
UG10156
Android User's Guide
Rev. android-16.0.0_1.0.0 — 28 October 2025 User guide

Document information
Information Content

Keywords Android, i.MX, android-16.0.0_1.0.0

Abstract This document provides the technical information related to the i.MX 8 and i.MX 95 series
devices.

https://www.nxp.com

NXP Semiconductors UG10156
Android User's Guide

1 Overview

This document provides the technical information related to the i.MX 8 and i.MX 95 series devices. It provides
instructions for:

• Configuring a Linux OS build machine.
• Downloading, patching, and building the software components that create the Android system image.
• Building from sources and using pre-built images.
• Copying the images to boot media.
• Hardware and software configurations for programming the boot media and running the images.

For more information about building the Android platform, see source.android.com/docs/setup/build/building.

2 Preparation

2.1 Setting up your computer
To build the Android source files, use a computer running the Linux OS. The Ubuntu 22.04 64-bit version is the
most tested environment for the Android 16 build.

To synchronize the code and build images of this release, the computer should at least have:

• 450 GB free disk space
• 64 GB RAM

Note:

• The minimum required amount of free memory is around 16 GB, and even with that, some configurations may
not work.

• Enlarging the physical RAM capacity is a way to avoid potential build errors related to memory.
• With a 16 GB RAM, if you run into segfaults or other errors related to memory when building the images, try

reducing the -j value. In the demonstration commands in the following part of this document, the -j value is
4.

After installing the computer running Linux OS, check whether all the necessary packages are installed for an
Android build. See the Android website https://source.android.com/docs/setup/start/requirements.

In addition to the packages requested on the Android website, the following packages are also needed:

sudo apt-get install uuid uuid-dev zlib1g-dev liblz-dev liblzo2-2 \
 liblzo2-dev lzop git curl u-boot-tools mtd-utils \
 android-sdk-libsparse-utils device-tree-compiler gdisk m4 bison \
 flex make libssl-dev gcc-multilib libgnutls28-dev \
 swig liblz4-tool libdw-dev dwarves bc cpio tar lz4 rsync \
 ninja-build clang libelf-dev build-essential libncurses5 \
 xxd unzip efitools

Note:

Configure Git before use. Set the name and email as follows:

• git config --global user.name "First Last"

• git config --global user.email "first.last@company.com"

UG10156 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. android-16.0.0_1.0.0 — 28 October 2025 Document feedback
2 / 78

https://source.android.com/docs/setup/build/building
https://source.android.com/docs/setup/start/requirements
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10156

NXP Semiconductors UG10156
Android User's Guide

To build Android in Docker container, skip this step of installing preceding packages and see Section 3.4 to build
Docker image, which has full i.MX Android build environment.

2.2 Unpacking the Android release package
After you set up a computer running Linux OS, unpack the Android release package by using the following
command:

$ cd ~ (or any other directory you like)
$ tar xzvf imx-android-16.0.0_1.0.0.tar.gz

3 Building the Android Platform for i.MX

3.1 Getting i.MX Android release source code
The i.MX Android release source code consists of three parts:

• NXP i.MX public source code, which is maintained in the GitHub repository.
• AOSP Android public source code, which is maintained in android.googlesource.com.
• NXP i.MX Android proprietary source code package, which is maintained in www.nxp.com.

Assume you have the i.MX Android proprietary source code package imx-android-16.0.0_1.0.0.tar.gz
under the ~/. directory. To generate the i.MX Android release source code build environment, execute the
following commands:

$ mkdir ~/bin
$ curl https://storage.googleapis.com/git-repo-downloads/repo > ~/bin/repo
$ chmod a+x ~/bin/repo
$ export PATH=${PATH}:~/bin
$ source ~/imx-android-16.0.0_1.0.0/imx_android_setup.sh
By default, after preceding command finishes execution, current working
 directory changed to the i.MX Android source code root directory.
${MY_ANDROID} will be referred as the i.MX Android source code root directory
 in all i.MX Android release documentation.
$ export MY_ANDROID=`pwd`

Note:

In the imx_android_setup.sh script, a .xml file that contains the code repository information is specified.
To make the code be synchronized by this script the same as the release state, code repository revision
is specified with the release tag in this file. The release tag is static and is not moved after the code is
published, so no matter when imx_android_setup.sh is executed, the working area of the code repositories
synchronized by this script are the same as the release state and images being built are the same as prebuilt
images.

If a critical issue bugfix is published, another .xml file is published to reflect those changes on the source code.
Then customers need to modify the imx_android_setup.sh. For this release, make the following changes
on the script.

diff --git a/imx_android_setup.sh b/imx_android_setup.sh
index 324ec67..4618679 100644
--- a/imx_android_setup.sh
+++ b/imx_android_setup.sh
@@ -26,7 +26,7 @@ if [! -d "$android_builddir"]; then
 # Create android build dir if it does not exist.
 mkdir "$android_builddir"

UG10156 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. android-16.0.0_1.0.0 — 28 October 2025 Document feedback
3 / 78

https://github.com/nxp-imx
https://android.googlesource.com/
http://www.nxp.com
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10156

NXP Semiconductors UG10156
Android User's Guide

 cd "$android_builddir"
- repo init -u https://github.com/nxp-imx/imx-manifest.git -b imx-android-16
 -m imx-android-16.0.0_1.0.0.xml
+ repo init -u https://github.com/nxp-imx/imx-manifest.git -b imx-android-16
 -m rel_android-16.0.0_1.0.0.xml
 rc=$?
 if ["$rc" != 0]; then
 echo "---"

The wireless-regdb repository may fail to be synchronized with the following log:

fatal: unable to access 'https://git.kernel.org/pub/scm/linux/kernel/git/
sforshee/wireless-regdb/': server certificate verification failed. CAfile: /etc/
ssl/certs/ca-certificates.crt CRLfile: none

If this issue occurs, execute the following command on the host to solve it:

$ git config --global http.sslVerify false

3.2 Building Android images
The Android image can be built after the source code has been downloaded (Section 3.1).

This section provides an overview of how to use the Android build system and what NXP did on it. Then it
provides an example of how to build Android images for a specific board and preparation steps. Customers
could follow these steps to do the preparation work and build the images.

First, the source build/envsetup.sh command is executed to import shell functions that are defined in
${MY_ANDROID}/build/envsetup.sh.

Then, the lunch <ProductName-nxp_stable-BuildMode> command is executed to set up the build
configuration.

The "Product Name" is the Android device name found in directory ${MY_ANDROID}/device/nxp/. Search
for the keyword PRODUCT_NAME under this directory for the product names. The following table lists the i.MX
product names.

Product name Description

evk_8mm i.MX 8M Mini EVK Board

evk_8mn i.MX 8M Nano EVK Board

evk_8mp i.MX 8M Plus EVK Board

evk_8mq i.MX 8M Quad EVK Board

evk_8ulp i.MX 8ULP EVK Board

mek_8q i.MX 8QuadMax/i.MX 8QuadXPlus MEK Board

evk_95 i.MX 95 EVK Board

Table 1. i.MX product names

The "Build Mode" is used to specify what debug options are provided in the final image. The following table lists
the build modes.

UG10156 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. android-16.0.0_1.0.0 — 28 October 2025 Document feedback
4 / 78

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10156

NXP Semiconductors UG10156
Android User's Guide

Build mode Description

user Production ready image, no debug

userdebug Provides image with root access and debug, similar to user

eng Development image with debug tools

Table 2. Build mode

This lunch command can be executed with an argument of ProductName-nxp_stable-BuildMode,
such as lunch evk_8mm-nxp_stable-userdebug. It can also be issued without the argument and a menu
presents for choosing a target.

After the two commands above are executed, the build process is not started yet. It is at a stage that the next
command is necessary to be used to start the build process. The behavior of the i.MX Android build system
used to be aligned with the original Android platform. The make command can start the build process and
all images are built out. There are some differences. A shell script named imx-make.sh is provided and its
symlink file can be found under ${MY_ANDROID} directory, and ./imx-make.sh should be executed first to
start the build process.

The original purpose of this imx-make.sh is to build U-Boot/kernel before building Android images.

Google has started to put a limit on the host tools used when compiling Android code from Android 10.0. Some
host tools necessary for building U-Boot/kernel now cannot be used in the Android build system, which is
under the control of soong_ui, so U-Boot/kernel cannot be built together with Android images. Google also
recommends using prebuilt binaries for U-Boot/kernel in the Android build system. It takes some steps to
build U-Boot/kernel to binaries and put these binaries in proper directories, so some specific Android images
depending on these binaries can be built without error. imx-make.sh is then added to do these steps to
simplify the build work. After U-Boot/kernel is compiled, any build commands in standard Android can be used.

imx-make.sh can also start the soong_ui with the make function in ${MY_ANDROID}/build/
envsetup.sh to build the Android images after U-Boot/kernel is compiled, so customers can still build the i.MX
Android images with only one command with this script.

i.MX Android platform needs some preparation for the first time when building the images. The image build
steps are as follows:

1. Prepare the build environment for U-Boot and Linux kernel.
This step is mandatory because there is no GCC cross-compile tool chain in the one in the AOSP
codebase.
An approach is provided to use the self-installed GCC cross-compile tool chain for both AArch32 and
AArch64.
a. Download the tool chain for the AArch32 and AArch64 on https://developer.arm.com/downloads/-/arm-

gnu-toolchain-downloads page. It is recommended to use the 12.3.Rel1 version for this release. For
AArch32 build, you can download the BareMetal target arm-gnu-toolchain-12.3.rel1-x86_64-
arm-none-eabi.tar.xz. For AArch64 build, you can download the GNU/Linux target arm-gnu-
toolchain-12.3.rel1-x86_64-aarch64-none-linux-gnu.tar.xz.

b. Decompress the file into a path on the local disk, for example, to /opt/. Export variables named
AARCH32_GCC_CROSS_COMPILE and AARCH64_GCC_CROSS_COMPILE to point to the tools as follows:

For AArch32 toolchain
$ sudo tar -xvJf arm-gnu-toolchain-12.3.rel1-x86_64-arm-none-eabi.tar.xz -
C /opt
$ export AARCH32_GCC_CROSS_COMPILE=/opt/arm-gnu-toolchain-12.3.rel1-
x86_64-arm-none-eabi/bin/arm-none-eabi-
For AArch64 toolchain
$ sudo tar -xvJf arm-gnu-toolchain-12.3.rel1-x86_64-aarch64-none-linux-
gnu.tar.xz -C /opt

UG10156 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. android-16.0.0_1.0.0 — 28 October 2025 Document feedback
5 / 78

https://developer.arm.com/downloads/-/arm-gnu-toolchain-downloads
https://developer.arm.com/downloads/-/arm-gnu-toolchain-downloads
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10156

NXP Semiconductors UG10156
Android User's Guide

$ export AARCH64_GCC_CROSS_COMPILE=/opt/arm-gnu-toolchain-12.3.rel1-
x86_64-aarch64-none-linux-gnu/bin/aarch64-none-linux-gnu-

c. Follow the steps below to set the external clang, kernel-build-tools, rust, and clang-tools
tools for kernel building.
sudo git clone -b main-kernel --single-branch --depth 1 \
 https://android.googlesource.com/platform/prebuilts/clang/host/linux-x86 /opt/
android-kernel-prebuilts-6.12/clang/host/linux-x86
cd /opt/android-kernel-prebuilts-6.12/clang/host/linux-x86
sudo git fetch origin 66acdd82ee62e4aaa4248f03191c59dfed9db193
sudo git checkout 66acdd82ee62e4aaa4248f03191c59dfed9db193

sudo git clone -b main --single-branch --depth 1 \
 https://android.googlesource.com/kernel/prebuilts/build-tools /opt/android-
kernel-prebuilts-6.12/kernel-build-tools
cd /opt/android-kernel-prebuilts-6.12/kernel-build-tools
sudo git fetch origin 3c5e4f14b451ec85167c38b917d2459687abd7f4
sudo git checkout 3c5e4f14b451ec85167c38b917d2459687abd7f4

sudo git clone -b main-kernel --single-branch --depth 1 \
 https://android.googlesource.com/platform/prebuilts/rust /opt/android-kernel-
prebuilts-6.12/rust
cd /opt/android-kernel-prebuilts-6.12/rust
sudo git fetch origin 5156e7f81ae254c79ee736e44c960e75ad685c67
sudo git checkout 5156e7f81ae254c79ee736e44c960e75ad685c67

sudo git clone -b main --single-branch --depth 1 \
 https://android.googlesource.com/platform/prebuilts/clang-tools /opt/android-
kernel-prebuilts-6.12/clang-tools
cd /opt/android-kernel-prebuilts-6.12/clang-tools
sudo git fetch origin 17329f6590e2872dcf04a0c96a176be089470cd9
sudo git checkout 17329f6590e2872dcf04a0c96a176be089470cd9

export KERNEL_PREBUILTS_PATH=/opt/android-kernel-prebuilts-6.12

The preceding export commands can be added to /etc/profile. When the host boots up,
AARCH32_GCC_CROSS_COMPILE, AARCH64_GCC_CROSS_COMPILE, and KERNEL_PREBUILTS_PATH are
set and can be directly used.
Note: To build Android in a Docker container, skip this step of installing GCC cross-compile and Clang tools
on the host. See Section 3.3 to build Docker image, which has a full i.MX Android build environment.

2. Change to the top-level build directory.

$ cd ${MY_ANDROID}

3. Set up the environment for building. This only configures the current terminal.

$ source build/envsetup.sh

4. Execute the Android lunch command. In this example, the setup is for the production image of i.MX 8M
Mini EVK Board/Platform device with userdebug type.

$ lunch evk_8mm-nxp_stable-userdebug

Note: Execute the lunch command without any arguments to print the lunch menu. A warning occurs that
the lunch menu cannot be displayed. Execute the following two commands, and then execute the lunch
command to display the menu for selection.

$ export TARGET_RELEASE=nxp_stable
$ build_build_var_cache

5. Execute the imx-make.sh script to generate the image.

$./imx-make.sh -j4 2>&1 | tee build-log.txt

UG10156 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. android-16.0.0_1.0.0 — 28 October 2025 Document feedback
6 / 78

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10156

NXP Semiconductors UG10156
Android User's Guide

The commands below can achieve the same result:

Build U-Boot/kernel with imx-make.sh first, but not to build Android images.
$./imx-make.sh bootloader kernel -j4 2>&1 | tee build-log.txt
build the Android images, with TARGET_IMX_KERNEL=true, the boot.img is
 generated with i.MX kernel tree
$ TARGET_IMX_KERNEL=true make -j4 2>&1 | tee -a build-log.txt
rename the boot.img as boot-imx.img
$ mv $OUT/boot.img $OUT/boot-imx.img
generate boot.img which is the AOSP GKI boot image.
$ make bootimage -j4 2>&1 | tee -a build-log.txt

The output of make command is written to standard output and build-log.txt. If there are any errors when
building the image, error logs can be found in the build-log.txt file for checking.

To change BUILD_ID and BUILD_NUMBER, update build_id.mk in the ${MY_ANDROID}/device/nxp/
directory. For details, see the Android Frequently Asked Questions.

The following outputs are generated by default in ${MY_ANDROID}/out/target/product/evk_8mm:

• root/: Root file system. It is used to generate system.img together with files in system/.
• system/: Android system binary/libraries. It is used to generate system.img together with files in root/.
• recovery/: Root file system, integrated into vendor_boot.img as a part of the RAMDisk and used by the

Linux kernel when the system boots up.
• vendor_ramdisk/: Integrated into vendor_boot.img as a part of the RAMDisk and used by the Linux

kernel when the system boots up.
• ramdisk/: Integrated into the boot image as a part of the RAMDisk and used by the Linux kernel when the

system boots up. Because GKI is enabled on i.MX 8M Mini EVK, this is integrated into boot-imx.img.
• ramdisk.img: Ramdisk image generated from ramdisk/. Not directly used.
• dtbo-imx8mm.img: Board's device tree binary. It is used to support MIPI-to-HDMI output on the i.MX 8M

Mini EVK LPDDR4 board.
• dtbo-imx8mm-m4.img: Board's device tree binary. It is used to support MIPI-to-HDMI output and audio

playback based on Cortex-M4 FreeRTOS on the i.MX 8M Mini EVK LPDDR4 board.
• dtbo-imx8mm-mipi-panel.img: Board's device tree binary. It is used to support RM67199 MIPI Panel

output on the i.MX 8M Mini EVK LPDDR4 board.
• dtbo-imx8mm-mipi-panel-rm67191.img: Board's device tree binary. It is used to support RM67191 MIPI

Panel output on the i.MX 8M Mini EVK LPDDR4 board.
• dtbo-imx8mm-ddr4.img: Board's device tree binary. It is used to support MIPI-to-HDMI output on the i.MX

8M Mini EVK DDR4 board.
• vbmeta-imx8mm.img: Android Verify boot metadata image for dtbo-imx8mm.img.
• vbmeta-imx8mm-m4.img: Android Verify boot metadata image for dtbo-imx8mm-m4.img.
• vbmeta-imx8mm-mipi-panel.img: Android Verify boot metadata image for dtbo-imx8mm-mipi-
panel.img.

• vbmeta-imx8mm-mipi-panel-rm67191.img: Android Verify boot metadata image for dtbo-imx8mm-
mipi-panel-rm67191.img.

• vbmeta-imx8mm-ddr4.img: Android Verify boot metadata image for dtbo-imx8mm-ddr4.img.
• system.img: System image generated from system/ and root/.
• system_dlkm.img: System DLKM image generated from system_dlkm/
• system_ext.img: System extension image generated from system_ext/.
• product.img: Product image generated from product/.
• partition-table-13GB.img: GPT partition table image for single-bootloader condition. Used for 16 GB

SD card and eMMC.

UG10156 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. android-16.0.0_1.0.0 — 28 October 2025 Document feedback
7 / 78

https://community.nxp.com/docs/DOC-342877
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10156

NXP Semiconductors UG10156
Android User's Guide

• partition-table-13GB-dual.img: GPT partition table image for dual-bootloader condition. Used for 16
GB SD card and eMMC.

• partition-table.img: GPT partition table image for single-bootloader condition. Used for 32 GB SD card.
• partition-table-dual.img: GPT partition table image for dual-bootloader condition. Used for 32 GB SD

card.
• u-boot-imx8mm.imx: U-Boot image without Trusty OS integrated for the i.MX 8M Mini EVK LPDDR4 board.
• u-boot-imx8mm-trusty-secure-unlock.imx: U-Boot image with Trusty OS integrated and

demonstration secure unlock mechanism for i.MX 8M Mini EVK LPDDR4 board.
• u-boot-imx8mm-evk-uuu.imx: U-Boot image used by UUU for i.MX 8M Mini EVK LPDDR4 board. It is not

flashed to MMC.
• u-boot-imx8mm-ddr4.imx: U-Boot image for i.MX 8M Mini EVK DDR4 board.
• u-boot-imx8mm-ddr4-evk-uuu.imx: U-Boot image used by UUU for i.MX 8M Mini EVK DDR4 board. It is

not flashed to MMC.
• spl-imx8mm-dual.bin: SPL image without Trusty related configuration for i.MX 8M Mini EVK with

LPDDR4 on board.
• spl-imx8mm-trusty-dual.bin: SPL image with Trusty related configuration for i.MX 8M Mini EVK with

LPDDR4 on board.
• spl-imx8mm-trusty-secure-unlock-dual.bin: Secondary program loader image with Trusty and

secure unlock related configurations for i.MX 8M Mini EVK LPDDR4 board.
• bootloader-imx8mm-dual.img: Bootloader image without Trusty OS integrated for i.MX 8M Mini EVK

with LPDDR4 on board.
• bootloader-imx8mm-trusty-dual.img: Bootloader image with Trusty OS integrated for i.MX 8M Mini

EVK with LPDDR4 on board.
• bootloader-imx8mm-trusty-secure-unlock-dual.img: An image containing U-Boot proper, ATF,

and Trusty OS. It is a demonstration of the secure unlock mechanism for i.MX 8M Mini EVK LPDDR4 board.
• imx8mm_mcu_demo.img: MCU FreeRTOS image to support audio playback on MCU side.
• vendor.img: Vendor image, which holds platform binaries. Mounted at /vendor.
• vendor_dlkm.img: Vendor DLKM image, which holds dynamically loadable kernel modules. Mounted at /
vendor_dlkm.

• super.img: Super image, which is generated with system.img, system_dlkm.img, system_ext.img,
vendor.img, vendor_dlkm.img, and product.img.

• boot.img: A composite image, which includes the AOSP generic kernel image and boot parameters.
• boot-imx.img: A composite image, which includes the kernel image built from i.MX kernel tree and boot

parameters.
• init_boot.img: Generic RAMDisk.
• vendor_boot.img: A composite image, which includes vendor RAMDisk and boot parameters.
• rpmb_key_test.bin: Prebuilt test RPMB key. Can be used to set the RPMB key as fixed 32 bytes 0x00.
• testkey_public_rsa4096.bin: Prebuilt AVB public key. It is extracted from the default AVB private key.

Note:

• To build the U-Boot image separately, see Section 3.4.
• To build the kernel uImage separately, see Section 3.5.
• To build boot.img, see Section 3.6.
• To build dtbo.img, see Section 3.7.

3.2.1 Configuration examples of building i.MX devices

The following table shows examples of using the lunch command to set up different i.MX devices with
userdebug build mode. After the desired i.MX device is set up, the imx-make.sh script is used to start the
build.

UG10156 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. android-16.0.0_1.0.0 — 28 October 2025 Document feedback
8 / 78

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10156

NXP Semiconductors UG10156
Android User's Guide

Board name Lunch command

i.MX 8M Mini EVK board $ lunch evk_8mm-nxp_stable-userdebug

i.MX 8M Nano EVK board $ lunch evk_8mn-nxp_stable-userdebug

i.MX 8M Plus EVK board $ lunch evk_8mp-nxp_stable-userdebug

i.MX 8M Quad WEVK/EVK board $ lunch evk_8mq-nxp_stable-userdebug

i.MX 8ULP EVK Board $ lunch evk_8ulp-nxp_stable-userdebug

i.MX 8QuadMax/i.MX 8QuadXPlus MEK board $ lunch mek_8q-nxp_stable-userdebug

i.MX 95 EVK board $ lunch evk_95-nxp_stable-userdebug

Table 3. i.MX device lunch examples

3.2.2 Build mode selection

There are three types of build mode to select: eng, user, and userdebug.

The userdebug build behaves the same as the user build, with the ability to enable additional debugging that
normally violates the security model of the platform. This makes the userdebug build with greater diagnosis
capabilities for user test.

The eng build prioritizes engineering productivity for engineers who work on the platform. The eng build
turns off various optimizations used to provide a good user experience. Otherwise, the eng build behaves
similar to the user and userdebug builds, so that device developers can see how the code behaves in those
environments.

PRODUCT_PACKAGES_ENG, PRODUCT_PACKAGES_DEBUG and PRODUCT_PACKAGES can be used to specify the
modules to be installed in the appropriate product makefiles.

The modules specified by PRODUCT_PACKAGES are always installed. For the effect of
PRODUCT_PACKAGES_ENG and PRODUCT_PACKAGES_DEBUG, check the description below.

The main differences among the three modes are listed as follows:

• eng: development configuration with additional debugging tools
– Installs modules specified by PRODUCT_PACKAGES_ENG and/or PRODUCT_PACKAGES_DEBUG.
– Installs modules according to the product definition files.
– ro.secure=0
– ro.debuggable=1
– ro.kernel.android.checkjni=1
– adb is enabled by default.

• user: limited access; suited for production
– Installs modules tagged with user.
– Installs modules according to the product definition files.
– ro.secure=1
– ro.debuggable=0
– adb is disabled by default.

• userdebug: like user but with root access and debuggability; preferred for debugging
– Installs modules specified by PRODUCT_PACKAGES_DEBUG.
– Installs modules according to the product definition files.
– ro.debuggable=1
– adb is enabled by default.

UG10156 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. android-16.0.0_1.0.0 — 28 October 2025 Document feedback
9 / 78

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10156

NXP Semiconductors UG10156
Android User's Guide

To build of Android images, an example for the i.MX 8M Mini EVK LPDDR4 target is:

$ cd ${MY_ANDROID}
$ source build/envsetup.sh #set env
$ lunch evk_8mm-nxp_stable-userdebug
$./imx-make.sh -j4

The commands below can achieve the same result.

$ cd ${MY_ANDROID}
$ source build/envsetup.sh
$ lunch evk_8mm-nxp_stable-userdebug
$./imx-make.sh bootloader kernel -j4
$ make -j4

For more Android platform building information, see https://source.android.com/docs/setup/build/building.

3.2.3 Building with GMS package

Get the Google Mobile Services (GMS) package from Google. Put the GMS package into the
${MY_ANDROID}/vendor/partner_gms folder. Make sure that the product.mk file has the following line:

$(call inherit-product-if-exists, vendor/partner_gms/products/gms.mk)

Then build the images. The GMS package is then installed into the target images.

Note:

product.mk means the build target make file. For example, for i.MX 8M Mini EVK Board, the product.mk is
named device/nxp/imx8m/evk_8mm/evk_8mm.mk.

3.2.4 Building 32-bit and 64-bit images

The default is to build 64-bit-only images. To build 32-bit and 64-bit images, export the environment variables
before building.

build 32-bit and 64-bit images:
 $ export IMX_BUILD_32BIT_64BIT_ROOTFS=1

Then, see the build steps in Section 3.2 to build images.

3.3 Building an Android image With Docker
The Dockerfile can be found in the directory ${MY_ANDROID}/device/nxp/common/dockerbuild/, which
sets up a Ubuntu 20.04 image ready to build i.MX Android OS. You can use it to generate your own Docker
image with full i.MX Android build environment. The process is as follows:

1. Build the Docker image:

$ cd ${Dockerfile_path}
${Dockerfile_path} can be ${MY_ANDROID}/device/nxp/common/dockerbuild/, or
 another path that you moved the Dockerfile to.
$ docker build --no-cache --build-arg userid=$(id -u) --build-arg groupid=
$(id -g) --build-arg username=$(id -un) -t <docker_image_name> .
<docker_image_name> can be whatever you want, such as 'android-build'.
'.' means using the current directory as the build context, it specifies
 where to find the files for the “context” of the build on the Docker daemon.

UG10156 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. android-16.0.0_1.0.0 — 28 October 2025 Document feedback
10 / 78

https://source.android.com/docs/setup/build/building
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10156

NXP Semiconductors UG10156
Android User's Guide

2. Start up a new container and mount your Android source codes to it with:

$ docker run --privileged -it -v ${MY_ANDROID}:/home/$(id -un)/android_src
 <docker_image_name>
> cd ~/android_src; source build/envsetup.sh
> lunch evk_8mm-nxp_stable-userdebug
> ./imx-make.sh -j4 2>&1 | tee build-log.txt

3. You can get the image what you want:

> exit
$ cd ${MY_ANDROID}/out/target/product/evk_8mm

Note:

• If it fails to use the apt command to install packages in the process of Docker image build, configure the
HTTP proxy. First, copy your host apt.conf with cp /etc/apt/apt.conf ${Dockerfile_path}/
apt.conf, or create a stripped down version. Then, remove the symbol "#" from the related content in
Dockerfile.

• If it fails to install clang tools in the process of Docker image build, remove the symbol "#" from the related
content in Dockerfile, and try to build it again.

• If you manage Docker as a non-root user, preface the docker command with sudo, such as sudo docker
build ... and sudo docker run

• You can use the command docker images to see the existing Docker image and use docker ps -a to
see the existing container. For other docker commands, see Docker Docs web.

• The Android build content above is taking the i.MX 8M Mini EVK board as an example. To build other board
images or single image, refer to the other content of this section.

3.4 Building U-Boot images
The U-Boot images can be generated separately. For example, you can generate a U-Boot image for i.MX 8M
Mini EVK as follows:

U-Boot image for i.MX 8M Mini EVK board
$ cd ${MY_ANDROID}
$ source build/envsetup.sh
$ lunch evk_8mm-nxp_stable-userdebug
$./imx-make.sh bootloader -j4

For other platforms, use lunch <ProductName-nxp_stable-BuildMode> to set up the build configuration.
For detailed build configuration, see Section 3.2. Multiple U-Boot variants are generated for different purposes.
For more details, check {MY_Android}/device/nxp/{MY_PLATFORM}/{MY_PRODUCT}/UbootKernel
BoardConfig.mk.

To generate a U-Boot image with trusty, the size of bootloader image may be larger than the
corresponding partition size, especially for the single bootloader configuration. You can build image with
USE_TEE_COMPRESS=true to compress the TEE images. For example, execute the following command to
compress the TEE image and generate a U-Boot image with a smaller size.

$ USE_TEE_COMPRESS=true ./imx-make.sh bootloader -j4

There is also an environment variable BUILD_ENCRYPTED_BOOT used to choose whether to insert a dummy
dek_blob (dek_blob_fit_dummy.bin) to the compiled image, where the real dek_blob is inserted when

UG10156 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. android-16.0.0_1.0.0 — 28 October 2025 Document feedback
11 / 78

https://docs.docker.com/get-started/overview/
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10156

NXP Semiconductors UG10156
Android User's Guide

encrypting the image. Execute the following command to generate a set of images with dummy dek_blob, but
only the image with trusty_secure_unlock_dual supports encrypted boot.

$ BUILD_ENCRYPTED_BOOT=true ./imx-make.sh bootloader -j4

Note: The command above only applies to i.MX 8M Plus, i.MX 8M Mini, i.MX8M Nano, and i.MX 8MQuad.
More details about encrypted boot, See Sections "Encrypted boot with AHAB" and "Encrypted boot with HABv4"
in the i.MX Android Security User's Guide (UG10158).

The following table lists the U-Boot configurations and images for i.MX 8M Mini EVK.

SoC U-Boot configuration Generated image Description

i.MX 8M Mini imx8mm_evk_android_
defconfig

u-boot-imx8mm.imx Default i.MX 8M Mini U-Boot
image if trusty is not enabled.

i.MX 8M Mini imx8mm_evk_android_dual_
defconfig

spl-imx8mm-dual.bin,
bootloader-imx8mm-dual.
img

i.MX 8M Mini U-Boot image with
dual-bootloader feature enabled.

i.MX 8M Mini imx8mm_evk_android_
trusty_dual_defconfig

spl-imx8mm-trusty-dual.
bin, bootloader-imx8mm-
trusty-dual.img

i.MX 8M Mini U-Boot image with
trusty and dual-bootloader feature
enabled.

i.MX 8M Mini imx8mm_evk_android_
trusty_rbidx_blob_dual_
defconfig

spl-imx8mm-trusty-rbidx-
blob-dual.bin, bootloader-
imx8mm-trusty-rbidx-blob-
dual.img

i.MX 8M Mini U-Boot image with
trusty, encrypted rollback index,
and dual-bootloader feature
enabled.

i.MX 8M Mini imx8mm_evk_android_
trusty_secure_unlock_
dual_defconfig

spl-imx8mm-trusty-
secure-unlock-dual.bin,
bootloader-imx8mm-trusty-
secure-unlock-dual.img

i.MX 8M Mini U-Boot with
trusty, secure unlock, and dual-
bootloader feature enabled.

i.MX 8M Mini imx8mm_ddr4_evk_android_
defconfig

u-boot-imx8mm-ddr4.imx i.MX 8M Mini U-Boot image with
DDR4 DRAM chip.

i.MX 8M Mini imx8mm_evk_android_uuu_
defconfig

u-boot-imx8mm-evk-uuu.imx U-Boot image meant for flashing
images for i.MX 8M Mini EVK.
 It should not be shipped to end
users.

i.MX 8M Mini imx8mm_ddr4_evk_android_
uuu_defconfig

u-boot-imx8mm-ddr4-evk-
uuu.imx

U-Boot image meant for flashing
images for i.MX 8M Mini EVK with
DDR4 DRAM chip. It should not
be shipped to end users.

Table 4. U-Boot configurations and images for i.MX 8M Mini EVK

3.5 Building a kernel image
Kernel image is automatically built when building the Android root file system.

The following are the default Android build commands to build the kernel image:

$ cd ${MY_ANDROID}
$ source build/envsetup.sh
$ lunch evk_8mm-nxp_stable-userdebug
$./imx-make.sh kernel -c -j4

The kernel images are found in ${MY_ANDROID}/out/target/product/evk_8mm/obj/KERNEL_OBJ/
arch/arm64/boot/Image.

UG10156 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. android-16.0.0_1.0.0 — 28 October 2025 Document feedback
12 / 78

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10156

NXP Semiconductors UG10156
Android User's Guide

3.6 Building boot.img
The following commands are used to generate boot.img and boot-imx.img under Android environment:

Boot image for i.MX 8M Mini EVK LPDDR4 board
$ source build/envsetup.sh
$ lunch evk_8mm-nxp_stable-userdebug
$./imx-make.sh bootimage -j4

The commands below can achieve the same result:

Boot image for i.MX 8M Mini EVK board
$ source build/envsetup.sh
$ lunch evk_8mm-nxp_stable-userdebug
$./imx-make.sh kernel -j4
$ TARGET_IMX_KERNEL=true make bootimage -j4
$ mv $OUT/boot.img $OUT/boot-imx.img
$ make bootimage -j4

For other platforms, use lunch <ProductName-nxp_stable-buildMode> to set up the build configuration.
For detailed build configuration, see Section 3.2.

3.7 Building dtbo.img
DTBO image holds the device tree binary of the board.

The following commands are used to generate dtbo.img under Android environment:

dtbo image for i.MX 8M Mini EVK LPDDR4 board
$ source build/envsetup.sh
$ lunch evk_8mm-nxp_stable-userdebug
$./imx-make.sh dtboimage -j4

The commands below can achieve the same result:

dtbo image for i.MX 8M Mini EVK board
$ source build/envsetup.sh
$ lunch evk_8mm-nxp_stable-userdebug
$./imx-make.sh kernel -j4
$ make dtboimage -j4

For other platforms, use lunch <ProductName-nxp_stable-buildMode> to set up the build configuration.
For detailed build configuration, see Section 3.2.

4 Running the Android Platform with a Prebuilt Image

To test the Android platform before building any code, use the prebuilt images from the following packages and
go to Section 5 and Section 6.

Image package Description

android-16.0.0_1.0.0_image_
8mmevk.tar.gz

Prebuilt-image for i.MX 8M Mini EVK LPDDR4 board, which includes NXP
extended features.

Table 5. Image packages

UG10156 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. android-16.0.0_1.0.0 — 28 October 2025 Document feedback
13 / 78

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10156

NXP Semiconductors UG10156
Android User's Guide

Image package Description

android-16.0.0_1.0.0_image_
8mnevk.tar.gz

Prebuilt-image for i.MX 8M Nano EVK board, which includes NXP extended
features.

android-16.0.0_1.0.0_image_
8mpevk.tar.gz

Prebuilt-image for i.MX 8M Plus EVK board, which includes NXP extended
features.

android-16.0.0_1.0.0_image_
8mqevk.tar.gz

Prebuilt-image for i.MX 8M Quad EVK board, which includes NXP extended
features.

android-16.0.0_1.0.0_image_
8ulpevk.tar.gz

Prebuilt-image for i.MX 8ULP EVK board, which includes NXP extended features.

android-16.0.0_1.0.0_image_
95evk.tar.gz

Prebuilt-image for i.MX 95 EVK board, which includes NXP extended features.

Table 5. Image packages...continued

5 Programming Images

The images from the prebuilt release package or created from source code contain the U-Boot bootloader,
system image, GPT image, vendor image, and vbmeta image. At a minimum, the storage devices on the
development system (MMC/SD or NAND) must be programmed with the U-Boot bootloader. The i.MX 8 and
i.MX 9 series boot process determines what storage device to access based on the switch settings. When the
bootloader is loaded and begins execution, the U-Boot environment space is then read to determine how to
proceed with the boot process. For U-Boot environment settings, see Section 6.

The following download methods can be used to write the Android System Image:

• UUU to download all images to the eMMC or SD card.
• imx-sdcard-partition.sh to download all images to the SD card.
• fastboot_imx_flashall script to download all images to the eMMC or SD storage.

5.1 System on eMMC/SD
The images needed to create an Android system on eMMC/SD can either be obtained from the release
package or be built from source.

The images needed to create an Android system on eMMC/SD are listed below. In some conditions, an MCU
image is also needed, and it is not listed below.

• U-Boot image: u-boot.imx / spl.bin, bootloader.img
• GPT table image: partition-table.img
• Android dtbo image: dtbo.img
• Android boot image: boot.img
• Android initialization boot image: init_boot.img
• Android vendor boot image: vendor_boot.img
• Android super image: super.img
• Android verify boot metadata image: vbmeta.img

5.1.1 Storage partitions

The layout of the eMMC card for Android system is shown below:

• [Partition type/index] which is defined in the GPT.
• [Start Offset] shows where partition is started, unit in MB.

UG10156 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. android-16.0.0_1.0.0 — 28 October 2025 Document feedback
14 / 78

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10156

NXP Semiconductors UG10156
Android User's Guide

The userdata partition is used to put the unpacked codes/data of the applications, system configuration
database, and so on. In normal boot mode, the root file system is first mounted with RAMDisk from boot
partition, and then the logical system partition is mounted and switched as root. In recovery mode, the root file
system is mounted with RAMDisk from the boot partition.

Partition
type/index

Name Start offset Size File system Content

N/A bootloader0 Listed in the
following table

4 MB N/A spl.imx/u-boot.imx

(1) bootloader_a 8 MB 16 MB N/A bootloader.img

(2) bootloader_b Following
bootloader_a

16 MB N/A bootloader.img

1/(3) dtbo_a 8 MB (following
bootloader_b)

4 MB N/A dtbo.img

2/(4) dtbo_b Follow dtbo_a 4 MB N/A dtbo.img

3 (5) boot_a Follow dtbo_b 64 MB boot.img format,
a kernel + part of
RAMDisk

boot.img

4 (6) boot_b Follow boot_a 64 MB boot.img format,
a kernel + part of
RAMDisk

boot.img

5 (7) init_boot_a Follow boot_b 8 MB part of RAMdisk init_boot.img

6 (8) init_boot_b Follow init_
boot_a

8 MB part of RAMdisk init_boot.img

7 (9) vendor_boot_a Follow
init_boot_b

64 MB Part of RAMDisk vendor_boot.img

8 (10) vendor_boot_a Follow boot_b 64 MB Part of RAMDisk vendor_boot.img

9 (11) misc Follow
vendor_boot_b

4 MB N/A For recovery storage
bootloader message, reserve.

10 (12) metadata Follow misc 64 MB f2fs Metadata of OTA update,
remount, and so on.

11 (13) presistdata Follow metadata 1 MB N/A the option to operate unlock
\unlock

12 (14) super Follow
presistdata

4096 MB N/A system.img, system_dlkm.
img, system_ext.img,
vendor.img, vendor_dlkm.
img, and product.img

13 (15) userdata Follow super Remained
space

f2fs Application data storage for
system application. And for
emulated storage, in /data/
media/<user_id> dir.

14 (6) fbmisc Follow userdata 1 MB N/A To store the state of lock/
unlock.

15 (17) vbmeta_b Follow fbmisc 1 MB N/A To store the verify boot's
metadata.

16 (18) vbmeta_b Follow vbmeta_a 1 MB N/A To store the verify boot's
metadata.

Table 6. Storage partitions

UG10156 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. android-16.0.0_1.0.0 — 28 October 2025 Document feedback
15 / 78

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10156

NXP Semiconductors UG10156
Android User's Guide

SoC bootloader0 offset in eMMC boot0
partition

bootloader0 offset in SD card

i.MX 8M Mini 33 KB 33 KB

i.MX 8M Nano 0 32 KB

i.MX 8M Plus 0 32 KB

i.MX 8M Quad 33 KB 33 KB

i.MX 8ULP 0 32 KB

i.MX 8Quad Max Rev.B 0 32 KB

i.MX 8QuadXPlus Rev.B 32 KB 32 KB

i.MX 8QuadXPlus Rev.C 0 32 KB

i.MX 95 0 32 KB

Table 7. bootloader0 offset

Note:

For the preceding table, in the "Partition Type/Index" column and "Start offset" column, the contents in brackets
is specific for dual-bootloader condition.

To create these partitions, use UUU described in the Android Quick Start Guide (UG10157), or use format tools
in the prebuilt directory.

The script below can be used to partition an SD card and download images to them as shown in the partition
table above:

$ sudo ./imx-sdcard-partition.sh -f <soc_name> -D
 <directory_containing_the_images> /dev/sdX
<soc_name> can be as imx8mm, imx8mn, imx8mp, imx8mq, imx8qm, imx8qxp, imx95.

Note:

• The SD card should be connected to the host via a USB adapter.
• The minimum size of SD card is 16G bytes.
• The -c option with an argument can be used to select a proper partition table image based on the SD card

volume size. If it is not used, the default partition-table.img or partition-table-dual.img is
used. Check the Android Quick Start Guide (UG10157) for the target SD card volume size of the partition
table images.

• In /dev/sdX, the X is the disk index from 'a' to 'z', which varies on each Linux PC.
• Unmount all the SD card partitions before running the script.
• If the images to be flashed are in the same directory as imx-sdcard-partition.sh, there is no need to

use -D <directory_containing_the_images>.
• This script requires the simg2img tool to be installed on your PC. The simg2img is a tool, which converts

Android sparse images to raw images on the Linux host PC. The android-tools-fsutils package
includes the simg2img command for Ubuntu Linux.

5.1.2 Downloading images with UUU

UUU can be used to download all images into a target device. It is a quick and easy tool for downloading
images. See the Android Quick Start Guide (UG10157) for detailed description of UUU.

UG10156 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. android-16.0.0_1.0.0 — 28 October 2025 Document feedback
16 / 78

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10156

NXP Semiconductors UG10156
Android User's Guide

5.1.3 Downloading images with fastboot_imx_flashall script

UUU can be used to flash the Android system image into the board, but it needs to make the board enter serial
download mode first, and make the board enter boot mode once flashing is finished.

A new fastboot_imx_flashall script is supported to use fastboot to flash the Android system image into
the board. It is more flexible. To use the new script, the board must be able to enter fastboot mode and the
device must be unlocked. The table below lists the fastboot_imx_flashall scripts.

Name Host system to execute the script

fastboot_imx_flashall.sh Linux OS

fastboot_imx_flashall.bat Windows OS

Table 8. fastboot_imx_flashall script

With the help of fastboot_imx_flashall scripts, you do not need to use fastboot to flash Android images
one-by-one manually. These scripts automatically flash all images with only one command.

With virtual A/B feature enabled, your host fastboot tool version should be equal to or later than 30.0.4. You
can download the host fastboot tool from the Android website or build it with the Android project. Based on
Section 3.2, follow the steps below to build fastboot:

$ cd ${MY_ANDROID}
$ make -j4 fastboot

After the build process finishes building fastboot, the directory to find the fastboot is as follows:

• Linux version binary file: ${MY_ANDROID}/out/host/linux-x86/bin
• Windows version binary file: ${MY_ANDROID}/out/host/windows-x86/bin

The way to use these scripts is follows:

• Linux shell script usage: sudo fastboot_imx_flashall.sh <option>
• Windows batch script usage: fastboot_imx_flashall.bat <option>

Options:
 -h Displays this help message
 -f soc_name Flashes the Android image file with soc_name
 -a Only flashes the image to slot_a
 -b Only flashes the image to slot_b
 -c card_size If this option is not used, partition-table.img or
 partition-table-dual.img is flashed
 If this option is used, partition-table-
<card_size>GB.img or partition-table-<card_size>GB-dual.img is flashed
 Make sure the corresponding partition table image file
 exists.
 -m Flashes the MCU image.
 -u uboot_feature Flashes U-Boot or spl&bootloader images with
 "uboot_feature" in their names
 For Standard Android:
 If the parameter after "-u" option contains the
 string of "dual", the spl&bootloader image is flashed;
 Otherwise U-Boot image is flashed.
 For Android Automative:
 Only dual-bootloader feature is supported. By
 default, spl&bootloader image is flashed.
 -d dtb_feature Flashes dtbo, vbmeta and recovery image file with
 "dtb_feature" in their names

UG10156 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. android-16.0.0_1.0.0 — 28 October 2025 Document feedback
17 / 78

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10156

NXP Semiconductors UG10156
Android User's Guide

 If not set, use default dtbo, vbmeta and recovery
 image
 -e Erases user data after all image files are flashed.
 -l Locks the device after all image files are flashed.
 -D directory Directory of images.
 If this script is execute in the directory of the images,
 it does not need to use this option.
 -s ser_num Serial number of the board.
 If only one board connected to computer, it does not need
 to use this option

Note:

• The -f option is mandatory. The SoC name can be imx8mm, imx8mn, imx8mp, imx8mq, imx8qm, imx8qxp,
and imx95.

• i.MX 8ULP EVK does not support the -m option in this script. To flash the MCU image for i.MX 8ULP EVK, use
the uuu_imx_android_flash scripts.

• The -c option chooses the partition table image. For the suitable storage size of a partition table image, see
the Android Quick Start Guide (UG10157).

• Boot the device to U-Boot fastboot mode, and then execute these scripts. The device should be unlocked first.

Example:

sudo ./fastboot_imx_flashall.sh -f imx8mm -a -e -u trusty-dual -D /imx_android/
evk_8mm/

Options explanation:

• -f imx8mm: Flashes images for i.MX 8M Mini EVK Board.
• -a: Only flashes slot a.
• -e: Erases user data after all image files are flashed.
• -D /imx_android/evk_8mm/: Images to be flashed are in the directory of /imx_android/evk_8mm/.
• -u trusty-dual: Flashes spl-imx8mm-trusty-dual.bin and bootloader-imx8mm-trusty-
dual.img.

5.1.4 Downloading a single image with fastboot

Sometimes only a single image needs to be flashed again with fastboot for debug purpose.

With dynamic partition feature enabled, fastboot is also implemented in userspace (recovery) in addition to
the implementation in U-Boot. The partitions are categorized into three. Fastboot implemented in U-Boot and
userspace can individually recognize part of the partitions. The relationship between them are listed in the
following table.

Partition category Partition Can be recognized by

U-Boot hard-coded partition bootloader0, gpt, mcu_os U-Boot fastboot

EFI partition boot_a, boot_b, vendor_boot_a, vendor_boot_
b, dtbo_a, dtbo_b, vbmeta_a, vbmeta_b, misc,
metadata, presistdata, super, userdata, fbmisc

U-Boot fastboot, userspace
fastboot

Logical partition system_a, system_b, system_ext_a, system_dlkm_a,
system_dlkm_b, system_ext_b, vendor_a, vendor_
b, vendor_dlkm_a, vendor_dlkm_b, product_a,
product_b

Userspace fastboot

Table 9. Relationship between partitions

UG10156 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. android-16.0.0_1.0.0 — 28 October 2025 Document feedback
18 / 78

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10156

NXP Semiconductors UG10156
Android User's Guide

To enter U-Boot fastboot mode, for example, make the board enter U-Boot command mode, and execute the
following command on the console:

> fastboot 0

To enter userspace fastboot mode, two commands are provided as follows for different conditions. You may
need root permission on Linux OS:

board in U-Boot fastboot mode, execute the following command on the host
$ fastboot reboot fastboot
board boot up to the Android system, execute the following command on the host
$ adb reboot fastboot

To use fastboot tool on the host to operate on a specific partition, choose the proper fastboot implemented on
the device, which can recognize the partition to be operated on. For example, to flash the system.img to the
partition of system_a, make the board enter userspace fastboot mode, and execute the following command on
the host:

$ fastboot flash system_a system.img

6 Booting

This chapter describes booting from eMMC/SD.

6.1 Booting from SD/eMMC

6.1.1 Booting from SD/eMMC on the i.MX 8M Mini EVK board

The following tables list the boot switch settings to control the boot storage for Rev. C boards with LPDDR4.

Boot device switch SW1101 (1-10 bit) SW1102 (1-10 bit)

SD boot 0110110010 0001101000

Download mode 1010xxxxxx xxxxxxxxxx

eMMC boot 0110110001 0001010100

Table 10. Boot device switch settings

To test booting from SD, change the board Boot_Mode switch to SW1101 0110110010 (1-10 bit) and SW1102
0001101000 (1-10 bit).

To test booting from eMMC, change the board Boot_Mode switch to SW1101 0110110010 (1-10 bit) and
SW1102 0001010100 (1-10 bit).

The default environment is in boot.img. To use the default environment in boot.img, do not set bootargs
environment in U-Boot.

To clear the bootargs environment being set and saved before, use the following command:

U-Boot > setenv bootargs
U-Boot > saveenv #Save the environments

Note:

UG10156 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. android-16.0.0_1.0.0 — 28 October 2025 Document feedback
19 / 78

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10156

NXP Semiconductors UG10156
Android User's Guide

bootargs environment is an optional setting for boota. The boot.img includes a default bootargs, which is
used if there is no bootargs defined in U-Boot.

6.1.2 Booting from SD/eMMC on the i.MX 8M Nano board

The following tables list the boot switch settings to control the boot storage.

Boot mode switch SW1101 (from 1-4 bit)

SD boot 1100

eMMC boot 0100

Download mode 1000

Table 11. Boot device switch settings

• To boot from SD, change the board Boot_Mode switch to SW1101 1100 (from 1-4 bit).
• To boot from eMMC, change the board Boot_Mode switch to SW1101 0100 (from 1-4 bit).

The default environment is in boot.img. To use the default environment in boot.img, do not set bootargs
environment in U-Boot.

To clear the bootargs environment being set and saved before, use the following command:

U-Boot > setenv bootargs
U-Boot > saveenv #Save the environments

Note:

bootargs environment is an optional setting for boota. The boot.img includes a default bootargs, which is
used if there is no bootargs defined in U-Boot.

6.1.3 Booting from SD/eMMC on the i.MX 8M Plus EVK board

The following tables list the boot switch settings to control the boot storage.

Boot mode switch SW4

SD boot 0011

eMMC boot 0010

Download mode 0001

Table 12. Boot device switch settings

• To boot from SD, change the board Boot_Mode switch SW4 to 0011 (from 1-4 bit).
• To boot from eMMC, change the board Boot_Mode switch SW4 to 0010 (from 1-4 bit).

The default environment is in boot.img. To use the default environment in boot.img, do not set bootargs
environment in U-Boot.

To clear the bootargs environment being set and saved before, use the following command:

U-Boot > setenv bootargs
U-Boot > saveenv #Save the environments

Note:

bootargs environment is an optional setting for boota. The boot.img includes a default bootargs, which is
used if if there is no bootargs defined in U-Boot.

UG10156 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. android-16.0.0_1.0.0 — 28 October 2025 Document feedback
20 / 78

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10156

NXP Semiconductors UG10156
Android User's Guide

6.1.4 Booting from SD/eMMC on the i.MX 8M Quad WEVK/EVK board

The following tables list the boot switch settings to control the boot storage.

Boot device switch External SD card eMMC

SW01 (1-2 bit) 1100 0010

Table 13. Boot device switch settings

Boot mode switch Download Mode (MfgTool mode) Boot mode

SW02 (1-2 bit) 01 10

Table 14. Boot mode switch settings

To test booting from SD, change the board Boot_Mode switch to 10 (1-2 bit) and SW801 1100 (1-4 bit).

To test booting from eMMC, change the board Boot_Mode switch to 10 (1-2 bit) and SW801 0010 (1-4 bit).

The default environment is in boot.img. To use the default environment in boot.img, do not set bootargs
environment in U-Boot.

To clear the bootargs environment being set and saved before, use the following command:

U-Boot > setenv bootargs
U-Boot > saveenv # Save the environments

Note:

bootargs environment is an optional setting for boota. The boot.img includes a default bootargs, which is
used if if there is no bootargs defined in U-Boot.

6.1.5 Booting from eMMC on the i.MX 8ULP EVK board

The following tables list the boot switch settings to control the boot storage.

Boot mode switch SW5 (from 1-8 bit)

eMMC boot 00000001

Download mode 00000010

Table 15. Boot device switch settings

The default environment is in boot.img. To use the default environment in boot.img, do not set bootargs
environment in U-Boot.

To clear the bootargs environment being set and saved before, use the following command:

U-Boot > setenv bootargs
U-Boot > saveenv # Save the environments

6.1.6 Booting from SD/eMMC on the i.MX 8QuadMax MEK board

The following tables list the boot switch settings to control the boot storage.

UG10156 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. android-16.0.0_1.0.0 — 28 October 2025 Document feedback
21 / 78

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10156

NXP Semiconductors UG10156
Android User's Guide

Boot mode switch SW2 (from 1-6 bit)

SD boot 001100

eMMC boot 000100

Download mode 001000

Table 16. Boot device switch settings

To test booting from SD, change the board Boot_Mode switch to 001100 (1-6 bit).

To test booting from eMMC, change the board Boot_Mode switch to 000100 (1-6 bit).

The default environment is in boot.img. To use the default environment in boot.img, do not set bootargs
environment in U-Boot.

To clear the bootargs environment being set and saved before, use the following command:

U-Boot > setenv bootargs
U-Boot > saveenv # Save the environments

Note:

bootargs environment is an optional setting for boota. The boot.img includes a default bootargs, which is
used if if there is no bootargs defined in U-Boot.

6.1.7 Booting from SD/eMMC on the i.MX 8QuadXPlus MEK board

The following tables list the boot switch settings to control the boot storage.

Boot mode switch SW2 (from 1-4 bit)

SD boot 1100

eMMC boot 0100

Download mode 1000

Table 17. Boot device switch settings

To test booting from SD, change the board Boot_Mode switch to 1100 (1-4 bit).

To test booting from eMMC, change the board Boot_Mode switch to 0100 (1-4 bit).

The default environment is in boot.img. To use the default environment in boot.img, do not set bootargs
environment in U-Boot.

To clear the bootargs environment being set and saved before, use the following command:

U-Boot > setenv bootargs
U-Boot > saveenv # Save the environments

Note:

bootargs environment is an optional setting for boota. The boot.img includes a default bootargs, which is
used if if there is no bootargs defined in U-Boot.

6.1.8 Booting from SD/eMMC on the i.MX 95 EVK board

The following tables list the boot switch settings to control the boot storage.

UG10156 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. android-16.0.0_1.0.0 — 28 October 2025 Document feedback
22 / 78

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10156

NXP Semiconductors UG10156
Android User's Guide

Boot mode switch SW7 (from 1-4 bit)

SD boot 1011

eMMC boot 1010

Download mode 1001

Table 18. Boot device switch settings

To test booting from SD, change the board Boot_Mode switch to SW7 1011 (from 1-4 bit).

To test booting from eMMC, change the board Boot_Mode switch to SW7 1010 (from 1-4 bit).

The default environment is in boot.img. To use the default environment in boot.img, do not set bootargs
environment in U-Boot.

To clear the bootargs environment being set and saved before, use the following command:

U-Boot > setenv bootargs
U-Boot > saveenv #Save the environments

Note:

bootargs environment is an optional setting for boota. The boot.img includes a default bootargs, which is
used if there is no bootargs defined in U-Boot.

6.2 Boot-up configurations
This section explains some common boot-up configurations such as U-Boot environments, kernel command
line, and DM-verity configurations.

6.2.1 U-Boot environment

• bootcmd: the first command to run after U-Boot boot.
• bootargs: the kernel command line, which the bootloader passes to the kernel. As described in

Section 6.2.2, bootargs environment is optional for booti. boot.img already has bootargs. If you
do not define the bootargs environment, it uses the default bootargs inside the image. If you have the
environment, it is then used.
To use the default environment in boot.img, use the following command to clear the bootargs
environment.

> setenv bootargs

If the environment variable append_bootargs is set, the value of append_bootargs is appended to
bootargs automatically, which facilitates the feature enable/disable during development. However, all kernel
command lines should be fixed in code and the append_bootargs should be disabled in formal release
images. See Section "Disabling development options in U-Boot" in the i.MX Android Security User's Guide
(UG10158).

• boota:
boota command parses the boot.img header to get the Image and ramdisk. It also passes the bootargs
as needed (it only passes bootargs in boot.img when it cannot find bootargs variable in your U-Boot
environment). To boot up the Android system, execute the following command:

> boota

To boot into recovery mode, execute the following command:

> boota recovery

UG10156 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. android-16.0.0_1.0.0 — 28 October 2025 Document feedback
23 / 78

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10156

NXP Semiconductors UG10156
Android User's Guide

6.2.2 Kernel command line (bootargs)

Depending on the different booting/usage scenarios, you may need different kernel boot parameters set for
bootargs.

Kernel parameter Description Typical value Used when

console Where to output kernel log by
printk.

console=ttymxc0 i.MX 8M Mini uses
console=ttymxc1.

init Tells kernel where the init file
is located.

init=/init All use cases. init in the
Android platform is located in
"/" instead of in "/sbin".

androidboot.console The Android shell console.
 It should be the same as
console=.

androidboot.console=ttymxc0 To use the default shell job
control, such as Ctrl+C to
terminate a running process,
set this for the kernel.

cma CMA memory size for GPU/
VPU physical memory
allocation.

cma=800M or cma=1280M or
cma=800M@0x960M-0xe00M
• For i.MX 8M Mini and i.MX 8QuadMax, it

is 800 MB by default.
• For i.MX 8M Quad WEVK/EVK, it is 1280

MB by default.
• For i.MX 8QuadXPlus and 8QuadMax, it is

800 MB by default.
• For i.MX 95 EVK, it is 1024M@0xBF0M-

0xFF0M by default.

Start address is 0x96000000
 and end address is 0xDFFF
FFFFF. The CMA size can
be configured to other value,
but cannot exceed 1184 MB,
because the Cortex-M4 core
also allocates memory from
CMA and Cortex-M4 cannot
use the memory larger than
0xDFFFFFFFF.

androidboot.selinux Argument to disable selinux
check when userdebug/eng
build images are used. For
details about selinux, see
Security-Enhanced Linux in
Android.

androidboot.selinux=permissive Setting this argument also
bypasses all the selinux rules
defined in Android system.
 It is recommended to set
this argument for internal
developer.

androidboot.primary_
display

It is used to chose and fix
primary display.

androidboot.primary_display=imx-
drm

androidboot.primary_
display=mxsfb-drm is
only used for MIPI display.

androidboot.lcd_
density

It is used to set the display
density and over write
ro.sf.lcd_density in
init.rc for MIPI-DSI-to-
HDMI display.

androidboot.lcd_density=160 -

androidboot.
displaymode

It is used to configure the
kernel/driver work mode/fps.

• 4K display should be configured as:
androidboot.displaymode=4k. The
default fps is 60 fps. To configure fps,
change this value to 4kp60/4kp50/4kp30.

• 1080p display should be configured as:
androidboot.displaymode=1080p.
The default fps is 60fps. To configure fps,
change this value to 1080p60/1080p50/
1080p30.

• 720p display should be configured as:
androidboot.displaymode=720p.
The default fps is 60fps. To configure fps,
change this value to 720p60/720p50/
720p30.

• 480p display should be configured as:
androidboot.displaymode=480p.
The default FPS is 60fps. To configure
fps, change this value to 480p60/480p50/
480p30.

The system will find out and
work at the best display
mode, and display mode
can be changed through this
bootargs.

Table 19. Kernel boot parameters

UG10156 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. android-16.0.0_1.0.0 — 28 October 2025 Document feedback
24 / 78

http://source.android.com/devices/tech/security/selinux/
http://source.android.com/devices/tech/security/selinux/
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10156

NXP Semiconductors UG10156
Android User's Guide

Kernel parameter Description Typical value Used when
• For other displaymode which

is not 4k/1080p/720p/480p or
fps is not 60/50/30, for example:
1024x768p24 display should be
configured as: androidboot.
displaymode=1024x768p24.

• 1080p60 display can be
configured as: androidboot.
displaymode=1920x1080p60 or
androidboot.displaymode=1080p.

androidboot.
fbTileSupport

It is used to enable
framebuffer super tile output.

androidboot.fbTileSupport=enable It should not be set when
connecting the MIPI-DSI-to-
HDMI display or MIPI panel
display.

androidboot.dpu_
composition

It is used to determine if DPU
composition can be enabled

Default Vaule: androidboot.dpu_
composition=0, which means to use GPU
to do composition by default.

Setting it to 1 means
gralloc allocate layer buffer
without tiled format and
2d (DPU) compostion is
used. In this case, setprop
vendor.hwc.prefer.
2d-composition 0 and
restarting the hardware
composer service can
switch to use the GPU to do
composition.

firmware_class.path It is used to set the Wi-Fi
firmware path.

firmware_class.path=/vendor/
firmware

-

androidboot.
wificountrycode=CN

It is used to set Wi-Fi country
code. Different countries use
different Wi-Fi channels. For
details, see the i.MX Android
Frequently Asked Questions.

androidboot.wificountrycode=CN -

moal.mod_para It is used to set driver
load arguments for NXP
mxmdriver Wi-Fi driver.

• moal.mod_para=wifi_mod_para_
sd8987.conf

• moal.mod_para=wifi_mod_para_
powersave.conf

-

transparent_hugepage It is used to change the
sysfs boot time defaults
of Transparent Hugepage
support.

transparent_hugepage=never/
always/madvise

-

loop.max_part Defines how many partitions
to be able to manage per
loop device.

loop.max_part=7 -

swiotlb It is used to configure the
SWIOTLB size. The kernel
default value is 64 MB.

swiotlb=65536 i.MX 8M Plus EVK is
configured to 128 MB
(swiotlb=65536) to fix
SWIOTLB overflow issue of
the Wi-Fi driver.

androidboot.vendor.
sysrq

It is used to enable sysrq. androidboot.vendor.sysrq=1 -

androidboot.
powersave.usb

It is used to enable USB
runtime_pm (auto).

androidboot.powersave.usb=true -

androidboot.secureime It is used to enable NXP
SecureIME. It is only
available on i.MX 8ULP with
MIPI panel as display.

androidboot.secureime=enabled -

Table 19. Kernel boot parameters...continued

UG10156 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. android-16.0.0_1.0.0 — 28 October 2025 Document feedback
25 / 78

https://community.nxp.com/docs/DOC-342877
https://community.nxp.com/docs/DOC-342877
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10156

NXP Semiconductors UG10156
Android User's Guide

Kernel parameter Description Typical value Used when

androidboot.lpa.
enable

It is used to enable Low
Power Audio (LPA), only
available on i.MX 95 EVK,
i.MX 8M Plus EVK, i.MX 8M
Mini EVK, and i.MX 8ULP
EVK.

androidboot.lpa.enable=1 -

snd_pcm.max_alloc_
per_card

It is used to set the maximum
total allocation bytes per
card, required by LPA
case. For details, see
Section 8.2.1.

snd_pcm.max_alloc_per_
card=134217728

-

snd_pcm.max_alloc_
per_card

It is used to set max total
allocation bytes per card,
required by LPA case. For
details, see Section 8.2.1.

snd_pcm.max_alloc_per_
card=134217728

Table 19. Kernel boot parameters...continued

6.2.3 DM-verity configuration

DM-verity (device-mapper-verity) provides transparent integrity checking of block devices. It can prevent device
from running unauthorized images. This feature is enabled by default. Replacing one or more partitions (boot,
vendor, system, vbmeta) will make the board unbootable. Disabling DM-verity provides convenience for
developers, but the device is unprotected.

To disable DM-verity, perform the following steps:

1. Unlock the device.
a. Boot up the device.
b. Choose Settings -> Developer Options -> OEM Unlocking to enable OEM unlocking.
c. Execute the following command on the target side to make the board enter fastboot mode:

reboot bootloader

d. Unlock the device. Execute the following command on the host side:

fastboot oem unlock

e. Wait until the unlock process is complete.
2. Disable DM-verity.

a. Boot up the device.
b. Disable the DM-verity feature. Execute the following command on the host side:

adb root
adb disable-verity
adb reboot

6.2.4 Full reset for i.MX 8QuadMAX/8QuadXPlus and i.MX 95

For i.MX 8QuadMAX/8QuadXPlus and i.MX 95, a normal reboot command does not trigger a full board reset
because of the existence of system manager or system control unit on the device. Instead, to trigger a full board
reset, run the following command on the U-Boot command line interface:

U-Boot=> reboot

UG10156 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. android-16.0.0_1.0.0 — 28 October 2025 Document feedback
26 / 78

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10156

NXP Semiconductors UG10156
Android User's Guide

Also, you can use the following command on the device console on boot-up:

reboot board_reset

To trigger a full board reset at the Android application layer, call the reboot method provided by the
PowerManager. The following is an example:

PowerManager pm = (PowerManager) getSystemService(Context.POWER_SERVICE);
pm.reboot("board_reset");

7 Over-The-Air (OTA) Update

7.1 Building OTA update packages

7.1.1 Building target files

You can use the following commands to generate target files under the Android environment:

$ cd ${MY_ANDROID}
$ source build/envsetup.sh
$ lunch evk_8mm-nxp_stable-userdebug
$./imx-make.sh bootloader kernel -j4
$ make target-files-package -j4

After building is complete, you can find the target files in the following path:

${MY_ANDROID}/out/target/product/evk_8mm/obj/PACKAGING/
target_files_intermediates/evk_8mm-ota-**.zip

7.1.2 Building a full update package

A full update package contains the entire final state of the device (system, boot, product, and vendor partitions).

You can use the following commands to build a full update package under the Android environment:

$ cd ${MY_ANDROID}
$ source build/envsetup.sh
$ lunch evk_8mm-nxp_stable-userdebug
$./imx-make.sh bootloader kernel -j4
$ make otapackage -j4

After building is complete, the OTA packages are displayed in the following path:

${MY_ANDROID}/out/target/product/evk_8mm/evk_8mm-ota-**.zip

The target otapackage depends on a target file package. When the otapackage is made, the executed
commands include one like below:

out/host/linux-x86/bin/ota_from_target_files evk_8mm-target_files-**.zip
 evk_8mm-ota-**.zip

evk_8mm-ota-**.zip contains payload.bin and payload_properties.txt. These two files are used
for full update, which is called full-ota.zip for convenience.

UG10156 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. android-16.0.0_1.0.0 — 28 October 2025 Document feedback
27 / 78

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10156

NXP Semiconductors UG10156
Android User's Guide

7.1.3 Building an incremental update package

An incremental update contains a set of binary patches to be applied to the data that is already on the device.
This can result in considerably smaller update packages:

• Files that have not changed do not need to be included.
• Files that have changed are often very similar to their previous versions, so the package only needs to contain

encoding of the differences between the two files.

Before building an incremental update package, see Section 7.1.1 to build two target files:

• PREVIOUS-target_files.zip: one old package that has already been applied on the device.
• NEW-target_files.zip: the latest package that is waiting to be applied on the device.

Then use the following commands to generate the incremental update package under the Android environment:

$ cd ${MY_ANDROID}
$ out/host/linux-x86/bin/ota_from_target_files -i PREVIOUS-target_files.zip NEW-
target_files.zip incremental-ota.zip

${MY_ANDROID}/incremental-ota.zip contains payload.bin and payload_properties.txt. The
two files are used for incremental update.

Note:

To apply the incremental update package on a device successfully, the images running on the device should
be the same as the images in PREVIOUS-target_files.zip. This can be achieved in either of the following
ways. The second one is recommended.

• Flash the images in PREVIOUS-target_files.zip instead of the images generated under the $OUT
directory when building the target file package.

• Apply a full update package, which is generated from PREVIOUS-target_files.zip. An example
command to generate a full update package from a target file package is provided in Section 7.1.2.

For more information about incremental updates, see https://source.android.com/docs/core/ota/
tools#incremental-updates.

7.1.4 Building an OTA package for single-bootloader image

The dual-bootloader feature divides the default u-boot.imx into two parts: spl.bin and bootloader.img.
spl.bin leads to the bootloader0 partition, which is managed by U-Boot itself, while bootloader.img leads
to the bootloader_a/bootloader_b partitions, which are managed by GPT. Taking i.MX 8M Mini as an example,
the layout of the dual-bootloader images is as follows.

UG10156 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. android-16.0.0_1.0.0 — 28 October 2025 Document feedback
28 / 78

https://source.android.com/docs/core/ota/tools#incremental-updates
https://source.android.com/docs/core/ota/tools#incremental-updates
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10156

NXP Semiconductors UG10156
Android User's Guide

Figure 1. Dual-bootloader image layout

The dual-bootloader feature is the default configuration and it's useful as it can provide a secure way
to update the bootloader image. But if the single-bootloader image is used, to build the OTA package,
some configurations need to be made. Taking i.MX 8M Mini as an example, add the following changes to
${MY_ANDROID}/device/nxp:

diff --git a/imx8m/evk_8mm/AndroidBoard.mk b/imx8m/evk_8mm/AndroidBoard.mk
index 3305270b4..c402abc05 100644
--- a/imx8m/evk_8mm/AndroidBoard.mk
+++ b/imx8m/evk_8mm/AndroidBoard.mk
@@ -7,5 +7,3 @@ include $(FSL_PROPRIETARY_PATH)/fsl-proprietary/media-profile/
media-profile.mk
 include $(FSL_PROPRIETARY_PATH)/fsl-proprietary/sensor/fsl-sensor.mk
 -include $(IMX_MEDIA_CODEC_XML_PATH)/mediacodec-profile/mediacodec-profile.mk

-BOARD_PACK_RADIOIMAGES += bootloader.img
-INSTALLED_RADIOIMAGE_TARGET += $(PRODUCT_OUT)/bootloader.img
diff --git a/imx8m/evk_8mm/BoardConfig.mk b/imx8m/evk_8mm/BoardConfig.mk
index c6f94c82f..66414a65d 100644
--- a/imx8m/evk_8mm/BoardConfig.mk
+++ b/imx8m/evk_8mm/BoardConfig.mk
@@ -67,7 +67,6 @@ BOARD_PREBUILT_DTBOIMAGE := $(OUT_DIR)/target/product/
$(PRODUCT_DEVICE)/dtbo-imx
 BOARD_USES_METADATA_PARTITION := true
 BOARD_ROOT_EXTRA_FOLDERS += metadata

-AB_OTA_PARTITIONS += bootloader

 # -------@block_security-------
 ENABLE_CFI=false

Note that Trusty is not integrated in the single-bootloader image.

UG10156 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. android-16.0.0_1.0.0 — 28 October 2025 Document feedback
29 / 78

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10156

NXP Semiconductors UG10156
Android User's Guide

7.1.5 Building an OTA package with the postinstall command

Postinstall is a mechanism to execute a specified command in the updated partition during the OTA process. To
enable this mechanism, add some build configurations.

This release provides a demonstration for enabling the vendor partition postinstall command. You can find the
following code in the repository under the ${MY_ANDROID}/device/nxp directory:

AB_OTA_POSTINSTALL_CONFIG += \
RUN_POSTINSTALL_vendor=true \
POSTINSTALL_PATH_vendor=bin/imx_ota_postinstall \
FILESYSTEM_TYPE_vendor=erofs \
POSTINSTALL_OPTIONAL_vendor=false

The preceding configurations are as follows:

• The vendor partition postinstall command is enabled.
• After the vendor partition is updated, the vendor partition with updated image is mounted on the /
postinstall directory, and the /postinstall/bin/imx_ota_postinstall command is executed.

• The updated vendor partition is of erofs type.
• The vendor partition postinstall command is not optional. If the command fails, the whole OTA process will not

be marked as success.

As you can find in the source code, the preceding configurations do not take effect by default unless a variable
named IMX_OTA_POSTINSTALL is assigned with an appropriate value. For example, assign a value when
executing the command to build an OTA package as follows:

$ cd ${MY_ANDROID}
$ source build/envsetup.sh
$ lunch evk_8mm-nxp_stable-userdebug
$./imx-make.sh bootloader kernel -j4
$ make otapackage -j4 IMX_OTA_POSTINSTALL=1

This postinstall mechanism is not mutually exclusive with full update package or incremental update package. It
can be used with both of them.

In the demonstration, imx_ota_postinstall corresponds to a shell script, and the source code is under the
${MY_ANDROID}/vendor/nxp-opensource/imx/ota_postinstall/ directory. It is used to update the
bootloader0 partition, which does not have a/b slot.

Note: Be aware of the risk that the update of the bootloader0 partition may fail and there is no way to roll
back.

During the execution of this command, it invokes the dd command to write the file /postinstall/etc/
bootloader0.img to the appropriate offset of the boot device. You can modify the configuration source code
to decide which file is copied to the vendor partition and named as bootloader0.img. Taking i.MX 8M Mini
EVK as an example, the following code lines in the release code can copy the U-Boot image with Trusty OS to
vendor partition and name it as bootloader0.img. If the dual-bootloader feature is enabled, the SPL image
should be copied. If the board is closed, the image should be signed first.

PRODUCT_COPY_FILES += \
 $(OUT_DIR)/target/product/$(firstword $(PRODUCT_DEVICE))/obj/UBOOT_COLLECTION/
u-boot-imx8mm-trusty.imx:$(TARGET_COPY_OUT_VENDOR)/etc/bootloader0.img

See the i.MX Android Security User's Guide (UG10158) about how to sign the bootloader0 image with CST.
In the default configuration, an SPL image is copied to be bootloader0.img because dual-bootloader is
recommended.

UG10156 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. android-16.0.0_1.0.0 — 28 October 2025 Document feedback
30 / 78

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10156

NXP Semiconductors UG10156
Android User's Guide

Implement your own postinstall command and perform the operations as needed during the OTA process.

7.1.6 Building an OTA package with encrypted boot enabled

A full upgrade image is needed during OTA when Encrypted Boot is enabled. Currently, only dual-bootloader
enabled images support encrypted boot OTA. The following table lists the target SPL and bootloader images,
which are supported by encrypted boot OTA.

Board Target SPL image Target bootloader image

i.MX 8M Mini EVK Board spl-imx8mm-trusty-dual.bin bootloader-imx8mm-trusty-dual.img

i.MX 8M Nano EVK Board spl-imx8mn-trusty-dual.bin bootloader-imx8mn-trusty-dual.img

i.MX 8M Plus EVK Board spl-imx8mp-trusty-dual.bin bootloader-imx8mp-trusty-dual.img

i.MX 8M Quad EVK Board spl-imx8mq-trusty-wevk-dual.bin bootloader-imx8mq-trusty-wevk-
dual.img

i.MX 8ULP 9x9 EVK Board spl-imx8ulp-trusty-9x9-dual.bin bootloader-imx8ulp-trusty-9x9-
dual.img

i.MX 8QuadMax MEK Board spl-imx8qm-trusty-dual.bin bootloader-imx8qm-trusty-dual.img

i.MX 8QuadXPlus MEK
Board

spl-imx8qxp-trusty-dual.bin bootloader-imx8qxp-trusty-dual.
img

i.MX 8QuadXPlus C0 MEK
Board

spl-imx8qxp-trusty-c0-dual.bin bootloader-imx8qxp-trusty-c0-
dual.img

Table 20. Target SPL and bootloader images

7.1.6.1 Building SPL and bootloader images with encrypted boot enabled

Before compilation begins, see Section "Building Android images to construct the containers" and Section
"Enabling the encrypted boot support in U-Boot" in the i.MX Android Security User's Guide (UG10158) to enable
the encrypted boot function by modifying the target defconfig files.

Images including the encrypted boot enabled SPL and bootloader can be generated with the following
commands:

$ cd ${MY_ANDROID}
$ source build/envsetup.sh
$ lunch evk_8mm-nxp_stable-userdebug
$ BUILD_ENCRYPTED_BOOT=true ./imx-make.sh bootloader -j4

7.1.6.2 Encrypting SPL and bootloader images

To encrypt SPL and bootloader images, see Section "Encrypted boot with AHAB" and Section "Encrypted boot
with HABv4" in the i.MX Android Security User's Guide (UG10158). But there are two differences:

• Do not insert the Encryption Key (DEK) Blob to final images. Save these DEK Blob files such as
dek_blob_spl.bin and dek_blob_bl.bin, which are necessary for encrypted boot OTA.

• To facilitate remote upgrades, all the CST commands that encrypt images should be appended with the -d
parameter. This parameter requires CST to reuse DEK Blob files that already exist in the current directory.

7.1.6.3 Building an OTA package with encrypted boot

Move the encrypted target SPL and bootloader images to the directory of ${MY_ANDROID}/out/tagret/
product/${TARGET_PRODUCT}/obj/UBOOT_COLLECTION/. Override the original target files.

UG10156 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. android-16.0.0_1.0.0 — 28 October 2025 Document feedback
31 / 78

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10156

NXP Semiconductors UG10156
Android User's Guide

Execute the following command to generate an OTA package, which includes the encrypted SPL and
bootloader images.

$./imx-make.sh kernel -j4
$ BUILD_ENCRYPTED_BOOT=true make otapackage -j24 IMX_OTA_POSTINSTALL=1

Then the OTA package includs the encrypted SPL and bootloader images. Besides the OTA package, DEK
Blobs of SPL and bootloader images need to be provisioned into the device before applying the OTA package.
For how to provision DEK Blobs into devices and enable the encrypted boot OTA, see Section "Setting up
encrypted boot OTA" in the i.MX Android Security User's Guide (UG10158).

7.2 Implementing OTA update

7.2.1 Using update_engine_client to update the Android platform

update_engine_client is a pre-built tool to support A/B (seamless) system updates. It supports update
system from a remote server or board's storage.

To update system from a remote server, perform the following steps:

1. Copy full-ota.zip or incremental-ota.zip (generated on Section 7.1.2 and Section 7.1.3) to the
HTTP server (for example, 192.168.1.1:/var/www/).

2. Unzip the packages to get payload.bin and payload_properties.txt.
3. Cat the content of payload_properties.txt like this:

• FILE_HASH=0fSBbXonyTjaAzMpwTBgM9AVtlBeyOigpCCgkoOfHKY=
• FILE_SIZE=379074366
• METADATA_HASH=Icrs3NqoglzyppyCZouWKbo5f08IPokhlUfHDmz77WQ=
• METADATA_SIZE=46866

4. Input the following command on the board's console to update:

su
update_engine_client --payload=http://192.168.1.1:10888/payload.bin --update
 --headers="FILE_HASH=0fSBbXonyTjaAzMpwTBgM9AVtlBeyOigpCCgkoOfHKY=
FILE_SIZE=379074366
METADATA_HASH=Icrs3NqoglzyppyCZouWKbo5f08IPokhlUfHDmz77WQ=
METADATA_SIZE=46866"

5. The system will update in the background. After it finishes, it shows "Update successfully applied, waiting to
reboot" in the logcat.

To update system from board's storage, perform the following steps:

1. Unzip full-ota.zip or incremental-ota.zip (Generated on 7.1.2 and 7.1.3) to get payload.bin
and payload_properties.txt.

2. Push payload.bin to board's storage: adb push payload.bin /data/ota_package.
3. Cat the content of payload_properties.txt as follows:

• FILE_HASH=0fSBbXonyTjaAzMpwTBgM9AVtlBeyOigpCCgkoOfHKY=
• FILE_SIZE=379074366
• METADATA_HASH=Icrs3NqoglzyppyCZouWKbo5f08IPokhlUfHDmz77WQ=
• METADATA_SIZE=46866

4. Input the following command on the board's console to update:

su
update_engine_client --payload=file:///data/ota_package/payload.bin --update
 --headers="FILE_HASH=0fSBbXonyTjaAzMpwTBgM9AVtlBeyOigpCCgkoOfHKY=
FILE_SIZE=379074366

UG10156 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. android-16.0.0_1.0.0 — 28 October 2025 Document feedback
32 / 78

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10156

NXP Semiconductors UG10156
Android User's Guide

METADATA_HASH=Icrs3NqoglzyppyCZouWKbo5f08IPokhlUfHDmz77WQ=
METADATA_SIZE=46866"

5. The system will update in the background. After it finishes, it displays "Update successfully applied, waiting
to reboot" in the logcat.

Note:

Make sure that the -- header equals to the exact content of payload_properties.txt without "space" or
"return" character.

7.2.2 Using a customized application to update the Android platform

Google has provided a reference OTA application (named as SystemUpdaterSample) under ${MY_ANDROID}/
bootable/recovery/updater_sample, which can do the OTA operations. Perform the following steps to
use this application:

1. Generate a JSON configuration file from the OTA package.

out/host/linux-x86/bin/gen_update_config \
--ab_install_type=STREAMING \
--ab_force_switch_slot \
full-ota.zip \
full-ota.json \
http://192.168.1.1:10888/full-ota.zip

And you can use the following command to generate incremental OTA JSON file:

out/host/linux-x86/bin/gen_update_config \
--ab_install_type=STREAMING \
--ab_force_switch_slot \
incremental-ota.zip \
incremental-ota.json \
http://192.168.1.1:10888/incremental-ota.zip

Note:
http://192.168.1.1:10888/full-ota.zip is a remote server address, which can hold the OTA package.

2. Set up the HTTP server (for example, Lighttpd, Apache).
You need one HTTP server to hold the OTA packages.

scp full-ota.zip ${server_ota_folder}
scp incremental-ota.zip ${server_ota_folder}

Note:
• server_ota_folder is one folder on your remote server to hold OTA packages.
• full-ota.zip and incremental-ota.zip are built from Section 7.1.2 and Section 7.1.3.

3. Push JSON files to the board.
a. Use the following command to push JSON files to the board:

adb push full-ota.json /data/local/tmp
adb push incremental-ota.json /data/local/tmp

b. Use the following command to move JSON files to the private folder of the SystemUpdaterSample
application:

su
mkdir -m 777 -p /data/user/0/com.example.android.systemupdatersample/files
mkdir -m 777 -p /data/user/0/com.example.android.systemupdatersample/
files/configs
cp /data/local/tmp/*.json /data/user/0/
com.example.android.systemupdatersample/files/configs

UG10156 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. android-16.0.0_1.0.0 — 28 October 2025 Document feedback
33 / 78

http://192.168.1.1:10888/full-ota.zip
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10156

NXP Semiconductors UG10156
Android User's Guide

chmod 777 /data/user/0/com.example.android.systemupdatersample/files/
configs/*.json

Note:
If you use the Android Automotive system, move JSON files to the user/10 folder as follows:

su
mkdir -m 777 -p /data/user/10/com.example.android.systemupdatersample/files
mkdir -m 777 -p /data/user/10/com.example.android.systemupdatersample/files/
configs
cp /data/local/tmp/*.json /data/user/10/
com.example.android.systemupdatersample/files/configs
chmod 777 /data/user/10/com.example.android.systemupdatersample/files/
configs/*.json

4. Open the SystemUpdaterSample OTA application.
There are many buttons on the UI. The following are their brief description:

Reload - reloads update configs from device storage.
View config - shows selected update config.
Apply - applies selected update config.
Stop - cancel running update, calls UpdateEngine#cancel.
Reset - reset update, calls UpdateEngine#resetStatus, can be called only when
 update is not running.
Suspend - suspend running update, uses UpdateEngine#cancel.
Resume - resumes suspended update, uses UpdateEngine#applyPayload.
Switch Slot - if ab_config.force_switch_slot config set true, this button
 will be enabled after payload is applied, to switch A/B slot on next reboot.

First, choose the desired JSON configuration file. Then, click the APPLY button to do the update. After the
update is complete, you can see "SUCCESS" in the Engine error text field, and "REBOOT_REQUIRED" in
the Updater state text field. Finally, reboot the board to finish the whole OTA update.

Note:

The OTA package includes the DTBO image, which stores the board's DTB. There may be many DTS for one
board. For example, in ${MY_ANDROID}/device/nxp/imx8m/evk_8mm/BoardConfig.mk:

TARGET_BOARD_DTS_CONFIG ?= imx8mm-ddr4:imx8mm-ddr4-evk.dtb
TARGET_BOARD_DTS_CONFIG += imx8mm:imx8mm-evk-usd-wifi.dtb
TARGET_BOARD_DTS_CONFIG += imx8mm-mipi-panel:imx8mm-evk-rm67199.dtb
TARGET_BOARD_DTS_CONFIG += imx8mm-mipi-panel-rm67191:imx8mm-evk-rm67191.dtb
TARGET_BOARD_DTS_CONFIG += imx8mm-m4:imx8mm-evk-rpmsg.dtb

There is one variable to specify which DTBO image is stored in the OTA package:

BOARD_PREBUILT_DTBOIMAGE := out/target/product/evk_8mm/dtbo-imx8mm.img

Therefore, the default OTA package can only be applied for evk_8mm with single MIPI-DSI-to-HDMI
display. To generate an OTA package for evk_8mm with an RM67199 MIPI panel display, modify this
BOARD_PREBUILT_DTBOIMAGE as follows:

BOARD_PREBUILT_DTBOIMAGE := out/target/product/evk_8mm/dtbo-imx8mm-mipi-
panel.img

UG10156 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. android-16.0.0_1.0.0 — 28 October 2025 Document feedback
34 / 78

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10156

NXP Semiconductors UG10156
Android User's Guide

To generate an OTA package for evk_8mm with an RM67191 MIPI panel display, modify this
BOARD_PREBUILT_DTBOIMAGE as follows:

BOARD_PREBUILT_DTBOIMAGE := out/target/product/evk_8mm/dtbo-imx8mm-mipi-panel-
rm67191.img

For detailed information about A/B OTA updates, see https://source.android.com/devices/tech/ota/ab/.

For detailed information about the SystemUpdaterSample application, see https://android.googlesource.com/
platform/bootable/recovery/+/refs/heads/master/updater_sample/.

8 Customized Configuration

8.1 Camera configuration
Camera HAL on running reads the information in /vendor/etc/configs/camera_config_${ro.
boot.soc_type}.json to configure the camera. ${ro.boot.soc_type} is the value of property
ro.boot.soc_type. The source of this json file is in the repository under ${MY_ANDROID}/device/nxp/.
To configure the camera, make modifications on this source file.

Some parameters have default values in the camera HAL. It is not necessary to set these parameters in the
JSON file if the default values can have cameras work normally.

8.1.1 Configuring the rear and front cameras

camera_type and camera_name can be used together in the camera configuration JSON file to specify the
camera used as the front or rear camera.

The value of camera_type can be "front" and "back". "front" represents the front camera, and "back"
represents the rear camera.

The value of "camera_name" represents the camera. It should be either
v4l2_dbg_chip_ident.match.name returned from v4l2's VIDIOC_DBG_G_CHIP_IDENT ioctl or
v4l2_capability.driver returned from v4l2's VIDIOC_QUERYCAP ioctl. v4l2_dbg_chip_ident
and v4l2_capability are structure types defined in camera HAL. Camera HAL goes through all the V4L2
device present in the system to find the corresponding camera and output the information to logcat.

OmitFrame is used to skip the first several frames. cam_blit_csc is used to specify the hardware used to do
csc in camera HAL. cam_blit_copy is used to specify the hardware used to do memory copy in camera HAL.

media_profiles_V1_0.xml in /vendor/etc is used to configure the parameters used in the recording
video. NXP provides several media profile examples that help customer align the parameters with their camera
module capability and device definition.

Profile file name Rear camera Front camera

media_profiles_1080p.xml Maximum to 1080P, 30 fps, and 8 Mbps
for recording video

Maximum to 720P, 30 fps, and 3 Mbps for
recording video

media_profiles_720p.xml Maximum to 720P, 30 fps, and 3 Mbps for
recording video

Maximum to 720P, 30 fps, and 3 Mbps for
recording video

media_profiles_480p.xml Maximum to 480P, 30 fps, and 2 Mbps for
recording video

Maximum to 480P, 30 fps, and 2 Mbps for
recording video

media_profiles_qvga.xml Maximum to QVGA, 15 fps, and 128 Kbps
for recording video

Maximum to QVGA, 15 fps, and 128 Kbps
for recording video

Table 21. Media profile parameters

UG10156 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. android-16.0.0_1.0.0 — 28 October 2025 Document feedback
35 / 78

https://source.android.com/devices/tech/ota/ab/
https://android.googlesource.com/platform/bootable/recovery/+/refs/heads/master/updater_sample/
https://android.googlesource.com/platform/bootable/recovery/+/refs/heads/master/updater_sample/
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10156

NXP Semiconductors UG10156
Android User's Guide

Profile file name Rear camera Front camera

media_profiles_95.xml maximum to 1080P, 60 fps, and 16 Mbps
for recording video

maximum to 480P, 30 fps, and 2 Mbps for
recording video

Table 21. Media profile parameters...continued

Note:

Because not all UVC cameras can have 1080P, 30 fps resolution setting, it is recommended that
media_profiles_480p.xml is used for any board's configuration, which defines the UVC as the rear camera
or front camera.

8.1.2 Configuring camera sensor parameters

Camera sensor parameters are used to calculate view angle when doing panorama. The focal length and
sensitive element size should be customized based on the camera sensor being used.

The following table lists the parameters for camera sensor. These parameters can be configured in the camera
configuration JSON file.

Parameter Description

ActiveArrayWidth Maximum active pixel width for camera sensor.

ActiveArrayHeight Maximum active pixel height for camera sensor.

PixelArrayWidth Maximum pixel width for camera sensor.

PixelArrayHeight Maximum pixel height for camera sensor.

orientation If (PixelArrayWidth > PixelArrayHeight), and the screen is portrait (w <
h), set it to 90. If (PixelArrayWidth < PixelArrayHeight), and the screen is
landscape (w > h), set it to 90. Otherwise, set it to 0.

FocalLength Focal length.

MinFrameDuration Minimum FPS.

MaxFrameDuration Maximum FPS.

MaxJpegSize Maximum JPEG size.

PhysicalWidth PixelArrayWidth * siz_of_one_pixel (For OV5640, it is 1.4 um; For
MAX9286, it is 4.2 um. For AP1302, it is 3.0 um.)

PhysicalHeight PixelArrayHeight * siz_of_one_pixel (For OV5640, it is 1.4 um; For
MAX9286, it is 4.2 um. For AP1302, it is 3.0 um.)

Table 22. Camera sensor parameters

8.1.3 Making cameras work on i.MX 8M Plus EVK with non-default images

The default image for i.MX 8M Plus EVK supports OS08A20 + OS08A20 and the cameras can work after the
image is flashed and boot up. To make cameras work with non-default images, execute the following additional
commands:

• Basler (CSI1) + OV5640 (CSI2) or only Basler (CSI1) on the host

flash the image
sudo ./fastboot_imx_flashall.sh -f imx8mp -a -e -d basler-ov5640 // or "-d
 basler" for Only basler(CSI1)

set bootargs
In serial console, enter into uboot command mode, run below commads:

UG10156 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. android-16.0.0_1.0.0 — 28 October 2025 Document feedback
36 / 78

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10156

NXP Semiconductors UG10156
Android User's Guide

If enable basler 4k size, also add androidboot.camera.ispsensor.maxsize=4k.
setenv append_bootargs androidboot.camera.layout=basler-ov5640
saveenv
boota

• Only OV5640 (CSI1) on the host

flash the image
sudo ./fastboot_imx_flashall.sh -f imx8mp -a -e -d ov5640

set bootargs
In serial console, enter into uboot command mode, run below commad:
setenv append_bootargs androidboot.camera.layout=only-ov5640
saveenv
boota

Note:
-d ov5640 can be replaced by one of below:
-d lvds, -d lvds-panel, -d mipi-panel, -d mipi-panel-rm67191, -d rpmsg, -d sof.

• OS08A20 (CSI1) + OV5640 (CSI2) Or Only OS08A20 (CSI1)

flash the image
sudo ./fastboot_imx_flashall.sh -f imx8mp -a -e -d os08a20-ov5640 # or "-d
 os08a20" for Only os08a20(CSI1)

set bootargs
In serial console, enter into uboot command mode, run below commads:
If enable os08a20 4k size, also add androidboot.camera.ispsensor.maxsize=4k.
setenv append_bootargs androidboot.camera.layout=os08a20-ov5640
saveenv
boota

• Basler (CSI1) + Basler (CSI2)

flash the image
sudo ./fastboot_imx_flashall.sh -f imx8mp -a -e -d dual-basler

set bootargs
In serial console, enter into uboot command mode, run below commad:
setenv append_bootargs androidboot.camera.layout=dual-basler
saveenv
boota

8.1.4 Switching between OS0A20 and AP1302 on i.MX 95 EVK

The default evk_95 image uses OS0A20. To use AP1302, perform the following steps:

1. Run the following command:

fastboot flash dtbo dtbo-imx95-ap1302.img

2. In U-Boot command mode, run the following command:

setenv append_bootargs androidboot.camera.layout=ap1302
saveenv
boot

3. Run the following command on the Android console to clear the Camera2.apk cached data:

pm clear com.android.camera2

To switch back to OS0A20:
UG10156 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. android-16.0.0_1.0.0 — 28 October 2025 Document feedback
37 / 78

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10156

NXP Semiconductors UG10156
Android User's Guide

1. Run the following command:

fastboot flash dtbo dtbo-imx95.img

2. In U-Boot command mode, run the following command:

setenv append_bootargs
saveenv
boot

3. Run the following command on the Android console to clear the Camera2.apk cached data:

pm clear com.android.camera2

8.1.5 Making the AP1302 camera work on i.MX 95

To make the AP1302 camera work on i.MX 95 EVK, a third party firmware not in this release is needed. When
trying with the release image, follow the steps below to get the firmware and push it to the device to make the
AP1302 work.

1. Remount the filesystems on the device to get the write permission on the vendor partition.
2. Get the AP1302 firmware from: https://github.com/ONSemiconductor/ap1302_binaries/commit/

cfdfc8aab37b3704a9fbabfdce5ecabcffcc9029.
3. Rename the firmware NXP_i.MX93/ap1302_60fps_ar0144_27M_2Lane_awb_tuning.bin to

ap1302_ar0144_single_fw.bin.
4. Execute the command adb push ap1302_ar0144_single_fw.bin /vendor/firmware.
5. Execute the command adb reboot.

8.1.6 DeviceAsWebcam feature

Android Device as Webcam allows Android devices to act as webcams for laptops and desktops. The feature
works by connecting the device to the computer through USB and sending the video data to the computer. This
means that users can use their device's camera as a high-quality webcam without having to buy a separate
webcam.

The following boards have enabled this feature:

• i.MX 8M Mini EVK Board
• i.MX 8M Nano EVK Board
• i.MX 8M Quad EVK Board
• i.MX 8ULP EVK Board
• i.MX 8QuadMax MEK Board
• i.MX 8QuadXPlus MEK Board

Note:

• This feature requires camera support, so make sure that camera can work properly with the image you flash.
• Due to performance limitation, i.MX 8ULP only supports 640 x 480 resolution. Other platforms support MJPG

streams at 1920 x 1080 and 1280 x 720 resolutions.
• Preview FPS can be checked using PotPlayerSetup.exe on Windows. Make sure your USB cable is

connected properly.
• The preview for OV5640 is always 30 fps, but the reason 30 fps cannot be achieved with this feature is

that the encoding takes a lot of time (YUV420SP->I420->MJPG), and the time taken here is related to
performance.

The FPS listed below are for reference.

UG10156 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. android-16.0.0_1.0.0 — 28 October 2025 Document feedback
38 / 78

https://github.com/ONSemiconductor/ap1302_binaries/commit/cfdfc8aab37b3704a9fbabfdce5ecabcffcc9029
https://github.com/ONSemiconductor/ap1302_binaries/commit/cfdfc8aab37b3704a9fbabfdce5ecabcffcc9029
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10156

NXP Semiconductors UG10156
Android User's Guide

Platform VideoFmt Resolution FPS

i.MX 8M Mini MJPEG 1920 x 1080
1280 x 720

28 fps
30 fps

i.MX 8M Nano MJPEG 1920 x 1080
1280 x 720

24 fps
30 fps

i.MX 8M Quad MJPEG 1920 x 1080
1280 x 720

25 fps
30 fps

i.MX 8ULP MJPEG 640 x 480 30 fps

i.MX 8QuadMax MJPEG 1920 x 1080
1280 x 720

30 fps
30 fps

i.MX 8QuadXPlus MJPEG 1920 x 1080
1280 x 720

15 fps
30 fps

Table 23. FPS performance of DeviceAsWebcam

8.2 Audio configuration

8.2.1 Enabling low-power audio

The DirectAudioPlayer application is provided to support audio playback from DirectOutputThread.
The source code is in ${MY_ANDROID}/vendor/nxp-opensource/fsl_imx_demo/DirectAudio
Player. After the vendor.audio.lpa.enable property is set to 1, low-power audio can be enabled. In this
situation, audio can keep playing even if the system enters suspending mode.

By default, the music stream plays from MixedThread. To make stream play from DirectOutputThread,
add the AUDIO_OUTPUT_FLAG_DIRECT flag to the related tracks. On the Android Application layer, there
is no AUDIO_OUTPUT_FLAG_DIRECT flag to specify DirectOutputThread explicitly. Instead, use
FLAG_HW_AV_SYNC when there is "new AudioTrack" in the application. Then the Android audio framework adds
AUDIO_OUTPUT_FLAG_DIRECT for this track, and this stream plays from DirectOutputThread.

In low-power audio mode, the default audio period time is 500 milliseconds, and the whole buffer can hold
20 seconds data. These two parameters can be configured by the vendor.audio.lpa.period_ms and
vendor.audio.lpa.hold_second properties as follows:

> setprop vendor.audio.lpa.hold_second 20
> setprop vendor.audio.lpa.period_ms 500

To enable low-power audio, perform the following steps:

1. Add -d m4 -m or -d rpmsg -m when flashing images to support audio playback based on MCU
FreeRTOS, for example:
• For i.MX 95: uuu_imx_android_flash.sh -f imx95 -e -d rpmsg -u rpmsg -m
• For i.MX 8M Mini EVK: uuu_imx_android_flash.sh -f imx8mm -e -d m4 -m
• For i.MX 8M Plus EVK: uuu_imx_android_flash.sh -f imx8mp -e -d rpmsg -m
• For i.MX 8ULP EVK: uuu_imx_android_flash.sh -f imx8ulp -e -d lpa -u trusty-lpa-
dual -m

2. For i.MX 8ULP EVK, set the board boot switch to dual-boot mode: 0100_0001 (SW5, from 1-8 bit). For i.MX
95 EVK, i.MX 8M Mini EVK, and i.MX 8M Plus EVK, add bootmcu to bootcmd.

setenv bootcmd "bootmcu && boota"

UG10156 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. android-16.0.0_1.0.0 — 28 October 2025 Document feedback
39 / 78

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10156

NXP Semiconductors UG10156
Android User's Guide

3. Add androidboot.lpa.enable=1 snd_pcm.max_alloc_per_card=134217728 to
append_bootargs in U-Boot command line.

for i.MX 95 EVK
setenv append_bootargs androidboot.lpa.enable=1
 snd_pcm.max_alloc_per_card=134217728 pd_ignore_unused cma=600M

for i.MX 8ULP EVK
setenv append_bootargs androidboot.lpa.enable=1
 snd_pcm.max_alloc_per_card=134217728

for i.MX 8M Plus EVK
setenv append_bootargs androidboot.lpa.enable=1
 snd_pcm.max_alloc_per_card=134217728 clk-imx8mp.mcore_booted=1

for i.MX 8M Mini EVK.
setenv append_bootargs androidboot.lpa.enable=1
 snd_pcm.max_alloc_per_card=134217728 clk-imx8mm.mcore_booted=1

saveenv

4. Boot up the system, and push the .wav audio files to /sdcard/. It is better to use a long-duration audio
file.

5. Open the DirectAudioPlayer application, and select a file from the spinner. The file selected is listed
under the spinner.

6. Click the Play button to play audio.
7. Press the ON/OFF button on the board. The system then enters suspend mode, and the audio can keep

playing.

Note:

• Only i.MX 95 EVK, i.MX 8M Mini EVK, i.MX 8M Plus EVK, and i.MX 8ULP EVK support this feature.
– For i.MX 8M Mini EVK, the audio is output from the "LPA Output" port on the audio expansion board. See

Figure "i.MX 8M Mini EVK with audio board" in the Android Quick Start Guide (UG10157).
– For i.MX 95 EVK, i.MX 8M Plus EVK, and i.MX 8ULP EVK, the audio is output from the HEADPHONE jack.

• DirectAudioPlayer supports limited audio files, which is declared in device's
audio_policy_configuration.xml with the AUDIO_OUTPUT_FLAG_DIRECT|AUDIO_OUTPUT_FL
AG_HW_AV_SYNC flag. Other medians are not supported. For example, it does not support playing 44100 Hz
audio.

• DirectAudioPlayer supports 24/32 bits .wav file with sampling rates no more than 192000.

8.2.2 Supporting a new sound card

Perform the following steps to support a new sound card on the Android system:

1. Add a new audio configuration JSON file.
Each sound card needs one JSON file under the /vendor/etc/configs/audio folder of the board, so
that Android audio HAL code can manage this card. The content of the JSON file mainly includes the card's
driver name, supported output/input device type, and mixer controls that need to be configured.
See ${MY_ANDROID}/device/nxp/common/audio-json/readme.txt for details to create such a
JSON file. After that, copy the JSON file to the board by the following command in Android makefile:

PRODUCT_COPY_FILES += \

UG10156 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. android-16.0.0_1.0.0 — 28 October 2025 Document feedback
40 / 78

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10156

NXP Semiconductors UG10156
Android User's Guide

device/nxp/common/audio-json/xxx_config.json:$(TARGET_COPY_OUT_VENDOR)/etc/
configs/audio/xxx_config.json

2. Configure the audio mix port, device port, and route in ${MY_ANDROID}/device/nxp/imx8m/evk_8mp/
audio_policy_configuration.xml.
• Mix ports describe the possible configuration profiles for streams that can be opened at the audio HAL for

playback and capture.
• Device ports describe the devices that can be attached with their type.
• Routes describe which mix port can route to which device.
Take the following configuration as an example. It means that the system supports three output devices:
speaker, headphone, and HDMI. If the speaker or headphone is connected, it expects that the frameworks
can deliver 16 bit, 48 kHz, and stereo streams to them. If an HDMI device is connected, it expects 24 bit, 48
kHz, and stereo streams.

<mixPort name="primary output" role="source"
 flags="AUDIO_OUTPUT_FLAG_PRIMARY">
 <profile name="" format="AUDIO_FORMAT_PCM_16_BIT"
 samplingRates="48000" channelMasks="AUDIO_CHANNEL_OUT_STEREO"/>
</mixPort>
<mixPort name="hdmi output" role="source">
 <profile name="" format="AUDIO_FORMAT_PCM_8_24_BIT"
 samplingRates="48000" channelMasks="AUDIO_CHANNEL_OUT_STEREO"/>
</mixPort>
<devicePort tagName="Speaker" type="AUDIO_DEVICE_OUT_SPEAKER" role="sink" >
</devicePort>
<devicePort tagName="Wired Headphones"
 type="AUDIO_DEVICE_OUT_WIRED_HEADPHONE" role="sink">
</devicePort>
<devicePort tagName="HDMI Out" type="AUDIO_DEVICE_OUT_AUX_DIGITAL"
 role="sink">
</devicePort>
<route type="mix" sink="Speaker"
 sources="primary output"/>
<route type="mix" sink="Wired Headphones"
 sources="primary output"/>
<route type="mix" sink="HDMI Out"
 sources="hdmi output"/>

3. (Optional) Support device hot plug.
Android frameworks support dynamically switching default output device by catching the device's hot-plug
event. The uevent can be sent in the kernel by extcon driver.
a. Declare which device type supports:

static const unsigned int xxx_extcon_cables[] = {
 EXTCON_JACK_HEADPHONE,
 EXTCON_NONE,
};
struct extcon_dev xxx_edev;

b. Allocate and register the extcon device:

xxx_edev = devm_extcon_dev_allocate(&pdev->dev, xxx_extcon_cables);
devm_extcon_dev_register(&pdev->dev, xxx_edev);

c. When the device is connected, execute the following command to tell frameworks that the headphone
device has been connected:

extcon_set_state_sync(extcon_dev, EXTCON_JACK_HEADPHONE, 1);

UG10156 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. android-16.0.0_1.0.0 — 28 October 2025 Document feedback
41 / 78

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10156

NXP Semiconductors UG10156
Android User's Guide

d. When the device is disconnected, execute the following command:

extcon_set_state_sync(extcon_dev, EXTCON_JACK_HEADPHONE, 0).

8.2.3 Enabling powersave mode

By default, the DRAM speed is 4000 MT/s, the GIC frequency is 500 MHz, and VDD_SOC is 0.95 V. A
powersave mode can be achieved with the following conditions:

• DRAM speed is 2400 MT/s.
• VDD_SOC is 0.85 V.
• Prohibit the eMMC module, FEC module, BT module, and Wi-Fi module from requesting high bus frequency.
• Disable LDB, ISP, and HDMI.
• USB power domain is active when the USB is in use, and enters suspending when the USB is not in use.
• When playing local audio and output with Bluetooth headset, playing local audio through LPA and output with

wired headset, playing online audio and output with wired headset at the time of screen off, the DRAM speed
is 400 MT/s and the GIC frequency is 100 MHz.

Perform the following steps to enable powersave mode:

1. Setup the gcc toolchain. If you have downloaded the AArch32 toolchain in Section 3.2, export the toolchain
path ARMGCC_DIR variable as export ARMGCC_DIR=/opt/arm-gnu-toolchain-12.3.rel1-x86_
64-arm-none-eabi. The toolchain path can vary based on your actual toolchain path, you can add the
export command to /etc/profile so it can be used directly when host boot up.

2. Upgrade the CMake version to or higher than 3.13.0. If the CMake version on your machine is not higher
than 3.13.0, you can execute the following commands to upgrade it:

wget https://github.com/Kitware/CMake/releases/download/v3.13.2/
cmake-3.13.2.tar.gz
tar -xzvf cmake-3.13.2.tar.gz; cd cmake-3.13.2;
sudo ./bootstrap
sudo make
sudo make install

3. Build image with POWERSAVE=true.

POWERSAVE=true ./imx-make.sh -j4 2>&1 | tee build-log.txt

Perform the following steps to play audio in powersave mode with the MCU image:

1. Use -u trusty-powersave-dual -d powersave-non-rpmsg -m when flashing images to enable
powersave mode, for example:

For imx8mp
sudo uuu_imx_android_flash.sh -f imx8mp -e -u trusty-powersave-dual -d
 powersave-non-rpmsg -m

2. Set bootargs in U-Boot command line:

setenv append_bootargs androidboot.lpa.enable=1
 snd_pcm.max_alloc_per_card=134217728 clk-imx8mp.mcore_booted=1
saveenv

3. Set bootcmd in U-Boot command line:

setenv bootcmd "bootmcu && boota"
saveenv

UG10156 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. android-16.0.0_1.0.0 — 28 October 2025 Document feedback
42 / 78

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10156

NXP Semiconductors UG10156
Android User's Guide

Make sure that only "MIPI DSI", "Debug UART", and "Power" ports are connected on the board.
4. To play local audio through LPA and output with wired headset:

a. Boot up the system.
b. Push the .wav audio files to /sdcard/. It is better to use a long duration audio file.
c. Open the DirectAudioPlayer application. Select a file from the spinner, and the file selected is listed

under the spinner.
d. Click the Play button to play audio.
e. Press the power key on the board to make the system enter suspend mode, and the audio can keep

playing.

Perform the following steps to play audio in powersave mode without the MCU image:

1. Use -u trusty-powersave -d powersave-non-rpmsg4 when flashing images to enable the
powersave mode, for example:

For imx8mp
sudo uuu_imx_android_flash.sh -f imx8mp -e -u trusty-powersave -d powersave-
non-rpmsg

Make sure that only "MIPI DSI", "Debug UART", and "Power" ports are connected on the board.
2. To play audio and output with Bluetooth headset:

a. Boot up the system.
b. Push the .mp3 audio files to /sdcard/. It is better to use a long-duration audio file.
c. Connect a Bluetooth headset.
d. Play the .mp3 audio file and turn of the screen.

3. To play online audio and ouput with wired headset:
a. Boot up the system.
b. Connect to the Wi-Fi access point.
c. Open the Spotify application and play audio and turn off the screen.

Note: Only the i.MX 8M Plus EVK Board supports this feature.

8.3 Display configuration

8.3.1 Configuring the logical display density

The Android UI framework defines a set of standard logical densities to help application developers target
application resources.

Device implementations must report one of the following logical Android framework densities:

• 120 dpi, known as 'ldpi'
• 160 dpi, known as 'mdpi'
• 213 dpi, known as 'tvdpi'
• 240 dpi, known as 'hdpi'
• 320 dpi, known as 'xhdpi'
• 480 dpi, known as 'xxhdpi'

Device implementations should define the standard Android framework density that is numerically closest to the
physical density of the screen, unless that logical density pushes the reported screen size below the minimum
supported.

UG10156 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. android-16.0.0_1.0.0 — 28 October 2025 Document feedback
43 / 78

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10156

NXP Semiconductors UG10156
Android User's Guide

The default display density value is defined in ${MY_ANDROID}/device/nxp/ as follows:

BOARD_KERNEL_CMDLINE += androidboot.lcd_density=240

The display density value can be changed by modifying the related lines mentioned above in files under
${MY_ANDROID}/device/nxp/ and recompiling the code or setting in U-Boot command line as bootargs
during boot up.

Note:

• For the i.MX 8M Mini EVK board, the source folder is ${MY_ANDROID}/device/nxp/imx8m/evk_8mm/
BoardConfig.mk.

• For the i.MX 8M Nano EVK board, the source folder is ${MY_ANDROID}/device/nxp/imx8m/evk_8mn/
BoardConfig.mk.

• For the i.MX 8M Plus EVK board, the source folder is ${MY_ANDROID}/device/nxp/imx8m/evk_8mp/
BoardConfig.mk.

• For the i.MX 8MQuad WEVK/EVK board, the source folder is ${MY_ANDROID}/device/nxp/imx8m/evk_
8mq/BoardConfig.mk.

• For the i.MX 8ULP EVK board, the source folder is ${MY_ANDROID}/device/nxp/imx8ulp/evk_8ulp/B
oardConfig.mk.

• For the i.MX 8QuadMax/8QuadXPlus MEK board, the source folder is ${MY_ANDROID}/device/nxp/
imx8q/mek_8q/BoardConfig.mk.

• For the i.MX 95 EVK board, the source folder is ${MY_ANDROID}/device/nxp/imx9/evk_95/Board
Config.mk.

8.3.2 Enabling multiple-display function

The following boards support more than one display.

Board Number of displays Display port

i.MX 8QuadMax MEK 4 • If physical HDMI is used:
HDMI_TX, LVDS0_CH0, LVDS1_CH0, and MIPI_DSI1

• If physical HDMI is not used:
LVDS0_CH0 and LVDS1_CH0, MIPI_DSI0, and MIPI_
DSI1

i.MX 8QuadXPlus MEK 2 DSI0/LVDSI0, DSI1/LVDSI1

i.MX 8M Quad WEVK/EVK 2 HDMI, MIPI-DSI-to-HDMI

i.MX 8M Plus EVK 3 MIPI-DSI, LVDS0, HDMI

i.MX 95 2 If MIPI-to-HDMI is used: MIPI-to-HDMI and LVDS1
If MIPI-to-HDMI is not used: LVDS0 and LVDS1

Table 24. Boards supporting multiple displays

The two displays on i.MX 8QuadXPlus MEK are enabled by default.

The three displays on i.MX 8M Plus EVK are enabled by default.

To evaluate the multiple-display feature with physical HDMI on i.MX 8QuadMax MEK, flash dtbo-imx8qm-
md.img. It implies a limitation of the resolution of the physical HDMI. To use multiple displays, do not use the
physical HDMI with the resolution of 4K.

To evaluate the multiple-display feature on i.MX 8MQuad EVK, flash dtbo-imx8mq-dual.img.

UG10156 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. android-16.0.0_1.0.0 — 28 October 2025 Document feedback
44 / 78

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10156

NXP Semiconductors UG10156
Android User's Guide

To evaluate the multiple display feature on i.MX 95 EVK, dtbo-imx95-lvds-dualdisp.img or dtbo-
imx95-mipi-lvds1.img should be flashed.

8.3.2.1 Binding the display port with the input port

The display port and input port are bound together based on the input device location and display-ID. /
vendor/etc/input-port-associations.xml is used to do this work when the system is running, but
the input device location and display-ID changes with the change of connection forms of these ports with
corresponding input and display devices, which means the input location and display-ID need to be retrieved
before the connection is fixed.

The source file of /vendor/etc/input-port-associations.xml is in the repository under the
${MY_ANDROID}/device/nxp/ directory.

Take i.MX 8M Plus EVK as an example:

1. Use the following commands to obtain the display port number:

dumpsys SurfaceFlinger --display-id
Display 4693505326422272 (HWC display 0): port=0 pnpId=DEL displayName="DELL
 P2314T"
Display 4693505326422273 (HWC display 1): port=1 pnpId=DEL displayName="DELL
 P2314T"
Display 4692921138614786 (HWC display 2): port=2 pnpId=DEL displayName="DELL
 S2740L"

2. Use the following commands to obtain the touch input location:

getevent -i | grep location
location: "usb-xhci-hcd.0.auto-1.3.4/input0"
location: "usb-xhci-hcd.0.auto-1.2.4/input0"
location: "usb-xhci-hcd.0.auto-1.1.4/input0"

3. Bind the display port and input location as follows and modify the configuration file. This file needs to be
modified according to actual connection. One display port can be bound with multiple input ports.

<ports>
 <port display="0" input="usb-xhci-hcd.0.auto-1.1.4/input0" />
 <port display="1" input="usb-xhci-hcd.0.auto-1.2.4/input0" />
 <port display="2" input="usb-xhci-hcd.0.auto-1.3.4/input0" />
</ports>

To make the modifications take effect, modify the source file under the ${MY_ANDROID}/device/nxp/
directory and rebuild the images. Keep the connection of display devices and input devices unchanged and
reflash the images. Or you can disable DM-verity on the board and then use the adb push command to push
the file to the vendor partition to overwrite the original one.

8.3.2.2 Launching applications on different displays

When multiple displays are connected, the default secondaryHomeLauncher of the non-primary display is used
to launch any application through a pop-up window. You can choose different applications for different displays.

8.3.3 Enabling low-power display function

Currently, only the i.MX 8ULP EVK board supports the low-power display function. This demo demonstrates the
shared display switching between the Application domain (APD) and the Realtime domain (RTD). It provides a
possible solution for smart watch to optimize power consumption when the screen is on.

UG10156 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. android-16.0.0_1.0.0 — 28 October 2025 Document feedback
45 / 78

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10156

NXP Semiconductors UG10156
Android User's Guide

8.3.3.1 Enabling low-power display on i.MX 8ULP EVK

Perform the following steps to enable the low-power display:

1. As the dual-boot mode is used to enable the low-power display feature, the MCU image should be built and
flashed separately. Add -u trusty-dualboot-dual -d lpd -m when flashing images to flash image
separately, for example:

uuu_imx_android_flash.sh -f imx8ulp -e -u trusty-dualboot-dual -d lpd -m

2. To update the MCU binary only, use the UUU script to flash the MCU image only:

uuu_imx_android_flash.sh -f imx8ulp -u trusty-dualboot-dual -m

3. After flashing the image, set the board boot switch to dual-boot mode to boot up the board normally:
0100_0001(SW5, from 1-8 bit).

8.3.3.2 Some test commands in low-power display demo

This feature on the MCU side is based on FreeRTOS and the console function is added to test this feature
easily.

• When the system boots up, this feature works as the default behavior (described in next section). Use the
following command to switch to the auto sleep behavior:

autosleep 10

The RTD UI truns off after 10 seconds (this value should be larger than 0). To disable this beahvior, just input
autosleep 0 to switch to the default behavior.

• The backlight of the RTD UI can be adjusted by the following commands:

adjust backlight to maximum: bl 100
turn off backlight: bl 0

8.3.3.3 Test procedure for low-power display demo

Default behavior

When the system boots up, this low-power display works as the default behavior.

• When the Android system boots up, make Android enter SUSPEND mode (remove the USB, press the ON/
OFF button). Then RTD takes over the display and shows the watch dial and updates the time all the time.

• Press the ON/OFF button again to resume the Android system. APD takes over the display again and shows
the Android UI.

Note: Sometimes the alarm wakes up APD, but does not light up the Android UI. The screen keeps dialing, and
then updates the time again when APD suspends again.

Auto Sleep behavior

The UART console on the MCU side supports to input some commands to make RTD UI (watch dial) turn off
in some time. Press the RTD BUTTON1 (Vol+) to show the dial again. If such a button is pressed when the
RTD UI is showing, it wakes up APD and shows the Android UI. When the Android UI is showing, press RTD
BUTTON1 (Vol+), which can make the Android audio volume up.

• Input autosleep 10 to make the RTD UI turn off in 10s. autosleep 0 disables such behavior.
• When the display is turned off, pressing RTD BUTTON1 makes the RTD UI show again. It turns off the display

again if there is no other action.
• When the RTD UI (dial) is showing, pressing RTD BUTTON1 wakes up APD and shows the Android UI.
• When the Android UI is showing, pressing RTD BUTTON1 works as the Vol+ button.
UG10156 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. android-16.0.0_1.0.0 — 28 October 2025 Document feedback
46 / 78

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10156

NXP Semiconductors UG10156
Android User's Guide

Note: When the auto sleep feature is enabled, only RTD BUTTON1 can make the RTD UI show again (APD in
suspend mode).

8.3.4 HDMI-CEC feature

Consumer Electronics Control (CEC) is a feature of HDMI designed to allow users to command and control
devices connected through HDMI by using only one remote control.

8.3.4.1 Implementation on i.MX platforms

Before the test, you need to know the following:

• Currently, only the platforms with physical HDMI support this feature, so the feature is enabled on i.MX 8M
Quad, i.MX 8QuadMax, and i.MX 8M Plus EVK boards. Pay attention to the images flashed.

./fastboot_imx_flashall.sh -f imx8mq -a -e -u trusty-dual

./fastboot_imx_flashall.sh -f imx8qm -a -e -u hdmi -d hdmi

./fastboot_imx_flashall.sh -f imx8mp -a -e -u trusty-dual

• TV input is restricted to HDMI1. Other connector port inputs are not supported.
• For i.MX 8QuadMax, TV input is restricted to HDMI1, and other input ports are not supported.
• For i.MX 8M Quad, multiple TV input ports are supported, but hot-plug between multiple ports is not

supported.
• For i.MX 8M Plus, multiple TV input ports are supported, and hot-plug between multiple ports is supported.
• Most TVs and devices support HDMI-CEC, but it may be referred to by different branded trade names, so

check your device's settings to enable it. For most TVs, there is a CEC-related introduction for your reference.
• An i.MX 8 device acts as a playback device (logical address 4).

8.3.4.2 Test procedure for HDMI-CEC End-User features

Not all End-User features are supported (One Touch Play, System Standby are definitely supported), and some
features involve whether the TV remote control provides commands (Deck Control, Device Menu Control,
Remote Control Pass Through).

Ensure that the device boots up and the TV displays the HOME UI properly.

CEC End-User feature Test step

One Touch Play 1. Set TV to other display (the HDMI connector is not actually connected to the Internet
TV).

2. Press the on button. Then the TV switches to the relevant HDMI connector and display.

System Standby 1. Press the device off button. Then the TV enters the standby state. You can check the
TV state by the TV remote control: Press the standby button. Then the TV recovers
from the standby state, which means that it truly entered into standby.

2. Press the device on button. Then the TV exits the standby state.
Note: Only device control TV is supported, and TV control device is not supported.

Deck Control Media functions:
1. Prepare a test video (or record a video through camera), opened by Gallery.
2. Perform Play and Pause video playback through TV remote control.

Note: Other commands, such as fast forward, rewind, and stop, are not supported.

Device Menu Control Use your TV remote control to navigate the menu settings on a connected source device.
1. Contents Menu: Open Gallery, and then press content list. The menu is then

displayed in the current view.

Table 25. Test procedure for HDMI-CEC End-User features

UG10156 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. android-16.0.0_1.0.0 — 28 October 2025 Document feedback
47 / 78

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10156

NXP Semiconductors UG10156
Android User's Guide

CEC End-User feature Test step
2. Home Menu: On other displays (enter an apk or swipe up to open the detailed

application menu), press Home. The system returns to the HOME UI.
Note: The operations depend on whether the TV remote control has these buttons. Other
menus were not tested.

Remote Control Pass
Through

Select; Up; Down; Left; Right; Exit; 0 1 2...
1. Run swipe up to open the detailed application menu.
2. Use TV remote control to move the cursor to select the application and enter the

application, or Exit the application.
Note: The operations depend on whether the TV remote control has these buttons. Other
commands were not tested.

One touch Record It is not supported, and it needs to be used as a recording device.

Timer Programming It is not supported, and it needs to be used as a recording device.

Tuner Control It is not supported, and it needs to be used as a tuner device.

System Audio Control It is not supported, and it needs to be used as an audio system.

Table 25. Test procedure for HDMI-CEC End-User features...continued

8.4 Wi-Fi/Bluetooth configuration

8.4.1 Enabling or disabling Bluetooth profile

Default enabled Bluetooth profiles for Android build are configured in files named product.prop which can be
found under ${MY_ANDROID}/device/nxp/.

For example, bluetooth.profile.asha.central.enabled?=false indicates that the ASHA profile is
disabled. bluetooth.profile.a2dp.source.enabled?=true indicates that the A2DP profile is enabled.

To change enabled Bluetooth profiles, change the default Bluetooth profile configuration.

The following is an example to set ASHA enabled and A2DP disabled for the i.MX 8M Mini board.

The file to be changed is ${MY_ANDROID}/device/nxp/imx8m/evk_8mm/product.prop.

bluetooth.profile.asha.central.enabled?=ture
bluetooth.profile.a2dp.source.enabled?=false

8.5 USB configuration

8.5.1 Enabling USB 2.0 in U-Boot for i.MX 8QuadMax/8QuadXPlus MEK

There are both USB 2.0 and USB 3.0 ports on i.MX 8QuadMax/8QuadXPlus MEK board. Because U-Boot can
support only one USB gadget driver, the USB 3.0 port is enabled by default. To use the USB 2.0 port, modify the
configurations to enable it and disable the USB 3.0 gadget driver.

For i.MX 8QuadMax, to enable USB 2.0 for the u-boot-imx8qm.imx, make the following changes under
${MY_ANDROID}/vendor/nxp-opensource/uboot-imx:

diff --git a/configs/imx8qm_mek_android_defconfig b/configs/imx8qm_mek_android_defconfig
index fec2840430..c1c963bef3 100644
--- a/configs/imx8qm_mek_android_defconfig
+++ b/configs/imx8qm_mek_android_defconfig
@@ -136,7 +136,7 @@ CONFIG_SPL_PHY=y

UG10156 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. android-16.0.0_1.0.0 — 28 October 2025 Document feedback
48 / 78

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10156

NXP Semiconductors UG10156
Android User's Guide

CONFIG_SPL_USB_GADGET=y
CONFIG_SPL_USB_SDP_SUPPORT=y
-CONFIG_SPL_SDP_USB_DEV=1
+CONFIG_SPL_SDP_USB_DEV=0
CONFIG_SDP_LOADADDR=0x80400000
CONFIG_FASTBOOT=y
@@ -147,7 +147,7 @@ CONFIG_FASTBOOT_UUU_SUPPORT=n
CONFIG_FASTBOOT_BUF_ADDR=0x98000000
CONFIG_FASTBOOT_BUF_SIZE=0x19000000
CONFIG_FASTBOOT_FLASH=y
-CONFIG_FASTBOOT_USB_DEV=1
+CONFIG_FASTBOOT_USB_DEV=0
CONFIG_BOOTAUX_RESERVED_MEM_BASE=0x88000000
CONFIG_BOOTAUX_RESERVED_MEM_SIZE=0x01000000
diff --git a/include/configs/imx8qm_mek_android.h b/include/configs/imx8qm_mek_android.h
index 1fb6b45768..c60f924f02 100644
--- a/include/configs/imx8qm_mek_android.h
+++ b/include/configs/imx8qm_mek_android.h
@@ -19,7 +19,6 @@
#define IMX_HDMITX_FIRMWARE_SIZE 0x20000
#define IMX_HDMIRX_FIRMWARE_SIZE 0x20000
-#define CONFIG_FASTBOOT_USB_DEV 1
#undef CONFIG_EXTRA_ENV_SETTINGS
#undef CONFIG_BOOTCOMMAND

For i.MX 8QuadXPlus, to enable USB 2.0 for the u-boot-imx8qxp.imx, make the following changes under
${MY_ANDROID}/vendor/nxp-opensource/uboot-imx:

diff --git a/configs/imx8qxp_mek_android_defconfig b/configs/imx8qxp_mek_android_defconfig
index 2dbd3f3f91..57aec56b0c 100644
--- a/configs/imx8qxp_mek_android_defconfig
+++ b/configs/imx8qxp_mek_android_defconfig
@@ -138,7 +138,7 @@ CONFIG_SPL_PHY=y
CONFIG_SPL_USB_GADGET=y
CONFIG_SPL_USB_SDP_SUPPORT=y
-CONFIG_SPL_SDP_USB_DEV=1
+CONFIG_SPL_SDP_USB_DEV=0
CONFIG_SDP_LOADADDR=0x80400000
CONFIG_FASTBOOT=y
@@ -149,7 +149,7 @@ CONFIG_FASTBOOT_UUU_SUPPORT=n
CONFIG_FASTBOOT_BUF_ADDR=0x98000000
CONFIG_FASTBOOT_BUF_SIZE=0x19000000
CONFIG_FASTBOOT_FLASH=y
-CONFIG_FASTBOOT_USB_DEV=1
+CONFIG_FASTBOOT_USB_DEV=0
CONFIG_SYS_I2C_IMX_VIRT_I2C=y
CONFIG_I2C_MUX_IMX_VIRT=y
diff --git a/include/configs/imx8qxp_mek_android.h b/include/configs/imx8qxp_mek_android.h
index 7e70e92f49..d8e420114f 100644
--- a/include/configs/imx8qxp_mek_android.h
+++ b/include/configs/imx8qxp_mek_android.h
@@ -16,8 +16,6 @@
#define FSL_FASTBOOT_FB_DEV "mmc"
-#define CONFIG_FASTBOOT_USB_DEV 1
-
#undef CONFIG_EXTRA_ENV_SETTINGS
#undef CONFIG_BOOTCOMMAND

More than one defconfig files are used to build U-Boot images for one platform. Make the same changes on
defconfig files as above to enable USB 2.0 for other U-Boot images. You can use the following command
under the ${MY_ANDROID}/vendor/nxp-opensource/uboot-imx/ directory to list all the related
defconfig files:

ls configs | grep "imx8q.*android.*"

UG10156 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. android-16.0.0_1.0.0 — 28 October 2025 Document feedback
49 / 78

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10156

NXP Semiconductors UG10156
Android User's Guide

8.5.2 Changing the VID/PID values of the USB Gadget

8.5.2.1 USB Gadget in U-Boot

The USB Gadget functions in the U-Boot stage include fastboot and SPL Serial Download Protocol (SDP).

The VID/PID values for fastboot are 0x1fc9/0x0152, they are configured with two defconfig items as follows.
They can be found in the defconfig file.

CONFIG_USB_GADGET_VENDOR_NUM=0x1fc9
CONFIG_USB_GADGET_PRODUCT_NUM=0x0152

The VID/PID values for SPL SDP are 0x1fc9/0x0151. The VID value is the same as before, and the PID value
is changed to 0x0151 with the following function. The corresponding source code file is ${MY_ANDROID}/
vendor/nxp-opensource/uboot-imx/arch/arm/mach-imx/spl.c.

int g_dnl_bind_fixup(struct usb_device_descriptor *dev, const char *name)
{
 put_unaligned(0x0151, &dev->idProduct);
 return 0;
}

The UUU tool relies on the VID/PID value, the reference values can be found in the UUU source code
config.cpp. Therefoe, if the values are changed, UUU may not work. But the U-Boot image used with UUU is not
flashed to the board, so the one in prebuilt images can be used during development if the VID/PID values need
to be changed.

8.5.2.2 USB Gadget on the Android platform

There are many VID/PID value sets on the Android platform. They are set in the USB Gadget HAL with the
following function. The corresponding source code file is ${MY_ANDROID}/vendor/nxp-opensource/imx/
usb/gadget/aidl/UsbGadget.cpp. Search for the name of the following function in the source code file.
Different PID/VID values are used when the Gadget provides different functions. Change the values based on
your requirement.

static Status setVidPid(const char *vid, const char *pid)

8.5.2.3 USB Gadget in Recovery

The USB Gadget functions in Recovery include adb and fastbootd. The VID/PID values are set in ${MY_
ANDROID}/bootable/recovery/etc/init.rc. The following lines can be found in the file:

write /config/usb_gadget/g1/idVendor 0x18D1
write /config/usb_gadget/g1/idProduct 0xD001
write /config/usb_gadget/g1/idProduct 0x4EE0

Change the value in preceding lines based on your requirement.

8.6 Trusty OS/security configuration
Trusty OS firmware is used in this i.MX Android release as TEE, which supports security features.

The i.MX Trusty OS is based on the AOSP Trusty OS and supports the i.MX 8M Mini EVK, i.MX 8M Nano EVK,
i.MX 8M Plus EVK, i.MX 8M Quad EVK, i.MX 8ULP EVK, i.MX 8QuadMax MEK, i.MX 8QuadXplus MEK, and

UG10156 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. android-16.0.0_1.0.0 — 28 October 2025 Document feedback
50 / 78

https://github.com/NXPmicro/mfgtools/blob/master/libuuu/config.cpp
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10156

NXP Semiconductors UG10156
Android User's Guide

i.MX 95 EVK boards. This section provides some basic configurations to make Trusty OS work on the EVK/MEK
boards. For more configurations about security-related features, see the i.MX Android Security User's Guide
(UG10158).

Customers can modify the Trusty OS code to make different configurations and enable different features. The
Trusty OS binaries can be built by following the commands below:

$ cd ${MY_ANDROID}
$ source trusty/vendor/google/aosp/scripts/envsetup.sh
$./trusty/vendor/google/aosp/scripts/build.py imx8mm #i.MX 8M Mini EVK Board
$ cp build-root/build-imx8mm/lk.bin vendor/nxp/fsl-proprietary/uboot-firmware/
imx8m/tee-imx8mm.bin

confirmationui.app was build as loadable app
$ cp build-root/build-imx8mm/user_tasks/trusty/user/app/confirmationui/
confirmationui.app \
 vendor/nxp/fsl-proprietary/uboot-firmware/imx8m/confirmationui-imx8mm.app

Then, build the Android images. The tee-imx8mm.bin and loadable confirmationui.app would be
packaged into the final Android images.

Note:

• For i.MX 8M Nano EVK, it uses the same Trusty target as i.MX 8M Mini EVK. Use the parameter imx8mm
to build the Trusty OS image, and then copy the files lk.bin and confirmationui.app to vendor/
nxp/fsl-proprietary/uboot-firmware/tee-imx8mn.bin and vendor/nxp/fsl-proprietary/
uboot-firmware/imx8m/confirmationui-imx8mn.app.

• For i.MX 8M Plus EVK, use the parameter imx8mp to build the Trusty OS image. Copy the files lk.bin and
confirmationui.app to vendor/nxp/fsl-proprietary/ uboot-firmware/tee-imx8mp.bin and
vendor/nxp/fsl-proprietary/uboot-firmware/imx8m/confirmationui-imx8mp.app.

• For i.MX 8M Quad EVK, use the parameter imx8m to build the Trusty OS image. Copy the files lk.bin and
confirmationui.app to vendor/nxp/fsl-proprietary/uboot-firmware/imx8m/tee-imx8mq.
bin and vendor/nxp/fsl-proprietary/uboot-firmware/imx8m/confirmationui-imx8mq.app.

• For i.MX 8ULP EVK, use the parameter imx8ulp to build the Trusty OS image. Copy the file lk.bin to
vendor/nxp/fsl-proprietary/uboot-firmware/imx8ulp/tee-imx8ulp.bin and vendor/nxp/
fsl-proprietary/uboot-firmware/imx8ulp/confirmationui-imx8ulp.app.

• For i.MX 8QuadMax MEK, use the parameter imx8qm to build the Trusty OS image. Copy the file lk.bin to
vendor/nxp/fsl-proprietary/uboot-firmware/imx8q_car/tee-imx8qm.bin.

• For i.MX 8QuadXPlus MEK, use the parameter imx8qxp to build the Trusty OS image. Copy the file lk.bin
to vendor/nxp/fsl-proprietary/uboot-firmware/imx8q_car/tee-imx8qx.bin.

• For i.MX 95 EVK, use parameter imx95 to build the Trusty OS image. Copy the files lk.bin and
confirmationui.app to vendor/nxp/fsl-proprietary/uboot-firmware/imx9/tee-imx95.bin
and vendor/nxp/fsl-proprietary/uboot-firmware/imx95/confirmationui-imx95.app.

• ${MY_ANDROID} is the root directory of the Android codebase.

8.6.1 Initializing the secure storage for Trusty OS

Trusty OS uses the secure storage to protect userdata. This secure storage is based on RPMB on the eMMC
chip. RPMB needs to be initialized with a key, and default execution flow of images does not make this
initialization.

Initialize the RPMB with hardware bound key or vendor specified key are both supported. The RPMB key
cannot be changed once it is set.

• To set a hardware bound key, perform the following operation:

UG10156 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. android-16.0.0_1.0.0 — 28 October 2025 Document feedback
51 / 78

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10156

NXP Semiconductors UG10156
Android User's Guide

Make your board enter fastboot mode, and then execute the following command on the host side:

fastboot oem set-rpmb-hardware-key

After the board is rebooted, the RPMB service in Trusty OS is initialized successfully.

• To set a vendor specified key, perform the following operation:
Make your board enter fastboot mode, and then execute the following commands on the host side:

fastboot stage < path-to-your-rpmb-key >
fastboot oem set-rpmb-staged-key

After the board is rebooted, the RPMB service in the Trusty OS is initialized successfully.
Note:
– This method does not work on the platforms without CAAM (for example, i.MX 95).
– The RPMB key should start with magic "RPMB" and be followed with 32 bytes hexadecimal key.
– A prebuilt rpmb_key_test.bin whose key is fixed 32 bytes hexadecimal 0x00 is provided. It is generated

with the following shell commands:
– touch rpmb_key_test.bin

– echo -n "RPMB" > rpmb_key_test.bin

– echo -n -e '\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\
x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' >> rpmb_key_test.bin

The \xHH means eight-bit character whose value is the hexadecimal value 'HH'. You can replace "00" above
with the key you want to set.

• Note:
For more details, see the i.MX Android Security User's Guide (UG10158).

8.6.2 Provisioning the AVB key

The AVB key consists of public key and private key. The private key is used by the host to sign the vbmeta
struct in vbmeta image, and the public key is used by AVB to authenticate the vbmeta image. The following
figure shows the relationship between the private key, public key, and vbmeta image. Without Trusty OS, the
public key is hard-coded in U-Boot, while with Trusty OS, it is saved in secure storage.

Figure 2. Relationship between AVB key and vbmeta

UG10156 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. android-16.0.0_1.0.0 — 28 October 2025 Document feedback
52 / 78

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10156

NXP Semiconductors UG10156
Android User's Guide

8.6.2.1 Generating the AVB key to sign images

The OpenSSL provides some commands to generate the private key. For example, you can use the following
commands to generate the RSA-4096 private key test_rsa4096_private.pem:

openssl genpkey -algorithm RSA -pkeyopt rsa_keygen_bits:4096 -outform PEM -out
 test_rsa4096_private.pem

The public key can be extracted from the private key. The avbtool in ${MY_ANDROID}/external/avb
supports such commands. You can get the public key test_rsa4096_public.bin with the commands:

avbtool extract_public_key --key test_rsa4096_private.pem --output
 test_rsa4096_public.bin

By default, the Android build system uses the algorithm SHA256_RSA4096 with the private key from ${MY_
ANDROID}/external/avb/test/data/testkey_rsa4096.pem. This can be overwritten by setting the
BOARD_AVB_ALGORITHM and BOARD_AVB_KEY_PATH to use different algorithm and private key:

BOARD_AVB_ALGORITHM := <algorithm-type>
BOARD_AVB_KEY_PATH := <key-path>

Algorithm SHA256_RSA4096 is recommended. The Android build system signs the vbmeta struct in vbmeta
image with the private key above and stores one copy of the public key in the signed vbmeta image. During
AVB verification, the U-Boot validates the public key first, and then uses the public key to authenticate the
signed vbmeta image.

8.6.2.2 Storing the AVB public key to a secure storage

The public key must be stored in the Trusty OS backed RPMB for Android if Trusty OS is enabled. Perform the
following steps to set the public key.

Make your board enter fastboot mode and enter the following commands on the host side:

fastboot stage ${your-key-directory}/test_rsa4096_public.bin
fastboot oem set-public-key

The public key test_rsa4096_public.bin should be extracted from the private key you have
specified. But if you do not specify any private key, you should set the public key as prebuilt
testkey_public_rsa4096.bin, which is extracted to form the default private key testkey_rsa4096.pem.

8.6.3 AVB boot key

The boot image is built as chained partition and the vbmeta struct in boot image is signed by a pair of
asymmetric keys (AVB boot key. For more information about the chained partition, see https://android.
googlesource.com/platform/external/avb/+/master/README.md.

By default, the Android platform uses the test AVB boot key to sign the boot image. It is located at:

${MY_ANDROID}/external/avb/test/data/testkey_rsa2048.pem

Custom keys should be used for production. See Section 8.6.2.1 to generate the custom private key. The AVB
boot key and algorithm can be overridden by setting the following configurations:

BOARD_AVB_BOOT_ALGORITHM := <algorithm-type>
BOARD_AVB_BOOT_KEY_PATH := <key-path>

UG10156 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. android-16.0.0_1.0.0 — 28 October 2025 Document feedback
53 / 78

https://android.googlesource.com/platform/external/avb/+/master/README.md
https://android.googlesource.com/platform/external/avb/+/master/README.md
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10156

NXP Semiconductors UG10156
Android User's Guide

8.6.4 Key attestation

The keystore key attestation aims to provide a way to strongly determine if an asymmetric key pair is hardware-
backed, what the properties of the key are, and what constraints are applied to its usage.

The Remote Key Provisioning (RKP) is now used to provision short-lived attestation keys to the devices.
Contact Google about the tools and process to extract the Certificate Signing Request (CSR) and upload it to
Google.

For devices that have not switched to use RKP, Google provides the attestation "keybox", which contains private
keys (RSA and ECDSA) and the corresponding certificate chains to partners from the Android Partner Front
End (APFE).

For more details, see the i.MX Android Security User's Guide (UG10158).

8.7 SCFW configuration
SCFW is a binary stored in ${MY_ANDROID}/vendor/nxp/fsl-proprietary/uboot-firmware, built into
bootloader.

To customize SCFW, download the SCFW porting kit on the i.MX Software and Development Tools page. For
this release, click "Embedded Linux", and then click the "RELEASES" tab. Find the Linux 6.12.34-2.1.0 release
and download its corresponding SCFW Porting kit. Then decompress the file with the following commands:

tar -zxvf imx-scfw-porting-kit-1.18.0.tar.gz
cd packages
chmod a+x imx-scfw-porting-kit-1.18.0.bin
./imx-scfw-porting-kit-1.18.0.bin
cd imx-scfw-porting-kit-1.18.0/src
tar -zxvf scfw_export_mx8qm_b0.tar.gz # for i.MX 8QuadMax MEK
tar -zxvf scfw_export_mx8qx_b0.tar.gz # for i.MX 8QuadXPlus MEK

The SCFW porting kit contains prebuilt binaries, libraries, and configuration files. For the board configuration
file, take i.MX 8QuadXPlus MEK as an example, it is scfw_export_mx8qx_b0/platform/board/mx8qx_
mek/board.c. Based on this file, some changes are made for Android and the file is stored in ${MY_
ANDROID}/vendor/nxp/fsl-proprietary/uboot-firmware/imx8q/board-imx8qxp.c.

You can copy board.c in vendor/nxp/fsl-proprietary to SCFW porting kit, modify it, and then build
the SCFW.

The following are steps to build Android SCFW (taking i.MX 8QuadXPlus as example):

1. Download GCC tool from the arm Developer GNU-RM Downloads page. It is suggested to download the
version of "6-2017-q2-update" as it is verified.

2. Unzip the GCC tool to /opt/scfw_gcc.
3. Export TOOLS="/opt/scfw-gcc".
4. Copy the board configuration file from ${MY_ANDROID}/vendor/nxp/fsl-proprietary/uboot-

firmware/imx8q/board-imx8qxp.c to the porting kit.

cp ${MY_ANDROID}/vendor/nxp/fsl-proprietary/uboot-firmware/imx8q/board-
imx8qxp.c scfw_export_mx8qx_b0/platform/board/mx8qx_mek/board.c

5. Build SCFW.

cd scfw_export_mx8qx_b0 # enter the directory just uncompressed for i.MX
 8QuadXPlus MEK
make clean
make qx R=B0 B=mek

UG10156 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. android-16.0.0_1.0.0 — 28 October 2025 Document feedback
54 / 78

https://www.nxp.com/imx6tools
https://developer.arm.com/tools-and-software/open-source-software/developer-tools/gnu-toolchain/gnu-rm/downloads
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10156

NXP Semiconductors UG10156
Android User's Guide

6. Copy the SCFW binary to the uboot-firmware folder.

cp build_mx8qx_b0/scfw_tcm.bin ${MY_ANDROID}/vendor/nxp/fsl-proprietary/
uboot-firmware/imx8q/mx8qx-scfw-tcm.bin

7. Build the bootloader.

cd ${MY_ANDROID}
./imx-make.sh bootloader -j4

Note:

To build SCFW for i.MX 8QuadMax MEK, use qm to replace qx in the steps above.

8.8 Miscellaneous configurations

8.8.1 Changing the boot command line in boot.img

After boot.img is used, the default kernel boot command line is inside this image. It packages together during
the Android build.

You can change this by changing the value of BOARD_KERNEL_CMDLINE in the BoardConfig.mk file under
${MY_ANDROID}/device/nxp.

Note:

• For i.MX 8M Mini EVK Board, the source folder is ${MY_ANDROID}/device/nxp/imx8m/evk_8mm/Board
Config.mk.

• For i.MX 8M Nano EVK Board, the source folder is ${MY_ANDROID}/device/nxp/imx8m/evk_8mn/Boar
dConfig.mk.

• For i.MX 8M Plus EVK Board, the source folder is ${MY_ANDROID}/device/nxp/imx8m/evk_8mp/Board
Config.mk.

• For i.MX 8M Quad WEVK/EVK Board, the source folder is ${MY_ANDROID}/device/nxp/imx8m/evk_
8mq/BoardConfig.mk.

• For i.MX 8ULP EVK Board, the source folder is ${MY_ANDROID}/device/nxp/imx8ulp/evk_8ulp/B
oardConfig.mk.

• For i.MX 8QuadMax/8QuadXPlus MEK, the source folder is ${MY_ANDROID}/device/nxp/imx8q/mek_
8q/BoardConfig.mk.

• For i.MX 95 EVK Board, the source folder is ${MY_ANDROID}/device/nxp/imx9/evk_95/Board
Config.mk.

8.8.2 Modifying the super partition

The partition of super is used to hold logical partitions. Metadata describing the layout of logical partitions in
super partition is at the beginning of the super partition. When the system boots up, the init program parses the
metadata in super partition and creates logical partitions to mount.

With virtual A/B feature, the super partition can only have the size for one slot of logical partitions. Now the size
of super partition is 4.0 GB. 10 MB reserved in this 4.0 GB for metadata. You can find the code as follows in
${MY_ANDROID}/device/nxp:

BOARD_SUPER_PARTITION_SIZE := 4294967296
BOARD_NXP_DYNAMIC_PARTITIONS_SIZE := 4284481536

UG10156 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. android-16.0.0_1.0.0 — 28 October 2025 Document feedback
55 / 78

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10156

NXP Semiconductors UG10156
Android User's Guide

Refer to the following patch to change the super partition size to 4 GB:

diff --git a/common/partition/device-partitions-13GB-ab_super.bpt b/common/
partition/device-partitions-13GB-ab_super.bpt
index e6e7f1a..829821c 100644
--- a/common/partition/device-partitions-13GB-ab_super.bpt
+++ b/common/partition/device-partitions-13GB-ab_super.bpt
 @@ -39,7 +39,7 @@
 },
 {
 "label": "super",
 - "size": "4096 MiB",
 + "size": "3584 MiB",
 "guid": "auto",
 "type_guid": "c1dedb9a-a0d3-42e4-b74d-0acf96833624"
 },
 diff --git a/imx8m/BoardConfigCommon.mk b/imx8m/BoardConfigCommon.mk
 index 20d65a3..ae42220 100644
 --- a/imx8m/BoardConfigCommon.mk
 +++ b/imx8m/BoardConfigCommon.mk
 @@ -135,8 +135,8 @@ ifeq ($(TARGET_USE_DYNAMIC_PARTITIONS),true)
 BOARD_NXP_DYNAMIC_PARTITIONS_SIZE := 4024434688
 endif
 else
 - BOARD_SUPER_PARTITION_SIZE := 4294967296
 - BOARD_NXP_DYNAMIC_PARTITIONS_SIZE := 4284481536
 + BOARD_SUPER_PARTITION_SIZE := 3758096384
 + BOARD_NXP_DYNAMIC_PARTITIONS_SIZE := 3747610624
 endif
 ifeq ($(IMX_NO_PRODUCT_PARTITION),true)
 BOARD_NXP_DYNAMIC_PARTITIONS_PARTITION_LIST := system system_ext vendor
 diff --git a/imx8q/BoardConfigCommon.mk b/imx8q/BoardConfigCommon.mk
 index 85d3561..c7352a2 100644
 --- a/imx8q/BoardConfigCommon.mk
 +++ b/imx8q/BoardConfigCommon.mk
 @@ -164,8 +164,8 @@ ifeq ($(TARGET_USE_DYNAMIC_PARTITIONS),true)
 BOARD_NXP_DYNAMIC_PARTITIONS_SIZE := 4024434688
 endif
 else
 - BOARD_SUPER_PARTITION_SIZE := 4294967296
 - BOARD_NXP_DYNAMIC_PARTITIONS_SIZE := 4284481536
 + BOARD_SUPER_PARTITION_SIZE := 3758096384
 + BOARD_NXP_DYNAMIC_PARTITIONS_SIZE := 3747610624
 endif
 ifeq ($(IMX_NO_PRODUCT_PARTITION),true)
 BOARD_NXP_DYNAMIC_PARTITIONS_PARTITION_LIST := system system_ext vendor

8.9 Notices before the debugging work
When doing the customization work, you may need to do some debugging work. The debugging work will be
convenient and flexible if the read-only filesystems are remounted as writable, so that the files in it can be
replaced with the adb push command. It helps to avoid flashing the images again and saves time.

To remount the read-only filesystems, perform the following steps:

1. Unlock the device.
2. Boot up the system to the Android platform.

UG10156 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. android-16.0.0_1.0.0 — 28 October 2025 Document feedback
56 / 78

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10156

NXP Semiconductors UG10156
Android User's Guide

3. Execute the following commands on the host. The second command takes seconds to finish.

$ adb root
$ adb disable-verity

4. Reboot the device, and execute the following command on the host:

$ adb root
$ adb remount

Then, the images can be pushed to the board with the adb push command. Before the further debugging
work, be aware of the following notices:

• Do not erase the userdata partition after adb disable-verity is executed.
With the dynamic partition feature enabled in i.MX Android images, and the size is not specified for system,
system_ext, vendor, and product partitions when building the images. OverlayFS is used when
remounting the read-only filesystems. An upper directory that can be written in OverlayFS is needed in
this condition. When the adb push command is executed, the files are pushed to the upper directory of
OverlayFS, while the original read-only filesystems are not modified.
i.MX Android images use only one partition named super to store images in logical partitions, and
f2fs filesystem is used for the userdata partition, which is mounted on /data. When executing the adb
disable-verity command, an image is allocated under /data/gsi/remount/scratch.img.0000.
Its size is the value of the property fs_mgr.overlayfs.data_scratch_size_mb if it is set. If not, the
size is the less one between the super partition size and the userdata partition free space size. The layout
information of this image is stored in /metadata/gsi/remount/lpmetadata in the format logical partition
metadata.
When rebooting the system, at the first stage of the init program, the information in /metadata/gsi/
remount/lpmetadata is used to create a logical partition named scratch, and it is mounted on /mnt/
scratch. This is used as the upper directory in OverlayFS used in remount. When the adb push command
is executed to modify the originally read-only filesystems, files are written to the scratch partition.
At the first stage of the init program, the userdata partition is not mounted. The code judges whether
the backing image of the scratch partition exists in the userdata partition by checking whether the /
metadata/gsi/remount/lpmetadata file can be accessed. Therefore, if the userdata partition is
erased, but the logical partition is still created, this could be catastrophic and may make the system crash.

• To modify the files from the console, execute remount on the console first.
adb and sh are in different mount namespaces. adb remount does not change the mount status that sh
sees.

• For MEK boards, if files need to be pushed to /vendor/etc, /vendor/lib64, and /vendor/firmware/
tee, push them to another path.
Images for i.MX 8Quad Max MEK and i.MX 8QuadXPlus MEK are built together with one target. Media codec
configuration file names and paths are hardcoded in the framework, while these two SoCs need different
media codec configurations. It means that the media codec configuration files for the two boards with different
content should have the same name and be accessed with the same path. Therefore, OverlayFS is used, and
images for the two boards have different OverlayFS upper directories. The mount command can be found in
${MY_ANDROID}/device/nxp/imx8q/mek_8q/init.rc:

mount overlay overlay /vendor/etc ro lowerdir=/vendor/vendor_overlay_soc/
${ro.boot.soc_type}/vendor/etc:/vendor/etc,override_creds=off
mount overlay overlay /vendor/lib64 ro lowerdir=/system/lib64/
vendor_widevine_overlay_soc/${ro.boot.soc_type}/vendor/lib64:/vendor/
lib64,override_creds=off
mount overlay overlay /vendor/firmware/tee ro lowerdir=/vendor/
vendor_widevine_overlay_soc/${ro.boot.soc_type}/vendor/firmware/tee:/vendor/
firmware/tee,override_creds=off

The value of ${ro.boot.soc_type} can be imx8qxp or imx8qm here.

UG10156 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. android-16.0.0_1.0.0 — 28 October 2025 Document feedback
57 / 78

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10156

NXP Semiconductors UG10156
Android User's Guide

With the preceding command executed, access to files under /vendor/etc can access files both under
/vendor/etc and /vendor/vendor_overlay_soc/${ro.boot.soc_type}/vendor/etc. The /
vendor/vendor_overlay_soc/${ro.boot.soc_type}/vendor/etc:/vendor/etc directory is the
upper directory in overlayfs and /vendor/etc is both the lower directory and mount point.
After remount, the lower directory /vendor/etc is still read-only, and files can be pushed to other sub-paths
under /vendor except /vendor/etc. To push a modified file, which should be accessed from /vendor/
etc, push it to /vendor/vendor_overlay_soc/${ro.boot.soc_type}/vendor/etc, and then reboot
the system to make it take effect.
For example, if you modified the file cdnhdmi_config.json, a file should be under /vendor/etc/
configs/audio/. Execute the following commands on the console:

su
umask 000
cd /vendor/vendor_overlay_soc/imx8qm/vendor/etc/
mkdir -p configs/audio/

Then, execute the following commands on the host:

sudo adb push cdnhdmi_config.json /vendor/vendor_overlay_soc/imx8qm/vendor/etc/

At last, reboot the device to make this change take effect.
There are two limitations here:
– To delete a file under /vendor/etc/, you can only rebuild the image and flash the vendor image again.
– The OverlayFS is mounted with a command in an init .rc file. The init .rc files are all parsed by the init

program before the OverlayFS is mounted. Therefore, to modify init .rc files under /vendor/etc, you can
only rebuild the image and flash the vendor image again.

• For i.MX 8M Plus EVK boards, if files need to be pushed to /vendor/etc/configs/isp, push them to
another path.
Similar to the condition of images for MEK boards, the images for i.MX 8M Plus EVK board support different
Cameras, which require different configurations. The different configuration files have the same name, and
need to be accessed from the same directory of /vendor/etc/configs/isp, so OverlayFS is used and
mounted on this directory for some camera usages, and this directory is still read-only after remount.
The mount commands can be found in ${MY_ANDROID}/device/nxp/imx8m/evk_8mp/init.rc.

default is for dual os08a20
on property:ro.boot.camera.layout=""
 mount overlay overlay /vendor/etc/configs/isp ro lowerdir=/vendor/
vendor_overlay_sensor/os08a20/vendor/etc/configs/isp:/vendor/etc/configs/
isp,override_creds=off

setenv append_bootargs androidboot.camera.layout=basler-ov5640
on property:ro.boot.camera.layout=basler-ov5640
 setprop ro.media.xml_variant.profiles _8mp-ispsensor-ov5640
 mount overlay overlay /vendor/etc/configs/isp ro lowerdir=/vendor/
vendor_overlay_sensor/basler/vendor/etc/configs/isp:/vendor/etc/configs/
isp,override_creds=off

setenv append_bootargs androidboot.camera.layout=only-ov5640
on property:ro.boot.camera.layout=only-ov5640
 setprop ro.media.xml_variant.profiles _8mp-ov5640

on property:ro.boot.camera.layout=os08a20-ov5640
 setprop ro.media.xml_variant.profiles _8mp-ispsensor-ov5640
 mount overlay overlay /vendor/etc/configs/isp ro lowerdir=/vendor/
vendor_overlay_sensor/os08a20/vendor/etc/configs/isp:/vendor/etc/configs/
isp,override_creds=off

on property:ro.boot.camera.layout=dual-basler

UG10156 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. android-16.0.0_1.0.0 — 28 October 2025 Document feedback
58 / 78

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10156

NXP Semiconductors UG10156
Android User's Guide

 mount overlay overlay /vendor/etc/configs/isp ro lowerdir=/vendor/
vendor_overlay_sensor/basler/vendor/etc/configs/isp:/vendor/etc/configs/
isp,override_creds=off

Files need to be pushed to the following directories based on the camera you are debugging with:
– /vendor/vendor_overlay_sensor/basler/vendor/etc/configs/isp
– /vendor/vendor_overlay_sensor/os08a20/vendor/etc/configs/isp
The limitations described in the preceding part for MEK images also exist in the images for the i.MX 8M Plus
EVK board:
– To delete a file under /vendor/etc/configs/isp, you can only rebuild the image and flash the vendor

image again.
– The OverlayFS is mounted with a command in an init .rc file. The init .rc files are all parsed by
init before the OverlayFS is mounted. Therefore, to modify init .rc files under /vendor/etc/
configs/isp, you can only rebuild the image and flash the vendor image again.

If only one camera usage is needed, the OverlayFS mount commands can be removed from the init.rc file
and put the corresponding configuration files directly under /vendor/etc/configs/isp.

8.10 CTS on USB camera
See https://source.android.com/docs/compatibility/cts/setup#cameras. If the DUT supports external cameras,
such as USB webcams, plug in an external camera when running the CTS. Otherwise, the CTS tests fail. Due
to the patch Camera CTS: Verify external camera by checking all connected cameras in the CTS, if the board
supports USB camera (/vendor/etc/permissions/android.hardware.camera.external.xml
exists), the USB camera must be connected when running the CTS, or most camera related tests will fail.

NXP uses the build parameter PERMISSION_EXTCAM to decide whether to copy android.hardware.
camera.external.xml or not.

Taking i.MX 8M Mini as an example, see ANDROID_ROOT/deivce/nxp/imx8m/evk_8mm/evk_8mm.mk:

 PERMISSION_EXTCAM ?= true
 ifeq ($(PERMISSION_EXTCAM),true)
 PRODUCT_COPY_FILES += \
 frameworks/native/data/etc/android.hardware.camera.external.xml:vendor/
etc/permissions/android.hardware.camera.external.xml
 endif

Currently, for a release image, PERMISSION_EXTCAM is false on the i.MX 8QuadMax, 8QuadXPlus, 8M Mini,
and 8M Nano, true on the i.MX 8M Plus, 8M Quad, 8ULP, and i.MX 95 by default. Therefore, on i.MX 8M Plus,
8M Quad, 8ULP, and i.MX 95, connect the USB camera when running CTS. On i.MX 8QuadMax, 8QuadXPlus,
8M Mini, and 8M Nano, although there is no vendor/etc/permissions/android.hardware.camera.
external.xml, the USB camera still works properly with camera APKs.

9 Generic Kernel Image (GKI) Development

9.1 GKI introduction
The Generic Kernel Image (GKI) project addresses kernel fragmentation by unifying the core kernel and moving
SoC and board support out of the core kernel into loadable modules. The GKI kernel presents a stable Kernel
Module Interface (KMI) for kernel modules, so modules and kernel can be updated independently.

Devices that launch from the Android 14 (2023) platform release using kernel versions v5.15 or higher are
required to ship with the GKI kernel.

UG10156 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. android-16.0.0_1.0.0 — 28 October 2025 Document feedback
59 / 78

https://source.android.com/docs/compatibility/cts/setup#cameras
https://android.googlesource.com/platform/cts/+/aded87533d6104eedf912cc07225ad3627315657
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10156

NXP Semiconductors UG10156
Android User's Guide

The following boards have enabled GKI:

• i.MX 8M Mini Board
• i.MX 8M Nano Board
• i.MX 8M Plus EVK Board
• i.MX 8M Quad WEVK/EVK Board
• i.MX 8ULP EVK Board
• i.MX 8QuadMax MEK Board
• i.MX 8QuadXPlus MEK Board
• i.MX 95 EVK Board

9.2 Changes after GKI enabled
There are some changes after GKI is enabled.

• boot.img
After GKI is enabled, the boot.img is a composite image that includes the AOSP generic kernel image and
boot parameters.
It is built from one prebuilt boot.img, stored in the android source code ${MY_ANDROID}/vendor/nxp-
opensource/imx-gki/boot.img. This boot.img is certified and released from AOSP, and then signed
with the AVB key to generate final boot.img.
By default, the UUU and fastboot script flash this image.
To build boot.img, run ./imx-make.sh or make bootimage.

• system_dlkm.img
system_dlkm.img is signed by Google using the kernel build-time key pair and are compatible only with the
GKI they are built with. There is no ABI stability between boot.img and system_dlkm.img. For modules to
load correctly during runtime, boot.img and system_dlkm.img must be built and updated together.

• boot-imx.img
boot-imx.img is built from the i.MX kernel tree for debug purposes. By default, it is built out by imx-
make.sh with TARGET_IMX_KERNEL=true, and then renamed from boot.img to boot-imx.img. For
details, see the last piece of code in the imx-make.sh build script.
Note: boot.img and boot-imx.img are generated by the imx-make.sh script as follows:

TARGET_IMX_KERNEL=true make ${parallel_option} ${build_bootimage}
 ${build_vendorbootimage} ${build_dtboimage} ${build_vendordlkmimage} || exit
if [-n "${build_bootimage}"] || [${build_whole_android_flag} -eq 1]; then
 if [${TARGET_PRODUCT} = "evk_8mp"] || [${TARGET_PRODUCT} = "evk_8mn"] \
 || [${TARGET_PRODUCT} = "evk_8ulp"] || [${TARGET_PRODUCT} = "mek_8q"] \
 || [${TARGET_PRODUCT} = "evk_8mm"] || [${TARGET_PRODUCT} = "evk_8mq"] \
 || [${TARGET_PRODUCT} = "evk_95"]; then
 if [${sign_gki} -eq 1]; then
 mv ${OUT}/boot.img ${OUT}/boot-imx.img
 make bootimage
 fi
 fi
fi

To build boot-imx.img, run ./imx-make.sh or TARGET_IMX_KERNEL=true make bootimage && mv
${OUT}/boot.img ${OUT}/boot-imx.img.

• Kernel defconfig
Kernel .config is generated by one generic gki_defconfig along with one board specific config, like
imx8mm_gki.fragment.

• Driver modules
As GKI requires, all vendor drivers need to be built as module. Their configurations are set to m in above-
mentioned board-specific configuration file.

UG10156 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. android-16.0.0_1.0.0 — 28 October 2025 Document feedback
60 / 78

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10156

NXP Semiconductors UG10156
Android User's Guide

In addition, explicitly install those modules on board by adding them to the following two Android predefined
macros. For example, see ${MY_ANDROID}/device/nxp/imx8m/evk_8mm/SharedBoardConfig.mk:
– BOARD_VENDOR_RAMDISK_KERNEL_MODULES

Modules under this macro are copied to ${MY_ANDROID}/out/target/product/evk_8mm/vendor_
ramdisk/lib/modules, and then built as vendor_boot.img.
They are installed to the kernel in the first stage of initialization. In general, put essential modules here and
be careful of the sequence.

– BOARD_VENDOR_KERNEL_MODULES
Modules under this macro are copied to ${MY_ANDROID}/out/target/product/evk_8mm/vendor_
dlkm/lib/modules, and then built as vendor_dlkm.img.
They are installed later than vendor_ramdisk, after the Android file system is ready.

• Note: Due to SoC errata TKT340553 in i.MX 8QuadMax, it has not fully enabled GKI. The boot_8q.img
and system_dlkm_staging_8q are built locally for both i.MX 8QuadMax and i.MX 8QuadXPlus.

9.3 How to update the GKI image
Download GKI boot.img from Google. Put boot.img in ${MY_ANDROID}/vendor/nxp-opensource/
imx-gki/boot.img. Run the following command to build signed boot.img:

./imx-make.sh bootimage
or
make bootimage

Download GKI system_dlkm_staging_archive.tar.gz from Google. Put
system_dlkm_staging_archive.tar.gz in ${MY_ANDROID}/vendor/nxp-opensource/imx-
gki/system_dlkm_staging_archive.tar.gz. Unzip system_dlkm_staging_archive.tar.gz to
system_dlkm_staging.

Remove ${MY_ANDROID}/out/target/product/${TARGET_PRODUCT}/system_dlkm.

Run the following command to build system_dlkm.img.

make system_dlkmimage

Get the boot.img and system_dlkm_staging_archive.tar.gz from https://source.android.com/docs/
core/architecture/kernel/gki-release-builds.

9.4 How to add new drivers
Perform the following steps to add new drivers (Taking hdmirx driver on i.MX 8Quad Max/i.MX 8QuadXPlus as
an example):

1. Set the driver configuration to m in the configuration fragment file of the board:

diff --git a/arch/arm64/configs/imx8q_gki.fragment b/arch/arm64/configs/
imx8q_gki.fragment
index 51ce20e5920d..e54f96cc5469 100644
--- a/arch/arm64/configs/imx8q_gki.fragment
+++ b/arch/arm64/configs/imx8q_gki.fragment
@@ -148,3 +148,4 @@ CONFIG_TRUSTY_CRASH_IS_PANIC=y
CONFIG_SOC_IMX8M=m
CONFIG_I2C_MUX=m
CONFIG_I2C_MUX_GPIO=m
+CONFIG_MHDP_HDMIRX=m

UG10156 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. android-16.0.0_1.0.0 — 28 October 2025 Document feedback
61 / 78

https://source.android.com/docs/core/architecture/kernel/gki-release-builds
https://source.android.com/docs/core/architecture/kernel/gki-release-builds
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10156

NXP Semiconductors UG10156
Android User's Guide

2. Add the driver .ko files to the board:

diff --git a/imx8q/mek_8q/SharedBoardConfig.mk b/imx8q/mek_8q/
SharedBoardConfig.mk
index 280c067f8568..0837e352a4a7 100644
--- a/imx8q/mek_8q/SharedBoardConfig.mk
+++ b/imx8q/mek_8q/SharedBoardConfig.mk
@@ -227,7 +227,8 @@ BOARD_VENDOR_KERNEL_MODULES += \
$(KERNEL_OUT)/drivers/watchdog/imx_sc_wdt.ko \
$(KERNEL_OUT)/drivers/rtc/rtc-imx-sc.ko \
$(KERNEL_OUT)/drivers/nvmem/nvmem-imx-ocotp-scu.ko \
-$(KERNEL_OUT)/drivers/soc/imx/secvio/soc-imx-secvio-sc.ko
+$(KERNEL_OUT)/drivers/soc/imx/secvio/soc-imx-secvio-sc.ko \
+$(KERNEL_OUT)/drivers/staging/media/imx/hdmirx/cdns_mhdp_hdmirx.ko

Note: If other driver modules depend on them, put them before others.
3. Fix symbol issues encountered when the driver is loaded.

If some symbols are not exported but used by the added driver modules, perform the following steps:
a. Export symbols with EXPORT_SYMBOL_GPL(xxx).

Note: If the symbols are in the core kernel code (which means not in loadable modules), such changes
must upstream to the AOSP GKI Kernel tree.

b. Add symbols to the AOSP GKI Kernel tree gki/aarch64/abi.stg.
In this case, the following errors occur when init tries to load this module:

cdns_mhdp_hdmirx: Unknown symbol XXX (err -2)

After checking the kernel code, the symbol is already exported by EXPORT_SYMBOL_GPL(), but is not
present in the gki/aarch64/abi.stg file. Therefore, follow next section to add the two symbols to the
.stg file and upstream this change to AOSP as follows:

https://android-review.googlesource.com/c/kernel/common/+/3622010

When the patch has been merged into the ACK tree, it usually takes a month or two to get it into the GKI
release image. To speed up this process, see the following link to request an emergency respin release:

https://source.android.com/docs/core/architecture/kernel/gki-
releases#emergency-respin

9.5 How to export new symbols
AOSP GKI image only exports those symbols listed at gki/aarch64/abi.stg. To update them, see the
official document: https://source.android.com/devices/architecture/kernel/abi-monitor.

The following is a quick start guide to export new symbols.

1. Check the AOSP symbol list (gki/aarch64/abi.stg).

mkdir gki && cd gki (Make sure folder gki is not inside of ${MY_ANDROID})
repo init -u https://android.googlesource.com/kernel/manifest -b common-
android16-6.12
repo sync
cd common

Check the gki/aarch64/abi.stg for the symbol that you need. If it is already there, find a release
from Android GKI Release Builds that includes the required symbol, and then see Section 9.3 to update
boot.img and system_dlkm.img.

2. Generate the device symbol list (gki/aarch64/symbols/imx).
If the symbol you need is not in gki/aarch64/abi.stg, continue to work in the common folder.

UG10156 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. android-16.0.0_1.0.0 — 28 October 2025 Document feedback
62 / 78

https://source.android.com/devices/architecture/kernel/abi-monitor
https://source.android.com/docs/core/architecture/kernel/gki-release-builds
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10156

NXP Semiconductors UG10156
Android User's Guide

Note: Switch the kernel in this common folder from AOSP to its own device kernel and apply all your local
patches that may require new symbols.

git remote add device https://github.com/nxp-imx/linux-imx.git
git remote update
git fetch device --tags
git checkout android-16.0.0_1.0.0
git apply <all device patches if needed>
touch android/abi_gki_protected_exports_aarch64
cd ..
(Due to ISP and wifi code is out of kernel tree, set it explicitly to collect
 their symbols)
ln -s ${MY_ANDROID}/vendor/nxp-opensource/verisilicon_sw_isp_vvcam
 verisilicon_sw_isp_vvcam
ln -s ${MY_ANDROID}/vendor/nxp-opensource/nxp-mwifiex nxp-mwifiex
tools/bazel run //common:imx_abi_update_symbol_list

Then, common/gki/aarch64/symbols/imx is updated.
3. Update the AOSP symbol list (gki/aarch64/abi.stg).

cd gki
cp common/gki/aarch64/symbols/imx /tmp/imx
cd common

Note: Switch the kernel in this common folder from its own device kernel to the AOSP kernel.

git reset --hard
git checkout aosp/android16-6.12
cp /tmp/imx gki/aarch64/symbols/imx

Verify the new symbols. If any existing symbols are removed, add them back. Then keep what you need,
and remove the extras. Otherwise, kernel_aarch64_abi_update or upstream will fail.

cd ..
tools/bazel run //common:kernel_aarch64_abi_update

Then, common/gki/aarch64/abi.stg is updated.
4. Build Android boot.img and system_dlkm.img locally.

tools/bazel run //common:kernel_aarch64_dist
cp out/kernel_aarch64/dist/boot.img ${MY_ANDROID}/vendor/nxp-opensource/imx-
gki/boot.img
cp system_dlkm_staging_archive.tar.gz ${MY_ANDROID}/vendor/nxp-opensource/
imx-gki/system_dlkm_staging_archive.tar.gz

See Section 9.3 to build boot.img and system_dlkm.img.
Then, boot.img and system_dlkm.img built locally export those symbols.

5. To export these symbols by the AOSP released GKI image, upstream the two files gki/aarch64/
abi.stg and gki/aarch64/symbols/imx to AOSP.
See How do I submit patches to Android Common Kernels.
Example ANDROID: GKI: Add symbol to symbol list for imx.
After the Android OS merges your patch, a Emergency respin process is needed to respin it into aosp/
android15-6.6-2025-01. (This is an example. Upgrade to any branch as you need.)
Then, you will see your patch in aosp/android15-6.6-2025-01. (This is an example, upgrade to any
branch as you need.) You can obtain the certified boot images from Android GKI Release Builds.
See Section 9.3 to update boot.img and system_dlkm_staging_archive.tar.gz.

9.6 How to build GKI locally
In the development stage, it is useful to build a GKI image locally to verify drivers.

UG10156 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. android-16.0.0_1.0.0 — 28 October 2025 Document feedback
63 / 78

https://android.googlesource.com/kernel/common/+/refs/heads/android-mainline/README.md
https://android-review.googlesource.com/c/kernel/common/+/3310639
https://source.android.com/docs/core/architecture/kernel/gki-releases#emergency-respin
https://docs.google.com/forms/d/e/1FAIpQLSf_mB3VUmz6vjdkp2MhfzfSUw58yd2hLHJDd1U65l4KCXcqcQ/viewform
https://source.android.com/docs/core/architecture/kernel/gki-release-builds
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10156

NXP Semiconductors UG10156
Android User's Guide

1. Prepare the GKI kernel build repository (Taking 6.12 kernel as an example):

mkdir gki && cd gki
repo init -u https://android.googlesource.com/kernel/manifest -b common-
android16-6.12
repo sync

2. (Optional) Enable the early console.
Early console is useful, if the system is stuck at "Starting kernel ...".
Apply the following patch in the GKI kernel tree: gki/common:

${MY_ANDROID}/vendor/nxp-opensource/imx-gki/debug_patches/0001-MA-19811-tty-
imx_earlycon-Support-lpuart-earlycon.patch

3. Build the GKI image.

tools/bazel run //common:kernel_aarch64_dist

The GKI boot.img is obtained from out/kernel_aarch64/dist/boot.img.
The GKI system_dlkm_staging_archive.tar.gz is obtained from out/kernel_aarch64/dist/
system_dlkm_staging_archive.tar.gz.

4. Build Android boot.img and system_dlkm.img:

cp out/kernel_aarch64/dist/boot.img ${MY_ANDROID}/vendor/nxp-opensource/imx-
gki/boot.img
cp system_dlkm_staging_archive.tar.gz ${MY_ANDROID}/vendor/nxp-opensource/
imx-gki/system_dlkm_staging_archive.tar.gz

See Section 9.3 to build boot.img and system_dlkm.img.
5. Build Android boot_8q.img and system_dlkm_8q.img (Only for i.MX 8QuadXPlus and 8QuadMax MEK

Boards)
To address TKT340553 Errata and support for multiple states domains, i.MX 8QuadXPlus and 8QuadMax
require boot_8q.img and system_dlkm_8q.img. The boot_8q.img and system_dlkm_staging_8q
are built locally with the AOSP tag android16-6.12-2025-08_r3, with the following patches from
${MY_ANDROID}/vendor/nxp-opensource/imx-gki/boot_8q_patches added.

0001-MLK-16005-2-arm64-tlb-add-the-SW-workaround-for-i.MX.patch
0002-ANDROID-ABI-Update-symbol-list-for-imx.patch
0003-PM-Domains-Move-the-Subdomain-check-into-_genpd_powe.patch
0004-PM-Domains-Support-enter-deepest-state-for-multiple-.patch
0005-PM-Domains-Choose-the-deepest-state-to-enter-if-no-d.patch
0006-PM-Domains-remove-no-governor-for-states-warning.patch

6. Build Android boot_95.img and system_dlkm_95.img (only for the i.MX 95 board).
To avoid the i.MX 95 camera ISP issue, i.MX 95 requires boot_95.img and system_dlkm_95.img.
The boot_95.img and system_dlkm_staging_95.img are built locally with the AOSP tag
android16-6.12-2025-08_r3, with the following patches from ${MY_ANDROID}/vendor/nxp-
opensource/imx-gki/boot_95_patches added:

0001-ILIE-12-include-videodev2.h-Add-meta-formats-used-fo.patch
0002-ILIE-17-media-v4l2-core-Add-meta-neoisp-formats-desc.patch
0003-PCI-dwc-Fix-resume-failure-if-no-EP-is-connected-at-.patch
0004-LF-13477-PCI-dwc-i.MX6QP-suspend-resume-hang-on-PCIe.patch

10 imx-chip-tool application

Matter (previously known as Project CHIP) is a universal IPv6-based application-layer communication protocol
for smart home devices. Matter supports UDP and TCP at the transport layer, and supports Ethernet, Wi-Fi,
Thread, Bluetooth Low Energy (BLE) at the link layer. Depending on the networking technologies supported
UG10156 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. android-16.0.0_1.0.0 — 28 October 2025 Document feedback
64 / 78

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10156

NXP Semiconductors UG10156
Android User's Guide

by a device, discovery and commissioning are possible using BLE, Wi-Fi technologies, or over IP, if a device
is already on an IP network. Devices that use Thread networking technology must also support BLE for the
purposes of discovery and commissioning.

The imx-chip-tool application is a pre-installed apk on the i.MX 8M Nano. It is a Matter Controller
implementation that allows users to discover and commission a Matter device on the network and communicate
with it using Matter messages. This application currently supports commissioning with three types of devices:

• On Network Device
This method is used to discover and communicate with Matter devices on the same LAN as the Matter
Controller. The Android device discovers and communicates with a Matter device over IP.

• Wi-Fi Device
This method is used to discover and communicate with Matter devices that support Wi-Fi. The Android device
connected to a Wi-Fi AP that supports IPv6, discovers a Matter device through BLE, joins the Matter device to
the Wi-Fi network, and then communicates with it over the Wi-Fi network.

• Thread Device
This method is used to discover and communicate with Matter devices that support Thread. The Android
device discovers a Thread device through BLE, joins the Thread device to the Matter network through the
Open Thread Board Router (OTBR) (The Android device and the OTBR are on the same Wi-Fi network, and
the OTBR and the Thread device are on the same Thread network. Together, they form a Matter network),
and then communicates with the Thread device over IP.

11 Running Android OS on Xen on i.MX 95 19x19 EVK

This section includes two parts:

• Demonstration of running Android Trout image in Xen with the prebuilt images.
• The description of how to build the Android Trout image used in Xen. This section describes how to customize

the images.

11.1 Running with the prebuilt images
In this demonstration, there are two operating systems:

• Yocto running in Xen Dom0
• Android Trout running in Xen DomU

11.1.1 Downloading and flashing the Yocto image

Download the Yocto LF6.12.34-2.1.0 release from the following URL for i.MX 95 19x19 EVK: https://
www.nxp.com/pages/alpha-beta-bsps-for-microprocessors:IMXPRERELEASES.

Switch to serial download mode, flash the image with the uuu command as follows. The default uuu script in
the release zip package uses eMMC as the target device.

sudo uuu LF_v6.12.34-2.1.0_images_IMX95.zip/uuu.auto-imx95-19x19-lpddr5-evk

Switch to a proper boot mode to boot up the Yocto image. To have the Xen support in use, execute the following
U-Boot commands to run the image:

U-Boot=> setenv xenlinux_addr 0x9c000000
U-Boot=> setenv dom0fdt_file imx95-19x19-evk-adv7535-ap1302.dtb
U-Boot=> setenv xenhyper_bootargs "console=dtuart dom0_mem=8192M
 dom0_max_vcpus=2 pci-passthrough=true"
U-Boot=> run xenmmcboot

UG10156 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. android-16.0.0_1.0.0 — 28 October 2025 Document feedback
65 / 78

https://www.nxp.com/pages/alpha-beta-bsps-for-microprocessors:IMXPRERELEASES
https://www.nxp.com/pages/alpha-beta-bsps-for-microprocessors:IMXPRERELEASES
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10156

NXP Semiconductors UG10156
Android User's Guide

With the last command above, the Yocto image is started with Xen support. Log in with the account root.

11.1.2 Installing the Android Trout image

The android-16.0.0_1.0.0_image_trout.tar.gz in the Android release package contains the Android
Trout image.

Uncompress the package. There are two files that need to be stored in the Yocto enviroment:

• u-boot.bin: A U-Boot image file.
• disk.img: A composite disk image file containing the kernel and the Android filesystem. Actually, it is
disk.img.zst in the compression package. Uncompress it again to get this disk.img.

A new partition larger than 15 GB needs to be created in Yocto with the fdisk command. An example of
creating the partition on eMMC is as follows:

 root@cn-szh02-ns-pr002:~# fdisk /dev/mmcblk0
 # start the fdisk command

 Welcome to fdisk (util-linux 2.40.4).
 Changes will remain in memory only, until you decide to write them.
 Be careful before using the write command.

 This disk is currently in use - repartitioning is probably a bad idea.
 It's recommended to umount all file systems, and swapoff all swap
 partitions on this disk.

 Command (m for help): p
 # print the partition table

 Disk /dev/mmcblk0: 59.28 GiB, 63652757504 bytes, 124321792 sectors
 Units: sectors of 1 * 512 = 512 bytes
 Sector size (logical/physical): 512 bytes / 512 bytes
 I/O size (minimum/optimal): 512 bytes / 512 bytes
 Disklabel type: dos
 Disk identifier: 0x076c4a2a

 Device Boot Start End Sectors Size Id Type
 /dev/mmcblk0p1 * 16384 540671 524288 256M c W95 FAT32 (LBA)
 /dev/mmcblk0p2 540672 21103361 20562690 9.8G 83 Linux

 Command (m for help): n
 # add a new partition
 Partition type
 p primary (2 primary, 0 extended, 2 free)
 e extended (container for logical partitions)
 Select (default p): p
 # select the primary type
 Partition number (3,4, default 3):
 # use the default partition number
 First sector (2048-124321791, default 2048): 21103362
 # use the sector after mmcblk0p2 as the first sector
 Last sector, +/-sectors or +/-size{K,M,G,T,P} (21103362-124321791, default
 124321791): # use the default last sector value

 Created a new partition 3 of type 'Linux' and of size 49.2 GiB.
 Partition #3 contains a ext4 signature.

UG10156 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. android-16.0.0_1.0.0 — 28 October 2025 Document feedback
66 / 78

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10156

NXP Semiconductors UG10156
Android User's Guide

 Do you want to remove the signature? [Y]es/[N]o: Y
 # remove the signature as the new partition was formatted before

 The signature will be removed by a write command.

 Command (m for help): w
 # write table to disk and exit
 The partition table has been altered.
 Syncing disks.

Format the new partition as Ext4:

root@cn-szh02-ns-pr002:~# mkfs.ext4 /dev/mmcblk0p3

Mount the partition to a newly created directory:

$ mkdir /root/image
$ mount /dev/mmcblk0p3 /root/image

Copy the Trout image files to Yocto.

Connect an Ethernet cable to the i.MX 95 19X19 EVK. A network connection of the Yocto helps use the scp
command as follows to copy the files from the host to the Yocto. The <ip_addr> in the following commands is
the IP address of the i.MX 95 19X19 EVK.

scp disk.img root@<ip_addr>:/root/image/
scp u-boot.bin root@<ip_addr>:/root/

11.1.3 Configuration for launching the Guest OS

Create the configuration file /root/imx95_trout.conf in the Yocto with the following content:

 kernel = "/root/u-boot.bin"
 disk = ['/root/image/
disk.img,,xvda,backendtype=qdisk,specification=virtio']
 cmdline = "console=hvc0 root=/dev/vda2 rw"
 vif = ['model=virtio-net,type=ioemu,bridge=xenbr0']
 name = "DomU"
 memory = "4096"
 vcpus = 6
 cpus = ['0', '1', '2', '3', '4', '5']
 virtio = [
 'backend=0,type=virtio,device,transport=mmio,grant_usage=false',

 'backend=0,type=virtio,device,transport=pci,bdf=00:01.0,backend_type=qemu,grant_usage=0',

 'backend=0,type=virtio,device,transport=pci,bdf=00:02.0,backend_type=qemu,grant_usage=0',

 'backend=0,type=virtio,device,transport=pci,bdf=00:03.0,backend_type=qemu,grant_usage=0',
]
 device_model_args = [
 '-device', 'virtio-sound-device,audiodev=pipewire',
 '-audiodev', 'pipewire,id=pipewire',
 '-global', 'virtio-mmio.force-legacy=false',
 '-display', 'sdl,gl=es',
 '-device', 'virtio-gpu-
gl,iommu_platform=true,hostmem=1G,bus=pcie.0,addr=1.0,blob=true,context_init=true',

UG10156 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. android-16.0.0_1.0.0 — 28 October 2025 Document feedback
67 / 78

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10156

NXP Semiconductors UG10156
Android User's Guide

 '-device', 'vhost-vsock-pci,iommu_platform=true,id=vhost-vsock-
pci0,bus=pcie.0,addr=2.0,guest-cid=3'
]
 device_model_override="/usr/bin/qemu-system-aarch64"

The file can be directly created in the Yocto with the vi command, or created on the host and copied to the
Yocto with the scp command.

Execute the following commands in Yocto to configure the network:

 ip addr flush dev eth0
 # Create bridge
 brctl addbr xenbr0
 brctl addbr xenbr1
 echo 0 > /sys/class/net/xenbr0/bridge/default_pvid
 brctl addif xenbr0 eth0
 brctl addif xenbr1 eth0
 # Set bridge and physical interface up
 ip link set dev xenbr0 up
 ip link set dev xenbr1 up
 ip link set dev eth0 up
 ifconfig
 ifconfig -a
 ip address add 192.168.0.120/24 dev xenbr0
 ifconfig xenbr1 192.168.1.120

Execute the following commands to configure the Xen in Yocto:

export SDL_VIDEODRIVER=wayland
systemctl --user --now enable pipewire wireplumber

11.1.4 Launching the Android Trout as Xen guest OS

Perform the following steps to launch the Android Trout as Xen guest OS:

1. Launch the Xen guest OS with the following command:

xl create /root/imx95_trout.conf

2. The following command can be used to check the states of OSes running in different domains:

xl list

3. Its output is as follows. Pay attention to the ID of DomU, which is used later when assigning a USB device
to DomU.

Name ID Mem VCPUs State Time(s)
Domain-0 0 8192 2 r----- 772.9
DomU 1 4096 6 -b---- 1497.0

4. Assign a USB mouse to the guest OS from Yocto to operate on the guest OS. Check the device information
on the Yocto console with the lsusb command:

root@cn-szh02-ns-pr002:~# lsusb
Bus 001 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub
Bus 001 Device 006: ID 413c:301a Dell Computer Corp. Dell MS116 Optical Mouse

5. Then execute the following commands to assign the mouse the the guest OS running in DomU:

xl usbctrl-attach 1 version=1 ports=8 # add a virtual USB controller in
 DomU. the first 1 in this command is DomU ID.

UG10156 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. android-16.0.0_1.0.0 — 28 October 2025 Document feedback
68 / 78

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10156

NXP Semiconductors UG10156
Android User's Guide

xl usb-list 1 # check the virtual USB
 controller info in DomU. the 1 in this command is DomU ID.
xl usbdev-attach 1 hostbus=1 hostaddr=6 # the first 1 is the DomU ID.
 hostbus is the bus ID in Yocto, hostaddr is the device ID in the Yocto.
 # the hostbus and hostaddr should
 be set with the USB mouse info retrieved with lsusb command

6. With the preceding commands executed, the USB mouse can be used to operate on the Trout OS.
7. To access the DomU console, execute the following command:

xl console DomU

8. To return to the Yocto console, press the key combination Ctrl+].

11.1.5 Enabling ADB over network in Android Trout

Access the DomU console with the command described previously. Execute the following command on the
DomU console:

ifconfig # get the ip address with this command

setprop service.adb.tcp.port 5555
stop adbd
start adbd

Then, on the host machine, execute the following command to connect to Trout:

adb connect <ip_addr>:5555

Ensure that the host machine and Trout are in the same subnet. The <ip_addr> is the IP address retrieved
with the ifconfig command executed on the DomU console. After the host ADB is connected to the Trout, the
adb command can be executed on Trout.

11.2 Building the Android Trout image used in Xen
To build the Android Trout image used in Xen, first, prepare the host machine environment.

Install necessary packages with the following commands:

sudo apt-get install -y build-essential libparted-dev python3.10-dev pkg-config
pip install pyparted

11.2.1 Synchronizing the code and building the bootloader and kernel

Perform the following steps to synchronize the code and build the bootloader and kernel:

1. Create a directory to hold the bootloader project, use the shell environment variable
${MY_XEN_BOOTLOADER} to point to this directory. Synchronize the bootloader project with the following
commands:

cd ${MY_XEN_BOOTLOADER}

repo init -u https://github.com/nxp-imx/imx-manifest -b imx_xen_guest -m
 xen_guest_bootloader_imx_2024.xml
repo sync -c

UG10156 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. android-16.0.0_1.0.0 — 28 October 2025 Document feedback
69 / 78

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10156

NXP Semiconductors UG10156
Android User's Guide

2. Apply the patches under ${MY_ANDROID}/device/google/trout/patches/uboot/ to the U-Boot
repository just synchronized with the following commands:

cp ${MY_ANDROID}/device/google/trout/patches/uboot/*.patch
 ${MY_XEN_BOOTLOADER}/u-boot/
cd ${MY_XEN_BOOTLOADER}/u-boot/
git am -3 0001-xen-xenguest_arm64-map-all-VIRTIO-MMIO-region.patch
git am -3 0002-MA-22692-necessary-config-change-for-enable-trout-on.patch
cd ${MY_XEN_BOOTLOADER}/
tools/bazel run //u-boot:xen_aarch64_dist #build the u-boot binary

3. With the preceding commands executed successfully, copy the generated u-boot.bin file to a directory in
the i.MX Android project:

cp ${MY_XEN_BOOTLOADER}/u-boot/out/u-boot/dist/u-boot.bin ${MY_ANDROID}/
vendor/nxp-opensource/imx_virt_prebuilts/uboot/prebuilts/

4. If the target directory does not exist, create it manually first.
Create a directory to hold the Android Trout kernel project. Use the shell environment variable
${MY_XEN_KERNEL} to point to this directory. Synchronize the code, apply related patches, and build the
kernel with the following commands:

cd ${MY_XEN_KERNEL}/
repo init -u https://github.com/nxp-imx/imx-manifest -b imx_xen_guest -m
 xen_guest_kernel_imx_2024.xml
repo sync -c

cp ${MY_ANDROID}/device/google/trout/patches/kernel/0001-MA-22692-Add-
necessary-config-for-xen-booting-Androi.patch ${MY_XEN_KERNEL}/common/
cp ${MY_ANDROID}/device/google/trout/patches/kernel/0001-don-t-generate-the-
AVB-images.patch ${MY_XEN_KERNEL}/common-modules/virtual-device/
cd ${MY_XEN_KERNEL}/common/
git am -3 0001-MA-22692-Add-necessary-config-for-xen-booting-Androi.patch
cd ${MY_XEN_KERNEL}/common-modules/virtual-device/
git am -3 0001-don-t-generate-the-AVB-images.patch

cd ${MY_XEN_KERNEL}/
tools/bazel run //common-modules/virtual-device:virtual_device_aarch64_dist

5. With the preceding commands executed succuessfully, copy the generated directory to a directory in the
i.MX Android project:

mkdir -p ${MY_ANDROID}/vendor/nxp-opensource/imx_virt_prebuilts/kernel/
prebuilts/
cp -r out/virtual_device_aarch64/dist ${MY_ANDROID}/vendor/nxp-opensource/
imx_virt_prebuilts/kernel/prebuilts/

11.2.2 Building the Android Trout image

Execute the following commands in the i.MX Android project:

cd ${MY_ANDROID}

source build/envsetup.sh
lunch aosp_trout_arm64-trunk_staging-userdebug
m -j16

The generated u-boot.bin and disk.img can be found in the ${OUT} directory. They are the Android Trout
image files, which can be used to start Trout in Xen DomU.

UG10156 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. android-16.0.0_1.0.0 — 28 October 2025 Document feedback
70 / 78

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10156

NXP Semiconductors UG10156
Android User's Guide

12 Running CHRE on i.MX 95

Context Hub Runtime Environment (CHRE) provides a common platform for running applications on a low-
power processor, with a simple, standardized, embedded-friendly API. CHRE makes it easy for device OEMs
and their trusted partners to offload processing from the AP, to save battery and improve various areas of the
user experience.

The CHRE feature includes four parts:

• i.MX context hub HAL: It is the channel connecting contexthubService and CHRE RPMsg driver.
• CHRE RPMsg driver: It is a Linux driver, which communicateS with a low-power processor.
• CHRE framework: Mainly includes the ContextHub framework and some static NanoApps.
• MCU CHRE DEMO: It runs on a low-power processor. The CHRE framework is statically linked into it.

This section provides an example for the i.MX 95 board to build an Android image containing the CHRE feature.

12.1 Building the CHRE image
The CHRE build system is based on Make, and uses a set of Makefiles that allow building the CHRE framework
for a variety of hardware and software architectures and variants (for example, different combinations of CPU
and OS/underlying system). It is also flexible to different build toolchains (though LLVM/Clang or GCC are
recommended), by abstracting out key operations to a few Make or environment variables.

12.1.1 Building the CHRE framework image

Run the following commands to build the CHRE framework image:

$ cd ${MY_ANDROID}/system/chre
$ CHRE_VARIANT_MK_INCLUDES=variant/cm7_freertos/variant.mk
 IS_ARCHIVE_ONLY_BUILD=true make nxp_cm7_freertos -j4

Then, the CHRE framework image can be generated: ${MY_ANDROID}/system/chre/out/nxp_cm7_
freertos/libchre.a. Copy it to the specific directory so that it can be integrated into the CHRE MCU demo
image when the CHRE MCU is built.

$ cp ${MY_ANDROID}/system/chre/out/nxp_cm7_freertos/libchre.a ${MY_ANDROID}/
system/chre/platform/freertos/libchre/

Note:

• To know the directory structure and usages of the entire Git, see ${MY_ANDROID}/system/chre/
README.md and ${MY_ANDROID}/system/chre/doc.

• For the i.MX platform implementation of CHRE, see this directory: ${MY_ANDROID}/system/chre/
platform/freertos.

• The main Makefile related to the i.MX platform is: ${MY_ANDROID}/system/chre/build/variant/nxp_
cm7_freertos.mk.

• The static NanoApp is included in the CHRE framework image. Specify which NanoApps are included
by default in the following file: ${MY_ANDROID}/system/chre/variant/cm7_freertos/static_
nanoapps.cc.

12.1.2 Building the preloaded NanoApp

NanoApps are applications written in C or C++, which run in CHRE to leverage low-power hardware. The
preloaded NanoApps are built as a separate binary from the CHRE framework, but included in the vendor

UG10156 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. android-16.0.0_1.0.0 — 28 October 2025 Document feedback
71 / 78

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10156

NXP Semiconductors UG10156
Android User's Guide

partition. To obtain the detailed introduction of NanoApp, see ${MY_ANDROID}/system/chre/doc/
nanoapp_overview.md. The information about the preloaded NanoApp is provided in ${MY_ANDROID}/
device/nxp/imx9/evk_95/chre/preloaded_nanoapps.json as follows:

{
 "source_dir": "/vendor/etc/chre",
 "nanoapps": [
"hello_world",
]
}

To build a preloaded NanoApp, such as the hello_world NanoApp, run the following commands:

$ cd ${MY_ANDROID}/system/chre/apps/hello_world
$ make nxp_cm7_freertos -j4

Then, the NanoApp is generated in this directory: ${MY_ANDROID}/system/chre/apps/hello_world/
out/nxp_cm7_freertos. To intergrate the preloaded NanoApp into the Android system, run the following
commands:

$ cp \
 ${MY_ANDROID}/system/chre/apps/hello_world/out/nxp_cm7_freertos/hello_world.so
 \
 ${MY_ANDROID}/system/chre/apps/hello_world/out/nxp_cm7_freertos/
hello_world.napp_header \
 ${MY_ANDROID}/system/chre/apps/dynamic_nanoapps/

 Refer to the following code to modify ${MY_ANDROID}/system/chre/apps/
dynamic_nanoapps/Android.bp
 prebuilt_etc {
 name: "hello_world.so",
 sub_dir: "chre",
 vendor: true,
 srcs: [
"hello_world.so",
],
}

 prebuilt_etc {
 name: "hello_world.napp_header",
 sub_dir: "chre",
 vendor: true,
 srcs: [
"hello_world.napp_header",
],
}

12.2 Building the MCU CHRE demo
The CHRE framework image is linked into the MCU CHRE demo as a static library. After the CHRE framework
image is updated, the MCU CHRE demo image also needs to be rebuilt and copied to the prebuilt directory.
Execute the following commands:

$ cd ${MY_ANDROID}/vendor/nxp/mcu-sdk/imx95/boards/imx95lpd5evk19/demo_apps/
rpmsg_chre_demo/cm7/armgcc
$./build_release.sh

UG10156 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. android-16.0.0_1.0.0 — 28 October 2025 Document feedback
72 / 78

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10156

NXP Semiconductors UG10156
Android User's Guide

$ cp release/rpmsg_chre_rtos_imx95.bin ${MY_ANDROID/}vendor/nxp/fsl-proprietary/
mcu-sdk/imx95/imx95_19x19_mcu_demo_chre.img

12.3 Building the Android image with CHRE
You can use the following commands to generate the Android image containing CHRE:

$ cd ${MY_ANDROID}
$ source build/envsetup.sh
$ lunch evk_95-nxp_stable-userdebug
$ ENABLE_CONTEXTHUB=true ./imx-make.sh -j4

After the build process is complete, you can find target files in the following paths:

• ${MY_ANDROID}/out/target/product/evk_95/vendor/bin/hw/android.hardware.
contexthub-service.imx

• ${MY_ANDROID}/out/target/product/evk_95/vendor/etc/chre/preloaded_nanoapps.json
• ${MY_ANDROID}/out/target/product/evk_95/vendor/etc/chre/hello_world.so
• ${MY_ANDROID}/out/target/product/evk_95/vendor/etc/chre/hello_world.napp_header

13 Note About the Source Code in the Document

Example code shown in this document has the following copyright and BSD-3-Clause license:

Copyright 2025 NXP Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other materials provided with the distribution.

3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or
promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

14 Revision History

Document ID Release date Description

UG10156 v.android-16.0.0_1.0.0 28 October 2025 i.MX 8M Mini, i.MX 8M Nano, i.MX 8M Plus, i.MX 8M Quad,
i.MX 8ULP, i.MX 8QuadMax, i.MX 8QuadXPlus GA release,
and i.MX 95 Beta release.

Revision history

UG10156 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. android-16.0.0_1.0.0 — 28 October 2025 Document feedback
73 / 78

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10156

NXP Semiconductors UG10156
Android User's Guide

Document ID Release date Description

UG10156 v.android-15.0.0_2.0.0 24 July 2025 i.MX 8M Mini, i.MX 8M Nano, i.MX 8M Plus, i.MX 8M Quad,
i.MX 8ULP, i.MX 8QuadMax, i.MX 8QuadXPlus GA release,
i.MX 95 19x19 EVK Beta release, and i.MX 95 15x15 EVK
Alpha release.

UG10156 v.android-15.0.0_1.2.0 16 May 2025 Updated the codes for GKI export new symbols build in
Section 9.5 due to the update of the Google AOSP GKI
code.

UG10156 v.android-15.0.0_1.2.0 11 April 2025 i.MX 8M Mini, i.MX 8M Nano, i.MX 8M Plus, i.MX 8M Quad,
i.MX 8ULP, i.MX 8QuadMax, i.MX 8QuadXPlus GA release,
and i.MX 95 Beta release.

UG10156 v.android-15.0.0_1.0.0 24 January 2025 i.MX 8M Mini, i.MX 8M Nano, i.MX 8M Plus, i.MX 8M Quad,
i.MX 8ULP, i.MX 8QuadMax, i.MX 8QuadXPlus GA release,
and i.MX 95 Beta release.

UG10156 v.android-14.0.0_2.2.0 15 November 2024 Corrected the command lines to generate the symbol list
when GKI is used. See Section 9.5.

UG10156 v.android-14.0.0_2.2.0 18 October 2024 i.MX 8M Mini, i.MX 8M Nano, i.MX 8M Plus, i.MX 8M Quad,
i.MX 8ULP, i.MX 8QuadMax, i.MX 8QuadXPlus GA release,
i.MX 95 (A1 15x15) Alpha release, and i.MX 95 (A1 19x19)
Beta release.

UG10156 v.android-14.0.0_2.0.0 9 August 2024 i.MX 8M Mini, i.MX 8M Nano, i.MX 8M Plus, i.MX 8M Quad,
i.MX 8ULP, i.MX 8QuadMax, i.MX 8QuadXPlus GA release,
and i.MX 95 Alpha release.
Updated the document ID.

AUG v.android-14.0.0_1.2.0 19 April 2024 i.MX 8ULP EVK, i.MX 8M Mini, i.MX 8M Nano, i.MX 8M
Plus, i.MX 8M Quad, i.MX 8QuadMax, and i.MX 8Quad
XPlus GA release.

AUG v.android-14.0.0_1.0.0 6 Feburary 2024 i.MX 8ULP EVK, i.MX 8M Mini, i.MX 8M Nano, i.MX 8M
Plus, i.MX 8M Quad, i.MX 8QuadMax, and i.MX 8Quad
XPlus GA release.

AUG v.android-13.0.0_2.2.0 24 October 2023 i.MX 8ULP EVK, i.MX 8M Mini, i.MX 8M Nano, i.MX 8M
Plus, i.MX 8M Quad, i.MX 8QuadMax, and i.MX 8Quad
XPlus GA release.

AUG v.android-13.0.0_2.0.0 07/2023 i.MX 8ULP EVK Beta release, i.MX 8M Mini, i.MX 8M Nano,
i.MX 8M Plus, i.MX 8M Quad, i.MX 8QuadMax, and i.MX 8
QuadXPlus GA release.

AUG v.android-13.0.0_1.2.0 03/2023 i.MX 8ULP EVK Beta release, i.MX 8M Mini, i.MX 8M Nano,
i.MX 8M Plus, i.MX 8M Quad, i.MX 8QuadMax, and i.MX 8
QuadXPlus GA release.

AUG v.android-13.0.0_1.0.0 01/2023 i.MX 8ULP EVK Beta release, i.MX 8M Mini, i.MX 8M Nano,
i.MX 8M Plus, i.MX 8M Quad, i.MX 8QuadMax, and i.MX 8
QuadXPlus GA release.

AUG v.android-12.1.0_1.0.0 10/2022 i.MX 8ULP EVK Beta release, i.MX 8M Mini, i.MX 8M Nano,
i.MX 8M Plus, i.MX 8M Quad, i.MX 8QuadMax, and i.MX 8
QuadXPlus GA release.

AUG v.android-12.0.0_2.0.0 07/2022 i.MX 8ULP EVK Beta release, i.MX 8M Mini, i.MX 8M Nano,
i.MX 8M Plus, and i.MX 8M Quad GA release.

Revision history...continued

UG10156 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. android-16.0.0_1.0.0 — 28 October 2025 Document feedback
74 / 78

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10156

NXP Semiconductors UG10156
Android User's Guide

Document ID Release date Description

AUG v.android-12.0.0_1.0.0 03/2022 i.MX 8ULP EVK Beta release, i.MX 8M Mini, i.MX 8M Nano,
i.MX 8M Plus, and i.MX 8M Quad GA release.

AUG v.android-11.0.0_2.6.0 01/2022 i.MX 8ULP EVK Beta release, i.MX 8M Mini, i.MX 8M Nano,
i.MX 8M Plus, and i.MX 8M Quad GA release.

AUG v.android-11.0.0_2.4.0 10/2021 i.MX 8ULP EVK Alpha release, i.MX 8M Mini, i.MX 8M
Nano, i.MX 8M Plus, and i.MX 8M Quad GA release.

AUG v.android-11.0.0_2.2.0 07/2021 i.MX 8M Mini, i.MX 8M Nano, i.MX 8M Plus, and i.MX 8M
Quad GA release.

AUG v.android-11.0.0_2.0.0 04/2021 i.MX 8M Mini, i.MX 8M Nano, i.MX 8M Plus, and i.MX 8M
Quad GA release.

AUG v.android-11.0.0_1.0.0 12/2020 i.MX 8M Plus EVK Beta release, and all the other i.MX 8 GA
release.

AUG v.android-10.0.0_2.3.0 07/2020 i.MX 8M Plus EVK Beta1 release, and all the other i.MX 8
GA release.

AUG v.android-10.0.0_2.0.0 05/2020 i.MX 8M Mini, i.MX 8M Nano, i.MX 8M Quad, i.MX 8Quad
Max, and i.MX 8QuadXPlus GA release.

AUG v.android-10.0.0_2.1.0 04/2020 i.MX 8M Plus Alpha and i.MX 8QuadXPlus Beta release.

AUG v.android-10.0.0_1.0.0 03/2020 Deleted the Android 10 image.

AUG v.android-10.0.0_1.0.0 02/2020 i.MX 8M Mini, i.MX 8M Quad, i.MX 8QuadMax, and i.MX 8
QuadXPlus GA release.

AUG v.P9.0.0_2.0.0-ga 08/2019 Updated the location of the SCFW porting kit.

AUG v.P9.0.0_2.0.0-ga 04/2019 i.MX 8M, i.MX 8QuadMax, i.MX 8QuadXPlus GA release.

AUG v.P9.0.0_1.0.0-ga 01/2019 i.MX 8M, i.MX 8QuadMax, i.MX 8QuadXPlus GA release.

AUG v.P9.0.0_1.0.0-beta 11/2018 Initial release

Revision history...continued

UG10156 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. android-16.0.0_1.0.0 — 28 October 2025 Document feedback
75 / 78

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10156

NXP Semiconductors UG10156
Android User's Guide

Legal information

Definitions
Draft — A draft status on a document indicates that the content is still
under internal review and subject to formal approval, which may result
in modifications or additions. NXP Semiconductors does not give any
representations or warranties as to the accuracy or completeness of
information included in a draft version of a document and shall have no
liability for the consequences of use of such information.

Disclaimers
Limited warranty and liability — Information in this document is believed
to be accurate and reliable. However, NXP Semiconductors does not give
any representations or warranties, expressed or implied, as to the accuracy
or completeness of such information and shall have no liability for the
consequences of use of such information. NXP Semiconductors takes no
responsibility for the content in this document if provided by an information
source outside of NXP Semiconductors.
In no event shall NXP Semiconductors be liable for any indirect, incidental,
punitive, special or consequential damages (including - without limitation -
lost profits, lost savings, business interruption, costs related to the removal
or replacement of any products or rework charges) whether or not such
damages are based on tort (including negligence), warranty, breach of
contract or any other legal theory.
Notwithstanding any damages that customer might incur for any reason
whatsoever, NXP Semiconductors’ aggregate and cumulative liability
towards customer for the products described herein shall be limited in
accordance with the Terms and conditions of commercial sale of NXP
Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to
make changes to information published in this document, including without
limitation specifications and product descriptions, at any time and without
notice. This document supersedes and replaces all information supplied prior
to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed,
authorized or warranted to be suitable for use in life support, life-critical or
safety-critical systems or equipment, nor in applications where failure or
malfunction of an NXP Semiconductors product can reasonably be expected
to result in personal injury, death or severe property or environmental
damage. NXP Semiconductors and its suppliers accept no liability for
inclusion and/or use of NXP Semiconductors products in such equipment or
applications and therefore such inclusion and/or use is at the customer’s own
risk.

Applications — Applications that are described herein for any of these
products are for illustrative purposes only. NXP Semiconductors makes no
representation or warranty that such applications will be suitable for the
specified use without further testing or modification.
Customers are responsible for the design and operation of their
applications and products using NXP Semiconductors products, and NXP
Semiconductors accepts no liability for any assistance with applications or
customer product design. It is customer’s sole responsibility to determine
whether the NXP Semiconductors product is suitable and fit for the
customer’s applications and products planned, as well as for the planned
application and use of customer’s third party customer(s). Customers should
provide appropriate design and operating safeguards to minimize the risks
associated with their applications and products.
NXP Semiconductors does not accept any liability related to any default,
damage, costs or problem which is based on any weakness or default
in the customer’s applications or products, or the application or use by
customer’s third party customer(s). Customer is responsible for doing all
necessary testing for the customer’s applications and products using NXP
Semiconductors products in order to avoid a default of the applications
and the products or of the application or use by customer’s third party
customer(s). NXP does not accept any liability in this respect.

Terms and conditions of commercial sale — NXP Semiconductors
products are sold subject to the general terms and conditions of commercial
sale, as published at https://www.nxp.com/profile/terms, unless otherwise
agreed in a valid written individual agreement. In case an individual
agreement is concluded only the terms and conditions of the respective
agreement shall apply. NXP Semiconductors hereby expressly objects to
applying the customer’s general terms and conditions with regard to the
purchase of NXP Semiconductors products by customer.

Export control — This document as well as the item(s) described herein
may be subject to export control regulations. Export might require a prior
authorization from competent authorities.

Suitability for use in non-automotive qualified products — Unless
this document expressly states that this specific NXP Semiconductors
product is automotive qualified, the product is not suitable for automotive
use. It is neither qualified nor tested in accordance with automotive testing
or application requirements. NXP Semiconductors accepts no liability for
inclusion and/or use of non-automotive qualified products in automotive
equipment or applications.
In the event that customer uses the product for design-in and use in
automotive applications to automotive specifications and standards,
customer (a) shall use the product without NXP Semiconductors’ warranty
of the product for such automotive applications, use and specifications, and
(b) whenever customer uses the product for automotive applications beyond
NXP Semiconductors’ specifications such use shall be solely at customer’s
own risk, and (c) customer fully indemnifies NXP Semiconductors for any
liability, damages or failed product claims resulting from customer design and
use of the product for automotive applications beyond NXP Semiconductors’
standard warranty and NXP Semiconductors’ product specifications.

HTML publications — An HTML version, if available, of this document is
provided as a courtesy. Definitive information is contained in the applicable
document in PDF format. If there is a discrepancy between the HTML
document and the PDF document, the PDF document has priority.

Translations — A non-English (translated) version of a document, including
the legal information in that document, is for reference only. The English
version shall prevail in case of any discrepancy between the translated and
English versions.

Security — Customer understands that all NXP products may be subject to
unidentified vulnerabilities or may support established security standards or
specifications with known limitations. Customer is responsible for the design
and operation of its applications and products throughout their lifecycles
to reduce the effect of these vulnerabilities on customer’s applications
and products. Customer’s responsibility also extends to other open and/or
proprietary technologies supported by NXP products for use in customer’s
applications. NXP accepts no liability for any vulnerability. Customer should
regularly check security updates from NXP and follow up appropriately.
Customer shall select products with security features that best meet rules,
regulations, and standards of the intended application and make the
ultimate design decisions regarding its products and is solely responsible
for compliance with all legal, regulatory, and security related requirements
concerning its products, regardless of any information or support that may be
provided by NXP.
NXP has a Product Security Incident Response Team (PSIRT) (reachable
at PSIRT@nxp.com) that manages the investigation, reporting, and solution
release to security vulnerabilities of NXP products.

NXP B.V. — NXP B.V. is not an operating company and it does not distribute
or sell products.

Trademarks
Notice: All referenced brands, product names, service names, and
trademarks are the property of their respective owners.
NXP — wordmark and logo are trademarks of NXP B.V.

UG10156 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. android-16.0.0_1.0.0 — 28 October 2025 Document feedback
76 / 78

mailto:PSIRT@nxp.com
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10156

NXP Semiconductors UG10156
Android User's Guide

Contents
1 Overview ...2
2 Preparation ... 2
2.1 Setting up your computer 2
2.2 Unpacking the Android release package 3
3 Building the Android Platform for i.MX3
3.1 Getting i.MX Android release source code 3
3.2 Building Android images4
3.2.1 Configuration examples of building i.MX

devices ...8
3.2.2 Build mode selection ... 9
3.2.3 Building with GMS package10
3.2.4 Building 32-bit and 64-bit images 10
3.3 Building an Android image With Docker 10
3.4 Building U-Boot images 11
3.5 Building a kernel image 12
3.6 Building boot.img ... 13
3.7 Building dtbo.img ... 13
4 Running the Android Platform with a

Prebuilt Image ..13
5 Programming Images 14
5.1 System on eMMC/SD14
5.1.1 Storage partitions ...14
5.1.2 Downloading images with UUU 16
5.1.3 Downloading images with fastboot_imx_

flashall script ..17
5.1.4 Downloading a single image with fastboot18
6 Booting ... 19
6.1 Booting from SD/eMMC19
6.1.1 Booting from SD/eMMC on the i.MX 8M

Mini EVK board ... 19
6.1.2 Booting from SD/eMMC on the i.MX 8M

Nano board ..20
6.1.3 Booting from SD/eMMC on the i.MX 8M

Plus EVK board ... 20
6.1.4 Booting from SD/eMMC on the i.MX 8M

Quad WEVK/EVK board21
6.1.5 Booting from eMMC on the i.MX 8ULP EVK

board ..21
6.1.6 Booting from SD/eMMC on the i.MX

8QuadMax MEK board 21
6.1.7 Booting from SD/eMMC on the i.MX

8QuadXPlus MEK board 22
6.1.8 Booting from SD/eMMC on the i.MX 95

EVK board ... 22
6.2 Boot-up configurations23
6.2.1 U-Boot environment ...23
6.2.2 Kernel command line (bootargs)24
6.2.3 DM-verity configuration26
6.2.4 Full reset for i.MX 8QuadMAX/8QuadXPlus

and i.MX 95 ... 26
7 Over-The-Air (OTA) Update27
7.1 Building OTA update packages 27
7.1.1 Building target files .. 27
7.1.2 Building a full update package 27
7.1.3 Building an incremental update package 28

7.1.4 Building an OTA package for single-
bootloader image ...28

7.1.5 Building an OTA package with the
postinstall command .. 30

7.1.6 Building an OTA package with encrypted
boot enabled ..31

7.1.6.1 Building SPL and bootloader images with
encrypted boot enabled 31

7.1.6.2 Encrypting SPL and bootloader images31
7.1.6.3 Building an OTA package with encrypted

boot ..31
7.2 Implementing OTA update32
7.2.1 Using update_engine_client to update the

Android platform .. 32
7.2.2 Using a customized application to update

the Android platform .. 33
8 Customized Configuration 35
8.1 Camera configuration 35
8.1.1 Configuring the rear and front cameras 35
8.1.2 Configuring camera sensor parameters36
8.1.3 Making cameras work on i.MX 8M Plus

EVK with non-default images 36
8.1.4 Switching between OS0A20 and AP1302

on i.MX 95 EVK ...37
8.1.5 Making the AP1302 camera work on i.MX

95 ...38
8.1.6 DeviceAsWebcam feature 38
8.2 Audio configuration ..39
8.2.1 Enabling low-power audio 39
8.2.2 Supporting a new sound card40
8.2.3 Enabling powersave mode 42
8.3 Display configuration 43
8.3.1 Configuring the logical display density43
8.3.2 Enabling multiple-display function 44
8.3.2.1 Binding the display port with the input port 45
8.3.2.2 Launching applications on different displays45
8.3.3 Enabling low-power display function45
8.3.3.1 Enabling low-power display on i.MX 8ULP

EVK ..46
8.3.3.2 Some test commands in low-power display

demo ..46
8.3.3.3 Test procedure for low-power display demo46
8.3.4 HDMI-CEC feature ...47
8.3.4.1 Implementation on i.MX platforms 47
8.3.4.2 Test procedure for HDMI-CEC End-User

features ..47
8.4 Wi-Fi/Bluetooth configuration48
8.4.1 Enabling or disabling Bluetooth profile48
8.5 USB configuration ..48
8.5.1 Enabling USB 2.0 in U-Boot for i.MX

8QuadMax/8QuadXPlus MEK 48
8.5.2 Changing the VID/PID values of the USB

Gadget ... 50
8.5.2.1 USB Gadget in U-Boot 50
8.5.2.2 USB Gadget on the Android platform 50
8.5.2.3 USB Gadget in Recovery 50

UG10156 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. android-16.0.0_1.0.0 — 28 October 2025 Document feedback
77 / 78

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10156

NXP Semiconductors UG10156
Android User's Guide

8.6 Trusty OS/security configuration50
8.6.1 Initializing the secure storage for Trusty OS 51
8.6.2 Provisioning the AVB key 52
8.6.2.1 Generating the AVB key to sign images 53
8.6.2.2 Storing the AVB public key to a secure

storage ...53
8.6.3 AVB boot key ...53
8.6.4 Key attestation ...54
8.7 SCFW configuration ...54
8.8 Miscellaneous configurations55
8.8.1 Changing the boot command line in

boot.img ... 55
8.8.2 Modifying the super partition 55
8.9 Notices before the debugging work 56
8.10 CTS on USB camera59
9 Generic Kernel Image (GKI)

Development .. 59
9.1 GKI introduction ...59
9.2 Changes after GKI enabled60
9.3 How to update the GKI image 61
9.4 How to add new drivers61
9.5 How to export new symbols 62
9.6 How to build GKI locally 63
10 imx-chip-tool application 64
11 Running Android OS on Xen on i.MX 95

19x19 EVK .. 65
11.1 Running with the prebuilt images 65
11.1.1 Downloading and flashing the Yocto image 65
11.1.2 Installing the Android Trout image 66
11.1.3 Configuration for launching the Guest OS 67
11.1.4 Launching the Android Trout as Xen guest

OS ..68
11.1.5 Enabling ADB over network in Android

Trout ...69
11.2 Building the Android Trout image used in

Xen ...69
11.2.1 Synchronizing the code and building the

bootloader and kernel69
11.2.2 Building the Android Trout image 70
12 Running CHRE on i.MX 9571
12.1 Building the CHRE image71
12.1.1 Building the CHRE framework image 71
12.1.2 Building the preloaded NanoApp71
12.2 Building the MCU CHRE demo 72
12.3 Building the Android image with CHRE 73
13 Note About the Source Code in the

Document ... 73
14 Revision History .. 73

Legal information ...76

Please be aware that important notices concerning this document and the product(s)
described herein, have been included in section 'Legal information'.

© 2025 NXP B.V. All rights reserved.
For more information, please visit: https://www.nxp.com Document feedback

Date of release: 28 October 2025
Document identifier: UG10156

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10156

	1 Overview
	2 Preparation
	2.1 Setting up your computer
	2.2 Unpacking the Android release package

	3 Building the Android Platform for i.MX
	3.1 Getting i.MX Android release source code
	3.2 Building Android images
	3.2.1 Configuration examples of building i.MX devices
	3.2.2 Build mode selection
	3.2.3 Building with GMS package
	3.2.4 Building 32-bit and 64-bit images

	3.3 Building an Android image With Docker
	3.4 Building U-Boot images
	3.5 Building a kernel image
	3.6 Building boot.img
	3.7 Building dtbo.img

	4 Running the Android Platform with a Prebuilt Image
	5 Programming Images
	5.1 System on eMMC/SD
	5.1.1 Storage partitions
	5.1.2 Downloading images with UUU
	5.1.3 Downloading images with fastboot_imx_flashall script
	5.1.4 Downloading a single image with fastboot

	6 Booting
	6.1 Booting from SD/eMMC
	6.1.1 Booting from SD/eMMC on the i.MX 8M Mini EVK board
	6.1.2 Booting from SD/eMMC on the i.MX 8M Nano board
	6.1.3 Booting from SD/eMMC on the i.MX 8M Plus EVK board
	6.1.4 Booting from SD/eMMC on the i.MX 8M Quad WEVK/EVK board
	6.1.5 Booting from eMMC on the i.MX 8ULP EVK board
	6.1.6 Booting from SD/eMMC on the i.MX 8QuadMax MEK board
	6.1.7 Booting from SD/eMMC on the i.MX 8QuadXPlus MEK board
	6.1.8 Booting from SD/eMMC on the i.MX 95 EVK board

	6.2 Boot-up configurations
	6.2.1 U-Boot environment
	6.2.2 Kernel command line (bootargs)
	6.2.3 DM-verity configuration
	6.2.4 Full reset for i.MX 8QuadMAX/8QuadXPlus and i.MX 95

	7 Over-The-Air (OTA) Update
	7.1 Building OTA update packages
	7.1.1 Building target files
	7.1.2 Building a full update package
	7.1.3 Building an incremental update package
	7.1.4 Building an OTA package for single-bootloader image
	7.1.5 Building an OTA package with the postinstall command
	7.1.6 Building an OTA package with encrypted boot enabled
	7.1.6.1 Building SPL and bootloader images with encrypted boot enabled
	7.1.6.2 Encrypting SPL and bootloader images
	7.1.6.3 Building an OTA package with encrypted boot

	7.2 Implementing OTA update
	7.2.1 Using update_engine_client to update the Android platform
	7.2.2 Using a customized application to update the Android platform

	8 Customized Configuration
	8.1 Camera configuration
	8.1.1 Configuring the rear and front cameras
	8.1.2 Configuring camera sensor parameters
	8.1.3 Making cameras work on i.MX 8M Plus EVK with non-default images
	8.1.4 Switching between OS0A20 and AP1302 on i.MX 95 EVK
	8.1.5 Making the AP1302 camera work on i.MX 95
	8.1.6 DeviceAsWebcam feature

	8.2 Audio configuration
	8.2.1 Enabling low-power audio
	8.2.2 Supporting a new sound card
	8.2.3 Enabling powersave mode

	8.3 Display configuration
	8.3.1 Configuring the logical display density
	8.3.2 Enabling multiple-display function
	8.3.2.1 Binding the display port with the input port
	8.3.2.2 Launching applications on different displays

	8.3.3 Enabling low-power display function
	8.3.3.1 Enabling low-power display on i.MX 8ULP EVK
	8.3.3.2 Some test commands in low-power display demo
	8.3.3.3 Test procedure for low-power display demo

	8.3.4 HDMI-CEC feature
	8.3.4.1 Implementation on i.MX platforms
	8.3.4.2 Test procedure for HDMI-CEC End-User features

	8.4 Wi-Fi/Bluetooth configuration
	8.4.1 Enabling or disabling Bluetooth profile

	8.5 USB configuration
	8.5.1 Enabling USB 2.0 in U-Boot for i.MX 8QuadMax/8QuadXPlus MEK
	8.5.2 Changing the VID/PID values of the USB Gadget
	8.5.2.1 USB Gadget in U-Boot
	8.5.2.2 USB Gadget on the Android platform
	8.5.2.3 USB Gadget in Recovery

	8.6 Trusty OS/security configuration
	8.6.1 Initializing the secure storage for Trusty OS
	8.6.2 Provisioning the AVB key
	8.6.2.1 Generating the AVB key to sign images
	8.6.2.2 Storing the AVB public key to a secure storage

	8.6.3 AVB boot key
	8.6.4 Key attestation

	8.7 SCFW configuration
	8.8 Miscellaneous configurations
	8.8.1 Changing the boot command line in boot.img
	8.8.2 Modifying the super partition

	8.9 Notices before the debugging work
	8.10 CTS on USB camera

	9 Generic Kernel Image (GKI) Development
	9.1 GKI introduction
	9.2 Changes after GKI enabled
	9.3 How to update the GKI image
	9.4 How to add new drivers
	9.5 How to export new symbols
	9.6 How to build GKI locally

	10 imx-chip-tool application
	11 Running Android OS on Xen on i.MX 95 19x19 EVK
	11.1 Running with the prebuilt images
	11.1.1 Downloading and flashing the Yocto image
	11.1.2 Installing the Android Trout image
	11.1.3 Configuration for launching the Guest OS
	11.1.4 Launching the Android Trout as Xen guest OS
	11.1.5 Enabling ADB over network in Android Trout

	11.2 Building the Android Trout image used in Xen
	11.2.1 Synchronizing the code and building the bootloader and kernel
	11.2.2 Building the Android Trout image

	12 Running CHRE on i.MX 95
	12.1 Building the CHRE image
	12.1.1 Building the CHRE framework image
	12.1.2 Building the preloaded NanoApp

	12.2 Building the MCU CHRE demo
	12.3 Building the Android image with CHRE

	13 Note About the Source Code in the Document
	14 Revision History
	Legal information
	Contents

