compatible = "fsl,ls1046a-rcpm", "fsl,qoriq-rcpm-2.1+";
  reg = <0x0 0x1ee2140 0x0 0x4>;
  #fsl,rcpm-wakeup-cells = <1>;
};
//RTC as wakeup source:
ftm_alarm0: timer@29d0000 {
  compatible = "fsl,ls1046a-ftm-alarm";
  reg = <0x0 0x29d0000 0x0 0x10000>;
  fsl,rcpm-wakeup = <&rcpm 0x20000>;
  interrupts = <GIC_SPI 86 IRQ_TYPE_LEVEL_HIGH>;
  big-endian;
};
//GPIO as wakeup source:

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
1035 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

gpio3: gpio@2320000 {
  compatible = "fsl,ls1028a-gpio","fsl,qoriq-gpio";
  reg = <0x0 0x2320000 0x0 0x10000>;
  interrupts = <GIC_SPI 37 IRQ_TYPE_LEVEL_HIGH>;
  gpio-controller;
  #gpio-cells = <2>;
  interrupt-controller;
  #interrupt-cells = <2>;
  little-endian;
  fsl,rcpm-wakeup = <&rcpm 0x0 0x0 0x0 0x0 0x200 0x0 0x0>;
};

See the Linux document: Documentation/devicetree/bindings/soc/fsl/rcpm.txt

10.1.5  Source files

The source files are maintained in the Linux kernel source tree.

Source file Description
drivers/soc/fsl/rcpm.c The RCPM driver needed by the sleep feature
drivers/rtc/rtc-fsl-ftm-alarm.c The FTM timer driver that works as wakeup source

drivers/gpio/gpio-mpc8xxx.c The GPIO driver that works as wakeup source

drivers/cpuidle/cpuidle-arm.c The cpuidle driver for Arm core

10.1.6  Verification in Linux

• Cpuidle Driver
The cpuidle driver can switch CPU state according to the idle policy (governor). For more information, see
"Documentation/cpuidle/sysfs.txt" in kernel source code.

/* Check the cpuidle driver which is currently used. */
# cat /sys/devices/system/cpu/cpuidle/current_driver
/* Check the following directory to see the detailed statistic information of
 each state on each CPU. */
/sys/devices/system/cpu/cpu0/cpuidle/state0/
/sys/devices/system/cpu/cpu0/cpuidle/state1/

• CPU hot plug
CPU can enter sleep which reduces the power consumption dramatically.

# echo 0 > /sys/devices/system/cpu/cpu2/online
# echo 1 > /sys/devices/system/cpu/cpu2/online
# echo 0 > /sys/devices/system/cpu/cpu0/online
# echo 1 > /sys/devices/system/cpu/cpu0/online

• Sleep and Wake up by FTM timer
Starts an FTM timer. It triggers an interrupt to wake up the system in 10 seconds.

echo 0 > /sys/class/rtc/rtc1/wakealarm && echo +10 >/sys/class/rtc/rtc1/
wakealarm && echo mem > /proc/power/state # Suspend-to-RAM
echo 0 > /sys/class/rtc/rtc1/wakealarm && echo +10 >/sys/class/rtc/rtc1/
wakealarm && echo freeze > /proc/power/state # Suspend-to-Idle

• Sleep and Wake up by GPIO
Note:  For GPIO wakeup feature, some GPIO pins are muxed with other signals on SoC/board. Therefore,
ensure that you are using the correct RCW image and proper U-Boot commands (if needed) to enable the
target GPIO pin you want to test,

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
1036 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Following are the example steps for enabling GPIO3_DAT12 on LS1028ARDB. For other case, please see
SoC and board reference manuals.
1. Update RCW on related pin mux:

In RCW source file, ls1028ardb/R_SQPP_0x85bb/rcw_800.rcw, change value of item
EC1_SAI4_5_PMUX from 5 to 1.

2. Update GPIO kernel driver and device tree to enable the wake function:
a. In the Linux kernel source file, arch/arm64/boot/dts/freescale/fsl-ls1028a.dtsi, add

following property to node gpio3: gpio@2320000 to apply proper programming on IPPDEXPCRn
for GPIO wakeup.

fsl,rcpm-wakeup = <&rcpm 0x0 0x0 0x0 0x0 0x200 0x0 0x0>;

b. In the Linux kernel source file, drivers/gpio/gpio-mpc8xxx.c, add the following callings to the
end of function mpc8xxx_probe() to enable the GPIO irq wake function.

device_init_wakeup(&pdev->dev, true);
enable_irq_wake(mpc8xxx_gc->irqn);

3. Boot to Linux console, execute following commands to export specific GPIO pin in the Linux user space
and enable interrupt, order system to sleep (Suspend-RAM/Suspend-to-Idle).

echo 428 > /sys/class/gpio/export  # Export related GPIO pin in userspace
echo input > /sys/class/gpio/gpio428/direction
echo falling > /sys/class/gpio/gpio428/edge

4. Order system to sleep (Suspend-RAM/Suspend-to-Idle).

echo mem > /proc/power/state  # Suspend-to-RAM
echo freeze > /proc/power/state # Suspend-to-Idle

5. On LS1028ARDB, short J11 pin 1 and 11 to trigger GPIO interrupt (as shown in the following figure), to
wake up the system.

Figure 227. GPIO

10.1.7  Supporting documentation

QorIQ processor reference manuals

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
1037 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

10.2  CPU Frequency Switching User Manual

10.2.1  Linux SDK for QorIQ Processors

10.2.2  Abbreviations and Acronyms

DFS: Dynamic Frequency Scaling

10.2.3  Description

QorIQ Processors support DFS (Dynamic Frequency Switching) feature, also known as CPU Frequency Switch,
which can change the frequency of cores dynamically.

For more information on a specific processor, refer to processor Reference Manual.

Kernel Configure Tree View Options Description

CPU Power Management  -->
  CPU Frequency scaling -->
    [*] CPU Frequency scaling
    <*> CPU frequency translation statistics
        Default CPUFreq governor (userspace) -->
    -*- 'userspace' governor for userspace frequency
 scaling
        Arm CPU frequency scaling drivers  -->
           <*> CPU frequency scaling driver for
 Freescale QorIQ SoCs

Enable the CPU frequency
driver

10.2.4  Compile-time Configuration Options

Linux
Framework

Hardware
Feature

Platform Kernel Config

cpufreq DFS DFS CONFIG_CPU_FREQ, CONFIG_CPU_FREQ_DEFAULT_GOV_
USERSPACE

cpufreq DFS Layerscape CONFIG_QORIQ_CPUFREQ

10.2.5  User Space Application

Simply using command "cat" and "echo" can verify this feature.

10.2.6  Device Tree Binding

Property Type Status Description
#clock-cells unsigned int Required The number of cells in a

clock-specifier
clocks handle Required Clock source handle
compatible String Required Compatible strings
reg unsigned int Required register address range

clockgen: clocking@1ee1000 {

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
1038 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

  compatible = "fsl,ls1012a-clockgen";
  reg = <0x0 0x1ee1000 0x0 0x1000>;
  #clock-cells = <2>;
   clocks = <&sysclk &coreclk>;
                        clock-names = "sysclk", "coreclk";
};

10.2.7  Source Files

The driver source is maintained in the Linux kernel source tree.

Source File Description
drivers/cpufreq/qoriq-cpufreq.c CPU frequency scaling driver for qoriq chips

10.2.8  Verification in Linux

• CPU frequency mode

In order to test the CPU frequency scaling feature, we need to enable the CPU
 frequency feature on the
menuconfig and choose the USERSPACE governor.
You can learn more about CPU frequency scaling feature by referring to the
 kernel documents.
They all are put under Documentation/cpu-freq/ directory.
For example: all the information about governors is put in Documentation/cpu-
freq/governors.txt.
Test step:
1. list all the frequencies a core can support (take cpu 0 for example) :
 # cat /sys/devices/system/cpu/cpu0/cpufreq/scaling_available_frequencies
1199999 599999 299999 799999 399999 199999 1066666 533333 266666
2.  check the CPU's current frequency
# cat /sys/devices/system/cpu/cpu0/cpufreq/scaling_cur_freq
1199999
3. change the CPU's frequency we expect:
# echo 799999 > /sys/devices/system/cpu/cpu0/cpufreq/scaling_setspeed
You can check the CPU's current frequency again to confirm if the frequency
 transition is successful.
Please note that if the frequency you want to change to doesn't support by
 current CPU, kernel will
round up or down to one CPU supports.

10.3  Thermal management user manual

10.3.1  Description

The thermal management function is based on TMU (Thermal Monitoring Unit).

The driver sets two thresholds for management function. If the CPU temperature crosses the first one (75 C for
LS2080. 85 C for other platforms), the driver will trigger CPU frequency limitation auto-scaling according to the
temperature trend; If the CPU temperature crosses the second one (85 C for LS2080, 95 C for other platforms,
critical for core) the driver will shut down the system.

User could also get current temperature through sysfs interface.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
1039 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

10.3.2  Specifications

Target boards: T1040RDB, T1042RDB, T1023RDB, T1024RDB,
LS1012ARDB, TWR-LS1021A, LS1028ARDB,
LS1043ARDB, LS1046ARDB, LS1088ARDB,
LS2088ARDB, LX2160ARDB, LX2162AQDS

Operating system: Linux 3.12+

10.3.3  Kernel Configure Tree View Options (For PowerPC platform)

Kernel Configure Tree View Options Description

Platform support  --->
    CPU Frequency scaling  --->
        PowerPC CPU frequency scaling
 drivers  --->
            <*> CPU frequency scaling
 driver for NXP QorIQ SoCs

Enable CPUfreq driver.

Device Drivers  --->
    [*] Generic Thermal sysfs driver 
 --->
        [*] generic cpu cooling
 support
        [*] Freescale QorIQ Thermal
 Monitoring Unit

Enable thermal management framework, cpu cooling
device support and QorIQ thermal driver.

10.3.4  Kernel Configure Tree View Options (For Arm platform)

Kernel Configure Tree View Options Description

CPU Power Management  --->
    CPU Frequency scaling  --->
        Arm CPU frequency scaling
 drivers  --->
            <*> CPU frequency scaling
 driver for NXP QorIQ SoCs

Enable CPUfreq driver.

Device Drivers  --->
    [*] Generic Thermal sysfs driver 
 --->
        [*] generic cpu cooling
 support
        [*] Freescale QorIQ Thermal
 Monitoring Unit

Enable thermal management framework, cpu cooling
device support and QorIQ thermal driver.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
1040 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

10.3.5  Compile-time Configuration Options

Option Values Default Value Description
CONFIG_QORIQ_CPUFREQ y/n n Enable QorIQ CPUfreq driver
CONFIG_THERMAL y/m/n n Enable thermal management

support
CONFIG_CPU_THERMAL y/m/n n Enable cpu cooling device support
CONFIG_QORIQ_THERMAL y/m/n n Enable QorIQ thermal driver

10.3.6  Device Tree Binding

tmu: tmu@f0000 {
        compatible = "fsl,qoriq-tmu";
        reg = <0xf0000 0x1000>;
        interrupts = <18 2 0 0>;
        fsl,tmu-range = <0x000a0000 0x00090026 0x0008004a 0x0001006a>;
        fsl,tmu-calibration = <0x00000000 0x00000025
                0x00000001 0x00000028
                0x00000002 0x0000002d
                0x00000003 0x00000031
                0x00000004 0x00000036
                0x00000005 0x0000003a
                0x00000006 0x00000040
                0x00000007 0x00000044
                0x00000008 0x0000004a
                0x00000009 0x0000004f
                0x0000000a 0x00000054
                0x00010000 0x0000000d
                0x00010001 0x00000013
                0x00010002 0x00000019
                0x00010003 0x0000001f
                0x00010004 0x00000025
                0x00010005 0x0000002d
                0x00010006 0x00000033
                0x00010007 0x00000043
                0x00010008 0x0000004b
                0x00010009 0x00000053
                0x00020000 0x00000010
                0x00020001 0x00000017
                0x00020002 0x0000001f
                0x00020003 0x00000029
                0x00020004 0x00000031
                0x00020005 0x0000003c
                0x00020006 0x00000042
                0x00020007 0x0000004d
                0x00020008 0x00000056
                0x00030000 0x00000012
                0x00030001 0x0000001d>;
};

10.3.7  Source Files

The driver source is maintained in the Linux kernel source tree.

Source File Description
drivers/thermal/qoriq_thermal.c QorIQ thermal driver.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
1041 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

10.3.8  Verification in Linux

There are two parts for verification: management and monitor.

[Management:]

1. When CPU temperature crosses the first threshold, CPU frequency may be reduced by changing frequency
limitation, use the following command to check the current frequency:

~$ cat /sys/devices/system/cpu/cpu*/cpufreq/scaling_cur_freq

2. When CPU temperature crosses the second threshold, the system shuts down.

[Monitor:]

~$ cat /sys/class/thermal/thermal_zone*/temp
35000
36000
35000
...
# There can be multiple outputs according to the thermal zone number of the
 system. The temperature are 35 C, 36 C, 35 C etc.

10.4  System Monitor

10.4.1  Power Monitor User Manual

Power Monitoring User Manual provides details about how to measure power consumption on some NXP QorIQ
(PowerPC) reference boards using an external ina2xx chip.

The Power Monitor is supported on P4080DS, P5020DS, P5040DS, T4240QDS, T1040RDB, T1042RDB,
T1023RDB, T1024RDB, LS1012ARDB, TWR-LS1021A, LS1028ARDB, LS1043ARDB, LS1046ARDB,
LS1088ARDB, LS2088ARDB, LX2160ARDB, LX2162AQDS.

This User guide uses the LS1046ARDB board as an example.

10.4.1.1  Power Monitoring Configuration and Test Steps

The Lm-sensors tool ( download from http://dl.lm-sensors.org/lm-sensors/releases) will be used to read the
power/temperature from on-boards sensors. The drivers vary from sensor to sensor. Basically they would be
INA220, ZL6100 and ADT7461 and so on.

The device driver support either a built-in kernel or module loading.

Kernel Configure Tree View Options

Option Description

Device Drivers --->
 <*> Hardware Monitoring support  --->
    <*>   Texas Instruments INA219 and
 compatibles

Enables INA220

Device Drivers --->
Enables I2C block device driver support

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
1042 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Option Description
    [*]   Enable compatibility bits
 for old user-space
    <*>   I2C device interface
    [*]   Autoselect pertinent helper
 modules
          I2C Hardware Bus support 
 --->
              <*>
 MPC107/824x/85xx/512x/52xx/83xx/86xx

Device Drivers --->
      <*>   I2C bus multiplexing
 support
          Multiplexer I2C Chip support
  --->
              <*> NXP PCA954x and
 PCA984x I2C Mux/switches

Enables I2C bus multiplexing PCA9547

Compile-time Configuration Options

Option Values Default Value Description
CONFIG_I2C_MPC y/n y Enable I2C bus protocol
SENSORS_INA2XX y/n y Enables INA220
CONFIG_I2C_MUX_PCA954x y/n y Enables I2C multiplexing

PCA9547

Device Tree Binding

Property Type Status Description
compatible String Required "nxp,pca9547" for

pca9547
reg integer Required reg = <0x77>
compatible String Required "ti,ina220" for ina220
reg integer Required reg = <the i2c address of

ina220>

Default node:
       i2c@118000 {
            pca9547@77 {
                compatible = "nxp,pca9547";
                reg = <0x77>;
                #address-cells = <1>;
                #size-cells = <0>;
                channel@2 {
                    #address-cells = <1>;
                    #size-cells = <0>;
                    reg = <0x2>;
                    ina220@40 {
                        compatible = "ti,ina220";
                        reg = <0x40>;
                        shunt-resistor = <1000>;
                    };

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
1043 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

                    ina220@41 {
                        compatible = "ti,ina220";
                        reg = <0x41>;
                        shunt-resistor = <1000>;
                    };
                    ina220@44 {
                        compatible = "ti,ina220";
                        reg = <0x44>;
                        shunt-resistor = <1000>;
                    };
                    ina220@45 {
                        compatible = "ti,ina220";
                        reg = <0x45>;
                        shunt-resistor = <1000>;
                    };
                    ina220@46 {
                        compatible = "ti,ina220";
                        reg = <0x46>;
                        shunt-resistor = <1000>;
                    };
                    ina220@47 {
                        compatible = "ti,ina220";
                        reg = <0x47>;
                        shunt-resistor = <1000>;
                    };
                };
            };

Source Files

The driver source is maintained in the Linux kernel source tree.

Source File Description
drivers/i2c/muxes/i2c-mux-pca954x.c PCA9547 driver
drivers/hwmon/ina2xx.c ina220 driver

Test Procedure

Do the following to validate under the kernel

1. The bootup information is displayed:

......
i2c /dev entries driver
mpc-i2c ffe118000.i2c: timeout 1000000 us
mpc-i2c ffe118100.i2c: timeout 1000000 us
mpc-i2c ffe119000.i2c: timeout 1000000 us
mpc-i2c ffe119100.i2c: timeout 1000000 us
i2c i2c-0: Added multiplexed i2c bus 6
i2c i2c-0: Added multiplexed i2c bus 7
i2c i2c-0: Added multiplexed i2c bus 8
i2c i2c-0: Added multiplexed i2c bus 9
i2c i2c-0: Added multiplexed i2c bus 10
i2c i2c-0: Added multiplexed i2c bus 11
i2c i2c-0: Added multiplexed i2c bus 12
i2c i2c-0: Added multiplexed i2c bus 13
pca954x 0-0077: registered 8 multiplexed busses for I2C mux pca9547
ina2xx 8-0040: power monitor ina220 (Rshunt = 1000 uOhm)
ina2xx 8-0041: power monitor ina220 (Rshunt = 1000 uOhm)
ina2xx 8-0045: power monitor ina220 (Rshunt = 1000 uOhm)

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
1044 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

ina2xx 8-0046: power monitor ina220 (Rshunt = 1000 uOhm)
ina2xx 8-0047: power monitor ina220 (Rshunt = 1000 uOhm)
ina2xx 8-0044: power monitor ina220 (Rshunt = 1000 uOhm)
......

root@LS1046ARDB:~# sensors
ina220-i2c-0-40
Adapter: 2180000.i2c
in0:          +0.01 V
in1:          +1.04 V
power1:        6.82 W
curr1:        +6.48 A
adt7461-i2c-0-4c
Adapter: 2180000.i2c
temp1:        +29.0°C  (low  =  +0.0°C, high = +85.0°C)
                       (crit = +85.0°C, hyst = +75.0°C)
temp2:        +47.8°C  (low  =  +0.0°C, high = +85.0°C)
                       (crit = +85.0°C, hyst = +75.0°C)

Note:  Please make sure to include the "sensors" command in your rootfs

10.4.2  Thermal Monitor User Manual

10.4.2.1  Description

The Temperature Monitoring function is provided by the chip ADT7461.

For LX2160ARDB Rev2, the chip is SA56004ED and SA56004FD.

This driver exports the values of Temperature to SYSFS. The user space lm-sensors tools can get and display
these values.

10.4.2.2  Kernel Configure Tree View Options

Kernel Configure Tree View Options Description

Device Drivers  --->
    [*] Hardware Monitoring support 
 --->
        [*] National Semiconductor
 LM90 and compatibles

Enable thermal monitor chip driver like ADT7461.

Device Drivers  --->
    <*> I2C bus multiplexing support 
 --->
        Multiplexer I2C Chip support 
 --->
            <*> NXP PCA954x and
 PCA984x I2C Mux/switches

Enable I2C PCA954x and PCA984xmultiplexer
support

10.4.2.3  Compile-time Configuration Options

Option Values Default Value Description
CONFIG_HWMON y/m/n n Enable Hardware Monitor

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
1045 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Option Values Default Value Description
CONFIG_SENSORS_LM90 y/m/n n Enable ATD7461 and SA56004

driver
CONFIG_I2C_MUX y/m/n n Enable I2C bus multiplexing

support
CONFIG_I2C_MUX_PCA954x y/m/n n Enable PCA954x driver

10.4.2.4  Device Tree Binding

adt7461@4c {
    compatible = "adi,adt7461";
    reg = <0x4c>;
};
pca9547@77 {
    compatible = "nxp,pca9547";
    reg = <0x77>;
};

10.4.2.5  Source Files

The driver source is maintained in the Linux kernel source tree.

Source File Description
drivers/hwmon/hwmon.c Linux hwmon subsystem support
drivers/hwmon/lm90.c ADT7461 chip driver
drivers/i2c/i2c-mux.c I2C bus multiplexing support
drivers/i2c/muxes/pca954x.c PCA954x chip driver

10.4.2.6  Verification in Linux

There are two ways to get temperature results.

1. You can manually read the thermal interfaces in sysfs:
~$ ls /sys/class/hwmon/hwmon1/devices
alarms            temp1_crit        temp1_min_alarm   temp2_max_alarm
driver            temp1_crit_alarm  temp2_crit        temp2_min
hwmon             temp1_crit_hyst   temp2_crit_alarm  temp2_min_alarm
modalias          temp1_input       temp2_crit_hyst   temp2_offset
name              temp1_max         temp2_fault       uevent
power             temp1_max_alarm   temp2_input       update_interval
subsystem         temp1_min         temp2_max
~$ cat /sys/class/hwmon/hwmon1/devices/temp1_input
29000
2. You can use lm_sensors tools as follows.
~ # sensors
adt7461-i2c-1-4c
Adapter: MPC adapter
temp1:       +34.0 C  (low  =  +0.0 C, high = +85.0 C)
                      (crit = +85.0 C, hyst = +75.0 C)
temp2:       +48.5 C  (low  =  +0.0 C, high = +85.0 C)
                      (crit = +85.0 C, hyst = +75.0 C)

"lm_sensors is integrated into rootfs file system by default. If there is no "sensors" command in your
rootfs just add lmsensors-sensors package and build your own rootfs."
UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
1046 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

11   Acronyms

Table 172 lists the acronyms used in this document.

Term Definition

ACL Access Control List

AH Authentication Header (RFC 4302) – a network protocol designed to provide
authentication services in IPv4 and IPv6.

AMP Asynchronous multiprocessing, running multiple operating system images on
different processors of the same machine without virtualization.

API Application Programming Interface

ARP Address Resolution Protocol

CAAM Cryptographic Acceleration and Assurance Module

BE Big Endian

CCSR Configuration and Control Status Register

CoT Chain of Trust

CPU Central Processing Unit, also known more generally as "Processor"

DCD Device Configuration Data

DCE Data Compression/Decompression Engine

DCU Display Control Unit

DMA Direct Memory Access

DPAA Data Path Acceleration Architecture

DPDK Data Plane Development Kit

DSK Device Secret Key

DTB Device Tree Blob—the binary representation of device trees

DTS Device Tree Syntax—the textual representation of device trees

DUT Device Under Test

EDAC Error Detection and Correction

eSDHC Enhaced Secured Digital Host Controller

ESP Encapsulating Security Payload (RFC 4303) – a network protocol designed to
provide a mix of security services in IPv4 and IPv6.

EVB Edge Virtual Bridge

FDB Forwarding Data Base

FUID Freescale Unique ID

GPIO General Purpose Input/Output

GPP General Purpose Processor

GPU Graphics Processing Unit

GUEST_CONSOLE_TELNET_PORT Telnet port for accessing guest console of VM.

Table 172. Acronyms

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
1047 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Term Definition

Guest/VM The term ‘Guest’ is used for Linux running inside the virtual machine(s) that are
in turn running over Host Linux operating system. VM and Guest have been used
interchangeably in this guide.

HAL Hardware Abstraction Library

HIF Host Interface

HSM Hardware security modules

IBR Internal Boot ROM

IFC Integrated Flash Chip

inbound (traffic) Encrypted traffic which is coming from an unprotected interface. This traffic is
terminated on the CPU.

IP_ADDR_BRD This term is used for LS1088ARDB and LS2088ARDB IP address.

IP_ADDR_IMAGE_SERVER This term is used for IP address of the machine on which all the software images
are kept.

IPC Inter-Process Communication, can be interpreted as being communication
between distinct application execution flows or between distinct hardware
processing units.

IPFwd IPv4 Forward

IPSec IP Security, it is a communication standard defined and refined by several public
RFCs (such as RFC-2401 and RFC-4301) where hosts exchange encrypted IP
data packets.

IPSec Tunnel A communication convention between two network gateways to IPSec process
certain network traffic in a particular way. An IPSec tunnel has two endpoints
(which are the gateways), a clearly delimited set of encryption and authentication
methods, keys, encapsulation headers and security policies, which define the
traffic that is sent through the tunnel.

ISBC Internal Secure Boot Code

ISR Interrupt Status Register

ITF Intent to Fail

ITS Intent to Secure

KASLR Kernel Address Space Layout Randomization

KVM Kernel-based Virtual Machine - A Linux kernel module that allows a user space
program access to the hardware virtualization features of NXP processors.

LDP Linux Distribution POC

LE Little Endian

LIODN Logical I/O Device Number

LPUART Low Power Universal Asynchronous Receiver Transmitter

LSTA LS Series Trust Architecture

LXC LLinux Containers

MC Management Complex

NAT Network Address Translation

OEM Original Equipment Manufacturer

Table 172. Acronyms...continued

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
1048 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Term Definition

OP-TEE Open Portable Trust Execution Environment

OS Operating System

OUID OEM Unique ID

outbound (traffic) Clear traffic which is coming from a software application which generates traffic
that must be encrypted and forwarded via an unprotected interface.

PAMU Peripheral Access Management Unit

PBL Pre-Boot Loader

PCD Parse, Classify, Distribute – a software architecture concept in NXP DPAA drivers
which allows the user to configure the DPAA hardware (FMan) to do frame
parsing, classification or distribution on a series of frame queues.

PCIe Peripheral Component Interconnect Express

PDCP Packet Data Convergence Protocol – It is one of the layers of the Radio Traffic
Stack in UMTS/LTE and performs IP header compression and decompression,
transfer of user data and maintenance of sequence numbers for Radio Bearers
which are configured for lossless serving radio network subsystem (SRNS)
relocation.

PFE Packet Acceleration Engine

PKCS Public-Key Cryptography Standards

PME Pattern Matcher Engine

POC Proof of Concept

QDS Qonverge Development System

QEMU Quick EMUlator - A hosted hypervisor that performs hardware virtualization.

QSPI Quad Serial Peripheral Interface

RC Route Cache

RCW Reset Configuration Word

RDB Reference Design Board

RFC Request for Comments – a public document which describes a software
standard.

SA Security Association – a data record, defined by RFC 4301, which stores the
information related to the IPSec processing needed for a specific network traffic
type (such as encryption/decryption keys and algorithms, traffic endpoints
description, authentication algorithms, and so on).

SAD Security Association Database – the database holding all the valid SAs in a
system.

SAI Serial Audio Interface

SATA Serial Advanced Technology Attachment

SDK Software Development Kit

SEC Security Engine Coprocessor – a DPAA hardware block performing cryptographic
acceleration and offloading hardware.

SFP Secure Fuse Processor

SIP DIP Source Internet Protocol and Destination Internal Protocol

Table 172. Acronyms...continued

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
1049 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Term Definition

SMMU System Memory Management Unit

SMP Symmetric Multi-Processing, running an operating system image on multiple
CPUs simultaneously.

SNVS Secure Non-Volatile Storage

SoC System on a Chip, a chip integrating one or more processors and on-chip
peripherals.

SP Security Policy – a set of rules that network traffic must comply with in order to be
eligible for IPSec processing.

SPD Security Policy Database – the database storing all the SPs in a system.

SRE Stateful Rule Engine

SRK Super Root Key

SRKH Super Root Key Hash

STP Spanning Tree Protocol

SUI String Under Inspection

TA Trust Architecture

TF-A Trusted Firmware-A

TFTP_BASE_DIR Base directory of TFTP server where all the images are kept.

TLB Translation Lookaside Buffer

TSN Time-Sensitive Networking

TTL Time To Live

UDP User Datagram Protocol

UID Unique Device ID

UIO User space I/O

USB Universal Serial Bus

VEB Virtual Ethernet Bridge

VEPA Virtual Ethernet Port Aggregator

VFIO Virtual Function Input/Output

VID Voltage IDentifier

Table 172. Acronyms...continued

12   Note about the source code in the document

Example code shown in this document has the following copyright and BSD-3-Clause license:

Copyright 2024 NXP Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other materials provided with the distribution.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
1050 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or
promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

13   Revision history

Table 173 summarizes the revisions to this document.

Revision number Release date Description

UG10081 v 6.1.55_
2.2.0

24 January 2024 • The following sections are updated in the release 6.1.55_2.2.0:
– Section 2
– Section 3.4
– Section 3.5.2
– Section 3.6
– Section 5.3.1.1.3
– Section 5.4.6

– Section 5.4.6.1
– Section 5.4.6.2

• The following sections are added in the release 6.1.55_2.2.0:
– Section 8.2.8
– Section 8.2.9

• Content improvement in the following sections:
– Section 1
– Section 2
– Section 3
– Section 8

L6.1.36_2.1.0 09 November 2023 • The following sections have been updated in release L6.1.36_2.
1.0:
– Section 2
– Section 3.4
– Section 3.5.2
– Section 3.6
– Section 5.3.1.1.3
– Section 5.4.6

– Section 5.4.6.1
– Section 5.4.6.2

• Content improvement to the following sections:
– Section 7.2.5.1
– Section 7.2.5.2

Table 173. Revision history

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
1051 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Revision number Release date Description

L6.1.22_2.0.0 27 July 2023 The following sections have been updated in release L6.1.22_2.0.
0:
• Section 2
• Section 3.4
• Section 3.5.2
• Section 3.6
• Section 5.3.1.1.3
• Section 5.4.6.1
• Section 5.4.6.2

L6.1.1-1.0.0 10 May 2023 • The following sections have been updated in release L6.1.1-1.0.
0:
– Section 2
– Section 3.4
– Section 3.5.2
– Section 3.6
– Section 5.4.6.2

• Content improvement to the following sections:
– Added acronyms and abbreviations. For more information,

see Table 172.
– Updated host system requirements and deployment

of Layerscape LDP images. For more information, see
Section 3.1 and Section 3.2.

– Removed root as user and provided user based
access information for Ubuntu. For more information, see
Section 5.4.3.3.1.1.

Table 173. Revision history...continued

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
1052 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

14   Legal information

14.1  Definitions
Draft — A draft status on a document indicates that the content is still
under internal review and subject to formal approval, which may result
in modifications or additions. NXP Semiconductors does not give any
representations or warranties as to the accuracy or completeness of
information included in a draft version of a document and shall have no
liability for the consequences of use of such information.

14.2  Disclaimers
Limited warranty and liability — Information in this document is believed
to be accurate and reliable. However, NXP Semiconductors does not give
any representations or warranties, expressed or implied, as to the accuracy
or completeness of such information and shall have no liability for the
consequences of use of such information. NXP Semiconductors takes no
responsibility for the content in this document if provided by an information
source outside of NXP Semiconductors.
In no event shall NXP Semiconductors be liable for any indirect, incidental,
punitive, special or consequential damages (including - without limitation -
lost profits, lost savings, business interruption, costs related to the removal
or replacement of any products or rework charges) whether or not such
damages are based on tort (including negligence), warranty, breach of
contract or any other legal theory.
Notwithstanding any damages that customer might incur for any reason
whatsoever, NXP Semiconductors’ aggregate and cumulative liability
towards customer for the products described herein shall be limited in
accordance with the Terms and conditions of commercial sale of NXP
Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to
make changes to information published in this document, including without
limitation specifications and product descriptions, at any time and without
notice. This document supersedes and replaces all information supplied prior
to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed,
authorized or warranted to be suitable for use in life support, life-critical or
safety-critical systems or equipment, nor in applications where failure or
malfunction of an NXP Semiconductors product can reasonably be expected
to result in personal injury, death or severe property or environmental
damage. NXP Semiconductors and its suppliers accept no liability for
inclusion and/or use of NXP Semiconductors products in such equipment or
applications and therefore such inclusion and/or use is at the customer’s own
risk.

Applications — Applications that are described herein for any of these
products are for illustrative purposes only. NXP Semiconductors makes no
representation or warranty that such applications will be suitable for the
specified use without further testing or modification.
Customers are responsible for the design and operation of their
applications and products using NXP Semiconductors products, and NXP
Semiconductors accepts no liability for any assistance with applications or
customer product design. It is customer’s sole responsibility to determine
whether the NXP Semiconductors product is suitable and fit for the
customer’s applications and products planned, as well as for the planned
application and use of customer’s third party customer(s). Customers should
provide appropriate design and operating safeguards to minimize the risks
associated with their applications and products.
NXP Semiconductors does not accept any liability related to any default,
damage, costs or problem which is based on any weakness or default
in the customer’s applications or products, or the application or use by
customer’s third party customer(s). Customer is responsible for doing all
necessary testing for the customer’s applications and products using NXP
Semiconductors products in order to avoid a default of the applications
and the products or of the application or use by customer’s third party
customer(s). NXP does not accept any liability in this respect.

Terms and conditions of commercial sale — NXP Semiconductors
products are sold subject to the general terms and conditions of commercial
sale, as published at http://www.nxp.com/profile/terms, unless otherwise
agreed in a valid written individual agreement. In case an individual
agreement is concluded only the terms and conditions of the respective
agreement shall apply. NXP Semiconductors hereby expressly objects to
applying the customer’s general terms and conditions with regard to the
purchase of NXP Semiconductors products by customer.

Export control — This document as well as the item(s) described herein
may be subject to export control regulations. Export might require a prior
authorization from competent authorities.

Suitability for use in non-automotive qualified products — Unless
this data sheet expressly states that this specific NXP Semiconductors
product is automotive qualified, the product is not suitable for automotive
use. It is neither qualified nor tested in accordance with automotive testing
or application requirements. NXP Semiconductors accepts no liability for
inclusion and/or use of non-automotive qualified products in automotive
equipment or applications.
In the event that customer uses the product for design-in and use in
automotive applications to automotive specifications and standards,
customer (a) shall use the product without NXP Semiconductors’ warranty
of the product for such automotive applications, use and specifications, and
(b) whenever customer uses the product for automotive applications beyond
NXP Semiconductors’ specifications such use shall be solely at customer’s
own risk, and (c) customer fully indemnifies NXP Semiconductors for any
liability, damages or failed product claims resulting from customer design and
use of the product for automotive applications beyond NXP Semiconductors’
standard warranty and NXP Semiconductors’ product specifications.

Translations — A non-English (translated) version of a document, including
the legal information in that document, is for reference only. The English
version shall prevail in case of any discrepancy between the translated and
English versions.

Security — Customer understands that all NXP products may be subject to
unidentified vulnerabilities or may support established security standards or
specifications with known limitations. Customer is responsible for the design
and operation of its applications and products throughout their lifecycles
to reduce the effect of these vulnerabilities on customer’s applications
and products. Customer’s responsibility also extends to other open and/or
proprietary technologies supported by NXP products for use in customer’s
applications. NXP accepts no liability for any vulnerability. Customer should
regularly check security updates from NXP and follow up appropriately.
Customer shall select products with security features that best meet rules,
regulations, and standards of the intended application and make the
ultimate design decisions regarding its products and is solely responsible
for compliance with all legal, regulatory, and security related requirements
concerning its products, regardless of any information or support that may be
provided by NXP.
NXP has a Product Security Incident Response Team (PSIRT) (reachable
at PSIRT@nxp.com) that manages the investigation, reporting, and solution
release to security vulnerabilities of NXP products.

NXP B.V. - NXP B.V. is not an operating company and it does not distribute
or sell products.

14.3  Trademarks
Notice: All referenced brands, product names, service names, and
trademarks are the property of their respective owners.
NXP — wordmark and logo are trademarks of NXP B.V.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
1053 / 1061

mailto:PSIRT@nxp.com


NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

AMBA, Arm, Arm7, Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE,
Cordio, CoreLink, CoreSight, Cortex, DesignStart, DynamIQ, Jazelle,
Keil, Mali, Mbed, Mbed Enabled, NEON, POP, RealView, SecurCore,
Socrates, Thumb, TrustZone, ULINK, ULINK2, ULINK-ME, ULINK-
PLUS, ULINKpro, μVision, Versatile — are trademarks and/or registered
trademarks of Arm Limited (or its subsidiaries or affiliates) in the US and/or
elsewhere. The related technology may be protected by any or all of patents,
copyrights, designs and trade secrets. All rights reserved.

Freescale — is a trademark of NXP B.V.
Layerscape — is a trademark of NXP B.V.
QorIQ — is a trademark of NXP B.V.
Synopsys & Designware — are registered trademarks of Synopsys, Inc.

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
1054 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

Contents
1 Layerscape LDP overview ..................................2
1.1 Accessing Layerscape LDP ...............................2
1.2 Supported Linux distributions ............................ 2
1.3 Building host package ....................................... 3
1.4 Layerscape LDP Git tags .................................. 3
2 Release notes ......................................................3
2.1 What is new in this release ............................... 3
2.2 Components .......................................................3
2.3 Feature support matrix ...................................... 6
2.4 Open issues .......................................................8
3 Getting started with Layerscape LDP ............... 9
3.1 Host system requirements .................................9
3.1.1 How to set HTTP proxy in Ubuntu .....................9
3.2 Download and deploy Layerscape LDP

images in Linux environment using flex-
installer ...............................................................9

3.2.1 To deploy locally the custom Layerscape
LDP images to the target storage drive
connected to a Linux host machine or a
reference board ............................................... 10

3.2.2 To deploy the custom Layerscape LDP
images on a reference board running
TinyLinux ..........................................................11

3.2.3 To only install the composite firmware to
the target storage drive on a Linux host
machine or a reference board ......................... 12

3.2.4 To partition and format target storage
device with specified number and size
of partitions instead of using the default
partitions .......................................................... 12

3.3 Download and deploy Layerscape
LDP composite firmware in Windows
environment ..................................................... 12

3.4 Deploying Layerscape LDP images to a
board using flex-installer ..................................13

3.5 Build Layerscape LDP with Yocto bitbake ........14
3.5.1 Host packages .................................................14
3.5.2 Download Yocto bitbake .................................. 14
3.5.3 Build Layerscape LDP image using bitbake .....14
3.5.4 bitbake commands ...........................................15
3.5.5 Generate Layerscape LDP composite

firmware ........................................................... 16
3.5.6 Generate tarball ...............................................16
3.5.7 Build TF-A with RCW and U-Boot/UEFI ...........17
3.5.8 Build Linux kernel with bitbake ........................ 17
3.5.9 Build application components in Yocto

bitbake ............................................................. 17
3.5.10 Deploy new images after modifying the

source code of NXP components locally ......... 17
3.5.11 Build various userlands with custom

packages ..........................................................18
3.5.12 Add a custom machine in Yocto bitbake

based on Layerscape LDP release ..................18
3.5.13 Upgrade the existing Layerscape LDP

distro with Yocto bitbake on host ..................... 19

3.6 Downloading a TinyDistro image to a
Layerscape board using flex-installer .............. 19

3.7 Quick start guides for Layerscape boards ....... 20
3.7.1 Quick start guide for FRWY-LS1012A ............. 20
3.7.1.1 Introduction ...................................................... 20
3.7.1.2 FRWY-LS1012A reference information ............21
3.7.1.3 Program Layerscape LDP composite

firmware image ................................................ 22
3.7.1.4 Downloading a TinyDistro image to a

Layerscape board using flex-installer .............. 23
3.7.2 Quick start guide for LS1012ARDB ................. 24
3.7.2.1 Introduction ...................................................... 24
3.7.2.2 LS1012ARDB reference information ................25
3.7.2.3 Program Layerscape LDP composite

firmware image ................................................ 27
3.7.3 Quick start guide for TWR-LS1021A ............... 29
3.7.3.1 Introduction ...................................................... 29
3.7.3.2 TWR-LS1021A reference information ..............29
3.7.3.3 Program Layerscape LDP composite

firmware image ................................................ 31
3.7.4 Quick start guide for LS1028ARDB ................. 34
3.7.4.1 Introduction ...................................................... 34
3.7.4.2 LS1028ARDB reference information ................34
3.7.4.3 Program Layerscape LDP composite

firmware image ................................................ 38
3.7.5 Quick start guide for LS1043ARDB ................. 41
3.7.5.1 Introduction ...................................................... 42
3.7.5.2 LS1043ARDB reference information ................42
3.7.5.3 LS1043ARDB recovery information ................. 44
3.7.5.4 Program Layerscape LDP composite

firmware image ................................................ 45
3.7.5.5 Frame Manager Configuration (FMC) tool ....... 47
3.7.6 Quick start guide for FRWY-LS1046A ............. 48
3.7.6.1 Introduction ...................................................... 48
3.7.6.2 FRWY-LS1046A reference information ............48
3.7.6.3 Program Layerscape LDP composite

firmware image ................................................ 51
3.7.6.4 Frame Manager Configuration (FMC) tool ....... 53
3.7.7 Quick start guide for LS1046ARDB ................. 54
3.7.7.1 Introduction ...................................................... 54
3.7.7.2 LS1046ARDB reference information ................54
3.7.7.3 LS1046ARDB recovery information ................. 57
3.7.7.4 Program Layerscape LDP composite

firmware image ................................................ 58
3.7.7.5 Frame Manager Configuration (FMC) tool ....... 60
3.7.8 Quick start guide for LS1088ARDB ................. 60
3.7.8.1 Introduction ...................................................... 60
3.7.8.2 LS1088ARDB and LS1088ARDB-PB

reference information .......................................61
3.7.8.3 LS1088ARDB and LS1088ARDB-PB

recovery information ........................................ 65
3.7.8.4 Program Layerscape LDP composite

firmware image ................................................ 66
3.7.8.5 Bringing up DPAA2 network interfaces ............ 68
3.7.9 Quick start guide for LS2088ARDB ................. 71
3.7.9.1 Introduction ...................................................... 71

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
1055 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

3.7.9.2 LS2088ARDB reference information ................71
3.7.9.3 LS2088ARDB recovery information ................. 76
3.7.9.4 Program Layerscape LDP composite

firmware image ................................................ 76
3.7.9.5 Bringing up DPAA2 network interfaces ............ 79
3.7.10 Quick start guide for LX2160ARDB Rev2 ........ 81
3.7.10.1 Introduction ...................................................... 81
3.7.10.2 LX2160ARDB reference information ................82
3.7.10.3 LX2160ARDB recovery information ................. 87
3.7.10.4 Program Layerscape LDP composite

firmware image ................................................ 87
3.7.10.5 Bringing up DPPA2 network interfaces ............ 90
3.7.11 Quick start guide for LX2162AQDS ................. 93
3.7.11.1 Introduction ...................................................... 93
3.7.11.2 LX2162AQDS reference information ............... 94
3.7.11.3 LX2162AQDS recovery information ...............100
3.7.11.4 Program Layerscape LDP composite

firmware image .............................................. 101
3.8 Layerscape LDP memory layout and

userland ......................................................... 104
3.8.1 Flash layout ................................................... 104
3.8.2 Storage layout on SD/USB/SATA for

Layerscape LDP images deployment ............ 106
3.8.3 Layerscape LDP userland ............................. 106
3.8.4 TinyDistro .......................................................107
3.8.5 Various distro userland details .......................107
4 Bootloaders ..................................................... 108
4.1 General boot flow .......................................... 108
4.1.1 NXP SoC Booting Principles ......................... 108
4.1.2 Notes on General Boot Principles ..................109
4.2 TF-A ...............................................................109
4.2.1 TF-A features .................................................111
4.2.1.1 TF-A DDR Driver ........................................... 111
4.2.2 TF-A key components ................................... 118
4.2.2.1 Warm reset boot support ............................... 118
4.2.3 Deploying TF-A binaries ................................ 122
4.2.3.1 How to compile PBL binary from RCW

source file ...................................................... 123
4.2.3.2 How to compile TF-A binaries ....................... 123
4.2.3.3 How to program TF-A binaries on specific

boot mode ......................................................125
4.3 U-Boot ............................................................126
4.3.1 Changes in U-Boot ........................................ 126
4.3.2 Layerscape LDP U-Boot uses distro boot

feature ............................................................127
4.3.3 Layerscape LDP U-Boot flash image

feature ............................................................131
4.3.4 How to compile U-Boot binary ....................... 131
4.3.5 Defining IOMMU mappings for PCIe SRIOV

virtual functions ..............................................132
5 Security ............................................................ 133
5.1 Firmware/TF-A security features ....................133
5.1.1 Secure boot ................................................... 133
5.1.1.1 Introduction .................................................... 133
5.1.1.2 Secure boot process ......................................135
5.1.1.3 Chain of Trust ................................................137
5.1.1.4 Code Signing Tool ......................................... 165
5.1.1.5 Procedure to run secure boot ........................180
5.1.2 Fuse Provisioning User Guide .......................194

5.1.2.1 Introduction .................................................... 194
5.1.2.2 Fuse Programming Scenarios ....................... 194
5.1.2.3 Fuse Provisioning Utility ................................ 195
5.1.2.4 Deploy and run fuse provisioning .................. 198
5.1.2.5 Error Codes ................................................... 200
5.2 Bootloader security features .......................... 201
5.2.1 U-Boot ............................................................201
5.2.1.1 Verified boot [only for LX2162AQDS] .............201
5.2.1.2 U-Boot ............................................................206
5.3 Trusted OS .................................................... 211
5.3.1 Trusted Execution (OP-TEE) ......................... 211
5.3.1.1 Introduction .................................................... 211
5.4 PKCS#11 and Secure Object Library .............212
5.4.1 Introduction .................................................... 212
5.4.2 Supported APIs ............................................. 214
5.4.2.1 PKCS#11 Library – libpkcs11.so ....................214
5.4.2.2 Secure Object Library – libsecure_obj.so ...... 215
5.4.3 Integrating applications with Secure Object ... 218
5.4.3.1 Using PKCS#11 APIs .................................... 218
5.4.3.2 Using Secure Object APIs .............................218
5.4.3.3 Applications using OpenSSL APIs .................218
5.4.4 Board Bootup and Running applications ........223
5.4.4.1 Board Bootup .................................................223
5.4.4.2 Running applications ..................................... 223
5.4.5 Validation ....................................................... 236
5.4.6 Appendix ........................................................236
5.4.6.1 Appendix A: Steps to build the PKCS#11

Library ............................................................236
5.4.6.2 Appendix B: Steps to build the Secure

Object Library ................................................ 237
6 Linux kernel .....................................................239
6.1 Introduction .................................................... 239
6.2 Kernel Releases and relationship with

Layerscape LDP ............................................ 240
6.3 Getting the Layerscape LDP kernel source

code ............................................................... 240
6.4 Configuring and building ................................241
6.4.1 Environment setting for cross-compiling ........ 241
6.4.2 Configuring kernel ..........................................241
6.4.3 Building kernel ............................................... 242
6.4.4 Install new kernel and modules ..................... 242
6.5 Device Drivers ............................................... 243
6.5.1 Enhanced Direct Memory Access (eDMA) .....243
6.5.1.1 Description ..................................................... 243
6.5.1.2 Kernel Configure Options .............................. 243
6.5.1.3 Device Tree Binding ...................................... 244
6.5.1.4 Source Files ...................................................244
6.5.1.5 Verification in Linux ....................................... 245
6.5.2 CAAM Direct Memory Access (DMA) ............ 246
6.5.2.1 Kernel configure options ................................246
6.5.2.2 Identifier ......................................................... 246
6.5.2.3 Device tree node ........................................... 246
6.5.2.4 Source files ....................................................246
6.5.2.5 Verification in Linux ....................................... 247
6.5.2.6 Component testing .........................................248
6.5.3 DCU Display Device Driver User Manual .......249
6.5.3.1 Description ..................................................... 249
6.5.3.2 Module Loading ............................................. 249
6.5.3.3 U-Boot Configuration ..................................... 249

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
1056 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

6.5.3.4 Kernel Configure Options .............................. 249
6.5.3.5 Device Tree Binding ...................................... 250
6.5.3.6 Source Files ...................................................252
6.5.3.7 Testing LCD/DHMI at U-Boot Level ............... 252
6.5.3.8 Testing LCD at Kernel Level ..........................252
6.5.3.9 Testing HDMI at Kernel Level ........................252
6.5.3.10 Known Bugs, Limitations, or Technical

Issues .............................................................253
6.5.4 Enhanced Secured Digital Host Controller

(eSDHC) ........................................................ 253
6.5.4.1 Description ..................................................... 253
6.5.4.2 Kernel Configure Options .............................. 253
6.5.4.3 Compile-time Configuration Options .............. 253
6.5.4.4 Source Files ...................................................254
6.5.4.5 Device Tree Binding ...................................... 254
6.5.4.6 Verification in U-Boot ..................................... 254
6.5.4.7 Verification in Linux ....................................... 255
6.5.4.8 Verification of eMMC RPMB .......................... 256
6.5.4.9 Known Bugs, Limitations, or Technical

Issues .............................................................257
6.5.5 IEEE 1588/802.1AS .......................................257
6.5.5.1 Description ..................................................... 257
6.5.5.2 Kernel configure options ................................257
6.5.5.3 Source files ....................................................260
6.5.5.4 Device tree binding ........................................261
6.5.5.5 Verification ..................................................... 261
6.5.6 Integrated Flash Controller (IFC) ................... 261
6.5.6.1 Integrated Flash Controller NOR Flash

User Manual .................................................. 261
6.5.6.2 Integrated Flash Controller NAND Flash

User Manual .................................................. 266
6.5.7 Low Power Universal Asynchronous

Receiver/Transmitter (LPUART) .................... 271
6.5.7.1 Description ..................................................... 271
6.5.7.2 U-Boot Configuration Compile-time options ...271
6.5.7.3 Kernel Configure Options .............................. 271
6.5.7.4 Device Tree Binding ...................................... 272
6.5.7.5 Source Files ...................................................272
6.5.7.6 Verification in U-Boot ..................................... 272
6.5.7.7 Verification in Linux ....................................... 273
6.5.8 PCI Express Interface Controller ................... 274
6.5.8.1 PCIe Linux Driver .......................................... 274
6.5.8.2 PCIe Advanced Error Reporting User

Manual ........................................................... 277
6.5.8.3 PCIe Remove and Rescan User Manual ....... 279
6.5.8.4 PCIe Endpoint Mode Linux driver ..................280
6.5.9 Quad Serial Peripheral Interface (QSPI) ........283
6.5.9.1 U-Boot Configuration ..................................... 283
6.5.9.2 Kernel Configure Tree View Options ............. 283
6.5.9.3 Compile-time Configuration Options .............. 283
6.5.9.4 Verification in U-Boot ..................................... 283
6.5.9.5 Verification in Linux: .......................................283
6.5.10 Flexible Serial Peripheral Interface

(FlexSPI) ........................................................ 284
6.5.10.1 U-Boot Configuration ..................................... 284
6.5.10.2 Kernel Configure Tree View Options ............. 284
6.5.10.3 Compile-time Configuration Options .............. 284
6.5.10.4 Verification in U-Boot ..................................... 284
6.5.10.5 Verification in Linux: .......................................285

6.5.11 Queue Direct Memory Access Controller
(qDMA) ...........................................................285

6.5.11.1 QDMA for platform with DPAA1 .....................285
6.5.11.2 QDMA for platform with DPAA2 .....................287
6.5.12 Real Time Clock (RTC) ................................. 288
6.5.12.1 Linux SDK for QorIQ Processors ...................288
6.5.12.2 Description ..................................................... 288
6.5.12.3 Kernel Configure Tree View Options ............. 288
6.5.12.4 Compile-time Configuration Options .............. 288
6.5.12.5 Source Files ...................................................289
6.5.12.6 Device Tree Binding ...................................... 289
6.5.12.7 Default node: ................................................. 289
6.5.12.8 Verification in Linux ....................................... 289
6.5.13 Synchronous Audio Interface (SAI) ................290
6.5.13.1 Description ..................................................... 290
6.5.13.2 RCW configuration .........................................290
6.5.13.3 Kernel Configure Options Tree View ............. 290
6.5.13.4 Source files ....................................................292
6.5.13.5 Verification in Linux ....................................... 292
6.5.14 Serial Advanced Technology Attachment

(SATA) ............................................................292
6.5.14.1 Description ..................................................... 292
6.5.14.2 Module Loading ............................................. 293
6.5.14.3 Compile-time Configuration Options .............. 293
6.5.14.4 Source Files ...................................................293
6.5.14.5 Test Procedure .............................................. 293
6.5.14.6 Known Bugs, Limitations, or Technical

Issues .............................................................294
6.5.15 Security Engine (SEC) ...................................295
6.5.15.1 Introduction and Terminology .........................295
6.5.15.2 Source Files ...................................................296
6.5.15.3 Module loading .............................................. 297
6.5.15.4 Kernel Configuration ...................................... 297
6.5.15.5 Device Tree binding .......................................297
6.5.15.6 Sample Device Tree crypto node .................. 298
6.5.15.7 How to test the drivers .................................. 298
6.5.15.8 Crypto algorithms support ............................. 300
6.5.15.9 CAAM Job Ring backend driver specifics ...... 303
6.5.15.10 Verifying driver operation and correctness .....304
6.5.15.11 Incrementing IRQs in /proc/interrupts ............ 304
6.5.15.12 Verifying the 'self test' fields say 'passed'

in /proc/crypto ................................................ 304
6.5.15.13 Examining the hardware statistics registers

in debugfs ...................................................... 305
6.5.15.14 Kernel configuration to support CAAM

device drivers ................................................ 306
6.5.15.15 Supporting Documentation ............................ 307
6.5.16 Time Division Multiplexing (TDM) .................. 307
6.5.16.1 Description ..................................................... 307
6.5.16.2 U-Boot Configuration ..................................... 308
6.5.16.3 Kernel Configure Options .............................. 308
6.5.16.4 Device Tree Binding ...................................... 309
6.5.16.5 Source Files ...................................................310
6.5.16.6 Verification in U-Boot ..................................... 311
6.5.16.7 Verification in Linux ....................................... 311
6.5.16.8 Benchmarking ................................................ 312
6.5.16.9 Known Bugs, Limitations, or Technical

Issues .............................................................312
6.5.17 Universal Serial Bus Interfaces ......................312

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
1057 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

6.5.17.1 USB 3.0 Controller (DesignWare USB3) ........313
6.5.17.2 USB 2.0 Controller ........................................ 332
6.5.18 Graphics processing unit (GPU) .................... 336
6.5.18.1 Test procedure ...............................................336
6.5.18.2 Known issue .................................................. 336
6.5.19 LCD and display transmitter controller ...........336
6.5.20 FlexTimer (FTM) ............................................ 343
6.5.21 Inter-Integrated Circuit (I2C) .......................... 347
6.5.22 Watchdog .......................................................350
6.5.22.1 U-Boot ............................................................350
6.5.22.2 Kernel configure options ................................351
6.5.22.3 Compile-time configuration options ................351
6.5.22.4 Device tree .................................................... 351
6.5.22.5 Source files ....................................................352
6.5.22.6 Verification in Linux ....................................... 352
6.5.23 GPIO ..............................................................353
6.5.24 QUICC Engine HDLC/TDM User Manual ...... 361
6.5.24.1 Linux SDK for QorIQ Processors ...................361
6.5.24.2 Description ..................................................... 361
6.5.24.3 U-Boot Configuration ..................................... 361
6.5.24.4 Kernel Configure Options .............................. 361
6.5.24.5 Device Tree Binding ...................................... 362
6.5.24.6 Source Files ...................................................363
6.5.24.7 User Space Application ................................. 363
6.5.24.8 Verification in U-Boot ..................................... 363
6.5.24.9 Verification in Linux ....................................... 363
6.6 kdump/kexec User Manual ............................ 365
7 QorIQ networking technologies .....................373
7.1 Summary of networking technologies ............ 373
7.2 DPAA1-specific software ................................373
7.2.1 DPAA1 software architecture overview ..........373
7.2.1.1 Introduction .................................................... 374
7.2.1.2 DPAA1 Goals .................................................378
7.2.1.3 FMan Overview ............................................. 378
7.2.1.4 QMan Overview .............................................380
7.2.1.5 QMan Scheduling .......................................... 384
7.2.1.6 BMan ..............................................................387
7.2.1.7 Order Handling .............................................. 388
7.2.1.8 Pool Channels ............................................... 391
7.2.1.9 Application Mapping ...................................... 394
7.2.1.10 FQ/WQ/Channel ............................................ 397
7.2.2 Linux Ethernet ............................................... 400
7.2.2.1 Introduction .................................................... 400
7.2.2.2 The DPAA1-Ethernet view of the world ..........401
7.2.2.3 DPAA1 resources initialization .......................403
7.2.2.4 The (Simplified) Life of a packet ....................403
7.2.2.5 Private Ethernet Driver .................................. 405
7.2.2.6 Upstream Ethernet Driver ..............................432
7.2.2.7 Performance considerations .......................... 433
7.2.3 Queue Manager (QMan) and Buffer

Manager (BMan) ............................................433
7.2.3.1 QMan/BMan Drivers Introduction ...................434
7.2.3.2 QMan BMan API Reference .......................... 440
7.2.4 Configuring DPAA1 Frame Queues ............... 492
7.2.4.1 Introduction .................................................... 492
7.2.4.2 FMan Network interface Frame Queue

Configuration ..................................................493
7.2.4.3 FMan network interface ingress FQs

configuration .................................................. 493

7.2.4.4 Ingress FQs common configuration
guidelines .......................................................494

7.2.4.5 Dynamic load balancing with order
preservation - ingress FQs configuration
guidelines .......................................................495

7.2.4.6 Dynamic load balancing with order
restoration - ingress FQs configuration
guidelines .......................................................495

7.2.4.7 Static distribution - Ingress FQs
Configuration Guidelines ............................... 496

7.2.4.8 FMan network interface egress FQs
configuration .................................................. 497

7.2.4.9 Accelerator Frame Queue Configuration ....... 497
7.2.4.10 DPAA1 Frame Queue Configuration

Guideline Summary ....................................... 498
7.2.5 Frame Manager ............................................. 500
7.2.5.1 Frame Manager Linux Driver User Guide ...... 500
7.2.5.2 Frame Manager Driver User Guide ............... 515
7.2.6 Frame Manager Configuration Tool User's

Guide ............................................................. 565
7.2.6.1 Introduction .................................................... 565
7.2.6.2 FMC Tool Features ........................................566
7.2.6.3 FMC Tool Components and Packaging ......... 566
7.2.6.4 FMC Tool - Runtime Environment Mode ........566
7.2.6.5 FMC Tool - Host Mode .................................. 567
7.2.6.6 FMC Tool Command-Line Arguments ............569
7.2.6.7 The NetPDL and NetPCD XML Markup

Languages ..................................................... 570
7.2.6.8 Protocol files .................................................. 570
7.2.6.9 Policy file ....................................................... 571
7.2.6.10 Configuration File ...........................................583
7.2.6.11 NXP NetPDL Reference ................................ 584
7.2.6.12 NetPCD Reference ........................................ 606
7.2.6.13 Standard Protocol File - Excerpt ....................632
7.2.6.14 Custom Protocol File - GTP Protocol

Example .........................................................639
7.2.7 Security Engine (SEC) ...................................640
7.2.7.1 Introduction .................................................... 640
7.2.7.2 Device Tree binding .......................................640
7.2.7.3 Module loading .............................................. 641
7.2.7.4 Verifying driver operation and correctness .....641
7.2.7.5 Incrementing IRQs in /proc/interrupts ............ 641
7.2.7.6 Verifying the 'self test' fields say 'passed'

in /proc/crypto ................................................ 641
7.2.7.7 Supporting Documentation ............................ 642
7.3 DPAA2-specific Software ............................... 642
7.3.1 DPAA2 Software Overview ............................ 642
7.3.1.1 Introduction .................................................... 642
7.3.1.2 DPAA2 Hardware ...........................................643
7.3.1.3 DPAA2 Linux Software .................................. 645
7.3.1.4 DPAA2 Networking Subsystem Deeper

Dive ................................................................648
7.3.2 DPAA2 Quick start guide ...............................662
7.3.2.1 Data Path Resource Containers .................... 662
7.3.2.2 Key Release Files: RCW, DPC and DPL ....... 663
7.3.2.3 Linux Ethernet ............................................... 668
7.3.2.4 Setting up Ethernet Switch Capability ............692
7.3.2.5 Setting Up Edge Virtual Bridge Capability ......699
7.3.2.6 Security Engine (SEC) ...................................707

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
1058 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

7.3.3 DPAA2 Standard Linux Documentation ......... 716
7.3.3.1 Kernel Documentation Directory ....................716
7.3.3.2 DPAA2 Resource Management Tool

(restool) User Manual .................................... 716
7.3.4 DPAA2 User Manual ......................................717
7.3.5 Soft Parser Support .......................................717
7.3.5.1 Soft Parser Configuration Tool .......................717
7.3.5.2 SPC on DPAA 2.x Based Platforms ...............747
7.4 Packet Forward Engine (PFE) Network

Driver ............................................................. 750
7.4.1 Introduction .................................................... 750
7.4.1.1 Purpose ..........................................................750
7.4.1.2 Features .........................................................750
7.4.2 High-level decomposition and data flow ........ 750
7.4.3 NAPI support ................................................. 752
7.4.4 Interrupt coalescing ....................................... 752
7.4.5 Checksum offloading ..................................... 752
7.4.6 Scatter gather support ................................... 752
7.4.7 Ethtool support .............................................. 753
7.5 Linux Ethernet Driver for eTSEC ................... 753
7.5.1 Linux Ethernet Driver for eTSEC ................... 753
7.5.1.1 Introduction .................................................... 753
7.5.1.2 Functionality ...................................................758
7.5.1.3 Configuration & Control ................................. 765
7.6 ENETC Ethernet and Felix switch drivers ...... 766
7.6.1 LS1028A interface naming ............................ 766
7.6.1.1 LS10128A interface naming in U-Boot ...........766
7.6.1.2 LS1028A interface naming in Linux ............... 767
7.6.2 ENETC Linux Ethernet driver ........................ 769
7.6.2.1 Introduction .................................................... 769
7.6.2.2 Linux kernel configuration items .................... 769
7.6.2.3 Linux runtime usage ...................................... 771
7.6.2.4 Performance considerations and

benchmarking provisions ............................... 782
7.6.2.5 Known limitations ...........................................784
7.6.3 Felix Linux Ethernet driver .............................785
7.6.3.1 Introduction .................................................... 785
7.6.3.2 Linux kernel configuration items .................... 785
7.6.3.3 Linux runtime usage ...................................... 787
7.6.3.4 Known limitations ...........................................810
7.7 IEEE 1588/802.1AS .......................................811
7.7.1 Introduction .................................................... 811
7.7.2 IEEE 1588 device types ................................ 811
7.7.3 IEEE 802.1AS time-aware systems ...............811
7.7.4 linuxptp stack .................................................812
7.7.5 Quick Start for IEEE 1588 ............................. 812
7.7.5.1 Ordinary clock verification ..............................812
7.7.5.2 Boundary clock verification ............................813
7.7.6 Quick Start for IEEE 802.1AS ........................814
7.7.6.1 Time-aware end station verification ............... 815
7.7.7 Quick start for external signals ...................... 815
7.7.7.1 PPS signal ..................................................... 815
7.7.7.2 External trigger signal ....................................816
7.7.7.3 Programmable PTP pins ............................... 818
7.7.7.4 PTP device tree node configuration ...............818
7.7.8 Known issues and limitations ........................ 819
7.8 Time Sensitive Networking (TSN) ..................819
7.8.1 Using TSN features on LS1028ARDB ........... 820
7.8.1.1 Tsntool User Manual ......................................820

7.8.1.2 Kernel configuration .......................................827
7.8.1.3 Basic TSN configuration examples on

ENETC ...........................................................828
7.8.1.4 Basic TSN configuration examples on the

switch .............................................................837
7.9 General networking performance

considerations ................................................853
8 Linux user space ............................................ 854
8.1 Libraries ......................................................... 854
8.1.1 OpenSSL ....................................................... 854
8.1.1.1 OpenSSL offload ........................................... 854
8.1.2 Runtime Assembler Library Reference .......... 857
8.1.2.1 Runtime Assembler Library Reference .......... 857
8.2 Data Plane Development Kit (DPDK) ............ 857
8.2.1 Introduction .................................................... 857
8.2.1.1 Supported platforms and platform-specific

details .............................................................858
8.2.1.2 References .....................................................867
8.2.2 DPDK overview ............................................. 868
8.2.2.1 DPDK platform support ..................................868
8.2.2.2 DPAA supported DPDK features ................... 870
8.2.2.3 DPAA2 supported DPDK features ................. 871
8.2.2.4 PPFE supported DPDK features ................... 873
8.2.2.5 ENETC supported DPDK features .................873
8.2.3 Build DPDK ....................................................873
8.2.3.1 Build DPDK using Yocto bitbake ....................873
8.2.3.2 Build DPDK on host (Native) ......................... 875
8.2.3.3 Standalone build of DPDK libraries and

applications .................................................... 876
8.2.3.4 Build DPDK-based Packet Generator

(pktgen) using Yocto ......................................878
8.2.3.5 Build OVS-DPDK using Yocto ....................... 878
8.2.3.6 Virtual machine (VM or guest) images ...........879
8.2.4 Executing DPDK applications on host ........... 879
8.2.4.1 Booting up target board .................................879
8.2.4.2 Prerequisite for running DPDK applications ...881
8.2.4.3 DPDK example applications .......................... 886
8.2.4.4 Multiple parallel DPDK applications ...............896
8.2.5 OVS-DPDK and DPDK in VM with VIRTIO

interfaces ....................................................... 898
8.2.5.1 Generic steps ................................................ 898
8.2.5.2 Configuring OVS ............................................898
8.2.5.3 Launch Virtual Machine ................................. 901
8.2.5.4 Accessing virtual machine console ................903
8.2.5.5 Launching two virtual machines .....................903
8.2.5.6 Running DPDK applications in VM ................ 904
8.2.5.7 Multi Queue VIRTIO support ......................... 905
8.2.5.8 OVS DPDK Performance Guide .................... 907
8.2.6 Enabling DPAA2 direct assignment for

DPDK .............................................................908
8.2.6.1 Launch virtual machine ..................................908
8.2.6.2 Accessing the virtual machine console .......... 911
8.2.6.3 Running DPDK applications with direct

device assignments ....................................... 911
8.2.7 DPDK on Docker ........................................... 912
8.2.7.1 Docker Overview ........................................... 912
8.2.7.2 DPAA1-Platform .............................................912
8.2.7.3 DPAA2-Platform .............................................913
8.2.8 DPDK DPAA2 flow control .............................921

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
1059 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

8.2.8.1 Preparing soft parser image .......................... 922
8.2.8.2 Testing flow control in testpmd ...................... 922
8.2.9 PCI Endpoint Framework .............................. 925
8.2.9.1 PCIe EndPoint implementation in DPDK ....... 926
8.2.9.2 DU offload example ....................................... 927
8.2.9.3 Usages ...........................................................928
8.2.9.4 Small packets across PCIe performance

improvement on Endpoint ..............................930
8.2.9.5 Multiple process .............................................931
8.2.9.6 Primary process .............................................932
8.2.9.7 Secondary process ........................................ 933
8.2.9.8 PCIe EP/RC PMD simulator setup and

traffic measurement on single board ..............934
8.2.9.9 L1-TB (EP) / L2-SDB (RC) transfer across

PCIe ...............................................................935
8.2.10 Known limitations and future work ................. 936
8.2.10.1 Generic limitations ......................................... 936
8.2.10.2 DPAA1-specific limitations ............................. 936
8.2.10.3 DPAA2-specific limitations ............................. 936
8.2.10.4 PPFE (LS1012)-specific limitations ................936
8.2.10.5 ENETC (LS1028)-specific limitations .............936
8.2.11 Optimizing DPAA-based DPDK buffer

management .................................................. 936
8.2.12 Troubleshooting ............................................. 938
8.2.13 DPDK Performance Reproducibility Guide .... 939
8.2.13.1 Before booting up Linux ................................ 940
8.2.13.2 Before and while starting DPDK Application .. 942
8.2.14 Use cases ......................................................946
8.2.14.1 Traffic bifurcation using VSP on DPAA .......... 946
8.2.14.2 Traffic bifurcation using DPSW on DPAA2 .....948
8.2.14.3 Traffic bifurcation using DPDMUX on

DPAA2 ........................................................... 950
8.2.14.4 DPDK multi-process ...................................... 957
8.2.14.5 Traffic Policing in DPAA .................................964
8.2.14.6 Precision Time Protocol (IEEE1588) ..............965
8.2.14.7 Traffic Management Support in DPAA2 ......... 969
8.2.14.8 Flow Control Support in DPAA2 .....................970
8.3 Vector Packet Processing (VPP) ................... 970
8.3.1 Introduction .................................................... 970
8.3.2 Supported platform ........................................ 972
8.3.3 Supported use cases .....................................972
8.3.4 Build VPP ...................................................... 972
8.3.4.1 Standalone build steps .................................. 972
8.3.4.2 Build VPP using Yocto ...................................973
8.3.5 Executing VPP ...............................................974
8.3.5.1 Setup VPP environment ................................ 974
8.3.5.2 Execute VPP ................................................. 975
8.3.6 Known Limitations ..........................................976
8.4 mTCP .............................................................976
8.4.1 Introduction .................................................... 977
8.4.2 Supported Platforms ...................................... 977
8.4.3 Supported Applications ..................................977
8.4.4 Build Steps .................................................... 977
8.4.4.1 Standalone build steps .................................. 977
8.4.4.2 Prerequisites before compiling mTCP ........... 977
8.4.5 Executing mTCP ............................................978
8.5 USDPAA ........................................................ 981
9 Virtualization ....................................................981
9.1 KVM/QEMU ................................................... 981

9.1.1 KVM/QEMU Overview ................................... 982
9.1.1.1 Using QEMU and KVM ..................................982
9.1.1.2 Virtual Machine Overview .............................. 988
9.1.1.3 Introduction to KVM and QEMU .................... 989
9.1.1.4 Device Tree Overview ................................... 990
9.1.1.5 References .....................................................990
9.1.1.6 For More Information ..................................... 991
9.1.1.7 Virtual machine reference ..............................991
9.1.2 Configuring and Building ............................... 993
9.1.2.1 Overview ........................................................ 993
9.1.2.2 Quick Start - Recommended Configuration

Options ...........................................................993
9.1.2.3 Host Kernel: Enabling KVM ........................... 994
9.1.2.4 Host Kernel: Enabling Virtual Networking ...... 995
9.1.2.5 Host kernel: Enabling DPAA2 direct

assignment .....................................................995
9.1.2.6 Host kernel: Enabling PCIe direct

assignment .....................................................995
9.1.2.7 Guest kernel: Enabling console .....................996
9.1.2.8 Guest Kernel: Enabling Network and Block

Virtual I/O .......................................................996
9.1.2.9 Building kernel with KVM support using

Yocto .............................................................. 996
9.1.2.10 Creating a host Linux root filesystem .............997
9.1.2.11 Creating a guest Linux root filesystem ...........997
9.1.3 KVM/QEMU How-to's .................................... 997
9.1.3.1 Quick-start steps to build and deploy KVM .... 997
9.1.3.2 Quick-start steps to run KVM using

Hugetlbfs ........................................................997
9.1.3.3 How to Use Virtual Network Interfaces

Using Virtio .................................................... 999
9.1.3.4 How to use vhost-net with virtio ...................1000
9.1.3.5 How to Use Virtual Disks Using Virtio .......... 1001
9.1.3.6 How to use virtual disks using virtio-blk-

dataplane ..................................................... 1003
9.1.3.7 How to use DPAA2 direct assignment

without scripts ..............................................1003
9.1.3.8 How to use DPAA2 direct assignment with

scripts ...........................................................1005
9.1.3.9 How to use PCIe direct assignment .............1010
9.1.3.10 Passthrough of USB Devices ...................... 1011
9.1.3.11 Debugging: How to Examine Initial Virtual

Machine State with QEMU .......................... 1012
9.1.3.12 Debugging: How to Profile Virtualization

Overhead with KVM .....................................1013
9.1.3.13 Debugging virtual machines ........................ 1014
9.2 Linux Containers (LXC) for NXP QorIQ

User's Guide ................................................ 1016
9.2.1 Introduction to Linux Containers .................. 1016
9.2.1.1 Overview ...................................................... 1016
9.2.1.2 For Further Information ................................1017
9.2.2 Additional information .................................. 1018
9.2.2.1 Containers with Libvirt ................................. 1018
9.2.2.2 Linux Control Groups (cgroups) ...................1019
9.2.2.3 Linux Namespaces ...................................... 1020
9.2.2.4 POSIX Capabilities ...................................... 1020
9.2.3 Libvirt ........................................................... 1021
9.2.3.1 Libvirt Domain Lifecycle ...............................1021
9.2.3.2 Domain States ............................................. 1022

UG10081 All information provided in this document is subject to legal disclaimers. © 2024 NXP B.V. All rights reserved.

User guide Rev. 6.1.55_2.2.0 — 24 January 2024
1060 / 1061



NXP Semiconductors UG10081
Layerscape Linux Distribution POC User Guide

9.2.3.3 Libvirt URIs .................................................. 1022
9.2.3.4 Virsh .............................................................1022
9.2.3.5 Libvirt XML ...................................................1022
9.2.3.6 Running libvirtd ............................................1023
9.2.3.7 Examples ..................................................... 1023
9.2.3.8 Libvirt KVM/QEMU Examples ......................1023
9.2.3.9 Virtio Block scenario .................................... 1023
9.2.3.10 Virtio Net scenario ....................................... 1024
9.2.3.11 Virtio Block Dataplane ................................. 1025
9.2.3.12 Libvirt LXC Examples .................................. 1027
9.2.3.13 Basic Example .............................................1027
9.2.3.14 Further Information ...................................... 1027
9.2.3.15 Annex 1: kvm_virtio_blk.xml ........................ 1028
9.2.3.16 Annex 2: kvm_virtio_net.xml ........................1028
9.2.3.17 Annex 3: kvm_virtio_blk_dataplane.xml .......1029
9.3 Docker Containers ....................................... 1030
9.3.1 Introduction to Docker Containers ............... 1030
9.3.1.1 Overview ...................................................... 1030
9.3.2 Docker How To's ..........................................1031
9.3.2.1 Running a web server container ..................1031
10 Power management ...................................... 1033
10.1 Power management user manual ................1033
10.1.1 Linux SDK for QorIQ Processors .................1033
10.1.2 Kernel configure tree view options ...............1034
10.1.3 Compile-time configuration options ..............1034
10.1.4 Device tree binding ......................................1035
10.1.5 Source files ..................................................1036
10.1.6 Verification in Linux ......................................1036
10.1.7 Supporting documentation ...........................1037
10.2 CPU Frequency Switching User Manual ......1038
10.2.1 Linux SDK for QorIQ Processors .................1038
10.2.2 Abbreviations and Acronyms ....................... 1038
10.2.3 Description ................................................... 1038
10.2.4 Compile-time Configuration Options ............ 1038
10.2.5 User Space Application ............................... 1038
10.2.6 Device Tree Binding .................................... 1038
10.2.7 Source Files .................................................1039
10.2.8 Verification in Linux ......................................1039
10.3 Thermal management user manual ............. 1039
10.3.1 Description ................................................... 1039
10.3.2 Specifications ...............................................1040
10.3.3 Kernel Configure Tree View Options (For

PowerPC platform) ...................................... 1040
10.3.4 Kernel Configure Tree View Options (For

Arm platform) ...............................................1040
10.3.5 Compile-time Configuration Options ............ 1041
10.3.6 Device Tree Binding .................................... 1041
10.3.7 Source Files .................................................1041
10.3.8 Verification in Linux ......................................1042
10.4 System Monitor ............................................1042
10.4.1 Power Monitor User Manual ........................ 1042
10.4.1.1 Power Monitoring Configuration and Test

Steps ............................................................1042
10.4.2 Thermal Monitor User Manual ..................... 1045
10.4.2.1 Description ................................................... 1045
10.4.2.2 Kernel Configure Tree View Options ............1045

10.4.2.3 Compile-time Configuration Options ............ 1045
10.4.2.4 Device Tree Binding .................................... 1046
10.4.2.5 Source Files .................................................1046
10.4.2.6 Verification in Linux ......................................1046
11 Acronyms .......................................................1047
12 Note about the source code in the

document ....................................................... 1050
13 Revision history ............................................ 1051
14 Legal information .......................................... 1053

Please be aware that important notices concerning this document and the product(s)
described herein, have been included in section 'Legal information'.

© 2024 NXP B.V. All rights reserved.
For more information, please visit: http://www.nxp.com

Date of release: 24 January 2024
Document identifier: UG10081


	1  Layerscape LDP overview
	1.1  Accessing Layerscape LDP
	1.2  Supported Linux distributions
	1.3  Building host package
	1.4  Layerscape LDP Git tags

	2  Release notes
	2.1  What is new in this release
	2.2  Components
	2.3  Feature support matrix
	2.4  Open issues

	3  Getting started with Layerscape LDP
	3.1  Host system requirements
	3.1.1  How to set HTTP proxy in Ubuntu

	3.2  Download and deploy Layerscape LDP images in Linux environment using flex-installer
	3.2.1  To deploy locally the custom Layerscape LDP images to the target storage drive connected to a Linux host machine or a reference board
	3.2.2  To deploy the custom Layerscape LDP images on a reference board running TinyLinux
	3.2.3  To only install the composite firmware to the target storage drive on a Linux host machine or a reference board
	3.2.4  To partition and format target storage device with specified number and size of partitions instead of using the default partitions

	3.3  Download and deploy Layerscape LDP composite firmware in Windows environment
	3.4  Deploying Layerscape LDP images to a board using flex-installer
	3.5  Build Layerscape LDP with Yocto bitbake
	3.5.1  Host packages
	3.5.2  Download Yocto bitbake
	3.5.3  Build Layerscape LDP image using bitbake
	3.5.4  bitbake commands
	3.5.5  Generate Layerscape LDP composite firmware
	3.5.6  Generate tarball
	3.5.7  Build TF-A with RCW and U-Boot/UEFI
	3.5.8  Build Linux kernel with bitbake
	3.5.9  Build application components in Yocto bitbake
	3.5.10  Deploy new images after modifying the source code of NXP components locally
	3.5.11  Build various userlands with custom packages
	3.5.12  Add a custom machine in Yocto bitbake based on Layerscape LDP release
	3.5.13  Upgrade the existing Layerscape LDP distro with Yocto bitbake on host

	3.6  Downloading a TinyDistro image to a Layerscape board using ﬂex-installer
	3.7  Quick start guides for Layerscape boards
	3.7.1  Quick start guide for FRWY-LS1012A
	3.7.1.1  Introduction
	3.7.1.2  FRWY-LS1012A reference information
	3.7.1.2.1  Ethernet port map
	3.7.1.2.2  System memory map
	3.7.1.2.3  Supported boot options

	3.7.1.3  Program Layerscape LDP composite firmware image
	3.7.1.4  Downloading a TinyDistro image to a Layerscape board using ﬂex-installer

	3.7.2  Quick start guide for LS1012ARDB
	3.7.2.1  Introduction
	3.7.2.2  LS1012ARDB reference information
	3.7.2.2.1  Ethernet port map
	3.7.2.2.2  System memory map
	3.7.2.2.3  Supported boot options
	3.7.2.2.4  Onboard switch options
	3.7.2.2.5  Flash bank usage

	3.7.2.3  Program Layerscape LDP composite firmware image

	3.7.3  Quick start guide for TWR-LS1021A
	3.7.3.1  Introduction
	3.7.3.2  TWR-LS1021A reference information
	3.7.3.2.1  Port map
	3.7.3.2.2  System memory map
	3.7.3.2.3  Supported boot options
	3.7.3.2.4  Onboard switch options
	3.7.3.2.5  Flash Bank usage
	3.7.3.2.6  Boot option switching

	3.7.3.3  Program Layerscape LDP composite firmware image
	3.7.3.3.1  Program Layerscape LDP composite NOR firmware image
	3.7.3.3.2  Program Layerscape LDP composite SD firmware image


	3.7.4  Quick start guide for LS1028ARDB
	3.7.4.1  Introduction
	3.7.4.2  LS1028ARDB reference information
	3.7.4.2.1  Ethernet port map
	3.7.4.2.2  System memory map
	3.7.4.2.3  Supported boot options
	3.7.4.2.4  Onboard switch options
	3.7.4.2.5  FlexSPI NOR Flash Chip-select

	3.7.4.3  Program Layerscape LDP composite firmware image
	3.7.4.3.1  Program Layerscape LDP composite firmware image to FlexSPI NOR flash
	3.7.4.3.2  Program Layerscape LDP composite firmware image to SD/eMMC


	3.7.5  Quick start guide for LS1043ARDB
	3.7.5.1  Introduction
	3.7.5.2  LS1043ARDB reference information
	3.7.5.2.1  Port map
	3.7.5.2.2  System memory map
	3.7.5.2.3  Supported boot options
	3.7.5.2.4  Onboard switch options
	3.7.5.2.5  NOR Flash (Virtual) Banks
	3.7.5.2.6  Boot option switching

	3.7.5.3  LS1043ARDB recovery information
	3.7.5.4  Program Layerscape LDP composite firmware image
	3.7.5.5  Frame Manager Configuration (FMC) tool

	3.7.6  Quick start guide for FRWY-LS1046A
	3.7.6.1  Introduction
	3.7.6.2  FRWY-LS1046A reference information
	3.7.6.2.1  Ethernet port map
	3.7.6.2.2  System memory map
	3.7.6.2.3  Supported boot options
	3.7.6.2.4  Onboard switch options
	3.7.6.2.5  QSPI NOR flash

	3.7.6.3  Program Layerscape LDP composite firmware image
	3.7.6.4  Frame Manager Configuration (FMC) tool

	3.7.7  Quick start guide for LS1046ARDB
	3.7.7.1  Introduction
	3.7.7.2  LS1046ARDB reference information
	3.7.7.2.1  Ethernet port map
	3.7.7.2.2  System memory map
	3.7.7.2.3  Supported boot options
	3.7.7.2.4  Onboard switch options
	3.7.7.2.5  QSPI NOR flash banks
	3.7.7.2.6  Boot option switching

	3.7.7.3  LS1046ARDB recovery information
	3.7.7.4  Program Layerscape LDP composite firmware image
	3.7.7.5  Frame Manager Configuration (FMC) tool

	3.7.8  Quick start guide for LS1088ARDB
	3.7.8.1  Introduction
	3.7.8.2  LS1088ARDB and LS1088ARDB-PB reference information
	3.7.8.2.1  Ethernet port map
	3.7.8.2.2  System memory map
	3.7.8.2.3  Supported boot options
	3.7.8.2.4  Onboard switch options
	3.7.8.2.5  QSPI NOR flash banks
	3.7.8.2.6  U-Boot environment variables

	3.7.8.3  LS1088ARDB and LS1088ARDB-PB recovery information
	3.7.8.4  Program Layerscape LDP composite firmware image
	3.7.8.5  Bringing up DPAA2 network interfaces
	3.7.8.5.1  Using Linux commands to list network interfaces
	3.7.8.5.2  Using restool wrapper scripts to list DPAA2 objects
	3.7.8.5.3  Add and destroy network interfaces
	3.7.8.5.4  Save configuration to a custom DPL file (Optional)
	3.7.8.5.5  Assign IP addresses to network interfaces


	3.7.9  Quick start guide for LS2088ARDB
	3.7.9.1  Introduction
	3.7.9.2  LS2088ARDB reference information
	3.7.9.2.1  Ethernet port map
	3.7.9.2.2  System memory map
	3.7.9.2.3  Supported boot options
	3.7.9.2.4  Onboard switch options
	3.7.9.2.5  NOR Flash Banks
	3.7.9.2.6  U-Boot Environment Variables

	3.7.9.3  LS2088ARDB recovery information
	3.7.9.4  Program Layerscape LDP composite firmware image
	3.7.9.5  Bringing up DPAA2 network interfaces
	3.7.9.5.1  Use Linux commands to list network interfaces
	3.7.9.5.2  Use restool wrapper scripts to list DPAA2 objects
	3.7.9.5.3  Add and destroy network interfaces
	3.7.9.5.4  Save configuration to a custom DPL file (Optional)
	3.7.9.5.5  Assign IP addresses to network interfaces


	3.7.10  Quick start guide for LX2160ARDB Rev2
	3.7.10.1  Introduction
	3.7.10.2  LX2160ARDB reference information
	3.7.10.2.1  Ethernet port map
	3.7.10.2.2  System memory map
	3.7.10.2.3  Supported boot options
	3.7.10.2.4  Onboard switch options
	3.7.10.2.5  FlexSPI NOR Flash Chip-select
	3.7.10.2.6  U-Boot Environment Variables

	3.7.10.3  LX2160ARDB recovery information
	3.7.10.4  Program Layerscape LDP composite firmware image
	3.7.10.5  Bringing up DPPA2 network interfaces
	3.7.10.5.1  Use Linux commands to list network interfaces
	3.7.10.5.2  Use restool wrapper scripts to list DPAA2 objects
	3.7.10.5.3  Add and destroy network interfaces
	3.7.10.5.4  Save configuration to a custom DPL file (Optional)
	3.7.10.5.5  Assign IP addresses to network interfaces


	3.7.11  Quick start guide for LX2162AQDS
	3.7.11.1  Introduction
	3.7.11.2  LX2162AQDS reference information
	3.7.11.2.1  Ethernet port map
	3.7.11.2.2  System memory map
	3.7.11.2.3  Supported boot options
	3.7.11.2.4  Onboard switch options
	3.7.11.2.5  FlexSPI NOR Flash Chip-select
	3.7.11.2.6  U-Boot Environment Variables
	3.7.11.2.7  SDHC adapter cards configuration

	3.7.11.3  LX2162AQDS recovery information
	3.7.11.4  Program Layerscape LDP composite firmware image


	3.8  Layerscape LDP memory layout and userland
	3.8.1  Flash layout
	3.8.2  Storage layout on SD/USB/SATA for Layerscape LDP images deployment
	3.8.3  Layerscape LDP userland
	3.8.4  TinyDistro
	3.8.5  Various distro userland details


	4  Bootloaders
	4.1  General boot flow
	4.1.1  NXP SoC Booting Principles
	4.1.2  Notes on General Boot Principles

	4.2  TF-A
	4.2.1  TF-A features
	4.2.1.1  TF-A DDR Driver
	4.2.1.1.1  How to compile DDR FIP image (only applicable for LX2160ARDB Rev2 and LX2162AQDS)


	4.2.2  TF-A key components
	4.2.2.1  Warm reset boot support

	4.2.3  Deploying TF-A binaries
	4.2.3.1  How to compile PBL binary from RCW source file
	4.2.3.2  How to compile TF-A binaries
	4.2.3.2.1  How to compile BL2 binary
	4.2.3.2.2  How to compile FIP binary

	4.2.3.3  How to program TF-A binaries on specific boot mode


	4.3  U-Boot
	4.3.1  Changes in U-Boot
	4.3.2  Layerscape LDP U-Boot uses distro boot feature
	4.3.3  Layerscape LDP U-Boot flash image feature
	4.3.4  How to compile U-Boot binary
	4.3.5  Defining IOMMU mappings for PCIe SRIOV virtual functions


	5  Security
	5.1  Firmware/TF-A security features
	5.1.1  Secure boot
	5.1.1.1  Introduction
	5.1.1.2  Secure boot process
	5.1.1.3  Chain of Trust
	5.1.1.3.1  TA 2.x platforms
	5.1.1.3.1.1  Pre-boot phase
	5.1.1.3.1.2  ISBC phase
	  TA 2.x platforms - ISBC and ESBC CSF header structure definition, SRK table, SG table
	  CSF header format (LS1043A/LS1046A/LS1012A platforms)

	  Super Root Keys (SRKs) and signing keys
	  Key revocation
	  Alternate image support

	5.1.1.3.1.3  ISBC validation error codes

	5.1.1.3.2  TA 3.x platforms
	5.1.1.3.2.1  Pre-boot and Internal Secure Boot Code (ISBC) phase
	  TA 3.x platforms - ISBC CSF header structure definition, SRK table, SG table
	  ISBC for PBI validation
	  PBI structure

	  ISBC for next executable (BL2) validation

	5.1.1.3.2.2  ISBC validation error codes
	  Error handling in production environment (ITS = 1)
	  Error handling in development environment (ITS = 0, RCW[SB_EN] = 1)
	  Error codes


	5.1.1.3.3  External Secure Boot Code (ESBC) phase
	5.1.1.3.3.1  BL2 binary
	  NXP CoT for ESBC images
	  TA 3.x platforms - ESBC CSF header structure definition

	  Arm CoT for ESBC images



	5.1.1.4  Code Signing Tool
	5.1.1.4.1  Key generation
	5.1.1.4.1.1  gen_keys
	5.1.1.4.1.2  gen_otpmk_drbg
	5.1.1.4.1.3  gen_drv_drbg

	5.1.1.4.2  Header creation
	5.1.1.4.2.1  uni_pbi
	  Sample input file

	5.1.1.4.2.2  uni_sign
	  Sample input file


	5.1.1.4.3  Signature generation
	5.1.1.4.3.1  gen_sign
	5.1.1.4.3.2  sign_embed


	5.1.1.5  Procedure to run secure boot
	5.1.1.5.1  Secure boot execution flow
	5.1.1.5.1.1  Secure boot execution flow for Chain of Trust
	5.1.1.5.1.2  Secure boot execution flow for Chain of Trust with confidentiality

	5.1.1.5.2  Prepare board for Secure boot
	5.1.1.5.2.1  Enable POVDD
	5.1.1.5.2.2  Byte swap for reading and writing SRKH/OTPMK
	5.1.1.5.2.3  Program OTPMK
	5.1.1.5.2.4  Program SRKH mirror registers
	  Program SRKH mirror registers in CodeWarrior environment
	  Program SRKH mirror registers in U-Boot environment

	5.1.1.5.2.5  Write SFP_INGR register

	5.1.1.5.3  Build secure boot TF-A images manually
	5.1.1.5.3.1  Build secure boot TF-A images for NXP CoT
	5.1.1.5.3.2  Build secure boot TF-A images for Arm CoT

	5.1.1.5.4  Program secure boot images
	5.1.1.5.4.1  Program secure boot firmware images
	5.1.1.5.4.2  Program secure boot TF-A images

	5.1.1.5.5  Program verified boot images for Arm CoT
	5.1.1.5.6  Steps to run chain of trust with confidentiality


	5.1.2  Fuse Provisioning User Guide
	5.1.2.1  Introduction
	5.1.2.2  Fuse Programming Scenarios
	5.1.2.2.1  Fuse Provisioning during OEM Manufacturing

	5.1.2.3  Fuse Provisioning Utility
	5.1.2.3.1  Fuse file structure
	5.1.2.3.2  Sample input file for fuse provisioning tool

	5.1.2.4  Deploy and run fuse provisioning
	5.1.2.4.1  Enable POVDD
	5.1.2.4.2  Build fuse provisioning firmware image
	5.1.2.4.3  Deploy and run fuse provisioning firmware image on board
	5.1.2.4.4  Build and deploy fuse provisioning image manually
	5.1.2.4.5  Validate fuse provisioning

	5.1.2.5  Error Codes


	5.2  Bootloader security features
	5.2.1  U-Boot
	5.2.1.1  Verified boot [only for LX2162AQDS]
	5.2.1.1.1  Introduction
	5.2.1.1.2  Build U-Boot, Linux, and RCW binaries
	5.2.1.1.3  Generate fit image
	5.2.1.1.4  Generate keys with OpenSSL
	5.2.1.1.5  Sign fit image and combine U-Boot DTB
	5.2.1.1.6  Generate fip binary
	5.2.1.1.7  Flash FIP binary to FlexSPI NOR flash

	5.2.1.2  U-Boot
	5.2.1.2.1  esbc_validate command
	5.2.1.2.2  esbc_halt command
	5.2.1.2.3  blob enc command
	5.2.1.2.4  blob dec command
	5.2.1.2.5  Bootscript
	5.2.1.2.5.1  Chain of Trust
	5.2.1.2.5.2  Chain of Trust with confidentiality

	5.2.1.2.6  How to compile secure U-Boot binary



	5.3  Trusted OS
	5.3.1  Trusted Execution (OP-TEE)
	5.3.1.1  Introduction
	5.3.1.1.1  Support platform
	5.3.1.1.2  Test Sequence
	5.3.1.1.3  How to compile OP-TEE binary



	5.4  PKCS#11 and Secure Object Library
	5.4.1  Introduction
	5.4.2  Supported APIs
	5.4.2.1  PKCS#11 Library – libpkcs11.so
	5.4.2.2  Secure Object Library – libsecure_obj.so
	5.4.2.2.1  Secure Object Library
	5.4.2.2.2  Manufacturing Key APIs:


	5.4.3  Integrating applications with Secure Object
	5.4.3.1  Using PKCS#11 APIs
	5.4.3.2  Using Secure Object APIs
	5.4.3.3  Applications using OpenSSL APIs
	5.4.3.3.1  Secure Object Library based OpenSSL Engine (libeng_secure_obj)
	5.4.3.3.1.1  Example usage with OpenSSL

	5.4.3.3.2  PKCS#11 based OpenSSL Engine (Third-party OpenSC/libp11)
	5.4.3.3.2.1  
	5.4.3.3.2.2  



	5.4.4  Board Bootup and Running applications
	5.4.4.1  Board Bootup
	5.4.4.2  Running applications
	5.4.4.2.1  sobj_app
	5.4.4.2.2  pkcs11_app
	5.4.4.2.3  mp_app
	5.4.4.2.4  mp_verify
	5.4.4.2.5  sobj_eng_app
	5.4.4.2.6  thread_test


	5.4.5  Validation
	5.4.6  Appendix
	5.4.6.1  Appendix A: Steps to build the PKCS#11 Library
	5.4.6.2  Appendix B: Steps to build the Secure Object Library



	6  Linux kernel
	6.1  Introduction
	6.2  Kernel Releases and relationship with Layerscape LDP
	6.3  Getting the Layerscape LDP kernel source code
	6.4  Configuring and building
	6.4.1  Environment setting for cross-compiling
	6.4.2  Configuring kernel
	6.4.3  Building kernel
	6.4.4  Install new kernel and modules

	6.5  Device Drivers
	6.5.1  Enhanced Direct Memory Access (eDMA)
	6.5.1.1  Description
	6.5.1.2  Kernel Configure Options
	6.5.1.3  Device Tree Binding
	6.5.1.4  Source Files
	6.5.1.5  Verification in Linux

	6.5.2  CAAM Direct Memory Access (DMA)
	6.5.2.1  Kernel configure options
	6.5.2.2  Identifier
	6.5.2.3  Device tree node
	6.5.2.4  Source files
	6.5.2.5  Verification in Linux
	6.5.2.6  Component testing

	6.5.3  DCU Display Device Driver User Manual
	6.5.3.1  Description
	6.5.3.2  Module Loading
	6.5.3.3  U-Boot Configuration
	6.5.3.4  Kernel Configure Options
	6.5.3.5  Device Tree Binding
	6.5.3.6  Source Files
	6.5.3.7  Testing LCD/DHMI at U-Boot Level
	6.5.3.8  Testing LCD at Kernel Level
	6.5.3.9  Testing HDMI at Kernel Level
	6.5.3.10  Known Bugs, Limitations, or Technical Issues

	6.5.4  Enhanced Secured Digital Host Controller (eSDHC)
	6.5.4.1  Description
	6.5.4.2  Kernel Configure Options
	6.5.4.3  Compile-time Configuration Options
	6.5.4.4  Source Files
	6.5.4.5  Device Tree Binding
	6.5.4.6  Verification in U-Boot
	6.5.4.7  Verification in Linux
	6.5.4.8  Verification of eMMC RPMB
	6.5.4.9  Known Bugs, Limitations, or Technical Issues

	6.5.5  IEEE 1588/802.1AS
	6.5.5.1  Description
	6.5.5.2  Kernel configure options
	6.5.5.3  Source files
	6.5.5.4  Device tree binding
	6.5.5.5  Verification

	6.5.6  Integrated Flash Controller (IFC)
	6.5.6.1  Integrated Flash Controller NOR Flash User Manual
	6.5.6.1.1  Description
	6.5.6.1.2  U-Boot Configuration
	6.5.6.1.3  Source Files
	6.5.6.1.4  Kernel Configure Options
	6.5.6.1.5  Device Tree Binding
	6.5.6.1.6  Source Files
	6.5.6.1.7  Verification in U-Boot
	6.5.6.1.8  Verification in Linux

	6.5.6.2  Integrated Flash Controller NAND Flash User Manual
	6.5.6.2.1  Description
	6.5.6.2.2  U-Boot Configuration
	6.5.6.2.3  Source Files
	6.5.6.2.4  Kernel Configure Options
	6.5.6.2.5  Device Tree Binding
	6.5.6.2.6  Source Files
	6.5.6.2.7  Verification in U-Boot
	6.5.6.2.8  Verification in Linux
	6.5.6.2.9  Known Bugs, Limitations, or Technical Issues


	6.5.7  Low Power Universal Asynchronous Receiver/Transmitter (LPUART)
	6.5.7.1  Description
	6.5.7.2  U-Boot Configuration Compile-time options
	6.5.7.3  Kernel Configure Options
	6.5.7.4  Device Tree Binding
	6.5.7.5  Source Files
	6.5.7.6  Verification in U-Boot
	6.5.7.7  Verification in Linux

	6.5.8  PCI Express Interface Controller
	6.5.8.1  PCIe Linux Driver
	6.5.8.1.1  Module Loading
	6.5.8.1.2  Kernel Configure Tree View Options
	6.5.8.1.3  Compile-time Configuration Options
	6.5.8.1.4  Source Files
	6.5.8.1.5  SATA Card Test Procedure
	6.5.8.1.6  Ethernet Card Test Procedure
	6.5.8.1.7  Known Bugs, Limitations, or Technical Issues

	6.5.8.2  PCIe Advanced Error Reporting User Manual
	6.5.8.2.1  
	6.5.8.2.2  
	6.5.8.2.3  Kernel Configure Tree View Options
	6.5.8.2.4  Kernel compile-time Configuration Options
	6.5.8.2.5  Source Files
	6.5.8.2.6  Prepare aer-inject test tool

	6.5.8.3  PCIe Remove and Rescan User Manual
	6.5.8.3.1  
	6.5.8.3.2  U-Boot Configuration
	6.5.8.3.3  Kernel Configure Options
	6.5.8.3.4  Device Tree Binding
	6.5.8.3.5  Verification in Linux
	6.5.8.3.6  Known Bugs, Limitations, or Technical Issues

	6.5.8.4  PCIe Endpoint Mode Linux driver
	6.5.8.4.1  Kernel Configure Tree View Options
	6.5.8.4.2  Compile-time Configuration Options
	6.5.8.4.3  Source Files
	6.5.8.4.4  Test Procedure (with LS1088A as example)
	6.5.8.4.5  Known Bugs, Limitations, or Technical Issues


	6.5.9  Quad Serial Peripheral Interface (QSPI)
	6.5.9.1  U-Boot Configuration
	6.5.9.2  Kernel Configure Tree View Options
	6.5.9.3  Compile-time Configuration Options
	6.5.9.4  Verification in U-Boot
	6.5.9.5  Verification in Linux:

	6.5.10  Flexible Serial Peripheral Interface (FlexSPI)
	6.5.10.1  U-Boot Configuration
	6.5.10.2  Kernel Configure Tree View Options
	6.5.10.3  Compile-time Configuration Options
	6.5.10.4  Verification in U-Boot
	6.5.10.5  Verification in Linux:

	6.5.11  Queue Direct Memory Access Controller (qDMA)
	6.5.11.1  QDMA for platform with DPAA1
	6.5.11.2  QDMA for platform with DPAA2

	6.5.12  Real Time Clock (RTC)
	6.5.12.1  Linux SDK for QorIQ Processors
	6.5.12.2  Description
	6.5.12.3  Kernel Configure Tree View Options
	6.5.12.4  Compile-time Configuration Options
	6.5.12.5  Source Files
	6.5.12.6  Device Tree Binding
	6.5.12.7  Default node:
	6.5.12.8  Verification in Linux

	6.5.13  Synchronous Audio Interface (SAI)
	6.5.13.1  Description
	6.5.13.2  RCW configuration
	6.5.13.3  Kernel Configure Options Tree View
	6.5.13.4  Source files
	6.5.13.5  Verification in Linux

	6.5.14  Serial Advanced Technology Attachment (SATA)
	6.5.14.1  Description
	6.5.14.2  Module Loading
	6.5.14.3  Compile-time Configuration Options
	6.5.14.4  Source Files
	6.5.14.5  Test Procedure
	6.5.14.6  Known Bugs, Limitations, or Technical Issues

	6.5.15  Security Engine (SEC)
	6.5.15.1  Introduction and Terminology
	6.5.15.2  Source Files
	6.5.15.3  Module loading
	6.5.15.4  Kernel Configuration
	6.5.15.5  Device Tree binding
	6.5.15.6  Sample Device Tree crypto node
	6.5.15.7  How to test the drivers
	6.5.15.8  Crypto algorithms support
	6.5.15.9  CAAM Job Ring backend driver specifics
	6.5.15.10  Verifying driver operation and correctness
	6.5.15.11  Incrementing IRQs in /proc/interrupts
	6.5.15.12  Verifying the 'self test' fields say 'passed' in /proc/crypto
	6.5.15.13  Examining the hardware statistics registers in debugfs
	6.5.15.14  Kernel configuration to support CAAM device drivers
	6.5.15.15  Supporting Documentation

	6.5.16  Time Division Multiplexing (TDM)
	6.5.16.1  Description
	6.5.16.2  U-Boot Configuration
	6.5.16.3  Kernel Configure Options
	6.5.16.4  Device Tree Binding
	6.5.16.5  Source Files
	6.5.16.6  Verification in U-Boot
	6.5.16.7  Verification in Linux
	6.5.16.8  Benchmarking
	6.5.16.9  Known Bugs, Limitations, or Technical Issues

	6.5.17  Universal Serial Bus Interfaces
	6.5.17.1  USB 3.0 Controller (DesignWare USB3)
	6.5.17.1.1  Description
	6.5.17.1.2  U-Boot
	6.5.17.1.3  Configure Tree View Options
	6.5.17.1.4  Source Files
	6.5.17.1.5  Mass Storage device read write
	6.5.17.1.6  Linux Kernel
	6.5.17.1.7  Source Files
	6.5.17.1.8  Verification
	6.5.17.1.9  HID use case
	6.5.17.1.10  Speaker and Microphone
	6.5.17.1.11  Source Files
	6.5.17.1.12  
	6.5.17.1.13  Source Files
	6.5.17.1.14  Verification
	6.5.17.1.15  Known Bugs, Limitations, or Technical Issues

	6.5.17.2  USB 2.0 Controller
	6.5.17.2.1  U-Boot
	6.5.17.2.2  Linux Kernel
	6.5.17.2.3  
	6.5.17.2.4  Source Files
	6.5.17.2.5  


	6.5.18  Graphics processing unit (GPU)
	6.5.18.1  Test procedure
	6.5.18.2  Known issue

	6.5.19  LCD and display transmitter controller
	6.5.20  FlexTimer (FTM)
	6.5.21  Inter-Integrated Circuit (I2C)
	6.5.22  Watchdog
	6.5.22.1  U-Boot
	6.5.22.2  Kernel configure options
	6.5.22.3  Compile-time configuration options
	6.5.22.4  Device tree
	6.5.22.5  Source files
	6.5.22.6  Verification in Linux

	6.5.23  GPIO
	6.5.24  QUICC Engine Time Division Multiplexing User Manual
	6.5.24.1  Linux SDK for QorIQ Processors
	6.5.24.2  Description
	6.5.24.3  U-Boot Configuration
	6.5.24.4  Kernel Configure Options
	6.5.24.5  Device Tree Binding
	6.5.24.6  Source Files
	6.5.24.7  User Space Application
	6.5.24.8  Verification in U-Boot
	6.5.24.9  Verification in Linux


	6.6  kdump/kexec User Manual

	7  QorIQ networking technologies
	7.1  Summary of networking technologies
	7.2  DPAA1-specific software
	7.2.1  DPAA Software Architecture Overview
	7.2.1.1  Introduction
	7.2.1.1.1  Benefits of DPAA1
	7.2.1.1.2  General architectural considerations
	7.2.1.1.3  Multicore design
	7.2.1.1.4  Parse/classification software offload
	7.2.1.1.5  Flow order considerations
	7.2.1.1.6  Managing flow-to-core affinity

	7.2.1.2  DPAA1 Goals
	7.2.1.3  FMan Overview
	7.2.1.4  QMan Overview
	7.2.1.4.1  QMan: Portals

	7.2.1.5  QMan Scheduling
	7.2.1.5.1  QMan: Queue schedule options
	7.2.1.5.2  QMan: Default Scheduling
	7.2.1.5.3  QMan: Hold Active Scheduling
	7.2.1.5.4  QMan: Avoid blocking scheduling
	7.2.1.5.5  QMan: Order Definition/ Restoration

	7.2.1.6  BMan
	7.2.1.7  Order Handling
	7.2.1.7.1  Using the exact match flow definition to preserve order
	7.2.1.7.2  Using hashing to distribute flows across cores

	7.2.1.8  Pool Channels
	7.2.1.8.1  Order preservation using hold active scheduling and DCA mode
	7.2.1.8.2  Congestion management

	7.2.1.9  Application Mapping
	7.2.1.9.1  Processor core assignment
	7.2.1.9.2  Define flows
	7.2.1.9.3  Identify ingress and egress frame queues (FQs)
	7.2.1.9.4  Define PCD configuration for ingress FQs

	7.2.1.10  FQ/WQ/Channel
	7.2.1.10.1  Define egress FQ/WQ/channel configuration
	7.2.1.10.2  End of Document


	7.2.2  Linux Ethernet
	7.2.2.1  Introduction
	7.2.2.2  The DPAA1-Ethernet view of the world
	7.2.2.2.1  The Linux kernel APIs
	7.2.2.2.2  The Driver's building blocks
	7.2.2.2.2.1  Net Devices
	7.2.2.2.2.2  Frame Queues
	7.2.2.2.2.3  Buffer Pools


	7.2.2.3  DPAA1 resources initialization
	7.2.2.3.1  What, Why and How resources are initialized
	7.2.2.3.2  Private Ethernet driver: Hashing/PCD frame queues

	7.2.2.4  The (Simplified) Life of a packet
	7.2.2.4.1  Private net device: Tx
	7.2.2.4.2  Private net device: Rx

	7.2.2.5  Private Ethernet Driver
	7.2.2.5.1  Network driver
	7.2.2.5.2  Configuration
	7.2.2.5.2.1  Device tree configuration
	7.2.2.5.2.2  Kconfig options
	7.2.2.5.2.3  Bootargs
	7.2.2.5.2.4  ethtool options

	7.2.2.5.3  Features
	7.2.2.5.3.1  Congestion management
	7.2.2.5.3.2  Scatter/Gather support
	7.2.2.5.3.3  Jumbo frames support
	7.2.2.5.3.4  GRO/GSO Support
	  

	7.2.2.5.3.5  Transmit packet steering
	7.2.2.5.3.6  TX and RX Hardware Checksum
	7.2.2.5.3.7  Priority Flow Control
	  Enabling PFC Support
	  Selecting the Class of Service
	  VLAN tagging
	  Receiving PFC Frames
	  Generating PFC frames
	  Enabling and disabling PFC using ethtool

	7.2.2.5.3.8  Core Affined Queues
	  High Priority Core Affined Queues


	7.2.2.5.4  Quality of Service
	7.2.2.5.4.1  Policing
	7.2.2.5.4.2  Scheduling and Shaping
	  Description
	  The CEETM architecture
	  Features
	  Integration with queuing disciplines

	  User guide
	  Supported platforms
	  Getting started
	  Limitations
	  Usage

	  Examples
	  Rate limit two streams
	  Setup
	  Execution

	  Prioritization of two streams
	  Setup
	  Execution

	  Assigning weights to two streams
	  Setup
	  Execution

	  Unshaped Fair Queuing of two streams
	  Setup
	  Execution




	7.2.2.5.5  Debugging
	7.2.2.5.5.1  Ethtool support
	7.2.2.5.5.2  Read/Write of FMan Registers
	7.2.2.5.5.3  Sysfs support

	7.2.2.5.6  Frequently Asked Questions
	7.2.2.5.7  Known issues

	7.2.2.6  Upstream Ethernet Driver
	7.2.2.6.1  Configuration
	7.2.2.6.2  Device Trees

	7.2.2.7  Performance considerations

	7.2.3  Queue Manager (QMan) and Buffer Manager (BMan)
	7.2.3.1  QMan/BMan Drivers Introduction
	7.2.3.1.1  Description
	7.2.3.1.2  CCSR, or "global config"
	7.2.3.1.3  Functionality
	7.2.3.1.4  Module Loading
	7.2.3.1.5  QMan and BMan Kernel Configure Options
	7.2.3.1.6  Device-tree nodes
	7.2.3.1.7  Compile-time Configuration Options
	7.2.3.1.8  Source Files
	7.2.3.1.9  Build Procedure
	7.2.3.1.10  Test Procedure

	7.2.3.2  QMan BMan API Reference Manual
	7.2.3.2.1  Introduction to the Queue Manager and the Buffer Manager
	7.2.3.2.2  Buffer Manager
	7.2.3.2.2.1  Buffer Manager (BMan) Overview
	  Function
	  Interfaces

	7.2.3.2.2.2  BMan configuration interface
	  BMan Device-Tree Node
	  Free Buffer Proxy Records
	  Logical I/O Device Number (BMan)

	  Buffer Pool Node
	  Buffer Pool ID
	  Seeding Buffer Pools
	  Depletion Thresholds

	  BMan Portal Device-Tree Node
	  Portal Initialization (BMan)
	  Portal sharing



	7.2.3.2.3  BMan CoreNet portal APIs
	7.2.3.2.3.1  BMan High-Level Portal Interface
	  Overview (BMan)
	  Portal management (BMan)
	  Modifying interrupt-driven portal duties (BMan)
	  Processing non-interrupt-driven portal duties (BMan)
	  Recovery support (BMan)
	  Determining if the release ring is empty

	  Pool Management
	  Releasing and Acquiring Buffers
	  Depletion State


	7.2.3.2.4  Queue Manager
	7.2.3.2.4.1  QMan Overview
	  Queue Manager's Function
	  Frame Descriptors
	  Frame Queue Descriptors (QMan)
	  Work Queues
	  Channels
	  Portals
	  Dedicated Portal Channels
	  Pool Channels
	  Portal Sub-Interfaces
	  Frame queue dequeuing
	  Unscheduled Dequeues
	  Scheduled Dequeues
	  Pull Mode
	  Push Mode
	  Stashing to Processor Cache

	  Frame Queue States
	  Hold active
	  Dequeue Atomicity
	  Parking Scheduled FQs
	  Order Preservation & Discrete Consumption Acknowledgement

	  Enqueue Rejections
	  Order Restoration

	7.2.3.2.4.2  QMan configuration interface
	  QMan device-tree node
	  Frame Queue Descriptors
	  Packed Frame Descriptor Records
	  Logical I/O Device Number (QMan)

	  QMan pool channel device-tree node
	  Channel ID

	  QMan portal device-tree node
	  Portal Access to Pool Channels
	  Stashing Logical I/O Device Number
	  Portal Initialization (QMan)
	  Auto-Initialization



	7.2.3.2.5  QMan portal APIs
	7.2.3.2.5.1  QMan High-Level Portal Interface
	  Overview (QMan)
	  Frame and Message Handling
	  Portal management (QMan)
	  Modifying interrupt-driven portal duties (QMan)
	  Processing non-interrupt-driven portal duties (QMan)
	  Recovery support (QMan)
	  Stopping and restarting dequeues to the portal
	  Manipulating the portal static dequeue command
	  Determining if the enqueue ring is empty

	  Frame queue management
	  Querying a FQ object
	  Initialize a FQ
	  Schedule a FQ
	  Retire a FQ
	  Put a FQ out of service
	  Query a FQD from QMan
	  Unscheduled (volatile) dequeuing of a FQ
	  Set FQ flow control state

	  Enqueue Command (without ORP)
	  Enqueue Command with ORP
	  DCA Mode
	  Congestion Management Records
	  Zero-Configuration Messaging
	  FQ allocation
	  Ad-hoc FQ allocator
	  FQ range allocator
	  Future FQ allocator changes

	  Helper functions


	7.2.3.2.6  Sysfs and debugfs QMan/BMan interfaces
	7.2.3.2.6.1  QMan sysfs
	  /sys/devices/ffe000000.​soc/ffe318000.​qman
	  /sys/devices/ffe000000.​soc/ffe318000.​qman/e​rror_​capture
	  /sys/devices/ffe000000.​soc/ffe318000.​qman/e​rror_​capture/sbec_​< 0..6>
	  /sys/devices/ffe000000.​soc/ffe318000.​qman/s​fdr_​in_​use
	  /sys/devices/platform/soc/1880000.​qman/pfdr_​​fpc
	  /sys/devices/ffe000000.​soc/ffe318000.​qman/p​fdr_​cfg
	  /sys/devices/ffe000000.​soc/ffe318000.​qman/i​dle_​stat
	  /sys/devices/ffe000000.​soc/ffe318000.​qman/e​rr_​isr
	  /sys/devices/ffe000000.​soc/ffe318000.​qman/d​cp< 0..3> _dlm_avg
	  /sys/devices/ffe000000.​soc/ffe318000.​qman/c​i_​rlm_​avg

	7.2.3.2.6.2  BMan sysfs
	  /sys/devices/ffe000000.​soc/ffe31a000.​bman
	  /sys/devices/ffe000000.​soc/ffe31a000.​bman/e​rror_​capture
	  /sys/devices/ffe000000.​soc/ffe31a000.​bman/e​rror_​capture/sbec_​< 0..1>
	  /sys/devices/ffe000000.​soc/ffe31a000.​bman/p​ool_​count
	  /sys/devices/ffe000000.​soc/ffe31a000.​bman/f​bpr_​fpc
	  /sys/devices/ffe000000.​soc/ffe31a000.​bman/e​rr_​isr

	7.2.3.2.6.3  QMan debugfs
	  /sys/kernel/debug/qman
	  /sys/kernel/debug/qman/query_cgr
	  /sys/kernel/debug/qman/query_​congestion
	  /sys/kernel/debug/qman/query_​fq_​fields
	  /sys/kernel/debug/qman/query_​fq_​np_​fields
	  /sys/kernel/debug/qman/query_​cq_​fields
	  /sys/kernel/debug/qman/query_​ceetm_​ccgr
	  /sys/kernel/debug/qman/query_​wq_​lengths
	  /sys/kernel/debug/qman/fqd/avoid_​blocking_​[​enable | disable]
	  /sys/kernel/debug/qman/fqd/prefer_​in_​cache_​​[enable | disable]
	  /sys/kernel/debug/qman/fqd/cge_​[enable | disable]
	  /sys/kernel/debug/qman/fqd/cpc_​[enable | disable]
	  /sys/kernel/debug/qman/fqd/cred
	  /sys/kernel/debug/qman/fqd/ctx_​a_​stashing_​​[enable | disable]
	  /sys/kernel/debug/qman/fqd/hold_​active_​[ena​ble | disable]
	  /sys/kernel/debug/qman/fqd/orp_​[enable | disable]
	  /sys/kernel/debug/qman/fqd/sfdr_​[enable | disable]
	  sys/kernel/debug/qman/fqd/state_​[active | oos | parked | retired | tentatively_sched | truly_sched]
	  /sys/kernel/debug/qman/fqd/tde_​[enable | disable]
	  /sys/kernel/debug/qman/fqd/wq
	  /sys/kernel/debug/qman/fqd/summary
	  /sys/kernel/debug/qman/ccsrmempeek
	  /sys/kernel/debug/qman/query_​ceetm_​xsfdr_​i​n_​use

	7.2.3.2.6.4  BMan debugfs
	  /sys/kernel/debug/bman
	  /sys/kernel/debug/bman/query_​bp_​state


	7.2.3.2.7  Error handling and reporting
	7.2.3.2.7.1  Handling and Reporting

	7.2.3.2.8  Operating system specifics
	7.2.3.2.8.1  Portal maintenance
	7.2.3.2.8.2  Callback context
	7.2.3.2.8.3  Blocking semantics



	7.2.4  Configuring DPAA Frame Queues
	7.2.4.1  Introduction
	7.2.4.2  FMan Network interface Frame Queue Configuration
	7.2.4.3  FMan network interface ingress FQs configuration
	7.2.4.4  Ingress FQs common configuration guidelines
	7.2.4.5  Dynamic load balancing with order preservation - ingress FQs configuration guidelines
	7.2.4.6  Dynamic load balancing with order restoration - ingress FQs configuration guidelines
	7.2.4.7  Static distribution - Ingress FQs Configuration Guidelines
	7.2.4.8  FMan network interface egress FQs configuration
	7.2.4.9  Accelerator Frame Queue Configuration
	7.2.4.10  DPAA1 Frame Queue Configuration Guideline Summary

	7.2.5  Frame Manager
	7.2.5.1  Frame Manager Linux Driver User Guide
	7.2.5.1.1  Introduction
	7.2.5.1.2  The Linux FMD devices
	7.2.5.1.3  Frame Manager Linux Driver API Reference
	7.2.5.1.3.1  Linux FMan device
	7.2.5.1.3.2  Linux PCD device
	7.2.5.1.3.3  Linux port devices


	7.2.5.2  Frame Manager Driver User Guide
	7.2.5.2.1  Introduction
	7.2.5.2.2  Frame Manager Features
	7.2.5.2.3  Frame Manager Driver Components
	7.2.5.2.4  Driver Modules in the System
	7.2.5.2.4.1  Multicore Approach
	  SMP


	7.2.5.2.5  FMan Driver Calling Sequence
	7.2.5.2.6  Global FMan Driver
	7.2.5.2.6.1  FMan Hardware Overview
	  Global FMan Driver Software Abstraction

	7.2.5.2.6.2  How to use the Global FMan Driver?
	  Global FMan Driver Scope
	  Global FMan Driver Sequence
	  Global FMan Driver Functional Description
	  FMan Configuration and Initialization
	  Resource Management and Tuning
	  Load Balancing
	  Statistics



	7.2.5.2.7  FMan Parse-Classify-Distribute Driver
	7.2.5.2.7.1  FMan PCD Hardware Overview
	  FMan PCD Software Abstraction
	  FMan PCD Flow
	  Global FMan PCD Module
	  Global FMan-PCD Resources
	  How to Associate PCD Resources
	  FMan Header Manipulation
	  Custom Classifier Hash-Table Node


	7.2.5.2.7.2  How to use the FMan PCD Driver?
	  FMan PCD Driver Scope
	  FMan PCD Driver Sequence
	  FMan PCD Driver Functional Description
	  Global PCD Initialization
	  PCD Resources
	  Network Environment Characteristics
	  Software Parser
	  Keygen Schemes
	  Custom Classifier Root
	  Match-Table Nodes
	  Hash-Table Nodes
	  Manipulations
	  Header Manipulation
	  IP Reassembly
	  IP Fragmentation
	  IPSec Manipulation

	  Frame Replicator
	  Policer Profiles
	  PCD Organization
	  PCD Definition Sequence
	  Host Command
	  PCD Statistics
	  Custom Classifier Statistics




	7.2.5.2.8  FMan Port Driver
	7.2.5.2.8.1  FMan Port Hardware Overview
	  FMan Port Driver Software Abstraction

	7.2.5.2.8.2  How to use the FMan Port Driver?
	  FMan Port Driver Scope
	  FMan Port Driver Sequence
	  FMan Port Driver Functional Description
	  FMan Port Configuration and Initialization
	  FMan Port Types
	  Independent-Mode
	  Resource Management
	  Virtual Storage Profiles Support
	  Rate Limiting
	  Simple BMI-to-BMI (regular) mode
	  Port LIODN
	  Port-PCD Binding
	  Port-PCD Binding Changes



	7.2.5.2.9  FMan MAC Driver
	7.2.5.2.9.1  FMan MAC Hardware Overview
	  FMan MAC Software Abstraction

	7.2.5.2.9.2  How To Use The FMan MAC Driver?
	  FMan MAC Driver Scope
	  FMan MAC Driver Sequence
	  FMan MAC Driver Functional Description
	  FMan MAC Configuration and Initialization
	  FMan MAC Addressing
	  IEEE1588 Support
	  MAC Statistics



	7.2.5.2.10  FMan VSP Driver
	7.2.5.2.10.1  FMan VSP Hardware Overview
	7.2.5.2.10.2  How To Use The FMan VSP Driver?
	  FMan VSP Driver Scope
	  FMan VSP Driver Sequence
	  FMan VSP Driver Functional Description
	  Virtual Storage Profile Initialization
	  Virtual Storage Profile Parsing



	7.2.5.2.11  FMan RTC (IEEE 1588) Driver
	7.2.5.2.11.1  FMan RTC Hardware Overview
	7.2.5.2.11.2  How To Use The RTC Driver?
	  RTC Driver Scope
	  RTC Driver Sequence
	  RTC Driver Functional Description
	  FMan RTC 1588 module utilization
	  Utilizing IEEE1588 for MAC frames time stamping
	  Utilizing IEEE1588 for PTP



	7.2.5.2.12  FMan MURAM Driver
	7.2.5.2.12.1  FMan MURAM Hardware Overview
	  FMan MURAM Driver Software Abstraction

	7.2.5.2.12.2  How To Use The FMan MURAM Driver?
	  FMan MURAM Driver Scope
	  FMan MURAM Driver Sequence
	  FMan MURAM Driver Functional Description


	7.2.5.2.13  Supported Network Protocols
	7.2.5.2.13.1  L2 Protocols
	7.2.5.2.13.2  L3 Protocols
	7.2.5.2.13.3  L4 Protocols
	7.2.5.2.13.4  Private Headers
	7.2.5.2.13.5  Fields Supported By Driver for Keygen Extraction



	7.2.6  Frame Manager Configuration Tool User Guide
	7.2.6.1  Introduction
	7.2.6.2  FMC Tool Features
	7.2.6.3  FMC Tool Components and Packaging
	7.2.6.4  FMC Tool - Runtime Environment Mode
	7.2.6.5  FMC Tool - Host Mode
	7.2.6.5.1  Host Mode Output - C Source Code Files

	7.2.6.6  FMC Tool Command-Line Arguments
	7.2.6.7  The NetPDL and NetPCD XML Markup Languages
	7.2.6.8  Protocol files
	7.2.6.8.1  Standard Protocol File
	7.2.6.8.2  Custom Protocol File

	7.2.6.9  Policy file
	7.2.6.9.1  Distribution Section
	7.2.6.9.2  Policy Section
	7.2.6.9.3  Classification Section
	7.2.6.9.4  Policer Section

	7.2.6.10  Configuration File
	7.2.6.11  NXP NetPDL Reference
	7.2.6.11.1  Basic XML Rules
	7.2.6.11.2  The netpdl Element
	7.2.6.11.3  The protocol element
	7.2.6.11.3.1  Effect of Setting prevproto Attribute to otherl3 or otherl4

	7.2.6.11.4  The format element
	7.2.6.11.4.1  The fields Element
	7.2.6.11.4.2  The field Element

	7.2.6.11.5  The execute-code element
	7.2.6.11.5.1  The before Element
	7.2.6.11.5.2  The after Element
	7.2.6.11.5.3  Child Elements of the before and after Elements
	  The assign-variable Element
	  The if Element
	  The if-true Element
	  The if-false Element

	  The switch Element
	  The case Element
	  The default Element

	  The action Element (for use in a Custom Protocol file)


	7.2.6.11.6  Expressions
	7.2.6.11.6.1  Operands
	  Numbers
	  Fields
	  Variables
	  Result Array Variables
	  Parameter Array Variable
	  Header Size Variables
	  Frame Window Variable
	  The prevprotoOffset Variable


	7.2.6.11.6.2  Operators
	  The concat Operator
	  The checksum Operator
	  Expression Priorities
	  Operator Precedence
	  Variable Size

	7.2.6.11.6.3  Expression Types
	  Logical Expressions
	  Arithmetic Expressions


	7.2.6.11.7  Tips and Recommendations
	7.2.6.11.7.1  Result Array Fields that Must be Manually Updated
	7.2.6.11.7.2  Result Array Fields that Should Not be Modified
	7.2.6.11.7.3  Setting the Next Protocol

	7.2.6.11.8  Limitations
	7.2.6.11.8.1  Complex Expressions


	7.2.6.12  NetPCD Reference
	7.2.6.12.1  The netpcd element
	7.2.6.12.1.1  netpcd Attribute Definitions
	7.2.6.12.1.2  netpcd Example

	7.2.6.12.2  The policy element
	7.2.6.12.2.1  policy Attribute Definitions
	7.2.6.12.2.2  policy Example

	7.2.6.12.3  The dist_order element
	7.2.6.12.3.1  dist_order Attribute Definitions
	7.2.6.12.3.2  dist_order Example

	7.2.6.12.4  The distributionref element
	7.2.6.12.4.1  distributionref Attribute Definitions
	7.2.6.12.4.2  distributionref Example

	7.2.6.12.5  The distribution element
	7.2.6.12.5.1  distribution Attribute Definitions
	7.2.6.12.5.2  distribution Example
	7.2.6.12.5.3  Default Groups

	7.2.6.12.6  The key element
	7.2.6.12.6.1  key Attribute Definitions
	7.2.6.12.6.2  key Example

	7.2.6.12.7  The fieldref element
	7.2.6.12.7.1  fieldref Attribute Definitions
	7.2.6.12.7.2  fieldref Example

	7.2.6.12.8  The queue element
	7.2.6.12.8.1  queue Attribute Definitions
	7.2.6.12.8.2  queue Example

	7.2.6.12.9  The protocols and protocolref elements
	7.2.6.12.9.1  protocols and protocolref Attribute Definitions
	7.2.6.12.9.2  protocols and protocolref Example

	7.2.6.12.10  The combine element
	7.2.6.12.10.1  combine Attribute Definitions
	7.2.6.12.10.2  combine Example

	7.2.6.12.11  The action element (for use in a policy file)
	7.2.6.12.11.1  action Attribute Definitions
	7.2.6.12.11.2  Statistics
	7.2.6.12.11.3  action Example

	7.2.6.12.12  The classification element
	7.2.6.12.12.1  classification Attribute Definitions
	7.2.6.12.12.2  classification Statistics
	7.2.6.12.12.3  classification Example
	7.2.6.12.12.4  Frame Replicators
	7.2.6.12.12.5  framelength Statistics
	7.2.6.12.12.6  Statistics Example
	7.2.6.12.12.7  Coarse Classification Resource Reservation

	7.2.6.12.13  The entry element
	7.2.6.12.13.1  entry Attribute Definitions
	7.2.6.12.13.2  entry Example

	7.2.6.12.14  The policer element
	7.2.6.12.14.1  policer Attribute Definitions
	7.2.6.12.14.2  policer Example

	7.2.6.12.15  The nonheader element
	7.2.6.12.15.1  nonheader Attribute Definitions
	7.2.6.12.15.2  nonheader Example

	7.2.6.12.16  Hash Tables
	7.2.6.12.17  Virtual Storage Profiles Element
	7.2.6.12.17.1  vsp Attributes
	7.2.6.12.17.2  vsp Examples

	7.2.6.12.18  Manipulation Parameters
	7.2.6.12.18.1  IP Fragmentation
	7.2.6.12.18.2  IP Reassembly
	7.2.6.12.18.3  Header Manipulation
	  Header Manipulation - Insert
	  Header Manipulation - Remove
	  Header Manipulation - Insert-Header
	  Header Manipulation - Remove_Header
	  Header Manipulation - Update
	  Header Manipulation - Custom
	  Header Manipulation - Nextmanip
	  Header Manipulation - Example



	7.2.6.13  Standard Protocol File - Excerpt
	7.2.6.14  Custom Protocol File - GTP Protocol Example

	7.2.7  Security Engine (SEC)
	7.2.7.1  Introduction
	7.2.7.2  Device Tree binding
	7.2.7.3  Module loading
	7.2.7.4  Verifying driver operation and correctness
	7.2.7.5  Incrementing IRQs in /proc/interrupts
	7.2.7.6  Verifying the 'self test' fields say 'passed' in /proc/crypto
	7.2.7.7  Supporting Documentation


	7.3  DPAA2-specific Software
	7.3.1  DPAA2 Software Overview
	7.3.1.1  Introduction
	7.3.1.1.1  DPAA2 in the Layerscape SDK

	7.3.1.2  DPAA2 Hardware
	7.3.1.2.1  Introduction
	7.3.1.2.2  DPAA2 hardware
	7.3.1.2.3  LS2088A block diagram

	7.3.1.3  DPAA2 Linux Software
	7.3.1.3.1  Introduction
	7.3.1.3.2  Linux and DPAA2
	7.3.1.3.3  DPAA2, Management Complex, and drivers
	7.3.1.3.4  DPAA2 and plug-and-play
	7.3.1.3.5  Datapath layout files and restool
	7.3.1.3.5.1  Datapath layout (DPL) file
	7.3.1.3.5.2  restool
	7.3.1.3.5.3  Management Complex commands


	7.3.1.4  DPAA2 Networking Subsystem Deeper Dive
	7.3.1.4.1  DPAA2 hardware abstraction example
	7.3.1.4.1.1  Objects are partitioned among software owners
	7.3.1.4.1.2  Objects can be directly assigned
	7.3.1.4.1.3  DPNI objects provide network interfaces
	7.3.1.4.1.4  Multiple DPIOs provide parallelism
	7.3.1.4.1.5  DPIO services
	7.3.1.4.1.6  Object summary
	  DPNI
	  DPMAC
	  DPSW
	  DPDMUX
	  DPCON
	  DPIO
	  DPBP
	  DPRC
	  DPMCP
	  Objects for accelerators
	  New types of objects


	7.3.1.4.2  Management Complex: How DPAA2 objects are created and managed
	7.3.1.4.2.1  Hardware directly visible to software
	7.3.1.4.2.2  Object creation, the datapath layout file, and restool
	7.3.1.4.2.3  DPRC objects, plug and play, and the fsl-mc Linux “bus”
	  Management Complex (MC) initialization and boot
	  Management Complex datapath layout file (DPL)
	  Bootloader use of the MC
	  DPRCs are hierarchical


	7.3.1.4.3  Objects and topology


	7.3.2  DPAA2 Quick start guide
	7.3.2.1  Data Path Resource Containers
	7.3.2.1.1  Creating DPRCs
	7.3.2.1.2  DPRCs and Hot Plug

	7.3.2.2  Key Release Files: RCW, DPC and DPL
	7.3.2.2.1  RCW
	7.3.2.2.2  Data path configuration file (DPC)
	7.3.2.2.3  Data path layout file (DPL)
	7.3.2.2.3.1  LS2088A RDB DPL
	7.3.2.2.3.2  LS1088A RDB DPL
	7.3.2.2.3.3  DPRCs and restool


	7.3.2.3  Linux Ethernet
	7.3.2.3.1  Features overview
	7.3.2.3.2  Compiling and selecting Kconfig options
	7.3.2.3.3  Creating a DPAA2 network interface
	7.3.2.3.3.1  DPAA2 objects dependencies
	7.3.2.3.3.2  Static DPNI definition
	  DPNI bindings

	7.3.2.3.3.3  DPMAC configuration
	7.3.2.3.3.4  Dynamically creating a DPNI
	  Using restool to create a DPNI
	  Restool Wrapper Scripts


	7.3.2.3.4  DPAA2 Ethernet features
	7.3.2.3.4.1  Bring up the bootstrap DPNI interface
	7.3.2.3.4.2  Primary MAC address change
	7.3.2.3.4.3  Scatter/gather configuration
	7.3.2.3.4.4  Checksum offload configuration
	7.3.2.3.4.5  MAC filtering
	7.3.2.3.4.6  Large frame support
	7.3.2.3.4.7  Generic receive offload
	7.3.2.3.4.8  Egress traffic shaping
	7.3.2.3.4.9  Rx hashing
	7.3.2.3.4.10  Rx flow steering
	7.3.2.3.4.11  Flow Control Pause Frames
	7.3.2.3.4.12  Ethernet Priority-based Flow Control
	7.3.2.3.4.13  XDP support
	  Building XDP Kernel Samples

	7.3.2.3.4.14  MQPRIO qdisc support
	7.3.2.3.4.15  CEETM support
	  Features
	  Prerequisites
	  Usage
	  Example

	7.3.2.3.4.16  Interface statistics
	7.3.2.3.4.17  Software TSO (TCP Segmentation Offload)
	7.3.2.3.4.18  Rx interrupt coalescing

	7.3.2.3.5  Performance considerations

	7.3.2.4  Setting up Ethernet Switch Capability
	7.3.2.4.1  Ethernet Switch overview
	7.3.2.4.2  Switch object creation
	7.3.2.4.2.1  Using restool for dynamic object creation
	  Creating a DPSW
	  Connecting the switch
	  Enabling the switch
	  Restool wrapper scripts

	7.3.2.4.2.2  Using the data path layout file (DPL)

	7.3.2.4.3  Switching features
	7.3.2.4.4  Switching offloads
	7.3.2.4.4.1  Routing actions (redirect, trap, drop)
	7.3.2.4.4.2  Mirroring


	7.3.2.5  Setting Up Edge Virtual Bridge Capability
	7.3.2.5.1  EVB overview
	7.3.2.5.2  EVB object creation
	7.3.2.5.2.1  Using restool for dynamic object creation
	  Creating a DPDMUX
	  Connecting the EVB
	  Enabling the EVB
	  Restool wrapper scripts

	7.3.2.5.2.2  Using the data path layout file (DPL)

	7.3.2.5.3  Setting up the EVB driver
	7.3.2.5.4  EVB commands supported
	7.3.2.5.4.1  EVB interface control
	7.3.2.5.4.2  Maximum frame size configuration
	7.3.2.5.4.3  EVB FDB entries
	7.3.2.5.4.4  EVB VLAN assignment
	7.3.2.5.4.5  EVB port statistics

	7.3.2.5.5  Forwarding methods overview
	7.3.2.5.5.1  Forwarding by destination MAC address
	7.3.2.5.5.2  Forwarding by VLAN tag
	7.3.2.5.5.3  Forwarding by VLAN tag and destination MAC address


	7.3.2.6  Security Engine (SEC)
	7.3.2.6.1  Introduction
	7.3.2.6.2  Module loading
	7.3.2.6.3  Enabling congestion management
	7.3.2.6.4  Source files
	7.3.2.6.5  How to test the driver
	7.3.2.6.6  Running OpenSSL
	7.3.2.6.7  Supporting Documentation


	7.3.3  DPAA2 Standard Linux Documentation
	7.3.3.1  Kernel Documentation Directory
	7.3.3.2  DPAA2 Resource Management Tool (restool) User Manual

	7.3.4  DPAA2 User Manual
	7.3.5  Soft Parser Support
	7.3.5.1  Soft Parser Configuration Tool
	7.3.5.1.1  Introduction
	7.3.5.1.2  Defining a custom protocol
	7.3.5.1.2.1  The <netpdl> element
	7.3.5.1.2.2  The <protocol> element
	  Use of “otherl3/otherl4/otherl5” as previous protocols

	7.3.5.1.2.3  The <format> element
	7.3.5.1.2.4  The <fields> element
	7.3.5.1.2.5  The <field> element
	7.3.5.1.2.6  The <execute-code> element
	7.3.5.1.2.7  The <before> element
	7.3.5.1.2.8  The <after> element
	7.3.5.1.2.9  Elements in the before and after sections
	  The <assign-variable> element
	  The <if> element
	  <if-true>
	  <if-false>

	  The <switch> element
	  The <case> element
	  The <default> element

	  The <action> element



	7.3.5.1.3  Expressions
	7.3.5.1.3.1  Operands
	  Numbers
	  Fields
	  Variables
	  Result Array Variables
	  Parameter Array
	  Header size variables
	  Frame Window
	  Variable prevprotoOffset


	7.3.5.1.3.2  Operators
	  The concat operator
	  The checksum operator
	  Expression priorities
	  Specific operator priorities
	  Variables size

	7.3.5.1.3.3  Expression types
	  Logical expressions
	  Arithmetic expressions


	7.3.5.1.4  FAF – frame attribute flags
	7.3.5.1.4.1  Inspect FAF
	7.3.5.1.4.2  Modify FAF
	  Available FAF attributes names


	7.3.5.1.5  Subroutines support
	7.3.5.1.5.1  Defining a subroutine
	7.3.5.1.5.2  Calling a subroutine
	7.3.5.1.5.3  Example of a subroutine usage

	7.3.5.1.6  SP Hardware configuration file
	7.3.5.1.6.1  The <spconfig> element
	7.3.5.1.6.2  SoC configuration
	7.3.5.1.6.3  Memory map configuration
	  The <memorymap> element
	  The <bytecode> element
	  The <load-on-parser> element
	  The <load-protocol> element
	  Example for memory map definition

	7.3.5.1.6.4  SP profiles configuration
	  The <sp-profiles> element
	  The <profile> element
	  The <protocol> element

	7.3.5.1.6.5  SP parameters configuration
	  The <parameters> element
	  The <parameter> element

	7.3.5.1.6.6  Device configuration
	  The <device> element
	  The <parser> element
	  The <set-profile> element
	  Example to profile settings


	7.3.5.1.7  Tips and recommendations
	7.3.5.1.7.1  Updating important fields
	7.3.5.1.7.2  Refraining from modifying specific fields
	7.3.5.1.7.3  Setting the next protocol

	7.3.5.1.8  Limitations
	7.3.5.1.8.1  Complex expressions

	7.3.5.1.9  Running the Soft Parser tool
	7.3.5.1.10  Output of the SPC tool

	7.3.5.2  SPC on DPAA 2.x Based Platforms
	7.3.5.2.1  Introduction
	7.3.5.2.1.1  Solution overview
	7.3.5.2.1.2  System Architecture

	7.3.5.2.2  Applying Soft Parser Blob on hardware
	7.3.5.2.3  Limitations



	7.4  Packet Forward Engine (PFE) Network Driver
	7.4.1  Introduction
	7.4.1.1  Purpose
	7.4.1.2  Features

	7.4.2  High-level decomposition and data flow
	7.4.3  NAPI support
	7.4.4  Interrupt coalescing
	7.4.5  Checksum offloading
	7.4.6  Scatter gather support
	7.4.7  Ethtool support

	7.5  Linux Ethernet Driver for eTSEC
	7.5.1  Linux Ethernet Driver for eTSEC
	7.5.1.1  Introduction
	7.5.1.1.1  Purpose
	7.5.1.1.2  Features
	7.5.1.1.3  Notes on high level decomposition and data flow

	7.5.1.2  Functionality
	7.5.1.2.1  Multi-Queue support
	7.5.1.2.2  RSS support
	7.5.1.2.3  NAPI support
	7.5.1.2.4  Interrupt Coalescing
	7.5.1.2.5  Header Recognition and Csum Offload
	7.5.1.2.6  Scatter Gather support

	7.5.1.3  Configuration and Control
	7.5.1.3.1  Device Tree initialization
	7.5.1.3.2  Ethtool support



	7.6  ENETC Ethernet and Felix switch drivers
	7.6.1  LS1028A interface naming
	7.6.1.1  LS10128A interface naming in U-Boot
	7.6.1.2  LS1028A interface naming in Linux

	7.6.2  ENETC Linux Ethernet driver
	7.6.2.1  Introduction
	7.6.2.1.1  Acronyms, abbreviations, and terms

	7.6.2.2  Linux kernel configuration items
	7.6.2.2.1  Driver modules and dependencies
	7.6.2.2.2  Kernel configuration options
	7.6.2.2.3  Device tree nodes
	7.6.2.2.4  Source files

	7.6.2.3  Linux runtime usage
	7.6.2.3.1  ENETC interfaces and probing
	7.6.2.3.2  Multi-queue support
	7.6.2.3.3  Rx checksum offload
	7.6.2.3.4  Unicast and multicast MAC filtering
	7.6.2.3.5  VLAN filtering
	7.6.2.3.6  VLAN insertion/ extraction
	7.6.2.3.7  Scatter-gather and jumbo frame support
	7.6.2.3.8  Rx flow hashing (RSS)
	7.6.2.3.9  Rx flow steering (RFS)
	7.6.2.3.10  QoS – TC offloading with h/w MQPRIO
	7.6.2.3.11  Statistics and debug counters
	7.6.2.3.12  Interrupt coalescing support
	7.6.2.3.13  VF primary MAC address config
	7.6.2.3.14  Flow control
	7.6.2.3.15  Driver support for XDP
	7.6.2.3.15.1  Driver support for AF_XDP


	7.6.2.4  Performance considerations and benchmarking provisions
	7.6.2.5  Known limitations
	7.6.2.5.1  External MDIO read issue
	7.6.2.5.1.1  VF module link issues on some kernels
	7.6.2.5.1.2  VF module probing denied due to duplicate symbol

	7.6.2.5.2  VF primary MAC address configuration issues


	7.6.3  Felix Linux Ethernet driver
	7.6.3.1  Introduction
	7.6.3.2  Linux kernel configuration items
	7.6.3.2.1  Driver modules and dependencies
	7.6.3.2.2  Kernel configuration options
	7.6.3.2.3  Device tree nodes
	7.6.3.2.4  Source files

	7.6.3.3  Linux runtime usage
	7.6.3.3.1  Felix interfaces and probing
	7.6.3.3.2  Connecting to host CPU
	7.6.3.3.2.1  NPI port mode
	  Frame injection
	  Frame extraction

	7.6.3.3.2.2  Non-CPU port mode (L2 forwarding)
	7.6.3.3.2.3  Tag_8021q CPU port mode

	7.6.3.3.3  Single port mode
	7.6.3.3.4  Bridge mode
	7.6.3.3.5  Gateway mode
	7.6.3.3.6  VLAN filtering
	7.6.3.3.7  Jumbo frame support
	7.6.3.3.8  QoS – Port policers
	7.6.3.3.9  Statistic counters
	7.6.3.3.10  Advanced packet classification
	7.6.3.3.11  Basic QoS classification
	7.6.3.3.12  Port mirroring
	7.6.3.3.13  Link aggregation
	7.6.3.3.14  Cut-through forwarding
	7.6.3.3.15  Buffer reservation watermarks

	7.6.3.4  Known limitations
	7.6.3.4.1  Lack of flow control on NPI port



	7.7  IEEE 1588/802.1AS
	7.7.1  Introduction
	7.7.2  IEEE 1588 device types
	7.7.3  IEEE 802.1AS time-aware systems
	7.7.4  linuxptp stack
	7.7.5  Quick Start for IEEE 1588
	7.7.5.1  Ordinary clock verification
	7.7.5.2  Boundary clock verification

	7.7.6  Quick Start for IEEE 802.1AS
	7.7.6.1  Time-aware end station verification

	7.7.7  Quick start for external signals
	7.7.7.1  PPS signal
	7.7.7.2  External trigger signal
	7.7.7.3  Programmable PTP pins
	7.7.7.4  PTP device tree node configuration

	7.7.8  Known issues and limitations

	7.8  Time Sensitive Networking (TSN)
	7.8.1  Using TSN features on LS1028ARDB
	7.8.1.1  Tsntool User Manual
	7.8.1.1.1  Getting the source code
	7.8.1.1.2  Tsn tool commands
	7.8.1.1.3  Tsntool commands and parameters
	7.8.1.1.4  Input tips
	7.8.1.1.5  Non-interactive mode

	7.8.1.2  Kernel configuration
	7.8.1.3  Basic TSN configuration examples on ENETC
	7.8.1.3.1  Linuxptp test
	7.8.1.3.2  Qbv test
	7.8.1.3.2.1  Basic gates closing
	7.8.1.3.2.2  Basetime test
	7.8.1.3.2.3  Qbv performance test
	7.8.1.3.2.4  Qbv setup using taprio Qdisc

	7.8.1.3.3  Qci test cases
	7.8.1.3.3.1  Test SFI No Streamhandle
	7.8.1.3.3.2  Testing null stream identify entry
	7.8.1.3.3.3  Testing source stream identify entry
	7.8.1.3.3.4  SGI stream gate list
	7.8.1.3.3.5  FMI test

	7.8.1.3.4  Qbu test
	7.8.1.3.5  Qav test
	7.8.1.3.5.1  Tsntool usage
	7.8.1.3.5.2  tc-cbs usage


	7.8.1.4  Basic TSN configuration examples on the switch
	7.8.1.4.1  Switch configuration
	7.8.1.4.2  Linuxptp test
	7.8.1.4.3  Qbv test
	7.8.1.4.3.1  Closing basic gates
	7.8.1.4.3.2  Basetime test
	7.8.1.4.3.3  Qbv performance test
	7.8.1.4.3.4  Tc-taprio usage

	7.8.1.4.4  Qbu test
	7.8.1.4.5  Qci test cases
	7.8.1.4.5.1  Stream identification
	7.8.1.4.5.2  Stream gate control
	7.8.1.4.5.3  SFI maxSDU test
	7.8.1.4.5.4  FMI test
	7.8.1.4.5.5  Port-based SFI set
	7.8.1.4.5.6  Tc-flower usage

	7.8.1.4.6  Qav test case
	7.8.1.4.6.1  Tsntool usage
	7.8.1.4.6.2  Tc-cbs usage

	7.8.1.4.7  Seamless redundancy test case
	7.8.1.4.7.1  Sequence Generator test
	7.8.1.4.7.2  Sequence Recover test

	7.8.1.4.8  TSN stream identification
	7.8.1.4.8.1  Stream identification based on PCP value of Vlan tag
	7.8.1.4.8.2  Based on DSCP of ToS tag
	7.8.1.4.8.3  Based on qci stream identification




	7.9  General networking performance considerations

	8  Linux user space
	8.1  Libraries
	8.1.1  OpenSSL
	8.1.1.1  OpenSSL offload
	8.1.1.1.1  OpenSSL software architecture
	8.1.1.1.2  OpenSSL's ENGINE interface
	8.1.1.1.3  NXP solution for OpenSSL hardware offloading
	8.1.1.1.4  Deploying OpenSSL into rootfs
	8.1.1.1.5  Running OpenSSL benchmarking tests with cryptodev engine
	8.1.1.1.5.1  Running OpenSSL benchmarking tests for symmetric ciphering and digest



	8.1.2  Runtime Assembler Library Reference
	8.1.2.1  Runtime Assembler Library Reference


	8.2  Data Plane Development Kit (DPDK)
	8.2.1  Introduction
	8.2.1.1  Supported platforms and platform-specific details
	8.2.1.1.1  LS1012A Reference Design Board (RDB)
	8.2.1.1.1.1  Hardware specification of LS1012ARDB
	8.2.1.1.1.2  LS1012ARDB port layout
	8.2.1.1.1.3  Ethernet ports

	8.2.1.1.2  LS1028A Reference Design Board (RDB)
	8.2.1.1.3  LS1043A Reference Design Board (RDB)
	8.2.1.1.3.1  Hardware Specification of LS1043ARDB
	8.2.1.1.3.2  LS1043ARDB Port Layout

	8.2.1.1.4  LS1046A Reference Design Board (RDB) / LS1046A Freeway Board (FRWY)
	8.2.1.1.4.1  Hardware specification of LS1046ARDB
	8.2.1.1.4.2  LS1046ARDB port layout
	8.2.1.1.4.3  FRWY-LS1046A port layout

	8.2.1.1.5  LS1088A Reference Design Board (RDB)
	8.2.1.1.5.1  Hardware Specifications of LS1088ARDB
	8.2.1.1.5.2  LS1088ARDB Port Layout

	8.2.1.1.6  LS2088A Reference Design Board (RDB)
	8.2.1.1.6.1  Hardware specifications
	8.2.1.1.6.2  LS2088ARDB Port Layout

	8.2.1.1.7  LX2160A Reference Design Board (RDB)
	8.2.1.1.7.1  Hardware specifications
	8.2.1.1.7.2  LX2160ARDB Port Layout
	8.2.1.1.7.3  SerDes Configuration


	8.2.1.2  References

	8.2.2  DPDK overview
	8.2.2.1  DPDK platform support
	8.2.2.2  DPAA supported DPDK features
	8.2.2.3  DPAA2 supported DPDK features
	8.2.2.4  PPFE supported DPDK features
	8.2.2.5  ENETC supported DPDK features

	8.2.3  Build DPDK
	8.2.3.1  Build DPDK using Yocto bitbake
	8.2.3.1.1  Layout of DPDK binaries

	8.2.3.2  Build DPDK on host (Native)
	8.2.3.2.1  Set up proxies
	8.2.3.2.2  Obtain the DPDK source code
	8.2.3.2.3  Compiling DPDK using meson

	8.2.3.3  Standalone build of DPDK libraries and applications
	8.2.3.3.1  Obtain the DPDK source code
	8.2.3.3.2  Prerequisites of Compiling DPDK
	8.2.3.3.3  Compiling DPDK using meson

	8.2.3.4  Build DPDK-based Packet Generator (pktgen) using Yocto
	8.2.3.5  Build OVS-DPDK using Yocto
	8.2.3.5.1  Layout of OVS-DPDK binaries

	8.2.3.6  Virtual machine (VM or guest) images

	8.2.4  Executing DPDK applications on host
	8.2.4.1  Booting up target board
	8.2.4.2  Prerequisite for running DPDK applications
	8.2.4.2.1  Test environment setup
	8.2.4.2.1.1  Test Environment Setup

	8.2.4.2.2  Generic setup - DPAA
	8.2.4.2.2.1  DPAA hardware configuration files
	8.2.4.2.2.2  Setting up DPAA environment
	8.2.4.2.2.3  Cleaning up DPAA environment

	8.2.4.2.3  Generic setup - DPAA2
	8.2.4.2.3.1  Setting up DPAA2 environment
	8.2.4.2.3.2  Teardown of DPAA2 environment

	8.2.4.2.4  Generic setup - PPFE
	8.2.4.2.5  Generic setup – ENETC

	8.2.4.3  DPDK example applications
	8.2.4.3.1  dpdk-l2fwd – Layer 2 forwarding application
	8.2.4.3.2  dpdk-l2fwd-event – Event-based Layer 2 forwarding application
	8.2.4.3.3  dpdk-l2fwd–qdma - Layer 2 forwarding application using QDMA (DPAA2 only)
	8.2.4.3.4  dpdk-l3fwd – Layer 3 forwarding application
	8.2.4.3.5  dpdk-l2fwd-crypto – Layer 2 forwarding using SEC hardware
	8.2.4.3.6  dpdk-l2fwd-crypto – Layer 2 forwarding using OpenSSL software instructions
	8.2.4.3.7  dpdk-ipsec-secgw – IPSec gateway using SEC hardware
	8.2.4.3.8  Running DPDK IPSec gateway application with hardware protocol offload
	8.2.4.3.9  Running DPDK IPSec gateway application with eight cores
	8.2.4.3.10  Running DPDK IPSec gateway application with 16 cores on LX2 platform
	8.2.4.3.11  dpdk-ipsec-secgw – IPSec gateway using OpenSSL PMD
	8.2.4.3.12  dpdk-kni - Using Kernel Network Interface Module
	8.2.4.3.13  dpdk-qdma-demo application
	8.2.4.3.14  Pktgen – DPDK-based software packet generator

	8.2.4.4  Multiple parallel DPDK applications
	8.2.4.4.1  Creating multiple DPRC instances
	8.2.4.4.2  Executing multiple DPDK applications


	8.2.5  OVS-DPDK and DPDK in VM with VIRTIO interfaces
	8.2.5.1  Generic steps
	8.2.5.2  Configuring OVS
	8.2.5.3  Launch Virtual Machine
	8.2.5.3.1  Setup the environment
	8.2.5.3.2  Launch QEMU and virtual machine

	8.2.5.4  Accessing virtual machine console
	8.2.5.5  Launching two virtual machines
	8.2.5.6  Running DPDK applications in VM
	8.2.5.6.1  Generic setup
	8.2.5.6.2  Run DPDK applications

	8.2.5.7  Multi Queue VIRTIO support
	8.2.5.7.1  Additional steps for OVS setup
	8.2.5.7.2  Launch VM with multiqueue VHOST devices
	8.2.5.7.3  DPDK applications in VM

	8.2.5.8  OVS DPDK Performance Guide

	8.2.6  Enabling DPAA2 direct assignment for DPDK
	8.2.6.1  Launch virtual machine
	8.2.6.2  Accessing the virtual machine console
	8.2.6.3  Running DPDK applications with direct device assignments

	8.2.7  DPDK on Docker
	8.2.7.1  Docker Overview
	8.2.7.2  DPAA1-Platform
	8.2.7.2.1  Running Docker Container on DPAA1
	8.2.7.2.2  Running the DPDK Application

	8.2.7.3  DPAA2-Platform
	8.2.7.3.1  Traffic Multiplexer/De-Multiplexer
	8.2.7.3.1.1  Using DPDMUX
	8.2.7.3.1.2  Using DPSW

	8.2.7.3.2  Single Docker Instance - Container Configuration (DPDMUX/DPSW)
	8.2.7.3.2.1  Configuration using DPDMUX
	8.2.7.3.2.2  Configuration using DPSW

	8.2.7.3.3  Running Docker Container on DPAA2
	8.2.7.3.4  Running the DPDK Application
	8.2.7.3.5  Example Configuration for 2 Docker Instances: Using DPDMUX
	8.2.7.3.6  Example Configuration for 2 Docker Instances: Using DPSW


	8.2.8  DPDK DPAA2 flow control
	8.2.8.1  Preparing soft parser image
	8.2.8.2  Testing flow control in testpmd
	8.2.8.2.1  Testing ingress traffic
	8.2.8.2.2  Testing flow with RAW and standard protocols
	8.2.8.2.3  Testing VXLAN flows
	8.2.8.2.4  Testing eCPRI flow
	8.2.8.2.5  Testing ROCEv2 flow
	8.2.8.2.6  Testing flow control on multiple TCs


	8.2.9  PCI Endpoint Framework
	8.2.9.1  PCIe EndPoint implementation in DPDK
	8.2.9.2  DU offload example
	8.2.9.3  Usages
	8.2.9.3.1  DPDK Endpoint build
	8.2.9.3.2  DPDK Root Complex build
	8.2.9.3.3  Basic test setup
	8.2.9.3.3.1  Start Endpoint
	8.2.9.3.3.2  Start Root Complex


	8.2.9.4  Small packets across PCIe performance improvement on Endpoint
	8.2.9.5  Multiple process
	8.2.9.6  Primary process
	8.2.9.7  Secondary process
	8.2.9.8  PCIe EP/RC PMD simulator setup and traffic measurement on single board
	8.2.9.9  L1-TB (EP) / L2-SDB (RC) transfer across PCIe

	8.2.10  Known limitations and future work
	8.2.10.1  Generic limitations
	8.2.10.2  DPAA1-specific limitations
	8.2.10.3  DPAA2-specific limitations
	8.2.10.4  PPFE (LS1012)-specific limitations
	8.2.10.5  ENETC (LS1028)-specific limitations

	8.2.11  Optimizing DPAA-based DPDK buffer management
	8.2.12  Troubleshooting
	8.2.13  DPDK Performance Reproducibility Guide
	8.2.13.1  Before booting up Linux
	8.2.13.2  Before and while starting DPDK Application

	8.2.14  Use cases
	8.2.14.1  Traffic bifurcation using VSP on DPAA
	8.2.14.1.1  Environment setup
	8.2.14.1.2  Steps to run VSP mode
	8.2.14.1.3  Expected results

	8.2.14.2  Traffic bifurcation using DPSW on DPAA2
	8.2.14.2.1  DPSW in dprc.2
	8.2.14.2.2  DPSW in dprc.1

	8.2.14.3  Traffic bifurcation using DPDMUX on DPAA2
	8.2.14.3.1  Environment setup
	8.2.14.3.2  Expected results

	8.2.14.4  DPDK multi-process
	8.2.14.4.1  DPDK Multiprocess Support
	8.2.14.4.2  Various Multiprocess Models
	8.2.14.4.3  Environment Setup
	8.2.14.4.4  Executing DPDK example application

	8.2.14.5  Traffic Policing in DPAA
	8.2.14.6  Precision Time Protocol (IEEE1588)
	8.2.14.6.1  Supported platforms
	8.2.14.6.2  Build procedure
	8.2.14.6.3  Test setup and prerequisite to test with ptpclient
	8.2.14.6.4  DPAA1 test procedure with ptpclient
	8.2.14.6.4.1  Non-VSP mode
	  Tester machine
	  DUT machine

	8.2.14.6.4.2  VSP mode
	  Tester machine
	  DUT machine
	  Boot the board
	  Run ptp client


	8.2.14.6.5  DPAA2 test procedure with ptpclient

	8.2.14.7  Traffic Management Support in DPAA2
	8.2.14.7.1  Supported Features
	8.2.14.7.2  Testing

	8.2.14.8  Flow Control Support in DPAA2


	8.3  Vector Packet Processing (VPP)
	8.3.1  Introduction
	8.3.2  Supported platform
	8.3.3  Supported use cases
	8.3.4  Build VPP
	8.3.4.1  Standalone build steps
	8.3.4.2  Build VPP using Yocto

	8.3.5  Executing VPP
	8.3.5.1  Setup VPP environment
	8.3.5.2  Execute VPP

	8.3.6  Known Limitations

	8.4  mTCP
	8.4.1  Introduction
	8.4.2  Supported Platforms
	8.4.3  Supported Applications
	8.4.4  Build Steps
	8.4.4.1  Standalone build steps
	8.4.4.2  Prerequisites before compiling mTCP

	8.4.5  Executing mTCP

	8.5  USDPAA

	9  Virtualization
	9.1  KVM/QEMU User Guide and Reference
	9.1.1  KVM/QEMU Overview
	9.1.1.1  Using QEMU and KVM
	9.1.1.1.1  Overview of Using QEMU
	9.1.1.1.2  Virtual Machine Memory
	9.1.1.1.3  Virtual network interfaces
	9.1.1.1.4  Virtual block devices
	9.1.1.1.5  Direct assigned devices
	9.1.1.1.5.1  VFIO - Virtual Function I/O
	9.1.1.1.5.2  VFIO PCI
	9.1.1.1.5.3  VFIO for LS2 MC Bus

	9.1.1.1.6  VMs and the Linux Scheduler

	9.1.1.2  Virtual Machine Overview
	9.1.1.3  Introduction to KVM and QEMU
	9.1.1.4  Device Tree Overview
	9.1.1.5  References
	9.1.1.6  For More Information
	9.1.1.7  Virtual machine reference
	9.1.1.7.1  VM Overview
	9.1.1.7.2  Memory Map of Virtual I/O Devices
	9.1.1.7.3  Virtual machine state at initialization
	9.1.1.7.3.1  Initial State and Boot
	9.1.1.7.3.2  Initial State of Virtual CPUs

	9.1.1.7.4  Virtual CPUs
	9.1.1.7.4.1  Virtual CPU Specification
	9.1.1.7.4.2  Time in the Virtual CPU

	9.1.1.7.5  VGIC


	9.1.2  Configuring and Building
	9.1.2.1  Overview
	9.1.2.2  Quick Start - Recommended Configuration Options
	9.1.2.3  Host Kernel: Enabling KVM
	9.1.2.4  Host Kernel: Enabling Virtual Networking
	9.1.2.5  Host kernel: Enabling DPAA2 direct assignment
	9.1.2.6  Host kernel: Enabling PCIe direct assignment
	9.1.2.7  Guest kernel: Enabling console
	9.1.2.8  Guest Kernel: Enabling Network and Block Virtual I/O
	9.1.2.9  Building kernel with KVM support using Yocto
	9.1.2.10  Creating a host Linux root filesystem
	9.1.2.11  Creating a guest Linux root filesystem

	9.1.3  KVM/QEMU How-to's
	9.1.3.1  Quick-start steps to build and deploy KVM
	9.1.3.2  Quick-start Steps to Run KVM Using Hugetlbfs
	9.1.3.3  How to Use Virtual Network Interfaces Using Virtio
	9.1.3.4  How to use vhost-net with virtio
	9.1.3.5  How to Use Virtual Disks Using Virtio
	9.1.3.6  How to use virtual disks using virtio-blk-dataplane
	9.1.3.7  How to use DPAA2 direct assignment without scripts
	9.1.3.8  How to use DPAA2 direct assignment with scripts
	9.1.3.8.1  Single core guest with one network interface
	9.1.3.8.2  Multicore guest with one network interface
	9.1.3.8.3  ANNEX 1 - vm_1_core.dts
	9.1.3.8.4  ANNEX 2 - vm_8_core.dts

	9.1.3.9  How to use PCIe direct assignment
	9.1.3.10  Passthrough of USB Devices
	9.1.3.11  Debugging: How to Examine Initial Virtual Machine State with QEMU
	9.1.3.12  Debugging: How to Profile Virtualization Overhead with KVM
	9.1.3.13  Debugging virtual machines
	9.1.3.13.1  QEMU Monitor
	9.1.3.13.2  QEMU GDB Stub



	9.2  Linux Containers User Guide
	9.2.1  Introduction to Linux Containers
	9.2.1.1  Overview
	9.2.1.2  For Further Information

	9.2.2  More Details
	9.2.2.1  Containers with Libvirt
	9.2.2.2  Linux Control Groups (cgroups)
	9.2.2.3  Linux Namespaces
	9.2.2.4  POSIX Capabilities

	9.2.3  Libvirt
	9.2.3.1  Libvirt Domain Lifecycle
	9.2.3.2  Domain States
	9.2.3.3  Libvirt URIs
	9.2.3.4  Virsh
	9.2.3.5  Libvirt XML
	9.2.3.6  Running libvirtd
	9.2.3.7  Examples
	9.2.3.8  Libvirt KVM/QEMU Examples
	9.2.3.9  Virtio Block scenario
	9.2.3.10  Virtio Net scenario
	9.2.3.11  Virtio Block Dataplane
	9.2.3.12  Libvirt LXC Examples
	9.2.3.13  Basic Example
	9.2.3.14  Further Information
	9.2.3.15  Annex 1: kvm_virtio_blk.xml
	9.2.3.16  Annex 2: kvm_virtio_net.xml
	9.2.3.17  Annex 3: kvm_virtio_blk_dataplane.xml


	9.3  Docker Containers
	9.3.1  Introduction to Docker Containers
	9.3.1.1  Overview

	9.3.2  Docker How To's
	9.3.2.1  Running a web server container



	10  Power management
	10.1  Power management user manual
	10.1.1  Linux SDK for QorIQ Processors
	10.1.2  Kernel configure tree view options
	10.1.3  Compile-time configuration options
	10.1.4  Device tree binding
	10.1.5  Source files
	10.1.6  Verification in Linux
	10.1.7  Supporting documentation

	10.2  CPU Frequency Switching User Manual
	10.2.1  Linux SDK for QorIQ Processors
	10.2.2  Abbreviations and Acronyms
	10.2.3  Description
	10.2.4  Compile-time Configuration Options
	10.2.5  User Space Application
	10.2.6  Device Tree Binding
	10.2.7  Source Files
	10.2.8  Verification in Linux

	10.3  Thermal management user manual
	10.3.1  Description
	10.3.2  Specifications
	10.3.3  Kernel Configure Tree View Options (For PowerPC platform)
	10.3.4  Kernel Configure Tree View Options (For Arm platform)
	10.3.5  Compile-time Configuration Options
	10.3.6  Device Tree Binding
	10.3.7  Source Files
	10.3.8  Verification in Linux

	10.4  System Monitor
	10.4.1  Power Monitor User Manual
	10.4.1.1  Power Monitoring Configuration and Test Steps

	10.4.2  Thermal Monitor User Manual
	10.4.2.1  Description
	10.4.2.2  Kernel Configure Tree View Options
	10.4.2.3  Compile-time Configuration Options
	10.4.2.4  Device Tree Binding
	10.4.2.5  Source Files
	10.4.2.6  Verification in Linux



	11  Acronyms
	12  Note about the source code in the document
	13  Revision history
	14  Legal information
	Contents




NXP Semiconductors


 


DPAA2 User Manual


Document identifier: DPAA2UM
Rev. 50, 08/2022 


(Compatible with MC firmware v10.35.x)







DPAA2UM, Rev 50, 08/2022


NXP Semiconductors -iii


Contents
Paragraph
Number Title


Page
Number


Rev 50, 08/2022Rev 50, 08/2022Rev 50, 08/2022Rev 24Rev 50, 08/2022Rev 50, 08/2022Rev 50, 08/2022Contents


Chapter 1  Introduction


1.1 Intended audience ............................................................................................................ 1-2
1.2 Definitions and acronyms ................................................................................................ 1-2


Chapter 2  Overview


2.1 Introduction to DPAA2 objects........................................................................................ 2-1
2.1.1 Network objects ........................................................................................................... 2-2
2.1.1.1 Data Path Network Interface (DPNI) ...................................................................... 2-2
2.1.1.2 Data Path MAC (DPMAC)...................................................................................... 2-2
2.1.1.3 Data Path Switch (DPSW)....................................................................................... 2-3
2.1.1.4 Data Path Demux (DPDMUX)................................................................................ 2-3
2.1.2 DPAA2 infrastructure objects ...................................................................................... 2-4
2.1.2.1 Data Path Buffer Pool (DPBP) ................................................................................ 2-4
2.1.2.2 Data Path I/O Portal (DPIO).................................................................................... 2-4
2.1.2.3 Data Path Concentrator (DPCON)........................................................................... 2-4
2.1.3 Accelerator interfaces .................................................................................................. 2-5
2.1.3.1 Data Path Security Interface (DPSECI)................................................................... 2-5
2.1.3.2 Data Path De/Compression Interface (DPDCEI) .................................................... 2-5
2.1.3.3 Data Path DMA Interface (DPDMAI)..................................................................... 2-6
2.1.4 Management and control objects ................................................................................. 2-6
2.1.4.1 Data Path Communication Interface (DPCI)........................................................... 2-6
2.1.4.2 Data Path Resource Container (DPRC)................................................................... 2-7
2.1.4.3 Data Path MC Portal (DPMCP)............................................................................... 2-7
2.1.5 DPAA2 object support per platform ............................................................................ 2-8
2.2 Objects topology and inter-connect ................................................................................. 2-8
2.2.1 Connection and link state........................................................................................... 2-10
2.2.2 Typical object connections......................................................................................... 2-10
2.2.3 How and when to connect.......................................................................................... 2-12


Chapter 3  Boot and Initialization Process


3.1 Loading the MC firmware ............................................................................................... 3-1
3.2 Data Path Configuration (DPC)....................................................................................... 3-1
3.3 Data Path Layout (DPL) .................................................................................................. 3-1
3.4 Starting MC...................................................................................................................... 3-2
3.5 Minimum memory requirements ..................................................................................... 3-3







DPAA2UM, Rev 50, 08/2022


-iv NXP Semiconductors


Contents
Paragraph
Number Title


Page
Number


Chapter 4  MC Firmware Versions


4.1 MC global firmware versions .......................................................................................... 4-1
4.2 DPAA2 Object versions ................................................................................................... 4-1
4.3 DPAA2 Object Commands .............................................................................................. 4-1
4.4 Recommended user verification ...................................................................................... 4-2
4.5 Firmware command reference ......................................................................................... 4-3
4.5.1 DPMNG_GET_VERSION.......................................................................................... 4-3
4.5.2 DPMNG_GET_SOC_VERSION ................................................................................ 4-5


Chapter 5  Management Command Portals


5.1 Overview of command portals......................................................................................... 5-1
5.2 Command portal usage .................................................................................................... 5-1
5.3 Creating and destroying DPAA2 objects ......................................................................... 5-2
5.4 Command portals memory map....................................................................................... 5-3
5.5 Management command portal definition ......................................................................... 5-4
5.6 MC General Command Portals command reference ....................................................... 5-6
5.6.1 DPMNG_GET_CONT_ID .......................................................................................... 5-6


Chapter 6  DPRC: Data Path Resource Container


6.1 DPRC features ................................................................................................................. 6-1
6.2 DPRC functional description ........................................................................................... 6-2
6.2.1 Resource container creation......................................................................................... 6-2
6.2.2 Objects assignment ...................................................................................................... 6-2
6.2.3 Objects discovery......................................................................................................... 6-2
6.3 DPRC command reference .............................................................................................. 6-3
6.3.1 DPRC_OPEN............................................................................................................... 6-3
6.3.2 DPRC_CLOSE ............................................................................................................ 6-4
6.3.3 DPRC_CREATE_CONTAINER ................................................................................. 6-5
6.3.4 DPRC_DESTROY_CONTAINER.............................................................................. 6-7
6.3.5 DPRC_RESET_CONTAINER.................................................................................... 6-8
6.3.6 DPRC_SET_LOCKED................................................................................................ 6-9
6.3.7 DPRC_SET_IRQ....................................................................................................... 6-10
6.3.8 DPRC_GET_IRQ ...................................................................................................... 6-11
6.3.9 DPRC_SET_IRQ_ENABLE ..................................................................................... 6-13
6.3.10 DPRC_GET_IRQ_ENABLE..................................................................................... 6-14
6.3.11 DPRC_SET_IRQ_MASK ......................................................................................... 6-16
6.3.12 DPRC_GET_IRQ_MASK......................................................................................... 6-17
6.3.13 DPRC_GET_IRQ_STATUS...................................................................................... 6-19







DPAA2UM, Rev 50, 08/2022


NXP Semiconductors -v


Contents
Paragraph
Number Title


Page
Number


6.3.14 DPRC_CLEAR_IRQ_STATUS................................................................................. 6-21
6.3.15 DPRC_GET_ATTRIBUTES ..................................................................................... 6-22
6.3.16 DPRC_SET_RES_QUOTA....................................................................................... 6-24
6.3.17 DPRC_GET_RES_QUOTA ...................................................................................... 6-25
6.3.18 DPRC_ASSIGN......................................................................................................... 6-27
6.3.19 DPRC_UNASSIGN................................................................................................... 6-28
6.3.20 DPRC_GET_POOL_COUNT................................................................................... 6-29
6.3.21 DPRC_GET_POOL................................................................................................... 6-31
6.3.22 DPRC_GET_OBJ_COUNT ...................................................................................... 6-33
6.3.23 DPRC_GET_OBJ ...................................................................................................... 6-35
6.3.24 DPRC_GET_OBJ_DESC.......................................................................................... 6-37
6.3.25 DPRC_GET_RES_COUNT ...................................................................................... 6-39
6.3.26 DPRC_GET_RES_IDS ............................................................................................. 6-41
6.3.27 DPRC_GET_OBJ_REGION..................................................................................... 6-43
6.3.28 DPRC_SET_OBJ_LABEL........................................................................................ 6-45
6.3.29 DPRC_SET_OBJ_IRQ.............................................................................................. 6-46
6.3.30 DPRC_GET_OBJ_IRQ ............................................................................................. 6-47
6.3.31 DPRC_CONNECT .................................................................................................... 6-49
6.3.32 DPRC_DISCONNECT.............................................................................................. 6-50
6.3.33 DPRC_GET_CONNECTION ................................................................................... 6-51
6.3.34 DPRC_GET_API_VERSION ................................................................................... 6-53
6.3.35 DPRC_GET_MEM.................................................................................................... 6-55


Chapter 7  DPNI: Data Path Network Interface


7.1 DPNI features .................................................................................................................. 7-1
7.2 DPNI functional description ............................................................................................ 7-3
7.2.1 Ingress frame processing ............................................................................................. 7-3
7.2.2 Egress frame processing .............................................................................................. 7-4
7.2.3 Relationship with DPIO and DPCON objects ............................................................. 7-5
7.2.4 Relationship with DPBP objects.................................................................................. 7-6
7.2.5 Ingress QoS.................................................................................................................. 7-6
7.2.6 Ingress distribution ...................................................................................................... 7-7
7.2.6.1 Building rules for ingress distribution ..................................................................... 7-8
7.2.7 Flow control................................................................................................................. 7-8
7.2.7.1 Flow control configuration ...................................................................................... 7-8
7.2.7.2 Priority flow control configuration.......................................................................... 7-9
7.2.8 Policer .......................................................................................................................... 7-9
7.2.8.1 Metering principles.................................................................................................. 7-9
7.2.8.2 RFC-2698 .............................................................................................................. 7-10
7.2.8.3 RFC-4115............................................................................................................... 7-10







DPAA2UM, Rev 50, 08/2022


-vi NXP Semiconductors


Contents
Paragraph
Number Title


Page
Number


7.2.8.4 Pass-Through ......................................................................................................... 7-10
7.2.9 Objects isolation ........................................................................................................ 7-10
7.3 DPNI command reference ............................................................................................. 7-12
7.3.1 DPNI_CREATE......................................................................................................... 7-12
7.3.2 DPNI_DESTROY...................................................................................................... 7-16
7.3.3 DPNI_OPEN.............................................................................................................. 7-17
7.3.4 DPNI_CLOSE ........................................................................................................... 7-18
7.3.5 DPNI_ENABLE ........................................................................................................ 7-19
7.3.6 DPNI_DISABLE ....................................................................................................... 7-20
7.3.7 DPNI_IS_ENABLED................................................................................................ 7-21
7.3.8 DPNI_RESET............................................................................................................ 7-23
7.3.9 DPNI_SET_IRQ_ENABLE ...................................................................................... 7-24
7.3.10 DPNI_GET_IRQ_ENABLE...................................................................................... 7-25
7.3.11 DPNI_SET_IRQ_MASK........................................................................................... 7-27
7.3.12 DPNI_GET_IRQ_MASK.......................................................................................... 7-28
7.3.13 DPNI_GET_IRQ_STATUS ....................................................................................... 7-30
7.3.14 DPNI_CLEAR_IRQ_STATUS.................................................................................. 7-32
7.3.15 DPNI_GET_ATTRIBUTES ...................................................................................... 7-33
7.3.16 DPNI_SET_POOLS .................................................................................................. 7-37
7.3.17 DPNI_SET_ERRORS_BEHAVIOR ......................................................................... 7-40
7.3.18 DPNI_SET_BUFFER_LAYOUT.............................................................................. 7-42
7.3.19 DPNI_GET_BUFFER_LAYOUT ............................................................................. 7-45
7.3.20 DPNI_SET_OFFLOAD............................................................................................. 7-47
7.3.21 DPNI_GET_OFFLOAD............................................................................................ 7-48
7.3.22 DPNI_GET_QDID .................................................................................................... 7-50
7.3.23 DPNI_GET_SP_INFO............................................................................................... 7-53
7.3.24 DPNI_GET_TX_DATA_OFFSET ............................................................................ 7-55
7.3.25 DPNI_GET_STATISTICS......................................................................................... 7-57
7.3.26 DPNI_RESET_STATISTICS .................................................................................... 7-60
7.3.27 DPNI_SET_LINK_CFG............................................................................................ 7-61
7.3.28 DPNI_GET_LINK_CFG........................................................................................... 7-63
7.3.29 DPNI_SET_SINGLE_STEP_CFG............................................................................ 7-65
7.3.30 DPNI_GET_SINGLE_STEP_CGF........................................................................... 7-66
7.3.31 DPNI_SET_PORT_CFG ........................................................................................... 7-69
7.3.32 DPNI_GET_PORT_CGF........................................................................................... 7-70
7.3.33 DPNI_GET_LINK_STATE ....................................................................................... 7-72
7.3.34 DPNI_SET_TX_SHAPING ...................................................................................... 7-74
7.3.35 DPNI_SET_MAX_FRAME_LENGTH.................................................................... 7-76
7.3.36 DPNI_GET_MAX_FRAME_LENGTH ................................................................... 7-77
7.3.37 DPNI_SET_MULTICAST_PROMISC..................................................................... 7-79
7.3.38 DPNI_GET_MULTICAST_PROMISC .................................................................... 7-80







DPAA2UM, Rev 50, 08/2022


NXP Semiconductors -vii


Contents
Paragraph
Number Title


Page
Number


7.3.39 DPNI_SET_UNICAST_PROMISC .......................................................................... 7-82
7.3.40 DPNI_GET_UNICAST_PROMISC ......................................................................... 7-83
7.3.41 DPNI_SET_PRIMARY_MAC_ADDR..................................................................... 7-85
7.3.42 DPNI_GET_PRIMARY_MAC_ADDR.................................................................... 7-86
7.3.43 DPNI_ADD_MAC_ADDR....................................................................................... 7-88
7.3.44 DPNI_REMOVE_MAC_ADDR............................................................................... 7-89
7.3.45 DPNI_CLEAR_MAC_FILTERS .............................................................................. 7-90
7.3.46 DPNI_GET_PORT_MAC_ADDRESS..................................................................... 7-91
7.3.47 DPNI_ENABLE_VLAN_FILTER............................................................................ 7-93
7.3.48 DPNI_ADD_VLAN_ID ............................................................................................ 7-94
7.3.49 DPNI_REMOVE_VLAN_ID.................................................................................... 7-95
7.3.50 DPNI_CLEAR_VLAN_FILTERS ............................................................................ 7-96
7.3.51 DPNI_SET_TX_PRIORITIES .................................................................................. 7-97
7.3.52 DPNI_SET_RX_TC_DIST ....................................................................................... 7-99
7.3.53 DPNI_SET_RX_TC_POLICING............................................................................ 7-104
7.3.54 DPNI_GET_RX_TC_POLICING........................................................................... 7-106
7.3.55 DPNI_SET_TAILDROP.......................................................................................... 7-109
7.3.56 DPNI_GET_TAILDROP..........................................................................................7-111
7.3.57 DPNI_SET_EARLY_DROP ................................................................................... 7-113
7.3.58 DPNI_GET_EARLY_DROP................................................................................... 7-116
7.3.59 DPNI_SET_QUEUE ............................................................................................... 7-119
7.3.60 DPNI_GET_QUEUE............................................................................................... 7-121
7.3.61 DPNI_SET_TX_CONFIRMATION_MODE.......................................................... 7-124
7.3.62 DPNI_GET_TX_CONFIRMATION_MODE......................................................... 7-125
7.3.63 DPNI_SET_QOS_TABLE ...................................................................................... 7-127
7.3.64 DPNI_ADD_QOS_ENTRY .................................................................................... 7-131
7.3.65 DPNI_REMOVE_QOS_ENTRY ............................................................................ 7-132
7.3.66 DPNI_CLEAR_QOS_TABLE ................................................................................ 7-133
7.3.67 DPNI_ADD_FS_ENTRY........................................................................................ 7-134
7.3.68 DPNI_REMOVE_FS_ENTRY................................................................................ 7-136
7.3.69 DPNI_CLEAR_FS_ENTRIES ................................................................................ 7-137
7.3.70 DPNI_GET_API_VERSION................................................................................... 7-138
7.3.71 DPNI_SET_OPR ..................................................................................................... 7-140
7.3.72 DPNI_GET_OPR..................................................................................................... 7-143
7.3.73 DPNI_SET_CONGESTION_NOTIFICATION...................................................... 7-145
7.3.73.1 Congestion threshold representation.................................................................... 7-145
7.3.74 DPNI_GET_CONGESTION_NOTIFICATION..................................................... 7-148
7.3.75 DPNI_LOAD_SW_SEQUENCE ............................................................................ 7-150
7.3.76 DPNI_ENABLE_SW_SEQUENCE ....................................................................... 7-151
7.3.77 DPNI_SET_RX_FS_DIST ...................................................................................... 7-153
7.3.78 DPNI_SET_RX_HASH_DIST................................................................................ 7-155







DPAA2UM, Rev 50, 08/2022


-viii NXP Semiconductors


Contents
Paragraph
Number Title


Page
Number


7.3.79 DPNI_ADD_CUSTOM_TPID................................................................................ 7-156
7.3.80 DPNI_REMOVE_CUSTOM_TPID........................................................................ 7-157
7.3.81 DPNI_GET_CUSTOM_TPID................................................................................. 7-158
7.3.82 DPNI_DUMP_TABLE............................................................................................ 7-159
7.3.83 DPNI_SET_SP_PROFILE ...................................................................................... 7-161
7.3.84 DPNI_GET_QDID_EX........................................................................................... 7-162
7.3.85 DPNI_SP_ENABLE................................................................................................ 7-164
7.3.86 DPNI_SET_QUEUE_TX_CONFIRMATION_MODE .......................................... 7-165
7.3.87 DPNI_GET_QUEUE_TX_CONFIRMATION_MODE ......................................... 7-167


Chapter 8  DPBP: Data Path Buffer Pool


8.1 DPBP features .................................................................................................................. 8-1
8.2 DPBP command reference ............................................................................................... 8-2
8.2.1 DPBP_OPEN............................................................................................................... 8-2
8.2.2 DPBP_CLOSE............................................................................................................. 8-3
8.2.3 DPBP_CREATE .......................................................................................................... 8-4
8.2.4 DPBP_DESTROY....................................................................................................... 8-6
8.2.5 DPBP_ENABLE.......................................................................................................... 8-7
8.2.6 DPBP_DISABLE......................................................................................................... 8-8
8.2.7 DPBP_IS_ENABLED ................................................................................................. 8-9
8.2.8 DPBP_RESET ........................................................................................................... 8-11
8.2.9 DPBP_SET_IRQ_ENABLE...................................................................................... 8-12
8.2.10 DPBP_GET_IRQ_ENABLE..................................................................................... 8-13
8.2.11 DPBP_SET_IRQ_MASK.......................................................................................... 8-15
8.2.12 DPBP_GET_IRQ_MASK ......................................................................................... 8-16
8.2.13 DPBP_GET_IRQ_STATUS ...................................................................................... 8-18
8.2.14 DPBP_CLEAR_IRQ_STATUS ................................................................................. 8-20
8.2.15 DPBP_GET_ATTRIBUTES...................................................................................... 8-21
8.2.16 DPBP_SET_NOTIFICATIONS ................................................................................ 8-23
8.2.17 DPBP_GET_NOTIFICATIONS................................................................................ 8-24
8.2.18 DPBP_GET_API_VERSION.................................................................................... 8-26


Chapter 9  DPIO: Data Path I/O


9.1 DPIO features .................................................................................................................. 9-1
9.2 DPIO command reference ............................................................................................... 9-2
9.2.1 DPIO_OPEN................................................................................................................ 9-2
9.2.2 DPIO_CLOSE ............................................................................................................. 9-3
9.2.3 DPIO_CREATE........................................................................................................... 9-4
9.2.4 DPIO_DESTROY........................................................................................................ 9-6







DPAA2UM, Rev 50, 08/2022


NXP Semiconductors -ix


Contents
Paragraph
Number Title


Page
Number


9.2.5 DPIO_ENABLE .......................................................................................................... 9-7
9.2.6 DPIO_DISABLE ......................................................................................................... 9-8
9.2.7 DPIO_IS_ENABLED.................................................................................................. 9-9
9.2.8 DPIO_RESET............................................................................................................ 9-11
9.2.9 DPIO_SET_IRQ_ENABLE ...................................................................................... 9-12
9.2.10 DPIO_GET_IRQ_ENABLE...................................................................................... 9-13
9.2.11 DPIO_SET_IRQ_MASK........................................................................................... 9-15
9.2.12 DPIO_GET_IRQ_MASK.......................................................................................... 9-16
9.2.13 DPIO_GET_IRQ_STATUS ....................................................................................... 9-18
9.2.14 DPIO_CLEAR_IRQ_STATUS.................................................................................. 9-20
9.2.15 DPIO_GET_ATTRIBUTES ...................................................................................... 9-21
9.2.16 DPIO_SET_STASHING_DESTINATION ............................................................... 9-23
9.2.17 DPIO_GET_STASHING_DESTINATION............................................................... 9-24
9.2.18 DPIO_ADD_STATIC_DEQUEUE_CHANNEL ...................................................... 9-26
9.2.19 DPIO_REMOVE_STATIC_DEQUEUE_CHANNEL.............................................. 9-28
9.2.20 DPIO_GET_API_VERSION..................................................................................... 9-29
9.2.21 DPIO_SET_STASHING_DESTINATION_SOURCE ............................................. 9-31
9.2.22 DPIO_GET_STASHING_DESTINATION_SOURCE............................................. 9-32
9.2.23 DPIO_SET_STASHING_DESTINATION_BY_CORE_ID..................................... 9-34


Chapter 10  DPDBG: Data Path Debugging


10.1 DPDBG features ............................................................................................................ 10-1
10.2 DPDBG command reference ......................................................................................... 10-2
10.2.1 DPDBG_OPEN ......................................................................................................... 10-2
10.2.2 DPDBG_CLOSE ....................................................................................................... 10-3
10.2.3 DPDBG_CREATE..................................................................................................... 10-4
10.2.4 DPDBG_DESTROY.................................................................................................. 10-5
10.2.5 DPMAC_DUMP........................................................................................................ 10-6
10.2.6 DPDBG_SET............................................................................................................. 10-7
10.2.7 DPDBG_GET_ATTRIBUTES .................................................................................. 10-8
10.2.8 DPDBG_GET_API_VERSION .............................................................................. 10-10


Chapter 11  DPCON: Data Path Concentrator


11.1 DPCON features ............................................................................................................ 11-1
11.2 DPCON command reference ......................................................................................... 11-2
11.2.1 DPCON_OPEN ......................................................................................................... 11-2
11.2.2 DPCON_CLOSE ....................................................................................................... 11-3
11.2.3 DPCON_CREATE..................................................................................................... 11-4
11.2.4 DPCON_DESTROY.................................................................................................. 11-6







DPAA2UM, Rev 50, 08/2022


-x NXP Semiconductors


Contents
Paragraph
Number Title


Page
Number


11.2.5 DPCON_ENABLE .................................................................................................... 11-7
11.2.6 DPCON_DISABLE................................................................................................... 11-8
11.2.7 DPCON_IS_ENABLED............................................................................................ 11-9
11.2.8 DPCON_RESET.......................................................................................................11-11
11.2.9 DPCON_SET_IRQ_ENABLE ................................................................................ 11-12
11.2.10 DPCON_GET_IRQ_ENABLE ............................................................................... 11-13
11.2.11 DPCON_SET_IRQ_MASK .................................................................................... 11-15
11.2.12 DPCON_GET_IRQ_MASK.................................................................................... 11-16
11.2.13 DPCON_GET_IRQ_STATUS................................................................................. 11-18
11.2.14 DPCON_CLEAR_IRQ_STATUS ........................................................................... 11-20
11.2.15 DPCON_GET_ATTRIBUTES ................................................................................ 11-21
11.2.16 DPCON_SET_NOTIFICATION............................................................................. 11-23
11.2.17 DPCON_GET_API_VERSION .............................................................................. 11-24


Chapter 12  DPCI: Data Path Communication Interface


12.1 DPCI features................................................................................................................. 12-1
12.2 DPCI functional description .......................................................................................... 12-1
12.2.1 Connecting DPCI objects........................................................................................... 12-1
12.2.2 Relationship with DPIO and DPCON objects ........................................................... 12-2
12.2.3 Buffer requirements ................................................................................................... 12-2
12.3 DPCI command reference.............................................................................................. 12-2
12.3.1 DPCI_OPEN.............................................................................................................. 12-3
12.3.2 DPCI_CLOSE............................................................................................................ 12-4
12.3.3 DPCI_CREATE ......................................................................................................... 12-5
12.3.4 DPCI_DESTROY...................................................................................................... 12-7
12.3.5 DPCI_ENABLE......................................................................................................... 12-8
12.3.6 DPCI_DISABLE ....................................................................................................... 12-9
12.3.7 DPCI_IS_ENABLED .............................................................................................. 12-10
12.3.8 DPCI_RESET .......................................................................................................... 12-12
12.3.9 DPCI_SET_IRQ_ENABLE..................................................................................... 12-13
12.3.10 DPCI_GET_IRQ_ENABLE.................................................................................... 12-14
12.3.11 DPCI_SET_IRQ_MASK......................................................................................... 12-16
12.3.12 DPCI_GET_IRQ_MASK ........................................................................................ 12-17
12.3.13 DPCI_GET_IRQ_STATUS ..................................................................................... 12-19
12.3.14 DPCI_CLEAR_IRQ_STATUS................................................................................ 12-21
12.3.15 DPCI_GET_ATTRIBUTES..................................................................................... 12-22
12.3.16 DPCI_GET_PEER_ATTRIBUTES......................................................................... 12-24
12.3.17 DPCI_GET_LINK_STATE ..................................................................................... 12-26
12.3.18 DPCI_SET_RX_QUEUE ........................................................................................ 12-28
12.3.19 DPCI_GET_RX_QUEUE ....................................................................................... 12-29







DPAA2UM, Rev 50, 08/2022


NXP Semiconductors -xi


Contents
Paragraph
Number Title


Page
Number


12.3.20 DPCI_GET_TX_QUEUE........................................................................................ 12-31
12.3.21 DPCI_GET_API_VERSION................................................................................... 12-33
12.3.22 DPCI_SET_OPR ..................................................................................................... 12-35
12.3.23 DPCI_GET_OPR..................................................................................................... 12-37


Chapter 13  DPDMUX: Data Path Network DeMux


13.1 DPDMUX features ........................................................................................................ 13-1
13.2 DPDMUX functional description .................................................................................. 13-2
13.2.1 Demux database......................................................................................................... 13-2
13.2.2 Broadcast and multicast support ................................................................................ 13-2
13.2.3 Promiscuous interfaces .............................................................................................. 13-2
13.2.4 Frames acceptance policy .......................................................................................... 13-3
13.3 DPDMUX command reference ..................................................................................... 13-3
13.3.1 DPDMUX_OPEN...................................................................................................... 13-4
13.3.2 DPDMUX_CLOSE ................................................................................................... 13-5
13.3.3 DPDMUX_CREATE................................................................................................. 13-6
13.3.4 DPDMUX_DESTROY.............................................................................................. 13-9
13.3.5 DPDMUX_ENABLE .............................................................................................. 13-10
13.3.6 DPDMUX_DISABLE ............................................................................................. 13-11
13.3.7 DPDMUX_IS_ENABLED...................................................................................... 13-12
13.3.8 DPDMUX_RESET.................................................................................................. 13-13
13.3.9 DPDMUX_SET_IRQ_ENABLE ............................................................................ 13-14
13.3.10 DPDMUX_GET_IRQ_ENABLE............................................................................ 13-15
13.3.11 DPDMUX_SET_IRQ_MASK................................................................................. 13-17
13.3.12 DPDMUX_GET_IRQ_MASK................................................................................ 13-18
13.3.13 DPDMUX_GET_IRQ_STATUS ............................................................................. 13-20
13.3.14 DPDMUX_CLEAR_IRQ_STATUS........................................................................ 13-22
13.3.15 DPDMUX_GET_ATTRIBUTES ............................................................................ 13-23
13.3.16 DPDMUX_SET_MAX_FRAME_LENGTH.......................................................... 13-25
13.3.17 DPDMUX_IF_SET_ACCEPTED_FRAMES......................................................... 13-26
13.3.18 DPDMUX_IF_GET_ATTRIBUTES....................................................................... 13-27
13.3.19 DPDMUX_IF_ENABLE......................................................................................... 13-29
13.3.20 DPDMUX_IF_DISABLE........................................................................................ 13-30
13.3.21 DPDMUX_IF_SET_DEFAULT.............................................................................. 13-31
13.3.22 DPDMUX_IF_GET_DEFAULT ............................................................................. 13-32
13.3.23 DPDMUX_SET_RESETABLE............................................................................... 13-34
13.3.24 DPDMUX_GET_RESETABLE.............................................................................. 13-35
13.3.25 DPDMUX_IF_REMOVE_L2_RULE..................................................................... 13-37
13.3.26 DPDMUX_IF_ADD_L2_RULE............................................................................. 13-38
13.3.27 DPDMUX_IF_GET_COUNTER............................................................................ 13-39







DPAA2UM, Rev 50, 08/2022


-xii NXP Semiconductors


Contents
Paragraph
Number Title


Page
Number


13.3.28 DPDMUX_UL_RESET_COUNTERS ................................................................... 13-41
13.3.29 DPDMUX_IF_SET_LINK_CFG ............................................................................ 13-42
13.3.30 DPDMUX_IF_GET_LINK_STATE ....................................................................... 13-43
13.3.31 DPDMUX_GET_API_VERSION........................................................................... 13-45
13.3.32 DPDMUX_SET_CUSTOM_KEY .......................................................................... 13-47
13.3.33 DPDMUX_ADD_CUSTOM_CLS_ENTRY........................................................... 13-48
13.3.34 DPDMUX_REMOVE_CUSTOM_CLS_ENTRY .................................................. 13-49
13.3.35 DPDMUX_IF_SET_TAILDROP............................................................................ 13-50
13.3.36 DPDMUX_IF_GET_TAILDROP ........................................................................... 13-51
13.3.37 DPDMUX_DUMP_TABLE.................................................................................... 13-53
13.3.38 DPDMUX_IF_SET_ERRORS_BEHAVIOR.......................................................... 13-55
13.3.39 DPDMUX_GET_MAX_FRAME_LENGTH ......................................................... 13-56
13.3.40 DPDMUX_SET_SP_PROFILE .............................................................................. 13-58
13.3.41 DPDMUX_SP_ENABLE........................................................................................ 13-59


Chapter 14  DPSW: Data Path L2 Switch


14.1 DPSW features............................................................................................................... 14-1
14.2 DPSW functional description ........................................................................................ 14-2
14.2.1 Creating L2 switch instance....................................................................................... 14-2
14.2.2 VLAN configuration.................................................................................................. 14-2
14.2.3 Learning modes.......................................................................................................... 14-2
14.2.4 FDB configuration ..................................................................................................... 14-3
14.2.5 LAG configuration..................................................................................................... 14-3
14.3 DPSW command reference............................................................................................ 14-5
14.3.1 DPSW_OPEN............................................................................................................ 14-5
14.3.2 DPSW_CLOSE.......................................................................................................... 14-6
14.3.3 DPSW_CREATE ....................................................................................................... 14-7
14.3.4 DPSW_DESTROY.................................................................................................. 14-10
14.3.5 DPSW_ENABLE..................................................................................................... 14-11
14.3.6 DPSW_DISABLE ................................................................................................... 14-12
14.3.7 DPSW_IS_ENABLED ............................................................................................ 14-13
14.3.8 DPSW_RESET ........................................................................................................ 14-15
14.3.9 DPSW_SET_IRQ_ENABLE................................................................................... 14-16
14.3.10 DPSW_GET_IRQ_ENABLE.................................................................................. 14-17
14.3.11 DPSW_SET_IRQ_MASK....................................................................................... 14-19
14.3.12 DPSW_GET_IRQ_MASK ...................................................................................... 14-20
14.3.13 DPSW_GET_IRQ_STATUS ................................................................................... 14-22
14.3.14 DPSW_CLEAR_IRQ_STATUS.............................................................................. 14-24
14.3.15 DPSW_GET_ATTRIBUTES................................................................................... 14-25
14.3.16 DPSW_SET_REFLECTION_IF ............................................................................. 14-28







DPAA2UM, Rev 50, 08/2022


NXP Semiconductors -xiii


Contents
Paragraph
Number Title


Page
Number


14.3.17 DPSW_IF_SET_FLOODING ................................................................................. 14-29
14.3.18 DPSW_IF_SET_BROADCAST ............................................................................. 14-30
14.3.19 DPSW_IF_SET_MULTICAST ............................................................................... 14-31
14.3.20 DPSW_IF_SET_TCI ............................................................................................... 14-32
14.3.21 DPSW_IF_GET_TCI............................................................................................... 14-33
14.3.22 DPSW_IF_SET_STP............................................................................................... 14-35
14.3.23 DPSW_IF_SET_ACCEPTED_FRAMES............................................................... 14-36
14.3.24 DPSW_SET_IF_ACCEPT_ALL_VLAN ............................................................... 14-37
14.3.25 DPSW_IF_GET_COUNTER .................................................................................. 14-38
14.3.26 DPSW_IF_SET_COUNTER................................................................................... 14-40
14.3.27 DPSW_IF_SET_TX_SELECTION......................................................................... 14-41
14.3.28 DPSW_IF_ADD_REFLECTION............................................................................ 14-43
14.3.29 DPSW_IF_REMOVE_REFLECTION ................................................................... 14-44
14.3.30 DPSW_IF_SET_FLOODING_METERING........................................................... 14-45
14.3.31 DPSW_IF_SET_METERING................................................................................. 14-46
14.3.32 DPSW_IF_SET_EARLY_DROP ............................................................................ 14-47
14.3.33 DPSW_ADD_CUSTOM_TPID .............................................................................. 14-49
14.3.34 DPSW_REMOVE_CUSTOM_TPID...................................................................... 14-50
14.3.35 DPSW_IF_ENABLE............................................................................................... 14-51
14.3.36 DPSW_IF_DISABLE.............................................................................................. 14-52
14.3.37 DPSW_IF_GET_ATTRIBUTES............................................................................. 14-53
14.3.38 DPSW_IF_SET_MAX_FRAME_LENGTH........................................................... 14-55
14.3.39 DPSW_IF_SET_LINK_CFG .................................................................................. 14-56
14.3.40 DPSW_IF_GET_LINK_STATE.............................................................................. 14-57
14.3.41 DPSW_IF_GET_MAX_FRAME_LENGTH.......................................................... 14-59
14.3.42 DPSW_VLAN_ADD............................................................................................... 14-61
14.3.43 DPSW_VLAN_ADD_IF......................................................................................... 14-62
14.3.44 DPSW_VLAN_ADD_IF_UNTAGGED ................................................................. 14-63
14.3.45 DPSW_VLAN_ADD_IF_FLOODING................................................................... 14-64
14.3.46 DPSW_VLAN_REMOVE_IF................................................................................. 14-65
14.3.47 DPSW_VLAN_REMOVE_IF_UNTAGGED......................................................... 14-66
14.3.48 DPSW_VLAN_REMOVE_IF_FLOODING .......................................................... 14-67
14.3.49 DPSW_VLAN_REMOVE ...................................................................................... 14-68
14.3.50 DPSW_VLAN_GET_ATTRIBUTES ..................................................................... 14-69
14.3.51 DPSW_VLAN_GET_IF.......................................................................................... 14-71
14.3.52 DPSW_VLAN_GET_IF_FLOODING ................................................................... 14-73
14.3.53 DPSW_VLAN_GET_IF_UNTAGGED.................................................................. 14-75
14.3.54 DPSW_FDB_ADD.................................................................................................. 14-77
14.3.55 DPSW_FDB_REMOVE.......................................................................................... 14-79
14.3.56 DPSW_FDB_ADD_UNICAST............................................................................... 14-80
14.3.57 DPSW_FDB_GET_UNICAST ............................................................................... 14-81







DPAA2UM, Rev 50, 08/2022


-xiv NXP Semiconductors


Contents
Paragraph
Number Title


Page
Number


14.3.58 DPSW_FDB_REMOVE_UNICAST ...................................................................... 14-83
14.3.59 DPSW_FDB_ADD_MULTICAST ......................................................................... 14-84
14.3.60 DPSW_FDB_GET_MULTICAST .......................................................................... 14-85
14.3.61 DPSW_FDB_REMOVE_MULTICAST ................................................................. 14-87
14.3.62 DPSW_FDB_SET_LEARNING_MODE ............................................................... 14-88
14.3.63 DPSW_FDB_GET_ATTRIBUTES......................................................................... 14-89
14.3.64 DPSW_ACL_ADD.................................................................................................. 14-91
14.3.65 DPSW_ACL_REMOVE ......................................................................................... 14-93
14.3.66 DPSW_ACL_PREPARE_ENTRY_CFG ................................................................ 14-94
14.3.67 DPSW_ACL_ADD_ENTRY................................................................................... 14-96
14.3.68 DPSW_ACL_REMOVE_ENTRY .......................................................................... 14-97
14.3.69 DPSW_ACL_ADD_IF .......................................................................................... 14-100
14.3.70 DPSW_ACL_REMOVE_IF.................................................................................. 14-101
14.3.71 DPSW_ACL_GET_ATTRIBUTES....................................................................... 14-102
14.3.72 DPSW_CTRL_IF_GET_ATTRIBUTES............................................................... 14-104
14.3.73 DPSW_CTRL_IF_SET_POOLS........................................................................... 14-106
14.3.74 DPSW_CTRL_IF_ENABLE................................................................................. 14-107
14.3.75 DPSW_CTRL_IF_DISABLE................................................................................ 14-108
14.3.76 DPSW_CTRL_IF_SET_QUEUE.......................................................................... 14-109
14.3.77 DPSW_GET_API_VERSION............................................................................... 14-110
14.3.78 DPSW_LAG_SET................................................................................................. 14-112
14.3.79 DPSW_LAG_GET_CFG....................................................................................... 14-113
14.3.80 DPSW_IF_SET_TAILDROP ................................................................................ 14-115
14.3.81 DPSW_IF_GET_TAILDROP................................................................................ 14-116
14.3.82 DPSW_DUMP_TABLE ........................................................................................ 14-118
14.3.83 DPSW_IF_SET_LEARNING_MODE ................................................................. 14-120
14.3.84 DPSW_SET_EGRESS_FLOOD........................................................................... 14-121
14.3.85 DPSW_IF_SET_ERRORS_BEHAVIOR.............................................................. 14-122
14.3.86 DPSW_IF_SET_PRIO_SELECTOR .................................................................... 14-123
14.3.87 DPSW_IF_SET_TX_SHAPING........................................................................... 14-124
14.3.88 DPSW_SET_SP_PROFILE .................................................................................. 14-125
14.3.89 DPSW_SP_ENABLE ............................................................................................ 14-126


Chapter 15  DPMAC: Data Path MAC


15.1 DPMAC features............................................................................................................ 15-1
15.2 DPMAC command reference......................................................................................... 15-2
15.2.1 DPMAC_OPEN......................................................................................................... 15-2
15.2.2 DPMAC_CLOSE....................................................................................................... 15-3
15.2.3 DPMAC_CREATE .................................................................................................... 15-4
15.2.4 DPMAC_DESTROY................................................................................................. 15-6







DPAA2UM, Rev 50, 08/2022


NXP Semiconductors -xv


Contents
Paragraph
Number Title


Page
Number


15.2.5 DPMAC_SET_IRQ_ENABLE ................................................................................. 15-7
15.2.6 DPMAC_GET_IRQ_ENABLE................................................................................. 15-8
15.2.7 DPMAC_SET_IRQ_MASK.................................................................................... 15-10
15.2.8 DPMAC_GET_IRQ_MASK................................................................................... 15-11
15.2.9 DPMAC_GET_IRQ_STATUS ................................................................................ 15-13
15.2.10 DPMAC_CLEAR_IRQ_STATUS........................................................................... 15-15
15.2.11 DPMAC_GET_ATTRIBUTES ............................................................................... 15-16
15.2.12 DPMAC_SET_PARAMS........................................................................................ 15-19
15.2.13 DPMAC_MDIO_READ.......................................................................................... 15-20
15.2.14 DPMAC_MDIO_WRITE........................................................................................ 15-22
15.2.15 DPMAC_GET_LINK_CFG .................................................................................... 15-23
15.2.16 DPMAC_SET_LINK_STATE................................................................................. 15-25
15.2.17 DPMAC_GET_COUNTER..................................................................................... 15-26
15.2.18 DPMAC_GET_API_VERSION.............................................................................. 15-28
15.2.19 DPMAC_RESET..................................................................................................... 15-30
15.2.20 DPMAC_GET_MAC_ADDR................................................................................. 15-31
15.2.21 DPMAC_SET_PROTOCOL ................................................................................... 15-33


Chapter 16  DPRTC: Data Path Real Time Clock


16.1 DPRTC features ............................................................................................................. 16-1
16.2 DPRTC command reference .......................................................................................... 16-2
16.2.1 DPRTC_OPEN .......................................................................................................... 16-2
16.2.2 DPRTC_CLOSE ........................................................................................................ 16-3
16.2.3 DPRTC_CREATE...................................................................................................... 16-4
16.2.4 DPRTC_DESTROY .................................................................................................. 16-6
16.2.5 DPRTC_SET_IRQ_ENABLE................................................................................... 16-7
16.2.6 DPRTC_GET_IRQ_ENABLE .................................................................................. 16-8
16.2.7 DPRTC_SET_IRQ_MASK ..................................................................................... 16-10
16.2.8 DPRTC_GET_IRQ_MASK..................................................................................... 16-11
16.2.9 DPRTC_GET_IRQ_STATUS.................................................................................. 16-13
16.2.10 DPRTC_CLEAR_IRQ_STATUS ............................................................................ 16-15
16.2.11 DPRTC_GET_ATTRIBUTES................................................................................. 16-16
16.2.12 DPRTC_SET_CLOCK_OFFSET............................................................................ 16-18
16.2.13 DPRTC_GET_CLOCK_OFFSET........................................................................... 16-19
16.2.14 DPRTC_SET_FREQ_COMPENSATION............................................................... 16-21
16.2.15 DPRTC_GET_FREQ_COMPENSATION.............................................................. 16-22
16.2.16 DPRTC_GET_TIME ............................................................................................... 16-24
16.2.17 DPRTC_SET_TIME................................................................................................ 16-26
16.2.18 DPRTC_SET_ALARM ........................................................................................... 16-27
16.2.19 DPRTC_GET_EXT_TRIGGER_TIMESTAMP ..................................................... 16-28







DPAA2UM, Rev 50, 08/2022


-xvi NXP Semiconductors


Contents
Paragraph
Number Title


Page
Number


16.2.20 DPRTC_SET_FIPER_LOOPBACK ....................................................................... 16-30
16.2.21 DPRTC_GET_API_VERSION ............................................................................... 16-31


Chapter 17  DPSECI: Data Path SEC Interface


17.1 DPSECI features ............................................................................................................ 17-1
17.2 DPSECI functional description...................................................................................... 17-1
17.2.1 Setting the DPSECI for SEC operation ..................................................................... 17-1
17.2.2 Relationship with DPIO and DPCON objects ........................................................... 17-2
17.2.3 Buffer requirements ................................................................................................... 17-2
17.3 DPSECI command reference ......................................................................................... 17-3
17.3.1 DPSECI_OPEN ......................................................................................................... 17-3
17.3.2 DPSECI_CLOSE....................................................................................................... 17-4
17.3.3 DPSECI_CREATE..................................................................................................... 17-5
17.3.4 DPSECI_DESTROY ................................................................................................. 17-7
17.3.5 DPSECI_ENABLE.................................................................................................... 17-8
17.3.6 DPSECI_DISABLE................................................................................................... 17-9
17.3.7 DPSECI_IS_ENABLED ......................................................................................... 17-10
17.3.8 DPSECI_RESET ..................................................................................................... 17-12
17.3.9 DPSECI_SET_IRQ_ENABLE................................................................................ 17-13
17.3.10 DPSECI_GET_IRQ_ENABLE ............................................................................... 17-14
17.3.11 DPSECI_SET_IRQ_MASK .................................................................................... 17-16
17.3.12 DPSECI_GET_IRQ_MASK ................................................................................... 17-17
17.3.13 DPSECI_GET_IRQ_STATUS................................................................................. 17-19
17.3.14 DPSECI_CLEAR_IRQ_STATUS ........................................................................... 17-21
17.3.15 DPSECI_GET_ATTRIBUTES................................................................................ 17-22
17.3.16 DPSECI_SET_OPR................................................................................................. 17-24
17.3.17 DPSECI_GET_OPR ................................................................................................ 17-26
17.3.18 DPSECI_SET_RX_QUEUE ................................................................................... 17-28
17.3.19 DPSECI_GET_RX_QUEUE................................................................................... 17-29
17.3.20 DPSECI_GET_TX_QUEUE................................................................................... 17-31
17.3.21 DPSECI_GET_SEC_ATTR..................................................................................... 17-33
17.3.22 DPSECI_GET_SEC_COUNTERS ......................................................................... 17-35
17.3.23 DPSECI_GET_API_VERSION .............................................................................. 17-37
17.3.24 DPSECI_GET_RX_QUEUE_STATUS .................................................................. 17-39
17.3.25 DPSECI_GET_TX_QUEUE_STATUS................................................................... 17-41


Chapter 18  DPDCEI: Data Path DCE Interface


18.1 DPDCEI features ........................................................................................................... 18-1
18.2 DPDCEI command reference ........................................................................................ 18-2







DPAA2UM, Rev 50, 08/2022


NXP Semiconductors -xvii


Contents
Paragraph
Number Title


Page
Number


18.2.1 DPDCEI_OPEN......................................................................................................... 18-2
18.2.2 DPDCEI_CLOSE ...................................................................................................... 18-3
18.2.3 DPDCEI_CREATE.................................................................................................... 18-4
18.2.4 DPDCEI_DESTROY................................................................................................. 18-6
18.2.5 DPDCEI_ENABLE ................................................................................................... 18-7
18.2.6 DPDCEI_DISABLE .................................................................................................. 18-8
18.2.7 DPDCEI_IS_ENABLED........................................................................................... 18-9
18.2.8 DPDCEI_RESET..................................................................................................... 18-11
18.2.9 DPDCEI_SET_IRQ_ENABLE ............................................................................... 18-12
18.2.10 DPDCEI_GET_IRQ_ENABLE............................................................................... 18-13
18.2.11 DPDCEI_SET_IRQ_MASK ................................................................................... 18-15
18.2.12 DPDCEI_GET_IRQ_MASK................................................................................... 18-16
18.2.13 DPDCEI_GET_IRQ_STATUS................................................................................ 18-18
18.2.14 DPDCEI_CLEAR_IRQ_STATUS........................................................................... 18-20
18.2.15 DPDCEI_GET_ATTRIBUTES ............................................................................... 18-21
18.2.16 DPDCEI_SET_RX_QUEUE................................................................................... 18-23
18.2.17 DPDCEI_GET_RX_QUEUE .................................................................................. 18-24
18.2.18 DPDCEI_GET_TX_QUEUE .................................................................................. 18-26
18.2.19 DPDCEI_GET_API_VERSION ............................................................................. 18-28


Chapter 19  DPDMAI: Data Path DMA Interface


19.1 DPDMAI features .......................................................................................................... 19-1
19.2 DPDMAI command reference ....................................................................................... 19-2
19.2.1 DPDMAI_OPEN ....................................................................................................... 19-2
19.2.2 DPDMAI_CLOSE..................................................................................................... 19-3
19.2.3 DPDMAI_CREATE................................................................................................... 19-4
19.2.4 DPDMAI_DESTROY ............................................................................................... 19-6
19.2.5 DPDMAI_ENABLE.................................................................................................. 19-7
19.2.6 DPDMAI_DISABLE................................................................................................. 19-8
19.2.7 DPDMAI_IS_ENABLED ......................................................................................... 19-9
19.2.8 DPDMAI_RESET ................................................................................................... 19-11
19.2.9 DPDMAI_SET_IRQ_ENABLE.............................................................................. 19-12
19.2.10 DPDMAI_GET_IRQ_ENABLE ............................................................................. 19-13
19.2.11 DPDMAI_SET_IRQ_MASK .................................................................................. 19-15
19.2.12 DPDMAI_GET_IRQ_MASK ................................................................................. 19-16
19.2.13 DPDMAI_GET_IRQ_STATUS............................................................................... 19-18
19.2.14 DPDMAI_CLEAR_IRQ_STATUS ......................................................................... 19-20
19.2.15 DPDMAI_GET_ATTRIBUTES.............................................................................. 19-21
19.2.16 DPDMAI_SET_RX_QUEUE ................................................................................. 19-23
19.2.17 DPDMAI_GET_RX_QUEUE................................................................................. 19-24







DPAA2UM, Rev 50, 08/2022


-xviii NXP Semiconductors


Contents
Paragraph
Number Title


Page
Number


19.2.18 DPDMAI_GET_TX_QUEUE................................................................................. 19-26
19.2.19 DPDMAI_GET_API_VERSION ............................................................................ 19-28
19.2.20 DPDMAI_SET_RX_CONGESTION_NOTIFICATION........................................ 19-30
19.2.21 DPDMAI_GET_RX_CONGESTION_NOTIFICATION....................................... 19-31
19.2.22 DPDMAI_SET_TX_CONGESTION_NOTIFICATION........................................ 19-33
19.2.23 DPDMAI_GET_TX_CONGESTION_NOTIFICATION ....................................... 19-34


Chapter 20  DPAIOP: Data Path AIOP Control


20.1 DPAIOP features............................................................................................................ 20-1
20.1.1 Resetting the AIOP and reloading applications ......................................................... 20-1
20.2 DPAIOP command reference......................................................................................... 20-3
20.2.1 DPAIOP_OPEN......................................................................................................... 20-3
20.2.2 DPAIOP_CLOSE....................................................................................................... 20-4
20.2.3 DPAIOP_CREATE .................................................................................................... 20-5
20.2.4 DPAIOP_DESTROY................................................................................................. 20-7
20.2.5 DPAIOP_RESET ....................................................................................................... 20-8
20.2.6 DPAIOP_SET_IRQ_ENABLE.................................................................................. 20-9
20.2.7 DPAIOP_GET_IRQ_ENABLE............................................................................... 20-10
20.2.8 DPAIOP_SET_IRQ_MASK.................................................................................... 20-12
20.2.9 DPAIOP_GET_IRQ_MASK ................................................................................... 20-13
20.2.10 DPAIOP_GET_IRQ_STATUS ................................................................................ 20-15
20.2.11 DPAIOP_CLEAR_IRQ_STATUS........................................................................... 20-17
20.2.12 DPAIOP_GET_ATTRIBUTES................................................................................ 20-18
20.2.13 DPAIOP_LOAD ...................................................................................................... 20-20
20.2.14 DPAIOP_RUN......................................................................................................... 20-21
20.2.15 DPAIOP_GET_SL_VERSION................................................................................ 20-22
20.2.16 DPAIOP_GET_STATE............................................................................................ 20-24
20.2.17 DPAIOP_SET_TIME_OF_DAY ............................................................................. 20-26
20.2.18 DPAIOP_GET_TIME_OF_DAY............................................................................. 20-27
20.2.19 DPAIOP_GET_API_VERSION.............................................................................. 20-29
20.2.20 DPAIOP_SET_RESETABLE.................................................................................. 20-31
20.2.21 DPAIOP_GET_RESETABLE ................................................................................. 20-32


Chapter 21  DPMCP: Data Path MC Portal


21.1 DPMCP features ............................................................................................................ 21-1
21.2 DPMCP command reference ......................................................................................... 21-2
21.2.1 DPMCP_OPEN ......................................................................................................... 21-2
21.2.2 DPMCP_CLOSE ....................................................................................................... 21-3
21.2.3 DPMCP_CREATE..................................................................................................... 21-4







DPAA2UM, Rev 50, 08/2022


NXP Semiconductors -xix


Contents
Paragraph
Number Title


Page
Number


21.2.4 DPMCP_DESTROY.................................................................................................. 21-7
21.2.5 DPMCP_RESET........................................................................................................ 21-8
21.2.6 DPMCP_SET_IRQ_ENABLE .................................................................................. 21-9
21.2.7 DPMCP_GET_IRQ_ENABLE ............................................................................... 21-10
21.2.8 DPMCP_SET_IRQ_MASK .................................................................................... 21-12
21.2.9 DPMCP_GET_IRQ_MASK.................................................................................... 21-13
21.2.10 DPMCP_GET_IRQ_STATUS................................................................................. 21-15
21.2.11 DPMCP_GET_ATTRIBUTES ................................................................................ 21-17
21.2.12 DPMCP_GET_API_VERSION .............................................................................. 21-19


Chapter 22  DPSPARSER: Data Path Soft Parser


22.1 DPSPARSER features.................................................................................................... 22-1
22.2 DPSPARSER command reference................................................................................. 22-2
22.2.1 DPSPARSER_OPEN................................................................................................. 22-2
22.2.2 DPSPARSER_CLOSE............................................................................................... 22-3
22.2.3 DPSPARSER_CREATE ............................................................................................ 22-4
22.2.4 DPSPARSER_DESTROY......................................................................................... 22-6
22.2.5 DPSPARSER_GET_API_VERSION........................................................................ 22-7
22.2.6 DPSPARSER_APPLY_SPB...................................................................................... 22-9


Chapter 23  Memory Map and Register Definition


23.1 General Control Register 1 (GCR1) .............................................................................. 23-1
23.2 General Status Register (GSR) ...................................................................................... 23-3
23.3 MC Firmware Base Address Low Register (MCFBALR)............................................. 23-5
23.4 MC Firmware Base Address High Register (MCFBAHR) ........................................... 23-5
23.5 MC Firmware Attributes and Partitioning Register (MCFAPR) ................................... 23-6
23.6 Parameter Summary Register (PSR).............................................................................. 23-7
23.7 Block Revision Register 1 (BRR1)................................................................................ 23-7
23.8 Block Revision Register 2 (BRR2)................................................................................ 23-8


Chapter 24  Data Path Layout (DPL) Reference


24.1 High-level DPL structure ............................................................................................... 24-1
24.2 Node: containers ............................................................................................................ 24-2
24.2.1 Child node: dprc......................................................................................................... 24-2
24.2.1.1 Child node: resources ............................................................................................ 24-3
24.2.1.1.1 Child node: res................................................................................................... 24-3
24.2.1.2 Child node: objects ................................................................................................ 24-4
24.2.1.2.1 Child node: obj .................................................................................................. 24-5







DPAA2UM, Rev 50, 08/2022


-xx NXP Semiconductors


Contents
Paragraph
Number Title


Page
Number


24.2.1.2.2 Child Node: obj_set ........................................................................................... 24-5
24.3 Node: objects ................................................................................................................. 24-6
24.3.1 Child node: dpni......................................................................................................... 24-7
24.3.2 Child node: dpio......................................................................................................... 24-8
24.3.3 Child node: dpbp........................................................................................................ 24-8
24.3.4 Child node: dpcon...................................................................................................... 24-9
24.3.5 Child node: dpci......................................................................................................... 24-9
24.3.6 Child node: dpseci ..................................................................................................... 24-9
24.3.7 Child node: dpdmux................................................................................................. 24-10
24.3.8 Child node: dpsw ..................................................................................................... 24-11
24.3.9 Child node: dpmac ................................................................................................... 24-12
24.3.10 Child node: dpdcei ................................................................................................... 24-13
24.3.11 Child node: dpdmai.................................................................................................. 24-13
24.3.12 Child node: dpmcp................................................................................................... 24-14
24.3.13 Child node: dpaiop................................................................................................... 24-14
24.4 Node: connections........................................................................................................ 24-14
24.4.1 Child node: connection ............................................................................................ 24-15


Chapter 25  Data Path Configuration (DPC) Reference


25.1 High-level DPC structure............................................................................................... 25-1
25.2 Node: mc_general .......................................................................................................... 25-2
25.2.1 Child node: log........................................................................................................... 25-2
25.2.2 Child node: console ................................................................................................... 25-3
25.3 Node: resources.............................................................................................................. 25-4
25.3.1 Child node: icid_pools ............................................................................................... 25-4
25.3.1.1 Child node: icid_pool ............................................................................................ 25-4
25.4 Node: controllers............................................................................................................ 25-5
25.4.1 Child node: qbman..................................................................................................... 25-5
25.5 Node: board_info ........................................................................................................... 25-6
25.5.1 Child node: ports........................................................................................................ 25-6
25.5.1.1 Child node: mac..................................................................................................... 25-6
25.5.2 Child node: recycle_ports .......................................................................................... 25-9
25.6 Node: memory ............................................................................................................. 25-11


Chapter 26  Use case scenarios


26.1 Steps to verify 1000BASE-X on LS1088A QDS .......................................................... 26-1
26.1.1 Preparation ................................................................................................................. 26-1
26.1.1.1 Hardware................................................................................................................ 26-1
26.1.1.2 Software and firmware .......................................................................................... 26-1







DPAA2UM, Rev 50, 08/2022


NXP Semiconductors -xxi


Contents
Paragraph
Number Title


Page
Number


26.1.1.3 RCW ...................................................................................................................... 26-1
26.1.1.4 Board setup ............................................................................................................ 26-1
26.1.2 Test procedures .......................................................................................................... 26-1
26.1.2.1 Verify that SGMII MC works with SGMII PHY................................................... 26-1
26.1.2.2 Verify that SGMII MC does not work with 1000BaseX PHY .............................. 26-2
26.1.2.3 Modify DPC for MC to support 1000BaseX......................................................... 26-3
26.2 Steps to verify PHYless on LS1088A QDS................................................................... 26-4
26.2.1 Preparation ................................................................................................................. 26-4
26.2.1.1 Hardware................................................................................................................ 26-4
26.2.1.2 Software and firmware .......................................................................................... 26-4
26.2.1.3 RCW ...................................................................................................................... 26-4
26.2.1.4 Board setup ............................................................................................................ 26-5
26.2.2 Test procedures .......................................................................................................... 26-6


Chapter 27  Logging and Debugging


27.1 MC console in Uboot ..................................................................................................... 27-1
27.2 MC/AIOP console in Linux ........................................................................................... 27-2


Chapter 28  Known Limitations


28.1 Reset of MC objects with FQs associated with a channel ............................................. 28-1
28.2 Reconfiguring FQs associated with a channel ............................................................... 28-1
28.3 DPSW - Link Aggregation............................................................................................. 28-1
28.4 DPSPARSER ................................................................................................................. 28-1
28.5 DPSW - LS2080/85 drops any IPv6 packets ................................................................. 28-2
28.6 DPSW & DPDMUX - Interrupt handling...................................................................... 28-2


Appendix A  Revision History







DPAA2UM, Rev 50, 08/2022


-xxii NXP Semiconductors


Contents
Paragraph
Number Title


Page
Number







Introduction


DPAA2UM, Rev 50, 08/2022 


NXP Semiconductors 1-1
 


Chapter 1  Introduction
DPAA2 is a hardware-level networking architecture found on some NXP SoCs. This document provides 
technical information on this architecture mainly for software developers. DPAA2 SoCs contain the 
following hardware IP blocks:


• Management Complex (required)


• WRIOP (required)


• QBMan (required)


• Accelerators, such as SEC, DCE, and PME (all optional)


• AIOP, a programmable packet engine (optional)


The following block diagram shows the hardware IP blocks of the DPAA2:


Figure 1-1. DPAA2 Hardware Blocks


The Management Complex (MC) is a key component of DPAA2. As explained in detail in this document, 
the MC runs an NXP-supplied firmware image that abstracts and simplifies the allocation and 
configuration of the other hardware elements by means of DPAA2 “objects”.   These objects provide 
familiar services such as providing the core of network interfaces, providing switching services, providing 
access to accelerators, etc.


The MC subjects within the scope of the document are:


• Definition of DPAA2 objects: what they do, their configuration interfaces, and how the objects 
work with each other.







Introduction


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 1-2


• Error reporting and handling for the objects.


• How to load and start the MC at the hardware level (needed to load the firmware) as well as how 
to allocate memory for it, ICIDs, etc.


• The hardware programming model of the MC's command portals. They are used to convey 
commands to work with objects.


• Interrupts and error indications from the MC itself (as opposed to objects)


The MC and objects abstract configuration. They do not abstract the actual I/O operations. These are done 
using QBMan software portals (allocated and configured by means of DPIO objects). However, software 
must directly use software portals for actual I/O.


Status Note


For now, readers must consult the full QBMan documentation in the low-level hardware reference manual. 
This documentation contains more information than is needed for software development on general 
purpose cores and AIOP. Eventually, the subset of the QBMan hardware-level information that is needed 
will be available in this document. In addition, coverage of MC commands and objects usage will be 
enhanced.


1.1 Intended audience


The purpose of this document is to describe the DPAA2 Management Complex services and describe the 
best usage practices. This document contains an overview of the functions, interfaces, and recommended 
use of the Management Complex to enable the DPAA2 hardware capabilities; including the programming 
models for the various DPAA2 objects.


1.2 Definitions and acronyms
• AIOP: Advanced I/O Processor hardware


• DCE: Decompression and Compression Engine


• DPAA2: Data Path Acceleration Architecture, second version.


• DPC: Data Path Configuration


• DPL: Data Path Layout


• GPP: General Purpose Processor


• MC: Management Complex


• QBMan: Queue Manager and Buffer Manager hardware


• SEC: Security Engine hardware


• WRIOP: Wire-Rate I/O Processor







Overview


DPAA2UM, Rev 50, 08/2022 


NXP Semiconductors 2-1
 


Chapter 2  Overview
The Management Complex (MC) is an SoC hardware block that simplifies DPAA2 device management - 
network objects (network interfaces, L2 switches), accelerators, etc. The MC provides object abstractions 
and a command interface that simplify software’s use of DPAA2 objects; it also provides resource 
management capabilities that can create and assign these objects to different software contexts 
(applications, virtual machines). This action allows the direct access by the software contexts to hardware 
resources, while at the same time providing isolation for the objects from other contexts; this ensures that 
malicious software can not impact the objects.


GPP and AIOP processes do not have direct access to most DPAA2 resources, and instead they perform 
the necessary DPAA2 management operations using MC commands that carry out the actual hardware 
interaction on behalf of that process.


2.1 Introduction to DPAA2 objects


The primary purpose of the MC provided DPAA2 objects is to simplify DPAA2 hardware block usage 
through abstraction and encapsulation. DPAA2 objects:


• Encapsulate specific functionality


• Abstract that functionality from the DPAA2 hardware


• Present functionality in terms of well-defined attributes and methods


The MC exports a set of logical objects to enable DPAA2, as explained in the following sections. The 
objects can be created dynamically through dedicated API calls, or statically during initialization using the 
Data Path Layout (DPL) configuration file. Not all objects and object functionalities are available for all 
DPAA 2.x based platforms; for more details see Section 2.1.5, “DPAA2 object support per platform.”


This section:


• Presents the DPAA2 object model at a concept level and describes how objects are created, 
destroyed, conveyed, configured, and used.


• Lists the objects types and their purposes.


The “users” are often application software running on general purpose processors (cores) or on the AIOP. 
Driver-level software on GPPs (and sometimes AIOP) work with the abstracted objects, rather than 
directly with the hardware. For example, the GPP software deals with L2 switches and network interfaces 
rather than directly with WRIOP.


DPAA2 objects express and abstract the DPAA2 hardware into software-managed objects that are:


• Application-oriented in terminology and use, rather than hardware-oriented.


• Based on concepts that are generally familiar to programmers and system architects.


• Simpler than direct management of the hardware.


• Indicate the architectural intent of the hardware blocks.


The DPAA2 object services are provided by software that runs as firmware on a DPAA2 hardware block 
called the Management Complex. Users do not need to program the Management Complex in order to use 
the Network Object Services; they simply use the NXP-supplied firmware. This firmware runs on the 







Overview


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 2-2
 


Management Complex instead of a general purpose core in order to simplify the integration of NXP 
software with customer software. The Management Complex provides objects that perform specific 
services; the objects have attributes and interfaces that appear as hardware.


2.1.1 Network objects


The primary goal of DPAA2 is advanced networking, and MC exports several objects that allow users to 
define their topology for “network on a chip”. The network topology may contain network interfaces with 
varying capabilities as well as several types of switches and aggregators, linked together in a 
straight-forward manner, defined by the user.


2.1.1.1 Data Path Network Interface (DPNI)


The MC exports a standard network interface that is configurable to support a wide range of features, 
starting from as low as a basic Ethernet interface up to a high-functioning network interface. The DPNI 
supports standard features such as filtering, QoS, checksum validation, and time-stamping; It can also 
offload tasks from the GPP by performing functions such as VLAN header removal/insertion, IP 
Reassembly, and IP Fragmentation.


On ingress, the DPNI receives frames from a DPMAC or another object such as a DPSW, parses headers, 
determines the frame’s traffic class, and enqueues the frame onto a frame queue selected based on the 
traffic class and other header values. This supports both hash-based distribution of frames to multiple 
cores, and also direct flow steering of frames to specific cores. The DPNI can generate a per-queue data 
availability notification when a frame is enqueued.


On egress, the DPNI dequeues frames from frame queues and transmits them using a DPMAC, or to 
another DPAA2 object such as a DPSW.


Normally, the DPNI assumes that traffic consists of standard network packets (L2, L3, L4, etc.); however, 
it is also possible to configure the DPNI as a generic network interface, and the traffic profile will be based 
on packet format starting at higher layers. Example formats for this profile can include L5+L6+Payload 
(as in GTP or CAPWAP applications). In this mode, the DPNI is not intended to interact with a standard 
network stack, but instead it can be used in fast-path or tunnel applications, therefore suitable for network 
connections between GPP applications and AIOP applications.


2.1.1.2 Data Path MAC (DPMAC)


The DPMAC represents an Ethernet MAC, a hardware device that connects to a PHY and allows physical 
transmission and reception of Ethernet frames; since DPAA2 allows configuration of internal interfaces, 
the total number of network interfaces may exceed the number of MAC objects. The DPMAC object also 
exposes MDIO access that is used for configuration of external PHY devices.


Please note that the supported protocols on a DPMAC object depend on the SoC and the RCW 
configuration. For more information on what protocols are supported on a specific DPMAC object please 
see the “SerDes options” chapter from the specific SoC Reference Manual that you are interested in.







Overview


DPAA2UM, Rev 50, 08/2022 


NXP Semiconductors 2-3
 


2.1.1.3 Data Path Switch (DPSW)


The DPSW object provides the functionality of a general layer 2 switch. It receives packets on one port 
and sends them on another. It can also send packets out on multiple ports for the purposes of broadcast, 
multicast, or mirroring.


2.1.1.4 Data Path Demux (DPDMUX)


The DPDMUX is another type of switch. It differs from a DPSW in several ways. A DPDMUX has a 
single “uplink” port. Also, it can be programmed to direct packets based on header fields beyond layer 2.


The figure below summarizes the DPAA2 network objects and their associated symbols for illustrations.


Figure 1. DPAA2 Network objects summary and symbols







Overview


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 2-4
 


2.1.2 DPAA2 infrastructure objects


The MC exports a set of supporting objects that provide access to the DPAA2 QBMan in a way that is both 
easy to configure, and flexible enough to allow optimal utilization and sharing of resources within software 
contexts.


2.1.2.1 Data Path Buffer Pool (DPBP)


The DPBP represents a QBMan buffer pool. It is used mainly as a resource by DPAA2 network interfaces 
and accelerators, but it is also an active entity because it can send buffer pool depletion notifications to 
GPP core software. DPBP owners are responsible for seeding it with buffers


2.1.2.2 Data Path I/O Portal (DPIO)


The DPIO object allows QBMan software portal configuration with an optional notification channel; its 
main purpose is to enable the GPP to perform I/O through QBMan – hardware queuing operations, such 
as enqueue and dequeue, and hardware buffer management operations, such as acquire and release. It also 
allows data availability notifications and buffer pool depletion notifications to be received. Each DPIO 
object will be usually affined to a GPP core thread.


2.1.2.3 Data Path Concentrator (DPCON)


The DPCON object allows ingress packets from multiple interfaces to be aggregated into a single device 
that appears to a GPP core as single interface. The DPCON utilizes scheduling options of the QBMan 
channels to provide hardware-based scheduling offload of ingress packets, including scheduling between 
different network interfaces.


The DPCON is also useful for software that polls for input frames; it allows a single interface to be polled 
instead of multiple interfaces.


The figure below summarizes the DPAA2 infrastructure objects and their associated symbols for 
illustrations.







Overview


DPAA2UM, Rev 50, 08/2022 


NXP Semiconductors 2-5
 


Figure 2. DPAA2 Infrastructure objects summary and symbols


2.1.3 Accelerator interfaces


DPAA2 features several hardware accelerators to assist GPP in data processing tasks. The MC exports 
accelerator interface objects that enable GPP software to send requests to these accelerators and receive 
their data processing output.


2.1.3.1 Data Path Security Interface (DPSECI)


The Security engine (SEC) contains high-performance hardware for cryptographic acceleration and 
offloading, designed to operate in a data path environment. It implements:


• Block encryption algorithms


• Stream cipher algorithms


• Hashing algorithms


• Public key algorithms


• Run time integrity checking


• Random number generator


The DPSECI object provides GPP software with an interface for sending requests to SEC and receiving 
output responses.


2.1.3.2 Data Path De/Compression Interface (DPDCEI)


The Decompression and Compression Engine (DCE) contains high-performance hardware for 
decompression and compression functionality, designed to operate in a data path environment. Its 
functionality includes the following:


• Offloading and acceleration of DEFLATE decompression and compression as defined in RFC1951







Overview


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 2-6
 


• Offloading and acceleration of GZIP decompression and compression as defined in RFC1952


• Offloading and acceleration of ZLIB decompression and compression as defined in RFC1950


The DPDCEI object provides GPP software with an interface for sending requests to the DCE and 
receiving output responses.


2.1.3.3 Data Path DMA Interface (DPDMAI)


The qDMA controller contains high-performance hardware for data transfer functionality, designed to 
operate in a data path environment. The controller can transfer blocks of data between one source and one 
or more destinations. The blocks of data transferred can be represented in memory as contiguous or 
non-contiguous using scatter/gather tables.


The DPDMAI object provides GPP software with an interface for sending requests to the qDMA and 
receiving completion responses.


The figure below summarizes the DPAA2 accelerator interface objects and their associated symbols for 
illustrations.


Figure 3. DPAA2 Accelerator Interface objects summary and symbols


2.1.4 Management and control objects


2.1.4.1 Data Path Communication Interface (DPCI)


The MC exports a generic interface for inter-partition communication (IPC). The DPCI enables 
frame-based communication between different software contexts, utilizing the QBMan infrastructure of 
DPAA2. The communication protocol is kept undefined and the interface does not provide any parsing or 
classification of the frames (unlike DPNI, which is a fully-featured standard network interface).







Overview


DPAA2UM, Rev 50, 08/2022 


NXP Semiconductors 2-7
 


DPCI objects should be connected in pairs (one DPCI in each software context) to form a communication 
link. This type of communication may serve basic management/control needs between GPP software and 
AIOP software, or between two GPP software contexts.


2.1.4.2 Data Path Resource Container (DPRC)


The DPRC object allows the management complex to track sets of objects in use by the same software 
component. The objects in the set are said to be in same container. The DPRC operates as a virtual bus, 
and a software context may query it for DPAA2 objects and associate them with OS device drivers. The 
DPRC also allows a software context to create descendant software contexts, assign resources and objects 
to these contexts, and build the internal network topology by connecting DPAA2 network objects.


Some objects include DMA-capable hardware. All objects in the same DPRC share a common ICID, and 
a common set of IO-MMU mappings. A number of key features of DPRCs include:


• Direct access – All the objects and resources in a container are private to the container, and 
software components get direct access to the “registers” (as abstracted by the management 
complex) of the hardware objects.


• Dynamic discovery – A software context that is given a DPRC can dynamically discover the 
objects and resources placed in the container using MC commands.


• Hot plug/unplug – Objects can be dynamically plugged and unplugged into DPRCs


• Security – A software context can only see the objects its DPRC, and cannot affect other containers 
or the proper operation of other software contexts. DMA transactions from MC objects are isolated 
using the system IOMMU.


2.1.4.3 Data Path MC Portal (DPMCP)


The DPMCP object is associated with Management Complex Portals, and allows GPP software to 
configure command completion interrupts for these portals. The DPMCP object is optional if the GPP 
software is polling the portal and not using portal interrupts. However, for consistency and for better 
tracking of MC portals that are in use, it is recommended to always create DPMCP objects for MC portals 
used by GPP.


The figure below summarizes the DPAA2 management objects and their associated symbols for 
illustrations.


Figure 4. DPAA2 Management objects summary and symbols







Overview


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 2-8
 


2.1.5 DPAA2 object support per platform


2.2 Objects topology and inter-connect


DPAA2 network objects can be connected to each other, creating a ‘network on a chip’ topology; 
connections are virtual network cables between two endpoints, where an endpoint may be a network 
interface (DPNI), a DPMAC (external port), a DPSW interface, a DPDMUX interface, etc. As in real 
network, an endpoint is not necessarily aware of the peer endpoint’s type or identity, but it can query its 
link state and receive notifications on link up/down events.


Table 2-1. DPAA2 objects supported by platform


Object Platform Comments


Networking objects


DPNI LS2080, LS2088, LS1088, LX2160, 
LA1575


LS1088: No TCAM support
No support for DPNI_OPT_HAS_KEY_MASKING


DPMAC LS2080, LS2088, LS1088, LX2160, 
LA1575


LS1044 and LS1048 personalities: DPMAC1 is not 
available. 


DPSW LS2080, LS2088, LX2160 —


DPDMUX LS2080, LS2088, LS1088, LX2160 —


DPRTC LS2080, LS2088, LS1088, LX2160, 
LA1575


Two-step 1588 only


Accelerator objects


DPAIOP LS2088, LS1088, LA1575 —


DPSECI LS2080, LS2088, LS1088, LX2160, 
LA1575


—


DPDMAI LS2080, LS2088, LS1088, LX2160, 
LA1575


—


DPDCEI LS2080, LS2088, LX2160 —


Infrastructure objects


DPBP All —


DPIO All —


DPCON All —


Management and control objects


DPRC All —


DPCI All —


DPMCP All —







Overview


DPAA2UM, Rev 50, 08/2022 


NXP Semiconductors 2-9
 


The figure below demonstrates a simple network topology. The network topology is shown in the greyed 
box with dotted outline. The rest of the elements in the figure are shown for better understanding of the 
system context.


Figure 5. Object topology example


The system in the example above involves only two external ports (DPMAC objects), but contains three 
network interfaces (DPNI objects) that are completely independent of each other.


One DPNI is connected directly to a DPMAC object, in a way similar to traditional Ethernet controller. 
This network interface can only communicate outside of the SoC.


The other two DPNI objects, as well as the second DPMAC object, are connected to DPSW interfaces. 
This allows both network interfaces to communicate outside of the SoC using the DPMAC, and also to 
communicate with each other.







Overview


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 2-10
 


Note, that the DPNI objects in the example are also associated with DPIO objects, enabling GPP software 
to get notifications on data availability and perform I/O operations on these network interfaces. This type 
of relation is not considered a connection with regards to the description in this section. The association of 
DPIO objects to DPNI objects and other objects is explained in more detail later in this document.


The dashed configuration lines show what software component owns the configuration and management 
of each object. Two network interfaces are owned by instances of the Linux Kernel Ethernet driver and 
interact with the Linux network stack. One network interface is assigned to a user space process, and is 
controlled by a user space Ethernet driver. The switch is managed independently of the network interfaces 
that connect to it.


2.2.1 Connection and link state


The terminology of a Link is slightly different from a Connection. Connections between network objects 
are a necessary condition to achieve a network link between the objects, but they are not a satisfying 
condition. For the link to be up, both connected objects must be in enabled state. The software component 
that owns each of the objects can enable or disable the object at any time – this is done by submitting the 
corresponding commands to the MC. If either of the connected objects is disabled, the link state is 
considered down, and packets cannot go through this link. Similarly, if the controlling software decides to 
disconnect the two objects, the connection will be terminated and both objects will encounter a link down 
event, even if both are still enabled.


The MC is responsible for propagating link state to objects. Considering the previous example, if the 
DPMAC connected to the DPSW loses its external link, the peer DPSW interface gets a link down 
notification; however, the two network interfaces connected to the DPSW are not affected – their link state 
remains up and they can continue to communicate with each other through the switch.


2.2.2 Typical object connections


A DPNI object must be connected to another network object in order to have packets flowing through it. 
As explained in the previous section, the connection alone is not sufficient. For the purpose of explaining 
the allowed network connections, this section assumes that all objects are enabled and only discusses the 
validity of connecting different types of objects.







Overview


DPAA2UM, Rev 50, 08/2022 


NXP Semiconductors 2-11
 


The figure below shows typical connection options.


Figure 6. Typical connections of network objects


Configuration (a) shows a traditional Ethernet controller, where the DPNI is directly connected to the 
DPMAC object. All DPMAC objects in this figure are assumed to be connected to external network (not 
explicitly shown).


Configuration (b) shows two DPNI objects connected in a point-to-point manner, allowing network 
communication between two software contexts. This type of connection is typical in GPP-to-AIOP 
communication, or between two different GPP processes.


Configuration (c) shows a DPSW object connected to two DPMAC objects and two DPNI objects. All 
DPSW interfaces are identical, so there is no significance to interface selection when connecting any of 
the objects to a switch.







Overview


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 2-12
 


Configuration (d) shows a DPDMUX object that can split ingress traffic from a single DPMAC to multiple 
network interfaces. While the DPDMUX single uplink interface is usually connected to a DPMAC, its 
multiple internal interfaces are basically identical and are usually connected to internal DPNI objects


2.2.3 How and when to connect


Endpoints may be connected or disconnected at any phase, including:


• At MC initialization, through declaration of ‘connections’ in the DPL


• At runtime, by invoking connect/disconnect commands that are part of the DPRC object’s API.


GPP software contexts may be given privileges to perform topology changes through its own DPRC 
object. A software context is only allowed to connect/disconnect endpoints in its own scope (container) or 
in its descendants’ scope.







Boot and Initialization Process


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 3-1


Chapter 3  Boot and Initialization Process
MC initialization is a mandatory part of the boot process – the MC performs the configuration of key 
DPAA2 hardware resources, such as QBMan, Ethernet ports, and others that are needed early in the boot 
process. For example, a network interface may be needed to retrieve the OS image from the network; 
therefore the MC initialization must complete before the main OS image is loaded. The SoC POR signal 
leaves the DPAA2 in a known idle state, with all of the DPAA2 resources uninitialized and ready to be 
allocated; the MC is kept in the boot hold-off (reset) state.


3.1 Loading the MC firmware


The MC firmware itself should be retrieved from a location that does not require DPAA2 network 
interfaces, and can include an on-board memory, or alternatively a network location accessed using an 
attached network card (PCI-Express network card, for example). MC requires the allocation of an isolated 
block taken from main system memory for firmware storage and general DPAA use; This memory space 
must not be accessible by any other device after MC initialization in order to guarantee MC’s isolation and 
trust. The SoC boot program (for example, U-Boot) must configure the MC’s private memory space base 
address and size in the MCFBALR and MCFBAHR registers. The size of memory allocated for MC is 
configurable, but must be allocated in multiples of 256MB.


The boot program must validate the authenticity of the MC firmware before loading the firmware into the 
MC memory space; the MC firmware is provided in FIT (Flattened Image Tree) image format and includes 
checksum and version information, so that the boot program can make sure a proper image is loaded into 
MC memory space.


3.2 Data Path Configuration (DPC)


The “Data Path Configuration” (DPC) is based on a text source file (similar to DTS) and compiled with 
DTC to form a binary structure (blob, similar to DTB). The DPC file is an optional input to MC and 
contains board-specific and system-specific information that may override the default DPAA hardware 
configuration. The DPC file should be compiled to a binary blob using standard DTC tool. For some 
systems, DPC may be optional.


The boot program should place the DPC blob at offset 0x00F00000 from MC memory base 
(MCFBALR/HR).


3.3 Data Path Layout (DPL)


Many systems have little or no need to dynamically create and destroy DPAA2 objects. MC is able to 
consume a data structure called the “Data Path Layout” (DPL) – that describes a set of objects to be created 
when the system is initialized.


The DPL is based on a text source file (similar to DTS) and compiled with DTC to form a binary structure 
(blob, similar to DTB). This binary structure is loaded by the boot program as an optional input to MC. 
Unlike the Linux Device Tree, the purpose of the DPL is not to describe hardware attributes, but rather to 
describe the initial topology of logical objects that the MC firmware should create.







Boot and Initialization Process


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 3-2
 


Nevertheless, and to satisfy the needs of more dynamic systems, MC also supports dynamic setup of 
objects. Therefore, all contents of the DPL are considered optional – the same topology of software 
contexts and logical objects can also be created dynamically. A software context may spawn, via its 
management portal, a child software context, and assign objects to it. As explained in the resource 
management chapter, root/parent software may dictate a limiting policy on its child software contexts.


The boot program should place the DPL blob at offset 0x00F20000 from MC memory base 
(MCFBALR/HR).


3.4 Starting MC


After the firmware is loaded, the SoC boot program deasserts P1_RST_b and Mn_RST_b bits in the 
General Control Register 1 (GCR1) to release the MC from reset; immediately the MC begins to retrieve 
and execute the loaded firmware.


When the MC has completed its configuration and the DPAA2 initial configuration, it is ready to service 
commands from the GP. MC initialization completion is signaled by the MC to the SoC boot program by 
writing the MSC status field in the General Status Register (GSR); if the returned status indicates 
successful initialization, the system boot process can continue normally. If an MC error code is returned, 
the DPAA2 subsystem cannot be used, and the system boot should be halted to analyze the problem.


The boot program can request MC to postpone the processing of the DPL; this allows the boot program to 
utilize some MC objects for its own use, regardless of which objects have been defined in the DPL. After 
the boot program has completed its tasks it must destroy any MC objects that it previously created and 
signal MC to load the system DPL.


Below is a summary of the expected handshake between the boot program and MC:


1. Boot program allocates system memory for MC, in N multiples of 256MB


2. Boot program sets MCFBALR and MCFBAHR with the physical base address of the memory 
allocated for MC, and programs MCFBALR[MEMSZ] to indicate the size of the allocated 
memory.


3. Boot program loads DPC blob at offset 0x00F00000 from MC firmware base.


4. Boot program loads DPL blob at offset 0x00F20000 from MC firmware base (optional).


5. Before kicking MC core, the boot program may set GSR[BC] with a value of 0xDD (indicates a 
request to delay DPL processing). If this code is not set, DPL is deployed immediately after MC 
completes its initial boot (steps 7 and 8 below are skipped).


6. Boot program kicks MC by writing to GCR.


7. If GSR[BC] was set to indicate delayed DPL processing, MC sets GSR[MCS] to indicate ready 
status (0x1) or error status after it completes its initial boot. If no error is reported, the boot program 
may issue MC commands (through MC portal #0) to create DPAA objects for its own use.


8. After the boot program completes its network activities it must destroy all created objects and clear 
the GSR – this signals MC to deploy the DPL.


9. Once MC deploys the DPL, it sets GSR[MCS] to ready status (0x1) once again (or reports an error 
status). The boot program should wait for such status before continuing to boot the main OS.







Boot and Initialization Process


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 3-3


3.5 Minimum memory requirements


MC minimum memory requirements are:
 • 128MB of memory for platforms LS108x and LS208x
 • 256MB of memory for platform LX216x


MC limitations depending on memory size:


MC minimum is affected by the DPC parameter total_bman_buffers. This parameter is provided in DPC 
file and is used to configure maximum number of buffers that QBMAN will handle. To handle these 
buffers QBMAN needs DDR memory to store its internal structures; the size of this memory depends on 
number of buffers.


The table below shows the minimum MC memory requirement depending on total_bman_buffers. These 
values show minimum memory value needed for MC to work properly. If AIOP is enabled the size must 
be increased to accommodate supplementary memory.


Table 3-1. 


MC 
Memory


Platform Limitations


128M LS108x
LS208x


Memory available is small and fewer objects can be created. 


Total number of buffers that can exist simultaneously in all queues is fixed to 320000.


Parameter total_bman_buffers from DPC file is ignored


AIOP do not work: any attempt to load and run AIOP application will crash the system


LX216x MC will not start


256M LS108x
LS208x


Memory available is small and fewer object can be created


LX216x Memory available is small and fewer objects can be created.


Total number of buffers that can exist simultaneously in all queues limited to 640000. If 
total_num_buffers in dpc file is greater than 640000 MC will fail to boot.


If total_num_buffers is missing in dpc file MC will use default value of 640000.


512M - No memory related limitations


Table 3-2. 


total_bman_buffers MC minimum memory


not provided in DPC 256MB


less than 1310000 256MB


less than 2620000 512MB


less than 5240000 768MB


less than 10400000 1GB







Boot and Initialization Process


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 3-4
 







MC Firmware Versions


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 4-1
 


Chapter 4  MC Firmware Versions
The MC firmware uses various types of versioning.


4.1 MC global firmware versions 


The firmware versions use the following rules:


• Major version number—incremented on API compatibility changes (updates to any DPAA2 object 
or any other MC API).


• Minor version number—incremented on API additions that are backward compatible;


• The minor version number is reset to 0 when the major version number is incremented.


• Revision number—incremented on internal changes and/or bug fixes that have no impact on API 
definition. The revision number is reset when either the major version or minor version is 
incremented.


MC exposes the API to get the compiled firmware version. In addition, the MC API header files contain 
matching major and minor numbers defined as preprocessor macros that allow the GPP/AIOP software to 
verify the defined version numbers against the information retrieved from the MC API call; this check can 
expose version conflicts between the GPP/AIOP software and the actual loaded firmware.


4.2 DPAA2 Object versions


In addition to the MC firmware global version, each DPAA2 object has its own version information (major 
and minor numbers). The object version is incremented according to the following rules:


• Major version number—incremented on DPAA 2.x object API compatibility changes


• Minor version number—incremented on DPAA 2.x object API additions that are backward 
compatible


The minor version number is reset to 0 when the major version number is incremented.


Each MC firmware is a collection of objects with various versions each object version being obtained by 
using the object GET_VERSION command.


Before using an object it is recommended to validate the object version. By using the MC firmware version 
and the object version the users can detect if certain commands or flags are supported and if there will be 
incompatibilities between GPP/AIOP software and MC Firmware.


4.3 DPAA2 Object Commands


Each object supports a set of distinct commands offering different functionalities. Each command type has 
a distinct CMDID. For each change in the command format or flags the CMDID for that command is 
changed.


In order to support backward compatibility MC Firmware can interpret commands with different 
CMDIDs.







MC Firmware Versions


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 4-2
 


An object version will advertise only one CMDID for each distinct command, but in order to support 
backward compatibility there can be multiple CMDIDs supported for each distinct command (CMDIDs 
used in prior MC releases).


4.4 Recommended user verification


Verify the MC firmware global version to see if the major version is the expected one or a newer one.


Before using an object verify the object major version to see if it is an expected one or a newer one that 
supports the required commands and flags.


Use the latest CMDID for the commands or a CMDID that is supported by each object.







MC Firmware Versions


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 4-3
 


4.5 Firmware command reference
This section contains the detailed programming model of firmware commands.


4.5.1 DPMNG_GET_VERSION


The command format is shown in the figure below.


Command structure


Figure 4-1. DPMNG_GET_VERSION Command Description


The following table describes the command fields.


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 24 23 16 15 14 8 7 0


0x00 CMDID = 0x8311 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 0


0x08 —


63 0


0x10 —


63 0


0x18


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Table 4-1. DPMNG_GET_VERSION Command Field Descriptions1


1 All unspecified fields are reserved and must be cleared (set to zero)


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.







MC Firmware Versions


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 4-4
 


Response structure


Figure 4-2. DPMNG_GET_VERSION Response Description


The following table describes the response fields.


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 24 23 16 15 14 8 7 0


0x00 CMDID = 0x8311 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 32 31 0


0x08 MAJOR REVISION


63 32 31 0


0x10 — MINOR


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Table 4-2. DPMNG_GET_VERSION Response Field Descriptions1


1 All unspecified fields are reserved and must be cleared (set to zero)


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-31 REVISION Internal revision number: incremented on implementation changes and/or bug fixes 
that have no impact on API


32-63 MAJOR Major version number: incremented on API compatibility changes


0x10 0-31 MINOR Minor version number: incremented on API additions (backward compatible); reset 
when major version is incremented







MC Firmware Versions


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 4-5
 


4.5.2 DPMNG_GET_SOC_VERSION


This command is available starting with MC 10.1.0; it will not work on older versions.


The command format is shown in the figure below.


Command structure


Figure 4-3. DPMNG_GET_SOC_VERSION Command Description


The following table describes the command fields.


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 24 23 16 15 14 8 7 0


0x00 CMDID = 0x8321 TOKEN —


IN
T


R
_D


IS


STATUS P — SRCID


63 0


0x08 —


63 0


0x10 —


63 0


0x18


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Table 4-3. DPMNG_GET_SOC_VERSION Command Field Descriptions1


1 All unspecified fields are reserved and must be cleared (set to zero)


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.







MC Firmware Versions


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 4-6
 


Response structure


Figure 4-4. DPMNG_GET_SOC_VERSION Response Description


The following table describes the response fields.


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 24 23 16 15 14 8 7 0


0x00 CMDID = 0x8321 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 32 31 0


0x08 PVR SVR


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Table 4-4. DPMNG_GET_SOC_VERSION Response Field Descriptions1


1 All unspecified fields are reserved and must be cleared (set to zero)


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-31 SVR The contents of platform SVR register; consult platform-specific manual for detailed information.


32-63 PVR The contents of platform PVR register; consult platform-specific manual for detailed information.







Management Command Portals


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 5-1
 


Chapter 5  Management Command Portals
This section describes the MC command portals memory structure and their usage.


5.1 Overview of command portals


The MC interface contains 256 management portals that are contiguously mapped in the SoC address map. 
Each portal is implemented in its own physical memory 64kB page within the SoC internal address map 
so that the Hypervisor can properly manage GPP process allocation and access control portals. MC portals 
must not be shared between different software contexts.


NOTE:


The portal page GPP memory management attribute should be set to 
cache-inhibited. 


Commands are submitted by GPP processes (or AIOP tasks) to a portal using non-cacheable store 
instructions, similar to accessing typical I/O device registers. MC portals can only support one outstanding 
command at a time, so all commands on the same portal are issued and completed serially. The command 
portals can also be read by the GPP/AIOP processes. Misaligned word accesses of a portal, split burst 
transactions, and accesses outside the 64 bytes of the portal are not performed.


The MC maintains an ICID attribute for every portal that is used to identify the isolation context for 
command execution; a GPP process can only submit a command for the isolation context it is currently 
executing within. Any memory address specified by the submitter, as input or output, is authenticated and 
translated by the IOMMU when the data structure is accessed with the ICID assigned to that command 
portal.


The MC uses a fair policy to determining which command portal is serviced next; the MC implements a 
simple round-robin arbitration mechanism to select and prepare the next command to be processed. The 
submitter may assign either a high or low priority for a command; outstanding high priority commands are 
processed before any outstanding low priority commands.


5.2 Command portal usage


The MC uses a simple flow control mechanism – a portal command must be completed before a 
subsequent command can be issued to that same portal; therefore, each portal can only have a single 
outstanding command at any point in time. If a user submits a new command to its portal prior to that portal 
being marked as available, the new command may be treated by the MC as an error, or simply ignored.


Commands submitted by the GPP/AIOP processors cause the MC to perform specific management 
services; the available MC commands are documented in the corresponding MC objects sections. The 
submitter prepares the specific command and its parameters, and afterwards writes the command header 
that contains the command ID and other attributes; the actual command word field (the least significant 
4-byte word at offset 0x0 of the portal address) should be written last. The MC waits for a command word 
field write that indicates that a new command has been submitted, then starts processing that command.







Management Command Portals


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 5-2
 


NOTE: 


The portal’s status field is used as the handshake mechanism between the 
MC and the command submitter. The submitter must set the ready status 
(0x01) when writing the command header (only after all parameters for the 
specific command were written); the MC reports command completion with 
success/error code in the same status field. The MC can also return 
command response information in the portal’s memory, as documented for 
each of the commands.


While a write of any word in an already serviced portal will be discarded, 
reads of any portal word are always allowed; the submitter may poll the 
status word freely.


The submitting process/task may use polling to query for command completion and final status; it writes 
the desired command to a command portal, and polls the portal’s status word until it indicates that it is 
completed and that the portal is made available. Only once the portal is available does a process/task issue 
a subsequent command to that command portal. Other OS-specific wait mechanisms are also accepted, as 
long as no other command is written to the portal before the previous command is completed.


5.3 Creating and destroying DPAA2 objects


DPAA2 object operations require GPP/AIOP software to open an object control session for the object, by 
submitting a CREATE MC command; each object has dedicated CREATE command. DPAA2 object 
operations are done in the context of a Data Path Resource Container that holds all the resources and object 
information that the software context can access or use.


When opening a Data Path Resource Container a unique authentication token handle is returned to be used 
by all the object operations done in the context of the container. The object CREATE command must be 
executed on a MC portal that is assigned or in use by a Data Path Resource Container providing a unique 
authentication token for that container. 


An object CREATE command creates a new DPAA2 object type with the specified attributes used in the 
command. By using the container token handle in the CREATE command the object is automatically 
assigned to that container. If the token is '0' the object will be assigned to the container that hosts the MC 
command portal executing this command. The object CREATE command returns the object ID of the 
created object. The object ID is used to OPEN or DESTROY the object. The returned object ID has 
significance only in the context of the resource container in which was created and the resource container 
that currently owns the object.


The OPEN command uses the object ID and returns a unique authentication token, associated with the 
specific object ID and the specific command portal; this token must be used in all subsequent commands 
for this specific object except the DESTROY. The CLOSE command closes the control session of the 
object and no further operations are allowed on the object without opening a new control session.


The DESTROY command destroy the object and release all its resources. The function uses the 
authentication token of the parent container that created the object (not the one that currently owns the 
object) and the object ID.







Management Command Portals


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 5-3
 


A single command portal can be used to control multiple DPAA2 objects, as long as both the command 
portal and the object are assigned to the same software context, i.e. to the same resource container, and the 
user makes sure that the commands are submitted to the portal one at a time. GPP/AIOP software should 
submit separate CREATE commands for each object it wishes to control in order for a single command 
portal to control multiple objects in the same software context.


A typical CREATE/OPEN/CLOSE/DESTROY flow for a DPNI object is detailed below:


dprc_open (dprc_io, cmd_flags, container_id, &dprc_token);


dpni_create(dprc_io, dprc_token, 0, &dpni_cfg, &dpni_id);


dpni_open(dprc_io, 0, dpni_id, &dpni_token);


dpni_enable(dprc_io, cmd_flags, dpni_token);


dpni_disable(dprc_io, cmd_flags, dpni_token);


dpni_close(dprc_io, 0, dpni_token);


dpni_destroy(dprc_io, dprc_token, 0, dpni_id);


5.4 Command portals memory map


The MC command portals are accessible to GPP and AIOP software through the SoC internal address map, 
and the 64MB MC portal space is presented within the 512MB DPAA2 external address map that also 
contains other DPAA2 portals. Each MC portal is mapped on a 64kB boundary, and the MC Portal is 
Little-Endian. The MC Portal Space is laid out as shown in Figure 7.


Figure 7. MC Portal Map


The address map of a single MC Portal is also summarized in Table 1.


Table 1. MC Portal Map


Offset range
Block
Size


Description


0x0_0000 - 0x0_003F 64B Management Command Portal.
See Section 5.5, “Management command portal definition”


0x0_0040 - 0x0_FFFF remainder of 64kB Reserved.


Management Command Portal 1023


Management Command Portal 1


Management Command Portal 0


Management Command Portal 2


MC Portals offset: 0x3FF_0000


MC Portals offset: 0x002_0000


MC Portals offset: 0x001_0000


MC Portals offset: 0x000_0000







Management Command Portals


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 5-4
 


5.5 Management command portal definition


The format of the management command portal is shown in Figure 8.


Figure 8. Management Command Portal


Table 2 describes the Management Command Portal fields.


Offset 0x0 from Management Command Portal base (64kB aligned) Read-Write Access


63 48 47 32 31 24 23 16 15 14 8 7 0


0x00


CMDID TOKEN —


IN
T


R
_D


IS


STATUS P — SRCID


Reset 64’b0000_0000_0000_0000_0000_0000_0000_0000


127 64


0x08 PARAMS


Reset 64’b0000_0000_0000_0000_0000_0000_0000_0000


191 128


0x10 PARAMS


Reset 64’b0000_0000_0000_0000_0000_0000_0000_0000


255 192


0x18 PARAMS


Reset 64’b0000_0000_0000_0000_0000_0000_0000_0000


319 256


0x20 PARAMS


Reset 64’b0000_0000_0000_0000_0000_0000_0000_0000


383 320


0x28 PARAMS


Reset 64’b0000_0000_0000_0000_0000_0000_0000_0000


447 384


0x30 PARAMS


Reset 64’b0000_0000_0000_0000_0000_0000_0000_0000


511 448


0x38 PARAMS


Reset 64’b0000_0000_0000_0000_0000_0000_0000_0000


Table 2. Management Command Portal Field Descriptions


Bits Name Description


0-7 SRCID The SoC architected source ID of the submitter. This is the same 8-bit source ID used throughout 
the SoC.
This field is reserved. It cannot be written by a GPP processor.


8-14 — Reserved. Set to zero for forward compatibility.







Management Command Portals


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 5-5
 


15 P Priority. This is the command priority class. Outstanding high priority commands are serviced 
before low priority commands.
1’b0 – low priority
1’b1 – high priority


16-23 STATUS Command ready/status.
This field is used as the handshake field between MC and the command submitter. The submitter 
must set the ready status (0x01) when writing the command header (after the PARAMS area was 
initialized with the specific command parameters). MC reports command completion with 
success/error codes in this field, as listed below.


0x00 – Command ended successfully (set by MC on successful command completion)
0x01 – Command is ready for processing (must be set by the submitter)
0x03 – Authentication error (illegal object-portal-icid combination)
0x04 – No privilege (operation not permitted for current user) 
0x05 – DMA or I/O error
0x06 – Configuration error (invalid/conflicting parameters)
0x07 – Command timed out (unexpected long execution time)
0x08 – No DPAA2 resources for completing the command
0x09 – No memory available for completing the command
0x0A – Busy (operation cannot be completed temporarily)
0x0B – Unsupported/unknown operation
0x0C – Invalid state (may indicate incorrect calling sequence)


24 INTR_DIS Interrupt disable.
Set to disable interrupt generation on command completion.
Note that command completion interrupts are managed through DPMCP object.


25-31 — Reserved. Set to zero for forward compatibility.


32-47 TOKEN Authentication token.
For “OPEN” commands and for DPXX_GET_API_VERSION, set this field to zero. 
For object CREATE commands it represents the authentication token of the parent container to 
which the object should be created and assigned. If the token is '0' the object will be assigned to 
the container that hosts the MC command portal executing this command.
For object DESTROY commands it represents the authentication token of the parent container 
that created the object. Note that the object can be assigned to another container and sending 
the authentication token of this container will result in a command failure.
The token is updated by MC after a successful completion of an “OPEN” command.
The generated token is valid for the specific object and specific command portal, until a “CLOSE” 
command is completed.
User must keep the generated token and set it in the TOKEN field for every subsequent 
command for the same object and on the same command portal.


48-63 CMDID Command ID. This is the predefined command code for the submitted command (see command 
code definition in command specifications).


64-511 PARAMS Command parameters (56 bytes).
Each command defines specific set of parameters (see command specifications in this 
document). Unused bits in this area should be cleared for forward compatibility.
Each of the seven 64-bits words is organized in memory in Little-Endian format.


Table 2. Management Command Portal Field Descriptions


Bits Name Description







Management Command Portals


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 5-6
 


5.6 MC General Command Portals command reference
This section contains the detailed programming model of MC general command portals commands.


5.6.1 DPMNG_GET_CONT_ID


Obtains the container id associated with a given portal. 


The command format is shown in the figure below.


Command structure


Figure 5-1. DPMNG_GET_CONT_ID Command Description


The following table describes the command fields.


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 24 23 16 15 14 8 7 0


CMDID = 0x8301 TOKEN —
IN


T
R


_
D


IS
STATUS P — SRCID


63 0


0x08 —


63 0


0x10 —


63 0


0x18


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Table 5-1. DPMNG_GET_CONT_ID Command Field Descriptions1


1 All unspecified fields are reserved and must be cleared (set to zero)


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.







Management Command Portals


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 5-7
 


Response structure


Figure 5-2. DPMNG_GET_CONT_ID Response Description


The following table describes the response fields.


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 24 23 16 15 14 8 7 0


CMDID = 0x8301 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 32 31 0


0x08 — CONTAINER_ID


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Table 5-2. DPMNG_GET_CONT_ID Response Field Descriptions1


1 All unspecified fields are reserved and must be cleared (set to zero)


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-31 CONTAINER_ID Requested container ID







Management Command Portals


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 5-8
 







DPRC: Data Path Resource Container


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 6-1
 


Chapter 6  DPRC: Data Path Resource Container
A GPP/AIOP software context (e.g. Kernel, user-space application, virtual machine, AIOP application) 
can be associated with a single DPRC (Data Path Resource Container) object that holds all the resource 
and object information that the software context can access or use.


A software context may need to spawn descendant software contexts (e.g. applications, virtual machines) 
and grant them resources and objects; to support this process, a software context can create ‘child’ 
containers. The parent software context may assign resources and/or objects to that child container, and it 
may also set resource management policies and reset and destroy the descendant container.


Each container holds three main components:


a) DPAA2 objects inventory for objects assigned to the container. Objects may be assigned either 
by the parent software through DPRC commands, or through the DPL during initialization.


b) DPAA2 free resource pool inventory. Resource pools contain primitive resources that are 
assigned to the container, and are not yet associated with any DPAA2 object.


c) Attributes that specify container properties and policies. Attributes are set by the software 
context that creates the container (the parent), and cannot be changed by the descendant 
software context.


Please refer to the API book for complete reference of available functions.


6.1 DPRC features


The following list summarizes the DPRC main features and capabilities:


• Supports container queries – provides information on the following:


— DPAA2 objects assigned to the container


— For each object, provides the object’s ID, version, mappable regions, supported IRQs and other 
attributes


— Free resources assigned to the container


— Descendant (child) containers of this container


— The container’s policies and other attributes


• Supports creating and destroying descendant resource containers


• Supports assigning resources and objects to descendant containers


• Supports unassigning resources and objects from descendant containers


• Supports setting global policies to descendant containers


• Supports setting policies per free resource pool of descendant containers


• Supports connecting and disconnecting of DPAA2 network and communication interfaces – allows 
users to create their required ‘network-on-chip’ topology


• Supports container locking from a parent container which means that:


— container locked won’t be able to create/destroy other objects/containers
— container locked won’t be able to assign/unassign objects
— container locked won’t be able to lock/unlock other child containers







DPRC: Data Path Resource Container


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 6-2
 


6.2 DPRC functional description


6.2.1 Resource container creation


During MC initialization, the boot program provides an initial DPL structure to the MC that defines the 
initial container topology and their assigned DPAA2 objects and resources. Privileged software may also 
perform dynamic descendant container creation for its supervised software contexts; a new DPRC object 
is created for each descendant container. By issuing the corresponding commands to its own DPRC object, 
the parent software context can control assignment of DPAA2 resources, objects, and management 
policies.


A software context that creates descendant containers should set the following container attributes:


• Isolation Context ID (ICID) for the child container; alternatively, the ICID can be selected by the 
MC from a pool of ICIDs that was predetermined in the DPL


• Spawning policy – determines if the child container is allowed to create its own child containers 
(only if the container is not locked)


• Allocation policy – determines if the child container is allowed to allocate resources from its parent


• Object creation policy – if the container is not locked it will be allowed to create other DPAA2 
objects.


• Topology change policy – determines if the child container is allowed to change the DPAA2 
objects topology by connecting or disconnecting DPAA2 network objects


6.2.2 Objects assignment


A parent software context may assign DPAA2 objects to its child containers; an assigned object can be 
declared as ‘plugged’ or ‘unplugged’ during assignment. The owner software context may query its 
associated DPRC object, see the following section on object discovery for more information, and associate 
a device driver to the discovered object. A software context may also control the ‘plugged’ state of its own 
objects by reassigning the object to itself and changing the state. The assignment is allowed only if 
container is not locked.


6.2.3 Objects discovery


The DPRC follows the concept of a probeable bus, that may be very useful during the software context’s 
boot time; by sending the appropriate commands, GPP software can query the DPRC to probe/discover 
DPAA2 objects in its domain and associate these objects with device drivers. 







DPRC: Data Path Resource Container


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 6-3
 


6.3 DPRC command reference
This section contains the detailed programming model of DPRC commands.


6.3.1 DPRC_OPEN


Open a control session for the specified object.


This function can be used to open a control session for an already created object; an object may have been 
declared in the DPL or by invoking DPRC_CREATE_CONTAINER command on the parent DPRC 
object.


This function returns a unique authentication token, associated with the specific object ID; this token must 
be used in all subsequent commands for this specific object..


Command structure


The command format is shown in the figure below.


Figure 9. DPRC_OPEN Command Description


The following table describes the command fields.
1-


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x8051 TOKEN —


IN
T


R
_D


IS


STATUS P — SRCID


63 32 31 0


0x08 — CONTAINER_ID


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Table 3. DPRC_OPEN Command Field Descriptions1


1 All unspecified fields are reserved and must be cleared (set to zero)


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-31 CONTAINER_ID Container ID to open







DPRC: Data Path Resource Container


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 6-4
 


6.3.2 DPRC_CLOSE


Close the control session of the object.


After this function is called, no further operations are allowed on the object without opening a new control 
session.


Command structure


Figure 10. DPRC_CLOSE Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x8001 TOKEN —


IN
T


R
_D


IS


STATUS P — SRCID


63 0


0x08 —


63 0


0x10 —


63 0


0x18


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.







DPRC: Data Path Resource Container


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 6-5
 


6.3.3 DPRC_CREATE_CONTAINER


This command creates and initializes an instance of DPRC according to the specified command 
parameters. This command is not required for DPRC instances that are created using the DPL.


The command format is shown in the figure below.


Command structure


Figure 11. DPRC_CREATE_CONTAINER Command Description


The following table describes the command fields.


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x1512 TOKEN —


IN
T


R
_D


IS


STATUS P — SRCID


63 48 47 32 31 0


0x08 — ICID OPTIONS


63 32 31 0


0x10 PORTAL_ID —


63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0


0x18 LABEL7 LABEL6 LABEL5 LABEL4 LABEL3 LABEL2 LABEL1 LABEL0


63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0


0x20 LABEL15 LABEL14 LABEL13 LABEL12 LABEL11 LABEL10 LABEL9 LABEL8


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Table 4. DPRC_CREATE_CONTAINER Command Field Descriptions1


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-32 OPTIONS Combination of 'DPRC_CFG_OPT_<X>' options:
bit 0: DPRC_CFG_OPT_SPAWN_ALLOWED - Spawn Policy Option allowed - Indicates that the new 
container is allowed to spawn and have its own child containers
bit 1: DPRC_CFG_OPT_ALLOC_ALLOWED - General Container allocation policy - Indicates that the 
new container is allowed to allocate requested resources from its parent container; if not set, the 
container is only allowed to use resources in its own pools; Note that this is a container's global policy, 
but the parent container may override it and set specific quota per resource type.
bit 3: DPRC_CFG_OPT_TOPOLOGY_CHANGES_ALLOWED - Topology change allowed - software 
context associated with this container is allowed to invoke topology operations, such as attach/detach 
of network objects.
bit 5: DPRC_CFG_OPT_AIOP - AIOP -Indicates that container belongs to aiop. 


32-47 ICID Container's ICID; if set to 'DPRC_GET_ICID_FROM_POOL', a free
ICID value is allocated by the DPRC


0x10 32-63 PORTAL_ID Portal ID; if set to 'DPRC_GET_PORTAL_ID_FROM_POOL', a free
portal ID is allocated by the DPRC


0x18 0-63 LABEL[0-7] Object label


0x20 0-63 LABEL[8-15]







DPRC: Data Path Resource Container


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 6-6
 


Response structure


Figure 12. DPRC_CREATE_CONTAINER Response Description


The following table describes the response fields.


1 All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x1511 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 0


0x08 —


63 32 31 0


0x10 — CHILD_CONTAINER_ID


63 0


0x18 CHILD_PORTAL_PADDR


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Table 5. DPRC_CREATE_CONTAINER Response Field Descriptions1


1 All unspecified fields are reserved and must be cleared (set to zero)


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x10 0-31 CHILD_CONTAINER_ID Child container ID


0x18 0-63 CHILD_PORTAL_PADDR Base physical address of the child portal







DPRC: Data Path Resource Container


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 6-7
 


6.3.4 DPRC_DESTROY_CONTAINER


Command structure


Figure 13. DPRC_DESTROY_CONTAINER Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x1521 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 32 31 0


0x08 — CHILD_CONTAINER_ID


63 0


0x10 —


63 0


0x18


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-31 CHILD_CONTAINER_ID ID of the container to destroy







DPRC: Data Path Resource Container


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 6-8
 


6.3.5 DPRC_RESET_CONTAINER


This command will reset all objects from this container. The reset procedure will disconnect all DPMAC 
objects. After the command is executed, call DPRC_CONNECT to restore all DPMAC connections.


Command structure


Figure 14. DPRC_CLOSE Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0052 TOKEN —


IN
T


R
_D


IS


STATUS P — SRCID


63 32 31 0


0x08 OPTIONS CHILD_CONTAINER_ID


63 0


0x10 —


63 0


0x18


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-31 CHILD_CONTAINER_ID ID of the container to reset


32-63 OPTIONS Reset options:
bit 0: DPRC_RESET_OPTION_NON_RECURSIVE - Setting this bit the reset 
container will not be recursively. That means the children containers of the reset 
container will not be affected by the reset. 







DPRC: Data Path Resource Container


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 6-9
 


6.3.6 DPRC_SET_LOCKED


This command will lock the CHILD_CONTAINER_ID and the entire hierarchy that belongs to it down. 
That means the containers will not be longer allowed to call commands lock/unlock create/destroy 
assign/unassign .


Command structure


Figure 15. DPRC_SET_LOCKED Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x16B1 — TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 40 39 32 31 1 0


0x08 CHILD_CONTAINER_ID –


L
O


C
K


E
D


63 0


0x10 –


63 0


0x18 –


63 0


0x20 –


63 0


0x28 –


63 0


0x30 –


63 0


0x38 –


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0 LOCKED Set the container specified through CHILD_CONTAINER_ID locked. 


32-63 CHILD_CONTAINER_ID Container ID to be locked.







DPRC: Data Path Resource Container


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 6-10
 


6.3.7 DPRC_SET_IRQ


Set IRQ information for the DPRC to trigger an interrupt.


Command structure


Figure 16. DPRC_SET_IRQ Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0101 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 40 39 32 31 0


0x08 — IRQ_INDEX IRQ_VAL


63 0


0x10 IRQ_ADDR


63 32 31 0


0x18 IRQ_NUM


63 0


0x20 –


63 0


0x28 –


63 0


0x30 –


63 0


0x38 –


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-31 IRQ_VAL Value to write into IRQ_ADDR address


32-39 IRQ_INDEX Identifies the interrupt index to configure


0x10 0-63 IRQ_ADDR Address that must be written to signal a message-based interrupt


0x18 0-32 IRQ_NUM A user defined number associated with this IRQ







DPRC: Data Path Resource Container


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 6-11
 


6.3.8 DPRC_GET_IRQ


Get IRQ information from the DPRC.


Command structure


Figure 17. DPRC_GET_IRQ Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0111 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 40 39 32 31 0


0x08 – IRQ_INDEX –


63 0


0x10 –


63 0


0x18 –


63 0


0x20 –


63 0


0x28 –


63 0


0x30 –


63 0


0x38 –


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 32-39 IRQ_INDEX Identifies the interrupt index to query







DPRC: Data Path Resource Container


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 6-12
 


Response structure


Figure 18. DPRC_GET_IRQ Response Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0111 TOKEN —


IN
T


R
_D


IS


STATUS P — SRCID


63 32 31 0


0x08 – IRQ_VAL


63 0


0x10 IRQ_ADDR


63 32 31 0


0x18 TYPE IRQ_NUM


63 0


0x20 –


63 0


0x28 –


63 0


0x30 –


63 0


0x38 –


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-31 IRQ_VAL Value that is written into IRQ_ADDR address


0x10 0-63 IRQ_ADDR Address that is written when signalling the message-based interrupt


0x18 0-32 IRQ_NUM A user defined number associated with this IRQ


32-63 TYPE Interrupt type:
0 represents message-based interrupt (both IRQ_ADDR and IRQ_VAL are valid)







DPRC: Data Path Resource Container


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 6-13
 


6.3.9 DPRC_SET_IRQ_ENABLE


Set overall interrupt state. Allows GPP software to control when interrupts are generated. Each interrupt 
can have up to 32 causes. The enable/disable control's the overall interrupt state. if the interrupt is disabled 
no causes will cause an interrupt.


Command structure


Figure 19. DPRC_SET_IRQ_ENABLE Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0121 — TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 40 39 32 31 1 0


0x08 – IRQ_INDEX – EN


63 0


0x10 –


63 0


0x18 –


63 0


0x20 –


63 0


0x28 –


63 0


0x30 –


63 0


0x38 –


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0 EN Interrupt state: set to ‘1’ to enable, ‘0’ to disable


32-39 IRQ_INDEX Identifies the interrupt index to configure







DPRC: Data Path Resource Container


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 6-14
 


6.3.10 DPRC_GET_IRQ_ENABLE


Get overall interrupt state.


Command structure


Figure 20. DPRC_GET_IRQ_ENABLE Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0131 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 40 39 32 31 0


0x08 – IRQ_INDEX –


63 0


0x10 –


63 0


0x18 –


63 0


0x20 –


63 0


0x28 –


63 0


0x30 –


63 0


0x38 –


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 32-39 IRQ_INDEX Identifies the interrupt index to query







DPRC: Data Path Resource Container


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 6-15
 


Response structure


Figure 21. DPRC_GET_IRQ_ENABLE Response Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0131 TOKEN —


IN
T


R
_D


IS


STATUS P — SRCID


63 1 0


0x08 – EN


63 0


0x10 –


63 0


0x18 –


63 0


0x20 –


63 0


0x28 –


63 0


0x30 –


63 0


0x38 –


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0 EN This bit is set if the interrupt is enabled







DPRC: Data Path Resource Container


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 6-16
 


6.3.11 DPRC_SET_IRQ_MASK


Set the interrupt mask. Every interrupt can have up to 32 causes and the interrupt model supports 
masking/unmasking each cause independently.


Command structure


Figure 22. DPRC_SET_IRQ_MASK Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0141 TOKEN —


IN
T


R
_D


IS


STATUS P — SRCID


63 40 39 32 31 0


0x08 – IRQ_INDEX MASK


63 0


0x10 –


63 0


0x18 –


63 0


0x20 –


63 0


0x28 –


63 0


0x30 –


63 0


0x38 –


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-31 MASK Event mask for triggering the interrupt; See GET_IRQ_STATUS command for 
specification of available events. For each bit in MASK:
0 = ignore event
1 = event is valid; signal the IRQ if this event occurs


32-39 IRQ_INDEX The interrupt index to configure







DPRC: Data Path Resource Container


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 6-17
 


6.3.12 DPRC_GET_IRQ_MASK


Get the interrupt mask. Every interrupt can have up to 32 causes and the interrupt model supports 
masking/unmasking each cause independently.


Command structure


Figure 23. DPRC_GET_IRQ_MASK Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0151 TOKEN —


IN
T


R
_D


IS


STATUS P — SRCID


63 40 39 32 31 0


0x08 – IRQ_INDEX –


63 0


0x10 –


63 0


0x18 –


63 0


0x20 –


63 0


0x28 –


63 0


0x30 –


63 0


0x38 –


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 32-39 IRQ_INDEX The interrupt index to query







DPRC: Data Path Resource Container


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 6-18
 


Response structure


Figure 24. DPRC_GET_IRQ_MASK Response Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0151 TOKEN —


IN
T


R
_D


IS


STATUS P — SRCID


63 32 31 0


0x08 MASK


63 0


0x10 –


63 0


0x18 –


63 0


0x20 –


63 0


0x28 –


63 0


0x30 –


63 0


0x38 –


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-31 MASK Event mask for triggering the interrupt; See GET_IRQ_STATUS command for 
specification of available events. For each bit in MASK:
0 = ignore event
1 = event is valid; signal the IRQ if this event occurs







DPRC: Data Path Resource Container


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 6-19
 


6.3.13 DPRC_GET_IRQ_STATUS


Get the current status of pending events for the specified interrupt index.


Command structure


Figure 25. DPRC_GET_IRQ_STATUS Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0161 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 40 39 32 31 0


0x08 – IRQ_INDEX STATUS


63 0


0x10 –


63 0


0x18 –


63 0


0x20 –


63 0


0x28 –


63 0


0x30 –


63 0


0x38 –


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-31 STATUS Optional: any STATUS bits that are set will be cleared from pending state (removing 
the need for DPRC_CLEAR_IRQ_STATUS command). Note that the STATUS 
returned in the response is the status before the events are cleared.


Supported events: see response structure definition


32-39 IRQ_INDEX The interrupt index to query







DPRC: Data Path Resource Container


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 6-20
 


Response structure


Figure 26. DPRC_GET_IRQ_STATUS Response Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0161 TOKEN —


IN
T


R
_D


IS


STATUS P — SRCID


63 32 31 0


0x08 STATUS


63 0


0x10 –


63 0


0x18 –


63 0


0x20 –


63 0


0x28 –


63 0


0x30 –


63 0


0x38 –


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-31 STATUS Events status, one bit per event:
0 = no interrupt pending
1 = interrupt pending


Supported events for IRQ 0:
Bit 0: DPRC_IRQ_EVENT_OBJ_ADDED – indicates that an object was added to the 
container
Bit 1: DPRC_IRQ_EVENT_OBJ_REMOVED – indicates that an object was removed 
from the container
Bit 2: DPRC_IRQ_EVENT_RES_ADDED – indicates that resources were added to the 
container
Bit 3: DPRC_IRQ_EVENT_RES_REMOVED – indicates that resources were 
removed from the container
Bit 4: DPRC_IRQ_EVENT_CONTAINER_DESTROYED – indicates that one of the 
descendant containers was destroyed 
Bit 5: DPRC_IRQ_EVENT_OBJ_DESTROYED – indicates that one of the container’s 
objects was destroyed
Bit 6: DPRC_IRQ_EVENT_OBJ_CREATED – indicates that an object was created in 
the container







DPRC: Data Path Resource Container


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 6-21
 


6.3.14 DPRC_CLEAR_IRQ_STATUS


Clear (mark as handled) pending events of the specified interrupt index.


Command structure


Figure 27. DPRC_CLEAR_IRQ_STATUS Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0171 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 40 39 32 31 0


0x08 – IRQ_INDEX STATUS


63 0


0x10 –


63 0


0x18 –


63 0


0x20 –


63 0


0x28 –


63 0


0x30 –


63 0


0x38 –


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-31 STATUS Mask for clearing handled events; See GET_IRQ_STATUS command for specification 
of available events. For each bit in MASK:
0 = don’t change event status
1 = clear event status bit to indicate that it was handled


32-39 IRQ_INDEX The interrupt index to configure







DPRC: Data Path Resource Container


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 6-22
 


6.3.15 DPRC_GET_ATTRIBUTES


Command structure


Figure 28. DPRC_GET_ATTRIBUTES Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0041 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 0


0x08 —


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.







DPRC: Data Path Resource Container


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 6-23
 


Response structure


Figure 29. DPRC_GET_ATTRIBUTES Response Description


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0041 TOKEN —


IN
T


R
_D


IS


STATUS P — SRCID


63 48 47 32 31 0


0x08 — ICID CONTAINER_ID


63 32 31 0


0x10 PORTAL_ID OPTIONS


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-31 CONTAINER_ID Container's ID


32-47 ICID Container's ICID


0x10 0-31 OPTIONS Container's options as set at container's creation


32-63 PORTAL_ID Container's portal ID







DPRC: Data Path Resource Container


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 6-24
 


6.3.16 DPRC_SET_RES_QUOTA


Command structure


Figure 30. DPRC_SET_RES_QUOTA Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x1551 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 48 47 32 31 0


0x08 — QUOTA CHILD_CONTAINER_ID


63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0


0x10 TYPE7 TYPE6 TYPE5 TYPE4 TYPE3 TYPE2 TYPE1 TYPE0


63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0


0x18 TYPE15 TYPE14 TYPE13 TYPE12 TYPE11 TYPE10 TYPE9 TYPE8


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-31 CHILD_CONTAINER_ID ID of the child container


32-47 QUOTA Sets the maximum number of resources of the selected type that the child container is 
allowed to allocate from its parent;
when quota is set to -1, the policy is the same as container's general policy.


0x10 0-63 TYPE[0-5] Resource/object type


0x18 0-63 TYPE[8-15]







DPRC: Data Path Resource Container


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 6-25
 


6.3.17 DPRC_GET_RES_QUOTA


Command structure


Figure 31. DPRC_GET_RES_QUOTA Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x1561 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 32 31 0


0x08 — CHILD_CONTAINER_ID


63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0


0x10 TYPE7 TYPE6 TYPE5 TYPE4 TYPE3 TYPE2 TYPE1 TYPE0


63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0


0x18 TYPE15 TYPE14 TYPE13 TYPE12 TYPE11 TYPE10 TYPE9 TYPE8


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-31 CHILD_CONTAINER_ID ID of the child container


0x10 0-63 TYPE[0-5] Resource/object type


0x18 0-63 TYPE[8-15]







DPRC: Data Path Resource Container


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 6-26
 


Response structure


Figure 32. DPRC_GET_RES_QUOTA Response Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x1561 TOKEN —


IN
T


R
_D


IS


STATUS P — SRCID


63 48 47 32 31 0


0x08 — QUOTA —


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 32-47 QUOTA Sets the maximum number of resources of the selected type that the child container is 
allowed to allocate from its parent;
when quota is set to -1, the policy is the same as container's general policy.







DPRC: Data Path Resource Container


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 6-27
 


6.3.18 DPRC_ASSIGN


Command structure


Figure 33. DPRC_ASSIGN Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x1571 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 32 31 0


0x08 OPTIONS CONTAINER_ID


63 32 31 0


0x10 ID_BASE_ALIGN NUM


63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0


0x18 TYPE7 TYPE6 TYPE5 TYPE4 TYPE3 TYPE2 TYPE1 TYPE0


63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0


0x20 TYPE15 TYPE14 TYPE13 TYPE12 TYPE11 TYPE10 TYPE9 TYPE8


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-31 CONTAINER_ID ID of the child container


32-63 OPTIONS Request options: combination of DPRC_RES_REQ_OPT_ options:
bit 0: DPRC_RES_REQ_OPT_EXPLICIT - Explicit resource ID request - The 
requested objects/resources are explicit and sequential (in case of resources). The 
base ID is given at res_req at base_align field
bit 1: DPRC_RES_REQ_OPT_ALIGNED - Aligned resources request - Relevant only 
for resources request (and not objects). Indicates that resources base ID should be 
sequential and aligned to the value given at dprc_res_req base_align field
bit 2: DPRC_RES_REQ_OPT_PLUGGED - Plugged Flag - Relevant only for object 
assignment request. Indicates that after all objects assigned. An interrupt will be 
invoked at the relevant GPP. The assigned object will be marked as plugged. Plugged 
objects can't be assigned from their container


0x10 0-31 NUM Number of resources


32-63 ID_BASE_ALIGN In case of explicit assignment (DPRC_RES_REQ_OPT_EXPLICIT is set at option), 
this field represents the required base ID for resource allocation;
In case of aligned assignment (DPRC_RES_REQ_OPT_ALIGNED is set at
option), this field indicates the required alignment for the
resource ID(s) - use 0 if there is no alignment or explicit ID
requirements


0x18 0-63 TYPE[0-5] Resource/object type: Represent as a NULL terminated string.
This string may received by using dprc_get_pool() to get resource
type and dprc_get_obj() to get object type;
Note: it is not possible to assign/un-assign DPRC objects


0x20 0-63 TYPE[8-15]







DPRC: Data Path Resource Container


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 6-28
 


6.3.19 DPRC_UNASSIGN


Command structure


Figure 34. DPRC_UNASSIGN Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x1581 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 32 31 0


0x08 OPTIONS CHILD_CONTAINER_ID


63 32 31 0


0x10 ID_BASE_ALIGN NUM


63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0


0x18 TYPE7 TYPE6 TYPE5 TYPE4 TYPE3 TYPE2 TYPE1 TYPE0


63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0


0x20 TYPE15 TYPE14 TYPE13 TYPE12 TYPE11 TYPE10 TYPE9 TYPE8


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-31 CHILD_CONTAINER_ID ID of the child container


32-63 OPTIONS Request options: combination of DPRC_RES_REQ_OPT_ options:
bit 0: DPRC_RES_REQ_OPT_EXPLICIT - Explicit resource ID request - The 
requested objects/resources are explicit and sequential (in case of resources). The 
base ID is given at res_req at base_align field
bit 1: DPRC_RES_REQ_OPT_ALIGNED - Aligned resources request - Relevant only 
for resources request (and not objects). Indicates that resources base ID should be 
sequential and aligned to the value given at dprc_res_req base_align field
bit 2: DPRC_RES_REQ_OPT_PLUGGED - Plugged Flag - Relevant only for object 
assignment request. Indicates that after all objects assigned. An interrupt will be 
invoked at the relevant GPP. The assigned object will be marked as plugged. Plugged 
objects can't be assigned from their container


0x10 0-31 NUM Number of resources


32-63 ID_BASE_ALIGN In case of explicit assignment (DPRC_RES_REQ_OPT_EXPLICIT is set at option), 
this field represents the required base ID for resource allocation;
In case of aligned assignment (DPRC_RES_REQ_OPT_ALIGNED is set at
option), this field indicates the required alignment for the
resource ID(s) - use 0 if there is no alignment or explicit ID
requirements


0x18 0-63 TYPE[0-5] Resource/object type: Represent as a NULL terminated string.
This string may received by using dprc_get_pool() to get resource
type and dprc_get_obj() to get object type;
Note: it is not possible to assign/un-assign DPRC objects


0x20 0-63 TYPE[8-15]







DPRC: Data Path Resource Container


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 6-29
 


6.3.20 DPRC_GET_POOL_COUNT


Command structure


Figure 35. DPRC_GET_POOL_COUNT Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x16A1 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 0


0x08 —


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.







DPRC: Data Path Resource Container


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 6-30
 


Response structure


Figure 36. DPRC_GET_POOL_COUNT Response Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x16A1 TOKEN —


IN
T


R
_D


IS


STATUS P — SRCID


63 32 31 0


0x08 — POOL_COUNT


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-31 POOL_COUNT Number of resource pools in the DPRC







DPRC: Data Path Resource Container


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 6-31
 


6.3.21 DPRC_GET_POOL


Command structure


Figure 37. DPRC_GET_POOL Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x1691 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 32 31 0


0x08 — POOL_INDEX


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-31 POOL_INDEX Index of the pool to be queried (< pool_count)







DPRC: Data Path Resource Container


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 6-32
 


Response structure


Figure 38. DPRC_GET_POOL Response Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x1691 TOKEN —


IN
T


R
_D


IS


STATUS P — SRCID


63 0


0x08 —


63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0


0x10 TYPE7 TYPE6 TYPE5 TYPE4 TYPE3 TYPE2 TYPE1 TYPE0


63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0


0x18 TYPE15 TYPE14 TYPE13 TYPE12 TYPE11 TYPE10 TYPE9 TYPE8


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x10 0-63 TYPE[0-7] The type of the pool


0x18 0-63 TYPE[8-15]







DPRC: Data Path Resource Container


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 6-33
 


6.3.22 DPRC_GET_OBJ_COUNT


Command structure


Figure 39. DPRC_GET_OBJ_COUNT Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x1591 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 0


0x08 —


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.







DPRC: Data Path Resource Container


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 6-34
 


Response structure


Figure 40. DPRC_GET_OBJ_COUNT Response Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x1591 TOKEN —


IN
T


R
_D


IS


STATUS P — SRCID


63 32 31 0


0x08 OBJ_COUNT —


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 32-63 OBJ_COUNT Number of objects assigned to the DPRC







DPRC: Data Path Resource Container


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 6-35
 


6.3.23 DPRC_GET_OBJ


Command structure


Figure 41. DPRC_GET_OBJ Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x15A1 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 32 31 0


0x08 — OBJ_INDEX


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-32 OBJ_INDEX Index of the object to be queried (< obj_count)







DPRC: Data Path Resource Container


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 6-36
 


Response structure


Figure 42. DPRC_GET_OBJ Response Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x15A1 TOKEN —


IN
T


R
_D


IS


STATUS P — SRCID


63 32 31 0


0x08 ID —


63 32 31 24 23 16 15 0


0x10 STATE REGION_COUNT IRQ_COUNT VENDOR


63 48 47 32 31 16 15 0


0x18 — FLAGS VERSION_MINOR VERSION_MAJOR


63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0


0x20 TYPE7 TYPE6 TYPE5 TYPE4 TYPE3 TYPE2 TYPE1 TYPE0


63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0


0x28 TYPE15 TYPE14 TYPE13 TYPE12 TYPE11 TYPE10 TYPE9 TYPE8


63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0


0x30 LABEL7 LABEL6 LABEL5 LABEL4 LABEL3 LABEL2 LABEL1 LABEL0


63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0


0x38 LABEL15 LABEL14 LABEL13 LABEL12 LABEL11 LABEL10 LABEL9 LABEL8


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 32-63 ID ID of logical object resource 


0x10 0-15 VENDOR Object vendor identifier


16-23 IRQ_COUNT Number of interrupts supported by the object


24-31 REGION_COUNT Number of mappable regions supported by the object 


32-63 STATE Object state: combination of DPRC_OBJ_STATE_ states:
bit 0: DPRC_OBJ_STATE_OPEN - Opened state - Indicates that an object is open by 


at least one owner 
bit 1: DPRC_OBJ_STATE_PLUGGED - Plugged state - Indicates that the object is 


plugged


0x18 0-15 VERSION_MAJOR Major version of the object


16-31 VERSION_MINOR Minor version of the object


32-47 FLAGS Not used, set to zero.


0x20 0-63 TYPE[0-7] Type of object: NULL terminated string


0x28 0-63 TYPE[8-15]


0x30 0-63 LABEL[0-7] Object label


0x38 0-63 LABEL[8-15]







DPRC: Data Path Resource Container


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 6-37
 


6.3.24 DPRC_GET_OBJ_DESC


Command structure


Figure 43. DPRC_GET_OBJ_DESC Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x1621 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 32 31 0


0x08 — OBJ_ID


63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0


0x10 OBJ_TYPE7 OBJ_TYPE6 OBJ_TYPE5 OBJ_TYPE4 OBJ_TYPE3 OBJ_TYPE2 OBJ_TYPE1 OBJ_TYPE0


63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0


0x18 OBJ_TYPE15 OBJ_TYPE14 OBJ_TYPE13 OBJ_TYPE12 OBJ_TYPE11 OBJ_TYPE10 OBJ_TYPE9 OBJ_TYPE8


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-32 OBJ_ID The ID of the object to get its descriptor


0x10 0-63 OBJ_TYPE[0-7] The type of the object to get its descriptor


0x18 0-63 OBJ_TYPE[8-15]







DPRC: Data Path Resource Container


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 6-38
 


Response structure


Figure 44. DPRC_GET_OBJ_DESC Response Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x1621 TOKEN —


IN
T


R
_D


IS


STATUS P — SRCID


63 32 31 0


0x08 ID —


63 32 31 24 23 16 15 0


0x10 STATE REGION_COUNT IRQ_COUNT VENDOR


63 48 47 32 31 16 15 0


0x18 — FLAGS VERSION_MINOR VERSION_MAJOR


63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0


0x20 TYPE7 TYPE6 TYPE5 TYPE4 TYPE3 TYPE2 TYPE1 TYPE0


63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0


0x28 TYPE15 TYPE14 TYPE13 TYPE12 TYPE11 TYPE10 TYPE9 TYPE8


63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0


0x30 LABEL7 LABEL6 LABEL5 LABEL4 LABEL3 LABEL2 LABEL1 LABEL0


63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0


0x38 LABEL15 LABEL14 LABEL13 LABEL12 LABEL11 LABEL10 LABEL9 LABEL8


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 32-63 ID ID of logical object resource 


0x10 0-15 VENDOR Object vendor identifier


16-23 IRQ_COUNT Number of interrupts supported by the object


24-31 REGION_COUNT Number of mappable regions supported by the object 


32-63 STATE Object state: combination of DPRC_OBJ_STATE_ states:
bit 0: DPRC_OBJ_STATE_OPEN - Opened state - Indicates that an object is open by 


at least one owner 
bit 1: DPRC_OBJ_STATE_PLUGGED - Plugged state - Indicates that the object is 


plugged


0x18 0-15 VERSION_MAJOR Major version of the object


16-31 VERSION_MINOR Minor version of the object


32-47 FLAGS Not used, set to zero.


0x20 0-63 TYPE[0-7] Type of object: NULL terminated string


0x28 0-63 TYPE[8-15]


0x30 0-63 LABEL[0-7] Object label


0x38 0-63 LABEL[8-15]







DPRC: Data Path Resource Container


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 6-39
 


6.3.25 DPRC_GET_RES_COUNT


Command structure


Figure 45. DPRC_GET_RES_COUNT Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x15B1 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 0


0x08 —


63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0


0x10 TYPE7 TYPE6 TYPE5 TYPE4 TYPE3 TYPE2 TYPE1 TYPE0


63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0


0x18 TYPE15 TYPE14 TYPE13 TYPE12 TYPE11 TYPE10 TYPE9 TYPE8


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x10 0-63 TYPE[0-7] pool type


0x18 0-63 TYPE[8-15]







DPRC: Data Path Resource Container


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 6-40
 


Response structure


Figure 46. DPRC_GET_RES_COUNT Response Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x15B1 TOKEN —


IN
T


R
_D


IS


STATUS P — SRCID


63 32 31 0


0x08 — RES_COUNT


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-31 RES_COUNT Number of free resources of the given
resource type that are assigned to this DPRC







DPRC: Data Path Resource Container


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 6-41
 


6.3.26 DPRC_GET_RES_IDS


Command structure


Figure 47. DPRC_GET_RES_IDS Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x15C1 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 49 48 42 41 0


0x08 ITER_STATUS —


63 32 31 0


0x10 LAST_ID BASE_ID


63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0


0x18 TYPE7 TYPE6 TYPE5 TYPE4 TYPE3 TYPE2 TYPE1 TYPE0


63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0


0x20 TYPE15 TYPE14 TYPE13 TYPE12 TYPE11 TYPE10 TYPE9 TYPE8


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 42-48 ITER_STATUS Iteration status - should be set to DPRC_ITER_STATUS_FIRST at first iteration; while 
the returned marker is DPRC_ITER_STATUS_MORE, additional iterations are 
needed, until the returned marker is DPRC_ITER_STATUS_LAST.
Values are:
0: DPRC_ITER_STATUS_FIRST
1: DPRC_ITER_STATUS_MORE
2: DPRC_ITER_STATUS_LAST


0x10 0-31 BASE_ID Base resource ID of this range


32-63 LAST_ID Last resource ID of this range


0x18 0-63 TYPE[0-7] pool type


0x20 0-63 TYPE[8-15]







DPRC: Data Path Resource Container


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 6-42
 


Response structure


Figure 48. DPRC_GET_RES_IDS Response Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x15C1 TOKEN —


IN
T


R
_D


IS


STATUS P — SRCID


63 49 48 42 41 0


0x08 ITER_STATUS —


63 32 31 0


0x10 LAST_ID BASE_ID


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 42-48 ITER_STATUS Iteration status - should be set to DPRC_ITER_STATUS_FIRST at first iteration; while 
the returned marker is DPRC_ITER_STATUS_MORE, additional iterations are 
needed, until the returned marker is DPRC_ITER_STATUS_LAST
Values are:
0: DPRC_ITER_STATUS_FIRST
1: DPRC_ITER_STATUS_MORE
2: DPRC_ITER_STATUS_LAST


0x10 0-31 BASE_ID Base resource ID of this range 


32-63 LAST_ID Last resource ID of this range







DPRC: Data Path Resource Container


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 6-43
 


6.3.27 DPRC_GET_OBJ_REGION


Command structure


Figure 49. DPRC_GET_OBJ_REGION Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x15E3 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 56 55 48 47 32 31 0


0x08 — REGION_INDEX — OBJ_ID


63 0


0x10 —


63 0


0x18 —


63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0


0x20 OBJ_TYPE7 OBJ_TYPE6 OBJ_TYPE5 OBJ_TYPE4 OBJ_TYPE3 OBJ_TYPE2 OBJ_TYPE1 OBJ_TYPE0


63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0


0x28 OBJ_TYPE15 OBJ_TYPE14 OBJ_TYPE13 OBJ_TYPE12 OBJ_TYPE11 OBJ_TYPE10 OBJ_TYPE9 OBJ_TYPE8


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-31 OBJ_ID Unique object instance as returned in dprc_get_obj()


48-55 REGION_INDEX The specific region to query


0x20 0-63 OBJ_TYPE[0-7] Object type as returned in dprc_get_obj()


0x28 0-63 OBJ_TYPE[8-15]







DPRC: Data Path Resource Container


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 6-44
 


Response structure


Figure 50. DPRC_GET_OBJ_REGION Response Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x15E2 TOKEN —


IN
T


R
_D


IS


STATUS P — SRCID


63 0


0x08 —


63 0


0x10 BASE_OFFSET


63 36 35 32 31 0


0x18 — TYPE SIZE


63 32 31 0


0x20 — FLAGS


63 0


0x28 BASE_PADDR


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x10 0-63 BASE_OFFSET Region base offset


0x18 0-31 SIZE Region size (in bytes) 


32–35 TYPE Supported values are:
0: DPRC_REGION_TYPE_MC_PORTAL
1: DPRC_REGION_TYPE_QBMAN_PORTAL


0x20 0-31 FLAGS Supported values:
Bit 0: DPRC_REGION_FLAG_CACHEABLE—Indicates that the memory mapping 


should be cacheable for this region.
Bit 1: DPRC_REGION_SHARED - indicates that the region should be mapped as 


shared (coherent)


0x28 0-63 BASE_PADDR Region base physical address







DPRC: Data Path Resource Container


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 6-45
 


6.3.28 DPRC_SET_OBJ_LABEL


Command structure


Figure 51. DPRC_SET_OBJ_LABEL Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x1611 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 32 31 0


0x08 — OBJ_ID


63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0


0x10 LABEL7 LABEL6 LABEL5 LABEL4 LABEL3 LABEL2 LABEL1 LABEL0


63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0


0x18 LABEL15 LABEL14 LABEL13 LABEL12 LABEL11 LABEL10 LABEL9 LABEL8


63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0


0x20 OBJ_TYPE7 OBJ_TYPE6 OBJ_TYPE5 OBJ_TYPE4 OBJ_TYPE3 OBJ_TYPE2 OBJ_TYPE1 OBJ_TYPE0


63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0


0x28 OBJ_TYPE15 OBJ_TYPE14 OBJ_TYPE13 OBJ_TYPE12 OBJ_TYPE11 OBJ_TYPE10 OBJ_TYPE9 OBJ_TYPE8


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-31 OBJ_ID Unique object instance as returned in dprc_get_obj()


0x10 0-63 LABEL[0-7] Object label


0x18 0-63 LABEL[8-15]


0x20 0-63 OBJ_TYPE[0-7] Object type as returned in dprc_get_obj()


0x28 0-63 OBJ_TYPE[8-15]







DPRC: Data Path Resource Container


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 6-46
 


6.3.29 DPRC_SET_OBJ_IRQ


Command structure


Figure 52. DPRC_SET_OBJ_IRQ Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x15F1 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 40 39 32 31 0


0x08 — IRQ_INDEX IRQ_VAL


63 0


0x10 IRQ_ADDR


63 32 31 0


0x18 OBJ_ID IRQ_NUM


63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0


0x20 OBJ_TYPE7 OBJ_TYPE6 OBJ_TYPE5 OBJ_TYPE4 OBJ_TYPE3 OBJ_TYPE2 OBJ_TYPE1 OBJ_TYPE0


63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0


0x28 OBJ_TYPE15 OBJ_TYPE14 OBJ_TYPE13 OBJ_TYPE12 OBJ_TYPE11 OBJ_TYPE10 OBJ_TYPE9 OBJ_TYPE8


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-31 IRQ_VAL Value to write into irq_addr address


32-39 IRQ_INDEX The interrupt index to configure


0x10 0-63 IRQ_ADDR Address that must be written to signal a message-based interrupt


0x18 0-31 IRQ_NUM A user defined number associated with this IRQ


32-63 OBJ_ID ID of the object to set its IRQ


0x20 0-63 OBJ_TYPE[0-7] Type of the object to set its IRQ


0x28 0-63 OBJ_TYPE[8-15]







DPRC: Data Path Resource Container


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 6-47
 


6.3.30 DPRC_GET_OBJ_IRQ


Command structure


Figure 53. DPRC_GET_OBJ_IRQ Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x15F1 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 40 39 32 31 0


0x08 — IRQ_INDEX OBJ_ID


63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0


0x10 OBJ_TYPE7 OBJ_TYPE6 OBJ_TYPE5 OBJ_TYPE4 OBJ_TYPE3 OBJ_TYPE2 OBJ_TYPE1 OBJ_TYPE0


63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0


0x18 OBJ_TYPE15 OBJ_TYPE14 OBJ_TYPE13 OBJ_TYPE12 OBJ_TYPE11 OBJ_TYPE10 OBJ_TYPE9 OBJ_TYPE8


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-31 OBJ_ID ID of the object to get its IRQ


32-39 IRQ_INDEX The interrupt index to configure


0x10 0-63 OBJ_TYPE[0-7] Type of the object to get its IRQ


0x18 0-63 OBJ_TYPE[8-15]







DPRC: Data Path Resource Container


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 6-48
 


Response structure


Figure 54. DPRC_GET_OBJ_IRQ Response Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x15F1 TOKEN —


IN
T


R
_D


IS


STATUS P — SRCID


63 32 31 0


0x08 — IRQ_VAL


63 0


0x10 IRQ_ADDR


63 32 31 0


0x18 TYPE IRQ_NUM


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-31 IRQ_VAL Value to write into irq_addr address


0x10 0-63 IRQ_ADDR Address that must be written to signal a message-based interrupt


0x18 0-31 IRQ_NUM A user defined number associated with this IRQ


32-63 TYPE Interrupt type: 0 represents message interrupt
type (both irq_addr and irq_val are valid)







DPRC: Data Path Resource Container


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 6-49
 


6.3.31 DPRC_CONNECT


Command structure


Figure 55. DPRC_CONNECT Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x1671 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 32 31 0


0x08 ENDPOINT1_INTERFACE_ID ENPOINT1_ID


63 32 31 0


0x10 ENDPOINT2_INTERFACE_ID ENPOINT2_ID


63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0


0x18 EP1_TYPE7 EP1_TYPE6 EP1_TYPE5 EP1_TYPE4 EP1_TYPE3 EP1_TYPE2 EP1_TYPE1 EP1_TYPE0


63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0


0x20 EP1_TYPE15 EP1_TYPE14 EP1_TYPE13 EP1_TYPE12 EP1_TYPE11 EP1_TYPE10 EP1_TYPE9 EP1_TYPE8


63 32 31 0


0x28 COMMITTED_RATE MAX_RATE


63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0


0x30 EP2_TYPE7 EP2_TYPE6 EP2_TYPE5 EP2_TYPE4 EP2_TYPE3 EP2_TYPE2 EP2_TYPE1 EP2_TYPE0


63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0


0x38 EP2_TYPE15 EP2_TYPE14 EP2_TYPE13 EP2_TYPE12 EP2_TYPE11 EP2_TYPE10 EP2_TYPE9 EP2_TYPE8


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-31 ENDPOINT1_ID Endpoint object ID


32-63 ENDPOINT1_INTERFACE_ID Interface ID; should be set for endpoints with multiple interfaces
("dpsw", "dpdmux"); for others, always set to 0


0x10 0-31 ENDPOINT2_ID Endpoint object ID


32-63 ENDPOINT2_INTERFACE_ID Interface ID; should be set for endpoints with multiple interfaces
("dpsw", "dpdmux"); for others, always set to 0


0x18 0-63 ENDPOINT1_TYPE[0-5] Endpoint object type: NULL terminated string


0x20 0-63 ENDPOINT1_TYPE[8-15]


0x18 0-31 MAX_RATE Maximum rate (Mbits/s)


32-63 COMMITTED_RATE Committed rate (Mbits/s)


0x30 0-63 ENDPOINT2_TYPE[0-5] Endpoint object type: NULL terminated string


0X38 0-63 ENDPOINT2_TYPE[8-15]







DPRC: Data Path Resource Container


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 6-50
 


6.3.32 DPRC_DISCONNECT


Command structure


Figure 56. DPRC_DISCONNECT Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x1681 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 32 31 0


0x08 INTERFACE_ID ID


63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0


0x10 TYPE7 TYPE6 TYPE5 TYPE4 TYPE3 TYPE2 TYPE1 TYPE0


63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0


0x18 TYPE15 TYPE14 TYPE13 TYPE12 TYPE11 TYPE10 TYPE9 TYPE8


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-31 ID Endpoint object ID


32-63 INTERFACE_ID Interface ID; should be set for endpoints with multiple interfaces
("dpsw", "dpdmux"); for others, always set to 0


0x10 0-63 TYPE[0-5] Endpoint object type: NULL terminated string


0x18 0-63 TYPE[8-15]







DPRC: Data Path Resource Container


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 6-51
 


6.3.33 DPRC_GET_CONNECTION


Command structure


Figure 57. DPRC_GET_CONNECTION Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x16C1 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 32 31 0


0x08 ENDPOINT1_INTERFACE_ID ENPOINT1_ID


63 32 31 0


0x10 EP1_TYPE7 EP1_TYPE6 EP1_TYPE5 EP1_TYPE4 EP1_TYPE3 EP1_TYPE2 EP1_TYPE1 EP1_TYPE0


63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0


0x18 EP1_TYPE15 EP1_TYPE14 EP1_TYPE13 EP1_TYPE12 EP1_TYPE11 EP1_TYPE10 EP1_TYPE9 EP1_TYPE8


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-31 ENDPOINT1_ID Endpoint object ID


32-63 ENDPOINT1_INTERFACE_ID Interface ID; should be set for endpoints with multiple interfaces
("dpsw", "dpdmux"); for others, always set to 0


0x10 0-63 ENDPOINT1_TYPE[0-5] Endpoint object type: NULL terminated string


0x18 0-63 ENDPOINT1_TYPE[8-15]







DPRC: Data Path Resource Container


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 6-52
 


Response structure


Figure 58. DPRC_GET_CONNECTION Response Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x20F1 TOKEN —


IN
T


R
_D


IS


STATUS P — SRCID


63 0


0x08 —


63 0


0x10 —


63 0


0x18 —


63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0


0x20 ENDPOINT2_INTERFACE_ID ENPOINT2_ID


63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0


0x28 EP2_TYPE7 EP2_TYPE6 EP2_TYPE5 EP2_TYPE4 EP2_TYPE3 EP2_TYPE2 EP2_TYPE1 EP2_TYPE0


63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0


0x30 EP2_TYPE15 EP2_TYPE14 EP2_TYPE13 EP2_TYPE12 EP2_TYPE11 EP2_TYPE10 EP2_TYPE9 EP2_TYPE8


63 0


0x38 — STATE


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x20 0-31 ENDPOINT2_ID Endpoint object ID


32-63 ENDPOINT2_INTERFACE_ID Interface ID; should be set for endpoints with multiple interfaces
("dpsw", "dpdmux"); for others, always set to 0


0x28 0-63 ENDPOINT2_TYPE[0-5] Endpoint object type: NULL terminated string


0X30 0-63 ENDPOINT2_TYPE[8-15]


0x38 0-31 STATE Link state: 1 - link is up, 0 - link is down







DPRC: Data Path Resource Container


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 6-53
 


6.3.34 DPRC_GET_API_VERSION


Command structure


Figure 59. DPRC_GET_API_VERSION Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0xA051 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 0


0x08 —


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.







DPRC: Data Path Resource Container


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 6-54
 


Response structure


Figure 60. DPRC_GET_API_VERSION Response Description


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0xA051 TOKEN —


IN
T


R
_D


IS


STATUS P — SRCID


63 32 31 16 15 0


0x08 — VERSION_MINOR VERSION_MAJOR


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-15 VERSION_MAJOR Major version of API


16-31 VERSION_MINOR Minor version of API







DPRC: Data Path Resource Container


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 6-55
 


6.3.35 DPRC_GET_MEM


Command structure


Figure 61. DPRC_GET_MEM Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x16D1 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 32 31 16 15 8 7 0


0x08 — PAGE FLAGS PARTITION_ID


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-7 PARTITION_ID Partition ID. Only PEB works for now, otherwise MC returns error


8-15 FLAGS Bit 0 - REFRESH - signals if the command will parse again the partition or will return 
a page from the previous read


16-31 PAGE Page number requested by the user







DPRC: Data Path Resource Container


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 6-56
 


Response structure


Figure 62. DPRC_GET_MEM Response Description


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x16D1 TOKEN —


IN
T


R
_D


IS


STATUS P — SRCID


63 32 31 16 15 8 7 0


0x08 — TOTAL_PAGE_COUNT — NUM_ENTRIES


63 32 31 0


0x10 SIZE0 OFFSET0


63 32 31 0


0x18 SIZE1 OFFSET1


63 32 31 0


0x20 SIZE2 OFFSET2


63 32 31 0


0x28 SIZE3 OFFSET3


63 32 31 0


0x30 SIZE4 OFFSET4


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-7 NUM_ENTRIES Number of valid entries


16-31 TOTAL_PAGE_COUNT Total number of valid pages


0x10- 
0x30


0-31 OFFSET[0-4] Block memory offset to the start of the PEB memory


32-63 SIZE[0-4] Size of a block memory







DPNI: Data Path Network Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 7-1
 


Chapter 7  DPNI: Data Path Network Interface
The DPNI object is a network interface that is configurable to support a wide range of features from a very 
basic Ethernet interface up to a high-functioning network interface. The DPNI supports features that are 
expected by standard network stacks, from basic features to offloads.


DPNIs work with Ethernet traffic, starting with the L2 header.  Additional functions are provided for 
standard network protocols (L2, L3, L4, etc.).


Please refer to the API book for complete reference of available functions.


7.1 DPNI features


The following list summarizes the DPNI main features and capabilities:


• Supports Ethernet network interfaces at different rates, both on physical interfaces and on internal 
connections between a DPNI and another L2 interface (a DPNI, DPDMUX or DPSW port).


• Supports maximum frame size of 10KB


• Allows association with up to eight different Data Path Buffer Pools (DPBP objects)


• Allows interaction with one or more Data Path I/O (DPIO) objects for dequeueing/enqueueing 
frame descriptors (FD) and for acquiring/releasing buffers.


• Supports wire-speed frame parsing; parsing results may be visible in the frame annotation area


• Supports unicast promiscuous and multicast promiscuous modes


• Supports filtering of received frames:


— Exact-match filtering based on destination MAC address


— Exact-match filtering based on VLAN


• QoS support:


— Packet classification to up to eight traffic classes


— Classification based on user-defined keys (with key size up to 56 bytes)


• Supports distribution over frame queues:


— Statistical distribution based on hash-generated key


— Explicit distribution based on user-defined flow selection (with key size up to 56 bytes)


• Supports different scheduling options for processing received packets:


— Queues can either be scheduled by software (default), or attached to a DPIO object, or attached 
to a DPCON object


— Extended support for AIOP when used with DPCON


• Supports traffic shaping of transmitted packets:


— Up to eight transmit queues matching eight traffic classes


• Supports transmit confirmation of all packets or transmission errors only


• Supports L3 and L4 checksum generation


• Supports L3 and L4 checksum validation


• Supports network interface statistics:







DPNI: Data Path Network Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 7-2
 


— Ingress frames count


— Ingress bytes count


— Ingress frames dropped due to explicit ‘drop’ setting


— Ingress frames discarded due to errors


— Ingress multicast frames count


— Ingress multicast bytes count


— Ingress broadcast frames count


— Ingress broadcast bytes count


— Egress frames count


— Egress bytes count 


— Egress frames discarded due to errors


• Supports link state indication – a network link is up only when the DPNI is initialized and enabled 
(this statement is assuming that the peer network entity is also enabled).


• Supports network interface interrupts:


— Link change events


• Supports enable, disable, and reset operations







DPNI: Data Path Network Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 7-3
 


7.2 DPNI functional description


7.2.1 Ingress frame processing


The figure and paragraphs below describe the DPNI processing phases on ingress.


Figure 63. DPNI Processing Phases for Ingress Frames


a) A frame arrives at the DPNI from another object, such as DPMAC, DPSW or other object.


b) Parsing: The frame is parsed to locate the headers from which lookup keys can be generated.


c) Filtering: The Destination MAC address and VLAN (if exists) are matched against 
user-defined filters; frames that do not match the filters are dropped.


NOTE


DPNI allows configuration of promiscuous mode for unicast and/or 
multicast addresses; these modes, if enabled, override the MAC filter.


d) QoS: The DPNI supports up to eight ingress traffic classes and a variable number of QMan 
frame queues per traffic class. The frame is classified to one of the traffic classes based on 
user-defined lookup keys; the selected traffic class causes a specific set of queues to be 
selected.







DPNI: Data Path Network Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 7-4
 


e) Policing: The frame is ‘colored’ based on the policing profile defined for the traffic class, 
followed by WRED algorithm that discards lowest priority frames if needed.


f) Distribution: The DPNI selects a destination frame queue for the frame, using either another 
user-defined lookup (explicit flow steering) or an RSS-style hashing operation; this lookup 
selects the final destination queue within the previously selected set (of the selected traffic 
class).


g) The frame is enqueued onto the queue, and the queue represents the destination indirectly. At 
this point, DPIO objects enter the process. Every queue is configured to deliver data availability 
notifications to a specific DPIO, and these notifications tell the driver software using the DPIO 
that one or more frames are available to read from a specific queue. Driver software responds 
by using a DPIO (actually any of its DPIOs) to read a burst of one or more frames from the 
queue.


The GPP driver software may steer any set of receive queues to DPIO or DPCON objects; the DPNI 
configures the relevant queue to generate notifications through the associated DPIO or DPCON, as 
explained below.


Any DPNI receive queue can be associated with a DPIO object. A DPIO object may operate with 
notifications enabled, and in this case the queues associated with the DPIO generate FQDAN (Frame 
Queue Data Available Notification) messages to GPP software when data is available.


DPNI receive queues can alternatively be associated with a DPCON object. When DPCON objects are 
connected to a DPIO object where notifications are enabled, the DPCON generates CDAN (Channel Data 
Available Notification) messages to GPP software when data is available.


GPP software may apply any of the following ingress scheduling options on the network interface:


a) Poll the DPNI queues using explicit dequeue requests through DPIO. In this case, the network 
interface driver is self-scheduling the dequeue calls.


b) Use the DPIO object to get FQDAN notifications on the data availability in the DPNI queues, 
and then dequeue from those queues. Driver may control scheduling by prioritizing the queues 
(FQDAN messages will be prioritized).


c) An alternating method of options (a) and (b), such as in NAPI mode.


d) Use the DPCON object to employ hardware-assisted scheduling of different receive queues. 
DPCON also allows the driver to schedule ingress traffic between different network interfaces. 
GPP software may select specific flows to go through DPCON, and to get CDAN notifications 
on data availability for those flows. Other flows can be scheduled according to any of the 
former three options.


Options (a), (b), and (c) above do not require a DPCON object; the combination of DPNI and DPIO is 
sufficient.


7.2.2 Egress frame processing


The figure and paragraphs below describe the DPNI processing phases on ingress.







DPNI: Data Path Network Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 7-5
 


Figure 64. DPNI Processing Phases for Egress Frames


a) Driver software enqueues a frame onto one of the transmit queues, by indicating the desired 
transmit priority (traffic class); the DPNI supports one logical transmit queue per traffic class


b) Scheduling and shaping: the frame is scheduled for transmission based the relative priority of 
its traffic class among other transmitted frames. DPNI may also apply user-defined rate 
limitation on egress.


c) The frame leaves the DPNI and is sent through DPMAC to an external port, or alternatively to 
another network object such as DPSW.


The egress configuration involves up to eight traffic classes, each having its own transmit queue.


Transmit confirmation involves a dedicated confirmation queue per DPIO – the confirmation queue is used 
to transmit confirmation of all packets, or optionally to only transmit errors, that were transmitted using 
that DPIO. Transmit confirmation queues are configured to deliver packets through the respective DPIO. 
The DPIO object may operate with notifications enabled or disabled, and the DPIO has its own dedicated 
channel for passing notifications. 


7.2.3 Relationship with DPIO and DPCON objects


A DPNI object can be fully operational only by association with at least one DPIO object. Mainly, DPIO 
objects provide configuration of a QBMan software portal, with an option for data availability 
notifications. GPP software is free to relate DPIO objects to threads, or to share them between cores in 
SMP mode but this requires synchronized access to the QBMan software portal. It is possible to associate 
multiple DPIO objects with the same DPNI, in order to spread traffic from this DPNI across multiple 
QBMan software portals.


GPP software may decide to enable DPIO notifications, or it may dequeue frames based on its own 
scheduled polling logic. It is also possible for one GPP entity to receive the notification from one DPIO 
and alert another entity that will dequeue the packets using a different DPIO.







DPNI: Data Path Network Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 7-6
 


DPCON objects are used for concentrating traffic from several interfaces into sub-interfaces, mainly for 
scheduling purposes. It is possible to connect DPCON with DPIO so it generates notifications to the GPP.


Note that the QBMan software portal is used both for enqueue/dequeue operations on packets, and for 
acquire/release buffer operations. GPP software is responsible for the portal’s operation mode and usage 
i.e. sharing vs. affinity, NAPI mode vs. other modes, association of queue context, etc. 


DPIO objects may serve multiple interfaces. This is not limited to multiple DPNI objects; it can also be 
combined with communication interfaces and accelerator interfaces. For example, the same DPIO may 
serve both a DPNI and a DPCI, assuming they are assigned to the same software context (container).


7.2.4 Relationship with DPBP objects


A DPNI object can be fully operational only by association with at least one DPBP object. Each DPNI 
must be associated with at least one and up to eight DPBP objects, which allows the flexible use of 
different buffer pools.


A DPBP object may be associated with several DPNI objects from the same software context. It is also 
possible to initialize and associate a private DPBP object per DPNI; the GPP/AIOP software context has 
to decide whether sharing is required.


7.2.5 Ingress QoS


The DPNI supports classification of received frames to traffic classes (up to 8). This is done by matching 
the incoming frame with a user-defined lookup key (optionally with a mask). The result of the lookup in 
the QoS table determines the traffic class for the received frame.


Each traffic class has its own set of attributes, for example distribution options, policing options


All QoS-related functions require that the DPNI be created with multiple traffic classes. (Refer to the 
NUM_TCS setting in DPNI_CREATE.)


The user may select a flexible lookup key for the QoS table. This is done by invoking the 
DPNI_SET_QOS_TABLE command. Following that step, the user may add and remove QoS entries using 
the DPNI_ADD_QOS_ENTRY and DPNI_REMOVE_QOS_ENTRY commands.


Starting with MC 10.3.0 the default behavior for DPNI objects employed by AIOP is to assign a default 
priority to each traffic class.


The priority value for each TC is computed based on DPNI's NUM_TCS and the 4 strict priority levels 
from a QBMan Channel.


Before this version all traffic classes had the same priority on AIOP ingress.


For DPNI object in AIOP context the default traffic class to priority mapping is presented below:







DPNI: Data Path Network Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 7-7
 


The above static mapping can be overridden by DPNI_SET_QUEUE.


7.2.6 Ingress distribution


The ingress distribution phase selects a final destination queue within the previously selected set (of 
chosen traffic class). The DPNI selects a destination frame queue for the frame using one of the following 
methods:


• Explicit flow steering – based on user-defined lookup, or


• RSS-style hashing operation – hashing is based on user-defined key


Distribution functionality is valid only if the DPNI_OPT_NO_FS option was not specified at DPNI 
creation; otherwise, each traffic class has exactly (and only) one flow. Refer to DPNI_CREATE for a 
description of the DPNI_OPT_NO_FS option and NUM_QUEUES for configuration of DPNI distribution 
size.


The first step in applying any type of distribution is to invoke the DPNI_SET_RX_TC_DIST command to 
select the distribution mode (DIST_MODE = DPNI_DIST_MODE_FS / DPNI_DIST_MODE_HASH / 
DPNI_DIST_MODE_NONE). The distribution mode is selected per traffic class, so each traffic class may 
have different distribution method. For GPP software, the distribution size determines the number of 
receive queues in that traffic class.


If flow steering distribution mode is selected, user must also provide the lookup key format for the flow 
steering table. Following this step, user can start adding explicit flow steering entries to direct each flow 
to the required receive queue. Please refer to the DPNI_ADD_FS_ENTRY command for more details. 
Note that unmatched flows may either be dropped or directed to the default flow ID (FLOW_ID = 0). Flow 
look-up miss behavior is configured through the MISS_ACTION field in the DPNI_SET_RX_TC_DIST 
command.


Table 7-1. Traffic class mapping


NUM_TCS\TC ID| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |


1 | 7 | x | x | x | x | x | x | x |


2 | 0 | 7 | x | x | x | x | x | x |


3 | 0 | 1 | 7 | x | x | x | x | x |


4 | 0 | 1 | 2 | 7 | x | x | x | x |


5 | 0 | 1 | 2 | 4 | 7 | x | x | x |


6 | 0 | 1 | 2 | 4 | 6 | 7 | x | x |


7 | 0 | 1 | 2 | 4 | 5 | 6 | 7 | x |


8 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |







DPNI: Data Path Network Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 7-8
 


7.2.6.1 Building rules for ingress distribution


The keys added in FS tables are arrays of bytes containing the fields configured in distribution mode. All 
fields must have same order given in key definition and must expected size according to protocol 
definition. The size of the key is the sum for all field sizes.


If mask is present (DPNI_OPT_HAS_KEY_MASKING) it will be used to ignore some part of the key. 
Only the bits where the corresponding mask was set to one will be compared.


Depending on protocol some fields may have different sizes. One example are IP source and destination 
on IPV4 and IPV6 protocols. When key is created for IPV4 protocol only 4 bytes must be provided to IP 
field. For IPV6 protocol 16 bytes must be provided for IP fields.


Example: key will contain udp destination port and source IP


- For IPV4 key is: 2 bytes UDP port, 4 bytes source IP (total key size is 2+4 = 6)


      -     For IPV6 key is: 2 bytes UDP port, 16 bytes source IP (total key size is 2+16 = 18)


7.2.7 Flow control


The dpni implements mechanisms described in IEEE 802.3x (flow control) and IEEE 802.1Qbb (priority 
flow control).


These mechanisms can be triggered in two ways:


— Buffer pool depletion: when one of the buffer pools associated to dpni enters in depleted state. 
This is the default trigger and is always used. 


— Congestion: when Rx queue enter in congested state. To enable this trigger the user must send 
command DPNI_SET_CONGESTION_NOTIFICATION with 
DPNI_CONG_OPT_FLOW_CONTROL flag set in NOTIFICATION_MODE field and 
QUEUE_TYPE set to Rx.


Flow control works between next configurations (conenctions): DPNI <-> DPNI, DPNI <-> DPDMUX, 
DPNI <-> DPSW, DPNI <-> DPMAC, DPSW <-> DPMAC and DPDMUX <-> DPMAC.


Flow control is affected by tail drop configuration. If the queues have tail drop enabled the buffer poll will 
never be depleted and dpni will never send flow control packets.


When congestion notification is enabled the buffer pool depletion trigger is still in place. If congestion 
thresholds are too big it is possible to deplete buffer pool and trigger flow control frames when no queue 
is in congested state.


When a buffer pool is shared between multiple dpni objects the flow control may appear on all dpni objects 
in the same time due buffer pool depletion. In this case the flow control may appear on low traffic 
connections due to buffer depletion caused by high traffic on other dpni.


7.2.7.1 Flow control configuration


To enable flow control send command DPNI_SET_LINK_CFG and set the flag 
DPNI_LINK_OPT_PAUSE. This will enable flow control frames triggered by buffer pool depletion. This 







DPNI: Data Path Network Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 7-9
 


flag can be used in combination with DPNI_LINK_OPT_ASYM_PAUSE to generate asymmetric flow 
control. See command description for different combination of these flags.


To enable flow control triggered by congestion send the command 
DPNI_SET_CONGESTION_NOTIFICATION for Rx queue. If dpni have multiple traffic classes all the 
traffic is stopped when a single traffic class enters in congested state. 


7.2.7.2 Priority flow control configuration


Priority flow control will work only if dpni is connected to a dpmac object.


DPSW and DPDMUX objects do not support Priority Flow Control and Asymmetric Flow Control.


Before enabling priority flow control the user must create a qos table using command 
DPNI_CMDID_SET_QOS_TBL and add entries using DPNI_CMDID_ADD_QOS_ENT in order to map 
traffic to TC's.


To enable priority flow in addition to flags needed to enable flow control set 
DPNI_LINK_OPT_PFC_PAUSE.


To enable flow control triggered by congestion send the command 
DPNI_SET_CONGESTION_NOTIFICATION for Rx queue. If dpni is created using option 
DPNI_OPT_SHARED_CONGESTION a single congested queue will stop all the traffic. In this case dpni 
have a single congestion point and cannot verify what TC is congested.


The user can map buffer pools to a specific traffic class using the command DPNI_SET_POOLS. To do 
this write in POOL<n>_DPBP_PRIO_MASK a bit mask with all traffic classes associated with 
POOL<n>_DPBP_ID. When buffer pool with this ID enters in depletion state only traffic for associated 
TC's will be stopped.


7.2.8 Policer


The policer determines the color of the frame (drop priority) used by queueing mechanism. The color can 
be used later by Qbman to perform WRED implementation.


Policer support next modes:


— pass-through mode


— RFC-2698


— RFC-4115


7.2.8.1 Metering principles


The implementation uses token buckets for traffic metering. 


A bucket with size S can hold up to S tokens and is referred to as max burst size. The max burst size is the 
maximum size of the packet network data in units of tokens. An incoming packet with size B can hold up 







DPNI: Data Path Network Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 7-10
 


to B tokens of network data. The bucket size S should be configured to be greater or equal to the longest 
packet network data, such data a full bucket can hold at least one packet.


Tokens are added to the bucket at rate of R tokens per second up to the bucket size S. Therefore one token 
is added to the bucket every 1/R seconds as long as the bucket is not full.


When a packet with size B (B<=S) arrives it is conformed as long as the bucket holds at least B tokens. If 
that is the case than B tokens are removed from the bucket. If the bucket holds fewer than B tokens the 
packet is identified as non-conforming and no tokens are removed from the bucket. In such a case the 
packet could be either dropped or marked (colored), depending on the required response to this event.


A two-rate metering algorithm implements two token buckets. Each bucket is configured to meter traffic 
with different characteristics. Each measurement system is characterized by its traffic parameters: Traffic 
Rate R [tokens/sec], and Max Burst Size S [tokens]. Parameter S is also defining the token bucket size such 
that any burst exceeding S tokens is identified as non-conforming. The unit of the token could vary on 
different algorithms (it could be bits, bytes, or full packets, depending on the measurement goals). The 
Policer implementation supports BYTE and PACKET unit modes.


When the unit of the token is set to BYTE the policer will use L3 frame length to perform bandwidth 
calculations.


7.2.8.2 RFC-2698


The RFC-2698 two-rate three-color marker algorithm is used for implementing of differentiated services 
by mapping different traffic types to different profiles. The algorithm meters an IP packet stream and 
marks its packets as either GREEN, YELLOW or RED.


A packet is marked RED if it exceeds the peak information rate (PIR); it is marked YELLOW if it exceeds 
its committed information rate (CIR); otherwise it is marked GREEN. The algorithm is used to enforce 
peak rate needs on ingress traffic.


7.2.8.3 RFC-4115


The RFC-4115 is a modified version of RFC-2698 with a slightly different definition of traffic parameters, 
metering and marking methods.


The RFC-4115 implementation uses the same data structures as RFC-2698, with the exception that Peak 
Information Rate (PIR) and Peak Burst Size (PBS) are replaced by Excess Information Rate (EIR) and 
Excess Burst Size (EBS) respectively.


7.2.8.4 Pass-Through


No traffic measurements are done and all the packets are colored with specified color.


7.2.9 Objects isolation


IMPORTANT NOTICE:


Objects isolation must be done at application level.







DPNI: Data Path Network Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 7-11
 


MC is responsible only for objects isolation at partition level. To perform this, MC registers a virtual ID 
for application ICID. This virtual ID can be used only within this ICID context. If the application tries to 
use an invalid (or not registered) virtual ID, then the operation fails and MC will log unauthorized access. 


It is the user application responsibility to isolate objects in the same application. In this case, 
enqueue/dequeue falls in application/driver responsibility and the IDs used must be correct: the functions 
'dpni_get_queue' and 'dpni_get_qdid' are used to get these virtual ID’s.


Enqueue/dequeue API’s are not aware of dpni ID and are using only queue ID (fqid) or queue destination 
id (qdid, qpri, qdbin). This means that the frame will be put directly into desired queue and there is no 
check to see if this queue belongs to a specific DPNI.


If the application provides an incorrect ID to enqueue / dequeue command and this ID is registered 
properly inside MC, then the operation will succeed but the frames could be incorrectly enqueued to the 
wrong queue. The frame may be sent using a wrong dpni or can be put directly in Rx queue of another dpni.


That is why isolation for application objects must be done at application level.


Or in other words: if application has an ICID and tries to enqueue in a queue authenticated with a different 
ICID then MC will log AVI error.


But with two objects in the same application it is application’s responsibility for isolation.


In case such errors are observed (frames incorrectly enqueued in Rx/Tx queue of an object, although 
nothing was yet received/sent) then please check that the IDs used by application/driver for 
enqueue/dequeue operations are correct and according to the IDs returned by DPNI API: 
'dpni_get_queue' and 'dpni_get_qdid'.







DPNI: Data Path Network Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 7-12
 


7.3 DPNI command reference


This section contains the detailed programming model of DPNI commands.


7.3.1 DPNI_CREATE


Create the DPNI object, allocate required resources and perform required initialization. The object can be 
created either by declaring it in the DPL file, or by invoking this command. This command includes all 
required parameters for the instantiation of the DPNI object. Some parameters have default settings.


The object CREATE command must be executed on a MC portal that is assigned or in use by a Data Path 
Resource Container providing a unique authentication token for that container. The command uses the 
authentication token of a parent container to which the object should be created and assigned. 


If the token is '0' the object will be assigned to the container that hosts the MC command portal executing 
this command.


The command returns a DPNI_ID that can be used to OPEN or DESTROY the object.The command 
format is shown in the figure below.


Command structure


Figure 65. DPNI_CREATE Command Description


The following table describes the command fields.


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x9017 TOKEN –


IN
T


R
_


D
IS


STATUS P – SRCID


63 56 55 48 47 40 39 32 31 0


0x08 NUM_CHANNEL
S


MAC_ENTRIES NUM_TCS NUM_QUEUES OPTIONS (details in the table below)


63 48 47 32 31 24 23 16 15 8 7 0


0x10 – NUM_RX_TCS FS_ENTRIES -- QOS_ENTRIES – VLAN_ENTRIES


63 23 8 7 0


0x18 -- DIST_KEY_SIZE NUM_OPR NUM_CGS


63 0


0x20 –


63 0


0x28 –


63 0


0x30 –


63 0


0x38 –


Table 6. DPNI_CREATE Command Field Descriptions


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.







DPNI: Data Path Network Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 7-13
 


0x08 0–31 OPTIONS – select one or more of the options below


0 DPNI_OPT_TX_FRM_RELEASE Controls availability of Tx confirmation queues:
0 – Tx confirmation queues are available.  Tx confirmation behavior can be changed between confirmation 
and buffer release by executing DPNI_SET_TX_CONFIRMATION_MODE.
1 – Tx confirmation queues are not available, the DPNI can only release the buffers associated with Tx traffic 
to a buffer pool. DPNI_SET_TX_CONFIRMATION_MODE command with any mode other than 
DPNI_CONF_DISABLE will return an error.


1 DPNI_OPT_NO_MAC_FILTER Controls availability of MAC filtering table:
0 – MAC filtering table is available.  MAC filtering can be disabled at run-time executing 
DPNI_SET_MULTICAST_PROMISC and DPNI_SET_UNICAST_PROMISC.
1 – MAC filtering is not available, the DPNI is always in promiscuous mode.  Any command that enables 
MAC filtering or manipulates entries in the MAC filtering list will return an error. The MAC_ENTRIES field in 
DPNI_CREATE is ignored.
This option applies both to unicast and multicast MAC filtering.


2 DPNI_OPT_HAS_POLICING Controls availability of WRED/policing:
0 – WRED is not available.  Command DPNI_SET_EARLY_DROP with mode set to 
DPNI_EARLY_DROP_MODE_WRED will return an error.
Tail-drop and other congestion means are available independent of this option.
1 – WRED is available on this DPNI.


3 DPNI_OPT_SHARED_CONGESTION Controls the number of congestion groups reserved for the DPNI:
0 – Congestion groups are reserved per TC.  This allows configuration of a tail-drop threshold or of a 
congestion notification for all queues of each TC, independent of other TCs.
1 – There is a single congestion group for all TCs.  A tail-drop or congestion notification can be configured 
per DPNI, across all TCs. The TC input argument to DPNI_SET/GET_TAILDROP must be 0.
This option is ignored if the DPNI has 1 TC; the two options lead to the same behavior.
Note that the tail-drop mentioned here is applicable across multiple queues and is controlled using 
DPNI_SET/GET_TAILDROP with CG_POINT set to DPNI_CP_GROUP.
Taildrop per queue, controlled using DPNI_SET/GET_TAILDROP with CG_POINT set to 
DPNI_CP_QUEUE, is independent of this setting and is always available.


4 DPNI_OPT_HAS_KEY_MASKING Controls availability of masking for flow steering and QoS classification:
0 – masking is not available, look-ups are always exact match and the look-up key associated with the frame 
must fully match the key in the look-up table. MASK and INDEX fields of DPNI_ADD_FS/QOS_ENTRY are 
ignored.
1 – Masking is available, the look-up key associated with the frame must only match the part of the look-up 
table key which is not masked out.
Note that the masking option is not available on all SoCs.  If the option is set on a SoC that does not support 
masking, DPNI_CREATE will return an error. Also, in this case, the flow steering table will be TCAM look-up, 
and the number of available entries can be easily exceeded.


Note: Masking is supported on LS2080A and LS2088A SoCs and their variants, and is not supported on 
LS108xA SoCs.


5 DPNI_OPT_NO_FS Controls availability of flow steering look-up table:
0 – Flow steering look-up table is available, it can be used to steer traffic toward a specific ingress queue, 
filter out matching flows or associate matching flows with a given flow context (See description of FLC field 
in the Frame Descriptor structure).
1 – Flow steering is not available, commands that manipulate the FS table will return an error.
Note that flow steering table can be used even if NUM_QUEUES = 1, but is limited to filtering out flows or 
selecting FD[FLC] values per flow.


6 DPNI_OPT_HAS_OPR Controls availability of Order Restoration:
0 – Order Restoration is not available. Command DPNI_SET_OPR will return an error.
1 – Order Restoration is available on this DPNI. Note that this option is not available for LS2080A 


7 DPNI_OPT_OPR_PER_TC 0 – Order Restoration Points can be set per each index in a TC.
1 – Order Restoration Points are shared for each TC and index is ignored in OPR commands.


8 DPNI_OPT_SINGLE_SENDER When set all TX traffic classes will use a single sender.
num_queues is ignored for TX, it will only be used for RX.
If this flag is set the num_queues parameter in dpni_get_attributes command will contain number of RX 
queues per TC.


9 DPNI_OPT_CUSTOM_CG When set a custom number of congestion groups can be configured on this DPINI.


10 DPNI_OPT_CUSTOM_OPR When set a custom number of order point records can be configured on this DPNI.


11 DPNI_OPT_SHARED_HASH_KEY Used to specify whether the hash key is shared amongst all traffic classes.


12 DPNI_OPT_SHARED_FS Used to enable one single Flow Steering table per DPNI (Shared Flow Sterring).


Table 6. DPNI_CREATE Command Field Descriptions (continued)


Offset Bits Name Description







DPNI: Data Path Network Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 7-14
 


All unspecified fields are reserved and must be cleared (set to zero


0x08 13 DPNI_OPT_STASHING_DIS Controls the cache stashing of the FQ frame data, context and annotations:
0 - The stashing is on by default
1 - The stashing is disabled


14-31 – Reserved


0x08 32-39 NUM_QUEUES Controls the number of queues available in the DPNI. These can be used to load-spread Rx traffic across 
multiple CPUs and to maintain Tx flow affinity to a CPU including the delivery of Tx confirmations.
If this value is 0 the dpni object will be created using one queue. Maximum supported value is equal with 
the doubled number of cores (16 for LS2088, LS1088, LS2085 and 32 for LX2160).
If DPNI_OPT_SINGLE_SENDER option is set this parameter will be used only for RX. In this case TX is 
limited to a single queue.


40-47 NUM_TCS Controls the number of traffic classes available in the DPNI. Each traffic class can have different attributes, 
such as:
- different priorities for Tx and Rx,
- dedicated congestion thresholds and congestion notifications,
- dedicated buffer pools.
Value 0 is interpreted as 1. Maximum supported value is 16.
If the value is greater than 8 dpni object will use max_tcs for Tx and will limit number of traffic classes for Rx 
to 8.


48-55 MAC_ENTRIES Controls the number of entries in the MAC filtering table.  These are used to filter ingress traffic and discard 
unexpected frames based on their destination MAC address.  Both unicast and multicast traffic is subject to 
filtering, although promiscuous mode can be enabled independently for the two.
This field is ignored if DPNI_OPT_NO_MAC_FILTER is set.  Otherwise, value 0 is interpreted as 16.  
Maximum supported value is 64.


56-63 NUM_CHANNELS Number of Tx channels available for this object. If set to zero (default), the dpni object will use a single 
channel.


0x10 0-7 VLAN_ENTRIES Controls the number of entries in the VLAN filtering table.  If VLAN filtering is enabled, ingress traffic which 
is VLAN tagged is filtered against the content of this table based on VLAN ID.
Value 0 disables VLAN filtering.  Maximum supported value is 16.


16-23 QOS_ENTRIES Controls the number of entries in the QoS look-up table.  This is used to select the TC for ingress traffic, 
based on arbitrary classification keys.
This table is either exact match or TCAM look-up, based on DPNI_OPT_HAS_KEY_MASKING value.
Value 0 is interpreted as 64.  Maximum supported value is 64.


32-47 FS_ENTRIES Controls the number of entries in the flow steering table.  This is used to:
- steer traffic toward a specific ingress queue,
- filter out matching flows, or
- associate matching flows with a given flow context (See description of FLC field in the Frame Descriptor 
structure).
This table is either exact match or TCAM look-up, based on DPNI_OPT_HAS_KEY_MASKING value.
Value 0 is interpreted as 64. Maximum supported value is 1024.


48-55 NUM_RX_TCS Controls number of traffic classes available on Rx side. Maximum supported value is 8.
If set to zero the DPNI will use the number specified in NUM_TCS to initialize number of traffic classes on 
Rx side.


0x18 0-7 NUM_CGS Number of congestion groups. Maximum supported value depends on SoC in use (8 X number of cores) 
(64 for LS2088, 128 for LX2160). The default value is one per TC.


8-23 NUM_OPR Desired custom number of order point records when DPNI_OPT_CUSTOM_OPR is set. Maximum 
supported value depends on SoC in use (max_rx_tcs * num_queues - 128 for LS2088, 256 for LX2160).


24-31 DIST_KEY_SIZE Valid only when DPNI_OPT_SHARED_HASH_KEY option is set. Through this field can be set the desired 
value for distribution key size. Valid values from 1 to 56.


Table 6. DPNI_CREATE Command Field Descriptions (continued)


Offset Bits Name Description







DPNI: Data Path Network Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 7-15
 


Response structure


Figure 7-2. DPNI_CREATE Response Description


The following table describes the response fields.


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 24 23 16 15 14 8 7 0


CMDID = 0x9017 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 32 31 0


0x08 — DPNI_ID


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Table 7-1. DPNI_CREATE Response Field Descriptions1


1 All unspecified fields are reserved.


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-31 DPNI_ID DPNI unique ID







DPNI: Data Path Network Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 7-16
 


7.3.2 DPNI_DESTROY


This command destroys the DPNI object and releases all its resources. It must be invoked in the software 
context that created the object. The caller must provide the object id and the authentication token of the 
parent container that created the object. Note that the object can be assigned to another container and 
sending the authentication token of this container will return an error.


All open authentication tokens to the object must be closed before calling the destroy command. 


After this function is called, no further operations are allowed on the object.


Command structure


Figure 66. DPNI_DESTROY Command Description


The following table describes the command fields.


Table 7. DPNI_DESTROY Command Field Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x9811 TOKEN –
IN


T
R


_
D


IS
STATUS P – SRCID


63 32 31 0


0x08 — DPNI_ID


63 0


0x10 –


63 0


0x18 –


63 0


0x20 –


63 0


0x28 –


63 0


0x30 –


63 0


0x38 –


Offset Bits Name Description


0x00 0–63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0–32 DPNI_ID ID of the DPNI object to destroy







DPNI: Data Path Network Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 7-17
 


7.3.3 DPNI_OPEN


Open a control session for the specified object.


This function can be used to open a control session for an already created object; an object may have been 
declared in the DPL or by invoking DPNI_CREATE command.


This function returns a unique authentication token, associated with the specific object ID; this token must 
be used in all subsequent commands for this specific object.


Command structure


Figure 67. DPNI_OPEN Command Description


The following table describes the command fields.


Table 8. DPNI_OPEN Command Field Descriptions


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x8011 TOKEN –


IN
T


R
_D


IS


STATUS P – SRCID


63 32 31 0


0x08 — DPNI_ID


63 0


0x10 –


63 0


0x18 –


63 0


0x20 –


63 0


0x28 –


63 0


0x30 –


63 0


0x38 –


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-31 DPNI_ID DPNI unique ID







DPNI: Data Path Network Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 7-18
 


7.3.4 DPNI_CLOSE


Close the control session of the object.


After this function is called, no further operations are allowed on the object without opening a new control 
session.


Command structure


Figure 68. DPNI_CLOSE Command Description


The following table describes the command fields.


Table 9. DPNI_CLOSE Command Field Descriptions


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x8001 TOKEN –


IN
T


R
_


D
IS


STATUS P – SRCID


63 0


0x08 –


63 0


0x10 –


63 0


0x18 –


63 0


0x20 –


63 0


0x28 –


63 0


0x30 –


63 0


0x38 –


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.







DPNI: Data Path Network Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 7-19
 


7.3.5 DPNI_ENABLE


Enable the DPNI, allow sending and receiving frames.


Is not recommended to send and receive frames before this command is executed.


Command structure


Figure 69. DPNI_ENABLE Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0021 TOKEN –


IN
T


R
_


D
IS


STATUS P – SRCID


63 0


0x08 –


63 0


0x10 –


63 0


0x18 –


63 0


0x20 –


63 0


0x28 –


63 0


0x30 –


63 0


0x38 –


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.







DPNI: Data Path Network Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 7-20
 


7.3.6 DPNI_DISABLE


Disable the DPNI, stop sending and receiving frames.


Is not recommended to send and receive frames after this command is executed.


Command structure


Figure 70. DPNI_DISABLE Command Description


The following table describes the command fields.


Table 10. DPNI_DISABLE Command Fields Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0031 TOKEN –


IN
T


R
_


D
IS


STATUS P – SRCID


63 0


0x08 –


63 0


0x10 –


63 0


0x18 –


63 0


0x20 –


63 0


0x28 –


63 0


0x30 –


63 0


0x38 –


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.







DPNI: Data Path Network Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 7-21
 


7.3.7 DPNI_IS_ENABLED


Check if the DPNI is enabled.


Command structure


Figure 71. DPNI_IS_ENABLED Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0061 TOKEN –


IN
T


R
_


D
IS


STATUS P – SRCID


63 0


0x08 –


63 0


0x10 –


63 0


0x18 –


63 0


0x20 –


63 0


0x28 –


63 0


0x30 –


63 0


0x38 –


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.







DPNI: Data Path Network Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 7-22
 


Response structure


Figure 72. DPNI_IS_ENABLED Response Description


All unspecified fields are cleared.


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0061 TOKEN –


IN
T


R
_D


IS


STATUS P – SRCID


63 1 0


0x08 – EN


63 0


0x10 –


63 0


0x18 –


63 0


0x20 –


63 0


0x28 –


63 0


0x30 –


63 0


0x38 –


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0 EN This bit is set if object is enabled







DPNI: Data Path Network Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 7-23
 


7.3.8 DPNI_RESET


Reset the DPNI, returns the object to initial state.


This command has some limitations when the DPNI object is associated with a DPCON. (See 
Section 28.1, “Reset of MC objects with FQs associated with a channel.”)


Command structure


Figure 73. DPNI_RESET Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0051 TOKEN –


IN
T


R
_D


IS


STATUS P – SRCID


63 0


0x08 –


63 0


0x10 –


63 0


0x18 –


63 0


0x20 –


63 0


0x28 –


63 0


0x30 –


63 0


0x38 –


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.







DPNI: Data Path Network Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 7-24
 


7.3.9 DPNI_SET_IRQ_ENABLE


Set overall interrupt state. Allows GPP software to control when interrupts are generated. Each interrupt 
can have up to 32 causes. The enable/disable control's the overall interrupt state. if the interrupt is disabled 
no causes will cause an interrupt.


Command structure


Figure 74. DPNI_SET_IRQ_ENABLE Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0121 TOKEN –


IN
T


R
_


D
IS


STATUS P – SRCID


63 40 39 32 31 1 0


0x08 – IRQ_INDEX – EN


63 0


0x10 –


63 0


0x18 –


63 0


0x20 –


63 0


0x28 –


63 0


0x30 –


63 0


0x38 –


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0 EN Interrupt state: set to ‘1’ to enable, ‘0’ to disable


32-39 IRQ_INDEX Identifies the interrupt index to configure







DPNI: Data Path Network Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 7-25
 


7.3.10 DPNI_GET_IRQ_ENABLE


Get overall interrupt state.


Command structure


Figure 75. DPNI_GET_IRQ_ENABLE Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0131 TOKEN –


IN
T


R
_


D
IS


STATUS P – SRCID


63 40 39 32 31 0


0x08 – IRQ_INDEX –


63 0


0x10 –


63 0


0x18 –


63 0


0x20 –


63 0


0x28 –


63 0


0x30 –


63 0


0x38 –


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 32-39 IRQ_INDEX Identifies the interrupt index to query







DPNI: Data Path Network Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 7-26
 


Response structure


Figure 76. DPNI_GET_IRQ_ENABLE Response Description


All unspecified fields are cleared.


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0131 TOKEN –


IN
T


R
_D


IS


STATUS P – SRCID


63 1 0


0x08 – EN


63 0


0x10 –


63 0


0x18 –


63 0


0x20 –


63 0


0x28 –


63 0


0x30 –


63 0


0x38 –


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0 EN This bit is set if the interrupt is enabled







DPNI: Data Path Network Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 7-27
 


7.3.11 DPNI_SET_IRQ_MASK


Set the interrupt mask. Every interrupt can have up to 32 causes and the interrupt model supports 
masking/unmasking each cause independently.


Command structure


Figure 77. DPNI_SET_IRQ_MASK Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0141 TOKEN –


IN
T


R
_D


IS


STATUS P – SRCID


63 40 39 32 31 0


0x08 – IRQ_INDEX MASK


63 0


0x10 –


63 0


0x18 –


63 0


0x20 –


63 0


0x28 –


63 0


0x30 –


63 0


0x38 –


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-31 MASK Event mask for triggering the interrupt; See GET_IRQ_STATUS command for 
specification of available events. For each bit in MASK:
0 = ignore event
1 = event is valid; signal the IRQ if this event occurs


32-39 IRQ_INDEX The interrupt index to configure







DPNI: Data Path Network Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 7-28
 


7.3.12 DPNI_GET_IRQ_MASK


Get the interrupt mask. Every interrupt can have up to 32 causes and the interrupt model supports 
masking/unmasking each cause independently.


Command structure


Figure 78. DPNI_GET_IRQ_MASK Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0151 TOKEN –


IN
T


R
_D


IS


STATUS P – SRCID


63 40 39 32 31 0


0x08 – IRQ_INDEX –


63 0


0x10 –


63 0


0x18 –


63 0


0x20 –


63 0


0x28 –


63 0


0x30 –


63 0


0x38 –


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 32-39 IRQ_INDEX The interrupt index to query







DPNI: Data Path Network Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 7-29
 


Response structure


Figure 79. DPNI_GET_IRQ_MASK Response Description


All unspecified fields are cleared.


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0151 TOKEN –


IN
T


R
_D


IS


STATUS P – SRCID


63 32 31 0


0x08 MASK


63 0


0x10 –


63 0


0x18 –


63 0


0x20 –


63 0


0x28 –


63 0


0x30 –


63 0


0x38 –


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-31 MASK Event mask for triggering the interrupt; See GET_IRQ_STATUS command for 
specification of available events. For each bit in MASK:
0 = ignore event
1 = event is valid; signal the IRQ if this event occurs







DPNI: Data Path Network Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 7-30
 


7.3.13 DPNI_GET_IRQ_STATUS


Get the current status of pending events for the specified interrupt index.


Command structure


Figure 80. DPNI_GET_IRQ_STATUS Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0161 TOKEN –


IN
T


R
_


D
IS


STATUS P – SRCID


63 40 39 32 31 0


0x08 – IRQ_INDEX STATUS


63 0


0x10 –


63 0


0x18 –


63 0


0x20 –


63 0


0x28 –


63 0


0x30 –


63 0


0x38 –


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-31 STATUS Optional: any STATUS bits that are set will be cleared from pending state (removing 
the need for DPNI_CLEAR_IRQ_STATUS command). Note that the STATUS returned 
in the response is the status before the events are cleared.


Supported events: see response structure definition


32-39 IRQ_INDEX The interrupt index to query







DPNI: Data Path Network Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 7-31
 


Response structure


Figure 81. DPNI_GET_IRQ_STATUS Response Description


All unspecified fields are cleared.


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0161 TOKEN –


IN
T


R
_D


IS


STATUS P – SRCID


63 32 31 0


0x08 STATUS


63 0


0x10 –


63 0


0x18 –


63 0


0x20 –


63 0


0x28 –


63 0


0x30 –


63 0


0x38 –


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-31 STATUS Events status mask, one bit per event:
0 = no interrupt pending
1 = interrupt pending


Supported events for IRQ 0:
Bit 0: DPNI_IRQ_EVENT_LINK_CHANGED – indicates a change in the link state
Bit 1: DPNI_IRQ_EVENT_ENDPOINT_CHANGED – indicates a connect/disconnect 
event between DPNI and its endpoint (DPNI, DPMAC, DPDMUX, DPSW).







DPNI: Data Path Network Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 7-32
 


7.3.14 DPNI_CLEAR_IRQ_STATUS


Clear (mark as handled) pending events of the specified interrupt index.


Command structure


Figure 82. DPNI_CLEAR_IRQ_STATUS Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0171 TOKEN –


IN
T


R
_


D
IS


STATUS P – SRCID


63 40 39 32 31 0


0x08 – IRQ_INDEX STATUS


63 0


0x10 –


63 0


0x18 –


63 0


0x20 –


63 0


0x28 –


63 0


0x30 –


63 0


0x38 –


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-31 STATUS Mask for clearing handled events; See GET_IRQ_STATUS command for specification 
of available events. For each bit in MASK:
0 = don’t change event status
1 = clear event status bit to indicate that it was handled


32-39 IRQ_INDEX The interrupt index to configure







DPNI: Data Path Network Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 7-33
 


7.3.15 DPNI_GET_ATTRIBUTES


Retrieve DPNI attributes as configured when the object was created.


Command structure


Figure 83. DPNI_GET_ATTRIBUTES Command Description


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0046 TOKEN –


IN
T


R
_


D
IS


STATUS P – SRCID


63 0


0x08 –


63 0


0x10 –


63 0


0x18 –


63 0


0x20 –


63 0


0x28 –


63 0


0x30 –


63 0


0x38 –


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.







DPNI: Data Path Network Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 7-34
 


Response structure


Figure 84. DPNI_GET_ATTRIBUTES Response Description


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0046 TOKEN –


IN
T


R
_


D
IS


STATUS P – SRCID


63 56 55 48 47 40 39 32 31 0


0x08 NUM_TX_TCS MAC_ENTRIES NUM_RX_TCS NUM_QUEUES OPTIONS (details in the table below)


63 48 47 32 31 24 23 16 15 8 7 0


0x10 NUM_OPR FS_ENTRIES – QOS_ENTRIES NUM_CHANNEL
S


VLAN_ENTRIES


63 40 39 32 31 16 15 8 7 0


0x18 – NUM_CGS WRIOP_VERSION FS_KEY_SIZE QOS_KEY_SIZE


63 0


0x20 –


63 0


0x28 –


63 0


0x30 –


63 0


0x38 –


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.







DPNI: Data Path Network Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 7-35
 


0x08 0–31 OPTIONS – select one or more of the options below


0 DPNI_OPT_TX_FRM_RELEASE Controls availability of Tx confirmation queues:
0 – Tx confirmation queues are available.  Tx confirmation behavior can be changed between 
confirmation and buffer release by executing DPNI_SET_TX_CONFIRMATION_MODE.
1 – Tx confirmation queues are not available, the DPNI can only release the buffers associated 
with Tx traffic to a buffer pool. DPNI_SET_TX_CONFIRMATION_MODE command with any 
mode other than DPNI_CONF_DISABLE will return an error.


1 DPNI_OPT_NO_MAC_FILTER Controls availability of MAC filtering table:
0 – MAC filtering table is available.  MAC filtering can be disabled at run-time executing 
DPNI_SET_MULTICAST_PROMISC and DPNI_SET_UNICAST_PROMISC.
1 – MAC filtering is not available, the DPNI is always in promiscuous mode.  Any command that 
enables MAC filtering or manipulates entries in the MAC filtering list will return an error. The 
MAC_ENTRIES field in DPNI_CREATE is ignored.
This option applies both to unicast and multicast MAC filtering.


2 DPNI_OPT_HAS_POLICING Controls availability of WRED/policing:
0 – WRED is not available.  Command DPNI_SET_EARLY_DROP with mode set to 
DPNI_EARLY_DROP_MODE_WRED will return an error.
Tail-drop and other congestion means are available independent of this option.
1 – WRED is available on this DPNI.


3 DPNI_OPT_SHARED_CONGESTION Controls the number of congestion groups reserved for the DPNI:
0 – Congestion groups are reserved per TC.  This allows configuration of a tail-drop threshold or 
of a congestion notification for all queues of each TC, independent of other TCs.
1 – There is a single congestion group for all TCs.  A tail-drop or congestion notification can be 
configured per DPNI, across all TCs. The TC input argument to DPNI_SET/GET_TAILDROP 
must be 0.
This option is ignored if the DPNI has 1 TC; the two options lead to the same behavior.
Note that the tail-drop mentioned here is applicable across multiple queues and is controlled 
using DPNI_SET/GET_TAILDROP with CG_POINT set to DPNI_CP_GROUP.
Taildrop per queue, controlled using DPNI_SET/GET_TAILDROP with CG_POINT set to 
DPNI_CP_QUEUE, is independent of this setting and is always available.


4 DPNI_OPT_HAS_KEY_MASKING Controls availability of masking for flow steering and QoS classification:
0 – masking is not available, look-ups are always exact match and the look-up key associated 
with the frame must fully match the key in the look-up table. MASK and INDEX fields of 
DPNI_ADD_FS/QOS_ENTRY are ignored.
1 – Masking is available, the look-up key associated with the frame must only match the part of 
the look-up table key which is not masked out.
Note that the masking option is not available on all SoCs.  If the option is set on a SoC that does 
not support masking, DPNI_CREATE will return an error.


Note: Masking is supported on LS2080A and LS2088A SoCs and their variants, and is not 
supported on LS108xA SoCs.


5 DPNI_OPT_NO_FS Controls availability of flow steering look-up table:
0 – Flow steering look-up table is available, it can be used to steer traffic toward a specific ingress 
queue, filter out matching flows or associate matching flows with a given flow context (See 
description of FLC field in the Frame Descriptor structure).
1 – Flow steering is not available, commands that manipulate the FS table will return an error.
Note that flow steering table can be used even if NUM_QUEUES = 1, but is limited to filtering out 
flows or selecting FD[FLC] values per flow.


6 DPNI_OPT_HAS_OPR Controls availability of Order Restoration:
0 – Order Restoration is not available. Command DPNI_SET_OPR will return an error.
1 – Order Restoration is available on this DPNI. Note that this option is not available for LS2080A 


7 DPNI_OPT_OPR_PER_TC 0 – Order Restoration Points can be set per each index in a TC.
1 – Order Restoration Points are shared for each TC and index is ignored in OPR commands.


8 DPNI_OPT_SINGLE_SENDER When set all TX traffic classes will use a single sender.
num_queues is ignored for TX, it will only be used for RX.
If this flag is set the num_queues parameter in dpni_get_attributes command will contain number 
of RX queues per TC.


9 DPNI_OPT_CUSTOM_CG When set a custom number of congestion groups can be configured on this DPINI.


10 DPNI_OPT_CUSTOM_OPR When set a custom number of order point records can be configured on this DPNI.


11 DPNI_OPT_SHARED_HASH_KEY Used to specify whether the hash key is shared amongst all traffic classes.


12 DPNI_OPT_SHARED_FS Used to enable one single Flow Steering table per DPNI (Shared Flow Sterring).


Offset Bits Name Description







DPNI: Data Path Network Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 7-36
 


All unspecified fields are reserved and must be cleared (set to zero)


0x08 13 DPNI_OPT_STASHING_DIS Controls the cache stashing of the FQ frame data, context and annotations:
0 - The stashing is on by default
1 - The stashing is disabled


14-31 – Reserved


0x08 32-39 NUM_QUEUES Number of queues available in the DPNI.
See description of DPNI_CREATE for details.
If DPNI_OPT_SINGLE_SENDER option is set this parameter has meaning only for RX. TX will 
use a single queue.


40-47 NUM_RX_TCS Controls the number of Rx traffic classes available in the DPNI. Each traffic class can have
different attributes such as:
- different priorities for Rx,
- dedicated congestion thresholds and congestion notifications,
- dedicated buffer pools.
Value 0 is interpreted as 1. Maximum supported value is 8.


48-55 MAC_ENTRIES Controls the number of entries in the MAC filtering table. These are used to filter ingress traffic
and discard unexpected frames based on their destination MAC address. Both unicast and
multicast traffic is subject to filtering, although promiscuous mode can be enabled independently
for the two.
This field is ignored if DPNI_OPT_NO_MAC_FILTER is set. Otherwise, value 0 is interpreted as
16. Maximum supported value is 64.


56-63 NUM_TX_TCS Controls the number of Tx traffic classes available in the DPNI.Each traffic class can have 
different attributes such as:
-different priorities for Tx,
-dedicated congestion thresholds and congestion notification ,
-dedicated buffer pools.
Values 0 is interpreted as 8.Maximum supported value is 16.


0x10 0-7 VLAN_ENTRIES Controls the number of entries in the VLAN filtering table.  If VLAN filtering is enabled, ingress 
traffic which is VLAN tagged is filtered against the content of this table based on VLAN ID.
Value 0 disables VLAN filtering.  Maximum supported value is 16.


8-15 NUM_CHANNELS Number of Tx channels used by the dpni object.


16-23 QOS_ENTRIES Controls the number of entries in the QoS look-up table.  This is used to select the TC for ingress 
traffic, based on arbitrary classification keys.
This table is either exact match or TCAM look-up, based on DPNI_OPT_HAS_KEY_MASKING 
value.
Value 0 is interpreted as 64.  Maximum supported value is 64.


32-47 FS_ENTRIES Controls the number of entries in the flow steering table.  This is used to:
- steer traffic toward a specific ingress queue,
- filter out matching flows, or
- associate matching flows with a given flow context (See description of FLC field in the Frame 
Descriptor structure).
This table is either exact match or TCAM look-up, based on DPNI_OPT_HAS_KEY_MASKING 
value.
Value 0 is interpreted as 64.  Maximum supported value is 1024.


48-63 NUM_OPR Desired custom number of order point records when DPNI_OPT_CUSTOM_OPR is set. 
Maximum supported value depends on SoC in use (max_rx_tcs * num_queues - 128 for LS2088, 
256 for LX2160).


0x18 0-7 QOS_KEY_SIZE Size of the look-up key used for TC selection.  Total size of protocol header fields selected as part 
of QoS look-up key cannot exceed this value.


8-15 FS_KEY_SIZE Size of the look-up key used for flow steering.  Total size of protocol header fields selected as part 
of QoS look-up key cannot exceed this value.


16-31 WRIOP_VERSION Indicates the revision of the underlying WRIOP hardware block.
0x400 – WRIOP version 1.0.0, used on LS2080 and variants,
0x421 – WRIOP version 1.1.1, used on LS2088 and variants,
0x422 – WRIOP version 1.1.2, used on LS1088 and variants.


32-39 NUM_CGS Number of congestion groups.


Offset Bits Name Description







DPNI: Data Path Network Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 7-37
 


7.3.16 DPNI_SET_POOLS


This command will associate to a DPNI object one or more DPBP objects used to store received frames. 
Each DPNI uses a maximum of eight buffer pools. Multiple DPNI objects can share the same DBPB 
object. 


The associated buffer pools are used to provide all the buffers needed to store DPNI ingress traffic.


The buffer layout is described in command DPNI_SET_BUFFER_LAYOUT. (See Section 7.3.18, 
“DPNI_SET_BUFFER_LAYOUT.”) The buffers must be big enough to store frame data plus 
supplementary info such as frame annotation.


When receive a new frame the DPNI will search for an associated buffer pool with the smallest size that 
will fit frame data, annotations, head room and tail room. If such a buffer pool is found and is not empty, 
hardware will get a buffer and store the frame. If there is no pool that will fit the data, hardware will store 
the frame using multiple buffers by creating a scatter/gather list. The application may use multiple buffer 
pools with different sizes to minimize memory/performance loss due to small frames or too many 
scatter/gather lists due to large frames.


All buffers must be aligned to 64 bytes. The MC firmware does not check the alignment for the buffers 
placed in pool.


For each buffer pool the command must provide:


• Buffer pool id: can be obtained with DPBP_GET_ATTRIBUTES command. Same id can be 
passed to multiple DPNI objects to share same resource.


• Buffer size: the size of the buffers released into this DPBP object and is known by the application.


• Priority mask: associate buffer pool with a specific traffic class. This feature is needed when 
DPNI_LINK_OPT_PFC_PAUSE is set in command DPNI_SET_LINK_CFG. If not needed the 
field can be set to zero and the MC will associate all traffic classes to this buffer pool.


If DPNI_LINK_OPT_PFC_PAUSE is enabled and the associated buffer pool enters depletion state the 
DPNI will generate a PFC frame using the POOLx_DPBP_PRIO_MASK. That is, if a buffer pool is 
associated with multiple traffic classes the PFC frame will be generated for all of them.


DPNI_SET_POOLS must be executed before DPNI_ENABLE command. 







DPNI: Data Path Network Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 7-38
 


Command structure


Figure 85. DPNI_SET_POOLS Command Description


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x2002 TOKEN —


IN
T


R
_D


IS


STATUS P — SRCID


63 56 55 48 47 32 31 - 25 24 23 - 


16


15 14 13 12 11 10 9 8 7 0


0x08 — POOL0_DPBP_
PRIO_MASK


POOL0_DPBP_ID —


P
O


O
L_


A
S


—


P
O


O
L7


_
B


A
C


K
U


P
_


P
O


O


P
O


O
L6


_
B


A
C


K
U


P
_


P
O


O


P
O


O
L5


_
B


A
C


K
U


P
_


P
O


O


P
O


O
L4


_
B


A
C


K
U


P
_


P
O


O


P
O


O
L3


_
B


A
C


K
U


P
_


P
O


O


P
O


O
L2


_
B


A
C


K
U


P
_


P
O


O


P
O


O
L1


_
B


A
C


K
U


P
_


P
O


O


P
O


O
L0


_
B


A
C


K
U


P
_


P
O


O


NUM_DPBP


63 56 55 48 47 32 31 24 23 16 15 0


0x10 — POOL2_DPBP_
PRIO_MASK


POOL2_DPBP_ID — POOL1_DPBP_
PRIO_MASK


POOL1_DPBP_ID


63 56 55 48 47 32 31 24 23 16 15 0


0x18 — POOL4_DPBP_
PRIO_MASK


POOL4_DPBP_ID — POOL3_DPBP_
PRIO_MASK


POOL3_DPBP_ID


63 56 55 48 47 32 31 24 23 16 15 0


0x20 — POOL6_DPBP_
PRIO_MASK


POOL6_DPBP_ID — POOL5_DPBP_
PRIO_MASK


POOL5_DPBP_ID


63 48 47 32 31 24 23 16 15 0


0x28 POOL1_BUFFER_SIZE POOL0_BUFFER_SIZE — POOL7_DPBP_
PRIO_MASK


POOL7_DPBP_ID


63 48 47 32 31 16 15 0


0x30 POOL5_BUFFER_SIZE POOL4_BUFFER_SIZE POOL3_BUFFER_SIZE POOL2_BUFFER_SIZE


63 32 31 16 15 0


0x38 — POOL7_BUFFER_SIZE POOL6_BUFFER_SIZE


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-7 NUM_DPBP Number of buffer pools initialized with this command. Accepted values are 1–8


8-15 POOLS[0-7]_BACKUP_POOL Backup pool. 
0 - Define this pool as a regular pool. This pool may be used for allocating buffers in the packet express 
buffer.
1 - Define the pool as a backup pool. WRIOP uses backup pools when one or more valid regular pool is 
depleted.


24 POOL_AS Select between assigning the buffer pool per QPRI (queuing priority) or per QDBIN (queue destination 
bin)
0 - QPRI
1 - QDBIN


The buffer pool per QDBIN is supported only on LX2160 platform due to an older WRIOP version on the 
other boards.


0x08 - 
0x28


0-15 / 
32-47


POOLS[0-7]_DPBP_ID DPBP object ID







DPNI: Data Path Network Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 7-39
 


All unspecified fields are reserved and must be cleared (set to zero)


0x08 - 
0x28


16-23 / 
48-55


POOLS[0-7]_DPBP_PRIO_MASK Priority mask
This is used to associate a buffer pool to a specific traffic class if QPRI is selected in POOL_AS field or 
to a specific queue, in the case of QDBIN. When the DPNI receives a frame on a specific traffic 
class/queue, it will store it into the buffers from the associated DPBP object.
There are eight bits, one for each traffic class: if bit n is set, it means that buffer pool is associated with 
traffic class N. If the buffer pool is per QPRI, the buffers are shared among 2 queues: queue 0 with queue 
8 if bit 0 is set, queue 1 with queue 9 if bit 1 is set etc.
If set to zero the MC will assume the value 0xFF and DPBP will be associated for all traffic 
classes/queues.


0x28 - 
0x30


0-15 / 
16-31/ 
32-47/ 
48-63


POLS[0-7]_BUFFER_SIZE Buffer size in bytes. This is the size for all buffers released into this pool. 
It must be a multiple of 64 bytes


Offset Bits Name Description







DPNI: Data Path Network Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 7-40
 


7.3.17 DPNI_SET_ERRORS_BEHAVIOR


Set errors behavior for the DPNI – decide which action to take when specific errors occur. This command 
may be repeated with different errors selection at each time.


Command structure


Figure 86. DPNI_SET_ERRORS_BEHAVIOR Command Description


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x20B1 TOKEN –


IN
T


R
_D


IS


STATUS P – SRCID


63 37 36 35 32 31 0


0x08 –


S
E


T
_F


R
A


M
E


_
A


N
N


O
TA


T
IO


N


E
R


R
O


R
_


A
C


T
IO


N


ERRORS


63 0


0x10 –


63 0


0x18 –


63 0


0x20 –


63 0


0x28 –


63 0


0x30 –


63 0


0x38 –


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.







DPNI: Data Path Network Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 7-41
 


All unspecified fields are reserved and must be cleared (set to zero)


0x08 0-31 ERRORS The errors mask to configure. Select any combination of supported errors below:


Bit 0: DPNI_ERROR_L4CE – parser L4 checksum error
Bit 2: DPNI_ERROR_L3CE – parser L3 checksum error
Bit 5: DPNI_ERROR_PHE – Parsing header error
Bit 12: DPNI_ERROR_FPE – Frame physical error
Bit 13: DPNI_ERROR_FLE – Frame length error
Bit 17: DPNI_ERROR_EOFHE – Extract out of frame header error
Bit 32: DPNI_ERROR_DISC - Discarded flag. Has effect only when ERROR_ACTION 
is set to DPNI_ERROR_ACTION_SEND_TO_ERROR_QUEUE. All discarded frames 
will be enqueued in error queue. Recommended for advanced debug scenarios when 
user wants to inspect discarded packets.


32-35 ERROR_ACTION Desired action for the errors selected in ERRORS mask. Select one of the supported 
values below:


0 = DPNI_ERROR_ACTION_DISCARD – The frame is discarded. It takes precedence 
over CONTINUE option.
1 = DPNI_ERROR_ACTION_CONTINUE – The frame is not discarded. In case of 
multiple errors, if at least one error has the DISCARD action set, the frame will be 
discarded.
2 = DPNI_ERROR_ACTION_SEND_TO_ERROR_QUEUE – The frame will be 
enqueued in the error queue. This setting has precedence over other action. In case 
of multiple errors if at least one is associated to this action the frame will be enqueued 
in the error queue.


Examples: 
Assume that a frame with DPNI_ERROR_PHE and DPNI_ERROR_L3CE is 
processed.
Case1: DPNI_ERROR_L3CE action is SEND_TO_ERROR_QUEUE and 
DPNI_ERROR_PHE action is DISCARD. The frame will be enqueued in the error 
queue because SEND_TO_ERROR_QUEUE action has higher precedence over 
discard.
Case2: DPNI_ERROR_L3CE action is CONTINUE and DPNI_ERROR_PHE action is 
DISCARD. The frame will be discarded due to PHE error.
Case3: DPNI_ERROR_L3CE action is DISCARD and DPNI_ERROR_PHE action is 
DISCARD. The frame will be discarded.
Case4: DPNI_ERROR_L3CE action is CONTINUE and DPNI_ERROR_PHE action is 
CONTINUE. The frame will be enqueued into normal queue.


36 SET_FRAME_ANNOTATION Set to '1' to mark the errors in frame annotation status (FAS); relevant only for 
non-discard actions.


Offset Bits Name Description







DPNI: Data Path Network Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 7-42
 


7.3.18 DPNI_SET_BUFFER_LAYOUT


Set buffer layout attributes.


The general buffer format and what each field of the command configures is described in the following 
figure.


Figure 7-3. Buffer format


SW FRAME ANNOTATION 


HW FRAME ANNOTATION 


DATA_HEAD_ROOM 


FRAME DATA 


DATA_TAIL_ROOM 


 


FD OFFSET 


(aligned to DATA_ALIGN) 


0 or 64 B depending on 
PRIVATE_DATA_SIZE  







DPNI: Data Path Network Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 7-43
 


Command structure


Figure 87. DPNI_SET_BUFFER_LAYOUT Command Description


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x2652 TOKEN –


IN
T


R
_D


IS


STATUS P – SRCID


63 52 51 50 49 48 47 32 31 8 7 0


0x08 – P
A


S
S


_
S


W
_


O
P


A
Q


U
E


P
A


S
S


_F
R


A
M


E
_


S
TA


T
U


S


P
A


S
S


_
P


A
R


S
E


R
_


R
E


S
U


LT


P
A


S
S


_
T


IM
E


S
TA


M
P


OPTIONS – QUEUE_TYPE


63 48 47 32 31 16 15 0


0x10 TAIL_ROOM HEAD_ROOM DATA_ALIGN PRIVATE_DATA_SIZE


63 0


0x18 –


63 0


0x20 –


63 0


0x28 –


63 0


0x30 –


63 0


0x38 –


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-7 QUEUE_TYPE Type of queue this configuration applies to:
0: DPNI_QUEUE_RX - Rx queue,
1: DPNI_QUEUE_TX - Tx queue,
2: DPNI_QUEUE_TX_CONFIRM - Tx confirmation queue,
3: DPNI_QUEUE_RX_ERR - Rx error queue.


32-47 OPTIONS Mask of bits indicating suggested modifications to the buffer layout:
Bit 0: DPNI_BUF_LAYOUT_OPT_TIMESTAMP—set to modify time-stamp setting
Bit 1: DPNI_BUF_LAYOUT_OPT_PARSER_RESULT—set to modify the parser-result setting.
Bit 2: DPNI_BUF_LAYOUT_OPT_FRAME_STATUS—set to modify the frame-status setting.
Bit 3: DPNI_BUF_LAYOUT_OPT_PRIVATE_DATA_SIZE—set to modify the private-data-size setting.
Bit 4: DPNI_BUF_LAYOUT_OPT_DATA_ALIGN—set to modify the data-alignment setting.
Bit 5: DPNI_BUF_LAYOUT_OPT_DATA_HEAD_ROOM—Select to modify the data-head-room setting.
Bit 6: DPNI_BUF_LAYOUT_OPT_DATA_TAIL_ROOM—Select to modify the data-tail-room setting.
Bit 7: DPNI_BUF_LAYOUT_OPT_SW_OPAQUE —Select to pass SW opaque value between 2 DPNIs
Bit8 : DPNI_BUF_LAYOUT_OPT_NO_SG — Select to disable Scatter Gather on RX.


48 PASS_TIMESTAMP ‘1’ indicates that timestamp is included in the buffer layout


49 PASS_PARSER_RESULT ‘1’ indicates that parsing results are included in the buffer layout


50 PASS_FRAME_STATUS ‘1’ indicates that frame status is included in the buffer layout


51 PASS_SW_OPAQUE ‘1’ indicates that SW annotation has been activated







DPNI: Data Path Network Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 7-44
 


All unspecified fields are reserved and must be cleared (set to zero).


0x10 0–15 PRIVATE_DATA_SIZE Size kept for private data (in bytes). Maximum value is 64.


16–31 DATA_ALIGN Frame data alignment


16-31 DATA_HEAD_ROOM Data head room


32-47 DATA_TAIL_ROOM Data tail room


Offset Bits Name Description







DPNI: Data Path Network Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 7-45
 


7.3.19 DPNI_GET_BUFFER_LAYOUT


Retrieve buffer layout attributes.


Command structure


Figure 88. DPNI_GET_BUFFER_LAYOUT Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x2642 TOKEN –


IN
T


R
_


D
IS


STATUS P – SRCID


63 8 7 0


0x08 – QUEUE_TYPE


63 0


0x10 –


63 0


0x18 –


63 0


0x20 –


63 0


0x28 –


63 0


0x30 –


63 0


0x38 –


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-7 QUEUE_TYPE Type of queue to retrieve configuration from:
0: DPNI_QUEUE_RX - Rx queue,
1: DPNI_QUEUE_TX - Tx queue,
2: DPNI_QUEUE_TX_CONFIRM - Tx confirmation queue,
3: DPNI_QUEUE_RX_ERR - Rx error queue







DPNI: Data Path Network Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 7-46
 


Response structure


Figure 89. DPNI_GET_BUFFER_LAYOUT Response Description


All unspecified fields are cleared.


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x2642 TOKEN –


IN
T


R
_D


IS


STATUS P – SRCID


63 52 51 50 49 48 47 0


0x08 – P
A


S
S


_
S


W
_


O
P


A
Q


U
E


P
A


S
S


_F
R


A
M


E
_


S
TA


T
U


S


P
A


S
S


_
P


A
R


S
E


R
_


R
E


S
U


LT


P
A


S
S


_
T


IM
E


S
TA


M
P


–


63 48 47 32 31 16 15 0


0x10 TAIL_ROOM HEAD_ROOM DATA_ALIGN PRIVATE_DATA_SIZE


63 0


0x18 –


63 0


0x20 –


63 0


0x28 –


63 0


0x30 –


63 0


0x38 –


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 48 PASS_TIMESTAMP ‘1’ indicates that time-stamp is included in the buffer layout


49 PASS_PARSER_RESULT ‘1’ indicates that parsing results are included in the buffer layout


50 PASS_FRAME_STATUS ‘1’ indicates that frame status is included in the buffer layout


51 PASS_SW_OPAQUE ‘1’ indicates that SW annotation has been activated


0x10 0-15 PRIVATE_DATA_SIZE Size kept for private data (in bytes)


16-31 DATA_ALIGN Data alignment


32-47 DATA_HEAD_ROOM Data head room


48-63 DATA_TAIL_ROOM Data tail room







DPNI: Data Path Network Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 7-47
 


7.3.20 DPNI_SET_OFFLOAD


Set DPNI offload configuration.


Command structure


Figure 90. DPNI_SET_OFFLOAD Command Description


The following table describes the command fields.


Table 11. DPNI_SET_OFFLOAD Command Field Descriptions


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x26C2 TOKEN –


IN
T


R
_


D
IS


STATUS P – SRCID


63 32 31 24 23 0


0x08 CONFIGURATION OFFLOAD_TYPE —


63 0


0x10 –


63 0


0x18 –


63 0


0x20 –


63 0


0x28 –


63 0


0x30 –


63 0


0x38 –


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 24-31 OFFLOAD_TYPE Type of offload to configure:
0x0 - DPNI_OFF_RX_L3_CSUM – Rx Layer 3 checksum validation;
0x1 - DPNI_OFF_RX_L4_CSUM – Rx Layer 4 checksum validation,
0x2 - DPNI_OFF_TX_L3_CSUM – Tx Layer 3 checksum generation,
0x3 - DPNI_OFF_TX_L4_CSUM – Tx Layer 4 checksum generation.
0x4 - DPNI_FLCTYPE_HASH - FD flow context (FD[FLC]) generated by WRIOP for 
AIOP/CTLU. (Caution: Make sure to do this before setting up the queue)
0x5 - DPNI_HEADER_STASHING: frame header will be stashed by WRIOP in core 
cache
0x6 - DPNI_PAYLOAD_STASHING: frame payload will be stashed by WRIOP in core 
cache


32–63 CONFIGURATION Configures the selected offload.
For OFFLOAD_TYPE 0-3, values are:
0: selected offload is disabled,
1: selected offload is enabled.







DPNI: Data Path Network Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 7-48
 


7.3.21 DPNI_GET_OFFLOAD


Get DPNI offload configuration.


Command structure


Figure 91. DPNI_GET_OFFLOAD Command Description


The following table describes the command fields.


Table 12. DPNI_GET_OFFLOAD Command Field Descriptions


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x26B2 TOKEN –


IN
T


R
_


D
IS


STATUS P – SRCID


63 32 31 24 23 0


0x08 – OFFLOAD_TYPE —


63 0


0x10 –


63 0


0x18 –


63 0


0x20 –


63 0


0x28 –


63 0


0x30 –


63 0


0x38 –


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 24-31 OFFLOAD_TYPE Type of offload to configure:
0x0 - DPNI_OFF_RX_L3_CSUM – Rx Layer 3 checksum validation;
0x1 - DPNI_OFF_RX_L4_CSUM – Rx Layer 4 checksum validation,
0x2 - DPNI_OFF_TX_L3_CSUM – Tx Layer 3 checksum generation,
0x3 - DPNI_OFF_TX_L4_CSUM – Tx Layer 4 checksum generation.
0x4 - DPNI_FLCTYPE_HASH – FD flow context (FD[FLC]) generated by WRIOP for 
AIOP/CTLU.
0x5 - DPNI_HEADER_STASHING: frame header will be stashed by WRIOP in core 
cache
0x6 - DPNI_PAYLOAD_STASHING: frame payload will be stashed by WRIOP in core 
cache







DPNI: Data Path Network Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 7-49
 


Response structure


Figure 92. DPNI_GET_OFFLOAD Response Description


Table 13. DPNI_GET_OFFLOAD Response Field Descriptions


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x26B2 TOKEN –


IN
T


R
_D


IS


STATUS P – SRCID


63 32 31 0


0x08 CONFIGURATION —


63 0


0x10 –


63 0


0x18 –


63 0


0x20 –


63 0


0x28 –


63 0


0x30 –


63 0


0x38 –


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 32–63 CONFIGURATION Configuration of selected offload.
For OFFLOAD_TYPE 0-3, values are:
0: selected offload is disabled
1: selected offload is enabled







DPNI: Data Path Network Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 7-50
 


7.3.22 DPNI_GET_QDID


Get the Queuing Destination ID (QDID) that should be used for frame enqueue operations. 


The Queuing Destination (QD) feature implemented in QMan provides enqueuer support for the purposes 
of: 


• Distribution (load balancing)


• QoS (Quality of Service)


QD can use multiple queues.


When a frame is enqueued to QMan, either from a software portal, a network interface module (for 
example WRIOP), or an accelerator, the enqueue command (or pre-enqueue command, in the case of 
WRIOP) may specify: 


• FQID to which the frame should be directly enqueued, or 


• Queuing Destination ID (QDID) and priority, which will be resolved by the hardware into a 
specific queue to be used for the enqueue.


The number of QD supported is Soc specific. Each QD provides next functions: 


• QoS mapping of the enqueue to a specific queue or sub-group of queues, using a QPRI (queuing 
priority) value provided in the command.


• Distribution of the enqueue within the QoS selected sub-group.


Example: To send data using a specific Traffic Class (TC) obtain QDID for TX queue. Use this QDID 
together with TC priority to create enqueue command descriptor.







DPNI: Data Path Network Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 7-51
 


Command structure


Figure 93. DPNI_GET_QDID Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x2101 TOKEN –


IN
T


R
_D


IS


STATUS P – SRCID


63 8 7 0


0x08 – QUEUE_TYPE


63 0


0x10 –


63 0


0x18 –


63 0


0x20 –


63 0


0x28 –


63 0


0x30 –


63 0


0x38 –


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


QUEUE_TYPE Type of queue to receive QDID for:
1: DPNI_QUEUE_TX - Tx queue


All other values are reserved







DPNI: Data Path Network Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 7-52
 


Response structure


Figure 94. DPNI_GET_QDID Response Description


All unspecified fields are cleared.


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x2101 TOKEN –


IN
T


R
_D


IS


STATUS P – SRCID


63 16 15 0


0x08 – QDID


63 0


0x10 –


63 0


0x18 –


63 0


0x20 –


63 0


0x28 –


63 0


0x30 –


63 0


0x38 –


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-15 QDID Virtual QDID value that should be used as an argument in all enqueue operations







DPNI: Data Path Network Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 7-53
 


7.3.23 DPNI_GET_SP_INFO


Get the AIOP storage profile ID associated with the DPNI – relevant only for DPNI that belongs to AIOP 
software context (resides in AIOP container).


Command structure


Figure 95. DPNI_GET_SP_INFO Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x2111 TOKEN –


IN
T


R
_D


IS


STATUS P – SRCID


63 0


0x08 –


63 0


0x10 –


63 0


0x18 –


63 0


0x20 –


63 0


0x28 –


63 0


0x30 –


63 0


0x38 –


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.







DPNI: Data Path Network Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 7-54
 


Response structure


Figure 96. DPNI_GET_SP_INFO Response Description


All unspecified fields are cleared.


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x2111 TOKEN –


IN
T


R
_D


IS


STATUS P – SRCID


63 32 31 16 15 0


0x08 – SPIDS_1 SPIDS_0


63 0


0x10 –


63 0


0x18 –


63 0


0x20 –


63 0


0x28 –


63 0


0x30 –


63 0


0x38 –


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-31 SPIDS[0..1] AIOP storage-profile ID







DPNI: Data Path Network Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 7-55
 


7.3.24 DPNI_GET_TX_DATA_OFFSET


Get the data offset for transmit buffers (from start of buffer). 


Software should reserve the amount of space indicated by this command as headroom in all Tx frames.  
This space may be used to pass metadata to/from hardware or to associate software-defined metadata with 
the frame between Tx and Tx confirmation.


Command structure


Figure 97. DPNI_GET_TX_DATA_OFFSET Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x2121 TOKEN –


IN
T


R
_


D
IS


STATUS P – SRCID


63 0


0x08 –


63 0


0x10 –


63 0


0x18 –


63 0


0x20 –


63 0


0x28 –


63 0


0x30 –


63 0


0x38 –


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.







DPNI: Data Path Network Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 7-56
 


Response structure


Figure 98. DPNI_GET_TX_DATA_OFFSET Response Description


All unspecified fields are cleared.


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x2121 TOKEN –


IN
T


R
_D


IS


STATUS P – SRCID


63 16 15 0


0x08 DATA_OFFSET


63 0


0x10 –


63 0


0x18 –


63 0


0x20 –


63 0


0x28 –


63 0


0x30 –


63 0


0x38 –


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-15 DATA_OFFSET Transmit-side data offset (from start of buffer)







DPNI: Data Path Network Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 7-57
 


7.3.25 DPNI_GET_STATISTICS


Read DPNI statistics.


Command structure


Figure 99. DPNI_GET_STATISTICS Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x25D4 TOKEN –


IN
T


R
_


D
IS


STATUS P – SRCID


63 24 23 8 7 0


0x08 – PARAM PAGE_NUMBER


63 0


0x10 –


63 0


0x18 –


63 0


0x20 –


63 0


0x28 –


63 0


0x30 –


63 0


0x38 –


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0–7 PAGE_NUMBER Select one of the available counter pages to retrieve.  
Supported values are 0-5. Check response structure of this command for content of 
each page.


0x08 8-23 PARAM Custom parameter for some pages used to select a certain statistic source, for 
example the TC.
- page_0: not used
- page_1: not used
- page_2: not used
- page_3: high_byte - channel_id, low_byte - traffic class
- page_4: high_byte - queue_index has meaning only if the dpni is created using 
DPNI_OPT_CUSTOM_CG option, low_byte - traffic class
- page_5: not used
- page_6: not used







DPNI: Data Path Network Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 7-58
 


Response structure


Figure 100. DPNI_GET_STATISTICS Response Description


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x25D1 TOKEN –


IN
T


R
_D


IS


STATUS P – SRCID


63 0


0x08 COUNTER0


63 0


0x10 COUNTER1


63 0


0x18 COUNTER2


63 0


0x20 COUNTER3


63 0


0x28 COUNTER4


63 0


0x30 COUNTER5


63 0


0x38 COUNTER6


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0–63 COUNTER0 Contains, depending on PAGE_NUMBER selection:
0: INGRESS_ALL_FRAMES – counts all accepted ingress frames,
1: EGRESS_ALL_FRAMES – counts all egress frames transmitted,
2: INGRESS_FILTERED_FRAMES – counts all ingress frames discarded due to filtering.  Discard may be 
caused by MAC, VLAN filtering, ACL configuration.
3. Cumulative count of the number of bytes dequeued.
4. Number of rejected frames in associated congestion point (valid if this TC has an associated congestion point)
5. Policer RED packet counter. 32bit value valid only when policer is enabled.


0X10 0–63 COUNTER1 Contains, depending on PAGE_NUMBER selection:
0: INGRESS_ALL_BYTES – counts bytes in all accepted ingress frames,
1: EGRESS_ALL_BYTES – counts bytes in all frames transmitted,
2: INGRESS_DISCARDED_FRAMES – counts all frames discarded due to errors.  Errors may be caused by an 
external source, frames being corrupted before entering the system, or caused by internal errors.
3. Cumulative count of the number of bytes dequeued.
4. Number of rejected bytes in associated congestion point (valid if this TC has an associated congestion point)
5. Policer YELLOW packet counter. 32bit value valid only when policer is enabled.


0X18 0–63 COUNTER2 Contains, depending on PAGE_NUMBER selection:
0: INGRESS_MULTICAST_FRAMES – counts multicast accepted ingress frames,
1: EGRESS_MULTICAST_FRAMES – counts multicast egress frames transmitted,
2: INGRESS_NOBUFFER_DISCARDS – counts discards on ingress side due to buffer depletion in DPNI buffer 
pools. This counter is not available on LS2080.
3. Cumulative count of the number of bytes in all frames whose enqueue was rejected.
5. Policer GREEN packet counter. 32bit value valid only when policer is enabled.


0X20 0–63 COUNTER3 Contains, depending on PAGE_NUMBER selection:
0: INGRESS_MULTICAST_BYTES – counts bytes in received multicast frames,
1: EGRESS_MULTICAST_BYTES – counts bytes in transmitted multicast frames,
2: EGRESS_DISCARDED_FRAMES – frames discarded on transmit due to DPNI configuration and/or frame 
state.
3. Cumulative count of all frame enqueues rejected.
5. Policer recolored RED packet counter. 32bit value valid only when policer is enabled.







DPNI: Data Path Network Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 7-59
 


0X28 0–63 COUNTER4 Contains, depending on PAGE_NUMBER selection:
0: INGRESS_BROADCAST_FRAMES – counts broadcast accepted ingress frames,
1: EGRESS_BROADCAST_FRAMES – counts broadcast egress frames transmitted,
2: EGRESS_CONFIRMED_FRAMES – counts all frames that have been confirmed after transmission.
5. Policer recolored YELLOW packet counter. 32bit value valid only when policer is enabled.


0x30 0–63 COUNTER5 Contains, depending on PAGE_NUMBER selection:
0: INGRESS_BROADCAST_BYTES – counts bytes in broadcast multicast frames,
1: EGRESS_BROADCAST_BYTES – counts bytes in broadcast multicast frames,


0x38 0–63 COUNTER6 Reserved


Offset Bits Name Description







DPNI: Data Path Network Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 7-60
 


7.3.26 DPNI_RESET_STATISTICS


Reset DPNI statistics.  The command resets all DPNI counters.  Reset is not guaranteed to be synchronized 
across all DPNI counters, executing DPNI_RESET_STATISTICS under live traffic may lead to counters 
being out of sync.  As an example, INGRESS_ALL_FRAMES may indicate a slightly different number 
of frames than the ones included in INGRESS_ALL_BYTES.


Command structure


Figure 101. DPNI_RESET_STATISTICS Command Description


The following table describes the command fields.


Table 14. DPNI_RESET_STATISTICS Command Field Description


All unspecified fields are reserved and must be cleared (set to zero) 


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x25E1 TOKEN –


IN
T


R
_


D
IS


STATUS P – SRCID


63 0


0x08 –


63 0


0x10 –


63 0


0x18 –


63 0


0x20 –


63 0


0x28 –


63 0


0x30 –


63 0


0x38 –


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.







DPNI: Data Path Network Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 7-61
 


7.3.27 DPNI_SET_LINK_CFG


Set the link configuration. This command is available both for physical interfaces (DPNI connected to a 
DPMAC) and for internal links (between a DPNI and another DPNI or DPDMUX, DPSW port).


DPSW and DPDMUX objects do not support Priority Flow Control and Asymmetric Flow Control.


In case of an internal link, MC updates the link state if needed and notifies both endpoints.


In case of a physical interface, MC may generate an interrupt to the DPMAC control software and request 
changes in link configuration, depending on port configuration.


Pause frames are enabled/disabled using the following logic for 
DPNI_LINK_OPT_<PAUSE/ASYM_PAUSE>:


Priority Flow Control (PFC) is enabled when one of the flag 
DPNI_LINK_OPT_<PAUSE/ASYM_PAUSE> is enabled together with flag 
PNI_LINK_OPT_PFC_PAUSE. Before activating PFC follow next steps:


1. Associate buffer pool to traffic classes using DPNI_SET_POOLS command


2. Perform QoS mappings using DPNI_ADD_QOS_ENTRY command


When buffer pool associated with a specific traffic class enters depletion state the DPNI will automatically 
generate PFC frames. The mask from PFC frame will contain all traffic classes associated with this buffer 
pool.


The flag DPNI_LINK_OPT_ASYM_PAUSE cannot be used for DPNI connections using recycle ports 
(i.e the DPNI is connected to another DPNI object). If the flag is enabled on such connection flow control 
will not work properly. The user must issue a DPNI_SET_LINK_CFG command with this flag cleared.


Use the command DPNI_GET_LINK_CFG to obtain current configuration.


PAUSE ASYM_PAUSE
Rx pause frame


(DPNI stops sending when 
receives pause frames)


Tx pause frame
(DPNI generates pause 


frames)


0 0 Disabled Disabled


0 1 Disabled Enabled


1 0 Enabled Enabled


1 1 Enabled Disabled







DPNI: Data Path Network Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 7-62
 


Command structure


Figure 102. DPNI_SET_LINK_CFG Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x21A1 TOKEN –


IN
T


R
_D


IS


STATUS P – SRCID


63 0


0x08 –


63 32 31 0


0x10 – RATE


63 0


0x18 OPTIONS


63 0


0x20 ADVERTISING


63 0


0x28 –


63 0


0x30 –


63 0


0x38 –


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x10 0-31 RATE Rate in Mbps


0x18 0–63 OPTIONS Mask of available options; use ‘DPNI_LINK_OPT_<x>’ values


1 DPNI_LINK_OPT_AUTONEG Enable auto-negotiation


2 DPNI_LINK_OPT_HALF_DUPLEX Enable half-duplex mode


3 DPNI_LINK_OPT_PAUSE Enable pause frames


4 DPNI_LINK_OPT_ASYM_PAUSE Enable a-symmetric pause frames


5 DPNI_LINK_OPT_PFC_PAUSE Enable Priority Flow Control pause frames. To use the feature properly, use the 
DPNI_SET_POOLS command to associate DPBP objects for desired traffic classes. 


0x20 0-63 ADVERTISING Speeds that are advertised for autoneg







DPNI: Data Path Network Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 7-63
 


7.3.28 DPNI_GET_LINK_CFG


Return the capabilities configured using command DPNI_CMDID_SET_LINK_CFG.


Command structure


Figure 103. DPNI_GET_LINK_CFG Command Description


The following table describes the command fields.


Table 15. DPNI_GET_LINK_CFG Command Field Description


All unspecified fields are reserved and must be cleared (set to zero) 


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x2781 TOKEN –


IN
T


R
_


D
IS


STATUS P – SRCID


63 0


0x08 –


63 0


0x10 -


63 0


0x18 -


63 0


0x20 -


63 0


0x28 –


63 0


0x30 –


63 0


0x38 –


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.







DPNI: Data Path Network Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 7-64
 


Response structure


Figure 104. DPNI_GET_LINK_CFG Response Description


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x2781 TOKEN –


IN
T


R
_D


IS


STATUS P – SRCID


63 0


0x08 –


63 32 31 0


0x10 – RATE


63 0


0x18 OPTIONS


63 0


0x20 ADVERTISING


63 0


0x28 –


63 0


0x30 –


63 0


0x38 –


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x10 0-31 RATE Rate in Mbps


0x18 0–63 OPTIONS Mask of available options; use ‘DPNI_LINK_OPT_<x>’ values


1 DPNI_LINK_OPT_AUTONEG Enable auto-negotiation


2 DPNI_LINK_OPT_HALF_DUPLEX Enable half-duplex mode


3 DPNI_LINK_OPT_PAUSE Enable pause frames


4 DPNI_LINK_OPT_ASYM_PAUSE Enable a-symmetric pause frames


5 DPNI_LINK_OPT_PFC_PAUSE Enable Priority Flow Control pause frames. To use the feature properly, use the 
DPNI_SET_POOLS command to associate DPBP objects for desired traffic classes. 


0x20 0-63 ADVERTISING Speeds that are advertised for autoneg







DPNI: Data Path Network Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 7-65
 


7.3.29 DPNI_SET_SINGLE_STEP_CFG


Command structure


Figure 105. DPNI_SET_SINGLE_STEP_CFG Command field description 


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x2791 TOKEN –


IN
T


R
_


D
IS


STATUS P – SRCID


63 32 31 16 15 1 0


0x08 PEER_DELAY OFFSET


U
P


D
A


T
E


E
N


63 0


0x10 —


63 0


0x18 —


63 0


0x20 –


63 0


0x28 –


63 0


0x30 –


63 0


0x38 –


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0 EN Enable PTP single-step


1 UPDATE Option for UDP Checksum correction.


16–31 OFFSET Offset from the beginning of the frame


32-63 PEER_DELAY Peer delay







DPNI: Data Path Network Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 7-66
 


7.3.30 DPNI_GET_SINGLE_STEP_CGF


Return the configuration for PTP single-step.


Command structure


Figure 106. DPNI_GET_SINGLE_STEP_CFG Command Description


The following table describes the command fields.


Table 16. DPNI_GET_SINGLE_STEP_CFG Command Field Description


All unspecified fields are reserved and must be cleared (set to zero) 


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x27A2 TOKEN –


IN
T


R
_


D
IS


STATUS P – SRCID


63 0


0x08 –


63 0


0x10 -


63 0


0x18 -


63 0


0x20 -


63 0


0x28 –


63 0


0x30 –


63 0


0x38 –


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.







DPNI: Data Path Network Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 7-67
 


Response structure


Figure 107. DPNI_GET_SINGLE_STEP_CFG Response field description 


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x27A2 TOKEN –


IN
T


R
_D


IS


STATUS P – SRCID


63 32 31 16 15 1 0


0x08 PEER_DELAY OFFSET


U
P


D
A


T
E


E
N


63 31 0


0x10 — PTP_ONESTEP_REG_BASE


63 0


0x18 —


63 0


0x20 –


63 0


0x28 –


63 0


0x30 –


63 0


0x38 –


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0 EN Enable PTP single-step


1 UPDATE Option for UDP Checksum correction.


16–31 OFFSET Offset from the beginning of the frame


32-63 PEER_DELAY Peer delay


0x10 0-31 PTP_ONESTEP_REG_BASE 1588 SINGLE_STEP register base address. This address is used to update directly 
the register contents. The user has to create an address mapping for it.







DPNI: Data Path Network Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 7-68
 







DPNI: Data Path Network Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 7-69
 


7.3.31 DPNI_SET_PORT_CFG


This command configure setting into endpoint mac. The call will be successful only when DPNI object is 
connected to a DPMAC object. If DPNI is unconnected or the endpoint is not DPMAC the command will 
return error. The effect of this command will disappear when mac is disconnected: if DPNI is disconnected 
and connected again the configuration is lost and the command must be called again.


Command structure


Figure 108. DPNI_SET_PORT_CFG Command field description 


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x27B1 TOKEN –


IN
T


R
_


D
IS


STATUS P – SRCID


63 32 31 0


0x08 --


LO
O


P
B


A
C


K
_


E
N


FLAGS


63 0


0x10 —


63 0


0x18 —


63 0


0x20 –


63 0


0x28 –


63 0


0x30 –


63 0


0x38 –


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-31 FLAGS bit 0: DPNI_PORT_CFG_LOOPBACK
By setting this flag will enable the control for loopback mode through LOOPBACK_EN.


32 LOOPBACK_EN By setting it will activate the loopback only if the flag is set in FLAGS.







DPNI: Data Path Network Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 7-70
 


7.3.32 DPNI_GET_PORT_CGF


Return the configuration for port.


Command structure


Figure 109. DPNI_GET_PORT_CFG Command Description


The following table describes the command fields.


Table 17. DPNI_GET_PORT_CFG Command Field Description


All unspecified fields are reserved and must be cleared (set to zero) 


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x27C1 TOKEN –


IN
T


R
_


D
IS


STATUS P – SRCID


63 0


0x08 –


63 0


0x10 -


63 0


0x18 -


63 0


0x20 -


63 0


0x28 –


63 0


0x30 –


63 0


0x38 –


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.







DPNI: Data Path Network Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 7-71
 


Response structure


Figure 110. DPNI_GET_PORT_CFG Response field description 


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x27C1 TOKEN –


IN
T


R
_D


IS


STATUS P – SRCID


63 32 31 16 15 1 0


0x08 


L
O


O
P


B
A


C
K


_E
N


--


63 0


0x10 —


63 0


0x18 —


63 0


0x20 –


63 0


0x28 –


63 0


0x30 –


63 0


0x38 –


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 32 LOOPBACK_EN If returned value is 1, the loopback mode is enabled.







DPNI: Data Path Network Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 7-72
 


7.3.33 DPNI_GET_LINK_STATE


Return the link state (either up or down).


Command structure


Figure 111. DPNI_GET_LINK_STATE Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x2151 TOKEN –


IN
T


R
_


D
IS


STATUS P – SRCID


63 0


0x08 –


63 0


0x10 –


63 0


0x18 –


63 0


0x20 –


63 0


0x28 –


63 0


0x30 –


63 0


0x38 –


Offset Bits Name Description


0x00 0–63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.







DPNI: Data Path Network Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 7-73
 


Response structure


Figure 112. DPNI_GET_LINK_STATE Response Description


All unspecified fields are cleared.


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x2151 TOKEN –


IN
T


R
_D


IS


STATUS P – SRCID


63 33 32 31 0


0x08 –


S
TA


T
E


_
V


A
L


ID


UP


–


63 32 31 0


0x10 – RATE


63 0


0x18 OPTIONS


63 0


0x20 SUPPORTED


63 0


0x28 ADVERTISING


63 0


0x30 –


63 0


0x38 –


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 32 UP Link state; '1' if link is up, '0' otherwise


33 STATE_VALID Ignore/Update the state of the link


0x10 0-31 RATE Rate in Mbps


0x18 OPTIONS Mask of available options; use ‘DPNI_LINK_OPT_<x>’ values


1 DPNI_LINK_OPT_AUTONEG Enable auto-negotiation


2 DPNI_LINK_OPT_HALF_DUPLEX Enable half-duplex mode


3 DPNI_LINK_OPT_PAUSE Enable pause frames


4 DPNI_LINK_OPT_ASYM_PAUSE Enable a-symmetric pause frames


0x20 0-63 SUPPORTED Speeds capability of the phy


0X28 0-63 ADVERTISING Speeds that are advertised for autoneg







DPNI: Data Path Network Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 7-74
 


7.3.34 DPNI_SET_TX_SHAPING


Set the transmit committed rate and excess rate shapers.


The shapers are token bucket based. The configurable parameters in this command, the rate limit, and 
maximum burst size are translated to values specific to the token bucket model. 


There are two shapers supported: one represents the committed rate (CR) and the other the excess rate 
(ER). Each shaper has an individually configured rate limit and maximum burst size. The burst size is the 
maximum amount of data (in bytes) sent as a consecutive burst of back to back frames on the network. 


It is possible to configure the shapers as coupled so that the overflow of CR tokens is added to the ER 
bucket.


During this transformation some approximations are done. In the token bucket model, there is also an 
increment resolution for the rate that depends on the pre-scaler and QBMAN frequency values. These will 
lead to actual rate values that differ from the rate given in the command by 1–2 Kbps.


Command structure


Figure 113. DPNI_SET_TX_SHAPING Command Description


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x21B3 TOKEN –


IN
T


R
_


D
IS


STATUS P – SRCID


63 32 31 16 15 0


0x08 — ER_MAX_BURST_SIZE CR_MAX_BURST_SIZE


63 32 31 0


0x10 ER_RATE_LIMIT CR_RATE_LIMIT


63 16 15 8 7 0


0x18 CHANNEL_D OPTIONS


63 0


0x20 –


63 0


0x28 –


63 0


0x30 –


63 0


0x38 –


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-15 CR_MAX_BURST_SIZE Committed rate maximum burst size in bytes (up to 63487 bytes)


16–31 ER_MAX_BURST_SIZE Excess rate maximum burst size in bytes (up to 63487 bytes)


0x10 0-31 CR_RATE_LIMIT Committed rate in Mbps


32–63 ER_RATE_LIMIT Excess rate in Mbps







DPNI: Data Path Network Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 7-75
 


All unspecified fields are reserved and must be cleared (set to zero)


0x18 0-7 OPTIONS Bit 0: Coupled shapers.
0: The CR and ER shapers are independent
1: The CR and ER shapers are coupled
Bit 1: LNI shaper
0: configure channel shaper
1: configure LNI shaper. It is recommended to be used only for dpni objects connected 
to dpmac


8-15 CHANNEL_ID Index of the TX channel to be shaped.


Offset Bits Name Description







DPNI: Data Path Network Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 7-76
 


7.3.35 DPNI_SET_MAX_FRAME_LENGTH


Set the maximum allowed length for received frames.


Command structure


Figure 114. DPNI_SET_MAX_FRAME_LENGTH Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x2161 TOKEN –


IN
T


R
_


D
IS


STATUS P – SRCID


63 16 15 0


0x08 – MAX_FRAME_LENGTH


63 0


0x10 –


63 0


0x18 –


63 0


0x20 –


63 0


0x28 –


63 0


0x30 –


63 0


0x38 –


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-15 MAX_FRAME_LENGTH Maximum received frame length (in bytes); a frame is discarded if its length exceeds 
this value. The frame length set is without CRC because the length check is done at 
WRIOP level and the CRC is already removed at this stage.







DPNI: Data Path Network Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 7-77
 


7.3.36 DPNI_GET_MAX_FRAME_LENGTH


Get the maximum allowed length for received frames.


Command structure


Figure 115. DPNI_GET_MAX_FRAME_LENGTH Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x2171 TOKEN –


IN
T


R
_


D
IS


STATUS P – SRCID


63 0


0x08 –


63 0


0x10 –


63 0


0x18 –


63 0


0x20 –


63 0


0x28 –


63 0


0x30 –


63 0


0x38 –


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.







DPNI: Data Path Network Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 7-78
 


Response structure


Figure 116. DPNI_GET_MAX_FRAME_LENGTH Response Description


All unspecified fields are cleared.


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x2171 TOKEN –


IN
T


R
_D


IS


STATUS P – SRCID


63 16 15 0


0x08 – MAX_FRAME_LENGTH


63 0


0x10 –


63 0


0x18 –


63 0


0x20 –


63 0


0x28 –


63 0


0x30 –


63 0


0x38 –


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-15 MAX_FRAME_LENGTH Maximum received frame length (in bytes); a frame is discarded if its length exceeds 
this value.







DPNI: Data Path Network Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 7-79
 


7.3.37 DPNI_SET_MULTICAST_PROMISC


This command is used to enable/disable multicast promiscuous mode. In this mode, all multicast MAC 
addresses are accepted by the interface, and no multicast filtering is done.


This command does not control Error frames. The Error frames are configured independently via 
DPNI_SET_ERRORS_BEHAVIOR command.


Command structure


Figure 117. DPNI_SET_MULTICAST_PROMISC Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x2201 TOKEN –


IN
T


R
_


D
IS


STATUS P – SRCID


63 1 0


0x08 – EN


63 0


0x10 –


63 0


0x18 –


63 0


0x20 –


63 0


0x28 –


63 0


0x30 –


63 0


0x38 –


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0 EN ‘0’: disable multicast promiscuous mode
‘1’: enable multicast promiscuous mode (default)







DPNI: Data Path Network Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 7-80
 


7.3.38 DPNI_GET_MULTICAST_PROMISC


Get status of multicast promiscuous mode.


Command structure


Figure 118. DPNI_GET_MULTICAST_PROMISC Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x2211 TOKEN –


IN
T


R
_


D
IS


STATUS P – SRCID


63 0


0x08 –


63 0


0x10 –


63 0


0x18 –


63 0


0x20 –


63 0


0x28 –


63 0


0x30 –


63 0


0x38 –


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.







DPNI: Data Path Network Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 7-81
 


Response structure


Figure 119. DPNI_GET_MULTICAST_PROMISC Response Description


All unspecified fields are cleared.


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x2211 TOKEN –


IN
T


R
_D


IS


STATUS P – SRCID


63 1 0


0x08 – EN


63 0


0x10 –


63 0


0x18 –


63 0


0x20 –


63 0


0x28 –


63 0


0x30 –


63 0


0x38 –


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0 EN ‘0’: multicast promiscuous mode is disabled
‘1’: multicast promiscuous mode is enabled







DPNI: Data Path Network Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 7-82
 


7.3.39 DPNI_SET_UNICAST_PROMISC


This command is used to enable/disable unicast promiscuous mode. In this mode, all unicast MAC 
addresses are accepted by the interface, and no unicast filtering is done.


This command does not control Error frames. The Error frames can be configured independently using 
DPNI_SET_ERRORS_BEHAVIOR command.


Command structure


Figure 120. DPNI_SET_UNICAST_PROMISC Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x2221 TOKEN –


IN
T


R
_


D
IS


STATUS P – SRCID


63 1 0


0x08 – EN


63 0


0x10 –


63 0


0x18 –


63 0


0x20 –


63 0


0x28 –


63 0


0x30 –


63 0


0x38 –


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0 EN ‘0’: disable unicast promiscuous mode (default)
‘1’: enable unicast promiscuous mode







DPNI: Data Path Network Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 7-83
 


7.3.40 DPNI_GET_UNICAST_PROMISC


Get status of unicast promiscuous mode.


Command structure


Figure 121. DPNI_GET_UNICAST_PROMISC Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x2231 TOKEN –


IN
T


R
_


D
IS


STATUS P – SRCID


63 0


0x08 –


63 0


0x10 –


63 0


0x18 –


63 0


0x20 –


63 0


0x28 –


63 0


0x30 –


63 0


0x38 –


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.







DPNI: Data Path Network Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 7-84
 


Response structure


Figure 122. DPNI_GET_UNICAST_PROMISC Response Description


All unspecified fields are cleared.


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x2231 TOKEN –


IN
T


R
_D


IS


STATUS P – SRCID


63 1 0


0x08 – EN


63 0


0x10 -


63 0


0x18 –


63 0


0x20 –


63 0


0x28 –


63 0


0x30 –


63 0


0x38 –


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0 EN ‘0’: multicast promiscuous mode is disabled
‘1’: multicast promiscuous mode is enabled







DPNI: Data Path Network Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 7-85
 


7.3.41 DPNI_SET_PRIMARY_MAC_ADDR


Set the primary MAC address of the interface.


The primary MAC address is initially set when the DPNI is created (see DPNI_CREATE command), and 
may be modified by this command. Each interface must have at least one primary MAC address defined, 
therefore this address can be modified but not removed. Additional MAC addresses can be assigned to the 
interface through MAC filtering commands.


Command structure


Figure 123. DPNI_SET_PRIMARY_MAC_ADDR Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x2241 TOKEN –


IN
T


R
_


D
IS


STATUS P – SRCID


63 56 55 48 47 40 39 32 31 24 23 16 15 0


0x08 MAC_ADDR0 MAC_ADDR1 MAC_ADDR2 MAC_ADDR3 MAC_ADDR4 MAC_ADDR5 –


63 0


0x10 –


63 0


0x18 –


63 0


0x20 –


63 0


0x28 –


63 0


0x30 –


63 0


0x38 –


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 16-63 MAC_ADDR[0-5] MAC address (6 bytes) to set as primary address.







DPNI: Data Path Network Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 7-86
 


7.3.42 DPNI_GET_PRIMARY_MAC_ADDR


Get the primary MAC address.


Command structure


Figure 124. DPNI_GET_PRIMARY_MAC_ADDR Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x2251 TOKEN –


IN
T


R
_


D
IS


STATUS P – SRCID


63 0


0x08 –


63 0


0x10 –


63 0


0x18 –


63 0


0x20 –


63 0


0x28 –


63 0


0x30 –


63 0


0x38 –


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.







DPNI: Data Path Network Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 7-87
 


Response structure


Figure 125. DPNI_GET_PRIMARY_MAC_ADDR Response Description


All unspecified fields are cleared.


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x2251 TOKEN –


IN
T


R
_D


IS


STATUS P – SRCID


63 56 55 48 47 40 39 32 31 24 23 16 15 0


0x08 MAC_ADDR0 MAC_ADDR1 MAC_ADDR2 MAC_ADDR3 MAC_ADDR4 MAC_ADDR5 –


63 0


0x10 -


63 0


0x18 –


63 0


0x20 –


63 0


0x28 –


63 0


0x30 –


63 0


0x38 –


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 16-63 MAC_ADDR[0-5] MAC address (6 bytes) that serves as primary address.







DPNI: Data Path Network Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 7-88
 


7.3.43 DPNI_ADD_MAC_ADDR


Add MAC address filter. A successful invocation of this command configures the interface to accept 
frames with the specified destination MAC address.


Command structure


Figure 126. DPNI_ADD_MAC_ADDR Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x2261 TOKEN –


IN
T


R
_D


IS


STATUS P – SRCID


63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0


0x08 MAC_ADDR0 MAC_ADDR1 MAC_ADDR2 MAC_ADDR3 MAC_ADDR4 MAC_ADDR5 – FLAGS


63 0


0x10 – FQ_ID TC_ID


63 0


0x18 –


63 0


0x20 –


63 0


0x28 –


63 0


0x30 –


63 0


0x38 –


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-7 FLAGS 0x0: Lookup in the next classification table. FQ_ID and TC_ID are ignored for this 
option.
0x1: DPNI_MAC_SET_QUEUE_ACTION - Frames will be enqueued in queue with 
index FQ_ID from Traffic Class TC_ID. 


Obs: If the DPNI is in promiscuous mode then the option 
DPNI_MAC_SET_QUEUE_ACTION will not work.


16-63 MAC_ADDR[0-5] MAC address to add


0x10 0-7 TC_ID The traffic class to select in case a frame matches the specified lookup key and mask. 
Valid values are in the range of (0-7), but also limited by the number of traffic classes 
configured during the creation of the DPNI.


8-15 FQ_ID Frame queue ID. Used only when Flags is set to DPNI_MAC_SET_QUEUE_ACTION







DPNI: Data Path Network Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 7-89
 


7.3.44 DPNI_REMOVE_MAC_ADDR


Remove MAC address filter. After a successful invocation of this command, frames with the specified 
MAC address are rejected by the interface (unless promiscuous mode is enabled).


Command structure


Figure 127. DPNI_REMOVE_MAC_ADDR Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x2271 TOKEN –


IN
T


R
_D


IS


STATUS P – SRCID


63 56 55 48 47 40 39 32 31 24 23 16 15 0


0x08 MAC_ADDR0 MAC_ADDR1 MAC_ADDR2 MAC_ADDR3 MAC_ADDR4 MAC_ADDR5 –


63 0


0x10 –


63 0


0x18 –


63 0


0x20 –


63 0


0x28 –


63 0


0x30 –


63 0


0x38 –


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 16-63 ADDR[0-5] MAC address to remove







DPNI: Data Path Network Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 7-90
 


7.3.45 DPNI_CLEAR_MAC_FILTERS


Clear all unicast and/or multicast MAC filters. Note that the primary MAC address is never cleared – it 
stays valid at all times.


Command structure


Figure 128. DPNI_CLEAR_MAC_FILTERS Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x2281 TOKEN –


IN
T


R
_D


IS


STATUS P – SRCID


63 0


0x08 –


M
U


LT
IC


A
S


U
N


IC
A


S
T


63 0


0x10 –


63 0


0x18 –


63 0


0x20 –


63 0


0x28 –


63 0


0x30 –


63 0


0x38 –


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0 UNICAST Set to '1' to clear unicast addresses


1 MULTICAST Set to '1' to clear multicast addresses







DPNI: Data Path Network Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 7-91
 


7.3.46 DPNI_GET_PORT_MAC_ADDRESS


Returns the MAC address associated with the physical port, if the DPNI is connected to a DPMAC directly 
associated with one of the physical ports. It is recommended to call this function when initializing a DPNI 
and, if the returned MAC address is not 0, use it as DPNI primary address. 


If the DPNI is not connected to a DPMAC object (i.e DPNI is connected to DPNI, DPDMUX, or DPSW 
object) the command will return zero for mac address. Use DPRC_GET_CONNECTION to obtain the 
type of the object connected at the remote end.


Port MAC addresses are configured in port section of the DPC.


Command structure


Figure 129. DPNI_GET_PORT_MAC_ADDRESS Command Description


The following table describes the command fields.


Table 18. DPNI_GET_PORT_MAC_ADDRESS Command Command Field Description


All unspecified fields are reserved and must be cleared (set to zero) 


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x2631 TOKEN –


IN
T


R
_


D
IS


STATUS P – SRCID


63 0


0x08 –


63 0


0x10 –


63 0


0x18 –


63 0


0x20 –


63 0


0x28 –


63 0


0x30 –


63 0


0x38 –


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.







DPNI: Data Path Network Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 7-92
 


Response structure


Figure 130. DPNI_GET_PORT_MAC_ADDRESS Response Description


Table 19. DPNI_GET_PORT_MAC_ADDRESS Response Field Descriptions


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x2631 TOKEN –


IN
T


R
_D


IS


STATUS P – SRCID


63 52 51 48 47 38 37 32 31 24 23 0


0x08 MAC_ADDR0 MAC_ADDR1 MAC_ADDR2 MAC_ADDR3 MAC_ADDR4 MAC_ADDR5 —


63 0


0x10 –


63 0


0x18 –


63 0


0x20 –


63 0


0x28 –


63 0


0x30 –


63 0


0x38 –


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 16–63 MAC_ADDR[0-5] MAC address of the physical port.  If the DPNI is not connected to the physical port or 
an address has not been configured on the port these fields will be reset.







DPNI: Data Path Network Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 7-93
 


7.3.47 DPNI_ENABLE_VLAN_FILTER


Enable/disable VLAN filtering mode.


Command structure


Figure 131. DPNI_ENABLE_VLAN_FILTER Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x2301 TOKEN –


IN
T


R
_


D
IS


STATUS P – SRCID


63 1 0


0x08 EN


63 0


0x10 –


63 0


0x18 –


63 0


0x20 –


63 0


0x28 –


63 0


0x30 –


63 0


0x38 –


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0 EN ‘0’: disable VLAN filtering
‘1’: enable VLAN filtering







DPNI: Data Path Network Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 7-94
 


7.3.48 DPNI_ADD_VLAN_ID


Add VLAN ID filter. A successful invocation of this command configures the interface to accept frames 
with the specified VLAN ID (assuming they are not dropped by the MAC filters).


Command structure


Figure 132. DPNI_ADD_VLAN_ID Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x2311 TOKEN –


IN
T


R
_D


IS


STATUS P – SRCID


63 48 47 32 31 24 23 16 15 8 7 0


0x08 – VLAN_ID - FLOW_ID TC_ID FLAGS


63 0


0x10 –


63 0


0x18 –


63 0


0x20 –


63 0


0x28 –


63 0


0x30 –


63 0


0x38 –


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-7 FLAGS 0x0: Lookup in the next classification table. FLOW_ID and TC_ID are ignored for this 
option.
0x1: DPNI_VLAN_SET_QUEUE_ACTION - Frames will be enqueued in queue with 
index FLOW_ID from Traffic Class TC_ID.


8-15 TC_ID The traffic class to select in case a frame matches the specified lookup key and mask. 
Valid values are in the range of (0-7), but also limited by the number of traffic classes 
configured during the creation of the DPNI.


16-23 FLOW_ID Flow ID. Used only when FLAGS is set to DPNI_VLAN_SET_QUEUE_ACTION


32-47 VLAN_ID VLAN ID to add







DPNI: Data Path Network Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 7-95
 


7.3.49 DPNI_REMOVE_VLAN_ID


Remove VLAN filter. After a successful invocation of this command, frames with the specified VLAN ID 
are rejected by the interface.


Command structure


Figure 133. DPNI_REMOVE_VLAN_ID Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x2321 TOKEN –


IN
T


R
_D


IS


STATUS P – SRCID


63 48 47 32 31 0


0x08 – VLAN_ID –


63 0


0x10 –


63 0


0x18 –


63 0


0x20 –


63 0


0x28 –


63 0


0x30 –


63 0


0x38 –


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 32-47 VLAN_ID VLAN ID to remove







DPNI: Data Path Network Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 7-96
 


7.3.50 DPNI_CLEAR_VLAN_FILTERS


Clear all VLAN filters of the interface.


Command structure


Figure 134. DPNI_CLEAR_VLAN_FILTERS Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x2331 TOKEN –


IN
T


R
_


D
IS


STATUS P – SRCID


63 0


0x08 –


63 0


0x10 –


63 0


0x18 –


63 0


0x20 –


63 0


0x28 –


63 0


0x30 –


63 0


0x38 –


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.







DPNI: Data Path Network Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 7-97
 


7.3.51 DPNI_SET_TX_PRIORITIES


This command sets the transmission priorities for DPNI TCs and the scheduling mode for each of them. 
There are two types of scheduling mode supported: strict and weighted. These two can be combined. You 
can have a part of the TCs with strict priority and the other part grouped together and having a weighted 
bandwidth fair scheduling. For the strict priority TCs, a TC with an id lower than another TC id has a 
higher priority. The weighted group has a lower priority than the strict priority TCs.


Weighted bandwidth fair scheduling (WBFS), is used to schedule packets from TCs within a priority group 
such that each gets a fair amount of bandwidth made available to that priority group. In our case, all the 
TCs with scheduling mode set to weighted are in the same group. Bandwidth (TX opportunities) that is 
made available to a priority group is fair shared among the TCs of that group in proportion to a “weight 
value configured.” For example, if TC X has a weight of 500 and TC Y has a weight of 100, TC X has a 
fair share that is 5 times the fair share of TC Y.


Command structure


Figure 135. DPNI_SET_TX_PRIORITIES Command Description


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x2503 TOKEN –


IN
T


R
_


D
IS


STATUS P – SRCID


63 40 39 32 31 23 16 15 0


0x08 - CHANNEL_ID PRIO_GRP_
B


PRIO_GRP_A FLAGS


63 32 31 28 27 24 23 20 19 16 15 12 11 8 7 4 3 0


0x10 - SCH_


MODE7


SCH_


MODE6


SCH_


MODE5


SCH_


MODE4


SCH_


MODE3


SCH_


MODE2


SCH_


MODE1


SCH_


MODE0


63 48 47 32 31 16 15 0


0x18 -


63 48 47 32 31 16 15 0


0x20 DELTA_BW3 DELTA_BW2 DELTA_BW1 DELTA_BW0


63 0


0x28 DELTA_BW7 DELTA_BW6 DELTA_BW5 DELTA_BW4


63 0


0x30


63 0


0x38


Offset Bits Name Description


0x00 0-63 Command Header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.







DPNI: Data Path Network Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 7-98
 


All unspecified fields are reserved and must be cleared (set to zero)


0x08 0-15 FLAGS Not used


16-23 PRIO_GRP_A Group A priority


24-31 PRIO_GRP_B Group B priority


32-39 CHANNEL_ID Channel index to be configured.


0x10 0-3 SCH_MODE_0 Scheduling mode set for the associated traffic class. Can be:
0: DPNI_TX_SCHED_STRICT_PRIORITY - lower index TCs always take 
precedence over higher index TCs,
1: DPNI_TX_SCHED_WEIGHTED_A - there is no strict priority relation, BW 
is divided proportional to DELTA_BW configuration. This TC will be placed in 
priority group A
2: DPNI_TX_SCHED_WEIGHTED_B - there is no strict priority relation, BW 
is divided proportional to DELTA_BW configuration. This TC will be placed in 
priority group B
The two modes can be mixed. Strict priority TCs always take precedence 
over weighted TCs regardless of their index. After consuming all Tx traffic for 
all strict priority TCs, the weighted TCs are scheduled based on their 
configured bandwidth.
The default configuration is strict priority on all TCs.


4-7 SCH_MODE_1


8-11 SCH_MODE_2


12-15 SCH_MODE_3


16-19 SCH_MODE_4


20-23 SCH_MODE_5


24-27 SCH_MODE_6


28-31 SCH_MODE_7


0x20 0-15 DELTA_BW0 Bandwidth configuration for each traffic class.
This field is only relevant if associated SCH_MODE is 1 
(DPNI_TX_SCHED_WEIGHTED_A or DPNI_TX_SCHED_WEIGHTED_B).
Accepted values are in the range 100 to 24800. Each value represents the 
weight for the traffic class. The bandwidth of the entire group is divided 
between the traffic classes in it and is proportional to this weight.


15-31 DELTA_BW1


32-47 DELTA_BW2


48-63 DELTA_BW3


0x28 0-15 DELTA_BW4


15-31 DELTA_BW5


31-47 DELTA_BW6


48-63 DELTA_BW7


Offset Bits Name Description







DPNI: Data Path Network Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 7-99
 


7.3.52 DPNI_SET_RX_TC_DIST


Set the receive-side traffic class configuration.


This command may be used to configure any traffic class out of the maximum number of traffic classes 
selected during the creation of the DPNI. It determines the distribution mode and size for the traffic class; 
it also specifies the distribution key, by specifying up to eight configurable extractions from the frame’s 
headers and/or payload. The maximum size for the distribution key is limited by FS_KEY_SIZE, returned 
by the DPNI_GET_ATTRIBUTES command..


Distribution functionality is valid only if DPNI NUM_QUEUES is greater than one;  otherwise, each 
traffic class has exactly (and only) one Rx queue.


Command structure


Figure 136. DPNI_SET_RX_TC_DIST Command Description


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x2352 TOKEN –


IN
T


R
_


D
IS


STATUS P – SRCID


63 48 47 46 45 32 31 28 27 24 23 16 15 0


0x08 DEFAULT_FLOW_ID


K
E


E
P


_H
A


S
H


_
K


E
Y


K
E


E
P


_
E


N
T


R
IE


S


M
IS


S
_


A
C


T
IO


N


D
IS


T
_M


O
D


E


TC_ID DIST_SIZE


63 0


0x10 –


63 0


0x18 –


63 0


0x20 –


63 0


0x28 –


63 0


0x30 –


63 0


0x38 KEY_CFG_IOVA


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.







DPNI: Data Path Network Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 7-100
 


All unspecified fields are reserved and must be cleared (set to zero)


0x08 0-15 DIST_SIZE Set the distribution size; supported values: 1,2,3,4,6,7,8.
Note that high values may be unsupported due to limited queue resources in the system or by the maximum 
distribution size set on DPNI_CREATE.


16-23 TC_ID Traffic class to configure; valid values are in the range of (0-7), but also limited by the maximum number of traffic 
classes configured during the creation of the DPNI.


24-27 DIST_MODE Distribution mode:
0: DPNI_DIST_MODE_NONE – no distribution
1: DPNI_DIST_MODE_HASH – use hash distribution; only supported for DPNIs with NUM_QUEUES greater than 
1.
2: DPNI_DIST_MODE_FS – use explicit flow steering; not supported for DPNIs created with the 
DPNI_OPT_NO_FS option.


28-31 MISS_ACTION For DIST_MODE = DPNI_DIST_MODE_FS: determine the fall-back action for no-match scenario.
0: DPNI_FS_MISS_DROP – in case of no-match, drop the frame
1: DPNI_FS_MISS_EXPLICIT_FLOWID – in case of no-match, use the flow ID specified in DEFAULT_FLOW_ID
2: DPNI_FS_MISS_HASH – in case of no-match, distribute using hash value


46 KEEP_ENTRIES If set to one the command will not delete the flow steering entries that were already added using command 
DPNI_ADD_FS_ENTRY. 
If set to zero all flow steering entries will be deleted before changing the key composition rule.
Can be used only when DIST_MODE is set to DPNI_DIST_MODE_FS. Any other mode will clear all entries 
regardless of this flag value.
Use this option with caution: the command will change key composition rule and will leave in place old flow 
steering entries. If old entries are not compatible with the new key composition the traffic will not be distributed as 
expected.


47 KEEP_HASH_KEY This field can be used to set up different key composition rules for hashing and flow steering (FS).
To set up the two keys, first execute DPNI_SET_RX_TC_DIST with DIST_MODE set to 
DPNI_DIST_MODE_HASH and the hash key configuration, followed by a 2nd execution of 
DPNI_SET_RX_TC_DIST with DIST_MODE set to DPNI_DIST_MODE_FS, the FS key configuration and 
KEEP_HASH_KEY set to 1.
This field is only relevant if DIST_MODE is DPNI_DIST_MODE_FS. It is ignored in all other cases.


48-63 DEFAULT_FLOW_ID For DIST_MODE = DPNI_DIST_MODE_FS and MISS_ACTION = DPNI_FS_MISS_EXPLICIT_FLOWID: 
specifies the default queue ID in case of no-match scenario.


0x38 0-63 KEY_CFG_IOVA I/O virtual address of zeroed 256 bytes of DMA-able memory. This extended buffer must be programmed as 
specified in the “Extension structure” section below, to hold the distribution key configuration.
Ignored if DIST_MODE = DPNI_DIST_MODE_NONE.


Offset Bits Name Description







DPNI: Data Path Network Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 7-101
 


Extension structure


Offset from Management Command Portal base Read-Write Access


63 8 7 0


0x00 – NUM_EXTRACT
S


63 32 31 24 23 16 15 12 11 8 7 0


0x08 FIELD OFFSET SIZE –


E
F


H
_


T
Y


P
E


PROT


63 36 35 32 31 24 23 16 15 8 7 0


0x10 –


E
X


T
R


A
C


T
_


T
Y


P
E


NUM_OF_BYTE_
MASKS


NUM_OF_REPE
ATS


CONSTANT HDR_INDEX


63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0


0x18 MASK3_OFFSET MASK3_MASK MASK2_OFFSET MASK2_MASK MASK1_OFFSET MASK1_MASK MASK0_OFFSET MASK0_MASK


0x20 - 
0xC7


Repeating (9 more sections) of the extraction fields in offsets (0x08 - 0x1F) above.
NUM_EXTRACTS determines the number of valid extraction sections up to the 10 possible.


Figure 137. DPNI_SET_RX_TC_DIST Extension Description


Offset Bits Name Description


0x00 0-7 NUM_EXTRACTS Number of valid extractions out of the 10 possible; determines how many of the 
EXTRACT0..9 below are valid. Value of 0 is invalid.







DPNI: Data Path Network Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 7-102
 


0x08 0-7 EXTRACT0 PROT For EXTRACT_TYPE = DPKG_EXTRACT_FROM_HDR: specify any of the supported 
headers:


8-11 EFH_TYPE For EXTRACT_TYPE = DPKG_EXTRACT_FROM_HDR: specify the type of 
extraction from header (and determines validity of the next 3 parameters):
0: DPKG_FROM_HDR – SIZE and OFFSET are valid; SIZE bytes are extracted from 
OFFSET relative to the start of the specified header (PROT).
1: DPKG_FROM_FIELD – FIELD, SIZE and OFFSET are valid; SIZE bytes are 
extracted from OFFSET relative to the start of the specified FIELD.
2: DPKG_FULL_FIELD – only FIELD is valid; specified FIELD is fully extracted.


16-23 SIZE Size (in bytes) of the extraction


42-31 OFFSET Byte offset of starting point of the extraction


32-63 FIELD For EXTRACT_TYPE = DPKG_EXTRACT_FROM_HDR: standard field selection for 
the extraction


0x10 0-7 HDR_INDEX For EXTRACT_TYPE = DPKG_EXTRACT_FROM_HDR: indicates the PROT header 
index for protocols that may appear more than once within a frame (examples: VLAN, 
MPLS, IP).
0x00 indicates the most outer (first) header.
0xFF indicates the most inner (last) header.


8-15 CONSTANT For EXTRACT_TYPE = DPKG_EXTRACT_CONSTANT: the constant value to extract 
(one byte)


16-23 NUM_OF_REPEATS For EXTRACT_TYPE = DPKG_EXTRACT_CONSTANT: number of times to repeat 
the extraction of the constant value (values are placed in the key in adjacent manner)


24-31 NUM_OF_BYTE_MASKS Determines the number of valid entries of MASKn_MASK and MASKn_OFFSET.
Up to four byte masks are available to apply on the extracted content (each mask is 1 
byte in size).
Note, that byte masks are valid for any selection of EXTRACT_TYPE.


32-35 EXTRACT_TYPE Determines the type of extraction:


0: DPKG_EXTRACT_FROM_HDR – extract from the frame header; the following 
fields are considered valid in this case:
PROT, EFH_TYPE, SIZE, OFFSET, FIELD, HDR_INDEX


1: DPKG_EXTRACT_FROM_DATA – extract from data not in the header; the following 
fields are considered valid in this case:
SIZE, OFFSET


2: DPKG_EXTRACT_CONSTANT – extract user-selected constant values; the 
following fields are considered valid in this case:
CONSTANT, NUM_OF_REPEATS


0x18 0-7 MASK0_MASK Byte mask to apply on the extracted content at offset MASK0_OFFSET


8-15 MASK0_OFFSET Offset (relative to the first byte of extracted content) for applying MASK0_MASK


16-23 MASK1_MASK Byte mask to apply on the extracted content at offset MASK1_OFFSET


24-31 MASK1_OFFSET Offset (relative to the first byte of extracted content) for applying MASK1_MASK


32-39 MASK2_MASK Byte mask to apply on the extracted content at offset MASK2_OFFSET


40-47 MASK2_OFFSET Offset (relative to the first byte of extracted content) for applying MASK2_MASK


48-55 MASK3_MASK Byte mask to apply on the extracted content at offset MASK3_OFFSET


56-63 MASK3_OFFSET Offset (relative to the first byte of extracted content) for applying MASK3_MASK


0x20 - 
0x37


EXTRACT1 Similar to EXTRACT0; valid if NUM_EXTRACTS >= 2


0x38 - 
0x4F


EXTRACT2 Similar to EXTRACT0; valid if NUM_EXTRACTS >= 3


Figure 137. DPNI_SET_RX_TC_DIST Extension Description


Offset Bits Name Description







DPNI: Data Path Network Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 7-103
 


All unspecified fields are reserved and must be cleared (set to zero)


0x50 - 
0x67


EXTRACT3 Similar to EXTRACT0; valid if NUM_EXTRACTS >= 4


0x68 - 
0x7F


EXTRACT4 Similar to EXTRACT0; valid if NUM_EXTRACTS >= 5


0x80 - 
0x97


EXTRACT5 Similar to EXTRACT0; valid if NUM_EXTRACTS >= 6


0x98 - 
0xAF


EXTRACT6 Similar to EXTRACT0; valid if NUM_EXTRACTS >= 7


0xB0 - 
0xC7


EXTRACT7 Similar to EXTRACT0; valid if NUM_EXTRACTS >= 8


0xC8 - 
0xDF


EXTRACT8 Similar to EXTRACT0; valid if NUM_EXTRACTS >= 9


0xE0 - 
0xF7


EXTRACT9 Similar to EXTRACT0; valid if NUM_EXTRACTS = 10


Figure 137. DPNI_SET_RX_TC_DIST Extension Description


Offset Bits Name Description







DPNI: Data Path Network Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 7-104
 


7.3.53 DPNI_SET_RX_TC_POLICING


Set Rx traffic class policing configuration


Command structure


Figure 138. DPNI_SET_RX_TC_POLICING Command Description


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x23E1 TOKEN –


IN
T


R
_


D
IS


STATUS P – SRCID


63 32 31 24 23 16 15 12 11 8 7 4 3 0


0x08 OPTIONS – TC_ID –


UNITS


D
E


F
A


U
LT


_
C


O
L


O
R


MODE


63 32 31 0


0x10 CBS CIR


63 32 31 0


0x18 EBS EIR


63 0


0x20 –


63 0


0x28 –


63 0


0x30 –


63 0


0x38 –


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0X08 0-3 MODE Policer mode.
Supported values:
0: None, policer is disabled
1: Pass-through
2: RFC2698
3: RFC4115


4-7 DEFAULT_COLOR For pass-through mode the policer re-colors with this color any incoming packets. For color-aware 
non-pass-through mode: policer re-colors with this color all packets with FD[DROPP]>2.
Supported values:
0: Green
1: Yellow
2: Red


8-11 UNITS Bytes or Packets.
Supported values:
0: bytes
1: packets


16-23 TC_ID Traffic class ID


32-63 OPTIONS Any combination of the following bits:
1: Color aware
2: Discard red: packets with color red will be discarded automatically.







DPNI: Data Path Network Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 7-105
 


All unspecified fields are reserved and must be cleared (set to zero)


0x10 0-31 CIR Committed information rate (CIR) in Kbps or packets/second. Traffic below this rate will be colored 
as green


32-63 CBS Committed burst size (CBS) in bytes or packets


0x18 0-31 EIR RFC-2696: peak Information rate in Kbps or packets/second. Traffic exceeding this rate will be 
colored as red
RFC-4115: excess information rate in Kbps or packets/second.


32-63 EBS RFC-2696: peak burst size.
RFC-4115: excess burst size in bytes or packets.


Offset Bits Name Description







DPNI: Data Path Network Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 7-106
 


7.3.54 DPNI_GET_RX_TC_POLICING


Get Rx traffic class policing configuration


Command structure


Figure 139. DPNI_GET_RX_TC_POLICING Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x2511 TOKEN –


IN
T


R
_


D
IS


STATUS P – SRCID


63 24 23 16 15 0


0x08 – TC_ID –


63 0


0x10 –


63 0


0x18 –


63 0


0x20 –


63 0


0x28 –


63 0


0x30 –


63 0


0x38 –


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 16-23 TC_ID Traffic class ID







DPNI: Data Path Network Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 7-107
 


Response structure


Figure 140. DPNI_GET_RX_TC_POLICING Response Description


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x2511 TOKEN –


IN
T


R
_D


IS


STATUS P – SRCID


63 32 31 12 11 8 7 4 3 0


0x08 OPTIONS –


UNITS


D
E


F
A


U
LT


_
C


O
LO


R


MODE


63 32 31 0


0x10 CBS CIR


63 32 31 0


0x18 EBS EIR


63 0


0x20 –


63 0


0x28 –


63 0


0x30 –


63 0


0x38 –


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-3 MODE Policer mode.
Supported values:
0: None, policer is disabled
1: Pass-through
2: RFC2698
3: RFC4115


4-7 DEFAULT_COLOR For pass-through mode the policer re-colors with this color any incoming packets. For 
color-aware non-pass-through mode: policer re-colors with this color all packets with 
FD[DROPP]>2.
Supported values:
0: Green
1: Yellow
2: Red


8-11 UNITS Bytes or Packets.
Supported values:
0: bytes
1: packets


32-63 OPTIONS Any combination of the following bits:
1: Color aware
2: Discard red


0x10 0-31 CIR Committed information rate (CIR) in Kbps or packets/second


32-63 CBS Committed burst size (CBS) in bytes or packets







DPNI: Data Path Network Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 7-108
 


All unspecified fields are reserved and must be cleared (set to zero)


0x18 0-31 EIR Peak information rate (PIR, rfc2698) in Kbps or packets/second 
Excess information rate (EIR, rfc4115) in Kbps or packets/second


32-63 EBS Peak burst size (PBS, rfc2698) in bytes or packets
Excess burst size (EBS, rfc4115) in bytes or packets


Offset Bits Name Description







DPNI: Data Path Network Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 7-109
 


7.3.55 DPNI_SET_TAILDROP


Configure taildrop on a congestion group. Taildrop causes traffic to be discarded once the fill threshold is 
reached on these queues.


Command structure


Figure 141. DPNI_SET_TAILDROP Command Description


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x2623 TOKEN –


IN
T


R
_D


IS


STATUS P – SRCID


63 40 39 32 31 24 23 16 15 8 7 0


0x08 — CHANNEL_ID INDEX TC QUEUE_TYPE CONGESTION_
POINT


63 32 31 24 23 16 15 1 0


0x10 THRESHOLD — UNITS OAL E


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0X08 0–7 CONGESTION_POINT Select the way in which you identify the congestion group on which you set tail drop:
0: DPNI_CP_QUEUE – a queue (CG associate with this queue)
1: DPNI_CP_GROUP – a TC (all CG that are associate in this traffic class) if the DPNI is create with 
DPNI_OPT_CUSTOM_CG
2: DPNI_CP_CONGESTION_GROUP – a congestion group (id of the CG)
When a queue or TC is configured for the first time to use DPNI_CP_GROUP or 
DPNI_CP_CONGESTION_GROUP it must be empty. If the queue already contains frames the Congestion 
Group will fail to count correct number of frames / bytes and will start to reject traffic.
For subsequent calls Congestion Group is not reinitialized and the queues may contain frames.


8–15 QUEUE_TYPE Type of queue this configuration applies to:
0: DPNI_QUEUE_RX—Rx queue,
1: DPNI_QUEUE_TX—Tx queue.


Note that only CONGESTION_POINT value 1 is supported for Tx queues.


16–23 TC Traffic class ID. Valid only if CONGESTION_POINT is 2.


24–31 INDEX/CGID If CONGESTION_POINT is 1:
Selects a specific queue out of the set of queues in a TC. Accepted values are in the range 0 to 
NUM_QUEUES – 1.
If CONGESTION_POINT is 3:The congestion group id.


32-39 CHANNEL_ID Channel index to be configured. Used only when QUEUE_TYPE is set to DPNI_QUEUE_TX.







DPNI: Data Path Network Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 7-110
 


All unspecified fields are reserved and must be cleared (set to zero)


0x10 0 E Enable the taildrop:
0: Taildrop is disabled
1: Taildrop is enabled


1-12 OAL Overhead accounting length
This is a 12-bit, 2's complement value (range -2048 to +2047) representing a fixed
per-frame overhead to be added to the actual length of a frame when performing
certain calculations and/or threshold comparisons using frame length.


16–23 UNITS Units used by THRESHOLD:
0: Threshold is in bytes
1: Threshold is in frames
Note that frame threshold is not supported for CONGESTION_POINT = 0.  It is only supported at the TC level.


32–63 THRESHOLD Taildrop threshold, using the specified UNITS.


Offset Bits Name Description







DPNI: Data Path Network Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 7-111
 


7.3.56 DPNI_GET_TAILDROP


Retrieve taildrop on queues and/or on TCs.


Command structure


Figure 142. DPNI_GET_TAILDROP Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x2611 TOKEN –


IN
T


R
_


D
IS


STATUS P – SRCID


63 32 31 24 23 16 15 8 7 0


0x08 — INDEX TC QUEUE_TYPE CONGESTION_
POINT


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0X08 0–7 CONGESTION_POINT Selects either a queue or all queues associated with a TC.  Supported values are:
0: DPNI_CP_QUEUE - a queue
1: DPNI_CP_GROUP - a TC
2: DPNI_CP_CONGESTION_GROUP - congestion group


8–15 QUEUE_TYPE Type of queue this configuration applies to:
0: DPNI_QUEUE_RX—Rx queue,
1: DPNI_QUEUE_TX—Tx queue.


Note that only CONGESTION_POINT value 1 is supported for Tx queues.


16–23 TC Traffic class ID.


24–31 INDEX Selects a specific queue out of the set of queues in a TC. Accepted values are in the range 0 to 
NUM_QUEUES – 1.
This field is ignored for CONGESTION_POINT = 1.
CGID is provided in this field if CONGESTION_POINT = 2 and DPNI_OPT_CUSTOM_CG 
option is set in DPNI_CREATE command.







DPNI: Data Path Network Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 7-112
 


Response structure


Figure 143. DPNI_GET_TAILDROP Response Description


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x2611 TOKEN –


IN
T


R
_D


IS


STATUS P – SRCID


63 0


0x08 —


63 32 31 24 23 16 15 1 0


0x10 THRESHOLD — UNITS OAL E


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x10 0 E Taildrop enabled:
0: Taildrop is disabled
1: Taildrop is enabled


1-12 OAL Overhead accounting length
This is a 12-bit, 2's complement value (range -2048 to +2047) representing a fixed per-frame 
overhead to be added to the actual length of a frame when performing certain calculations and/or 
threshold comparisons using frame length.


16–23 UNITS Units used by THRESHOLD:
0: Threshold is in bytes
1: Threshold is in frames


32–63 THRESHOLD Taildrop threshold, using the specified UNITS.







DPNI: Data Path Network Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 7-113
 


7.3.57 DPNI_SET_EARLY_DROP


Set early drop policy for Tx and Rx traffic classes.


Command structure


Figure 144. DPNI_SET_EARLY_DROP Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x2693 TOKEN –


IN
T


R
_


D
IS


STATUS P – SRCID


63 23 16 15 8 7 0


0x08 – CHANNEL_ID TC_ID QUEUE_TYPE


63 0


0x10 EARLY_DROP_IOVA


63 0


0x18 –


63 0


0x20 –


63 0


0x28 –


63 0


0x30 –


63 0


0x38 –


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-7 QUEUE_TYPE Type of queue this configuration applies to:
0: DPNI_QUEUE_RX - Rx queue,
1: DPNI_QUEUE_TX - Tx queue.


8–15 TC_ID Traffic class ID


16-23 CHANNEL_ID Channel index. Used only when QUEUE_TYPE is set to DPNI_QUEUE_TX.


0x10 0-63 EARLY_DROP_IOVA I/O virtual address of 64 bytes;
Must be cacheline-aligned and DMA-able memory
This address points to an extended configuration structure.  Please see the structure 
description below.







DPNI: Data Path Network Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 7-114
 


Extension structure


Figure 145. DPNI_SET_EARLY_DROP Extension Description


Offset from Management Command Portal base Read-Write Access


63 32 31 4 3 - 2 1 -0


0x00 –


U
N


IT
S


M
O


D
E


63 8 7 0


0x08 — GREEN_DROP_
PROBABILITY


63 0


0x10 GREEN_MAX_THRESHOLD


63 0


0x18 GREEN_MIN_THRESHOLD


63 0


0x20 —


63 8 7 0


0x28 — YELLOW_DROP
_PROBABILITY


63 0


0x30 YELLOW_MAX_THRESHOLD


63 0


0x38 YELLOW_MIN_THRESHOLD


63 0


0x40 —


63 8 7 0


0x48 — RED_DROP_PR
OBABILITY


63 0


0x50 RED_MAX_THRESHOLD


63 0


0x58 RED_MIN_THRESHOLD


Offset Bits Name Description


0x00 0–1 MODE Drop mode


2–3 UNITS Units type


0x08 0–7 GREEN_DROP_PROBABILITY Probability of green WRED that a packet will be discarded (1-100, associated with the max_threshold).


0x10 0-63 GREEN_MAX_THRESHOLD Maximum threshold of green WRED that packets may be discarded. Above this threshold all packets are 
discarded; must be less than 2^39; approximated to be expressed as (x+256)*2^(y-1) due to HW 
implementation.


0x18 0-63 GREEN_MIN_THRESHOLD Minimum threshold of green WRED that packets may be discarded at


0x28 0-7 YELLOW_DROP_PROBABILITY Probability of yellow WRED that a packet will be discarded (1-100, associated with the max_threshold).


0x30 0-63 YELLOW_MAX_THRESHOLD Maximum threshold of yellow WRED that packets may be discarded. Above this threshold all packets are 
discarded; must be less than 2^39; approximated to be expressed as (x+256)*2^(y-1) due to HW 
implementation.


0x38 0-63 YELLOW_MIN_THRESHOLD Minimum threshold of yellow WRED that packets may be discarded at


0x48 0-7 RED_DROP_PROBABILITY Probability of red WRED that a packet will be discarded (1-100, associated with the max_threshold).







DPNI: Data Path Network Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 7-115
 


All unspecified fields are reserved and must be cleared (set to zero)


0x50 0-63 RED_MAX_THRESHOLD Maximum threshold of red WRED that packets may be discarded. Above this threshold all packets are 
discarded; must be less than 2^39; approximated to be expressed as (x+256)*2^(y-1) due to HW 
implementation.


0x58 0-63 RED_MIN_THRESHOLD Minimum threshold of red WRED that packets may be discarded at


Offset Bits Name Description







DPNI: Data Path Network Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 7-116
 


7.3.58 DPNI_GET_EARLY_DROP


Get early drop policy for Tx and Rx traffic classes


Command structure


Figure 146. DPNI_GET_EARLY_DROP Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x26A3 TOKEN –


IN
T


R
_


D
IS


STATUS P – SRCID


63 24 23 16 15 8 7 0


0x08 – CHANNEL_ID TC_ID QUEUE_TYPE


63 0


0x10 EARLY_DROP_IOVA


63 0


0x18 –


63 0


0x20 –


63 0


0x28 –


63 0


0x30 –


63 0


0x38 –


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-7 QUEUE_TYPE Type of queue this configuration applies to:
0: DPNI_QUEUE_RX - Rx queue,
1: DPNI_QUEUE_TX - Tx queue.


8–15 TC_ID Traffic class ID


16-23 CHANNEL_ID Channel index. Used only when QUEUE_TYPE is set to DPNI_QUEUE_TX.


0x10 0-63 EARLY_DROP_IOVA I/O virtual address of 64 bytes;
Must be cache-line aligned and DMA-able memory
An extended configuration structure is returned at this address, please refer to the 
extended structure description below.







DPNI: Data Path Network Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 7-117
 


Extension structure


Figure 147. DPNI_GET_EARLY_DROP Extension Description


Offset from Management Command Portal base Read-Write Access


63 32 31 4 3 - 2 1 -0


0x00 –


U
N


IT
S


M
O


D
E


63 8 7 0


0x08 — GREEN_DROP_
PROBABILITY


63 0


0x10 GREEN_MAX_THRESHOLD


63 0


0x18 GREEN_MIN_THRESHOLD


63 0


0x20 —


63 8 7 0


0x28 — YELLOW_DROP
_PROBABILITY


63 0


0x30 YELLOW_MAX_THRESHOLD


63 0


0x38 YELLOW_MIN_THRESHOLD


63 0


0x40 —


63 8 7 0


0x48 — RED_DROP_PR
OBABILITY


63 0


0x50 RED_MAX_THRESHOLD


63 0


0x58 RED_MIN_THRESHOLD


Offset Bits Name Description


0x00 0-1 MODE Drop mode


2-3 UNITS Units type


0x08 0-7 GREEN_DROP_PROBABILITY Probability of green WRED that a packet will be discarded (1-100, associated with the MAX_THRESHOLD).


0x10 0-63 GREEN_MAX_THRESHOLD Maximum threshold of green WRED that packets may be discarded. Above this threshold all packets are 
discarded; must be less than 2^39; approximated to be expressed as (x+256)*2^(y-1) due to HW 
implementation.


0x18 0-63 GREEN_MIN_THRESHOLD Minimum threshold of green WRED that packets may be discarded at


0x28 0-7 YELLOW_DROP_PROBABILITY Probability of yellow WRED that a packet will be discarded (1-100, associated with the MAX_THRESHOLD).


0x30 0-63 YELLOW_MAX_THRESHOLD Maximum threshold of yellow WRED that packets may be discarded. Above this threshold all packets are 
discarded; must be less than 2^39; approximated to be expressed as (x+256)*2^(y-1) due to HW 
implementation.


0x38 0-63 YELLOW_MIN_THRESHOLD Minimum threshold of yellow WRED that packets may be discarded at


0x48 0-7 RED_DROP_PROBABILITY Probability of red WRED that a packet will be discarded (1-100, associated with the MAX_THRESHOLD).







DPNI: Data Path Network Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 7-118
 


All unspecified fields are reserved and must be cleared (set to zero)


0x50 0-63 RED_MAX_THRESHOLD Maximum threshold of red WRED that packets may be discarded. Above this threshold all packets are 
discarded; must be less than 2^39; approximated to be expressed as (x+256)*2^(y-1) due to HW 
implementation.


0x58 0-63 RED_MIN_THRESHOLD Minimum threshold of red WRED that packets may be discarded at


Offset Bits Name Description







DPNI: Data Path Network Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 7-119
 


7.3.59 DPNI_SET_QUEUE


Set queue configuration, including binding of the queue to a DPIO or DPCON object to receive 
notifications and traffic on the CPU. 


Note that Tx FQIDs are 0 as long as the DPNI object is not connected.


Command structure


Figure 148. DPNI_SET_QUEUE Command Description


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x2603 TOKEN —


IN
T


R
_D


IS


STATUS P — SRCID


63 32 31 24 23 16 15 8 7 0


0x08 — OPTIONS INDEX TC QUEUE_TYPE


63 62 61 60 59 56 55 48 47 32 31 0


0x10 HA SC — DEST_
TYPE


PRIORI
TY


— DEST_ID


63 0


0x18 FLC


63 0


0x20 USER_CTX


63 16 15 8 7 0


0x28 CHANNEL_ID CGID


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0–7 QUEUE_TYPE Type of queue to set configuration to:
0: DPNI_QUEUE_RX - Rx queue
1: DPNI_QUEUE_TX - Tx queue (accepted, but no configuration change can be applied to Tx queues)
2: DPNI_QUEUE_TX_CONFIRM - Tx confirmation queue
3: DPNI_QUEUE_RX_ERR – Rx error queue


8–15 TC Traffic class.  Ignored for QUEUE_TYPE 2 and 3 (Tx confirmation and Rx error queues).


16–23 INDEX Selects a specific queue out of the set of queues in a TC.  Accepted values are in range 0 to 
NUM_QUEUES – 1.
This field is ignored for QUEUE_TYPE 3 (Rx error queue). For access to the shared Tx confirmation queue 
(for Tx confirmation mode 1), this field must be set to 0xff


24–31 OPTIONS Option bits selecting specific configuration options to apply:
Bit 0: DPNI_QUEUE_OPT_USER_CTX – User defined data presented in dequeue information for frames 
from this queue,
Bit 1: DPNI_QUEUE_OPT_DEST – Set queue destination configuration,
Bit 2: DPNI_QUEUE_OPT_FLC – Set FD[FLC] configuration for traffic on this queue,
Bit 3: DPNI_QUEUE_OPT_HOLD_ACTIVE – Set the queue hold active mode.
Bit 6: DPNI_QUEUE_OPT_SET_CGID - Pair the congestion group ID(CGID) with this queue.
Bit 7: DPNI_QUEUE_OPT_CLEAR_CGID - Clear the congestion group ID(CGID) associated with this 
queue.
All these options are valid for QUEUE_TYPE 0, 2 and 3 (all except Tx queues).







DPNI: Data Path Network Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 7-120
 


All unspecified fields are reserved and must be cleared (set to zero)


0x10 0–31 DEST_ID The ID of a DPIO or DPCON object, depending on DEST_TYPE value.
This field is ignored for DEST_TYPE set to 0 (DPNI_DEST_NONE).


48–55 PRIORITY Sets the priority in the destination DPCON or DPIO for dequeued traffic. Supported values are 0 to # of 
priorities in destination DPCON or DPIO - 1.
This field is ignored for DEST_TYPE set to 0 (DPNI_DEST_NONE), except if this DPNI is in AIOP context. 
In that case the DPNI_SET_QUEUE can be used to override the default assigned priority of the FQ from the 
TC - see Table 7-1., “Traffic class mapping from 7.2.5, “Ingress QoS.


56–59 DEST_TYPE Type of destination for dequeued traffic.  Supported values:
0: DPNI_DEST_NONE – Frames are not delivered through DPIO or DPCON.  This mode cannot be selected 
after associating the queue with a DPIO or DPCON, unless the DPNI is reset.
1: DPNI_DEST_DPIO – frames are delivered to a DPIO,
2: DPNI_DEST_DPCON – frames are delivered to a DPCON.


62 SC Stash control – if set, lowest 6 bits of FLC are used for stash control.  Please check description of FD 
structure for more information.


63 HA Hold active – if set, this flag prevents the queue from being rescheduled between DPIOs while it carries traffic 
and is active on one DPIO.  Can help reduce reordering if one queue is services on multiple CPUs, but the 
queue is also more likely to be trapped in one DPIO, especially when congested.


0x18 0–63 FLC Set default FLC value for traffic dequeued from this queue.  Please check description of FD structure for 
more information.
Note that FLC values set using DPNI_ADD_FS_ENTRY, if any, take precedence over values per queue.


0x20 0–63 USER_CTX User defined data, presented along with the frames being dequeued from this queue.


0x28 0-7 CGID Congestion group ID


8-15 CHANNEL_ID Channel index to be configured. Used only when QUEUE_TYPE is set to DPNI_QUEUE_TX.


Offset Bits Name Description







DPNI: Data Path Network Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 7-121
 


7.3.60 DPNI_GET_QUEUE


Get queue configuration and attributes, including queue IDs usable to enqueue/dequeuer traffic to/from the 
queue.


Command structure


Figure 149. DPNI_GET_QUEUE Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x25F3 TOKEN —


IN
T


R
_D


IS


STATUS P — SRCID


63 31 24 23 16 15 8 7 0


0x08 — CHANNEL_ID INDEX TC QUEUE_TYPE


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0–7 QUEUE_TYPE Type of queue to set configuration to:
0: DPNI_QUEUE_RX - Rx queue
1: DPNI_QUEUE_TX - Tx queue
2: DPNI_QUEUE_TX_CONFIRM - Tx confirmation queue
3: DPNI_QUEUE_RX_ERR – Rx error queue


8–15 TC Traffic class.  Ignored for QUEUE_TYPE 2 and 3 (Tx confirmation and Rx error queues).


16–23 INDEX Selects a specific queue out of the set of queues in a TC.  Accepted values are in range 0 to 
NUM_QUEUES – 1.
This field is ignored for QUEUE_TYPE 3 (Rx error queue). For access to the shared Tx confirmation queue 
(for Tx confirmation mode 1), this field must be set to 0xff


24-31 CHANNEL_ID Tx channel. Valid values are 0..num_channels provided at DPNI_CREATE. Used only if QUEUE_TYPE is 
set to DPNI_QUEUE_TX.







DPNI: Data Path Network Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 7-122
 


Response structure


Figure 150. DPNI_GET_QUEUE Response Description


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x25F3 TOKEN –


IN
T


R
_D


IS


STATUS P – SRCID


63 0


0x08 –


63 62 61 60 59 56 55 48 47 32 31 0


0x10 HA SC


C
G


ID
_V


A
L


ID


—


D
E


S
T


_
T


Y
P


E


P
R


IO
R


IT
Y


— DEST_ID


63 0


0x18 FLC


63 0


0x20 USER_CTX


63 48 47 32 31 0


0x28 – QDBIN FQID


63 8 7 0


0x30 – CGID


63 0


0x38 –


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x10 0–31 DEST_ID The ID of a DPIO or DPCON object, depending on DEST_TYPE value.
This field is ignored for DEST_TYPE set to 0 (DPNI_DEST_NONE).


48–55 PRIORITY Sets the priority in the destination DPCON or DPIO for dequeued traffic. Supported values are 0-# of priorities 
in destination DPCON or DPIO - 1.
This field is ignored for DEST_TYPE set to 0 (DPNI_DEST_NONE).


56–59 DEST_TYPE Type of destination for dequeued traffic.  Supported values:
0: DPNI_DEST_NONE – Frames are not delivered through DPIO or DPCON.  This mode cannot be selected 
after associating the queue with a DPIO or DPCON, unless the DPNI is reset.
1: DPNI_DEST_DPIO – frames are delivered to a DPIO,
2: DPNI_DEST_DPCON – frames are delivered to a DPCON.


61 CGID_VALID Congestion group ID is valid.


62 SC Stash control – if set, lowest 6 bits of FLC are used for stash control.  Please check description of FD structure 
for more information.


63 HA Hold active – if set, this flag prevents the queue from being rescheduled between DPIOs while it carries traffic 
and is active on one DPIO.  Can help reduce reordering if one queue is services on multiple CPUs, but the 
queue is also more likely to be trapped in one DPIO, especially when congested.


0x18 0–63 FLC Set default FLC value for traffic dequeued from this queue.  Please check description of FD structure for more 
information.
Note that FLC values set using DPNI_ADD_FS_ENTRY, if any, take precedence over values per queue.


0x20 0–63 USER_CTX User defined data, presented along with the frames being dequeued from this queue.







DPNI: Data Path Network Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 7-123
 


0x28 0–31 FQID Frame queue ID, can be used to enqueue/dequeue or execute other commands on the queue through DPIO.
Note that Tx queues are logical queues and not all management commands are available on these queue types.


32–47 QDBIN Queue destination bin.  Can be used with the DPIO enqueue operation based on QDID, QDBIN and QPRI.


0x30 0-7 CGID Congestion group ID of the congestion group. The index is relative to DPNI


Offset Bits Name Description







DPNI: Data Path Network Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 7-124
 


7.3.61 DPNI_SET_TX_CONFIRMATION_MODE


Set Tx confirmation mode.  For each transmitted frame, the DPNI can either return the Frame Descriptor 
through the Tx confirmation queues, or just release the buffer to the buffer pool and not confirm the 
transmission explicitly.


If the transmitted frame is confirmed, the confirmation message can contain additional information like 
the Tx timestamp.


If released, the buffer pool (DPBP) to which the buffers are released is indicated in the Tx Frame 
Descriptor.


If the DPNI was created with DPNI_OPT_TX_FRM_RELEASE option, the only supported confirmation 
mode is DISABLE.


This command can only be executed while the DPNI is disabled.  Executing the command on an enabled 
DPNI will return an error.


Command structure


Figure 151. DPNI_SET_TX_CONFIRMATION_MODE Command Description


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x2661 TOKEN –


IN
T


R
_


D
IS


STATUS P – SRCID


63 40 39 32 31 0


0x08 — MODE —  CEETM_CH_IDX


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-7 CEETM_CH_INDEX CEETM channel index


32-39 MODE Tx confirmation mode:
0: DPNI_CONF_AFFINE – for each set of Tx queues (queues with the same QDBIN), there is an affine Tx 
confirmation queue which is used to return descriptors for transmitted frames.
1: DPNI_CONF_SINGLE – there is a single Tx confirmation queue per DPNI. 'index' field in dpni_get_queue 
command will be ignored if this mode is used.
2: DPNI_CONF_SINGLE – there is a single Tx confirmation queue per DPNI.
3: DPNI_CONF_NONE – there is no Tx confirmation message, the frame buffers are released to a buffer pool.







DPNI: Data Path Network Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 7-125
 


7.3.62 DPNI_GET_TX_CONFIRMATION_MODE


Get Tx confirmation mode. 


Command structure


Figure 152. DPNI_GET_TX_CONFIRMATION_MODE Command Description


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x26D1 TOKEN –


IN
T


R
_


D
IS


STATUS P – SRCID


63 0


0x08 —  CEETM_CH_IDX


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-8 CEETM_CH_IDX CEETM channel index







DPNI: Data Path Network Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 7-126
 


Response structure


Figure 7-4. DPNI_GET_TX_CONFIRMATION_MODE Response Description


The following table describes the response fields.


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 24 23 16 15 14 8 7 0


CMDID = 0x26D1 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 40 39 32 31 0


0x08 — MODE —


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Table 7-2. DPNI_GET_TX_CONFIRMATION_MODE Response Field Descriptions1


1 All unspecified fields are reserved.


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 32-39 MODE Refer to DPNI_SET_TX_CONFIRMATION_MODE for a description of this field.







DPNI: Data Path Network Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 7-127
 


7.3.63 DPNI_SET_QOS_TABLE


Configure the QoS criteria and attributes. The result of the lookup in QoS table determines the traffic class 
for the received frame. The user may select a flexible lookup key for the QoS table. This command must 
be invoked to select the QoS key format, before adding any QoS entries using the 
DPNI_ADD_QOS_ENTRY command.


This function and all QoS-related functions require that the DPNI was created with multiple traffic classes.


Command structure


Figure 153. DPNI_SET_QOS_TABLE Command Description


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x2401 TOKEN –


IN
T


R
_


D
IS


STATUS P – SRCID


63 42 41 40 39 32 31 0


0x08 K
E


E
P


_E
N


T
R


IE
S


D
IS


C
A


R
D


_
O


N
_


M
IS


S


DEFAULT_TC –


63 0


0x10 -


63 0


0x18 –


63 0


0x20 –


63 0


0x28 –


63 0


0x30 –


63 0


0x38 KEY_CFG_IOVA


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.







DPNI: Data Path Network Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 7-128
 


All unspecified fields are reserved and must be cleared (set to zero)


Extension structure


Figure 154. DPNI_SET_QOS_TABLE Extension Description


0x08 32-39 DEFAULT_TC Default traffic class to use in case of a lookup miss in the QoS table.
Valid only if DISCARD_ON_MISS is not set.


40 DISCARD_ON_MISS Determine the action in case of a lookup miss in the QoS table.
'0' – use DEFAULT_TC in case of no match
‘1’ – discard frames in case of no match.


41 KEEP_ENTRIES If set to one will not delele existing table entries. This option will work properly only for 
dpni objects created with DPNI_OPT_HAS_KEY_MASKING option. All previous QoS 
entries must be compatible with new key composition rule. It is the caller's job to delete 
incompatible entries before executing the command with this option set.
If not set (field value is zero) all entries in qos table will be removed. 


0x38 0-63 KEY_CFG_IOVA I/O virtual address of zeroed 256 bytes of DMA-able memory. This extended buffer 
must be programmed as specified in the “Extension structure” section below, to hold 
the QoS key configuration.


Offset from Management Command Portal base Read-Write Access


63 8 7 0


0x00 – NUM_EXTRACT
S


63 32 31 24 23 16 15 12 11 8 7 0


0x08 FIELD OFFSET SIZE –


E
F


H
_


T
Y


P
E


PROT


63 36 35 32 31 24 23 16 15 8 7 0


0x10 –


E
X


T
R


A
C


T
_


T
Y


P
E


NUM_OF_BYTE_
MASKS


NUM_OF_REPE
ATS


CONSTANT HDR_INDEX


63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0


0x18 MASK3_OFFSET MASK3_MASK MASK2_OFFSET MASK2_MASK MASK1_OFFSET MASK1_MASK MASK0_OFFSET MASK0_MASK


0x20 - 
0xC7


Repeating (9 more sections) of the extraction fields in offsets (0x08 - 0x1F) above.
NUM_EXTRACTS determines the number of valid extraction sections up to the 10 possible.


Offset Bits Name Description


0x00 0-7 NUM_EXTRACTS Number of valid extractions out of the 10 possible; determines how many of the 
EXTRACT0..9 below are valid. Value of 0 is invalid.


Offset Bits Name Description







DPNI: Data Path Network Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 7-129
 


0x08 0-7 EXTRACT0 PROT For EXTRACT_TYPE = DPKG_EXTRACT_FROM_HDR: specify any of the supported 
headers:


8-11 EFH_TYPE For EXTRACT_TYPE = DPKG_EXTRACT_FROM_HDR: specify the type of 
extraction from header (and determines validity of the next 3 parameters):
0: DPKG_FROM_HDR – SIZE and OFFSET are valid; SIZE bytes are extracted from 
OFFSET relative to the start of the specified header (PROT).
1: DPKG_FROM_FIELD – FIELD, SIZE and OFFSET are valid; SIZE bytes are 
extracted from OFFSET relative to the start of the specified FIELD.
2: DPKG_FULL_FIELD – only FIELD is valid; specified FIELD is fully extracted.


16-23 SIZE Size (in bytes) of the extraction


42-31 OFFSET Byte offset of starting point of the extraction


32-63 FIELD For EXTRACT_TYPE = DPKG_EXTRACT_FROM_HDR: standard field selection for 
the extraction


0x10 0-7 HDR_INDEX For EXTRACT_TYPE = DPKG_EXTRACT_FROM_HDR: indicates the PROT header 
index for protocols that may appear more than once within a frame (examples: VLAN, 
MPLS, IP).
0x00 indicates the most outer (first) header.
0xFF indicates the most inner (last) header.


8-15 CONSTANT For EXTRACT_TYPE = DPKG_EXTRACT_CONSTANT: the constant value to extract 
(one byte)


16-23 NUM_OF_REPEATS For EXTRACT_TYPE = DPKG_EXTRACT_CONSTANT: number of times to repeat 
the extraction of the constant value (values are placed in the key in adjacent manner)


24-31 NUM_OF_BYTE_MASKS Determines the number of valid entries of MASKn_MASK and MASKn_OFFSET.
Up to four byte masks are available to apply on the extracted content (each mask is 1 
byte in size).
Note, that byte masks are valid for any selection of EXTRACT_TYPE.


32-35 EXTRACT_TYPE Determines the type of extraction:


0: DPKG_EXTRACT_FROM_HDR – extract from the frame header; the following 
fields are considered valid in this case:
PROT, EFH_TYPE, SIZE, OFFSET, FIELD, HDR_INDEX


1: DPKG_EXTRACT_FROM_DATA – extract from data not in the header; the following 
fields are considered valid in this case:
SIZE, OFFSET


2: DPKG_EXTRACT_CONSTANT – extract user-selected constant values; the 
following fields are considered valid in this case:
CONSTANT, NUM_OF_REPEATS


0x18 0-7 MASK0_MASK Byte mask to apply on the extracted content at offset MASK0_OFFSET


8-15 MASK0_OFFSET Offset (relative to the first byte of extracted content) for applying MASK0_MASK


16-23 MASK1_MASK Byte mask to apply on the extracted content at offset MASK1_OFFSET


24-31 MASK1_OFFSET Offset (relative to the first byte of extracted content) for applying MASK1_MASK


32-39 MASK2_MASK Byte mask to apply on the extracted content at offset MASK2_OFFSET


40-47 MASK2_OFFSET Offset (relative to the first byte of extracted content) for applying MASK2_MASK


48-55 MASK3_MASK Byte mask to apply on the extracted content at offset MASK3_OFFSET


56-63 MASK3_OFFSET Offset (relative to the first byte of extracted content) for applying MASK3_MASK


0x20 - 
0x37


EXTRACT1 Similar to EXTRACT0; valid if NUM_EXTRACTS >= 2


0x38 - 
0x4F


EXTRACT2 Similar to EXTRACT0; valid if NUM_EXTRACTS >= 3


0x50 - 
0x67


EXTRACT3 Similar to EXTRACT0; valid if NUM_EXTRACTS >= 4


Offset Bits Name Description







DPNI: Data Path Network Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 7-130
 


All unspecified fields are reserved and must be cleared (set to zero)


0x68 - 
0x7F


EXTRACT4 Similar to EXTRACT0; valid if NUM_EXTRACTS >= 5


0x80 - 
0x97


EXTRACT5 Similar to EXTRACT0; valid if NUM_EXTRACTS >= 6


0x98 - 
0xAF


EXTRACT6 Similar to EXTRACT0; valid if NUM_EXTRACTS >= 7


0xB0 - 
0xC7


EXTRACT7 Similar to EXTRACT0; valid if NUM_EXTRACTS >= 8


0xC8 - 
0xDF


EXTRACT8 Similar to EXTRACT0; valid if NUM_EXTRACTS >= 9


0xE0 - 
0xF7


EXTRACT9 Similar to EXTRACT0; valid if NUM_EXTRACTS = 10


Offset Bits Name Description







DPNI: Data Path Network Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 7-131
 


7.3.64 DPNI_ADD_QOS_ENTRY


Add QoS mapping entry to select a traffic class for frames matching the specified rule.


Before using this command, the DPNI_SET_QOS_TABLE command must be invoked in order to define 
the QoS key format and other attributes.


The user is responsible for providing the pointers (DMA-able memory) to the key and optionally a mask 
to apply on extracted bytes.


Command structure


Figure 155. DPNI_ADD_QOS_ENTRY Command Description


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x2411 TOKEN –
IN


T
R


_
D


IS
STATUS P – SRCID


63 48 47 32 31 24 23 16 15 0


0x08 – INDEX KEY_SIZE TC_ID FLOW_ID FLAGS


63 0


0x10 KEY_IOVA


63 0


0x18 MASK_IOVA


63 0


0x20 –


63 0


0x28 –


63 0


0x30 –


63 0


0x38 –


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-7 FLAGS 0x0: DPNI_QOS_OPT_SET_TC_ONLY - Frames will be classified on Traffic Class specified in TC_ID 
field. The queue will be selected based on the distribution configured for this Traffic Class (see 
commands: DPNI_SET_RX_TC_DIST, DPNI_SET_RX_FS_DIST, DPNI_SET_RX_HASH_DIST). 
FLOW_ID is ignored for this option.
0x1: DPNI_QOS_OPT_SET_FLOW_ID - Frames will be enqueued in queue with index FLOW_ID 
from Traffic Class TC_ID.


8-15 FLOW_ID Flow ID. Used only when FLAGS is set to DPNI_QOS_OPT_SET_FLOW_ID.


16-23 TC_ID The traffic class to select in case a frame matches the specified lookup key and mask. Valid values 
are in the range of (0-7), but also limited by the number of traffic classes configured during the creation 
of the DPNI.


24-31 KEY_SIZE Size of the key and mask (in bytes); Must not exceed 56 bytes.


32–47 INDEX Location in the classification table at which to insert the entry.
Only relevant if MASKING is enabled for classification on this DPNI, it is ignored for exact match.
For classification that use masking the order is important, as multiple rules may match a given frame, 
but only the first hit defines the action to be taken.  In the general case generic rules that math many 
flows should be placed at the end.  For instance an IP address rule would be in front of the associated 
IP subnet rule.







DPNI: Data Path Network Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 7-132
 


All unspecified fields are reserved and must be cleared (set to zero)


7.3.65 DPNI_REMOVE_QOS_ENTRY


Remove QoS mapping entry that was previously added using DPNI_ADD_QOS_ENTRY command.


Command structure


Figure 156. DPNI_REMOVE_QOS_ENTRY Command Description


All unspecified fields are reserved and must be cleared (set to zero)


0x10 0-63 KEY_IOVA I/O virtual address of the key (must be in DMA-able memory). The key contents must match the 
extraction order and format as specified in the SET_QOS_TABLE command.


0x18 0-63 MASK_IOVA I/O virtual address of the mask for applying on extracted bytes (must be in DMA-able memory); the 
mask format must match the key format.
Clear this field to indicate that no mask should be applied.


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x2421 TOKEN –


IN
T


R
_


D
IS


STATUS P – SRCID


63 32 31 28 27 24 23 0


0x08 – KEY_SIZE


63 0


0x10 KEY_IOVA


63 0


0x18 MASK_IOVA


63 0


0x20 –


63 0


0x28 –


63 0


0x30 –


63 0


0x38 –


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 24-31 KEY_SIZE Size of the key and mask (in bytes); Must not exceed 56 bytes.


0x10 0-63 KEY_IOVA I/O virtual address of the key (must be in DMA-able memory). The key contents must 
match the extraction order and format as specified in the SET_QOS_TABLE 
command.


0x18 0-63 MASK_IOVA I/O virtual address of the mask for applying on extracted bytes (must be in DMA-able 
memory); the mask format must match the key format.
Clear this field to indicate that no mask should be applied.


Offset Bits Name Description







DPNI: Data Path Network Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 7-133
 


7.3.66 DPNI_CLEAR_QOS_TABLE


Clear all QoS mapping entries. This command causes all received frames to be classified to the default 
traffic class (TC_ID = 0).


Command structure


Figure 157. DPNI_CLEAR_QOS_TABLE Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x2431 TOKEN –


IN
T


R
_D


IS


STATUS P – SRCID


63 0


0x08 –


63 0


0x10 –


63 0


0x18 –


63 0


0x20 –


63 0


0x28 –


63 0


0x30 –


63 0


0x38 –


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.







DPNI: Data Path Network Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 7-134
 


7.3.67 DPNI_ADD_FS_ENTRY


Add explicit flow steering entry to explicitly select a receive flow ID within a traffic class. Flow steering 
lookup tables are managed per traffic class, therefore the user must first ensure that the frame type of 
interest is also classified to the correct traffic class. Please refer to DPNI_ADD_QOS_ENTRY command 
for more details.


Before using this command, the DPNI_SET_RX_TC_DIST command must be invoked to select flow 
steering distribution mode (DIST_MODE = DPNI_DIST_MODE_FS), and to define the QoS key format 
and other attributes.


The user is responsible for providing the pointers (DMA-able memory) to the key and optionally a mask 
to apply on extracted bytes.


Command structure


Figure 158. DPNI_ADD_FS_ENTRY Command Description


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x2442 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 48 47 32 31 24 23 16 15 0


0x08 FLOW_ID ENTRY_INDEX KEY_SIZE TC_ID OPTIONS


63 0


0x10 KEY_IOVA


63 0


0x18 MASK_IOVA


63 0


0x20 FLC


63 16 15 0


0x28 — REDIR_TOKEN


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.







DPNI: Data Path Network Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 7-135
 


All unspecified fields are reserved and must be cleared (set to zero)


0x08 0–15 OPTIONS An array of bits, selecting which action(s) are applicable if this classification entry is hit:
Bit 0: DPNI_FS_OPT_DISCARD – matching traffic is discarded, all other action fields are ignored,
Bit 1: DPNI_FS_OPT_SET_FLC – set FLC value for matching traffic,
Bit 2: DPNI_FS_OPT_SET_STASH_CONTROL – enable stash control bits.  Only relevant if bit 1 (set FLC) is also set, 
otherwise ignored.
There is no bit associated with FLOW_ID; the destination queue is always overridden by classification, that is if the frame 
is not discarded.


16–23 TC_ID Traffic class selection. Valid values are in the range 0 to NUM_TCS -1.


24–31 KEY_SIZE Size of the key and mask (in bytes).  Limited to FS_KEY_SIZE returned by DPNI_GET_ATTRIBUTES.


32–47 ENTRY_INDEX Index of the entry in the table.  It is only used if DPNI_OPT_HAS_KEY_MASKING is enabled on the DPNI, otherwise 
ignored.
With masking multiple entries may match a frame, the action of the first match is applied.


48–63 FLOW_ID Queue index to send traffic to.  This is in range 0..NUM_QUEUES-1.


0x10 0–63 KEY_IOVA I/O virtual address of the key (must be in DMA-able memory). The key contents must match the extraction order and 
format as specified in the DPNI_SET_RX_TC_DIST command.


0x18 0–63 MASK_IOVA I/O virtual address of the mask for applying on extracted bytes (must be in DMA-able memory); the mask format must 
match the key format.
Clear this field to indicate that no mask should be applied.


0x20 0–63 FLC Flow context value used to initialize FD[FLC] fields for all matching frames.
Please check FLC field description in the Frame Descriptor (FD) documentation for more information.


0x28 0-15 REDIR_TOKEN Token that identifies the object where frame is redirected when this rule is hit. This paraneter is used only when one of the 
flags DPNI_FS_OPT_REDIRECT_TO_DPNI_RX or DPNI_FS_OPT_REDIRECT_TO_DPNI_TX is set. The token is 
obtained using dpni_open() API call. The object must stay open during the operation to ensure the fact that application 
has access on it. If the object is destroyed of closed next actions will take place: 
- if DPNI_FS_OPT_DISCARD is set the frame will be discarded by current dpni.
- if DPNI_FS_OPT_DISCARD is cleared the frame will be enqueued in queue with index provided in flow_id parameter.


Offset Bits Name Description







DPNI: Data Path Network Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 7-136
 


7.3.68 DPNI_REMOVE_FS_ENTRY


Remove an existing flow steering entry that belongs to a specified traffic class.


Command structure


Figure 159. DPNI_REMOVE_FS_ENTRY Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x2451 TOKEN –


IN
T


R
_


D
IS


STATUS P – SRCID


63 32 31 24 23 16 15 0


0x08 – KEY_SIZE TC_ID


63 0


0x10 KEY_IOVA


63 0


0x18 MASK_IOVA


63 0


0x20 –


63 0


0x28 –


63 0


0x30 –


63 0


0x38 –


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0X08 16-23 TC_ID Traffic class selection. Valid values are in the range of (0-7), but also limited by the 
number of traffic classes configured during the creation of the DPNI.


24-31 KEY_SIZE Size of the key and mask (in bytes); Must not exceed 56 bytes.


0x10 0-63 KEY_IOVA I/O virtual address of the key (must be in DMA-able memory). The key contents must 
match the extraction order and format as specified in the DPNI_SET_RX_TC_DIST 
command.


0x18 0-63 MASK_IOVA I/O virtual address of the mask for applying on extracted bytes (must be in DMA-able 
memory); the mask format must match the key format.
Clear this field to indicate that no mask should be applied.







DPNI: Data Path Network Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 7-137
 


7.3.69 DPNI_CLEAR_FS_ENTRIES


Clear all flow steering entries of a specified traffic class. This command causes all received frames 
associated with that traffic class to be classified to the default flow ID (FLOW_ID = 0).


Command structure


Figure 160. DPNI_CLEAR_FS_ENTRIES Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x2461 TOKEN –


IN
T


R
_D


IS


STATUS P – SRCID


63 24 23 16 15 0


0x08 – TC_ID


63 0


0x10 –


63 0


0x18 –


63 0


0x20 –


63 0


0x28 –


63 0


0x30 –


63 0


0x38 –


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0X08 16-23 TC_ID Traffic class selection. Valid values are in the range of (0-7), but also limited by the 
number of traffic classes configured during the creation of the DPNI.







DPNI: Data Path Network Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 7-138
 


7.3.70 DPNI_GET_API_VERSION


Command structure


Figure 161. DPNI_GET_API_VERSION Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0xA011 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 0


0x08 —


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.







DPNI: Data Path Network Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 7-139
 


Response structure


Figure 162. DPNI_GET_API_VERSION Response Description


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0xA011 TOKEN —


IN
T


R
_D


IS


STATUS P — SRCID


63 32 31 16 15 0


0x08 — VERSION_MINOR VERSION_MAJOR


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-15 VERSION_MAJOR Major version of API


16-31 VERSION_MINOR Minor version of API







DPNI: Data Path Network Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 7-140
 


7.3.71 DPNI_SET_OPR


Set the Order Point Record configuration. The command works only if the DPNI is created with the 
DPNI_OPT_HAS_OPR option. It also works only for SoCs that support Order Restoration.


If the DPNI is configured with the DPNI_OPT_OPR_PER_TC option, then all frame queues within the 
traffic class specified with TC_ID are configured to use the Order Point Record when the DPNI is enabled. 
If the DPNI_OPT_OPR_PER_TC option is not set, the INDEX is used to select a specific queue from the 
traffic class.


The order restoration is done for all enqueue commands that respect an order restoration point and are 
coupled with a sequence number. These are judged by comparing that sequence number to the next 
expected sequence number for that order point record. The treatment of the frame enqueued via an OPR 
is determined by which window the sequence number of that frame falls within, what resources are still 
available, and if loose ordering is enabled. The windows are shown in the following figure.


Figure 7-5. Order Point Record Configuration


Restoration (Hold) Window: 
0: 32, 1: 64, 
2: 128, 3: 256, 
4: 512, 5: 1K, 


The above example shows window:
Restoration Window: 1K (code 5)
Auto Advance NESN Window: Equal to RW (code 1)
Acceptable Late Arrival Window: Equal to RW (code 2)
Late Arrival Rejection Window: implicitly 7 K
Early Arrival Rejection Window: implicitly 6 K


Next 
Expected 
Sequence 
Number 


Late Arrivals 
(NESN-8192 to NESN-1) 


Early Arrivals 
(NESN+1 to NESN+8191) 


Direction of Increasing 
Sequence Numbers 


0:Null (Reject all Late Arrivals 
1:32 
2: Equal to Restoration Window 
3: 8 K (Reject No Late Arrivals) 


Acceptable Late Arrival Window


Late Arrival 
Rejection Window


Early Arrival Rejection Window 


0: Null (Bump disabled) 
1: Equal to Restoration Window 


Auto Advance NESN (Bump) Window


FYI:







DPNI: Data Path Network Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 7-141
 


Command structure


Figure 163. DPNI_SET_OPR Command Description


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x26E2 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 32 31 24 23 16 15 8 7 0


0x08 — OPTIONS INDEX TC_ID OPR_ID


63 56 55 48 47 40 39 32 31 24 23 0


0x10 OPRRWS OA OLWS OEANE OLOE —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0X08 0-7 OPR_ID Order point record ID.


8-15 TC_ID Traffic class ID


16-23 INDEX Selects a specific queue out of the set of queues in a TC. Accepted values are in range 0 to NUM_QUEUES – 
1. This field is ignored for DPNI_OPT_OPR_PER_TC.


24–31 OPTIONS The command can function in two ways, depending on the options field value:
 • OPR_OPT_CREATE (1): Create the OPR with the given configuration
 • OPR_OPT_RETIRE (2): Retire OPR. In this case the configuration options from offset 0x10 are ignored. 


The OPR is emptied by individually rejecting all enqueue commands held on the ORL.


0x10 24–31 OLOE OPR loose ordering enable
 • 0: Strict ordering mode
 • 1: Loose ordering mode


The ordering mode determines the action taken for OR enabled enqueues that fall in either the early or late 
arrival rejection window or that need to be deferred when ORL resources are exhausted. For strict ordering 
mode they are rejected and returned to software, and for loose ordering mode they are enqueued immediately.


32–39 OEANE Order restoration list (ORL) resource exhaustion advance NESN enable


40–47 OLWS OPR acceptable late arrival window size
 • 0: Disabled. Late arrivals are always rejected.
 • 1: Window size is 32 frames.
 • 2: Window size is the same as the OPR restoration window size configured in the OPRRWS field.
 • 3: Window size is 8192 frames. Late arrivals are always accepted.


48–55 OA OPR auto advance NESN window size


56–63 OPRRWS Order point record (OPR) restoration window size.
 • 0: Window size is 32 frames.
 • 1: Window size is 64 frames.
 • 2: Window size is 128 frames.
 • 3: Window size is 256 frames.
 • 4: Window size is 512 frames.
 • 5: Window size is 1024 frames.
 • 6–7: Reserved







DPNI: Data Path Network Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 7-142
 


All unspecified fields are reserved and must be cleared (set to zero)







DPNI: Data Path Network Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 7-143
 


7.3.72 DPNI_GET_OPR


Get Order Point Record (OPR) configuration and state. Works for OPRs that are created. The creation of 
the OPR takes place when the DPNI is enabled the first time after a DPNI_SET_OPR command.


Command structure


Figure 164. DPNI_GET_OPR Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x26F2 TOKEN —


IN
T


R
_D


IS


STATUS P — SRCID


63 32 31 24 23 16 15 8 7 0


0x08 OPR_ID INDEX TC_ID FLAGS


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0X08 0-7 FLAGS 0: Order point record ID (OPR_ID) is ignored. The OPR is chosen selecting the specific queue using 
INDEX inside the traffic class ID (TC_ID).
1: Order point record is selected using OPR_ID field.


8-15 TC_ID Traffic class ID.


16-23 INDEX Selects a specific queue out of the set of queues in a TC. Accepted values are in range 0 to 
NUM_QUEUES – 1. This field is ignored for DPNI_OPT_OPR_PER_TC.


24-31 OPR_ID Order point record ID.







DPNI: Data Path Network Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 7-144
 


Response structure


Figure 165. DPNI_SET_OPR Response Description


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x26F1 TOKEN —


IN
T


R
_D


IS


STATUS P — SRCID


63 0


0x08 —


63 56 55 48 47 40 39 32 31 24 23 2 1 0


0x10 OPRRWS OA OLWS OEANE OLOE — EN RIP


63 48 47 32 31 16 15 0


0x18 — NDSN — NESN


63 48 47 32 31 16 15 0


0x20 —


N
L


IS
_H


S
E


Q


EA_HSEQ —


N
L


IS
_


 T
S


E
Q


EA_TSEQ


63 48 47 32 31 16 15 0


0x28 — EA_TPTR — EA_HPTR


63 48 47 32 31 16 15 0


0x30 — OPRID — VOPRID


63 0


0x38 —


Offset Bits Name Description


0x00 0–63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x10 0 RIP Retirement In Progress.


1 EN OPR is enabled.


24–31 OLOE OPR loose ordering enable


32–39 OEANE Order restoration list (ORL) resource exhaustion advance NESN enable


40–47 OLWS OPR acceptable late arrival window size


48–55 OA OPR auto advance NESN window size


56–63 OPRRWS Order point record (OPR) restoration window size


0x18 0–15 NESN Next expected sequence number.


32–47 NDSN Next dispensed sequence number.


0x20 0–15 EA_TSEQ Sequence number of the frame at the tail of the ORL.


16 NLIS_ TSEQ Not last in sequence for EA_TSEQ


32–47 EA_HSEQ Sequence number of the frame at the head of the ORL.


48 NLIS_ HSEQ Not last in sequence for EA_HSEQ


0x28 0–15 EA_HPTR Early arrival head pointer


32–47 EA_TPTR Early arrival tail pointer


0x30 0–15 VOPRID Virtual Order Point Record ID


32–47 OPRID Order Point Record ID







DPNI: Data Path Network Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 7-145
 


7.3.73 DPNI_SET_CONGESTION_NOTIFICATION


Set congestion notification. For more details about congestion and notification configuration, please read 
the QBMan sections of the DPAA2 documentation.


7.3.73.1 Congestion threshold representation


DPAA2 hardware stores entry/exit threshold on 12 bits using next format:


• Bits 12-5 – TA value greater than zero


• Bits 4-0 – Tn


Threshold value is calculated using formula: threshold = TA * 2^Tn. 


The MC firmware will try to convert 32bit provided threshold to 12bit format and it will perform some 
approximations if the value provided in command cannot be converted. The notification message will 
appear when approximated threshold is reached.


Command structure


Figure 166. DPNI_SET_CONGESTION_NOTIFICATION Command Description


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x2673 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 40 39 32 31 24 23 8 7 0


0x08 — CGID CONGESTION_P
OINT


CHANNEL_ID QUEUE_TYPE


63 62 61 60 59 56 55 48 47 32 31 0


0x10 — UNITS DEST_
TYPE


PRIORI
TY


NOTIFICATION_MODE DEST_ID


63 0


0x18 MESSAGE_IOVA


63 0


0x20 MESSAGE_CTX


63 32 31 0


0x28 THRESHOLD_EXIT THRESHOLD_ENTRY


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0–63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.







DPNI: Data Path Network Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 7-146
 


Table 7-3. Memory congestion notification message


0x08 0–7 QUEUE_TYPE Type of queue. Rx, Tx and Tx confirm types are supported.


8–23 CHANNEL_ID Channel index to be configured. Used only when QUEUE_TYPE is set to DPNI_QUEUE_TX.


24-31 CONGESTION_POINT Congestion point 


0: Set congestion per queue, identified by QUEUE_TYPE, TC and QUEUE_INDEX
1:Set congestion per queue group. Depending on options used to define the DPNI this can be either per TC 
(default) or per interface (DPNI_OPT_SHARED_CONGESTION set at DPNI create). QUEUE_INDEX is 
ignored if this type is used.
2: Set per congestion group id. This will workonly if the DPNI is created with DPNI_OPT_CUSTOM_CG 
option


32-39 CGID Congestion group ID


0x10 0–31 DEST_ID Either DPIO ID or DPCON ID, depending on the destination type


32–47 NOTIFICATION_MODE Mask of available options.
Bit 0: DPNI_CONG_OPT_WRITE_MEM_ON_ENTER


CSCN message is written to MESSAGE_IOVA once entering a congestion state (see 
'THRESHOLD_ENTRY')


Bit 1: DPNI_CONG_OPT_WRITE_MEM_ON_EXIT
CSCN message is written to MESSAGE_IOVA once exiting a ongestion state (see 'THRESHOLD_EXIT')


Bit 2: DDPNI_CONG_OPT_COHERENT_WRITE
CSCN write will attempt to allocate into a cache (coherent write); valid only if 
'DPNI_CONG_OPT_WRITE_MEM_<X>' is selected


Bit 3: DDPNI_CONG_OPT_NOTIFY_DEST_ON_ENTER
If DEST_TYPE !=  DPNI_DEST_NONE CSCN message is sent to DPIO/DPCON's WQ channel once 
entering a congestion state (see 'THRESHOLD_ENTRY')


Bit 4: DDPNI_CONG_OPT_NOTIFY_DEST_ON_EXIT
If DEST_TYPE !=  DPNI_DEST_NONE' CSCN message is sent to DPIO/DPCON's WQ channel once 
exiting a congestion state (see 'THRESHOLD_EXIT')


Bit 5: DDPNI_CONG_OPT_INTR_COALESCING_DISABLED
If DEST_TYPE !=  DPNI_DEST_NONE when the CSCN is written to the sw-portal's DQRR, the DQRI 
interrupt is asserted immediately (if enabled)


Bit 6: DPNI_CONG_OPT_FLOW_CONTROL - This notification will be used to generate flow control. When 
the queue enters in congested state flow control frames are generated to stop traffic. It works only id 
QUEUE_TYPE is a Rx queue.


48–55 PRIORITY Priority selection within the DPIO or DPCON channel; valid values are 0–1 or 0–7, depending on the number 
of priorities in that channel; not relevant for 'DPNI_DEST_NONE' option


56–59 DEST_TYPE Type of destination for dequeued traffic. Supported values:
0: DPNI_DEST_NONE—notifications are delivered through memory (do not used DPIO/DPCON to deliver). 
1: DPNI_DEST_DPIO—notifications are delivered to a DPIO,
2: DPNI_DEST_DPCON—notifications are delivered to a DPCON.


60–61 UNITS Unit type
0 – issue notifications after congestion group accumulates THRESHOLD_ENTRY/EXIT bytes
1 - issue notifications after congestion group accumulates THRESHOLD_ENTRY/EXIT frames


0x18 0–63 MESSAGE_IOVA Valid only if DPNI_CONG_OPT_WRITE_MEM_<X> flags are set in ‘options’ field. 
This is the address where congestion message is written. Message description is found in table below. 
Application must provide 16byte aligned pointer that can store 64 bytes.


0x20 0–63 MESSAGE_CTX This information is copied in congestion message. It is used to pass information needed to identify the 
message and perform necessary actions.


0x28 0–31 THRESHOLD_ENTRY Above this threshold we enter a congestion state. Set it to '0' to disable it.


32–63 THRESHOLD_EXIT Below this threshold we exit the congestion state.


Offset
(bytes)


Size
(bytes) Field Description


0x00 1 VERB Bit 7 - reserved
Bit 6-0 - Notification message type


"0x27 - CSCN-to-memory (Congestion State Change Notification written to memory)
"Other values - reserved for other notification types


0x01 1 STAT Not used for CSCN-to-memory


Offset Bits Name Description







DPNI: Data Path Network Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 7-147
 


0x02 1 STATE Bit 7-1 - reserved
Bit 0 - Congestion state


"0 congestion group not congested
"1 congestion group in congestion state


0x03 1 Reserved Not used


0x04 3 RID Resource ID
Bit 15-0 - Congestion Group ID
Bit 23-12 - Reserved


0x07 1 TOK Not used for CSCN-to-memory


0x08 8 CTX Context value provided in MESSAGE_CTX field in DPNI_SET_CONGESTION_NOTIFICATION command 


Offset
(bytes)


Size
(bytes) Field Description







DPNI: Data Path Network Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 7-148
 


7.3.74 DPNI_GET_CONGESTION_NOTIFICATION


Get congestion notification. For more details about congestion and notification configuration, please read 
the QBMan sections of the DPAA2 documentation.


Command structure


Figure 167. DPNI_GET_CONGESTION_NOTIFICATION Command Description


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x2683 TOKEN —


IN
T


R
_D


IS


STATUS P — SRCID


63 40 39 32 31 24 23 8 7 0


0x08 — CGID CONGESTION_P
OINT


CHANNEL_ID QUEUE_TYPE


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0–63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0–7 QUEUE_TYPE Type of queue. Rx, Tx and Tx confirm types are supported.


8–23 CHANNEL_ID Channel index to be configured. Used only when QUEUE_TYPE is set to DPNI_QUEUE_TX.


24-31 CONGESTION_POINT Congestion point 


0: Set congestion per queue, identified by QUEUE_TYPE, TC and QUEUE_INDEX
1:Set congestion per queue group. Depending on options used to define the DPNI this can be either per TC 
(default) or per interface (DPNI_OPT_SHARED_CONGESTION set at DPNI create). QUEUE_INDEX is ignored if 
this type is used.
2: Set per congestion group id. This will workonly if the DPNI is created with DPNI_OPT_CUSTOM_CG option


32-39 CGID Congestion group ID







DPNI: Data Path Network Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 7-149
 


Response structure


Figure 168. DPNI_GET_CONGESTION_NOTIFICATION Response Description


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x2683 TOKEN —


IN
T


R
_D


IS


STATUS P — SRCID


63 0


0x08 —


63 62 61 60 59 56 55 48 47 32 31 0


0x10 — UNITS DEST_
TYPE


PRIORI
TY


NOTIFICATION_MODE DEST_ID


63 0


0x18 MESSAGE_IOVA


63 0


0x20 MESSAGE_CTX


63 32 31 0


0x28 THRESHOLD_EXIT THRESHOLD_ENTRY


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0–63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x10 0–31 DEST_ID Either DPIO ID or DPCON ID, depending on the destination type


32–47 NOTIFICATION_MODE Mask of available options.
Bit 0: DPNI_CONG_OPT_WRITE_MEM_ON_ENTER


CSCN message is written to MESSAGE_IOVA once entering a congestion state (see 
'THRESHOLD_ENTRY')


Bit 1: DPNI_CONG_OPT_WRITE_MEM_ON_EXIT
CSCN message is written to MESSAGE_IOVA once exiting a ongestion state (see 'THRESHOLD_EXIT')


Bit 2: DDPNI_CONG_OPT_COHERENT_WRITE
CSCN write will attempt to allocate into a cache (coherent write); valid only if 
'DPNI_CONG_OPT_WRITE_MEM_<X>' is selected


Bit 3: DDPNI_CONG_OPT_NOTIFY_DEST_ON_ENTER
If DEST_TYPE !=  DPNI_DEST_NONE CSCN message is sent to DPIO/DPCON's WQ channel once 
entering a congestion state (see 'THRESHOLD_ENTRY')


Bit 4: DDPNI_CONG_OPT_NOTIFY_DEST_ON_EXIT
If DEST_TYPE !=  DPNI_DEST_NONE' CSCN message is sent to DPIO/DPCON's WQ channel once 
exiting a congestion state (see 'THRESHOLD_EXIT')


Bit 5: DDPNI_CONG_OPT_INTR_COALESCING_DISABLED
If DEST_TYPE !=  DPNI_DEST_NONE when the CSCN is written to the sw-portal's DQRR, the DQRI 
interrupt is asserted immediately (if enabled)


48–55 PRIORITY Priority selection within the DPIO or DPCON channel; valid values are 0–1 or 0–7, depending on the number of 
priorities in that channel; not relevant for 'DPNI_DEST_NONE' option


56–59 DEST_TYPE Type of destination for dequeued traffic


60–61 UNITS Unit type (0—BYTES, 1—FRAMES)


0x18 0–63 MESSAGE_IOVA I/O virtual address (must be in DMA-able memory), must be 16B aligned; valid only if 
DPNI_CONG_OPT_WRITE_MEM_<X>' is contained in 'options' (NOTIFICATION_MODE)


0x20 0–63 MESSAGE_CTX The context that will be part of the CSCN message.


0x28 0–31 THRESHOLD_ENTRY Above this threshold we enter a congestion state. Set it to '0' to disable it.


32–63 THRESHOLD_EXIT Below this threshold we exit the congestion state.







DPNI: Data Path Network Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 7-150
 


7.3.75 DPNI_LOAD_SW_SEQUENCE


This command is obsolete please check DPSPARSER object for Soft Parser loading.


Parser block performs the parsing of frame header data with the purpose of detecting and validating the 
structure of a frame. Parsing instructions may be added that extend the protocols supported and/or extract 
additional attributes or frame header values. User-programmed parse functions are implemented through 
soft examination sequences built from examine instructions pre-positioned in a dedicated internal RAM.


This command loads a soft examination sequence at a specified address in dedicated internal RAM of 
choice (WRIOP ingress or egress).


Command structure


Figure 169. DPNI_LOAD_SW_SEQUENCE Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x2701 TOKEN –


IN
T


R
_D


IS


STATUS P – SRCID


63 8 7 0


0x08 — DEST


63 48 47 32 31 16 15 0


0x10 — SS_SIZE — SS_OFFSET


63 0


0x18 SS_IOVA


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0–63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0–7 DEST Valid destinations are:
0: DPNI_SS_INGRESS – WRIOP Ingress parser
1: DPNI_SS_EGRESS – WRIOP Egress parser


0x10 0–15 SS_OFFSET The offset where the Soft Sequence must be loaded. Valid values are between 0x20 
and 0x7FD.


32–47 SS_SIZE Soft Sequence Size in bytes. It must be a multiple of 4.


0x18 0–63 SS_IOVA I/O virtual address of the soft sequence to load







DPNI: Data Path Network Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 7-151
 


7.3.76 DPNI_ENABLE_SW_SEQUENCE


This command is obsolete please check DPSPARSER object for Soft Parser loading.


A Soft Sequence is enabled by attaching it to an existing hard HXS (Hard Header Examination Sequence) 
or as a start of parsing. These sequences are configured via the parse profile. This command can perform 
either of the two operations depending on the SET_START field.


In the case of attaching the soft sequence to a HXS. SET_START must be set to 0 and the command will 
perform the following: will configure the parse profile to execute the soft sequence starting at SS_OFFSET 
after the hard HXS and will copy the provided parameters in the parse profile. Setting the SS_OFFSET of 
zero will disable the soft sequence after the given HXS.


In the other case when SET_START is set to 1 the command will ignore the HXS field (it will not enable 
the soft sequence in the parse profile after the HXS) but will set the SS_OFFSET as the starting point 
within the parse tree. The parameters will be also copied in the parse profile.


This command works together with the DPNI_LOAD_SW_SEQUENCE. The load command copies the 
soft sequence code in the dedicated internal RAM of the parser and the enable command modifies the parse 
profile so it uses the loaded soft sequence.


The supported HXS codes are given in the following table:


Table 7-4. HXS Coding


Code HXS Code HXS


0x00 Ethernet 0x0c TCP


0x01 LLC+SNAP 0x0d UDP


0x02 VLAN 0x0e IPSec


0x03 PPPoE+PPP 0x0f SCTP


0x04 MPLS 0x10 DCCP


0x05 ARP 0x11 Other L4 Shell


0x06 IP 0x12 GTP


0x07 IPv4 0x13 ESP


0x08 IPv6 0x14 VxLan


0x09 GRE 0x1e Layer5+ Shell


0x0a MinEncap 0x1f Final Shell


0x0b Other L3 Shell — —







DPNI: Data Path Network Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 7-152
 


Command structure


Figure 170. DPNI_ENABLE_SW_SEQUENCE Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x2711 TOKEN –


IN
T


R
_D


IS


STATUS P – SRCID


63 8 7 0


0x08 — DEST


63 40 39 32 31 16 15 0


0x10 — SET_START HXS SS_OFFSET


63 40 39 32 31 8 7 0


0x18 — PARAM_SIZE — PARAM_OFFSET


63 0


0x20 PARAM_IOVA


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0–63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0–7 DEST Valid destinations are:
0: DPNI_SS_INGRESS – WRIOP Ingress parser
1: DPNI_SS_EGRESS – WRIOP Egress parser


0x10 0–15 SS_OFFSET The offset of the soft sequence 


16–31 HXS The HXS code. The valid values are described in Table 7-4 in the command description above.


32–39 SET_START 0 – The soft sequence will be set enabled as an attachment after the specified HXS.
1 – The soft sequence will be set as start HXS for the corresponding parser (ingress/egress). 
The HXS field is ignored and the parameters are copied in the parse profile.


0x18 0–7 PARAM_OFFSET Parameter offset starting from the parameter zone start in the parse profile (0-64).


32–39 PARAM_SIZE Parameters size in bytes


0x20 0–63 PARAM_IOVA I/O virtual address of the parameters to load into the parse profile







DPNI: Data Path Network Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 7-153
 


7.3.77 DPNI_SET_RX_FS_DIST


Set the flow steering (FS) distribution key for Rx. This command creates an empty table: use command 
DPNI_ADD_FS_ENTRY to add entries into this table. 


All packets will be verified against table entries using specified key. If packet matches a specific entry it 
will be distributed to a queue according to that entry configuration. If packet does not match on any table 
entry will me distributed according to next two rules:


• If hash distribution is enabled (DPNI_SET_RC_HASH_DIST) the packet will be distributed 
according to a hash function based on the key provided.


• If hash distribution is disabled the packed will be put nto the queue configured with 
FS_MISS_FLOW_ID parameter. If this parameter is set to DPNI_FS_MISS_DROP the packet 
will be discarded.


If DPNI object was created with option DPNI_OPT_NO_FS the command will return error.


Command structure


Figure 171. DPNI_SET_RX_FS_DIST Command Description


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x2731 TOKEN —


IN
T


R
_D


IS


STATUS P — SRCID


63 47 32 31 24 23 17 16 15 0


0x08 — FS_MISS_FLOW_ID TC_ID —


E
N


A
B


L
E DIST_SIZE


63 0


0x10 KEY_CFG_IOVA


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0–63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.







DPNI: Data Path Network Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 7-154
 


0x08 0–15 DIST_SIZE Distribution size; supported values: 1, 2, 3, 4, 6, 7, 8.
Note that high values may be unsupported due to limited queue resources in the system or by the maximum 
distribution size set on DPNI_CREATE


16 ENABLE Enable or disable flow steering
0 - disable flow steering (FS)
1 - enable flow steering
If hash distribution is enabled (see DPNI_SET_RX_HASH_DIST) the FS will take precedence and will use 
hash distribution only for packets that miss all FS entries. If hash distribution is disabled the packets will be 
sent to the queue selected with FS_MISS_FLOW_ID field.
If FS is already active and ENABLED is set to one the command will change the FS distribution key and leave 
old rules in table. This option must be used with care: if the new distribution key is not compatible with older 
rules from table it may produce wrong classification.
Disabling flow steering will clear all FS entries from table.
Use two consecutive commands with ENABLE=0 and ENABLE=1 to clear all FS table entries.


32-47 FS_MISS_FLOW_ID This field contains the default queue ID to enqueue the packets that missed all rules from FS table. 
The information provided in this field is used only when hash distribution is disabled.
If set to DPNI_FS_MISS_DROP and hash distribution is disabled the packets will be discarded.


0x10 0–63 KEY_CFG_IOVA I/O virtual address of DMA-able memory containing the distribution key composition. Used only when ENABLE 
is set to 1.
The first command with ENABLE set to one must provide a valid key. Later, if ENABLE is set to 1 and this field 
is NULL the table will use the key provided in previous command.


Offset Bits Name Description







DPNI: Data Path Network Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 7-155
 


7.3.78 DPNI_SET_RX_HASH_DIST


Set the hash distribution rule for Rx. If flow steering is enabled with command DPNI_SET_FS_RX_DIST 
this hash will be used to distribute packets that miss all entries added to table. 


If flow steering is disabled (the command DPNI_SET_FS_RX_DIST is called with ENABLE set to zero 
or not called at all) the packets will be distributed using configured hash key.


Command structure


Figure 172. DPNI_SET_RX_HASH_DIST Command Description


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x2741 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 32 31 24 23 17 16 15 0


0x08 — TC_ID —


E
N


A
B


L
E DIST_SIZE


63 0


0x10 KEY_CFG_IOVA


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0–63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0–15 DIST_SIZE Distribution size; supported values: 1, 2, 3, 4, 6, 7, 8.
Note that high values may be unsupported due to limited queue resources in the system or by the maximum 
distribution size set on DPNI_CREATE


16 ENABLE Enable or disable hash distribution
0 - disable hash distribution
1 - enable hash distribution
If flow steering (FS) is enabled (see DPNI_SET_RX_FS_DIST) it will take precedence over hash distribution. 
Hash distribution will be used only for packets that miss all FS entries.


0x10 0–63 KEY_CFG_IOVA I/O virtual address of DMA-able memory containing the distribution key composition. Used only when ENABLE 
is set to 1.
The first command with ENABLE set to one must provide a valid key. Later, if ENABLE is set to 1 and this field 
is NULL the table will use the key provided in previous command.







DPNI: Data Path Network Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 7-156
 


7.3.79 DPNI_ADD_CUSTOM_TPID


Command structure


Figure 173. DPNI_ADD_CUSTOM_TPID Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0275 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 32 31 16 15 0


0x08 TPID —


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 16-31 TPID An additional tag protocol identifier







DPNI: Data Path Network Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 7-157
 


7.3.80 DPNI_REMOVE_CUSTOM_TPID


Command structure


Figure 174. DPNI_REMOVE_CUSTOM_TPID Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0276 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 32 31 16 15 0


0x08 TPID —


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 16-31 TPID An additional tag protocol identifier







DPNI: Data Path Network Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 7-158
 


7.3.81 DPNI_GET_CUSTOM_TPID


Command structure


Figure 175. DPNI_GET_CUSTOM_TPID Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0277 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 32 31 16 15 0


0x08 TPID2 TPID1


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08
0-15 TPID1 Tag protocol identifier within the first VLAN tag.


16-31 TPID2 Tag protocol identifier within the second VLAN tag.







DPNI: Data Path Network Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 7-159
 


7.3.82 DPNI_DUMP_TABLE


Command structure


Figure 176. DPNI_DUMP_TABLE Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x27D1 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 32 31 16 15 0


0x08 — TABLE_INDEX TABLE_TYPE


63 0


0x10 SNAPSHOT_IOVA


63 32 31 0


0x18 — SIZE


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-15 TABLE_TYPE 1 : DPNI_FS_TABLE
2 : DPNI_MAC_TABLE
3: DPNI_QOS_TABLE
4 : DPNI_VLAN_TABLE


16-31 TABLE_INDEX Index of desired table to be dump.


0x10 0-63 SNAPSHOT_IOVA IOVA address.


0x18 0-31 SIZE Size to be dump.







DPNI: Data Path Network Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 7-160
 


Response structure


Figure 177. DPNI_DUMP_TABLE Response Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x27D1 TOKEN —


IN
T


R
_D


IS


STATUS P — SRCID


63 0


0x08 — NUM_ENTRIES


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-63 NUM_ENTRIES The number of entries.







DPNI: Data Path Network Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 7-161
 


7.3.83 DPNI_SET_SP_PROFILE


Sets up the desired Soft Parser Profile on the DPNI used. Soft Parser Profiles are used to identify custom 
protocols which are not recognized by the HW Parser. A SP Profile may contain zero or more custom 
protocols.


Command structure


Figure 178. DPNI_SET_SP_PROFILE Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x27E1 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 55 47 39 31 23 15 7 0


0x08 SP_PROFILE[7] SP_PROFILE[6] SP_PROFILE[5] SP_PROFILE[4] SP_PROFILE[3] SP_PROFILE[2] SP_PROFILE[1] SP_PROFILE[0]


63 8 7 0


0x10 — TYPE


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-7 SP_PROFILE[0] Soft Parser Profile name (must be a valid name for a defined profile). Maximum 
allowed length for this string is 8 characters long. If this parameter is an empty string 
(all zeros), then the Default SP Profile is set on this dpni.8-15 SP_PROFILE[1]


16-23 SP_PROFILE[2]


24-31 SP_PROFILE[3]


32-39 SP_PROFILE[4]


40-47 SP_PROFILE[5]


48-55 SP_PROFILE[6]


56-63 SP_PROFILE[7]


0x10 0-7 TYPE Set SP Profile on DPNI Ingress or Egress WRIOP parser:
DPNI_SET_SP_PROFILE_INGRESS - 0x1
DPNI_SET_SP_PROFILE_EGRESS - 0x2







DPNI: Data Path Network Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 7-162
 


7.3.84 DPNI_GET_QDID_EX


Extension for the function to get the Queuing Destination ID (QDID) that should be used for enqueue 
operations. This function must be used when the DPNI is created using multiple Tx channels to return one 
qdid for each channel.


Command structure


Figure 179. DPNI_GET_QDID_EX Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x27F1 TOKEN –


IN
T


R
_


D
IS


STATUS P – SRCID


63 8 7 0


0x08 — QUEUE_TYPE


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x10 0-7 QUEUE_TYPE Type of queue to receive QDID for:
1: DPNI_QUEUE_TX - Tx queue


All other values are reserved







DPNI: Data Path Network Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 7-163
 


Response structure


Figure 180. DPNI_GET_QDID_EX Response Description


All unspecified fields are cleared.


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x27F1 TOKEN –


IN
T


R
_D


IS


STATUS P – SRCID


63 47 31 16 15 0


0x08 QDID[3] QDID[2] QDID[1] QDID[0]


63 47 31 15 0


0x10 QDID[7] QDID[6] QDID[5] QDID[4]


63 47 31 15 0


0x18 QDID[11] QDID[10] QDID[9] QDID[8]


63 47 31 15 0


0x20 QDID[15] QDID[14] QDID[13] QDID[12]


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-15 QDID[0] Array of virtual QDID values that should be used as an argument in all enqueue 
operations.


16-31 QDID[1]


32-47 QDID[2]


48-63 QDID[3]


0x10 0-15 QDID[4]


16-31 QDID[5]


32-47 QDID[6]


48-63 QDID[7]


0x18 0-15 QDID[8]


16-31 QDID[9]


32-47 QDID[10]


48-63 QDID[11]


0x20 0-15 QDID[12]


16-31 QDID[13]


32-47 QDID[14]


48-63 QDID[15]







DPNI: Data Path Network Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 7-164
 


7.3.85 DPNI_SP_ENABLE


Enables or disables Soft Parser on the DPNI used.


Command structure


Figure 181. DPNI_SP_ENABLE Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x2801 TOKEN –


IN
T


R
_


D
IS


STATUS P – SRCID


63 16 15 8 7 0


0x08 — ENABLE TYPE


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x10 0-7 TYPE Enable/disable SP on DPNI Ingress or Egress WRIOP parser (or both using bitwise 
OR):
0x1 - DPNI_SET_SP_PROFILE_INGRESS
0x2 - DPNI_SET_SP_PROFILE_EGRESS 


8-15 ENABLE 0x0 - disable
0x1 - enable







DPNI: Data Path Network Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 7-165
 


7.3.86 DPNI_SET_QUEUE_TX_CONFIRMATION_MODE


Set queue Tx confirmation mode.  For each transmitted frame, the DPNI can either return the Frame 
Descriptor through the Tx confirmation queues, or just release the buffer to the buffer pool and not confirm 
the transmission explicitly.


If the transmitted frame is confirmed, the confirmation message can contain additional information like 
the Tx timestamp.


If released, the buffer pool (DPBP) to which the buffers are released is indicated in the Tx Frame 
Descriptor.


If the DPNI was created with DPNI_OPT_TX_FRM_RELEASE option, the only supported confirmation 
mode is DISABLE.


This command can only be executed while the DPNI is disabled.  Executing the command on an enabled 
DPNI will return an error.


Command structure


Figure 182. DPNI_SET_QUEUE_TX_CONFIRMATION_MODE Command Description


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x2811 TOKEN –


IN
T


R
_


D
IS


STATUS P – SRCID


63 40 39 32 31 0


0x08 — MODE — INDEX  CEETM_CH_IDX


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-7 CEETM_CH_IDX CEETM channel index


8-15 INDEX TX queue index


32-39 MODE Tx confirmation mode:
0: DPNI_CONF_AFFINE – for each set of Tx queues (queues with the same QDBIN), there is an affine Tx 
confirmation queue which is used to return descriptors for transmitted frames.
1: DPNI_CONF_SINGLE – there is a single Tx confirmation queue per DPNI. 'index' field in dpni_get_queue 
command will be ignored if this mode is used.
2: DPNI_CONF_NONE – there is no Tx confirmation message, the frame buffers are released to a buffer pool.







DPNI: Data Path Network Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 7-166
 


All unspecified fields are reserved and must be cleared (set to zero)







DPNI: Data Path Network Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 7-167
 


7.3.87 DPNI_GET_QUEUE_TX_CONFIRMATION_MODE


Get Tx confirmation mode for specified queue.


Command structure


Figure 183. DPNI_GET_QUEUE_TX_CONFIRMATION_MODE Command Description


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x2821 TOKEN –


IN
T


R
_


D
IS


STATUS P – SRCID


63 40 39 32 31 0


0x08 — INDEX  CEETM_CH_IDX


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-7 CEETM_CH_IDX CEETM channel index


8-15 INDEX TX queue index







DPNI: Data Path Network Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 7-168
 


Response structure


Figure 184. DPNI_GET_QUEUE_TX_CONFIRMATION_MODE Response Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x2821 TOKEN –


IN
T


R
_


D
IS


STATUS P – SRCID


63 40 39 32 31 0


0x08 — MODE — INDEX  CEETM_CH_IDX


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-7 CEETM_CH_IDX CEETM channel index


8-15 INDEX TX queue index


32-39 MODE Tx confirmation mode:
0: DPNI_CONF_AFFINE – for each set of Tx queues (queues with the same QDBIN), there is an affine Tx 
confirmation queue which is used to return descriptors for transmitted frames.
1: DPNI_CONF_SINGLE – there is a single Tx confirmation queue per DPNI. 'index' field in dpni_get_queue 
command will be ignored if this mode is used.
2: DPNI_CONF_NONE – there is no Tx confirmation message, the frame buffers are released to a buffer pool.







DPBP: Data Path Buffer Pool


DPAA2UM, Rev 50, 08/2022 


NXP Semiconductors 8-1
 


Chapter 8  DPBP: Data Path Buffer Pool
The DPBP configures a buffer pool that can be associated with DPAA2 network and accelerator interfaces; 
DPBP owners are responsible for seeding it with buffers. The DPBP is a DPAA2 infrastructure object used 
to configure a buffer pool that is compatible with QBMan hardware. The main role of the buffer manager 
in DPAA2 is to reduce the software overhead associated with managing free buffer pools for multiple 
DPAA2 objects. The buffer manager manages pools of data storage buffers, and allows the acquisition and 
release of these buffers on behalf of multiple processor cores, network interfaces, and accelerators in a 
multi-core SoC.


The DPBP is a DPAA2 infrastructure object used for buffer pool configuration, which is compatible with 
the QBMan hardware and represents it; however it doesn't monitor the buffer pool content that is managed 
by the GPP software. The main role of the buffer manager in DPAA2 is to reduce the overhead on software 
for managing free buffer pools for multiple DPAA2 objects. The Buffer Manager is managing pools of data 
storage buffers and allows the acquisition and release of these buffers on behalf of multiple processor 
cores, network interfaces, and accelerators in a multi-core SoC.


The DPBP object is required for receiving frames from a network interface; refer to the DPNI section for 
more information on the relationship between DPNI and DPBP.


Please refer to the API book for complete reference of available functions.


8.1 DPBP features


The following list summarizes the DPBP main features and capabilities:


• Maintains a list of software-provided free buffers that are used with DPAA2 objects


• Supports buffer pool depletion notifications


• Does not perform read or write access to the buffer


• Supports enable, disable, and reset operations







DPBP: Data Path Buffer Pool


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 8-2
 


8.2 DPBP command reference


This section contains the detailed programming model of DPBP commands.


8.2.1 DPBP_OPEN


Open a control session for the specified object.


This function can be used to open a control session for an already created object; an object may have been 
declared in the DPL or by invoking DPBP_CREATE command.


This function returns a unique authentication token, associated with the specific object ID; this token must 
be used in all subsequent commands for this specific object.


Command structure


The command format is shown in the figure below.


Figure 185. DPBP_OPEN Command Description


The following table describes the command fields.


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x8041 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 32 31 0


0x08 DPBP_ID


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Table 20. DPBP_OPEN Command Field Descriptions1


1 All unspecified fields are reserved and must be cleared (set to zero)


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-31 DPBP_ID DPBP unique ID







DPBP: Data Path Buffer Pool


DPAA2UM, Rev 50, 08/2022 


NXP Semiconductors 8-3
 


8.2.2 DPBP_CLOSE


Close the control session of the object.


After this function is called, no further operations are allowed on the object without opening a new control 
session.


Command structure


Figure 186. DPBP_CLOSE Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x8001 TOKEN —


IN
T


R
_D


IS


STATUS P — SRCID


63 0


0x08 —


63 0


0x10 —


63 0


0x18


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.







DPBP: Data Path Buffer Pool


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 8-4
 


8.2.3 DPBP_CREATE


This command creates and initializes an instance of DPBP according to the specified command 
parameters. This command is not required for DPBP instances that are created using the DPL.


For the CREATE command the caller must provide the authentication token of the parent container to 
which the object should be created and assigned. If the token is '0' the object will be assigned to the 
container that hosts the MC command portal executing this command.


The command returns a DPBP ID that can be used to OPEN or DESTROY the object.


The command format is shown in the figure below.


Command structure


Figure 187. DPBP_CREATE Command Description


The following table describes the command fields.


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x9041 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 0


0x08 —


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Table 21. DPBP_CREATE Command Field Descriptions1


1 All unspecified fields are reserved and must be cleared (set to zero)


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.







DPBP: Data Path Buffer Pool


DPAA2UM, Rev 50, 08/2022 


NXP Semiconductors 8-5
 


Response structure


Figure 8-1. DPBP_CREATE Response Description


The following table describes the response fields.


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 24 23 16 15 14 8 7 0


CMDID = 0x9041 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 32 31 0


0x08 — DPBP_ID


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Table 8-1. DPBP_CREATE Response Field Descriptions1


1 All unspecified fields are reserved.


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-31 DPBP_ID DPBP unique ID







DPBP: Data Path Buffer Pool


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 8-6
 


8.2.4 DPBP_DESTROY


This command destroys the DPBP object and releases all its resources. It must be invoked in the software 
context that created the object. The caller must provide the object id and the authentication token of the 
parent container that created the object. Note that the object can be assigned to another container and 
sending the authentication token of this container will return an error. 


All open authentication tokens to the object must be closed before calling the destroy command. 


Command structure


Figure 188. DPBP_DESTROY Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x9841 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 32 31 0


0x08 — DPBP_ID


63 0


0x10 —


63 0


0x18


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0–32 DPBP_ID ID of the DPBP object to destroy







DPBP: Data Path Buffer Pool


DPAA2UM, Rev 50, 08/2022 


NXP Semiconductors 8-7
 


8.2.5 DPBP_ENABLE


Command structure


Figure 189. DPBP_ENABLE Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0021 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 0


0x08 —


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.







DPBP: Data Path Buffer Pool


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 8-8
 


8.2.6 DPBP_DISABLE


Command structure


Figure 190. DPBP_DISABLE Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0031 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 0


0x08 —


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.







DPBP: Data Path Buffer Pool


DPAA2UM, Rev 50, 08/2022 


NXP Semiconductors 8-9
 


8.2.7 DPBP_IS_ENABLED


Command structure


Figure 191. DPBP_IS_ENABLED Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0061 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 0


0x08 —


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.







DPBP: Data Path Buffer Pool


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 8-10
 


Response structure


Figure 192. DPBP_IS_ENABLED Response Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0061 TOKEN —


IN
T


R
_D


IS


STATUS P — SRCID


63 1 0


0x08 — EN


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0 EN Returns '1' if object is enabled; '0' otherwise







DPBP: Data Path Buffer Pool


DPAA2UM, Rev 50, 08/2022 


NXP Semiconductors 8-11
 


8.2.8 DPBP_RESET


Command structure


Figure 193. DPBP_RESET Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0051 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 0


0x08 —


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.







DPBP: Data Path Buffer Pool


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 8-12
 


8.2.9 DPBP_SET_IRQ_ENABLE


Set overall interrupt state. Allows GPP software to control when interrupts are generated. Each interrupt 
can have up to 32 causes. The enable/disable control's the overall interrupt state. if the interrupt is disabled 
no causes will cause an interrupt.


Command structure


Figure 194. DPBP_SET_IRQ_ENABLE Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0121 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 40 39 32 31 1 0


0x08 – IRQ_INDEX – EN


63 0


0x10 –


63 0


0x18 –


63 0


0x20 –


63 0


0x28 –


63 0


0x30 –


63 0


0x38 –


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0 EN Interrupt state: set to ‘1’ to enable, ‘0’ to disable


32-39 IRQ_INDEX Identifies the interrupt index to configure







DPBP: Data Path Buffer Pool


DPAA2UM, Rev 50, 08/2022 


NXP Semiconductors 8-13
 


8.2.10 DPBP_GET_IRQ_ENABLE


Get overall interrupt state.


Command structure


Figure 195. DPBP_GET_IRQ_ENABLE Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0131 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 40 39 32 31 0


0x08 – IRQ_INDEX –


63 0


0x10 –


63 0


0x18 –


63 0


0x20 –


63 0


0x28 –


63 0


0x30 –


63 0


0x38 –


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 32-39 IRQ_INDEX Identifies the interrupt index to query







DPBP: Data Path Buffer Pool


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 8-14
 


Response structure


Figure 196. DPBP_GET_IRQ_ENABLE Response Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0131 TOKEN —


IN
T


R
_D


IS


STATUS P — SRCID


63 1 0


0x08 – EN


63 0


0x10 –


63 0


0x18 –


63 0


0x20 –


63 0


0x28 –


63 0


0x30 –


63 0


0x38 –


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0 EN This bit is set if the interrupt is enabled







DPBP: Data Path Buffer Pool


DPAA2UM, Rev 50, 08/2022 


NXP Semiconductors 8-15
 


8.2.11 DPBP_SET_IRQ_MASK


Set the interrupt mask. Every interrupt can have up to 32 causes and the interrupt model supports 
masking/unmasking each cause independently.


Command structure


Figure 197. DPBP_SET_IRQ_MASK Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0141 TOKEN —


IN
T


R
_D


IS


STATUS P — SRCID


63 40 39 32 31 0


0x08 – IRQ_INDEX MASK


63 0


0x10 –


63 0


0x18 –


63 0


0x20 –


63 0


0x28 –


63 0


0x30 –


63 0


0x38 –


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-31 MASK Event mask for triggering the interrupt; See GET_IRQ_STATUS command for 
specification of available events. For each bit in MASK:
0 = ignore event
1 = event is valid; signal the IRQ if this event occurs


32-39 IRQ_INDEX The interrupt index to configure







DPBP: Data Path Buffer Pool


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 8-16
 


8.2.12 DPBP_GET_IRQ_MASK


Get the interrupt mask. Every interrupt can have up to 32 causes and the interrupt model supports 
masking/unmasking each cause independently.


Command structure


Figure 198. DPBP_GET_IRQ_MASK Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0151 TOKEN —


IN
T


R
_D


IS


STATUS P — SRCID


63 40 39 32 31 0


0x08 – IRQ_INDEX –


63 0


0x10 –


63 0


0x18 –


63 0


0x20 –


63 0


0x28 –


63 0


0x30 –


63 0


0x38 –


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 32-39 IRQ_INDEX The interrupt index to query







DPBP: Data Path Buffer Pool


DPAA2UM, Rev 50, 08/2022 


NXP Semiconductors 8-17
 


Response structure


Figure 199. DPBP_GET_IRQ_MASK Response Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0151 TOKEN —


IN
T


R
_D


IS


STATUS P — SRCID


63 32 31 0


0x08 MASK


63 0


0x10 –


63 0


0x18 –


63 0


0x20 –


63 0


0x28 –


63 0


0x30 –


63 0


0x38 –


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-31 MASK Event mask for triggering the interrupt; See GET_IRQ_STATUS command for 
specification of available events. For each bit in MASK:
0 = ignore event
1 = event is valid; signal the IRQ if this event occurs







DPBP: Data Path Buffer Pool


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 8-18
 


8.2.13 DPBP_GET_IRQ_STATUS


Get the current status of pending events for the specified interrupt index.


Command structure


Figure 200. DPBP_GET_IRQ_STATUS Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0161 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 40 39 32 31 0


0x08 – IRQ_INDEX STATUS


63 0


0x10 –


63 0


0x18 –


63 0


0x20 –


63 0


0x28 –


63 0


0x30 –


63 0


0x38 –


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-31 STATUS Optional: any STATUS bits that are set will be cleared from pending state (removing 
the need for DPBP_CLEAR_IRQ_STATUS command). Note that the STATUS 
returned in the response is the status before the events are cleared.


Supported events: see response structure definition


32-39 IRQ_INDEX The interrupt index to query







DPBP: Data Path Buffer Pool


DPAA2UM, Rev 50, 08/2022 


NXP Semiconductors 8-19
 


Response structure


Figure 201. DPBP_GET_IRQ_STATUS Response Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0161 TOKEN —


IN
T


R
_D


IS


STATUS P — SRCID


63 32 31 0


0x08 STATUS


63 0


0x10 –


63 0


0x18 –


63 0


0x20 –


63 0


0x28 –


63 0


0x30 –


63 0


0x38 –


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-31 STATUS Events status mask, one bit per event:
0 = no interrupt pending
1 = interrupt pending


Supported events:
None







DPBP: Data Path Buffer Pool


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 8-20
 


8.2.14 DPBP_CLEAR_IRQ_STATUS


Clear (mark as handled) pending events of the specified interrupt index.


Command structure


Figure 202. DPBP_CLEAR_IRQ_STATUS Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0171 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 40 39 32 31 0


0x08 – IRQ_INDEX STATUS


63 0


0x10 –


63 0


0x18 –


63 0


0x20 –


63 0


0x28 –


63 0


0x30 –


63 0


0x38 –


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-31 STATUS Mask for clearing handled events; See GET_IRQ_STATUS command for specification 
of available events. For each bit in MASK:
0 = don’t change event status
1 = clear event status bit to indicate that it was handled


32-39 IRQ_INDEX The interrupt index to configure







DPBP: Data Path Buffer Pool


DPAA2UM, Rev 50, 08/2022 


NXP Semiconductors 8-21
 


8.2.15 DPBP_GET_ATTRIBUTES


Command structure


Figure 203. DPBP_GET_ATTRIBUTES Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0041 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 0


0x08 —


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.







DPBP: Data Path Buffer Pool


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 8-22
 


Response structure


Figure 204. DPBP_GET_ATTRIBUTES Response Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0041 TOKEN —


IN
T


R
_D


IS


STATUS P — SRCID


63 32 31 16 15 0


0x08 ID BPID —


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 16-31 BPID Hardware buffer pool ID; should be used as an argument in
acquire/release operations on buffers


32-63 ID DPBP object ID







DPBP: Data Path Buffer Pool


DPAA2UM, Rev 50, 08/2022 


NXP Semiconductors 8-23
 


8.2.16 DPBP_SET_NOTIFICATIONS


Command structure


Figure 205. DPBP_SET_NOTIFICATIONS Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x1B01 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 32 31 0


0x08 DEPLETION_EXIT DEPLETION_ENTRYY


63 32 31 0


0x10 SURPLUS_EXIT SURPLUS_ENTRY


63 16 15 0


0x18 — OPTIONS


63 0


0x20 MESSAGE_CTX


63 0


0x28 MESSAGE_IOVA


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0.31 DEPLETION_ENTRY below this threshold the pool is "depleted"; set it to '0' to disable it


32-63 DEPLETION_EXIT greater than or equal to this threshold the pool exit its “depleted" state


0x10 0-31 SURPLUS_ENTRY above this threshold the pool is in "surplus" state; set it to '0' to disable it


32-63 SURPLUS_EXIT less than or equal to this threshold the pool exit its "surplus" state


0x18 0-15 OPTIONS Mask of available options; use 'DPBP_NOTIF_OPT_<X>' values


0x20 0-63 MESSAGE_CTX  The context that will be part of the BPSCN message and will be written to 
'message_iova'


0x28 0-63 MESSAGE_IOVA MUST be given if either 'depletion_entry' or 'surplus_entry' is not '0' (enable); I/O virtual 
address (must be in DMA-able memory), must be 16B aligned.







DPBP: Data Path Buffer Pool


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 8-24
 


8.2.17 DPBP_GET_NOTIFICATIONS


Command structure


Figure 206. DPBP_GET_NOTIFICATIONS Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x1B11 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 0


0x08 —


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.







DPBP: Data Path Buffer Pool


DPAA2UM, Rev 50, 08/2022 


NXP Semiconductors 8-25
 


Response structure


Figure 207. DPBP_GET_NOTIFICATIONS Response Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x1B11 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 32 31 0


0x08 DEPLETION_EXIT DEPLETION_ENTRYY


63 32 31 0


0x10 SURPLUS_EXIT SURPLUS_ENTRY


63 16 15 0


0x18 — OPTIONS


63 0


0x20 MESSAGE_CTX


63 0


0x28 MESSAGE_IOVA


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0.31 DEPLETION_ENTRY below this threshold the pool is "depleted"; set to '0' to disable


32-63 DEPLETION_EXIT greater than or equal to this threshold the pool exit its “depleted" state


0x10 0-31 SURPLUS_ENTRY above this threshold the pool is in "surplus" state; set it to '0' to disable it


32-63 SURPLUS_EXIT less than or equal to this threshold the pool exit its "surplus" state


0x18 0-15 OPTIONS Mask of available options; use 'DPBP_NOTIF_OPT_<X>' values


0x20 0-63 MESSAGE_CTX  The context that will be part of the BPSCN message and will be written to 
'MESSAGE_IOVA'


0x28 0-63 MESSAGE_IOVA MUST be given if either 'DEPLETION_ENTRY' or 'SURPLUS_ENTRY' is not '0' 
(enable); I/O virtual address (must be in DMA-able memory), must be 16B aligned.







DPBP: Data Path Buffer Pool


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 8-26
 


8.2.18 DPBP_GET_API_VERSION


Command structure


Figure 208. DPBP_GET_API_VERSION Response Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0xA041 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 0


0x08 —


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.







DPBP: Data Path Buffer Pool


DPAA2UM, Rev 50, 08/2022 


NXP Semiconductors 8-27
 


Response structure


Figure 209. DPBP_GET_API_VERSION Response Description


All unspecified fields are reserved and must be cleared (set to zero)


Figure 210. DPBP_GET_API_VERSION Response Description


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0xA041 TOKEN —


IN
T


R
_D


IS


STATUS P — SRCID


63 32 31 16 15 0


0x08 — VERSION_MINOR VERSION_MAJOR


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-15 VERSION_MAJOR Major version of API


16-31 VERSION_MINOR Minor version of API







DPBP: Data Path Buffer Pool


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 8-28
 







DPIO: Data Path I/O


DPAA2UM, Rev 50, 08/2022 


NXP Semiconductors 9-1
 


Chapter 9  DPIO: Data Path I/O
The DPIO object allows configuration of the QBMan software portal, with optional notification 
capabilities. Software portals are used by GPP software to communicate with the QBMan. The DPIO 
object’s main purpose is to enable the GPP to perform I/O – enqueue and dequeue operations, as well as 
buffer release and acquire operations – using QBMan. Usually, a DPIO object can be affined to a GPP 
core-thread, to prevent any need for multi-core synchronization on the software portal.


The DPIO object is mandatory for sending frames to, and receiving frames from, a network interface; refer 
to the DPNI section for more information on the relationship between DPNI and DPIO.


9.1 DPIO features


The following list summarizes the DPIO main features and capabilities:


• Supports configuration of the QBMan software portal for GPP I/O operations


• Supports data availability notifications in the frame queues associated with the DPIO object


• Supports data availability notifications in the DPCON objects associated with the DPIO object


• Supports up to eight priorities for scheduling data availability notifications; having a DPIO object 
with multiple priorities, for example, allows for different notification priorities to be set for 
different DPNI receive queues; assuming that they are associated with the same DPIO object


• Supports enable, disable, and reset operations







DPIO: Data Path I/O


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 9-2
 


9.2 DPIO command reference


This section contains the detailed programming model of DPIO commands.


9.2.1 DPIO_OPEN


Open a control session for the specified object.


This function can be used to open a control session for an already created object; an object may have been 
declared in the DPL or by invoking DPIO_CREATE command.


This function returns a unique authentication token, associated with the specific object ID; this token must 
be used in all subsequent commands for this specific object.


Command structure


Figure 211. DPIO_OPEN Command Description


The following table describes the command fields.


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x8031 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 32 31 0


0x08 DPIO_ID


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Table 22. DPIO_OPEN Command Field Descriptions1


1 All unspecified fields are reserved and must be cleared (set to zero)


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-31 DPIO_ID DPIO unique ID







DPIO: Data Path I/O


DPAA2UM, Rev 50, 08/2022 


NXP Semiconductors 9-3
 


9.2.2 DPIO_CLOSE


Close the control session of the object.


After this function is called, no further operations are allowed on the object without opening a new control 
session.


Command structure


Figure 212. DPIO_CLOSE Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x8001 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 0


0x08 —


63 0


0x10 —


63 0


0x18


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.







DPIO: Data Path I/O


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 9-4
 


9.2.3 DPIO_CREATE


This command creates and initializes an instance of DPIO according to the specified command parameters. 
This command is not required for DPIO instances that are created using the DPL.


For the CREATE command the caller must provide the authentication token of the parent container to 
which the object should be created and assigned. If the token is '0' the object will be assigned to the 
container that hosts the MC command portal executing this command.


The command returns a DPIO ID that can be used to OPEN or DESTROY the object.


The command format is shown in the figure below.


Command structure


Figure 213. DPIO_CREATE Command Description


The following table describes the command fields.


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x9031 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 40 39 32 31 18 17 16 15 0


0x08 — NUM_PRIORITIE
S


— CHANN
EL_MO


DE


—


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Table 23. DPIO_CREATE Command Field Descriptions1


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.







DPIO: Data Path I/O


DPAA2UM, Rev 50, 08/2022 


NXP Semiconductors 9-5
 


Response structure


Figure 9-1. DPIO_CREATE Response Description


The following table describes the response fields.


0x08 16-17 CHANNEL_MODE Notification channel mode. Select one of the supported values below:
0x0 = DPIO_NO_CHANNEL - No support for notification channel
0x1 = DPIO_LOCAL_CHANNEL - Notifications on data availability can be received by 
a dedicated channel in the DPIO; user should point the queue's destination in the 
relevant interface to this DPIO


32-39 NUM_PRIORITIES Number of priorities for the notification channel (1-8);
relevant only if 'channel_mode = DPIO_LOCAL_CHANNEL'. The default value is 2.


1 All unspecified fields are reserved and must be cleared (set to zero).


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 24 23 16 15 14 8 7 0


CMDID = 0x9031 TOKEN —


IN
T


R
_D


IS


STATUS P — SRCID


63 32 31 0


0x08 — DPIO_ID


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Table 9-1. DPIO_CREATE Response Field Descriptions1


1 All unspecified fields are reserved.


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-31 DPIO_ID DPIO unique ID


Table 23. DPIO_CREATE Command Field Descriptions1


Offset Bits Name Description







DPIO: Data Path I/O


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 9-6
 


9.2.4 DPIO_DESTROY


This command destroys the DPIO object and releases all its resources. It must be invoked in the software 
context that created the object. The caller must provide the object id and the authentication token of the 
parent container that created the object. Note that the object can be assigned to another container and 
sending the authentication token of this container will return an error.


All open authentication tokens to the object must be closed before calling the destroy command. 


After this function is called, no further operations are allowed on the object.


Command structure


Figure 214. DPIO_DESTROY Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x9831 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 32 31 0


0x08 — DPIO_ID


63 0


0x10 —


63 0


0x18


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0–32 DPIO_ID ID of the DPIO object to destroy







DPIO: Data Path I/O


DPAA2UM, Rev 50, 08/2022 


NXP Semiconductors 9-7
 


9.2.5 DPIO_ENABLE
Command structure


Figure 215. DPIO_ENABLE Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0021 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 0


0x08 —


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.







DPIO: Data Path I/O


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 9-8
 


9.2.6 DPIO_DISABLE


Command structure


Figure 216. DPIO_DISABLE Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0031 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 0


0x08 —


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.







DPIO: Data Path I/O


DPAA2UM, Rev 50, 08/2022 


NXP Semiconductors 9-9
 


9.2.7 DPIO_IS_ENABLED


Command structure


Figure 217. DPIO_IS_ENABLED Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0061 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 0


0x08 —


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.







DPIO: Data Path I/O


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 9-10
 


Response structure


Figure 218. DPIO_IS_ENABLED Response Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0061 TOKEN —


IN
T


R
_D


IS


STATUS P — SRCID


63 1 0


0x08 — EN


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0 EN Returns '1' if object is enabled; '0' otherwise







DPIO: Data Path I/O


DPAA2UM, Rev 50, 08/2022 


NXP Semiconductors 9-11
 


9.2.8 DPIO_RESET


Command structure


Figure 219. DPIO_RESET Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0051 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 0


0x08 —


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.







DPIO: Data Path I/O


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 9-12
 


9.2.9 DPIO_SET_IRQ_ENABLE


Set overall interrupt state. Allows GPP software to control when interrupts are generated. Each interrupt 
can have up to 32 causes. The enable/disable control's the overall interrupt state. if the interrupt is disabled 
no causes will cause an interrupt.


Command structure


Figure 220. DPIO_SET_IRQ_ENABLE Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0121 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 40 39 32 31 1 0


0x08 – IRQ_INDEX – EN


63 0


0x10 –


63 0


0x18 –


63 0


0x20 –


63 0


0x28 –


63 0


0x30 –


63 0


0x38 –


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0 EN Interrupt state: set to ‘1’ to enable, ‘0’ to disable


32-39 IRQ_INDEX Identifies the interrupt index to configure







DPIO: Data Path I/O


DPAA2UM, Rev 50, 08/2022 


NXP Semiconductors 9-13
 


9.2.10 DPIO_GET_IRQ_ENABLE


Get overall interrupt state.


Command structure


Figure 221. DPIO_GET_IRQ_ENABLE Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0131 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 40 39 32 31 0


0x08 – IRQ_INDEX –


63 0


0x10 –


63 0


0x18 –


63 0


0x20 –


63 0


0x28 –


63 0


0x30 –


63 0


0x38 –


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 32-39 IRQ_INDEX Identifies the interrupt index to query







DPIO: Data Path I/O


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 9-14
 


Response structure


Figure 222. DPIO_GET_IRQ_ENABLE Response Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0131 TOKEN —


IN
T


R
_D


IS


STATUS P — SRCID


63 1 0


0x08 – EN


63 0


0x10 –


63 0


0x18 –


63 0


0x20 –


63 0


0x28 –


63 0


0x30 –


63 0


0x38 –


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0 EN This bit is set if the interrupt is enabled







DPIO: Data Path I/O


DPAA2UM, Rev 50, 08/2022 


NXP Semiconductors 9-15
 


9.2.11 DPIO_SET_IRQ_MASK


Set the interrupt mask. Every interrupt can have up to 32 causes and the interrupt model supports 
masking/unmasking each cause independently.


Command structure


Figure 223. DPIO_SET_IRQ_MASK Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0141 TOKEN —


IN
T


R
_D


IS


STATUS P — SRCID


63 40 39 32 31 0


0x08 – IRQ_INDEX MASK


63 0


0x10 –


63 0


0x18 –


63 0


0x20 –


63 0


0x28 –


63 0


0x30 –


63 0


0x38 –


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-31 MASK Event mask for triggering the interrupt; See GET_IRQ_STATUS command for 
specification of available events. For each bit in MASK:
0 = ignore event
1 = event is valid; signal the IRQ if this event occurs


32-39 IRQ_INDEX The interrupt index to configure







DPIO: Data Path I/O


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 9-16
 


9.2.12 DPIO_GET_IRQ_MASK


Get the interrupt mask. Every interrupt can have up to 32 causes and the interrupt model supports 
masking/unmasking each cause independently.


Command structure


Figure 224. DPIO_GET_IRQ_MASK Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0151 TOKEN —


IN
T


R
_D


IS


STATUS P — SRCID


63 40 39 32 31 0


0x08 – IRQ_INDEX –


63 0


0x10 –


63 0


0x18 –


63 0


0x20 –


63 0


0x28 –


63 0


0x30 –


63 0


0x38 –


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 32-39 IRQ_INDEX The interrupt index to query







DPIO: Data Path I/O


DPAA2UM, Rev 50, 08/2022 


NXP Semiconductors 9-17
 


Response structure


Figure 225. DPIO_GET_IRQ_MASK Response Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0151 TOKEN —


IN
T


R
_D


IS


STATUS P — SRCID


63 32 31 0


0x08 MASK


63 0


0x10 –


63 0


0x18 –


63 0


0x20 –


63 0


0x28 –


63 0


0x30 –


63 0


0x38 –


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-31 MASK Event mask for triggering the interrupt; See GET_IRQ_STATUS command for 
specification of available events. For each bit in MASK:
0 = ignore event
1 = event is valid; signal the IRQ if this event occurs







DPIO: Data Path I/O


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 9-18
 


9.2.13 DPIO_GET_IRQ_STATUS


Get the current status of pending events for the specified interrupt index.


Command structure


Figure 226. DPIO_GET_IRQ_STATUS Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0161 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 40 39 32 31 0


0x08 – IRQ_INDEX STATUS


63 0


0x10 –


63 0


0x18 –


63 0


0x20 –


63 0


0x28 –


63 0


0x30 –


63 0


0x38 –


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-31 STATUS Optional: any STATUS bits that are set will be cleared from pending state (removing 
the need for DPIO_CLEAR_IRQ_STATUS command). Note that the STATUS returned 
in the response is the status before the events are cleared.


Supported events: see response structure definition


32-39 IRQ_INDEX The interrupt index to query







DPIO: Data Path I/O


DPAA2UM, Rev 50, 08/2022 


NXP Semiconductors 9-19
 


Response structure


Figure 227. DPIO_GET_IRQ_STATUS Response Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0161 TOKEN —


IN
T


R
_D


IS


STATUS P — SRCID


63 32 31 0


0x08 STATUS


63 0


0x10 –


63 0


0x18 –


63 0


0x20 –


63 0


0x28 –


63 0


0x30 –


63 0


0x38 –


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-31 STATUS Events status mask, one bit per event:
0 = no interrupt pending
1 = interrupt pending


Supported events:
None







DPIO: Data Path I/O


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 9-20
 


9.2.14 DPIO_CLEAR_IRQ_STATUS


Clear (mark as handled) pending events of the specified interrupt index.


Command structure


Figure 228. DPIO_CLEAR_IRQ_STATUS Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0171 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 40 39 32 31 0


0x08 – IRQ_INDEX STATUS


63 0


0x10 –


63 0


0x18 –


63 0


0x20 –


63 0


0x28 –


63 0


0x30 –


63 0


0x38 –


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-31 STATUS Mask for clearing handled events; See GET_IRQ_STATUS command for specification 
of available events. For each bit in MASK:
0 = don’t change event status
1 = clear event status bit to indicate that it was handled


32-39 IRQ_INDEX The interrupt index to configure


0x10 - 
0x38


reserved







DPIO: Data Path I/O


DPAA2UM, Rev 50, 08/2022 


NXP Semiconductors 9-21
 


9.2.15 DPIO_GET_ATTRIBUTES


Command structure


Figure 229. DPIO_GET_ATTRIBUTES Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0041 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 0


0x08 —


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.







DPIO: Data Path I/O


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 9-22
 


Response structure


Figure 230. DPIO_GET_ATTRIBUTES Response Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0041 TOKEN —


IN
T


R
_D


IS


STATUS P — SRCID


63 60 59 56 55 48 47 32 31 0


0x08 — CHANN
EL_MO


DE


NUM_PRIORITIE
S


QBMAN_PORTAL_ID ID


63 0


0x10 QBMAN_PORTAL_CE_PADDR


63 0


0x18 QBMAN_PORTAL_CI_PADDR


63 32 31 0


0x20 — QBMAN_VERSION


63 32 31 0


0x28 — CLK


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-31 ID DPIO object ID


32-47 QBMAN_PORTAL_ID Software portal ID


48-55 NUM_PRIORITIES Number of priorities for the notification channel (1-8); relevant only if 
'CHANNEL_MODE = DPIO_LOCAL_CHANNEL'


56-59 CHANNEL_MODE Notification channel mode:
0x0 = DPIO_NO_CHANNEL - No support for notification channel
0x1 = DPIO_LOCAL_CHANNEL - Notifications on data availability can be received by 
a dedicated channel in the DPIO; user should point the queue's destination in the 
relevant interface to this DPIO


0x10 0-63 QBMAN_PORTAL_CE_PADDR Physical address of the software portal cache-enabled area


0x18 0-63 QBAMN_PORTAL_CI_PADDR Physical address of the software portal cache-inhibited area


0x20 0-31 QBMAN_VERSION QBMAN hardware IP version


0x28 0-31 CLK QBMAN clock frequency value in Hz







DPIO: Data Path I/O


DPAA2UM, Rev 50, 08/2022 


NXP Semiconductors 9-23
 


9.2.16 DPIO_SET_STASHING_DESTINATION 


Command structure 


Figure 231. DPIO_SET_STASHING_DESTINATION Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x1201 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 8 7 0


0x08 — SDEST


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-7 SDEST stashing destination value 







DPIO: Data Path I/O


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 9-24
 


9.2.17 DPIO_GET_STASHING_DESTINATION 


Command structure 


Figure 232. DPIO_GET_STASHING_DESTINATION Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x1211 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 0


0x08 —


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above. 







DPIO: Data Path I/O


DPAA2UM, Rev 50, 08/2022 


NXP Semiconductors 9-25
 


Response structure 


Figure 233. DPIO_GET_STASHING_DESTINATION Response Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x1211 TOKEN —


IN
T


R
_D


IS


STATUS P — SRCID


63 8 7 0


0x08 — SDEST


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-7 SDEST stashing destination value 







DPIO: Data Path I/O


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 9-26
 


9.2.18 DPIO_ADD_STATIC_DEQUEUE_CHANNEL 


Command structure 


Figure 234. DPIO_ADD_STATIC_DEQUEUE_CHANNEL Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x1221 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 32 31 0


0x08 — DPCON_ID


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above. 


0x08 0-31 DPCON_ID DPCON object ID







DPIO: Data Path I/O


DPAA2UM, Rev 50, 08/2022 


NXP Semiconductors 9-27
 


Response structure 


Figure 235. DPIO_ADD_STATIC_DEQUEUE_CHANNEL Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x1221 TOKEN —


IN
T


R
_D


IS


STATUS P — SRCID


63 8 7 0


0x08 — CHANNEL_INDE
X


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above. 


0x08 0-7 CHANNEL_INDEX Returned channel index to be used in qbman API







DPIO: Data Path I/O


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 9-28
 


9.2.19 DPIO_REMOVE_STATIC_DEQUEUE_CHANNEL 


Command structure 


Figure 236. DPIO_REMOVE_STATIC_DEQUEUE_CHANNEL Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x1231 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 32 31 0


0x08 — DPCON_ID


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above. 


0x08 0-31 DPCON_ID DPCON object ID







DPIO: Data Path I/O


DPAA2UM, Rev 50, 08/2022 


NXP Semiconductors 9-29
 


9.2.20 DPIO_GET_API_VERSION


Command structure


Figure 237. DPIO_GET_API_VERSION Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0xA031 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 0


0x08 —


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.







DPIO: Data Path I/O


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 9-30
 


Response structure


Figure 238. DPIO_GET_API_VERSION Response Description


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0xA031 TOKEN —


IN
T


R
_D


IS


STATUS P — SRCID


63 32 31 16 15 0


0x08 — VERSION_MINOR VERSION_MAJOR


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-15 VERSION_MAJOR Major version of API


16-31 VERSION_MINOR Minor version of API







DPIO: Data Path I/O


DPAA2UM, Rev 50, 08/2022 


NXP Semiconductors 9-31
 


9.2.21 DPIO_SET_STASHING_DESTINATION_SOURCE 


On some SOC (example: LX2160a) there is a hardware feature that let the core set the correct stashing 
destination automatically.


This feature when available is enabled automatically.


Attempting to enable this feature on an SOC that do not support it will not cause an error but will have no 
effect. The user must read the value to verify if the command effectively enabled this feature.


Command structure 


Figure 239. DPIO_SET_STASHING_DESTINATION_SOURCE Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x1241 TOKEN —
IN


T
R


_
D


IS
STATUS P — SRCID


63 7 0


0x08 — SOURCE


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above. 


0x08 0-7 SOURCE Stashing destination source of programming can be set to manual (0) or automatic (1). 
The automatic source stashing is supported on very few SOC at this time (LX2).







DPIO: Data Path I/O


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 9-32
 


9.2.22 DPIO_GET_STASHING_DESTINATION_SOURCE


Read the current state of the stashing source: 


0: manual


1: automatic


Command structure


Figure 240. DPIO_GET_STASHING_DESTINATION_SOURCE Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x1251 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 0


0x08 —


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.







DPIO: Data Path I/O


DPAA2UM, Rev 50, 08/2022 


NXP Semiconductors 9-33
 


Response structure


Figure 241. DPIO_GET_STASHING_DESTINATION_SOURCE Response Description


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x1251 TOKEN —


IN
T


R
_D


IS


STATUS P — SRCID


63 7 0


0x08 — SOURCE


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-7 SOURCE Stashing destination source of programming value, manual (0) or automatic (1). The 
automatic source stashing is supported on very few SOC at this time (LX2).







DPIO: Data Path I/O


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 9-34
 


9.2.23 DPIO_SET_STASHING_DESTINATION_BY_CORE_ID


Set the stashing destination using the SOC core id.


This is an alternative to directly setting the stashing destination and abstract the core id to stashing 
destination mapping. This core id to stashing destination mapping varies dependent on the SOC.


Note that the first core id is Zero.


Command structure 


Figure 242. DPIO_SET_STASHING_DESTINATION_BY_CORE_ID Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x1261 TOKEN —


IN
T


R
_D


IS


STATUS P — SRCID


63 7 0


0x08 — CORE_ID


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above. 


0x08 0-7 CORE_ID Setting the stashing destination for this core index. The first core id is zero.







DPDBG: Data Path Debugging


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 10-1
 


Chapter 10  DPDBG: Data Path Debugging
The DPDBG object help us and users to debug MC issues by dumping information about MC objects and 
memory usage at any moment in MC running. Also the DPDBG object permit changing of some MC 
modules which could only be set at boot time from DPC file.


10.1 DPDBG features


The following list summarizes the DPDBG main features:


• Dump information about MC objects and memory usage


• Set on/off debugging printing modules at runtime like DDR logging, UART console printing, 
timestamping


• Change printing verbosity and UART id at runtime







DPDBG: Data Path Debugging


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 10-2
 


10.2 DPDBG command reference


This section contains detailed programming model of DPDBG commands.


10.2.1 DPDBG_OPEN


Open a control session for the specified object.


This function can be used to open a control session for an already created object; an object may have been 
declared in the DPL or by invoking DPDBG_CREATE command.


This function returns a unique authentication token, associated with the specific object ID; this token must 
be used in all subsequent commands for this specific object.


Command structure


Figure 243. DPDBG_OPEN Command Description


The following table describes the command fields.
1-


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x80F1 TOKEN —


IN
T


R
_D


IS


STATUS P — SRCID


63 32 31 0


0x08 DPDBG_ID


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Table 24. DPDBG_OPEN Command Field Descriptions1


1 All unspecified fields are reserved and must be cleared (set to zero)


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-31 DPDBG_ID DPDBG unique ID







DPDBG: Data Path Debugging


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 10-3
 


10.2.2 DPDBG_CLOSE


Close the control session of the object.


After this function is called, no further operations are allowed on the object without opening a new control 
session.


Command structure


Figure 244. DPDBG_CLOSE Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x8001 TOKEN —


IN
T


R
_D


IS


STATUS P — SRCID


63 0


0x08 —


63 0


0x10 —


63 0


0x18


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.







DPDBG: Data Path Debugging


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 10-4
 


10.2.3 DPDBG_CREATE


This command creates and initializes an instance of DPDBG according to the specified command 
parameters. This command is not required for DPDBG instances that are created using the DPL.


For the CREATE command the caller must provide the authentication token of the parent container to 
which the object should be created and assigned. In order to create the DPDBG object the parent container 
must be a root container. If the token is '0' the object will be assigned to the container that hosts the MC 
command portal executing this command.


Only one DPDBG object can be created in MC (singleton object).


The command generate a DP ID that can be used to OPEN or DESTROY the object.


The command format is shown in the figure below.


Command structure


Figure 245. DPDBG_CREATE Command Description


The following table describes the command fields.


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x90F1 TOKEN —


IN
T


R
_D


IS


STATUS P — SRCID


63 32 31 0


0x08 CONTAINER_ID DPDBG_ID


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Table 25. DPDBG_CREATE Command Field Description


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-31 DPDBG_ID ID of DPDBG object. 


32-63 CONTAINER_ID The id of the container in which the DPDBG object will be created. Must be a root 
container.







DPDBG: Data Path Debugging


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 10-5
 


10.2.4 DPDBG_DESTROY


This command destroys the DPDBG object and releases all its resources. It must be invoked in the 
software context that created the object. The caller must provide the object id and the authentication token 
of the parent container that created the object. Note that the object can be assigned to another container 
and sending the authentication token of this container will return an error.


All open authentication tokens to the object must be closed before calling the destroy command. 


After this function is called, no further operations are allowed on the object.


Command structure


Figure 246. DPDBG_DESTROY Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x98F1 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 32 31 0


0x08 — DPDBG_ID


63 0


0x10 —


63 0


0x18


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0–31 DPDBG_ID ID of the DPDBG object to destroy







DPDBG: Data Path Debugging


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 10-6
 


10.2.5 DPMAC_DUMP


Dump information about MC objects and memory usage. The information dumped are printed to MC log 
(UART/DDR) on a logging level greater or equal with INFO (INFO/DEBUG/GLOBAL).


Command structure


Figure 247. DPDBG_DUMP Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x1301 TOKEN —


IN
T


R
_D


IS


STATUS P — SRCID


63 32 31 0


0x08 OBJ_ID[0:3] OBJ_ID


63 0


0x10 OBJ_ID[4:11]


63 32 31 0


0x18 – OBJ_ID[12:15]


63 0


0x20 –


63 0


0x28 –


63 0


0x30 –


63 0


0x38 –


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-31 OBJ_ID The id of the object to dump. In case of dumping memory information this field must 
be set to zero.


32-63 OBJ_TYPE Type of the object/module to dump. In case of dumping memory information this field 
must be set as “mem” otherwise set this field with the type of the object you want to 
dump.
Ex: Dump information about DPNI1
OBJ_TYPE: “dpni”
OBJ_ID: 1


0x10 0-63


0x18 0-31







DPDBG: Data Path Debugging


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 10-7
 


10.2.6 DPDBG_SET


Change the state of some MC module at runtime. You can change what, how and where MC log 
information are printed. 


Command structure


Figure 248. DPDBG_SET Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x1401 TOKEN —


IN
T


R
_D


IS


STATUS P — SRCID


63 32 31 0


0x08 MODULE[0:3] STATE


63 0


0x10 MODULE[4:11]


63 32 31 0


0x18 – MODULE[12:15]


63 0


0x20 –


63 0


0x28 –


63 0


0x30 –


63 0


0x38 –


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-31 STATE The state that will be sated to the selected MODULE. May vary from 0 to 5 depending 
on the MODULE.


32-63 MODULE The module to set with the value STATE. The available modules are: console, 
log_mode, timestamp, uart_id, log_level.
For “console” module the STATE can be 0 or 1: “0” turn the MC UART console printing 
OFF and “1” turn it ON.
For “log_mode” module the STATE can be 0 or 1: “0” turn the DDR logging OFF and 
“1” turn it ON.
For “timestamp” module the STATE can be 0 or 1: “0” turn the MC commands 
timestamping OFF and “1” turn it ON.
For “uart_id” module the STATE can be in [0, 4]: “0” means MC UART console printing 
OFF and [1, 4] change the MC UART console id.
For “log_level” module the state can be in [0, 5]:
“0” - GLOBAL
“1” - DEBUG
“2” - INFO
“3” - WARNING
“4” - ERROR
“5” - CRITICAL
This option change the verbosity of MC information logging.


0x10 0-63


0x18 0-31







DPDBG: Data Path Debugging


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 10-8
 


10.2.7 DPDBG_GET_ATTRIBUTES


Command structure


Figure 249. DPDBG_GET_ATTRIBUTES Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0041 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 0


0x08 —


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.







DPDBG: Data Path Debugging


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 10-9
 


Response structure


Figure 250. DPDBG_GET_ATTRIBUTES Response Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0041 TOKEN —


IN
T


R
_D


IS


STATUS P — SRCID


63 32 31 0


0x08 — DPDBG_ID


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-31 DPDBG_ID ID of the DPDBG object







DPDBG: Data Path Debugging


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 10-10
 


10.2.8 DPDBG_GET_API_VERSION


Command structure


Figure 251. DPDBG_GET_API_VERSION Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0xA0F1 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 0


0x08 —


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.







DPDBG: Data Path Debugging


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 10-11
 


Response structure


Figure 252. DPDBG_GET_API_VERSION Response Description


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0xA0C1 TOKEN —


IN
T


R
_D


IS


STATUS P — SRCID


63 32 31 16 15 0


0x08 — VERSION_MINOR VERSION_MAJOR


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-15 VERSION_MAJOR Major version of API


16-31 VERSION_MINOR Minor version of API







DPDBG: Data Path Debugging


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 10-12
 







DPCON: Data Path Concentrator


DPAA2UM, Rev 50, 08/2022 


NXP Semiconductors 11-1
 


Chapter 11  DPCON: Data Path Concentrator
The DPCON object provides advanced scheduling of ingress packets, including scheduling between 
different network interfaces. It enables advanced scheduling options for ingress traffic coming from one 
or more network interfaces, and provides better flexibility for the GPP software to handle received packets. 
The use of DPCON objects is optional – it is not required for basic receive operations; refer to the DPNI 
section for more information on the relationship between DPNI and DPCON.


If assigned to the AIOP container (contains MC objects owned by AIOP) the DPCON object switches to 
AIOP mode and it provides the interface to prioritize the ingress traffic to AIOP.


The main reason for introducing this mode is to allow the AIOP software to implement a custom QoS 
scheme.


In this mode the DPCON object can only be used by AIOP SW and it doesn't provide the notification 
option. Note that QBMan has several (the number is platform depended) Direct Command Portals (DCP) 
connected to AIOP HW block. In AIOP mode the DPCON can't be connected or linked with DPNI or 
DPCI objects. This mode is strictly reserved for AIOP.


If the DPCON object is reassigned to a non-AIOP context the DPCON switches back to normal mode 
(GPP).


Since the DPCON in AIOP mode operates on a different resource type ('dcp.aiop.ch') than normal GPP 
mode ('swpch') it also affects the maximum number of concentrator objects - see 22.2.1.1 for resource 
types. Note that when assigning a DPCON object AIOP, the channel resources are bind and released based 
on the destination and source container type: AIOP or non-AIOP. In other words the DPCON object will 
use on a single channel resource type. Also, during assign operation the number of priorities is maintained 
- the number is constant during the object lifetime. This means that when the DPCON gets back to it's 
creation container the same SWP Channel resource type will be allocated.


For LS2088A there can be maximum 63 DPCON objects in AIOP mode and for LS1088A only 15.


11.1 DPCON features


The following list summarizes the DPCON main features and capabilities:


• Supports configuration of QBMan channels for advanced scheduling of ingress packets from one 
or more network interfaces


• Supports up to eight scheduling priorities; having a DPCON object with multiple priorities, for 
example, allows for different priorities to be set for the receive queues of two different DPNI 
objects


• Supports data availability notifications through a selected DPIO object


• Supports enable, disable, and reset operations


• Supports QBMan DCP AIOP Channels with up to 8 priorities







DPCON: Data Path Concentrator


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 11-2
 


11.2 DPCON command reference


This section contains the detailed programming model of DPCON commands.


11.2.1 DPCON_OPEN


Open a control session for the specified object.


This function can be used to open a control session for an already created object; an object may have been 
declared in the DPL or by invoking DPCON_CREATE command.


This function returns a unique authentication token, associated with the specific object ID; this token must 
be used in all subsequent commands for this specific object.


Command structure


The command format is shown in the figure below.


Figure 253. DPCON_OPEN Command Description


The following table describes the command fields.
1-


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x8081 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 32 31 0


0x08 DPCON_ID


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Table 26. DPCON_OPEN Command Field Descriptions1


1 All unspecified fields are reserved and must be cleared (set to zero)


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-31 DPCON_ID DPCON unique ID







DPCON: Data Path Concentrator


DPAA2UM, Rev 50, 08/2022 


NXP Semiconductors 11-3
 


11.2.2 DPCON_CLOSE


Close the control session of the object.


After this function is called, no further operations are allowed on the object without opening a new control 
session.


Command structure


Figure 254. DPCON_CLOSE Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x8001 TOKEN —


IN
T


R
_D


IS


STATUS P — SRCID


63 0


0x08 —


63 0


0x10 —


63 0


0x18


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 - 
0x38


Reserved







DPCON: Data Path Concentrator


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 11-4
 


11.2.3 DPCON_CREATE


This command creates and initializes an instance of DPCON according to the specified command 
parameters. This command is not required for DPCON instances that are created using the DPL.


For the CREATE command the caller must provide the authentication token of the parent container to 
which the object should be created and assigned. If the token is '0' the object will be assigned to the 
container that hosts the MC command portal executing this command.


The command returns a DPCON ID that can be used to OPEN or DESTROY the object.


The command format is shown in the figure below.


Command structure


Figure 255. DPCON_CREATE Command Description


The following table describes the command fields.
1-5


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x9081 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 8 7 0


0x08 — NUM_PRIORITIE
S


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Table 27. DPCON_CREATE Command Field Descriptions1


1 All unspecified fields are reserved and must be cleared (set to zero)


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-7 NUM_PRIORITIES Number of priorities for the DPCON channel (1-8). The default value is 2.







DPCON: Data Path Concentrator


DPAA2UM, Rev 50, 08/2022 


NXP Semiconductors 11-5
 


Response structure


Figure 11-1. DPCON_CREATE Response Description


The following table describes the response fields.


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 24 23 16 15 14 8 7 0


CMDID = 0x9081 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 32 31 0


0x08 — DPCON_ID


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Table 11-1. DPCON_CREATE Response Field Descriptions1


1 All unspecified fields are reserved.


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-31 DPCON_ID DPCON unique ID







DPCON: Data Path Concentrator


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 11-6
 


11.2.4 DPCON_DESTROY


This command destroys the DPCON object and releases all its resources. It must be invoked in the 
software context that created the object. The caller must provide the object id and the authentication token 
of the parent container that created the object. Note that the object can be assigned to another container 
and sending the authentication token of this container will return an error.


All open authentication tokens to the object must be closed before calling the destroy command. 


After this function is called, no further operations are allowed on the object.


Command structure


Figure 256. DPCON_DESTROY Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x9881 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 32 31 0


0x08 — DPCON_ID


63 0


0x10 —


63 0


0x18


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0–32 DPCON_ID ID of the DPCON object to destroy







DPCON: Data Path Concentrator


DPAA2UM, Rev 50, 08/2022 


NXP Semiconductors 11-7
 


11.2.5 DPCON_ENABLE


Command structure


Figure 257. DPCON_ENABLE Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0021 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 0


0x08 —


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.







DPCON: Data Path Concentrator


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 11-8
 


11.2.6 DPCON_DISABLE


Command structure


Figure 258. DPCON_DISABLE Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0031 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 0


0x08 —


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.







DPCON: Data Path Concentrator


DPAA2UM, Rev 50, 08/2022 


NXP Semiconductors 11-9
 


11.2.7 DPCON_IS_ENABLED


Command structure


Figure 259. DPCON_IS_ENABLED Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0061 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 0


0x08 —


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.







DPCON: Data Path Concentrator


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 11-10
 


Response structure


Figure 260. DPCON_IS_ENABLED Response Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0061 TOKEN —


IN
T


R
_D


IS


STATUS P — SRCID


63 1 0


0x08 — EN


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0 EN Returns '1' if object is enabled; '0' otherwise







DPCON: Data Path Concentrator


DPAA2UM, Rev 50, 08/2022 


NXP Semiconductors 11-11
 


11.2.8 DPCON_RESET


Command structure


Figure 261. DPCON_RESET Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0051 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 0


0x08 —


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.







DPCON: Data Path Concentrator


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 11-12
 


11.2.9 DPCON_SET_IRQ_ENABLE


Set overall interrupt state. Allows GPP software to control when interrupts are generated. Each interrupt 
can have up to 32 causes. The enable/disable control's the overall interrupt state. if the interrupt is disabled 
no causes will cause an interrupt.


Command structure


Figure 262. DPCON_SET_IRQ_ENABLE Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0121 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 40 39 32 31 1 0


0x08 – IRQ_INDEX – EN


63 0


0x10 –


63 0


0x18 –


63 0


0x20 –


63 0


0x28 –


63 0


0x30 –


63 0


0x38 –


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0 EN Interrupt state: set to ‘1’ to enable, ‘0’ to disable


32-39 IRQ_INDEX Identifies the interrupt index to configure







DPCON: Data Path Concentrator


DPAA2UM, Rev 50, 08/2022 


NXP Semiconductors 11-13
 


11.2.10 DPCON_GET_IRQ_ENABLE


Get overall interrupt state.


Command structure


Figure 263. DPCON_GET_IRQ_ENABLE Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0131 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 40 39 32 31 0


0x08 – IRQ_INDEX –


63 0


0x10 –


63 0


0x18 –


63 0


0x20 –


63 0


0x28 –


63 0


0x30 –


63 0


0x38 –


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 32-39 IRQ_INDEX Identifies the interrupt index to query







DPCON: Data Path Concentrator


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 11-14
 


Response structure


Figure 264. DPCON_GET_IRQ_ENABLE Response Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0131 TOKEN —


IN
T


R
_D


IS


STATUS P — SRCID


63 1 0


0x08 – EN


63 0


0x10 –


63 0


0x18 –


63 0


0x20 –


63 0


0x28 –


63 0


0x30 –


63 0


0x38 –


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0 EN This bit is set if the interrupt is enabled







DPCON: Data Path Concentrator


DPAA2UM, Rev 50, 08/2022 


NXP Semiconductors 11-15
 


11.2.11 DPCON_SET_IRQ_MASK


Set the interrupt mask. Every interrupt can have up to 32 causes and the interrupt model supports 
masking/unmasking each cause independently.


Command structure


Figure 265. DPCON_SET_IRQ_MASK Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0141 TOKEN —


IN
T


R
_D


IS


STATUS P — SRCID


63 40 39 32 31 0


0x08 – IRQ_INDEX MASK


63 0


0x10 –


63 0


0x18 –


63 0


0x20 –


63 0


0x28 –


63 0


0x30 –


63 0


0x38 –


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-31 MASK Event mask for triggering the interrupt; See GET_IRQ_STATUS command for 
specification of available events. For each bit in MASK:
0 = ignore event
1 = event is valid; signal the IRQ if this event occurs


32-39 IRQ_INDEX The interrupt index to configure







DPCON: Data Path Concentrator


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 11-16
 


11.2.12 DPCON_GET_IRQ_MASK


Get the interrupt mask. Every interrupt can have up to 32 causes and the interrupt model supports 
masking/unmasking each cause independently.


Command structure


Figure 266. DPCON_GET_IRQ_MASK Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0151 TOKEN —


IN
T


R
_D


IS


STATUS P — SRCID


63 40 39 32 31 0


0x08 – IRQ_INDEX –


63 0


0x10 –


63 0


0x18 –


63 0


0x20 –


63 0


0x28 –


63 0


0x30 –


63 0


0x38 –


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 32-39 IRQ_INDEX The interrupt index to query







DPCON: Data Path Concentrator


DPAA2UM, Rev 50, 08/2022 


NXP Semiconductors 11-17
 


Response structure


Figure 267. DPCON_GET_IRQ_MASK Response Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0151 TOKEN —


IN
T


R
_D


IS


STATUS P — SRCID


63 32 31 0


0x08 MASK


63 0


0x10 –


63 0


0x18 –


63 0


0x20 –


63 0


0x28 –


63 0


0x30 –


63 0


0x38 –


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-31 MASK Event mask for triggering the interrupt; See GET_IRQ_STATUS command for 
specification of available events. For each bit in MASK:
0 = ignore event
1 = event is valid; signal the IRQ if this event occurs







DPCON: Data Path Concentrator


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 11-18
 


11.2.13 DPCON_GET_IRQ_STATUS


Get the current status of pending events for the specified interrupt index.


Command structure


Figure 268. DPCON_GET_IRQ_STATUS Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0161 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 40 39 32 31 0


0x08 – IRQ_INDEX STATUS


63 0


0x10 –


63 0


0x18 –


63 0


0x20 –


63 0


0x28 –


63 0


0x30 –


63 0


0x38 –


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-31 STATUS Optional: any STATUS bits that are set will be cleared from pending state (removing 
the need for DPCON_CLEAR_IRQ_STATUS command). Note that the STATUS 
returned in the response is the status before the events are cleared.


Supported events: see response structure definition


32-39 IRQ_INDEX The interrupt index to query







DPCON: Data Path Concentrator


DPAA2UM, Rev 50, 08/2022 


NXP Semiconductors 11-19
 


Response structure


Figure 269. DPCON_GET_IRQ_STATUS Response Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0161 TOKEN —


IN
T


R
_D


IS


STATUS P — SRCID


63 32 31 0


0x08 STATUS


63 0


0x10 –


63 0


0x18 –


63 0


0x20 –


63 0


0x28 –


63 0


0x30 –


63 0


0x38 –


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-31 STATUS Events status mask, one bit per event:
0 = no interrupt pending
1 = interrupt pending


Supported events:
None







DPCON: Data Path Concentrator


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 11-20
 


11.2.14 DPCON_CLEAR_IRQ_STATUS


Clear (mark as handled) pending events of the specified interrupt index.


Command structure


Figure 270. DPCON_CLEAR_IRQ_STATUS Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0171 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 40 39 32 31 0


0x08 – IRQ_INDEX STATUS


63 0


0x10 –


63 0


0x18 –


63 0


0x20 –


63 0


0x28 –


63 0


0x30 –


63 0


0x38 –


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-31 STATUS Mask for clearing handled events; See GET_IRQ_STATUS command for specification 
of available events. For each bit in MASK:
0 = don’t change event status
1 = clear event status bit to indicate that it was handled


32-39 IRQ_INDEX The interrupt index to configure







DPCON: Data Path Concentrator


DPAA2UM, Rev 50, 08/2022 


NXP Semiconductors 11-21
 


11.2.15 DPCON_GET_ATTRIBUTES


Command structure


Figure 271. DPCON_GET_ATTRIBUTES Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0041 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 0


0x08 —


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.







DPCON: Data Path Concentrator


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 11-22
 


Response structure


Figure 272. DPCON_GET_ATTRIBUTES Response Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0041 TOKEN —


IN
T


R
_D


IS


STATUS P — SRCID


63 56 55 48 47 32 31 0


0x08 — NUM_PRIORITIES QBMAN_CH_ID ID


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-31 ID DPCON object ID


32-47 QBMAN_CH_ID Channel ID to be used by dequeue operation


48-55 NUM_PRIORITIES Number of priorities for the DPCON channel (1-8)







DPCON: Data Path Concentrator


DPAA2UM, Rev 50, 08/2022 


NXP Semiconductors 11-23
 


11.2.16 DPCON_SET_NOTIFICATION


Command structure


Figure 273. DPCON_SET_NOTIFICATION Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x1001 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 40 39 32 31 0


0x08 — PRIORITY DPIO_ID


63 0


0x10 USER_CTX


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-31 DPIO_ID DPIO object ID; must be configured with a notification channel


32-39 PRIORITY Priority selection within the DPIO channel; valid values
are 0-7, depending on the number of priorities in that channel


0x10 0-63 USER_CTX User context value provided with each CDAN message







DPCON: Data Path Concentrator


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 11-24
 


11.2.17 DPCON_GET_API_VERSION


Command structure


Figure 274. DPCON_GET_API_VERSION Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0xA081 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 0


0x08 —


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.







DPCON: Data Path Concentrator


DPAA2UM, Rev 50, 08/2022 


NXP Semiconductors 11-25
 


Response structure


Figure 275. DPCON_GET_API_VERSION Response Description


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0xA081 TOKEN —


IN
T


R
_D


IS


STATUS P — SRCID


63 32 31 16 15 0


0x08 — VERSION_MINOR VERSION_MAJOR


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-15 VERSION_MAJOR Major version of API


16-31 VERSION_MINOR Minor version of API







DPCON: Data Path Concentrator


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 11-26
 







DPCI: Data Path Communication Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 12-1
 


Chapter 12  DPCI: Data Path Communication Interface
The MC exports a generic interface for inter-partition communication (IPC). The DPCI enables 
frame-based communication between different software contexts, utilizing the DPAA2 QBMan 
infrastructure. The communication protocol is completely free, unlike DPNI, which is a standard network 
interface. DPCI objects may be connected in pairs (one DPCI in each software context) to form a 
communication link. This type of communication may serve basic management/control needs between 
GPP software and AIOP software, or between two separate GPP software contexts.


DPCI objects can be linked with DPCON objects but only if both are in AIOP container.The reason is that 
DPCON objects in AIOP container are exclusively used by Advanced I/O processor and allow 
implementing QoS on DPCI object receive queues-which implies that the DPCI object must be owned by 
AIOP container also.


By default, Rx queues start with a default priority, which can be overridden by DPCI_SET_Rx_QUEUE 
command.After DPCI_RESET the Rx queue priority values are reset to the default values.


Please refer to the API book for complete reference of available functions.


12.1 DPCI features


The following list summarizes the DPCI main features and capabilities:


• Supports up to two scheduling priorities for outgoing frames.


• Supports up to two scheduling priorities for incoming frames.


• Allows interaction with one or more Data Path I/O (DPIO) objects for dequeueing/enqueueing 
frame descriptors (FD) and for acquiring/releasing buffers.


• Supports different scheduling options for processing received packets:


— Queues can be configured either in ‘parked’ mode (default), or attached to a DPIO object, or 
attached to DPCON object


• Supports link state indication – a communication link is active only when both DPCI objects are 
initialized and enabled.


• Supports enable, disable, and reset operations


• Supports for QoS–only if both DPCI and DPCON are in AIOP context.


12.2 DPCI functional description


12.2.1 Connecting DPCI objects


The communication channel consists of two DPCI objects, each on a different software context. Each 
DPCI object owns up to two receive queues, matching the number of priorities requested when the object 
was created. The two objects should be connected using either DPL declaration or through DPRC 
CONNECT operation. The connection (link) will be in an active state (‘link up’) only after both DPCI 
objects are enabled. Once the link is up, each software context may query the DPCI attributes to find the 
queue IDs that should be used in enqueue and dequeue operations.







DPCI: Data Path Communication Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 12-2
 


12.2.2 Relationship with DPIO and DPCON objects


Each of the two DPCI receive queues may be associated with either a DPIO object or a DPCON object. 
This serves for notification purposes and/or advanced scheduling of received frames.


DPIO objects provide configuration of a QBMan software portal, with an option for data availability 
notifications. GPP software is free to relate DPIO objects to threads, or to share them between cores in 
SMP mode but this requires synchronized access to the QBMan software portal. It is possible to associate 
multiple DPIO objects with the same DPCI, in order to spread traffic from this DPCI across multiple 
QBMan software portals.


GPP software may decide to enable DPIO notifications, or it may dequeue frames based on its own 
scheduled polling logic. It is also possible for one GPP entity to receive the notification from one DPIO 
and alert another entity that will dequeue the packets using a different DPIO.


DPCON objects are used for concentrating traffic from several interfaces into sub-interfaces, mainly for 
scheduling purposes. It is possible to connect DPCON with DPIO so it generates notifications to the GPP


DPCI objects can be linked with DPCON objects that are in AIOP mode (DPCON utilizes a DCP AIOP 
channel instead of a SWP Channel.


Note that the QBMan software portal is used both for enqueue/dequeue operations on packets, and for 
acquire/release buffer operations. GPP software is responsible for the portal’s operation mode and usage 
i.e. sharing vs. affinity, association of queue context, etc. 


DPIO objects may serve multiple interfaces. This is not limited to multiple DPCI objects; it can also be 
extended to network interfaces and accelerator interfaces. For example, the same DPIO may serve both a 
DPNI and a DPCI, assuming they are assigned to the same software context (container).


12.2.3 Buffer requirements


A DPCI does not need to be associated with a DPBP object; in addition, buffers for the communication 
messages (frames) may or may not be managed by buffer pools. However, these buffers must be shared by 
the two communicating software contexts, as the communication channel does not involve copying of the 
frame.


12.3 DPCI command reference


This section contains detailed programming model of DPCI commands.







DPCI: Data Path Communication Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 12-3
 


12.3.1 DPCI_OPEN


Open a control session for the specified object.


This function can be used to open a control session for an already created object; an object may have been 
declared in the DPL or by invoking DPCI_CREATE command.


This function returns a unique authentication token, associated with the specific object ID; this token must 
be used in all subsequent commands for this specific object.


Command structure


The command format is shown in the figure below.


Figure 276. DPCI_OPEN Command Description


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x8071 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 32 31 0


0x08 DPCI_ID


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Table 28. DPCI_OPEN Command Field Descriptions1


1 All unspecified fields are reserved and must be cleared (set to zero)


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-31 DPCI_ID DPCI unique ID







DPCI: Data Path Communication Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 12-4
 


12.3.2 DPCI_CLOSE


Close the control session of the object.


After this function is called, no further operations are allowed on the object without opening a new control 
session.


Command structure


Figure 277. DPCI_CLOSE Command Description


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x8001 TOKEN —


IN
T


R
_D


IS


STATUS P — SRCID


63 0


0x08 —


63 0


0x10 —


63 0


0x18


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Table 29. DPCI_CLOSE Command Field Descriptions1


1 All unspecified fields are reserved and must be cleared (set to zero)


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.







DPCI: Data Path Communication Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 12-5
 


12.3.3 DPCI_CREATE


This command creates and initializes an instance of DPCI according to the specified command parameters. 
This command is not required for DPCI instances that are created using the DPL.


For the CREATE command the caller must provide the authentication token of the parent container to 
which the object should be created and assigned. If the token is '0' the object will be assigned to the 
container that hosts the MC command portal executing this command.


The command returns a DPCI ID that can be used to OPEN or DESTROY the object.


Command structure


Figure 278. DPCI_CREATE Command Description


1-5


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0X9071 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 8 7 0


0x08 — NUM_OF_PRIOR
ITIES


63 0


0x10 —


63 32 31 0


0x18 — OPTIONS (details in the table below)


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Table 30. DPCI_CREATE Command Field Descriptions1


1 All unspecified fields are reserved and must be cleared (set to zero).


Offset Bits Name Description


0x00 0–63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0–7 NUM_OF_PRIORITIES Number of receive priorities (queues) for the DPCI; note, that the number of transmit priorities 
(queues) is determined by the number of receive priorities of the peer DPCI object. A value bigger 
than 0 is required. The maximum number of priorities is 4.


0x18 0–31 OPTIONS – select one or more of the options below. Valid only in DPL create.


6 DPCI_OPT_HAS_OPR Controls availability of Order Restoration:
0 – Order Restoration is not available. Command DPCI_SET_OPR will return an error.
1 – Order Restoration is available on this DPCI. Note that this option is not available for LS2080A 


7 DPCI_OPT_OPR_SHARED 0 – Order Restoration Points can be set per each index or priority.
1 – Order Restoration Points are shared for the entire DPCI.







DPCI: Data Path Communication Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 12-6
 


Response structure


Figure 279. DPCI_CREATE Response Description


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 24 23 16 15 14 8 7 0


CMDID = 0x9072 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 32 31 0


0x08 — DPCI_ID


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Table 12-1. DPCI_CREATE Response Field Descriptions1


1 All unspecified fields are reserved.


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-31 DPCI_ID DPCI unique ID







DPCI: Data Path Communication Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 12-7
 


12.3.4 DPCI_DESTROY


This command destroys the DPCI object and releases all its resources. It must be invoked in the software 
context that created the object. The caller must provide the object id and the authentication token of the 
parent container that created the object. Note that the object can be assigned to another container and 
sending the authentication token of this container will return an error.


All open authentication tokens to the object must be closed before calling the destroy command. 


After this function is called, no further operations are allowed on the object.


Command structure


Figure 280. DPCI_DESTROY Command Description


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x9871 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 32 31 0


0x08 — DPCI_ID


63 0


0x10 —


63 0


0x18


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Table 31. DPCI_DESTROY Command Field Descriptions1


1 All unspecified fields are reserved and must be cleared (set to zero)


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0–32 DPCI_ID ID of the DPCI object to destroy







DPCI: Data Path Communication Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 12-8
 


12.3.5 DPCI_ENABLE


Command structure


Figure 281. DPCI_ENABLE Command Description


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0021 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 0


0x08 —


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Table 32. DPCI_ENABLE Command Field Descriptions1


1 All unspecified fields are reserved and must be cleared (set to zero)


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.







DPCI: Data Path Communication Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 12-9
 


12.3.6 DPCI_DISABLE


Command structure


Figure 282. DPCI_DISABLE Command Description


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0031 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 0


0x08 —


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Table 33. DPCI_DISABLE Command Field Descriptions1


1 All unspecified fields are reserved and must be cleared (set to zero)


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.







DPCI: Data Path Communication Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 12-10
 


12.3.7 DPCI_IS_ENABLED


Command structure


Figure 283. DPCI_IS_ENABLED Command Description


 


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0061 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 0


0x08 —


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Table 34. DPCI_IS_ENABLED Command Field Descriptions1


1 All unspecified fields are reserved and must be cleared (set to zero)


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.







DPCI: Data Path Communication Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 12-11
 


Response structure


Figure 284. DPCI_IS_ENABLED Response Description


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0061 TOKEN —


IN
T


R
_D


IS


STATUS P — SRCID


63 1 0


0x08 — EN


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Table 35. DPCI_IS_ENABLED Response Field Descriptions1


1 All unspecified fields are reserved and must be cleared (set to zero)


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0 EN Returns '1' if object is enabled; '0' otherwise







DPCI: Data Path Communication Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 12-12
 


12.3.8 DPCI_RESET
Command structure


Figure 285. DPCI_RESET Command Description


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0051 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 0


0x08 —


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Table 36. DPCI_RESET Command Field Descriptions1


1 All unspecified fields are reserved and must be cleared (set to zero)


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.







DPCI: Data Path Communication Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 12-13
 


12.3.9 DPCI_SET_IRQ_ENABLE


Set overall interrupt state. Allows GPP software to control when interrupts are generated. Each interrupt 
can have up to 32 causes. The enable/disable control's the overall interrupt state. if the interrupt is disabled 
no causes will cause an interrupt.


Command structure


Figure 286. DPCI_SET_IRQ_ENABLE Command Description


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0121 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 40 39 32 31 1 0


0x08 – IRQ_INDEX – EN


63 0


0x10 –


63 0


0x18 –


63 0


0x20 –


63 0


0x28 –


63 0


0x30 –


63 0


0x38 –


Table 37. DPCI_SET_IRQ_ENABLE Command Field Descriptions1


1 All unspecified fields are reserved and must be cleared (set to zero)


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0 EN Interrupt state: set to ‘1’ to enable, ‘0’ to disable


32-39 IRQ_INDEX Identifies the interrupt index to configure







DPCI: Data Path Communication Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 12-14
 


12.3.10 DPCI_GET_IRQ_ENABLE


Get overall interrupt state.


Command structure


Figure 287. DPCI_GET_IRQ_ENABLE Command Description


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0131 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 40 39 32 31 0


0x08 – IRQ_INDEX –


63 0


0x10 –


63 0


0x18 –


63 0


0x20 –


63 0


0x28 –


63 0


0x30 –


63 0


0x38 –


Table 38. DPCI_GET_IRQ_ENABLE Command Field Descriptions1


1 All unspecified fields are reserved and must be cleared (set to zero)


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 32-39 IRQ_INDEX Identifies the interrupt index to query







DPCI: Data Path Communication Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 12-15
 


Response structure


Figure 288. DPCI_GET_IRQ_ENABLE Response Description


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0131 TOKEN —


IN
T


R
_D


IS


STATUS P — SRCID


63 1 0


0x08 – EN


63 0


0x10 –


63 0


0x18 –


63 0


0x20 –


63 0


0x28 –


63 0


0x30 –


63 0


0x38 –


Table 39. DPCI_GET_IRQ_ENABLE Response Field Descriptions1


1 All unspecified fields are reserved and must be cleared (set to zero).


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0 EN This bit is set if the interrupt is enabled







DPCI: Data Path Communication Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 12-16
 


12.3.11 DPCI_SET_IRQ_MASK


Set the interrupt mask. Every interrupt can have up to 32 causes and the interrupt model supports 
masking/unmasking each cause independently.


Command structure


Figure 289. DPCI_SET_IRQ_MASK Command Description


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0141 TOKEN —


IN
T


R
_D


IS


STATUS P — SRCID


63 40 39 32 31 0


0x08 – IRQ_INDEX MASK


63 0


0x10 –


63 0


0x18 –


63 0


0x20 –


63 0


0x28 –


63 0


0x30 –


63 0


0x38 –


Table 40. DPCI_SET_IRQ_MASK Command Field Descriptions1


1 All unspecified fields are reserved and must be cleared (set to zero).


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-31 MASK Event mask for triggering the interrupt; See GET_IRQ_STATUS command for 
specification of available events. For each bit in MASK:
0 = ignore event
1 = event is valid; signal the IRQ if this event occurs


32-39 IRQ_INDEX The interrupt index to configure







DPCI: Data Path Communication Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 12-17
 


12.3.12 DPCI_GET_IRQ_MASK


Get the interrupt mask. Every interrupt can have up to 32 causes and the interrupt model supports 
masking/unmasking each cause independently.


Command structure


Figure 290. DPCI_GET_IRQ_MASK Command Description


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0151 TOKEN —


IN
T


R
_D


IS


STATUS P — SRCID


63 40 39 32 31 0


0x08 – IRQ_INDEX –


63 0


0x10 –


63 0


0x18 –


63 0


0x20 –


63 0


0x28 –


63 0


0x30 –


63 0


0x38 –


Table 41. DPCI_GET_IRQ_MASK Command Field Descriptions1


1 All unspecified fields are reserved and must be cleared (set to zero).


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 32-39 IRQ_INDEX The interrupt index to query







DPCI: Data Path Communication Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 12-18
 


Response structure


Figure 291. DPCI_GET_IRQ_MASK Response Description


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0151 TOKEN —


IN
T


R
_D


IS


STATUS P — SRCID


63 32 31 0


0x08 MASK


63 0


0x10 –


63 0


0x18 –


63 0


0x20 –


63 0


0x28 –


63 0


0x30 –


63 0


0x38 –


Table 42. DPCI_GET_IRQ_MASK Response Field Descriptions1


1 All unspecified fields are reserved and must be cleared (set to zero).


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-31 MASK Event mask for triggering the interrupt; See GET_IRQ_STATUS command for 
specification of available events. For each bit in MASK:
0 = ignore event
1 = event is valid; signal the IRQ if this event occurs







DPCI: Data Path Communication Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 12-19
 


12.3.13 DPCI_GET_IRQ_STATUS


Get the current status of pending events for the specified interrupt index.


Command structure


Figure 292. DPCI_GET_IRQ_STATUS Command Description


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0161 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 40 39 32 31 0


0x08 – IRQ_INDEX STATUS


63 0


0x10 –


63 0


0x18 –


63 0


0x20 –


63 0


0x28 –


63 0


0x30 –


63 0


0x38 –


Table 43. DPCI_GET_IRQ_STATUS Command Field Descriptions1


1 All unspecified fields are reserved and must be cleared (set to zero).


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-31 STATUS Optional: any STATUS bits that are set will be cleared from pending state (removing 
the need for DPCI_CLEAR_IRQ_STATUS command). Note that the STATUS returned 
in the response is the status before the events are cleared.


Supported events: see response structure definition


32-39 IRQ_INDEX The interrupt index to query







DPCI: Data Path Communication Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 12-20
 


Response structure


Figure 293. DPCI_GET_IRQ_STATUS Response Description


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0161 TOKEN —


IN
T


R
_D


IS


STATUS P — SRCID


63 32 31 0


0x08 STATUS


63 0


0x10 –


63 0


0x18 –


63 0


0x20 –


63 0


0x28 –


63 0


0x30 –


63 0


0x38 –


Table 44. DPCI_GET_IRQ_STATUS Response Field Descriptions1


1 All unspecified fields are reserved and must be cleared (set to zero).


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-31 STATUS Events status mask, one bit per event:
0 = no interrupt pending
1 = interrupt pending


Supported events for IRQ 0:
Bit 0: DPCI_IRQ_EVENT_LINK_CHANGED – indicates a change in the link state
Bit 1: DPCI_IRQ_EVENT_CONNECTED – indicates a peer was connected
Bit 2: DPCI_IRQ_EVENT_DISCONNECTED – indicates a peer was disconnected







DPCI: Data Path Communication Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 12-21
 


12.3.14 DPCI_CLEAR_IRQ_STATUS


Clear (mark as handled) pending events of the specified interrupt index.


Command structure


Figure 294. DPCI_CLEAR_IRQ_STATUS Command Description


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0171 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 40 39 32 31 0


0x08 – IRQ_INDEX STATUS


63 0


0x10 –


63 0


0x18 –


63 0


0x20 –


63 0


0x28 –


63 0


0x30 –


63 0


0x38 –


Table 45. DPCI_CLEAR_IRQ_STATUS Command Field Descriptions1


1 All unspecified fields are reserved and must be cleared (set to zero).


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-31 STATUS Mask for clearing handled events; See GET_IRQ_STATUS command for specification 
of available events. For each bit in MASK:
0 = don’t change event status
1 = clear event status bit to indicate that it was handled


32-39 IRQ_INDEX The interrupt index to configure







DPCI: Data Path Communication Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 12-22
 


12.3.15 DPCI_GET_ATTRIBUTES


Command structure


Figure 295. DPCI_GET_ATTRIBUTES Command Description


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0041 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 0


0x08 —


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Table 46. DPCI_GET_ATTRIBUTES Command Field Descriptions1


1 All unspecified fields are reserved and must be cleared (set to zero).


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.







DPCI: Data Path Communication Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 12-23
 


Response structure


Figure 296. DPCI_GET_ATTRIBUTES Response Description


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0041 TOKEN —


IN
T


R
_D


IS


STATUS P — SRCID


63 56 55 48 47 32 31 0


0x08 — NUM_OF_PRIOR
ITIES


— ID


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Table 47. DPCI_GET_ATTRIBUTES Response Field Descriptions1


1 All unspecified fields are reserved and must be cleared (set to zero).


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-31 ID DPCI object ID


48-55 NUM_OF_PRIORITIES Number of receive priorities







DPCI: Data Path Communication Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 12-24
 


12.3.16 DPCI_GET_PEER_ATTRIBUTES


Command structure


Figure 297. DPCI_GET_PEER_ATTRIBUTES Command Description


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0E21 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 0


0x08 —


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Table 48. DPCI_GET_PEER_ATTRIBUTES Command Field Descriptions1


1 All unspecified fields are reserved and must be cleared (set to zero).


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.







DPCI: Data Path Communication Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 12-25
 


Response structure


Figure 298. DPCI_GET_PEER_ATTRIBUTES Response Description


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0041 TOKEN —


IN
T


R
_D


IS


STATUS P — SRCID


63 32 31 0


0x08 — PEER_ID


63 8 7 0


0x10 — NUM_OF_
PRIORITIES


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Table 49. DPCI_GET_PEER_ATTRIBUTES Response Field Descriptions1


1 All unspecified fields are reserved and must be cleared (set to zero).


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-31 PEER_ID DPCI peer ID; if no peer is connected returns (-1)


0x10 0-7 NUM_OF_PRIORITIES The peer's number of receive priorities; determines the
number of transmit priorities for the local DPCI object







DPCI: Data Path Communication Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 12-26
 


12.3.17 DPCI_GET_LINK_STATE


Command structure


Figure 299. DPCI_GET_LINK_STATE Command Description


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0E11 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 0


0x08 —


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Table 50. DPCI_GET_LINK_STATE Command Field Descriptions1


1 All unspecified fields are reserved and must be cleared (set to zero).


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.







DPCI: Data Path Communication Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 12-27
 


Response structure


Figure 300. DPCI_GET_LINK_STATE Response Description


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0E11 TOKEN —


IN
T


R
_D


IS


STATUS P — SRCID


63 1 0


0x08 — UP


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Table 51. DPCI_GET_LINK_STATE Response Field Descriptions1


1 All unspecified fields are reserved and must be cleared (set to zero).


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0 UP Returned link state; returns '1' if link is up, '0' otherwise







DPCI: Data Path Communication Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 12-28
 


12.3.18 DPCI_SET_RX_QUEUE


As a limitation, this command will fail if it is called twice without resetting the object. See Section 28.2, 
“Reconfiguring FQs associated with a channel.”


Command structure


Figure 301. DPCI_SET_RX_QUEUE Command Description


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0E01 TOKEN —


IN
T


R
_D


IS


STATUS P — SRCID


63 53 52 51 48 47 40 39 32 31 0


0x08 —


O
P


E


TYPE PRIORITY DEST_PRIORITY DEST_ID


63 0


0x10 USER_CTX


63 32 31 0


0x18 — OPTIONS


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Table 52. DPCI_SET_RX_QUEUE Command Field Descriptions1


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-31 DEST_ID Either DPIO ID or DPCON ID, depending on the destination type


32-39 DEST_PRIORITY Priority selection within the DPIO or DPCON channel; valid values are 0-1 or 0-7, depending on the number of 
priorities in that channel; not relevant for 'DPCI_DEST_NONE' option, except if this DPCI is in AIOP context.
In that case the DCI_SET_RX_QUEUE can be used to override the default assigned priority.


40-47 PRIORITY Select the queue relative to number of priorities configured at DPCI creation; use DPCI_ALL_QUEUES to configure 
all Rx queues identically.


48-51 DEST_TYPE Destination type:
0x0 = DPCI_DEST_NONE - Unassigned destination; The queue is set in parked mode and does not generate 


FQDAN notifications; user is expected to dequeue from the queue based on polling or other user-defined method
0x1 = DPCI_DEST_DPIO- The queue is set in schedule mode and generates FQDAN notifications to the specified 


DPIO; user is expected to dequeue from the queue only after notification is received
0x2 = DPCI_DEST_DPCON - The queue is set in schedule mode and does not generate FQDAN notifications, but 


is connected to the specified DPCON object; user is expected to dequeue from the DPCON channel


52 ORDER_PRESERV
ATION_EN (OPE)


Order preservation configuration for the rx queue
Valid only if 'DPCI_QUEUE_OPT_ORDER_PRESERVATION' is contained in ‘options'







DPCI: Data Path Communication Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 12-29
 


12.3.19 DPCI_GET_RX_QUEUE


Command structure


Figure 302. DPCI_GET_RX_QUEUE Command Description


0x10 0-63 USER_CTX User context value provided in the frame descriptor of each
dequeued frame;
valid only if 'DPCI_QUEUE_OPT_USER_CTX' is contained in 'options'


0x18 0-32 OPTIONS Flags representing the suggested modifications to the queue;
Use any combination of 'DPCI_QUEUE_OPT_<X>' flags:
bit 0: DPCI_QUEUE_OPT_USER_CTX - Select to modify the user's context associated with the queue
bit 1: DPCI_QUEUE_OPT_DEST - Select to modify the queue's destination
bit 2: DPCI_QUEUE_OPT_HOLD_ACTIVE - Select to set the queue hold active mode


1 All unspecified fields are reserved and must be cleared (set to zero).


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0E31 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 48 47 40 39 0


0x08 — PRIORITY —


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Table 53. DPCI_GET_RX_QUEUE Command Field Descriptions1


1 All unspecified fields are reserved and must be cleared (set to zero).


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 40-47 PRIORITY Select the queue relative to number of priorities configured at DPCI creation


Table 52. DPCI_SET_RX_QUEUE Command Field Descriptions1


Offset Bits Name Description







DPCI: Data Path Communication Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 12-30
 


Response structure


Figure 303. DPCI_GET_RX_QUEUE Response Description


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0E31 TOKEN —


IN
T


R
_D


IS


STATUS P — SRCID


63 52 51 48 47 40 39 32 31 0


0x08 — DEST_
TYPE


— DEST_PRIORITY DEST_ID


63 0


0x10 USER_CTX


63 32 31 0


0x18 — FQID


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Table 54. DPCI_GET_RX_QUEUE Response Field Descriptions1


1 All unspecified fields are reserved and must be cleared (set to zero).


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-31 DEST_ID Either DPIO ID or DPCON ID, depending on the destination type


32-39 PRIORITY Priority selection within the DPIO or DPCON channel; valid values
are 0-1 or 0-7, depending on the number of priorities in that
channel; not relevant for 'DPCI_DEST_NONE' option


48-51 DEST_TYPE Destination type


0x10 0-63 USER_CTX User context value provided in the frame descriptor of each
dequeued frame


0x18 0-31 FQID Virtual FQID value to be used for dequeue operations







DPCI: Data Path Communication Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 12-31
 


12.3.20 DPCI_GET_TX_QUEUE


Command structure


Figure 304. DPCI_GET_TX_QUEUE Command Description


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0E41 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 48 47 40 39 0


0x08 — PRIORITY —


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Table 55. DPCI_GET_TX_QUEUE Command Field Descriptions1


1 All unspecified fields are reserved and must be cleared (set to zero).


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 40-47 PRIORITY Priority of the virtual frame queue that a SW context uses to send frames to the pair 
SW context. DPCI objects work in pairs. To figure out which FQID one peer uses to 
receive data must provide the priority level. 







DPCI: Data Path Communication Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 12-32
 


Response structure


Figure 305. DPCI_GET_TX_QUEUE Response Description


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0E41 TOKEN —


IN
T


R
_D


IS


STATUS P — SRCID


63 52 51 48 47 40 39 32 31 0


0x08 FQID


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Table 56. DPCI_GET_TX_QUEUE Response Field Descriptions1


1 All unspecified fields are reserved and must be cleared (set to zero).


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 32-63 FQID Virtual FQID to be used for sending frames to peer DPCI;
returns 'DPCI_FQID_NOT_VALID' if a no peer is connected or if
the selected priority exceeds the number of priorities of the
peer DPCI object







DPCI: Data Path Communication Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 12-33
 


12.3.21 DPCI_GET_API_VERSION


Command structure


Figure 306. DPCI_GET_API_VERSION Command Description


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0xA071 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 0


0x08 —


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Table 57. DPCI_GET_TX_QUEUE Command Field Descriptions1


1 All unspecified fields are reserved and must be cleared (set to zero).


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.







DPCI: Data Path Communication Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 12-34
 


Response structure


Figure 307. DPCI_GET_TX_QUEUE Response Description


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0xA071 TOKEN —


IN
T


R
_D


IS


STATUS P — SRCID


63 32 31 16 15 0


0x08 — VERSION_MINOR VERSION_MAJOR


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Table 58. DPCI_GET_TX_QUEUE Response Field Descriptions1


1 All unspecified fields are reserved and must be cleared (set to zero).


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-15 VERSION_MAJOR Major version of API


16-31 VERSION_MINOR Minor version of API







DPCI: Data Path Communication Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 12-35
 


12.3.22 DPCI_SET_OPR


Set the Order Point Record configuration. The command works only if the DPCI is created with the 
DPCI_OPT_HAS_OPR option. It also works only for SoCs that support Order Restoration.


If the DPCI is configured with the DPCI_OPT_OPR_SHARED than all frame queues from the DPCI are 
configured to use the same Order Point Record. If the DPCI_OPT_OPR_SHARED option is not set the 
INDEX is used to select a specific queue.


Command structure


Figure 308. DPCI_SET_OPR Command Description


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0E51 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 24 23 16 15 0


0x08 — OPTIONS INDEX —


63 56 55 48 47 40 39 32 31 24 23 0


0x10 OPRRWS OA OLWS OEANE OLOE —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Table 59. DPCI_SET_OPR Response Field Descriptions1


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0X08 16-23 INDEX Selects a specific queue from the Rx DPCI queues. Accepted values are in range 0 to NUM_QUEUES –
1. This field is ignored for DPCI_OPT_OPR_SHARED.


24–31 OPTIONS The command can function in two ways, depending on the options field value:
 • OPR_OPT_CREATE (1): Create the OPR with the given configuration
 • OPR_OPT_RETIRE (2): Retire OPR. In this case the configuration options from offset 0x10 are 


ignored.







DPCI: Data Path Communication Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 12-36
 


0x10 24–31 OLOE OPR loose ordering enable
 • 0: Strict ordering mode
 • 1: Loose ordering mode


32–39 OEANE Order restoration list (ORL) resource exhaustion advance NESN enable


40–47 OLWS OPR acceptable late arrival window size
 • 0: Disabled. Late arrivals are always rejected.
 • 1: Window size is 32 frames.
 • 2: Window size is the same as the OPR restoration window size configured in the OPRRWS field.
 • 3: Window size is 8192 frames. Late arrivals are always accepted.


48–55 OA OPR auto advance NESN window size


56–63 OPRRWS Order point record (OPR) restoration window size.
 • 0: Window size is 32 frames.
 • 1: Window size is 64 frames.
 • 2: Window size is 128 frames.
 • 3: Window size is 256 frames.
 • 4: Window size is 512 frames.
 • 5: Window size is 1024 frames.
 • 6–7: Reserved


1 All unspecified fields are reserved and must be cleared (set to zero).


Table 59. DPCI_SET_OPR Response Field Descriptions1


Offset Bits Name Description







DPCI: Data Path Communication Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 12-37
 


12.3.23 DPCI_GET_OPR


Get Order Point Record (OPR) configuration and state. Works for OPRs that are created. The creation of 
the OPR takes place the first time the DPCI is enabled after a DPCI_SET_OPR command.


Command structure


Figure 309. DPCI_GET_OPR Command Description


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0E61 TOKEN —


IN
T


R
_D


IS


STATUS P — SRCID


63 24 23 16 15 0


0x08 — INDEX —


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Table 60. DPCI_GET_OPR Command Field Descriptions1


1 All unspecified fields are reserved and must be cleared (set to zero).


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0X08 16-23 INDEX Selects a specific queue from the Rx DPCI queues. This field is ignored for DPCI_OPT_OPR_SHARED.







DPCI: Data Path Communication Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 12-38
 


Response structure


Figure 310. DPCI_GET_OPR Response Description


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0E61 TOKEN —


IN
T


R
_D


IS


STATUS P — SRCID


63 0


0x08 —


63 56 55 48 47 40 39 32 31 24 23 2 1 0


0x10 OPRRWS OA OLWS OEANE OLOE — EN RIP


63 48 47 32 31 16 15 0


0x18 — NDSN — NESN


63 48 47 32 31 16 15 0


0x20 —


N
L


IS
_


H
S


E
Q


EA_HSEQ —


N
L


IS
_T


S
E


Q


EA_TSEQ


63 48 47 32 31 16 15 0


0x28 — EA_TPTR — EA_HPTR


63 48 47 32 31 16 15 0


0x30 — OPRID — VOPRID


63 0


0x38 —


Table 61. DPCI_GET_OPR Response Field Descriptions1


Offset Bits Name Description


0x00 0–63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x10 0 RIP Retirement In Progress.


1 EN OPR is enabled.


24–31 OLOE OPR loose ordering enable


32–39 OEANE Order restoration list (ORL) resource exhaustion advance NESN enable


40–47 OLWS OPR acceptable late arrival window size


48–55 OA OPR auto advance NESN window size


56–63 OPRRWS Order point record (OPR) restoration window size


0x18 0–15 NESN Next expected sequence number.


32–47 NDSN Next dispensed sequence number.


0x20 0–15 EA_TSEQ Sequence number of the frame at the tail of the ORL.


16 NLIS_TSEQ Not last in sequence for EA_TSEQ


32–47 EA_HSEQ Sequence number of the frame at the head of the ORL.


48 NLIS_HSEQ Not last in sequence for EA_HSEQ


0x28 0–15 EA_HPTR Early arrival head pointer


32–47 EA_TPTR Early arrival tail pointer







DPCI: Data Path Communication Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 12-39
 


0x30 0–15 VOPRID Virtual Order Point Record ID


32–47 OPRID Order Point Record ID


1 All unspecified fields are reserved and must be cleared (set to zero).


Table 61. DPCI_GET_OPR Response Field Descriptions1


Offset Bits Name Description







DPCI: Data Path Communication Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 12-40
 







DPDMUX: Data Path Network DeMux


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 13-1
 


Chapter 13  DPDMUX: Data Path Network DeMux
The DPDMUX object provides the functionality of Ethernet virtual bridging, based mainly on 802.1Qbg 
standard. The major role of the DPDMUX is forwarding traffic from a single uplink interface to one or 
more internal interfaces. The uplink interface can be an internal or external interface.


DPDMUX forwarding is decided by an internal database which classifies the received frames and sends 
them to either the uplink interface or to the internal interfaces. The DPDMUX database can be updated 
dynamically at run-time. DPDMUX does not support automatic learning from network traffic, however it 
does learn MAC addresses and VLAN IDs from connected DPNI objects. There is no aging mechanism 
support for database entries. 


13.1 DPDMUX features


The following list summarizes the DPDMUX main features and capabilities:


• Supports 802.1Qbg configurations such as VEB and VEPA


• Splits ingress traffic from one uplink interface to multiple internal interfaces (DPNIs)


• Supports VM-to-VM bridging (VEB configuration mode)


• Supports the following demux methods:


— Split traffic by destination MAC address (DMAC)


— Split traffic by C-VLAN


— Split traffic by DMAC and C-VLAN combined


• Configurable number of demux table entries


• Support Unicast, Multicast and Broadcast frames, including Unicast and Multicast promiscuous 
modes for the internal interfaces.


• Supports the following frame acceptance policies per interface:


— All frames are accepted (default behavior)


— Only tagged frames are accepted


— Only untagged (or priority-tagged) frames are accepted


• Statistics counters per interface


• Link state indication per interface (interrupt GPP on change)







DPDMUX: Data Path Network DeMux


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 13-2
 


13.2 DPDMUX functional description


13.2.1 Demux database


DPDMUX forwarding is decided by an internal database which classifies received frames and sends them 
to either the uplink interface or to the internal interfaces.


DPDMUX database can be updated dynamically through two main mechanisms:


• Interface learning – DPDMUX automatically queries DPNI objects after they are connected to its 
internal interfaces, and automatically configures the forwarding database with the matching 
MAC/VLAN rules according to the selected demux method. The information received from DPNI 
includes MAC filters (Unicast and Multicast), VLAN filters and promiscuous settings. Rules that 
were configured based on this mechanism are removed once the DPNI object is disconnected from 
the DPDMUX interface.


• Management configuration – The DPDMUX user (GPP driver) may add (or remove) forwarding 
rules directly through DPDMUX commands. Please refer to the 
DPDMUX_IF_ADD/REMOVE_L2_RULE commands for more details. Rules that were 
configured through management commands can only be removed by management commands, so 
connecting/disconnecting DPNI objects have no impact on such rules.


DPDMUX does not support automatic learning from network traffic. Frames that cannot be matched with 
any rule are either dropped or redirected to a selected interface.


There is no automatic aging support for database entries.


13.2.2 Broadcast and multicast support


Ethernet broadcast and multicast frames are replicated to the relevant interfaces. Replication is supported 
only when the demux method is based on MAC addresses (or MAC and VLAN). If the demux method is 
set to use both MAC and VLAN, then replication is limited to the scope of the VLAN ID that is found in 
the frame (frames do not cross VLAN boundaries).


Note, that if the demux method is not configured to use MAC address, frames are never replicated.


13.2.3 Promiscuous interfaces


As mentioned, the DPDMUX queries connected DPNI objects for their settings. If a DPNI is configured 
in promiscuous mode (Unicast or Multicast), then it will receive all frames that did not match the MAC 
address in any of the existing rules. Frames that match an existing rule are not forwarded to promiscuous 
interfaces. When the demux method is set to use both MAC and VLAN, then frames replication to 
promiscuous interfaces is limited to the scope of the VLAN ID that is found in the frame (frames do not 
cross VLAN boundaries).


Note, that if the demux method is not configured to use MAC address, frames are never replicated.







DPDMUX: Data Path Network DeMux


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 13-3
 


13.2.4 Frames acceptance policy


The frames acceptance policy can be configured for each of the DPDMUX interfaces. Note, that the 
acceptance policy is applied before a frame is matched against the demux database.


Valid acceptance policies are:


• Admit all – The DPDMUX interface accepts all valid Ethernet frames (tagged, untagged and 
priority-tagged frames).


• Admit only tagged – The DPDMUX interface accepts only VLAN-tagged Ethernet frames.


• Admit only untagged – The DPDMUX interface accepts only untagged Ethernet frames and 
priority-tagged Ethernet frames (VLAN ID = 0).


For each interface, the user may select an action to apply on unaccepted frames – either drop the frame or 
redirect it to control interface.


Please refer to DPDMUX_IF_SET_ACCEPTED_FRAMES command.


13.3 DPDMUX command reference


This section contains detailed programming model of DPDMUX commands.







DPDMUX: Data Path Network DeMux


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 13-4
 


13.3.1 DPDMUX_OPEN


Open a control session for the specified object.


This function can be used to open a control session for an already created object; an object may have been 
declared in the DPL or by invoking DPDMUX_CREATE command.


This function returns a unique authentication token, associated with the specific object ID; this token must 
be used in all subsequent commands for this specific object.


Command structure


Figure 311. DPDMUX_OPEN Command Description


The following table describes the command fields.
1-


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x8061 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 32 31 0


0x08 DPDMUX_ID


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Table 62. DPDMUX_OPEN Command Field Descriptions1


1 All unspecified fields are reserved and must be cleared (set to zero)


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-31 DPDMUX_ID DPDMUX unique ID







DPDMUX: Data Path Network DeMux


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 13-5
 


13.3.2 DPDMUX_CLOSE


Close the control session of the object.


After this function is called, no further operations are allowed on the object without opening a new control 
session.


Command structure


Figure 312. DPDMUX_CLOSE Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x8001 TOKEN —


IN
T


R
_D


IS


STATUS P — SRCID


63 0


0x08 —


63 0


0x10 —


63 0


0x18


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.







DPDMUX: Data Path Network DeMux


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 13-6
 


13.3.3 DPDMUX_CREATE


This command creates and initializes an instance of DPDMUX according to the specified command 
parameters. This command is not required for DPDMUX instances that are created using the DPL.


For the CREATE command the caller must provide the authentication token of the parent container to 
which the object should be created and assigned. If the token is '0' the object will be assigned to the 
container that hosts the MC command portal executing this command.


The command returns a DPDMUX ID that can be used to OPEN or DESTROY the object.


The command format is shown in the figure below.


Command structure


Figure 313. DPDMUX_CREATE Command Description


The following table describes the command fields.
1-5


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x9064 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 32 31 16 15 8 7 0


0x08 DEFAULT_IF NUM_IFS MANIP METHOD


63 48 47 32 31 16 15 0


0x10 MEM_SIZE MAX_VLAN_IDS MAX_MC_GROUPS MAX_DMAT_ENTRIES


63 0


0x18 OPTIONS


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-7 METHOD Defines the operation method for the DPDMUX address table. select one of the supported values 
below:
0x0 = DPDMUX_METHOD_NONE: No DPDMUX Method
0x1 = DPDMUX_METHOD_C_VLAN_MAC: DPDMUX based on C-VLAN and MAC address
0x2 = DPDMUX_METHOD_MAC: DPDMUX based on MAC address
0x3 = DPDMUX_METHOD_C_VLAN: DPDMUX based on C-VLAN (works on outer VLAN)
0x4 = DPDMUX_METHOD_S_VLAN: DPDMUX based on S-VLAN: Not Supported (See C-VLAN)
0x5 = DPDMUX_METHOD_CUSTOM: Users can define own rules by 
DPDMUX_SET_CUSTOME_KEY command defined in 12.3.30 section.


8-15 MANIP Required manipulation operation. select one of the supported values below:
0x0 = DPDMUX_MANIP_NONE: No manipulation on frames
0x1 = DPDMUX_MANIP_ADD_REMOVE_S_VLAN: Add S-VLAN on egress, remove it on ingress


16-31 NUM_IFS Number of interfaces (excluding the uplink interface)







DPDMUX: Data Path Network DeMux


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 13-7
 


All unspecified fields are reserved and must be cleared (set to zero)


Response structure


Figure 13-1. DPDMUX_CREATE Response Description


The following table describes the response fields.


0x08 32-47 DEFAULT_IF Interface ID for desired Default Interface.
If IF_ID = 0, there won’t be any default interface, even if prior to this, one was set up.
This value will be applied only if DPDMUX METHOD is DPDMUX_METHOD_CUSTOM.
This value will be used after DPDMUX_RESET.


48-63 MEM_SIZE Represents the number of 256byte buffers allocated for DPDMUX’s buffer pool. If 0, default value 
is used (1024).


0x10 0-15 MAX_DMAT_ENTRIES Maximum entries in DPDMUX address table
0- indicates default: 64 entries multiplied by number of interfaces


16-31 MAX_MC_GROUPS Number of multicast groups in DPDMUX table
When METHOD=DPDMUX_METHOD_C_VLAN_MAC, MAX_VLAN_IDS is taken into account, 
because a new broadcast address is added into the replication table for each vlan id.
At limit, the number of vlan ids used should be the same as the configuration of MAX_VLAN_IDS.
0 - indicates default: 32 multicast groups 


32-47 MAX_VLAN_IDS Maximum VLANs allowed in the system – relevant only for 
METHOD=DPDMUX_METHOD_C_VLAN_MAC.
0 - indicates default of 16 VLANs.


0x18 0-63 OPTIONS DPDMUX options - combination of 'DPDMUX_OPT_<X>' flags.
Select any combination of supported options below:
bit 1: DPDMUX_OPT_BRIDGE_EN - Enable bridging between internal interfaces; allowed only if 
METHOD is either DPDMUX_METHOD_C_VLAN_MAC or DPDMUX_METHOD_MAC.
bit 5: DPDMUX_OPT_CLS_MASK_SUPPORT: Mask support classification; allowed only if 
METHOD is DPDMUX_METHOD_CUSTOM. Invalid option for LS1088.
bit 6: DPDMUX_OPT_AUTO_MAX_FRAME_LEN When this flag is set the DPDMUX maximum 
frame length is automatically updated by connected DPNI objects.


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 24 23 16 15 14 8 7 0


CMDID = 0x9064 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 32 31 0


0x08 — DPDMUX_ID


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description







DPDMUX: Data Path Network DeMux


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 13-8
 


Table 13-1. DPDMUX_CREATE Response Field Descriptions1


1 All unspecified fields are reserved.


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-31 DPDMUX_ID DPDMUX unique ID







DPDMUX: Data Path Network DeMux


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 13-9
 


13.3.4 DPDMUX_DESTROY


This command destroys the DPDMUX object and releases all its resources. It must be invoked in the 
software context that created the object. The caller must provide the object id and the authentication token 
of the parent container that created the object. Note that the object can be assigned to another container 
and sending the authentication token of this container will return an error.


All open authentication tokens to the object must be closed before calling the destroy command. 


After this function is called, no further operations are allowed on the object.


Command structure


Figure 314. DPDMUX_DESTROY Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x9861 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 32 31 0


0x08 — DPDMUX_ID


63 0


0x10 —


63 0


0x18


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0–32 DPDMUX_ID ID of the DPDMUX object to destroy







DPDMUX: Data Path Network DeMux


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 13-10
 


13.3.5 DPDMUX_ENABLE


Command structure


Figure 315. DPDMUX_ENABLE Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0021 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 0


0x08 —


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.







DPDMUX: Data Path Network DeMux


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 13-11
 


13.3.6 DPDMUX_DISABLE


Command structure


Figure 316. DPDMUX_DISABLE Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0031 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 0


0x08 —


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.







DPDMUX: Data Path Network DeMux


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 13-12
 


13.3.7 DPDMUX_IS_ENABLED


Command structure


Figure 317. DPDMUX_IS_ENABLED Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0061 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 0


0x08 —


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.







DPDMUX: Data Path Network DeMux


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 13-13
 


13.3.8 DPDMUX_RESET


Command structure


Figure 318. DPDMUX_RESET Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0051 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 0


0x08 —


63 0


0x10 —


63 0


0x18


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.







DPDMUX: Data Path Network DeMux


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 13-14
 


13.3.9 DPDMUX_SET_IRQ_ENABLE


Set overall interrupt state. Allows GPP software to control when interrupts are generated. Each interrupt 
can have up to 32 causes. The enable/disable control's the overall interrupt state. if the interrupt is disabled 
no causes will cause an interrupt.


Command structure


Figure 319. DPDMUX_SET_IRQ_ENABLE Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0121 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 40 39 32 31 1 0


0x08 – IRQ_INDEX – EN


63 0


0x10 –


63 0


0x18 –


63 0


0x20 –


63 0


0x28 –


63 0


0x30 –


63 0


0x38 –


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0 EN Interrupt state: set to ‘1’ to enable, ‘0’ to disable


32-39 IRQ_INDEX Identifies the interrupt index to configure







DPDMUX: Data Path Network DeMux


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 13-15
 


13.3.10 DPDMUX_GET_IRQ_ENABLE


Get overall interrupt state.


Command structure


Figure 320. DPDMUX_GET_IRQ_ENABLE Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0131 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 40 39 32 31 0


0x08 – IRQ_INDEX –


63 0


0x10 –


63 0


0x18 –


63 0


0x20 –


63 0


0x28 –


63 0


0x30 –


63 0


0x38 –


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 32-39 IRQ_INDEX Identifies the interrupt index to query







DPDMUX: Data Path Network DeMux


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 13-16
 


Response structure


Figure 321. DPDMUX_GET_IRQ_ENABLE Response Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0131 TOKEN —


IN
T


R
_D


IS


STATUS P — SRCID


63 1 0


0x08 – EN


63 0


0x10 –


63 0


0x18 –


63 0


0x20 –


63 0


0x28 –


63 0


0x30 –


63 0


0x38 –


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0 EN This bit is set if the interrupt is enabled







DPDMUX: Data Path Network DeMux


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 13-17
 


13.3.11 DPDMUX_SET_IRQ_MASK


Set the interrupt mask. Every interrupt can have up to 32 causes and the interrupt model supports 
masking/unmasking each cause independently.


Command structure


Figure 322. DPDMUX_SET_IRQ_MASK Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0141 TOKEN —


IN
T


R
_D


IS


STATUS P — SRCID


63 40 39 32 31 0


0x08 – IRQ_INDEX MASK


63 0


0x10 –


63 0


0x18 –


63 0


0x20 –


63 0


0x28 –


63 0


0x30 –


63 0


0x38 –


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-31 MASK Event mask for triggering the interrupt; See GET_IRQ_STATUS command for 
specification of available events. For each bit in MASK:
0 = ignore event
1 = event is valid; signal the IRQ if this event occurs


32-39 IRQ_INDEX The interrupt index to configure







DPDMUX: Data Path Network DeMux


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 13-18
 


13.3.12 DPDMUX_GET_IRQ_MASK


Get the interrupt mask. Every interrupt can have up to 32 causes and the interrupt model supports 
masking/unmasking each cause independently.


Command structure


Figure 323. DPDMUX_GET_IRQ_MASK Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0151 TOKEN —


IN
T


R
_D


IS


STATUS P — SRCID


63 40 39 32 31 0


0x08 – IRQ_INDEX –


63 0


0x10 –


63 0


0x18 –


63 0


0x20 –


63 0


0x28 –


63 0


0x30 –


63 0


0x38 –


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 32-39 IRQ_INDEX The interrupt index to query







DPDMUX: Data Path Network DeMux


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 13-19
 


Response structure


Figure 324. DPDMUX_GET_IRQ_MASK Response Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0151 TOKEN —


IN
T


R
_D


IS


STATUS P — SRCID


63 32 31 0


0x08 MASK


63 0


0x10 –


63 0


0x18 –


63 0


0x20 –


63 0


0x28 –


63 0


0x30 –


63 0


0x38 –


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-31 MASK Event mask for triggering the interrupt; See GET_IRQ_STATUS command for 
specification of available events. For each bit in MASK:
0 = ignore event
1 = event is valid; signal the IRQ if this event occurs







DPDMUX: Data Path Network DeMux


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 13-20
 


13.3.13 DPDMUX_GET_IRQ_STATUS


Get the current status of pending events for the specified interrupt index.


Command structure


Figure 325. DPDMUX_GET_IRQ_STATUS Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0161 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 40 39 32 31 0


0x08 – IRQ_INDEX STATUS


63 0


0x10 –


63 0


0x18 –


63 0


0x20 –


63 0


0x28 –


63 0


0x30 –


63 0


0x38 –


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-31 STATUS Optional: any STATUS bits that are set will be cleared from pending state (removing 
the need for DPDMUX_CLEAR_IRQ_STATUS command). Note that the STATUS 
returned in the response is the status before the events are cleared.


Supported events: see response structure definition


32-39 IRQ_INDEX The interrupt index to query







DPDMUX: Data Path Network DeMux


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 13-21
 


Response structure


Figure 326. DPDMUX_GET_IRQ_STATUS Response Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0161 TOKEN —


IN
T


R
_D


IS


STATUS P — SRCID


63 32 31 0


0x08 STATUS


63 0


0x10 –


63 0


0x18 –


63 0


0x20 –


63 0


0x28 –


63 0


0x30 –


63 0


0x38 –


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-31 STATUS Events status mask (bits 0-15), one bit per event:
0 = no interrupt pending
1 = interrupt pending


Supported events for IRQ 0:
Bit 0: DPDMUX_IRQ_EVENT_LINK_CHANGED – indicates a change in the link state
Bit 1: DPDMUX_IRQ_EVENT_ENDPOINT_CHANGED – indicates a 
connect/disconnect event between DPDMUX and its endpoint (DPNI, DPMAC)
Bits 16-31 contain the DPDMUX interface ID associated with the event.







DPDMUX: Data Path Network DeMux


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 13-22
 


13.3.14 DPDMUX_CLEAR_IRQ_STATUS


Clear (mark as handled) pending events of the specified interrupt index.


Command structure


Figure 327. DPDMUX_CLEAR_IRQ_STATUS Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0171 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 40 39 32 31 0


0x08 – IRQ_INDEX STATUS


63 0


0x10 –


63 0


0x18 –


63 0


0x20 –


63 0


0x28 –


63 0


0x30 –


63 0


0x38 –


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-31 STATUS Mask for clearing handled events; See GET_IRQ_STATUS command for specification 
of available events. For each bit in MASK:
0 = don’t change event status
1 = clear event status bit to indicate that it was handled


32-39 IRQ_INDEX The interrupt index to configure







DPDMUX: Data Path Network DeMux


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 13-23
 


13.3.15 DPDMUX_GET_ATTRIBUTES


Command structure


Figure 328. DPDMUX_GET_ATTRIBUTES Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0043 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 0


0x08 —


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.







DPDMUX: Data Path Network DeMux


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 13-24
 


Response structure


Figure 329. DPDMUX_GET_ATTRIBUTES Response Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0043 TOKEN —


IN
T


R
_D


IS


STATUS P — SRCID


63 48 47 32 31 16 15 8 7 0


0x08 DEFAULT_IF MEM_SIZE NUM_IFS MANIP METHOD


63 0


0x10 —


63 32 31 0


0x18 — ID


63 0


0x20 OPTIONS


63 48 47 32 31 16 15 0


0x28 — MAX_VLAN_IDS MAX_MC_GROUPS MAX_DMAT_ENTRIES


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-7 METHOD DPDMUX address table method. One of the supported values below:
1 = DPDMUX_METHOD_C_VLAN_MAC - DPDMUX based on C-VLAN and MAC 
address
2 = DPDMUX_METHOD_MAC - DPDMUX based on MAC address
3 = DPDMUX_METHOD_C_VLAN - DPDMUX based on C-VLAN
4 = DPDMUX_METHOD_S_VLAN - DPDMUX based on S-VLAN 


8-15 MANIP DPDMUX manipulation type. One of the supported values below:
0 = DPDMUX_MANIP_NONE - No manipulation on frames
1 = DPDMUX_MANIP_ADD_REMOVE_S_VLAN - Add S-VLAN on egress, remove it 
on ingress


16-31 NUM_IFS Number of interfaces (excluding the uplink interface)


32-47 MEM_SIZE DPDMUX frame storage memory size


48-63 DEFAULT_IF Returns the Interface ID for default interface set at create ar through 
DPDMUX_IF_SET_DEFAULT command. If ID=0 means that there is no default 
interface set.


0x18 0-31 ID DPDMUX object ID


0x20 0-63 OPTIONS Configuration options (bitmap). Any combination of supported options below: 
bit 1: DPDMUX_OPT_BRIDGE_EN - Enable bridging between internal interfaces


0x28 0-15 MAX_DMAT_ENTRIES Maximum entries in DPDMUX address table.


16-31 MAX_MC_GROUPS The maximum number of multicast groups that can be configured on the DPDMUX. 
This is the value configured at dpdmux_create().


32-47 MAX_VLAN_IDS Maximum VLANs allowed in the system – relevant only for 
METHOD=DPDMUX_METHOD_C_VLAN_MAC.







DPDMUX: Data Path Network DeMux


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 13-25
 


13.3.16 DPDMUX_SET_MAX_FRAME_LENGTH


Sets the maximum accepted frame length on all DPDMUX ports.


Command structure


Figure 330. DPDMUX_SET_MAX_FRAME_LENGTH Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0A11 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 16 15 0


0x08 — MAX_FRAME_LENGTH


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-15 MAX_FRAME_LENGTH The required maximum frame length







DPDMUX: Data Path Network DeMux


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 13-26
 


13.3.17 DPDMUX_IF_SET_ACCEPTED_FRAMES


Command structure


Figure 331. DPDMUX_IF_SET_ACCEPTED_FRAMES Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0A71 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 24 23 20 19 16 15 0


0x08 — UNACC
EPT_A


CT


TYPE IF_ID


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-15 IF_ID Interface ID (0 for uplink, or 1-num_ifs);


16-19 TYPE Defines ingress accepted frames. Select one of the supported values below:
0x0 = DPDMUX_ADMIT_ALL - The device accepts VLAN tagged, untagged and
priority-tagged frames
0x1 = DPDMUX_ADMIT_ONLY_VLAN_TAGGED - The device discards untagged 
frames or priority-tagged frames that are received on this interface
0x2 = DPDMUX_ADMIT_ONLY_UNTAGGED - Untagged frames or priority-tagged 
frames received on this interface are accepted


20-23 UNACCEPT_ACT Defines action on frames not accepted. Select one of the supported values below:
0x0 = DPDMUX_ACTION_DROP: Drop un-accepted frames
0x1 = DPDMUX_ACTION_REDIRECT_TO_CTRL: Redirect un-accepted frames to 
the control interface







DPDMUX: Data Path Network DeMux


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 13-27
 


13.3.18 DPDMUX_IF_GET_ATTRIBUTES


Command structure


Figure 332. DPDMUX_IF_GET_ATTR Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0A81 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 16 15 0


0x08 — IF_ID


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-15 IF_ID Interface ID (0 for uplink, or 1-num_ifs);







DPDMUX: Data Path Network DeMux


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 13-28
 


Response structure


Figure 333. DPDMUX_IF_GET_ATTRIBUTES Response Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0A81 TOKEN —


IN
T


R
_D


IS


STATUS P — SRCID


63 60 59 56 55 26 25 24 23 0


0x08 —


A
C


C
E


P
T


_F
R


A
M


E
_


T
Y


P
E


—


IS
_


D
E


FA
U


LT


EN —


63 32 31 0


0x10 — RATE


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 24 ENABLED Indicates if interface is enabled


25 IS__DEFAULT Indicates if configured as default interface


56-59 ACCEPT_FRAME_TYPE Indicates type of accepted frames for the interface. Select one of the supported values 
below:
0x0 = DPDMUX_ADMIT_ALL - The device accepts VLAN tagged, untagged and
priority-tagged frames
0x1 = DPDMUX_ADMIT_ONLY_VLAN_TAGGED - The device discards untagged 
frames or priority-tagged frames that are received on this interface
0x2 = DPDMUX_ADMIT_ONLY_UNTAGGED - Untagged frames or priority-tagged 
frames received on this interface are accepted


0x10 0-31 RATE Configured interface rate (in bits per second)







DPDMUX: Data Path Network DeMux


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 13-29
 


13.3.19 DPDMUX_IF_ENABLE


Command structure


Figure 334. DPDMUX_IF_ENABLE Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0A91 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 16 15 0


0x08 — IF_ID


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-15 IF_ID Interface ID







DPDMUX: Data Path Network DeMux


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 13-30
 


13.3.20 DPDMUX_IF_DISABLE


Command structure


Figure 335. DPDMUX_IF_DISABLE Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0AA1 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 16 15 0


0x08 — IF_ID


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-15 IF_ID Interface ID







DPDMUX: Data Path Network DeMux


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 13-31
 


13.3.21 DPDMUX_IF_SET_DEFAULT


This command sets which interface should be default. 


Command structure


Figure 336. DPDMUX_IF_SET_DEFAULT Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0B81 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 16 15 0


0x08 — IF_ID


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-15 IF_ID Interface ID
If IF_ID = 0, there won’t be any default interface, even if prior to this, one was set up.







DPDMUX: Data Path Network DeMux


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 13-32
 


13.3.22 DPDMUX_IF_GET_DEFAULT


Command structure


Figure 337. DPDMUX_IF_GET_DEFAULT Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0B91 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 0


0x08 —


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.







DPDMUX: Data Path Network DeMux


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 13-33
 


Response structure


Figure 338. DPDMUX_IF_GET_DEFAULT Response Description


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0xB91 TOKEN —


IN
T


R
_D


IS


STATUS P — SRCID


63 32 31 16 15 0


0x08 — IF_ID


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-15 IF_ID The ID of the default interface







DPDMUX: Data Path Network DeMux


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 13-34
 


13.3.23 DPDMUX_SET_RESETABLE


This command is used if the user wants to reset only certain attributes. For example, the default interface 
is replaced with the one in DPDMUX_CREATE when reset via DPDMUX_RESET. Setting 
DPDMUX_SKIP_MODIFY_DEFAULT_INTERFACE flag through DPDMUX_SET_RESETABLE, the 
default interface will remain unmodified after reset.


Command structure


Figure 339. DPDMUX_SET_RESETABLE Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0BA1 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 8 7 0


0x08 — SKIP_FLAGS


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-7 SKIP_FLAGS Flags used to chose the attributes wanted to skip the reset. By default all flags are 0, 
DPDMUX being reset completely.
Flags:
bit 0: DPDMUX_SKIP_MODIFY_DEFAULT_INTERFACE
    DPDMUX_RESET will not modify default interface after reset
bit 1: DPDMUX_SKIP_UNICAST_RULES
    DPDMUX_RESET will not reset unicast rules
bit 2: DPDMUX_SKIP_MULTICAST_RULES
    DPDMUX_RESET will not reset multicast rules
bit 3: DPDMUX_SKIP_RESET_DEFAULT_INTERFACE
    DPDMUX_RESET will not reset default interface







DPDMUX: Data Path Network DeMux


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 13-35
 


13.3.24 DPDMUX_GET_RESETABLE


Command structure


Figure 340. DPDMUX_GET_RESETABLE Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0BB1 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 0


0x08 —


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.







DPDMUX: Data Path Network DeMux


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 13-36
 


Response structure


Figure 341. DPDMUX_GET_RESETABLE Response Description


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0xBB1 TOKEN —


IN
T


R
_D


IS


STATUS P — SRCID


63 8 7 0


0x08 — SKIP_FLAGS


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-7 SKIP_FLAGS Flags used to chose the attributes wanted to skip the reset. By default all flags are 0, 
DPDMUX being reset completely.
Flags:
bit 0: DPDMUX_SKIP_MODIFY_DEFAULT_INTERFACE
    DPDMUX_RESET will not modify default interface after reset
bit 1: DPDMUX_SKIP_UNICAST_RULES
    DPDMUX_RESET will not reset unicast rules
bit 2: DPDMUX_SKIP_MULTICAST_RULES
    DPDMUX_RESET will not reset multicast rules
bit 3: DPDMUX_SKIP_RESET_DEFAULT_INTERFACE
    DPDMUX_RESET will not reset default interface







DPDMUX: Data Path Network DeMux


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 13-37
 


13.3.25 DPDMUX_IF_REMOVE_L2_RULE


Command structure


Figure 342. DPDMUX_IF_REMOVE_L2_RULE Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0B11 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 56 55 48 47 40 39 32 31 24 23 16 15 0


0x08 MAC_ADDR0 MAC_ADDR1 MAC_ADDR2 MAC_ADDR3 MAC_ADDR4 MAC_ADDR5 IF_ID


63 48 47 32 31 0


0x10 — VLAN_ID —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-15 IF_ID Destination interface ID


16-63 MAC_ADDR[0-5] MAC address


0x10 32-47 VLAN_ID VLAN ID







DPDMUX: Data Path Network DeMux


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 13-38
 


13.3.26 DPDMUX_IF_ADD_L2_RULE


Command structure


Figure 343. DPDMUX_IF_ADD_L2_RULE Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0B01 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 56 55 48 47 40 39 32 31 24 23 16 15 0


0x08 MAC_ADDR0 MAC_ADDR1 MAC_ADDR2 MAC_ADDR3 MAC_ADDR4 MAC_ADDR5 IF_ID


63 48 47 32 31 0


0x10 — VLAN_ID —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-15 IF_ID Destination interface ID


16-63 MAC_ADDR[0-5] MAC address


0x10 32-47 VLAN_ID VLAN ID







DPDMUX: Data Path Network DeMux


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 13-39
 


13.3.27 DPDMUX_IF_GET_COUNTER


Command structure


Figure 344. DPDMUX_IF_GET_COUNTER Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0B21 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 24 23 16 15 0


0x08 — COUNTER_TYP
E


IF_ID


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-15 IF_ID Interface ID


16-23 COUNTER_TYPE Counter type. Select one of the supported values below:
0x0 = DPDMUX_CNT_ING_FRAME- Counts ingress frames 
0x1 = DPDMUX_CNT_ING_BYTE - Counts ingress bytes 
0x2 = DPDMUX_CNT_ING_FLTR_FRAME - Counts filtered ingress frames 
0x3 = DPDMUX_CNT_ING_FRAME_DISCARD - Counts discarded ingress frame 
0x4 = DPDMUX_CNT_ING_MCAST_FRAME- Counts ingress multicast frames 
0x5 = DPDMUX_CNT_ING_MCAST_BYTE- Counts ingress multicast bytes 
0x6 = DPDMUX_CNT_ING_BCAST_FRAME- Counts ingress broadcast frames 
0x7 = DPDMUX_CNT_ING_BCAST_BYTES - Counts ingress broadcast bytes 
0x8 = DPDMUX_CNT_EGR_FRAME - Counts egress frames 
0x9 = DPDMUX_CNT_EGR_BYTE- Counts eEgress bytes 
0xa = DPDMUX_CNT_EGR_FRAME_DISCARD - Counts discarded egress frames 
0xb = DPDMUX_CNT_ING_NO_BUFFER_DISCARD - Counts discarded ingress no 
buffer frames







DPDMUX: Data Path Network DeMux


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 13-40
 


Response structure


Figure 345. DPDMUX_IF_GET_COUNTER Response Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0B21 TOKEN —


IN
T


R
_D


IS


STATUS P — SRCID


63 0


0x08 —


63 0


0x10 COUNTER


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x10 0-63 COUNTER Returned specific counter information







DPDMUX: Data Path Network DeMux


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 13-41
 


13.3.28 DPDMUX_UL_RESET_COUNTERS


Command structure


Figure 346. DPDMUX_IF_RESET_COUNTERS Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0A31 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 0


0x08 —


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.







DPDMUX: Data Path Network DeMux


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 13-42
 


13.3.29 DPDMUX_IF_SET_LINK_CFG


Command structure


Figure 347. DPDMUX_IF_SET_LINK_CFG Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0B31 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 16 15 0


0x08 — IF_ID


63 32 31 0


0x10 — RATE


63 0


0x18 OPTIONS


63 0


0x20 ADVERTISING


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-15 IF_ID Interface ID


0x10 0-63 RATE Rate


0x18 0-31 OPTIONS Mask of available options; use ‘DPDMUX_LINK_OPT_<x>’ values


0x20 0-63 ADVERTISING Speeds that are advertised for autoneg







DPDMUX: Data Path Network DeMux


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 13-43
 


13.3.30 DPDMUX_IF_GET_LINK_STATE


Command structure


Figure 348. DPDMUX_IF_GET_LINK_STATE Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0B41 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 16 15 0


0x08 — IF_ID


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-15 IF_ID Interface ID







DPDMUX: Data Path Network DeMux


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 13-44
 


Response structure


Figure 349. DPDMUX_IF_GET_LINK_STATE Response Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0B41 TOKEN —


IN
T


R
_D


IS


STATUS P — SRCID


63 33 32 31 0


0x08 —


S
TA


T
E


_
V


A
L


ID


UP


—


63 32 31 0


0x10 — RATE


63 0


0x18 OPTIONS


63 0


0x20 SUPPORTED


63 0


0x28 ADVERTISING


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 32 UP 0 - down, 1 - up


33 STATE_VALID Ignore/Update the state of the link


0x10 0-31 RATE Rate


0x18 0-63 OPTIONS Mask of available options; use ‘DPDMUX_LINK_OPT_<x>’ values


0X20 0-63 SUPPORTED Speeds capability of the phy


0X28 0-63 ADVERTISING Speeds that are advertised for autoneg







DPDMUX: Data Path Network DeMux


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 13-45
 


13.3.31 DPDMUX_GET_API_VERSION


Command structure


Figure 350. DPDMUX_GET_API_VERSION Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0xA061 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 0


0x08 —


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.







DPDMUX: Data Path Network DeMux


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 13-46
 


Response structure


Figure 351. DPDMUX_GET_API_VERSION Response Description


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0xA061 TOKEN —


IN
T


R
_D


IS


STATUS P — SRCID


63 32 31 16 15 0


0x08 — VERSION_MINOR VERSION_MAJOR


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-15 VERSION_MAJOR Major version of API


16-31 VERSION_MINOR Minor version of API







DPDMUX: Data Path Network DeMux


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 13-47
 


13.3.32 DPDMUX_SET_CUSTOM_KEY


This API is used to set a custom classification key. It is available only for DPDMUX instances, created 
with DPDMUX_METHOD_CUSTOM. This API must be called before populating the classification 
table using DPDMUX_ADD_CUSTOM_CLS_ENTRY command.
All calls to DPDMUX_SET_CUSTOM_KEY remove the existing classification entries that may have 
been added previously using the DPDMUX_ADD_CUSTOM_CLS_ENTRY command.


Command structure


Figure 352. DPDMUX_SET_CUSTOM_KEY Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0B51 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 0


0x08 —


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 KEY_CFG_IOVA


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x38 0-63 KEY_CFG_IOVA I/O virtual address of a configuration structure set up using
DPKG_PREPARE_KEY_CFG.. Maximum key size is 24 bytes.







DPDMUX: Data Path Network DeMux


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 13-48
 


13.3.33 DPDMUX_ADD_CUSTOM_CLS_ENTRY


This API is used to add a custom classification entry. It is available for only DPDMUX instances, created 
with DPDMUX_METHOD_CUSTOM. Before calling this function, a classification key composition 
rule must be set up using DPDMUX_SET_CUSTOM_KEY.


Command structure


Figure 353. DPDMUX_ADD_CUSTOM_CLS_ENTRY Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0B61 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 48 47 32 31 24 23 0


0x08 DEST_IF ENTRY_INDEX KEY_SIZE —


63 0


0x10 KEY_IOVA


63 0


0x18 MASK_IOVA


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 24-31 KEY_SIZE Size, in bytes, of the look-up value. This must match the size of the look-up key 
defined using DPDMUX_SET_CUSTOM_KEY, otherwise the entry will never be hit.


32-47 ENTRY_INDEX This field is used for rule index into TCAM lookup table. This index is used only when 
DPDMUX was created using option DPDMUX_OPT_CLS_MASK_SUPPORT 
(implicitly DPDMUX_METHOD_CUSTOM).


48–63 DEST_IF Interface to forward the frames to. Port numbering is similar to the one used to 
connect interfaces:
• 0 is the uplink port
• all others are downlink ports.


0x10 0-63 KEY_IOVA I/O virtual address of buffer storing the look-up value.


0x18 0-63 MASK_IOVA I/O virtual address of the mask used for TCAM classification.







DPDMUX: Data Path Network DeMux


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 13-49
 


13.3.34 DPDMUX_REMOVE_CUSTOM_CLS_ENTRY


This API is used to remove a custom classification entry. It is available only for DPDMUX instances, 
created with DPDMUX_METHOD_CUSTOM. This API is also used to remove the previously inserted 
classification entries using DPDMUX_ADD_CUSTOM_CLS_ENTRY.


Command structure


Figure 354. DPDMUX_REMOVE_CUSTOM_CLS_ENTRY Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0B71 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 48 47 32 31 24 23 0


0x08 — KEY_SIZE —


63 0


0x10 KEY_IOVA


63 0


0x18 MASK_IOVA


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 24-31 KEY_SIZE Size, in bytes, of the look-up value. This must match the size of the look-up key 
defined using DPDMUX_SET_CUSTOM_KEY, otherwise the entry will never be hit.


0x10 0-63 KEY_IOVA I/O virtual address of buffer storing the look-up value.


0x18 0-63 MASK_IOVA I/O virtual address of the mask used for TCAM classification.







DPDMUX: Data Path Network DeMux


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 13-50
 


13.3.35 DPDMUX_IF_SET_TAILDROP


Using this command, tail drop can be configured at run time.


Command structure


Figure 355. DPDMUX_IF_SET_TAILDROP Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0BC1 TOKEN — STATUS P — SRCID


63 48 47 32 31 0


0x08 — IF_ID —


63 32 31 24 23 16 15 0


0x10 THRESHOLD — UNITS — EN


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 32-47 IF_ID Interface ID.


0x10 0 EN Tail drop enabling.


16-23 UNITS Set the units used in relation with threshold:
0: Unit Bytes
1: Unit Packets
2: Unit Buffers 


32-63 THRESHOLD The threshold value of “UNITS” used for tail drop.







DPDMUX: Data Path Network DeMux


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 13-51
 


13.3.36 DPDMUX_IF_GET_TAILDROP


Get information related to tail drop.


Command structure


Figure 356. DPDMUX_IF_GET_TAILDROP Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0BD1 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 48 47 32 31 24 23 16 15 0


0x08 — IF_ID —


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 32-47 IF_ID Interface ID.







DPDMUX: Data Path Network DeMux


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 13-52
 


Response structure


Figure 357. DPDMUX_IF_GET_TAILDROP Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0BD1 TOKEN — STATUS P — SRCID


63


0x08 —


63 32 31 24 23 16 15 1 0


0x10 Threshold — UNITS — EN


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x10 0 EN Tail drop enabling.


16-23 UNITS Set the units used in relation with threshold:
0: Unit Bytes
1: Unit Packets
2: Unit Buffers 


32-63 THRESHOLD The threshold value of “UNITS” used for tail drop.







DPDMUX: Data Path Network DeMux


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 13-53
 


13.3.37 DPDMUX_DUMP_TABLE


Dump at IOVA address information about all entries of the desired table. Return the number of dumped 
entries.


Command structure


Figure 358. DPDMUX_DUMP_TABLE Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0BE1 TOKEN —


IN
T


R
_D


IS


STATUS P — SRCID


63 32 31 16 15 0


0x08 — TABLE_INDEX TABLE_TYPE


63 0


0x10 SNAPSHOT_IOVA


63 32 31 0


0x18 — SIZE


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-15 TABLE_TYPE 1: DPDMUX_DMAT_TABLE
2: DPDMUX_MISS_TABLE
3: DPDMUX_PRUNE_TABLE


16-31 TABLE_INDEX Always zero


0x10 0-63 SNAPSHOT_IOVA IOVA address.


0x18 0-31 SIZE Size to be dump.







DPDMUX: Data Path Network DeMux


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 13-54
 


Response structure


Figure 359. DPDMUX_DUMP_TABLE Response Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0BE1 TOKEN —


IN
T


R
_D


IS


STATUS P — SRCID


63 0


0x08 — NUM_ENTRIES


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-63 NUM_ENTRIES The number of dump entries.







DPDMUX: Data Path Network DeMux


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 13-55
 


13.3.38 DPDMUX_IF_SET_ERRORS_BEHAVIOR


This command will configure the interface not to discard frames that contains errors


Command structure


Figure 360. DPDMUX_IF_SET_ERRORS_BEHAVIOR Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0BF1 TOKEN — STATUS P — SRCID


63 48 47 36 35 32 31 0


0x08  IF_ID - ERR_ACTION ERRORS


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-31 ERRORS bit 31: DPDMUX_ERROR_DISC discard bit. This bit must be used together with other 
bits in DPDMUX_ERROR_ACTION_CONTINUE to disable discarding of frames 
containing errors
bit 30: DPDMUX_ERROR_MS MACSEC is enabled
bit 27: DPDMUX_ERROR_PTP PTP event frame
bit 26: DPDMUX_ERROR_MC a multicast frame
bit 25: DPDMUX_ERROR_BC a broadcast frame
bit 18: DPDMUX_ERROR_KSE invalid key composition or key size error
bit 17: DPDMUX_ERROR_EOFHE extract out of frame header
bit 16: DPDMUX_ERROR_MNLE maximum number of chained lookups is reached
bit 15: DPDMUX_ERROR_TIDE invalid table ID
bit 14: DPDMUX_ERROR_PIEE policer initialization entry error
bit 13: DPDMUX_ERROR_FLE frame length error
bit 12: DPDMUX_ERROR_FPE frame physical error
bit 7: DPDMUX_ERROR_PTE Cycle limit is exceeded and frame parsing is forced to 
terminate early
bit 6 :DPDMUX_ERROR_ISP invalid softparse instruction is encountered
bit 5: DPDMUX_ERROR_PHE parsing header error
bit 4: DPDMUX_ERROR_BLE Block limit is exceeded. Maximum data that can be read 
and parsed is 256 bytes. Parser will set this bit if it needs more that this limit to parse.
bit 3: DPDMUX__ERROR_L3CV L3 checksum validation
bit 2: DPDMUX__ERROR_L3CE L3 checksum error
bit 1: DPDMUX__ERROR_L4CV L4 checksum validation
bit 0: DPDMUX__ERROR_L4CE L4 checksum error


32-35 ERR_ACTION 0: DPDMUX_ERROR_ACTION_DISCARD
1: DPDMUX_ERROR_ACTION_CONTINUE


48-63 IF_ID Interface ID
If the DPDMUX is configured to work in VEPA mode, interface ID must be always 0.







DPDMUX: Data Path Network DeMux


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 13-56
 


13.3.39 DPDMUX_GET_MAX_FRAME_LENGTH


Get maximum frame length for the specified interface.


Command structure


Figure 361. DPDMUX_GET_MAX_FRAME_LENGTH Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0A21 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 16 15 0


0x08 -- IF_ID


63 0


0x10 –


63 0


0x18 –


63 0


0x20 –


63 0


0x28 –


63 0


0x30 –


63 0


0x38 –


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-15 IF_ID Interface ID







DPDMUX: Data Path Network DeMux


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 13-57
 


Response structure


Figure 362. DPDMUX_GET_MAX_FRAME_LENGTH Response Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0A21 TOKEN —


IN
T


R
_D


IS


STATUS P — SRCID


63 16 15 0


0x08 MFL


63 0


0x10 –


63 0


0x18 –


63 0


0x20 –


63 0


0x28 –


63 0


0x30 –


63 0


0x38 –


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-15 MFL Maximum frame length







DPDMUX: Data Path Network DeMux


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 13-58
 


13.3.40 DPDMUX_SET_SP_PROFILE


Sets up the desired Soft Parser Profile on the DPDMUX used. Soft Parser Profiles are used to identify 
custom protocols which are not recognized by the HW Parser. A SP Profile may contain zero or more 
custom protocols.


Command structure


Figure 363. DPDMUX_SET_SP_PROFILE Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0C01 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 55 47 39 31 23 15 7 0


0x08 SP_PROFILE[7] SP_PROFILE[6] SP_PROFILE[5] SP_PROFILE[4] SP_PROFILE[3] SP_PROFILE[2] SP_PROFILE[1] SP_PROFILE[0]


63 8 7 0


0x10 — TYPE


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-7 SP_PROFILE[0] Soft Parser Profile name (must be a valid name for a defined profile). Maximum 
allowed length for this string is 8 characters long. If this parameter is an empty string 
(all zeros), then the Default SP Profile is set on this dpdmux.8-15 SP_PROFILE[1]


16-23 SP_PROFILE[2]


24-31 SP_PROFILE[3]


32-39 SP_PROFILE[4]


40-47 SP_PROFILE[5]


48-55 SP_PROFILE[6]


56-63 SP_PROFILE[7]


0x10 0-7 TYPE Set SP Profile on DPDMUX Ingress or Egress WRIOP parser:
DPDMUX_SP_PROFILE_INGRESS - 0x1
DPDMUX_SP_PROFILE_EGRESS - 0x2







DPDMUX: Data Path Network DeMux


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 13-59
 


13.3.41 DPDMUX_SP_ENABLE


Enables or disables Soft Parser on the DPDMUX used.


Command structure


Figure 364. DPDMUX_SP_ENABLE Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0C11 TOKEN –


IN
T


R
_


D
IS


STATUS P – SRCID


63 32 31 24 23 16 15 8 7 0


0x08 –– ENABLE TYPE IF_ID


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x10 0-15 IF_ID DPDMUX Interface ID to enable/disable SP


16-23 TYPE Enable/disable SP on DPDMUX interface Ingress or Egress (or both using bitwise 
OR):
0x1 - DPDMUX_SP_PROFILE_INGRESS
0x2 - DPDMUX_SP_PROFILE_EGRESS


24-31 ENABLE 0x0 - disable
0x1 - enable







DPDMUX: Data Path Network DeMux


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 13-60
 







DPSW: Data Path L2 Switch


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 14-1
 


Chapter 14  DPSW: Data Path L2 Switch
The DPSW object provides the functionality of a general layer-2 switch. It receives packets on one port 
and sends them on another. It can also send packets out on multiple ports for the purposes of broadcast, 
multicast, or mirroring.


14.1 DPSW features


The following list summarizes the DPSW main features and capabilities:


• Supports 802.1Q switching:


— Forwarding based on (outer) VLAN and MAC address


— Forwarding of L2 unicast, multicast and broadcast frames


• Supports connections to DPMAC and DPNI


• Supports separate MAC table (FDB) per VLAN


• Supports sharing of FDB between multiple VLANs


• Supports flooding (configuration per VLAN)


• Supports three address learning modes, selected per FDB:


— Automatic learning by the switch hardware


— Secure learning by host GPP software


— Non-secure learning by host GPP software


• Supports port-based VLAN – definition of default VLAN per interface


• Supports untagged frames transmission (configuration per VLAN/interface)


• Supports untagged frames admittance:


— Admit tagged and untagged frames


— Admit only tagged frames


• Supports VLAN filtering – dropping frames with unregistered VLANs 


• Supports trunk interface – accepting all VLANs (configurtion per interface)


• Supports two custom TPIDs per switch


• Supports interface mirroring, with option to mirror only specific VLAN


— One mirroring destination interface per VLAN


• Supports STP/RSTP/MSTP marking (Spanning Tree Protocol handled by host GPP software)


— Explicit ACL rules should be added to trap the STP frames to the CPU (Redirect to control 
interface)


• Supports QoS capabilities:


— Traffic class selection based on DSCP or 802.1P


— Supports transmission bandwidth allocation per traffic class


— Supports transmission rate configuration per interface


— Supports WRED on ingress (configuration per traffic class)


• Supports policy-based forwarding on ingress:







DPSW: Data Path L2 Switch


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 14-2
 


— TCAM lookup with keys formed of L2-L4 fields


• Supports forwarding of selective protocols to a control interface, for example:


— Ethernet monitoring packets (IEEE 802.3 clause 57, IEEE 802.1ag, ITU-T Y.1731)


— Multicast groups management packets (IGMP/MLD)


— Spanning Tree Protocol packets (BPDU)


• Supports statistics counters per interface


• Supports link state indication per interface


• Supports interrupts to host GPP software:


— Link change events (per interface)


• Supports switch enable, disable, and reset operations


• Supports interface enable and disable operations


• Supports Link Aggregation


14.2 DPSW functional description


14.2.1 Creating L2 switch instance


The DPSW may be declared in the DPL (Data Path Layout) file or created dynamically by submitting 
explicit DPSW_CREATE command to the Management Complex. The DPSW has only one mandatory 
input for creating a working L2 switch instance, and that is the requested number of switch interfaces. 
Other configuration options are possible but have default settings for simplicity.


The default operation mode for a DPSW (unless requetsed otherqise in DPSW creation) is with a default 
VLAN (VID = 1), a single Forwardimg Data Base (FDB 0) and with automatic learning enabled in 
hardware. This implies that the switch is fully functional after creation, and user only needs to connect 
each of its interfaces to either DPMAC objects or DPNI objects. Connections can be made initially in the 
DPL or later through DPRC object.


14.2.2 VLAN configuration


The switch starts up with VLAN 1 being configured as default VLAN. All untagged traffic received on 
any switch port is classified to VLAN 1 and all frames classified in VLAN 1 are sent out untagged on all 
ports.


The DPSW allows to add (and remove) other VLANs at any time. Each VLAN can include any subset of 
the switch ports.


14.2.3 Learning modes


The default configuration of the switch enables automatic learning by the switch hardware. It is possible 
to set Secure or Unsecure CPU learning modes instead of automatic learning. The leraning mode is 
configurable per FDB.







DPSW: Data Path L2 Switch


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 14-3
 


The table below summarizes the differences between the two CPU learning modes. These modes require 
that one of the switch interfaces is defined as control interface.


Note that turning off automatic learning does not remove the learned entries. Therefore, learning should 
be disabled before injecting any traffic if the intent is to establish a static topology.


14.2.4 FDB configuration


The default switch configuration does not include any static entries. It is possible to add (and remove) 
static rules for forwarding to different interfaces based on their MAC addresses.


The user may select to use a separate FDB per VLAN or decide to share FDBs between different VLANs.


14.2.5 LAG configuration


The Link Aggregation feature is implemented as part of the DPSW object. Two types of configurations are 
supported: static (via DPL) and dynamic (via API).


The following items summarize the current status of LAG support:


• The feature has been validated on LS2088 platform


• Maximum groups supported is 8; maximum ports in a group is 8


• Only physical ports (DPMACs) can be added in LAG groups


• A hash is computed by HW to select the port for transmission. The hash is performed on a 5-tuple 
composed of: MAC SRC, MAC DST, IP SRC, IP DST, L3 PROTOCOL.


• When defining LAG groups users should use the interface ID of the master port (the first port in a 
LAG group) when calling any of the DPSW APIs which require an interface ID (E.g.: 
dpsw_if_set_tci). Slave ports IDs (the rest of the ports in a LAG group except the first port) should 
not be used when calling DPSW APIs.


Learning Mode
SMAC 
known


DMAC 
known


Action


Non-Secure
CPU learning


V V Forward to DMAC destination


- V Forward to DMAC destination + control interface


V - Forward to list of flooding-enabled interfaces


- - Forward to list of flooding-enabled interfaces + control interface


Secure
CPU learning


V V Forward to DMAC destination


- V Forward to control interface


V - Forward to list of flooding-enabled interfaces


- - Forward to control interface







DPSW: Data Path L2 Switch


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 14-4
 


API configuration example:


struct dpsw_lag_cfg dpsw_lag_cfg = {0};


dpsw_lag_cfg.group_id = 1; /*group ID*/
dpsw_lag_cfg.num_ifs = 2; /*number of ports */
dpsw_lag_cfg.if_id[0] = 0; 
dpsw_lag_cfg.if_id[1] = 1;


err = dpsw_lag_set(&dpsw->io, 0, dpsw->token, &dpsw_lag_cfg);


In this example dpsw_lag_set creates LAG group with ID=1 and two interfaces: 0 (dpsw@1/if@0) and 1 
(dpsw@1/if@1).


LAG groups configuration can be retrieved using dpsw_lag_get_cfg API as shown below:
int group_id = 1;


err = dpsw_lag_get_cfg(&dpsw->io,0,dpsw->token,group_id,&dpsw_lag_cfg);







DPSW: Data Path L2 Switch


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 14-5
 


14.3 DPSW command reference


This section contains detailed programming model of DPSW commands.


14.3.1 DPSW_OPEN


Open a control session for the specified object.


This function can be used to open a control session for an already created object; an object may have been 
declared in the DPL or by invoking DPSW_CREATE command.


This function returns a unique authentication token, associated with the specific object ID; this token must 
be used in all subsequent commands for this specific object.


Command structure


Figure 365. DPSW_OPEN Command Description


The following table describes the command fields.
1-


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x8021 TOKEN —


IN
T


R
_D


IS


STATUS P — SRCID


63 32 31 0


0x08 DPSW_ID


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Table 63. DPSW_OPEN Command Field Descriptions1


1 All unspecified fields are reserved and must be cleared (set to zero)


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-31 DPSW_ID DPSW unique ID







DPSW: Data Path L2 Switch


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 14-6
 


14.3.2 DPSW_CLOSE


Close the control session of the object.


After this function is called, no further operations are allowed on the object without opening a new control 
session.


Command structure


Figure 366. DPSW_CLOSE Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x8001 TOKEN —


IN
T


R
_D


IS


STATUS P — SRCID


63 0


0x08 —


63 0


0x10 —


63 0


0x18


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.







DPSW: Data Path L2 Switch


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 14-7
 


14.3.3 DPSW_CREATE


This command creates and initializes an instance of DPSW according to the specified command 
parameters. This command is not required for DPSW instances that are created using the DPL.


For the CREATE command the caller must provide the authentication token of the parent container to 
which the object should be created and assigned. If the token is '0' the object will be assigned to the 
container that hosts the MC command portal executing this command.


The command returns a DPSW ID that can be used to OPEN or DESTROY the object.


The command format is shown in the figure below.


Command structure


Figure 367. DPSW_CREATE Command Description


The following table describes the command fields.
1-5


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x9023 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 47 44 43 40 39 36 35 32 31 24 23 16 15 0


0x08 MEM_SIZE BROA
DCAS
T_CF


G


FLOO


DING_


CFG


—
COMPONENT


_TYPE


MAX_METERS_
PER_IF


MAX_FDBS NUM_IFS


63 48 47 32 31 16 15 0


0x10 MAX_FDB_MC_GROUPS FDB_AGING_TIME MAX_FDB_ENTRIES MAX_VLANS


63 0


0x18 OPTIONS


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Table 64. DPSW_CREATE Command Field Descriptions1


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.







DPSW: Data Path L2 Switch


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 14-8
 


0x08 0-15 NUM_IFS Number of external and internal interfaces. The maximum value supported is 64.


16-23 MAX_FDBS Maximum number of FDB’s; 0 - indicates default 8


24-31 MAX_METERS_PER_IF Number of meters per interface; 0 - indicates default 4


32-35 COMPONENT_TYPE Type of component C_VLAN or S_VLAN
0 – for C_VLAN
1 – for S_VLAN


40-43 FLOODING_CFG 0x0 - DPSW_FLOODING _PER_VLAN (default): Flooding replicators are allocated 
per VLAN and interfaces present in each of them can be configured using 
dpsw_add_vlan_if_flooding() / dpsw_vlan_remove_if_flooding().
0x1 - DPSW_FLOODING_PER_FDB: Flooding replicators are allocated per FDB and 
interfaces present in each of them can be configured using dpsw_set_egress_flood().


44-47 BROADCAST_CFG 0x0 - DPSW_BROADCAST_PER_OBJECT (default): There is only one broadcast 
replicator per DPSW object
0x1 - DPSW_BROADCAST_PER_FDB: Broadcast replicators are allocated per FDB 
and interfaces present in each of them can be configured using 
dpsw_set_egress_flood().


48-63 MEM_SIZE Represents the number of 256byte buffers allocated for DPSW’s buffer pool or for all 
buffer pools if DPSW_OPT_BP_PER_IF options is used.If 0, default value is used 
which depends on number of interfaces.


0x10 0-15 MAX_VLANS Maximum number of VLAN’s; 0 - indicates default 8


16-31 MAX_FDB_ENTRIES Number of FDB entries for default FDB table;
0 - indicates default 64 entries.


32-47 FDB_AGING_TIME Default FDB aging time for default FDB table;
0 - indicates default 256 seconds


48-63 MAX_FDB_MC_GROUPS Number of multicast groups in each FDB table;
0 - indicates default 8


0x18 0-63 OPTIONS Enable/Disable DPSW features (bitmap). Select any combination of supported errors 
below:
bit 0: DPSW_OPT_FLOODING_DIS - Disable flooding
bit 2: DPSW_OPT_MULTICAST_DIS - Disable Multicast
bit 4: DPSW_OPT_CTRL_IF_DIS - Disable Interface Control
bit 5: DPSW_OPT_FLOODING_METERING_DIS - Disable Flooding Metering
bit 6: DPSW_OPT_METERING_EN - Enable Flooding Metering
bit 7: DPSW_OPT_BP_PER_IF - If enabled each interface will use a private buffer 
pool to keep a copy of the received frame.
bit 8: DPSW_OPT_LAG_DIS - option used to disable link aggregation.


1 All unspecified fields are reserved and must be cleared (set to zero).


Table 64. DPSW_CREATE Command Field Descriptions1


Offset Bits Name Description







DPSW: Data Path L2 Switch


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 14-9
 


Response structure


Figure 14-1. DPSW_CREATE Response Description


The following table describes the response fields.


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 24 23 16 15 14 8 7 0


CMDID = 0x9021 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 32 31 0


0x08 — DPSW_ID


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Table 14-1. DPSW_CREATE Response Field Descriptions1


1 All unspecified fields are reserved.


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-31 DPSW_ID DPSW unique ID







DPSW: Data Path L2 Switch


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 14-10
 


14.3.4 DPSW_DESTROY


This command destroys the DPSW object and releases all its resources. It must be invoked in the software 
context that created the object. The caller must provide the object id and the authentication token of the 
parent container that created the object. Note that the object can be assigned to another container and 
sending the authentication token of this container will return an error.


All open authentication tokens to the object must be closed before calling the destroy command. 


After this function is called, no further operations are allowed on the object.


Command structure


Figure 368. DPSW_DESTROY Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x9821 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 32 31 0


0x08 — DPSW_ID


63 0


0x10 —


63 0


0x18


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0–32 DPSW_ID ID of the DPSW object to destroy







DPSW: Data Path L2 Switch


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 14-11
 


14.3.5 DPSW_ENABLE


Command structure


Figure 369. DPSW_ENABLE Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0021 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 0


0x08 —


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.







DPSW: Data Path L2 Switch


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 14-12
 


14.3.6 DPSW_DISABLE


Command structure


Figure 370. DPSW_DISABLE Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0031 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 0


0x08 —


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.







DPSW: Data Path L2 Switch


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 14-13
 


14.3.7 DPSW_IS_ENABLED


Command structure


Figure 371. DPSW_IS_ENABLED Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0061 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 0


0x08 —


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.







DPSW: Data Path L2 Switch


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 14-14
 


Response structure


Figure 372. DPSW_IS_ENABLED Response Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0061 TOKEN —


IN
T


R
_D


IS


STATUS P — SRCID


63 1 0


0x08 — EN


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0 EN Returns '1' if object is enabled; '0' otherwise







DPSW: Data Path L2 Switch


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 14-15
 


14.3.8 DPSW_RESET


Command structure


Figure 373. DPSW_RESET Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0051 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 0


0x08 —


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.







DPSW: Data Path L2 Switch


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 14-16
 


14.3.9 DPSW_SET_IRQ_ENABLE


Set overall interrupt state. Allows GPP software to control when interrupts are generated. Each interrupt 
can have up to 32 causes. The enable/disable control's the overall interrupt state. if the interrupt is disabled 
no causes will cause an interrupt.


Command structure


Figure 374. DPSW_SET_IRQ_ENABLE Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0121 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 40 39 32 31 1 0


0x08 – IRQ_INDEX – EN


63 0


0x10 –


63 0


0x18 –


63 0


0x20 –


63 0


0x28 –


63 0


0x30 –


63 0


0x38 –


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0 EN Interrupt state: set to ‘1’ to enable, ‘0’ to disable


32-39 IRQ_INDEX Identifies the interrupt index to configure







DPSW: Data Path L2 Switch


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 14-17
 


14.3.10 DPSW_GET_IRQ_ENABLE


Get overall interrupt state.


Command structure


Figure 375. DPSW_GET_IRQ_ENABLE Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0131 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 40 39 32 31 0


0x08 – IRQ_INDEX –


63 0


0x10 –


63 0


0x18 –


63 0


0x20 –


63 0


0x28 –


63 0


0x30 –


63 0


0x38 –


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 32-39 IRQ_INDEX Identifies the interrupt index to query







DPSW: Data Path L2 Switch


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 14-18
 


Response structure


Figure 376. DPSW_GET_IRQ_ENABLE Response Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0131 TOKEN —


IN
T


R
_D


IS


STATUS P — SRCID


63 1 0


0x08 – EN


63 0


0x10 –


63 0


0x18 –


63 0


0x20 –


63 0


0x28 –


63 0


0x30 –


63 0


0x38 –


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0 EN This bit is set if the interrupt is enabled







DPSW: Data Path L2 Switch


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 14-19
 


14.3.11 DPSW_SET_IRQ_MASK


Set the interrupt mask. Every interrupt can have up to 32 causes and the interrupt model supports 
masking/unmasking each cause independently.


Command structure


Figure 377. DPSW_SET_IRQ_MASK Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0141 TOKEN —


IN
T


R
_D


IS


STATUS P — SRCID


63 40 39 32 31 0


0x08 – IRQ_INDEX MASK


63 0


0x10 –


63 0


0x18 –


63 0


0x20 –


63 0


0x28 –


63 0


0x30 –


63 0


0x38 –


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-31 MASK Event mask for triggering the interrupt; See GET_IRQ_STATUS command for 
specification of available events. For each bit in MASK:
0 = ignore event
1 = event is valid; signal the IRQ if this event occurs


32-39 IRQ_INDEX The interrupt index to configure







DPSW: Data Path L2 Switch


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 14-20
 


14.3.12 DPSW_GET_IRQ_MASK


Get the interrupt mask. Every interrupt can have up to 32 causes and the interrupt model supports 
masking/unmasking each cause independently.


Command structure


Figure 378. DPSW_GET_IRQ_MASK Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0151 TOKEN —


IN
T


R
_D


IS


STATUS P — SRCID


63 40 39 32 31 0


0x08 – IRQ_INDEX –


63 0


0x10 –


63 0


0x18 –


63 0


0x20 –


63 0


0x28 –


63 0


0x30 –


63 0


0x38 –


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 32-39 IRQ_INDEX The interrupt index to query







DPSW: Data Path L2 Switch


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 14-21
 


Response structure


Figure 379. DPSW_GET_IRQ_MASK Response Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0151 TOKEN —


IN
T


R
_D


IS


STATUS P — SRCID


63 32 31 0


0x08 MASK


63 0


0x10 –


63 0


0x18 –


63 0


0x20 –


63 0


0x28 –


63 0


0x30 –


63 0


0x38 –


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-31 MASK Event mask for triggering the interrupt; See GET_IRQ_STATUS command for 
specification of available events. For each bit in MASK:
0 = ignore event
1 = event is valid; signal the IRQ if this event occurs







DPSW: Data Path L2 Switch


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 14-22
 


14.3.13 DPSW_GET_IRQ_STATUS


Get the current status of pending events for the specified interrupt index.


Command structure


Figure 380. DPSW_GET_IRQ_STATUS Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0161 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 40 39 32 31 0


0x08 – IRQ_INDEX STATUS


63 0


0x10 –


63 0


0x18 –


63 0


0x20 –


63 0


0x28 –


63 0


0x30 –


63 0


0x38 –


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-31 STATUS Optional: any STATUS bits that are set will be cleared from pending state (removing 
the need for DPSW_CLEAR_IRQ_STATUS command). Note that the STATUS 
returned in the response is the status before the events are cleared.


Supported events: see response structure definition


32-39 IRQ_INDEX The interrupt index to query







DPSW: Data Path L2 Switch


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 14-23
 


Response structure


Figure 381. DPSW_GET_IRQ_STATUS Response Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0161 TOKEN —


IN
T


R
_D


IS


STATUS P — SRCID


63 32 31 0


0x08 STATUS


63 0


0x10 –


63 0


0x18 –


63 0


0x20 –


63 0


0x28 –


63 0


0x30 –


63 0


0x38 –


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-31 STATUS Events status mask (bits 0-15), one bit per event:
0 = no interrupt pending
1 = interrupt pending


Supported events for IRQ 0:
Bit 0: DPSW_IRQ_EVENT_LINK_CHANGED – indicates a change in the link state
Bit 1: DPSW_IRQ_EVENT_ENDPOINT_CHANGED – indicates a connect/disconnect 
event between DPSW and its endpoint (DPNI, DPMAC)
Bits 16-31 contain the DPSW interface ID associated with the event.







DPSW: Data Path L2 Switch


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 14-24
 


14.3.14 DPSW_CLEAR_IRQ_STATUS


Clear (mark as handled) pending events of the specified interrupt index.


Command structure


Figure 382. DPSW_CLEAR_IRQ_STATUS Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63tl 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0171 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 40 39 32 31 0


0x08 – IRQ_INDEX STATUS


63 0


0x10 –


63 0


0x18 –


63 0


0x20 –


63 0


0x28 –


63 0


0x30 –


63 0


0x38 –


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-31 STATUS Mask for clearing handled events; See GET_IRQ_STATUS command for specification 
of available events. For each bit in MASK:
0 = don’t change event status
1 = clear event status bit to indicate that it was handled


32-39 IRQ_INDEX The interrupt index to configure







DPSW: Data Path L2 Switch


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 14-25
 


14.3.15 DPSW_GET_ATTRIBUTES


Command structure


Figure 383. DPSW_GET_ATTRIBUTES Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0042 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 0


0x08 —


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.







DPSW: Data Path L2 Switch


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 14-26
 


Response structure


Figure 384. DPSW_GET_ATTRIBUTES Response Description


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0042 TOKEN —


IN
T


R
_D


IS


STATUS P — SRCID


63 48 47 32 31 24 23 16 15 0


0x08 NUM_VLANS MAX_VLANS NUM_FDBS MAX_FDBS NUM_IFS


63 32 31 16 15 0


0x10 ID FDB_AGING_TIME MAX_FDB_ENTRIES


63 56 55 52 51 48 47 44 43 40 39 32 31 16 15 0


0x18 — BROA
DCAS
T_CF


G


FLOO
DING
_CFG


— COMPONENT_T
YPE


MAX_METERS_
PER_IF


MAX_FDB_MC_GROUPS MEM_SIZE


63 0


0x20 OPTIONS


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-15 NUM_IFS Number of interfaces


16-23 MAX_FDBS Maximum Number of FDBs


24-31 NUM_FDBS Current number of FDBs


32-47 MAX_VLANS Maximum number of VLANs


48-63 NUM_VLANS Current number of VLANs


0x10 0-15 MAX_FDB_ENTRIES Number of FDB entries for default FDB table;
0 - indicates default 1024 entries.


16-31 FDB_AGING_TIME Default FDB aging time for default FDB table;
0 - indicates default 300 seconds


32–63 ID DPSW object ID







DPSW: Data Path L2 Switch


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 14-27
 


All unspecified fields are reserved and must be cleared (set to zero)


0x18 0-15 MEM_SIZE DPSW frame storage memory size


16-31 MAX_FDB_MC_GROUPS Number of multicast groups in each FDB table;
0 - indicates default 32


32-39 MAX_METERS_PER_IF Number of meters per interface


40-43 COMPONENT_TYPE Type of component C_VLAN or VLAN
0 – for C_VLAN
1 – for VLAN


48-51 FLOODING_CFG 0x0 - DPSW_FLOODING _PER_VLAN (default): Flooding replicators are allocated per VLAN and 
interfaces present in each of them can be configured using dpsw_vlan_add_if_flooding() / 
dpsw_vlan_remove_if_flooding().
0x1 - DPSW_FLOODING_PER_FDB: Flooding replicators are allocated per FDB and interfaces present 
in each of them can be configured using dpsw_set_egress_flood().


52-55 BROADCAST_CFG 0x0 - DPSW_BROADCAST_PER_OBJECT (default): There is only one broadcast replicator per DPSW 
object.
0x1 - DPSW_BROADCAST_PER_FDB: Broadcast replicators are allocated per FDB and interfaces 
present in each of them can be configured using dpsw_set_egress_flood().


0x20 0-63 OPTIONS Enable/Disable DPSW features.
bit 0: DPSW_OPT_FLOODING_DIS - Disable flooding
bit 2: DPSW_OPT_MULTICAST_DIS - Disable Multicast
bit 4: DPSW_OPT_CTRL_IF_DIS - Disable Interface Control
bit 5: DPSW_OPT_FLOODING_METERING_DIS - Disable Flooding Metering
bit 6: DPSW_OPT_METERING_EN - Enable Flooding Metering
bit 7: DPSW_OPT_BP_PER_IF - If enabled each interface will use a private buffer pool to keep a copy 
of the received frame.
bit 8: DPSW_OPT_LAG_DIS - option used to disable link aggregation.


0x28 0-7 MAX_METERS_PER_IF Number of meters per interface


Offset Bits Name Description







DPSW: Data Path L2 Switch


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 14-28
 


14.3.16 DPSW_SET_REFLECTION_IF


Command structure


Figure 385. DPSW_SET_REFLECTION_IF Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0221 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 16 15 0


0x08 — IF_ID


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-15 IF_ID Interface ID







DPSW: Data Path L2 Switch


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 14-29
 


14.3.17 DPSW_IF_SET_FLOODING


Command structure


Figure 386. DPSW_IF_SET_FLOODING Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0471 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 17 16 15 0


0x08 — EN IF_ID


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-15 IF_ID Interface ID


16 EN 1 - enable, 0 - disable







DPSW: Data Path L2 Switch


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 14-30
 


14.3.18 DPSW_IF_SET_BROADCAST


Command structure


Figure 387. DPSW_IF_SET_BROADCAST Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0481 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 19 16 15 0


0x08 — EN IF_ID


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-15 IF_ID Interface ID


16 EN 1 - enable, 0 - disable







DPSW: Data Path L2 Switch


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 14-31
 


14.3.19 DPSW_IF_SET_MULTICAST


Command structure


Figure 388. DPSW_IF_SET_MULTICAST Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0491 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 17 16 15 0


0x08 — EN IF_ID


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-15 IF_ID Interface ID


16 EN 1 - enable, 0 - disable







DPSW: Data Path L2 Switch


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 14-32
 


14.3.20 DPSW_IF_SET_TCI


Command structure


Figure 389. DPSW_IF_SET_TCI Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0301 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 32 31 29 28 27 16 15 0


0x08 — PCP DE
I


VLAN_ID IF_ID


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-15 IF_ID Interface ID


16-27 VLAN_ID VLAN Identifier (VID): a 12-bit field specifying the VLAN
to which the frame belongs. The hexadecimal values
of 0x000 and 0xFFF are reserved;
all other values may be used as VLAN identifiers, allowing up
to 4,094 VLANs


28 DEI Drop Eligible Indicator (DEI): a 1-bit field. May be used 
separately or in conjunction with PCP to indicate frames
eligible to be dropped in the presence of congestion


29-31 PCP Priority Code Point (PCP): a 3-bit field which refers
to the IEEE 802.1p priority







DPSW: Data Path L2 Switch


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 14-33
 


14.3.21 DPSW_IF_GET_TCI


Command structure


Figure 390. DPSW_IF_GET_TCI Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x04A1 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 16 15 0


0x08 — IF_ID


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-15 IF_ID Interface ID







DPSW: Data Path L2 Switch


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 14-34
 


Response structure


Figure 391. DPSW_IF_GET_TCI Response Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x04A1 TOKEN —


IN
T


R
_D


IS


STATUS P — SRCID


63 48 47 40 39 32 31 16 15 0


0x08 — PCP DEI VLAN_ID —


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 16-31 VLAN_ID VLAN Identifier (VID): a 12-bit field specifying the VLAN
to which the frame belongs. The hexadecimal values
of 0x000 and 0xFFF are reserved;
all other values may be used as VLAN identifiers, allowing up
to 4,094 VLANs


32-39 DEI Drop Eligible Indicator (DEI): a 1-bit field. May be used
separately or in conjunction with PCP to indicate frames
eligible to be dropped in the presence of congestion


40-47 PCP Priority Code Point (PCP): a 3-bit field which refers
to the IEEE 802.1p priority







DPSW: Data Path L2 Switch


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 14-35
 


14.3.22 DPSW_IF_SET_STP


Command structure


Figure 392. DPSW_IF_SET_STP Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0311 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 36 35 32 31 16 15 0


0x08 — STATE VLAN_ID IF_ID


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-15 IF_ID Interface ID


16-31 VLAN_ID VLAN ID STP state


32-35 STATE STP state. Select one of the supported values below:
0x0 = DPSW_STP_STATE_BLOCKING - Blocking state 
0x1 = DPSW_STP_STATE_LISTENING - Listening state 
0x2 = DPSW_STP_STATE_LEARNING - Learning state
0x3 = DPSW_STP_STATE_FORWARDING - Forwarding state 







DPSW: Data Path L2 Switch


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 14-36
 


14.3.23 DPSW_IF_SET_ACCEPTED_FRAMES


Command structure


Figure 393. DPSW_IF_SET_ACCEPTED_FRAMES Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0321 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 24 23 20 19 16 15 0


0x08 —


U
A


C
C


E
P


T
_


A
C


T


TYPE IF_ID


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-15 IF_ID Interface ID


16-19 TYPE Defines ingress accepted frames. Select one of the supported values below:
0x1 = DPSW_ADMIT_ALL - The device accepts VLAN tagged, untagged and priority 
tagged frames
0x3 = DPSW_ADMIT_ONLY_VLAN_TAGGED - The device discards untagged frames 
or Priority-Tagged frames received on this interface.


20-23 UNACCEPT_ACT When a frame is not accepted, it may be discarded or redirected
to control interface depending on this mode. Select one of the supported values below:
0x0 = DPSW_ACTION_DROP - Drop frame
0x1 = DPSW_ACTION_REDIRECT_TO_CTRL - Redirect frame to control interface 







DPSW: Data Path L2 Switch


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 14-37
 


14.3.24 DPSW_SET_IF_ACCEPT_ALL_VLAN


Command structure


Figure 394. DPSW_SET_IF_ACCEPT_ALL_VLAN Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0331 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 16 15 0


0x08 —


A
C


C
E


P
T


_
A


L
L


IF_ID


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-15 IF_ID Interface ID


16 ACCEPT_ALL Accept or drop frames having different VLAN







DPSW: Data Path L2 Switch


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 14-38
 


14.3.25 DPSW_IF_GET_COUNTER


Command structure


Figure 395. DPSW_IF_GET_COUNTER Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0342 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 21 20 16 15 0


0x08 — TYPE IF_ID


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-15 IF_ID Interface ID


16-20 TYPE Counter type. Select one of the supported values below:
0x0 = DPSW_CNT_ING_FRAME- Counts ingress frames 
0x1 = DPSW_CNT_ING_BYTE - Counts ingress bytes 
0x2 = DPSW_CNT_ING_FLTR_FRAME - Counts filtered ingress frames 
0x3 = DPSW_CNT_ING_FRAME_DISCARD - Counts discarded ingress frame 
0x4 = DPSW_CNT_ING_MCAST_FRAME- Counts ingress multicast frames 
0x5 = DPSW_CNT_ING_MCAST_BYTE- Counts ingress multicast bytes 
0x6 = DPSW_CNT_ING_BCAST_FRAME- Counts ingress broadcast frames 
0x7 = DPSW_CNT_ING_BCAST_BYTES - Counts ingress broadcast bytes 
0x8 = DPSW_CNT_EGR_FRAME - Counts egress frames 
0x9 = DPSW_CNT_EGR_BYTE- Counts eEgress bytes 
0xa =DPSW_CNT_EGR_FRAME_DISCARD - Counts discarded egress frames 
0xb =DPSW_CNT_EGR_STP_FRAME_DISCARD - Counts discarded egress STP 
frames
0xc =DPSW_CNT_ING_NO_BUFFER_DISCARD - Counts discarded ingress no 
buffer frames







DPSW: Data Path L2 Switch


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 14-39
 


Response structure


Figure 396. DPSW_IF_GET_COUNTER Response Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0342 TOKEN —


IN
T


R
_D


IS


STATUS P — SRCID


63 0


0x08 —


63 0


0x10 COUNTER


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x10 0-63 COUNTER counter return value







DPSW: Data Path L2 Switch


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 14-40
 


14.3.26 DPSW_IF_SET_COUNTER


Command structure


Figure 397. DPSW_IF_SET_COUNTER Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0351 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 21 20 16 15 0


0x08 — TYPE IF_ID


63 0


0x10 COUNTER


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-15 IF_ID Interface ID


16-20 TYPE Counter type. Select one of the supported values below:
0x0 = DPSW_CNT_ING_FRAME- Counts ingress frames 
0x1 = DPSW_CNT_ING_BYTE - Counts ingress bytes 
0x2 = DPSW_CNT_ING_FLTR_FRAME - Counts filtered ingress frames 
0x3 = DPSW_CNT_ING_FRAME_DISCARD - Counts discarded ingress frame 
0x4 = DPSW_CNT_ING_MCAST_FRAME- Counts ingress multicast frames 
0x5 = DPSW_CNT_ING_MCAST_BYTE- Counts ingress multicast bytes 
0x6 = DPSW_CNT_ING_BCAST_FRAME- Counts ingress broadcast frames 
0x7 = DPSW_CNT_ING_BCAST_BYTES - Counts ingress broadcast bytes 
0x8 = DPSW_CNT_EGR_FRAME - Counts egress frames 
0x9 = DPSW_CNT_EGR_BYTE- Counts eEgress bytes 
0xa =DPSW_CNT_EGR_FRAME_DISCARD - Counts discarded egress frames
0xb =DPSW_CNT_EGR_STP_FRAME_DISCARD - Counts discarded egress STP 
frames
0xc =DPSW_CNT_ING_NO_BUFFER_DISCARD - Counts discarded ingress no 
buffer frames


0x10 0-63 COUNTER New counter value







DPSW: Data Path L2 Switch


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 14-41
 


14.3.27 DPSW_IF_SET_TX_SELECTION


Command structure


Figure 398. DPSW_IF_SET_TX_SELECTION Command Description


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0362 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 19 18 16 15 0


0x08 — PRIORI
TY_SE
LECTO


R


IF_ID


63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0


0x10 TC_ID7 TC_ID6 TC_ID5 TC_ID4 TC_ID3 TC_ID2 TC_ID1 TC_ID


63 51 48 47 32 31 20 19 16 15 0


0x18 — TC_SH
ED1_M


ODE


TC_SCHED1_DELTA_BANDWIDTH — TC_SH
ED0_M


ODE


TC_SCHED0_DELTA_BANDWIDTH


63 51 48 47 32 31 20 19 16 15 0


0x20 — TC_SH
ED3_M


ODE


TC_SCHED3_DELTA_BANDWIDTH — TC_SH
ED2_M


ODE


TC_SCHED2_DELTA_BANDWIDTH


63 51 48 47 32 31 20 19 16 15 0


0x28 — TC_SH
ED5_M


ODE


TC_SCHED5_DELTA_BANDWIDTH — TC_SH
ED4_M


ODE


TC_SCHED4_DELTA_BANDWIDTH


63 51 48 47 32 31 20 19 16 15 0


0x30 — TC_SH
ED7_M


ODE


TC_SCHED7_DELTA_BANDWIDTH — TC_SH
ED6_M


ODE


TC_SCHED6_DELTA_BANDWIDTH


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-15 IF_ID Interface ID


16-18 PRIORITY_SELECTOR Source for user priority regeneration. The priority is determined when the frame is 
parsed on the ingress interface. The frame will be enqueued into the egress interface 
using this priority. On the egress interface the frames will be handled using the priority 
determined by the ingress interface.
Select one of the supported values below:
0x0 = DPSW_UP_PCP - Priority Code Point (PCP): a 3-bit field which refers to the 
IEEE 802.1p priority.
0x1 = DPSW_UP_DSCP - Differentiated services Code Point (DSCP): 6 bit field from 
IP header
0x2 = DPSW_UP_NO_CHANGE - Do not modify the user priority configuration


0x10 0-63 TC_ID[0-7] Source for traffic classes (TCs) scheduling algorithm on the egress path. The TCs are 
scheduled according to the user priority, but frames are enqueued in each TC 
according to the PRIORITY_SELECTOR field set for the ingress interface.


0x18- 
0x30


0-15/
32-47


TC_SHED[0-7]_DELTA_BANDWIDTH weighted Bandwidth in range from 100 to 10000


16-19/ 
47-51


TC_SCHED[0-7]_MODE Strict or weight-based scheduling







DPSW: Data Path L2 Switch


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 14-42
 


All unspecified fields are reserved and must be cleared (set to zero)







DPSW: Data Path L2 Switch


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 14-43
 


14.3.28 DPSW_IF_ADD_REFLECTION


Command structure


Figure 399. DPSW_IF_ADD_REFLECTION Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0371 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 34 33 32 31 16 15 0


0x08 — FILTER VLAN_ID IF_ID


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-15 IF_ID Interface ID


16-31 VLAN_ID VLAN ID to reflect;
valid only when filter type is DPSW_INGRESS_VLAN


32-33 FILTER Filter type for frames to reflect. Select one of the supported values below:
0x0 = DPSW_REFLECTION_FILTER_INGRESS_ALL - Reflect all frames 
0x1 = DPSW_REFLECTION_FILTER_INGRESS_VLAN - Reflect only frames belong 
to particular VLAN defined by vid parameter







DPSW: Data Path L2 Switch


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 14-44
 


14.3.29 DPSW_IF_REMOVE_REFLECTION


Command structure


Figure 400. DPSW_IF_REMOVE_REFLECTION Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0381 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 34 33 32 31 16 15 0


0x08 — FILTER VLAN_ID IF_ID


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-15 IF_ID Interface ID


16-31 VLAN_ID VLAN ID to reflect;
valid only when filter type is DPSW_INGRESS_VLAN


32-33 FILTER Filter type for frames to reflect. Select one of the supported values below:
0x0 = DPSW_REFLECTION_FILTER_INGRESS_ALL - Reflect all frames 
0x1 = DPSW_REFLECTION_FILTER_INGRESS_VLAN - Reflect only frames belong 
to particular VLAN defined by vid parameter







DPSW: Data Path L2 Switch


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 14-45
 


14.3.30 DPSW_IF_SET_FLOODING_METERING


Command structure


Figure 401. DPSW_IF_SET_FLOODING_METERING Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0391 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 32 31 28 27 24 23 16 15 0


0x08 CIR UNITS MODE — IF_ID


63 32 31 0


0x10 CBS EIR


63 32 31 0


0x18 — EBS


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-15 IF_ID Interface ID


24-27 MODE Metering modes. Select one of the supported values below: 
0x0 = DPSW_METERING_MODE_NONE: metering disabled
0x1 = DPSW_METERING_MODE_RFC2698: RFC 2698
0x2 = DPSW_METERING_MODE_RFC4115: RFC 4115


28-31 UNITS Metering count. Select one of the supported values below: 
0x0 = DPSW_METERING_UNIT_BYTES: count in byte units
0x1 = DPSW_METERING_UNIT_FRAMES: count in frame units


32-63 CIR Committed information rate (CIR) in bits/s


0x10 0-31 EIR Excess information rate (EIR) in bits/s


32-63 CBS Committed burst size (CBS) in bytes


0x18 0-31 EBS Excess bust size (EBS) in bytes







DPSW: Data Path L2 Switch


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 14-46
 


14.3.31 DPSW_IF_SET_METERING


Command structure


Figure 402. DPSW_IF_SET_METERING Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x03A1 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 32 31 28 27 24 23 16 15 0


0x08 CIR UNITS MODE TC_ID IF_ID


63 32 31 0


0x10 CBS EIR


63 32 31 0


0x18 — EBS


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-15 IF_ID Interface ID


16-23 TC_ID Traffic class ID


24-27 MODE Metering modes. Select one of the supported values below: 
0x0 = DPSW_METERING_MODE_NONE: metering disabled
0x1 = DPSW_METERING_MODE_RFC2698: RFC 2698
0x2 = DPSW_METERING_MODE_RFC4115: RFC 4115


28-31 UNITS Metering count. Select one of the supported values below: 
0x0 = DPSW_METERING_UNIT_BYTES: count in byte units
0x1 = DPSW_METERING_UNIT_FRAMES: count in frame units


32-63 CIR Committed information rate (CIR) in bits/s


0x10 0-31 EIR Excess information rate (EIR) in bits/s


32-63 CBS Committed burst size (CBS) in bytes


0x18 0-31 EBS Excess bust size (EBS) in bytes







DPSW: Data Path L2 Switch


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 14-47
 


14.3.32 DPSW_IF_SET_EARLY_DROP


Command structure


Figure 403. DPSW_IF_SET_EARLY_DROP Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x03B1 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 32 31 16 15 8 7 0


0x08 IF_ID TC_ID —


63 0


0x10 EARLY_DROP_IOVA


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 8-15 TC_ID Traffic class ID


16-31 IF_ID Interface ID


0x10 0-63 EARLY_DROP_IOVA I/O virtual address of 64 bytes;
Must be cacheline-aligned and DMA-able memory







DPSW: Data Path L2 Switch


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 14-48
 


Extension structure


Figure 404. DPSW_IF_SET_EARLY_DROP Extension Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


0x00 TAIL_DROP_THRESHOLD — U
N


IT
S


D
R


O
P


_M
O


D
E


63 8 7 0


0x08 GREEN_DROP_
PROBABILITY


63 0


0x10 GREEN_MAX_THRESHOLD


63 0


0x18 GREEN_MIN_THRESHOLD


63 8 7 0


0x20 YELLOW_DROP
_PROBABILITY


63 0


0x28 YELLOW_MAX_THRESHOLD


63 0


0x30 YELLOW_MIN_THRESHOLD


Offset Bits Name Description


0x00 0-1 DROP_MODE Drop mode


2-3 UNITS Count units


32-63 TAIL_DROP_THRESHOLD Tail drop threshold


0x08 0-7 GREEN_DROP_PROBABILITY probability for green WRED that a packet will be discarded (1-100,
associated with the maximum threshold)


0x10 0-63 GREEN_MAX_THRESHOLD maximum threshold for green WRED hat packets may be discarded. Above this 
threshold all packets are discarded; must be less than 2^39; approximated to be 
expressed as (x+256)*2^(y-1) due to HW implementation.


0x18 0-63 GREEN_MIN_THRESHOLD minimum threshold for green WRED that packets may be discarded at


0x20 0-7 YELLOW_DROP_PROBABILITY probability for yellow WRED that a packet will be discarded (1-100,
associated with the maximum threshold)


0x28 0-63 YELLOW_MAX_THRESHOLD maximum threshold for yellow WRED hat packets may be discarded. Above this 
threshold all packets are discarded; must be less than 2^39; approximated to be 
expressed as (x+256)*2^(y-1) due to HW implementation.


0x30 0-63 YELLOW_MIN_THRESHOLD minimum threshold for yellow WRED that packets may be discarded at







DPSW: Data Path L2 Switch


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 14-49
 


14.3.33 DPSW_ADD_CUSTOM_TPID


Command structure


Figure 405. DPSW_ADD_CUSTOM_TPID Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0241 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 32 31 16 15 0


0x08 TPID —


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 16-31 TPID An additional tag protocol identifier







DPSW: Data Path L2 Switch


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 14-50
 


14.3.34 DPSW_REMOVE_CUSTOM_TPID


Command structure


Figure 406. DPSW_REMOVE_CUSTOM_TPID Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0261 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 32 31 16 15 0


0x08 TPID —


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 16-31 TPID An additional tag protocol identifier







DPSW: Data Path L2 Switch


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 14-51
 


14.3.35 DPSW_IF_ENABLE


Command structure


Figure 407. DPSW_IF_ENABLE Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x03D1 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 16 15 0


0x08 — IF_ID


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-15 IF_ID Interface ID







DPSW: Data Path L2 Switch


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 14-52
 


14.3.36 DPSW_IF_DISABLE


Command structure


Figure 408. DPSW_IF_DISABLE Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x03E1 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 16 15 0


0x08 — IF_ID


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-15 IF_ID Interface ID







DPSW: Data Path L2 Switch


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 14-53
 


14.3.37 DPSW_IF_GET_ATTRIBUTES


Command structure


Figure 409. DPSW_IF_GET_ATTRIBUTES Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0421 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 16 15 0


0x08 — IF_ID


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-15 IF_ID Interface ID







DPSW: Data Path L2 Switch


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 14-54
 


Response structure


Figure 410. DPSW_IF_GET_ATTRIBUTES Response Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0421 TOKEN —


IN
T


R
_D


IS


STATUS P — SRCID


63 48 47 32 31 24 23 16 15 7 6 5 4 3 0


0x08 — QDID — NUM_TCS —


A
C


C
E


P
T


_
A


L
L


_
V


L
A


N


E
N


A
B


LE
D


—


A
D


M
IT


_
U


N
TA


G
G


E
D


63 32 31 0


0x10 — OPTIONS


63 32 31 0


0x18 — RATE


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-3 ADMIT_UNTAGGED When set to 'DPSW_ADMIT_ONLY_VLAN_TAGGED', the device discards
untagged frames or priority-tagged frames received on this
interface;
When set to 'DPSW_ADMIT_ALL', untagged frames or priority-
tagged frames received on this interface are accepted


5 ENABLED Indicates if interface is enabled


6 ACCEPT_ALL_VLAN The device discards/accepts incoming frames
for VLANs that do not include this interface


16-23 NUM_TCS Number of traffic classes


32-47 QDID QDID value to use when transmitting control frames through this interface


0x10 0-32 OPTIONS Interface configuration options (bitmap)


0x18 0-32 RATE Transmit rate in bits per second







DPSW: Data Path L2 Switch


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 14-55
 


14.3.38 DPSW_IF_SET_MAX_FRAME_LENGTH


Command structure


Figure 411. DPSW_IF_SET_MAX_FRAME_LENGTH Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0441 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 32 31 16 15 0


0x08 — FRAME_LENGTH IF_ID


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-15 IF_ID Interface ID


16-31 FRAME_LENGTH Maximum Frame Length







DPSW: Data Path L2 Switch


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 14-56
 


14.3.39 DPSW_IF_SET_LINK_CFG


Command structure


Figure 412. DPSW_IF_SET_LINK_CFG Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x04C1 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 16 15 0


0x08 — IF_ID


63 32 31 0


0x10 — RATE


63 0


0x18 OPTIONS


63 0


0x20 ADVERTISING


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-15 IF_ID Interface ID


0x10 0-32 RATE Rate


0x18 0-63 OPTIONS Mask of available options; use ‘DPSW_LINK_OPT_<x> values


0X20 0-63 ADVERTISING Speeds that are advertised for autoneg







DPSW: Data Path L2 Switch


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 14-57
 


14.3.40 DPSW_IF_GET_LINK_STATE


Command structure


Figure 413. DPSW_IF_GET_LINK_STATE Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0461 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 16 15 0


0x08 — IF_ID


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-15 IF_ID Interface ID







DPSW: Data Path L2 Switch


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 14-58
 


Response structure


Figure 414. DPSW_IF_GET_LINK_STATE Response Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0461 TOKEN —


IN
T


R
_D


IS


STATUS P — SRCID


63 32 31 0


0x08 —


S
TA


T
E


_
V


A
L


ID


UP


—


63 32 31 0


0x10 — RATE


63 0


0x18 OPTIONS


63 0


0x20 SUPPORTED


63 0


0x28 ADVERTISING


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 32 UP 0 - down, 1- up


33 STATE_VALID Ignore/Update the state of the link


0x10 0-32 RATE Rate


0x18 0-63 OPTIONS Mask of available options; use ‘DPSW_LINK_OPT_<x>’ values


0X20 0-63 SUPPORTED Speeds capability of the phy


0X28 0-63 ADVERTISING Speeds that are advertised for autoneg







DPSW: Data Path L2 Switch


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 14-59
 


14.3.41 DPSW_IF_GET_MAX_FRAME_LENGTH


Command structure


Figure 415. DPSW_IF_GET_MAX_FRAME_LENGTH Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0451 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 16 15 0


0x08 — IF_ID


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-15 IF_ID Interface ID







DPSW: Data Path L2 Switch


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 14-60
 


Response structure


Figure 416. DPSW_IF_GET_MAX_FRAME_LENGTH Response Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0451 TOKEN —


IN
T


R
_D


IS


STATUS P — SRCID


63 32 31 16 15 0


0x08 — FRAME_LENGTH —


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 16-31 FRAME_LENGTH Maximum Frame Length







DPSW: Data Path L2 Switch


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 14-61
 


14.3.42 DPSW_VLAN_ADD


Command structure


Figure 417. DPSW_VLAN_ADD Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0601 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 32 31 16 15 0


0x08 — VLAN_ID FDB_ID


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-15 FDB_ID Forwarding Data base


16-31 VLAN_ID VLAN ID







DPSW: Data Path L2 Switch


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 14-62
 


14.3.43 DPSW_VLAN_ADD_IF


Command structure


Figure 418. DPSW_VLAN_ADD_IF Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0612 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 47 32 31 16 15 0


0x08 — FDB_ID VLAN_ID OPTIONS


63 0


0x10 IF_ID (Bitmap)


63 0


0x18 IF_ID (Bitmap)


63 0


0x20 IF_ID (Bitmap)


63 0


0x28 IF_ID (Bitmap)


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-15 OPTIONS Use this option to accept an FDB id:
0x0001 - DPSW_VLAN_ADD_IF_OPT_FDB_ID


16-31 VLAN_ID Vlan id.


32-47 FDB_ID FDB id to be used by this VLAN on this specific interface.


0x10- 
0x2F


0-63 IF_ID (bitmap) The set of interfaces that are assigned to the egress list for this VLAN.







DPSW: Data Path L2 Switch


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 14-63
 


14.3.44 DPSW_VLAN_ADD_IF_UNTAGGED


Command structure


Figure 419. DPSW_VLAN_ADD_IF_UNTAGGED Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0621 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 32 31 16 15 0


0x08 — VLAN_ID —


63 0


0x10 IF_ID (Bitmap)


63 0


0x18 IF_ID (Bitmap)


63 0


0x20 IF_ID (Bitmap)


63 0


0x28 IF_ID (Bitmap)


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 16-31 VLAN_ID VLAN ID


0x10- 
0x2F


0-63 IF_ID (bitmap) The set of interfaces that are assigned to the egress list for this VLAN







DPSW: Data Path L2 Switch


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 14-64
 


14.3.45 DPSW_VLAN_ADD_IF_FLOODING


Command structure


Figure 420. DPSW_VLAN_ADD_IF_FLOODING Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0631 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 32 31 16 15 0


0x08 — VLAN_ID —


63 0


0x10 IF_ID (bitmap)


63 0


0x18 IF_ID (bitmap)


63 0


0x20 IF_ID (bitmap)


63 0


0x28 IF_ID (bitmap)


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 16-31 VLAN_ID VLAN ID


0x10- 
0x2F


0-63 IF_ID (bitmap) The set of interfaces that are assigned to the egress list for this VLAN







DPSW: Data Path L2 Switch


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 14-65
 


14.3.46 DPSW_VLAN_REMOVE_IF


Command structure


Figure 421. DPSW_VLAN_REMOVE_IF Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0641 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 32 31 16 15 0


0x08 — VLAN_ID —


63 0


0x10 IF_ID (bitmap)


63 0


0x18 IF_ID (bitmap)


63 0


0x20 IF_ID (bitmap)


63 0


0x28 IF_ID (bitmap)


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 16-31 VLAN_ID VLAN ID


0x10- 
0x2F


0-63 IF_ID (bitmap) The set of interfaces that are assigned to the egress list for this VLAN







DPSW: Data Path L2 Switch


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 14-66
 


14.3.47 DPSW_VLAN_REMOVE_IF_UNTAGGED


Command structure


Figure 422. DPSW_VLAN_REMOVE_IF_UNTAGGED Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0651 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 32 31 16 15 0


0x08 — VLAN_ID —


63 0


0x10 IF_ID (bitmap)


63 0


0x18 IF_ID (bitmap)


63 0


0x20 IF_ID (bitmap)


63 0


0x28 IF_ID (bitmap)


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 16-31 VLAN_ID VLAN ID


0x10- 
0x2F


0-63 IF_ID (bitmap) The set of interfaces that are assigned to the egress list for this VLAN







DPSW: Data Path L2 Switch


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 14-67
 


14.3.48 DPSW_VLAN_REMOVE_IF_FLOODING


Command structure


Figure 423. DPSW_VLAN_REMOVE_IF_FLOODING Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0661 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 32 31 16 15 0


0x08 — VLAN_ID —


63 0


0x10 IF_ID (bitmap)


63 0


0x18 IF_ID (bitmap)


63 0


0x20 IF_ID (bitmap)


63 0


0x28 IF_ID (bitmap)


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 16-31 VLAN_ID VLAN ID


0x10- 
0x2F


0-63 IF_ID (bitmap) The set of interfaces that are assigned to the egress list for this VLAN







DPSW: Data Path L2 Switch


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 14-68
 


14.3.49 DPSW_VLAN_REMOVE


Command structure


Figure 424. DPSW_VLAN_REMOVE Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0671 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 32 31 16 15 0


0x08 — VLAN_ID —


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 16-31 VLAN_ID VLAN ID







DPSW: Data Path L2 Switch


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 14-69
 


14.3.50 DPSW_VLAN_GET_ATTRIBUTES


Command structure


Figure 425. DPSW_VLAN_GET_ATTRIBUTES Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x06B1 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 16 15 0


0x08 — VLAN_ID


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-15 VLAN_ID VLAN ID







DPSW: Data Path L2 Switch


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 14-70
 


Response structure


Figure 426. DPSW_VLAN_GET_ATTRIBUTES Response Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x06B1 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 0


0x08 —


63 48 47 32 31 16 15 0


0x10 NUM_FLOODING_IFS NUM_UNTAGGED_IFS NUM_IFS FDB_ID


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08


0x10 0-15 FDB_ID Associated FDB ID


16-31 NUM_IFS Number of interfaces


32-47 NUM_UNTAGGED_IFS Number of untagged interfaces


48-63 NUM_FLOODING_IFS Number of flooding interfaces







DPSW: Data Path L2 Switch


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 14-71
 


14.3.51 DPSW_VLAN_GET_IF


Command structure


Figure 427. DPSW_VLAN_GET_IF Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0681 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 16 15 0


0x08 — VLAN_ID


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-15 VLAN_ID VLAN ID







DPSW: Data Path L2 Switch


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 14-72
 


Response structure


Figure 428. DPSW_VLAN_GET_IF Response Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0681 TOKEN —


IN
T


R
_D


IS


STATUS P — SRCID


63 32 31 16 15 0


0x08 — NUM_IFS —


63 0


0x10 IF_ID (bitmap)


63 0


0x18 IF_ID (bitmap)


63 0


0x20 IF_ID (bitmap)


63 0


0x28 IF_ID (bitmap)


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 16-31 NUM_IFS The number of interfaces that are
assigned to the egress list for this VLAN


0x10- 
0x2F


0-63 IF_ID (bitmap) The set of interfaces that are assigned to the egress list for this VLAN







DPSW: Data Path L2 Switch


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 14-73
 


14.3.52 DPSW_VLAN_GET_IF_FLOODING


Command structure


Figure 429. DPSW_VLAN_GET_IF_FLOODING Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0691 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 32 31 16 15 0


0x08 — VLAN_ID


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-15 VLAN_ID VLAN ID







DPSW: Data Path L2 Switch


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 14-74
 


Response structure


Figure 430. DPSW_VLAN_GET_IF_FLOODING Response Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0691 TOKEN —


IN
T


R
_D


IS


STATUS P — SRCID


63 32 31 16 15 0


0x08 — NUM_IFS —


63 0


0x10 IF_ID (bitmap)


63 0


0x18 IF_ID (bitmap)


63 0


0x20 IF_ID (bitmap)


63 0


0x28 IF_ID (bitmap)


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 16-31 NUM_IFS The number of interfaces that are
assigned to the egress list for this VLAN


0x10- 
0x2F


0-63 IF_ID (bitmap) The set of interfaces that are assigned to the egress list for this VLAN







DPSW: Data Path L2 Switch


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 14-75
 


14.3.53 DPSW_VLAN_GET_IF_UNTAGGED


Command structure


Figure 431. DPSW_VLAN_GET_IF_UNTAGGED Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x06A1 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 16 15 0


0x08 — VLAN_ID


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-15 VLAN_ID VLAN ID







DPSW: Data Path L2 Switch


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 14-76
 


Response structure


Figure 432. DPSW_VLAN_GET_IF_UNTAGGED Response Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x06A1 TOKEN —


IN
T


R
_D


IS


STATUS P — SRCID


63 32 31 16 15 0


0x08 — NUM_IFS —


63 0


0x10 IF_ID (bitmap)


63 0


0x18 IF_ID (bitmap)


63 0


0x20 IF_ID (bitmap)


63 0


0x28 IF_ID (bitmap)


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 16-31 NUM_IFS The number of interfaces that are
assigned to the egress list for this VLAN


0x10- 
0x2F


0-63 IF_ID (bitmap) The set of interfaces that are assigned to the egress list for this VLAN







DPSW: Data Path L2 Switch


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 14-77
 


14.3.54 DPSW_FDB_ADD


Command structure


Figure 433. DPSW_FDB_ADD Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0821 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 48 47 32 31 0


0x08 NUM_FDB_ENTRIES FDB_AGING_TIME —


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 32-47 FDB_AGING_TIME Aging time in seconds


48-63 NUM_FDB_ENTRIES Number of FDB entries







DPSW: Data Path L2 Switch


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 14-78
 


Response structure


Figure 434. DPSW_FDB_ADD Response Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0821 TOKEN —


IN
T


R
_D


IS


STATUS P — SRCID


63 16 15 0


0x08 — FDB_ID


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-15 FDB_ID Forwarding Database Identifier







DPSW: Data Path L2 Switch


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 14-79
 


14.3.55 DPSW_FDB_REMOVE


Command structure


Figure 435. DPSW_FDB_REMOVE Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0831 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 16 15 0


0x08 — FDB_ID


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-15 FDB_ID Forwarding Database Identifier







DPSW: Data Path L2 Switch


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 14-80
 


14.3.56 DPSW_FDB_ADD_UNICAST


Command structure


Figure 436. DPSW_FDB_ADD_UNICAST Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0841 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 56 55 48 47 40 39 32 31 24 16 15 0


0x08 MAC_ADDR0 MAC_ADDR1 MAC_ADDR2 MAC_ADDR3 MAC_ADDR4 MAC_ADDR5 FDB_ID


63 20 19 16 15 0


0x10 — TYPE IF_EGRESS


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-15 FDB_ID Forwarding Database Identifier


16-63 MAC_ADDR[0-5] MAC address


0x10 0-15 IF_EGRESS Egress interface ID


16-19 TYPE Select static or dynamic entry. Select one of the supported values below:
0x0 = DPSW_FDB_ENTRY_STATIC - Static entry 
0x1 = DPSW_FDB_ENTRY_DINAMIC - Dynamic entry 







DPSW: Data Path L2 Switch


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 14-81
 


14.3.57 DPSW_FDB_GET_UNICAST


Command structure


Figure 437. DPSW_FDB_GET_UNICAST Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0811 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 56 55 48 47 40 39 32 31 24 21 16 15 0


0x08 MAC_ADDR0 MAC_ADDR1 MAC_ADDR2 MAC_ADDR3 MAC_ADDR4 MAC_ADDR5 FDB_ID


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-15 FDB_ID Forwarding Database Identifier


16-63 MAC_ADDR[0-5] MAC address







DPSW: Data Path L2 Switch


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 14-82
 


Response structure


Figure 438. DPSW_FDB_GET_UNICAST Response Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0811 TOKEN —


IN
T


R
_D


IS


STATUS P — SRCID


63 0


0x08 —


63 20 19 16 15 0


0x10 — TYPE IF_EGRESS


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x10 0-15 IF_EGRESS Egress interface ID 


16-19 TYPE Select static or dynamic entry:
0x0 = DPSW_FDB_ENTRY_STATIC - Static entry 
0x1 = DPSW_FDB_ENTRY_DINAMIC - Dynamic entry 







DPSW: Data Path L2 Switch


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 14-83
 


14.3.58 DPSW_FDB_REMOVE_UNICAST


Command structure


Figure 439. DPSW_FDB_REMOVE_UNICAST Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0851 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 56 55 48 47 40 39 32 31 24 16 15 0


0x08 MAC_ADDR0 MAC_ADDR1 MAC_ADDR2 MAC_ADDR3 MAC_ADDR4 MAC_ADDR5 FDB_ID


63 20 19 16 15 0


0x10 — TYPE IF_EGRESS


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-15 FDB_ID Forwarding Database Identifier


16-63 MAC_ADDR[0-5] MAC address


0x10 0-15 IF_EGRESS Egress interface ID


16-19 TYPE Select static or dynamic entry:
0x0 = DPSW_FDB_ENTRY_STATIC - Static entry 
0x1 = DPSW_FDB_ENTRY_DINAMIC - Dynamic entry 







DPSW: Data Path L2 Switch


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 14-84
 


14.3.59 DPSW_FDB_ADD_MULTICAST


Command structure


Figure 440. DPSW_FDB_ADD_MULTICAST Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0861 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 36 35 32 31 16 15 0


0x08 — TYPE NUM_IFS FDB_ID


63 56 55 48 47 40 39 32 31 24 23 16 15 0


0x10 MAC_ADDR0 MAC_ADDR1 MAC_ADDR2 MAC_ADDR3 MAC_ADDR4 MAC_ADDR5 —


63 0


0x18 IF_ID (bitmap)


63 0


0x20 IF_ID (bitmap)


63 0


0x28 IF_ID (bitmap)


63 0


0x30 IF_ID (bitmap)


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-15 FDB_ID Forwarding Database Identifier


16-31 NUM_IFS Number of external and internal interfaces


32-35 TYPE Select static or dynamic entry:
0x0 = DPSW_FDB_ENTRY_STATIC - Static entry 
0x1 = DPSW_FDB_ENTRY_DINAMIC - Dynamic entry 


0x10 16-63 MAC_ADDR[0-5] MAC address


0x18- 
0x37


0-63 IF_ID (bitmap) The set of interfaces that are assigned to the egress list for this VLAN







DPSW: Data Path L2 Switch


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 14-85
 


14.3.60 DPSW_FDB_GET_MULTICAST


Command structure


Figure 441. DPSW_FDB_GET_MULTICAST Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0801 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 56 55 48 47 40 39 32 31 24 23 16 15 0


0x08 MAC_ADDR0 MAC_ADDR1 MAC_ADDR2 MAC_ADDR3 MAC_ADDR4 MAC_ADDR5 FDB_ID


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-15 FDB_ID Forwarding Database Identifier


16-63 MAC_ADDR[0-5] MAC address







DPSW: Data Path L2 Switch


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 14-86
 


Response structure


Figure 442. DPSW_FDB_GET_MULTICAST Response Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0801 TOKEN —


IN
T


R
_D


IS


STATUS P — SRCID


63 0


0x08 —


63 20 19 16 15 0


0x10 — TYPE NUM_IFS


63 0


0x18 IF_ID (bitmap)


63 0


0x20 IF_ID (bitmap)


63 0


0x28 IF_ID (bitmap)


63 0


0x30 IF_ID (bitmap)


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-63 Reserved


0x10 0-15 NUM_IFS Number of external and internal interfaces


16-19 TYPE Select static or dynamic entry:
0x0 = DPSW_FDB_ENTRY_STATIC - Static entry 0x1 = 
DPSW_FDB_ENTRY_DINAMIC - Dynamic entry 


0x18- 
0x37


0-63 IF_ID (bitmap) The set of interfaces that are assigned to the egress list for this VLAN







DPSW: Data Path L2 Switch


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 14-87
 


14.3.61 DPSW_FDB_REMOVE_MULTICAST


Command structure


Figure 443. DPSW_FDB_REMOVE_MULTICAST Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0871 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 36 35 32 31 16 15 0


0x08 — TYPE NUM_IFS FDB_ID


63 56 55 48 47 40 39 32 31 24 23 16 15 0


0x10 MAC_ADDR0 MAC_ADDR1 MAC_ADDR2 MAC_ADDR3 MAC_ADDR4 MAC_ADDR5 —


63 0


0x18 IF_ID (bitmap)


63 0


0x20 IF_ID (bitmap)


63 0


0x28 IF_ID (bitmap)


63 0


0x30 IF_ID (bitmap)


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-15 FDB_ID Forwarding Database Identifier


16-31 NUM_IFS Number of external and internal interfaces 


32-35 TYPE Select static or dynamic entry:
0x0 = DPSW_FDB_ENTRY_STATIC - Static entry 
0x1 = DPSW_FDB_ENTRY_DINAMIC - Dynamic entry 


0x10 16-63 MAC_ADDR[0-5] MAC address


0x18- 
0x37


0-63 IF_ID (bitmap) The set of interfaces that are assigned to the egress list for this VLAN







DPSW: Data Path L2 Switch


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 14-88
 


14.3.62 DPSW_FDB_SET_LEARNING_MODE


Command structure


Figure 444. DPSW_FDB_SET_LEARNING_MODE Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0881 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 20 19 16 15 0


0x08 — MODE FDB_ID


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-15 FDB_ID Forwarding Database Identifier


16-19 MODE Learning mode. Select one of the supported values below:
0x0 = DPSW_LEARNING_MODE_DIS - Disable Auto-learning 
0x1 = DPSW_LEARNING_MODE_HW - Enable HW auto-Learning 
0x2 = DPSW_LEARNING_MODE_NON_SECURE - Enable None secure learning by 
CPU
0x3 = DPSW_LEARNING_MODE_SECURE - Enable secure learning by CPU 







DPSW: Data Path L2 Switch


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 14-89
 


14.3.63 DPSW_FDB_GET_ATTRIBUTES


Command structure


Figure 445. DPSW_FDB_GET_ATTRIBUTES Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0891 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 16 15 0


0x08 — FDB_ID


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-15 FDB_ID Forwarding Database Identifier







DPSW: Data Path L2 Switch


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 14-90
 


Response structure


Figure 446. DPSW_FDB_GET_ATTRIBUTES Response Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0891 TOKEN —


IN
T


R
_D


IS


STATUS P — SRCID


63 48 47 32 31 16 15 0


0x08 NUM_FDB_MC_GROUPS FDB_AGING_TIME MAX_FDB_ENTRIES —


63 20 19 16 15 0


0x10 — LEARNI
NG_MO


DE


MAX_FDB_MC_GROUPS


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 16-31 MAX_FDB_ENTRIES Number of FDB entries


32-47 FDB_AGING_TIME Aging time in seconds


48-63 NUM_FDB_MC_GROUPS Current number of multicast groups 


0x10 0-15 MAX_FDB_MC_GROUPS Maximum number of multicast groups


16-19 LEARNING_MODE Learning mode. Select one of the supported values below:
0x0 = DPSW_LEARNING_MODE_DIS - Disable Auto-learning 
0x1 = DPSW_LEARNING_MODE_HW - Enable HW auto-Learning 
0x2 = DPSW_LEARNING_MODE_NON_SECURE - Enable None secure learning by 
CPU 
0x3 = DPSW_LEARNING_MODE_SECURE - Enable secure learning by CPU 







DPSW: Data Path L2 Switch


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 14-91
 


14.3.64 DPSW_ACL_ADD


Command structure


Figure 447. DPSW_ACL_ADD Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0901 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 32 31 16 15 0


0x08 — MAX_ENTRIES —


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 16-32 MAX_ENTIRIES Number of FDB entries







DPSW: Data Path L2 Switch


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 14-92
 


Response structure


Figure 448. DPSW_ACL_ADD Response Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0901 TOKEN —


IN
T


R
_D


IS


STATUS P — SRCID


63 16 15 0


0x08 — ACL_ID


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-15 ACL_ID Returned ACL ID, for the future reference







DPSW: Data Path L2 Switch


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 14-93
 


14.3.65 DPSW_ACL_REMOVE


Command structure


Figure 449. DPSW_ACL_REMOVE Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0911 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 16 15 0


0x08 — ACL_ID


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-15 ACL_ID ACL ID







DPSW: Data Path L2 Switch


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 14-94
 


14.3.66 DPSW_ACL_PREPARE_ENTRY_CFG


Extension structure


Figure 450. DPSW_ACL_PREPARE_ENTRY_CFG Extension Description


Offset from Management Command Portal base Read-Write Access


63 48 47 40 39 32 31 24 23 16 15 8 7 0


0x00 L2_TPID L2_DEST_MAC0 L2_DEST_MAC1 L2_DEST_MAC2 L2_DEST_MAC3 L2_DEST_MAC4 L2_DEST_MAC5


63 48 47 40 39 32 31 24 23 16 15 8 7 0


0x08 L2_VLAN_ID L2_SOURCE_M
AC0


L2_SOURCE_M
AC1


L2_SOURCE_M
AC2


L2_SOURCE_M
AC3


L2_SOURCE_M
AC4


L2_SOURCE_MA
C5


63 32 31 0


0x10 L3_SOURCE_IP L3_DEST_IP


63 56 55 48 47 32 31 16 15 0


0x18 L3_DSCP L2_PCP_DEI L2_ETHR_TYPE L4_SOURCE_PORT L4_DEST_PORT


63 48 47 40 39 32 31 24 23 16 15 8 7 0


0x20 TPID L2_DEST_MAC0 L2_DEST_MAC1 L2_DEST_MAC2 L2_DEST_MAC3 L2_DEST_MAC4 L2_DEST_MAC5


63 48 47 40 39 32 31 24 23 16 15 8 7 0


0x28 L2_VLAN_ID L2_SOURCE_M
AC0


L2_SOURCE_M
AC1


L2_SOURCE_M
AC2


L2_SOURCE_M
AC3


L2_SOURCE_M
AC4


L2_SOURCE_MA
C5


63 32 31 0


0x30 L3_SOURCE_IP L3_DEST_IP


63 56 55 48 47 32 31 16 15 0


0x38 L3_DSCP L2_PCP_DEI L2_ETHR_TYPE L4_SOURCE_PORT L4_DEST_PORT


63 16 15 8 7 0


0x40 — L3_PROTOCOL L3_ROTOCOL


Offset Bits Name Description


0x00 0-47 L2_DEST_MAC[0-5] Destination MAC address: BPDU, Multicast, Broadcast, 
Unicast, slow protocols, MVRP, STP


Key match Fields


48-63 L2_TPID Layer 2 (Ethernet) protocol type, used to identify the following 
protocols: MPLS, PTP, PFC, ARP, Jumbo frames, LLDP, 
IEEE802.1ae, Q-in-Q, IPv4, IPv6, PPPoE


0x08 0-47 L2_SOURCE_MAC[0-5] Source MAC address


48-63 L2_VLAN_ID layer 2 VLAN ID


0x10 0-31 L3_DEST_IP Destination IPv4 IP


32-63 L3_SOURCE_IP Source IPv4 IP


0x18 0-15 L4_DEST_PORT Destination TCP/UDP port


16-31 L4_SOURCE_PORT Source TCP/UDP port


32-47 L2_ETHR_TYPE Layer 2 Ethernet Type
Using ACL table entries, the DPSW can only match on IPv4 IP 
source/destination addresses. This is why the 
L2_ETHR_TYPE match field must be set to 0x0800 anytime a 
match on IP src/dst is also requested. Doing otherwise, calling 
dpsw_acl_add_entry() will result in an error.
This restriction is not applicable to LS2080/LS2085, due to an 
older version of WRIOP. Adding an ACL entry with L3 src/dst 
addresses is not restricted in any way. As a downside, any 
IPv6 traffic will be dropped even though no ACL rules are 
added.


48-55 L2_PCP_DEI Indicate which protocol is encapsulated in the payload


56-63 L3_DSCP Layer 3 differentiated services code point







DPSW: Data Path L2 Switch


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 14-95
 


All unspecified fields are reserved and must be cleared (set to zero)


0x20 0-47 L2_DEST_MAC[0-5] Destination MAC address: BPDU, Multicast, Broadcast, 
Unicast, slow protocols, MVRP, STP


key mask : b’1 - valid, 
b’0 don’t care


48-63 L2_TPID Layer 2 (Ethernet) protocol type, used to identify the following 
protocols: MPLS, PTP, PFC, ARP, Jumbo frames, LLDP, 
IEEE802.1ae, Q-in-Q, IPv4, IPv6, PPPoE


0x28 0-47 L2_SOURCE_MAC[0-5] Source MAC address


48-63 L2_VLAN_ID layer 2 VLAN ID


0x30 0-31 L3_DEST_IP Destination IPv4 IP


32-63 L3_SOURCE_IP Source IPv4 IP


0x38 0-15 L4_DEST_PORT Destination TCP/UDP port


16-31 L4_SOURCE_PORT Source TCP/UDP port


32-47 L2_ETHR_TYPE Layer 2 Ethernet Type
In case a match on L3 src/dst addresses is also requested, 
L2_ETHR_TYPE mask should be set to 0xFFFF to ensure that 
IPv4 is the only L3 protocol. See the L2_ETHR_TYPE match 
description for details.
Not applicable to LS2080/LS2085.


48-55 L2_PCP_DEI Indicate which protocol is encapsulated in the payload


56-63 L3_DSCP Layer 3 differentiated services code point


0x40 0-7 L3_PROTOCOL Tells the Network layer at the destination host, to which 
Protocol this packet belongs to. The following protocol are 
supported: ICMP, IGMP, IPv4 (encapsulation), TCP, IPv6
(encapsulation), GRE, PTP


Match Fields


8-15 L3_PROTOCOL Tells the Network layer at the destination host, to which 
Protocol this packet belongs to. The following protocol are 
supported: ICMP, IGMP, IPv4 (encapsulation), TCP, IPv6
(encapsulation), GRE, PTP


Mask : b’1 - valid, b’0 
don’t care


Offset Bits Name Description







DPSW: Data Path L2 Switch


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 14-96
 


14.3.67 DPSW_ACL_ADD_ENTRY


Command structure


Figure 451. DPSW_ACL_ADD_ENTRY Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0921 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 32 31 16 15 0


0x08 PRECEDENCE RESULT_IF_ID ACL_ID


63 4 3 0


0x10 —


R
E


S
U


LT
_A


C
T


IO
N


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 KEY_IOVA


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-15 ACL_ID ACL ID


16-31 RESULT_IF_ID Interface IDs to redirect frame. Valid only if redirect selected for action


32-63 PRECEDENCE Precedence inside ACL 0 is lowest; This priority can not change
during the lifetime of a Policy. It is user responsibility to
space the priorities according to consequent rule additions.


0x10 0-3 RESULT_ACTION Action should be taken when ACL entry hit


0x38 0-63 KEY_IOVA I/O virtual address of DMA-able memory filled with key after call to 
dpsw_acl_prepare_entry_cfg()







DPSW: Data Path L2 Switch


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 14-97
 


14.3.68 DPSW_ACL_REMOVE_ENTRY


Command structure


Figure 452. DPSW_ACL_REMOVE_ENTRY Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0931 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 32 31 16 15 0


0x08 PRECEDENCE RESULT_IF_ID ACL_ID


63 4 3 0


0x10 —


R
E


S
U


LT
_A


C
T


IO
N


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 KEY_IOVA


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-15 ACL_ID ACL ID


16-31 RESULT_IF_ID Interface IDs to redirect frame. Valid only if redirect selected for action


32-63 PRECEDENCE Precedence inside ACL 0 is lowest; This priority can not change
during the lifetime of a Policy. It is user responsibility to
space the priorities according to consequent rule additions.


0x10 0-3 RESULT_ACTION Action should be taken when ACL entry hit


0x38 0-63 KEY_IOVA I/O virtual address of DMA-able memory filled with key after call to 
dpsw_acl_prepare_entry_cfg()







DPSW: Data Path L2 Switch


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 14-98
 


Extension structure


Figure 453. DPSW_ACL_REMOVE_ENTRY Extension Description


Offset from Management Command Portal base Read-Write Access


63 48 47 40 39 32 31 24 23 16 15 8 7 0


0x00 L2_TPID L2_DEST_MAC0 L2_DEST_MAC1 L2_DEST_MAC2 L2_DEST_MAC3 L2_DEST_MAC4 L2_DEST_MAC5


63 48 47 40 39 32 31 24 23 16 15 8 7 0


0x08 L2_VLAN_ID L2_SOURCE_M
AC0


L2_SOURCE_M
AC1


L2_SOURCE_M
AC2


L2_SOURCE_M
AC3


L2_SOURCE_M
AC4


L2_SOURCE_MA
C5


63 32 31 0


0x10 L3_SOURCE_IP L3_DEST_IP


63 56 55 48 47 32 31 16 15 0


0x18 L3_DSCP L2_PCP_DEI L2_ETHR_TYPE L4_SOURCE_PORT L4_DEST_PORT


63 48 47 40 39 32 31 24 23 16 15 8 7 0


0x20 TPID L2_DEST_MAC0 L2_DEST_MAC1 L2_DEST_MAC2 L2_DEST_MAC3 L2_DEST_MAC4 L2_DEST_MAC5


63 48 47 40 39 32 31 24 23 16 15 8 7 0


0x28 L2_VLAN_ID L2_SOURCE_M
AC0


L2_SOURCE_M
AC1


L2_SOURCE_M
AC2


L2_SOURCE_M
AC3


L2_SOURCE_M
AC4


L2_SOURCE_MA
C5


63 32 31 0


0x30 L3_SOURCE_IP L3_DEST_IP


63 56 55 48 47 32 31 16 15 0


0x38 L3_DSCP L2_PCP_DEI L2_ETHR_TYPE L4_SOURCE_PORT L4_DEST_PORT


63 32 31 16 15 8 7 0


0x40 PRECEDENCE IF_ID L3_PROTOCOL L3_ROTOCOL


63 4 3 0


0x48 — ACTIO
N


Offset Bits Name Description


0x00 0-47 L2_DEST_MAC[0-5] Destination MAC address: BPDU, Multicast, Broadcast, 
Unicast, slow protocols, MVRP, STP


Key match Fields


48-63 L2_TPID Layer 2 (Ethernet) protocol type, used to identify the following 
protocols: MPLS, PTP, PFC, ARP, Jumbo frames, LLDP, 
IEEE802.1ae, Q-in-Q, IPv4, IPv6, PPPoE


0x08 0-47 L2_SOURCE_MAC[0-5] Source MAC address


48-63 L2_VLAN_ID layer 2 VLAN ID


0x10 0-31 L3_DEST_IP Destination IPv4 IP


32-63 L3_SOURCE_IP Source IPv4 IP


0x18 0-15 L4_DEST_PORT Destination TCP/UDP port


16-31 L4_SOURCE_PORT Source TCP/UDP port


32-47 L2_ETHR_TYPE Layer 2 Ethernet Type


48-55 L2_PCP_DEI Indicate which protocol is encapsulated in the payload


56-63 L3_DSCP Layer 3 differentiated services code point







DPSW: Data Path L2 Switch


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 14-99
 


All unspecified fields are reserved and must be cleared (set to zero)


0x20 0-47 L2_DEST_MAC[0-5] Destination MAC address: BPDU, Multicast, Broadcast, 
Unicast, slow protocols, MVRP, STP


key mask : b’1 - valid, 
b’0 don’t care


48-63 L2_TPID Layer 2 (Ethernet) protocol type, used to identify the following 
protocols: MPLS, PTP, PFC, ARP, Jumbo frames, LLDP, 
IEEE802.1ae, Q-in-Q, IPv4, IPv6, PPPoE


0x28 0-47 L2_SOURCE_MAC[0-5] Source MAC address


48-63 L2_VLAN_ID layer 2 VLAN ID


0x30 0-31 L3_DEST_IP Destination IPv4 IP


32-63 L3_SOURCE_IP Source IPv4 IP


0x38 0-15 L4_DEST_PORT Destination TCP/UDP port


16-31 L4_SOURCE_PORT Source TCP/UDP port


32-47 L2_ETHR_TYPE Layer 2 Ethernet Type


48-55 L2_PCP_DEI Indicate which protocol is encapsulated in the payload


56-63 L3_DSCP Layer 3 differentiated services code point


0x40 0-7 L3_PROTOCOL Tells the Network layer at the destination host, to which 
Protocol this packet belongs to. The following protocol are 
supported: ICMP, IGMP, IPv4 (encapsulation), TCP, IPv6
(encapsulation), GRE, PTP


Match Fields


8-15 L3_PROTOCOL Tells the Network layer at the destination host, to which 
Protocol this packet belongs to. The following protocol are 
supported: ICMP, IGMP, IPv4 (encapsulation), TCP, IPv6
(encapsulation), GRE, PTP


Mask : b’1 - valid, b’0 
don’t care


16-31 IF_ID Interface IDs to redirect frame. Valid only if redirect selected for 
action


result - Required 
action when entry hit 
occurs


32-63 PRECEDENCE Precedence inside ACL 0 is lowest; This priority can not change during the lifetime of 
a Policy. It is user responsibility to space the priorities according to consequent rule 
additions.


0x48 0-4 ACTION Action should be taken whenACL entry hit result - Required 
action when entry hit 
occurs


Offset Bits Name Description







DPSW: Data Path L2 Switch


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 14-100
 


14.3.69 DPSW_ACL_ADD_IF


Command structure


Figure 454. DPSW_ACL_ADD_IF Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0941 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 32 31 16 15 0


0x08 — NUM_IFS ACL_ID


63 0


0x10 IF_ID (Bitmap)


63 0


0x18 IF_ID (Bitmap)


63 0


0x20 IF_ID (Bitmap)


63 0


0x28 IF_ID (Bitmap)


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-15 ACL_ID ACL ID


16-31 NUM_IFS Number of interfaces


0x10- 
0x2F


0-63 IF_ID (bitmap) The set of interfaces that are assigned to the egress list for this VLAN







DPSW: Data Path L2 Switch


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 14-101
 


14.3.70 DPSW_ACL_REMOVE_IF


Command structure


Figure 455. DPSW_ACL_REMOVE_IF Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0951 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 32 31 16 15 0


0x08 — NUM_IFS ACL_ID


63 0


0x10 IF_ID (Bitmap)


63 0


0x18 IF_ID (Bitmap)


63 0


0x20 IF_ID (Bitmap)


63 0


0x28 IF_ID (Bitmap)


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-15 ACL_ID ACL ID


16-31 NUM_IFS Number of interfaces


0x10- 
0x2F


0-63 IF_ID (bitmap) The set of interfaces that are assigned to the egress list for this VLAN







DPSW: Data Path L2 Switch


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 14-102
 


14.3.71 DPSW_ACL_GET_ATTRIBUTES


Command structure


Figure 456. DPSW_ACL_GET_ATTRIBUTES Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0961 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 16 15 0


0x08 — ACL_ID


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-15 ACL_ID ACL ID







DPSW: Data Path L2 Switch


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 14-103
 


Response structure


Figure 457. DPSW_ACL_GET_ATTRIBUTES Response Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0961 TOKEN —


IN
T


R
_D


IS


STATUS P — SRCID


63 0


0x08 —


63 32 31 16 15 0


0x10 NUM_IFS NUM_ENTRIES MAX_ENTRIES


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x10 0-15 MAX_ENTRIES Max number of ACL entries


16-31 NUM_ENTRIES Number of used ACL entries


32-63 NUM_IFS Number of interfaces associated with ACL







DPSW: Data Path L2 Switch


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 14-104
 


14.3.72 DPSW_CTRL_IF_GET_ATTRIBUTES


Command structure


Figure 458. DPSW_CTRL_IF_GET_ATTRIBUTES Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0A01 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 0


0x08 —


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.







DPSW: Data Path L2 Switch


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 14-105
 


Response structure


Figure 459. DPSW_CTRL_IF_GET_ATTRIBUTES Response Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0A01 TOKEN —


IN
T


R
_D


IS


STATUS P — SRCID


63 0


0x08 —


63 32 31 0


0x10 RX_ERR_FQID RX_FQID


63 32 31 0


0x18 — TX_ERR_CONF_FQID


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x10 0-31 RX_FQID Receive FQID


32-63 RX_ERR_FQID Receive error FQID


0x18 0-31 TX_ERR_CONF_FQID Transmit error and confirmation FQID







DPSW: Data Path L2 Switch


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 14-106
 


14.3.73 DPSW_CTRL_IF_SET_POOLS


Command structure


Figure 460. DPSW_CTRL_IF_SET_POOLS Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0A11 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 32 31 16 15 14 13 12 11 10 9 8 7 0


0x08 POOL0_DPBP_ID —


P
O


O
L


7_
B


A
C


K
U


P
_


P
O


O


P
O


O
L


6_
B


A
C


K
U


P
_


P
O


O


P
O


O
L


5_
B


A
C


K
U


P
_


P
O


O


P
O


O
L


4_
B


A
C


K
U


P
_


P
O


O


P
O


O
L


3_
B


A
C


K
U


P
_


P
O


O


P
O


O
L


2_
B


A
C


K
U


P
_


P
O


O


P
O


O
L


1_
B


A
C


K
U


P
_


P
O


O


P
O


O
L


0_
B


A
C


K
U


P
_


P
O


O


NUM_DPBP


63 32 31 0


0x10 POOL2_DPBP_ID POOL1_DPBP_ID


63 32 31 0


0x18 POOL4_DPBP_ID POOL3_DPBP_ID


63 32 31 0


0x20 POOL6_DPBP_ID POOL5_DPBP_ID


63 48 47 32 31 0


0x28 POOL1_BUFFER_SIZE POOL0_BUFFER_SIZE POOL7_DPBP_ID


63 48 47 32 31 16 15 0


0x30 POOL5_BUFFER_SIZE POOL4_BUFFER_SIZE POOL3_BUFFER_SIZE POOL2_BUFFER_SIZE


63 32 31 16 15 0


0x38 — POOL7_BUFFER_SIZE POOL6_BUFFER_SIZE


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-7 NUM_DPBP Number of DPBPs


8-15 POOLS[0-7]_BACKUP_POOL Backup pool


0x08 - 
0x28


0-31 / 
32-63


POOLS[0-7]_DPBP_ID DPBP object ID


0x28 - 
0x30


0-15 / 
16-31/ 
32-47/ 
48-63


POLS[0-7]_BUFFER_SIZE Buffer size







DPSW: Data Path L2 Switch


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 14-107
 


14.3.74 DPSW_CTRL_IF_ENABLE


Command structure


Figure 461. DPSW_CTRL_IF_ENABLE Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0A21 TOKEN — STATUS P — SRCID


63 0


0x08 —


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.







DPSW: Data Path L2 Switch


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 14-108
 


14.3.75 DPSW_CTRL_IF_DISABLE


Command structure


Figure 462. DPSW_CTRL_IF_DISABLE Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0A31 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 0


0x08 —


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.







DPSW: Data Path L2 Switch


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 14-109
 


14.3.76 DPSW_CTRL_IF_SET_QUEUE


Set queue configuration, including binding of the queue to a DPIO object to receive notifications and 
traffic on the CPU.


Command structure


Figure 463. DPSW_CTRL_IF_SET_QUEUE Command Description


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0A61 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 0


0x08 QUEUE_TYPE DEST_
TYPE


— PRIORITY DEST_ID


63 0


0x10 USER_CTX


63 0


0x18 — OPTIONS


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-32 DEST_ID The ID of a DPIO object if DEST_TYPE is set to 1 (DPSW_CTRL_IF_DEST_DPIO).
This field is ignored for DEST_TYPE set to 0 (DPSW_CTRL_IF_DEST_NONE).


32-40 PRIORITY Sets the priority in the destination DPIO for dequeued traffic. Supported values are 0 
to # of priorities in destination DPIO-1.
This field is ignored for DEST_TYPE set to 0 (DPSW_CTRL_IF_DEST_NONE).


48-52 QUEUE_TYPE Queue type. Select one of the supported values:
0x0 = DPSW_QUEUE_RX
0x1 = DPSW_QUEUE_TX_ERR_CONF
0x2 = DPSW_QUEUE_RX_ERR


56-63 DEST_TYPE Type of destination for dequeued traffic. Supported values:
0x0 = DPSW_CTRL_IF_DEST_NONE Unassigned destination; The queue is set in 
parked mode and does not generate FQDAN notifications; user is expected to 
dequeue from the queue based on polling or other user-defined method
0x1 = DPSW_CTRL_IF_DEST_DPIO The queue is set in schedule mode and 
generates FQDAN notifications to the specified DPIO; user is expected to dequeue 
from the queue only after notification is received







DPSW: Data Path L2 Switch


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 14-110
 


All unspecified fields are reserved and must be cleared (set to zero)


14.3.77 DPSW_GET_API_VERSION


Command structure


Figure 464. DPSW_GET_API_VERSION Command Description


All unspecified fields are reserved and must be cleared (set to zero)


0x10 0-63 USER_CTX User context value provided in the frame descriptor of each dequeued frame; valid 
only if 'DPSW_CTRL_IF_QUEUE_OPT_USER_CTX' is contained in 'options'.


0x18 0-32 OPTIONS Flags representing the suggested modifications to the queue;
Use any combination of 'DPSW_CTRL_IF_QUEUE_OPT_<X>' flags below:
bit 0: DPSW_CTRL_IF_QUEUE_OPT_USER_CTX - Select to modify the user's 
context associated with the queue
bit 1: DPSW_CTRL_IF_QUEUE_OPT_DEST - Select to modify the queue's 
destination


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0xA021 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 0


0x08 —


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


Offset Bits Name Description







DPSW: Data Path L2 Switch


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 14-111
 


Response structure


Figure 465. DPSW_GET_API_VERSION Response Description


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0xA021 TOKEN —


IN
T


R
_D


IS


STATUS P — SRCID


63 32 31 16 15 0


0x08 — VERSION_MINOR VERSION_MAJOR


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-15 VERSION_MAJOR Major version of API


16-31 VERSION_MINOR Minor version of API







DPSW: Data Path L2 Switch


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 14-112
 


14.3.78 DPSW_LAG_SET


Creates and configure LAG group.


Command structure


Figure 466. DPSW_LAG_SET Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0A41 TOKEN — STATUS P — SRCID


63 16 15 8 7 0


0x08 — NUM_IFS GROUP_ID


63 56 55 48 47 41 40 32 31 24 23 16 15 8 7 0


0x10 IF_ID7 IF_ID6 IF_ID5 IF_ID4 IF_ID3 IF_ID2 IF_ID1 IF_ID0


63 8 7 0


0x18 — PHASE


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-7 GROUP_ID LAG group ID.


8-15 NUM_IFS Number of interfaces in group. Maximum value is 8.


0x10 0-7 IF_ID0 IF_IDn: index of the n’th dpsw interface from this group. Only values from 0 to 
NUM_IFS are used.


8-15 IF_ID1


16-23 IF_ID2


24-31 IF_ID3


32-40 IF_ID4


41-47 IF_ID5


48-55 IF_ID6


56-63 IF_ID7


0x18 0-7 PHASE Current phase:
0 - DPSW_LAG_SET_PHASE_APPLY: For LAG configuration processing.
1 - DPSW_LAG_SET_PHASE_CHECK: For LAG configuration validation.







DPSW: Data Path L2 Switch


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 14-113
 


14.3.79 DPSW_LAG_GET_CFG


Read LAG configuration data.


Command structure


Figure 467. DPSW_LAG_GET_CFG Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0A51 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 8 7 0


0x08 — GROUP_ID


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-7 GROUP_ID LAG group ID







DPSW: Data Path L2 Switch


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 14-114
 


Response structure


Figure 468. DPSW_LAG_GET_CFG Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0A51 TOKEN — STATUS P — SRCID


63 16 15 8 7 0


0x08 — NUM_IFS GROUP_ID


63 56 55 48 47 41 40 32 31 24 23 16 15 8 7 0


0x10 IF_ID7 IF_ID6 IF_ID5 IF_ID4 IF_ID3 IF_ID2 IF_ID1 IF_ID0


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-7 GROUP_ID LAG group ID


8-15 NUM_IFS Number of interfaces in group.


0x10 0-7 IF_ID0 IF_IDn: index of the n’th dpsw interface from this group.


8-15 IF_ID1


16-23 IF_ID2


24-31 IF_ID3


32-40 IF_ID4


41-47 IF_ID5


48-55 IF_ID6


56-63 IF_ID7







DPSW: Data Path L2 Switch


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 14-115
 


14.3.80 DPSW_IF_SET_TAILDROP


Using this command, tail drop ca be configured at runtime.


Command structure


Figure 469. DPSW_IF_SET_TAILDROP Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0A81 TOKEN — STATUS P — SRCID


63 48 47 32 31 24 23 16 15 0


0x08 — IF_ID — TC_ID —


63 56 55 48 47 41 40 32 31 24 23 16 15 0


0x10 THRESHOLD — UNITS — EN


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 16-23 TC_ID Traffic class ID.


32-47 IF_ID Interface ID.


0x10 0 EN Tail drop enabling.


16-23 UNITS Set the units used in relation with threshold:
0: Unit Bytes
1: Unit Packets
2: Unit Buffers 


32-63 THRESHOLD The threshold value of “UNITS” used for tail drop.







DPSW: Data Path L2 Switch


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 14-116
 


14.3.81 DPSW_IF_GET_TAILDROP


Get information related to tail drop.


Command structure


Figure 470. DPSW_IF_GET_TAILDROP Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0A91 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 48 47 32 31 24 23 16 15 0


0x08 — IF_ID — TC_ID —


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 16-23 TC_ID Traffic class ID.


32-47 IF_ID Interface ID.







DPSW: Data Path L2 Switch


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 14-117
 


Response structure


Figure 471. DPSW_IF_GET_TAILDROP Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0A91 TOKEN — STATUS P — SRCID


63


0x08 —


63 32 31 24 23 16 15 1 0


0x10 Threshold — UNITS — EN


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x10 0 EN Tail drop enabling.


16-23 UNITS Set the units used in relation with threshold:
0: Unit Bytes
1: Unit Packets
2: Unit Buffers 


32-63 THRESHOLD The threshold value of “UNITS” used for tail drop.







DPSW: Data Path L2 Switch


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 14-118
 


14.3.82 DPSW_DUMP_TABLE


Dump at IOVA address information about all entries of the desired table. Return the number of dumped 
entries.


Command structure


Figure 472. DPSW_DUMP_TABLE Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0AA1 TOKEN —


IN
T


R
_D


IS


STATUS P — SRCID


63 32 31 16 15 0


0x08 — TABLE_INDEX TABLE_TYPE


63 0


0x10 SNAPSHOT_IOVA


63 32 31 0


0x18 — SIZE


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-15 TABLE_TYPE 1: DPSW_FDB_TABLE
2: DPSW_VLAN_ING_TABLE
3: DPSW_VLAN_EGR_TABLE
4: DPSW_ACL_TABLE
5: DPSW_BCAST_TABLE (Broadcast Message Isolation feature)


16-31 TABLE_INDEX Index of desired table to be dump.
In case of DPSW_FDB_TABLE the index of the FDB table to be dump.
In case of DPSW_ACL_TABLE the index of the ACL table to be dump.
Otherwise zero.


0x10 0-63 SNAPSHOT_IOVA IOVA address.


0x18 0-31 SIZE Size to be dump.







DPSW: Data Path L2 Switch


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 14-119
 


Response structure


Figure 473. DPSW_DUMP_TABLE Response Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0AA1 TOKEN —


IN
T


R
_D


IS


STATUS P — SRCID


63 15 0


0x08 — NUM_ENTRIES


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-63 NUM_ENTRIES The number of dumped entries.







DPSW: Data Path L2 Switch


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 14-120
 


14.3.83 DPSW_IF_SET_LEARNING_MODE


Enables users to toggle the learning status as a per port attribute. It takes precedence over the status of 
learning on the FDB.


Command structure


Figure 474. DPSW_IF_SET_LEARNING_MODE Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0AD1 TOKEN —


IN
T


R
_D


IS


STATUS P — SRCID


63 19 16 15 0


0x08 — MODE IF_ID


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-15 IF_ID The interface on which to toggle the learning status.


16-19 MODE Learning mode. Select one of the supported values below:
0x0 = DPSW_LEARNING_MODE_DIS - Disable Auto-learning 
0x1 = DPSW_LEARNING_MODE_HW - Enable HW auto-Learning 
0x2 = DPSW_LEARNING_MODE_NON_SECURE - Enable None secure learning by 
CPU
0x3 = DPSW_LEARNING_MODE_SECURE - Enable secure learning by CPU 







DPSW: Data Path L2 Switch


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 14-121
 


14.3.84 DPSW_SET_EGRESS_FLOOD


Configure the flooding and broadcast replicators associated with a specific FDB table.


Command structure


Figure 475. DPSW_IF_SET_EGRESS_FLOOD Command Description


All unspecified fields are reserved and must be cleared (set to zero).


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0AC1 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 23 15 0


0x08 — FLOOD_TYPE FDB_ID


63 0


0x10 IF_ID (bitmap)


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-15 FDB_ID The specific FDB id for which a user can configure the flooding and broadcast 
replicators.


16-23 FLOOD_TYPE The following flood type fields are supported:
0x0 - DPSW_BROADCAST: Flooding of broadcast frames.
0x1 - DPSW_FLOODING: Flooding of frames with an unknown destination.


0x10 0-63 IF_ID (bitmap) The set of interfaces that are to be included in the specific flood replicator.







DPSW: Data Path L2 Switch


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 14-122
 


14.3.85 DPSW_IF_SET_ERRORS_BEHAVIOR


This command will configure the interface not to discard frames that contains errors


Command structure


Figure 476. DPSW_IF_SET_ERRORS_BEHAVIOR Command Description


All unspecified fields are reserved and must be cleared (set to zero).


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0BF1 TOKEN — STATUS P — SRCID


63 56 40 37 36 35 32 31 0


0x08  - IF_ID - FA ERR_A
CTION


ERRORS


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-31 ERRORS bit 30: DPSW_ERROR_MS Extract out of frame header error
bit 27: DPSW_ERROR_PTP PTP
bit 26: DPSW_ERROR_MC Ethernet multicast frame
bit 25: DPSW_ERROR_BC Ethernet broadcast frame
bit 18: DPSW_ERROR_KSE
bit 17: DPSW_ERROR_EOFHE
bit 16: DPSW_ERROR_MNLE
bit 15: DPSW_ERROR_TIDE 
bit 14: DPSW_ERROR_PIEE 
bit 13: DPSW_ERROR_FLE frame length error
bit 12: DPSW_ERROR_FPE frame physical error
bit 7: DPSW_ERROR_PTE
bit 6 :DPSW_ERROR_ISP
bit 5: DPSW_ERROR_PHE parsing header error
bit 4: DPSW_ERROR_BLE
bit 3: DPSW_ERROR_L3CV L3 checksum validation
bit 2: DPSW_ERROR_L3CE L3 checksum error
bit 1: DPSW_ERROR_L4CV L4 checksum validation
bit 0: DPSW_ERROR_L4CE L4 checksum error


32-35 ERR_ACTION 0: DPSW_ERROR_ACTION_DISCARD
1: DPSW_ERROR_ACTION_CONTINUE


36-37 FRAME_ANNOTATION Set to '1' to mark the errors in frame annotation status (FAS); relevant only for the 
non-discard action


40-55 IF_ID Interface ID







DPSW: Data Path L2 Switch


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 14-123
 


14.3.86 DPSW_IF_SET_PRIO_SELECTOR


Configure the PRIORITY_SELECTOR field used for enqueuing the frame into the egress interface.


Command structure


Figure 477. DPSW_IF_SET_PRIO_SELECTOR Command Description


All unspecified fields are reserved and must be cleared (set to zero).


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x03C1 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 19 18 16 15 0


0x08 — PRIORI
TY_SE
LECTO


R


IF_ID


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-15 IF_ID Interface ID


16-18 PRIORITY_SELECTOR Source for user priority regeneration. The priority is determined when the frame is 
parsed on the ingress interface. The frame will be enqueued into the egress interface 
using this priority. On the egress interface the frames will be handled using the priority 
determined by the ingress interface.
Select one of the supported values below:
0x0 = DPSW_UP_PCP - Priority Code Point (PCP): a 3-bit field which refers to the 
IEEE 802.1p priority.
0x1 = DPSW_UP_DSCP - Differentiated services Code Point (DSCP): 6 bit field from 
IP header
0x2 = DPSW_UP_NO_CHANGE - Do not modify the user priority configuration







DPSW: Data Path L2 Switch


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 14-124
 


14.3.87 DPSW_IF_SET_TX_SHAPING


Enable shaping on an L2 switch port by setting the committed rate and maximum rate.


Command structure


Figure 478. DPSW_IF_SET_TX_SHAPING Command Description


All unspecified fields are reserved and must be cleared (set to zero).


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x03F1 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 16 15 0


0x08 — IF_ID


63 32 31 0


0x10 MAX_RATE COMMITTED_RATE


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-15 IF_ID Interface ID


0x10 0-31 COMMITTED_RATE Shaper committed rate (limited either by the DPMAC maximum rate or the maximum 
available bandwidth provided by the recycle port).


32-63 MAX_RATE Shaper maximum rate (limited either by the DPMAC maximum rate or the maximum 
available bandwidth provided by the recycle port).







DPSW: Data Path L2 Switch


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 14-125
 


14.3.88 DPSW_SET_SP_PROFILE


Sets up the desired Soft Parser Profile on the DPSW used. Soft Parser Profiles are used to identify custom 
protocols which are not recognized by the HW Parser. A SP Profile may contain zero or more custom 
protocols.


Command structure


Figure 479. DPSW_SET_SP_PROFILE Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0AE1 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 55 47 39 31 23 15 7 0


0x08 SP_PROFILE[7] SP_PROFILE[6] SP_PROFILE[5] SP_PROFILE[4] SP_PROFILE[3] SP_PROFILE[2] SP_PROFILE[1] SP_PROFILE[0]


63 8 7 0


0x10 — TYPE


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-7 SP_PROFILE[0] Soft Parser Profile name (must be a valid name for a defined profile). Maximum 
allowed length for this string is 8 characters long. If this parameter is an empty string 
(all zeros), then the Default SP Profile is set on this dpsw.8-15 SP_PROFILE[1]


16-23 SP_PROFILE[2]


24-31 SP_PROFILE[3]


32-39 SP_PROFILE[4]


40-47 SP_PROFILE[5]


48-55 SP_PROFILE[6]


56-63 SP_PROFILE[7]


0x10 0-7 TYPE Set SP Profile on DPSW Ingress or Egress WRIOP parser:
DPSW_SP_PROFILE_INGRESS - 0x1
DPSW_SP_PROFILE_EGRESS - 0x2







DPSW: Data Path L2 Switch


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 14-126
 


14.3.89 DPSW_SP_ENABLE


Enables or disables Soft Parser on the DPSW used.


Command structure


Figure 480. DPSW_SP_ENABLE Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0AF1 TOKEN –


IN
T


R
_


D
IS


STATUS P – SRCID


63 32 31 24 23 16 15 8 7 0


0x08 –– ENABLE TYPE IF_ID


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x10 0-15 IF_ID DPSW Interface ID to enable/disable SP


16-23 TYPE Enable/disable SP on DPSW interface Ingress or Egress (or both using bitwise OR):
0x1 - DPSW_SP_PROFILE_INGRESS
0x2 - DPSW_SP_PROFILE_EGRESS


24-31 ENABLE 0x0 - disable
0x1 - enable







DPMAC: Data Path MAC


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 15-1
 


Chapter 15  DPMAC: Data Path MAC
For every DPAA2 MAC, there is an MC object named DPMAC, for MDIO and link state updates. 


The DPMAC virtualizes the MDIO interface, so each PHY driver may see a private interface (removing 
the need for synchronization in GPP on the multiplexed MDIO hardware).


DPMAC objects are expected to be accessed only by kernel/host when the PHYs are configured or when 
a PHY interrupt occurs. PHY driver and PHY interrupt handling are kept in the responsibility of the GPP 
(preferably BSP software in the kernel only).


MC does not handle PHY interrupts, therefore the PHY driver in GPP must notify state changes and adjust 
the link setup through the DPMAC API.


15.1 DPMAC features


The following list summarizes the DPMAC main features and capabilities:


• Initialization of MAC controllers according to selected Reset Configuration Word and SerDes 
protocols.


• Link configuration requests are taken from network objects connected to the DPMAC (for 
example, DPNI, DPSW, or DPDMUX).


• Link state setting (by PHY driver) – the DPMAC propagates link state from the PHY to the 
connected network object.


• IRQ support for link configuration request (to PHY driver) and for link state change.


• MDIO read/write commands 


• Query MAC counters


• Supports various types of Ethernet links:


— Regular PHY links – Link is negotiated or set manually through PHY configuration.


— Fixed links – MC assumes that the link is always on (PHY configuration is assumed to be 
fixed).







DPMAC: Data Path MAC


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 15-2
 


15.2 DPMAC command reference


This section contains detailed programming model of DPMAC commands.


15.2.1 DPMAC_OPEN


Open a control session for the specified object.


This function can be used to open a control session for an already created object; an object may have been 
declared in the DPL or by invoking DPMAC_CREATE command.


This function returns a unique authentication token, associated with the specific object ID; this token must 
be used in all subsequent commands for this specific object.


Command structure


Figure 481. DPMAC_OPEN Command Description


The following table describes the command fields.
1-


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x80C1 TOKEN —


IN
T


R
_D


IS


STATUS P — SRCID


63 32 31 0


0x08 DPMAC_ID


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Table 65. DPMAC_OPEN Command Field Descriptions1


1 All unspecified fields are reserved and must be cleared (set to zero)


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-31 DPMAC_ID DPMAC unique ID







DPMAC: Data Path MAC


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 15-3
 


15.2.2 DPMAC_CLOSE


Close the control session of the object.


After this function is called, no further operations are allowed on the object without opening a new control 
session.


Command structure


Figure 482. DPMAC_CLOSE Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x8001 TOKEN —


IN
T


R
_D


IS


STATUS P — SRCID


63 0


0x08 —


63 0


0x10 —


63 0


0x18


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.







DPMAC: Data Path MAC


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 15-4
 


15.2.3 DPMAC_CREATE


This command creates and initializes an instance of DPMAC according to the specified command 
parameters. This command is not required for DPMAC instances that are created using the DPL.


For the CREATE command the caller must provide the authentication token of the parent container to 
which the object should be created and assigned. If the token is '0' the object will be assigned to the 
container that hosts the MC command portal executing this command.


The command returns a DPMAC ID that can be used to OPEN or DESTROY the object.


The command format is shown in the figure below.


Command structure


Figure 483. DPMAC_CREATE Command Description


The following table describes the command fields.
1-5


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x90C1 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 16 15 0


0x08 — MAC_ID


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Table 66. DPMAC_CREATE Command Field Descriptions1


1 All unspecified fields are reserved and must be cleared (set to zero)


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-15 MAC_ID Represents the Hardware MAC ID; in case of multiple WRIOP,
the MAC IDs are continuous.
For example:  
* 2 WRIOPs, 16 MACs in each:
* MAC IDs for the 1st WRIOP: 1-16,
* MAC IDs for the 2nd WRIOP: 17-32.







DPMAC: Data Path MAC


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 15-5
 


Response structure


Figure 15-1. DPMAC_CREATE Response Description


The following table describes the response fields.


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 24 23 16 15 14 8 7 0


CMDID = 0x90C1 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 32 31 0


0x08 — DPMAC_ID


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Table 15-1. DPMAC_CREATE Response Field Descriptions1


1 All unspecified fields are reserved.


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-31 DPMAC_ID DPMAC unique ID







DPMAC: Data Path MAC


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 15-6
 


15.2.4 DPMAC_DESTROY


This command destroys the DPMAC object and releases all its resources. It must be invoked in the 
software context that created the object. The caller must provide the object id and the authentication token 
of the parent container that created the object. Note that the object can be assigned to another container 
and sending the authentication token of this container will return an error.


All open authentication tokens to the object must be closed before calling the destroy command. 


After this function is called, no further operations are allowed on the object.


Command structure


Figure 484. DPMAC_DESTROY Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x98C1 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 32 31 0


0x08 — DPMAC_ID


63 0


0x10 —


63 0


0x18


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0–32 DPMAC_ID ID of the DPMAC object to destroy







DPMAC: Data Path MAC


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 15-7
 


15.2.5 DPMAC_SET_IRQ_ENABLE


Set overall interrupt state. Allows GPP software to control when interrupts are generated. Each interrupt 
can have up to 32 causes. The enable/disable control's the overall interrupt state. if the interrupt is disabled 
no causes will cause an interrupt.


Command structure


Figure 485. DPMAC_SET_IRQ_ENABLE Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0121 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 40 39 32 31 1 0


0x08 – IRQ_INDEX – EN


63 0


0x10 –


63 0


0x18 –


63 0


0x20 –


63 0


0x28 –


63 0


0x30 –


63 0


0x38 –


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0 EN Interrupt state: set to ‘1’ to enable, ‘0’ to disable


32-39 IRQ_INDEX Identifies the interrupt index to configure







DPMAC: Data Path MAC


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 15-8
 


15.2.6 DPMAC_GET_IRQ_ENABLE


Get overall interrupt state.


Command structure


Figure 486. DPMAC_GET_IRQ_ENABLE Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0131 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 40 39 32 31 0


0x08 – IRQ_INDEX –


63 0


0x10 –


63 0


0x18 –


63 0


0x20 –


63 0


0x28 –


63 0


0x30 –


63 0


0x38 –


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 32-39 IRQ_INDEX Identifies the interrupt index to query







DPMAC: Data Path MAC


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 15-9
 


Response structure


Figure 487. DPMAC_GET_IRQ_ENABLE Response Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0131 TOKEN —


IN
T


R
_D


IS


STATUS P — SRCID


63 1 0


0x08 – EN


63 0


0x10 –


63 0


0x18 –


63 0


0x20 –


63 0


0x28 –


63 0


0x30 –


63 0


0x38 –


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0 EN This bit is set if the interrupt is enabled







DPMAC: Data Path MAC


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 15-10
 


15.2.7 DPMAC_SET_IRQ_MASK


Set the interrupt mask. Every interrupt can have up to 32 causes and the interrupt model supports 
masking/unmasking each cause independently.


Command structure


Figure 488. DPMAC_SET_IRQ_MASK Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0141 TOKEN —


IN
T


R
_D


IS


STATUS P — SRCID


63 40 39 32 31 0


0x08 – IRQ_INDEX MASK


63 0


0x10 –


63 0


0x18 –


63 0


0x20 –


63 0


0x28 –


63 0


0x30 –


63 0


0x38 –


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-31 MASK Event mask for triggering the interrupt; See GET_IRQ_STATUS command for 
specification of available events. For each bit in MASK:
0 = ignore event
1 = event is valid; signal the IRQ if this event occurs


32-39 IRQ_INDEX The interrupt index to configure







DPMAC: Data Path MAC


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 15-11
 


15.2.8 DPMAC_GET_IRQ_MASK


Get the interrupt mask. Every interrupt can have up to 32 causes and the interrupt model supports 
masking/unmasking each cause independently.


Command structure


Figure 489. DPMAC_GET_IRQ_MASK Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0151 TOKEN —


IN
T


R
_D


IS


STATUS P — SRCID


63 40 39 32 31 0


0x08 – IRQ_INDEX –


63 0


0x10 –


63 0


0x18 –


63 0


0x20 –


63 0


0x28 –


63 0


0x30 –


63 0


0x38 –


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 32-39 IRQ_INDEX The interrupt index to query







DPMAC: Data Path MAC


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 15-12
 


Response structure


Figure 490. DPMAC_GET_IRQ_MASK Response Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0151 TOKEN —


IN
T


R
_D


IS


STATUS P — SRCID


63 32 31 0


0x08 MASK


63 0


0x10 –


63 0


0x18 –


63 0


0x20 –


63 0


0x28 –


63 0


0x30 –


63 0


0x38 –


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-31 MASK Event mask for triggering the interrupt; See GET_IRQ_STATUS command for 
specification of available events. For each bit in MASK:
0 = ignore event
1 = event is valid; signal the IRQ if this event occurs







DPMAC: Data Path MAC


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 15-13
 


15.2.9 DPMAC_GET_IRQ_STATUS


Get the current status of pending events for the specified interrupt index.


Command structure


Figure 491. DPMAC_GET_IRQ_STATUS Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0161 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 40 39 32 31 0


0x08 – IRQ_INDEX STATUS


63 0


0x10 –


63 0


0x18 –


63 0


0x20 –


63 0


0x28 –


63 0


0x30 –


63 0


0x38 –


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-31 STATUS Optional: any STATUS bits that are set will be cleared from pending state (removing 
the need for DPMAC_CLEAR_IRQ_STATUS command). Note that the STATUS 
returned in the response is the status before the events are cleared.


Supported events: see response structure definition


32-39 IRQ_INDEX The interrupt index to query







DPMAC: Data Path MAC


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 15-14
 


Response structure


Figure 492. DPMAC_GET_IRQ_STATUS Response Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0161 TOKEN —


IN
T


R
_D


IS


STATUS P — SRCID


63 32 31 0


0x08 STATUS


63 0


0x10 –


63 0


0x18 –


63 0


0x20 –


63 0


0x28 –


63 0


0x30 –


63 0


0x38 –


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-31 STATUS Events status mask, one bit per event:
0 = no interrupt pending
1 = interrupt pending


Supported events in IRQ 0:
Bit 0: DPMAC_IRQ_EVENT_LINK_CFG_REQ – indicates a change in requested link 
configuration; PHY driver (if exists) is expected to renegotiate the configuration.
Bit 1: DPMAC_IRQ_EVENT_LINK_CHANGED – indicates a change in the link state
Bit 2: DPMAC_IRQ_EVENT_LINK_UP_REQ – indicates that the link must be brought 
up; PHY driver (if exists) should also start
Bit 3: DPMAC_IRQ_EVENT_LINK_DOWN_REQ – indicates that the link must be 
brought down; PHY driver (if exists) should also stop
Bit 4: DPMAC_IRQ_EVENT_ENDPOINT_CHANGED – indicates a 
connect/disconnect event between DPMAC and its endpoint (DPNI, DPDMUX, 
DPSW)







DPMAC: Data Path MAC


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 15-15
 


15.2.10 DPMAC_CLEAR_IRQ_STATUS


Clear (mark as handled) pending events of the specified interrupt index.


Command structure


Figure 493. DPMAC_CLEAR_IRQ_STATUS Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0171 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 40 39 32 31 0


0x08 – IRQ_INDEX STATUS


63 0


0x10 –


63 0


0x18 –


63 0


0x20 –


63 0


0x28 –


63 0


0x30 –


63 0


0x38 –


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-31 STATUS Mask for clearing handled events; See GET_IRQ_STATUS command for specification 
of available events. For each bit in MASK:
0 = don’t change event status
1 = clear event status bit to indicate that it was handled


32-39 IRQ_INDEX The interrupt index to configure







DPMAC: Data Path MAC


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 15-16
 


15.2.11 DPMAC_GET_ATTRIBUTES


Command structure


Figure 494. DPMAC_GET_ATTRIBUTES Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0043 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 0


0x08 —


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.







DPMAC: Data Path MAC


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 15-17
 


Response structure


Figure 495. DPMAC_GET_ATTRIBUTES Response Description


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0043 TOKEN —


IN
T


R
_D


IS


STATUS P — SRCID


63 32 31 16 15 8 7 0


0x08 MAX_RATE ID LINK_TYPE ETH_IF


63 24 23 16 15 8 7 0


0x10 --- IFG_LENGTH IFG_MODE FEC_MODE


63 48 47 40 39 32 31 24 23 16 15 8 7 1 0


0x18 --- EQ_TYPE EQ_PREQ EQ_POST1Q EQ_AMP_RED SERDES_CFG_
MODE


S
G


N
_


P
R


E
Q


S
G


N
_


P
O


S
T


1Q


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-7 ETH_IF Ethernet interface


8-15 LINK_TYPE Link type


16-31 ID DPMAC object ID


32-63 MAX_RATE Maximum supported rate - in Mbps


0x10 0-7 FEC_MODE Configurable only for LX2160 CAUI ports.
0: FEC_NONE - RS-FEC (enabled by default) is disabled
1: FEC_RS - RS-FEC (Clause 91) mode configured
2: FEC_FC - FC-FEC (Clause 74) mode configured (not yet supported)
DPMAC FEC mode default is “FEC_RS”.


8-15 IFG_MODE Inter Frame Gap mode selection:
0: IFG_MODE_FIXED - IFG_LENGTH represents number of octets in steps of 4 (gap 
dimension) 
1: IFG_MODE_STRETCHED - IFG_LENGTH represents the stretched factor 
depending on bandwidth.


16-23 IFG_LENGTH Inter Frame Gap length value. Default value is 12.







DPMAC: Data Path MAC


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 15-18
 


All unspecified fields are reserved and must be cleared (set to zero)


0x18 0 SGN_POST1Q First post-cursor sign indicating direction of eye closure
0b - Negative Sign (close eye)
1b - Positive Sign (open eye)


1 SGN_PREQ Precursor sign indicating direction of eye closure
0b - Negative Sign (close eye)
1b - Positive Sign (open eye)


8-15 SERDES_CFG_MODE 0: SERDES_CFG_DEFAULT - This is the default configuration.
1: SERDES_CFG_SFI - Can be used with XFI and XLAUI4 interfaces from a SFI 
compatible SerDes, currently available on LX2 SoC.
This is the default operating mode for XFI interfaces, while the XLAUI4 interfaces run 
with full amplitude and no de-emphasis as default settings. 
This mode will apply equalization settings that will bring the electrical interface in the 
SFI specifications.
2: SERDES_CFG_CUSTOM - It allows the user to manually configure the type of 
equalization, amplitude, preq and post1q settings. Can be used with all interfaces 
except RGMII.


16-23 EQ_AMP_RED Overall transmit amplitude reduction


24-31 EQ_POST1Q Drive strength of full swing transition bit to first post-cursor


32-39 EQ_PREQ Drive strength of TX full swing transition bit to precursor.


40-47 EQ_TYPE Number of levels of TX equalization
000b - No equalization
001b - 2-tap equalization
010b - 3-tap equalization
011b - Reserved


Offset Bits Name Description







DPMAC: Data Path MAC


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 15-19
 


15.2.12 DPMAC_SET_PARAMS


This command is used to configure the Inter Frame Gap 


Command structure


Figure 496. DPMAC_SET_PARAMS Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0C61 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 47 40 39 32 31 0


0x08 — IFG_LENGTH IFG_MODE FLAGS


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-31 FLAGS Bits:
0: SET_PARAMS_IFG - If set, the configuration will be applied.


32-39 IFG_MODE Inter Frame Gap mode selection:
0: IFG_MODE_FIXED - IFG_LENGTH represents number of octets in steps of 4 (gap 
dimension) 
1: IFG_MODE_STRETCHED - IFG_LENGTH represents the stretched factor 
depending on bandwidth.


40-47 IFG_LENGTH Inter Frame Gap length value. Default value is 12.







DPMAC: Data Path MAC


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 15-20
 


15.2.13 DPMAC_MDIO_READ


This command is used to read through MDIO bus.


Command structure


Figure 497. DPMAC_MDIO_READ Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0C01 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 32 31 16 15 8 7 0


0x08 -- REGISTER PHY_ADDRESS CL45


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-7 CL45 Use to chose the Clause. Set to 0 if Clause 22 is desired or any another value for 
Clause 45. Clause 22 is used by default if the field is not completed.


8-15 PHY_ADDRESS The MDIO address of the PHY.


16-31 REGISTER The register from which to read.







DPMAC: Data Path MAC


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 15-21
 


Response structure


Figure 498. DPMAC_MDIO_READ Response Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0C01 TOKEN —


IN
T


R
_D


IS


STATUS P — SRCID


63 16 15 0


0x08 -- DATA


63 0


0x10 —


63 0


0x18 --


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-15 Data Data read from register.







DPMAC: Data Path MAC


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 15-22
 


15.2.14 DPMAC_MDIO_WRITE


Command structure


Figure 499. DPMAC_MDIO_WRITE Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0C11 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 48 47 32 31 16 15 8 7 0


0x08 DATA REGISTER PHY_ADDRESS CL45


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-7 CL45 Use to chose the Clause. Set to 0 if Clause 22 is desired or any another value for 
Clause 45. Clause 22 is used by default if the field is not completed.


8-15 PHY_ADDRESS The MDIO address of the PHY.


16-31 REGISTER The register to which to write.


32-47 DATA Data to be written.







DPMAC: Data Path MAC


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 15-23
 


15.2.15 DPMAC_GET_LINK_CFG


Command structure


Figure 500. DPMAC_GET_LINK_CFG Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0C21 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 0


0x08 —


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.







DPMAC: Data Path MAC


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 15-24
 


Response structure


Figure 501. DPMAC_GET_LINK_CFG Response Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0C21 TOKEN —


IN
T


R
_D


IS


STATUS P — SRCID


63 0


0x08 OPTIONS


63 32 31 0


0x10 — RATE


63 0


0x18 ADVERTISING


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-63 OPTIONS Enable/Disable DPMAC link cfg features (bitmap). See Table 15-2 for option values.


0x10 0-31 RATE Link’s rate


0X18 0-63 ADVERTISING Speeds that are advertised for autoneg


Table 15-2. DPMAC link options


Option value Description


0x0000000000000001ULL Enable auto-negotiation


0x0000000000000002ULL Enable half-duplex mode


0x0000000000000004ULL Enable pause frames


0x0000000000000008ULL Enable a-symmetric pause frames







DPMAC: Data Path MAC


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 15-25
 


15.2.16 DPMAC_SET_LINK_STATE


Command structure


Figure 502. DPMAC_SET_LINK_STATE Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0C31 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 0


0x08 OPTIONS


63 32 31 0


0x10 — RATE


63 1 0


0x18 —


S
TA


T
E


_
V


A
L


ID


UP


63 0


0x20 SUPPORTED


63 0


0x28 ADVERTISING


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-63 OPTIONS Enable/Disable DPMAC link cfg features (bitmap). See Table 15-2 for option values.


0x10 0-31 RATE Link’s rate


0x18 0 UP Link state


1 STATE_VALID Ignore/Update the state of the link


0X20 0-63 SUPPORTED Speeds capability of the phy


0X28 0-63 ADVERTISING Speeds that are advertised for autoneg







DPMAC: Data Path MAC


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 15-26
 


15.2.17 DPMAC_GET_COUNTER


Command structure


Figure 503. DPMAC_GET_COUNTER Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0C41 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 8 7 0


0x08 — TYPE


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portypal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-7 TYPE The requested counter. See Table 67 for possible counter values and their meanings.


Table 67. DPMAC counter values


Counter value Description


0x0 Counts 64-bytes frames, good or bad


0x1 Counts 65- to 127-bytes frames, good or bad


0x2 Counts 128- to 255-bytes frames, good or bad


0x3 Counts 256- to 511-bytes frames, good or bad


0x4 Counts 512- to 1023-bytes frames, good or bad


0x5 Counts 1024- to 1518-bytes frames, good or bad


0x6 Counts 1519-bytes frames and larger (up to max frame length specified), good or bad


0x7 Counts frames which are shorter than 64 bytes received with a wrong CRC


0x8 Counts frames longer than the maximum frame length specified, with a bad frame check sequence


0x9 Counts dropped frames due to internal errors
 • occurs when a receive FIFO overflows.
 • includes also frames truncated as a result of the receive FIFO overflow


0xA Counts frames with an alignment error (optional used for wrong SFD)


0xA Counts frames transmitted that was less than 64 bytes long with a good CRC


0xC Counts frames longer than the maximum frame length specified, with a good frame check sequence







DPMAC: Data Path MAC


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 15-27
 


Response structure


Figure 504. DPMAC_GET_COUNTER Response Description


All unspecified fields are reserved and must be cleared (set to zero)


0xD Counts valid pause frames (regular and PFC)


0xE Counts valid pause frames transmitted (regular and PFC)


0xF Counts bytes received except preamble for all valid frames and valid pause frames


0x10 Counts received multicast frames


0x11 Counts received broadcast frames


0x12 Counts each good or bad frames received


0x13 Counts received unicast frames


0x14 Counts frames received with an error (except for undersized/fragment frame)


0x15 Counts bytes transmitted except preamble for all valid frames and valid pause frames transmitted


0x16 Counts transmitted multicast frames


0x17 Counts transmitted broadcast frames


0x18 Counts transmitted unicast frames


0x19 Counts frames transmitted with an error


0x1A Counts frames received without error, including pause frames


0x1B Counts frames transmitted without error, including pause frames


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0C41 TOKEN —


IN
T


R
_D


IS


STATUS P — SRCID


63 0


0x08 —


63 0


0x10 COUNTER


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x10 0-63 COUNTER The requested counter


Table 67. DPMAC counter values


Counter value Description







DPMAC: Data Path MAC


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 15-28
 


15.2.18 DPMAC_GET_API_VERSION


Command structure


Figure 505. DPMAC_GET_API_VERSION Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0xA0C1 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 0


0x08 —


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.







DPMAC: Data Path MAC


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 15-29
 


Response structure


Figure 506. DPMAC_GET_API_VERSION Response Description


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0xA0C1 TOKEN —


IN
T


R
_D


IS


STATUS P — SRCID


63 32 31 16 15 0


0x08 — VERSION_MINOR VERSION_MAJOR


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-15 VERSION_MAJOR Major version of API


16-31 VERSION_MINOR Minor version of API







DPMAC: Data Path MAC


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 15-30
 


15.2.19 DPMAC_RESET


Reset the DPMAC. Returns the object to initial state. If the DPMAC is connected to another object, the 
reset procedure will disconnect it. After DPMAC_RESET use DPRC_CONNECT command to restore 
connection.


Command structure


Figure 507. DPMAC_RESET Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0051 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 0


0x08 —


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.







DPMAC: Data Path MAC


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 15-31
 


15.2.20 DPMAC_GET_MAC_ADDR


Command structure


Figure 508. DPMAC_GET_MAC_ADDR Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0c51 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 0


0x08 —


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.







DPMAC: Data Path MAC


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 15-32
 


Response structure


Figure 509. DPMAC_GET_MAC_ADDR Response Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0c51 TOKEN —


IN
T


R
_D


IS


STATUS P — SRCID


63 16 15 0


0x08 MAC_ADDR —


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 16 - 63 MAC_ADDR The MAC address of the physical port, if any, otherwise 0.







DPMAC: Data Path MAC


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 15-33
 


15.2.21 DPMAC_SET_PROTOCOL


Command to reconfigure the protocol of a DPMAC object.


The MC firmware will reconfigure the MAC (mEMAC, cEMAC) and the WRIOP port to run using the 
new protocol and the associated new link speed. Software running on the GPP is responsible to reconfigure 
the SerDes lane and the associated PCS.


At the moment only the following transitions are supported, an error will be returned otherwise.


DPMAC_ETH_IF_SGMII -> DPMAC_ETH_IF_1000BASEX / DPMAC_ETH_IF_XFI


DPMAC_ETH_IF_1000BASEX -> DPMAC_ETH_IF_SGMII / DPMAC_ETH_IF_XFI


DPMAC_ETH_IF_XFI -> DPMAC_ETH_IF_1000BASEX / DPMAC_ETH_IF_SGMII


As you can see, the transitions between the main protocols for 1G copper/fiber and 10G fiber are targeted 
since these are the most used ones in SFP/SFP+ modules.


Command structure


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0C71 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 8 7 0


0x08 — ETH_IF


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —







DPMAC: Data Path MAC


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 15-34
 


Figure 510. DPMAC_SET_PROTOCOL Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-7 ETH_IF New protocol (ethernet interface) to be configured on the DPMAC. See the above 
explanation for more info on the supported transitions.
0x00: DPMAC_ETH_IF_MII - MII interface
0x01: DPMAC_ETH_IF_RMII - RMII interface
0x02: DPMAC_ETH_IF_SMII - SMII interface
0x03: DPMAC_ETH_IF_GMII - GMII interface
0x04: DPMAC_ETH_IF_RGMII - RGMII interface
0x05: DPMAC_ETH_IF_SGMII - SGMII interface
0x06: DPMAC_ETH_IF_QSGMII - QSGMII interface
0x07: DPMAC_ETH_IF_XAUI - XAUI interface
0x08: DPMAC_ETH_IF_XFI - XFI interface
0x09: DPMAC_ETH_IF_CAUI - CAUI interface
0x0a: DPMAC_ETH_IF_1000BASEX -1000BASEX interface
0x0b: DPMAC_ETH_IF_USXGMII - USXGMII interface







DPRTC: Data Path Real Time Clock


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 16-1
 


Chapter 16  DPRTC: Data Path Real Time Clock
The MC exports the DPRTC object to allow GPP software to control the physical IEEE-1588 Real Time 
Clock. A single DPRTC object is needed to control the IEEE-1588 RTC, and this object is expected to 
serve the PTP stack running in GPP.


16.1 DPRTC features


The following list summarizes the DPRTC main features and capabilities:


• IEEE-1588 RTC accuracy in nanoseconds.


• Supports RTC frequency compensation.


• Supports modification of RTC clock offset.


• Supports direct setting of the RTC time – useful mainly for zeroing the timer, as the recommended 
method for RTC modifications is through offset and/or frequency change.


• Supports setting an alarm time – generates an event to GPP at a requested time.


• Supports 2 pulse-per-second events.


• Supports 2 timestamp external trigger interrupts (ETS1 and ETS2).


• Supports fiper loopback mode, in which the generated pulse will be the interrupt source for external 
trigger.







DPRTC: Data Path Real Time Clock


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 16-2
 


16.2 DPRTC command reference


This section contains the detailed programming model of DPRTC commands.


16.2.1 DPRTC_OPEN


Open a control session for the specified object.


This function can be used to open a control session for an already created object; an object may have been 
declared in the DPL or by invoking DPRTC_CREATE command.


This function returns a unique authentication token, associated with the specific object ID; this token must 
be used in all subsequent commands for this specific object.


Command structure


The command format is shown in the figure below.


Figure 511. DPRTC_OPEN Command Description


The following table describes the command fields.


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x8101 TOKEN —


IN
T


R
_D


IS


STATUS P — SRCID


63 32 31 0


0x08 DPRTC_ID


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Table 68. DPRTC_OPEN Command Field Descriptions1


1 All unspecified fields are reserved and must be cleared (set to zero)


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-31 DPRTC_ID DPRTC unique ID







DPRTC: Data Path Real Time Clock


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 16-3
 


16.2.2 DPRTC_CLOSE


Close the control session of the object.


After this function is called, no further operations are allowed on the object without opening a new control 
session.


Command structure


Figure 512. DPRTC_CLOSE Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x8001 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 0


0x08 —


63 0


0x10 —


63 0


0x18


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.







DPRTC: Data Path Real Time Clock


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 16-4
 


16.2.3 DPRTC_CREATE


This command creates and initializes an instance of DPRTC according to the specified command 
parameters. This command is not required for DPRTC instances that are created using the DPL.


For the CREATE command the caller must provide the authentication token of the parent container to 
which the object should be created and assigned. If the token is '0' the object will be assigned to the 
container that hosts the MC command portal executing this command.


Only one DPRTC object can be created in MC (singleton object). Multiple create operations without 
destroying the object returns an error.


The command returns a DPRTC ID that can be used to OPEN or DESTROY the object.


The command format is shown in the figure below.


Command structure


Figure 513. DPRTC_CREATE Command Description


The following table describes the command fields.
1-5


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x9101 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 0


0x08 —


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Table 69. DPRTC_CREATE Command Field Descriptions1


1 All unspecified fields are reserved and must be cleared (set to zero).


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.







DPRTC: Data Path Real Time Clock


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 16-5
 


Response structure


Figure 16-1. DPRTC_CREATE Response Description


The following table describes the response fields.


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 24 23 16 15 14 8 7 0


CMDID = 0x9101 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 32 31 0


0x08 — DPRTC_ID


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Table 16-1. DPRTC_CREATE Response Field Descriptions1


1 All unspecified fields are reserved.


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-31 DPRTC_ID DPRTC unique ID







DPRTC: Data Path Real Time Clock


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 16-6
 


16.2.4 DPRTC_DESTROY


This command destroys the DPRTC object and releases all its resources. It must be invoked in the software 
context that created the object. The caller must provide the object id and the authentication token of the 
parent container that created the object. Note that the object can be assigned to another container and 
sending the authentication token of this container will return an error.


All open authentication tokens to the object must be closed before calling the destroy command. 


After this function is called, no further operations are allowed on the object.


Command structure


Figure 514. DPRTC_DESTROY Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x9901 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 32 31 0


0x08 — DPRTC_ID


63 0


0x10 —


63 0


0x18


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0–32 DPRTC_ID ID of the DPRTC object to destroy







DPRTC: Data Path Real Time Clock


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 16-7
 


16.2.5 DPRTC_SET_IRQ_ENABLE


Set overall interrupt state. Allows GPP software to control when interrupts are generated. Each interrupt 
can have up to 32 causes. The enable/disable control's the overall interrupt state. if the interrupt is disabled 
no causes will cause an interrupt.


Command structure


Figure 515. DPRTC_SET_IRQ_ENABLE Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0121 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 40 39 32 31 1 0


0x08 – IRQ_INDEX – EN


63 0


0x10 –


63 0


0x18 –


63 0


0x20 –


63 0


0x28 –


63 0


0x30 –


63 0


0x38 –


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0 EN Interrupt state: set to ‘1’ to enable, ‘0’ to disable


32-39 IRQ_INDEX Identifies the interrupt index to configure







DPRTC: Data Path Real Time Clock


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 16-8
 


16.2.6 DPRTC_GET_IRQ_ENABLE


Get overall interrupt state.


Command structure


Figure 516. DPRTC_GET_IRQ_ENABLE Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0131 TOKEN —


IN
T


R
_D


IS


STATUS P — SRCID


63 40 39 32 31 0


0x08 – IRQ_INDEX –


63 0


0x10 –


63 0


0x18 –


63 0


0x20 –


63 0


0x28 –


63 0


0x30 –


63 0


0x38 –


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 32-39 IRQ_INDEX Identifies the interrupt index to query







DPRTC: Data Path Real Time Clock


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 16-9
 


Response structure


Figure 517. DPRTC_GET_IRQ_ENABLE Response Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0131 TOKEN —


IN
T


R
_D


IS


STATUS P — SRCID


63 1 0


0x08 – EN


63 0


0x10 –


63 0


0x18 –


63 0


0x20 –


63 0


0x28 –


63 0


0x30 –


63 0


0x38 –


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0 EN This bit is set if the interrupt is enabled







DPRTC: Data Path Real Time Clock


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 16-10
 


16.2.7 DPRTC_SET_IRQ_MASK


Set the interrupt mask. Every interrupt can have up to 32 causes and the interrupt model supports 
masking/unmasking each cause independently.


Command structure


Figure 518. DPRTC_SET_IRQ_MASK Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0141 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 40 39 32 31 0


0x08 – IRQ_INDEX MASK


63 0


0x10 –


63 0


0x18 –


63 0


0x20 –


63 0


0x28 –


63 0


0x30 –


63 0


0x38 –


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-31 MASK Event mask for triggering the interrupt; See GET_IRQ_STATUS command for 
specification of available events. For each bit in MASK:
0 = ignore event
1 = event is valid; signal the IRQ if this event occurs


32-39 IRQ_INDEX The interrupt index to configure







DPRTC: Data Path Real Time Clock


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 16-11
 


16.2.8 DPRTC_GET_IRQ_MASK


Get the interrupt mask. Every interrupt can have up to 32 causes and the interrupt model supports 
masking/unmasking each cause independently.


Command structure


Figure 519. DPRTC_GET_IRQ_MASK Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0151 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 40 39 32 31 0


0x08 – IRQ_INDEX –


63 0


0x10 –


63 0


0x18 –


63 0


0x20 –


63 0


0x28 –


63 0


0x30 –


63 0


0x38 –


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 32-39 IRQ_INDEX The interrupt index to query







DPRTC: Data Path Real Time Clock


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 16-12
 


Response structure


Figure 520. DPRTC_GET_IRQ_MASK Response Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0151 TOKEN —


IN
T


R
_D


IS


STATUS P — SRCID


63 32 31 0


0x08 MASK


63 0


0x10 –


63 0


0x18 –


63 0


0x20 –


63 0


0x28 –


63 0


0x30 –


63 0


0x38 –


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-31 MASK Event mask for triggering the interrupt; See GET_IRQ_STATUS command for 
specification of available events. For each bit in MASK:
0 = ignore event
1 = event is valid; signal the IRQ if this event occurs







DPRTC: Data Path Real Time Clock


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 16-13
 


16.2.9 DPRTC_GET_IRQ_STATUS


Get the current status of pending events for the specified interrupt index.


Command structure


Figure 521. DPRTC_GET_IRQ_STATUS Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0161 TOKEN —


IN
T


R
_D


IS


STATUS P — SRCID


63 40 39 32 31 0


0x08 – IRQ_INDEX STATUS


63 0


0x10 –


63 0


0x18 –


63 0


0x20 –


63 0


0x28 –


63 0


0x30 –


63 0


0x38 –


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-31 STATUS Optional: any STATUS bits that are set will be cleared from pending state (removing 
the need for DPRTC_CLEAR_IRQ_STATUS command). Note that the STATUS 
returned in the response is the status before the events are cleared.


Supported events: see response structure definition


32-39 IRQ_INDEX The interrupt index to query







DPRTC: Data Path Real Time Clock


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 16-14
 


Response structure


Figure 522. DPRTC_GET_IRQ_STATUS Response Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0161 TOKEN —


IN
T


R
_D


IS


STATUS P — SRCID


63 32 31 0


0x08 STATUS


63 0


0x10 –


63 0


0x18 –


63 0


0x20 –


63 0


0x28 –


63 0


0x30 –


63 0


0x38 –


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-31 STATUS Events status mask, one bit per event:
0 = no interrupt pending
1 = interrupt pending


Supported events for IRQ 0:
Bit 22: DPRTC_EVENT_ETS2 - indicates an event from external trigger timestamp 2
Bit 23: DPRTC_EVENT_ETS1 - indicates an event from external trigger timestamp 1
Bit 26: DPRTC_EVENT_PPS2 – indicates a pulse per 4 seconds event
Bit 27: DPRTC_EVENT_PPS – indicates a pulse per second event
Bit 30: DPRTC_EVENT_ALARM – indicates that the requested alarm time was 
reached







DPRTC: Data Path Real Time Clock


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 16-15
 


16.2.10 DPRTC_CLEAR_IRQ_STATUS


Clear (mark as handled) pending events of the specified interrupt index.


Command structure


Figure 523. DPRTC_CLEAR_IRQ_STATUS Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0171 TOKEN —


IN
T


R
_D


IS


STATUS P — SRCID


63 40 39 32 31 0


0x08 – IRQ_INDEX STATUS


63 0


0x10 –


63 0


0x18 –


63 0


0x20 –


63 0


0x28 –


63 0


0x30 –


63 0


0x38 –


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-31 STATUS Mask for clearing handled events; See GET_IRQ_STATUS command for specification 
of available events. For each bit in MASK:
0 = don’t change event status
1 = clear event status bit to indicate that it was handled


32-39 IRQ_INDEX The interrupt index to configure







DPRTC: Data Path Real Time Clock


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 16-16
 


16.2.11 DPRTC_GET_ATTRIBUTES


Command structure


Figure 524. DPRTC_GET_ATTRIBUTES Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0041 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 0


0x08 —


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.







DPRTC: Data Path Real Time Clock


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 16-17
 


Response structure


Figure 525. DPRTC_GET_ATTRIBUTES Response Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0041 TOKEN —


IN
T


R
_D


IS


STATUS P — SRCID


63 32 31 0


0x08 ID ADDR


63 1 0


0x10 —


E
N


D
IA


N
N


E
S


S


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-31 ADDR Registers base address


32-63 ID DPRTC object ID


0x10 0 ENDIANNESS 1588 block endianness:
0 - big endian
1 - little endian







DPRTC: Data Path Real Time Clock


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 16-18
 


16.2.12 DPRTC_SET_CLOCK_OFFSET


Command structure


Figure 526. DPRTC_SET_CLOCK_OFFSET Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x1D01 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 0


0x08 OFFSET


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-63 OFFSET New clock offset (in nanoseconds)







DPRTC: Data Path Real Time Clock


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 16-19
 


16.2.13 DPRTC_GET_CLOCK_OFFSET


Command structure


Figure 527. DPRTC_GET_CLOCK_OFFSET Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x1DC1 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 0


0x08 —


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.







DPRTC: Data Path Real Time Clock


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 16-20
 


Response structure


Figure 528. DPRTC_GET_CLOCK_OFFSET Response Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x1DC1 TOKEN —


IN
T


R
_D


IS


STATUS P — SRCID


63 0


0x08 CLOCK_OFFSET


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-63 CLOCK_OFFSET Clock offset value.







DPRTC: Data Path Real Time Clock


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 16-21
 


16.2.14 DPRTC_SET_FREQ_COMPENSATION


Command structure


Figure 529. DPRTC_SET_FREQ_COMPENSATION Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x1D11 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 32 31 0


0x08 — FREQ_COMPENSATION


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-31 FREQ_COMPENSATION The new frequency compensation value to set.







DPRTC: Data Path Real Time Clock


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 16-22
 


16.2.15 DPRTC_GET_FREQ_COMPENSATION


Command structure


Figure 530. DPRTC_GET_FREQ_COMPENSATION Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x1D21 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 0


0x08 —


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.







DPRTC: Data Path Real Time Clock


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 16-23
 


Response structure


Figure 531. DPRTC_GET_FREQ_COMPENSATION Response Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x1D21 TOKEN —


IN
T


R
_D


IS


STATUS P — SRCID


63 32 31 0


0x08 — FREQ_COMPENSATION


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-31 FREQ_COMPENSATION Frequency compensation value







DPRTC: Data Path Real Time Clock


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 16-24
 


16.2.16 DPRTC_GET_TIME


Command structure


Figure 532. DPRTC_GET_TIME Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x1D31 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 0


0x08 —


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.







DPRTC: Data Path Real Time Clock


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 16-25
 


Response structure


Figure 533. DPRTC_GET_TIME Response Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x1D31 TOKEN —


IN
T


R
_D


IS


STATUS P — SRCID


63 0


0x08 TIME


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-63 TIME Current RTC time in nanoseconds







DPRTC: Data Path Real Time Clock


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 16-26
 


16.2.17 DPRTC_SET_TIME


Command structure


Figure 534. DPRTC_SET_TIME Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x1D41 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 0


0x08 TIME


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-63 TIME New RTC time in nanoseconds







DPRTC: Data Path Real Time Clock


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 16-27
 


16.2.18 DPRTC_SET_ALARM


Command structure


Figure 535. DPRTC_SET_ALARM Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x1D51 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 0


0x08 TIME


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-63 TIME In nanoseconds, the time when the alarm
should go off - must be a multiple of the RTC period







DPRTC: Data Path Real Time Clock


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 16-28
 


16.2.19 DPRTC_GET_EXT_TRIGGER_TIMESTAMP


Command structure


Figure 536. DPRTC_GET_EXT_TRIGGER_TIMESTEMP Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x1DA1 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 40 39 32 31 0


0x08 --- ETS_ID ---


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 32-39 ETS_ID Represents the ID for external trigger interrupt
01b - ETS1
10b - ETS2







DPRTC: Data Path Real Time Clock


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 16-29
 


Response structure


Figure 537. DPRTC_GET_EXT_TRIGGER_TIMESTEMP Response Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x1D31 TOKEN —


IN
T


R
_D


IS


STATUS P — SRCID


63 1 0


0x08 ---


U
N


R
E


A
D


_
V


A
LID


_
T


IM
E


S
TA


M
P


63 0


0x10 TIMESTAMP


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0 UNREAD_VALID_TIMESTAMP If set means that in FIFO there is another timestamp that have to be read. If unset and 
the TIMESTAMP is a value different of 0, means that this value was the last entry in 
FIFO.


0x10 0-63 TIMESTAMP Timestamp value in nanoseconds.







DPRTC: Data Path Real Time Clock


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 16-30
 


16.2.20 DPRTC_SET_FIPER_LOOPBACK


Through this command, for both external trigger interrupt (ETS1 and ETS2), the source of interrupt can 
be switched between normal external trigger input and fiper pulse signal (fiper in loopback mode).


Command structure


Figure 538. DPRTC_SET_FIPER_LOOPBACK Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x1DB1 TOKEN —


IN
T


R
_D


IS


STATUS P — SRCID


63 16 15 8 7 0


0x08 --- FIPER_AS_INPU
T


ETS_ID


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-7 ETS_ID Represents the ID for external trigger interrupt
01b - ETS1
10b - ETS2


8-15 FIPER_AS_INPUT If set, the fiper will be configured in loopback mode. Will represent the interrupt signal 
source for ETS selected.
If unset, ETS input is based upon normal external trigger input.







DPRTC: Data Path Real Time Clock


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 16-31
 


16.2.21 DPRTC_GET_API_VERSION


Command structure


Figure 539. DPRTC_GET_API_VERSION Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0xA101 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 0


0x08 —


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.







DPRTC: Data Path Real Time Clock


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 16-32
 


Response structure


Figure 540. DPRTC_GET_API_VERSION Response Description


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0xA101 TOKEN —


IN
T


R
_D


IS


STATUS P — SRCID


63 32 31 16 15 0


0x08 — VERSION_MINOR VERSION_MAJOR


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-15 VERSION_MAJOR Major version of API


16-31 VERSION_MINOR Minor version of API







DPSECI: Data Path SEC Interface


DPAA2UM, Rev 50, 08/2022 


NXP Semiconductors 17-1
 


Chapter 17  DPSECI: Data Path SEC Interface
The MC exports the DPSECI object as an interface to operate the DPAA2 Security Engine (SEC).


The DPSECI enables sending frame-based requests to the SEC and receiving back the processed response, 
utilizing the DPAA2 QBMan infrastructure. The DPSECI object provides up to eight priorities for 
processing SEC requests.


17.1 DPSECI features


The following list summarizes the main DPSECI features and capabilities:


• Supports up to eight scheduling priorities for processing service requests


— Each DPSECI transmit queue is mapped to one of eight service priorities, allowing further 
prioritization in hardware between requests from different DPSECI objects.


• Supports up to sixteen receive queues for incoming response frames


— Each DPSECI response (receive) queue is mapped to one of eight receive priorities, allowing 
further prioritization between other interfaces when associating the DPSECI receive queues to 
DPIO or DPCON objects.


• Supports different scheduling options for processing received packets:


— Queues can be configured either in ‘parked’ mode (default), or attached to a DPIO object, or 
attached to DPCON object


• Allows interaction with one or more DPIO objects for dequeueing/enqueueing frame descriptors 
(FD) and for acquiring/releasing buffers.


• Supports enable, disable, and reset operations


17.2 DPSECI functional description


17.2.1 Setting the DPSECI for SEC operation


The DPSECI is an interface object that allows GPP software to send service requests to the SEC engine 
and receive back the processed response. The actual description of the requested SEC service is built by 
GPP software in the form of a frame descriptor. GPP software is also responsible for reading and parsing 
the response frame descriptor containing the ouptut and status of the processed request.


The DPSECI is not aware of the content of SEC requests being sent, and does not perform any checks on 
their correctness. It is involved only in setting up the QMan infrastructure for communicating with the SEC 
engine.


The driver software must declare the number of queues (up to 16 for LX2160A) for SEC processing. The 
DPSECI queues are mapped to one of eight global priorities of the SEC hardware block; this allows further 
prioritization of service requests between different DPSECI objects.







DPSECI: Data Path SEC Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 17-2
 


17.2.2 Relationship with DPIO and DPCON objects


Each of the DPSECI response (receive) queues may be associated with either a DPIO object or a DPCON 
object. This serves for notification purposes and/or advanced scheduling of received response frames.


DPIO objects provide configuration of a QBMan software portal, with an option for data availability 
notifications. GPP software is free to relate DPIO objects to threads, or to share them between cores in 
SMP mode, but this requires synchronized access to the QBMan software portal. It is possible to associate 
multiple DPIO objects with the same DPSECI, in order to spread responses from this DPSECI across 
multiple QBMan software portals.


GPP software may decide to enable DPIO notifications, or it may dequeue frames based on its own 
scheduled polling logic. It is also possible for one GPP entity to receive the notification from one DPIO 
and alert another entity that will dequeue the packets using a different DPIO.


DPCON objects are used for concentrating traffic from several interfaces into sub-interfaces, mainly for 
scheduling purposes. It is possible to connect DPCON with DPIO so it generates notifications to the GPP.


Note that the QBMan software portal is used both for enqueue/dequeue operations on packets, and for 
acquire/release buffer operations. GPP software is responsible for the portal’s operation mode and usage 
i.e. sharing vs. affinity, association of queue context, etc.


DPIO objects may serve multiple interfaces. This is not limited to multiple DPSECI objects; it can also be 
extended to network interfaces and communication interfaces. For example, the same DPIO may serve 
both a DPNI and a DPSECI, assuming they are assigned to the same software context (container).


17.2.3 Buffer requirements


A DPSECI does not need to be directly associated with a DPBP object; in addition, buffers for the SEC 
service requests (frames) may or may not be managed by buffer pools. However, SEC response frames are 
usually built by allocation of buffers from BMan buffer pools; therefore, GPP software should specify in 
the SEC service requests which buffer pool ID to use for allocating the response buffer. The buffer pool 
ID can be retrieved from the DPBP object (please refer to the DPBP API description).







DPSECI: Data Path SEC Interface


DPAA2UM, Rev 50, 08/2022 


NXP Semiconductors 17-3
 


17.3 DPSECI command reference


This section contains the detailed programming model of DPSECI commands.


17.3.1 DPSECI_OPEN


Open a control session for the specified object.


This function can be used to open a control session for an already created object; an object may have been 
declared in the DPL or by invoking DPSECI_CREATE command.


This function returns a unique authentication token, associated with the specific object ID; this token must 
be used in all subsequent commands for this specific object.


Command structure


Figure 541. DPSECI_OPEN Command Description


The following table describes the command fields.
1-


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x8091 TOKEN —


IN
T


R
_D


IS


STATUS P — SRCID


63 32 31 0


0x08 DPSECI_ID


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Table 70. DPSECI_OPEN Command Field Descriptions1


1 All unspecified fields are reserved and must be cleared (set to zero).


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-31 DPSECI_ID







DPSECI: Data Path SEC Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 17-4
 


17.3.2 DPSECI_CLOSE


Close the control session of the object.


After this function is called, no further operations are allowed on the object without opening a new control 
session.


Command structure


Figure 542. DPSECI_CLOSE Command Description


All unspecified fields are reserved and must be cleared (set to zero).


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x8001 TOKEN —


IN
T


R
_D


IS


STATUS P — SRCID


63 0


0x08 —


63 0


0x10 —


63 0


0x18


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.







DPSECI: Data Path SEC Interface


DPAA2UM, Rev 50, 08/2022 


NXP Semiconductors 17-5
 


17.3.3 DPSECI_CREATE


This command creates and initializes an instance of DPSECI according to the specified command 
parameters. This command is not required for DPSECI instances that are created using the DPL.


For the CREATE command the caller must provide the authentication token of the parent container to 
which the object should be created and assigned. If the token is '0' the object will be assigned to the 
container that hosts the MC command portal executing this command.


The command returns a DPSECI ID that can be used to OPEN or DESTROY the object.


The command format is shown in the figure below.


Command structure


Figure 543. DPSECI_CREATE Command Description


The following table describes the command fields.
1-5


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x9091 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0


0x08 PRIORITIES7 PRIORITIES6 PRIORITIES5 PRIORITIES4 PRIORITIES3 PRIORITIES2 PRIORITIES1 PRIORITIES0


63 16 15 8 7 0


0x10 — NUM_RX_QUEU
ES


NUM_TX_QUEU
ES


63 0


0x18 — OPTIONS


63 0


0x20 PRIORITIES15 PRIORITIES14 PRIORITIES13 PRIORITIES12 PRIORITIES11 PRIORITIES10 PRIORITIES9 PRIORITIES8


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Table 71. DPSECI_CREATE Command Field Descriptions1


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-63 PRIORITIES[0-7] Priorities for the SEC hardware processing; valid priorities are configured with values 1-8; the entry 
following last valid entry should be configured with 0


0x10 0-7 NUM_TX_QUEUES Number of queues towards the SEC


8-15 NUM_RX_QUEUES Number of queues back from the SEC







DPSECI: Data Path SEC Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 17-6
 


Response structure


Figure 17-1. DPSECI_CREATE Response Description


The following table describes the response fields.


0x18 0-31 OPTIONS Select one or more of the options below


5 DPSECI_OPT_HAS_CG Controls availability of congestion groups:
0 – congestion groups is not available
1 – congestion group available (a single congestion group for all queues)


6 DPSECI_OPT_HAS_OPR Controls availability of Order Restoration:
0 – Order Restoration is not available
1 – Order Restoration is available


7 DPSECI_OPT_OPR_SHARED Controls the number of Order Restoration points:
0 – Order Restoration is available per queue
1 – Order Restoration is available per DPSECI object (a single “shared” point for all queues)


0x20 0-63 PRIORITIES[8-15] Priorities for the SEC hardware processing; valid priorities are configured with values 1-8; the entry 
following last valid entry should be configured with 0


1 All unspecified fields are reserved and must be cleared (set to zero).


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 24 23 16 15 14 8 7 0


CMDID = TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 32 31 0


0x08 — DPSECI_ID


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Table 17-1. DPSECI_CREATE Response Field Descriptions1


1 All unspecified fields are reserved.


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-31 DPSECI_ID DPSECI unique ID


Table 71. DPSECI_CREATE Command Field Descriptions1


Offset Bits Name Description







DPSECI: Data Path SEC Interface


DPAA2UM, Rev 50, 08/2022 


NXP Semiconductors 17-7
 


17.3.4 DPSECI_DESTROY


This command destroys the DPSECI object and releases all its resources. It must be invoked in the 
software context that created the object. The caller must provide the object id and the authentication token 
of the parent container that created the object. Note that the object can be assigned to another container 
and sending the authentication token of this container will return an error.


All open authentication tokens to the object must be closed before calling the destroy command. 


After this function is called, no further operations are allowed on the object.


Command structure


Figure 544. DPSECI_DESTROY Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x9891 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 32 31 0


0x08 — DPSECI_ID


63 0


0x10 —


63 0


0x18


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0–32 DPSECI_ID ID of the DPSECI object to destroy







DPSECI: Data Path SEC Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 17-8
 


17.3.5 DPSECI_ENABLE


Command structure


Figure 545. DPSECI_ENABLE Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0021 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 0


0x08 —


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.







DPSECI: Data Path SEC Interface


DPAA2UM, Rev 50, 08/2022 


NXP Semiconductors 17-9
 


17.3.6 DPSECI_DISABLE


Command structure


Figure 546. DPSECI_DISABLE Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0031 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 0


0x08 —


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.







DPSECI: Data Path SEC Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 17-10
 


17.3.7 DPSECI_IS_ENABLED


Command structure


Figure 547. DPSECI_IS_ENABLED Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0061 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 0


0x08 —


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.







DPSECI: Data Path SEC Interface


DPAA2UM, Rev 50, 08/2022 


NXP Semiconductors 17-11
 


Response structure


Figure 548. DPSECI_IS_ENABLED Response Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0061 TOKEN —


IN
T


R
_D


IS


STATUS P — SRCID


63 1 0


0x08 — EN


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0 EN Returns '1' if object is enabled; '0' otherwise







DPSECI: Data Path SEC Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 17-12
 


17.3.8 DPSECI_RESET


Command structure


Figure 549. DPSECI_RESET Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0051 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 0


0x08 —


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.







DPSECI: Data Path SEC Interface


DPAA2UM, Rev 50, 08/2022 


NXP Semiconductors 17-13
 


17.3.9 DPSECI_SET_IRQ_ENABLE


Set overall interrupt state. Allows GPP software to control when interrupts are generated. Each interrupt 
can have up to 32 causes. The enable/disable control's the overall interrupt state. if the interrupt is disabled 
no causes will cause an interrupt.


Command structure


Figure 550. DPSECI_SET_IRQ_ENABLE Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0121 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 40 39 32 31 1 0


0x08 – IRQ_INDEX – EN


63 0


0x10 –


63 0


0x18 –


63 0


0x20 –


63 0


0x28 –


63 0


0x30 –


63 0


0x38 –


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0 EN Interrupt state: set to ‘1’ to enable, ‘0’ to disable


32-39 IRQ_INDEX Identifies the interrupt index to configure


0x10 - 
0x3F


– Reserved







DPSECI: Data Path SEC Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 17-14
 


17.3.10 DPSECI_GET_IRQ_ENABLE


Get overall interrupt state.


Command structure


Figure 551. DPSECI_GET_IRQ_ENABLE Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0131 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 40 39 32 31 0


0x08 – IRQ_INDEX –


63 0


0x10 –


63 0


0x18 –


63 0


0x20 –


63 0


0x28 –


63 0


0x30 –


63 0


0x38 –


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 32-39 IRQ_INDEX Identifies the interrupt index to query







DPSECI: Data Path SEC Interface


DPAA2UM, Rev 50, 08/2022 


NXP Semiconductors 17-15
 


Response structure


Figure 552. DPSECI_GET_IRQ_ENABLE Response Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0131 TOKEN —


IN
T


R
_D


IS


STATUS P — SRCID


63 1 0


0x08 – EN


63 0


0x10 –


63 0


0x18 –


63 0


0x20 –


63 0


0x28 –


63 0


0x30 –


63 0


0x38 –


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0 EN This bit is set if the interrupt is enabled







DPSECI: Data Path SEC Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 17-16
 


17.3.11 DPSECI_SET_IRQ_MASK


Set the interrupt mask. Every interrupt can have up to 32 causes and the interrupt model supports 
masking/unmasking each cause independently.


Command structure


Figure 553. DPSECI_SET_IRQ_MASK Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0141 TOKEN —


IN
T


R
_D


IS


STATUS P — SRCID


63 40 39 32 31 0


0x08 – IRQ_INDEX MASK


63 0


0x10 –


63 0


0x18 –


63 0


0x20 –


63 0


0x28 –


63 0


0x30 –


63 0


0x38 –


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-31 MASK Event mask for triggering the interrupt; See GET_IRQ_STATUS command for 
specification of available events. For each bit in MASK:
0 = ignore event
1 = event is valid; signal the IRQ if this event occurs


32-39 IRQ_INDEX The interrupt index to configure







DPSECI: Data Path SEC Interface


DPAA2UM, Rev 50, 08/2022 


NXP Semiconductors 17-17
 


17.3.12 DPSECI_GET_IRQ_MASK


Get the interrupt mask. Every interrupt can have up to 32 causes and the interrupt model supports 
masking/unmasking each cause independently.


Command structure


Figure 554. DPSECI_GET_IRQ_MASK Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0151 TOKEN —


IN
T


R
_D


IS


STATUS P — SRCID


63 40 39 32 31 0


0x08 – IRQ_INDEX –


63 0


0x10 –


63 0


0x18 –


63 0


0x20 –


63 0


0x28 –


63 0


0x30 –


63 0


0x38 –


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 32-39 IRQ_INDEX The interrupt index to query







DPSECI: Data Path SEC Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 17-18
 


Response structure


Figure 555. DPSECI_GET_IRQ_MASK Response Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0151 TOKEN —


IN
T


R
_D


IS


STATUS P — SRCID


63 32 31 0


0x08 MASK


63 0


0x10 –


63 0


0x18 –


63 0


0x20 –


63 0


0x28 –


63 0


0x30 –


63 0


0x38 –


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-31 MASK Event mask for triggering the interrupt; See GET_IRQ_STATUS command for 
specification of available events. For each bit in MASK:
0 = ignore event
1 = event is valid; signal the IRQ if this event occurs







DPSECI: Data Path SEC Interface


DPAA2UM, Rev 50, 08/2022 


NXP Semiconductors 17-19
 


17.3.13 DPSECI_GET_IRQ_STATUS


Get the current status of pending events for the specified interrupt index.


Command structure


Figure 556. DPSECI_GET_IRQ_STATUS Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0161 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 40 39 32 31 0


0x08 – IRQ_INDEX STATUS


63 0


0x10 –


63 0


0x18 –


63 0


0x20 –


63 0


0x28 –


63 0


0x30 –


63 0


0x38 –


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-31 STATUS Optional: any STATUS bits that are set will be cleared from pending state (removing 
the need for DPSECI_CLEAR_IRQ_STATUS command). Note that the STATUS 
returned in the response is the status before the events are cleared.


Supported events: see response structure definition


32-39 IRQ_INDEX The interrupt index to query







DPSECI: Data Path SEC Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 17-20
 


Response structure


Figure 557. DPSECI_GET_IRQ_STATUS Response Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0161 TOKEN —


IN
T


R
_D


IS


STATUS P — SRCID


63 32 31 0


0x08 STATUS


63 0


0x10 –


63 0


0x18 –


63 0


0x20 –


63 0


0x28 –


63 0


0x30 –


63 0


0x38 –


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-31 STATUS Events status mask, one bit per event:
0 = no interrupt pending
1 = interrupt pending


Supported events:
None







DPSECI: Data Path SEC Interface


DPAA2UM, Rev 50, 08/2022 


NXP Semiconductors 17-21
 


17.3.14 DPSECI_CLEAR_IRQ_STATUS


Clear (mark as handled) pending events of the specified interrupt index.


Command structure


Figure 558. DPSECI_CLEAR_IRQ_STATUS Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0171 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 40 39 32 31 0


0x08 – IRQ_INDEX STATUS


63 0


0x10 –


63 0


0x18 –


63 0


0x20 –


63 0


0x28 –


63 0


0x30 –


63 0


0x38 –


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-31 STATUS Mask for clearing handled events; See GET_IRQ_STATUS command for specification 
of available events. For each bit in MASK:
0 = don’t change event status
1 = clear event status bit to indicate that it was handled


32-39 IRQ_INDEX The interrupt index to configure







DPSECI: Data Path SEC Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 17-22
 


17.3.15 DPSECI_GET_ATTRIBUTES


Command structure


Figure 559. DPSECI_GET_ATTRIBUTES Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0041 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 0


0x08 —


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.







DPSECI: Data Path SEC Interface


DPAA2UM, Rev 50, 08/2022 


NXP Semiconductors 17-23
 


Response structure


Figure 560. DPSECI_GET_ATTRIBUTES Response Description


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0041 TOKEN —


IN
T


R
_D


IS


STATUS P — SRCID


63 32 31 0


0x08 — ID


63 16 15 8 7 0


0x10 — NUM_RX_QUEU
ES


NUM_TX_QUEU
ES


63 32 31 0


0x18 — OPTIONS


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-31 ID DPSECI object ID 


0x10 0-7 NUM_TX_QUEUES number of queues towards the SEC


8-15 NUM_RX_QUEUES number of queues back from the SEC


0x18 0-31 OPTIONS Options that were used to create the DPSECI object (same as DPSECI_CREATE options). Any 
combination of the following options: DPSECI_OPT_HAS_CG, DPSECI_OPT_HAS_OPR, 
DPSECI_OPT_OPR_SHARED.







DPSECI: Data Path SEC Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 17-24
 


17.3.16 DPSECI_SET_OPR


Set the Order Point Record configuration. The command works only if the DPSECI is created with the
DPSECI_OPT_HAS_OPR option. It also works only for SoCs that support Order Restoration.


If the DPSECI is configured with the DPSECI_OPT_OPR_SHARED option, then all frame queues 
within a single “shared” point only if DPSECI is enabled ( in other words, Order Restoration is available 
per DPSECI object). If the DPSECI_OPT_OPR_SHARED option is not set, the INDEX is used to select 
a specific queue. The INDEX value must be smaller than NUM_RX_QUEUES which was set through
DPSECI_CREATE.


The order restoration is done for all enqueue commands that respect an order restoration point and are 
coupled with a sequence number. These are judged by comparing that sequence number to the next 
expected sequence number for that order point record. The treatment of the frame enqueued via an OPR 
is determined by which window the sequence number of that frame falls within, what resources are still 
available, and if loose ordering is enabled. The windows are shown in the Figure 7-5.







DPSECI: Data Path SEC Interface


DPAA2UM, Rev 50, 08/2022 


NXP Semiconductors 17-25
 


Command structure


Figure 561. DPSECI_SET_OPR Command Description


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x19A1 TOKEN —


IN
T


R
_D


IS


STATUS P — SRCID


63 32 31 24 23 16 15 8 7 0


0x08 — OPTIONS INDEX — —


63 56 55 48 47 40 39 32 31 24 23 0


0x10 OPRRWS OA OLWS OEANE OLOE —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 16-23 INDEX Selects a specific queue. Accepted values are in range 0 to NUM_RX_QUEUES – 1. This field is ignored if 
DPSECI_OPT_OPR_SHARED is set.


24–31 OPTIONS The command can function in two ways, depending on the options field value:
 • OPR_OPT_CREATE (1): Create the OPR with the given configuration
 • OPR_OPT_RETIRE (2): Retire OPR. In this case the configuration options from offset 0x10 are ignored. 


The OPR is emptied by individually rejecting all enqueue commands held on the ORL.


0x10 24–31 OLOE OPR loose ordering enable
 • 0: Strict ordering mode
 • 1: Loose ordering mode


The ordering mode determines the action taken for OR enabled enqueues that fall in either the early or late 
arrival rejection window or that need to be deferred when ORL resources are exhausted. For strict ordering 
mode they are rejected and returned to software, and for loose ordering mode they are enqueued immediately.


32–39 OEANE Order restoration list (ORL) resource exhaustion advance NESN enable


40–47 OLWS OPR acceptable late arrival window size
 • 0: Disabled. Late arrivals are always rejected.
 • 1: Window size is 32 frames.
 • 2: Window size is the same as the OPR restoration window size configured in the OPRRWS field.
 • 3: Window size is 8192 frames. Late arrivals are always accepted.


48–55 OA OPR auto advance NESN window size


56–63 OPRRWS Order point record (OPR) restoration window size.
 • 0: Window size is 32 frames.
 • 1: Window size is 64 frames.
 • 2: Window size is 128 frames.
 • 3: Window size is 256 frames.
 • 4: Window size is 512 frames.
 • 5: Window size is 1024 frames.
 • 6–7: Reserved







DPSECI: Data Path SEC Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 17-26
 


17.3.17 DPSECI_GET_OPR


Command structure 


Figure 562. DPSECI_GET_OPR Command Description


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x19B1 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 24 23 16 15 8 7 0


0x08 — INDEX — —


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 16-23 INDEX Selects a specific queue. Accepted values are in range 0 to NUM_RX_QUEUES – 1. This field is ignored 
for DPSECI_OPT_OPR_SHARED.







DPSECI: Data Path SEC Interface


DPAA2UM, Rev 50, 08/2022 


NXP Semiconductors 17-27
 


Response structure


Figure 563. DPSECI_GET_OPR Response Rescription


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x19B1 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 0


0x08 —


63 56 55 48 47 40 39 32 31 24 23 2 1 0


0x10 OPRRWS OA OLWS OEANE OLOE — EN RIP


63 48 47 32 31 16 15 0


0x18 — NDSN — NESN


63 48 47 32 31 16 15 0


0x20 —


N
L


IS
_


H
S


E
Q


EA_HSEQ —


N
L


IS
_ T


S
E


Q


EA_TSEQ


63 48 47 32 31 16 15 0


0x28 — EA_TPTR — EA_HPTR


63 48 47 32 31 16 15 0


0x30 — OPRID — VOPRID


63 0


0x38 —


Offset Bits Name Description


0x00 0–63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x10 0 RIP Retirement In Progress.


1 EN OPR is enabled.


24–31 OLOE OPR loose ordering enable


32–39 OEANE Order restoration list (ORL) resource exhaustion advance NESN enable


40–47 OLWS OPR acceptable late arrival window size


48–55 OA OPR auto advance NESN window size


56–63 OPRRWS Order point record (OPR) restoration window size


0x18 0–15 NESN Next expected sequence number.


32–47 NDSN Next dispensed sequence number.


0x20 0–15 EA_TSEQ Sequence number of the frame at the tail of the ORL.


16 NLIS_ TSEQ Not last in sequence for EA_TSEQ


32–47 EA_HSEQ Sequence number of the frame at the head of the ORL.


48 NLIS_ HSEQ Not last in sequence for EA_HSEQ


0x28 0–15 EA_HPTR Early arrival head pointer


32–47 EA_TPTR Early arrival tail pointer


0x30 0–15 VOPRID Virtual Order Point Record ID


32–47 OPRID Order Point Record ID







DPSECI: Data Path SEC Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 17-28
 


17.3.18 DPSECI_SET_RX_QUEUE


Command structure


Figure 564. DPSECI_SET_RX_QUEUE Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x1941 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 52 51 48 47 40 39 32 31 16 15 0


0x08 — DEST_
TYPE


QUEUE DEST_PRIORITY DEST_ID


63 0


0x10 USER_CTX


63 33 32 31 0


0x18


O
P


E


OPTIONS


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-31 DEST_ID Either DPIO ID or DPCON ID, depending on the destination type


32-39 DEST_PRIORITY Priority selection within the DPIO or DPCON channel; valid values are 0-1 or 0-7, depending on the 
number of priorities in that channel; not relevant for 'DPSECI_DEST_NONE' option


40-47 QUEUE Select the queue relative to number of priorities configured at DPSECI creation; use 
DPSECI_ALL_QUEUES to configure all Rx queues identically.


48-51 DEST_TYPE Destination type. Select one of the supported values:
0x0 = DPSECI_DEST_NONE- Unassigned destination; The queue is set in parked mode and does not 
generate FQDAN notifications; user is expected to dequeue from the queue based on polling or other 
user-defined method
0x1 = DPSECI_DEST_DPIO - The queue is set in schedule mode and generates FQDAN notifications to 
the specified DPIO; user is expected to dequeue from the queue only after notification is received
0x2 = DPSECI_DEST_DPCON - The queue is set in schedule mode and does not generate FQDAN 
notifications, but is connected to the specified DPCON object; user is expected to dequeue from the 
DPCON channel


0x10 0-63 USER_CTX User context value provided in the frame descriptor of each dequeued frame; valid only if 
'DPSECI_QUEUE_OPT_USER_CTX' is contained in 'options'


0x18 0-31 OPTIONS Flags representing the suggested modifications to the queue;
Use any combination of 'DPSECI_QUEUE_OPT_<X>' flags below:
bit 0: DPSECI_QUEUE_OPT_USER_CTX - Select to modify the user's context associated with the queue
bit 1: DPSECI_QUEUE_OPT_DEST - Select to modify the queue's destination


32 ORDER_PRESERVATION_E
N (OPE)


order preservation configuration for the rx queue
valid only if 'DPSECI_QUEUE_OPT_ORDER_PRESERVATION' is contained in ‘options'







DPSECI: Data Path SEC Interface


DPAA2UM, Rev 50, 08/2022 


NXP Semiconductors 17-29
 


17.3.19 DPSECI_GET_RX_QUEUE


Command structure


Figure 565. DPSECI_GET_RX_QUEUE Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x1961 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 48 47 40 39 0


0x08 — QUEUE


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 40-47 QUEUE Select the queue relative to number of priorities configured at DPSECI creation







DPSECI: Data Path SEC Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 17-30
 


Response structure


Figure 566. DPSECI_GET_RX_QUEUE Response Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x1961 TOKEN —


IN
T


R
_D


IS


STATUS P — SRCID


63 52 51 48 47 40 39 32 31 0


0x08 — DEST_
TYPE


— DEST_PRIORITY DEST_ID


63 0


0x10 USER_CTX


63 33 32 31 0


0x18


O
P


E


FQID


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-31 DEST_ID Either DPIO ID or DPCON ID, depending on the destination type


32-39 PRIORITY Priority selection within the DPIO or DPCON channel; valid values are 0-1 or 0-7, 
depending on the number of priorities in that channel; not relevant for 
'DPSECI_DEST_NONE' option


48-51 DEST_TYPE Destination type. Select one of the supported values:
0x0 = DPSECI_DEST_NONE- Unassigned destination; The queue is set in parked 
mode and does not generate FQDAN notifications; user is expected to dequeue from 
the queue based on polling or other user-defined method
0x1 = DPSECI_DEST_DPIO - The queue is set in schedule mode and generates 
FQDAN notifications to the specified DPIO; user is expected to dequeue from the 
queue only after notification is received
0x2 = DPSECI_DEST_DPCON - The queue is set in schedule mode and does not 
generate FQDAN notifications, but is connected to the specified DPCON object; user 
is expected to dequeue from the DPCON channel


0x10 0-63 USER_CTX User context value provided in the frame descriptor of each dequeued frame


0x18 0-31 FQID Virtual FQID value to be used for dequeue operations


32 ORDER_PRESERVATION_EN (OPE) Status of the order preservation configuration on the queue







DPSECI: Data Path SEC Interface


DPAA2UM, Rev 50, 08/2022 


NXP Semiconductors 17-31
 


17.3.20 DPSECI_GET_TX_QUEUE


Command structure


Figure 567. DPSECI_GET_TX_QUEUE Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x1971 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 48 47 40 39 0


0x08 — QUEUE —


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 40-47 QUEUE Select the queue relative to number of priorities configured at DPSECI creation







DPSECI: Data Path SEC Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 17-32
 


Response structure


Figure 568. DPSECI_GET_TX_QUEUE Response Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x1971 TOKEN —


IN
T


R
_D


IS


STATUS P — SRCID


63 52 51 48 47 40 39 32 31 0


0x08 FQID


63 32 31 0


0x10 — PRIORITY


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 32-63 FQID Virtual FQID to be used for sending frames to SEC hardware


0x10 0-31 PRIORITY SEC hardware processing priority for the queue







DPSECI: Data Path SEC Interface


DPAA2UM, Rev 50, 08/2022 


NXP Semiconductors 17-33
 


17.3.21 DPSECI_GET_SEC_ATTR


Command structure


Figure 569. DPSECI_GET_SEC_ATTR Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x1981 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 0


0x08 —


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.







DPSECI: Data Path SEC Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 17-34
 


Response structure


Figure 570. DPSECI_GET_SEC_ATTR Response Description


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x1981 TOKEN —


IN
T


R
_D


IS


STATUS P — SRCID


63 40 39 32 31 24 23 16 15 0


0x08 — ERA MINOR_REV MAJOR_REV IP_ID


63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0


0x10 — CRC_ACC_NUM SNOW_F9_ACC
_NUM


SNOW_F8_ACC
_NUM


— ZUC_ENC_ACC_
NUM


ZUC_AUTH_AC
C_NUM


DECO_NUM


63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0


0x18 AES_ACC_NUM DES_ACC_NUM ARC4_ACC_NU
M


MD_ACC_NUM — RNG_ACC_NUM KASUMI_ACC_N
UM


PK_ACC_NUM


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-15 IP_ID ID for SEC.


16-23 MAJOR_REV Major revision number for SEC.


24-31 MINOR_REV Minor revision number for SEC.


32-39 ERA SEC controller era.


0x10 0-7 DECO_NUM The number of copies of the DECO that are implemented in this version of SEC.


8-15 ZUC_AUTH_ACC_NUM The number of copies of ZUCA that are implemented in this version of SEC.


16-24 ZUC_ENC_ACC_NUM The number of copies of ZUCE that are implemented in this version of SEC.


32-39 SNOW_F8_ACC_NUM The number of copies of the SNOW-f8 module that are implemented in this version of SEC.


40-47 SNOW_F9_ACC_NUM The number of copies of the SNOW-f9 module that are implemented in this version of SEC.


48-55 CRC_ACC_NUM The number of copies of the CRC module that are implemented in this version of SEC.


0x18 0-7 PK_ACC_NUM The number of copies of the Public Key module that are implemented in this version of SEC.


8-15 KASUMI_ACC_NUM The number of copies of the Kasumi module that are implemented in this version of SEC.


16-24 RNG_ACC_NUM The number of copies of the Random Number Generator that are implemented in this version of SEC.


32-39 MD_ACC_NUM The number of copies of the MDHA (Hashing module) that are implemented in this version of SEC.


40-47 ARC4_ACC_NUM The number of copies of the ARC4 module that are implemented in this version of SEC.


48-55 DES_ACC_NUM The number of copies of the DES module that are implemented in this version of SEC.


56-63 AES_ACC_NUM The number of copies of the AES module that are implemented in this version of SEC.







DPSECI: Data Path SEC Interface


DPAA2UM, Rev 50, 08/2022 


NXP Semiconductors 17-35
 


All unspecified fields are reserved and must be cleared (set to zero)


17.3.22 DPSECI_GET_SEC_COUNTERS


Command structure


Figure 571. DPSECI_GET_SEC_COUNTERS Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x1991 TOKEN —


IN
T


R
_D


IS


STATUS P — SRCID


63 0


0x08 —


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.







DPSECI: Data Path SEC Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 17-36
 


Response structure


Figure 572. DPSECI_GET_SEC_COUNTERS Response Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x1991 TOKEN —


IN
T


R
_D


IS


STATUS P — SRCID


63 0


0x08 DEQUEUED_REQUESTS


63 0


0x10 OB_ENC_REQUESTS


63 0


0x18 IB_DEC_REQUESTS


63 0


0x20 OB_ENC_BYTES


63 0


0x28 OB_PROT_BYTES


63 0


0x30 IB_DEC_BYTES


63 0


0x38 IB_VALID_BYTES


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-63 DEQUEUED_REQUESTS Number of Requests Dequeued


0x10 0-63 OB_ENC_REQUESTS Number of Outbound Encrypt Requests


0x18 0-63 IB_DEC_REQUESTS Number of Inbound Decrypt Requests


0x20 0-63 OB_ENC_BYTES Number of Outbound Bytes Encrypted


0x28 0-63 OB_PROT_BYTES Number of Outbound Bytes Encrypted


0x30 0-63 IB_DEC_BYTES Number of Inbound Bytes Decrypted


0x38 0-63 IB_VALID_BYTES Number of Inbound Bytes Validated







DPSECI: Data Path SEC Interface


DPAA2UM, Rev 50, 08/2022 


NXP Semiconductors 17-37
 


17.3.23 DPSECI_GET_API_VERSION


Command structure


Figure 573. DPSECI_GET_API_VERSION Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0xA091 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 0


0x08 —


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.







DPSECI: Data Path SEC Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 17-38
 


Response structure


Figure 574. DPSECI_GET_API_VERSION Response Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0xA091 TOKEN —


IN
T


R
_D


IS


STATUS P — SRCID


63 32 31 16 15 0


0x08 — VERSION_MINOR VERSION_MAJOR


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-15 VERSION_MAJOR Major version of API


16-31 VERSION_MINOR Minor version of API







DPSECI: Data Path SEC Interface


DPAA2UM, Rev 50, 08/2022 


NXP Semiconductors 17-39
 


17.3.24 DPSECI_GET_RX_QUEUE_STATUS


Get the status of specified Rx queue.


Command structure


Figure 575. DPSECI_GET_RX_QUEUE_STATUS Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x1721 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 32 31 0


0x08 — QUEUE_INDEX


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-31 QUEUE_INDEX DPSECI Rx queue index







DPSECI: Data Path SEC Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 17-40
 


Response structure


Figure 576. DPSECI_GET_RX_QUEUE_STATUS Response Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x1721 TOKEN —


IN
T


R
_D


IS


STATUS P — SRCID


63 48 47 32 31 0


0x08 STATE_FLAGS SCHEDSTATE FQID


63 32 31 0


0x10 BYTE_COUNT FRAME_COUNT


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-31 FQID Frame Queue ID of the queue interogated for status


32-47 SCHEDSTATE Queue scheduling state.
One of the following values reflecting QBMan FQ scheduling state:
0: oos
1: retired
2: tentatively_scheduled
3: truly_scheduled
4: parked
5: held_active


48-63 STATE_FLAGS Queue state flags
Bitwise OR combination of the following possible flag bits:
0x01: DPSECI_FQ_STATE_FORCE_ELIGIBLE: FQ's force eligible pending bit
0x02: DPSECI_FQ_STATE_XOFF: FQ's XON/XOFF state, 0: XON, 1: XOFF
0x04: DPSECI_FQ_STATE_RETIREMENT_PENDING: FQ's retirement pending bit
0x08: DPSECI_FQ_STATE_OVERFLOW_ERROR: FQ's overflow error bit


0x10 0-31 FRAME_COUNT Rx queue frame count


32-63 BYTE_COUNT Rx queue byte count







DPSECI: Data Path SEC Interface


DPAA2UM, Rev 50, 08/2022 


NXP Semiconductors 17-41
 


17.3.25 DPSECI_GET_TX_QUEUE_STATUS


Get the status of specified Tx queue.


Command structure


Figure 577. DPSECI_GET_TX_QUEUE_STATUS Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x1731 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 0


0x08 — QUEUE_INDEX


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-31 QUEUE_INDEX DPSECI Tx queue index







DPSECI: Data Path SEC Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 17-42
 


Response structure


Figure 578. DPSECI_GET_TX_QUEUE_STATUS Response Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x1731 TOKEN —


IN
T


R
_D


IS


STATUS P — SRCID


63 48 47 32 31 0


0x08 STATE_FLAGS SCHEDSTATE FQID


63 32 31 0


0x10 BYTE_COUNT FRAME_COUNT


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-31 FQID Frame Queue ID of the queue interogated for status


32-47 SCHEDSTATE Queue scheduling state.
One of the following values reflecting QBMan FQ scheduling state:
0: oos
1: retired
2: tentatively_scheduled
3: truly_scheduled
4: parked
5: held_active


48-63 STATE_FLAGS Queue state flags
Bitwise OR combination of the following possible flag bits:
0x01: DPSECI_FQ_STATE_FORCE_ELIGIBLE: FQ's force eligible pending bit
0x02: DPSECI_FQ_STATE_XOFF: FQ's XON/XOFF state, 0: XON, 1: XOFF
0x04: DPSECI_FQ_STATE_RETIREMENT_PENDING: FQ's retirement pending bit
0x08: DPSECI_FQ_STATE_OVERFLOW_ERROR: FQ's overflow error bit


0x10 0-31 FRAME_COUNT Tx queue frame count


32-63 BYTE_COUNT Tx queue byte count







DPDCEI: Data Path DCE Interface


DPAA2UM, Rev 50, 08/2022 


NXP Semiconductors 18-1
 


Chapter 18  DPDCEI: Data Path DCE Interface
The MC exports the DPDCEI object as an interface to operate the DPAA2 Data Compression Engine 
(DCE).


The DPDCEI enables sending frame-based requests to DCE and receiving back the processed response, 
utilizing the DPAA2 QBMan infrastructure. The DPDCEI object can be configured either for compression 
mode or for decompression mode (but not for both).


18.1 DPDCEI features


The following list summarizes the main DPDCEI features and capabilities:


• A DPDCEI object can be configured either for compression mode or for decompression mode (but 
not for both). Applications that require both services should create two distinct DPDCEI objects, 
one for each operation type.


• Supports up to two scheduling priorities for processing service requests.


• Supports one receive queue for incoming response frames.


— A DPDCEI response (receive) queue is mapped to one of 8 receive priorities, allowing further 
prioritization between other interfaces when associating the DPDCEI receive queue to DPIO 
or DPCON objects.


• Supports different scheduling options for processing received packets:


— A DPDCEI receive queue can be configured either in ‘parked’ mode (default), or attached to a 
DPIO object, or attached to DPCON object


• Allows interaction with one or more DPIO objects for dequeueing/enqueueing frame descriptors 
(FD) and for acquiring/releasing buffers.


• Supports enable, disable, and reset operations







DPDCEI: Data Path DCE Interface


DPAA2UM, Rev 50, 08/2022 


NXP Semiconductors 18-2
 


18.2 DPDCEI command reference


This section contains the detailed programming model of DPDCEI commands.


18.2.1 DPDCEI_OPEN


Open a control session for the specified object.


This function can be used to open a control session for an already created object; an object may have been 
declared in the DPL or by invoking DPDCEI_CREATE command.


This function returns a unique authentication token, associated with the specific object ID; this token must 
be used in all subsequent commands for this specific object.


Command structure


The command format is shown in the figure below.


Figure 579. DPDCEI_OPEN Command Description


The following table describes the command fields.


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x80D1 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 32 31 0


0x08 DPDCEI_ID


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Table 72. DPDCEI_OPEN Command Field Descriptions1


1 All unspecified fields are reserved and must be cleared (set to zero)


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-31 DPDCEI_ID DPDCEI unique ID







DPDCEI: Data Path DCE Interface


DPAA2UM, Rev 50, 08/2022 


NXP Semiconductors 18-3
 


18.2.2 DPDCEI_CLOSE


Close the control session of the object.


After this function is called, no further operations are allowed on the object without opening a new control 
session.


Command structure


Figure 580. DPDCEI_CLOSE Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x8001 TOKEN —


IN
T


R
_D


IS


STATUS P — SRCID


63 0


0x08 —


63 0


0x10 —


63 0


0x18


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.







DPDCEI: Data Path DCE Interface


DPAA2UM, Rev 50, 08/2022 


NXP Semiconductors 18-4
 


18.2.3 DPDCEI_CREATE


This command creates and initializes an instance of DPDCEI according to the specified command 
parameters. This command is not required for DPDCEI instances that are created using the DPL.


For the CREATE command the caller must provide the authentication token of the parent container to 
which the object should be created and assigned. If the token is '0' the object will be assigned to the 
container that hosts the MC command portal executing this command.


The command returns a DPDCEI ID that can be used to OPEN or DESTROY the object.


The command format is shown in the figure below.


Command structure


Figure 581. DPDCEI_CREATE Command Description


The following table describes the command fields.
1-5


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x90D1 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 24 23 16 15 8 7 0


0x08 — PRIORITY — ENGINE


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Table 73. DPDCEI_CREATE Command Field Descriptions1


1 All unspecified fields are reserved and must be cleared (set to zero).


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-7 ENGINE compression or decompression engine to be selected


16-23 PRIORITY Priority for the DCE hardware processing (valid values 1-8).







DPDCEI: Data Path DCE Interface


DPAA2UM, Rev 50, 08/2022 


NXP Semiconductors 18-5
 


Response structure


Figure 18-1. DPDCEI_CREATE Response Description


The following table describes the response fields.


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 24 23 16 15 14 8 7 0


CMDID = 0x90D1 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 32 31 0


0x08 — DPDCEI_ID


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Table 18-1. DPDCEI_CREATE Response Field Descriptions1


1 All unspecified fields are reserved.


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-31 DPDCEI_ID DPDCEI unique ID







DPDCEI: Data Path DCE Interface


DPAA2UM, Rev 50, 08/2022 


NXP Semiconductors 18-6
 


18.2.4 DPDCEI_DESTROY


This command destroys the DPDCEI object and releases all its resources. It must be invoked in the 
software context that created the object. The caller must provide the object id and the authentication token 
of the parent container that created the object. Note that the object can be assigned to another container 
and sending the authentication token of this container will return an error.


All open authentication tokens to the object must be closed before calling the destroy command. 


After this function is called, no further operations are allowed on the object.


Command structure


Figure 582. DPDCEI_DESTROY Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x98D1 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 32 31 0


0x08 — DPDCEI_ID


63 0


0x10 —


63 0


0x18


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0–32 DPDCEI_ID ID of the DPDCEI object to destroy







DPDCEI: Data Path DCE Interface


DPAA2UM, Rev 50, 08/2022 


NXP Semiconductors 18-7
 


18.2.5 DPDCEI_ENABLE


Command structure


Figure 583. DPDCEI_ENABLE Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0021 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 0


0x08 —


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.







DPDCEI: Data Path DCE Interface


DPAA2UM, Rev 50, 08/2022 


NXP Semiconductors 18-8
 


18.2.6 DPDCEI_DISABLE


Command structure


Figure 584. DPDCEI_DISABLE Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0031 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 0


0x08 —


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.







DPDCEI: Data Path DCE Interface


DPAA2UM, Rev 50, 08/2022 


NXP Semiconductors 18-9
 


18.2.7 DPDCEI_IS_ENABLED


Command structure


Figure 585. DPDCEI_IS_ENABLED Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0061 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 0


0x08 —


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.







DPDCEI: Data Path DCE Interface


DPAA2UM, Rev 50, 08/2022 


NXP Semiconductors 18-10
 


Response structure


Figure 586. DPDCEI_IS_ENABLED Response Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0061 TOKEN —


IN
T


R
_D


IS


STATUS P — SRCID


63 1 0


0x08 — EN


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0 EN Returns '1' if object is enabled; '0' otherwise







DPDCEI: Data Path DCE Interface


DPAA2UM, Rev 50, 08/2022 


NXP Semiconductors 18-11
 


18.2.8 DPDCEI_RESET


Command structure


Figure 587. DPDCEI_RESET Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0051 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 0


0x08 —


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.







DPDCEI: Data Path DCE Interface


DPAA2UM, Rev 50, 08/2022 


NXP Semiconductors 18-12
 


18.2.9 DPDCEI_SET_IRQ_ENABLE


Set overall interrupt state. Allows GPP software to control when interrupts are generated. Each interrupt 
can have up to 32 causes. The enable/disable control's the overall interrupt state. if the interrupt is disabled 
no causes will cause an interrupt.


Command structure


Figure 588. DPDCEI_SET_IRQ_ENABLE Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0121 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 40 39 32 31 1 0


0x08 – IRQ_INDEX – EN


63 0


0x10 –


63 0


0x18 –


63 0


0x20 –


63 0


0x28 –


63 0


0x30 –


63 0


0x38 –


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0 EN Interrupt state: set to ‘1’ to enable, ‘0’ to disable


32-39 IRQ_INDEX Identifies the interrupt index to configure







DPDCEI: Data Path DCE Interface


DPAA2UM, Rev 50, 08/2022 


NXP Semiconductors 18-13
 


18.2.10 DPDCEI_GET_IRQ_ENABLE


Get overall interrupt state.


Command structure


Figure 589. DPDCEI_GET_IRQ_ENABLE Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0131 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 40 39 32 31 0


0x08 – IRQ_INDEX –


63 0


0x10 –


63 0


0x18 –


63 0


0x20 –


63 0


0x28 –


63 0


0x30 –


63 0


0x38 –


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 32-39 IRQ_INDEX Identifies the interrupt index to query







DPDCEI: Data Path DCE Interface


DPAA2UM, Rev 50, 08/2022 


NXP Semiconductors 18-14
 


Response structure


Figure 590. DPDCEI_GET_IRQ_ENABLE Response Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0131 TOKEN —


IN
T


R
_D


IS


STATUS P — SRCID


63 1 0


0x08 – EN


63 0


0x10 –


63 0


0x18 –


63 0


0x20 –


63 0


0x28 –


63 0


0x30 –


63 0


0x38 –


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0 EN This bit is set if the interrupt is enabled







DPDCEI: Data Path DCE Interface


DPAA2UM, Rev 50, 08/2022 


NXP Semiconductors 18-15
 


18.2.11 DPDCEI_SET_IRQ_MASK


Set the interrupt mask. Every interrupt can have up to 32 causes and the interrupt model supports 
masking/unmasking each cause independently.


Command structure


Figure 591. DPDCEI_SET_IRQ_MASK Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0141 TOKEN —


IN
T


R
_D


IS


STATUS P — SRCID


63 40 39 32 31 0


0x08 – IRQ_INDEX MASK


63 0


0x10 –


63 0


0x18 –


63 0


0x20 –


63 0


0x28 –


63 0


0x30 –


63 0


0x38 –


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-31 MASK Event mask for triggering the interrupt; See GET_IRQ_STATUS command for 
specification of available events. For each bit in MASK:
0 = ignore event
1 = event is valid; signal the IRQ if this event occurs


32-39 IRQ_INDEX The interrupt index to configure







DPDCEI: Data Path DCE Interface


DPAA2UM, Rev 50, 08/2022 


NXP Semiconductors 18-16
 


18.2.12 DPDCEI_GET_IRQ_MASK


Get the interrupt mask. Every interrupt can have up to 32 causes and the interrupt model supports 
masking/unmasking each cause independently.


Command structure


Figure 592. DPDCEI_GET_IRQ_MASK Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0151 TOKEN —


IN
T


R
_D


IS


STATUS P — SRCID


63 40 39 32 31 0


0x08 – IRQ_INDEX –


63 0


0x10 –


63 0


0x18 –


63 0


0x20 –


63 0


0x28 –


63 0


0x30 –


63 0


0x38 –


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 32-39 IRQ_INDEX The interrupt index to query







DPDCEI: Data Path DCE Interface


DPAA2UM, Rev 50, 08/2022 


NXP Semiconductors 18-17
 


Response structure


Figure 593. DPDCEI_GET_IRQ_MASK Response Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0151 TOKEN —


IN
T


R
_D


IS


STATUS P — SRCID


63 32 31 0


0x08 MASK


63 0


0x10 –


63 0


0x18 –


63 0


0x20 –


63 0


0x28 –


63 0


0x30 –


63 0


0x38 –


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-31 MASK Event mask for triggering the interrupt; See GET_IRQ_STATUS command for 
specification of available events. For each bit in MASK:
0 = ignore event
1 = event is valid; signal the IRQ if this event occurs







DPDCEI: Data Path DCE Interface


DPAA2UM, Rev 50, 08/2022 


NXP Semiconductors 18-18
 


18.2.13 DPDCEI_GET_IRQ_STATUS


Get the current status of pending events for the specified interrupt index.


Command structure


Figure 594. DPDCEI_GET_IRQ_STATUS Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0161 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 40 39 32 31 0


0x08 – IRQ_INDEX STATUS


63 0


0x10 –


63 0


0x18 –


63 0


0x20 –


63 0


0x28 –


63 0


0x30 –


63 0


0x38 –


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-31 STATUS Optional: any STATUS bits that are set will be cleared from pending state (removing 
the need for DPDCEI_CLEAR_IRQ_STATUS command). Note that the STATUS 
returned in the response is the status before the events are cleared.


Supported events: see response structure definition


32-39 IRQ_INDEX The interrupt index to query







DPDCEI: Data Path DCE Interface


DPAA2UM, Rev 50, 08/2022 


NXP Semiconductors 18-19
 


Response structure


Figure 595. DPDCEI_GET_IRQ_STATUS Response Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0161 TOKEN —


IN
T


R
_D


IS


STATUS P — SRCID


63 32 31 0


0x08 STATUS


63 0


0x10 –


63 0


0x18 –


63 0


0x20 –


63 0


0x28 –


63 0


0x30 –


63 0


0x38 –


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-31 STATUS Events status mask, one bit per event:
0 = no interrupt pending
1 = interrupt pending


Supported events:
None.







DPDCEI: Data Path DCE Interface


DPAA2UM, Rev 50, 08/2022 


NXP Semiconductors 18-20
 


18.2.14 DPDCEI_CLEAR_IRQ_STATUS


Clear (mark as handled) pending events of the specified interrupt index.


Command structure


Figure 596. DPDCEI_CLEAR_IRQ_STATUS Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0171 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 40 39 32 31 0


0x08 – IRQ_INDEX STATUS


63 0


0x10 –


63 0


0x18 –


63 0


0x20 –


63 0


0x28 –


63 0


0x30 –


63 0


0x38 –


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-31 STATUS Mask for clearing handled events; See GET_IRQ_STATUS command for specification 
of available events. For each bit in MASK:
0 = don’t change event status
1 = clear event status bit to indicate that it was handled


32-39 IRQ_INDEX The interrupt index to configure







DPDCEI: Data Path DCE Interface


DPAA2UM, Rev 50, 08/2022 


NXP Semiconductors 18-21
 


18.2.15 DPDCEI_GET_ATTRIBUTES


Command structure


Figure 597. DPDCEI_GET_ATTRIBUTES Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0041 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 0


0x08 —


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.







DPDCEI: Data Path DCE Interface


DPAA2UM, Rev 50, 08/2022 


NXP Semiconductors 18-22
 


Response structure


Figure 598. DPDCEI_GET_ATTRIBUTES Response Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0041 TOKEN —


IN
T


R
_D


IS


STATUS P — SRCID


63 40 39 32 31 0


0x08 — ENGINE ID


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-31 ID DPDCEI object ID


32-39 ENGINE DCE engine block







DPDCEI: Data Path DCE Interface


DPAA2UM, Rev 50, 08/2022 


NXP Semiconductors 18-23
 


18.2.16 DPDCEI_SET_RX_QUEUE


Command structure


Figure 599. DPDCEI_SET_RX_QUEUE Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x1B01 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 52 51 48 47 40 39 32 31 0


0x08 — DEST_
TYPE


— DEST_PRIORITY DEST_ID


63 0


0x10 USER_CTX


63 0


0x18 OPTIONS


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-31 DEST_ID Either DPIO ID or DPCON ID, depending on the destination type


32-39 DEST_PRIORITY Priority selection within the DPIO or DPCON channel; valid values are 0-1 or 0-7, 
depending on the number of priorities in that channel; 
not relevant for 'DPDCEI_DEST_NONE' option


48-51 DEST_TYPE Destination type


0x10 0-63 USER_CTX User context value provided in the frame descriptor of each dequeued frame;
valid only if 'DPDCEI_QUEUE_OPT_USER_CTX' is contained in 'options'


0x18 0-63 OPTIONS Flags representing the suggested modifications to the queue;
Use any combination of 'DPDCEI_QUEUE_OPT_<X>' flags







DPDCEI: Data Path DCE Interface


DPAA2UM, Rev 50, 08/2022 


NXP Semiconductors 18-24
 


18.2.17 DPDCEI_GET_RX_QUEUE


Command structure


Figure 600. DPDCEI_GET_RX_QUEUE Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x1B11 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 0


0x08 —


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.







DPDCEI: Data Path DCE Interface


DPAA2UM, Rev 50, 08/2022 


NXP Semiconductors 18-25
 


Response structure


Figure 601. DPDCEI_GET_RX_QUEUE Response Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x1B11 TOKEN —


IN
T


R
_D


IS


STATUS P — SRCID


63 52 51 48 47 40 39 32 31 0


0x08 — DEST_
TYPE


— DEST_PRIORITY DEST_ID


63 0


0x10 USER_CTX


63 32 31 0


0x18 — FQID


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-31 DEST_ID Either DPIO ID or DPCON ID, depending on the destination type


32-39 DEST_PRIORITY Priority selection within the DPIO or DPCON channel; valid values are 0-1 or 0-7, 
depending on the number of priorities in that channel; 
not relevant for 'DPDCEI_DEST_NONE' option


48-51 DEST_TYPE Destination type


0x10 0-63 USER_CTX User context value provided in the frame descriptor of each dequeued frame;
valid only if 'DPDCEI_QUEUE_OPT_USER_CTX' is contained in 'options'


0x18 0-31 FQID Virtual FQID value to be used for dequeue operations







DPDCEI: Data Path DCE Interface


DPAA2UM, Rev 50, 08/2022 


NXP Semiconductors 18-26
 


18.2.18 DPDCEI_GET_TX_QUEUE


Command structure


Figure 602. DPDCEI_GET_TX_QUEUE Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x1A11 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 0


0x08 —


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.







DPDCEI: Data Path DCE Interface


DPAA2UM, Rev 50, 08/2022 


NXP Semiconductors 18-27
 


Response structure


Figure 603. DPDCEI_GET_TX_QUEUE Response Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x1A11 TOKEN —


IN
T


R
_D


IS


STATUS P — SRCID


63 0


0x08 —


63 32 31 0


0x10 — FQID


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x10 0-31 FQID Virtual FQID to be used for sending frames to DMA hardware







DPDCEI: Data Path DCE Interface


DPAA2UM, Rev 50, 08/2022 


NXP Semiconductors 18-28
 


18.2.19 DPDCEI_GET_API_VERSION


Command structure


Figure 604. DPDCEI_GET_API_VERSION Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0xA0D1 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 0


0x08 —


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.







DPDCEI: Data Path DCE Interface


DPAA2UM, Rev 50, 08/2022 


NXP Semiconductors 18-29
 


Response structure


Figure 605. DPDCEI_GET_API_VERSION Response Description


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0xA0D1 TOKEN —


IN
T


R
_D


IS


STATUS P — SRCID


63 32 31 16 15 0


0x08 — VERSION_MINOR VERSION_MAJOR


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-15 VERSION_MAJOR Major version of API


16-31 VERSION_MINOR Minor version of API







DPDCEI: Data Path DCE Interface


DPAA2UM, Rev 50, 08/2022 


NXP Semiconductors 18-30
 







DPDMAI: Data Path DMA Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 19-1
 


Chapter 19  DPDMAI: Data Path DMA Interface
The MC exports the DPDMAI object as an interface to operate the DPAA2 QDMA Engine.


The DPDMAI enables sending frame-based requests to QDMA and receiving back confirmation response 
on transaction completion, utilizing the DPAA2 QBMan infrastructure. DPDMAI object provides up to 
two priorities for processing QDMA requests.


19.1 DPDMAI features


The following list summarizes the DPDMAI main features and capabilities:


• Supports up to two scheduling priorities for processing service requests.


— Each DPDMAI transmit queue is mapped to one of two service priorities, allowing further 
prioritization in hardware between requests from different DPDMAI objects.


• For each Tx queue there is an Rx queue for incoming transaction completion confirmations.


— Each DPDMAI receive queue is mapped to one of two receive priorities, allowing further 
prioritization between other interfaces when associating the DPDMAI receive queues to DPIO 
or DPCON objects.


• Supports different scheduling options for processing received packets:


— Queues can be configured either in ‘parked’ mode (default), or attached to a DPIO object, or 
attached to DPCON object


• Allows interaction with one or more DPIO objects for dequeueing/enqueueing frame descriptors 
(FD) and for acquiring/releasing buffers.


• Supports enable, disable, and reset operations







DPDMAI: Data Path DMA Interface


DPAA2UM, Rev 50, 08/2022 


NXP Semiconductors 19-2
 


19.2 DPDMAI command reference


This section contains the detailed programming model of DPDMAI commands.


19.2.1 DPDMAI_OPEN


Open a control session for the specified object.


This function can be used to open a control session for an already created object; an object may have been 
declared in the DPL or by invoking DPDMAI_CREATE command.


This function returns a unique authentication token, associated with the specific object ID; this token must 
be used in all subsequent commands for this specific object.


Command structure


The command format is shown in the figure below.


Figure 606. DPDMAI_OPEN Command Description


The following table describes the command fields.
1


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x80E1 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 32 31 0


0x08 DPDMAI_ID


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Table 74. DPDMAI_OPEN Command Field Descriptions1


1 All unspecified fields are reserved and must be cleared (set to zero)


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-31 DPDMAI_ID DPDMAI unique ID







DPDMAI: Data Path DMA Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 19-3
 


19.2.2 DPDMAI_CLOSE


Close the control session of the object.


After this function is called, no further operations are allowed on the object without opening a new control 
session.


Command structure


Figure 607. DPDMAI_CLOSE Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x8001 TOKEN —


IN
T


R
_D


IS


STATUS P — SRCID


63 0


0x08 —


63 0


0x10 —


63 0


0x18


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.







DPDMAI: Data Path DMA Interface


DPAA2UM, Rev 50, 08/2022 


NXP Semiconductors 19-4
 


19.2.3 DPDMAI_CREATE


This command creates and initializes an instance of DPDMAI according to the specified command 
parameters. This command is not required for DPDMAI instances that are created using the DPL.


For the CREATE command the caller must provide the authentication token of the parent container to 
which the object should be created and assigned. If the token is '0' the object will be assigned to the 
container that hosts the MC command portal executing this command.


The command returns a DPDMAI ID that can be used to OPEN or DESTROY the object.


The command format is shown in the figure below.


Command structure


Figure 608. DPDMAI_CREATE Command Description


The following table describes the command fields.
1-5


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x90E3 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 24 23 16 15 8 7 0


0x08 OPTIONS — PRIORITIES[1] PRIORITIES[0] NUM_QUEUES


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Table 75. DPDMAI_CREATE Command Field Descriptions1


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-7 NUM_QUEUES Number of queues available for each object.
Valid values are from 1 to number of cores on platform.


8-23 PRIORITIES[0..1] Priorities for the DMA hardware processing; valid priorities are configured with values 
1-8; the entry following last valid entry should be configured with 0


32-63 OPTIONS Options:
bit 0: DPDMAI_OPT_CG_PER_PRIORITY - Used to add Congestion Group on each 
priority.







DPDMAI: Data Path DMA Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 19-5
 


Response structure


Figure 19-1. DPDMAI_CREATE Response Description


The following table describes the response fields.


1 All unspecified fields are reserved and must be cleared (set to zero).


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 24 23 16 15 14 8 7 0


CMDID = 0x90E1 TOKEN —


IN
T


R
_D


IS


STATUS P — SRCID


63 32 31 0


0x08 — DPDMAI_ID


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Table 19-1. DPDMAI_CREATE Response Field Descriptions1


1 All unspecified fields are reserved.


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-31 DPDMAI_ID DPDMAI unique ID







DPDMAI: Data Path DMA Interface


DPAA2UM, Rev 50, 08/2022 


NXP Semiconductors 19-6
 


19.2.4 DPDMAI_DESTROY


This command destroys the DPDMAI object and releases all its resources. It must be invoked in the 
software context that created the object. The caller must provide the object id and the authentication token 
of the parent container that created the object. Note that the object can be assigned to another container 
and sending the authentication token of this container will return an error.


All open authentication tokens to the object must be closed before calling the destroy command. 


After this function is called, no further operations are allowed on the object.


Command structure


Figure 609. DPDMAI_DESTROY Command Description


All unspecified fields are reserved and must be cleared (set to zero).


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x98E1 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 32 31 0


0x08 — DPDMAI_ID


63 0


0x10 —


63 0


0x18


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0–32 DPDMAI_ID ID of the DPDMAI object to destroy







DPDMAI: Data Path DMA Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 19-7
 


19.2.5 DPDMAI_ENABLE


Command structure


Figure 610. DPDMAI_ENABLE Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0021 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 0


0x08 —


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.







DPDMAI: Data Path DMA Interface


DPAA2UM, Rev 50, 08/2022 


NXP Semiconductors 19-8
 


19.2.6 DPDMAI_DISABLE


Command structure


Figure 611. DPDMAI_DISABLE Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0031 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 0


0x08 —


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.







DPDMAI: Data Path DMA Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 19-9
 


19.2.7 DPDMAI_IS_ENABLED


Command structure


Figure 612. DPDMAI_IS_ENABLED Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0061 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 0


0x08 —


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.







DPDMAI: Data Path DMA Interface


DPAA2UM, Rev 50, 08/2022 


NXP Semiconductors 19-10
 


Response structure


Figure 613. DPDMAI_IS_ENABLED Response Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0061 TOKEN —


IN
T


R
_D


IS


STATUS P — SRCID


63 1 0


0x08 — EN


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0 EN Returns '1' if object is enabled; '0' otherwise







DPDMAI: Data Path DMA Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 19-11
 


19.2.8 DPDMAI_RESET


Command structure


Figure 614. DPDMAI_RESET Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0051 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 0


0x08 —


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.







DPDMAI: Data Path DMA Interface


DPAA2UM, Rev 50, 08/2022 


NXP Semiconductors 19-12
 


19.2.9 DPDMAI_SET_IRQ_ENABLE


Set overall interrupt state. Allows GPP software to control when interrupts are generated. Each interrupt 
can have up to 32 causes. The enable/disable control's the overall interrupt state. if the interrupt is disabled 
no causes will cause an interrupt.


Command structure


Figure 615. DPDMAI_SET_IRQ_ENABLE Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0121 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 40 39 32 31 1 0


0x08 – IRQ_INDEX – EN


63 0


0x10 –


63 0


0x18 –


63 0


0x20 –


63 0


0x28 –


63 0


0x30 –


63 0


0x38 –


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0 EN Interrupt state: set to ‘1’ to enable, ‘0’ to disable


32-39 IRQ_INDEX Identifies the interrupt index to configure







DPDMAI: Data Path DMA Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 19-13
 


19.2.10 DPDMAI_GET_IRQ_ENABLE


Get overall interrupt state.


Command structure


Figure 616. DPDMAI_GET_IRQ_ENABLE Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0131 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 40 39 32 31 0


0x08 – IRQ_INDEX –


63 0


0x10 –


63 0


0x18 –


63 0


0x20 –


63 0


0x28 –


63 0


0x30 –


63 0


0x38 –


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 32-39 IRQ_INDEX Identifies the interrupt index to query







DPDMAI: Data Path DMA Interface


DPAA2UM, Rev 50, 08/2022 


NXP Semiconductors 19-14
 


Response structure


Figure 617. DPDMAI_GET_IRQ_ENABLE Response Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0131 TOKEN —


IN
T


R
_D


IS


STATUS P — SRCID


63 1 0


0x08 – EN


63 0


0x10 –


63 0


0x18 –


63 0


0x20 –


63 0


0x28 –


63 0


0x30 –


63 0


0x38 –


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0 EN This bit is set if the interrupt is enabled







DPDMAI: Data Path DMA Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 19-15
 


19.2.11 DPDMAI_SET_IRQ_MASK


Set the interrupt mask. Every interrupt can have up to 32 causes and the interrupt model supports 
masking/unmasking each cause independently.


Command structure


Figure 618. DPDMAI_SET_IRQ_MASK Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0141 TOKEN —


IN
T


R
_D


IS


STATUS P — SRCID


63 40 39 32 31 0


0x08 – IRQ_INDEX MASK


63 0


0x10 –


63 0


0x18 –


63 0


0x20 –


63 0


0x28 –


63 0


0x30 –


63 0


0x38 –


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-31 MASK Event mask for triggering the interrupt; See GET_IRQ_STATUS command for 
specification of available events. For each bit in MASK:
0 = ignore event
1 = event is valid; signal the IRQ if this event occurs


32-39 IRQ_INDEX The interrupt index to configure







DPDMAI: Data Path DMA Interface


DPAA2UM, Rev 50, 08/2022 


NXP Semiconductors 19-16
 


19.2.12 DPDMAI_GET_IRQ_MASK


Get the interrupt mask. Every interrupt can have up to 32 causes and the interrupt model supports 
masking/unmasking each cause independently.


Command structure


Figure 619. DPDMAI_GET_IRQ_MASK Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0151 TOKEN —


IN
T


R
_D


IS


STATUS P — SRCID


63 40 39 32 31 0


0x08 – IRQ_INDEX –


63 0


0x10 –


63 0


0x18 –


63 0


0x20 –


63 0


0x28 –


63 0


0x30 –


63 0


0x38 –


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 32-39 IRQ_INDEX The interrupt index to query







DPDMAI: Data Path DMA Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 19-17
 


Response structure


Figure 620. DPDMAI_GET_IRQ_MASK Response Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0151 TOKEN —


IN
T


R
_D


IS


STATUS P — SRCID


63 32 31 0


0x08 MASK


63 0


0x10 –


63 0


0x18 –


63 0


0x20 –


63 0


0x28 –


63 0


0x30 –


63 0


0x38 –


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-31 MASK Event mask for triggering the interrupt; See GET_IRQ_STATUS command for 
specification of available events. For each bit in MASK:
0 = ignore event
1 = event is valid; signal the IRQ if this event occurs







DPDMAI: Data Path DMA Interface


DPAA2UM, Rev 50, 08/2022 


NXP Semiconductors 19-18
 


19.2.13 DPDMAI_GET_IRQ_STATUS


Get the current status of pending events for the specified interrupt index.


Command structure


Figure 621. DPDMAI_GET_IRQ_STATUS Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0161 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 40 39 32 31 0


0x08 – IRQ_INDEX STATUS


63 0


0x10 –


63 0


0x18 –


63 0


0x20 –


63 0


0x28 –


63 0


0x30 –


63 0


0x38 –


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-31 STATUS Optional: any STATUS bits that are set will be cleared from pending state (removing 
the need for DPDMAI_CLEAR_IRQ_STATUS command). Note that the STATUS 
returned in the response is the status before the events are cleared.


Supported events: see response structure definition


32-39 IRQ_INDEX The interrupt index to query







DPDMAI: Data Path DMA Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 19-19
 


Response structure


Figure 622. DPDMAI_GET_IRQ_STATUS Response Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0161 TOKEN —


IN
T


R
_D


IS


STATUS P — SRCID


63 32 31 0


0x08 STATUS


63 0


0x10 –


63 0


0x18 –


63 0


0x20 –


63 0


0x28 –


63 0


0x30 –


63 0


0x38 –


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-31 STATUS Events status mask, one bit per event:
0 = no interrupt pending
1 = interrupt pending


Supported events:
None.







DPDMAI: Data Path DMA Interface


DPAA2UM, Rev 50, 08/2022 


NXP Semiconductors 19-20
 


19.2.14 DPDMAI_CLEAR_IRQ_STATUS


Clear (mark as handled) pending events of the specified interrupt index.


Command structure


Figure 623. DPDMAI_CLEAR_IRQ_STATUS Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0171 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 40 39 32 31 0


0x08 – IRQ_INDEX STATUS


63 0


0x10 –


63 0


0x18 –


63 0


0x20 –


63 0


0x28 –


63 0


0x30 –


63 0


0x38 –


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-31 STATUS Mask for clearing handled events; See GET_IRQ_STATUS command for specification 
of available events. For each bit in MASK:
0 = don’t change event status
1 = clear event status bit to indicate that it was handled


32-39 IRQ_INDEX The interrupt index to configure







DPDMAI: Data Path DMA Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 19-21
 


19.2.15 DPDMAI_GET_ATTRIBUTES


Command structure


Figure 624. DPDMAI_GET_ATTRIBUTES Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0043 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 0


0x08 —


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.







DPDMAI: Data Path DMA Interface


DPAA2UM, Rev 50, 08/2022 


NXP Semiconductors 19-22
 


Response structure


Figure 625. DPDMAI_GET_ATTRIBUTES Response Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0043 TOKEN —


IN
T


R
_D


IS


STATUS P — SRCID


63 48 47 40 39 32 31 0


0x08 — NUM_QUEUES NUM_OF_PRIOR
ITIES


ID


63 32 31 0


0x10 — OPTIONS


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-31 ID DPDMAI object ID


32-39 NUM_OF_PRIORITIES Number of priorities


40-47 NUM_QUEUES Number of queues


0x10 0-31 OPTIONS Options:
bit 0: DPDMAI_OPT_CG_PER_PRIORITY - Used to add Congestion Group on each 
priority.







DPDMAI: Data Path DMA Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 19-23
 


19.2.16 DPDMAI_SET_RX_QUEUE


Command structure


Figure 626. DPDMAI_SET_RX_QUEUE Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x1A02 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 56 55 52 51 48 47 40 39 32 31 0


0x08 QUEUE_IDX — DEST_
TYPE


PRIORITY DEST_PRIORITY DEST_ID


63 0


0x10 USER_CTX


63 0


0x18 OPTIONS


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-31 DEST_ID Either DPIO ID or DPCON ID, depending on the destination type


32-39 DEST_PRIORITY Priority selection within the DPIO or DPCON channel; valid values are 0-1 or 0-7, 
depending on the number of priorities in that channel; 
not relevant for 'DPDMAI_DEST_NONE' option


40-47 PRIORITY Select the queue relative to number of priorities configured at DPDMAI creation; use 
DPDMAI_ALL_QUEUES to configure all Rx queues identically.


48-51 DEST_TYPE Destination type


56-63 QUEUE_IDX Queue index. Valid values are 0...NUM_QUEUES


0x10 0-63 USER_CTX User context value provided in the frame descriptor of each dequeued frame;
valid only if 'DPDMAI_QUEUE_OPT_USER_CTX' is contained in 'options'


0x18 0-63 OPTIONS Flags representing the suggested modifications to the queue;
Use any combination of 'DPDMAI_QUEUE_OPT_<X>' flags







DPDMAI: Data Path DMA Interface


DPAA2UM, Rev 50, 08/2022 


NXP Semiconductors 19-24
 


19.2.17 DPDMAI_GET_RX_QUEUE


Command structure


Figure 627. DPDMAI_GET_RX_QUEUE Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x1A12 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 48 47 40 39 0


0x08 — QUEUE_IDX PRIORITY —


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 40-47 PRIORITY Select the queue relative to number of priorities configured at DPDMAI creation; use 
DPDMAI_ALL_QUEUES to configure all Rx queues identically.


48-55 QUEUE_IDX Queue index. Valid values are 0...NUM_QUEUES







DPDMAI: Data Path DMA Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 19-25
 


Response structure


Figure 628. DPDMAI_GET_RX_QUEUE Response Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x1A21 TOKEN —


IN
T


R
_D


IS


STATUS P — SRCID


63 52 51 48 47 40 39 32 31 0


0x08 — DEST_
TYPE


— DEST_PRIORITY DEST_ID


63 0


0x10 USER_CTX


63 32 31 0


0x18 — FQID


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-31 DEST_ID Either DPIO ID or DPCON ID, depending on the destination type


32-39 DEST_PRIORITY Priority selection within the DPIO or DPCON channel; valid values are 0-1 or 0-7, 
depending on the number of priorities in that channel; 
not relevant for 'DPDMAI_DEST_NONE' option


48-51 DEST_TYPE Destination type


0x10 0-63 USER_CTX User context value provided in the frame descriptor of each dequeued frame;
valid only if 'DPDMAI_QUEUE_OPT_USER_CTX' is contained in 'options'


0x18 0-31 FQID Virtual FQID value to be used for dequeue operations







DPDMAI: Data Path DMA Interface


DPAA2UM, Rev 50, 08/2022 


NXP Semiconductors 19-26
 


19.2.18 DPDMAI_GET_TX_QUEUE


Command structure


Figure 629. DPDMAI_GET_TX_QUEUE Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x1A22 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 48 47 40 39 0


0x08 — QUEUE_IDX PRIORITY —


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 40-47 PRIORITY Select the queue relative to number of priorities configured at DPDMAI creation; 


48-56 QUEUE_IDX Queue index. Valid values are 0...NUM_QUEUES







DPDMAI: Data Path DMA Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 19-27
 


Response structure


Figure 630. DPDMAI_GET_TX_QUEUE Response Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x1A31 TOKEN —


IN
T


R
_D


IS


STATUS P — SRCID


63 0


0x08 —


63 32 31 0


0x10 — FQID


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x10 0-31 FQID Virtual FQID to be used for sending frames to DMA hardware







DPDMAI: Data Path DMA Interface


DPAA2UM, Rev 50, 08/2022 


NXP Semiconductors 19-28
 


19.2.19 DPDMAI_GET_API_VERSION


Command structure


Figure 631. DPDMAI_GET_API_VERSION Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0xA0E1 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 0


0x08 —


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.







DPDMAI: Data Path DMA Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 19-29
 


Response structure


Figure 632. DPDMAI_GET_API_VERSION Response Description


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0xA0E1 TOKEN —


IN
T


R
_D


IS


STATUS P — SRCID


63 32 31 16 15 0


0x08 — VERSION_MINOR VERSION_MAJOR


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-15 VERSION_MAJOR Major version of API


16-31 VERSION_MINOR Minor version of API







DPDMAI: Data Path DMA Interface


DPAA2UM, Rev 50, 08/2022 


NXP Semiconductors 19-30
 


19.2.20 DPDMAI_SET_RX_CONGESTION_NOTIFICATION


Command structure


Figure 633. DPDMAI_SET_RX_CONGESTION_NOTIFICATION Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x1A41 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 32 31 16 15 8 7 0


0x08 — MODE UNITS PRIORITY


63 32 31 0


0x10 THRESHOLD_EXIT THRESHOLD_ENTRY


63 0


0x18 MSG_CTX


63 0


0x20 MSG_IOVA


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-7 PRIORITY Select the queue relative to number of priorities configured at DPDMAI creation.


8-15 UNITS Units type used by THRESHOLD_ENTRY/EXIT:
- 0 : Bytes
- 1 : Frames


16-31 MODE Congestion Notification mode:
bit 0: DPDMAI_CGN_MODE_WRITE_MEM_ON_ENTER
bit 1: DPDMAI_CGN_MODE_WRITE_MEM_ON_EXIT
bit 2: DPDMAI_CGN_MODE_COHERENT_WRITE


0x10 0-31 THRESHOLD_ENTRY Threshold value in UNITS used to trigger congestion notification.


32-63 THRESHOLD_EXIT Threshold value in UNITS used to exit from congestion notification.


0x18 0-63 MSG_CTX Message context.


0x20 0-63 MSG_IOVA Message IOVA.(I/O virtual address of the message)







DPDMAI: Data Path DMA Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 19-31
 


19.2.21 DPDMAI_GET_RX_CONGESTION_NOTIFICATION


Command structure


Figure 634. DPDMAI_GET_RX_CONGESTION_NOTIFICATION Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x1A61 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 8 7 0


0x08 — PRIORITY


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-7 PRIORITY Select the queue relative to number of priorities configured at DPDMAI creation.







DPDMAI: Data Path DMA Interface


DPAA2UM, Rev 50, 08/2022 


NXP Semiconductors 19-32
 


Response structure


Figure 635. DPDMAI_GET_RX_CONGESTION_NOTIFICATION Response Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x1A61 TOKEN —


IN
T


R
_D


IS


STATUS P — SRCID


63 32 31 16 15 8 7 0


0x08 — MODE UNITS PRIORITY


63 32 31 0


0x10 THRESHOLD_EXIT THRESHOLD_ENTRY


63 0


0x18 MSG_CTX


63 0


0x20 MSG_IOVA


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-7 PRIORITY Select the queue relative to number of priorities configured at DPDMAI creation.


8-15 UNITS Units type used by THRESHOLD_ENTRY/EXIT:
- 0 : Bytes
- 1 : Frames


16-31 MODE Congestion Notification mode:
bit 0: DPDMAI_CGN_MODE_WRITE_MEM_ON_ENTER
bit 1: DPDMAI_CGN_MODE_WRITE_MEM_ON_EXIT
bit 2: DPDMAI_CGN_MODE_COHERENT_WRITE


0x10 0-31 THRESHOLD_ENTRY Threshold value in UNITS used to trigger congestion notification.


32-63 THRESHOLD_EXIT Threshold value in UNITS used to exit from congestion notification.


0x18 0-63 MSG_CTX Message context.


0x20 0-63 MSG_IOVA Message IOVA.(I/O virtual address of the message)







DPDMAI: Data Path DMA Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 19-33
 


19.2.22 DPDMAI_SET_TX_CONGESTION_NOTIFICATION


Command structure


Figure 636. DPDMAI_SET_TX_CONGESTION_NOTIFICATION Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x1A51 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 32 31 16 15 8 7 0


0x08 — MODE UNITS PRIORITY


63 32 31 0


0x10 THRESHOLD_EXIT THRESHOLD_ENTRY


63 0


0x18 MSG_CTX


63 0


0x20 MSG_IOVA


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-7 PRIORITY Select the queue relative to number of priorities configured at DPDMAI creation.


8-15 UNITS Units type used by THRESHOLD_ENTRY/EXIT:
- 0 : Bytes
- 1 : Frames


16-31 MODE Congestion Notification mode:
bit 0: DPDMAI_CGN_MODE_WRITE_MEM_ON_ENTER
bit 1: DPDMAI_CGN_MODE_WRITE_MEM_ON_EXIT
bit 2: DPDMAI_CGN_MODE_COHERENT_WRITE


0x10 0-31 THRESHOLD_ENTRY Threshold value in UNITS used to trigger congestion notification.


32-63 THRESHOLD_EXIT Threshold value in UNITS used to exit from congestion notification.


0x18 0-63 MSG_CTX Message context.


0x20 0-63 MSG_IOVA Message IOVA.(I/O virtual address of the message)







DPDMAI: Data Path DMA Interface


DPAA2UM, Rev 50, 08/2022 


NXP Semiconductors 19-34
 


19.2.23 DPDMAI_GET_TX_CONGESTION_NOTIFICATION


Command structure


Figure 637. DPDMAI_GET_TX_CONGESTION_NOTIFICATION Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x1A71 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 8 7 0


0x08 — PRIORITY


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-7 PRIORITY Select the queue relative to number of priorities configured at DPDMAI creation.







DPDMAI: Data Path DMA Interface


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 19-35
 


Response structure


Figure 638. DPDMAI_GET_TX_CONGESTION_NOTIFICATION Response Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x1A71 TOKEN —


IN
T


R
_D


IS


STATUS P — SRCID


63 32 31 16 15 8 7 0


0x08 — MODE UNITS PRIORITY


63 32 31 0


0x10 THRESHOLD_EXIT THRESHOLD_ENTRY


63 0


0x18 MSG_CTX


63 0


0x20 MSG_IOVA


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-7 PRIORITY Select the queue relative to number of priorities configured at DPDMAI creation.


8-15 UNITS Units type used by THRESHOLD_ENTRY/EXIT:
- 0 : Bytes
- 1 : Frames


16-31 MODE Congestion Notification mode:
bit 0: DPDMAI_CGN_MODE_WRITE_MEM_ON_ENTER
bit 1: DPDMAI_CGN_MODE_WRITE_MEM_ON_EXIT
bit 2: DPDMAI_CGN_MODE_COHERENT_WRITE


0x10 0-31 THRESHOLD_ENTRY Threshold value in UNITS used to trigger congestion notification.


32-63 THRESHOLD_EXIT Threshold value in UNITS used to exit from congestion notification.


0x18 0-63 MSG_CTX Message context.


0x20 0-63 MSG_IOVA Message IOVA.(I/O virtual address of the message)







DPDMAI: Data Path DMA Interface


DPAA2UM, Rev 50, 08/2022 


NXP Semiconductors 19-36
 







DPAIOP: Data Path AIOP Control


DPAA2UM, Rev 50, 08/2022 


NXP Semiconductors 20-1
 


Chapter 20  DPAIOP: Data Path AIOP Control
DPAIOP object represents an AIOP tile and is responsible for AIOP tile initialization and management. 
MC performs initialization of the AIOP tile and its hardware blocks. MC is responsible for loading an 
AIOP image into appropriate AIOP memory and releasing the AIOP cores for boot.


One of the main responsibilities of MC is loading an image to be used by the AIOP cores. Here are the 
steps required to load an image. The AIOP cannot run without having a DPAIOP object residing in the 
container (DPRC) of a GPP software context. that GPP software context will be responsible for controlling 
the AIOP load and run, through the DPAIOP object.


After an AIOP image was successfully loaded, MC will kick AIOP cores to start running.


20.1 DPAIOP features


The following list summarizes the DPAIOP main features and capabilities:


• Create and destroy – DPAIOP object is associated with a single AIOP tile


• Load AIOP software image (including arguments string for the AIOP application)


• Run the AIOP


• Query AIOP state


• Query AIOP Service Layer version


• Set (and get) time of day in AIOP


• Reset the AIOP (not supported in LS2085A revision 1.0)


20.1.1 Resetting the AIOP and reloading applications


Use cases like loading a new AIOP elf or reloading the current application can be done without resetting 
the data path HW or the entire SoC. The DPAIOP_RESET command handles the reset and prepares the 
AIOP HW for loading the new application. During the reset command the management complex firmware 
will execute the following steps sequentially:


1. Gracefully shuts down the task generation sources: TMan and Work Scheduler


2. Waits for QMan queues associated with the AIOP to drain; the MC firmware polls for completion


3. Waits for cores to finish processing the tasks in execution; the MC firmware polls for completion


4. Moves cores to reset mode


5. Requests the DPAA2 power management unit to reset the AIOP HW


6. Frees AIOP-allocated resources: disables AIOP error interrupts and DP-DDR/System DDR/PEB 
memory resources allocated for TMan and CTLU


The MC firmware will wait for a defined time for each of these steps to finish. If the one of these steps 
fails the command will immediately terminate with an error. This guarantees that the MC will not 
indefinitely block the SW context that sent the reset command. 


Resending the reset command or sending the load command (or any command) after an unsuccessful reset 
will fail since AIOP reset errors may indicate a HW malfunction which can prevent an AIOP application 







DPAIOP: Data Path AIOP Control


DPAA2UM, Rev 50, 08/2022 


NXP Semiconductors 20-2
 


from running properly.  In case of reset errors the MC log (configured with debug detail level) will detail 
the exact step that failed. At this point the only way to load a new AIOP application is to do an SoC-wide 
reset. In order to check if the reset command finished successfully or not (or there is an ongoing reset 
command) the SW context must use the DPAIOP_GET_STATE command. 


The DPAIOP_GET_STATE command can also be used to check if the AIOP application was loaded (the 
AIOP elf image was deployed) and booted (AIOP cores are running and the application marks the boot 
step as completed) successfully.


The reset command can be executed if either the DPAIOP_LOAD or DPAIOP_RUN commands fail, but 
the run command can’t be executed if the elf image load command failed.


The DPAIOP_RESET command will affect only the AIOP HW block; however, in order to properly boot 
the new application, the AIOP’s container, along with the comprised child objects, must also be reset. 


The following steps summarize the AIOP application reload procedure and provide the order in which to 
execute the involved commands:


1. DPAIOP_RESET - AIOP HW block reset: gracefully shutdown of AIOP HW and free resources


2. DPRC_RESET - Reset AIOP’s container: reset the state of all contained object;


3. DPAIOP_LOAD - Load AIOP application: deploy the elf image and allocate resources


4. DPAIOP_RUN - Start the configured AIOP cores and boot the new AIOP application







DPAIOP: Data Path AIOP Control


DPAA2UM, Rev 50, 08/2022 


NXP Semiconductors 20-3
 


20.2 DPAIOP command reference


This section contains the detailed programming model of DPAIOP commands.


20.2.1 DPAIOP_OPEN


Open a control session for the specified object.


This function can be used to open a control session for an already created object; an object may have been 
declared in the DPL or by invoking DPAIOP_CREATE command.


This function returns a unique authentication token, associated with the specific object ID; this token must 
be used in all subsequent commands for this specific object.


Command structure


Figure 639. DPAIOP_OPEN Command Description


The following table describes the command fields.


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x80A1 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 32 31 0


0x08 DPAIOP_ID


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Table 76. DPAIOP_OPEN Command Field Descriptions1


1 All unspecified fields are reserved and must be cleared (set to zero)


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-31 DPAIOP_ID DPAIOP unique ID







DPAIOP: Data Path AIOP Control


DPAA2UM, Rev 50, 08/2022 


NXP Semiconductors 20-4
 


20.2.2 DPAIOP_CLOSE


Close the control session of the object.


After this function is called, no further operations are allowed on the object without opening a new control 
session.


Command structure


Figure 640. DPAIOP_CLOSE Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x8001 TOKEN —


IN
T


R
_D


IS


STATUS P — SRCID


63 0


0x08 —


63 0


0x10 —


63 0


0x18


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.







DPAIOP: Data Path AIOP Control


DPAA2UM, Rev 50, 08/2022 


NXP Semiconductors 20-5
 


20.2.3 DPAIOP_CREATE


This command creates and initializes an instance of DPAIOP according to the specified command 
parameters. This command is not required for DPAIOP instances that are created using the DPL.


For the CREATE command the caller must provide the authentication token of the parent container to 
which the object should be created and assigned. If the token is '0' the object will be assigned to the 
container that hosts the MC command portal executing this command.


The command returns a DPAIOP ID that can be used to OPEN or DESTROY the object.


The command format is shown in the figure below.


Command structure


Figure 641. DPAIOP_CREATE Command Description


The following table describes the command fields.
1-5


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x90A1 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 32 31 0


0x08 AIOP_CONTAINER_ID AIOP_ID


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Table 77. DPAIOP_CREATE Command Field Descriptions1


1 All unspecified fields are reserved and must be cleared (set to zero).


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-31 AIOP_ID AIOP ID


32-63 AIOP_CONTAINER_ID AIOP container ID







DPAIOP: Data Path AIOP Control


DPAA2UM, Rev 50, 08/2022 


NXP Semiconductors 20-6
 


Response structure


Figure 20-1. DPAIOP_CREATE Response Description


The following table describes the response fields.


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 24 23 16 15 14 8 7 0


CMDID = 0x90A1 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 32 31 0


0x08 — DPAIOP_ID


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Table 20-1. DPAIOP_CREATE Response Field Descriptions1


1 All unspecified fields are reserved.


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-31 DPAIOP_ID DPAIOP unique ID







DPAIOP: Data Path AIOP Control


DPAA2UM, Rev 50, 08/2022 


NXP Semiconductors 20-7
 


20.2.4 DPAIOP_DESTROY


This command destroys the DPAIOP object and releases all its resources. It must be invoked in the 
software context that created the object. The caller must provide the object id and the authentication token 
of the parent container that created the object. Note that the object can be assigned to another container 
and sending the authentication token of this container will return an error.


All open authentication tokens to the object must be closed before calling the destroy command. 


After this function is called, no further operations are allowed on the object.


Command structure


Figure 642. DPAIOP_DESTROY Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x98A1 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 32 31 0


0x08 — DPAIOP_ID


63 0


0x10 —


63 0


0x18


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0–32 DPAIOP_ID ID of the DPAIOP object to destroy







DPAIOP: Data Path AIOP Control


DPAA2UM, Rev 50, 08/2022 


NXP Semiconductors 20-8
 


20.2.5 DPAIOP_RESET


The DPAIOP_RESET command handles the reset and prepares the AIOP HW for loading the new 
application. During the reset command the management complex firmware will execute the following 
steps sequentially:


1. Gracefully shuts down the task generation sources: TMan and Work Scheduler


2. Waits for QMan queues associated with AIOP to drain; MC firmware polls for completion


3. Waits for cores to finish processing the tasks in execution; MC firmware polls for completion


4. Moves cores to reset mode


5. Requests the DPAA2 Power Management Unit to reset the AIOP HW


6. Frees AIOP allocated resources: disable AIOP error interrupts and DP-DDR/System DDR/PEB 
memory resources allocated for TMan and CTLU


Read more about the reset procedure in Section 20.1.1, “Resetting the AIOP and reloading applications.”


Command structure


Figure 643. DPAIOP_RESET Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0051 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 0


0x08 —


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.







DPAIOP: Data Path AIOP Control


DPAA2UM, Rev 50, 08/2022 


NXP Semiconductors 20-9
 


20.2.6 DPAIOP_SET_IRQ_ENABLE


Set overall interrupt state. Allows GPP software to control when interrupts are generated. Each interrupt 
can have up to 32 causes. The enable/disable control's the overall interrupt state. if the interrupt is disabled 
no causes will cause an interrupt.


Command structure


Figure 644. DPAIOP_SET_IRQ_ENABLE Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0121 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 40 39 32 31 1 0


0x08 – IRQ_INDEX – EN


63 0


0x10 –


63 0


0x18 –


63 0


0x20 –


63 0


0x28 –


63 0


0x30 –


63 0


0x38 –


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0 EN Interrupt state: set to ‘1’ to enable, ‘0’ to disable


32-39 IRQ_INDEX Identifies the interrupt index to configure







DPAIOP: Data Path AIOP Control


DPAA2UM, Rev 50, 08/2022 


NXP Semiconductors 20-10
 


20.2.7 DPAIOP_GET_IRQ_ENABLE


Get overall interrupt state.


Command structure


Figure 645. DPAIOP_GET_IRQ_ENABLE Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0131 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 40 39 32 31 0


0x08 – IRQ_INDEX –


63 0


0x10 –


63 0


0x18 –


63 0


0x20 –


63 0


0x28 –


63 0


0x30 –


63 0


0x38 –


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 32-39 IRQ_INDEX Identifies the interrupt index to query







DPAIOP: Data Path AIOP Control


DPAA2UM, Rev 50, 08/2022 


NXP Semiconductors 20-11
 


Response structure


Figure 646. DPAIOP_GET_IRQ_ENABLE Response Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0131 TOKEN —


IN
T


R
_D


IS


STATUS P — SRCID


63 1 0


0x08 – EN


63 0


0x10 –


63 0


0x18 –


63 0


0x20 –


63 0


0x28 –


63 0


0x30 –


63 0


0x38 –


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0 EN This bit is set if the interrupt is enabled







DPAIOP: Data Path AIOP Control


DPAA2UM, Rev 50, 08/2022 


NXP Semiconductors 20-12
 


20.2.8 DPAIOP_SET_IRQ_MASK


Set the interrupt mask. Every interrupt can have up to 32 causes and the interrupt model supports 
masking/unmasking each cause independently.


Command structure


Figure 647. DPAIOP_SET_IRQ_MASK Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0141 TOKEN —


IN
T


R
_D


IS


STATUS P — SRCID


63 40 39 32 31 0


0x08 – IRQ_INDEX MASK


63 0


0x10 –


63 0


0x18 –


63 0


0x20 –


63 0


0x28 –


63 0


0x30 –


63 0


0x38 –


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-31 MASK Event mask for triggering the interrupt; See GET_IRQ_STATUS command for 
specification of available events. For each bit in MASK:
0 = ignore event
1 = event is valid; signal the IRQ if this event occurs


32-39 IRQ_INDEX The interrupt index to configure







DPAIOP: Data Path AIOP Control


DPAA2UM, Rev 50, 08/2022 


NXP Semiconductors 20-13
 


20.2.9 DPAIOP_GET_IRQ_MASK


Get the interrupt mask. Every interrupt can have up to 32 causes and the interrupt model supports 
masking/unmasking each cause independently.


Command structure


Figure 648. DPAIOP_GET_IRQ_MASK Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0151 TOKEN —


IN
T


R
_D


IS


STATUS P — SRCID


63 40 39 32 31 0


0x08 – IRQ_INDEX –


63 0


0x10 –


63 0


0x18 –


63 0


0x20 –


63 0


0x28 –


63 0


0x30 –


63 0


0x38 –


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 32-39 IRQ_INDEX The interrupt index to query







DPAIOP: Data Path AIOP Control


DPAA2UM, Rev 50, 08/2022 


NXP Semiconductors 20-14
 


Response structure


Figure 649. DPAIOP_GET_IRQ_MASK Response Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0151 TOKEN —


IN
T


R
_D


IS


STATUS P — SRCID


63 32 31 0


0x08 MASK


63 0


0x10 –


63 0


0x18 –


63 0


0x20 –


63 0


0x28 –


63 0


0x30 –


63 0


0x38 –


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-31 MASK Event mask for triggering the interrupt; See GET_IRQ_STATUS command for 
specification of available events. For each bit in MASK:
0 = ignore event
1 = event is valid; signal the IRQ if this event occurs







DPAIOP: Data Path AIOP Control


DPAA2UM, Rev 50, 08/2022 


NXP Semiconductors 20-15
 


20.2.10 DPAIOP_GET_IRQ_STATUS


Get the current status of pending events for the specified interrupt index.


Command structure


Figure 650. DPAIOP_GET_IRQ_STATUS Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0161 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 40 39 32 31 0


0x08 – IRQ_INDEX STATUS


63 0


0x10 –


63 0


0x18 –


63 0


0x20 –


63 0


0x28 –


63 0


0x30 –


63 0


0x38 –


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-31 STATUS Optional: any STATUS bits that are set will be cleared from pending state (removing 
the need for DPAIOP_CLEAR_IRQ_STATUS command). Note that the STATUS 
returned in the response is the status before the events are cleared.


Supported events: see response structure definition


32-39 IRQ_INDEX The interrupt index to query







DPAIOP: Data Path AIOP Control


DPAA2UM, Rev 50, 08/2022 


NXP Semiconductors 20-16
 


Response structure


Figure 651. DPAIOP_GET_IRQ_STATUS Response Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0161 TOKEN —


IN
T


R
_D


IS


STATUS P — SRCID


63 32 31 0


0x08 STATUS


63 0


0x10 –


63 0


0x18 –


63 0


0x20 –


63 0


0x28 –


63 0


0x30 –


63 0


0x38 –


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-31 STATUS Events status mask, one bit per event:
0 = no interrupt pending
1 = interrupt pending


Supported events:
None







DPAIOP: Data Path AIOP Control


DPAA2UM, Rev 50, 08/2022 


NXP Semiconductors 20-17
 


20.2.11 DPAIOP_CLEAR_IRQ_STATUS


Clear (mark as handled) pending events of the specified interrupt index.


Command structure


Figure 652. DPAIOP_CLEAR_IRQ_STATUS Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0171 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 40 39 32 31 0


0x08 – IRQ_INDEX STATUS


63 0


0x10 –


63 0


0x18 –


63 0


0x20 –


63 0


0x28 –


63 0


0x30 –


63 0


0x38 –


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-31 STATUS Mask for clearing handled events; See GET_IRQ_STATUS command for specification 
of available events. For each bit in MASK:
0 = don’t change event status
1 = clear event status bit to indicate that it was handled


32-39 IRQ_INDEX The interrupt index to configure







DPAIOP: Data Path AIOP Control


DPAA2UM, Rev 50, 08/2022 


NXP Semiconductors 20-18
 


20.2.12 DPAIOP_GET_ATTRIBUTES


Command structure


Figure 653. DPAIOP_GET_ATTRIBUTES Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0041 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 0


0x08 —


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.







DPAIOP: Data Path AIOP Control


DPAA2UM, Rev 50, 08/2022 


NXP Semiconductors 20-19
 


Response structure


Figure 654. DPAIOP_GET_ATTRIBUTES Response Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0041 TOKEN —


IN
T


R
_D


IS


STATUS P — SRCID


63 32 31 0


0x08 — ID


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-31 ID AIOP ID







DPAIOP: Data Path AIOP Control


DPAA2UM, Rev 50, 08/2022 


NXP Semiconductors 20-20
 


20.2.13 DPAIOP_LOAD


The command will deploy an AIOP elf image and it will allocate memory resources requested by the new 
AIOP application. If the command fails, DPAIOP_RESET must be run before trying to load another AIOP 
image. To properly load a new AIOP application, the AIOP HW block must be in reset state. This is 
accomplished after an SoC-wide reset or after a DPAIOP_RESET command. For more information about 
the reload procedure, see Section 20.1.1, “Resetting the AIOP and reloading applications.”


Command structure


Figure 655. DPAIOP_LOAD Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x2801 TOKEN —


IN
T


R
_D


IS


STATUS P — SRCID


63 0


0x10 IMG_IOVA


63 0


0x18 OPTIONS


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0–63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0–31 IMG_SIZE Size of AIOP ELF image in memory (in bytes)


0x10 0–63 IMG_IOVA I/O virtual address of AIOP ELF image


0x18 0–63 OPTIONS AIOP load options







DPAIOP: Data Path AIOP Control


DPAA2UM, Rev 50, 08/2022 


NXP Semiconductors 20-21
 


20.2.14 DPAIOP_RUN


Launches the AIOP application. The SW context can choose which cores to run and pass parameters to the 
AIOP application. The command can be executed only if DPAIOP_LOAD was previously run. If the 
command fails, it is not permitted to resend the DPAIOP_RUN or DPAIOP_LOAD command. The SW 
context must reiterate the application load procedure from the start. Please check the full AIOP application 
load procedure in Section 20.1.1, “Resetting the AIOP and reloading applications.”


Command structure


Figure 656. DPAIOP_RUN Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x2811 TOKEN —


IN
T


R
_D


IS


STATUS P — SRCID


63 32 31 0


0x08 ARGS_SIZE —


63 0


0x10 CORES_MASK


63 0


0x18 OPTIONS


63 0


0x20 ARGS_IOVA


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 32-63 ARGS_SIZE Size of AIOP arguments in memory (in bytes)


0x10 0-63 CORES_MASK Mask of AIOP cores to run (core 0 in most significant bit)


0x18 0-63 OPTIONS Execution options (currently none defined)


0x20 0-63 ARGS_IOVA I/O virtual address of AIOP arguments







DPAIOP: Data Path AIOP Control


DPAA2UM, Rev 50, 08/2022 


NXP Semiconductors 20-22
 


20.2.15 DPAIOP_GET_SL_VERSION


Command structure


Figure 657. DPAIOP_GET_SL_VERSION Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x2821 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 0


0x08 —


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.







DPAIOP: Data Path AIOP Control


DPAA2UM, Rev 50, 08/2022 


NXP Semiconductors 20-23
 


Response structure


Figure 658. DPAIOP_GET_SL_VERSION Response Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x2821 TOKEN —


IN
T


R
_D


IS


STATUS P — SRCID


63 32 31 0


0x08 MINOR MAJOR


63 32 31 0


0x10 — REVISION


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-31 MAJOR AIOP SL major version number


32-63 MINOR AIOP SL minor version number


0x10 0-31 REVISION AIOP SL revision number







DPAIOP: Data Path AIOP Control


DPAA2UM, Rev 50, 08/2022 


NXP Semiconductors 20-24
 


20.2.16 DPAIOP_GET_STATE


Command structure


Figure 659. DPAIOP_GET_STATE Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x2831 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 0


0x08 —


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.







DPAIOP: Data Path AIOP Control


DPAA2UM, Rev 50, 08/2022 


NXP Semiconductors 20-25
 


Response structure


Figure 660. DPAIOP_GET_STATE Response Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x2831 TOKEN —


IN
T


R
_D


IS


STATUS P — SRCID


63 32 31 0


0x08 — STATE


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-31 STATE AIOP state
0x00: AIOP reset successfully completed.
0x01: AIOP reset is ongoing.
0x02: AIOP image loading successfully completed.
0x04: AIOP image loading is ongoing.
0x08: AIOP image loading completed with error.
0x10: Boot process of AIOP cores is ongoing.
0x20: Boot process of AIOP cores completed with an error.
0x40: AIOP cores are functional and running







DPAIOP: Data Path AIOP Control


DPAA2UM, Rev 50, 08/2022 


NXP Semiconductors 20-26
 


20.2.17 DPAIOP_SET_TIME_OF_DAY


Command structure


Figure 661. DPAIOP_SET_TIME_OF_DAY Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x2841 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 0


0x08 TIME_OF_DAY


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-63 TIME_OF_DAY Current number of milliseconds since the Epoch







DPAIOP: Data Path AIOP Control


DPAA2UM, Rev 50, 08/2022 


NXP Semiconductors 20-27
 


20.2.18 DPAIOP_GET_TIME_OF_DAY


Command structure


Figure 662. DPAIOP_GET_TIME_OF_DAY Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x2851 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 0


0x08 —


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.







DPAIOP: Data Path AIOP Control


DPAA2UM, Rev 50, 08/2022 


NXP Semiconductors 20-28
 


Response structure


Figure 663. DPAIOP_GET_TIME_OF_DAY Response Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x2851 TOKEN —


IN
T


R
_D


IS


STATUS P — SRCID


63 0


0x08 TIME_OF_DAY


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-63 TIME_OF_DAY Current number of milliseconds since the Epoch







DPAIOP: Data Path AIOP Control


DPAA2UM, Rev 50, 08/2022 


NXP Semiconductors 20-29
 


20.2.19 DPAIOP_GET_API_VERSION


Command structure


Figure 664. DPAIOP_GET_API_VERSION Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0xA0A1 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 0


0x08 —


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.







DPAIOP: Data Path AIOP Control


DPAA2UM, Rev 50, 08/2022 


NXP Semiconductors 20-30
 


Response structure


Figure 665. DPAIOP_GET_API_VERSION Response Description


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0xA0A1 TOKEN —


IN
T


R
_D


IS


STATUS P — SRCID


63 32 31 16 15 0


0x08 — VERSION_MINOR VERSION_MAJOR


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-15 VERSION_MAJOR Major version of API


16-31 VERSION_MINOR Minor version of API







DPAIOP: Data Path AIOP Control


DPAA2UM, Rev 50, 08/2022 


NXP Semiconductors 20-31
 


20.2.20 DPAIOP_SET_RESETABLE


Instruct DPAIOP to ignore or execute reset command.


Command structure


Figure 666. DPAIOP_SET_RESETABLE Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x2861 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 8 7 0


0x08 — RESETABLE


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-7 RESETABLE If set to zero DPAIOP will ignore all reset commands. The reset command will not 
return error.
If set to one the reset command will be executed.







DPAIOP: Data Path AIOP Control


DPAA2UM, Rev 50, 08/2022 


NXP Semiconductors 20-32
 


20.2.21 DPAIOP_GET_RESETABLE


Verifies if DPAIOP object will ignore or execute reset command.


Command structure


Figure 667. DPAIOP_GET_RESETABLE Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0x2871 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 0


0x08 —


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.







DPAIOP: Data Path AIOP Control


DPAA2UM, Rev 50, 08/2022 


NXP Semiconductors 20-33
 


Response structure


Figure 668. DPAIOP_GET_RESETABLE Response Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x2871 TOKEN —


IN
T


R
_D


IS


STATUS P — SRCID


63 32 31 8 7 0


0x08 — RESETABLE


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-8 RESETABLE 1 - DPAIOP object executes reset command
0 - DPAIOP object will ignore reset command







DPAIOP: Data Path AIOP Control


DPAA2UM, Rev 50, 08/2022 


NXP Semiconductors 20-34
 







DPMCP: Data Path MC Portal


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 21-1
 


Chapter 21  DPMCP: Data Path MC Portal
The MC exports the DPMCP object to allow GPP software to control the MC portal operation mode, be it 
polling mode or interrupt mode.


Each DPMCP object is associated with a single Management Complex Portal, and allows GPP software 
to configure command completion interrupts for that portal. The DPMCP object is optional if the GPP 
software is polling the portal and not using portal interrupts. However, for consistency and for better 
tracking of MC portals that are in use, it is recommended to always create DPMCP objects for MC portals 
used by GPP.


21.1 DPMCP features


The following list summarizes the DPMCP main features and capabilities:


• DPMCP can be created and destroyed via DPL or dynamically through MC commands.


• IRQ support for command completion.


• Reset support (closes all open tokens on the associated MC portal)







DPMCP: Data Path MC Portal


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 21-2
 


21.2 DPMCP command reference


This section contains detailed programming model of DPMCP commands.


21.2.1 DPMCP_OPEN


Open a control session for the specified object.


This function can be used to open a control session for an already created object; an object may have been 
declared in the DPL or by invoking DPMCP_CREATE command.


This function returns a unique authentication token, associated with the specific object ID; this token must 
be used in all subsequent commands for this specific object.


Command structure


Figure 669. DPMCP_OPEN Command Description


The following table describes the command fields.
1-


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x80B1 TOKEN —


IN
T


R
_D


IS


STATUS P — SRCID


63 32 31 0


0x08 DPMCP_ID


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Table 78. DPMCP_OPEN Command Field Descriptions1


1 All unspecified fields are reserved and must be cleared (set to zero)


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-31 DPMCP_ID DPMCP unique ID







DPMCP: Data Path MC Portal


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 21-3
 


21.2.2 DPMCP_CLOSE


Close the control session of the object.


After this function is called, no further operations are allowed on the object without opening a new control 
session.


Command structure


Figure 670. DPMCP_CLOSE Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x8001 TOKEN —


IN
T


R
_D


IS


STATUS P — SRCID


63 0


0x08 —


63 0


0x10 —


63 0


0x18


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.







DPMCP: Data Path MC Portal


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 21-4
 


21.2.3 DPMCP_CREATE


This command creates and initializes an instance of DPMCP according to the specified command 
parameters. This command is not required for DPMCP instances that are created using the DPL.


For the CREATE command the caller must provide the authentication token of the parent container to 
which the object should be created and assigned. If the token is '0' the object will be assigned to the 
container that hosts the MC command portal executing this command.


The command returns a DPMCP ID that can be used to OPEN or DESTROY the object.


The command format is shown in the figure below.


Command structure


Figure 671. DPMCP_CREATE Command Description


The following table describes the command fields.
1-5


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x90B2 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 32 31 0


0x08 OPTIONS PORTAL_ID


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Table 79. DPMCP_CREATE Command Field Descriptions1


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-31 PORTAL_ID Portal ID


32-63 OPTIONS - select one or more of the options below


0 DPMCP_OPT_HIGH_PRIO_CMD_DIS Disable High-Priority commands:
0 - High-Priority commands are available on DPMCP portal: All High-Priority 
commands are treated as High-Priority
1 - High-Priority commands are disabled on DPMCP portal: All High-Priority 
commands are downgraded to Low-Priority


33-63 — Reserved







DPMCP: Data Path MC Portal


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 21-5
 


1 All unspecified fields are reserved and must be cleared (set to zero).







DPMCP: Data Path MC Portal


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 21-6
 


Response structure


Figure 21-1. DPMCP_CREATE Response Description


The following table describes the response fields.


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 24 23 16 15 14 8 7 0


CMDID = 0x90B2 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 32 31 0


0x08 — DPMCP_ID


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Table 21-1. DPMCP_CREATE Response Field Descriptions1


1 All unspecified fields are reserved.


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-31 DPMCP_ID DPMCP unique ID







DPMCP: Data Path MC Portal


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 21-7
 


21.2.4 DPMCP_DESTROY


This command destroys the DPMCP object and releases all its resources. It must be invoked in the 
software context that created the object. The caller must provide the object id and the authentication token 
of the parent container that created the object. Note that the object can be assigned to another container 
and sending the authentication token of this container will return an error.


All open authentication tokens to the object must be closed before calling the destroy command. 


After this function is called, no further operations are allowed on the object.


Command structure


Figure 672. DPMCP_DESTROY Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x98B1 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 32 31 0


0x08 — DPMCP_ID


63 0


0x10 —


63 0


0x18


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0–32 DPMCP_ID ID of the DPMCP object to destroy







DPMCP: Data Path MC Portal


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 21-8
 


21.2.5 DPMCP_RESET


Command structure


Figure 673. DPMCP_RESET Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0051 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 0


0x08 —


63 0


0x10 —


63 0


0x18


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.







DPMCP: Data Path MC Portal


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 21-9
 


21.2.6 DPMCP_SET_IRQ_ENABLE


Set overall interrupt state. Allows GPP software to control when interrupts are generated. Each interrupt 
can have up to 32 causes. The enable/disable control's the overall interrupt state. if the interrupt is disabled 
no causes will cause an interrupt.


Command structure


Figure 674. DPMCP_SET_IRQ_ENABLE Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0121 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 40 39 32 31 1 0


0x08 – IRQ_INDEX – EN


63 0


0x10 –


63 0


0x18 –


63 0


0x20 –


63 0


0x28 –


63 0


0x30 –


63 0


0x38 –


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0 EN Interrupt state: set to ‘1’ to enable, ‘0’ to disable


32-39 IRQ_INDEX Identifies the interrupt index to configure







DPMCP: Data Path MC Portal


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 21-10
 


21.2.7 DPMCP_GET_IRQ_ENABLE


Get overall interrupt state.


Command structure


Figure 675. DPMCP_GET_IRQ_ENABLE Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0131 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 40 39 32 31 0


0x08 – IRQ_INDEX –


63 0


0x10 –


63 0


0x18 –


63 0


0x20 –


63 0


0x28 –


63 0


0x30 –


63 0


0x38 –


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 32-39 IRQ_INDEX Identifies the interrupt index to query







DPMCP: Data Path MC Portal


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 21-11
 


Response structure


Figure 676. DPMCP_GET_IRQ_ENABLE Response Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0131 TOKEN —


IN
T


R
_D


IS


STATUS P — SRCID


63 1 0


0x08 – EN


63 0


0x10 –


63 0


0x18 –


63 0


0x20 –


63 0


0x28 –


63 0


0x30 –


63 0


0x38 –


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0 EN This bit is set if the interrupt is enabled







DPMCP: Data Path MC Portal


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 21-12
 


21.2.8 DPMCP_SET_IRQ_MASK


Set the interrupt mask. Every interrupt can have up to 32 causes and the interrupt model supports 
masking/unmasking each cause independently.


Command structure


Figure 677. DPMCP_SET_IRQ_MASK Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0141 TOKEN —


IN
T


R
_D


IS


STATUS P — SRCID


63 40 39 32 31 0


0x08 – IRQ_INDEX MASK


63 0


0x10 –


63 0


0x18 –


63 0


0x20 –


63 0


0x28 –


63 0


0x30 –


63 0


0x38 –


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-31 MASK Event mask for triggering the interrupt; See GET_IRQ_STATUS command for 
specification of available events. For each bit in MASK:
0 = ignore event
1 = event is valid; signal the IRQ if this event occurs


32-39 IRQ_INDEX The interrupt index to configure







DPMCP: Data Path MC Portal


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 21-13
 


21.2.9 DPMCP_GET_IRQ_MASK


Get the interrupt mask. Every interrupt can have up to 32 causes and the interrupt model supports 
masking/unmasking each cause independently.


Command structure


Figure 678. DPMCP_GET_IRQ_MASK Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0151 TOKEN —


IN
T


R
_D


IS


STATUS P — SRCID


63 40 39 32 31 0


0x08 – IRQ_INDEX –


63 0


0x10 –


63 0


0x18 –


63 0


0x20 –


63 0


0x28 –


63 0


0x30 –


63 0


0x38 –


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 32-39 IRQ_INDEX The interrupt index to query







DPMCP: Data Path MC Portal


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 21-14
 


Response structure


Figure 679. DPMCP_GET_IRQ_MASK Response Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0151 TOKEN —


IN
T


R
_D


IS


STATUS P — SRCID


63 32 31 0


0x08 MASK


63 0


0x10 –


63 0


0x18 –


63 0


0x20 –


63 0


0x28 –


63 0


0x30 –


63 0


0x38 –


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-31 MASK Event mask for triggering the interrupt; See GET_IRQ_STATUS command for 
specification of available events. For each bit in MASK:
0 = ignore event
1 = event is valid; signal the IRQ if this event occurs







DPMCP: Data Path MC Portal


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 21-15
 


21.2.10 DPMCP_GET_IRQ_STATUS


Get the current status of pending events for the specified interrupt index.


Command structure


Figure 680. DPMCP_GET_IRQ_STATUS Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0161 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 40 39 32 31 0


0x08 – IRQ_INDEX STATUS


63 0


0x10 –


63 0


0x18 –


63 0


0x20 –


63 0


0x28 –


63 0


0x30 –


63 0


0x38 –


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-31 STATUS Optional: any STATUS bits that are set will be cleared from pending state. Note that 
the STATUS returned in the response is the status before the events are cleared.


Supported events: see response structure definition


32-39 IRQ_INDEX The interrupt index to query







DPMCP: Data Path MC Portal


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 21-16
 


Response structure


Figure 681. DPMCP_GET_IRQ_STATUS Response Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0161 TOKEN —


IN
T


R
_D


IS


STATUS P — SRCID


63 32 31 0


0x08 STATUS


63 0


0x10 –


63 0


0x18 –


63 0


0x20 –


63 0


0x28 –


63 0


0x30 –


63 0


0x38 –


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-31 STATUS Events status mask, one bit per event:
0 = no interrupt pending
1 = interrupt pending


Supported events for IRQ 0:
Bit 0: DPMCP_IRQ_EVENT_CMD_DONE – indicates completion of last command







DPMCP: Data Path MC Portal


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 21-17
 


21.2.11 DPMCP_GET_ATTRIBUTES


Command structure


Figure 682. DPMCP_GET_ATTRIBUTES Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0042 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 0


0x08 —


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.







DPMCP: Data Path MC Portal


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 21-18
 


Response structure


Figure 683. DPMCP_GET_ATTRIBUTES Response Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x0042 TOKEN —


IN
T


R
_D


IS


STATUS P — SRCID


63 32 31 0


0x08 ID OPTIONS


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-31 OPTIONS DPMCP options:
bit 0: DPMCP_OPT_HIGH_PRIO_CMD_DIS - Disable High-Priority commands


32-63 ID DPMCP object ID







DPMCP: Data Path MC Portal


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 21-19
 


21.2.12 DPMCP_GET_API_VERSION


Command structure


Figure 684. DPMCP_GET_API_VERSION Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0xA0B1 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 0


0x08 —


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.







DPMCP: Data Path MC Portal


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 21-20
 


Response structure


Figure 685. DPMCP_GET_API_VERSION Response Description


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0xA0B1 TOKEN —


IN
T


R
_D


IS


STATUS P — SRCID


63 32 31 16 15 0


0x08 — VERSION_MINOR VERSION_MAJOR


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-15 VERSION_MAJOR Major version of API


16-31 VERSION_MINOR Minor version of API







DPSPARSER: Data Path Soft Parser


DPAA2UM, Rev 50, 08/2022 


NXP Semiconductors 22-1
 


Chapter 22  DPSPARSER: Data Path Soft Parser
The MC exports the DPSPARSER object as an interface to load Soft Parser binaries on DPAA2 devices. 
There is a single DPSPARSER object in the system. 


The legacy Soft Parser support implemented per DPNI object is still available for backward compatibility 
purposes but is replaced by DPSPARSER object. The two implementations should not be used together.


22.1 DPSPARSER features


The following list summarizes the DPSPARSER main features and capabilities:


• Supports Soft Parser Blob (binary) loading in hardware







DPSPARSER: Data Path Soft Parser


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 22-2
 


22.2 DPSPARSER command reference


This section contains the detailed programming model of DPSPARSER commands.


22.2.1 DPSPARSER_OPEN


Open a control session for the specified object.


This function can be used to open a control session for an already created object; an object may have been 
declared in the DPL or by invoking DPSPARSER_CREATE command.


This function returns a unique authentication token, associated with the specific object ID; this token must 
be used in all subsequent commands for this specific object.


Command structure


The command format is shown in the figure below.


Figure 686. DPSPARSER_OPEN Command Description


The following table describes the command fields.


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x8111 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 32 31 0


0x08 DPSPARSER_ID


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Table 80. DPSPARSER_OPEN Command Field Descriptions1


1 All unspecified fields are reserved and must be cleared (set to zero)


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-31 DPSPARSER_ID DPSPARSER unique ID







DPSPARSER: Data Path Soft Parser


DPAA2UM, Rev 50, 08/2022 


NXP Semiconductors 22-3
 


22.2.2 DPSPARSER_CLOSE


Close the control session of the object.


After this function is called, no further operations are allowed on the object without opening a new control 
session.


Command structure


Figure 687. DPSPARSER_CLOSE Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x8001 TOKEN —


IN
T


R
_D


IS


STATUS P — SRCID


63 0


0x08 —


63 0


0x10 —


63 0


0x18


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.







DPSPARSER: Data Path Soft Parser


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 22-4
 


22.2.3 DPSPARSER_CREATE


This command creates and initializes an instance of DPSPARSER according to the specified command 
parameters. This command is not required for DPSPARSER instances that are created using the DPL.


For the CREATE command the caller must provide the authentication token of the parent container to 
which the object should be created and assigned. If the token is '0' the object will be assigned to the 
container that hosts the MC command portal executing this command.


The command returns a DPSPARSER ID that can be used to OPEN or DESTROY the object.


The command format is shown in the figure below.


Command structure


Figure 688. DPSPARSER_CREATE Command Description


The following table describes the command fields.


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x9111 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 0


0x08 —


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Table 81. DPSPARSER_CREATE Command Field Descriptions1


1 All unspecified fields are reserved and must be cleared (set to zero)


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.







DPSPARSER: Data Path Soft Parser


DPAA2UM, Rev 50, 08/2022 


NXP Semiconductors 22-5
 


Response structure


Figure 22-1. DPSPARSER_CREATE Response Description


The following table describes the response fields.


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 24 23 16 15 14 8 7 0


CMDID = 0x9111 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 32 31 0


0x08 — DPSPARSER_ID


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Table 22-1. DPSPARSER_CREATE Response Field Descriptions1


1 All unspecified fields are reserved.


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-31 DPSPARSER_ID DPSPARSER unique ID







DPSPARSER: Data Path Soft Parser


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 22-6
 


22.2.4 DPSPARSER_DESTROY


This command is currently NOT destroying the DPSPARSER object when invoked.


Command structure


Figure 689. DPSPARSER_DESTROY Command Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x9911 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 32 31 0


0x08 — DPSPARSER_ID


63 0


0x10 —


63 0


0x18


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0–32 DPSPARSER_ID ID of the DPSPARSER object to destroy







DPSPARSER: Data Path Soft Parser


DPAA2UM, Rev 50, 08/2022 


NXP Semiconductors 22-7
 


22.2.5 DPSPARSER_GET_API_VERSION


Command structure


Figure 690. DPSPARSER_GET_API_VERSION Response Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0xA111 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 0


0x08 —


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.







DPSPARSER: Data Path Soft Parser


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 22-8
 


Response structure


Figure 691. DPSPARSER_GET_API_VERSION Response Description


All unspecified fields are reserved and must be cleared (set to zero)


Figure 692. DPSPARSER_GET_API_VERSION Response Description


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0xA111 TOKEN —


IN
T


R
_D


IS


STATUS P — SRCID


63 32 31 16 15 0


0x08 — VERSION_MINOR VERSION_MAJOR


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-15 VERSION_MAJOR Major version of API


16-31 VERSION_MINOR Minor version of API







DPSPARSER: Data Path Soft Parser


DPAA2UM, Rev 50, 08/2022 


NXP Semiconductors 22-9
 


22.2.6 DPSPARSER_APPLY_SPB


This command applies a Soft Parser Blob (SPB) binary and configures the Soft Parser accordingly.


Command structure


Figure 693. DPSPARSER_APPLY_SPB Response Description


All unspecified fields are reserved and must be cleared (set to zero)


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x1181 TOKEN —


IN
T


R
_


D
IS


STATUS P — SRCID


63 0


0x08 BLOB_ADDR


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-63 BLOB_ADDR Soft Parser Binary Address







DPSPARSER: Data Path Soft Parser


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 22-10
 


Response structure


Offset from Management Command Portal base Read-Write Access


63 48 47 32 31 25 24 23 16 15 14 8 7 0


0x00 CMDID = 0x1181 TOKEN —


IN
T


R
_D


IS


STATUS P — SRCID


63 32 31 16 15 0


0x08 — ERROR


63 0


0x10 —


63 0


0x18 —


63 0


0x20 —


63 0


0x28 —


63 0


0x30 —


63 0


0x38 —







DPSPARSER: Data Path Soft Parser


DPAA2UM, Rev 50, 08/2022 


NXP Semiconductors 22-11
 


Figure 694. DPSPARSER_APPLY_SPB Response Description


All unspecified fields are reserved and must be cleared (set to zero)


Figure 695. DPSPARSER_APPLY_SPB Response Description


Offset Bits Name Description


0x00 0-63 Command header Refer to Table 2 for the command portal’s general field descriptions.
CMDID must be set as specified in the figure above.


0x08 0-15 ERROR Error related to Soft Parser Binary parsing and apply. Following is the list of error 
values:


0     OK – No error
1     "BLOB : Magic number does not match"
2     "BLOB : Version does not match MC API version"
3     "BLOB : IP revision does not match HW revision"
4     "BLOB : Blob length is not a multiple of 4"
5     "BLOB : Invalid length detected"
6     "BLOB : Name length < 0 in 'blob-name'"
7     "BLOB : Name length not a 4 multiple in 'blob-name'"
8     "BLOB : No target HW parser selected"
9     "BLOB : SP size is negative"
10    "BLOB : Size is zero"
11    "BLOB : Number of protocols is negative"
12    "BLOB : Zero protocols"
13    "BLOB : Protocol name is null"
14    "BLOB : SP 'seq-start' is not in [0x40, 0xffc0) range"
15    "BLOB : Invalid base protocol"
16    "BLOB : Invalid parameters section"
17    "BLOB : Invalid parameter"
18    "BLOB : Invalid parameter configuration"
19    "BLOB : Not aligned value"
20    "BLOB : Invalid section TAG detected"
21    "BLOB : Section size is zero"
22    "BLOB : Section size not a 4 multiple"
23    "BLOB : Section size is too big"
24    "BLOB : No 'bytecode' section before"
25    "BLOB : No 'sp-protocols' section before"
26    "BLOB : No 'bytecode' section defined"
27    "BLOB : No 'sp-protocols' section defined"
28    "BLOB : Soft Parser BLOB parsing : Error detected"
29    "apply spb : Soft Parser BLOB is already applied"
30    "apply spb : BLOB address is not set"
31    "BLOB : SP parameter offset is not a 4 multiple"
32    "BLOB : SP parameter offset can't be less than 0x40"
33    "BLOB : Bytecode size is not a 4 multiple"
34    "BLOB : Bytecode size cannot be zero"
35    "BLOB : Bytecode can't overwrite the 0xFFE address"
36    "BLOB : No hardware parser selected as target"
37    "BLOB : Bytecode overlap detected"
38    "BLOB : No parser support"
39    "BLOB : Too many bytecode sections on WRIOP ingress"
40    "BLOB : Too many bytecode sections on WRIOP egress"
41    "BLOB : Too many bytecode sections on AIOP"
42    "BLOB : Duplicated protocol is already registered"
43    "BLOB : Maximum number of allowed protocols was exceeded"
44    "BLOB : Protocols limit exceeded"
45    "BLOB : Protocol is linked twice"
46    "BLOB : Soft parser is linked twice"
47    "BLOB : Parameter offset exceeds the maximum parameters limit"
48    "BLOB : Parameter size can't be 0 or greater than 64"
49    "BLOB : Parameter offset plus size exceeds the maximum parameters limit"
50    "BLOB : Parameters number exceeds the maximum limit"
51    "BLOB : Duplicated parameter name"
52    "BLOB : Parameters overlapped detected"
53    "apply spb : No dpsparser handle."







DPSPARSER: Data Path Soft Parser


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 22-12
 







Memory Map and Register Definition


DPAA2UM, Rev 50, 08/2022 


NXP Semiconductors 23-1
 


Chapter 23  Memory Map and Register Definition
The MC CCSR space consists of a 64kB block assignment in the SoC CCSR map, and is accessible 
through the CCSR SkyBlue interface. It is assumed that only trusted software is able to access the MC 
registers, and all MC registers are Little-Endian; all accesses to MC registers must be naturally aligned to 
4-byte word only. The MC configuration, control and status registers are summarized in Table 82.


23.1 General Control Register 1 (GCR1)


The GCR1, shown in the following figure, contains general control and configuration for the MC.


Table 82. MC Memory Map


Register offset 
(Trusted access 


only)
Register Access Reset


Section/
Page


0x0000 GCR1—General Control Register 1 R/W 0x0000_0000 23.1/23-1


0x0004 Reserved — — —


0x0008 GSR—General Status Register R/W 0x0000_0000 23.2/23-3


0x000C - 0x001F Reserved — — —


0x0020 MCFBALR—MC Firmware Base Address Low R/W 0x0000_0000 23.3/23-5


0x0024 MCFBAHR—MC Firmware Base Address High R/W 0x0000_0000 23.4/23-5


0x0028 MCFAPR—MC Firmware Attributes and Partitioning 
Register


R/W 0x0000_0000 23.5/23-6


0x002C - 0x0BEF Reserved — — —


0x0BF0 PSR—Parameter Summary Register R 0x0000_0000 23.6/23-7


0x0BF4 Reserved — — —


0x0BF8 BRR1—Block Revision Register 1 R 0x0000_0000 23.7/23-7


0x0BFC BRR2—Block Revision Register 2 R 0x0000_0000 23.8/23-8


0x0C00 - 0xFFFF Reserved — — —


Offset <see Table 82> Access:
GPP Hypervisor & MC


Read/Write


31 30 29 24 23 22 21 16 15 14 13 3 2 1 0


R P1_
STOP


P2_
STOP


—
P1_


RST_b
P2_


RST_b
—


M1_
RST_b


M2_
RST_b


— — —
G_


RSTW


Reset 32’b0000_0000_0000_0000_0000_0000_0000_0000


Figure 696. General Control Register 1 (GCR1)







Memory Map and Register Definition


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 23-2
 


The following table describes the GCR1 fields. 


Table 83. GCR1 Field Descriptions


Bits Name Description


0 G_RST MC Global Reset. This bit asserts the reset signals to MC. This bit is self clearing so that MC firmware may 
use this bit to self reset the entire MC.
1’b0 - the global_reset signal is de-asserted
1’b1 - the global_reset signal is asserted, Note that this value will automatically revert to 1’b0 after several 
cycles.


1-13 — Reserved


14 M2_RST_b Command Portals 256-511 Reset. This bit clears all state associated with these command portal. If a portal 
transaction is received while this bit is cleared, the MC cannot respond to the transaction and the 
interconnect behavior is undefined. It is recommended that the GPP boot program sample this bit until it 
reads as not reset (that is, 1’b1) before enabling or performing any accesses to thee MC portals. The result 
of resetting the command portals after commencing operation without also resetting the entire MC is 
undefined and should be avoided. This bit is persistent; it is not self clearing.
1’b0 - command portals 256-511 are reset. Portal access is disabled.
1’b1 - command portals 256-511 operate normally.


15 M1_RST_b Command Portals 0-255 Reset. This bit clears all state associated with these command portal. If a portal 
transaction is received while this bit is cleared, the MC cannot respond to the transaction and the 
interconnect behavior is undefined. It is recommended that the GPP boot program sample this bit until it 
reads as not reset (that is, 1’b1) before enabling or performing any accesses to thee MC portals. The result 
of resetting the command portals after commencing operation without also resetting the entire MC is 
undefined and should be avoided. This bit is persistent; it is not self clearing.
1’b0 - command portals 0-255 are reset. Portal access is disabled.
1’b1 - command portals 0-255 operate normally.


16-21 — Reserved


22 P2_RST_b Processor 2 Reset. This bit asserts the hard_reset signal to MC processor 2 and to watchdog timer 2. This 
does not reset the debug subsystems of the associated processor. This bit is persistent; it is not self 
clearing.
In contrast to P1_RST_b, GPP should not alter this bit – MC firmware starts and stops MC cores as 
necessary.
1’b0 - the hard_reset signal is asserted
1’b1 - the hard_reset signal is de-asserted and the processor is released to run


23 P1_RST_b Processor 1 Reset. This bit asserts the hard_reset signal to MC processor 1 and to watchdog timer 1. This 
does not reset the debug subsystems of the associated processor. This bit is persistent; it is not self 
clearing.
This bit should be set by a boot program in order to start MC firmware operation. The bit must be set only 
after the MC firmware has been loaded into system memory and all other MC registers are programmed 
as described in this section.
1’b0 - the hard_reset signal is asserted
1’b1 - the hard_reset signal is de-asserted and the processor is released to run


24-29 — Reserved







Memory Map and Register Definition


DPAA2UM, Rev 50, 08/2022 


NXP Semiconductors 23-3
 


23.2 General Status Register (GSR)


The GSR, shown in the following figure, contains MC hardware and firmware status.


The following table describes the GSR fields. 


30 P2_STOP Processor 2 Stop. This bit stops MC processor 2 clock. The processor clock does not stop immediately. No 
state is lost. Command portals are not affected by this bit.
1’b0 - the processor is released to run (default out of POR)
1’b1 - the processor clock is (will be) stopped


31 P1_STOP Processor 1 Stop. This bit stops MC processor 1 clock. The processor clock does not stop immediately. No 
state is lost. Command portals are not affected by this bit.
1’b0 - the processor is released to run (default out of POR)
1’b1 - the processor clock is (will be) stopped


Offset <see Table 82> Access:
MC & GPP Read/Write


31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0


R
HErr CErr — BC MCS


W


Reset 32’b0000_0000_0000_0000_0000_0000_0000_0000


Figure 697. General Status Register (GSR)


Table 83. GCR1 Field Descriptions (continued)


Bits Name Description







Memory Map and Register Definition


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 23-4
 


Table 84. GSR Field Descriptions


Bits Name Description


0-7 MCS MC Status. After MC is kicked to run, MC writes boot status to the MCS bits. The boot program 
should poll the MCS status field until it is set to a non-zero value.
The following codes indicate completion status of the MC boot process:
0x01 - MC boot completed successfully. System boot can continue normally.
0x03 - MC platform general error.
0x05 - MC device tree compiler initialization error.
0x07 - MC resource manager initialization error.
0x09 - MC link manager initialization error.
0x0B - MC command portals initialization error.
0x0D - QBMan controller initialization error.
0x0F - WRIOP controller initialization error.
0x11 - AIOP controller initialization error.
0x15 - DPMAC object infrastructure initialization error.
0x17 - DPRC object infrastructure initialization error.
0x19 - DPMNG controller initialization error.
0x1B - DPIO object infrastructure initialization error.
0x1D - DPBP object infrastructure initialization error.
0x1F - DPNI object infrastructure initialization error.
0x21 - DPSW object infrastructure initialization error.
0x23 - SEC engine initialization initialization error.
0x25 - DPCON object infrastructure initialization error.
0x27 - DPCI object infrastructure initialization error.
0x29 - DPSECI object infrastructure initialization error.
0x2B - MC general initialization error.
0x2D - DPDMUX object infrastructure initialization error.
0x2F - DPC controller initialization initialization error.
0x31 - MC log initialization error.
0x33 - DCE engine initialization error.
0x35 - DPAIOP object infrastructure initialization error.
0x37 - DPMCP object infrastructure initialization error.
0x39 - DPDMAI object infrastructure initialization error.
0x3B - MC PEB memory initialization error.
0x3D - DPL processing error. DPL correctness should be verified by user.
0x3F - MC layout process error.
0x47 - MC LCFG initialization error.
0x49 - DPDCEI object infrastructure initialization error.
0x4B - DPDBG object infrastructure initialization error.
0x4D - MC FM initialization error.
0x4F - DPRTC object infrastructure initialization error.
0x51 - MC incompatible SoC version.


8-15 BC Boot Code. This field can be optionally set to the value listed below by the boot program.
0xDD - Delay DPL processing by MC
All other values are ignored.


16-29 — Reserved, must be cleared.







Memory Map and Register Definition


DPAA2UM, Rev 50, 08/2022 


NXP Semiconductors 23-5
 


23.3 MC Firmware Base Address Low Register (MCFBALR)


This is the least significant portion of the 512MB MC private memory base address within the SoC Internal 
Address Map. The GPP should program MCFBALR only while the MC is stopped.


The MCFBALR register format is shown in the following figure.


The following table describes the MCFBALR fields. 


23.4 MC Firmware Base Address High Register (MCFBAHR)


This is the most significant portion of the 512MB MC private memory base address within the SoC 
Internal Address Map. The GPP should program MCFBAHR only while the MC is stopped.


30 CErr Catastrophic Error. Setting this bit asserts the MC Catastrophic_Error pin intended for input to SoC 
Interrupt Controller. GPP should never set this bit.


31 HErr Hardware Error. When this bit is set, the MC has encountered an internal error condition. GPP 
should never set this bit.
1’b0 - MC is running normally
1’b1 - MC is not running or has encountered an internal error. Setting this bit asserts the MC 
HReset_Req.


Offset <see Table 82> Access:
Read/write


31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0


R
MCFBAR_LOW — MEMSZ


W


Reset 32’b0000_0000_0000_0000_0000_0000_0000_0000


Figure 698. MC Firmware Base Address Low Register (MCFBALR)


Table 85. MCFBALR Field Descriptions


Bits Name Description


0-7 MEMSZ Size of system memory allocated for MC (and DPAA controllers included) by the boot program.
The allocated memory must be in multiples of 256MB, and the value (MEMSZ+1) indicates the 
allocated number of 256MB memory blocks. For example:
0x00 – 256MB allocated (do not use this option if the SoC contains an AIOP)
0x01 – 512MB allocated
...
0x07 – 2GB allocated
etc.


Reserved values: 
0xFF – 128MB allocated


8-28 — Reserved


29-31 MCFBAR_LOW MC Firmware Base Address Low. This is the least significant part of the MC private memory base 
address, corresponding to address bits [31-29]. Bits [47-32] come from MCFBAHR.


Table 84. GSR Field Descriptions (continued)


Bits Name Description







Memory Map and Register Definition


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 23-6
 


The MCFBAHR register format is shown in the following figure.


The following table describes the MCFBAHR fields. 


23.5 MC Firmware Attributes and Partitioning Register (MCFAPR)


The MCFARP is the isolation context identifier and memory access qualifiers that the MC uses, attaches 
as transaction attribute, when accessing any location within its 512MB private memory block in the SoC 
internal address map. The GPP should program MCFAPR only when the MC is stopped.


The following table describes the MCFAPR fields. 


Offset <see Table 82> Access:
Read/write


31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0


R
— MCFBAR_HIGH


W


Reset 32’b0000_0000_0000_0000_0000_0000_0000_0000


Figure 699. MC Firmware Base Address High Register (MCFBAHR)


Table 86. MCFBAHR Field Descriptions


Bits Name Description


0-16 MCFBAR_HIGH MC Firmware Base Address High. This is the most significant part of the MC private memory base 
address, corresponding to address bits [48-32]. Bits [31-29] come from MCFBALR.


17-31 — Reserved


Offset <see Table 82> Access:
Read-write


31 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0


R
— PL BMT — — ICID


W


Reset 32’b0000_0000_0000_0000_0000_0000_0000_0000


Figure 700. MC Firmware Attributes and Partitioning Register (MCFAPR)


Table 87. MCFAPR Field Descriptions


Bits Name Description


0-14 ICID ICID. This is the Isolation Context ID value used by the PAMU/SMMU for address translation if the 
Privilege Level bit is set.


15-16 — Reserved


17 BMT Bypass Memory Translation. This attribute forces bypassing of IOMMU translation.


18 PL Privilege Level. If this bit is set, MC interrupt transactions are labeled using the ICID (Isolation 
Context ID) field, and are passed through the IOMMU for translation to the SoC internal Address 
Map. If this bit is cleared, all MC support transactions bypass the IOMMU and the ICID value is 
unused.


19-31 — Reserved







Memory Map and Register Definition


DPAA2UM, Rev 50, 08/2022 


NXP Semiconductors 23-7
 


23.6 Parameter Summary Register (PSR)


PSR, shown in the following figure, provides a summary of the parameterized features for this MC 
implementation.


NOTE


This register may be removed or modified by the design team; however, the 
information contained in the register should be provided in some way.


The following table describes the PSR1 fields. 


23.7 Block Revision Register 1 (BRR1)


BRR1, shown in the following figure, provides MC IP block revision information.


The following table describes the BRR1 fields. 


Offset <see Table 82> Access:
Read-only


31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0


R PROCS ADDR_W DPAA_INTS CMD_PORTALS


W


Reset 0x2 0x9 0x60 0x01FF


Figure 701. Parameter Summary Register 1 (PSR1)


Table 88. PSR1 Field Descriptions


Bits Name Description


0-15 CMD_PORTALS Command Portals - The total number of command portals implemented in all the CPMs in the MC


16-23 DPAA_INTS DPAA2 Interrupt Inputs - The amount of uncommitted DPAA2 interrupt input signals available for 
connection to other DPAA2 IP blocks.


24-27 ADDR_W External Address Physical Width - The width of the SoC platform address.
Values: 0x0 = 32 bits, 0x2 = 36 bits, 0x4 = 40 bits, 0x6 = 44 bits, 0x8 = 48 bits, 0x9 = 49 bits


28-31 PROCS Total number of processors (cores or hardware threads) implemented within MC


Offset <see Table 82> Access:
Read-only


31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0


R IPMN IPMJ IPID


W


Reset 0x00 - Implementation specific 0x01 - Implementation specific 0x0A00


Figure 702. Block Revision Register 1 (BRR1)







Memory Map and Register Definition


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 23-8
 


23.8 Block Revision Register 2 (BRR2)


BRR2, shown in the following figure, provides information about the IP block integration and 
configuration options. Note, that version information in this register is of the hardware block and not of 
the loaded firmware.


The following table describes the BRR2 fields. 


Table 89. BRR1 Field Descriptions


Bits Name Description


0-15 IPID IP block ID - 0x0A00 denotes Management Complex


16-23 IPMJ The major revision of the IP block. 0x01 in the initial MC implementation.


24-31 IPMN The minor revision of the IP block. 0x00 in the initial MC implementation.


Offset <see Table 82> Access:
Read-only


31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0


R IPCFGO
—


IPINTO
—


W


Reset 0x00 - Implementation specific 0x00 0x00 - Implementation specific 0x00


Figure 703. Block Revision Register 2 (BRR2)


Table 90. BRR2 Field Descriptions


Bits Name Description


0-7 — Reserved


8-15 IPINTO IP block integration options - This field is set to 0x00 for the initial MC implementation.


16-23 — Reserved


24-31 IPCFGO IP block configuration options - This field is set to 0x00 for the initial MC implementation.







Data Path Layout (DPL) Reference


DPAA2UM, Rev 50, 08/2022 


NXP Semiconductors 24-1
 


Chapter 24  Data Path Layout (DPL) Reference
Systems do not need to dynamically create and destroy DPAA2 objects, and system design can be simpler 
if the DPAA2 objects topology is declared statically at boot time. The MC is capable of consuming a binary 
data structure named the Data Path Layout (DPL) that describes the initial a set of objects created when 
the system is initialized; it is processed only once when the MC is initialized.


The DPL is based on a text source file that is similar in syntax to a device tree source file, and compiled 
with DTC (Device Tree Compiler) to form a binary structure (blob). This binary structure is loaded by the 
SoC boot program (U-Boot, for example) as an MC input. The purpose of the DPL is not to describe 
hardware attributes, but rather to describe the initial topology and attributes of logical objects that the MC 
should create.


This section describes the DPL syntax. The DPL source file syntax is a ‘tree’ of named nodes and 
properties. Nodes contain properties (name and value pairs), and also optionally child nodes.


24.1 High-level DPL structure


The DPL structure is composed of three top-level nodes:


• “containers”—defines the initial set of containers in the system, where each container represents a 
different software context that needs DPAA2 objects. This node also gives the initial assignment 
of DPAA2 objects and resources to different containers.


• “objects”—defines the initial set of DPAA2 objects and their attributes.


• “connections”—defines connections between DPAA2 network objects; allows users to set up a 
required network topology.


In addition, the DPL contains a DPL version in the “dpl-version” property, allowing the MC firmware to 
detect and parse legacy DPL files.  In this revision, the DPL version is 10.


Example – high level DPL structure:


/dts-v1/;
/ {


dpl-version = <10>;
containers {


. . . 
};
objects {


. . .
};
connections {


. . .
};


};


The following sections describe each of the top-level nodes in more detail.







Data Path Layout (DPL) Reference


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 24-2
 


24.2 Node: containers


The “containers” node contains the initial set of ICID pools for the MC, as well as initial set of containers 
with their assigned DPAA2 resources and objects; the “containers” node has no properties of its own.


24.2.1 Child node: dprc


The “dprc” node specifies an instantiation of the Data Path Resource Container (DPRC), where the 
container ID is as specified in the node name “dprc@<id>”. The “dprc” node contains three sections: 
container properties, and two child nodes: “resources” and “objects”.


Table 91. Properties of “dprc” node


Property
Required / 
Optional


Expected Value(s) Description


parent R “dprc@<id>”, or “none” Containers hierarchy is set by 
specifying the parent container ID, 
or use “none” if this is a root-level 
container


icid O <uint16_t> 
or
“DPRC_GET_ICID_FROM_POOL”


Select specific ICID value for the 
child container, or use 
“DPRC_GET_ICID_FROM_POOL” 
(default value) to have MC allocate 
the ICID from the pool of free ICID 
values


portal_id O <int>
or
“DPRC_GET_PORTAL_ID_FROM_POOL”


Primary MC command portal for this 
container, or use 
“DPRC_GET_PORTAL_ID_FROM
_POOL” (default value) to have MC 
allocate the portal ID from the pool 
of free portals


options O Zero or more of comma-separated options may be selected from the list below. If this property is 
omitted, none of these options will be set.


“DPRC_CFG_OPT_SPAWN_ALLOWED” The container is allowed to spawn 
its own child containers


“DPRC_CFG_OPT_ALLOC_ALLOWED” The container is allowed to allocate 
resources from its parent container; 
if not set, the container is only 
allowed to use resources from its 
own pools. This is the container's 
global policy, but the parent 
container may override it and set 
specific quota for each resource 
type.


“DPRC_CFG_OPT_TOPOLOGY_CHANGES_ALLOWED” The software context associated 
with this container is allowed to 
invoke topology changes, such as 
connect or disconnect of objects







Data Path Layout (DPL) Reference


DPAA2UM, Rev 50, 08/2022 


NXP Semiconductors 24-3
 


24.2.1.1 Child node: resources


The “resources” node lists specific container resource assignment. The “resources” node has no properties 
of its own, and it only contains child “res” nodes.


24.2.1.1.1 Child node: res


The “res@<n>” node declares a specific resource assignment; multiple “res” nodes may be declared in a 
“resources” node. The value of <n> has no significance.


Table 92. Properties of “res” node


“DPRC_CFG_OPT_AIOP” The container is associated with the 
AIOP


“DPRC_CFG_OPT_IRQ_CFG_ALLOWED” The software context associated 
with this container is allowed to set 
IRQ configuration for objects


label O up to 16 characters Container’s label


Property
Required / 
Optional


Expected Value(s) Description


type R Name of resource pool (specify only one from the list below).
Note that resource pool types may differ between SoC variants.


“mcp” MC portals


“swp” QBMan SW portals


“bp” QBMan buffer pools


“fq” QBMan frame queues


Property
Required / 
Optional


Expected Value(s) Description







Data Path Layout (DPL) Reference


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 24-4
 


24.2.1.2 Child node: objects


The “objects” node lists specific container object assignment for the container. The “objects” node has no 
properties of its own, and it only contains child “obj” nodes.


“qpr” QBMan queuing priority records


“qd” QBMan queuing destinations


“cg” QBMan congestion groups


“swpch” QBMan software portal channels


“cqch” QBMan class queue channels


“rplr” QBMan replication list records


“ifp.wr0” WRIOP interface profiles


“kp.wr0.ctlue” WRIOP CTLU egress key profiles


“kp.wr0.ctlui” WRIOP CTLU ingress key profiles


“prp.wr0.ctlue” WRIOP CTLU egress parser profiles


“prp.wr0.ctlui” WRIOP CTLU ingress parser profiles


“plcy.wr0.ctlui” WRIOP CTLU ingress policy tables


“plcye.wr0.ctlui” WRIOP CTLU ingress policy entries


“kp.aiop0.ctlu” AIOP CTLU key profiles


“kp.aiop0.mflu” AIOP MFLU key profiles


“prp.aiop0.ctlu” AIOP CTLU parser profiles


“prp.aiop0.mflu” AIOP MFLU parser profiles


“dcp.aiop.ch Direct connected portal AIOP channels


num R <uint32_t> Number of resources to assign


options O Select only one of the resource allocation options below, or none (omit this property or set to <0>).
Note the impact on ‘id_base_align’ property.


“DPRC_RES_REQ_OPT_EXPLICIT” Indicates that requested resources are explicit and 
sequential, with base ID as specified by ‘id_base_align’ 
property


“DPRC_RES_REQ_OPT_ALIGNED” Indicates that resources’ base ID should be aligned to the 
value specified by ‘id_base_align’ property


id_base_align R <int> In case of explicit assignment, indicates the base (first) 
resource ID for the allocation.
In case of aligned (and non-explicit) assignment, indicates 
the required alignment for the resource ID(s); set to <0> if 
no special alignment is required.


Property
Required / 
Optional


Expected Value(s) Description







Data Path Layout (DPL) Reference


DPAA2UM, Rev 50, 08/2022 


NXP Semiconductors 24-5
 


24.2.1.2.1 Child node: obj


The “obj@<n>” node declares a specific object assignment; multiple “obj” nodes may be declared in an 
“objects” node. The value of <n> has no significance.


Table 93. Properties of “obj” node


24.2.1.2.2 Child Node: obj_set


The “obj_set@<n>” node declares a set of a specific object assignment; multiple “obj_set” nodes may be 
declared in an “objects” node. The value of <n> has no significance.


Property
Required / 
Optional


Expected Value(s) Description


obj_name R “<object>@<id>”


Examples: “dpni@3”, “dpsw@5”


Object name and ID


plugged O <0> or <1> Indicates if the object is considered plugged to the 
container, or not. Default value is <1>. If this property is 
omitted, the object is considered plugged.


label O up to 16 characters Object’s label


Property
Required / 
Optional


Expected Value(s) Description


type R up to 16 characters


Examples: “dpni”, “dpsw”


Object type


ids R <Array of int> The required IDs for objects in set







Data Path Layout (DPL) Reference


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 24-6
 


Example – declare a root-level container DPRC-1, with ICID 11, two configuration options, primary 
command portal 7, additional command portals 15-16, and some DPAA2 objects assigned to the DPRC: a 
set of four DPNI objects (with IDs: 1,2,5,30) and a single DPBP object (with ID=1 and a label):


dprc@1 {
parent = "none"; 
icid = <11>;
portal_id = <7>;
options = "DPRC_CFG_OPT_SPAWN_ALLOWED", "DPRC_CFG_OPT_ALLOC_ALLOWED";
resources {


res@1 {
type = "mcp";
num = <2>;
options = <1>;
id_base_align = <15>;


};
};
objects {


obj_set@1{
type = "dpni";
ids = <1 2 5 30>;


};
obj@1{


obj_name = "dpbp@1";
label = “my label”;


};
};


};


24.3 Node: objects


The top-level “objects” node, not to be confused with the child node of “dprc” node, contains the initial 
set of objects created during boot by MC. The “objects” node has no properties of its own, and it only 
contains child nodes that specify the different object attributes. Objects in this section are assigned to any 
of the containers declared previously in the “containers” section.


Objects declared in the DPL are created during MC initialization, and do NOT need to be created later 
using CREATE commands. These objects are available to their associated software contexts by submitting 
an OPEN command for each object.







Data Path Layout (DPL) Reference


DPAA2UM, Rev 50, 08/2022 


NXP Semiconductors 24-7
 


24.3.1 Child node: dpni
Table 94. Properties of “dpni” node


Example – declare DPNI-1 object with MAC address filter (16 entries), VLAN filter (16 entries), and QoS 
support for 3 traffic classes and 32 QoS table entries.


dpni@1{
options = “”;
mac_filter_entries = <16>;
vlan_filter_entries = <16>;


Property
Required / 
Optional


Expected Value(s) Description


options O One or more of comma-separated options may be selected from the list below.


"DPNI_OPT_TX_FRM_RELEASE" Please refer to the description of 
fields in the DPNI_CREATE 
command."DPNI_OPT_NO_MAC_FILTER"


"DPNI_OPT_HAS_POLICING"


"DPNI_OPT_SHARED_CONGESTION"


"DPNI_OPT_HAS_KEY_MASKING"


"DPNI_OPT_NO_FS"


“DPNI_OPT_HAS_OPR”


“DPNI_OPT_OPR_PER_TC”


“DPNI_OPT_SINGLE_SENDER”


“DPNI_OPT_CUSTOM_CG”


“DPNI_OPT_CUSTOM_OPR”


“DPNI_OPT_SHARED_HASH_KEY”


“DPNI_OPT_SHARED_FS”


“DPNI_OPT_STASHING_DIS”


fs_entries O 0 – 1024


vlan_filter_entries O 0 – 16


mac_filter_entries O 0 – 64


num_queues O 1 – 16 (LS2085, LS2088, LS1088) / 32 (LX2160)


num_tcs O 1 – 16


qos_entries O 0 – 64


num_rx_tcs O 0 – 8


num_cgs O 0 - 128


num_opr O 0 - 128


dist_key_size O 1 - 56


num_channels O 1 - 16







Data Path Layout (DPL) Reference


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 24-8
 


num_tcs = <3>;
qos_entries = <32>;


};


24.3.2 Child node: dpio


The “dpio” node specifies an instantiation of Data Path I/O (DPIO) object, where the DPIO ID is as 
specified in the node name “dpio@<id>”.


Table 95. Properties of “dpio” node


Example – declare DPIO-3 object with a local notifications channel and 8 priority classes for notifications:


dpio@3{
channel_mode = "DPIO_LOCAL_CHANNEL";
num_priorities = <8>;


};


24.3.3 Child node: dpbp


The “dpbp” node specifies an instantiation of Data Path Buffer Pool (DPBP) object, where the DPBP ID 
is as specified in the node name “dpbp@<id>”.


Table 96. Properties of “dpbp” node


Example – declare DPBP-5 object (no other properties are required):


dpbp@5{
};


Property
Required / 
Optional


Expected Value(s) Description


channel_mode R Select only one of the options from the list below


“DPIO_NO_CHANNEL” No notification channel


“DPIO_LOCAL_CHANNEL” Notifications associated with this DPIO 
will be received at the DPIO’s 
dedicated channel


num_priorities O <uint8_t> Number of priorities (1-8); relevant 
only if “DPIO_LOCAL_CHANNEL” is 
selected. Value defaults to 2.


Property
Required / 
Optional


Expected Value(s) Description


N/A







Data Path Layout (DPL) Reference


DPAA2UM, Rev 50, 08/2022 


NXP Semiconductors 24-9
 


24.3.4 Child node: dpcon


The “dpcon” node specifies an instantiation of Data Path Concentrator (DPCON) object, where the 
DPCON ID is as specified in the node name “dpcon@<id>”.


Table 97. Properties of “dpcon” node


Example – declare DPCON-1 object with 4 priority classes for scheduling.
dpcon@1{


num_priorities = <4>;
};


24.3.5 Child node: dpci


The "dpci” node specifies an instantiation of Data Path Communication Interface (DPCI) object, where 
the DPCI ID is as specified in the node name “dpci@<id>”.


Table 98. Properties of “dpci” node


Example – declare DPCI-1 object with 2 receive priorities.
dpci@1{


num_of_priorities = <2>;
};


24.3.6 Child node: dpseci


The ”dpseci” node specifies an instantiation of Data Path SEC Interface (DPSECI) object, where the 
DPSECI ID is as specified in the node name ”dpseci@<id>”.


Property
Required / 
Optional


Expected Value(s) Description


num_priorities R <uint8_t> Number of priorities (1-8) for 
scheduling


Property
Required / 
Optional


Expected Value(s) Description


num_of_priorities R <uint8_t> Number of receive priorities 
(queues) for the DPCI; valid range 
is 1-2.







Data Path Layout (DPL) Reference


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 24-10
 


Table 99. Properties of “dpseci” node


Example – declare DPSECI-1 object with 2 priorities for hardware processing.
dpseci@1{


priorities = <2 5 1 2 3 4 3 1>;
};


24.3.7 Child node: dpdmux


The “dpdmux” node specifies an instantiation of Data Path DeMux (DPDMUX) object, where the 
DPDMUX ID is as specified in the node name “dpdmux@<id>”.


Table 100. Properties of “dpdmux” node


Property
Required / 
Optional


Expected Value(s) Description


priorities R < 1 to 8 uint8_t values separated by spaces> Priorities for the SEC hardware 
processing; valid priorities are 
configured with values 1-8; if a 
single priority is required, set the 
second priority to 0.


num_tx_queues O <uint8_t> Num of queues towards the SEC


num_rx_queues O <uint8_t> Num of queues back from the SEC


Property
Required / 
Optional


Expected Value(s) Description


method R Defines the method of the DPDMUX address table.


“DPDMUX_METHOD_C_VLAN_MAC” DeMux based on C-VLAN and MAC 
address


“DPDMUX_METHOD_MAC” DeMux based on MAC address


“DPDMUX_METHOD_C_VLAN” DeMux based on C-VLAN


“DPDMUX_METHOD_S_VLAN” DeMux based on S-VLAN


manip O Required manipulation operation. Default is “DPDMUX_MANIP_NONE”


“DPDMUX_MANIP_NONE” No manipulation on frames


“DPDMUX_MANIP_ADD_REMOVE_S_VLAN” Add S-VLAN on egress, remove it on 
ingress


num_ifs R <uint16_t> Number of interfaces (excluding the 
uplink interface)


default_if O <uint16_t> Interface ID for desired default interface.







Data Path Layout (DPL) Reference


DPAA2UM, Rev 50, 08/2022 


NXP Semiconductors 24-11
 


Example – declare DPDMUX-1 object with 4 internal interfaces, no manipulation, and demux done based 
on MAC and VLAN:


dpdmux@1{
method = “DPDMUX_METHOD_C_VLAN_MAC”;
manip = “DPDMUX_MANIP_NONE”;
num_ifs = <4>;


};


24.3.8 Child node: dpsw


The “dpsw” node specifies an instantiation of Data Path Switch (DPSW) object, where the DPSW ID is as 
specified in the node name “dpsw@<id>”.


options O DPDMUX configuration options; One or more of comma-separated options may be 
selected from the list below.


“DPDMUX_OPT_BRIDGE_EN” Enable bridging between internal 
interfaces; allowed only if selected 
“method” is either 
“DPDMUX_METHOD_C_VLAN_MAC” 
or “DPDMUX_METHOD_MAC”


“DPDMUX_OPT_AUTO_MAX_FRAME_LEN” When this flag is set the DPDMUX 
maximum frame length is automatically 
updated by connected DPNI object.


“DPDMUX_OPT_CLS_MASK_SUPPORT” Controls availability of masking for 
custom classification rules.
0 - masking is not available, look-ups are 
always exact match and the look-up key 
associated with the frame must fully 
match the key in the classification table
1 - Masking is available, the look-up key 
associated with the frame must only 
match the part of the look-up table key 
which is not masked out.


max_dmat_entries O <uint16_t> Maximum entries in DPDMUX address 
table; 0 indicates default: 64 entries per 
interface


max_mc_groups O <uint16_t> Number of multicast groups in DPDMUX 
table; 0 indicates default: 32 multicast 
groups


max_vlan_ids O <uint16_t> max vlan ids allowed in the system -
relevant only case of working in 
mac+vlan method.
0 indicates default: 16 VLAN ids


mem_size O <uint16_t> Represents the number of 256byte 
buffers allocated for DPDMUX’s buffer 
pool. If 0, default value is used (1024).


Property
Required / 
Optional


Expected Value(s) Description







Data Path Layout (DPL) Reference


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 24-12
 


Table 101. Properties of “dpsw” node


Example – declare DPSW-1 object with 8 interfaces.
dpsw@1{


num_ifs = <8>;
};


24.3.9 Child node: dpmac


The "dpmac" node specifies an instantiation of Data Path MAC (DPMAC) object, where the DPMAC ID 
is as specified in the node name "dpmac@<id>".


Property
Required / 
Optional


Expected Value(s) Description


num_ifs R <uint16_t> Number of switch interfaces


options O Enable/ disable DPSW features


“DPSW_OPT_FLOODING_DIS” Disable flooding


"DPSW_OPT_CTRL_IF_DIS" Disable control interface


"DPSW_OPT_FLOODING_METERING_DIS" Disable flooding metering


“DPSW_OPT_MULTICAST_DIS” Disable Multicast support


"DPSW_OPT_METERING_EN" Enable metering


“DPSW_OPT_BP_PER_IF” Private buffer pool per interface.


"DPSW_OPT_LAG_DIS" Used to disable LAG.


max_vlans O <uint16_t> Maximum number of VLANs;
0 indicates default: 16 VLANs


max_fdbs O <uint16_t> Maximum number of FDBs;
0 indicates default: 16 FDBs


max_fdb_entries O <uint16_t> Number of FDB entries for default 
FDB table; 0 indicates default: 1024 
entries


fdb_aging_time O <uint16_t> Default FDB aging time for default 
FDB table; 0 indicates default: 300 
seconds


max_fdb_mc_groups O <uint16_t> Number of multicast groups in each 
FDB table; 0 indicates default: 32 
multicast groups


max_meters_per_if O <uint8_t> Number of meters per interface


mem_size O <uint16_t> Represents the number of 256byte 
buffers allocated for DPSW’s buffer 
pool or for all buffer pools if 
DPSW_OPT_BP_PER_IF options 
is used. If 0, default value is used 
which depends on number of 
interfaces.







Data Path Layout (DPL) Reference


DPAA2UM, Rev 50, 08/2022 


NXP Semiconductors 24-13
 


Table 102. Properties of "dpmac" node


Example — declare DPMAC-1.
dpmac@1{


};


24.3.10 Child node: dpdcei


The "dpdcei" node specifies an instantiation of Data Path Data Compression Interface (DPDCEI) object, 
where the DPDCEI ID is as specified in the node name "dpdcei@<id>".


Table 103. Properties of "dpdcei" node


Example — declare DPDCEI-1.
dpdcei@1{


engine = "DPDCEI_ENGINE_COMPRESSION";
tx_priority = <1>;


};


24.3.11 Child node: dpdmai


The "dpdmai" node specifies an instantiation of Data Path DMA Interface (DPDMAI) object, where the 
DPDMAI ID is as specified in the node name "dpmai@<id>".


Table 104. Properties of "dpdmai" node


Example — declare DPDMAI-1.


Property
Required / 
Optional


Expected Value(s) Description


N/A


Property
Required / 
Optional


Expected Value(s) Description


engine R DCE engine block 


DPDCEI_ENGINE_COMPRESSION Compression engine


DPDCEI_ENGINE_DECOMPRESSION Decompression engine


priority R <int> Priority for the DCE hardware 
processing (valid values 1-8). 


Property
Required / 
Optional


Expected Value(s) Description


priorities R < 1 or 2 uint8_t values separated by spaces> Priorities for the DMA hardware 
processing; valid priorities are 
configured with values 1-8; the entry 
following last valid entry should be 
configured with 0.







Data Path Layout (DPL) Reference


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 24-14
 


dpdmai@1{
priorities = <2 5>;


};


24.3.12 Child node: dpmcp


The "dpmcp" node specifies an instantiation of Data Path MC Portal (DPMCP) object, where the DPMCP 
ID is as specified in the node name "dpmcp@<id>".


Table 105. Properties of "dpmcp" node


Example — declare DPMCP-1.
dpmcp@1{
};


24.3.13 Child node: dpaiop


The "dpaiop" node specifies an instantiation of Data Path AIOP (DPAIOP) object, where the DPAIOP ID 
is as specified in the node name "dpaiop@<id>".


Table 106. Properties of "dpaiop" node


Example — declare DPAIOP-1.
dpaiop@1{


aiop_container_id = <1>;


};


24.4 Node: connections


The “connections” node specifies the initial object topology. The “connections” node has no properties of 
its own, and it only contains child nodes that specify the required connections. 


Property
Required / 
Optional


Expected Value(s) Description


options O DPMCP configuration options; One or more of 
comma-separated options may be selected from the 
list below.


Please refer to the description of 
fields in the DPMCP_CREATE 
command.


“DPMCP_OPT_HIGH_PRIO_CMD_DIS”


Property
Required / 
Optional


Expected Value(s) Description


aiop_container_id R <int> AIOP container ID







Data Path Layout (DPL) Reference


DPAA2UM, Rev 50, 08/2022 


NXP Semiconductors 24-15
 


24.4.1 Child node: connection


The “connection@<n>” node declares a connection between two objects; multiple “connection” nodes 
may be declared in a “connections” node. The value of <n> has no significance. The connection is 
completely symmetric in nature, and therefore the “endpoint1” and “endpoint2” properties below are 
interchangeable – there is no significance to which object is listed as “endpoint1” and which is listed as 
“endpoint2.”


Table 107. Properties of “connection” node


Example – set up one connection between DPNI-1 and DPMAC-2, and another connection between 
DPMAC-3 and interface #1 of DPSW-1:


connections {
connection@1{


endpoint1 = "dpni@1";
endpoint2 = "dpmac@2";


};
connection@2{


endpoint1 = "dpsw@1/if@1";
endpoint2 = "dpmac@3";


};
};


Property
Required / 
Optional


Expected Value(s) Description


endpoint1 R “<object>@<id>” or 
“<object>@<id>/if@<if_id>”


Examples: “dpni@3”, “dpsw@5/if@1”


Object name and ID to connect with endpoint2 object; 
objects with multiple interfaces (such as DPSW), must 
specify also the interface ID


endpoint2 R Peer object name and ID to connect with the first object; for 
objects with multiple interfaces (such as DPSW), must 
specify also the interface ID


committed_rate O <uint32_t> Committed rate (Mbits/s)


max_rate O <uint32_t> Maximum rate (Mbits/s)







Data Path Layout (DPL) Reference


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 24-16
 







Data Path Configuration (DPC) Reference


DPAA2UM, Rev 50, 08/2022 


NXP Semiconductors 25-1
 


Chapter 25  Data Path Configuration (DPC) Reference
The MC is capable of consuming a binary data structure named the Data Path Configuration (DPC) that 
describes the initial board configuration when the system is initialized; it is processed only once before 
MC is initialized.


The DPC is based on a text source file that is similar in syntax to a device tree source file, and compiled 
with DTC (Device Tree Compiler) to form a binary structure (blob). This binary structure is loaded by the 
SoC boot program (U-Boot, for example) as an MC input. The purpose of the DPC is to provide inputs to 
MC on DPAA configuration constraints for current system or board.


This section describes the DPC syntax. The DPC source file syntax is a ‘tree’ of named nodes and 
properties. Nodes contain properties (name and value pairs), and also optionally child nodes.


25.1 High-level DPC structure


The DPC structure is composed of these top-level nodes:


• “mc_general”—contains general configuration for MC firmware, such as logging options.


• “resources”—contains the initial set of system resources for MC.


• “controllers”—may be used to override the default configuration of DPAA controllers.


• “board_info”—contains various board hardware constraints.


• “memory”—provides additional information to MC about existing memories, eg. DP-DDR.


Example – high level DPC structure:


/dts-v1/;
/ {


mc_general {
. . . 


};
resources {


. . .
};
controllers {


. . .
};
board_info {


. . .
};
memory {


. . .
};


};


The following sections describe each of the top-level nodes in more detail.







Data Path Configuration (DPC) Reference


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 25-2
 


25.2 Node: mc_general


The “mc_general” node contains general configuration for MC firmware, such as logging options for DDR 
log (child node: log) and UART console log (child node: console).


25.2.1 Child node: log


The “log” node specifies the configuration of the log which is buffered in DDR. 


Table 108. Properties of “log” node


Note: The time-stamping is enabled only if mode = “LOG_MODE_ON” and level = “LOG_LEVEL_INFO” or lower 
level. The displayed value is expressed in microseconds. By default, time-stamping is OFF.


Example – declare log mode ON with ‘debug’ log level:


log {
mode = “LOG_MODE_ON”;
level = “LOG_LEVEL_DEBUG”;


};


Property
Required / 
Optional


Expected Value(s) Description


mode O “LOG_MODE_ON” set log mode to ON or OFF.
default is “LOG_MODE_ON”


“LOG_MODE_OFF”


level O “LOG_LEVEL_GLOBAL” set the requested log level


“LOG_LEVEL_DEBUG”


“LOG_LEVEL_INFO”


“LOG_LEVEL_WARNING”


“LOG_LEVEL_ERROR”


“LOG_LEVEL_CRITICAL”


“LOG_LEVEL_ASSERT”


level-<module> O “LOG_LEVEL_GLOBAL” set the requested log level for 
<module> (see example below)


“LOG_LEVEL_DEBUG”


“LOG_LEVEL_INFO”


“LOG_LEVEL_WARNING”


“LOG_LEVEL_ERROR”


“LOG_LEVEL_CRITICAL”


timestamp O “LOG_TIMESTAMP_ON” enable time-stamping for every 
command sent to MC (see example 
below) Note“LOG_TIMESTAMP_OFF”







Data Path Configuration (DPC) Reference


DPAA2UM, Rev 50, 08/2022 


NXP Semiconductors 25-3
 


Example – as previous example, but set separate levels for DPNI and DPMAC:


log {
mode = “LOG_MODE_ON”;
level = “LOG_LEVEL_DEBUG”;
level-DPNI = "LOG_LEVEL_ERROR"
level-DPMAC = "LOG_LEVEL_INFO"


};


Example – enable time-stamping with ‘info’ log level:


log {
mode = “LOG_MODE_ON”;
level = “LOG_LEVEL_INFO”;
timestamp = "LOG_TIMESTAMP_ON";


};


25.2.2 Child node: console


The “console” node specifies the configuration of the UART console log.


If CONSOLE_MODE_ON all commands take longer time to execute!


The log level and log level module are the same with those set in child node: log.


Table 109. Properties of “console” node


Example – declare console mode ON on UART ID 2:


console {
mode = “CONSOLE_MODE_ON”;
uart_id = <2>;


};


Property
Required / 
Optional


Expected Value(s) Description


mode O “CONSOLE_MODE_ON” set console log mode to ON or OFF.
default is “LOG_MODE_OFF”


“CONSOLE_MODE_OFF”


uart_id O 1 - 4 set the desired UART ID







Data Path Configuration (DPC) Reference


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 25-4
 


25.3 Node: resources


The “resources” node contains the initial set of system resources for MC.


25.3.1 Child node: icid_pools


The “icid_pools” node specifies the initial set of ICID pools for MC. The MC uses the ICID pools to assign 
an ICID value to a newly created container. Multiple “icid_pool” nodes may be declared. A child node is 
defined for each “icid_pool” as following:


25.3.1.1 Child node: icid_pool


For each “icid_pool” the node name is “icid_pool@<id>”. 


Table 110. Properties of “icid_pool” node


Example – declare two icid pools:


icid_pools {
icid_pool@1 {


base_icid = <0>;
num = <10>;


};
icid_pool@2 {


base_icid = <30>;
num = <100>;


};
};


Property
Required / 
Optional


Expected Value(s) Description


base_icid R <uint32_t> First value in the range of ICIDs


num R <int> Number of consequent ICIDs in the 
pool







Data Path Configuration (DPC) Reference


DPAA2UM, Rev 50, 08/2022 


NXP Semiconductors 25-5
 


25.4 Node: controllers


The “controllers” node may be used to override the default configuration of DPAA controllers.


25.4.1 Child node: qbman


The “qbman” node may be used to override selected items of the QBMan controller’s default 
configuration. 


Table 111. Properties of “qbman” node


Example – declare QBMAN:


qbman {
total_bman_buffers = <1000000>;
wq_ch_conversion = <8>;
pfdr_peb_size_kb = <128>;
oree_mode = OREE_MODE_ON;


};


Property
Required / 
Optional


Expected Value(s) Description


total_bman_buffers O <uint32_t> Specify the total number of buffers that the BMan needs 
to handle.
Default is 900K buffers.
This parameter impacts the minimum memory size 
required by MC to work properly (see Table 3-1 for 
details).
Maximum accepted value is 0x9EB100 (10400000 in 
decimal)


wq_ch_conversion O <uint16_t> Specify the number of WQ channels to convert from 
8-WQ mode (with 8 priorities) to 2-WQ mode (with 2 
priorities). An 8-WQ channel will be converted to four 
2-WQ channels. Default is 0.


pfdr_peb_size_kb O <uint32_t> Configure the size occupied by PFDR (Packet Frame 
Descriptor Record) entries in PEB.
Supported values: 128, 256, 512, 1024


oree_mode O OREE_MODE_ON/
OREE_MODE_OFF


Used to enable Order Restoration External memory 
access. It will increase the number of packets on which 
ordering can be maintained from 512 to 2048.







Data Path Configuration (DPC) Reference


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 25-6
 


25.5 Node: board_info


The “board_info” node contains various board hardware constraints. 


25.5.1 Child node: ports


The “ports” node specifies board-specific configuration of hardware ports. 


25.5.1.1 Child node: mac


For more information on what ethernet protocols are supported on each MAC, please see 2.1.1.2, “Data 
Path MAC (DPMAC).


For each MAC the node name is “mac@<id>”. 


Table 112. Properties of “mac” node


Property
Required/ 
Optional


Expected Value(s) Description


link_type O MAC link types.
These options select which source will be used by the MC firmware to report link state indications 
for this DPMAC interface. If this property is not specified, the default value is 
"MAC_LINK_TYPE_FIXED". DPAA2 objects connected to this DPMAC, such as DPNI, see an 
abstracted link state communicated by MC through the DPNI_GET_LINK_STATE API and are 
unaware of the different sources that MC uses to report link information from.


“MAC_LINK_TYPE_NONE” This DPMAC interface is disabled by MC


“MAC_LINK_TYPE_FIXED” Link state information for this DPMAC is obtained by the MC 
firmware by periodically polling the PCS on the interface's internal 
MDIO bus. In case of interfaces that do not pass through the 
SerDes block (RGMII) the link is always reported as up. Link 
speed is reported as the maximum supported by the interface. 
PCS auto-negotiation is enabled by default and can be controlled 
through the "pcs_autoneg" property. In this mode, the MC 
firmware internal has exclusive ownership over both the internal 
MDIO bus and over the link state reporting.


“MAC_LINK_TYPE_PHY” Link state information for this DPMAC is obtained externally to the 
MC firmware, and communicated to MC through the 
DPMAC_SET_LINK_STATE API. The internal MDIO bus of the 
interface is not accessed by the MC firmware in this mode. For 
example, an operating system running on the GPP may retrieve 
the link state either from the PCS on the internal MDIO bus, or 
from a PHY connected to the external MDIO bus, and transmit the 
information to the MC.


“MAC_LINK_TYPE_RECYC
LE”


Using this type for MAC, the physical port associated with it will be 
used as recycle port.


"MAC_LINK_TYPE_BACKP
LANE"


The specified MAC is used in Backplane setup using one of the 
following KR protocols: 10GBase-KR, 25GBase-KR, 
40GBase-KR.
Basically using this link type will skip the serdes configuration in 
MC firmware for this lane and let the Backplane kernel driver to 
apply correct serdes configuration according to desired KR link.







Data Path Configuration (DPC) Reference


DPAA2UM, Rev 50, 08/2022 


NXP Semiconductors 25-7
 


port_mac_address O <uint8_t uint8_t uint8_t 
uint8_t uint8_t uint8_t>


Mac Address to use on this physical port


pcs_autoneg O on/off Available only for SGMII.
When it is on the port can auto negotiate the speed.


fec_mode O DPMAC fec mode
default is “rs”


Configurable only for 25G interfaces


“none” RS-FEC (enabled by default) is disabled


“rs” RS-FEC (Clause 91) mode configured


“fc” FC-FEC (Clause 74) mode configured (not yet supported)


enet_if O “MAC_ENET_IF_1000BASE
X”


Configures the port in 1000BASE-X mode.


“XFI” 10GBase-R Ethernet


“USXGMII” 10G USXGMII Ethernet


“CAUI” 25GBase-R operation


“SGMII” Configures the interface in Serial Gigabit MII, supporting speeds 
up to 1G (auto-negotiation result) and 2.5G.


serdes_cfg O “default” This is the default configuration.


“sfi” Can be used with XFI and XLAUI4 interfaces from a SFI 
compatible SerDes, currently available on LX2 SoC.
This is the default operating mode for XFI interfaces, while the 
XLAUI4 interfaces run with full amplitude and no de-emphasis as 
default settings. 
This mode will apply equalization settings that will bring the 
electrical interface in the SFI specifications.


“custom” It allows the user to manually configure the type of equalization, 
amplitude, preq and post1q settings.
Can be used with all interfaces except RGMII.


For serdes_cfg “custom” mode are available the following settings. If one or more of the below parameters are not 
specified, SerDes protocol’s default value will be used.


serdes_eq O <uint8_t> Number of levels of TX equalization


serdes_amp O <uint8_t> Overall transmit amplitude reduction


serdes_preq O <uint8_t> Drive strength of TX full swing transition bit to precursor


serdes_post1q O <uint8_t> Drive strength of full swing transition bit to first post-cursor


Property
Required/ 
Optional


Expected Value(s) Description







Data Path Configuration (DPC) Reference


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 25-8
 


Example 1– declare two macs, mac-1 is fixed link and mac-3 uses an external PHY:


ports {
mac@1 {


link_type = “MAC_LINK_TYPE_FIXED”;
};
mac@3 {


link_type = “MAC_LINK_TYPE_PHY”;
port_mac_address = <0x00 0x04 0x9F 0x01 0x03 0x94>;


};
mac@5 {


link_type = “MAC_LINK_TYPE_NONE”;
port_mac_address = <0x00 0x04 0x9F 0x01 0x03 0x94>;
fec_mode = “none”;


};
mac@6 {


link_type = “MAC_LINK_TYPE_NONE”;
port_mac_address = <0x00 0x04 0x9F 0x01 0x03 0x94>;
fec_mode = “none”;
enet_if = “USXGMII”


};


};


max_rate O Max_rate parameter for a MAC node
This parameter specifies max_rate that will be achieved using this port. If this value is provided 
MC firmware will allocate resources to support the rate from DPC file. If not provided MC will 
allocate for respective port resources to support maximum rate available. This option is used to 
manage the usage of internal resources (such as internal FIFO) when application do not intend 
to use full port bandwidth.
Example: if the port supports 100G but the application need only 50G the designer will specify 
this in max_rate parameter. The MC will allocate for this port resources needed to 50G instead 
of allocating resources to support 100G.


“1G” Maximum rate 1G.


“2.5G” Maximum rate 2.5G.


“5G” Maximum rate 5G.


“10G” Maximum rate 10G.


“20G” Maximum rate 20G.


“25G” Maximum rate 25G.


“40G” Maximum rate 40G.


“50G” Maximum rate 50G.


“100G” Maximum rate 100G.


ceetm_instance O 0, 1 Configure CEETM instance used to perform connections with this 
port. Needed to balance the QBMAN resource allocation when 
the application uses dpni objects with more than one channel.


Property
Required/ 
Optional


Expected Value(s) Description







Data Path Configuration (DPC) Reference


DPAA2UM, Rev 50, 08/2022 


NXP Semiconductors 25-9
 


Example 2 - declare two macs, mac-3 is XFI on LX2 using “sfi” serdes configuration and mac-4  is 
USXGMII using “custom” serdes configuration. Also for mac-4 set max_rate to 5G.


ports {


mac@3 {
link_type = “MAC_LINK_TYPE_PHY”;
port_mac_address = <0x00 0x04 0x9F 0x01 0x03 0x94>;
serdes_cfg = “sfi”;


};
mac@4 {


link_type = “MAC_LINK_TYPE_PHY”;
port_mac_address = <0x00 0x04 0x9F 0x01 0x03 0x94>;
enet_if = “USXGMII”;
serdes_cfg = “custom”;
serdes_eq = <1>;
serdes_amp = <0>;
serdes_preq = <0>;
serdes_post1q = <0>;
max_rate = <5000>;


};


};


25.5.2 Child node: recycle_ports


The “recycle_ports” node permits to reduce the FIFO consumption for the recycle ports by reducing their 
rates and by not exceeding the total FIFO size available. The FIFO size is device specific. It’s not always 
mandatory to have both of them specified in the DTC file.


By default the MC firmware configures 2 x RECYCLE ports and allocates FIFOs for each of them on 
ingress and egress directions. Each RECYCLE is rated as a 50G port which means that the number of 
allocated FIFOs equals to the number of FIFOs reserved for a 50G port (on each direction).


Property
Required / 
Optional


Expected Value(s) Description


max_rate O The FIFO distribution based on the physical port speed.


“1G” 0x02F


“2.5G” 0x02F


“5G” 0x033


“10G” 0x037


“20G” 0x03F


“25G” 0x03F


“40G” 0x07F


“50G” 0x07F


“100G” 0x0FF







Data Path Configuration (DPC) Reference


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 25-10
 


recycle_ports {
recycle@2 {


max_rate = “10G”;
};
recycle@1 {


max_rate = “10G”;
};


};







Data Path Configuration (DPC) Reference


DPAA2UM, Rev 50, 08/2022 


NXP Semiconductors 25-11
 


25.6 Node: memory


The “memory” node contains information about the existing memories on the board. These properties may 
help to efficiently allocate system memories.  The properties are presented in the following table.


Example – Set DP-DDR memory size to ‘0’ and provide custom bounds for MC space within the system 
DDR:


memory { 
dpddr_size = <0x0>; 
mc_sys_ddr_start_address = <0x83 0xa000000f>; 
mc_sys_ddr_end_address = <0x83 0xffe00000>; 


};


Table 113. Properties of “memory” node


Property
Required / 
Optional


Expected Value(s) Description


dpddr_size O <uint32_t> Specify a custom DP-DDR size. Note that if the value is ‘0’ 
then MC will not use this memory for AIOP resources.


mc_sys_ddr_start_address O <uint32_t uint32_t> Indication for MC about the actual start address of the 
system DDR partition allocated for MC and AIOP resources.


mc_sys_ddr_end_address O <uint32_t uint32_t> Indication for MC about the actual end address of the system 
DDR partition allocated for MC and AIOP resources.







Data Path Configuration (DPC) Reference


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 25-12
 







Use case scenarios


DPAA2UM, Rev 50, 08/2022 


NXP Semiconductors 26-1
 


Chapter 26  Use case scenarios


26.1 Steps to verify 1000BASE-X on LS1088A QDS


While 1000Base-X is not supported explicitly, MC supports SGMII using 1000Base-X auto-negotiation 
instead of the SGMII scheme. Physically and electrically it is still SGMII, though to the PCS SW, it would 
look like 1000Base-X.


26.1.1 Preparation


26.1.1.1 Hardware


• LS1088AQDS board with LS1088A Rev 1.0


• 4 ports Vitesse SGMII riser card (SCH-24801 REVA1, with Vitesse PHY VSC8234)


26.1.1.2 Software and firmware


• Uboot from LSDK1706 


• MC binary that supports 1000BASE-X mode


• DPC file


26.1.1.3 RCW


• Serdes 1 = 0x15 (1133)


26.1.1.4 Board setup


To setup the board, follow these steps:


1. Plug a Vitesse SGMII riser card in LS1088AQDS slot 1 


2. Connect PORT 3 (the very bottom one) of the SGMII card to the company network (or any host). 
PORT 3 of the SGMII card is now linked to DPMAC3@sgmii. 


3. Program uboot to QSPI (in order for it to boot) and MC binary to QSPI offset 0xa00000.


26.1.2 Test procedures


26.1.2.1 Verify that SGMII MC works with SGMII PHY


1. Check the SGMII is in working order.


2. In DPC, make sure you have the following nodes:


boards {


ports {


mac@3 {


pcs_autoneg = "on";







Use case scenarios


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 26-2


};


};


};


In this case, the default Ethernet interface of MC supports SGMII mode, with auto negotiation ON. 


3. Create dpc.dtb and program it to QSPI flash offset 0xe00000.


4. Boot up uboot and make sure MC is correctly loaded. (MC binary is at 0xa00000, DPC is at 
0xe00000).


5. Run following sequence and verify that the host is alive.


=> setenv ipaddr <your_ip>


=> setenv serverip <host_ip>


=> setenv ethact DPMAC3@sgmii


=> ping $serverip


DPMAC3@sgmii Waiting for PHY auto negotiation to complete.. done


Using DPMAC3@sgmii device


host 10.81.55.3 is alive


26.1.2.2 Verify that SGMII MC does not work with 1000BaseX PHY


1. Run the following commands in U-Boot:


=> mdio list


FSL_MDIO0:


LS1088A_QDS_MDIO0:


1 - RealTek RTL8211F <--> DPMAC4@rgmii


LS1088A_QDS_MDIO1:


2 - RealTek RTL8211F <--> DPMAC5@rgmii


LS1088A_QDS_MDIO2:


1e - Vitesse VSC8234 <--> DPMAC7@sgmii


1f - Vitesse VSC8234 <--> DPMAC3@sgmii


=> mdio read DPMAC3@sgmii 0x17


Reading from bus LS1088A_QDS_MDIO2


PHY at address 1f:


23 - 0xa022


=> mdio write DPMAC3@sgmii 0x17 0xe024                    # set PHY 
to 1000BASE-X mode


=> mdio read DPMAC3@sgmii 0x0


Reading from bus LS1088A_QDS_MDIO2


PHY at address 1f:


0 - 0x1040


=> mdio write DPMAC3@sgmii 0x0 0x9040                    # soft 
reset PHY


=> mdio read DPMAC3@sgmii 0x17







Use case scenarios


DPAA2UM, Rev 50, 08/2022 


NXP Semiconductors 26-3
 


Reading from bus LS1088A_QDS_MDIO2


PHY at address 1f:


23 - 0xe024


=> ping $serverip


DPMAC3@sgmii Waiting for PHY auto negotiation to complete.. done


Using DPMAC3@sgmii device


ARP Retry count exceeded; starting again


ping failed; host 10.81.55.3 is not alive


=>


26.1.2.3 Modify DPC for MC to support 1000BaseX


1. Modify DPC file, to configure MC supporting 1000BASE-X mode


boards {


ports {


mac@3 {


enet_if = "1000BASEX";


pcs_autoneg = "on";


};


};


};


In this case, the Ethernet interface of MC supports 1000BASE-X mode, with auto negotiation ON.


2. Create dpc.dtb and program it to QSPI flash offset 0xe00000


3. Reboot uboot, make sure MC is correctly loaded. (MC binary is at 0xa00000, DPC is at 0xe00000)


4. Run following sequence to set PHY to 1000BASE-X mode, then ping host server. You should see 
ping is successful in 1000BASE-X mode.


=> setenv ipaddr <board_ip>
=> setenv serverip <host_ip>
=> setenv ethact DPMAC3@sgmii
=> mdio list
FSL_MDIO0:
LS1088A_QDS_MDIO0:
1 - RealTek RTL8211F <--> DPMAC4@rgmii
LS1088A_QDS_MDIO1:
2 - RealTek RTL8211F <--> DPMAC5@rgmii
LS1088A_QDS_MDIO2:
1e - Vitesse VSC8234 <--> DPMAC7@sgmii
1f - Vitesse VSC8234 <--> DPMAC3@sgmii
=> mdio read DPMAC3@sgmii 0x17







Use case scenarios


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 26-4


Reading from bus LS1088A_QDS_MDIO2
PHY at address 1f:
23 - 0xa022
=> mdio write DPMAC3@sgmii 0x17 0xe024                             
# set PHY to 1000BASE-X mode
=> mdio read DPMAC3@sgmii 0x0
Reading from bus LS1088A_QDS_MDIO2
PHY at address 1f:
0 - 0x1040
=> mdio write DPMAC3@sgmii 0x0 0x9040                              
# soft reset PHY
=> mdio read DPMAC3@sgmii 0x17
Reading from bus LS1088A_QDS_MDIO2
PHY at address 1f:
23 - 0xe024
=> ping $serverip
Using DPMAC3@sgmii device
host 10.81.55.3 is alive
=>


26.2 Steps to verify PHYless on LS1088A QDS


The MC firmware requires no extra configuration to make a PHYless connection.


26.2.1 Preparation


26.2.1.1 Hardware


• 2 of LS1088AQDS boards, with LS1088A Rev 1.0. The boards are labeled Board A and Board B.


• 1 of 4 ports used per SFP riser card (700-26908 REV X1). The cards are labeled Card A and Card 
B.


• 2 of Finisar SFP modules, (FTLX8571D3BCL), and one multi-mode crossover fiber cable


OR
• One Direct Attached Cable (Tyco Electronics, 2127934-3 D)


26.2.1.2 Software and firmware


• Uboot that has PHYless SGMII support


• MC binary that supports SGMII


• DPC file


26.2.1.3 RCW


• Serdes 1 = 0x15 (1133)







Use case scenarios


DPAA2UM, Rev 50, 08/2022 


NXP Semiconductors 26-5
 


26.2.1.4 Board setup


• Plug the SFP riser card A in slot 1 of LS1088AQDS Board A


• Plug the SFP riser card B in slot 1 of LS1088AQDS Board B


• Insert Finisar SFP modules to SFP cage 3 (the very top one) of both Card A and Card B, and 
connect them with multi-mode crossover fiber cable. (Pic. 1)


OR
• Plug each end of the Direct Attached Cable to SFP cage 3 (the very top one) of both Card A and 


Card B (Pic. 2)


Program uboot, MC and DPC to QSPI so uboot can boot up and MC/DPC can be loaded.


Figure 704. Multi-mode crossover fiber cable







Use case scenarios


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 26-6


Program uboot, MC and DPC to QSPI so uboot can boot up and MC/DPC can be loaded.


Figure 705. Cable attached directly


26.2.2 Test procedures


1. Setup up network parameters on Board A.


=> setenv ethact DPMAC3@sgmii
=> setenv ipaddr 1.1.1.1        


2. Set up network parameters on Board B. 


Note: Since server IP is dummy, you may need Board B to tftp a dummy file from the 
dummy server so that it can respond to a ping.


=> setenv ethact DPMAC3@sgmii
=> setenv ipaddr 1.1.1.2
=> setenv serverip 1.1.1.10


3. Send a Tftp a fake file on Board B.







Use case scenarios


DPAA2UM, Rev 50, 08/2022 


NXP Semiconductors 26-7
 


=> tftp afile
Using DPMAC3@sgmii device
TFTP from server 1.1.1.10; our IP address is 1.1.1.2
Filename 'afile'.
Load address: 0x90100000
Loading: *


4. Ping from Board A to Board B, while Board B is in polling status. To get a working Board B.


=> ping 1.1.1.2
Using DPMAC3@sgmii device
host 1.1.1.2 is alive







Use case scenarios


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 26-8







Logging and Debugging


DPAA2UM, Rev 50, 08/2022 


NXP Semiconductors 27-1
 


Chapter 27  Logging and Debugging


27.1 MC console in Uboot







Logging and Debugging


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors 27-2


27.2 MC/AIOP console in Linux


Kernel configuration options


The FSL_LS2_CONSOLE option is used to enable/disable the MC/AIOP console in Linux.


Linux read console


In Linux the MC console can be read from /dev/fsl_mc_console and the AIOP console can be read from 
/dev/fsl_aiop_console.


Example:


       cat /dev/fsl_mc_console


       cat /dev/fsl_aiop_console







Known Limitations


DPAA2UM, Rev 50, 08/2022 


NXP Semiconductors 28-1
 


Chapter 28  Known Limitations


28.1 Reset of MC objects with FQs associated with a channel


Although the MC supports individual object reset, there are some situations were it works only in certain 
configurations.


The reset command can fail on MC objects connected to a DPCON or objects with FQs destination 
configured to a DPIO/DPCON channel (e.g. DPNI) if the respective FQs are not empty. The workaround 
is to place all objects that contribute to that channel in a single container, including the DPIOs and DPCON 
objects. The DPRC_RESET will handle reset on all contained objects and properly clear the FQs 
associated with a DPIO/DPCON channel.


This limitation is caused by a QMan limitation.


28.2 Reconfiguring FQs associated with a channel


This limitation has the same root cause as Section 28.1, “Reset of MC objects with FQs associated with a 
channel,” but it is visible to the user when trying to reconfigure a RX queue that was previously configured 
to a DPCON channel.


The workaround is the same as in Section 28.1, “Reset of MC objects with FQs associated with a channel.”


28.3 DPSW - Link Aggregation
• LAG groups can only be configured with ports from the following two sets: {1, 2, 3, 4, 9, 10, 11, 


12} or {5, 6 ,7 ,8, 13, 14, 15, 16}, where IDs represent DPMAC IDs.


E.g.:


LAG group 1: {1, 3, 9, 12} - supported


LAG group 2: {3, 4, 7, 8} - not supported


• LAG groups can only be configured with ports from the same CEETM instance. Otherwise, the 
command will return an error.


• The first interface to be added into a LAG group cannot be removed from the group before the other 
interfaces. The command will return an error in this case


• The slave ports TX frames counters queried via dpsw_get_if_counters API show 0, all TX frames 
are counted by the master interface counters (please refer to DPSW chapter for details about master 
and slave ports). MAC counters are incremented properly for all the ports in the LAG group.


28.4 DPSPARSER


DPSPARSER_DESTROY command doesn’t destroy the DPSPARSER object.


DPSPARSER_APPLY_SPB must be invoked before applying the DPL.







Known Limitations


DPAA2UM, Rev 50, 08/2022 


NXP Semiconductors 28-2
 


28.5 DPSW - LS2080/85 drops any IPv6 packets


The ACL table will drop any IPv6 packets on LS2080/85, regardless of whether any ACL rules are added 
or not.


28.6 DPSW & DPDMUX - Interrupt handling


With MC versions between 10.26.0 and 10.32.0, because of a bug in the interrupt handling inside MC, the 
user is advised to request all interrupt sources on DPSW and DPDMUX objects when calling 
dpsw_get_irq_status or dpdmux_get_irq_status. Without a change like this, interrupts for link changed 
will not be sent by MC to the application which will eventually lead to the application not knowing that 
the link on the ports is up.







Revision History


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors A-1
 


Appendix A  Revision History


Document Version Changes


Rev 50 – Added a new field phase in DPSW_LAG_SET command 
structure.


– Added DPSW_SET_SP_PROFILE API new API


– Added DPDMUX_SET_SP_PROFILE API new API


– Added DPSW_SP_ENABLE API new API


– Added DPDMUX_SP_ENABLE API new API


– Added DPSECI_GET_RX_QUEUE_STATUS and 
DPSECI_GET_TX_QUEUE_STATUS API new API


– Modified bits in both command structures of 
DPDMUX_SET_RESETABLE and 
DPDMUX_GET_RESETABLE.


Rev 49 – Added a new field ceetm_ch_idx in both 
DPNI_GET_TX_CONFIRMATION_MODE and 
DPNI_SET_TX_CONFIRMATION_MODE command 
structures


– Added 
DPNI_SET_QUEUE_TX_CONFIRMATION_MODE API 
new API


– Added 
DPNI_GET_QUEUE_TX_CONFIRMATION_MODE API 
new API


Rev 48 – Added DPNI_SP_ENABLE API new API.


– Added hardware limitations for DPDMUX and DPSW 
regarding interrupt handling


– Added new child node “recycle_ports” for node “board” in 
DTC


– Updated description for IF_ID field in 
DPDMUX_IF_SET_ERRORS_BEHAVIOR.


– Added a more detailed description for the 
PRIORITY_MASK field in DPNI_SET_POOLS command


– Added the number of max interfaces in DPSW_CREATE 
command







Revision History


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors A-2
 


Rev 47 – Added new DPMCP_CREATE options field. The first 
option introduced is 
DPMCP_OPT_HIGH_PRIO_CMD_DIS


– Added PTP_ONESTEP_REG_BASE new parameter to 
DPNI_GET_SINGLE_STEP_CFG command


– Added new DPNI_OPT_STASHING_DIS to 
DPNI_CREATE command


– Added new DPMAC_SET_PROTOCOL API


– Added information about the protocol reconfiguration of a 
DPMAC object


Rev 46 – Made DPRTC object singleton


– Restricted L2_ETHER_TYPE in ACL KEY to match 
0x0800 and mask 0xFFFF if the ACL KEY uses L3 src/dst 
addresses


– Added DPSW_IF_SET_TX_SHAPING new API


– Added hardware limitation on LS2080/85: any IPv6 packets 
will be dropped in DPSW


Rev 45 – Added DPSW_UP_NO_CHANGE value to 
PRIORITY_SELECTOR field in 
DPSW_IF_SET_TX_SELECTION command


– Added DPSW_IF_SET_PRIO_SELECTOR new API


– Added DPRC_GET_MEM new API


– Added DPNI_HEADER_STASHING and 
DPNI_PAYLOAD_STASHING offload types to 
DPNI_SET_OFFLOAD and DPNI_GET_OFFLOAD


– Added NUM_OPR field to DPNI_GET_ATTRIBUTES API


Rev 44 – Removed DPSW_OPT_VLAN_MISS option from 
DPSW_CREATE command and Table 101. Properties of 
“dpsw” node


– Added _ENDPOINT_CHANGED interrupts for DPDMUX, 
DPSW and DPMAC


– Increased the number of DPNI queues to 2 * number of cores


Document Version Changes







Revision History


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors A-3
 


Rev 43 – Updated copyright page


– Added MAC_LINK_TYPE_BACKPLANE link_type field 
to Table 112. Properties of “mac” node from Chapter 25.5


– Updated enet_if property in Table 112


– Corrected the section that displays max_rate possible values 
in Table 112


– Added ceetm_instance entry into Table 112


– Updated FLAGS field for DPRC_GET_OBJ and 
DPRC_GET_OBJ_DESC command responses.


– Added DPRC_REGION_SHARED flag to 
DPRC_GET_OBJ_REGION command


– Updated DPMAC_RESET command description.


– Added num_channels entry into Table 94. Properties of 
“dpni” node from Chapter 24.3.1


– Added new API command DPNI_GET_QDID_EX


– Added NUM_CHANNELS field to DPNI_CREATE and 
DPNI_GET_ATTRIBUTES commands


– Updated PARAM field in the command 
DPNI_GET_STATISTICS


– Renamed CP field to OPTIONS in command 
DPNI_SET_TX_SHAPING


– Added CHANNEL_ID field to the following commands: 
DPNI_SET_TX_SHAPING, DNI_SET_CONGESTION 
NOTIFICATION, 
DPNI_GET_CONGESTION_NOTIFICATION, 
DPNI_SET_QUEUE, DPNI_GET_QUEUE, 
DPNI_SET_TAILDROP, DPNI_SET_TX_PRIORITIES, 
DPNI_SET_EARLY_DROP, DPNI_GET_EARLY_DROP


– Added MAX_DMAT_ENTRIES, MAX_MC_GROUPS, 
MAX_VLAN_IDS fields to 
DPDMUX_GET_ATTRIBUTES response


– Added new API command 
DPSW_IF_SET_ERRORS_BEHAVIOR.


Rev 42 – Updated total_bman_buffers entry from Table 
111.Properties of “qbman” node from chapter 25.4.1 Child 
node: qbman


– Updated DPDMAI main features


– Updated STP/RSTP/MSTP marking feature for DPSW


Document Version Changes







Revision History


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors A-4
 


Rev 41 – Renamed the DPSW_FDB_LEARNING_MODE enum to 
DPSW_LEARNING_MODE


– Added new API command 
DPSW_IF_SET_LEARNING_MODE


– Added new API command 
DPSW_IF_SET_EGRESS_FLOOD


– Added “options” and “fdb_id” fields in 
DPSW_VLAN_ADD_IF.


– Added “flooding_cfg” and “broadcast_cfg” fields to 
DPSW_CREATE


– Added “flooding_cfg” and “broadcast_cfg” fields to 
DPSW_GET_ATTRIBUTES response


– Added “redir_token” to DPNI_ADD_FS_ENTRY


Rev 40 – Added DPDMUX_OPT_AUTO_MAX_FRAME_LEN 
option flag for DPDMUX_CREATE.


– Added new API command 
DPDMUX_IF_SET_ERRORS_BEHAVIOR.


– Added new API command 
DPDMUX_GET_MAX_FRAME_LENGTH.


– Added DPDMUX_OPT_AUTO_MAX_FRAME_LEN 
option flag for DPDMUX in DPL.


Rev 39 – Added “options” field in DPDMAI_CREATE API 
command.


– Added “options” field in DPDMAI_GET_ATTRIBUTES 
API command.


– Added new API command 
DPDMAI_SET_RX_CONGESTION_NOTIFICATION.


– Added new API command 
DPDMAI_GET_RX_CONGESTION_NOTIFICATION.


– Added new API command 
DPDMAI_SET_TX_CONGESTION_NOTIFICATION.


– Added new API command 
DPDMAI_GET_TX_CONGESTION_NOTIFICATION.


Document Version Changes







Revision History


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors A-5
 


Rev 36 – Added Flow Control support for DPDMUX and DPSW 
objects.


– Added DPSW_DUMP_TABLE command


– Added DPDMUX_DUMP_TABLE command


– Added dprtc_get_clock_offset() command


– Added mem_size field in DPDMUX_CREATE API 
command and DPL DPDMUX creation.


– Added mem_size field in DPSW_CREATE API command 
and DPL DPSW creation.


Rev 33 – Added DPDMUX_CNT_ING_NO_BUFFER_DISCARD 
counter type in DPDMUX_IF_GET_COUNTER API 
command


– Added DPDMUX_IF_SET_TAILDROP command


– Added DPDMUX_IF_GET_TAILDROP command


– Added DPNI_BUF_LAYOUT_OPT_NO_SG option in 
DPNI_SET_BUFFER_LAYOUT


– Added DPNI_OPT_SHARED_FS option in 
DPNI_CREATE and DPNI_GET_ATTRIBUTES


– Added DPNI_CNT_EGR_FRAME_CONFIRMED field in 
DPNI_SET_COUNTER and DPNI_GET_COUNTER 
APIS


– Added DPNI_CNT_EGR_MCAST_FRAME field in 
DPNI_SET_COUNTER and DPNI_GET_COUNTER 
APIS


– Added DPNI_CNT_EGR_MCAST_BYTE field in 
DPNI_SET_COUNTER and DPNI_GET_COUNTER 
APIS


– Added DPNI_CNT_EGR_BCAST_FRAME field in 
DPNI_SET_COUNTER and DPNI_GET_COUNTER 
APIS


– Added DPNI_CNT_EGR_BCAST_BYTES field in 
DPNI_SET_COUNTER and DPNI_GET_COUNTER 
APIS


– Added new command DPNI_DUMP_TABLE


Document Version Changes







Revision History


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors A-6
 


Rev 32 – Added DPSW_IF_SET_TAILDROP command


– Added DPSW_IF_GET_TAILDROP command


– Remove the DPC support for “enet_if = RGMII”


– DPNI_CREATE command new option 
DPNI_OPT_SHARED_HASH_KEY and new field - 
DIST_KEY_SIZE.


– DPRC_GET_OBJ_REGION new version command (3).


– DPSW_OPT_BP_PER_IF - new option for 
DPSW_CREATE and DPSW_GET_ATTRIBUTES 
commands.


– Added DPNI_OPT_SHARED_HASH_KEY option to 
DPNI_GET_ATTRIBUTES


– Added DPSW_OPT_LAG_DIS to DPSW_CREATE and 
DPSW_GET_ATTRIBUTES commands.


– Added oree_mode in DPC.


– Added MAC_LINK_TYPE_RECYCLE option in DPC.


Rev 31 – Added DPDMUX_SET_RESETABLE API


– Added DPDMUX_GET_RESETABLE API


– Added DPNI_SET_SINGLE_STEP_CFG API


– Added DPNI_GET_SINGLE_STEP_CFG API


– Added DPNI_SET_PORT_CFG API


– Added DPNI_GET_PORT_CFG API


– Added DPMAC_MDIO_READ API


– Added DPMAC_MDIO_WRITE API


– Fix property for DPCI, num_priorities -> num_of_priorities.


– Added “max_rate” option in DPC file.


Rev 30 – Added new command DPMAC_SET_PARAMS


– Modified DPMAC_GET_ATTRIBUTES command (added 
2 new fields IFC_MODE and IFC_LENGTH)


– Modified DPDBG_CREATE command id to the correct one.


– Added options field for DPRC_RESET_CONTAINER. 


Document Version Changes







Revision History


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors A-7
 


Rev 29 – Added Ingress no buffer discarded frames counter for 
DPSW_IF_SET_COUNTER and 
DPSW_IF_GET_COUNTER.


– Added missing Egress STP discared frames counter for 
DPSW_IF_SET_COUNTER and 
DPSW_IF_GET_COUNTER.


– Added DPNI_QUEUE_OPT_SET_CGID and 
DPNI_QUEUE_OPT_CLEAR_CGID options in 
DPNI_SET_QUEUE command.


Rev 28 – Added in DPC file, RGMII protocol port selection for 
“enet_if”.


Rev 27 – Added DEFAULT_IF field in 
DPDMUX_GET_ATTRIBUTES command


– Added DEFAULT_IF field in DPDMUX_CREATE 
command


– Added default_if field in DPL for DPDMUX


– Added SerDes configuration in 
DPMAC_GET_ATTRIBUTES


– Added DPRTC_GET_EXT_TRIGGER_TIMESTAMP 
command


– Added DPRTC_SET_FIPER_LOOPBACK command


– Added support for PPS2, ETS1 and ETS2 events in 
DPRTC_GET_IRQ_STATUS


– Modified the command version for 
DPRC_CREATE_CONTAINER and removed the option 
DPRC_CFG_OPT_OBJ_CREATE_ALLOWED


– Added DPRC_SET_LOCKED command.


– Modified DPNI_SET_TAILDROP command.


– Modified DPNI_GET_IRQ_STATUS comment.


– Added a new object (DPDBG) documented in Chapter 10


– Added new option (pcs_autoneg) in “mac” DPC child node


Document Version Changes







Revision History


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors A-8
 


Rev 26 – Added DPSECI_SET_OPR command.


– Added DPSECI_GET_OPR command.


– Added NOTE at DPNI for DPNI_HAS_KEY_MASKING.


– Added time-stamp option in DPC.


– Added serdes_cfg option in DPC with advanced parameters.


– Added a new command DPSW_CTRL_IF_SET_QUEUE.


– Added ENTRY_INDEX field in command 
DPDMUX_ADD_CUSTOM_CLS_ENTRY.


– Added comment for DPMAC1, LS1044 and LS1048 
personalities.


– DPSW_CREATE command: corrects the text modifying 
VLAN to S_VLAN.


– DPSECI_SET_RX_QUEUE command : fix the wrong 
CMDID.


– Added DPNI_OPT_CUSTOM_OPR and NUM_OPR field 
in DPNI_CREATE command (v4).


– Added OPR_ID field in DPNI_SET_OPR command (v2).


– Added OPR_ID and FLAGS fields in DPNI_GET_OPR 
command (v2).


– Added comment for DPNI_SET_QUEUE command.


– Added 7.2.6.1 Building rules for ingress distribution.


Rev 25 – Added three new options in DPNI_ADD_MAC_ADDR and 
DPNI_ADD_VLAN_ID commands


– Added a new command: DPNI_GET_LINK_CFG


– Added a new chapter about logging and debugging details


– Updated information in DPNI_ENABLE and 
DPNI_DISABLE commands


– Added description for console child nod in DPC chapter


Rev 24 – Added new commands: 
DPIO_SET_STASHING_DESTINATION_SOURCE, 
DPIO_GET_STASHING_DESTINATION_SOURCE, 
DPIO_SET_STASHING_DESTINATION_BY_CORE_ID


– Added two new fields (FLAGS and FLOW_ID) to 
DPNI_ADD_QOS_ENTRY command


Document Version Changes







Revision History


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors A-9
 


Rev 23 – Updated, in documentation, CMDID for DPDMUX_OPEN 
and DPSECI_CREATE commands 


– Added ADDR and ENDIANNESS attributes to 
DPRTC_GET_ATTRIBITES command response


– Added new DPNI_SET_POOLS option: POOL_AS


Rev 22 – Updated description for MAX_FRAME_LEN argument of 
DPNI_SET_MAX_FRAME_LEN command


– Updated default values for DPSW_CREATE command 
arguments


– Updated DPSW_CREATE command options.


– Updated DPDMUX_CREATE command methods, options 
and arguments


– Updated NUM_OF_PRIORITIES description for 
DPCI_CREATE command


– Updated the default value of NUM_PRIORITIES for 
DPCON_CREATE and DPIO_CREATE commands


– Updated NUM_QUEUE and NUM_CGS description for 
DPNI_CREATE command


– Updated description of 
DPNI_GET_PORT_MAC_ADDRESS command


– Updated status description in DPNI_GET_IRQ_STATUS 
command response


– Added DPMAC_GET_MAC_ADDR command


Rev 21 – Added a reserved value for MEMSZ bits in MCFBALR 
register


– Documented enet_if DPC option


– Updated description of DPNI_SET_LINK_CFG command


Rev 20 – Added completions to MC memory requirements


Rev 19 – Added new DPC options: pfdr_peb_size_kb, fec_mode


Document Version Changes







Revision History


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors A-10
 


Rev 18 – Added new DPNI option: DPNI_OPT_CUSTOM_CG


– Added new field in DPNI_CREATE command: NUM_CGS


– Added new field in DPNI_GET_ATTRIBUTES response 
command: NUM_CGS


– Modified DPNI_GET_STATISTICS command PARAM 
field size from 8 bits to 16 bits


– Added new fields in DPNI_GET_QUEUE command 
response: CGID_VALID, CGID


– Added new field in DPNI_SET_QUEUE command: CGID


– Added two new fields in 
DPNI_SET_CONGESTION_NOTIFICATION and 
DPNI_GET_CONGESTION_NOTIFICATION commands: 
CONGESTION_POINT, CGID


– DPNI_SET_TAILDROP and DPNI_GET_TAILDROP 
commands: new signification for INDEX field, new value 
for CONGESTION_POINT field


Rev 17 – Added new DPAIOP commands: 
DPAIOP_SET_RESETABLE, 
DPAIOP_GET_RESETABLE


Rev 16 – Added new object DPSPARSER with associated commands: 
DPSPARSER_OPEN, DPSPARSER_CLOSE, 
DPSPARSER_CREATE, DPSPARSER_DESTROY, 
DPSPARSER_GET_API_VERSION, 
DPSPARSER_APPLY_SPB


– Added new sub-chapter: 3.5 Minimum memory 
requirements


– Updated description of total_bman_buffers field in “24.4.1 
Child node: qbman” sub-chapter


Document Version Changes







Revision History


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors A-11
 


Rev 15 – Added new DPNI commands: 
DPNI_ADD_CUSTOM_TPID, 
DPNI_REMOVE_CUSTOM_TPID, 
DPNI_GET_CUSTOM_TPID


– Added ‘advertising’ field to the following commands: 
DPNI_IF_SET_LINK_CFG, DPSW_IF_SET_LINK_CFG, 
DPDMUX_ IF_SET_LINK_CFG, 
DPMAC_GET_LINK_CFG


– Added ‘supported’ and ‘advertising’ fields to the following 
commands: DPNI_IF_GET_LINK_STATE, 
DPSW_IF_GET_LINK_STATE, 
DPDMUX_IF_GET_LINK_STATE, 
DPMAC_SET_LINK_STATE


– Added ‘state_valid’ field to the following commands: 
DPMAC_SET_LINK_STATE and 
DPNI_GET_LINK_STATE, 
DPSW_IF_GET_LINK_STATE, 
DPDMUX_IF_GET_LINK_STATE


Rev 14 – Add policer chapter


– Small changes for DPNI_SET_RX_TC_POLICING


– Add NUM_RX_TCS to DPNI_CREATE command


– Add num_rx_tcs parameter to dpni node in dpl reference 
chapter


Rev 13 – change code for command DPDMAI_SET_RX_QUEUE 
(changed to 0x1A02)


– change code for command DPDMAI_GET_RX_QUEUE 
(changed to 0x1A12)


– change code for command DPDMAI_GET_TX_QUEUE 
(changed to 0x1A22)


– change code for command DPDMAI_CREATE(changed to 
0x90E2)


– add page_4 description to DPNI_GET_STATISTICS


– add page_5 description to DPNI_GET_STATISTICS


– new flag (DPNI_ERROR_DISC) added to 
DPNI_SET_ERRORS_BEHAVIOR


Document Version Changes







Revision History


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors A-12
 


Rev 12 – Add KEEP_ENTRIES field in DPNI_SET_QOS_TABLE


– Add NUM_QUEUES field in DPDMAI_CREATE


– Add NUM_QUEUES field in 
DPDMAI_GET_ATTRIBUTES response


– Add QUEUE_IDX field in DPDMAI_SET_RX_QUEUE


– Add QUEUE_IDX field in DPDMAI_GET_RX_QUEUE


– Add QUEUE_IDX field in DPDMAI_GET_TX_QUEUE


– Increase size for OPTIONS field in 
DPBP_SET_NOTIFICATIONS


Document Version Changes







Revision History


DPAA2UM, Rev 50, 08/2022


NXP Semiconductors A-13
 


Rev 11 – Change in DPNI_SET_RX_TC_DIST: add new field named 
KEEP_ENTRIES


– Add supplementary details on parameter NUM_TCS from 
DPNI_CREATE command


– Add command DPNI_SET_RX_FS_DIST


– Add command DPNI_SET_RX_HASH_DIST


– Add command DPSW_LAG_SET


– Add command DPSW_LAG_GET_CFG


– Added 8 more priorities fields to DPSECI_CREATE 
command


Rev 8 – The default behavior for DPNI objects employed by AIOP is 
to assign a default priority to each traffic class


– Added support for Flow Control (Chapter 7.2.7)


– Changes in commands: 
– DPNI_GET_ATTRIBUTES


– DPNI_SET_OFFLOAD


– DPNI_GET_OFFLOAD


– DPNI_GET_STATISTICS


– DPNI_GET_STATISTICS response


– DPNI_SET_TX_SHAPING


– DPNI_SET_RX_TC_DIST


– DPNI_SET_TAILDROP


– DPNI_GET_TAILDROP response


– DPNI_SET_EARLY_DROP


– DPNI_GET_EARLY_DROP


– DPNI_SET_QUEUE


– DPNI_SET_TX_CONFIRMATION_MODE


– DPNI_SET_CONGESTION_NOTIFICATION


– DPCI_SET_RX_QUEUE


– Additional DPCON features and details added


– Additional DPCI features and details added


Document Version Changes







NXP Semiconductors DPAA2UM
DPAA2 User Manual


B.1  Definitions
Draft — A draft status on a document indicates that the content is still 
under internal review and subject to formal approval, which may result
in modifications or additions. NXP Semiconductors does not give any 
representations or warranties as to the accuracy or completeness of 
information included in a draft version of a document and shall have no 
liability for the consequences of use of such information.


B.2  Disclaimers
Limited warranty and liability — Information in this document is believed 
to be accurate and reliable. However, NXP Semiconductors does not give 
any representations or warranties, expressed or implied, as to the accuracy 
or completeness of such information and shall have no liability for the 
consequences of use of such information. NXP Semiconductors takes no 
responsibility for the content in this document if provided by an information 
source outside of NXP Semiconductors.
In no event shall NXP Semiconductors be liable for any indirect, incidental, 
punitive, special or consequential damages (including - without limitation -
lost profits, lost savings, business interruption, costs related to the removal 
or replacement of any products or rework charges) whether or not such 
damages are based on tort (including negligence), warranty, breach of 
contract or any other legal theory.
Notwithstanding any damages that customer might incur for any reason 
whatsoever, NXP Semiconductors’ aggregate and cumulative liability 
towards customer for the products described herein shall be limited in 
accordance with the Terms and conditions of commercial sale of NXP 
Semiconductors.


Right to make changes — NXP Semiconductors reserves the right to 
make changes to information published in this document, including without 
limitation specifications and product descriptions, at any time and without 
notice. This document supersedes and replaces all information supplied prior 
to the publication hereof.


Suitability for use — NXP Semiconductors products are not designed, 
authorized or warranted to be suitable for use in life support, life-critical or 
safety-critical systems or equipment, nor in applications where failure or 
malfunction of an NXP Semiconductors product can reasonably be expected 
to result in personal injury, death or severe property or environmental 
damage. NXP Semiconductors and its suppliers accept no liability for 
inclusion and/or use of NXP Semiconductors products in such equipment or 
applications and therefore such inclusion and/or use is at the customer’s own 
risk.


Applications — Applications that are described herein for any of these 
products are for illustrative purposes only. NXP Semiconductors makes no 
representation or warranty that such applications will be suitable for the 
specified use without further testing or modification.
Customers are responsible for the design and operation of their 
applications and products using NXP Semiconductors products, and NXP 
Semiconductors accepts no liability for any assistance with applications or 
customer product design. It is customer’s sole responsibility to determine 
whether the NXP Semiconductors product is suitable and fit for the 
customer’s applications and products planned, as well as for the planned 
application and use of customer’s third party customer(s). Customers should 
provide appropriate design and operating safeguards to minimize the risks 
associated with their applications and products.
NXP Semiconductors does not accept any liability related to any default, 
damage, costs or problem which is based on any weakness or default
in the customer’s applications or products, or the application or use by 
customer’s third party customer(s). Customer is responsible for doing all 
necessary testing for the customer’s applications and products using NXP 
Semiconductors products in order to avoid a default of the applications
and the products or of the application or use by customer’s third party 
customer(s). NXP does not accept any liability in this respect.


Terms and conditions of commercial sale — NXP Semiconductors 
products are sold subject to the general terms and conditions of commercial 
sale, as published at http://www.nxp.com/profile/terms, unless otherwise 
agreed in a valid written individual agreement. In case an individual 
agreement is concluded only the terms and conditions of the respective 
agreement shall apply. NXP Semiconductors hereby expressly objects to 
applying the customer’s general terms and conditions with regard to the 
purchase of NXP Semiconductors products by customer.


Export control — This document as well as the item(s) described herein 
may be subject to export control regulations. Export might require a prior 
authorization from competent authorities.


Suitability for use in non-automotive qualified products — Unless
this data sheet expressly states that this specific NXP Semiconductors 
product is automotive qualified, the product is not suitable for automotive 
use. It is neither qualified nor tested in accordance with automotive testing 
or application requirements. NXP Semiconductors accepts no liability for 
inclusion and/or use of non-automotive qualified products in automotive 
equipment or applications.
In the event that customer uses the product for design-in and use in 
automotive applications to automotive specifications and standards, 
customer (a) shall use the product without NXP Semiconductors’ warranty 
of the product for such automotive applications, use and specifications, and 
(b) whenever customer uses the product for automotive applications beyond 
NXP Semiconductors’ specifications such use shall be solely at customer’s 
own risk, and (c) customer fully indemnifies NXP Semiconductors for any 
liability, damages or failed product claims resulting from customer design and
use of the product for automotive applications beyond NXP Semiconductors’ 
standard warranty and NXP Semiconductors’ product specifications.


Translations — A non-English (translated) version of a document, including 
the legal information in that document, is for reference only. The English 
version shall prevail in case of any discrepancy between the translated and 
English versions.


Security — Customer understands that all NXP products may be subject to 
unidentified vulnerabilities or may support established security standards or 
specifications with known limitations. Customer is responsible for the design 
and operation of its applications and products throughout their lifecycles
to reduce the effect of these vulnerabilities on customer’s applications
and products. Customer’s responsibility also extends to other open and/or 
proprietary technologies supported by NXP products for use in customer’s 
applications. NXP accepts no liability for any vulnerability. Customer should 
regularly check security updates from NXP and follow up appropriately.
Customer shall select products with security features that best meet rules, 
regulations, and standards of the intended application and make the 
ultimate design decisions regarding its products and is solely responsible 
for compliance with all legal, regulatory, and security related requirements 
concerning its products, regardless of any information or support that may be 
provided by NXP.
NXP has a Product Security Incident Response Team (PSIRT) (reachable 
at PSIRT@nxp.com) that manages the investigation, reporting, and solution 
release to security vulnerabilities of NXP products.


B.3  Trademarks
Notice: All referenced brands, product names, service names, and 
trademarks are the property of their respective owners.
NXP — wordmark and logo are trademarks of NXP B.V.


DPAA2UM All information provided in this document is subject to legal disclaimers. © NXP B.V. 2022. All rights reserved.


User manual Rev. 50 — 08/2022 
B-1


Appendix B  Legal information



mailto:PSIRT@nxp.com





NXP Semiconductors DPAA2UM
DPAA2 User Manual


Please be aware that important notices concerning this document and the product(s)
described herein, have been included in section 'Legal information'.


© NXP B.V. 2022. All rights reserved.
For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com


Date of release: 08/2022  
Document identifier: DPAA2UM 





		DPAA2 User Manual

		Chapter 1 Introduction

		Figure 1-1. DPAA2 Hardware Blocks

		1.1 Intended audience

		1.2 Definitions and acronyms



		Chapter 2 Overview

		2.1 Introduction to DPAA2 objects

		2.1.1 Network objects

		2.1.1.1 Data Path Network Interface (DPNI)

		2.1.1.2 Data Path MAC (DPMAC)

		2.1.1.3 Data Path Switch (DPSW)

		2.1.1.4 Data Path Demux (DPDMUX)

		Figure 1. DPAA2 Network objects summary and symbols





		2.1.2 DPAA2 infrastructure objects

		2.1.2.1 Data Path Buffer Pool (DPBP)

		2.1.2.2 Data Path I/O Portal (DPIO)

		2.1.2.3 Data Path Concentrator (DPCON)

		Figure 2. DPAA2 Infrastructure objects summary and symbols





		2.1.3 Accelerator interfaces

		2.1.3.1 Data Path Security Interface (DPSECI)

		2.1.3.2 Data Path De/Compression Interface (DPDCEI)

		2.1.3.3 Data Path DMA Interface (DPDMAI)

		Figure 3. DPAA2 Accelerator Interface objects summary and symbols





		2.1.4 Management and control objects

		2.1.4.1 Data Path Communication Interface (DPCI)

		2.1.4.2 Data Path Resource Container (DPRC)

		2.1.4.3 Data Path MC Portal (DPMCP)

		Figure 4. DPAA2 Management objects summary and symbols





		2.1.5 DPAA2 object support per platform

		Table 2-1. DPAA2 objects supported by platform





		2.2 Objects topology and inter-connect

		Figure 5. Object topology example

		2.2.1 Connection and link state

		2.2.2 Typical object connections

		Figure 6. Typical connections of network objects



		2.2.3 How and when to connect





		Chapter 3 Boot and Initialization Process

		3.1 Loading the MC firmware

		3.2 Data Path Configuration (DPC)

		3.3 Data Path Layout (DPL)

		3.4 Starting MC

		3.5 Minimum memory requirements

		Table 3-1.

		Table 3-2.





		Chapter 4 MC Firmware Versions

		4.1 MC global firmware versions

		4.2 DPAA2 Object versions

		4.3 DPAA2 Object Commands

		4.4 Recommended user verification

		4.5 Firmware command reference

		4.5.1 DPMNG_GET_VERSION

		Figure 4-1. DPMNG_GET_VERSION Command Description

		Table 4-1. DPMNG_GET_VERSION Command Field Descriptions

		Figure 4-2. DPMNG_GET_VERSION Response Description

		Table 4-2. DPMNG_GET_VERSION Response Field Descriptions



		4.5.2 DPMNG_GET_SOC_VERSION

		Figure 4-3. DPMNG_GET_SOC_VERSION Command Description

		Table 4-3. DPMNG_GET_SOC_VERSION Command Field Descriptions

		Figure 4-4. DPMNG_GET_SOC_VERSION Response Description

		Table 4-4. DPMNG_GET_SOC_VERSION Response Field Descriptions







		Chapter 5 Management Command Portals

		5.1 Overview of command portals

		5.2 Command portal usage

		5.3 Creating and destroying DPAA2 objects

		5.4 Command portals memory map

		Figure 7. MC Portal Map

		Table 1. MC Portal Map



		5.5 Management command portal definition

		Figure 8. Management Command Portal

		Table 2. Management Command Portal Field Descriptions



		5.6 MC General Command Portals command reference

		5.6.1 DPMNG_GET_CONT_ID

		Figure 5-1. DPMNG_GET_CONT_ID Command Description

		Table 5-1. DPMNG_GET_CONT_ID Command Field Descriptions

		Figure 5-2. DPMNG_GET_CONT_ID Response Description

		Table 5-2. DPMNG_GET_CONT_ID Response Field Descriptions







		Chapter 6 DPRC: Data Path Resource Container

		6.1 DPRC features

		6.2 DPRC functional description

		6.2.1 Resource container creation

		6.2.2 Objects assignment

		6.2.3 Objects discovery



		6.3 DPRC command reference

		6.3.1 DPRC_OPEN

		Figure 9. DPRC_OPEN Command Description

		Table 3. DPRC_OPEN Command Field Descriptions



		6.3.2 DPRC_CLOSE

		Figure 10. DPRC_CLOSE Command Description



		6.3.3 DPRC_CREATE_CONTAINER

		Figure 11. DPRC_CREATE_CONTAINER Command Description

		Table 4. DPRC_CREATE_CONTAINER Command Field Descriptions

		Figure 12. DPRC_CREATE_CONTAINER Response Description

		Table 5. DPRC_CREATE_CONTAINER Response Field Descriptions



		6.3.4 DPRC_DESTROY_CONTAINER

		Figure 13. DPRC_DESTROY_CONTAINER Command Description



		6.3.5 DPRC_RESET_CONTAINER

		Figure 14. DPRC_CLOSE Command Description



		6.3.6 DPRC_SET_LOCKED

		Figure 15. DPRC_SET_LOCKED Command Description



		6.3.7 DPRC_SET_IRQ

		Figure 16. DPRC_SET_IRQ Command Description



		6.3.8 DPRC_GET_IRQ

		Figure 17. DPRC_GET_IRQ Command Description

		Figure 18. DPRC_GET_IRQ Response Description



		6.3.9 DPRC_SET_IRQ_ENABLE

		Figure 19. DPRC_SET_IRQ_ENABLE Command Description



		6.3.10 DPRC_GET_IRQ_ENABLE

		Figure 20. DPRC_GET_IRQ_ENABLE Command Description

		Figure 21. DPRC_GET_IRQ_ENABLE Response Description



		6.3.11 DPRC_SET_IRQ_MASK

		Figure 22. DPRC_SET_IRQ_MASK Command Description



		6.3.12 DPRC_GET_IRQ_MASK

		Figure 23. DPRC_GET_IRQ_MASK Command Description

		Figure 24. DPRC_GET_IRQ_MASK Response Description



		6.3.13 DPRC_GET_IRQ_STATUS

		Figure 25. DPRC_GET_IRQ_STATUS Command Description

		Figure 26. DPRC_GET_IRQ_STATUS Response Description



		6.3.14 DPRC_CLEAR_IRQ_STATUS

		Figure 27. DPRC_CLEAR_IRQ_STATUS Command Description



		6.3.15 DPRC_GET_ATTRIBUTES

		Figure 28. DPRC_GET_ATTRIBUTES Command Description

		Figure 29. DPRC_GET_ATTRIBUTES Response Description



		6.3.16 DPRC_SET_RES_QUOTA

		Figure 30. DPRC_SET_RES_QUOTA Command Description



		6.3.17 DPRC_GET_RES_QUOTA

		Figure 31. DPRC_GET_RES_QUOTA Command Description

		Figure 32. DPRC_GET_RES_QUOTA Response Description



		6.3.18 DPRC_ASSIGN

		Figure 33. DPRC_ASSIGN Command Description



		6.3.19 DPRC_UNASSIGN

		Figure 34. DPRC_UNASSIGN Command Description



		6.3.20 DPRC_GET_POOL_COUNT

		Figure 35. DPRC_GET_POOL_COUNT Command Description

		Figure 36. DPRC_GET_POOL_COUNT Response Description



		6.3.21 DPRC_GET_POOL

		Figure 37. DPRC_GET_POOL Command Description

		Figure 38. DPRC_GET_POOL Response Description



		6.3.22 DPRC_GET_OBJ_COUNT

		Figure 39. DPRC_GET_OBJ_COUNT Command Description

		Figure 40. DPRC_GET_OBJ_COUNT Response Description



		6.3.23 DPRC_GET_OBJ

		Figure 41. DPRC_GET_OBJ Command Description

		Figure 42. DPRC_GET_OBJ Response Description



		6.3.24 DPRC_GET_OBJ_DESC

		Figure 43. DPRC_GET_OBJ_DESC Command Description

		Figure 44. DPRC_GET_OBJ_DESC Response Description



		6.3.25 DPRC_GET_RES_COUNT

		Figure 45. DPRC_GET_RES_COUNT Command Description

		Figure 46. DPRC_GET_RES_COUNT Response Description



		6.3.26 DPRC_GET_RES_IDS

		Figure 47. DPRC_GET_RES_IDS Command Description

		Figure 48. DPRC_GET_RES_IDS Response Description



		6.3.27 DPRC_GET_OBJ_REGION

		Figure 49. DPRC_GET_OBJ_REGION Command Description

		Figure 50. DPRC_GET_OBJ_REGION Response Description



		6.3.28 DPRC_SET_OBJ_LABEL

		Figure 51. DPRC_SET_OBJ_LABEL Command Description



		6.3.29 DPRC_SET_OBJ_IRQ

		Figure 52. DPRC_SET_OBJ_IRQ Command Description



		6.3.30 DPRC_GET_OBJ_IRQ

		Figure 53. DPRC_GET_OBJ_IRQ Command Description

		Figure 54. DPRC_GET_OBJ_IRQ Response Description



		6.3.31 DPRC_CONNECT

		Figure 55. DPRC_CONNECT Command Description



		6.3.32 DPRC_DISCONNECT

		Figure 56. DPRC_DISCONNECT Command Description



		6.3.33 DPRC_GET_CONNECTION

		Figure 57. DPRC_GET_CONNECTION Command Description

		Figure 58. DPRC_GET_CONNECTION Response Description



		6.3.34 DPRC_GET_API_VERSION

		Figure 59. DPRC_GET_API_VERSION Command Description

		Figure 60. DPRC_GET_API_VERSION Response Description



		6.3.35 DPRC_GET_MEM

		Figure 61. DPRC_GET_MEM Command Description

		Figure 62. DPRC_GET_MEM Response Description







		Chapter 7 DPNI: Data Path Network Interface

		7.1 DPNI features

		7.2 DPNI functional description

		7.2.1 Ingress frame processing

		Figure 63. DPNI Processing Phases for Ingress Frames



		7.2.2 Egress frame processing

		Figure 64. DPNI Processing Phases for Egress Frames



		7.2.3 Relationship with DPIO and DPCON objects

		7.2.4 Relationship with DPBP objects

		7.2.5 Ingress QoS

		Table 7-1. Traffic class mapping



		7.2.6 Ingress distribution

		7.2.6.1 Building rules for ingress distribution



		7.2.7 Flow control

		7.2.7.1 Flow control configuration

		7.2.7.2 Priority flow control configuration



		7.2.8 Policer

		7.2.8.1 Metering principles

		7.2.8.2 RFC-2698

		7.2.8.3 RFC-4115

		7.2.8.4 Pass-Through



		7.2.9 Objects isolation



		7.3 DPNI command reference

		7.3.1 DPNI_CREATE

		Figure 65. DPNI_CREATE Command Description

		Table 6. DPNI_CREATE Command Field Descriptions

		Figure 7-2. DPNI_CREATE Response Description

		Table 7-1. DPNI_CREATE Response Field Descriptions



		7.3.2 DPNI_DESTROY

		Figure 66. DPNI_DESTROY Command Description

		Table 7. DPNI_DESTROY Command Field Description



		7.3.3 DPNI_OPEN

		Figure 67. DPNI_OPEN Command Description

		Table 8. DPNI_OPEN Command Field Descriptions



		7.3.4 DPNI_CLOSE

		Figure 68. DPNI_CLOSE Command Description

		Table 9. DPNI_CLOSE Command Field Descriptions



		7.3.5 DPNI_ENABLE

		Figure 69. DPNI_ENABLE Command Description



		7.3.6 DPNI_DISABLE

		Figure 70. DPNI_DISABLE Command Description

		Table 10. DPNI_DISABLE Command Fields Description



		7.3.7 DPNI_IS_ENABLED

		Figure 71. DPNI_IS_ENABLED Command Description

		Figure 72. DPNI_IS_ENABLED Response Description



		7.3.8 DPNI_RESET

		Figure 73. DPNI_RESET Command Description



		7.3.9 DPNI_SET_IRQ_ENABLE

		Figure 74. DPNI_SET_IRQ_ENABLE Command Description



		7.3.10 DPNI_GET_IRQ_ENABLE

		Figure 75. DPNI_GET_IRQ_ENABLE Command Description

		Figure 76. DPNI_GET_IRQ_ENABLE Response Description



		7.3.11 DPNI_SET_IRQ_MASK

		Figure 77. DPNI_SET_IRQ_MASK Command Description



		7.3.12 DPNI_GET_IRQ_MASK

		Figure 78. DPNI_GET_IRQ_MASK Command Description

		Figure 79. DPNI_GET_IRQ_MASK Response Description



		7.3.13 DPNI_GET_IRQ_STATUS

		Figure 80. DPNI_GET_IRQ_STATUS Command Description

		Figure 81. DPNI_GET_IRQ_STATUS Response Description



		7.3.14 DPNI_CLEAR_IRQ_STATUS

		Figure 82. DPNI_CLEAR_IRQ_STATUS Command Description



		7.3.15 DPNI_GET_ATTRIBUTES

		Figure 83. DPNI_GET_ATTRIBUTES Command Description

		Figure 84. DPNI_GET_ATTRIBUTES Response Description



		7.3.16 DPNI_SET_POOLS

		Figure 85. DPNI_SET_POOLS Command Description



		7.3.17 DPNI_SET_ERRORS_BEHAVIOR

		Figure 86. DPNI_SET_ERRORS_BEHAVIOR Command Description



		7.3.18 DPNI_SET_BUFFER_LAYOUT

		Figure 7-3. Buffer format

		Figure 87. DPNI_SET_BUFFER_LAYOUT Command Description



		7.3.19 DPNI_GET_BUFFER_LAYOUT

		Figure 88. DPNI_GET_BUFFER_LAYOUT Command Description

		Figure 89. DPNI_GET_BUFFER_LAYOUT Response Description



		7.3.20 DPNI_SET_OFFLOAD

		Figure 90. DPNI_SET_OFFLOAD Command Description

		Table 11. DPNI_SET_OFFLOAD Command Field Descriptions



		7.3.21 DPNI_GET_OFFLOAD

		Figure 91. DPNI_GET_OFFLOAD Command Description

		Table 12. DPNI_GET_OFFLOAD Command Field Descriptions

		Figure 92. DPNI_GET_OFFLOAD Response Description

		Table 13. DPNI_GET_OFFLOAD Response Field Descriptions



		7.3.22 DPNI_GET_QDID

		Figure 93. DPNI_GET_QDID Command Description

		Figure 94. DPNI_GET_QDID Response Description



		7.3.23 DPNI_GET_SP_INFO

		Figure 95. DPNI_GET_SP_INFO Command Description

		Figure 96. DPNI_GET_SP_INFO Response Description



		7.3.24 DPNI_GET_TX_DATA_OFFSET

		Figure 97. DPNI_GET_TX_DATA_OFFSET Command Description

		Figure 98. DPNI_GET_TX_DATA_OFFSET Response Description



		7.3.25 DPNI_GET_STATISTICS

		Figure 99. DPNI_GET_STATISTICS Command Description

		Figure 100. DPNI_GET_STATISTICS Response Description



		7.3.26 DPNI_RESET_STATISTICS

		Figure 101. DPNI_RESET_STATISTICS Command Description

		Table 14. DPNI_RESET_STATISTICS Command Field Description



		7.3.27 DPNI_SET_LINK_CFG

		Figure 102. DPNI_SET_LINK_CFG Command Description



		7.3.28 DPNI_GET_LINK_CFG

		Figure 103. DPNI_GET_LINK_CFG Command Description

		Table 15. DPNI_GET_LINK_CFG Command Field Description

		Figure 104. DPNI_GET_LINK_CFG Response Description



		7.3.29 DPNI_SET_SINGLE_STEP_CFG

		Figure 105. DPNI_SET_SINGLE_STEP_CFG Command field description



		7.3.30 DPNI_GET_SINGLE_STEP_CGF

		Figure 106. DPNI_GET_SINGLE_STEP_CFG Command Description

		Table 16. DPNI_GET_SINGLE_STEP_CFG Command Field Description

		Figure 107. DPNI_GET_SINGLE_STEP_CFG Response field description



		7.3.31 DPNI_SET_PORT_CFG

		Figure 108. DPNI_SET_PORT_CFG Command field description



		7.3.32 DPNI_GET_PORT_CGF

		Figure 109. DPNI_GET_PORT_CFG Command Description

		Table 17. DPNI_GET_PORT_CFG Command Field Description

		Figure 110. DPNI_GET_PORT_CFG Response field description



		7.3.33 DPNI_GET_LINK_STATE

		Figure 111. DPNI_GET_LINK_STATE Command Description

		Figure 112. DPNI_GET_LINK_STATE Response Description



		7.3.34 DPNI_SET_TX_SHAPING

		Figure 113. DPNI_SET_TX_SHAPING Command Description



		7.3.35 DPNI_SET_MAX_FRAME_LENGTH

		Figure 114. DPNI_SET_MAX_FRAME_LENGTH Command Description



		7.3.36 DPNI_GET_MAX_FRAME_LENGTH

		Figure 115. DPNI_GET_MAX_FRAME_LENGTH Command Description

		Figure 116. DPNI_GET_MAX_FRAME_LENGTH Response Description



		7.3.37 DPNI_SET_MULTICAST_PROMISC

		Figure 117. DPNI_SET_MULTICAST_PROMISC Command Description



		7.3.38 DPNI_GET_MULTICAST_PROMISC

		Figure 118. DPNI_GET_MULTICAST_PROMISC Command Description

		Figure 119. DPNI_GET_MULTICAST_PROMISC Response Description



		7.3.39 DPNI_SET_UNICAST_PROMISC

		Figure 120. DPNI_SET_UNICAST_PROMISC Command Description



		7.3.40 DPNI_GET_UNICAST_PROMISC

		Figure 121. DPNI_GET_UNICAST_PROMISC Command Description

		Figure 122. DPNI_GET_UNICAST_PROMISC Response Description



		7.3.41 DPNI_SET_PRIMARY_MAC_ADDR

		Figure 123. DPNI_SET_PRIMARY_MAC_ADDR Command Description



		7.3.42 DPNI_GET_PRIMARY_MAC_ADDR

		Figure 124. DPNI_GET_PRIMARY_MAC_ADDR Command Description

		Figure 125. DPNI_GET_PRIMARY_MAC_ADDR Response Description



		7.3.43 DPNI_ADD_MAC_ADDR

		Figure 126. DPNI_ADD_MAC_ADDR Command Description



		7.3.44 DPNI_REMOVE_MAC_ADDR

		Figure 127. DPNI_REMOVE_MAC_ADDR Command Description



		7.3.45 DPNI_CLEAR_MAC_FILTERS

		Figure 128. DPNI_CLEAR_MAC_FILTERS Command Description



		7.3.46 DPNI_GET_PORT_MAC_ADDRESS

		Figure 129. DPNI_GET_PORT_MAC_ADDRESS Command Description

		Table 18. DPNI_GET_PORT_MAC_ADDRESS Command Command Field Description

		Figure 130. DPNI_GET_PORT_MAC_ADDRESS Response Description

		Table 19. DPNI_GET_PORT_MAC_ADDRESS Response Field Descriptions



		7.3.47 DPNI_ENABLE_VLAN_FILTER

		Figure 131. DPNI_ENABLE_VLAN_FILTER Command Description



		7.3.48 DPNI_ADD_VLAN_ID

		Figure 132. DPNI_ADD_VLAN_ID Command Description



		7.3.49 DPNI_REMOVE_VLAN_ID

		Figure 133. DPNI_REMOVE_VLAN_ID Command Description



		7.3.50 DPNI_CLEAR_VLAN_FILTERS

		Figure 134. DPNI_CLEAR_VLAN_FILTERS Command Description



		7.3.51 DPNI_SET_TX_PRIORITIES

		Figure 135. DPNI_SET_TX_PRIORITIES Command Description



		7.3.52 DPNI_SET_RX_TC_DIST

		Figure 136. DPNI_SET_RX_TC_DIST Command Description

		Figure 137. DPNI_SET_RX_TC_DIST Extension Description



		7.3.53 DPNI_SET_RX_TC_POLICING

		Figure 138. DPNI_SET_RX_TC_POLICING Command Description



		7.3.54 DPNI_GET_RX_TC_POLICING

		Figure 139. DPNI_GET_RX_TC_POLICING Command Description

		Figure 140. DPNI_GET_RX_TC_POLICING Response Description



		7.3.55 DPNI_SET_TAILDROP

		Figure 141. DPNI_SET_TAILDROP Command Description



		7.3.56 DPNI_GET_TAILDROP

		Figure 142. DPNI_GET_TAILDROP Command Description

		Figure 143. DPNI_GET_TAILDROP Response Description



		7.3.57 DPNI_SET_EARLY_DROP

		Figure 144. DPNI_SET_EARLY_DROP Command Description

		Figure 145. DPNI_SET_EARLY_DROP Extension Description



		7.3.58 DPNI_GET_EARLY_DROP

		Figure 146. DPNI_GET_EARLY_DROP Command Description

		Figure 147. DPNI_GET_EARLY_DROP Extension Description



		7.3.59 DPNI_SET_QUEUE

		Figure 148. DPNI_SET_QUEUE Command Description



		7.3.60 DPNI_GET_QUEUE

		Figure 149. DPNI_GET_QUEUE Command Description

		Figure 150. DPNI_GET_QUEUE Response Description



		7.3.61 DPNI_SET_TX_CONFIRMATION_MODE

		Figure 151. DPNI_SET_TX_CONFIRMATION_MODE Command Description



		7.3.62 DPNI_GET_TX_CONFIRMATION_MODE

		Figure 152. DPNI_GET_TX_CONFIRMATION_MODE Command Description

		Figure 7-4. DPNI_GET_TX_CONFIRMATION_MODE Response Description

		Table 7-2. DPNI_GET_TX_CONFIRMATION_MODE Response Field Descriptions



		7.3.63 DPNI_SET_QOS_TABLE

		Figure 153. DPNI_SET_QOS_TABLE Command Description

		Figure 154. DPNI_SET_QOS_TABLE Extension Description



		7.3.64 DPNI_ADD_QOS_ENTRY

		Figure 155. DPNI_ADD_QOS_ENTRY Command Description



		7.3.65 DPNI_REMOVE_QOS_ENTRY

		Figure 156. DPNI_REMOVE_QOS_ENTRY Command Description



		7.3.66 DPNI_CLEAR_QOS_TABLE

		Figure 157. DPNI_CLEAR_QOS_TABLE Command Description



		7.3.67 DPNI_ADD_FS_ENTRY

		Figure 158. DPNI_ADD_FS_ENTRY Command Description



		7.3.68 DPNI_REMOVE_FS_ENTRY

		Figure 159. DPNI_REMOVE_FS_ENTRY Command Description



		7.3.69 DPNI_CLEAR_FS_ENTRIES

		Figure 160. DPNI_CLEAR_FS_ENTRIES Command Description



		7.3.70 DPNI_GET_API_VERSION

		Figure 161. DPNI_GET_API_VERSION Command Description

		Figure 162. DPNI_GET_API_VERSION Response Description



		7.3.71 DPNI_SET_OPR

		Figure 7-5. Order Point Record Configuration

		Figure 163. DPNI_SET_OPR Command Description



		7.3.72 DPNI_GET_OPR

		Figure 164. DPNI_GET_OPR Command Description

		Figure 165. DPNI_SET_OPR Response Description



		7.3.73 DPNI_SET_CONGESTION_NOTIFICATION

		7.3.73.1 Congestion threshold representation

		Figure 166. DPNI_SET_CONGESTION_NOTIFICATION Command Description

		Table 7-3. Memory congestion notification message





		7.3.74 DPNI_GET_CONGESTION_NOTIFICATION

		Figure 167. DPNI_GET_CONGESTION_NOTIFICATION Command Description

		Figure 168. DPNI_GET_CONGESTION_NOTIFICATION Response Description



		7.3.75 DPNI_LOAD_SW_SEQUENCE

		Figure 169. DPNI_LOAD_SW_SEQUENCE Command Description



		7.3.76 DPNI_ENABLE_SW_SEQUENCE

		Table 7-4. HXS Coding

		Figure 170. DPNI_ENABLE_SW_SEQUENCE Command Description



		7.3.77 DPNI_SET_RX_FS_DIST

		Figure 171. DPNI_SET_RX_FS_DIST Command Description



		7.3.78 DPNI_SET_RX_HASH_DIST

		Figure 172. DPNI_SET_RX_HASH_DIST Command Description



		7.3.79 DPNI_ADD_CUSTOM_TPID

		Figure 173. DPNI_ADD_CUSTOM_TPID Command Description



		7.3.80 DPNI_REMOVE_CUSTOM_TPID

		Figure 174. DPNI_REMOVE_CUSTOM_TPID Command Description



		7.3.81 DPNI_GET_CUSTOM_TPID

		Figure 175. DPNI_GET_CUSTOM_TPID Command Description



		7.3.82 DPNI_DUMP_TABLE

		Figure 176. DPNI_DUMP_TABLE Command Description

		Figure 177. DPNI_DUMP_TABLE Response Description



		7.3.83 DPNI_SET_SP_PROFILE

		Figure 178. DPNI_SET_SP_PROFILE Command Description



		7.3.84 DPNI_GET_QDID_EX

		Figure 179. DPNI_GET_QDID_EX Command Description

		Figure 180. DPNI_GET_QDID_EX Response Description



		7.3.85 DPNI_SP_ENABLE

		Figure 181. DPNI_SP_ENABLE Command Description



		7.3.86 DPNI_SET_QUEUE_TX_CONFIRMATION_MODE

		Figure 182. DPNI_SET_QUEUE_TX_CONFIRMATION_MODE Command Description



		7.3.87 DPNI_GET_QUEUE_TX_CONFIRMATION_MODE

		Figure 183. DPNI_GET_QUEUE_TX_CONFIRMATION_MODE Command Description

		Figure 184. DPNI_GET_QUEUE_TX_CONFIRMATION_MODE Response Description







		Chapter 8 DPBP: Data Path Buffer Pool

		8.1 DPBP features

		8.2 DPBP command reference

		8.2.1 DPBP_OPEN

		Figure 185. DPBP_OPEN Command Description

		Table 20. DPBP_OPEN Command Field Descriptions



		8.2.2 DPBP_CLOSE

		Figure 186. DPBP_CLOSE Command Description



		8.2.3 DPBP_CREATE

		Figure 187. DPBP_CREATE Command Description

		Table 21. DPBP_CREATE Command Field Descriptions

		Figure 8-1. DPBP_CREATE Response Description

		Table 8-1. DPBP_CREATE Response Field Descriptions



		8.2.4 DPBP_DESTROY

		Figure 188. DPBP_DESTROY Command Description



		8.2.5 DPBP_ENABLE

		Figure 189. DPBP_ENABLE Command Description



		8.2.6 DPBP_DISABLE

		Figure 190. DPBP_DISABLE Command Description



		8.2.7 DPBP_IS_ENABLED

		Figure 191. DPBP_IS_ENABLED Command Description

		Figure 192. DPBP_IS_ENABLED Response Description



		8.2.8 DPBP_RESET

		Figure 193. DPBP_RESET Command Description



		8.2.9 DPBP_SET_IRQ_ENABLE

		Figure 194. DPBP_SET_IRQ_ENABLE Command Description



		8.2.10 DPBP_GET_IRQ_ENABLE

		Figure 195. DPBP_GET_IRQ_ENABLE Command Description

		Figure 196. DPBP_GET_IRQ_ENABLE Response Description



		8.2.11 DPBP_SET_IRQ_MASK

		Figure 197. DPBP_SET_IRQ_MASK Command Description



		8.2.12 DPBP_GET_IRQ_MASK

		Figure 198. DPBP_GET_IRQ_MASK Command Description

		Figure 199. DPBP_GET_IRQ_MASK Response Description



		8.2.13 DPBP_GET_IRQ_STATUS

		Figure 200. DPBP_GET_IRQ_STATUS Command Description

		Figure 201. DPBP_GET_IRQ_STATUS Response Description



		8.2.14 DPBP_CLEAR_IRQ_STATUS

		Figure 202. DPBP_CLEAR_IRQ_STATUS Command Description



		8.2.15 DPBP_GET_ATTRIBUTES

		Figure 203. DPBP_GET_ATTRIBUTES Command Description

		Figure 204. DPBP_GET_ATTRIBUTES Response Description



		8.2.16 DPBP_SET_NOTIFICATIONS

		Figure 205. DPBP_SET_NOTIFICATIONS Command Description



		8.2.17 DPBP_GET_NOTIFICATIONS

		Figure 206. DPBP_GET_NOTIFICATIONS Command Description

		Figure 207. DPBP_GET_NOTIFICATIONS Response Description



		8.2.18 DPBP_GET_API_VERSION

		Figure 208. DPBP_GET_API_VERSION Response Description

		Figure 209. DPBP_GET_API_VERSION Response Description

		Figure 210. DPBP_GET_API_VERSION Response Description







		Chapter 9 DPIO: Data Path I/O

		9.1 DPIO features

		9.2 DPIO command reference

		9.2.1 DPIO_OPEN

		Figure 211. DPIO_OPEN Command Description

		Table 22. DPIO_OPEN Command Field Descriptions



		9.2.2 DPIO_CLOSE

		Figure 212. DPIO_CLOSE Command Description



		9.2.3 DPIO_CREATE

		Figure 213. DPIO_CREATE Command Description

		Table 23. DPIO_CREATE Command Field Descriptions

		Figure 9-1. DPIO_CREATE Response Description

		Table 9-1. DPIO_CREATE Response Field Descriptions



		9.2.4 DPIO_DESTROY

		Figure 214. DPIO_DESTROY Command Description



		9.2.5 DPIO_ENABLE

		Figure 215. DPIO_ENABLE Command Description



		9.2.6 DPIO_DISABLE

		Figure 216. DPIO_DISABLE Command Description



		9.2.7 DPIO_IS_ENABLED

		Figure 217. DPIO_IS_ENABLED Command Description

		Figure 218. DPIO_IS_ENABLED Response Description



		9.2.8 DPIO_RESET

		Figure 219. DPIO_RESET Command Description



		9.2.9 DPIO_SET_IRQ_ENABLE

		Figure 220. DPIO_SET_IRQ_ENABLE Command Description



		9.2.10 DPIO_GET_IRQ_ENABLE

		Figure 221. DPIO_GET_IRQ_ENABLE Command Description

		Figure 222. DPIO_GET_IRQ_ENABLE Response Description



		9.2.11 DPIO_SET_IRQ_MASK

		Figure 223. DPIO_SET_IRQ_MASK Command Description



		9.2.12 DPIO_GET_IRQ_MASK

		Figure 224. DPIO_GET_IRQ_MASK Command Description

		Figure 225. DPIO_GET_IRQ_MASK Response Description



		9.2.13 DPIO_GET_IRQ_STATUS

		Figure 226. DPIO_GET_IRQ_STATUS Command Description

		Figure 227. DPIO_GET_IRQ_STATUS Response Description



		9.2.14 DPIO_CLEAR_IRQ_STATUS

		Figure 228. DPIO_CLEAR_IRQ_STATUS Command Description



		9.2.15 DPIO_GET_ATTRIBUTES

		Figure 229. DPIO_GET_ATTRIBUTES Command Description

		Figure 230. DPIO_GET_ATTRIBUTES Response Description



		9.2.16 DPIO_SET_STASHING_DESTINATION

		Figure 231. DPIO_SET_STASHING_DESTINATION Command Description



		9.2.17 DPIO_GET_STASHING_DESTINATION

		Figure 232. DPIO_GET_STASHING_DESTINATION Command Description

		Figure 233. DPIO_GET_STASHING_DESTINATION Response Description



		9.2.18 DPIO_ADD_STATIC_DEQUEUE_CHANNEL

		Figure 234. DPIO_ADD_STATIC_DEQUEUE_CHANNEL Command Description

		Figure 235. DPIO_ADD_STATIC_DEQUEUE_CHANNEL Command Description



		9.2.19 DPIO_REMOVE_STATIC_DEQUEUE_CHANNEL

		Figure 236. DPIO_REMOVE_STATIC_DEQUEUE_CHANNEL Command Description



		9.2.20 DPIO_GET_API_VERSION

		Figure 237. DPIO_GET_API_VERSION Command Description

		Figure 238. DPIO_GET_API_VERSION Response Description



		9.2.21 DPIO_SET_STASHING_DESTINATION_SOURCE

		Figure 239. DPIO_SET_STASHING_DESTINATION_SOURCE Command Description



		9.2.22 DPIO_GET_STASHING_DESTINATION_SOURCE

		Figure 240. DPIO_GET_STASHING_DESTINATION_SOURCE Command Description

		Figure 241. DPIO_GET_STASHING_DESTINATION_SOURCE Response Description



		9.2.23 DPIO_SET_STASHING_DESTINATION_BY_CORE_ID

		Figure 242. DPIO_SET_STASHING_DESTINATION_BY_CORE_ID Command Description







		Chapter 10 DPDBG: Data Path Debugging

		10.1 DPDBG features

		10.2 DPDBG command reference

		10.2.1 DPDBG_OPEN

		Figure 243. DPDBG_OPEN Command Description

		Table 24. DPDBG_OPEN Command Field Descriptions



		10.2.2 DPDBG_CLOSE

		Figure 244. DPDBG_CLOSE Command Description



		10.2.3 DPDBG_CREATE

		Figure 245. DPDBG_CREATE Command Description

		Table 25. DPDBG_CREATE Command Field Description



		10.2.4 DPDBG_DESTROY

		Figure 246. DPDBG_DESTROY Command Description



		10.2.5 DPMAC_DUMP

		Figure 247. DPDBG_DUMP Command Description



		10.2.6 DPDBG_SET

		Figure 248. DPDBG_SET Command Description



		10.2.7 DPDBG_GET_ATTRIBUTES

		Figure 249. DPDBG_GET_ATTRIBUTES Command Description

		Figure 250. DPDBG_GET_ATTRIBUTES Response Description



		10.2.8 DPDBG_GET_API_VERSION

		Figure 251. DPDBG_GET_API_VERSION Command Description

		Figure 252. DPDBG_GET_API_VERSION Response Description







		Chapter 11 DPCON: Data Path Concentrator

		11.1 DPCON features

		11.2 DPCON command reference

		11.2.1 DPCON_OPEN

		Figure 253. DPCON_OPEN Command Description

		Table 26. DPCON_OPEN Command Field Descriptions



		11.2.2 DPCON_CLOSE

		Figure 254. DPCON_CLOSE Command Description



		11.2.3 DPCON_CREATE

		Figure 255. DPCON_CREATE Command Description

		Table 27. DPCON_CREATE Command Field Descriptions

		Figure 11-1. DPCON_CREATE Response Description

		Table 11-1. DPCON_CREATE Response Field Descriptions



		11.2.4 DPCON_DESTROY

		Figure 256. DPCON_DESTROY Command Description



		11.2.5 DPCON_ENABLE

		Figure 257. DPCON_ENABLE Command Description



		11.2.6 DPCON_DISABLE

		Figure 258. DPCON_DISABLE Command Description



		11.2.7 DPCON_IS_ENABLED

		Figure 259. DPCON_IS_ENABLED Command Description

		Figure 260. DPCON_IS_ENABLED Response Description



		11.2.8 DPCON_RESET

		Figure 261. DPCON_RESET Command Description



		11.2.9 DPCON_SET_IRQ_ENABLE

		Figure 262. DPCON_SET_IRQ_ENABLE Command Description



		11.2.10 DPCON_GET_IRQ_ENABLE

		Figure 263. DPCON_GET_IRQ_ENABLE Command Description

		Figure 264. DPCON_GET_IRQ_ENABLE Response Description



		11.2.11 DPCON_SET_IRQ_MASK

		Figure 265. DPCON_SET_IRQ_MASK Command Description



		11.2.12 DPCON_GET_IRQ_MASK

		Figure 266. DPCON_GET_IRQ_MASK Command Description

		Figure 267. DPCON_GET_IRQ_MASK Response Description



		11.2.13 DPCON_GET_IRQ_STATUS

		Figure 268. DPCON_GET_IRQ_STATUS Command Description

		Figure 269. DPCON_GET_IRQ_STATUS Response Description



		11.2.14 DPCON_CLEAR_IRQ_STATUS

		Figure 270. DPCON_CLEAR_IRQ_STATUS Command Description



		11.2.15 DPCON_GET_ATTRIBUTES

		Figure 271. DPCON_GET_ATTRIBUTES Command Description

		Figure 272. DPCON_GET_ATTRIBUTES Response Description



		11.2.16 DPCON_SET_NOTIFICATION

		Figure 273. DPCON_SET_NOTIFICATION Command Description



		11.2.17 DPCON_GET_API_VERSION

		Figure 274. DPCON_GET_API_VERSION Command Description

		Figure 275. DPCON_GET_API_VERSION Response Description







		Chapter 12 DPCI: Data Path Communication Interface

		12.1 DPCI features

		12.2 DPCI functional description

		12.2.1 Connecting DPCI objects

		12.2.2 Relationship with DPIO and DPCON objects

		12.2.3 Buffer requirements



		12.3 DPCI command reference

		12.3.1 DPCI_OPEN

		Figure 276. DPCI_OPEN Command Description

		Table 28. DPCI_OPEN Command Field Descriptions



		12.3.2 DPCI_CLOSE

		Figure 277. DPCI_CLOSE Command Description

		Table 29. DPCI_CLOSE Command Field Descriptions



		12.3.3 DPCI_CREATE

		Figure 278. DPCI_CREATE Command Description

		Table 30. DPCI_CREATE Command Field Descriptions

		Figure 279. DPCI_CREATE Response Description

		Table 12-1. DPCI_CREATE Response Field Descriptions



		12.3.4 DPCI_DESTROY

		Figure 280. DPCI_DESTROY Command Description

		Table 31. DPCI_DESTROY Command Field Descriptions



		12.3.5 DPCI_ENABLE

		Figure 281. DPCI_ENABLE Command Description

		Table 32. DPCI_ENABLE Command Field Descriptions



		12.3.6 DPCI_DISABLE

		Figure 282. DPCI_DISABLE Command Description

		Table 33. DPCI_DISABLE Command Field Descriptions



		12.3.7 DPCI_IS_ENABLED

		Figure 283. DPCI_IS_ENABLED Command Description

		Table 34. DPCI_IS_ENABLED Command Field Descriptions

		Figure 284. DPCI_IS_ENABLED Response Description

		Table 35. DPCI_IS_ENABLED Response Field Descriptions



		12.3.8 DPCI_RESET

		Figure 285. DPCI_RESET Command Description

		Table 36. DPCI_RESET Command Field Descriptions



		12.3.9 DPCI_SET_IRQ_ENABLE

		Figure 286. DPCI_SET_IRQ_ENABLE Command Description

		Table 37. DPCI_SET_IRQ_ENABLE Command Field Descriptions



		12.3.10 DPCI_GET_IRQ_ENABLE

		Figure 287. DPCI_GET_IRQ_ENABLE Command Description

		Table 38. DPCI_GET_IRQ_ENABLE Command Field Descriptions

		Figure 288. DPCI_GET_IRQ_ENABLE Response Description

		Table 39. DPCI_GET_IRQ_ENABLE Response Field Descriptions



		12.3.11 DPCI_SET_IRQ_MASK

		Figure 289. DPCI_SET_IRQ_MASK Command Description

		Table 40. DPCI_SET_IRQ_MASK Command Field Descriptions



		12.3.12 DPCI_GET_IRQ_MASK

		Figure 290. DPCI_GET_IRQ_MASK Command Description

		Table 41. DPCI_GET_IRQ_MASK Command Field Descriptions

		Figure 291. DPCI_GET_IRQ_MASK Response Description

		Table 42. DPCI_GET_IRQ_MASK Response Field Descriptions



		12.3.13 DPCI_GET_IRQ_STATUS

		Figure 292. DPCI_GET_IRQ_STATUS Command Description

		Table 43. DPCI_GET_IRQ_STATUS Command Field Descriptions

		Figure 293. DPCI_GET_IRQ_STATUS Response Description

		Table 44. DPCI_GET_IRQ_STATUS Response Field Descriptions



		12.3.14 DPCI_CLEAR_IRQ_STATUS

		Figure 294. DPCI_CLEAR_IRQ_STATUS Command Description

		Table 45. DPCI_CLEAR_IRQ_STATUS Command Field Descriptions



		12.3.15 DPCI_GET_ATTRIBUTES

		Figure 295. DPCI_GET_ATTRIBUTES Command Description

		Table 46. DPCI_GET_ATTRIBUTES Command Field Descriptions

		Figure 296. DPCI_GET_ATTRIBUTES Response Description

		Table 47. DPCI_GET_ATTRIBUTES Response Field Descriptions



		12.3.16 DPCI_GET_PEER_ATTRIBUTES

		Figure 297. DPCI_GET_PEER_ATTRIBUTES Command Description

		Table 48. DPCI_GET_PEER_ATTRIBUTES Command Field Descriptions

		Figure 298. DPCI_GET_PEER_ATTRIBUTES Response Description

		Table 49. DPCI_GET_PEER_ATTRIBUTES Response Field Descriptions



		12.3.17 DPCI_GET_LINK_STATE

		Figure 299. DPCI_GET_LINK_STATE Command Description

		Table 50. DPCI_GET_LINK_STATE Command Field Descriptions

		Figure 300. DPCI_GET_LINK_STATE Response Description

		Table 51. DPCI_GET_LINK_STATE Response Field Descriptions



		12.3.18 DPCI_SET_RX_QUEUE

		Figure 301. DPCI_SET_RX_QUEUE Command Description

		Table 52. DPCI_SET_RX_QUEUE Command Field Descriptions



		12.3.19 DPCI_GET_RX_QUEUE

		Figure 302. DPCI_GET_RX_QUEUE Command Description

		Table 53. DPCI_GET_RX_QUEUE Command Field Descriptions

		Figure 303. DPCI_GET_RX_QUEUE Response Description

		Table 54. DPCI_GET_RX_QUEUE Response Field Descriptions



		12.3.20 DPCI_GET_TX_QUEUE

		Figure 304. DPCI_GET_TX_QUEUE Command Description

		Table 55. DPCI_GET_TX_QUEUE Command Field Descriptions

		Figure 305. DPCI_GET_TX_QUEUE Response Description

		Table 56. DPCI_GET_TX_QUEUE Response Field Descriptions



		12.3.21 DPCI_GET_API_VERSION

		Figure 306. DPCI_GET_API_VERSION Command Description

		Table 57. DPCI_GET_TX_QUEUE Command Field Descriptions

		Figure 307. DPCI_GET_TX_QUEUE Response Description

		Table 58. DPCI_GET_TX_QUEUE Response Field Descriptions



		12.3.22 DPCI_SET_OPR

		Figure 308. DPCI_SET_OPR Command Description

		Table 59. DPCI_SET_OPR Response Field Descriptions



		12.3.23 DPCI_GET_OPR

		Figure 309. DPCI_GET_OPR Command Description

		Table 60. DPCI_GET_OPR Command Field Descriptions

		Figure 310. DPCI_GET_OPR Response Description

		Table 61. DPCI_GET_OPR Response Field Descriptions







		Chapter 13 DPDMUX: Data Path Network DeMux

		13.1 DPDMUX features

		13.2 DPDMUX functional description

		13.2.1 Demux database

		13.2.2 Broadcast and multicast support

		13.2.3 Promiscuous interfaces

		13.2.4 Frames acceptance policy



		13.3 DPDMUX command reference

		13.3.1 DPDMUX_OPEN

		Figure 311. DPDMUX_OPEN Command Description

		Table 62. DPDMUX_OPEN Command Field Descriptions



		13.3.2 DPDMUX_CLOSE

		Figure 312. DPDMUX_CLOSE Command Description



		13.3.3 DPDMUX_CREATE

		Figure 313. DPDMUX_CREATE Command Description

		Figure 13-1. DPDMUX_CREATE Response Description

		Table 13-1. DPDMUX_CREATE Response Field Descriptions



		13.3.4 DPDMUX_DESTROY

		Figure 314. DPDMUX_DESTROY Command Description



		13.3.5 DPDMUX_ENABLE

		Figure 315. DPDMUX_ENABLE Command Description



		13.3.6 DPDMUX_DISABLE

		Figure 316. DPDMUX_DISABLE Command Description



		13.3.7 DPDMUX_IS_ENABLED

		Figure 317. DPDMUX_IS_ENABLED Command Description



		13.3.8 DPDMUX_RESET

		Figure 318. DPDMUX_RESET Command Description



		13.3.9 DPDMUX_SET_IRQ_ENABLE

		Figure 319. DPDMUX_SET_IRQ_ENABLE Command Description



		13.3.10 DPDMUX_GET_IRQ_ENABLE

		Figure 320. DPDMUX_GET_IRQ_ENABLE Command Description

		Figure 321. DPDMUX_GET_IRQ_ENABLE Response Description



		13.3.11 DPDMUX_SET_IRQ_MASK

		Figure 322. DPDMUX_SET_IRQ_MASK Command Description



		13.3.12 DPDMUX_GET_IRQ_MASK

		Figure 323. DPDMUX_GET_IRQ_MASK Command Description

		Figure 324. DPDMUX_GET_IRQ_MASK Response Description



		13.3.13 DPDMUX_GET_IRQ_STATUS

		Figure 325. DPDMUX_GET_IRQ_STATUS Command Description

		Figure 326. DPDMUX_GET_IRQ_STATUS Response Description



		13.3.14 DPDMUX_CLEAR_IRQ_STATUS

		Figure 327. DPDMUX_CLEAR_IRQ_STATUS Command Description



		13.3.15 DPDMUX_GET_ATTRIBUTES

		Figure 328. DPDMUX_GET_ATTRIBUTES Command Description

		Figure 329. DPDMUX_GET_ATTRIBUTES Response Description



		13.3.16 DPDMUX_SET_MAX_FRAME_LENGTH

		Figure 330. DPDMUX_SET_MAX_FRAME_LENGTH Command Description



		13.3.17 DPDMUX_IF_SET_ACCEPTED_FRAMES

		Figure 331. DPDMUX_IF_SET_ACCEPTED_FRAMES Command Description



		13.3.18 DPDMUX_IF_GET_ATTRIBUTES

		Figure 332. DPDMUX_IF_GET_ATTR Command Description

		Figure 333. DPDMUX_IF_GET_ATTRIBUTES Response Description



		13.3.19 DPDMUX_IF_ENABLE

		Figure 334. DPDMUX_IF_ENABLE Command Description



		13.3.20 DPDMUX_IF_DISABLE

		Figure 335. DPDMUX_IF_DISABLE Command Description



		13.3.21 DPDMUX_IF_SET_DEFAULT

		Figure 336. DPDMUX_IF_SET_DEFAULT Command Description



		13.3.22 DPDMUX_IF_GET_DEFAULT

		Figure 337. DPDMUX_IF_GET_DEFAULT Command Description

		Figure 338. DPDMUX_IF_GET_DEFAULT Response Description



		13.3.23 DPDMUX_SET_RESETABLE

		Figure 339. DPDMUX_SET_RESETABLE Command Description



		13.3.24 DPDMUX_GET_RESETABLE

		Figure 340. DPDMUX_GET_RESETABLE Command Description

		Figure 341. DPDMUX_GET_RESETABLE Response Description



		13.3.25 DPDMUX_IF_REMOVE_L2_RULE

		Figure 342. DPDMUX_IF_REMOVE_L2_RULE Command Description



		13.3.26 DPDMUX_IF_ADD_L2_RULE

		Figure 343. DPDMUX_IF_ADD_L2_RULE Command Description



		13.3.27 DPDMUX_IF_GET_COUNTER

		Figure 344. DPDMUX_IF_GET_COUNTER Command Description

		Figure 345. DPDMUX_IF_GET_COUNTER Response Description



		13.3.28 DPDMUX_UL_RESET_COUNTERS

		Figure 346. DPDMUX_IF_RESET_COUNTERS Command Description



		13.3.29 DPDMUX_IF_SET_LINK_CFG

		Figure 347. DPDMUX_IF_SET_LINK_CFG Command Description



		13.3.30 DPDMUX_IF_GET_LINK_STATE

		Figure 348. DPDMUX_IF_GET_LINK_STATE Command Description

		Figure 349. DPDMUX_IF_GET_LINK_STATE Response Description



		13.3.31 DPDMUX_GET_API_VERSION

		Figure 350. DPDMUX_GET_API_VERSION Command Description

		Figure 351. DPDMUX_GET_API_VERSION Response Description



		13.3.32 DPDMUX_SET_CUSTOM_KEY

		Figure 352. DPDMUX_SET_CUSTOM_KEY Command Description



		13.3.33 DPDMUX_ADD_CUSTOM_CLS_ENTRY

		Figure 353. DPDMUX_ADD_CUSTOM_CLS_ENTRY Command Description



		13.3.34 DPDMUX_REMOVE_CUSTOM_CLS_ENTRY

		Figure 354. DPDMUX_REMOVE_CUSTOM_CLS_ENTRY Command Description



		13.3.35 DPDMUX_IF_SET_TAILDROP

		Figure 355. DPDMUX_IF_SET_TAILDROP Command Description



		13.3.36 DPDMUX_IF_GET_TAILDROP

		Figure 356. DPDMUX_IF_GET_TAILDROP Command Description

		Figure 357. DPDMUX_IF_GET_TAILDROP Command Description



		13.3.37 DPDMUX_DUMP_TABLE

		Figure 358. DPDMUX_DUMP_TABLE Command Description

		Figure 359. DPDMUX_DUMP_TABLE Response Description



		13.3.38 DPDMUX_IF_SET_ERRORS_BEHAVIOR

		Figure 360. DPDMUX_IF_SET_ERRORS_BEHAVIOR Command Description



		13.3.39 DPDMUX_GET_MAX_FRAME_LENGTH

		Figure 361. DPDMUX_GET_MAX_FRAME_LENGTH Command Description

		Figure 362. DPDMUX_GET_MAX_FRAME_LENGTH Response Description



		13.3.40 DPDMUX_SET_SP_PROFILE

		Figure 363. DPDMUX_SET_SP_PROFILE Command Description



		13.3.41 DPDMUX_SP_ENABLE

		Figure 364. DPDMUX_SP_ENABLE Command Description







		Chapter 14 DPSW: Data Path L2 Switch

		14.1 DPSW features

		14.2 DPSW functional description

		14.2.1 Creating L2 switch instance

		14.2.2 VLAN configuration

		14.2.3 Learning modes

		14.2.4 FDB configuration

		14.2.5 LAG configuration



		14.3 DPSW command reference

		14.3.1 DPSW_OPEN

		Figure 365. DPSW_OPEN Command Description

		Table 63. DPSW_OPEN Command Field Descriptions



		14.3.2 DPSW_CLOSE

		Figure 366. DPSW_CLOSE Command Description



		14.3.3 DPSW_CREATE

		Figure 367. DPSW_CREATE Command Description

		Table 64. DPSW_CREATE Command Field Descriptions

		Figure 14-1. DPSW_CREATE Response Description

		Table 14-1. DPSW_CREATE Response Field Descriptions



		14.3.4 DPSW_DESTROY

		Figure 368. DPSW_DESTROY Command Description



		14.3.5 DPSW_ENABLE

		Figure 369. DPSW_ENABLE Command Description



		14.3.6 DPSW_DISABLE

		Figure 370. DPSW_DISABLE Command Description



		14.3.7 DPSW_IS_ENABLED

		Figure 371. DPSW_IS_ENABLED Command Description

		Figure 372. DPSW_IS_ENABLED Response Description



		14.3.8 DPSW_RESET

		Figure 373. DPSW_RESET Command Description



		14.3.9 DPSW_SET_IRQ_ENABLE

		Figure 374. DPSW_SET_IRQ_ENABLE Command Description



		14.3.10 DPSW_GET_IRQ_ENABLE

		Figure 375. DPSW_GET_IRQ_ENABLE Command Description

		Figure 376. DPSW_GET_IRQ_ENABLE Response Description



		14.3.11 DPSW_SET_IRQ_MASK

		Figure 377. DPSW_SET_IRQ_MASK Command Description



		14.3.12 DPSW_GET_IRQ_MASK

		Figure 378. DPSW_GET_IRQ_MASK Command Description

		Figure 379. DPSW_GET_IRQ_MASK Response Description



		14.3.13 DPSW_GET_IRQ_STATUS

		Figure 380. DPSW_GET_IRQ_STATUS Command Description

		Figure 381. DPSW_GET_IRQ_STATUS Response Description



		14.3.14 DPSW_CLEAR_IRQ_STATUS

		Figure 382. DPSW_CLEAR_IRQ_STATUS Command Description



		14.3.15 DPSW_GET_ATTRIBUTES

		Figure 383. DPSW_GET_ATTRIBUTES Command Description

		Figure 384. DPSW_GET_ATTRIBUTES Response Description



		14.3.16 DPSW_SET_REFLECTION_IF

		Figure 385. DPSW_SET_REFLECTION_IF Command Description



		14.3.17 DPSW_IF_SET_FLOODING

		Figure 386. DPSW_IF_SET_FLOODING Command Description



		14.3.18 DPSW_IF_SET_BROADCAST

		Figure 387. DPSW_IF_SET_BROADCAST Command Description



		14.3.19 DPSW_IF_SET_MULTICAST

		Figure 388. DPSW_IF_SET_MULTICAST Command Description



		14.3.20 DPSW_IF_SET_TCI

		Figure 389. DPSW_IF_SET_TCI Command Description



		14.3.21 DPSW_IF_GET_TCI

		Figure 390. DPSW_IF_GET_TCI Command Description

		Figure 391. DPSW_IF_GET_TCI Response Description



		14.3.22 DPSW_IF_SET_STP

		Figure 392. DPSW_IF_SET_STP Command Description



		14.3.23 DPSW_IF_SET_ACCEPTED_FRAMES

		Figure 393. DPSW_IF_SET_ACCEPTED_FRAMES Command Description



		14.3.24 DPSW_SET_IF_ACCEPT_ALL_VLAN

		Figure 394. DPSW_SET_IF_ACCEPT_ALL_VLAN Command Description



		14.3.25 DPSW_IF_GET_COUNTER

		Figure 395. DPSW_IF_GET_COUNTER Command Description

		Figure 396. DPSW_IF_GET_COUNTER Response Description



		14.3.26 DPSW_IF_SET_COUNTER

		Figure 397. DPSW_IF_SET_COUNTER Command Description



		14.3.27 DPSW_IF_SET_TX_SELECTION

		Figure 398. DPSW_IF_SET_TX_SELECTION Command Description



		14.3.28 DPSW_IF_ADD_REFLECTION

		Figure 399. DPSW_IF_ADD_REFLECTION Command Description



		14.3.29 DPSW_IF_REMOVE_REFLECTION

		Figure 400. DPSW_IF_REMOVE_REFLECTION Command Description



		14.3.30 DPSW_IF_SET_FLOODING_METERING

		Figure 401. DPSW_IF_SET_FLOODING_METERING Command Description



		14.3.31 DPSW_IF_SET_METERING

		Figure 402. DPSW_IF_SET_METERING Command Description



		14.3.32 DPSW_IF_SET_EARLY_DROP

		Figure 403. DPSW_IF_SET_EARLY_DROP Command Description

		Figure 404. DPSW_IF_SET_EARLY_DROP Extension Description



		14.3.33 DPSW_ADD_CUSTOM_TPID

		Figure 405. DPSW_ADD_CUSTOM_TPID Command Description



		14.3.34 DPSW_REMOVE_CUSTOM_TPID

		Figure 406. DPSW_REMOVE_CUSTOM_TPID Command Description



		14.3.35 DPSW_IF_ENABLE

		Figure 407. DPSW_IF_ENABLE Command Description



		14.3.36 DPSW_IF_DISABLE

		Figure 408. DPSW_IF_DISABLE Command Description



		14.3.37 DPSW_IF_GET_ATTRIBUTES

		Figure 409. DPSW_IF_GET_ATTRIBUTES Command Description

		Figure 410. DPSW_IF_GET_ATTRIBUTES Response Description



		14.3.38 DPSW_IF_SET_MAX_FRAME_LENGTH

		Figure 411. DPSW_IF_SET_MAX_FRAME_LENGTH Command Description



		14.3.39 DPSW_IF_SET_LINK_CFG

		Figure 412. DPSW_IF_SET_LINK_CFG Command Description



		14.3.40 DPSW_IF_GET_LINK_STATE

		Figure 413. DPSW_IF_GET_LINK_STATE Command Description

		Figure 414. DPSW_IF_GET_LINK_STATE Response Description



		14.3.41 DPSW_IF_GET_MAX_FRAME_LENGTH

		Figure 415. DPSW_IF_GET_MAX_FRAME_LENGTH Command Description

		Figure 416. DPSW_IF_GET_MAX_FRAME_LENGTH Response Description



		14.3.42 DPSW_VLAN_ADD

		Figure 417. DPSW_VLAN_ADD Command Description



		14.3.43 DPSW_VLAN_ADD_IF

		Figure 418. DPSW_VLAN_ADD_IF Command Description



		14.3.44 DPSW_VLAN_ADD_IF_UNTAGGED

		Figure 419. DPSW_VLAN_ADD_IF_UNTAGGED Command Description



		14.3.45 DPSW_VLAN_ADD_IF_FLOODING

		Figure 420. DPSW_VLAN_ADD_IF_FLOODING Command Description



		14.3.46 DPSW_VLAN_REMOVE_IF

		Figure 421. DPSW_VLAN_REMOVE_IF Command Description



		14.3.47 DPSW_VLAN_REMOVE_IF_UNTAGGED

		Figure 422. DPSW_VLAN_REMOVE_IF_UNTAGGED Command Description



		14.3.48 DPSW_VLAN_REMOVE_IF_FLOODING

		Figure 423. DPSW_VLAN_REMOVE_IF_FLOODING Command Description



		14.3.49 DPSW_VLAN_REMOVE

		Figure 424. DPSW_VLAN_REMOVE Command Description



		14.3.50 DPSW_VLAN_GET_ATTRIBUTES

		Figure 425. DPSW_VLAN_GET_ATTRIBUTES Command Description

		Figure 426. DPSW_VLAN_GET_ATTRIBUTES Response Description



		14.3.51 DPSW_VLAN_GET_IF

		Figure 427. DPSW_VLAN_GET_IF Command Description

		Figure 428. DPSW_VLAN_GET_IF Response Description



		14.3.52 DPSW_VLAN_GET_IF_FLOODING

		Figure 429. DPSW_VLAN_GET_IF_FLOODING Command Description

		Figure 430. DPSW_VLAN_GET_IF_FLOODING Response Description



		14.3.53 DPSW_VLAN_GET_IF_UNTAGGED

		Figure 431. DPSW_VLAN_GET_IF_UNTAGGED Command Description

		Figure 432. DPSW_VLAN_GET_IF_UNTAGGED Response Description



		14.3.54 DPSW_FDB_ADD

		Figure 433. DPSW_FDB_ADD Command Description

		Figure 434. DPSW_FDB_ADD Response Description



		14.3.55 DPSW_FDB_REMOVE

		Figure 435. DPSW_FDB_REMOVE Command Description



		14.3.56 DPSW_FDB_ADD_UNICAST

		Figure 436. DPSW_FDB_ADD_UNICAST Command Description



		14.3.57 DPSW_FDB_GET_UNICAST

		Figure 437. DPSW_FDB_GET_UNICAST Command Description

		Figure 438. DPSW_FDB_GET_UNICAST Response Description



		14.3.58 DPSW_FDB_REMOVE_UNICAST

		Figure 439. DPSW_FDB_REMOVE_UNICAST Command Description



		14.3.59 DPSW_FDB_ADD_MULTICAST

		Figure 440. DPSW_FDB_ADD_MULTICAST Command Description



		14.3.60 DPSW_FDB_GET_MULTICAST

		Figure 441. DPSW_FDB_GET_MULTICAST Command Description

		Figure 442. DPSW_FDB_GET_MULTICAST Response Description



		14.3.61 DPSW_FDB_REMOVE_MULTICAST

		Figure 443. DPSW_FDB_REMOVE_MULTICAST Command Description



		14.3.62 DPSW_FDB_SET_LEARNING_MODE

		Figure 444. DPSW_FDB_SET_LEARNING_MODE Command Description



		14.3.63 DPSW_FDB_GET_ATTRIBUTES

		Figure 445. DPSW_FDB_GET_ATTRIBUTES Command Description

		Figure 446. DPSW_FDB_GET_ATTRIBUTES Response Description



		14.3.64 DPSW_ACL_ADD

		Figure 447. DPSW_ACL_ADD Command Description

		Figure 448. DPSW_ACL_ADD Response Description



		14.3.65 DPSW_ACL_REMOVE

		Figure 449. DPSW_ACL_REMOVE Command Description



		14.3.66 DPSW_ACL_PREPARE_ENTRY_CFG

		Figure 450. DPSW_ACL_PREPARE_ENTRY_CFG Extension Description



		14.3.67 DPSW_ACL_ADD_ENTRY

		Figure 451. DPSW_ACL_ADD_ENTRY Command Description



		14.3.68 DPSW_ACL_REMOVE_ENTRY

		Figure 452. DPSW_ACL_REMOVE_ENTRY Command Description

		Figure 453. DPSW_ACL_REMOVE_ENTRY Extension Description



		14.3.69 DPSW_ACL_ADD_IF

		Figure 454. DPSW_ACL_ADD_IF Command Description



		14.3.70 DPSW_ACL_REMOVE_IF

		Figure 455. DPSW_ACL_REMOVE_IF Command Description



		14.3.71 DPSW_ACL_GET_ATTRIBUTES

		Figure 456. DPSW_ACL_GET_ATTRIBUTES Command Description

		Figure 457. DPSW_ACL_GET_ATTRIBUTES Response Description



		14.3.72 DPSW_CTRL_IF_GET_ATTRIBUTES

		Figure 458. DPSW_CTRL_IF_GET_ATTRIBUTES Command Description

		Figure 459. DPSW_CTRL_IF_GET_ATTRIBUTES Response Description



		14.3.73 DPSW_CTRL_IF_SET_POOLS

		Figure 460. DPSW_CTRL_IF_SET_POOLS Command Description



		14.3.74 DPSW_CTRL_IF_ENABLE

		Figure 461. DPSW_CTRL_IF_ENABLE Command Description



		14.3.75 DPSW_CTRL_IF_DISABLE

		Figure 462. DPSW_CTRL_IF_DISABLE Command Description



		14.3.76 DPSW_CTRL_IF_SET_QUEUE

		Figure 463. DPSW_CTRL_IF_SET_QUEUE Command Description



		14.3.77 DPSW_GET_API_VERSION

		Figure 464. DPSW_GET_API_VERSION Command Description

		Figure 465. DPSW_GET_API_VERSION Response Description



		14.3.78 DPSW_LAG_SET

		Figure 466. DPSW_LAG_SET Command Description



		14.3.79 DPSW_LAG_GET_CFG

		Figure 467. DPSW_LAG_GET_CFG Command Description

		Figure 468. DPSW_LAG_GET_CFG Command Description



		14.3.80 DPSW_IF_SET_TAILDROP

		Figure 469. DPSW_IF_SET_TAILDROP Command Description



		14.3.81 DPSW_IF_GET_TAILDROP

		Figure 470. DPSW_IF_GET_TAILDROP Command Description

		Figure 471. DPSW_IF_GET_TAILDROP Command Description



		14.3.82 DPSW_DUMP_TABLE

		Figure 472. DPSW_DUMP_TABLE Command Description

		Figure 473. DPSW_DUMP_TABLE Response Description



		14.3.83 DPSW_IF_SET_LEARNING_MODE

		Figure 474. DPSW_IF_SET_LEARNING_MODE Command Description



		14.3.84 DPSW_SET_EGRESS_FLOOD

		Figure 475. DPSW_IF_SET_EGRESS_FLOOD Command Description



		14.3.85 DPSW_IF_SET_ERRORS_BEHAVIOR

		Figure 476. DPSW_IF_SET_ERRORS_BEHAVIOR Command Description



		14.3.86 DPSW_IF_SET_PRIO_SELECTOR

		Figure 477. DPSW_IF_SET_PRIO_SELECTOR Command Description



		14.3.87 DPSW_IF_SET_TX_SHAPING

		Figure 478. DPSW_IF_SET_TX_SHAPING Command Description



		14.3.88 DPSW_SET_SP_PROFILE

		Figure 479. DPSW_SET_SP_PROFILE Command Description



		14.3.89 DPSW_SP_ENABLE

		Figure 480. DPSW_SP_ENABLE Command Description







		Chapter 15 DPMAC: Data Path MAC

		15.1 DPMAC features

		15.2 DPMAC command reference

		15.2.1 DPMAC_OPEN

		Figure 481. DPMAC_OPEN Command Description

		Table 65. DPMAC_OPEN Command Field Descriptions



		15.2.2 DPMAC_CLOSE

		Figure 482. DPMAC_CLOSE Command Description



		15.2.3 DPMAC_CREATE

		Figure 483. DPMAC_CREATE Command Description

		Table 66. DPMAC_CREATE Command Field Descriptions

		Figure 15-1. DPMAC_CREATE Response Description

		Table 15-1. DPMAC_CREATE Response Field Descriptions



		15.2.4 DPMAC_DESTROY

		Figure 484. DPMAC_DESTROY Command Description



		15.2.5 DPMAC_SET_IRQ_ENABLE

		Figure 485. DPMAC_SET_IRQ_ENABLE Command Description



		15.2.6 DPMAC_GET_IRQ_ENABLE

		Figure 486. DPMAC_GET_IRQ_ENABLE Command Description

		Figure 487. DPMAC_GET_IRQ_ENABLE Response Description



		15.2.7 DPMAC_SET_IRQ_MASK

		Figure 488. DPMAC_SET_IRQ_MASK Command Description



		15.2.8 DPMAC_GET_IRQ_MASK

		Figure 489. DPMAC_GET_IRQ_MASK Command Description

		Figure 490. DPMAC_GET_IRQ_MASK Response Description



		15.2.9 DPMAC_GET_IRQ_STATUS

		Figure 491. DPMAC_GET_IRQ_STATUS Command Description

		Figure 492. DPMAC_GET_IRQ_STATUS Response Description



		15.2.10 DPMAC_CLEAR_IRQ_STATUS

		Figure 493. DPMAC_CLEAR_IRQ_STATUS Command Description



		15.2.11 DPMAC_GET_ATTRIBUTES

		Figure 494. DPMAC_GET_ATTRIBUTES Command Description

		Figure 495. DPMAC_GET_ATTRIBUTES Response Description



		15.2.12 DPMAC_SET_PARAMS

		Figure 496. DPMAC_SET_PARAMS Command Description



		15.2.13 DPMAC_MDIO_READ

		Figure 497. DPMAC_MDIO_READ Command Description

		Figure 498. DPMAC_MDIO_READ Response Description



		15.2.14 DPMAC_MDIO_WRITE

		Figure 499. DPMAC_MDIO_WRITE Command Description



		15.2.15 DPMAC_GET_LINK_CFG

		Figure 500. DPMAC_GET_LINK_CFG Command Description

		Figure 501. DPMAC_GET_LINK_CFG Response Description

		Table 15-2. DPMAC link options



		15.2.16 DPMAC_SET_LINK_STATE

		Figure 502. DPMAC_SET_LINK_STATE Command Description



		15.2.17 DPMAC_GET_COUNTER

		Figure 503. DPMAC_GET_COUNTER Command Description

		Table 67. DPMAC counter values

		Figure 504. DPMAC_GET_COUNTER Response Description



		15.2.18 DPMAC_GET_API_VERSION

		Figure 505. DPMAC_GET_API_VERSION Command Description

		Figure 506. DPMAC_GET_API_VERSION Response Description



		15.2.19 DPMAC_RESET

		Figure 507. DPMAC_RESET Command Description



		15.2.20 DPMAC_GET_MAC_ADDR

		Figure 508. DPMAC_GET_MAC_ADDR Command Description

		Figure 509. DPMAC_GET_MAC_ADDR Response Description



		15.2.21 DPMAC_SET_PROTOCOL

		Figure 510. DPMAC_SET_PROTOCOL Command Description







		Chapter 16 DPRTC: Data Path Real Time Clock

		16.1 DPRTC features

		16.2 DPRTC command reference

		16.2.1 DPRTC_OPEN

		Figure 511. DPRTC_OPEN Command Description

		Table 68. DPRTC_OPEN Command Field Descriptions



		16.2.2 DPRTC_CLOSE

		Figure 512. DPRTC_CLOSE Command Description



		16.2.3 DPRTC_CREATE

		Figure 513. DPRTC_CREATE Command Description

		Table 69. DPRTC_CREATE Command Field Descriptions

		Figure 16-1. DPRTC_CREATE Response Description

		Table 16-1. DPRTC_CREATE Response Field Descriptions



		16.2.4 DPRTC_DESTROY

		Figure 514. DPRTC_DESTROY Command Description



		16.2.5 DPRTC_SET_IRQ_ENABLE

		Figure 515. DPRTC_SET_IRQ_ENABLE Command Description



		16.2.6 DPRTC_GET_IRQ_ENABLE

		Figure 516. DPRTC_GET_IRQ_ENABLE Command Description

		Figure 517. DPRTC_GET_IRQ_ENABLE Response Description



		16.2.7 DPRTC_SET_IRQ_MASK

		Figure 518. DPRTC_SET_IRQ_MASK Command Description



		16.2.8 DPRTC_GET_IRQ_MASK

		Figure 519. DPRTC_GET_IRQ_MASK Command Description

		Figure 520. DPRTC_GET_IRQ_MASK Response Description



		16.2.9 DPRTC_GET_IRQ_STATUS

		Figure 521. DPRTC_GET_IRQ_STATUS Command Description

		Figure 522. DPRTC_GET_IRQ_STATUS Response Description



		16.2.10 DPRTC_CLEAR_IRQ_STATUS

		Figure 523. DPRTC_CLEAR_IRQ_STATUS Command Description



		16.2.11 DPRTC_GET_ATTRIBUTES

		Figure 524. DPRTC_GET_ATTRIBUTES Command Description

		Figure 525. DPRTC_GET_ATTRIBUTES Response Description



		16.2.12 DPRTC_SET_CLOCK_OFFSET

		Figure 526. DPRTC_SET_CLOCK_OFFSET Command Description



		16.2.13 DPRTC_GET_CLOCK_OFFSET

		Figure 527. DPRTC_GET_CLOCK_OFFSET Command Description

		Figure 528. DPRTC_GET_CLOCK_OFFSET Response Description



		16.2.14 DPRTC_SET_FREQ_COMPENSATION

		Figure 529. DPRTC_SET_FREQ_COMPENSATION Command Description



		16.2.15 DPRTC_GET_FREQ_COMPENSATION

		Figure 530. DPRTC_GET_FREQ_COMPENSATION Command Description

		Figure 531. DPRTC_GET_FREQ_COMPENSATION Response Description



		16.2.16 DPRTC_GET_TIME

		Figure 532. DPRTC_GET_TIME Command Description

		Figure 533. DPRTC_GET_TIME Response Description



		16.2.17 DPRTC_SET_TIME

		Figure 534. DPRTC_SET_TIME Command Description



		16.2.18 DPRTC_SET_ALARM

		Figure 535. DPRTC_SET_ALARM Command Description



		16.2.19 DPRTC_GET_EXT_TRIGGER_TIMESTAMP

		Figure 536. DPRTC_GET_EXT_TRIGGER_TIMESTEMP Command Description

		Figure 537. DPRTC_GET_EXT_TRIGGER_TIMESTEMP Response Description



		16.2.20 DPRTC_SET_FIPER_LOOPBACK

		Figure 538. DPRTC_SET_FIPER_LOOPBACK Command Description



		16.2.21 DPRTC_GET_API_VERSION

		Figure 539. DPRTC_GET_API_VERSION Command Description

		Figure 540. DPRTC_GET_API_VERSION Response Description







		Chapter 17 DPSECI: Data Path SEC Interface

		17.1 DPSECI features

		17.2 DPSECI functional description

		17.2.1 Setting the DPSECI for SEC operation

		17.2.2 Relationship with DPIO and DPCON objects

		17.2.3 Buffer requirements



		17.3 DPSECI command reference

		17.3.1 DPSECI_OPEN

		Figure 541. DPSECI_OPEN Command Description

		Table 70. DPSECI_OPEN Command Field Descriptions



		17.3.2 DPSECI_CLOSE

		Figure 542. DPSECI_CLOSE Command Description



		17.3.3 DPSECI_CREATE

		Figure 543. DPSECI_CREATE Command Description

		Table 71. DPSECI_CREATE Command Field Descriptions

		Figure 17-1. DPSECI_CREATE Response Description

		Table 17-1. DPSECI_CREATE Response Field Descriptions



		17.3.4 DPSECI_DESTROY

		Figure 544. DPSECI_DESTROY Command Description



		17.3.5 DPSECI_ENABLE

		Figure 545. DPSECI_ENABLE Command Description



		17.3.6 DPSECI_DISABLE

		Figure 546. DPSECI_DISABLE Command Description



		17.3.7 DPSECI_IS_ENABLED

		Figure 547. DPSECI_IS_ENABLED Command Description

		Figure 548. DPSECI_IS_ENABLED Response Description



		17.3.8 DPSECI_RESET

		Figure 549. DPSECI_RESET Command Description



		17.3.9 DPSECI_SET_IRQ_ENABLE

		Figure 550. DPSECI_SET_IRQ_ENABLE Command Description



		17.3.10 DPSECI_GET_IRQ_ENABLE

		Figure 551. DPSECI_GET_IRQ_ENABLE Command Description

		Figure 552. DPSECI_GET_IRQ_ENABLE Response Description



		17.3.11 DPSECI_SET_IRQ_MASK

		Figure 553. DPSECI_SET_IRQ_MASK Command Description



		17.3.12 DPSECI_GET_IRQ_MASK

		Figure 554. DPSECI_GET_IRQ_MASK Command Description

		Figure 555. DPSECI_GET_IRQ_MASK Response Description



		17.3.13 DPSECI_GET_IRQ_STATUS

		Figure 556. DPSECI_GET_IRQ_STATUS Command Description

		Figure 557. DPSECI_GET_IRQ_STATUS Response Description



		17.3.14 DPSECI_CLEAR_IRQ_STATUS

		Figure 558. DPSECI_CLEAR_IRQ_STATUS Command Description



		17.3.15 DPSECI_GET_ATTRIBUTES

		Figure 559. DPSECI_GET_ATTRIBUTES Command Description

		Figure 560. DPSECI_GET_ATTRIBUTES Response Description



		17.3.16 DPSECI_SET_OPR

		Figure 561. DPSECI_SET_OPR Command Description



		17.3.17 DPSECI_GET_OPR

		Figure 562. DPSECI_GET_OPR Command Description

		Figure 563. DPSECI_GET_OPR Response Rescription



		17.3.18 DPSECI_SET_RX_QUEUE

		Figure 564. DPSECI_SET_RX_QUEUE Command Description



		17.3.19 DPSECI_GET_RX_QUEUE

		Figure 565. DPSECI_GET_RX_QUEUE Command Description

		Figure 566. DPSECI_GET_RX_QUEUE Response Description



		17.3.20 DPSECI_GET_TX_QUEUE

		Figure 567. DPSECI_GET_TX_QUEUE Command Description

		Figure 568. DPSECI_GET_TX_QUEUE Response Description



		17.3.21 DPSECI_GET_SEC_ATTR

		Figure 569. DPSECI_GET_SEC_ATTR Command Description

		Figure 570. DPSECI_GET_SEC_ATTR Response Description



		17.3.22 DPSECI_GET_SEC_COUNTERS

		Figure 571. DPSECI_GET_SEC_COUNTERS Command Description

		Figure 572. DPSECI_GET_SEC_COUNTERS Response Description



		17.3.23 DPSECI_GET_API_VERSION

		Figure 573. DPSECI_GET_API_VERSION Command Description

		Figure 574. DPSECI_GET_API_VERSION Response Description



		17.3.24 DPSECI_GET_RX_QUEUE_STATUS

		Figure 575. DPSECI_GET_RX_QUEUE_STATUS Command Description

		Figure 576. DPSECI_GET_RX_QUEUE_STATUS Response Description



		17.3.25 DPSECI_GET_TX_QUEUE_STATUS

		Figure 577. DPSECI_GET_TX_QUEUE_STATUS Command Description

		Figure 578. DPSECI_GET_TX_QUEUE_STATUS Response Description







		Chapter 18 DPDCEI: Data Path DCE Interface

		18.1 DPDCEI features

		18.2 DPDCEI command reference

		18.2.1 DPDCEI_OPEN

		Figure 579. DPDCEI_OPEN Command Description

		Table 72. DPDCEI_OPEN Command Field Descriptions



		18.2.2 DPDCEI_CLOSE

		Figure 580. DPDCEI_CLOSE Command Description



		18.2.3 DPDCEI_CREATE

		Figure 581. DPDCEI_CREATE Command Description

		Table 73. DPDCEI_CREATE Command Field Descriptions

		Figure 18-1. DPDCEI_CREATE Response Description

		Table 18-1. DPDCEI_CREATE Response Field Descriptions



		18.2.4 DPDCEI_DESTROY

		Figure 582. DPDCEI_DESTROY Command Description



		18.2.5 DPDCEI_ENABLE

		Figure 583. DPDCEI_ENABLE Command Description



		18.2.6 DPDCEI_DISABLE

		Figure 584. DPDCEI_DISABLE Command Description



		18.2.7 DPDCEI_IS_ENABLED

		Figure 585. DPDCEI_IS_ENABLED Command Description

		Figure 586. DPDCEI_IS_ENABLED Response Description



		18.2.8 DPDCEI_RESET

		Figure 587. DPDCEI_RESET Command Description



		18.2.9 DPDCEI_SET_IRQ_ENABLE

		Figure 588. DPDCEI_SET_IRQ_ENABLE Command Description



		18.2.10 DPDCEI_GET_IRQ_ENABLE

		Figure 589. DPDCEI_GET_IRQ_ENABLE Command Description

		Figure 590. DPDCEI_GET_IRQ_ENABLE Response Description



		18.2.11 DPDCEI_SET_IRQ_MASK

		Figure 591. DPDCEI_SET_IRQ_MASK Command Description



		18.2.12 DPDCEI_GET_IRQ_MASK

		Figure 592. DPDCEI_GET_IRQ_MASK Command Description

		Figure 593. DPDCEI_GET_IRQ_MASK Response Description



		18.2.13 DPDCEI_GET_IRQ_STATUS

		Figure 594. DPDCEI_GET_IRQ_STATUS Command Description

		Figure 595. DPDCEI_GET_IRQ_STATUS Response Description



		18.2.14 DPDCEI_CLEAR_IRQ_STATUS

		Figure 596. DPDCEI_CLEAR_IRQ_STATUS Command Description



		18.2.15 DPDCEI_GET_ATTRIBUTES

		Figure 597. DPDCEI_GET_ATTRIBUTES Command Description

		Figure 598. DPDCEI_GET_ATTRIBUTES Response Description



		18.2.16 DPDCEI_SET_RX_QUEUE

		Figure 599. DPDCEI_SET_RX_QUEUE Command Description



		18.2.17 DPDCEI_GET_RX_QUEUE

		Figure 600. DPDCEI_GET_RX_QUEUE Command Description

		Figure 601. DPDCEI_GET_RX_QUEUE Response Description



		18.2.18 DPDCEI_GET_TX_QUEUE

		Figure 602. DPDCEI_GET_TX_QUEUE Command Description

		Figure 603. DPDCEI_GET_TX_QUEUE Response Description



		18.2.19 DPDCEI_GET_API_VERSION

		Figure 604. DPDCEI_GET_API_VERSION Command Description

		Figure 605. DPDCEI_GET_API_VERSION Response Description







		Chapter 19 DPDMAI: Data Path DMA Interface

		19.1 DPDMAI features

		19.2 DPDMAI command reference

		19.2.1 DPDMAI_OPEN

		Figure 606. DPDMAI_OPEN Command Description

		Table 74. DPDMAI_OPEN Command Field Descriptions



		19.2.2 DPDMAI_CLOSE

		Figure 607. DPDMAI_CLOSE Command Description



		19.2.3 DPDMAI_CREATE

		Figure 608. DPDMAI_CREATE Command Description

		Table 75. DPDMAI_CREATE Command Field Descriptions

		Figure 19-1. DPDMAI_CREATE Response Description

		Table 19-1. DPDMAI_CREATE Response Field Descriptions



		19.2.4 DPDMAI_DESTROY

		Figure 609. DPDMAI_DESTROY Command Description



		19.2.5 DPDMAI_ENABLE

		Figure 610. DPDMAI_ENABLE Command Description



		19.2.6 DPDMAI_DISABLE

		Figure 611. DPDMAI_DISABLE Command Description



		19.2.7 DPDMAI_IS_ENABLED

		Figure 612. DPDMAI_IS_ENABLED Command Description

		Figure 613. DPDMAI_IS_ENABLED Response Description



		19.2.8 DPDMAI_RESET

		Figure 614. DPDMAI_RESET Command Description



		19.2.9 DPDMAI_SET_IRQ_ENABLE

		Figure 615. DPDMAI_SET_IRQ_ENABLE Command Description



		19.2.10 DPDMAI_GET_IRQ_ENABLE

		Figure 616. DPDMAI_GET_IRQ_ENABLE Command Description

		Figure 617. DPDMAI_GET_IRQ_ENABLE Response Description



		19.2.11 DPDMAI_SET_IRQ_MASK

		Figure 618. DPDMAI_SET_IRQ_MASK Command Description



		19.2.12 DPDMAI_GET_IRQ_MASK

		Figure 619. DPDMAI_GET_IRQ_MASK Command Description

		Figure 620. DPDMAI_GET_IRQ_MASK Response Description



		19.2.13 DPDMAI_GET_IRQ_STATUS

		Figure 621. DPDMAI_GET_IRQ_STATUS Command Description

		Figure 622. DPDMAI_GET_IRQ_STATUS Response Description



		19.2.14 DPDMAI_CLEAR_IRQ_STATUS

		Figure 623. DPDMAI_CLEAR_IRQ_STATUS Command Description



		19.2.15 DPDMAI_GET_ATTRIBUTES

		Figure 624. DPDMAI_GET_ATTRIBUTES Command Description

		Figure 625. DPDMAI_GET_ATTRIBUTES Response Description



		19.2.16 DPDMAI_SET_RX_QUEUE

		Figure 626. DPDMAI_SET_RX_QUEUE Command Description



		19.2.17 DPDMAI_GET_RX_QUEUE

		Figure 627. DPDMAI_GET_RX_QUEUE Command Description

		Figure 628. DPDMAI_GET_RX_QUEUE Response Description



		19.2.18 DPDMAI_GET_TX_QUEUE

		Figure 629. DPDMAI_GET_TX_QUEUE Command Description

		Figure 630. DPDMAI_GET_TX_QUEUE Response Description



		19.2.19 DPDMAI_GET_API_VERSION

		Figure 631. DPDMAI_GET_API_VERSION Command Description

		Figure 632. DPDMAI_GET_API_VERSION Response Description



		19.2.20 DPDMAI_SET_RX_CONGESTION_NOTIFICATION

		Figure 633. DPDMAI_SET_RX_CONGESTION_NOTIFICATION Command Description



		19.2.21 DPDMAI_GET_RX_CONGESTION_NOTIFICATION

		Figure 634. DPDMAI_GET_RX_CONGESTION_NOTIFICATION Command Description

		Figure 635. DPDMAI_GET_RX_CONGESTION_NOTIFICATION Response Description



		19.2.22 DPDMAI_SET_TX_CONGESTION_NOTIFICATION

		Figure 636. DPDMAI_SET_TX_CONGESTION_NOTIFICATION Command Description



		19.2.23 DPDMAI_GET_TX_CONGESTION_NOTIFICATION

		Figure 637. DPDMAI_GET_TX_CONGESTION_NOTIFICATION Command Description

		Figure 638. DPDMAI_GET_TX_CONGESTION_NOTIFICATION Response Description







		Chapter 20 DPAIOP: Data Path AIOP Control

		20.1 DPAIOP features

		20.1.1 Resetting the AIOP and reloading applications



		20.2 DPAIOP command reference

		20.2.1 DPAIOP_OPEN

		Figure 639. DPAIOP_OPEN Command Description

		Table 76. DPAIOP_OPEN Command Field Descriptions



		20.2.2 DPAIOP_CLOSE

		Figure 640. DPAIOP_CLOSE Command Description



		20.2.3 DPAIOP_CREATE

		Figure 641. DPAIOP_CREATE Command Description

		Table 77. DPAIOP_CREATE Command Field Descriptions

		Figure 20-1. DPAIOP_CREATE Response Description

		Table 20-1. DPAIOP_CREATE Response Field Descriptions



		20.2.4 DPAIOP_DESTROY

		Figure 642. DPAIOP_DESTROY Command Description



		20.2.5 DPAIOP_RESET

		Figure 643. DPAIOP_RESET Command Description



		20.2.6 DPAIOP_SET_IRQ_ENABLE

		Figure 644. DPAIOP_SET_IRQ_ENABLE Command Description



		20.2.7 DPAIOP_GET_IRQ_ENABLE

		Figure 645. DPAIOP_GET_IRQ_ENABLE Command Description

		Figure 646. DPAIOP_GET_IRQ_ENABLE Response Description



		20.2.8 DPAIOP_SET_IRQ_MASK

		Figure 647. DPAIOP_SET_IRQ_MASK Command Description



		20.2.9 DPAIOP_GET_IRQ_MASK

		Figure 648. DPAIOP_GET_IRQ_MASK Command Description

		Figure 649. DPAIOP_GET_IRQ_MASK Response Description



		20.2.10 DPAIOP_GET_IRQ_STATUS

		Figure 650. DPAIOP_GET_IRQ_STATUS Command Description

		Figure 651. DPAIOP_GET_IRQ_STATUS Response Description



		20.2.11 DPAIOP_CLEAR_IRQ_STATUS

		Figure 652. DPAIOP_CLEAR_IRQ_STATUS Command Description



		20.2.12 DPAIOP_GET_ATTRIBUTES

		Figure 653. DPAIOP_GET_ATTRIBUTES Command Description

		Figure 654. DPAIOP_GET_ATTRIBUTES Response Description



		20.2.13 DPAIOP_LOAD

		Figure 655. DPAIOP_LOAD Command Description



		20.2.14 DPAIOP_RUN

		Figure 656. DPAIOP_RUN Command Description



		20.2.15 DPAIOP_GET_SL_VERSION

		Figure 657. DPAIOP_GET_SL_VERSION Command Description

		Figure 658. DPAIOP_GET_SL_VERSION Response Description



		20.2.16 DPAIOP_GET_STATE

		Figure 659. DPAIOP_GET_STATE Command Description

		Figure 660. DPAIOP_GET_STATE Response Description



		20.2.17 DPAIOP_SET_TIME_OF_DAY

		Figure 661. DPAIOP_SET_TIME_OF_DAY Command Description



		20.2.18 DPAIOP_GET_TIME_OF_DAY

		Figure 662. DPAIOP_GET_TIME_OF_DAY Command Description

		Figure 663. DPAIOP_GET_TIME_OF_DAY Response Description



		20.2.19 DPAIOP_GET_API_VERSION

		Figure 664. DPAIOP_GET_API_VERSION Command Description

		Figure 665. DPAIOP_GET_API_VERSION Response Description



		20.2.20 DPAIOP_SET_RESETABLE

		Figure 666. DPAIOP_SET_RESETABLE Command Description



		20.2.21 DPAIOP_GET_RESETABLE

		Figure 667. DPAIOP_GET_RESETABLE Command Description

		Figure 668. DPAIOP_GET_RESETABLE Response Description







		Chapter 21 DPMCP: Data Path MC Portal

		21.1 DPMCP features

		21.2 DPMCP command reference

		21.2.1 DPMCP_OPEN

		Figure 669. DPMCP_OPEN Command Description

		Table 78. DPMCP_OPEN Command Field Descriptions



		21.2.2 DPMCP_CLOSE

		Figure 670. DPMCP_CLOSE Command Description



		21.2.3 DPMCP_CREATE

		Figure 671. DPMCP_CREATE Command Description

		Table 79. DPMCP_CREATE Command Field Descriptions

		Figure 21-1. DPMCP_CREATE Response Description

		Table 21-1. DPMCP_CREATE Response Field Descriptions



		21.2.4 DPMCP_DESTROY

		Figure 672. DPMCP_DESTROY Command Description



		21.2.5 DPMCP_RESET

		Figure 673. DPMCP_RESET Command Description



		21.2.6 DPMCP_SET_IRQ_ENABLE

		Figure 674. DPMCP_SET_IRQ_ENABLE Command Description



		21.2.7 DPMCP_GET_IRQ_ENABLE

		Figure 675. DPMCP_GET_IRQ_ENABLE Command Description

		Figure 676. DPMCP_GET_IRQ_ENABLE Response Description



		21.2.8 DPMCP_SET_IRQ_MASK

		Figure 677. DPMCP_SET_IRQ_MASK Command Description



		21.2.9 DPMCP_GET_IRQ_MASK

		Figure 678. DPMCP_GET_IRQ_MASK Command Description

		Figure 679. DPMCP_GET_IRQ_MASK Response Description



		21.2.10 DPMCP_GET_IRQ_STATUS

		Figure 680. DPMCP_GET_IRQ_STATUS Command Description

		Figure 681. DPMCP_GET_IRQ_STATUS Response Description



		21.2.11 DPMCP_GET_ATTRIBUTES

		Figure 682. DPMCP_GET_ATTRIBUTES Command Description

		Figure 683. DPMCP_GET_ATTRIBUTES Response Description



		21.2.12 DPMCP_GET_API_VERSION

		Figure 684. DPMCP_GET_API_VERSION Command Description

		Figure 685. DPMCP_GET_API_VERSION Response Description







		Chapter 22 DPSPARSER: Data Path Soft Parser

		22.1 DPSPARSER features

		22.2 DPSPARSER command reference

		22.2.1 DPSPARSER_OPEN

		Figure 686. DPSPARSER_OPEN Command Description

		Table 80. DPSPARSER_OPEN Command Field Descriptions



		22.2.2 DPSPARSER_CLOSE

		Figure 687. DPSPARSER_CLOSE Command Description



		22.2.3 DPSPARSER_CREATE

		Figure 688. DPSPARSER_CREATE Command Description

		Table 81. DPSPARSER_CREATE Command Field Descriptions

		Figure 22-1. DPSPARSER_CREATE Response Description

		Table 22-1. DPSPARSER_CREATE Response Field Descriptions



		22.2.4 DPSPARSER_DESTROY

		Figure 689. DPSPARSER_DESTROY Command Description



		22.2.5 DPSPARSER_GET_API_VERSION

		Figure 690. DPSPARSER_GET_API_VERSION Response Description

		Figure 691. DPSPARSER_GET_API_VERSION Response Description

		Figure 692. DPSPARSER_GET_API_VERSION Response Description



		22.2.6 DPSPARSER_APPLY_SPB

		Figure 693. DPSPARSER_APPLY_SPB Response Description

		Figure 694. DPSPARSER_APPLY_SPB Response Description

		Figure 695. DPSPARSER_APPLY_SPB Response Description







		Chapter 23 Memory Map and Register Definition

		Table 82. MC Memory Map

		23.1 General Control Register 1 (GCR1)

		Figure 696. General Control Register 1 (GCR1)

		Table 83. GCR1 Field Descriptions



		23.2 General Status Register (GSR)

		Figure 697. General Status Register (GSR)

		Table 84. GSR Field Descriptions



		23.3 MC Firmware Base Address Low Register (MCFBALR)

		Figure 698. MC Firmware Base Address Low Register (MCFBALR)

		Table 85. MCFBALR Field Descriptions



		23.4 MC Firmware Base Address High Register (MCFBAHR)

		Figure 699. MC Firmware Base Address High Register (MCFBAHR)

		Table 86. MCFBAHR Field Descriptions



		23.5 MC Firmware Attributes and Partitioning Register (MCFAPR)

		Figure 700. MC Firmware Attributes and Partitioning Register (MCFAPR)

		Table 87. MCFAPR Field Descriptions



		23.6 Parameter Summary Register (PSR)

		Figure 701. Parameter Summary Register 1 (PSR1)

		Table 88. PSR1 Field Descriptions



		23.7 Block Revision Register 1 (BRR1)

		Figure 702. Block Revision Register 1 (BRR1)

		Table 89. BRR1 Field Descriptions



		23.8 Block Revision Register 2 (BRR2)

		Figure 703. Block Revision Register 2 (BRR2)

		Table 90. BRR2 Field Descriptions





		Chapter 24 Data Path Layout (DPL) Reference

		24.1 High-level DPL structure

		24.2 Node: containers

		24.2.1 Child node: dprc

		Table 91. Properties of “dprc” node

		24.2.1.1 Child node: resources

		24.2.1.1.1 Child node: res

		Table 92. Properties of “res” node





		24.2.1.2 Child node: objects

		24.2.1.2.1 Child node: obj

		Table 93. Properties of “obj” node



		24.2.1.2.2 Child Node: obj_set







		24.3 Node: objects

		24.3.1 Child node: dpni

		Table 94. Properties of “dpni” node



		24.3.2 Child node: dpio

		Table 95. Properties of “dpio” node



		24.3.3 Child node: dpbp

		Table 96. Properties of “dpbp” node



		24.3.4 Child node: dpcon

		Table 97. Properties of “dpcon” node



		24.3.5 Child node: dpci

		Table 98. Properties of “dpci” node



		24.3.6 Child node: dpseci

		Table 99. Properties of “dpseci” node



		24.3.7 Child node: dpdmux

		Table 100. Properties of “dpdmux” node



		24.3.8 Child node: dpsw

		Table 101. Properties of “dpsw” node



		24.3.9 Child node: dpmac

		Table 102. Properties of "dpmac" node



		24.3.10 Child node: dpdcei

		Table 103. Properties of "dpdcei" node



		24.3.11 Child node: dpdmai

		Table 104. Properties of "dpdmai" node



		24.3.12 Child node: dpmcp

		Table 105. Properties of "dpmcp" node



		24.3.13 Child node: dpaiop

		Table 106. Properties of "dpaiop" node





		24.4 Node: connections

		24.4.1 Child node: connection

		Table 107. Properties of “connection” node







		Chapter 25 Data Path Configuration (DPC) Reference

		25.1 High-level DPC structure

		25.2 Node: mc_general

		25.2.1 Child node: log

		Table 108. Properties of “log” node



		25.2.2 Child node: console

		Table 109. Properties of “console” node





		25.3 Node: resources

		25.3.1 Child node: icid_pools

		25.3.1.1 Child node: icid_pool

		Table 110. Properties of “icid_pool” node







		25.4 Node: controllers

		25.4.1 Child node: qbman

		Table 111. Properties of “qbman” node





		25.5 Node: board_info

		25.5.1 Child node: ports

		25.5.1.1 Child node: mac

		Table 112. Properties of “mac” node





		25.5.2 Child node: recycle_ports



		25.6 Node: memory

		Table 113. Properties of “memory” node





		Chapter 26 Use case scenarios

		26.1 Steps to verify 1000BASE-X on LS1088A QDS

		26.1.1 Preparation

		26.1.1.1 Hardware

		26.1.1.2 Software and firmware

		26.1.1.3 RCW

		26.1.1.4 Board setup



		26.1.2 Test procedures

		26.1.2.1 Verify that SGMII MC works with SGMII PHY

		26.1.2.2 Verify that SGMII MC does not work with 1000BaseX PHY

		26.1.2.3 Modify DPC for MC to support 1000BaseX





		26.2 Steps to verify PHYless on LS1088A QDS

		26.2.1 Preparation

		26.2.1.1 Hardware

		26.2.1.2 Software and firmware

		26.2.1.3 RCW

		26.2.1.4 Board setup

		Figure 704. Multi-mode crossover fiber cable

		Figure 705. Cable attached directly





		26.2.2 Test procedures





		Chapter 27 Logging and Debugging

		27.1 MC console in Uboot

		27.2 MC/AIOP console in Linux



		Chapter 28 Known Limitations

		28.1 Reset of MC objects with FQs associated with a channel

		28.2 Reconfiguring FQs associated with a channel

		28.3 DPSW - Link Aggregation

		28.4 DPSPARSER

		28.5 DPSW - LS2080/85 drops any IPv6 packets

		28.6 DPSW & DPDMUX - Interrupt handling



		Appendix A Revision History

		Appendix B Legal Information










Writing Descriptors for NXP CAAM using
RTA Library


Document Number: WDNCRL
Rev 18.03
Mar 2018







Contents


Chapter 1
Introduction


Chapter 2
User Manual


Chapter 3
RTA API


3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5


3.2 Detailed Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5


3.3 Data Structure Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.3.1 struct program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5


3.4 Descriptor Buffer Management Routines . . . . . . . . . . . . . . . . . . . . . . 6
3.4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.4.2 Detailed Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.4.3 Macro Definition Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.4.3.1 PROGRAM_CNTXT_INIT . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.4.3.2 PROGRAM_FINALIZE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.4.3.3 PROGRAM_SET_36BIT_ADDR . . . . . . . . . . . . . . . . . . . . . . . . 8
3.4.3.4 PROGRAM_SET_BSWAP . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.4.3.5 WORD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.4.3.6 DWORD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.4.3.7 COPY_DATA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.4.3.8 DESC_LEN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.4.3.9 DESC_BYTES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.4.3.10 INTL_SEC_ERA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.4.4 Enumeration Type Documentation . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.4.4.1 rta_sec_era . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.4.5 Function Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.4.5.1 rta_set_sec_era(enum rta_sec_era era) . . . . . . . . . . . . . . . . . . . . . . 11


ii
Writing Descriptors for NXP CAAM using RTA Library


NXP Semiconductors







Section number Title Page


3.4.5.2 rta_get_sec_era(void) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.4.6 Variable Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.4.6.1 rta_sec_era . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12


3.5 SEC Commands Routines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.5.2 Detailed Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.5.3 Macro Definition Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.5.3.1 SHR_HDR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.5.3.2 JOB_HDR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.5.3.3 JOB_HDR_EXT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.5.3.4 MOVE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.5.3.5 MOVEB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.5.3.6 MOVEDW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.5.3.7 FIFOLOAD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.5.3.8 SEQFIFOLOAD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.5.3.9 FIFOSTORE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.5.3.10 SEQFIFOSTORE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.5.3.11 KEY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.5.3.12 SEQINPTR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.5.3.13 SEQOUTPTR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.5.3.14 ALG_OPERATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.5.3.15 PROTOCOL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.5.3.16 DKP_PROTOCOL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.5.3.17 PKHA_OPERATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.5.3.18 JUMP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.5.3.19 JUMP_INC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.5.3.20 JUMP_DEC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.5.3.21 LOAD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.5.3.22 SEQLOAD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.5.3.23 STORE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.5.3.24 SEQSTORE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.5.3.25 MATHB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.5.3.26 MATHI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.5.3.27 MATHU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.5.3.28 SIGNATURE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.5.3.29 NFIFOADD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.5.3.30 DCOPY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.5.4 Enumeration Type Documentation . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.5.4.1 rta_jump_type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.5.4.2 rta_jump_cond . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.5.4.3 rta_share_type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.5.4.4 rta_data_type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39


3.6 Self Referential Code Management Routines . . . . . . . . . . . . . . . . . . . . 39


NXP Semiconductors
Writing Descriptors for NXP CAAM using RTA Library


iii







Section number Title Page


3.6.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.6.2 Detailed Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.6.3 Macro Definition Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.6.3.1 REFERENCE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.6.3.2 LABEL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.6.3.3 SET_LABEL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.6.3.4 PATCH_JUMP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.6.3.5 PATCH_MOVE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.6.3.6 PATCH_LOAD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.6.3.7 PATCH_STORE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.6.3.8 PATCH_HDR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.6.3.9 PATCH_RAW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43


3.7 Shared Descriptor Example Routines . . . . . . . . . . . . . . . . . . . . . . . . 43
3.7.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.7.2 Detailed Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.7.3 Function Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.7.3.1 cnstr_shdsc_snow_f8(uint32_t ∗descbuf, bool ps, bool swap, struct alginfo


∗cipherdata, uint8_t dir, uint32_t count, uint8_t bearer, uint8_t direction) . . . 45
3.7.3.2 cnstr_shdsc_snow_f9(uint32_t ∗descbuf, bool ps, bool swap, struct alginfo


∗authdata, uint8_t dir, uint32_t count, uint32_t fresh, uint8_t direction,
uint32_t datalen) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46


3.7.3.3 cnstr_shdsc_blkcipher(uint32_t ∗descbuf, bool ps, bool swap, struct alginfo
∗cipherdata, uint8_t ∗iv, uint32_t ivlen, uint8_t dir) . . . . . . . . . . . . . . . 46


3.7.3.4 cnstr_shdsc_hmac(uint32_t ∗descbuf, bool ps, bool swap, struct alginfo
∗authdata, uint8_t do_icv, uint8_t trunc_len) . . . . . . . . . . . . . . . . . . 47


3.7.3.5 cnstr_shdsc_kasumi_f8(uint32_t ∗descbuf, bool ps, bool swap, struct alginfo
∗cipherdata, uint8_t dir, uint32_t count, uint8_t bearer, uint8_t direction) . . . 48


3.7.3.6 cnstr_shdsc_kasumi_f9(uint32_t ∗descbuf, bool ps, bool swap, struct al-
ginfo ∗authdata, uint8_t dir, uint32_t count, uint32_t fresh, uint8_t direction,
uint32_t datalen) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49


3.7.3.7 cnstr_shdsc_crc(uint32_t ∗descbuf, bool swap) . . . . . . . . . . . . . . . . . 49
3.7.3.8 cnstr_shdsc_gcm_encap(uint32_t ∗descbuf, bool ps, bool swap, struct alginfo


∗cipherdata, uint32_t ivlen, uint32_t icvsize) . . . . . . . . . . . . . . . . . . 50
3.7.3.9 cnstr_shdsc_gcm_decap(uint32_t ∗descbuf, bool ps, bool swap, struct alginfo


∗cipherdata, uint32_t ivlen, uint32_t icvsize) . . . . . . . . . . . . . . . . . . 50
3.7.3.10 cnstr_shdsc_ipsec_encap(uint32_t ∗descbuf, bool ps, bool swap, enum rta←↩


_share_type share, struct ipsec_encap_pdb ∗pdb, struct alginfo ∗cipherdata,
struct alginfo ∗authdata) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51


3.7.3.11 cnstr_shdsc_ipsec_decap(uint32_t ∗descbuf, bool ps, bool swap, enum rta←↩
_share_type share, struct ipsec_decap_pdb ∗pdb, struct alginfo ∗cipherdata,
struct alginfo ∗authdata) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51


3.7.3.12 cnstr_shdsc_ipsec_encap_des_aes_xcbc(uint32_t ∗descbuf, struct ipsec_←↩
encap_pdb ∗pdb, struct alginfo ∗cipherdata, struct alginfo ∗authdata) . . . . . 52


iv
Writing Descriptors for NXP CAAM using RTA Library


NXP Semiconductors







Section number Title Page


3.7.3.13 cnstr_shdsc_ipsec_decap_des_aes_xcbc(uint32_t ∗descbuf, struct ipsec_←↩
decap_pdb ∗pdb, struct alginfo ∗cipherdata, struct alginfo ∗authdata) . . . . . 53


3.7.3.14 cnstr_shdsc_ipsec_new_encap(uint32_t ∗descbuf, bool ps, bool swap, enum
rta_share_type share, struct ipsec_encap_pdb ∗pdb, uint8_t ∗opt_ip_hdr, struct
alginfo ∗cipherdata, struct alginfo ∗authdata) . . . . . . . . . . . . . . . . . . 54


3.7.3.15 cnstr_shdsc_ipsec_new_decap(uint32_t ∗descbuf, bool ps, bool swap, enum
rta_share_type share, struct ipsec_decap_pdb ∗pdb, struct alginfo ∗cipherdata,
struct alginfo ∗authdata) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55


3.7.3.16 cnstr_shdsc_authenc(uint32_t ∗descbuf, bool ps, bool swap, struct alginfo
∗cipherdata, struct alginfo ∗authdata, uint16_t ivlen, uint16_t auth_only_len,
uint8_t trunc_len, uint8_t dir) . . . . . . . . . . . . . . . . . . . . . . . . . . 55


3.7.3.17 cnstr_shdsc_macsec_encap(uint32_t ∗descbuf, bool swap, struct alginfo
∗cipherdata, uint64_t sci, uint16_t ethertype, uint8_t tci_an, uint32_t pn) . . . 57


3.7.3.18 cnstr_shdsc_macsec_decap(uint32_t ∗descbuf, bool swap, struct alginfo
∗cipherdata, uint64_t sci, uint32_t pn) . . . . . . . . . . . . . . . . . . . . . . 58


3.7.3.19 cnstr_shdsc_mbms(uint32_t ∗descbuf, bool ps, bool swap, unsigned
∗preheader_len, enum mbms_pdu_type pdu_type) . . . . . . . . . . . . . . . 58


3.7.3.20 cnstr_shdsc_pdcp_c_plane_encap(uint32_t ∗descbuf, bool ps, bool swap,
uint32_t hfn, unsigned char bearer, unsigned char direction, uint32_t hfn_←↩
threshold, struct alginfo ∗cipherdata, struct alginfo ∗authdata, unsigned char
era_2_sw_hfn_override) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59


3.7.3.21 cnstr_shdsc_pdcp_c_plane_decap(uint32_t ∗descbuf, bool ps, bool swap,
uint32_t hfn, unsigned char bearer, unsigned char direction, uint32_t hfn_←↩
threshold, struct alginfo ∗cipherdata, struct alginfo ∗authdata, unsigned char
era_2_sw_hfn_override) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60


3.7.3.22 cnstr_shdsc_pdcp_u_plane_encap(uint32_t ∗descbuf, bool ps, bool swap,
enum pdcp_sn_size sn_size, uint32_t hfn, unsigned short bearer, unsigned
short direction, uint32_t hfn_threshold, struct alginfo ∗cipherdata, unsigned
char era_2_sw_hfn_override) . . . . . . . . . . . . . . . . . . . . . . . . . . . 61


3.7.3.23 cnstr_shdsc_pdcp_u_plane_decap(uint32_t ∗descbuf, bool ps, bool swap,
enum pdcp_sn_size sn_size, uint32_t hfn, unsigned short bearer, unsigned
short direction, uint32_t hfn_threshold, struct alginfo ∗cipherdata, unsigned
char era_2_sw_hfn_override) . . . . . . . . . . . . . . . . . . . . . . . . . . . 62


3.7.3.24 cnstr_shdsc_pdcp_short_mac(uint32_t ∗descbuf, bool ps, bool swap, struct al-
ginfo ∗authdata) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63


3.7.3.25 cnstr_shdsc_rlc_encap(uint32_t ∗descbuf, bool ps, enum rlc_mode mode,
uint32_t hfn, unsigned short bearer, unsigned short direction, uint32_t hfn←↩
_threshold, struct alginfo ∗cipherdata) . . . . . . . . . . . . . . . . . . . . . . 63


3.7.3.26 cnstr_shdsc_rlc_decap(uint32_t ∗descbuf, bool ps, enum rlc_mode mode,
uint32_t hfn, unsigned short bearer, unsigned short direction, uint32_t hfn←↩
_threshold, struct alginfo ∗cipherdata) . . . . . . . . . . . . . . . . . . . . . . 64


3.7.3.27 cnstr_shdsc_rsa(uint32_t ∗descbuf, bool ps, bool swap, uint8_t ∗pdb, struct
protcmd ∗protcmd) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65


NXP Semiconductors
Writing Descriptors for NXP CAAM using RTA Library


v







Section number Title Page


3.7.3.28 cnstr_shdsc_srtp_encap(uint32_t ∗descbuf, bool swap, struct alginfo
∗authdata, struct alginfo ∗cipherdata, uint8_t n_tag, uint32_t roc, uint8_t
∗cipher_salt) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65


3.7.3.29 cnstr_shdsc_srtp_decap(uint32_t ∗descbuf, bool swap, struct alginfo
∗authdata, struct alginfo ∗cipherdata, uint8_t n_tag, uint32_t roc, uint16_t
seq_num, uint8_t ∗cipher_salt) . . . . . . . . . . . . . . . . . . . . . . . . . . 66


3.7.3.30 cnstr_shdsc_tls(uint32_t ∗descbuf, bool ps, bool swap, uint8_t ∗pdb, struct
protcmd ∗protcmd, struct alginfo ∗cipherdata, struct alginfo ∗authdata) . . . . 66


3.7.3.31 cnstr_shdsc_cwap_dtls(uint32_t ∗descbuf, bool ps, bool swap, uint8_t ∗pdb,
struct protcmd ∗protcmd, struct alginfo ∗cipherdata, struct alginfo ∗authdata) . 67


3.7.3.32 cnstr_shdsc_wifi_encap(uint32_t ∗descbuf, bool ps, bool swap, uint16_t mac←↩
_hdr_len, uint64_t pn, uint8_t priority, uint8_t key_id, struct alginfo ∗cipherdata) 68


3.7.3.33 cnstr_shdsc_wifi_decap(uint32_t ∗descbuf, bool ps, bool swap, uint16_t mac←↩
_hdr_len, uint64_t pn, uint8_t priority, struct alginfo ∗cipherdata) . . . . . . . 69


3.7.3.34 cnstr_shdsc_wimax_encap_era5(uint32_t ∗descbuf, bool swap, uint8_t pdb←↩
_opts, uint32_t pn, uint16_t protinfo, struct alginfo ∗cipherdata) . . . . . . . . 69


3.7.3.35 cnstr_shdsc_wimax_encap(uint32_t ∗descbuf, bool swap, uint8_t pdb_opts,
uint32_t pn, uint16_t protinfo, struct alginfo ∗cipherdata) . . . . . . . . . . . . 70


3.7.3.36 cnstr_shdsc_wimax_decap(uint32_t ∗descbuf, bool swap, uint8_t pdb_opts,
uint32_t pn, uint16_t ar_len, uint16_t protinfo, struct alginfo ∗cipherdata) . . . 71


Chapter 4
RTA Descriptors Library


4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73


4.2 Detailed Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73


4.3 Auxiliary Data Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.3.2 Detailed Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.3.3 Data Structure Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.3.3.1 struct alginfo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.3.3.2 struct protcmd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.3.3.3 struct mbms_type_0_pdb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.3.3.4 struct mbms_type_1_3_pdb . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.3.4 Enumeration Type Documentation . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.3.4.1 ipsec_icv_size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.3.4.2 cipher_type_macsec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.3.4.3 mbms_pdu_type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.3.4.4 cipher_type_pdcp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.3.4.5 auth_type_pdcp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.3.4.6 pdcp_dir . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.3.4.7 pdcp_plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76


vi
Writing Descriptors for NXP CAAM using RTA Library


NXP Semiconductors







Section number Title Page


4.3.4.8 pdcp_sn_size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.3.4.9 rlc_mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.3.4.10 rlc_dir . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.3.4.11 cipher_type_rlc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.3.4.12 rsa_decrypt_form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.3.4.13 tls_cipher_mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.3.5 Function Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.3.5.1 rta_inline_query(unsigned sd_base_len, unsigned jd_len, unsigned ∗data_len,


uint32_t ∗inl_mask, unsigned count) . . . . . . . . . . . . . . . . . . . . . . . 78
4.3.5.2 rta_dtls_pdb_ars(uint32_t options) . . . . . . . . . . . . . . . . . . . . . . . . 78
4.3.5.3 rta_tls_cipher_mode(uint16_t protinfo) . . . . . . . . . . . . . . . . . . . . . 79


4.4 SEC Protocol Data Block Data Structures . . . . . . . . . . . . . . . . . . . . . . 79
4.4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.4.2 Detailed Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.4.3 ipsec_encap_pdb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.4.3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.4.3.2 Detailed Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.4.3.3 Data Structure Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.4.3.3.1 struct ipsec_encap_cbc . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.4.3.3.2 struct ipsec_encap_ctr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.4.3.3.3 struct ipsec_encap_ccm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.4.3.3.4 struct ipsec_encap_gcm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.4.3.3.5 struct ipsec_encap_pdb . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.4.4 ipsec_decap_pdb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.4.4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.4.4.2 Detailed Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.4.4.3 Data Structure Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.4.4.3.1 struct ipsec_decap_cbc . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.4.4.3.2 struct ipsec_decap_ctr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.4.4.3.3 struct ipsec_decap_gcm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.4.4.3.4 struct ipsec_decap_pdb . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84


4.5 Auxiliary Defines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.5.2 Detailed Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.5.3 Macro Definition Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.5.3.1 PDBOPTS_ESP_ESN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.5.3.2 PDBOPTS_ESP_IPVSN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.5.3.3 PDBOPTS_ESP_TUNNEL . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.5.3.4 PDBOPTS_ESP_UPDATE_CSUM . . . . . . . . . . . . . . . . . . . . . . . 86
4.5.3.5 PDBOPTS_ESP_DIFFSERV . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.5.3.6 PDBOPTS_ESP_IVSRC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.5.3.7 PDBOPTS_ESP_IPHDRSRC . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.5.3.8 PDBOPTS_ESP_INCIPHDR . . . . . . . . . . . . . . . . . . . . . . . . . . 86


NXP Semiconductors
Writing Descriptors for NXP CAAM using RTA Library


vii







Section number Title Page


4.5.3.9 PDBOPTS_ESP_OIHI_MASK . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.5.3.10 PDBOPTS_ESP_OIHI_PDB_INL . . . . . . . . . . . . . . . . . . . . . . . . 87
4.5.3.11 PDBOPTS_ESP_OIHI_PDB_REF . . . . . . . . . . . . . . . . . . . . . . . . 87
4.5.3.12 PDBOPTS_ESP_OIHI_IF . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.5.3.13 PDBOPTS_ESP_NAT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.5.3.14 PDBOPTS_ESP_NUC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.5.3.15 PDBOPTS_ESP_ARS_MASK . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.5.3.16 PDBOPTS_ESP_ARSNONE . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.5.3.17 PDBOPTS_ESP_ARS64 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.5.3.18 PDBOPTS_ESP_ARS128 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.5.3.19 PDBOPTS_ESP_ARS32 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
4.5.3.20 PDBOPTS_ESP_VERIFY_CSUM . . . . . . . . . . . . . . . . . . . . . . . . 88
4.5.3.21 PDBOPTS_ESP_TECN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
4.5.3.22 PDBOPTS_ESP_OUTFMT . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
4.5.3.23 PDBOPTS_ESP_AOFL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
4.5.3.24 PDBOPTS_ESP_ETU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
4.5.3.25 PDBHMO_ESP_DECAP_DTTL . . . . . . . . . . . . . . . . . . . . . . . . 88
4.5.3.26 PDBHMO_ESP_DIFFSERV . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
4.5.3.27 PDBHMO_ESP_SNR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
4.5.3.28 PDBHMO_ESP_DFBIT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
4.5.3.29 PDBHMO_ESP_DFV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
4.5.3.30 PDBHMO_ESP_ODF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
4.5.3.31 MBMS_HEADER_POLY . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
4.5.3.32 MBMS_PAYLOAD_POLY . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
4.5.3.33 MBMS_TYPE0_HDR_LEN . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
4.5.3.34 MBMS_TYPE1_HDR_LEN . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
4.5.3.35 MBMS_TYPE3_HDR_LEN . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
4.5.3.36 DUMMY_BUF_BASE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
4.5.3.37 HDR_CRC_MASK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
4.5.3.38 FM_RX_PRIV_SIZE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
4.5.3.39 FM_RX_EXTRA_HEADROOM . . . . . . . . . . . . . . . . . . . . . . . . 90
4.5.3.40 IC_PR_OFFSET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
4.5.3.41 PR_L4_OFFSET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
4.5.3.42 BUF_IC_OFFSET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
4.5.3.43 BUF_PR_OFFSET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
4.5.3.44 BUF_L4_OFFSET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
4.5.3.45 UDP_HDR_LEN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
4.5.3.46 GTP_HDR_LEN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
4.5.3.47 MBMS_HDR_OFFSET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
4.5.3.48 MBMS_CRC_HDR_FAIL . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
4.5.3.49 MBMS_CRC_PAYLOAD_FAIL . . . . . . . . . . . . . . . . . . . . . . . . 91
4.5.3.50 PDCP_NULL_MAX_FRAME_LEN . . . . . . . . . . . . . . . . . . . . . . 91
4.5.3.51 PDCP_MAC_I_LEN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
4.5.3.52 PDCP_MAX_FRAME_LEN_STATUS . . . . . . . . . . . . . . . . . . . . . 91
4.5.3.53 PDCP_C_PLANE_SN_MASK . . . . . . . . . . . . . . . . . . . . . . . . . . 91


viii
Writing Descriptors for NXP CAAM using RTA Library


NXP Semiconductors







Section number Title Page


4.5.3.54 PDCP_U_PLANE_15BIT_SN_MASK . . . . . . . . . . . . . . . . . . . . . 91
4.5.3.55 PDCP_BEARER_MASK . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
4.5.3.56 PDCP_DIR_MASK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
4.5.3.57 PDCP_NULL_INT_MAC_I_VAL . . . . . . . . . . . . . . . . . . . . . . . . 92
4.5.3.58 PDCP_NULL_INT_ICV_CHECK_FAILED_STATUS . . . . . . . . . . . . . 92
4.5.3.59 PDCP_DPOVRD_HFN_OV_EN . . . . . . . . . . . . . . . . . . . . . . . . 92
4.5.3.60 PDCP_P4080REV2_HFN_OV_BUFLEN . . . . . . . . . . . . . . . . . . . . 92
4.5.3.61 CRC_8_ATM_POLY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
4.5.3.62 WIMAX_GMH_EC_MASK . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
4.5.3.63 WIMAX_ICV_LEN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
4.5.3.64 WIMAX_FCS_LEN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
4.5.3.65 WIMAX_PN_LEN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
4.5.3.66 WIMAX_PDBOPTS_FCS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
4.5.3.67 WIMAX_PDBOPTS_AR . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93


4.6 Job Descriptor Example Routines . . . . . . . . . . . . . . . . . . . . . . . . . . 94
4.6.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
4.6.2 Detailed Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
4.6.3 Function Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
4.6.3.1 cnstr_jobdesc_mdsplitkey(uint32_t ∗descbuf, bool ps, bool swap, uint64_←↩


t alg_key, uint8_t keylen, uint32_t cipher, uint64_t padbuf) . . . . . . . . . . . 94


4.7 Shared Descriptor Helper Routines . . . . . . . . . . . . . . . . . . . . . . . . . 95
4.7.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
4.7.2 Detailed Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
4.7.3 Function Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
4.7.3.1 split_key_len(uint32_t hash) . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
4.7.3.2 split_key_pad_len(uint32_t hash) . . . . . . . . . . . . . . . . . . . . . . . . 95
4.7.3.3 get_mbms_stats(uint32_t ∗descbuf, void ∗stats, enum mbms_pdu_type pdu←↩


_type) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
4.7.4 rsa_pdb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
4.7.4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
4.7.4.2 Detailed Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
4.7.4.3 Data Structure Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . 97
4.7.4.3.1 struct rsa_encrypt_pdb_64b . . . . . . . . . . . . . . . . . . . . . . . . . . 97
4.7.4.3.2 struct rsa_encrypt_pdb . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
4.7.4.3.3 struct rsa_dec_pdb_form1_64b . . . . . . . . . . . . . . . . . . . . . . . . 98
4.7.4.3.4 struct rsa_dec_pdb_form1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
4.7.4.3.5 struct rsa_dec_pdb_form2_64b . . . . . . . . . . . . . . . . . . . . . . . . 99
4.7.4.3.6 struct rsa_dec_pdb_form2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
4.7.4.3.7 struct rsa_dec_pdb_form3_64b . . . . . . . . . . . . . . . . . . . . . . . . 100
4.7.4.3.8 struct rsa_dec_pdb_form3 . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
4.7.5 tls_pdb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
4.7.5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
4.7.5.2 Detailed Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102


NXP Semiconductors
Writing Descriptors for NXP CAAM using RTA Library


ix







Section number Title Page


4.7.5.3 Data Structure Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . 102
4.7.5.3.1 struct tls_block_enc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
4.7.5.3.2 struct dtls_block_enc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
4.7.5.3.3 struct tls_block_dec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
4.7.5.3.4 struct dtls_block_dec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
4.7.5.3.5 struct tls_block_pdb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
4.7.5.3.6 struct tls_stream_enc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
4.7.5.3.7 struct tls_stream_dec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
4.7.5.3.8 struct tls_stream_pdb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
4.7.5.3.9 struct tls_ctr_enc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
4.7.5.3.10 struct tls_ctr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
4.7.5.3.11 struct tls_ctr_pdb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
4.7.5.3.12 struct tls12_gcm_encap . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
4.7.5.3.13 struct tls12_gcm_decap . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
4.7.5.3.14 struct dtls_gcm_enc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
4.7.5.3.15 struct dtls_gcm_dec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
4.7.5.3.16 struct tls_gcm_pdb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
4.7.5.3.17 struct tls12_ccm_encap . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
4.7.5.3.18 struct tls_ccm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
4.7.5.3.19 struct tls_ccm_pdb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107


x
Writing Descriptors for NXP CAAM using RTA Library


NXP Semiconductors







Chapter 1
Introduction
Runtime Assembler (RTA) Library is an easy and flexible runtime method for writing SEC descriptors. It
implements a thin abstraction layer above SEC commands set; the resulting code is compact and similar
to a descriptor sequence.


RTA library improves comprehension of the SEC code, adds flexibility for writing complex descriptors
and keeps the code lightweight. Should be used by whom needs to encode descriptors at runtime, with
comprehensible flow control in descriptor.


The User Manual page contains more details about RTA.


RTA


RTA


User space


Kernel space


Platform hardware


Crypto


application


QBMAN


QI JRI
SEC


SEC Driver


SEC QI Driver


Figure 1: RTA Integration Overview


In the SDK package, an example of RTA usage in user space is included. RTA is used in user space by
Data Plane Development Kit (DPDK). The inclusion of RTA in kernel space in the diagram above is only
demonstrative.


NXP Semiconductors
Writing Descriptors for NXP CAAM using RTA Library


1







Chapter 2
User Manual
RTA (Runtime Assembler Library) is a standalone library for writing SEC descriptors.


RTA gives users the ability to write descriptors in a human readable form by using C code instead of low
level machine code. It also gives the advantage that it verifies the correctness of the descriptors. RTA has,
over the other code translators, the advantage that it gives shorter and more readable code.


As a standalone library, RTA will not interfere with other components of the user application.


Installation


The library can be installed by running 'make' inside the root of the package:


$ make install


The default install path "/usr/include" can be changed by editing the Makefile. It is not necessary to install
the library on the target machine unless you intend to build your application there as well.


Using RTA


RTA can be used in an application just by including the following header file:


#include flib/rta.h


The files in sec/rta/include/flib/desc directory contain several real-world descriptors written with RTA.
You can use them as-is or adapt them to your needs.


RTA routines take as first parameter a pointer to a "struct program" variable. It contains housekeeping
information that is used during descriptor creation.


RTA creates the descriptors and saves them in buffers. It is the user's job to allocate memory for these
buffers before passing them to RTA program initialization call.


An RTA program must start with a call to PROGRAM_CNTXT_INIT and end with PROGRAM_FINA←↩
LIZE. PROGRAM_CNTXT_INIT will initialize the members of 'program' structure with user information
(pointer to user's buffer, and the SEC subversion). The PROGRAM_FINALIZE call checks the descrip-
tor's validity.


The program length is limited to the size of buffer descriptor which can be maximum 64 words (256 bytes).
However, a JUMP command can cause loading and execution of another Job Descriptor; this allows for
much larger programs to be created.


2
Writing Descriptors for NXP CAAM using RTA Library


NXP Semiconductors







RTA components


The content of the package is split mainly in two components:


• descriptor builder API (rta.h)
• ready to use RTA descriptors (sec/rta/include/flib/desc/∗.h)


These are the main building blocks of descriptors:


• buffer management: init & finalize
• SEC commands: MOVE, LOAD, FIFO_LOAD etc.
• descriptor labels (e.g. used as JUMP destinations)
• utility commands: (e.g. PATCH_∗ commands that update labels and references)


In some cases, descriptor fields can't all be set when the commands are inserted. These fields must be
updated in a similar fashion to what the linking process does with a binary file. RTA uses PATCH_∗
commands to get relevant information and PROGRAM_FINALIZE to complete the "code relocation".


If there is a need for descriptors larger than 64 words, their function can be split into several smaller ones.
In such case the smaller descriptors are correlated and updated using PATCH_∗ commands. These calls
must appear after all the descriptors are finalized and not before as in a single descriptor case (the reason
being that only then references to all descriptors are available).


Example applications


The RTA package comes with a set of examples inside "tests" directory. These examples can be compiled
by issuing the 'make' command:


$ tree tests/
tests/


+--- Makefile
+--- blkcipher_seq.c
+--- blob_example.c
+--- capwap.c
+--- deco_dma_1.c
...


The provided Makefile contains the necessary include paths and compiler flags to build all examples
without installing the library on your machine:


$ cd tests
$ make all


or


$ make <test_name>


To build the tests for the target machine, you must set the CROSS_COMPILE variable to your toolchain
compiler before building:


$ export CROSS_COMPILE=powerpc-fsl-linux-
$ make all


NXP Semiconductors
Writing Descriptors for NXP CAAM using RTA Library


3







Supported hardware platforms


The current version of RTA supports SEC versions 4.X.


Known limitations


The code is checked against the complete table of SEC features. There is no verification of code against
SEC features that are not available on a certain SEC subversion.


4
Writing Descriptors for NXP CAAM using RTA Library


NXP Semiconductors







Chapter 3
RTA API
3.1 Overview
Contains RTA API details.


Modules
• Descriptor Buffer Management Routines
• SEC Commands Routines
• Self Referential Code Management Routines


Data Structures
• struct program


3.2 Detailed Description
Contains RTA API details.


3.3 Data Structure Documentation


3.3.1 struct program


Descriptor buffer management structure.


Data Fields


unsigned current_pc Current offset in descriptor.
unsigned current_←↩


instruction
Current instruction in descriptor.


unsigned first_error_pc Offset of the first error in descriptor.
unsigned start_pc Start offset in descriptor buffer.


uint32_t ∗ buffer Buffer carrying descriptor.
uint32_t ∗ shrhdr Shared descriptor header.
uint32_t ∗ jobhdr Job descriptor header.


bool ps Pointer fields size: - if ps is true, pointers will be 36 bits in length.
- if ps is false, pointers will be 32 bits in length.


NXP Semiconductors
Writing Descriptors for NXP CAAM using RTA Library


5







Descriptor Buffer Management Routines


bool bswap If true, perform byte swap on a 4-byte boundary.


3.4 Descriptor Buffer Management Routines


3.4.1 Overview


Contains details of RTA descriptor buffer management and SEC Era management routines.


Macros


• #define PROGRAM_CNTXT_INIT(program, buffer, offset) rta_program_cntxt_init(program,
buffer, offset)


• #define PROGRAM_FINALIZE(program) rta_program_finalize(program)
• #define PROGRAM_SET_36BIT_ADDR(program) rta_program_set_36bit_addr(program)
• #define PROGRAM_SET_BSWAP(program) rta_program_set_bswap(program)
• #define WORD(program, val) rta_word(program, val)
• #define DWORD(program, val) rta_dword(program, val)
• #define COPY_DATA(program, data, len) rta_copy_data(program, (data), (len))
• #define DESC_LEN(buffer) rta_desc_len(buffer)
• #define DESC_BYTES(buffer) rta_desc_bytes(buffer)
• #define INTL_SEC_ERA(sec_era) (sec_era - 1)


Enumerations


Functions


• static int rta_set_sec_era (enum rta_sec_era era)
Set SEC Era HW block revision for which the RTA library will generate generate the descriptors.


• static unsigned rta_get_sec_era (void)
Get SEC Era HW block revision for which the RTA library will generate the descriptors.


Variables


• enum rta_sec_era rta_sec_era
SEC HW block revision.


3.4.2 Detailed Description


Contains details of RTA descriptor buffer management and SEC Era management routines.


6
Writing Descriptors for NXP CAAM using RTA Library


NXP Semiconductors







Descriptor Buffer Management Routines


3.4.3 Macro Definition Documentation


3.4.3.1 #define PROGRAM_CNTXT_INIT( program, buffer, offset
) rta_program_cntxt_init(program, buffer, offset)


Must be called before any descriptor run-time assembly call type field carry info i.e. whether descriptor is
shared or job descriptor.


NXP Semiconductors
Writing Descriptors for NXP CAAM using RTA Library


7







Descriptor Buffer Management Routines


Parameters


out program Pointer to struct program.
in buffer Input buffer where the descriptor will be placed (uint32_t ∗).
in offset Offset in input buffer from where the data will be written (unsigned).


3.4.3.2 #define PROGRAM_FINALIZE( program ) rta_program_finalize(program)


Must be called to mark completion of RTA call.


Parameters


out program Pointer to struct program.


Returns


Total size of the descriptor in words or negative number on error.


3.4.3.3 #define PROGRAM_SET_36BIT_ADDR( program ) rta_program_set_36bit_←↩
addr(program)


Must be called to set pointer size to 36 bits.


Parameters


out program Pointer to struct program.


Returns


Current size of the descriptor in words (unsigned).


3.4.3.4 #define PROGRAM_SET_BSWAP( program ) rta_program_set_bswap(program)


Must be called to enable byte swapping.


Parameters


out program Pointer to struct program.


Returns


Current size of the descriptor in words (unsigned).


Note


Byte swapping on a 4-byte boundary will be performed at the end - when calling PROGRAM_FI←↩
NALIZE().


8
Writing Descriptors for NXP CAAM using RTA Library


NXP Semiconductors







Descriptor Buffer Management Routines


3.4.3.5 #define WORD( program, val ) rta_word(program, val)


Must be called to insert in descriptor buffer a 32bit value.


NXP Semiconductors
Writing Descriptors for NXP CAAM using RTA Library


9







Descriptor Buffer Management Routines


Parameters


out program Pointer to struct program.
in val Input value to be written in descriptor buffer (uint32_t).


Returns


The descriptor buffer offset where this command is inserted (unsigned).


3.4.3.6 #define DWORD( program, val ) rta_dword(program, val)


Must be called to insert in descriptor buffer a 64bit value.


Parameters


out program Pointer to struct program.
in val Input value to be written in descriptor buffer (uint64_t)


Returns


The descriptor buffer offset where this command is inserted (unsigned).


3.4.3.7 #define COPY_DATA( program, data, len ) rta_copy_data(program, (data),
(len))


Must be called to insert in descriptor buffer data larger than 64 bits.


Parameters


out program Pointer to struct program.
in data Input data to be written in descriptor buffer (uint8_t ∗).
in len Length of input data (unsigned).


Returns


The descriptor buffer offset where this command is inserted (unsigned).


3.4.3.8 #define DESC_LEN( buffer ) rta_desc_len(buffer)


Determines job / shared descriptor buffer length (in words).


10
Writing Descriptors for NXP CAAM using RTA Library


NXP Semiconductors







Descriptor Buffer Management Routines


Parameters


in buffer Descriptor buffer (uint32_t ∗)


Returns


Descriptor buffer length in words (unsigned).


3.4.3.9 #define DESC_BYTES( buffer ) rta_desc_bytes(buffer)


Determines job / shared descriptor buffer length (in bytes).


Parameters


in buffer Descriptor buffer (uint32_t ∗).


Returns


Descriptor buffer length in bytes (unsigned).


3.4.3.10 #define INTL_SEC_ERA( sec_era ) (sec_era - 1)


Translates the SEC Era from user representation to internal.


Parameters


in sec_era SEC Era in user representation.


3.4.4 Enumeration Type Documentation


3.4.4.1 enum rta_sec_era


sec_run_time_asm.h


SEC HW block revisions supported by the RTA library.


3.4.5 Function Documentation


3.4.5.1 static int rta_set_sec_era ( enum rta_sec_era era ) [inline], [static]


Warning


Must be called only once, before using any other RTA API routine.
Not thread safe.


NXP Semiconductors
Writing Descriptors for NXP CAAM using RTA Library


11







SEC Commands Routines


Parameters


in era SEC Era (enum rta_sec_era).


Returns


- 0 if the ERA was set successfully
• 1 otherwise (int)


3.4.5.2 static unsigned rta_get_sec_era ( void ) [inline], [static]


Returns


SEC Era (unsigned).


3.4.6 Variable Documentation


3.4.6.1 enum rta_sec_era rta_sec_era


This must not be confused with SEC version:


• SEC HW block revision format is "v".
• SEC revision format is "x.y".


3.5 SEC Commands Routines


3.5.1 Overview


Contains details of RTA wrapper routines over SEC engine commands.


Macros


• #define SHR_HDR(program, share, start_idx, flags) rta_shr_header(program, share, start_idx, flags)
• #define JOB_HDR(program, share, start_idx, share_desc, flags) rta_job_header(program, share,


start_idx, share_desc, flags, 0)
• #define JOB_HDR_EXT(program, share, start_idx, share_desc, flags, ext_flags)
• #define MOVE(program, src, src_offset, dst, dst_offset, length, opt) rta_move(program, __MOVE,


src, src_offset, dst, dst_offset, length, opt)
• #define MOVEB(program, src, src_offset, dst, dst_offset, length, opt)
• #define MOVEDW(program, src, src_offset, dst, dst_offset, length, opt)
• #define FIFOLOAD(program, data, src, length, flags) rta_fifo_load(program, data, src, length, flags)
• #define SEQFIFOLOAD(program, data, length, flags) rta_fifo_load(program, data, NONE, length,


flags|SEQ)
• #define FIFOSTORE(program, data, encrypt_flags, dst, length, flags) rta_fifo_store(program, data,


encrypt_flags, dst, length, flags)


12
Writing Descriptors for NXP CAAM using RTA Library


NXP Semiconductors







SEC Commands Routines


• #define SEQFIFOSTORE(program, data, encrypt_flags, length, flags) rta_fifo_store(program, data,
encrypt_flags, 0, length, flags|SEQ)


• #define KEY(program, key_dst, encrypt_flags, src, length, flags) rta_key(program, key_dst,
encrypt_flags, src, length, flags)


• #define SEQINPTR(program, src, length, flags) rta_seq_in_ptr(program, src, length, flags)
• #define SEQOUTPTR(program, dst, length, flags) rta_seq_out_ptr(program, dst, length, flags)
• #define ALG_OPERATION(program, cipher_alg, aai, algo_state, icv_check, enc) rta_←↩


operation(program, cipher_alg, aai, algo_state, icv_check, enc)
• #define PROTOCOL(program, optype, protid, protoinfo) rta_proto_operation(program, optype,


protid, protoinfo)
• #define DKP_PROTOCOL(program, protid, key_src, key_dst, keylen, key, key_type) rta_dkp_←↩


proto(program, protid, key_src, key_dst, keylen, key, key_type)
• #define PKHA_OPERATION(program, op_pkha) rta_pkha_operation(program, op_pkha)
• #define JUMP(program, addr, jump_type, test_type, cond) rta_jump(program, addr, jump_type,


test_type, cond, NONE)
• #define JUMP_INC(program, addr, test_type, cond, src_dst) rta_jump(program, addr, LOCAL_J←↩


UMP_INC, test_type, cond, src_dst)
• #define JUMP_DEC(program, addr, test_type, cond, src_dst) rta_jump(program, addr, LOCAL_J←↩


UMP_DEC, test_type, cond, src_dst)
• #define LOAD(program, addr, dst, offset, length, flags) rta_load(program, addr, dst, offset, length,


flags)
• #define SEQLOAD(program, dst, offset, length, flags) rta_load(program, NONE, dst, offset, length,


flags|SEQ)
• #define STORE(program, src, offset, dst, length, flags) rta_store(program, src, offset, dst, length,


flags)
• #define SEQSTORE(program, src, offset, length, flags) rta_store(program, src, offset, NONE,


length, flags|SEQ)
• #define MATHB(program, operand1, operator, operand2, result, length, opt)
• #define MATHI(program, operand, operator, imm, result, length, opt)
• #define MATHU(program, operand1, operator, result, length, opt)
• #define SIGNATURE(program, sign_type) rta_signature(program, sign_type)
• #define NFIFOADD(program, src, data, length, flags) rta_nfifo_load(program, src, data, length,


flags)
• #define DCOPY BIT(30)


Enumerations


3.5.2 Detailed Description


Contains details of RTA wrapper routines over SEC engine commands.


NXP Semiconductors
Writing Descriptors for NXP CAAM using RTA Library


13







SEC Commands Routines


3.5.3 Macro Definition Documentation


3.5.3.1 #define SHR_HDR( program, share, start_idx, flags ) rta_shr_header(program,
share, start_idx, flags)


Configures Shared Descriptor HEADER command.


14
Writing Descriptors for NXP CAAM using RTA Library


NXP Semiconductors







SEC Commands Routines


Parameters


in,out program Pointer to struct program
in share Descriptor share state (enum rta_share_type)
in start_idx Index in descriptor buffer where the execution of the shared descriptor


should start (unsigned).
in flags Operational flags:


• RIF, DNR, CIF, SC, PD


Returns


• On success, descriptor buffer offset where this command is inserted.
• On error, a negative error code; first error program counter will point to offset in descriptor


buffer where the instruction should have been written.


3.5.3.2 #define JOB_HDR( program, share, start_idx, share_desc, flags
) rta_job_header(program, share, start_idx, share_desc, flags, 0)


Configures JOB Descriptor HEADER command.


Parameters


in,out program Pointer to struct program
in share Descriptor share state (enum rta_share_type)
in start_idx Index in descriptor buffer where the execution of the job descriptor


should start (unsigned). In case SHR bit is present in flags, this will
be the shared descriptor length.


in share_desc Pointer to shared descriptor, in case SHR bit is set (uint64_t).
in flags Operational flags:


• RSMS, DNR, TD, MTD, REO, SHR.


Returns


• On success, descriptor buffer offset where this command is inserted.
• On error, a negative error code; first error program counter will point to offset in descriptor


buffer where the instruction should have been written.


3.5.3.3 #define JOB_HDR_EXT( program, share, start_idx, share_desc, flags,
ext_flags )


Value:


NXP Semiconductors
Writing Descriptors for NXP CAAM using RTA Library


15







SEC Commands Routines


rta_job_header(program, share, start_idx, share_desc, flags | EXT, \
ext_flags)


Configures JOB Descriptor HEADER command.


Parameters


in,out program Pointer to struct program.
in share Descriptor share state (enum rta_share_type)
in start_idx Index in descriptor buffer where the execution of the job descriptor


should start (unsigned). In case SHR bit is present in flags, this will
be the shared descriptor length.


in share_desc Pointer to shared descriptor, in case SHR bit is set (uint64_t).
in flags Operational flags:


• RSMS, DNR, TD, MTD, REO, SHR.


in ext_flags Extended header flags:


• DSV (DECO Select Valid), DECO Id (limited by DSEL_MASK).


Returns


• On success, descriptor buffer offset where this command is inserted.
• On error, a negative error code; first error program counter will point to offset in descriptor


buffer where the instruction should have been written.


3.5.3.4 #define MOVE( program, src, src_offset, dst, dst_offset, length, opt
) rta_move(program, __MOVE, src, src_offset, dst, dst_offset, length, opt)


Configures MOVE and MOVE_LEN commands.


Parameters


in,out program Pointer to struct program.
in src Internal source of data that will be moved:


• CONTEXT1, CONTEXT2, OFIFO, DESCBUF, MATH0-MATH3,
IFIFOABD, IFIFOAB1, IFIFOAB2, AB1, AB2, ABD.


16
Writing Descriptors for NXP CAAM using RTA Library


NXP Semiconductors







SEC Commands Routines


in src_offset Offset in source data (uint16_t).
in dst Internal destination of data that will be moved:


• CONTEXT1, CONTEXT2, OFIFO, DESCBUF, MATH0-MATH3,
IFIFOAB1, IFIFOAB2, IFIFO, PKA, KEY1, KEY2, ALTSOUR←↩
CE.


in dst_offset Offset in destination data (uint16_t)
in length Size of data to be moved:


• for MOVE must be specified as immediate value and IMMED
flag must be set;


• for MOVE_LEN must be specified using MATH0-MATH3.


in opt Operational flags:


• WAITCOMP, FLUSH1, FLUSH2, LAST1, LAST2, SIZE_WORD,
SIZE_BYTE, SIZE_DWORD, IMMED (not valid for MOVE_L←↩
EN).


Returns


• On success, descriptor buffer offset where this command is inserted.
• On error, a negative error code; first error program counter will point to offset in descriptor


buffer where the instruction should have been written.


3.5.3.5 #define MOVEB( program, src, src_offset, dst, dst_offset, length, opt )


Value:


rta_move(program, __MOVEB, src, src_offset, dst, dst_offset, length, \
opt)


Configures MOVEB command. Identical with MOVE command, if byte swapping not enabled; else,
when src/dst is descriptor buffer or MATH registers, data type is byte array when MOVE data type is
4-byte array and vice versa.


Parameters


NXP Semiconductors
Writing Descriptors for NXP CAAM using RTA Library


17







SEC Commands Routines


in,out program Pointer to struct program
in src Internal source of data that will be moved:


• CONTEXT1, CONTEXT2, OFIFO, DESCBUF, MATH0-MATH3,
IFIFOABD, IFIFOAB1, IFIFOAB2, AB1, AB2, ABD.


in src_offset Offset in source data (uint16_t).
in dst Internal destination of data that will be moved:


• CONTEXT1, CONTEXT2, OFIFO, DESCBUF, MATH0-MATH3,
IFIFOAB1, IFIFOAB2, IFIFO, PKA, KEY1, KEY2, ALTSOUR←↩
CE.


in dst_offset Offset in destination data (uint16_t)
in length Size of data to be moved:


• for MOVE must be specified as immediate value and IMMED
flag must be set;


• for MOVE_LEN must be specified using MATH0-MATH3.


in opt Operational flags:


• WAITCOMP, FLUSH1, FLUSH2, LAST1, LAST2, SIZE_WORD,
SIZE_BYTE, SIZE_DWORD, IMMED (not valid for MOVE_L←↩
EN).


Returns


• On success, descriptor buffer offset where this command is inserted.
• On error, a negative error code; first error program counter will point to offset in descriptor


buffer where the instruction should have been written.


3.5.3.6 #define MOVEDW( program, src, src_offset, dst, dst_offset, length, opt )


Value:


rta_move(program, __MOVEDW, src, src_offset, dst, dst_offset, length, \
opt)


Configures MOVEDW command. Identical with MOVE command, with the following differences:


• data type is 8-byte array;
• word swapping is performed when SEC is programmed in little-endian mode.


18
Writing Descriptors for NXP CAAM using RTA Library


NXP Semiconductors







SEC Commands Routines


Parameters


in,out program Pointer to struct program
in src Internal source of data that will be moved:


• CONTEXT1, CONTEXT2, OFIFO, DESCBUF, MATH0-MATH3, IFIFOABD, IFIFOAB1, IFIFO←↩
AB2, AB1, AB2, ABD.
Parameters


in src_offset Offset in source data (uint16_t).
in dst Internal destination of data that will be moved:


• CONTEXT1, CONTEXT2, OFIFO, DESCBUF, MATH0-MATH3, IFIFOAB1, IFIFOAB2, IFIFO,
PKA, KEY1, KEY2, ALTSOURCE.
Parameters


in dst_offset Offset in destination data (uint16_t).
in length Size of data to be moved:


• for MOVE must be specified as immediate value and IMMED flag must be set;
• for MOVE_LEN must be specified using MATH0-MATH3.


Parameters


in opt Operational flags:


• WAITCOMP, FLUSH1, FLUSH2, LAST1, LAST2, SIZE_WORD, SIZE_BYTE, SIZE_DWORD, I←↩
MMED (not valid for MOVE_LEN).
Returns


• On success, descriptor buffer offset where this command is inserted.
• On error, a negative error code; first error program counter will point to offset in descriptor buffer


where the instruction should have been written.


3.5.3.7 #define FIFOLOAD( program, data, src, length, flags ) rta_fifo_load(program,
data, src, length, flags)


Configures FIFOLOAD command to load message data, PKHA data, IV, ICV, AAD, and bit length
message data into Input Data FIFO.


Parameters


NXP Semiconductors
Writing Descriptors for NXP CAAM using RTA Library


19







SEC Commands Routines


in,out program Pointer to struct program
in data Input data type to store:


• PKHA registers, IFIFO, MSG1, MSG2, MSGOUTSNOOP, MS←↩
GINSNOOP, IV1, IV2, AAD1, ICV1, ICV2, BIT_DATA, SKIP.


in src Pointer or actual data in case of immediate load; IMMED, COPY, and
DCOPY flags indicate action taken (inline imm data, inline ptr, inline
from ptr).


in length Number of bytes to load (uint32_t).
in flags Operational flags:


• SGF, IMMED, EXT, CLASS1, CLASS2, BOTH, FLUSH1, LAST1,
LAST2, COPY, DCOPY.


Returns


• On success, descriptor buffer offset where this command is inserted.
• On error, a negative error code; first error program counter will point to offset in descriptor


buffer where the instruction should have been written.


3.5.3.8 #define SEQFIFOLOAD( program, data, length, flags ) rta_fifo_load(program,
data, NONE, length, flags|SEQ)


Configures SEQ FIFOLOAD command to load message data, PKHA data, IV, ICV, AAD, and bit length
message data into Input Data FIFO.


Parameters


in,out program Pointer to struct program
in data Input data type to store:


• PKHA registers, IFIFO, MSG1, MSG2, MSGOUTSNOOP, MS←↩
GINSNOOP, IV1, IV2, AAD1, ICV1, ICV2, BIT_DATA, SKIP.


20
Writing Descriptors for NXP CAAM using RTA Library


NXP Semiconductors







SEC Commands Routines


in length Number of bytes to load; can be set to 0 for SEQ command w/ VLF set
(uint32_t).


in flags Operational flags:


• VLF, CLASS1, CLASS2, BOTH, FLUSH1, LAST1, LAST2, AIDF.


Returns


• On success, descriptor buffer offset where this command is inserted.
• On error, a negative error code; first error program counter will point to offset in descriptor


buffer where the instruction should have been written.


3.5.3.9 #define FIFOSTORE( program, data, encrypt_flags, dst, length, flags
) rta_fifo_store(program, data, encrypt_flags, dst, length, flags)


Configures FIFOSTORE command, to move data from Output Data FIFO to external memory using
DMA.
Parameters


in,out program Pointer to struct program
in data Output data type to store:


• PKHA registers, IFIFO, OFIFO, RNG, RNGOFIFO, AFHA_SB←↩
OX, MDHA_SPLIT_KEY, MSG, KEY1, KEY2, SKIP.


in encrypt_flags Store data encryption mode:


• EKT, TK.


in dst Pointer to store location (uint64_t).
in length Number of bytes to load (uint32_t).
in flags Operational flags:@


• SGF, CONT, EXT, CLASS1, CLASS2, BOTH.


Returns


• On success, descriptor buffer offset where this command is inserted.
• On error, a negative error code; first error program counter will point to offset in descriptor


buffer where the instruction should have been written.


NXP Semiconductors
Writing Descriptors for NXP CAAM using RTA Library


21







SEC Commands Routines


3.5.3.10 #define SEQFIFOSTORE( program, data, encrypt_flags, length, flags
) rta_fifo_store(program, data, encrypt_flags, 0, length, flags|SEQ)


Configures SEQ FIFOSTORE command, to move data from Output Data FIFO to external memory via
DMA.


22
Writing Descriptors for NXP CAAM using RTA Library


NXP Semiconductors







SEC Commands Routines


Parameters


in,out program Pointer to struct program
in data output data type to store:


• PKHA registers, IFIFO, OFIFO, RNG, RNGOFIFO, AFHA_SB←↩
OX, MDHA_SPLIT_KEY, MSG, KEY1, KEY2, METADATA, SK←↩
IP.


in encrypt_flags Store data encryption mode:


• EKT, TK


in length Number of bytes to load; can be set to 0 for SEQ command w/ VLF set
(uint32_t).


in flags Operational flags:


• VLF, CONT, EXT, CLASS1, CLASS2, BOTH.


Returns


• On success, descriptor buffer offset where this command is inserted.
• On error, a negative error code; first error program counter will point to offset in descriptor


buffer where the instruction should have been written.


3.5.3.11 #define KEY( program, key_dst, encrypt_flags, src, length, flags
) rta_key(program, key_dst, encrypt_flags, src, length, flags)


Configures KEY and SEQ KEY commands.


Parameters


in,out program Pointer to struct program.
in key_dst Key store location:


• KEY1, KEY2, PKE, AFHA_SBOX, MDHA_SPLIT_KEY.


NXP Semiconductors
Writing Descriptors for NXP CAAM using RTA Library


23







SEC Commands Routines


in encrypt_flags Key encryption mode:


• ENC, EKT, TK, NWB, PTS.


in src Pointer or actual data in case of immediate load (uint64_t); IMMED,
COPY, and DCOPY flags indicate action taken (inline imm data, inline
ptr, inline from ptr).


in length Number of bytes to load; can be set to 0 for SEQ command w/ VLF set
(uint32_t).


in flags Operational flags:


• for KEY: SGF, IMMED, COPY, DCOPY;
• for SEQKEY: SEQ, VLF, AIDF.


Returns


• On success, descriptor buffer offset where this command is inserted.
• On error, a negative error code; first error program counter will point to offset in descriptor


buffer where the instruction should have been written.


3.5.3.12 #define SEQINPTR( program, src, length, flags ) rta_seq_in_ptr(program,
src, length, flags)


Configures SEQ IN PTR command.


Parameters


in,out Program pointer to struct program
in src Starting address for Input Sequence (uint64_t)
in length Number of bytes in (or to be added to) Input Sequence (uint32_t).
in flags Operational flags:


• RBS, INL, SGF, PRE, EXT, RTO, RJD, SOP (when PRE, RTO or
SOP are set, src parameter must be 0).


Returns


• On success, descriptor buffer offset where this command is inserted.
• On error, a negative error code; first error program counter will point to offset in descriptor


buffer where the instruction should have been written.


24
Writing Descriptors for NXP CAAM using RTA Library


NXP Semiconductors







SEC Commands Routines


3.5.3.13 #define SEQOUTPTR( program, dst, length, flags ) rta_seq_out_ptr(program,
dst, length, flags)


Configures SEQ OUT PTR command.


NXP Semiconductors
Writing Descriptors for NXP CAAM using RTA Library


25







SEC Commands Routines


Parameters


in,out program Pointer to struct program.
in dst Starting address for Output Sequence (uint64_t).
in length Number of bytes in (or to be added to) Output Sequence (uint32_t).
in flags Operational flags:


• SGF, PRE, EXT, RTO, RST, EWS (when PRE or RTO are set, dst
parameter must be 0).


Returns


• On success, descriptor buffer offset where this command is inserted.
• On error, a negative error code; first error program counter will point to offset in descriptor


buffer where the instruction should have been written.


3.5.3.14 #define ALG_OPERATION( program, cipher_alg, aai, algo_state, icv_check,
enc ) rta_operation(program, cipher_alg, aai, algo_state, icv_check, enc)


Configures ALGORITHM OPERATION command.


Parameters


in,out program Pointer to struct program.
in cipher_alg Algorithm to be used.
in aai Additional Algorithm Information: contains mode information that is


associated with the algorithm (check desc.h for specific values).
in algo_state Algorithm state: defines the state of the algorithm that is being executed


(check desc.h file for specific values).
in icv_check ICV checking: selects whether the algorithm should check calculated


ICV with known ICV:


• ICV_CHECK_ENABLE, ICV_CHECK_DISABLE.


26
Writing Descriptors for NXP CAAM using RTA Library


NXP Semiconductors







SEC Commands Routines


in enc Selects between encryption and decryption:


• DIR_ENC, DIR_DEC.


Returns


• On success, descriptor buffer offset where this command is inserted.
• On error, a negative error code; first error program counter will point to offset in descriptor


buffer where the instruction should have been written.


3.5.3.15 #define PROTOCOL( program, optype, protid, protoinfo
) rta_proto_operation(program, optype, protid, protoinfo)


Configures PROTOCOL OPERATION command.


Parameters


in,out program Pointer to struct program
in optype Operation type:


• OP_TYPE_UNI_PROTOCOL / OP_TYPE_DECAP_PROTOC←↩
OL / OP_TYPE_ENCAP_PROTOCOL.


in protid Protocol identifier value (check desc.h file for specific values).
in protoinfo Protocol dependent value (check desc.h file for specific values).


Returns


• On success, descriptor buffer offset where this command is inserted.
• On error, a negative error code; first error program counter will point to offset in descriptor


buffer where the instruction should have been written.


3.5.3.16 #define DKP_PROTOCOL( program, protid, key_src, key_dst, keylen,
key, key_type ) rta_dkp_proto(program, protid, key_src, key_dst, keylen, key,
key_type)


Configures DKP (Derived Key Protocol) PROTOCOL command.


NXP Semiconductors
Writing Descriptors for NXP CAAM using RTA Library


27







SEC Commands Routines


Parameters


in,out program Pointer to struct program
in protid Protocol identifier value - one of the following: OP_PCLID_DKP_{M←↩


D5 | SHA1 | SHA224 | SHA256 | SHA384 | SHA512}.
in key_src How the initial ("negotiated") key is provided to the DKP protocol.


Valid values - one of OP_PCL_DKP_SRC_{IMM, SEQ, PTR, SGF}.
Not all (key_src,key_dst) combinations are allowed.


in key_dst How the derived ("split") key is returned by the DKP protocol. Valid
values - one of OP_PCL_DKP_DST_{IMM, SEQ, PTR, SGF}. Not all
(key_src,key_dst) combinations are allowed.


in keylen Length of the initial key, in bytes (uint16_t).
in key Address where algorithm key resides;


• virtual address if key_type is RTA_DATA_IMM;
• physical (bus) address if key_type is RTA_DATA_PTR or RT←↩


A_DATA_IMM_DMA.


in key_type enum rta_data_type


Returns


• On success, descriptor buffer offset where this command is inserted.
• On error, a negative error code; first error program counter will point to offset in descriptor


buffer where the instruction should have been written.


3.5.3.17 #define PKHA_OPERATION( program, op_pkha ) rta_pkha_operation(program,
op_pkha)


Configures PKHA OPERATION command.


Parameters


in,out program Pointer to struct program
in op_pkha PKHA operation; indicates the modular arithmetic function to execute


(check desc.h file for specific values).


Returns


• On success, descriptor buffer offset where this command is inserted.
• On error, a negative error code; first error program counter will point to offset in descriptor


buffer where the instruction should have been written.


28
Writing Descriptors for NXP CAAM using RTA Library


NXP Semiconductors







SEC Commands Routines


3.5.3.18 #define JUMP( program, addr, jump_type, test_type, cond
) rta_jump(program, addr, jump_type, test_type, cond, NONE)


Configures JUMP command.


NXP Semiconductors
Writing Descriptors for NXP CAAM using RTA Library


29







SEC Commands Routines


Parameters


in,out program Pointer to struct program.
in addr Local offset for local jumps or address pointer for non-local jumps; I←↩


MM or PTR macros must be used to indicate type.
in jump_type Type of action taken by jump (enum rta_jump_type).
in test_type Defines how jump conditions are evaluated (enum rta_jump_cond)
in cond Jump conditions:


• operational flags DONE1, DONE2, BOTH;
• various sharing and wait conditions (JSL = 1): NIFP, NIP, NOP,


NCP, CALM, SELF, SHARED, JQP;
• Math and PKHA status conditions (JSL = 0): Z, N, NV, C, PK0,


PK1, PKP.


Returns


• On success, descriptor buffer offset where this command is inserted.
• On error, a negative error code; first error program counter will point to offset in descriptor


buffer where the instruction should have been written.


3.5.3.19 #define JUMP_INC( program, addr, test_type, cond, src_dst
) rta_jump(program, addr, LOCAL_JUMP_INC, test_type, cond, src_dst)


Configures JUMP_INC command.


Parameters


in,out program Pointer to struct program
in addr Local offset; IMM or PTR macros must be used to indicate type
in test_type Defines how jump conditions are evaluated (enum rta_jump_cond)
in cond Jump conditions:


• Math status conditions (JSL = 0): Z, N, NV, C.


in src_dst Register to increment / decrement:


• MATH0-MATH3, DPOVRD, SEQINSZ, SEQOUTSZ, VSEQINSZ,
VSEQOUTSZ.


30
Writing Descriptors for NXP CAAM using RTA Library


NXP Semiconductors







SEC Commands Routines


Returns


• On success, descriptor buffer offset where this command is inserted.
• On error, a negative error code; first error program counter will point to offset in descriptor


buffer where the instruction should have been written.


3.5.3.20 #define JUMP_DEC( program, addr, test_type, cond, src_dst
) rta_jump(program, addr, LOCAL_JUMP_DEC, test_type, cond, src_dst)


Configures JUMP_DEC command.


Parameters


in,out program Pointer to struct program
in addr Local offset; IMM or PTR macros must be used to indicate type
in test_type Defines how jump conditions are evaluated (enum rta_jump_cond)
in cond Jump conditions:


• Math status conditions (JSL = 0): Z, N, NV, C.


in src_dst Register to increment / decrement:


• MATH0-MATH3, DPOVRD, SEQINSZ, SEQOUTSZ, VSEQINSZ,
VSEQOUTSZ.


Returns


• On success, descriptor buffer offset where this command is inserted.
• On error, a negative error code; first error program counter will point to offset in descriptor


buffer where the instruction should have been written.


3.5.3.21 #define LOAD( program, addr, dst, offset, length, flags ) rta_load(program,
addr, dst, offset, length, flags)


Configures LOAD command to load data registers from descriptor or from a memory location.


Parameters


in,out program Pointer to struct program


NXP Semiconductors
Writing Descriptors for NXP CAAM using RTA Library


31







SEC Commands Routines


in addr immediate value or pointer to the data to be loaded; IMMED, CO←↩
PY, and DCOPY flags indicate action taken (inline imm data, inline ptr,
inline from ptr).


in dst Destination register (uint64_t).
in offset Start point to write data in destination register (uint32_t).
in length Number of bytes to load (uint32_t).
in flags Operational flags:


• VLF, IMMED, COPY, DCOPY.


Returns


• On success, descriptor buffer offset where this command is inserted.
• On error, a negative error code; first error program counter will point to offset in descriptor


buffer where the instruction should have been written.


3.5.3.22 #define SEQLOAD( program, dst, offset, length, flags ) rta_load(program,
NONE, dst, offset, length, flags|SEQ)


Configures SEQ LOAD command to load data registers from descriptor or from a memory location.


Parameters


in,out program pointer to struct program.
in dst Destination register (uint64_t).
in offset Start point to write data in destination register (uint32_t).
in length Number of bytes to load (uint32_t).
in flags Operational flags: SGF.


Returns


• On success, descriptor buffer offset where this command is inserted.
• On error, a negative error code; first error program counter will point to offset in descriptor


buffer where the instruction should have been written.


3.5.3.23 #define STORE( program, src, offset, dst, length, flags
) rta_store(program, src, offset, dst, length, flags)


Configures STORE command to read data from registers and write them to a memory location.


32
Writing Descriptors for NXP CAAM using RTA Library


NXP Semiconductors







SEC Commands Routines


Parameters


in,out program Pointer to struct program
in src Immediate value or source register for data to be stored:


• KEY1SZ, KEY2SZ, DJQDA, MODE1, MODE2, DJQCTRL, DA←↩
TA1SZ, DATA2SZ, DSTAT, ICV1SZ, ICV2SZ, DPID, CCTRL, I←↩
CTRL, CLRW, CSTAT, MATH0-MATH3, PKHA registers, CON←↩
TEXT1, CONTEXT2, DESCBUF, JOBDESCBUF, SHAREDES←↩
CBUF. In case of immediate value, IMMED, COPY and DCOPY
flags indicate action taken (inline imm data, inline ptr, inline from
ptr).


in offset Start point for reading from source register (uint16_t).
in dst Pointer to store location (uint64_t).
in length Number of bytes to store (uint32_t).
in flags Operational flags:


• VLF, IMMED, COPY, DCOPY.


Returns


• On success, descriptor buffer offset where this command is inserted.
• On error, a negative error code; first error program counter will point to offset in descriptor


buffer where the instruction should have been written.


3.5.3.24 #define SEQSTORE( program, src, offset, length, flags ) rta_store(program,
src, offset, NONE, length, flags|SEQ)


Configures SEQ STORE command to read data from registers and write them to a memory location.


NXP Semiconductors
Writing Descriptors for NXP CAAM using RTA Library


33







SEC Commands Routines


Parameters


in,out program Pointer to struct program.
in src Immediate value or source register for data to be stored:


• KEY1SZ, KEY2SZ, DJQDA, MODE1, MODE2, DJQCTRL, DA←↩
TA1SZ, DATA2SZ, DSTAT, ICV1SZ, ICV2SZ, DPID, CCTRL, I←↩
CTRL, CLRW, CSTAT, MATH0-MATH3, PKHA registers, CON←↩
TEXT1, CONTEXT2, DESCBUF, JOBDESCBUF, SHAREDES←↩
CBUF. In case of immediate value, IMMED, COPY and DCOPY
flags indicate action taken (inline imm data, inline ptr, inline from
ptr).


in offset Start point for reading from source register (uint16_t).
in length Number of bytes to store (uint32_t).
in flags Operational flags:


• SGF, IMMED, COPY, DCOPY.


Returns


• On success, descriptor buffer offset where this command is inserted.
• On error, a negative error code; first error program counter will point to offset in descriptor


buffer where the instruction should have been written.


3.5.3.25 #define MATHB( program, operand1, operator, operand2, result, length,
opt )


Value:


rta_math(program, operand1, MATH_FUN_##operator, operand2, result, \
length, opt)


Configures MATHB command to perform binary operations.


34
Writing Descriptors for NXP CAAM using RTA Library


NXP Semiconductors







SEC Commands Routines


Parameters


in,out program Pointer to struct program
in operand1 First operand:


• MATH0-MATH3, DPOVRD, SEQINSZ, SEQOUTSZ, VSEQINSZ,
VSEQOUTSZ, ZERO, ONE, NONE, Immediate value .
IMMED must be used to indicate immediate value.


in operator Function to be performed:


• ADD, ADDC, SUB, SUBB, OR, AND, XOR, LSHIFT, RSHIFT,
SHLD.


in operand2 Second operand:


• MATH0-MATH3, DPOVRD, VSEQINSZ, VSEQOUTSZ, ABD,
OFIFO, JOBSRC, ZERO, ONE, Immediate value.
IMMED2 must be used to indicate immediate value.


in result Destination for the result:


• MATH0-MATH3, DPOVRD, SEQINSZ, SEQOUTSZ, NONE, V←↩
SEQINSZ, VSEQOUTSZ.


in length Length in bytes of the operation and the immediate value, if there is one
(int).


in opt Operational flags: IFB, NFU, STL, SWP, IMMED, IMMED2.


Returns


• On success, descriptor buffer offset where this command is inserted.
• On error, a negative error code; first error program counter will point to offset in descriptor


buffer where the instruction should have been written.


3.5.3.26 #define MATHI( program, operand, operator, imm, result, length, opt )


Value:


rta_mathi(program, operand, MATH_FUN_##operator, imm, result, length, \
opt)


Configures MATHI command to perform binary operations.


NXP Semiconductors
Writing Descriptors for NXP CAAM using RTA Library


35







SEC Commands Routines


Parameters


in,out program Pointer to struct program
in operand


• If !SSEL: MATH0-MATH3, DPOVRD, SEQINSZ, SEQOUTSZ,
VSEQINSZ, VSEQOUTSZ, ZERO, ONE.


• If SSEL: MATH0-MATH3, DPOVRD, VSEQINSZ, VSEQOUTSZ,
ABD, OFIFO, JOBSRC, ZERO, ONE.


in operator Function to be performed:


• ADD, ADDC, SUB, SUBB, OR, AND, XOR, LSHIFT, RSHIFT,
FBYT (for !SSEL only).


in imm Immediate value (uint8_t).
IMMED must be used to indicate immediate value.


in result Destination for the result:


• MATH0-MATH3, DPOVRD, SEQINSZ, SEQOUTSZ, NONE, V←↩
SEQINSZ, VSEQOUTSZ.


in length Length in bytes of the operation and the immediate value, if there is one
(int). imm is left-extended with zeros if needed.


in opt Operational flags:


• NFU, SSEL, SWP, IMMED.
• If !SSEL, operand < operator > imm -> result
• If SSEL, imm < operator > operand -> result


Returns


• On success, descriptor buffer offset where this command is inserted.
• On error, a negative error code; first error program counter will point to offset in descriptor


buffer where the instruction should have been written.


3.5.3.27 #define MATHU( program, operand1, operator, result, length, opt )


Value:


rta_math(program, operand1, MATH_FUN_##operator, NONE, result, length, \
opt)


Configures MATHU command to perform unary operations.


36
Writing Descriptors for NXP CAAM using RTA Library


NXP Semiconductors







SEC Commands Routines


Parameters


in,out program Pointer to struct program
in operand1 Operand:


• MATH0-MATH3, DPOVRD, SEQINSZ, SEQOUTSZ, VSEQINSZ,
VSEQOUTSZ, ZERO, ONE, NONE, Immediate value .
IMMED must be used to indicate immediate value.


in operator Function to be performed:


• ZBYT, BSWAP.


in result Destination for the result:


• MATH0-MATH3, DPOVRD, SEQINSZ, SEQOUTSZ, NONE, V←↩
SEQINSZ, VSEQOUTSZ.


in length Length in bytes of the operation and the immediate value, if there is one
(int).


in opt Operational flags:


• NFU, STL, SWP, IMMED.


Returns


• On success, descriptor buffer offset where this command is inserted.
• On error, a negative error code; first error program counter will point to offset in descriptor


buffer where the instruction should have been written.


3.5.3.28 #define SIGNATURE( program, sign_type ) rta_signature(program, sign_type)


Configures SIGNATURE command.


Parameters


in,out program Pointer to struct program
in sign_type Signature type:


• SIGN_TYPE_FINAL, SIGN_TYPE_FINAL_RESTORE, SIGN_←↩
TYPE_FINAL_NONZERO, SIGN_TYPE_IMM_2, SIGN_TYPE←↩
_IMM_3, SIGN_TYPE_IMM_4.
After SIGNATURE command, DWORD, or WORD must be
used to insert signature in descriptor buffer.


NXP Semiconductors
Writing Descriptors for NXP CAAM using RTA Library


37







SEC Commands Routines


Returns


• On success, descriptor buffer offset where this command is inserted.
• On error, a negative error code; first error program counter will point to offset in descriptor


buffer where the instruction should have been written.


3.5.3.29 #define NFIFOADD( program, src, data, length, flags
) rta_nfifo_load(program, src, data, length, flags)


Configures NFIFO command, a shortcut of RTA Load command to write to iNfo FIFO.


Parameters


in,out program Pointer to struct program
in src Source for the input data in Alignment Block:


• IFIFO, OFIFO, PAD, MSGOUTSNOOP, ALTSOURCE, OFIF←↩
O_SYNC, MSGOUTSNOOP_ALT .


in data Type of data that is going through the Input Data FIFO:


• MSG, MSG1, MSG2, IV1, IV2, ICV1, ICV2, SAD1, AAD1, AAD2,
AFHA_SBOX, SKIP, PKHA registers, AB1, AB2, ABD.


in length Length of the data copied in FIFO registers (uint32_t).
in flags select options between:


• operational flags: LAST1, LAST2, FLUSH1, FLUSH2, OC, BP.
• When PAD is selected as source: BM, PR, PS.
• Padding type: PAD_ZERO, PAD_NONZERO, PAD_INCREME←↩


NT, PAD_RANDOM, PAD_ZERO_N1, PAD_NONZERO_0, P←↩
AD_N1, PAD_NONZERO_N .


Returns


• On success, descriptor buffer offset where this command is inserted.
• On error, a negative error code; first error program counter will point to offset in descriptor


buffer where the instruction should have been written.


3.5.3.30 #define DCOPY BIT(30)


(AIOP only) Command param is pointer to external memory.


CDMA must be used to transfer the key via DMA into Workspace Area. Valid only in combination with
IMMED flag.


38
Writing Descriptors for NXP CAAM using RTA Library


NXP Semiconductors







Self Referential Code Management Routines


3.5.4 Enumeration Type Documentation


3.5.4.1 enum rta_jump_type


sec_run_time_asm.h


Types of action taken by JUMP command.


3.5.4.2 enum rta_jump_cond


sec_run_time_asm.h


How the test conditions are evaluated by JUMP command.


3.5.4.3 enum rta_share_type


sec_run_time_asm.h


Types of sharing for JOB_HDR and SHR_HDR commands.


3.5.4.4 enum rta_data_type


sec_run_time_asm.h


Indicates how the data is provided and how to include it in the descriptor.


3.6 Self Referential Code Management Routines


3.6.1 Overview


Contains details of RTA self referential code routines.


Macros


• #define REFERENCE(ref) int ref = -1
• #define LABEL(label) unsigned label = 0
• #define SET_LABEL(program, label) label = rta_set_label(program)
• #define PATCH_JUMP(program, line, new_ref) rta_patch_jmp(program, line, new_ref)
• #define PATCH_MOVE(program, line, new_ref) rta_patch_move(program, line, new_ref)
• #define PATCH_LOAD(program, line, new_ref) rta_patch_load(program, line, new_ref)
• #define PATCH_STORE(program, line, new_ref) rta_patch_store(program, line, new_ref)
• #define PATCH_HDR(program, line, new_ref) rta_patch_header(program, line, new_ref)
• #define PATCH_RAW(program, line, mask, new_val) rta_patch_raw(program, line, mask, new_←↩


val)


NXP Semiconductors
Writing Descriptors for NXP CAAM using RTA Library


39







Self Referential Code Management Routines


3.6.2 Detailed Description


Contains details of RTA self referential code routines.


3.6.3 Macro Definition Documentation


3.6.3.1 #define REFERENCE( ref ) int ref = -1


Initialize a variable used for storing an index inside a descriptor buffer.


Parameters


out ref Reference to a descriptor buffer's index where an update is required with
a value that will be known latter in the program flow.


3.6.3.2 #define LABEL( label ) unsigned label = 0


Initialize a variable used for storing an index inside a descriptor buffer.


Parameters


out label Label stores the value with what should be updated the REFERENCE
line in the descriptor buffer.


3.6.3.3 #define SET_LABEL( program, label ) label = rta_set_label(program)


Set a LABEL value.
Parameters


in,out program Pointer to struct program
in label Value that will be inserted in a line previously written in the descriptor


buffer.


3.6.3.4 #define PATCH_JUMP( program, line, new_ref ) rta_patch_jmp(program, line,
new_ref)


Auxiliary command to resolve self referential code.


Parameters


40
Writing Descriptors for NXP CAAM using RTA Library


NXP Semiconductors







Self Referential Code Management Routines


in,out program Buffer to be updated (struct program ∗).
in line Position in descriptor buffer where the update will be done; this value is


previously retained in program flow using a reference near the sequence
to be modified.


in new_ref Updated value that will be inserted in descriptor buffer at the specified
line; this value is previously obtained using SET_LABEL macro near
the line that will be used as reference (unsigned). For JUMP com-
mand, the value represents the offset field (in words).


Returns


- 0 in case of success.
• A negative error code if it fails.


3.6.3.5 #define PATCH_MOVE( program, line, new_ref ) rta_patch_move(program,
line, new_ref)


Auxiliary command to resolve self referential code.


Parameters


in,out program Buffer to be updated (struct program ∗)
in line Position in descriptor buffer where the update will be done; this value is


previously retained in program flow using a reference near the sequence
to be modified.


in new_ref Updated value that will be inserted in descriptor buffer at the specified
line; this value is previously obtained using SET_LABEL macro near
the line that will be used as reference (unsigned). For MOVE com-
mand, the value represents the offset field (in words).


Returns


- 0 in case of success.
• A negative error code if it fails.


3.6.3.6 #define PATCH_LOAD( program, line, new_ref ) rta_patch_load(program, line,
new_ref)


Auxiliary command to resolve self referential code.


NXP Semiconductors
Writing Descriptors for NXP CAAM using RTA Library


41







Self Referential Code Management Routines


Parameters


in,out program Buffer to be updated (struct program ∗).
in line Position in descriptor buffer where the update will be done; this value is


previously retained in program flow using a reference near the sequence
to be modified.


in new_ref Updated value that will be inserted in descriptor buffer at the specified
line; this value is previously obtained using SET_LABEL macro near
the line that will be used as reference (unsigned). For LOAD com-
mand, the value represents the offset field (in words).


Returns


- 0 in case of success.
• A negative error code if it fails.


3.6.3.7 #define PATCH_STORE( program, line, new_ref ) rta_patch_store(program,
line, new_ref)


Auxiliary command to resolve self referential code.


Parameters


in,out program Buffer to be updated (struct program ∗)
in line position in descriptor buffer where the update will be done; this value is


previously retained in program flow using a reference near the sequence
to be modified.


in new_ref Updated value that will be inserted in descriptor buffer at the specified
line; this value is previously obtained using SET_LABEL macro near
the line that will be used as reference (unsigned). For STORE com-
mand, the value represents the offset field (in words).


Returns


- 0 in case of success.
• A negative error code if it fails.


3.6.3.8 #define PATCH_HDR( program, line, new_ref ) rta_patch_header(program,
line, new_ref)


Auxiliary command to resolve self referential code.


42
Writing Descriptors for NXP CAAM using RTA Library


NXP Semiconductors







Shared Descriptor Example Routines


Parameters


in,out program Buffer to be updated (struct program ∗)
in line Position in descriptor buffer where the update will be done; this value is


previously retained in program flow using a reference near the sequence
to be modified.


in new_ref Updated value that will be inserted in descriptor buffer at the specified
line; this value is previously obtained using SET_LABEL macro near
the line that will be used as reference (unsigned). For HEADER
command, the value represents the start index field.


Returns


- 0 in case of success.
• A negative error code if it fails.


3.6.3.9 #define PATCH_RAW( program, line, mask, new_val ) rta_patch_raw(program,
line, mask, new_val)


Auxiliary command to resolve self referential code.


Parameters


in,out program Buffer to be updated (struct program ∗)
in line Position in descriptor buffer where the update will be done; this value is


previously retained in program flow using a reference near the sequence
to be modified.


in mask Mask to be used for applying the new value (unsigned). The mask
selects which bits from the provided new_val are taken into consider-
ation when overwriting the existing value.


in new_val Updated value that will be masked using the provided mask value and
inserted in descriptor buffer at the specified line.


Returns


- 0 in case of success.
• A negative error code if it fails.


3.7 Shared Descriptor Example Routines
3.7.1 Overview


Functions


• static int cnstr_shdsc_snow_f8 (uint32_t ∗descbuf, bool ps, bool swap, struct alginfo ∗cipherdata,
uint8_t dir, uint32_t count, uint8_t bearer, uint8_t direction)


NXP Semiconductors
Writing Descriptors for NXP CAAM using RTA Library


43







Shared Descriptor Example Routines


• static int cnstr_shdsc_snow_f9 (uint32_t ∗descbuf, bool ps, bool swap, struct alginfo ∗authdata,
uint8_t dir, uint32_t count, uint32_t fresh, uint8_t direction, uint32_t datalen)


• static int cnstr_shdsc_blkcipher (uint32_t ∗descbuf, bool ps, bool swap, struct alginfo ∗cipherdata,
uint8_t ∗iv, uint32_t ivlen, uint8_t dir)


• static int cnstr_shdsc_hmac (uint32_t ∗descbuf, bool ps, bool swap, struct alginfo ∗authdata, uint8←↩
_t do_icv, uint8_t trunc_len)


• static int cnstr_shdsc_kasumi_f8 (uint32_t ∗descbuf, bool ps, bool swap, struct alginfo ∗cipherdata,
uint8_t dir, uint32_t count, uint8_t bearer, uint8_t direction)


• static int cnstr_shdsc_kasumi_f9 (uint32_t ∗descbuf, bool ps, bool swap, struct alginfo ∗authdata,
uint8_t dir, uint32_t count, uint32_t fresh, uint8_t direction, uint32_t datalen)


• static int cnstr_shdsc_crc (uint32_t ∗descbuf, bool swap)
• static int cnstr_shdsc_gcm_encap (uint32_t ∗descbuf, bool ps, bool swap, struct alginfo ∗cipherdata,


uint32_t ivlen, uint32_t icvsize)
• static int cnstr_shdsc_gcm_decap (uint32_t ∗descbuf, bool ps, bool swap, struct alginfo ∗cipherdata,


uint32_t ivlen, uint32_t icvsize)
• static int cnstr_shdsc_ipsec_encap (uint32_t ∗descbuf, bool ps, bool swap, enum rta_share_type


share, struct ipsec_encap_pdb ∗pdb, struct alginfo ∗cipherdata, struct alginfo ∗authdata)
• static int cnstr_shdsc_ipsec_decap (uint32_t ∗descbuf, bool ps, bool swap, enum rta_share_type


share, struct ipsec_decap_pdb ∗pdb, struct alginfo ∗cipherdata, struct alginfo ∗authdata)
• static int cnstr_shdsc_ipsec_encap_des_aes_xcbc (uint32_t ∗descbuf, struct ipsec_encap_pdb ∗pdb,


struct alginfo ∗cipherdata, struct alginfo ∗authdata)
• static int cnstr_shdsc_ipsec_decap_des_aes_xcbc (uint32_t ∗descbuf, struct ipsec_decap_pdb ∗pdb,


struct alginfo ∗cipherdata, struct alginfo ∗authdata)
• static int cnstr_shdsc_ipsec_new_encap (uint32_t ∗descbuf, bool ps, bool swap, enum rta_share←↩


_type share, struct ipsec_encap_pdb ∗pdb, uint8_t ∗opt_ip_hdr, struct alginfo ∗cipherdata, struct
alginfo ∗authdata)


• static int cnstr_shdsc_ipsec_new_decap (uint32_t ∗descbuf, bool ps, bool swap, enum rta_share_←↩
type share, struct ipsec_decap_pdb ∗pdb, struct alginfo ∗cipherdata, struct alginfo ∗authdata)


• static int cnstr_shdsc_authenc (uint32_t ∗descbuf, bool ps, bool swap, struct alginfo ∗cipherdata,
struct alginfo ∗authdata, uint16_t ivlen, uint16_t auth_only_len, uint8_t trunc_len, uint8_t dir)


• static int cnstr_shdsc_macsec_encap (uint32_t ∗descbuf, bool swap, struct alginfo ∗cipherdata,
uint64_t sci, uint16_t ethertype, uint8_t tci_an, uint32_t pn)


• static int cnstr_shdsc_macsec_decap (uint32_t ∗descbuf, bool swap, struct alginfo ∗cipherdata,
uint64_t sci, uint32_t pn)


• static int cnstr_shdsc_mbms (uint32_t ∗descbuf, bool ps, bool swap, unsigned ∗preheader_len, enum
mbms_pdu_type pdu_type)


• static int cnstr_shdsc_pdcp_c_plane_encap (uint32_t ∗descbuf, bool ps, bool swap, uint32_t hfn,
unsigned char bearer, unsigned char direction, uint32_t hfn_threshold, struct alginfo ∗cipherdata,
struct alginfo ∗authdata, unsigned char era_2_sw_hfn_override)


• static int cnstr_shdsc_pdcp_c_plane_decap (uint32_t ∗descbuf, bool ps, bool swap, uint32_t hfn,
unsigned char bearer, unsigned char direction, uint32_t hfn_threshold, struct alginfo ∗cipherdata,
struct alginfo ∗authdata, unsigned char era_2_sw_hfn_override)


• static int cnstr_shdsc_pdcp_u_plane_encap (uint32_t ∗descbuf, bool ps, bool swap, enum pdcp_sn←↩
_size sn_size, uint32_t hfn, unsigned short bearer, unsigned short direction, uint32_t hfn_threshold,
struct alginfo ∗cipherdata, unsigned char era_2_sw_hfn_override)


• static int cnstr_shdsc_pdcp_u_plane_decap (uint32_t ∗descbuf, bool ps, bool swap, enum pdcp_sn←↩
_size sn_size, uint32_t hfn, unsigned short bearer, unsigned short direction, uint32_t hfn_threshold,
struct alginfo ∗cipherdata, unsigned char era_2_sw_hfn_override)


• static int cnstr_shdsc_pdcp_short_mac (uint32_t ∗descbuf, bool ps, bool swap, struct alginfo


44
Writing Descriptors for NXP CAAM using RTA Library


NXP Semiconductors







Shared Descriptor Example Routines


∗authdata)
• static int cnstr_shdsc_rlc_encap (uint32_t ∗descbuf, bool ps, enum rlc_mode mode, uint32_t hfn,


unsigned short bearer, unsigned short direction, uint32_t hfn_threshold, struct alginfo ∗cipherdata)
• static int cnstr_shdsc_rlc_decap (uint32_t ∗descbuf, bool ps, enum rlc_mode mode, uint32_t hfn,


unsigned short bearer, unsigned short direction, uint32_t hfn_threshold, struct alginfo ∗cipherdata)
• static int cnstr_shdsc_rsa (uint32_t ∗descbuf, bool ps, bool swap, uint8_t ∗pdb, struct protcmd
∗protcmd)


• static int cnstr_shdsc_srtp_encap (uint32_t ∗descbuf, bool swap, struct alginfo ∗authdata, struct
alginfo ∗cipherdata, uint8_t n_tag, uint32_t roc, uint8_t ∗cipher_salt)


• static int cnstr_shdsc_srtp_decap (uint32_t ∗descbuf, bool swap, struct alginfo ∗authdata, struct
alginfo ∗cipherdata, uint8_t n_tag, uint32_t roc, uint16_t seq_num, uint8_t ∗cipher_salt)


• static int cnstr_shdsc_tls (uint32_t ∗descbuf, bool ps, bool swap, uint8_t ∗pdb, struct protcmd
∗protcmd, struct alginfo ∗cipherdata, struct alginfo ∗authdata)


• static int cnstr_shdsc_cwap_dtls (uint32_t ∗descbuf, bool ps, bool swap, uint8_t ∗pdb, struct
protcmd ∗protcmd, struct alginfo ∗cipherdata, struct alginfo ∗authdata)


• static int cnstr_shdsc_wifi_encap (uint32_t ∗descbuf, bool ps, bool swap, uint16_t mac_hdr_len,
uint64_t pn, uint8_t priority, uint8_t key_id, struct alginfo ∗cipherdata)


• static int cnstr_shdsc_wifi_decap (uint32_t ∗descbuf, bool ps, bool swap, uint16_t mac_hdr_len,
uint64_t pn, uint8_t priority, struct alginfo ∗cipherdata)


• static int cnstr_shdsc_wimax_encap_era5 (uint32_t ∗descbuf, bool swap, uint8_t pdb_opts, uint32←↩
_t pn, uint16_t protinfo, struct alginfo ∗cipherdata)


• static int cnstr_shdsc_wimax_encap (uint32_t ∗descbuf, bool swap, uint8_t pdb_opts, uint32_t pn,
uint16_t protinfo, struct alginfo ∗cipherdata)


• static int cnstr_shdsc_wimax_decap (uint32_t ∗descbuf, bool swap, uint8_t pdb_opts, uint32_t pn,
uint16_t ar_len, uint16_t protinfo, struct alginfo ∗cipherdata)


3.7.2 Detailed Description


3.7.3 Function Documentation


3.7.3.1 static int cnstr_shdsc_snow_f8 ( uint32_t ∗ descbuf, bool ps, bool swap, struct
alginfo ∗ cipherdata, uint8_t dir, uint32_t count, uint8_t bearer, uint8_t direction
) [inline], [static]


SNOW/f8 (UEA2) as a shared descriptor.


Parameters


in,out descbuf Pointer to descriptor-under-construction buffer.
in ps If 36/40bit addressing is desired, this parameter must be true.
in swap Must be true when core endianness doesn't match SEC endianness.
in cipherdata Pointer to block cipher transform definitions.


NXP Semiconductors
Writing Descriptors for NXP CAAM using RTA Library


45







Shared Descriptor Example Routines


in dir Cipher direction (DIR_ENC/DIR_DEC).
in count UEA2 count value (32 bits).
in bearer UEA2 bearer ID (5 bits).
in direction UEA2 direction (1 bit).


Returns


Size of descriptor written in words or negative number on error.


3.7.3.2 static int cnstr_shdsc_snow_f9 ( uint32_t ∗ descbuf, bool ps, bool swap, struct
alginfo ∗ authdata, uint8_t dir, uint32_t count, uint32_t fresh, uint8_t direction,
uint32_t datalen ) [inline], [static]


SNOW/f9 (UIA2) as a shared descriptor.


Parameters


in,out descbuf Pointer to descriptor-under-construction buffer.
in ps If 36/40bit addressing is desired, this parameter must be true.
in swap Must be true when core endianness doesn't match SEC endianness.
in authdata Pointer to authentication transform definitions.
in dir Cipher direction (DIR_ENC/DIR_DEC).
in count UEA2 count value (32 bits).
in fresh UEA2 fresh value ID (32 bits).
in direction UEA2 direction (1 bit).
in datalen Size of data.


Returns


Size of descriptor written in words or negative number on error.


3.7.3.3 static int cnstr_shdsc_blkcipher ( uint32_t ∗ descbuf, bool ps, bool swap, struct
alginfo ∗ cipherdata, uint8_t ∗ iv, uint32_t ivlen, uint8_t dir ) [inline],
[static]


Block cipher transformation.


Parameters


46
Writing Descriptors for NXP CAAM using RTA Library


NXP Semiconductors







Shared Descriptor Example Routines


in,out descbuf Pointer to descriptor-under-construction buffer.
in ps If 36/40bit addressing is desired, this parameter must be true.
in swap Must be true when core endianness doesn't match SEC endianness.
in cipherdata Pointer to block cipher transform definitions.


Valid algorithm values one of OP_ALG_ALGSEL_∗ {DES, 3DES, A←↩
ES}
Valid modes for: AES: OP_ALG_AAI_∗ {CBC, CTR} DES, 3DES:
OP_ALG_AAI_CBC


in iv IV data; if NULL, "ivlen" bytes from the input frame will be read as IV.
in ivlen IV length.
in dir DIR_ENC/DIR_DEC.


Returns


Size of descriptor written in words or negative number on error.


3.7.3.4 static int cnstr_shdsc_hmac ( uint32_t ∗ descbuf, bool ps, bool swap, struct
alginfo ∗ authdata, uint8_t do_icv, uint8_t trunc_len ) [inline], [static]


HMAC shared.
Parameters


in,out descbuf Pointer to descriptor-under-construction buffer.
in ps If 36/40bit addressing is desired, this parameter must be true
in swap Must be true when core endianness doesn't match SEC endianness.
in authdata Pointer to authentication transform definitions; message digest


algorithm: OP_ALG_ALGSEL_MD5/ SHA1-512.
in do_icv 0 if ICV checking is not desired, any other value if ICV checking is


needed for all the packets processed by this shared descriptor.
in trunc_len Length of the truncated ICV to be written in the output buffer, 0 if no


truncation is needed.


Warning


There's no support for keys longer than the block size of the underlying hash function, according to
the selected algorithm.


Returns


Size of descriptor written in words or negative number on error.


NXP Semiconductors
Writing Descriptors for NXP CAAM using RTA Library


47







Shared Descriptor Example Routines


3.7.3.5 static int cnstr_shdsc_kasumi_f8 ( uint32_t ∗ descbuf, bool ps, bool swap, struct
alginfo ∗ cipherdata, uint8_t dir, uint32_t count, uint8_t bearer, uint8_t direction
) [inline], [static]


KASUMI F8 (Confidentiality) as a shared descriptor (ETSI "Document 1: f8 and f9 specification").


48
Writing Descriptors for NXP CAAM using RTA Library


NXP Semiconductors







Shared Descriptor Example Routines


Parameters


in,out descbuf Pointer to descriptor-under-construction buffer
in ps If 36/40bit addressing is desired, this parameter must be true
in swap Must be true when core endianness doesn't match SEC endianness
in cipherdata Pointer to block cipher transform definitions
in dir Cipher direction (DIR_ENC/DIR_DEC)
in count Count value (32 bits)
in bearer Bearer ID (5 bits)
in direction Direction (1 bit)


Returns


Size of descriptor written in words or negative number on error


3.7.3.6 static int cnstr_shdsc_kasumi_f9 ( uint32_t ∗ descbuf, bool ps, bool swap, struct
alginfo ∗ authdata, uint8_t dir, uint32_t count, uint32_t fresh, uint8_t direction,
uint32_t datalen ) [inline], [static]


KASUMI F9 (Integrity) as a shared descriptor (ETSI "Document 1: f8 and f9 specification").


Parameters


in,out descbuf Pointer to descriptor-under-construction buffer
in ps If 36/40bit addressing is desired, this parameter must be true
in swap Must be true when core endianness doesn't match SEC endianness
in authdata Pointer to authentication transform definitions
in dir Cipher direction (DIR_ENC/DIR_DEC)
in count Count value (32 bits)
in fresh Fresh value ID (32 bits)
in direction Direction (1 bit)
in datalen Size of data


Returns


Size of descriptor written in words or negative number on error


3.7.3.7 static int cnstr_shdsc_crc ( uint32_t ∗ descbuf, bool swap ) [inline],
[static]


CRC32 Accelerator (IEEE 802 CRC32 protocol mode).


NXP Semiconductors
Writing Descriptors for NXP CAAM using RTA Library


49







Shared Descriptor Example Routines


Parameters


in,out descbuf Pointer to descriptor-under-construction buffer
in swap Must be true when core endianness doesn't match SEC endianness


Returns


Size of descriptor written in words or negative number on error


3.7.3.8 static int cnstr_shdsc_gcm_encap ( uint32_t ∗ descbuf, bool ps, bool swap,
struct alginfo ∗ cipherdata, uint32_t ivlen, uint32_t icvsize ) [inline],
[static]


AES-GCM encap as a shared descriptor.


Parameters


in,out descbuf Pointer to descriptor-under-construction buffer
in ps If 36/40bit addressing is desired, this parameter must be true
in swap Must be true when core endianness doesn't match SEC endianness
in cipherdata Pointer to block cipher transform definitions Valid algorithm values -


OP_ALG_ALGSEL_AES ANDed with OP_ALG_AAI_GCM.
in ivlen Initialization vector length
in icvsize Integrity check value (ICV) size (truncated or full)


Returns


Size of descriptor written in words or negative number on error


3.7.3.9 static int cnstr_shdsc_gcm_decap ( uint32_t ∗ descbuf, bool ps, bool swap,
struct alginfo ∗ cipherdata, uint32_t ivlen, uint32_t icvsize ) [inline],
[static]


AES-GCM decap as a shared descriptor.


Parameters


in,out descbuf Pointer to descriptor-under-construction buffer
in ps If 36/40bit addressing is desired, this parameter must be true
in swap Must be true when core endianness doesn't match SEC endianness


50
Writing Descriptors for NXP CAAM using RTA Library


NXP Semiconductors







Shared Descriptor Example Routines


in cipherdata Pointer to block cipher transform definitions Valid algorithm values -
OP_ALG_ALGSEL_AES ANDed with OP_ALG_AAI_GCM.


in ivlen Initialization vector length
in icvsize Integrity check value (ICV) size (truncated or full)


Returns


Size of descriptor written in words or negative number on error.


3.7.3.10 static int cnstr_shdsc_ipsec_encap ( uint32_t ∗ descbuf, bool ps, bool swap,
enum rta_share_type share, struct ipsec_encap_pdb ∗ pdb, struct alginfo ∗
cipherdata, struct alginfo ∗ authdata ) [inline], [static]


IPSec ESP encapsulation protocol-level shared descriptor


Parameters


in,out descbuf Pointer to buffer used for descriptor construction
in ps If 36/40bit addressing is desired, this parameter must be true
in swap Must be true when core endianness doesn't match SEC endianness
in share Sharing type of shared descriptor
in pdb Pointer to the PDB to be used with this descriptor This structure will


be copied inline to the descriptor under construction. No error checking
will be made. Refer to the block guide for a details of the encapsulation
PDB.


in cipherdata Pointer to block cipher transform definitions Valid algorithm values -
one of OP_PCL_IPSEC_∗


in authdata Pointer to authentication transform definitions If an authentication key
is required by the protocol: -For SEC Eras 1-5, an MDHA split key must
be provided; Note that the size of the split key itself must be specified.
-For SEC Eras 6+, a "normal" key must be provided; DKP (Derived
Key Protocol) will be used to compute MDHA on the fly in HW. Valid
algorithm values - one of OP_PCL_IPSEC_∗


Returns


Size of descriptor written in words or negative number on error


3.7.3.11 static int cnstr_shdsc_ipsec_decap ( uint32_t ∗ descbuf, bool ps, bool swap,
enum rta_share_type share, struct ipsec_decap_pdb ∗ pdb, struct alginfo ∗
cipherdata, struct alginfo ∗ authdata ) [inline], [static]


IPSec ESP decapsulation protocol-level shared descriptor


NXP Semiconductors
Writing Descriptors for NXP CAAM using RTA Library


51







Shared Descriptor Example Routines


Parameters


in,out descbuf Pointer to buffer used for descriptor construction
in ps If 36/40bit addressing is desired, this parameter must be true
in swap Must be true when core endianness doesn't match SEC endianness
in share Sharing type of shared descriptor
in pdb Pointer to the PDB to be used with this descriptor This structure will


be copied inline to the descriptor under construction. No error checking
will be made. Refer to the block guide for details about the decapsula-
tion PDB.


in cipherdata Pointer to block cipher transform definitions. Valid algorithm values -
one of OP_PCL_IPSEC_∗


in authdata Pointer to authentication transform definitions If an authentication key
is required by the protocol: -For SEC Eras 1-5, an MDHA split key must
be provided; Note that the size of the split key itself must be specified.
-For SEC Eras 6+, a "normal" key must be provided; DKP (Derived
Key Protocol) will be used to compute MDHA on the fly in HW. Valid
algorithm values - one of OP_PCL_IPSEC_∗


Returns


Size of descriptor written in words or negative number on error


3.7.3.12 static int cnstr_shdsc_ipsec_encap_des_aes_xcbc ( uint32_t ∗ descbuf, struct
ipsec_encap_pdb ∗ pdb, struct alginfo ∗ cipherdata, struct alginfo ∗ authdata )
[inline], [static]


IPSec DES-CBC/3DES-CBC and AES-XCBC-MAC-96 ESP encapsulation shared descriptor. Supported
only for platforms with 32-bit address pointers and SEC ERA 4 or higher. The tunnel/transport mode of
the IPsec ESP is supported only if the Outer/Transport IP Header is present in the encapsulation output
packet. The descriptor performs DES-CBC/3DES-CBC & HMAC-MD5-96 and then rereads the input
packet to do the AES-XCBC-MAC-96 calculation and to overwrite the MD5 ICV. The descriptor uses all
the benefits of the built-in protocol by computing the IPsec ESP with a hardware supported algorithms
combination (DES-CBC/3DES-CBC & HMAC-MD5-96). The HMAC-MD5 authentication algorithm
was chosen in order to speed up the computational time for this intermediate step.


Warning


The user must allocate at least 32 bytes for the authentication key (in order to use it also with HM←↩
AC-MD5-96),even when using a shorter key for the AES-XCBC-MAC-96.


52
Writing Descriptors for NXP CAAM using RTA Library


NXP Semiconductors







Shared Descriptor Example Routines


Parameters


in,out descbuf Pointer to buffer used for descriptor construction
in pdb pointer to the PDB to be used with this descriptor This structure will be


copied inline to the descriptor under construction. No error checking
will be made. Refer to the block guide for a details of the encapsulation
PDB.


in cipherdata Pointer to block cipher transform definitions Valid algorithm values -
OP_PCL_IPSEC_DES, OP_PCL_IPSEC_3DES.


in authdata Pointer to authentication transform definitions Valid algorithm value:
OP_PCL_IPSEC_AES_XCBC_MAC_96.


Returns


Size of descriptor written in words or negative number on error


3.7.3.13 static int cnstr_shdsc_ipsec_decap_des_aes_xcbc ( uint32_t ∗ descbuf, struct
ipsec_decap_pdb ∗ pdb, struct alginfo ∗ cipherdata, struct alginfo ∗ authdata )
[inline], [static]


IPSec DES-CBC/3DES-CBC and AES-XCBC-MAC-96 ESP decapsulation shared descriptor. Supported
only for platforms with 32-bit address pointers and SEC ERA 4 or higher. The tunnel/transport mode of
the IPsec ESP is supported only if the Outer/Transport IP Header is present in the decapsulation input
packet. The descriptor computes the AES-XCBC-MAC-96 to check if the received ICV is correct, rereads
the input packet to compute the MD5 ICV, overwrites the XCBC ICV, and then sends the modified input
packet to the DES-CBC/3DES-CBC & HMAC-MD5-96 IPsec. The descriptor uses all the benefits of the
built-in protocol by computing the IPsec ESP with a hardware supported algorithms combination (DES-←↩
CBC/3DES-CBC & HMAC-MD5-96). The HMAC-MD5 authentication algorithm was chosen in order
to speed up the computational time for this intermediate step.


Warning


The user must allocate at least 32 bytes for the authentication key (in order to use it also with HM←↩
AC-MD5-96),even when using a shorter key for the AES-XCBC-MAC-96.


Parameters


in,out descbuf Pointer to buffer used for descriptor construction
in pdb pointer to the PDB to be used with this descriptor This structure will be


copied inline to the descriptor under construction. No error checking
will be made. Refer to the block guide for a details of the encapsulation
PDB.


in cipherdata Pointer to block cipher transform definitions Valid algorithm values -
OP_PCL_IPSEC_DES, OP_PCL_IPSEC_3DES.


in authdata Pointer to authentication transform definitions Valid algorithm value:
OP_PCL_IPSEC_AES_XCBC_MAC_96.


NXP Semiconductors
Writing Descriptors for NXP CAAM using RTA Library


53







Shared Descriptor Example Routines


Returns


Size of descriptor written in words or negative number on error


3.7.3.14 static int cnstr_shdsc_ipsec_new_encap ( uint32_t ∗ descbuf, bool ps, bool
swap, enum rta_share_type share, struct ipsec_encap_pdb ∗ pdb, uint8_t ∗
opt_ip_hdr, struct alginfo ∗ cipherdata, struct alginfo ∗ authdata ) [inline],
[static]


IPSec new mode ESP encapsulation protocol-level shared descriptor


Parameters


in,out descbuf Pointer to buffer used for descriptor construction
in ps If 36/40bit addressing is desired, this parameter must be true
in swap must be true when core endianness doesn't match SEC endianness
in share Sharing type of shared descriptor
in pdb Pointer to the PDB to be used with this descriptor This structure will


be copied inline to the descriptor under construction. No error checking
will be made. Refer to the block guide for details about the encapsula-
tion PDB.


in opt_ip_hdr Pointer to Optional IP Header -if OIHI = PDBOPTS_ESP_OIHI_PDB←↩
_INL, opt_ip_hdr points to the buffer to be inlined in the PDB. Number
of bytes (buffer size) copied is provided in pdb->ip_hdr_len. -if OIHI =
PDBOPTS_ESP_OIHI_PDB_REF, opt_ip_hdr points to the address of
the Optional IP Header. The address will be inlined in the PDB verba-
tim. -for other values of OIHI options field, opt_ip_hdr is not used.


in cipherdata Pointer to block cipher transform definitions Valid algorithm values -
one of OP_PCL_IPSEC_∗


in authdata Pointer to authentication transform definitions. If an authentication key
is required by the protocol, a "normal" key must be provided; DKP (De-
rived Key Protocol) will be used to compute MDHA on the fly in HW.
Valid algorithm values - one of OP_PCL_IPSEC_∗


Returns


Size of descriptor written in words or negative number on error


Warning


L2 header copy functionality is implemented assuming that bits 14 (currently reserved) and 16-23
(part of Outer IP Header Material Length) in DPOVRD register are not used (which is usually the
case when L3 header is provided in PDB). When DPOVRD[14] is set, frame starts with an L2
header; in this case, the L2 header length is found at DPOVRD[23:16]. SEC uses this length to copy
[∗] the header and then it deletes DPOVRD[23:16] (so there is no side effect when later running


54
Writing Descriptors for NXP CAAM using RTA Library


NXP Semiconductors







Shared Descriptor Example Routines


IPsec protocol). [∗] For this reason, L2 header copy won't work in case of mixed IPv4-in-IPv6 or
IPv6-in-IPv4 tunnels - where L2 header ETYPE field is different in input and output frames. Either
do not use this feature or fix ETYPE in output frame after descriptor is executed.


3.7.3.15 static int cnstr_shdsc_ipsec_new_decap ( uint32_t ∗ descbuf, bool ps, bool
swap, enum rta_share_type share, struct ipsec_decap_pdb ∗ pdb, struct alginfo
∗ cipherdata, struct alginfo ∗ authdata ) [inline], [static]


IPSec new mode ESP decapsulation protocol-level shared descriptor


Parameters


in,out descbuf Pointer to buffer used for descriptor construction
in ps If 36/40bit addressing is desired, this parameter must be true
in swap Must be true when core endianness doesn't match SEC endianness
in share Sharing type of shared descriptor
in pdb Pointer to the PDB to be used with this descriptor This structure will


be copied inline to the descriptor under construction. No error checking
will be made. Refer to the block guide for details about the decapsula-
tion PDB.


in cipherdata Pointer to block cipher transform definitions Valid algorithm values 0
one of OP_PCL_IPSEC_∗


in authdata Pointer to authentication transform definitions. If an authentication key
is required by the protocol, a "normal" key must be provided; DKP (De-
rived Key Protocol) will be used to compute MDHA on the fly in HW.
Valid algorithm values - one of OP_PCL_IPSEC_∗


Returns


Size of descriptor written in words or negative number on error


3.7.3.16 static int cnstr_shdsc_authenc ( uint32_t ∗ descbuf, bool ps, bool swap,
struct alginfo ∗ cipherdata, struct alginfo ∗ authdata, uint16_t ivlen, uint16_t
auth_only_len, uint8_t trunc_len, uint8_t dir ) [inline], [static]


authenc-like descriptor.


Parameters


NXP Semiconductors
Writing Descriptors for NXP CAAM using RTA Library


55







Shared Descriptor Example Routines


in,out descbuf Pointer to buffer used for descriptor construction
in ps if 36/40bit addressing is desired, this parameter must be true
in swap Must be true when core endianness doesn't match SEC endianness
in cipherdata Pointer to block cipher transform definitions. Valid algorithm values one


of OP_ALG_ALGSEL_∗ {DES, 3DES, AES} Valid modes for: AES:
OP_ALG_AAI_∗ {CBC, CTR} DES, 3DES: OP_ALG_AAI_CBC


in authdata Pointer to authentication transform definitions. Valid algorithm values -
one of OP_ALG_ALGSEL_∗ {MD5, SHA1, SHA224, SHA256, SH←↩
A384, SHA512}


Warning


The key for authentication is supposed to be given as plain text.
There's no support for keys longer than the block size of the underlying hash function, according to
the selected algorithm.


Parameters


in ivlen Length of the IV to be read from the input frame, before any data to be
processed


in auth_only_len Length of the data to be authenticated-only (commonly IP header, IV,
Sequence number and SPI)


Warning


Extended Sequence Number processing is NOT supported.


Parameters


in trunc_len The length of the ICV to be written to the output frame. If 0, then the
corresponding length of the digest, according to the selected algorithm
shall be used.


in dir Protocol direction, encapsulation or decapsulation (DIR_ENC/DIR_←↩
DEC)


Returns


Size of descriptor written in words or negative number on error


Note


Here's how the input frame needs to be formatted so that the processing will be done correctly: For
encapsulation: Input:


56
Writing Descriptors for NXP CAAM using RTA Library


NXP Semiconductors







Shared Descriptor Example Routines


+----+----------------+---------------------------------------------+
| IV | Auth-only data | Padded data to be authenticated & Encrypted |
+----+----------------+---------------------------------------------+


Output:


+--------------------------------------+
| Authenticated & Encrypted data | ICV |
+--------------------------------+-----+


For decapsulation: Input:


+----+----------------+--------------------------------+-----+
| IV | Auth-only data | Authenticated & Encrypted data | ICV |
+----+----------------+--------------------------------+-----+


Output:


+----+---------------------------+
| Decrypted & authenticated data |
+----+---------------------------+


This descriptor can use per-packet commands, encoded as below in the DPOVRD register:


32 24 16 0
+------+---------------------+
| 0x80 | 0x00| auth_only_len |
+------+---------------------+


This mechanism is available only for SoCs having SEC ERA >= 3. In other words, this will not work for
P4080TO2.


Warning


The descriptor does not add any kind of padding to the input data, so the upper layer needs to ensure
that the data is padded properly, according to the selected cipher. Failure to do so will result in the
descriptor failing with a data-size error.


3.7.3.17 static int cnstr_shdsc_macsec_encap ( uint32_t ∗ descbuf, bool swap, struct
alginfo ∗ cipherdata, uint64_t sci, uint16_t ethertype, uint8_t tci_an, uint32_t pn
) [inline], [static]


MACsec(802.1AE) encapsulation.


NXP Semiconductors
Writing Descriptors for NXP CAAM using RTA Library


57







Shared Descriptor Example Routines


Parameters


in,out descbuf Pointer to descriptor-under-construction buffer
in swap Must be true when core endianness doesn't match SEC endianness
in cipherdata Pointer to block cipher transform definitions
in sci PDB Secure Channel Identifier
in ethertype PDB EtherType
in tci_an TAG Control Information and Association Number are treated as a sin-


gle field of 8 bits in PDB
in pn PDB Packet Number


Returns


Size of descriptor written in words or negative number on error.


3.7.3.18 static int cnstr_shdsc_macsec_decap ( uint32_t ∗ descbuf, bool swap, struct
alginfo ∗ cipherdata, uint64_t sci, uint32_t pn ) [inline], [static]


MACsec(802.1AE) decapsulation.


Parameters


in,out descbuf Pointer to descriptor-under-construction buffer
in swap Must be true when core endianness doesn't match SEC endianness
in cipherdata Pointer to block cipher transform definitions
in sci PDB Secure Channel Identifier
in pn PDB Packet Number


Returns


Size of descriptor written in words or negative number on error.


3.7.3.19 static int cnstr_shdsc_mbms ( uint32_t ∗ descbuf, bool ps, bool swap,
unsigned ∗ preheader_len, enum mbms_pdu_type pdu_type ) [inline],
[static]


MBMS PDU CRC checking descriptor.


Parameters


58
Writing Descriptors for NXP CAAM using RTA Library


NXP Semiconductors







Shared Descriptor Example Routines


in,out descbuf Pointer to buffer used for descriptor construction
in ps If 36/40bit addressing is desired, this parameter must be true
in swap Must be true when core endianness doesn't match SEC endianness
out preheader_len Length to be set in the corresponding preheader field. Unless the de-


scriptor is split in multiple parts, this will be equal to bufsize.
in pdu_type Type of the MBMS PDU required to be processed by this descriptor


Returns


Size of descriptor written in words or negative number on error.


Note


This function can be called only for SEC ERA >= 5.


3.7.3.20 static int cnstr_shdsc_pdcp_c_plane_encap ( uint32_t ∗ descbuf, bool ps, bool
swap, uint32_t hfn, unsigned char bearer, unsigned char direction, uint32_t
hfn_threshold, struct alginfo ∗ cipherdata, struct alginfo ∗ authdata, unsigned
char era_2_sw_hfn_override ) [inline], [static]


Function for creating a PDCP Control Plane encapsulation descriptor.


Parameters


in,out descbuf Pointer to buffer for descriptor construction
in ps If 36/40bit addressing is desired, this parameter must be true
in swap Must be true when core endianness doesn't match SEC endianness
in hfn Starting Hyper Frame Number to be used together with the SN from the


PDCP frames.
in bearer Radio bearer ID
in direction The direction of the PDCP frame (UL/DL)
in hfn_threshold HFN value that once reached triggers a warning from SEC that keys


should be renegotiated at the earliest convenience.
in cipherdata Pointer to block cipher transform definitions Valid algorithm values are


those from cipher_type_pdcp enum.
in authdata Pointer to authentication transform definitions Valid algorithm values


are those from auth_type_pdcp enum.


NXP Semiconductors
Writing Descriptors for NXP CAAM using RTA Library


59







Shared Descriptor Example Routines


in era_2_sw_←↩
hfn_override


If software HFN override mechanism is desired for this descriptor.


Note


Can only be used for SEC ERA 2.


Returns


Size of descriptor written in words or negative number on error. Once the function returns, the value
of this parameter can be used for reclaiming the space that wasn't used for the descriptor.


Note


descbuf must be large enough to contain a full 256 byte long descriptor; after the function returns, by
subtracting the actual number of bytes used, the user can reuse the remaining buffer space for other
purposes.


3.7.3.21 static int cnstr_shdsc_pdcp_c_plane_decap ( uint32_t ∗ descbuf, bool ps, bool
swap, uint32_t hfn, unsigned char bearer, unsigned char direction, uint32_t
hfn_threshold, struct alginfo ∗ cipherdata, struct alginfo ∗ authdata, unsigned
char era_2_sw_hfn_override ) [inline], [static]


Function for creating a PDCP Control Plane decapsulation descriptor.


Parameters


in,out descbuf Pointer to buffer for descriptor construction
in ps If 36/40bit addressing is desired, this parameter must be true
in swap Must be true when core endianness doesn't match SEC endianness
in hfn Starting Hyper Frame Number to be used together with the SN from the


PDCP frames.
in bearer Radio bearer ID
in direction The direction of the PDCP frame (UL/DL)
in hfn_threshold HFN value that once reached triggers a warning from SEC that keys


should be renegotiated at the earliest convenience.
in cipherdata Pointer to block cipher transform definitions Valid algorithm values are


those from cipher_type_pdcp enum.


60
Writing Descriptors for NXP CAAM using RTA Library


NXP Semiconductors







Shared Descriptor Example Routines


in authdata Pointer to authentication transform definitions Valid algorithm values
are those from auth_type_pdcp enum.


in era_2_sw_←↩
hfn_override


If software HFN override mechanism is desired for this descriptor.


Note


Can only be used for SEC ERA 2.


Returns


Size of descriptor written in words or negative number on error. Once the function returns, the value
of this parameter can be used for reclaiming the space that wasn't used for the descriptor.


Note


descbuf must be large enough to contain a full 256 byte long descriptor; after the function returns,
by subtracting the actual number of bytes used, the user can reuse the remaining buffer space for
other purposes.


3.7.3.22 static int cnstr_shdsc_pdcp_u_plane_encap ( uint32_t ∗ descbuf, bool ps,
bool swap, enum pdcp_sn_size sn_size, uint32_t hfn, unsigned short bearer,
unsigned short direction, uint32_t hfn_threshold, struct alginfo ∗ cipherdata,
unsigned char era_2_sw_hfn_override ) [inline], [static]


Function for creating a PDCP User Plane encapsulation descriptor.


Parameters


in,out descbuf Pointer to buffer for descriptor construction
in ps If 36/40bit addressing is desired, this parameter must be true
in swap Must be true when core endianness doesn't match SEC endianness
in sn_size Selects Sequence Number Size: 7/12/15 bits
in hfn Starting Hyper Frame Number to be used together with the SN from the


PDCP frames.
in bearer Radio bearer ID
in direction The direction of the PDCP frame (UL/DL)
in hfn_threshold HFN value that once reached triggers a warning from SEC that keys


should be renegotiated at the earliest convenience.


NXP Semiconductors
Writing Descriptors for NXP CAAM using RTA Library


61







Shared Descriptor Example Routines


in cipherdata Pointer to block cipher transform definitions Valid algorithm values are
those from cipher_type_pdcp enum.


in era_2_sw_←↩
hfn_override


If software HFN override mechanism is desired for this descriptor. Can
only be used for SEC ERA 2.


Returns


Size of descriptor written in words or negative number on error. Once the function returns, the value
of this parameter can be used for reclaiming the space that wasn't used for the descriptor.


Note


descbuf must be large enough to contain a full 256 byte long descriptor; after the function returns,
by subtracting the actual number of bytes used, the user can reuse the remaining buffer space for
other purposes.


3.7.3.23 static int cnstr_shdsc_pdcp_u_plane_decap ( uint32_t ∗ descbuf, bool ps,
bool swap, enum pdcp_sn_size sn_size, uint32_t hfn, unsigned short bearer,
unsigned short direction, uint32_t hfn_threshold, struct alginfo ∗ cipherdata,
unsigned char era_2_sw_hfn_override ) [inline], [static]


Function for creating a PDCP User Plane decapsulation descriptor.


Parameters


in,out descbuf Pointer to buffer for descriptor construction
in ps If 36/40bit addressing is desired, this parameter must be true
in swap Must be true when core endianness doesn't match SEC endianness
in sn_size Selects Sequence Number Size: 7/12/15 bits
in hfn Starting Hyper Frame Number to be used together with the SN from the


PDCP frames.
in bearer Radio bearer ID
in direction The direction of the PDCP frame (UL/DL)
in hfn_threshold HFN value that once reached triggers a warning from SEC that keys


should be renegotiated at the earliest convenience.
in cipherdata Pointer to block cipher transform definitions Valid algorithm values are


those from cipher_type_pdcp enum.


62
Writing Descriptors for NXP CAAM using RTA Library


NXP Semiconductors







Shared Descriptor Example Routines


in era_2_sw_←↩
hfn_override


If software HFN override mechanism is desired for this descriptor.


Note


Can only be used for SEC ERA 2.


Returns


Size of descriptor written in words or negative number on error. Once the function returns, the value
of this parameter can be used for reclaiming the space that wasn't used for the descriptor.


Note


descbuf must be large enough to contain a full 256 byte long descriptor; after the function returns,
by subtracting the actual number of bytes used, the user can reuse the remaining buffer space for
other purposes.


3.7.3.24 static int cnstr_shdsc_pdcp_short_mac ( uint32_t ∗ descbuf, bool ps, bool
swap, struct alginfo ∗ authdata ) [inline], [static]


Function for creating a PDCP Short MAC descriptor.


Parameters


in,out descbuf Pointer to buffer for descriptor construction
in ps If 36/40bit addressing is desired, this parameter must be true
in swap Must be true when core endianness doesn't match SEC endianness
in authdata Pointer to authentication transform definitions Valid algorithm values


are those from auth_type_pdcp enum.


Returns


Size of descriptor written in words or negative number on error. Once the function returns, the value
of this parameter can be used for reclaiming the space that wasn't used for the descriptor.


Note


descbuf must be large enough to contain a full 256 byte long descriptor; after the function returns,
by subtracting the actual number of bytes used, the user can reuse the remaining buffer space for
other purposes.


3.7.3.25 static int cnstr_shdsc_rlc_encap ( uint32_t ∗ descbuf, bool ps, enum rlc_mode
mode, uint32_t hfn, unsigned short bearer, unsigned short direction, uint32_t
hfn_threshold, struct alginfo ∗ cipherdata ) [inline], [static]


Function for creating a WCDMA RLC encapsulation descriptor.


NXP Semiconductors
Writing Descriptors for NXP CAAM using RTA Library


63







Shared Descriptor Example Routines


Parameters


in,out descbuf Pointer to buffer for descriptor construction
in ps If 36/40bit addressing is desired, this parameter must be true
in mode Indicates if ACKed or non-ACKed mode is used
in hfn Starting Hyper Frame Number to be used together with the SN from the


RLC frames.
in bearer Radio bearer ID
in direction The direction of the RLC PDU (UL/DL)
in hfn_threshold HFN value that once reached triggers a warning from SEC that keys


should be renegotiated at the earliest convenience.
in cipherdata Pointer to block cipher transform definitions Valid algorithm values are


those from cipher_type_rlc enum.


Returns


Size of descriptor written in words or negative number on error. Once the function returns, the value
of this parameter can be used for reclaiming the space that wasn't used for the descriptor.


Note


descbuf must be large enough to contain a full 256 byte long descriptor; after the function returns, by
subtracting the actual number of bytes used, the user can reuse the remaining buffer space for other
purposes.


3.7.3.26 static int cnstr_shdsc_rlc_decap ( uint32_t ∗ descbuf, bool ps, enum rlc_mode
mode, uint32_t hfn, unsigned short bearer, unsigned short direction, uint32_t
hfn_threshold, struct alginfo ∗ cipherdata ) [inline], [static]


Function for creating a WCDMA RLC decapsulation descriptor.


Parameters


in,out descbuf Pointer to buffer for descriptor construction
in ps If 36/40bit addressing is desired, this parameter must be true
in mode Indicates if ACKed or non-ACKed mode is used
in hfn Starting Hyper Frame Number to be used together with the SN from the


RLC frames.


64
Writing Descriptors for NXP CAAM using RTA Library


NXP Semiconductors







Shared Descriptor Example Routines


in bearer Radio bearer ID
in direction The direction of the RLC PDU (UL/DL)
in hfn_threshold HFN value that once reached triggers a warning from SEC that keys


should be renegotiated at the earliest convenience.
in cipherdata Pointer to block cipher transform definitions Valid algorithm values are


those from cipher_type_rlc enum.


Returns


Size of descriptor written in words or negative number on error. Once the function returns, the value
of this parameter can be used for reclaiming the space that wasn't used for the descriptor.


Note


descbuf must be large enough to contain a full 256 byte long descriptor; after the function returns, by
subtracting the actual number of bytes used, the user can reuse the remaining buffer space for other
purposes.


3.7.3.27 static int cnstr_shdsc_rsa ( uint32_t ∗ descbuf, bool ps, bool swap, uint8_t ∗
pdb, struct protcmd ∗ protcmd ) [inline], [static]


Function for creating a RSA encryption/decryption shared descriptor. Supports decryption implemented
in 3 forms.
Parameters


in,out descbuf Pointer to buffer used for descriptor construction
in ps If 36/40bit addressing is desired, this parameter must be true
in swap Must be true when core endianness doesn't match SEC endianness
in pdb Pointer to the Protocol Data Block to be used for descriptor construction.


Must be mapped over a defined rsa structure. The PDB is assumed to be
valid.


in protcmd Protocol Operation Command definitions


Returns


Size of descriptor written in words or negative number on error.


3.7.3.28 static int cnstr_shdsc_srtp_encap ( uint32_t ∗ descbuf, bool swap, struct
alginfo ∗ authdata, struct alginfo ∗ cipherdata, uint8_t n_tag, uint32_t roc,
uint8_t ∗ cipher_salt ) [inline], [static]


Function for creating a SRTP encapsulation descriptor.


NXP Semiconductors
Writing Descriptors for NXP CAAM using RTA Library


65







Shared Descriptor Example Routines


Parameters


in,out descbuf Pointer to buffer used for descriptor construction
in swap Must be true when core endianness doesn't match SEC endianness
in authdata Pointer to authentication transform definitions
in cipherdata Pointer to block cipher transform definitions
in n_tag Value of ICV length
in roc Rollover Counter
in cipher_salt Salt value


Returns


Size of descriptor written in words or negative number on error


3.7.3.29 static int cnstr_shdsc_srtp_decap ( uint32_t ∗ descbuf, bool swap, struct
alginfo ∗ authdata, struct alginfo ∗ cipherdata, uint8_t n_tag, uint32_t roc,
uint16_t seq_num, uint8_t ∗ cipher_salt ) [inline], [static]


Function for creating a SRTP decapsulation descriptor.


Parameters


in,out descbuf Pointer to buffer used for descriptor construction
in swap Must be true when core endianness doesn't match SEC endianness
in authdata Pointer to authentication transform definitions
in cipherdata pointer to block cipher transform definitions
in n_tag Value of ICV length
in roc Rollover Counter
in seq_num Sequence number
in cipher_salt Salt value


Returns


Size of descriptor written in words or negative number on error


3.7.3.30 static int cnstr_shdsc_tls ( uint32_t ∗ descbuf, bool ps, bool swap, uint8_t ∗
pdb, struct protcmd ∗ protcmd, struct alginfo ∗ cipherdata, struct alginfo ∗
authdata ) [inline], [static]


TLS family block cipher encapsulation / decapsulation shared descriptor. The following built-in protocols
are supported: SSL3.0 / TLS1.0 / TLS1.1 / TLS1.2 / DTLS1.0 / DTLS1.2


66
Writing Descriptors for NXP CAAM using RTA Library


NXP Semiconductors







Shared Descriptor Example Routines


Parameters


in,out descbuf Pointer to buffer used for descriptor construction
in ps If 36/40bit addressing is desired, this parameter must be true
in swap Must be true when core endianness doesn't match SEC endianness
in pdb Pointer to the PDB to be used in this descriptor. This structure will be


copied inline to the descriptor under construction. No error checking
will be made. Refer to the block guide for details of the PDB.


in protcmd Pointer to Protocol Operation Command definitions
in cipherdata Pointer to block cipher transform definitions
in authdata Pointer to authentication transform definitions


Returns


Size of descriptor written in words or negative number on error.


3.7.3.31 static int cnstr_shdsc_cwap_dtls ( uint32_t ∗ descbuf, bool ps, bool swap,
uint8_t ∗ pdb, struct protcmd ∗ protcmd, struct alginfo ∗ cipherdata, struct
alginfo ∗ authdata ) [inline], [static]


DTLS (in CAPWAP context) block cipher encapsulation / decapsulation shared descriptor.


Parameters


in,out descbuf Pointer to buffer used for descriptor construction
in ps If 36/40bit addressing is desired, this parameter must be true
in swap Must be true when core endianness doesn't match SEC endianness
in pdb Pointer to the PDB to be used in this descriptor. This structure will be


copied inline to the descriptor under construction. No error checking
will be made. Refer to the block guide for details of the PDB.


in protcmd Pointer to Protocol Operation Command definitions. The following
built-in protocols are supported: DTLS1.0 / DTLS1.2


in cipherdata Pointer to block cipher transform definitions
in authdata Pointer to authentication transform definitions If an authentication key


is required by the protocol: -For SEC Eras 1-5, an MDHA split key must
be provided; Note that the size of the split key itself must be specified.
-For SEC Eras 6+, a "normal" key must be provided; DKP (Derived Key
Protocol) will be used to compute MDHA on the fly in HW.


Returns


Size of descriptor written in words or negative number on error.


NXP Semiconductors
Writing Descriptors for NXP CAAM using RTA Library


67







Shared Descriptor Example Routines


3.7.3.32 static int cnstr_shdsc_wifi_encap ( uint32_t ∗ descbuf, bool ps, bool swap,
uint16_t mac_hdr_len, uint64_t pn, uint8_t priority, uint8_t key_id, struct
alginfo ∗ cipherdata ) [inline], [static]


IEEE 802.11i WiFi encapsulation.


68
Writing Descriptors for NXP CAAM using RTA Library


NXP Semiconductors







Shared Descriptor Example Routines


Parameters


in,out descbuf Pointer to descriptor-under-construction buffer
in ps If 36/40bit addressing is desired, this parameter must be true
in swap must be true when core endianness doesn't match SEC endianness
in mac_hdr_len PDB MAC header length (24 or 28 bytes)
in pn PDB Packet Number
in priority PDB Packet priority
in key_id PDB Key ID
in cipherdata Block cipher transform definitions


Returns


Size of descriptor written in words or negative number on error.


3.7.3.33 static int cnstr_shdsc_wifi_decap ( uint32_t ∗ descbuf, bool ps, bool swap,
uint16_t mac_hdr_len, uint64_t pn, uint8_t priority, struct alginfo ∗ cipherdata )
[inline], [static]


IEEE 802.11 WiFi decapsulation.


Parameters


in,out descbuf Pointer to descriptor-under-construction buffer
in ps If 36/40bit addressing is desired, this parameter must be true
in swap must be true when core endianness doesn't match SEC endianness
in mac_hdr_len PDB MAC header length (24 or 28 bytes)
in pn PDB Packet Number
in priority PDB Packet priority
in cipherdata Block cipher transform definitions


Returns


Size of descriptor written in words or negative number on error.


3.7.3.34 static int cnstr_shdsc_wimax_encap_era5 ( uint32_t ∗ descbuf, bool swap,
uint8_t pdb_opts, uint32_t pn, uint16_t protinfo, struct alginfo ∗ cipherdata )
[inline], [static]


WiMAX(802.16) encapsulation descriptor for platforms with SEC ERA >= 5. This descriptor addresses
the prefetch problem when modifying the header of the input frame by invalidating the prefetch mecha-
nism. For performance reasons (due to the long read latencies), the JQ will prefetch the input frame if a
job cannot go immediately into a DECO. As a result, the rewind is rewinding into the prefetch buffer, not


NXP Semiconductors
Writing Descriptors for NXP CAAM using RTA Library


69







Shared Descriptor Example Routines


into memory. Therefore, in those cases where prefetch is done, an unaware descriptor would update the
memory but read from the prefetched buffer and, as a result, it would not get the updated header. This
descriptor invalidates the prefetch data and reads the updated header from memory. The descriptor reads
enough data to read to the end of the prefetched data, dumps that data, rewinds the input frame and just
starts reading from the beginning again.


Parameters


in,out descbuf Pointer to descriptor-under-construction buffer
in swap Must be true when core endianness doesn't match SEC endianness
in pdb_opts PDB Options Byte
in pn PDB Packet Number
in cipherdata Pointer to block cipher transform definitions
in protinfo Protocol information: OP_PCL_WIMAX_OFDM/OFDMA


Returns


Size of descriptor written in words or negative number on error.


3.7.3.35 static int cnstr_shdsc_wimax_encap ( uint32_t ∗ descbuf, bool swap, uint8_t
pdb_opts, uint32_t pn, uint16_t protinfo, struct alginfo ∗ cipherdata )
[inline], [static]


WiMAX(802.16) encapsulation.


Parameters


in,out descbuf Pointer to descriptor-under-construction buffer
in swap Must be true when core endianness doesn't match SEC endianness
in pdb_opts PDB Options Byte
in pn PDB Packet Number
in cipherdata Pointer to block cipher transform definitions
in protinfo Protocol information: OP_PCL_WIMAX_OFDM/OFDMA


Returns


Size of descriptor written in words or negative number on error.


Warning


Descriptor is valid on platforms with support for SEC ERA 4. On platforms with SEC ERA 5 or
above, cnstr_shdsc_wimax_encap_era5 is automatically called.


70
Writing Descriptors for NXP CAAM using RTA Library


NXP Semiconductors







Shared Descriptor Example Routines


3.7.3.36 static int cnstr_shdsc_wimax_decap ( uint32_t ∗ descbuf, bool swap, uint8_t
pdb_opts, uint32_t pn, uint16_t ar_len, uint16_t protinfo, struct alginfo ∗
cipherdata ) [inline], [static]


WiMAX(802.16) decapsulation.


NXP Semiconductors
Writing Descriptors for NXP CAAM using RTA Library


71







Shared Descriptor Example Routines


Parameters


in,out descbuf Pointer to descriptor-under-construction buffer
in swap must be true when core endianness doesn't match SEC endianness
in pdb_opts PDB Options Byte
in pn PDB Packet Number
in cipherdata Pointer to block cipher transform definitions
in ar_len Anti-replay window length
in protinfo Protocol information: OP_PCL_WIMAX_OFDM/OFDMA


Returns


Size of descriptor written in words or negative number on error.


Warning


Descriptor valid on platforms with support for SEC ERA 4.


72
Writing Descriptors for NXP CAAM using RTA Library


NXP Semiconductors







Chapter 4
RTA Descriptors Library
4.1 Overview
Modules


• Shared Descriptor Example Routines
• Auxiliary Data Structures
• SEC Protocol Data Block Data Structures
• Auxiliary Defines
• Job Descriptor Example Routines
• Shared Descriptor Helper Routines


4.2 Detailed Description
4.3 Auxiliary Data Structures


4.3.1 Overview


Data Structures


• struct alginfo
• struct protcmd
• struct mbms_type_0_pdb
• struct mbms_type_1_3_pdb


Enumerations


Functions


• static int rta_inline_query (unsigned sd_base_len, unsigned jd_len, unsigned ∗data_len, uint32_t
∗inl_mask, unsigned count)


• static uint8_t rta_dtls_pdb_ars (uint32_t options)
• static enum tls_cipher_mode rta_tls_cipher_mode (uint16_t protinfo)


4.3.2 Detailed Description


4.3.3 Data Structure Documentation


4.3.3.1 struct alginfo


Container for algorithm details.


NXP Semiconductors
Writing Descriptors for NXP CAAM using RTA Library


73







Auxiliary Data Structures


Data Fields


uint32_t algtype Algorithm selector; for valid values, see documentation of the
functions where it is used


uint32_t keylen Length of the provided algorithm key, in bytes
uint64_t key Address where algorithm key resides; virtual address if key_type


is RTA_DATA_IMM, physical (bus) address if key_type is RT←↩
A_DATA_PTR or RTA_DATA_IMM_DMA


uint32_t key_enc_flags Key encryption flags; see encrypt_flags parameter of KEY com-
mand for valid values


enum
rta_data_type


key_type enum rta_data_type


uint16_t algmode Algorithm mode selector; for valid values, see documentation of
the functions where it is used


4.3.3.2 struct protcmd


Container for Protocol Operation Command fields.


Data Fields


uint32_t optype Command type
uint32_t protid Protocol identifier
uint16_t protinfo Protocol information


4.3.3.3 struct mbms_type_0_pdb


MBMS Type 0 PDB


Data Fields


uint32_t crc_header_fail Number of PDUs with incorrect header CRC


4.3.3.4 struct mbms_type_1_3_pdb


MBMS Type 1 and Type 3 PDB


Data Fields


uint32_t crc_header_fail Number of PDUs with incorrect header CRC
uint32_t crc_payload_←↩


fail
Number of PDUs with incorrect payload CRC


74
Writing Descriptors for NXP CAAM using RTA Library


NXP Semiconductors







Auxiliary Data Structures


4.3.4 Enumeration Type Documentation


4.3.4.1 enum ipsec_icv_size


ipsec.h


Type selectors for icv size in IPsec protocol


Enumerator


IPSEC_ICV_MD5_SIZE Full-length MD5 ICV
IPSEC_ICV_MD5_TRUNC_SIZE Truncated MD5 ICV


4.3.4.2 enum cipher_type_macsec


macsec.h


Type selectors for cipher types in MACSEC protocol.


Enumerator


MACSEC_CIPHER_TYPE_GCM MACsec to use GCM as algorithm
MACSEC_CIPHER_TYPE_GMAC MACsec to use GMAC as algorithm


4.3.4.3 enum mbms_pdu_type


mbms.h


Type selectors for MBMS PDUs in SYNC protocol.


Enumerator


MBMS_PDU_TYPE0 MBMS PDU type 0
MBMS_PDU_TYPE1 MBMS PDU type 1
MBMS_PDU_TYPE2 MBMS PDU type 2 is not supported
MBMS_PDU_TYPE3 MBMS PDU type 3
MBMS_PDU_TYPE_INVALID Invalid option


4.3.4.4 enum cipher_type_pdcp


pdcp.h


Type selectors for cipher types in PDCP protocol OP instructions.


Enumerator


PDCP_CIPHER_TYPE_NULL NULL


NXP Semiconductors
Writing Descriptors for NXP CAAM using RTA Library


75







Auxiliary Data Structures


PDCP_CIPHER_TYPE_SNOW SNOW F8
PDCP_CIPHER_TYPE_AES AES
PDCP_CIPHER_TYPE_ZUC ZUCE
PDCP_CIPHER_TYPE_INVALID Invalid option


4.3.4.5 enum auth_type_pdcp


pdcp.h


Type selectors for integrity types in PDCP protocol OP instructions.


Enumerator


PDCP_AUTH_TYPE_NULL NULL
PDCP_AUTH_TYPE_SNOW SNOW F9
PDCP_AUTH_TYPE_AES AES CMAC
PDCP_AUTH_TYPE_ZUC ZUCA
PDCP_AUTH_TYPE_INVALID Invalid option


4.3.4.6 enum pdcp_dir


pdcp.h


Type selectors for direction for PDCP protocol.


Enumerator


PDCP_DIR_UPLINK Up-link direction
PDCP_DIR_DOWNLINK Down-link direction
PDCP_DIR_INVALID Invalid option


4.3.4.7 enum pdcp_plane


pdcp.h


PDCP domain selectors.


Enumerator


PDCP_CONTROL_PLANE Control Plane
PDCP_DATA_PLANE Data Plane
PDCP_SHORT_MAC Short MAC


76
Writing Descriptors for NXP CAAM using RTA Library


NXP Semiconductors







Auxiliary Data Structures


4.3.4.8 enum pdcp_sn_size


pdcp.h


Sequence Number Size selectors for PDCP protocol.


Enumerator


PDCP_SN_SIZE_5 5bit sequence number
PDCP_SN_SIZE_7 7bit sequence number
PDCP_SN_SIZE_12 12bit sequence number
PDCP_SN_SIZE_15 15bit sequence number


4.3.4.9 enum rlc_mode


rlc.h


WCDMA RLC mode selector


Enumerator


RLC_UNACKED_MODE Unacknowledged mode
RLC_ACKED_MODE Acknowledged mode


4.3.4.10 enum rlc_dir


rlc.h


WCDMA RLC direction selector


Enumerator


RLC_DIR_UPLINK Up-link direction
RLC_DIR_DOWNLINK Down-link direction


4.3.4.11 enum cipher_type_rlc


rlc.h


Type selectors for cipher types in RLC protocol OP instructions.


Enumerator


RLC_CIPHER_TYPE_NULL NULL
RLC_CIPHER_TYPE_KASUMI Kasumi
RLC_CIPHER_TYPE_SNOW SNOW F8
RLC_CIPHER_TYPE_INVALID Invalid option


NXP Semiconductors
Writing Descriptors for NXP CAAM using RTA Library


77







Auxiliary Data Structures


4.3.4.12 enum rsa_decrypt_form


rsa.h


Type selectors for decrypt forms in RSA protocol.


Enumerator


RSA_DECRYPT_FORM1 g, f, n, d
RSA_DECRYPT_FORM2 g, f, d, p, q, tmp1, tmp2
RSA_DECRYPT_FORM3 g, f, c, p, q, dp, dq, tmp1, tmp2


4.3.4.13 enum tls_cipher_mode


tls.h


(D)TLS cipher mode


4.3.5 Function Documentation


4.3.5.1 static int rta_inline_query ( unsigned sd_base_len, unsigned jd_len, unsigned ∗
data_len, uint32_t ∗ inl_mask, unsigned count ) [inline], [static]


Provides indications on which data items can be inlined and which shall be referenced in a shared descrip-
tor.
Parameters


in sd_base_len Shared descriptor base length - bytes consumed by the commands, ex-
cluding the data items to be inlined (or corresponding pointer if an item
is not inlined). Each cnstr_∗ function that generates descriptors should
have a define mentioning corresponding length.


in jd_len Maximum length of the job descriptor(s) that will be used together with
the shared descriptor


in data_len Array of lengths of the data items trying to be inlined
out inl_mask 32bit mask with bit x = 1 if data item x can be inlined, 0 otherwise
in count Number of data items (size of data_len array); must be <= 32.


Returns


0 if data can be inlined / referenced, negative value if not. If 0, check inl_mask for details.


4.3.5.2 static uint8_t rta_dtls_pdb_ars ( uint32_t options ) [inline], [static]


Get DTLS anti-replay scorecard size.


78
Writing Descriptors for NXP CAAM using RTA Library


NXP Semiconductors







SEC Protocol Data Block Data Structures


Parameters


in options 1st word in the DTLS PDB


Returns


Anti-replay scorecard (ARS) size in units of 32bit entries


4.3.5.3 static enum tls_cipher_mode rta_tls_cipher_mode ( uint16_t protinfo )
[inline], [static]


Get TLS cipher mode based on IANA cipher suite value.


Parameters


in protinfo Protocol information


Returns


TLS cipher mode


4.4 SEC Protocol Data Block Data Structures


4.4.1 Overview


Modules


• ipsec_encap_pdb
• ipsec_decap_pdb
• rsa_pdb
• tls_pdb


4.4.2 Detailed Description


4.4.3 ipsec_encap_pdb


4.4.3.1 Overview


Data Structures


• struct ipsec_encap_cbc
• struct ipsec_encap_ctr
• struct ipsec_encap_ccm
• struct ipsec_encap_gcm
• struct ipsec_encap_pdb


NXP Semiconductors
Writing Descriptors for NXP CAAM using RTA Library


79







SEC Protocol Data Block Data Structures


4.4.3.2 Detailed Description


4.4.3.3 Data Structure Documentation


4.4.3.3.1 struct ipsec_encap_cbc


PDB part for IPsec CBC encapsulation


80
Writing Descriptors for NXP CAAM using RTA Library


NXP Semiconductors







SEC Protocol Data Block Data Structures


Data Fields


uint8_t iv[16] 16-byte array initialization vector


4.4.3.3.2 struct ipsec_encap_ctr


PDB part for IPsec CTR encapsulation


Data Fields


uint8_t ctr_nonce[4] 4-byte array nonce
uint32_t ctr_initial Initial count constant
uint64_t iv Initialization vector


4.4.3.3.3 struct ipsec_encap_ccm


PDB part for IPsec CCM encapsulation


Data Fields


uint8_t salt[4] 3-byte array salt (lower 24 bits)
uint32_t ccm_opt CCM algorithm options - MSB-LSB description: b0_flags (8b)←↩


: CCM B0; use 0x5B for 8-byte ICV, 0x6B for 12-byte ICV, 0x7B
for 16-byte ICV (cf. RFC4309, RFC3610) ctr_flags (8b): counter
flags; constant equal to 0x3 ctr_initial (16b): initial count constant


uint64_t iv Initialization vector


4.4.3.3.4 struct ipsec_encap_gcm


PDB part for IPsec GCM encapsulation


Data Fields


uint8_t salt[4] 3-byte array salt (lower 24 bits)
uint32_t rsvd Reserved, do not use
uint64_t iv Initialization vector


4.4.3.3.5 struct ipsec_encap_pdb


PDB for IPsec encapsulation


Data Fields


NXP Semiconductors
Writing Descriptors for NXP CAAM using RTA Library


81







SEC Protocol Data Block Data Structures


uint32_t options MSB-LSB description (both for legacy and new modes):
• hmo (header manipulation options): 4b
• reserved: 4b
• next header (legacy) / reserved (new): 8b
• next header offset (legacy) / AOIPHO (actual outer IP header


offset): 8b
• option flags (depend on selected algorithm): 8b


uint32_t seq_num_ext←↩
_hi


(optional) IPsec Extended Sequence Number (ESN)


uint32_t seq_num IPsec sequence number
union ipsec_←↩


encap_pdb
__unnamed_←↩
_


uint32_t spi IPsec SPI (Security Parameters Index)
uint32_t ip_hdr_len Optional IP Header length (in bytes): reserved - 16b Opt. IP Hdr


Len - 16b
uint8_t ip_hdr[0] Optional IP Header content (only for IPsec legacy mode)


4.4.4 ipsec_decap_pdb


4.4.4.1 Overview


Data Structures


• struct ipsec_decap_cbc
• struct ipsec_decap_ctr
• struct ipsec_decap_gcm
• struct ipsec_decap_pdb


4.4.4.2 Detailed Description


4.4.4.3 Data Structure Documentation


4.4.4.3.1 struct ipsec_decap_cbc


PDB part for IPsec CBC decapsulation


Data Fields


uint32_t rsvd[2] Reserved, do not use


4.4.4.3.2 struct ipsec_decap_ctr


PDB part for IPsec CTR decapsulation


82
Writing Descriptors for NXP CAAM using RTA Library


NXP Semiconductors







SEC Protocol Data Block Data Structures


PDB part for IPsec CCM decapsulation


NXP Semiconductors
Writing Descriptors for NXP CAAM using RTA Library


83







Auxiliary Defines


Data Fields


uint8_t ctr_nonce[4] 4-byte array nonce
uint32_t ctr_initial Initial count constant


4.4.4.3.3 struct ipsec_decap_gcm


PDB part for IPsec GCN decapsulation


Data Fields


uint8_t salt[4] 4-byte salt
uint32_t rsvd Reserved, do not use


4.4.4.3.4 struct ipsec_decap_pdb


PDB for IPsec decapsulation


Data Fields


uint32_t options MSB-LSB description (both for legacy and new modes) hmo
(header manipulation options): 4b IP header length: 12b next
header offset (legacy) / AOIPHO (actual outer IP header offset):
8b option flags (depend on selected algorithm): 8b


union ipsec_←↩
decap_pdb


__unnamed_←↩
_


uint32_t seq_num_ext←↩
_hi


(Optional) IPsec Extended Sequence Number (ESN)


uint32_t seq_num IPsec sequence number
uint32_t anti_replay[4] Anti-replay window; size depends on ARS (option flags); format


must be big-endian, irrespective of platform


4.5 Auxiliary Defines


4.5.1 Overview


Macros


• #define PDBOPTS_ESP_ESN 0x10
• #define PDBOPTS_ESP_IPVSN 0x02
• #define PDBOPTS_ESP_TUNNEL 0x01
• #define PDBOPTS_ESP_UPDATE_CSUM 0x80
• #define PDBOPTS_ESP_DIFFSERV 0x40
• #define PDBOPTS_ESP_IVSRC 0x20
• #define PDBOPTS_ESP_IPHDRSRC 0x08
• #define PDBOPTS_ESP_INCIPHDR 0x04
• #define PDBOPTS_ESP_OIHI_MASK 0x0c


84
Writing Descriptors for NXP CAAM using RTA Library


NXP Semiconductors







Auxiliary Defines


• #define PDBOPTS_ESP_OIHI_PDB_INL 0x0c
• #define PDBOPTS_ESP_OIHI_PDB_REF 0x08
• #define PDBOPTS_ESP_OIHI_IF 0x04
• #define PDBOPTS_ESP_NAT 0x02
• #define PDBOPTS_ESP_NUC 0x01
• #define PDBOPTS_ESP_ARS_MASK 0xc0
• #define PDBOPTS_ESP_ARSNONE 0x00
• #define PDBOPTS_ESP_ARS64 0xc0
• #define PDBOPTS_ESP_ARS128 0x80
• #define PDBOPTS_ESP_ARS32 0x40
• #define PDBOPTS_ESP_VERIFY_CSUM 0x20
• #define PDBOPTS_ESP_TECN 0x20
• #define PDBOPTS_ESP_OUTFMT 0x08
• #define PDBOPTS_ESP_AOFL 0x04
• #define PDBOPTS_ESP_ETU 0x01
• #define PDBHMO_ESP_DECAP_DTTL (0x02 << PDBHMO_ESP_DECAP_SHIFT)
• #define PDBHMO_ESP_DIFFSERV (0x01 << PDBHMO_ESP_DECAP_SHIFT)
• #define PDBHMO_ESP_SNR (0x01 << PDBHMO_ESP_ENCAP_SHIFT)
• #define PDBHMO_ESP_DFBIT (0x04 << PDBHMO_ESP_ENCAP_SHIFT)
• #define PDBHMO_ESP_DFV (0x04 << PDBHMO_ESP_DECAP_SHIFT)
• #define PDBHMO_ESP_ODF (0x08 << PDBHMO_ESP_DECAP_SHIFT)
• #define MBMS_HEADER_POLY 0xBC000000
• #define MBMS_PAYLOAD_POLY 0x8CC00000
• #define MBMS_TYPE0_HDR_LEN 18
• #define MBMS_TYPE1_HDR_LEN 11
• #define MBMS_TYPE3_HDR_LEN 19
• #define DUMMY_BUF_BASE 0xDEADC000
• #define HDR_CRC_MASK 0xFC00000000000000ll
• #define FM_RX_PRIV_SIZE 0x10
• #define FM_RX_EXTRA_HEADROOM 0x40
• #define IC_PR_OFFSET 0x20
• #define PR_L4_OFFSET 0x1E
• #define BUF_IC_OFFSET (FM_RX_PRIV_SIZE + FM_RX_EXTRA_HEADROOM)
• #define BUF_PR_OFFSET (BUF_IC_OFFSET + IC_PR_OFFSET)
• #define BUF_L4_OFFSET (BUF_PR_OFFSET + PR_L4_OFFSET)
• #define UDP_HDR_LEN 8
• #define GTP_HDR_LEN 8
• #define MBMS_HDR_OFFSET (UDP_HDR_LEN + GTP_HDR_LEN)
• #define MBMS_CRC_HDR_FAIL 0xAA
• #define MBMS_CRC_PAYLOAD_FAIL 0xAB
• #define PDCP_NULL_MAX_FRAME_LEN 0x00002FFF
• #define PDCP_MAC_I_LEN 0x00000004
• #define PDCP_MAX_FRAME_LEN_STATUS 0xF1
• #define PDCP_C_PLANE_SN_MASK 0x0000001F
• #define PDCP_U_PLANE_15BIT_SN_MASK 0x00007FFF
• #define PDCP_BEARER_MASK 0xFFFFFFFF04000000ull
• #define PDCP_DIR_MASK 0xF800000000000000ull
• #define PDCP_NULL_INT_MAC_I_VAL 0x00000000
• #define PDCP_NULL_INT_ICV_CHECK_FAILED_STATUS 0x0A
• #define PDCP_DPOVRD_HFN_OV_EN 0x80000000
• #define PDCP_P4080REV2_HFN_OV_BUFLEN 4
• #define CRC_8_ATM_POLY 0x07000000
• #define WIMAX_GMH_EC_MASK 0x4000000000000000ull
• #define WIMAX_ICV_LEN 0x0000000000000008ull
• #define WIMAX_FCS_LEN 0x00000000000000004ull
• #define WIMAX_PN_LEN 0x0000000000000004ull


NXP Semiconductors
Writing Descriptors for NXP CAAM using RTA Library


85







Auxiliary Defines


• #define WIMAX_PDBOPTS_FCS 0x01
• #define WIMAX_PDBOPTS_AR 0x40


4.5.2 Detailed Description


4.5.3 Macro Definition Documentation


4.5.3.1 #define PDBOPTS_ESP_ESN 0x10


Extended sequence included


4.5.3.2 #define PDBOPTS_ESP_IPVSN 0x02


Process IPv6 header valid only for IPsec legacy mode


4.5.3.3 #define PDBOPTS_ESP_TUNNEL 0x01


Tunnel mode next-header byte valid only for IPsec legacy mode


4.5.3.4 #define PDBOPTS_ESP_UPDATE_CSUM 0x80


Update ip header checksum valid only for IPsec legacy mode


4.5.3.5 #define PDBOPTS_ESP_DIFFSERV 0x40


Copy TOS/TC from inner iphdr valid only for IPsec legacy mode


4.5.3.6 #define PDBOPTS_ESP_IVSRC 0x20


IV comes from internal random generation


4.5.3.7 #define PDBOPTS_ESP_IPHDRSRC 0x08


IP header comes from PDB valid only for IPsec legacy mode


4.5.3.8 #define PDBOPTS_ESP_INCIPHDR 0x04


Prepend IP header to output frame valid only for IPsec legacy mode


86
Writing Descriptors for NXP CAAM using RTA Library


NXP Semiconductors







Auxiliary Defines


4.5.3.9 #define PDBOPTS_ESP_OIHI_MASK 0x0c


Mask for Outer IP Header Included valid only for IPsec new mode


4.5.3.10 #define PDBOPTS_ESP_OIHI_PDB_INL 0x0c


Prepend IP header to output frame from PDB (where it is inlined) valid only for IPsec new mode


4.5.3.11 #define PDBOPTS_ESP_OIHI_PDB_REF 0x08


Prepend IP header to output frame from PDB (referenced by pointer) valid only for IPsec new mode


4.5.3.12 #define PDBOPTS_ESP_OIHI_IF 0x04


Prepend IP header to output frame from input frame valid only for IPsec new mode


4.5.3.13 #define PDBOPTS_ESP_NAT 0x02


Enable RFC 3948 UDP-encapsulated ESP valid only for IPsec new mode


4.5.3.14 #define PDBOPTS_ESP_NUC 0x01


Enable NAT UDP Checksum valid only for IPsec new mode


4.5.3.15 #define PDBOPTS_ESP_ARS_MASK 0xc0


Antireplay window mask


4.5.3.16 #define PDBOPTS_ESP_ARSNONE 0x00


No antireplay window


4.5.3.17 #define PDBOPTS_ESP_ARS64 0xc0


64-entry antireplay window


4.5.3.18 #define PDBOPTS_ESP_ARS128 0x80


128-entry antireplay window valid only for IPsec new mode


NXP Semiconductors
Writing Descriptors for NXP CAAM using RTA Library


87







Auxiliary Defines


4.5.3.19 #define PDBOPTS_ESP_ARS32 0x40


32-entry antireplay window


4.5.3.20 #define PDBOPTS_ESP_VERIFY_CSUM 0x20


Validate ip header checksum valid only for IPsec legacy mode


4.5.3.21 #define PDBOPTS_ESP_TECN 0x20


Implement RRFC6040 ECN tunneling from outer header to inner header; valid only for IPsec new mode


4.5.3.22 #define PDBOPTS_ESP_OUTFMT 0x08


Output only decapsulation valid only for IPsec legacy mode


4.5.3.23 #define PDBOPTS_ESP_AOFL 0x04


Adjust out frame len valid only for IPsec legacy mode and for SEC >= 5.3.


4.5.3.24 #define PDBOPTS_ESP_ETU 0x01


EtherType Update - add corresponding ethertype (0x0800 for IPv4, 0x86dd for IPv6) in the output frame;
valid only for IPsec new mode


4.5.3.25 #define PDBHMO_ESP_DECAP_DTTL (0x02 << PDBHMO_ESP_DECAP_SHIFT)


IPsec ESP decrement TTL (IPv4) / Hop limit (IPv6) HMO option


4.5.3.26 #define PDBHMO_ESP_DIFFSERV (0x01 << PDBHMO_ESP_DECAP_SHIFT)


(Decap) DiffServ Copy - Copy the IPv4 TOS or IPv6 Traffic Class byte from the outer IP header to the
inner IP header.


4.5.3.27 #define PDBHMO_ESP_SNR (0x01 << PDBHMO_ESP_ENCAP_SHIFT)


(Encap) Sequence Number Rollover control Configures behavior in case of SN / ESN rollover: error if
SNR = 1, rollover allowed if SNR = 0. Valid only for IPsec new mode.


88
Writing Descriptors for NXP CAAM using RTA Library


NXP Semiconductors







Auxiliary Defines


4.5.3.28 #define PDBHMO_ESP_DFBIT (0x04 << PDBHMO_ESP_ENCAP_SHIFT)


(Encap) Copy DF bit - if an IPv4 tunnel mode outer IP header is coming from the PDB, copy the DF bit
from the inner IP header to the outer IP header.


4.5.3.29 #define PDBHMO_ESP_DFV (0x04 << PDBHMO_ESP_DECAP_SHIFT)


(Decap) - DF bit value If ODF = 1, DF bit in output frame is replaced by DFV. Valid only from SEC Era
5 onwards.


4.5.3.30 #define PDBHMO_ESP_ODF (0x08 << PDBHMO_ESP_DECAP_SHIFT)


(Decap) Override DF bit in IPv4 header of decapsulated output frame If ODF = 1, DF is replaced with the
value of DFV bit. Valid only from SEC Era 5 onwards.


4.5.3.31 #define MBMS_HEADER_POLY 0xBC000000


CRC6 polynomial for MBMS PDU header. Equals to D∧6 + D∧5 + D∧3 + D∧2 + D∧1 + 1.


4.5.3.32 #define MBMS_PAYLOAD_POLY 0x8CC00000


CRC10 polynomial for MBMS PDU header. Equals to D∧10 + D∧9 + D∧5 + D∧4 + D∧1 + 1.


4.5.3.33 #define MBMS_TYPE0_HDR_LEN 18


The length of a MBMS Type 0 PDU header


4.5.3.34 #define MBMS_TYPE1_HDR_LEN 11


The length of a MBMS Type 1 PDU header


4.5.3.35 #define MBMS_TYPE3_HDR_LEN 19


The length of a MBMS Type 3 PDU header


4.5.3.36 #define DUMMY_BUF_BASE 0xDEADC000


A dummy address used as immediate value when reading the parser result from before the frame buffer


NXP Semiconductors
Writing Descriptors for NXP CAAM using RTA Library


89







Auxiliary Defines


4.5.3.37 #define HDR_CRC_MASK 0xFC00000000000000ll


Mask to be used for extracting only the header CRC from the corresponding field in the MBMS Type 1 &
3 PDUs SYNC headers


4.5.3.38 #define FM_RX_PRIV_SIZE 0x10


Size of the private part, reserved for DPA ETH in the buffer before the frame


4.5.3.39 #define FM_RX_EXTRA_HEADROOM 0x40


The size of the extra space reserved by Frame Manager at the beginning of a data buffer on the receive
path


4.5.3.40 #define IC_PR_OFFSET 0x20


Offset of the Parser Results field in the Internal Context field


4.5.3.41 #define PR_L4_OFFSET 0x1E


Offset of the L4 header offset result in the Parser Results field


4.5.3.42 #define BUF_IC_OFFSET (FM_RX_PRIV_SIZE + FM_RX_EXTRA_HEADRO←↩
OM)


Offset of the Internal Context in the buffer before the frame


4.5.3.43 #define BUF_PR_OFFSET (BUF_IC_OFFSET + IC_PR_OFFSET)


Offset of the Parser Results in the buffer before the frame


4.5.3.44 #define BUF_L4_OFFSET (BUF_PR_OFFSET + PR_L4_OFFSET)


Offset of the L4 header offset in the buffer before the frame


4.5.3.45 #define UDP_HDR_LEN 8


The length of the UDP header


90
Writing Descriptors for NXP CAAM using RTA Library


NXP Semiconductors







Auxiliary Defines


4.5.3.46 #define GTP_HDR_LEN 8


The length of the GTP header with no options and no sequence number


4.5.3.47 #define MBMS_HDR_OFFSET (UDP_HDR_LEN + GTP_HDR_LEN)


MBMS header offset in the frame buffer


4.5.3.48 #define MBMS_CRC_HDR_FAIL 0xAA


Status returned by SEC in case the header CRC of the MBMS PDU failed


4.5.3.49 #define MBMS_CRC_PAYLOAD_FAIL 0xAB


Status returned by SEC in case the payload CRC of the MBMS PDU failed


4.5.3.50 #define PDCP_NULL_MAX_FRAME_LEN 0x00002FFF


The maximum frame frame length that is supported by PDCP NULL protocol.


4.5.3.51 #define PDCP_MAC_I_LEN 0x00000004


The length of the MAC-I for PDCP protocol operation.


4.5.3.52 #define PDCP_MAX_FRAME_LEN_STATUS 0xF1


The status returned in FD status/command field in case the input frame is larger than PDCP_NULL_M←↩
AX_FRAME_LEN.


4.5.3.53 #define PDCP_C_PLANE_SN_MASK 0x0000001F


This mask is used in the PDCP descriptors for extracting the sequence number (SN) from the PDCP
Control Plane header. For PDCP Control Plane, the SN is constant (5 bits) as opposed to PDCP Data
Plane (7/12/15 bits).


4.5.3.54 #define PDCP_U_PLANE_15BIT_SN_MASK 0x00007FFF


This mask is used in the PDCP descriptors for extracting the sequence number (SN) from the PDCP
User Plane header. For PDCP Control Plane, the SN is constant (5 bits) as opposed to PDCP Data Plane
(7/12/15 bits).


NXP Semiconductors
Writing Descriptors for NXP CAAM using RTA Library


91







Auxiliary Defines


4.5.3.55 #define PDCP_BEARER_MASK 0xFFFFFFFF04000000ull


This mask is used masking out the bearer for PDCP processing with SNOW f9 in LTE.


Note


The value on which this mask is applied is formatted as below: Count-C (32 bit) | Bearer (5 bit) |
Direction (1 bit) | 0 (26 bits) Applying this mask is done for creating the upper 64 bits of the IV
needed for SNOW f9. The lower 32 bits of the mask are used for masking the direction for AES
CMAC IV.


4.5.3.56 #define PDCP_DIR_MASK 0xF800000000000000ull


This mask is used masking out the direction for PDCP processing with SNOW f9 in LTE.


Note


The value on which this mask is applied is formatted as below: Bearer (5 bit) | Direction (1 bit) | 0
(26 bits) Applying this mask is done for creating the lower 32 bits of the IV needed for SNOW f9.
The upper 32 bits of the mask are used for masking the direction for AES CMAC IV.


4.5.3.57 #define PDCP_NULL_INT_MAC_I_VAL 0x00000000


The value of the PDCP PDU MAC-I in case NULL integrity is used.


4.5.3.58 #define PDCP_NULL_INT_ICV_CHECK_FAILED_STATUS 0x0A


The status used to report ICV check failed in case of NULL integrity Control Plane processing.


4.5.3.59 #define PDCP_DPOVRD_HFN_OV_EN 0x80000000


Value to be used in the FD status/cmd field to indicate the HFN override mechanism is active for the frame.


4.5.3.60 #define PDCP_P4080REV2_HFN_OV_BUFLEN 4


The length in bytes of the supplementary space that must be provided by the user at the beginning of the
input frame buffer for P4080 REV 2.


92
Writing Descriptors for NXP CAAM using RTA Library


NXP Semiconductors







Auxiliary Defines


Note


The format of the frame buffer is the following:


|<---PDCP_P4080REV2_HFN_OV_BUFLEN-->|
//===================================||============||==============\
|| PDCP_DPOVRD_HFN_OV_EN | HFN value || PDCP Header|| PDCP Payload ||
\===================================||============||==============//


If HFN override mechanism is not desired, then the MSB of the first 4 bytes must be set to 0b.


4.5.3.61 #define CRC_8_ATM_POLY 0x07000000


This CRC Polynomial is used for the GMH Header Check Sequence.


4.5.3.62 #define WIMAX_GMH_EC_MASK 0x4000000000000000ull


This mask is used in the WiMAX encapsulation/decapsulation descriptor for setting/clearing the Encryp-
tion Control bit from the Generic Mac Header.


4.5.3.63 #define WIMAX_ICV_LEN 0x0000000000000008ull


The length of the Integrity Check Value for WiMAX.


4.5.3.64 #define WIMAX_FCS_LEN 0x00000000000000004ull


The length of the Frame Check Sequence for WiMAX.


4.5.3.65 #define WIMAX_PN_LEN 0x0000000000000004ull


The length of the Packet Number for WiMAX.


4.5.3.66 #define WIMAX_PDBOPTS_FCS 0x01


Options Byte with FCS enabled.


4.5.3.67 #define WIMAX_PDBOPTS_AR 0x40


Options Byte with AR enabled.


NXP Semiconductors
Writing Descriptors for NXP CAAM using RTA Library


93







Job Descriptor Example Routines


4.6 Job Descriptor Example Routines


4.6.1 Overview


Functions


• static int cnstr_jobdesc_mdsplitkey (uint32_t ∗descbuf, bool ps, bool swap, uint64_t alg_key, uint8←↩
_t keylen, uint32_t cipher, uint64_t padbuf)


4.6.2 Detailed Description


4.6.3 Function Documentation


4.6.3.1 static int cnstr_jobdesc_mdsplitkey ( uint32_t ∗ descbuf, bool ps, bool swap,
uint64_t alg_key, uint8_t keylen, uint32_t cipher, uint64_t padbuf ) [inline],
[static]


Generate an MDHA split key. Split keys are IPAD/OPAD pairs. For details, refer to MDHA Split Keys
chapter in SEC Reference Manual.


Parameters


in,out descbuf Pointer to buffer to hold constructed descriptor
in ps If 36/40bit addressing is desired, this parameter must be true
in swap Must be true when core endianness doesn't match SEC endianness
in alg_key Pointer to HMAC key to generate ipad/opad from
in keylen HMAC key length
in cipher HMAC algorithm selection, one of OP_ALG_ALGSEL_∗ The algo-


rithm determines key size (bytes):
• OP_ALG_ALGSEL_MD5 - 16
• OP_ALG_ALGSEL_SHA1 - 20
• OP_ALG_ALGSEL_SHA224 - 28
• OP_ALG_ALGSEL_SHA256 - 32
• OP_ALG_ALGSEL_SHA384 - 48
• OP_ALG_ALGSEL_SHA512 - 64


94
Writing Descriptors for NXP CAAM using RTA Library


NXP Semiconductors







Shared Descriptor Helper Routines


in padbuf Pointer to buffer to store generated ipad/opad


Returns


Size of descriptor written in words or negative number on error.


4.7 Shared Descriptor Helper Routines
4.7.1 Overview


Functions


• static uint32_t split_key_len (uint32_t hash)
• static uint32_t split_key_pad_len (uint32_t hash)
• static void get_mbms_stats (uint32_t ∗descbuf, void ∗stats, enum mbms_pdu_type pdu_type)


4.7.2 Detailed Description


4.7.3 Function Documentation


4.7.3.1 static uint32_t split_key_len ( uint32_t hash ) [inline], [static]


Compute MDHA split key length for a given algorithm.


Parameters


in hash Hashing algorithm selection, one of OP_ALG_ALGSEL_∗ or OP_P←↩
CLID_DKP_∗ - MD5, SHA1, SHA224, SHA256, SHA384, SHA512.


Returns


MDHA split key length.


4.7.3.2 static uint32_t split_key_pad_len ( uint32_t hash ) [inline], [static]


Compute MDHA split key pad length for a given algorithm.


Parameters


in hash Hashing algorithm selection, one of OP_ALG_ALGSEL_∗ - MD5, S←↩
HA1, SHA224, SHA384, SHA512.


Returns


MDHA split key pad length.


NXP Semiconductors
Writing Descriptors for NXP CAAM using RTA Library


95







Shared Descriptor Helper Routines


4.7.3.3 static void get_mbms_stats ( uint32_t ∗ descbuf, void ∗ stats, enum
mbms_pdu_type pdu_type ) [inline], [static]


Helper function for retrieving MBMS descriptor statistics.


96
Writing Descriptors for NXP CAAM using RTA Library


NXP Semiconductors







Shared Descriptor Helper Routines


Parameters


in,out descbuf Pointer to descriptor buffer, previously populated by the cnstr_shdsc_←↩
mbms() function


out stats Points to a statistics structure matching the MBMS PDU type, as speci-
fied by the pdu_type parameter


in pdu_type MBMS PDU type


4.7.4 rsa_pdb


4.7.4.1 Overview


Data Structures


• struct rsa_encrypt_pdb_64b
• struct rsa_encrypt_pdb
• struct rsa_dec_pdb_form1_64b
• struct rsa_dec_pdb_form1
• struct rsa_dec_pdb_form2_64b
• struct rsa_dec_pdb_form2
• struct rsa_dec_pdb_form3_64b
• struct rsa_dec_pdb_form3


4.7.4.2 Detailed Description


4.7.4.3 Data Structure Documentation


4.7.4.3.1 struct rsa_encrypt_pdb_64b


RSA encryption PDB for 64 bits addresses.


Data Fields


uint32_t header Contains sgf, rsv, #e, #n fields
union


rsa_encrypt_←↩
pdb_64b


__unnamed_←↩
_


union
rsa_encrypt_←↩


pdb_64b


__unnamed_←↩
_


NXP Semiconductors
Writing Descriptors for NXP CAAM using RTA Library


97







Shared Descriptor Helper Routines


union
rsa_encrypt_←↩


pdb_64b


__unnamed_←↩
_


union
rsa_encrypt_←↩


pdb_64b


__unnamed_←↩
_


uint32_t f_len Input length


4.7.4.3.2 struct rsa_encrypt_pdb


RSA encryption PDB for 32 bits addresses.


Data Fields


uint32_t header Contains sgf, rsv, #e, #n fields
uint32_t f_ref Reference to input
uint32_t g_ref Reference to output
uint32_t n_ref Reference to modulus
uint32_t e_ref Reference to public key
uint32_t f_len Input length


4.7.4.3.3 struct rsa_dec_pdb_form1_64b


RSA decryption form1 PDB for 64 bits addresses.


Data Fields


uint32_t header Contains sgf, rsv, #d, #n fields
union


rsa_dec_pdb_←↩
form1_64b


__unnamed_←↩
_


union
rsa_dec_pdb_←↩


form1_64b


__unnamed_←↩
_


union
rsa_dec_pdb_←↩


form1_64b


__unnamed_←↩
_


union
rsa_dec_pdb_←↩


form1_64b


__unnamed_←↩
_


4.7.4.3.4 struct rsa_dec_pdb_form1


RSA decryption form1 PDB for 32 bits addresses


98
Writing Descriptors for NXP CAAM using RTA Library


NXP Semiconductors







Shared Descriptor Helper Routines


Data Fields


uint32_t header Contains sgf, rsv, #d, #n fields
uint32_t g_ref Reference to input
uint32_t f_ref Reference to output
uint32_t n_ref Reference to modulus
uint32_t d_ref Reference to private key


4.7.4.3.5 struct rsa_dec_pdb_form2_64b


RSA decryption form2 PDB for 64 bits addresses


Data Fields


uint32_t header Contains sgf, rsv, #d, #n fields
union


rsa_dec_pdb_←↩
form2_64b


__unnamed_←↩
_


union
rsa_dec_pdb_←↩


form2_64b


__unnamed_←↩
_


union
rsa_dec_pdb_←↩


form2_64b


__unnamed_←↩
_


union
rsa_dec_pdb_←↩


form2_64b


__unnamed_←↩
_


union
rsa_dec_pdb_←↩


form2_64b


__unnamed_←↩
_


union
rsa_dec_pdb_←↩


form2_64b


__unnamed_←↩
_


union
rsa_dec_pdb_←↩


form2_64b


__unnamed_←↩
_


uint32_t trailer Contains rsv, #q, #p fields


4.7.4.3.6 struct rsa_dec_pdb_form2


RSA decryption form2 PDB for 32 bits addresses


NXP Semiconductors
Writing Descriptors for NXP CAAM using RTA Library


99







Shared Descriptor Helper Routines


Data Fields


uint32_t header Contains sgf, rsv, #d, #n fields
uint32_t g_ref Reference to input
uint32_t f_ref Reference to output
uint32_t d_ref Reference to private key
uint32_t p_ref Reference to prime p
uint32_t q_ref Reference to prime q
uint32_t tmp1_ref Reference to tmp1
uint32_t tmp2_ref Reference to tmp2
uint32_t trailer Contains rsv, #q, #p fields


4.7.4.3.7 struct rsa_dec_pdb_form3_64b


RSA decryption form3 PDB for 64 bits addresses


Data Fields


uint32_t header Contains sgf, rsv, #n fields
union


rsa_dec_pdb_←↩
form3_64b


__unnamed_←↩
_


union
rsa_dec_pdb_←↩


form3_64b


__unnamed_←↩
_


union
rsa_dec_pdb_←↩


form3_64b


__unnamed_←↩
_


union
rsa_dec_pdb_←↩


form3_64b


__unnamed_←↩
_


union
rsa_dec_pdb_←↩


form3_64b


__unnamed_←↩
_


union
rsa_dec_pdb_←↩


form3_64b


__unnamed_←↩
_


union
rsa_dec_pdb_←↩


form3_64b


__unnamed_←↩
_


100
Writing Descriptors for NXP CAAM using RTA Library


NXP Semiconductors







Shared Descriptor Helper Routines


union
rsa_dec_pdb_←↩


form3_64b


__unnamed_←↩
_


union
rsa_dec_pdb_←↩


form3_64b


__unnamed_←↩
_


uint32_t trailer Contains rsv, #q, #p fields


4.7.4.3.8 struct rsa_dec_pdb_form3


RSA decryption form3 PDB for 32 bits addresses


Data Fields


uint32_t header Contains sgf, rsv, #n fields
uint32_t g_ref Reference to input
uint32_t f_ref Reference to output
uint32_t c_ref Reference to c
uint32_t p_ref Reference to prime p
uint32_t q_ref Reference to prime q
uint32_t dp_ref Reference to dp
uint32_t dq_ref Reference to dq
uint32_t tmp1_ref Reference to tmp1
uint32_t tmp2_ref Reference to tmp2
uint32_t trailer Contains rsv, #q, #p fields


4.7.5 tls_pdb


4.7.5.1 Overview


Data Structures


• struct tls_block_enc
• struct dtls_block_enc
• struct tls_block_dec
• struct dtls_block_dec
• struct tls_block_pdb
• struct tls_stream_enc
• struct tls_stream_dec
• struct tls_stream_pdb
• struct tls_ctr_enc
• struct tls_ctr
• struct tls_ctr_pdb
• struct tls12_gcm_encap
• struct tls12_gcm_decap
• struct dtls_gcm_enc
• struct dtls_gcm_dec


NXP Semiconductors
Writing Descriptors for NXP CAAM using RTA Library


101







Shared Descriptor Helper Routines


• struct tls_gcm_pdb
• struct tls12_ccm_encap
• struct tls_ccm
• struct tls_ccm_pdb


4.7.5.2 Detailed Description


4.7.5.3 Data Structure Documentation


4.7.5.3.1 struct tls_block_enc


SSL3.0/TLS1.0/TLS1.1/TLS1.2 block encapsulation PDB part.


Data Fields


union
tls_block_enc


__unnamed_←↩
_


uint64_t seq_num Protocol sequence number; big endian format


4.7.5.3.2 struct dtls_block_enc


DTLS1.0/DTLS1.2 block encapsulation PDB part.


Data Fields


union
dtls_block_enc


__unnamed_←↩
_


union
dtls_block_enc


__unnamed_←↩
_


uint32_t seq_num_lo Protocol sequence number (lower 32 bits)


4.7.5.3.3 struct tls_block_dec


SSL3.0/TLS1.0/TLS1.1/TLS1.2 block decapsulation PDB part.


Data Fields


union
tls_block_dec


__unnamed_←↩
_


uint64_t seq_num Protocol sequence number; big endian format


4.7.5.3.4 struct dtls_block_dec


DTLS1.0/DTLS1.2 block decapsulation PDB part.


102
Writing Descriptors for NXP CAAM using RTA Library


NXP Semiconductors







Shared Descriptor Helper Routines


Data Fields


union
dtls_block_dec


__unnamed_←↩
_


union
dtls_block_dec


__unnamed_←↩
_


uint32_t seq_num_lo Protocol sequence number (lower 32 bits)


4.7.5.3.5 struct tls_block_pdb


SSL3.0/TLS1.0/TLS1.1/TLS1.2/DTLS1.0/DTLS1.2 block encapsulation / decapsulation PDB.


Data Fields


union
tls_block_pdb


__unnamed_←↩
_


uint8_t iv[16] Initialization vector; for CBC-mode cipher suites, the IV field is
only 8 bytes if the PROTINFO field of the Operation Command
selects DES/3DES.


uint32_t anti_replay[4] Anti-replay window - valid only for DTLS decapsulation; size
depends on DTLS_PDBOPTS_ARS32/64/128 option flags; big-
endian format


uint8_t icv_len ICV length; valid only if TLS_PDBOPTS_TR_ICV option flag is
set


4.7.5.3.6 struct tls_stream_enc


SSL3.0/TLS1.0/TLS1.1/TLS1.2 stream encapsulation PDB part.


4.7.5.3.7 struct tls_stream_dec


SSL3.0/TLS1.0/TLS1.1/TLS1.2 stream decapsulation PDB part.


4.7.5.3.8 struct tls_stream_pdb


SSL3.0/TLS1.0/TLS1.1/TLS1.2 stream encapsulation / decapsulation PDB.


Data Fields


union
tls_stream_pdb


__unnamed_←↩
_


NXP Semiconductors
Writing Descriptors for NXP CAAM using RTA Library


103







Shared Descriptor Helper Routines


uint64_t seq_num Protocol sequence number
uint8_t icv_len ICV length; valid only if TLS_PDBOPTS_TR_ICV option flag is


set


4.7.5.3.9 struct tls_ctr_enc


TLS1.1/TLS1.2 AES CTR encapsulation PDB part.


Data Fields


union
tls_ctr_enc


__unnamed_←↩
_


uint64_t seq_num Protocol sequence number; big-endian format


4.7.5.3.10 struct tls_ctr


PDB part for TLS1.1/TLS1.2 AES CTR decapsulation and DTLS1.0/DTLS1.2 AES CTR encapsula-
tion/decapsulation.


Data Fields


union tls_ctr __unnamed_←↩
_


union tls_ctr __unnamed_←↩
_


uint32_t seq_num_lo Protocol sequence number (lower 32 bits)


4.7.5.3.11 struct tls_ctr_pdb


TLS1.1/TLS1.2/DTLS1.0/DTLS1.2 AES CTR encapsulation / decapsulation PDB. TLS1.1/TLS1.2/DT←↩
LS1.0/DTLS1.2 AES CTR encryption processing is supported starting with SEC ERA 5.


Data Fields


union
tls_ctr_pdb


__unnamed_←↩
_


uint32_t write_iv_hi Server write IV / client write IV (upper 32 bits)
union


tls_ctr_pdb
__unnamed_←↩
_


uint32_t anti_replay[4] Anti-replay window - valid only for DTLS decapsulation; size
depends on DTLS_PDBOPTS_ARS32/64/128 option flags; big-
endian format


104
Writing Descriptors for NXP CAAM using RTA Library


NXP Semiconductors







Shared Descriptor Helper Routines


uint8_t icv_len ICV length; valid only if TLS_PDBOPTS_TR_ICV option flag is
set


4.7.5.3.12 struct tls12_gcm_encap


TLS1.2 AES GCM encapsulation PDB part.


Data Fields


union tls12_←↩
gcm_encap


__unnamed_←↩
_


uint64_t seq_num Protocol sequence number; big endian format


4.7.5.3.13 struct tls12_gcm_decap


TLS1.2 AES GCM decapsulation PDB part.


Data Fields


union tls12_←↩
gcm_decap


__unnamed_←↩
_


uint64_t seq_num Protocol sequence number; big endian format


4.7.5.3.14 struct dtls_gcm_enc


DTLS1.2 AES GCM encapsulation PDB part.


Data Fields


union
dtls_gcm_enc


__unnamed_←↩
_


union
dtls_gcm_enc


__unnamed_←↩
_


uint32_t seq_num_lo Protocol sequence number (lower 32 bits)


4.7.5.3.15 struct dtls_gcm_dec


DTLS1.2 AES GCM decapsulation PDB part.


Data Fields


union
dtls_gcm_dec


__unnamed_←↩
_


NXP Semiconductors
Writing Descriptors for NXP CAAM using RTA Library


105







Shared Descriptor Helper Routines


union
dtls_gcm_dec


__unnamed_←↩
_


uint32_t seq_num_lo Protocol sequence number (lower 32 bits)


4.7.5.3.16 struct tls_gcm_pdb


TLS1.2/DTLS1.2 AES GCM encapsulation / decapsulation PDB.


Data Fields


union
tls_gcm_pdb


__unnamed_←↩
_


uint8_t salt[4] 4-byte array salt
uint32_t anti_replay[4] Anti-replay window - valid only for DTLS decapsulation; size


depends on DTLS_PDBOPTS_ARS32/64/128 option flags; big-
endian format


uint8_t icv_len ICV length; valid only if TLS_PDBOPTS_TR_ICV option flag is
set


4.7.5.3.17 struct tls12_ccm_encap


TLS1.2 AES CCM encapsulation PDB part.


Data Fields


union tls12_←↩
ccm_encap


__unnamed_←↩
_


uint64_t seq_num Protocol sequence number; big endian format


4.7.5.3.18 struct tls_ccm


PDB part for TLS12 AES CCM decapsulation PDB and DTLS1.2 AES CCM encapsulation / decapsula-
tion.
Data Fields


union tls_ccm __unnamed_←↩
_


union tls_ccm __unnamed_←↩
_


106
Writing Descriptors for NXP CAAM using RTA Library


NXP Semiconductors







Shared Descriptor Helper Routines


uint32_t seq_num_lo Protocol sequence number (lower 32 bits)


4.7.5.3.19 struct tls_ccm_pdb


TLS1.2/DTLS1.2 AES CCM encapsulation / decapsulation PDB.


Data Fields


union
tls_ccm_pdb


__unnamed_←↩
_


uint32_t write_iv Server write IV / client write IV
union


tls_ccm_pdb
__unnamed_←↩
_


union
tls_ccm_pdb


__unnamed_←↩
_


uint32_t anti_replay[4] Anti-replay window - valid only for DTLS decapsulation; size
depends on DTLS_PDBOPTS_ARS32/64/128 option flags; big-
endian format


uint8_t icv_len ICV length; valid only if TLS_PDBOPTS_TR_ICV option flag is
set


NXP Semiconductors
Writing Descriptors for NXP CAAM using RTA Library


107







How to Reach Us:


Home Page:
nxp.com


Web Support:
nxp.com/support


Information in this document is provided solely to enable system and
software implementers to use NXP products. There are no express or
implied copyright licenses granted hereunder to design or fabricate any
integrated circuits based on the information in this document.


NXP makes no warranty, representation, or guarantee regarding the
suitability of its products for any particular purpose, nor does NXP
assume any liability arising out of the application or use of any product
or circuit, and specifically disclaims any and all liability, including without
limitation consequential or incidental damages. “Typical” parameters
that may be provided in NXP data sheets and/or specifications can and
do vary in different applications, and actual performance may vary over
time. All operating parameters, including “typicals,” must be validated for
each customer application by customer’s technical experts. NXP does
not convey any license under its patent rights nor the rights of others.
NXP sells products pursuant to standard terms and conditions of sale,
which can be found at the following address:
nxp.com/SalesTermsandConditions.


NXP, the NXP logo, Freescale, the Freescale logo, Layerscape, and
QorIQ are trademarks of NXP B.V. All other product or service names
are the property of their respective owners. Arm, Cortex, and TrustZone
are registered trademarks of Arm Limited (or its subsidiaries) in the EU
and/or elsewhere. All rights reserved.


© 2018 NXP B.V.


Document Number: WDNCRL
Rev 18.03
Mar 2018



http://www.nxp.com

http://www.nxp.com/support

http://www.nxp.com/SalesTermsandConditions



		Chapter 1  Introduction

		Chapter 2  User Manual

		Chapter 3  RTA API

		Overview

		Detailed Description

		Data Structure Documentation

		struct program



		Descriptor Buffer Management Routines

		Overview

		Detailed Description

		Macro Definition Documentation

		PROGRAMCNTXTINIT

		PROGRAMFINALIZE

		PROGRAMSET36BITADDR

		PROGRAMSETBSWAP

		WORD

		DWORD

		COPYDATA

		DESCLEN

		DESCBYTES

		INTLSECERA



		Enumeration Type Documentation

		rtasecera



		Function Documentation

		rtasetsecera(enum rtasecera era)

		rtagetsecera(void)



		Variable Documentation

		rtasecera





		SEC Commands Routines

		Overview

		Detailed Description

		Macro Definition Documentation

		SHRHDR

		JOBHDR

		JOBHDREXT

		MOVE

		MOVEB

		MOVEDW

		FIFOLOAD

		SEQFIFOLOAD

		FIFOSTORE

		SEQFIFOSTORE

		KEY

		SEQINPTR

		SEQOUTPTR

		ALGOPERATION

		PROTOCOL

		DKPPROTOCOL

		PKHAOPERATION

		JUMP

		JUMPINC

		JUMPDEC

		LOAD

		SEQLOAD

		STORE

		SEQSTORE

		MATHB

		MATHI

		MATHU

		SIGNATURE

		NFIFOADD

		DCOPY



		Enumeration Type Documentation

		rtajumptype

		rtajumpcond

		rtasharetype

		rtadatatype





		Self Referential Code Management Routines

		Overview

		Detailed Description

		Macro Definition Documentation

		REFERENCE

		LABEL

		SETLABEL

		PATCHJUMP

		PATCHMOVE

		PATCHLOAD

		PATCHSTORE

		PATCHHDR

		PATCHRAW





		Shared Descriptor Example Routines

		Overview

		Detailed Description

		Function Documentation

		cnstrshdscsnowf8(uint32t *descbuf, bool ps, bool swap, struct alginfo *cipherdata, uint8t dir, uint32t count, uint8t bearer, uint8t direction)

		cnstrshdscsnowf9(uint32t *descbuf, bool ps, bool swap, struct alginfo *authdata, uint8t dir, uint32t count, uint32t fresh, uint8t direction, uint32t datalen)

		cnstrshdscblkcipher(uint32t *descbuf, bool ps, bool swap, struct alginfo *cipherdata, uint8t *iv, uint32t ivlen, uint8t dir)

		cnstrshdschmac(uint32t *descbuf, bool ps, bool swap, struct alginfo *authdata, uint8t doicv, uint8t trunclen)

		cnstrshdsckasumif8(uint32t *descbuf, bool ps, bool swap, struct alginfo *cipherdata, uint8t dir, uint32t count, uint8t bearer, uint8t direction)

		cnstrshdsckasumif9(uint32t *descbuf, bool ps, bool swap, struct alginfo *authdata, uint8t dir, uint32t count, uint32t fresh, uint8t direction, uint32t datalen)

		cnstrshdsccrc(uint32t *descbuf, bool swap)

		cnstrshdscgcmencap(uint32t *descbuf, bool ps, bool swap, struct alginfo *cipherdata, uint32t ivlen, uint32t icvsize)

		cnstrshdscgcmdecap(uint32t *descbuf, bool ps, bool swap, struct alginfo *cipherdata, uint32t ivlen, uint32t icvsize)

		cnstrshdscipsecencap(uint32t *descbuf, bool ps, bool swap, enum rtasharetype share, struct ipsecencappdb *pdb, struct alginfo *cipherdata, struct alginfo *authdata)

		cnstrshdscipsecdecap(uint32t *descbuf, bool ps, bool swap, enum rtasharetype share, struct ipsecdecappdb *pdb, struct alginfo *cipherdata, struct alginfo *authdata)

		cnstrshdscipsecencapdesaesxcbc(uint32t *descbuf, struct ipsecencappdb *pdb, struct alginfo *cipherdata, struct alginfo *authdata)

		cnstrshdscipsecdecapdesaesxcbc(uint32t *descbuf, struct ipsecdecappdb *pdb, struct alginfo *cipherdata, struct alginfo *authdata)

		cnstrshdscipsecnewencap(uint32t *descbuf, bool ps, bool swap, enum rtasharetype share, struct ipsecencappdb *pdb, uint8t *optiphdr, struct alginfo *cipherdata, struct alginfo *authdata)

		cnstrshdscipsecnewdecap(uint32t *descbuf, bool ps, bool swap, enum rtasharetype share, struct ipsecdecappdb *pdb, struct alginfo *cipherdata, struct alginfo *authdata)

		cnstrshdscauthenc(uint32t *descbuf, bool ps, bool swap, struct alginfo *cipherdata, struct alginfo *authdata, uint16t ivlen, uint16t authonlylen, uint8t trunclen, uint8t dir)

		cnstrshdscmacsecencap(uint32t *descbuf, bool swap, struct alginfo *cipherdata, uint64t sci, uint16t ethertype, uint8t tcian, uint32t pn)

		cnstrshdscmacsecdecap(uint32t *descbuf, bool swap, struct alginfo *cipherdata, uint64t sci, uint32t pn)

		cnstrshdscmbms(uint32t *descbuf, bool ps, bool swap, unsigned *preheaderlen, enum mbmspdutype pdutype)

		cnstrshdscpdcpcplaneencap(uint32t *descbuf, bool ps, bool swap, uint32t hfn, unsigned char bearer, unsigned char direction, uint32t hfnthreshold, struct alginfo *cipherdata, struct alginfo *authdata, unsigned char era2swhfnoverride)

		cnstrshdscpdcpcplanedecap(uint32t *descbuf, bool ps, bool swap, uint32t hfn, unsigned char bearer, unsigned char direction, uint32t hfnthreshold, struct alginfo *cipherdata, struct alginfo *authdata, unsigned char era2swhfnoverride)

		cnstrshdscpdcpuplaneencap(uint32t *descbuf, bool ps, bool swap, enum pdcpsnsize snsize, uint32t hfn, unsigned short bearer, unsigned short direction, uint32t hfnthreshold, struct alginfo *cipherdata, unsigned char era2swhfnoverride)

		cnstrshdscpdcpuplanedecap(uint32t *descbuf, bool ps, bool swap, enum pdcpsnsize snsize, uint32t hfn, unsigned short bearer, unsigned short direction, uint32t hfnthreshold, struct alginfo *cipherdata, unsigned char era2swhfnoverride)

		cnstrshdscpdcpshortmac(uint32t *descbuf, bool ps, bool swap, struct alginfo *authdata)

		cnstrshdscrlcencap(uint32t *descbuf, bool ps, enum rlcmode mode, uint32t hfn, unsigned short bearer, unsigned short direction, uint32t hfnthreshold, struct alginfo *cipherdata)

		cnstrshdscrlcdecap(uint32t *descbuf, bool ps, enum rlcmode mode, uint32t hfn, unsigned short bearer, unsigned short direction, uint32t hfnthreshold, struct alginfo *cipherdata)

		cnstrshdscrsa(uint32t *descbuf, bool ps, bool swap, uint8t *pdb, struct protcmd *protcmd)

		cnstrshdscsrtpencap(uint32t *descbuf, bool swap, struct alginfo *authdata, struct alginfo *cipherdata, uint8t ntag, uint32t roc, uint8t *ciphersalt)

		cnstrshdscsrtpdecap(uint32t *descbuf, bool swap, struct alginfo *authdata, struct alginfo *cipherdata, uint8t ntag, uint32t roc, uint16t seqnum, uint8t *ciphersalt)

		cnstrshdsctls(uint32t *descbuf, bool ps, bool swap, uint8t *pdb, struct protcmd *protcmd, struct alginfo *cipherdata, struct alginfo *authdata)

		cnstrshdsccwapdtls(uint32t *descbuf, bool ps, bool swap, uint8t *pdb, struct protcmd *protcmd, struct alginfo *cipherdata, struct alginfo *authdata)

		cnstrshdscwifiencap(uint32t *descbuf, bool ps, bool swap, uint16t machdrlen, uint64t pn, uint8t priority, uint8t keyid, struct alginfo *cipherdata)

		cnstrshdscwifidecap(uint32t *descbuf, bool ps, bool swap, uint16t machdrlen, uint64t pn, uint8t priority, struct alginfo *cipherdata)

		cnstrshdscwimaxencapera5(uint32t *descbuf, bool swap, uint8t pdbopts, uint32t pn, uint16t protinfo, struct alginfo *cipherdata)

		cnstrshdscwimaxencap(uint32t *descbuf, bool swap, uint8t pdbopts, uint32t pn, uint16t protinfo, struct alginfo *cipherdata)

		cnstrshdscwimaxdecap(uint32t *descbuf, bool swap, uint8t pdbopts, uint32t pn, uint16t arlen, uint16t protinfo, struct alginfo *cipherdata)







		Chapter 4  RTA Descriptors Library

		Overview

		Detailed Description

		Auxiliary Data Structures

		Overview

		Detailed Description

		Data Structure Documentation

		struct alginfo

		struct protcmd

		struct mbms_type_0_pdb

		struct mbms_type_1_3_pdb



		Enumeration Type Documentation

		ipsecicvsize

		ciphertypemacsec

		mbmspdutype

		ciphertypepdcp

		authtypepdcp

		pdcpdir

		pdcpplane

		pdcpsnsize

		rlcmode

		rlcdir

		ciphertyperlc

		rsadecryptform

		tlsciphermode



		Function Documentation

		rtainlinequery(unsigned sdbaselen, unsigned jdlen, unsigned *datalen, uint32t *inlmask, unsigned count)

		rtadtlspdbars(uint32t options)

		rtatlsciphermode(uint16t protinfo)





		SEC Protocol Data Block Data Structures

		Overview

		Detailed Description

		ipsec_encap_pdb

		Overview

		Detailed Description

		Data Structure Documentation

		struct ipsec_encap_cbc

		struct ipsec_encap_ctr

		struct ipsec_encap_ccm

		struct ipsec_encap_gcm

		struct ipsec_encap_pdb





		ipsec_decap_pdb

		Overview

		Detailed Description

		Data Structure Documentation

		struct ipsec_decap_cbc

		struct ipsec_decap_ctr

		struct ipsec_decap_gcm

		struct ipsec_decap_pdb







		Auxiliary Defines

		Overview

		Detailed Description

		Macro Definition Documentation

		PDBOPTSESPESN

		PDBOPTSESPIPVSN

		PDBOPTSESPTUNNEL

		PDBOPTSESPUPDATECSUM

		PDBOPTSESPDIFFSERV

		PDBOPTSESPIVSRC

		PDBOPTSESPIPHDRSRC

		PDBOPTSESPINCIPHDR

		PDBOPTSESPOIHIMASK

		PDBOPTSESPOIHIPDBINL

		PDBOPTSESPOIHIPDBREF

		PDBOPTSESPOIHIIF

		PDBOPTSESPNAT

		PDBOPTSESPNUC

		PDBOPTSESPARSMASK

		PDBOPTSESPARSNONE

		PDBOPTSESPARS64

		PDBOPTSESPARS128

		PDBOPTSESPARS32

		PDBOPTSESPVERIFYCSUM

		PDBOPTSESPTECN

		PDBOPTSESPOUTFMT

		PDBOPTSESPAOFL

		PDBOPTSESPETU

		PDBHMOESPDECAPDTTL

		PDBHMOESPDIFFSERV

		PDBHMOESPSNR

		PDBHMOESPDFBIT

		PDBHMOESPDFV

		PDBHMOESPODF

		MBMSHEADERPOLY

		MBMSPAYLOADPOLY

		MBMSTYPE0HDRLEN

		MBMSTYPE1HDRLEN

		MBMSTYPE3HDRLEN

		DUMMYBUFBASE

		HDRCRCMASK

		FMRXPRIVSIZE

		FMRXEXTRAHEADROOM

		ICPROFFSET

		PRL4OFFSET

		BUFICOFFSET

		BUFPROFFSET

		BUFL4OFFSET

		UDPHDRLEN

		GTPHDRLEN

		MBMSHDROFFSET

		MBMSCRCHDRFAIL

		MBMSCRCPAYLOADFAIL

		PDCPNULLMAXFRAMELEN

		PDCPMACILEN

		PDCPMAXFRAMELENSTATUS

		PDCPCPLANESNMASK

		PDCPUPLANE15BITSNMASK

		PDCPBEARERMASK

		PDCPDIRMASK

		PDCPNULLINTMACIVAL

		PDCPNULLINTICVCHECKFAILEDSTATUS

		PDCPDPOVRDHFNOVEN

		PDCPP4080REV2HFNOVBUFLEN

		CRC8ATMPOLY

		WIMAXGMHECMASK

		WIMAXICVLEN

		WIMAXFCSLEN

		WIMAXPNLEN

		WIMAXPDBOPTSFCS

		WIMAXPDBOPTSAR





		Job Descriptor Example Routines

		Overview

		Detailed Description

		Function Documentation

		cnstrjobdescmdsplitkey(uint32t *descbuf, bool ps, bool swap, uint64t algkey, uint8t keylen, uint32t cipher, uint64t padbuf)





		Shared Descriptor Helper Routines

		Overview

		Detailed Description

		Function Documentation

		splitkeylen(uint32t hash)

		splitkeypadlen(uint32t hash)

		getmbmsstats(uint32t *descbuf, void *stats, enum mbmspdutype pdutype)



		rsa_pdb

		Overview

		Detailed Description

		Data Structure Documentation

		struct rsa_encrypt_pdb_64b

		struct rsa_encrypt_pdb

		struct rsa_dec_pdb_form1_64b

		struct rsa_dec_pdb_form1

		struct rsa_dec_pdb_form2_64b

		struct rsa_dec_pdb_form2

		struct rsa_dec_pdb_form3_64b

		struct rsa_dec_pdb_form3





		tls_pdb

		Overview

		Detailed Description

		Data Structure Documentation

		struct tls_block_enc

		struct dtls_block_enc

		struct tls_block_dec

		struct dtls_block_dec

		struct tls_block_pdb

		struct tls_stream_enc

		struct tls_stream_dec

		struct tls_stream_pdb

		struct tls_ctr_enc

		struct tls_ctr

		struct tls_ctr_pdb

		struct tls12_gcm_encap

		struct tls12_gcm_decap

		struct dtls_gcm_enc

		struct dtls_gcm_dec

		struct tls_gcm_pdb

		struct tls12_ccm_encap

		struct tls_ccm

		struct tls_ccm_pdb

















