UG10176

Android Automotive User's Guide
Rev. automotive-15.0.0_2.1.0 — User guide
14 October 2025

Document information
Information Content

Keywords Android, Automotive, i.MX, automotive-15.0.0_2.1.0, UG10176

Abstract This document describes how to configure a Linux build machine and provides the steps to

download, patch, and build the software components that create the Android system image when
working with the sources.

https://www.nxp.com

NXP Semiconductors U G1 01 76

Android Automotive User's Guide

1 Overview

This document provides the technical information related to the i.MX 8 and i.MX 95 devices:

* Instructions for building from sources or using pre-built images.
* Instructions for copying images to boot media.
» Hardware/software configurations for programming the boot media and running the images.

This document describes how to configure a Linux build machine and provides the steps to download, patch,
and build the software components that create the Android system image when working with the sources.

For more information about building the Android platform, see source.android.com/source/building.html.

2 Preparation

2.1 Setting up your computer

To build the Android source files, use a computer running the Linux OS. The Ubuntu 18.04 64bit version is the
most tested environment for the Android 15.0 build.

To synchronize the code and build images of this release, the computer should at least have:

* 32 GB RAM
* 450 GB hard disk

Note:

* The minimum required amount of free memory is around 24 GB, even with which, some configurations may
not work. Enlarging the physical RAM capacity is a way to avoid potential build errors related to the memory.

» With 24 GB RAM, if you run into segfaults or other errors related to memory when building the images, try to
reduce your -3 value. In the demonstration commands in the following part of this document, the - value is
4.

After the setup of Linux PC, check whether you have all the necessary packages installed for an Android build.
See "Setting up your machine" on the Android website.

In addition to the packages requested on the Android website, the following packages are also needed:

sudo apt-get install uuid uuid-dev \
zliblg-dev liblz-dev \
liblzo2-2 liblzo2-dev \

lzop \

git curl \

u-boot-tools \

mtd-utils \
android-sdk-libsparse-utils \
device-tree-compiler \

gdisk \

md \

bison \

flex make \

libssl-dev \

gcc-multilib \
libgnutls28-dev \

swig \

liblz4-tool \

libdw-dev \

dwarves \

UG10176 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.
User guide Rev. automotive-15.0.0_2.1.0 — 14 October 2025 Document feedback
2/69

http://source.android.com/source/building.html
http://source.android.com/source/initializing.html
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10176

NXP Semiconductors U G1 01 76

Android Automotive User's Guide

bc cpio tar 1lz4 rsync \
ninja-build clang \
build-essential \
libncurses5 \

xxd \

unzip \

efitools

Note:

» Configure Git before use. Set the name and email as follows:
—git config --global user.name "First Last"
—qgit config --global user.email "first.last@company.com"

* To build Android in the Docker container, skip the step of installing preceding packages, and refer to
Section 3.3 to build the Docker image. It has the full i.MX Android build environment.

2.2 Unpacking the Android release package

After setting up a computer running Linux OS, unpack the Android release package by using the following
commands:

$ cd ~ (or any other directory you like)
$ tar -xzvf imx-automotive-15.0.0 2.1.0.tar.gz

3 Building the Android platform for i.MX

3.1 Getting i.MX Android release source code

The i.MX Android release source code consists of three parts:

* NXP i.MX public source code, which is maintained in the GitHub repository.
* AOSP Android public source code, which is maintained in android.googlesource.com.
* NXP i.MX Android proprietary source code package, which is maintained in www.NXP.com.

Assume you have the i.MX Android proprietary source code package imx-
automotive-15.0.0 2.1.0.tar.gz underthe ~/. directory. To generate the i.MX Android release source
code build environment, execute the following commands:

mkdir ~/bin

curl https://storage.googleapis.com/git-repo-downloads/repo > ~/bin/repo
chmod a+x ~/bin/repo

export PATH=S${PATH}:~/bin

source ~/imx-automotive-15.0.0 2.1.0/imx android setup.sh

By default, after the preceding command is executed, the current working
directory changes to the i.MX Android source code root directory.
S{MY ANDROID} will be referred as the i.MX Android source code root directory
in all i1.MX Android release documentation.

$ export MY ANDROID=pwd’

= U Ur Ur > -

Note:

Inthe imx android setup.sh Script, a . xml file that contains the code repositories' information is specified.
Code repository revision is specified with the release tag in this file. The release tag should not be moved when
the code is externally released, so no matter when the imx android setup. sh is executed, the working
areas of code repositories synchronized by this script are the same.

UG10176 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.
User guide Rev. automotive-15.0.0_2.1.0 — 14 October 2025 Document feedback
3/69

https://github.com/nxp-imx
http://android.googlesource.com
http://www.nxp.com
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10176

NXP Semiconductors U G1 01 76

Android Automotive User's Guide

If the released code is critically fixed, another . xm1 file is created to help customers to synchronize the code.
Then customers need to modify imx android setup.sh. For this release, make the following changes on
the script:

diff --git a/imx _android setup.sh b/imx android setup.sh
index 324ec67..4618679 100644
--- a/imx android setup.sh
+++ b/imx android setup.sh
@@ -26,7 +26,7 @@ if [! -d "Sandroid builddir"]; then

Create android build dir if it does not exist.

mkdir "Sandroid builddir"

cd "Sandroid builddir"
= repo init -u https://github.com/nxp-imx/imx-manifest -b imx-android-15 -m
imx-automotive-15.0.0 2.1.0.xml
+ repo init -u https://github.com/nxp-imx/imx-manifest -b imx-android-15 -m
rel automotive-15.0.0 2.1.0.xml

rc=$?

if ["$rc" != 0]; then

ech o) " "

The wireless-regdb repository may fail to be synchronized with the following log:

fatal: unable to access 'https://git.kernel.org/pub/scm/linux/kernel/git/
sforshee/wireless-regdb/': server certificate verification failed. CAfile: /etc/
ssl/certs/ca-certificates.crt CRLfile: none

If this issue occurs, execute the following command on the host to fix it:

$ git config --global http.sslVerify false

3.2 Building Android images

The Android image can be built after the source code has been downloaded (Section 3.1).

Execute the source build/envsetup.sh command to import shell functions in ${MY ANDROID}/build/
envsetup.sh.

Execute the 1unch <BuildName-BuildMode> command to set up the build configuration.

The Product Name is the Android device name found in the directory ${MY ANDROID}/device/nxp/.
Search for the keyword PRODUCT NAME under this directory for the product name.

Table 1. Build names

Build name Description

mek 8g_car i.MX 8QuadMax/8QuadXPlus MEK Board with the Exterior View System (EVS)
function enabled on the Arm Cortex-M4 CPU core

mek 8qg car2 i.MX 8QuadMax/8QuadXPlus MEK Board with EVS function enabled on the

Arm Cortex-A CPU cores (Power mode switch demo is running on the Cortex-
M4 core in this configuration)

evk 95 car i.MX 95 EVK Board with the Exterior View System (EVS) function enabled on
the Arm Cortex-M7 CPU core.

evk 95 car2 i.MX 95 EVK Board with EVS function enabled on the Arm Cortex-A CPU
cores (Power mode switch demo is running on the Cortex-M7 core in this
configuration)

UG10176 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. automotive-15.0.0_2.1.0 — 14 October 2025 Document feedback

4/69

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10176

NXP Semiconductors U G1 01 76

Android Automotive User's Guide

The “Build Mode” is used to specify what debug options are provided in the final image. The following table lists
the build modes.

Table 2. Build modes

Build mode Description

user Production ready image, no debug

userdebug Provides the image with root access and debug, similar to user
eng Development image with debug tools

After the two commands above are executed, then the build process starts. The behavior of the i.MX Android
build system used to be aligned with the original Android system. The command of make could start the build
process and all images were built out before. There are some differences now. A shell script named imx-
make. sh is provided and its symlink file can be found under the $ {MY ANDROID} directory. . /imx-make.sh
should be executed to start the build process.

The original purpose of this imx-make . sh is used to build U-Boot/kernel before building Android images.

Google puts a limit on the host tools used when compiling Android code from the Android 10.0 platform. Some
host tools necessary for building U-Boot/kernel now cannot be used in the Android build system, which is
under the control of soong ui, so U-Boot/kernel cannot be built together with Android images. Google also
recommends using prebuilt binaries for U-Boot/kernel in the Android build system. It takes some steps to

build U-Boot/kernel to binaries and puts these binaries in proper directories, so some specific Android images
depending on these binaries can be built without error. imx-make. sh is then added to perform these steps to
simplify the build work. After U-Boot/kernel are compiled, any build commands in the standard Android can be
used.

imx-make.sh can also start the soong_ui with the make function in ${MY ANDROID}/build/
envsetup. sh to build the Android images after U-Boot/kernel are compiled, so customers can still build the
i.MX Android images with only one command with this script.

The build configuration command 1unch can be issued with an argument <Build name>-nxp stable-
<Build type> string, such as lunch mek 8g car-nxp stable-userdebug, or can be issued without the
argument presenting a menu of selection.

Do some preparations for the first time when building the images. A detailed example of image building steps is
as follows:

1. Prepare the build environment for U-Boot and kernel.
This step is mandatory because there is no GCC cross-compile tool chain in the AOSP codebase.
An approach is provided to use the self-installed GCC cross-compile tool chain for both AArch32 and
AArch64 platforms.
First, download the tool chain for the A-profile architecture on the arm Developer GNU-A Downloads page.
It is recommended to use the 12.3.Rel1 version for this release. For AArch32 build, you can download the
BareMetal target arm-gnu-toolchain-12.3.rell-x86 64-arm-none-eabi.tar.xz. For AArché64
build, you can download the GNU/Linux target arm-gnu-toolchain-12.3.rell-x86 64-aarch64-
none-linux-gnu.tar.xz.
Then, uncompress the file into a path on the local disk. For example, to /opt /. Export a variable named
AARCH32 GCC CROSS COMPILE and AARCH64 GCC CROSS COMPILE to point to the tool as follows:

For AArch32 toolchain

$ sudo tar -xvJf arm-gnu-toolchain-12.3.rell-x86 64-arm-none-eabi.tar.xz -C /
opt

S export AARCH32 GCC CROSS COMPILE=/opt/arm-gnu-toolchain-12.3.rell-x86 64-
arm-none-eabi/bin/arm-none-eabi-

For AArch64 toolchain

UG10176 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.
User guide Rev. automotive-15.0.0_2.1.0 — 14 October 2025 Document feedback
5/69

https://developer.arm.com/downloads/-/arm-gnu-toolchain-downloads/12-3-rel1
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10176

NXP Semiconductors U G1 01 76

Android Automotive User's Guide

$ sudo tar -xvJf arm-gnu-toolchain-12.3.rell-x86 64-aarch64-none-linux-
gnu.tar.xz -C /opt

S export AARCH64 GCC CROSS COMPILE=/opt/arm-gnu-toolchain-12.3.rell-x86 64-
aarch64-none-linux-gnu/bin/aarch64-none-linux-gnu-

Finally, follow the steps below to set external clang tools for kernel building.

S sudo git clone --no-checkout —--depth 1 https://android.googlesource.com/
platform/prebuilts/clang/host/linux-x86 /opt/android-kernel-prebuilts-6.12/
clang/host/linux-x86

$ cd /opt/android-kernel-prebuilts-6.12/clang/host/linux-x86

S sudo git fetch --depth 1 origin 66acdd82ee62e4aaa4248f03191c59dfed9dbl193
S sudo git checkout 66acdd82ee62e4aaad4248f03191c59dfed9db193

$ sudo git clone --no-checkout —--depth 1 https://android.googlesource.com/
kernel/prebuilts/build-tools /opt/android-kernel-prebuilts-6.12/kernel-build-
tools

$ cd /opt/android-kernel-prebuilts-6.12/kernel-build-tools

S sudo git fetch --depth 1 origin 3c5e4f14b451ec85167¢c38b917d2459687abd7f4

S sudo git checkout 3c5e4f14b451ec85167¢c38b917d2459687abd7£4

$ sudo git clone --no-checkout --depth 1 https://android.googlesource.com/
platform/prebuilts/rust /opt/android-kernel-prebuilts-6.12/rust

$ cd /opt/android-kernel-prebuilts-6.12/rust

S sudo git fetch --depth 1 origin 5156e7f8lae254c79%9ee736e44c960e75ad685¢c67
S sudo git checkout 5156e7f8lae254c79ee736e44c960e75ad685¢c67

$ sudo git clone --no-checkout --depth 1 https://android.googlesource.com/
platform/prebuilts/clang-tools /opt/android-kernel-prebuilts-6.12/clang-tools
$ cd /opt/android-kernel-prebuilts-6.12/clang-tools

S sudo git fetch —--depth 1 origin 17329f6590e2872dcf04a0c96al176be089470cd9

S sudo git checkout 17329f6590e2872dcf04a0c96al76be089470cd9

$ export KERNEL PREBUILTS PATH=/opt/android-kernel-prebuilts-6.12

The final export command can be added to /etc/profile. When the host boots up,

AARCH32 GCC_CROSS COMPILE, AARCH64 GCC CROSS COMPILE and KERNEL PREBUILTS PATH are
set and can be directly used.

Note: To build Android in the Docker container, skip the step of installing the preceding packages, and refer
to Section 3.3 to build the Docker image. It has the full i.MX Android build environment.

2. Prepare the build environment for the Arm Cortex-M4 image. Download the GCC tool chain from the Arm
Developers GNU-RM Downloads page. It is recommended to download the 9-2020-g2-update version.
Extract it to your installation directory, for example, /opt. Then, export a variable named ARMGCC_DIR to
point to the tool as follows:

$ sudo tar -jxvf gcc-arm-none-eabi-9-2020-g2-update-x86 64-linux.tar.bz2 -C /
opt
$ export ARMGCC DIR=/opt/gcc-arm-none-eabi-9-2020-g2-update

The preceding export command can be added to /etc/profile. When the host boots up, ARMGCC DIRis
set and can be directly used.

Upgrade the CMake version to 3.13.0 or higher. If the CMake version on your machine is not higher than
3.13.0, you can follow the steps below to upgrade it:

$ wget https://github.com/Kitware/CMake/releases/download/v3.13.2/
cmake-3.13.2.tar.gz

tar -xzvf cmake-3.13.2.tar.gz; cd cmake-3.13.2;

sudo ./bootstrap

sudo make

sudo make install

Uy U > U

UG10176 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.
User guide Rev. automotive-15.0.0_2.1.0 — 14 October 2025 Document feedback
6/69

https://developer.arm.com/tools-and-software/open-source-software/developer-tools/gnu-toolchain/gnu-rm/downloads
https://developer.arm.com/tools-and-software/open-source-software/developer-tools/gnu-toolchain/gnu-rm/downloads
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10176

NXP Semiconductors U G1 01 76

Android Automotive User's Guide

3. Change to the top-level build directory.

$ cd ${MY ANDROID}

4. Set up the environment for building. This only configures the current terminal.

$ source build/envsetup.sh

5. Execute the Android lunch command.
In this example, the setup is for the production image of i.MX 8QuadMax/8QuadXPlus MEK Board/Platform
device with EVS function enabled in the Cortex-M4 CPU core.

$ lunch mek 89 car-nxp stable-userdebug

6. Execute the imx-make. sh script to generate the image.

$./imx-make.sh -j4 2>&1 | tee build-log.txt

The commands below can achieve the same result.

First, build U-Boot/kernel with imx-make.sh, but not to build Android
images

$./imx-make.sh bootloader kernel -7j4 2>&1 | tee build-log.txt

Start the process of building Android images with "make" function

S make -j4 2>&1 | tee -a build-log.txt

The output of the make command is written to the standard output and build-log. txt. If there are errors
when building the image, error logs can be found in the build-1og. txt file for checking.

To change BUILD ID and BUILD NUMBER, update build id.mkinthe ${MY ANDROID}/device/nxp/
directory. For detailed steps, see the i.MX Android Frequently Asked Questions.

The following outputs are generated by defaultin $ {MY ANDROID}/out/target/product/mek 8q:

* root/: Root file system. It is used to generate system. img together with files in system/.

* system/: Android system binary/libraries. It is used to generate system. img together with files in root/.

* recovery/: Root file system when booting in "recovery" mode. Not used directly.

* dtbo-imx8qgm. img: Board's device tree binary. It is used to support the LVDS-to-HDMI display for i.MX
8QuadMax MEK.

* dtbo-imx8gm-revd. img: Board's device tree binary. It is used to support the LVDS-to-HDMI display for
i.MX 8QuadMax MEK rev.E.

* dtbo-imx8gm-md. img: Board's device tree binary. It is used to support multiple-display feature for i.MX
8QuadMax MEK.

* dtbo-imx8gm-md-revd. img: Board's device tree binary. It is used to support multiple-display feature for
i.MX 8QuadMax MEK rev.E.

* dtbo-imx8gm-sof.img: Board's device tree binary. It is used to support the SOF for i.MX 8QuadMax MEK.

* dtbo-imx8gm-sof-revd.img: Board's device tree binary. It is used to support the SOF for i.MX 8QuadMax
MEK rev.E.

* dtbo-imx8gxp.img: Board's device tree binary. It is used to support the LVDS-to-HDMI display for i.MX
8QuadXPlus MEK.

* dtbo-imx8gxp-sof.img: Board's device tree binary. It is used to support the SOF for i.MX 8QuadXPlus
MEK.

* vbmeta-imx8qm. img: Android Verify boot metadata image for dtbo-imx8qm. img. It is used to support the
LVDS-to-HDMI display for i.MX 8QuadMax MEK.

* vbmeta-imx8qm-revd. img: Android Verify boot metadata image for dtbo-imx8gm-revd. img. It is used
to support the LVDS-to-HDMI display for i.MX 8QuadMax MEK rev.E.

* vbmeta-imx8gm-md.img: Android Verify boot metadata image for dtbo-imx8gm-md. img. It is used to
support the multiple-display feature for i.MX 8QuadMax MEK.

UG10176 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.
User guide Rev. automotive-15.0.0_2.1.0 — 14 October 2025 Document feedback
7169

https://community.nxp.com/docs/DOC-342877
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10176

NXP Semiconductors U G1 01 76

Android Automotive User's Guide

* vbmeta-imx8gm-md-revd. img: Android Verify boot metadata image for dtbo-imx8gm-md-revd. img. It
is used to support the multiple-display feature for i.MX 8QuadMax MEK rev.E.

* vbmeta-imx8gm-sof.img: Android Verify boot metadata image for dtbo-imx8gm-sof. img. It is used to
support the SOF feature for i.MX 8QuadMax MEK.

* vbmeta-imx8gm-sof-revd. img: Android Verify boot metadata image for dtbo-imx8gm-sof-revd. img.
It is used to support the SOF feature for i.MX 8QuadMax MEK rev.E.

* vbmeta-imx8qgxp.img: Android Verify boot metadata image for dtbo-imx8qgxp.img. It is used to support
the LVDS-to-HDMI display for i.MX 8QuadXPlus MEK.

* vbmeta-imx8gxp-sof.img: Android Verify boot metadata image for dtbo-imx8gxp-sof. img. It is used
to support the SOF feature for i.MX 8QuadXPlus MEK.

* ramdisk.img: Ramdisk image generated from root/. Not directly used.

* system.img: EXT4 image generated from system/ and root/.

* system ext.img: EXT4 image generated from system ext/.

* product.img: EXT4 image generated from product/.

* partition-table.img: GPT partition table image. Used for 16 GB boot storage.

* partition-table-28GB.img: GPT partition table image. Used for 32 GB boot storage.

* spl-imx8gm.bin: A composite image, which includes SECO firmware, SCU firmware, Cortex-M4 image,
and SPL for i.MX 8QuadMax MEK.

* spl-imx8gm-secure-unlock.bin: A composite image, which includes SECO firmware, SCU firmware,
Cortex-M4 image, and SPL for i.MX 8QuadMax MEK. It is a demonstration of the secure unlock mechanism.

* spl-imx8gxp.bin: A composite image, which includes SECO firmware, SCU firmware, Cortex-M4 image,
and SPL for i.MX 8QuadXPlus MEK with silicon revision BO chip.

* spl-imx8gxp-secure-unlock.bin: A composite image, which includes SECO firmware, SCU firmware,
Cortex-M4 image, and SPL for i.MX 8QuadXPlus MEK with silicon revision BO chip. It is a demonstration of
the secure unlock mechanism.

* spl-imx8gxp-c0.bin: A composite image, which includes SECO firmware, SCU firmware, Cortex-M4
image, and SPL for i.MX 8QuadXPlus MEK with silicon revision CO chip.

* bootloader-imx8gm. img: The next loader image after SPL. It includes the Arm trusted firmware, Trusty
OS, and U-Boot proper for i.MX 8QuadMax MEK.

* bootloader-imx8gm-secure-unlock.img: The next loader image after SPL. It includes the Arm trusted
firmware, trusty OS, and U-Boot proper for i.MX 8QuadMax MEK. It is a demonstration of the secure unlock
mechanism.

* bootloader-imx8qgxp.img: The next loader image after SPL. It includes the Arm trusted firmware, Trusty
OS, and U-Boot proper for i.MX 8QuadXPlus MEK with silicon revision BO chip.

* bootloader-imx8gxp-secure-unlock.img: The next loader image after SPL. It includes the Arm
trusted firmware, Trusty OS, and U-Boot proper for i.MX 8QuadXPlus MEK with silicon revision BO chip. Itis a
demonstration secure unlock mechanism.

* bootloader-imx8qgxp-c0.img: The next loader image after SPL. It includes the Arm trusted firmware,
Trusty OS, and U-Boot proper for i.MX 8QuadXPlus MEK with silicon revision CO chip.

* u-boot-imx8gm-mek-uuu. imx: U-Boot image used by UUU for i.MX 8QuadMax MEK. It is not flashed to
MMC.

* u-boot-imx8gxp-mek-uuu.imx: U-Boot image used by UUU for i.MX 8QuadXPlus MEK with silicon
revision BO chip. It is not flashed to MMC.

* u-boot-imx8gxp-mek-cO-uuu.imx: U-Boot image used by UUU for i.MX 8QuadXPlus MEK with silicon
revision CO chip. It is not flashed to MMC.

* vendor. img: Vendor image, which holds platform binaries. Mounted at /vendor.

* boot.1img: A composite image that includes the kernel Image, ramdisk, and boot parameters.

* rpmb_key test.bin: Prebuilt test RPMB key. It can be used to set the RPMB key as fixed 32 bytes 0x00.
* testkey public rsa4096.bin: Prebuilt AVB public key. It is extracted from the default AVB private key.

UG10176 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. automotive-15.0.0_2.1.0 — 14 October 2025 Document feedback
8/69

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10176

NXP Semiconductors U G1 01 76

Android Automotive User's Guide

Note:

* To build the U-Boot image separately, see Section 3.4.
* To build the kernel ulmage separately, see Section 3.5.
e To build boot . img, see Section 3.6.
 To build dtbo. img, see Section 3.7.

3.2.1 Configuration examples of building i.MX devices

The following table shows examples of using the 1unch command to set up different i.MX devices. After the
desired i.MX device is set up, the . /imx-make.sh command is used to start the build.

Table 3. i.MX device lunch examples

Build name Lunch command

i.MX 8QuadXPlus/8QuadMax MEK Board with the EVS
function enabled on the Arm Cortex-M4 CPU core

$ lunch mek 89 car-nxp stable-
userdebug

i.MX 8QuadMax/8QuadXPlus MEK Board with the EVS

function enabled on the Arm Cortex-A CPU cores (Power 5 lunch mek 8q car2-nxp_stable-

mode switch demo is running on the Cortex-M4 core in this useroebLg

configuration)

i.MX 95 EVK Board with the EVS function enabled on the

Arm Cortex-M7 CPU core $ lunch evk 95 car-nxp stable-
userdebug

i.MX 95 EVK Board with the EVS function enabled on the
Arm Cortex-A CPU cores (Power mode switch demo is
running on the Cortex-M7 core in this configuration)

$ lunch evk 95 car2-nxp stable-
userdebug

3.2.2 Build mode selection

There are three types of build mode to select: eng, user, and userdebug.
Note: To pass CTS, use user build mode.

The userdebug build behaves the same as the user build, with the ability to enable additional debugging that
normally violates the security model of the platform. This makes the userdebug build good for user to test with
greater diagnosis capabilities.

The eng build prioritizes engineering productivity for engineers who work on the platform. The eng build

turns off various optimizations used to provide a good user experience. Otherwise, the eng build behaves
similar to the user and userdebug builds, so that device developers can see how the code behaves in those
environments.

PRODUCT PACKAGES ENG and PRODUCT PACKAGES DEBUG can be used to specify the modules to be
installed in the appropriate product makefiles.

If a module does not specify a tag with LOCAL MODULE TAGS, its tag defaults to optional. An optional
module is installed only if it is required by the product configuration with PRODUCT PACKAGES.

The main differences among the three modes are listed as follows:

* eng: development configuration with additional debugging tools
— Installs modules tagged with: eng and/or debug through LOCAL MODULE TAGS, or specified by
PRODUCT PACKAGES ENG and/or PRODUCT PACKAGES DEBUG.
— Installs modules according to the product definition files, in addition to tagged modules.

UG10176 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.
User guide Rev. automotive-15.0.0_2.1.0 — 14 October 2025 Document feedback
9/69

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10176

NXP Semiconductors U G1 01 76

Android Automotive User's Guide

—ro.secure=0
— ro.debuggable=1
—ro.kernel.android.checkjni=1
— adb is enabled by default.
* user: limited access; suited for production
— Installs modules tagged with user.
— Installs modules according to the product definition files, in addition to tagged modules.
—ro.secure=1
— ro.debuggable=0
— adb is disabled by default.
* userdebug: like user but with root access and debuggability; preferred for debugging

— Installs modules tagged with debug through LOCAL MODULE TAGS, or specified by
PRODUCT PACKAGES DEBUG.

— ro.debuggable=1
— adb is enabled by default.

There are two methods for the build of Android image.

To build Android images, an example for the i. MX 8QuadMax/8QuadXPlus MEK with the EVS function enabled
in the Cortex-M4 CPU core is:

S cd ${MY_ANDROID}

$ source build/envsetup.sh

$ lunch mek 8g car-nxp stable-userdebug
$./imx-make.sh -j4

The commands below can achieve the same result:

S cd ${MY_ANDROID}

$ source build/envsetup.sh

$ lunch mek 8g car-nxp stable-userdebug
$./imx-make.sh bootloader kernel -j4

$ make -j4

For more Android platform building information, see source.android.com/source/building.html.

3.2.3 Build with the GAS package

Get the Google Automobile Services (GAS) package from Google. Put the GAS package into the
${MY ANDROID}/vendor/partner gas directory. Make sure the product.mk* file includes the following
command line:

$(call inherit-product-if-exists, vendor/partner gas/products/gms.mk)

Then build the images. The GAS package is then installed into the target images.

3.3 Building an Android image with Docker

The Dockerfile can be found in the directory ${MY ANDROID}/device/nxp/common/dockerbuild/, which
sets up an Ubuntu 20.04 image ready to build the i.MX Android OS. You can use it to generate your own Docker
image with the full i.MX Android build environment. The process is as follows:

UG10176 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.
User guide Rev. automotive-15.0.0_2.1.0 — 14 October 2025 Document feedback
10/69

http://source.android.com/source/building.html
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10176

NXP Semiconductors U G1 01 76

Android Automotive User's Guide

1. Build the Docker image.

$ cd ${Dockerfile path}

${Dockerfile path} can be ${MY ANDROID}/device/nxp/common/dockerbuild/, or
another path that you moved the Dockerfile to.

$ docker build --no-cache --build-arg userid=$(id -u) --build-arg groupid=

$(id -g) --build-arg username=S$ (id -un) -t <docker image name>
<docker image name> can be whatever you want, such as 'android-build'.
'.' means using the current directory as the build context, it specifies

where to find the files for the “context” of the build on the Docker daemon.

2. Start up a new container and mount your Android source codes to it with the following:

$ docker run --privileged -it -v ${MY ANDROID}:/home/$ (id -un)/android src
<docker image name>

> cd ~/android src; source build/envsetup.sh

> lunch mek 89 car2-nxp stable-userdebug

> ./imx-make.sh -34 2>&1 | tee build-log.txt

3. Get the image that you want.

> exit
$ cd ${MY ANDROID}/out/target/product/mek 8qg

Note:

* Ifit fails to apt install packages in the process of Docker image build, configure the HTTP proxy.

1. Copy your host apt.conf with cp /etc/apt/apt.conf ${Dockerfile path}/apt.conf, or
create a stripped-down version.

2. Refer to the related content in the Dockerfile, and remove the symbol "#" to solve the issue.

* If it fails to install Clang tools in the process of Docker image build, refer to the related content in Dockerfile,
remove the symbol "#" and try to build it again.

* If you manage the Docker as a non-root user, prefix the docker command with sudo, such as sudo docker
build ... & sudo docker run

* You can use the command docker images to see the existing Docker image and use docker ps -ato
see the existing container. For other Docker commands, learn them from the Docker Docs website.

* The Android build content above takes the i.MX 8QuadMax/QuadXPlus MEK as an example. To build other
board images or a single image, refer to the other sections.

3.4 Building U-Boot images

The U-Boot images can be generated separately. For example, you can generate a U-Boot image for the i.MX
8QuadMax/8QuadXPlus MEK board with the EVS function enabled in the Arm Cortex-M4 CPU core as follows:

U-Boot image for 8QuadMax/8QuadXPlus MEK board with EVS function enabled in
the Arm Cortex-M4 CPU core

S cd ${MY_ANDROID}

$ source build/envsetup.sh

$ lunch mek 89 car-nxp stable-userdebug

$./imx-make.sh bootloader -7j4

Multiple U-Boot variants are generated for different purposes. You can check {MY Android}/device/
nxp/imx8qg/mek 8qg/UbootKernelBoardConfig.mk for more details. The following table lists the U-Boot
configurations and images for the 1unch target mek 8q car-nxp stable-userdebug. Similar variants are
generated for the i.MX 95 EVK board. You can check {MY Android}/device/nxp/imx9/evk 95/UbootK
ernelBoardConfig.mk for more details.

UG10176 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.
User guide Rev. automotive-15.0.0_2.1.0 — 14 October 2025 Document feedback
11/69

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10176

NXP Semiconductors

UG10176

Table 4. U-Boot configurations and images

Android Automotive User's Guide

SoC U-Boot configurations Generated images Description

i.MX 8QuadMax imx8qgm mek spl-imx8gm.bin, Default i.MX 8QuadMax
androidauto_trusty bootloader-imx8qgm.img |Android Auto image
defconfig

i.MX 8QuadMax imx8agm mek spl-imx8gm-secure- i.MX 8QuadMax Android

androidauto trusty
secure_unlock
defconfig

unlock.bin, bootloader-
imx8gm-secure-unlock.
img

Auto image with secure
unlock feature enabled.
For more details about
secure unlock, see Section
"Secure unlock" in the i.MX
Android Security User's
Guide (UG10158).

i.MX 8QuadXPlus BO chip

imx8gxp mek
androidauto trusty
defconfig

spl-imx8gxp.bin
bootloader-imx8qgxp.
img

Default i.MX 8QuadXPlus BO
chip Android Auto image

i.MX 8QuadXPlus CO chip

imx8gxp mek
androidauto trusty
defconfig

spl-imx8gxp-c0.bin
bootloader-imx8gxp-
cO0.img

Default i.MX 8QuadXPlus CO
chip Android Auto image

i.MX 8QuadXPlus BO chip

imx8gxp mek
androidauto trusty
secure_unlock
defconfig

spl-imx8gxp-secure-
unlock.bin, bootloader-
imx8gxp-secure-
unlock.img

i.MX 8QuadXPlus BO chip
Android Auto image with
secure unlock feature
enabled. For more details
about secure unlock, see
Section "Secure unlock" in
the i.MX Android Security
User's Guide (UG10158).

i.MX 8QuadMax

imx8gm mek android
uuu_defconfig

u-boot-imx8gm-mek-
uuu. imx

U-Boot image aims to flash
images for i.MX 8QuadMax.
This should not be shipped to
end users.

i.MX 8QuadXPlus BO chip

imx8gxp mek android
uuu_defconfig

u-boot-imx8gxp-mek-
uuu. imx

U-Boot image aims to flash
images for i.MX 8QuadXPlus
BO chip. This should not be
shipped to end users.

i.MX 8QuadXPlus CO chip

imx8gxp mek android
uuu_defconfig

u-boot-imx8gxp-mek-
cO-uuu.imx

U-Boot image aims to flash
images for i.MX 8QuadXPlus
CO chip. This should not be
shipped to end users.

3.5 Building a kernel image

Kernel image is automatically built when building the Android root file system.

To build out the kernel image independently from the default Android build command:

$ cd ${MY ANDROID}

$ source build/envsetup.sh

$ lunch mek 8g car-nxp stable-userdebug

$./imx-make.sh kernel -7j4

With a successful build in the use case above, the generated kernel image is: $ {MY ANDROID}/out/target/
product/mek 8q/obj/KERNEL OBJ/arch/armé64/boot/Image.

UG10176

All information provided in this document is subject to legal disclaimers.

© 2025 NXP B.V. All rights reserved.

User guide

Rev. automotive-15.0.0_2.1.0 — 14 October 2025

Document feedback
12769

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10176

NXP Semiconductors U G1 01 76

Android Automotive User's Guide

3.6 Building boot.img

The following commands are used to generate boot . img under the Android environment:

Boot image for i.MX 8QuadMax/8QuadXPlus MEK board with EVS function enabled in
the Arm Cortex-M4 CPU core

$ cd ${MY ANDROID}

$ source build/envsetup.sh

$ lunch mek 89 car-nxp stable-userdebug

$./imx-make.sh bootimage -3j4

The following commands can achieve the same result:

Boot image for i.MX 8QuadMax/8QuadXPlus MEK board with EVS function enabled in
the Arm Cortex-M4 CPU core

cd $ {MY ANDROID}

source build/envsetup.sh

lunch mek 89 car-nxp stable-userdebug

./imx-make.sh kernel -j4

make bootimage -7j4

vy Ur Ur >

3.7 Building dtbo.img

DTBO image holds the device tree binary of the board.

The following commands are used to generate dtbo. img under the Android environment:

dtbo image for i.MX 8QuadMax/8QuadXPlus MEK board with EVS function enabled in
the Arm Cortex-M4 CPU core

$ cd ${MY_ANDROID}

$ source build/envsetup.sh

$ lunch mek 8g car-nxp stable-userdebug

$./imx-make.sh dtboimage -3j4

The following commands can achieve the same result:

dtbo image for i.MX 8QuadMax/8QuadXPlus MEK board with EVS function enabled in
the Arm Cortex-M4 CPU core

cd $ {MY ANDROID}

source build/envsetup.sh

lunch mek 89 car-nxp stable-userdebug

./imx-make.sh kernel -j4

make dtboimage -3j4

U Uy Ur > Ux

4 Running the Android Platform with a Prebuilt Image

To test the Android platform before building any code, use the prebuilt images from the following packages, and
see Section 5 and Section 6.

Table 5. Image packages

Image package Description
automotive-15.0.0 2.1.0 image Prebuilt image for the i.MX 8QuadXPlus/8QuadMax MEK board with EVS
8gmek car.tar.gz function enabled in the Arm Cortex-M4 CPU core, which includes NXP
extended features.

UG10176 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.
User guide Rev. automotive-15.0.0_2.1.0 — 14 October 2025 Document feedback
13/69

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10176

NXP Semiconductors

UG10176

Table 5. Image packages...continued

Android Automotive User's Guide

Image package

Description

android automotive-15.0.0 2.1.0

image 8qgmek car2.tar.gz

Prebuilt image and UUU script files for the i. MX 8QuadMax/8QuadXPlus
MEK board without EVS function enabled in the Arm Cortex-M4 CPU core,
which includes NXP extended features.

android automotive-15.0.0 2.1.0

image 95evk car.tar.gz

Prebuilt image for the i.MX 95 EVK board with EVS function enabled in the
Arm Cortex-M7 CPU core, which includes NXP extended features.

android automotive-15.0.0 2.1.0

image 95evk car2.tar.gz

Prebuilt image and UUU script files for the i.MX 95 EVK board without EVS
function enabled in the Arm Cortex-M7 CPU core, which includes NXP
extended features.

The following tables list the detailed contents of the android automotive-15.0.0 2.1.0 image 8gmek

car.tar.gz image package.

Table 6. Images for the i.MX 8QuadXPlus and i.MX 8QuadMax MEK boards

i.MX 8QuadXPlus/8QuadMax MEK
image

Description

spl-imx8gm.bin

The secondary program loader (SPL) for the i.MX 8QuadMax MEK board.

spl-imx8gm-secure-unlock.bin

The secondary program loader (SPL) with Trusty and secure unlock related
configurations for the i.MX 8QuadMax MEK board.

spl-imx8gxp.bin

The secondary program loader (SPL) for the i.MX 8QuadXPlus MEK board with
silicon revision BO chip.

spl-imx8gxp-secure-unlock.bin

The secondary program loader (SPL) with Trusty and secure unlock related
configurations for the i.MX 8QuadXPlus MEK board with silicon revision BO chip.

spl-imx8gxp-c0.bin

The secondary program loader (SPL) for the i.MX 8QuadXPlus MEK board with
silicon revision CO chip.

bootloader-imx8gm. img

The next loader image after SPL for the i. MX 8QuadMax MEK board.

bootloader-imx8gm-secure-
unlock.img

The next loader image after SPL for the i.MX 8QuadMax MEK board, including
the Arm trusted firmware, Trusty OS, and U-Boot proper.

bootloader-imx8gxp.img

The next loader image after SPL for the i.MX 8QuadXPlus MEK board with silicon
revision BO chip.

bootloader-imx8gxp-secure-
unlock.img

The next loader image after SPL for the i.MX 8QuadXPlus MEK board with silicon
revision BO chip, including the Arm trusted firmware, Trusty OS, and U-Boot
proper.

bootloader-imx8gxp-c0.img

The next loader image after SPL for the i.MX 8QuadXPlus MEK board with silicon
revision CO chip.

u-boot-imx8gm-mek-uuu.imx

Bootloader used by UUU for the i.MX 8QuadMax MEK board. It is not flashed to
MMC.

u-boot-imx8gxp-mek-uuu.imx

The bootloader used by UUU for the i.MX 8QuadXPlus MEK board with silicon
revision BO chip. It is not flashed to MMC.

u-boot-imx8gxp-mek-cO-uuu.imx

The bootloader used by UUU for the i.MX 8QuadXPlus MEK board with silicon
revision CO chip. It is not flashed to MMC.

partition-table.img

GPT table image for 16 GB boot storage

partition-table-28GB.img

GPT table image for 32 GB boot storage

vbmeta-imx8qgm. img

Android Verify Boot metadata image for the i.MX 8QuadMax MEK board to
support LVDS-to-HDMI display

UG10176

All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide

Rev. automotive-15.0.0_2.1.0 — 14 October 2025

Document feedback
14/ 69

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10176

NXP Semiconductors

UG10176

Android Automotive User's Guide

Table 6. Images for the i.MX 8QuadXPlus and i.MX 8QuadMax MEK boards...continued

i.MX 8QuadXPlus/8QuadMax MEK
image

Description

vbmeta-imx8gm-md. img

Android Verify Boot metadata image for the i.MX 8QuadMax MEK board to
support the multiple-display feature.

vbmeta-imx8gm-sof.img

Android Verify Boot metadata image for the i.MX 8QuadMax MEK board to
support the SOF DSP feature.

vbmeta-imx8gxp.img

Android Verify Boot metadata image for the i.MX 8QuadXPlus MEK board to
support LVDS-to-HDMI display

vbmeta-imx8gxp-sof.img

Android Verify Boot metadata image for the i.MX 8QuadXPlus MEK board to
support the SOF DSP feature.

system.img

System Boot image

system ext.img

System extension image.

vendor.img

Vendor image, which holds platform binaries. Mounted at /vendor.

vendor dlkm.img

Vendor DLKM image, which holds a dynamically loadable kernel module.
Mounted at /vendor dlkm.

product.img

Product image.

dtbo-imx8gm. img

Device tree image for the i.MX 8QuadMax

dtbo-imx8gm-md. img

Device tree image for the i.MX 8QuadMax to support the multiple-display feature.

dtbo-imx8gm-sof.img

Device tree image for the i.MX 8QuadMax to support the SOF DSP feature.

dtbo-imx8gxp.img

Device tree image for the i.MX 8QuadXPlus

dtbo-imx8gxp-sof.img

Device tree image for the i.MX 8QuadXPlus to support the SOF DSP feature.

boot.img

A composite image, which includes the AOSP generic kernel image and boot
parameters.

init boot.img

Generic ramdisk.

vendor boot.img

A composite image, which includes vendor ramdisk and boot parameters.

rpmb_key test.bin

Prebuilt test RPMB key. It can be used to set the RPMB key as fixed 32 bytes
0x00.

testkey public rsa4096.bin

Prebuilt AVB public key. It is extracted from the default AVB private key.

The following tables list the detailed contents of the android automotive-15.0.0 2.1.0 image 95evk

car2.tar.gz image package.

Table 7. Images for i.MX 95 EVK board

i.MX 95 EVK/Verdin image

Description

spl-imx95.bin

The secondary program loader (SPL) for the i.MX 95 EVK board.

bootloader-imx95.img

The next loader image after SPL for the i.MX 95 EVK board.

u-boot-imx95-evk-uuu. imx

Bootloader used by UUU for the i.MX 95 EVK board. It is not flashed to MMC.

partition-table.img

GPT table image for 16 GB boot storage.

partition-table-28GB.img

GPT table image for 32 GB boot storage.

vbmeta-imx95.img

Android Verify Boot metadata image for the i.MX 95 EVK board to support MIPI-
to-HDMI display.

UG10176

All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide

Rev. automotive-15.0.0_2.1.0 — 14 October 2025 Document feedback

15/69

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10176

NXP Semiconductors

UG10176

Android Automotive User's Guide

Table 7. Images for i.MX 95 EVK board...continued

i.MX 95 EVK/Verdin image

Description

vbmeta-imx95-1vds0.img

Android Verify Boot metadata image for the i.MX 95 EVK board to support LVDS-
to-HDMI display.

vbmeta-imx95-mipi-lvdsl.img

Android Verify Boot metadata image for the i.MX 95 EVK board to support MIPI-
to-HDMI and LVDS-to-HDM displays (multiple displays).

system.img

System Boot image.

system ext.img

System extension image.

vendor.img

Vendor image, which holds platform binaries. Mounted at /vendor.

vendor dlkm.img

Vendor DLKM image, which holds a dynamically loadable kernel module.
Mounted at /vendor_ dlkm

product.img

Product image.

dtbo-imx95.img

Device tree image for the i.MX 95 EVK board to support MIPI-to-HDMI display.

dtbo-imx95-apl302.1img

Device tree image for the i.MX 95 EVK board with Car type image to support
MIPI-to-HDMI display and AP1302 camera.

dtbo-imx95-1vds0.img

Device tree image for the i.MX 95 EVK board with Car2 type image to support
LVDS-to-HDMI display.

dtbo-imx95-mipi-1lvdsl.img

Device tree image for the i.MX 95 EVK board to support MIPI-to-HDMI and
LVDS-to-HDM displays (multiple displays).

dtbo-imx95-mipi-lvdsl-apl302.
img

Device tree image for the i.MX 95 EVK board with Car type image to support
MIPI-to-HDMI and LVDS-to-HDM displays (multiple displays) and the AP1302
camera.

imx95-verdin.img

Device tree image for the i.MX 95 Verdin EVK board to support HDMI display
(LT8912).

imx95-verdin-apl302.img

Device tree image for the i.MX 95 Verdin EVK board with Car type image to
support HDMI display (LT8912) and RPI-CAM-MIPI camera (AP1302).

imx95-verdin-adv7535.img

Device tree image for the i.MX 95 Verdin EVK board to support MIPI-to-HDMI
display (ADV7535).

imx95-verdin-adv7535-apl302.
img

Device tree image for the i.MX 95 Verdin EVK board with Car type image to
support MIPI-to-HDMI display (ADV7535) and the RPI-CAM-MIPI camera
(AP1302).

boot.img

A composite image, which includes the AOSP generic kernel image and boot
parameters.

init boot.img

Generic ramdisk.

vendor boot.img

A composite image, which includes vendor ramdisk and boot parameters.

rpmb_key test.bin

Prebuilt test RPMB key. It can be used to set the RPMB key as fixed 32 bytes
0x00.

testkey public rsa4096.bin

Prebuilt AVB public key. It is extracted from the default AVB private key.

Note: boot.img is an Android image that stores kernel Image and ramdisk together. It also stores other
information such as the kernel boot command line, machine name. This information can be configured in
android.mk. It can avoid touching the bootloader code to change any default boot arguments.

UG10176

All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide

Rev. automotive-15.0.0_2.1.0 — 14 October 2025

Document feedback
16/ 69

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10176

NXP Semiconductors U G1 01 76

Android Automotive User's Guide

5 Programming Images

The images from the prebuilt release package or created from source code contain the U-Boot bootloader ,
system image, gpt image, vendor image, and vbmeta image. At a minimum, the storage devices on the
NXP development system (eMMC) must be programmed with the U-Boot bootloader. The i.MX 8 and i.MX 9
series boot process determines what storage device to access based on the Boot switch settings. When the
bootloader is loaded and begins execution, the U-Boot environment space is then read to determine how to
proceed with the boot process. For U-Boot environment settings, see Section 6.

The following download methods can be used to write the Android System Image:

* UUU to download all images to the eMMC storage.
* fastboot imx flashall scriptto download all images to the eMMC storage.

5.1 System on eMMC

The images needed to create an Android system on eMMC can either be obtained from the release package or
be built from source.

The images needed to create an Android system on eMMC are listed below:

» Secondary program loader image: spl.bin

* Android bootloader image: bootloader.img

* GPT table image: partition-table.img

* Android DTBO image: dtbo.img

* Android boot image: boot . img

* Android vendor boot image: vendor boot.img

* Android system image: system. img

* Android system extension image: system ext.img
* Android vendor image: vendor . img

» Android vendor dynamically loadable kernel module image: vendor dlkm.img
* Android Verify boot metadata image: vbmeta. img

5.1.1 Storage partitions

The layout of the eMMC card for Android system is shown below:

* [Partition type/index] which is defined in the GPT.
* [Start Offset] shows where partition is started, unit in MB.

The system partition is used to put the built-out Android system image. The userdata partition is used to put the
unpacked codes/data of the applications, system configuration database, and so on. In recovery mode, the root
file system is mounted with ramdisk from the boot partition.

Table 8. Storage partitions

Partition Name Start offset Size File system Content
typel/index
N/A bootloader0 0 KB (i.MX 8Quad |4 MB N/A spl.bin

Max, i.MX 8Quad
XPlus CO0) or 32KB
(i.MX 8QuadXPlus

BO)
1 bootloader a 8 MB 4 MB N/A bootloader.img
UG10176 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.
User guide Rev. automotive-15.0.0_2.1.0 — 14 October 2025 Document feedback

17169

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10176

NXP Semiconductors

UG10176

Table 8. Storage partitions...continued

Android Automotive User's Guide

Partition Name Start offset Size File system Content
typel/index
2 bootloader b Follow 4 MB N/A bootloader.img
bootloader a
3 dtbo_a Follow 4 MB N/A dtbo.img
bootloader b
4 dtbo_b Follow dtbo_a 4 MB N/A dtbo.img
5 boot_a Follow dtbo b 64 MB boot.img format, |boot.img
a kernel + recovery
ramdisk
6 boot b Follow boot_a 64 MB boot.img format, |boot.img
a kernel + recovery
ramdisk
7 vendor boot_a |Follow boot_a 64 MB Part of recovery vendor boot.img
ramdisk
8 vendor boot b |Follow boot b 64 MB Part of recovery vendor boot.img
ramdisk
9 misc Follow boot b 4 MB N/A For recovery storage
bootloader message,
reserve
10 metadata Follow misc 16 MB N/A Metadata of OTA update,
remount, etc.
1" presistdata Follow metadata 1 MB N/A Option to operate lock
\unlock
12 super.img Follow 4096 MB N/A system.img, system
presistdata ext.img, vendor.img,
vendor dlkm.img, and
product.img
13 userdata Follow super Remained |EXT4. Mount at / Application data storage
space data for system application, and
for internal media partition,
inthe /mnt/sdcard/
directory
14 fbmisc Follow userdata 1 MB N/A For storing the state of lock/
unlock
15 vbmeta_a Follow fbmisc 1 MB N/A For storing the verify boot's
metadata
16 vbmeta b Follow vbmeta a |1 MB N/A For storing the verify boot's

metadata

Partitions are created by UUU utility, burning Android automotive images (by partition.img). Using UUU is

described in the Android Quick Start Guide (AQSUG).

5.1.2 Downloading images with UUU

UUU can be used to download all the images into the target device. It is a quick and easy tool for downloading
images. See the Android Quick Start Guide (AQSUG) for a detailed description of UUU.

UG10176

All information provided in this document is subject to legal disclaimers.

© 2025 NXP B.V. All rights reserved.

User guide

Rev. automotive-15.0.0_2.1.0 — 14 October 2025

Document feedback
18769

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10176

NXP Semiconductors U G1 01 76

Android Automotive User's Guide

5.1.3 Downloading images with fastboot_imx_flashall script

UUU can be used to flash the Android system image into the board, but it needs to make the board enter serial
down mode first, and make the board enter boot mode once flashing is finished.

There is another tool of fastboot imx flashall script, which uses fastboot to flash the Android System
Image into the board. It requires the target board to be able to enter fastboot mode and the device is unlocked.
There is no need to change the boot mode with this fastboot imx flashall script.

The table below lists the fastboot imx flashall scripts.

Table 9. fastboot_imx_flashall script

Name Host system to execute the script
fastboot imx_ flashall.sh Linux OS
fastboot imx_ flashall.bat Windows OS

With the help of fasboot imx flashall scripts, you do not need to use fastboot to flash Android images
one by one manually. These scripts automatically flash all images with only one line of command.

With the virtual A/B feature enabled, your host fastboot tool version should be equal to or greater than 30.0.4.
You can download the host fastboot tool from the Android website or you can build it with the Android project.
Based on Section 3, which describes how to build Android images, perform the following steps to build fastboot:

8 el ${MY_ANDROID}
$ source build/envsetup.sh
$ make -j4 fastboot

After the build process finishes building fastboot, the directory to find the fastboot is as follows:

* Linux version binary file: $ {MY ANDROID}/out/host/linux-x86/bin/
* Windows version binary file: ${MY ANDROID}/out/host/windows-x86/bin/

The way to use these scripts is as follows:

* Linux shell script usage: sudo fastboot imx flashall.sh <option>
* Windows batch script usage: fastboot imx flashall.bat <option>

Options:
-h Displays this help message
-f soc _name Flashes the Android image file with soc name
-a Only flashes the image to slot a
-b Only flashes the image to slot b
-m Flashes the Cortex-M4 image.

-u uboot feature Flashes U-Boot or SPL&bootloader images with
"uboot feature" in their names. For QXP CO revision please use -u cO.
For Android Automotive:
Only dual-bootloader feature is supported. By
default, SPL&bootloader image is flashed.
For 1.MX 8QuadXPlus CO revision, use the -u cO
parameter.
-d dtb_ feature Flashes dtbo, vbmeta, and recovery image file with
"dtb feature" in their names.
If it is not set, use the default dtbo, vbmeta, and
recovery image.

-e Erases user data after all image files are flashed.

=1 Locks the device after all image files are flashed.

-D directory Directory of images.
UG10176 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.
User guide Rev. automotive-15.0.0_2.1.0 — 14 October 2025 Document feedback

19/69

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10176

NXP Semiconductors U G1 01 76

Android Automotive User's Guide

If this script is execute in the directory of the images,
it does not need to use this option.
-S ser num Serial number of the board.
If only one board is connected to computer, it does not
need to use this option

Note:

» —f option is mandatory. SoC name can be imx8qm or imx8gxp.
* Boot the device to U-Boot fastboot mode, and then execute these scripts. The device should be unlocked first.

Example:

sudo ./fastboot imx flashall.sh -f imx8gm -a -e -D /imx android-15.0/mek 8qg car/

Option explanations:

* —-f imx8qm: Flashes images for the i.MX 8QuadMax MEK Board.
e —a: Only flashes slot a.
* —e: Erases user data after all image files are flashed.

* -D /imx_android-15.0/mek_8q car/:Images to be flashed are in the directory of /
imx android-15.0/mek 8qg car/

5.1.4 Downloading a single image with fastboot

Sometimes only a single image needs to be flashed again with fastboot for debug purposes.

fastboot is also implemented in userspace (recovery) in addition to the implementation in U-Boot. With the
dynamic partition feature enabled, the partitions are categorized into three parts. fastboot implemented in U-
Boot and userspace can individually recognize part of them. The relationship between them is listed as follows.

Table 10. Partition categories

Partition category Partition Can be recognized by
U-Boot hard-coded partition bootloader0, gpt, mcu_os U-Boot fastboot
EFI partition boot_a, boot b, vendor boot_a, U-Boot fastboot, userspace fastboot

vendor boot b, dtbo a, dtbo b,
vbmeta a, vbmeta b, misc,
metadata, presistdata, super,
userdata, fbmisc

Logical partition system_a, system b, system_ Userspace fastboot
ext a, system ext b, vendor a,
vendor b, product a, product b

Note:
Logical partitions only exist if the dynamic patrtition feature is enabled.

To enter U-Boot fastboot mode, for example, you can first make the board enter U-Boot command mode, and
then execute the following command on the console:

> fastboot 0

To enter userspace fastboot mode, two commands are provided as follows for different conditions. You may
need root permission on the Linux OS:

board in U-Boot fastboot mode, execute the following command on the host

UG10176 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.
User guide Rev. automotive-15.0.0_2.1.0 — 14 October 2025 Document feedback
20/69

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10176

NXP Semiconductors U G1 01 76

Android Automotive User's Guide

$ fastboot reboot fastboot
board boot up to the Android system, execute the following command on the host
S adb reboot fastboot

The adb binary for the Microsoft Windows host can be obtained from https://dl.google.com/android/repository/
platform-tools-latest-windows.zip. The adb binary for the GNU/Linux host can be installed through a packaging
manager of your distribution. The following is an example for Ubuntu distribution:

$ sudo apt-get install adb

To use the fastboot tool on the host to operate on a specific partition, choose the proper fastboot implemented
on the device that can recognize the partition to be operated on. For example, images in automotive-15.0.
0 2.1.0 image 8gmek car2.tar.gz have dynamic partition feature enabled. To flash system. img to the
partition of system_a, make the board enter userspace fastboot mode, and execute the following command on
the host:

$ fastboot flash system a system.img

6 Booting

This chapter describes booting from MMC.

6.1 Booting from eMMC

6.1.1 Booting from eMMC on the i.MX 8QuadXPlus/8QuadMax MEK board
The following tables list the boot switch settings to control the boot storage.

Table 11. Boot switch settings for i.MX 8QuadMax
i.MX 8QuadMax boot switch download Mode (UUU mode) eMMC boot

SW2 Boot_Mode (1-6 bit) 001000 000100

Table 12. Boot switch settings for i.MX 8QuadXPlus
i.MX 8QuadXPlus boot switch download Mode (UUU mode) eMMC boot

SW2 Boot_Mode (1-4 bit) 1000 0100

Boot from eMMC

Change the board Boot_Mode switch to 000100 (1-6 bit) for i. MX 8QuadMax.

Change the board Boot_Mode switch to 0100 (1-4 bit) for i.MX 8QuadXPlus.

To use the default environment in boot . img, do not set bootargs environment in U-Boot.
Note:

bootargs is an optional setting for boota. The boot . img includes a default bootargs, which will be used if
there is no bootargs defined in U-Boot.

UG10176 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.
User guide Rev. automotive-15.0.0_2.1.0 — 14 October 2025 Document feedback
21/69

https://dl.google.com/android/repository/platform-tools-latest-windows.zip
https://dl.google.com/android/repository/platform-tools-latest-windows.zip
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10176

NXP Semiconductors U G1 01 76

Android Automotive User's Guide

6.1.2 Booting from eMMC on the i.MX 95 EVK board
The following table lists the boot switch settings to control the boot storage.

Table 13. Boot switch settings for i.MX 95
i.MX 95 boot switch Download mode (UUU mode) eMMC boot

SW7 Boot_Mode (1-4 bit) 1001 1010

Boot from eMMC
Change the board Boot_Mode switch to 1010 (1-4 bit).
To use the default environment in boot . img, do not set the bootargs environment in U-Boot.

Note:

bootargs is an optional setting for boota. The boot . img includes a default bootargs, which is used if there
is no bootargs defined in U-Boot.

6.2 Boot-up configurations

This section describes some common boot-up configurations, such as U-Boot environments, kernel command
line, and DM-verity configurations.

6.2.1 U-Boot environment

* bootcmd: the first variable to run after U-Boot boot.

* bootargs: the kernel command line, which the bootloader passes to the kernel. As described in
Section 6.2.2, bootargs environment is optional for booti. boot.img already has bootargs. If you do not
define the bootargs environment variable, it uses the default bootargs inside the image. If you have the
environment variable, it is then used.
To use the default environment in boot . img, use the following command to clear the bootargs environment

variable.

> setenv bootargs

If the environment variable append bootargs is set, the value of append bootargs is appended to
bootargs automatically.

* boota:
boota command parses the boot . img header to get the Image and ramdisk. It also passes the bootargs
as needed (it only passes bootargs in boot.img when it cannot find bootargs variable in your U-Boot
environment).
To boot the system, execute the following command:

U-Boot=> boota

To boot into recovery mode, execute the following command:

U-Boot=> boota recovery

6.2.2 Kernel command line (bootargs)

Depending on the different booting/usage scenarios, you may need different kernel boot parameters set for
bootargs.

UG10176 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. automotive-15.0.0_2.1.0 — 14 October 2025 Document feedback
22/69

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10176

NXP Semiconductors

UG10176

Table 14. Kernel boot parameters

Android Automotive User's Guide

Kernel parameter

Description

Typical value

Used when

init file is located.

console Where to output kernel log by |console=ttymxc0 i.MX 8QuadMax MEK uses
printk. console=ttyLPO0.
init Informs the kernel where the |init=/init All use cases. init in the

Android platform is located in
/ instead of in /sbin.

androidboot.console

The Android shell console.
It should be the same as
console=.

androidboot.
console=ttymxcO

To use the default shell job
control, such as Ctrl+C to
terminate a running process,
set this for the kernel.

cma

CMA memory size for GPU/
VPU physical memory
allocation.

cma=1184M@0x960M-
0xe00M

The start address is 0x9600
0000 and the end address
is OXDFFFFFFFF. The CMA
size can be configured to
other value, but cannot
exceed 1184 MB, because
the Cortex-M core also
allocates the memory from
CMA, and Cortex-M cannot
use the memory larger than
OxDFFFFFFFF.

androidboot.selinux

Argument to disable SELinux
check. For details about
SELinux, see Security-
Enhanced Linux in Android.

androidboot.
selinux=permissive

Setting this argument also
bypasses all the SELinux
rules defined in the Android
system. It is recommended to
set this argument for internal
developers.

androidboot.fbTile
Support

It is used to enable the
framebuffer super tile output.

androidboot.fbTile
Support=enable

firmware class.path

It is used to set the Wi-Fi
firmware path.

firmware class.path=/
vendor/firmware

androidboot.
wificountrycode=US

It is used to set the Wi-

Fi country code. Different
countries use different Wi-Fi
channels.

For details, see the i.MX
Android Frequently Asked
Questions.

androidboot.
wificountrycode=US

transparent hugepage

It is used to change the
sysfs boot time defaults
of Transparent Hugepage
support.

transparent
hugepage=never/
always/madvise

galcore.contiguous
Size

It is used to configure the
GPU reserved memory.

galcore.contiguous
Size=33554432

It is 128 MB by default. i.MX
8QuadMax/8QuadXPlus
automatically configure it to
32 MB to shorten the GPU
driver initialization time.

androidboot.vendor.
sysrq

Itis used to enable sysrqg.

androidboot.vendor.
sysrqg=1

UG10176

All information provided in this document is subject to legal disclaimers.

© 2025 NXP B.V. All rights reserved.

User guide

Rev. automotive-15.0.0_2.1.0 — 14 October 2025

Document feedback
23/69

http://source.android.com/devices/tech/security/selinux/
http://source.android.com/devices/tech/security/selinux/
https://community.nxp.com/docs/DOC-342877
https://community.nxp.com/docs/DOC-342877
https://community.nxp.com/docs/DOC-342877
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10176

NXP Semiconductors U G1 01 76

Android Automotive User's Guide

6.2.3 DM-verity configuration

DM-verity (device-mapper-verity) provides transparent integrity checking of block devices. It can prevent the
device from running unauthorized images. This feature is enabled by default. Replacing one or more partitions
(boot, vendor, system, vbmeta) will make the board unbootable. Disabling DM-verity provides convenience for
developers, but the device is unprotected.

To disable DM-verity, perform the following steps:

1. Unlock the device.
a. Boot up the device.
b. Enable Developer mode. click 7 times on the Settings -> About -> Build number menu.
c. Choose Settings -> Developer Options -> OEM Unlocking to enable OEM unlocking.
d. Execute the following command on the target side to make the board enter fastboot mode:

reboot bootloader

e. Unlock the device. Execute the following command on the host side:

fastboot oem unlock

f. Wait until the unlock process is complete.
2. Disable DM-verity.
a. Boot up the device.
b. Disable the DM-verity feature. Execute the following command on the host side:

adb root
adb disable-verity
adb reboot

7 Over-The-Air (OTA) Update

This section provides an example for the i.MX 8QuadMax/8QuadXPlus MEK Board with EVS function enabled
in the Arm Cortex-M4 CPU core to build and implement OTA update.

For other platforms, use "1unch " to set up the build configuration. For detailed build configuration, see
Section 3.2.

7.1 Building OTA update packages

7.1.1 Building target files

You can use the following commands to generate target files under the Android environment:

cd ${MY ANDROID}

source build/envsetup.sh

lunch mek 89 car-nxp stable-userdebug
./imx-make.sh bootloader kernel -7j4
make target-files-package -j4

Uy Ur > Uy U

After building is complete, you can find the target files in the following path:

${MY ANDROID}/out/target/product/mek 8q car/obj/PACKAGING/
target files intermediates/mek 8g car-target files-${date}.zip

UG10176 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.
User guide Rev. automotive-15.0.0_2.1.0 — 14 October 2025 Document feedback
24769

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10176

NXP Semiconductors U G1 01 76

Android Automotive User's Guide

7.1.2 Building a full update package

A full update is one where the entire final state of the device (dtbo, system, boot, and vendor partitions) is
contained in the package.

You can use the following commands to build a full update package under the Android environment:

cd $ {MY ANDROID}

source build/envsetup.sh

lunch mek 89 car-nxp stable-userdebug
./imx-make.sh bootloader kernel -7j4
make otapackage -3j4

O Uy U U Ux

Note:

The command line $ make otapackage -7j4is used fori.MX 8QuadMax. For i.MX 8QuadXPlus, use the
command line make OTA TARGET=8gxp otapackage -7j4.

After building is complete, you can find the OTA packages in the following path:

${MY ANDROID}/out/target/product/mek 8qg car/mek 8g car-ota-${date}.zip

mek 8qg car-ota-${date}.zip includes payload.bin and payload properties.txt. The two files
are used for full update.

Note:

* S{date} isthe BUILD NUMBERin build id.mk.

7.1.3 Building an incremental update package

An incremental update contains a set of binary patches to be applied to the data that is already on the device.
This can result in considerably smaller update packages:

* Files that have not changed do not need to be included.

* Files that have changed are often very similar to their previous versions, so the package only needs to contain
encoding of the differences between the two files. You can install the incremental update package only on a
device that has the old or source build used when constructing the package.

Before building an incremental update package, see Section 7.1.1 to build two target files:

* PREVIOUS-target files.zip: one old package that has already been applied on the device.
* NEW-target files.zip: the latest package that is waiting to be applied on the device.

Then use the following commands to generate the incremental update package under the Android environment:

$ cd $ {MY ANDROID}
$./build/tools/releasetools/ota from target files -i PREVIOUS-target files.zip
NEW-target files.zip incremental ota update.zip

${MY ANDROID}/incremental ota update.zip includes payload.bin and
payload properties.txt. The two files are used for incremental update.

UG10176 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.
User guide Rev. automotive-15.0.0_2.1.0 — 14 October 2025 Document feedback
25/69

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10176

NXP Semiconductors U G1 01 76

Android Automotive User's Guide

7.2 Implementing OTA update

7.2.1 Using update_engine_client to update the Android platform

update engine client is a pre-built tool to support A/B (seamless) system updates. It supports updating
system from a remote server or board's storage.

To update the system from a remote server, perform the following steps:

1.

2.

Copy full-ota.zipor incremental ota.zip (generated on Section 7.1.2 and Section 7.1.3) to the
HTTP server (for example, 192.168.1.1:/var/www/).

Unzip the packages to get payload.bin and payload properties.txt

Cat the content of payload properties.txt like this:

* FILE HASH=0fSBbXonyTjaAzMpwTBgMIAVt1BeyOigpCCgkoOfHKY=

* FILE SIZE=379074366

* METADATA HASH=Icrs3NgoglzyppyCZouWKbo5£08IPokhlUfHDmz77WQ=

* METADATA SIZE=46866

Log in to the ADB shell and execute the following command to update:

update engine client --payload=http://192.168.1.1:10888/payload.bin --update
--headers="FILE HASH=0fSBbXonyTjaAzMpwTBgM9AVt1BeyOigpCCgkoOfHKY=

FILE SIZE=379074366

METADATA HASH=Icrs3NgoglzyppyCZouWKbo5f08IPokhlUfHDmz77WQ/de8Dgp9zFXt8Fo

+Hxccp4 65uTOVKNsteWU=

METADATA SIZE=46866"

The system will update in the background. After it finishes, it will show "Update successfully applied, waiting
to reboot" in the logcat.

To update the system from board's storage, perform the following steps:

1.

2.

Unzip full-ota.zip or incremental ota.zip (Generated on Section 7.1.2 and Section 7.1.3) to get
payload.bin and payload properties.txt.
Push payload.bin to board's storage:

adb root
adb push payload.bin /data/ota package

. Cat the content of payload properties.txt like this

e FILE HASH=0£fSBbXonyTjaAzMpwTBgM9IAVt1BeyOigpCCgkoOfHKY=

e FILE SIZE=379074366

* METADATA HASH=Icrs3NgoglzyppyCZouWKbo5f08IPokhlUfHDmz77WQ=
* METADATA SIZE=46866

Input the following command in board's console to update:

update engine client --payload=file:///data/ota package/payload.bin --update
--headers="FILE HASH=0fSBbXonyTjaAzMpwTBgM9AVt1BeyOigpCCgkoOfHKY=

FILE SIZE=379074366

METADATA HASH=Icrs3NgoglzyppyCZouWKbo5£f08IPokhlUfHDmz77WQ/de8Dgp9zFXt8Fo

+Hxccp465uTOVKNsteWU=

METADATA SIZE=46866"

The system will update in the background. After it finishes, it shows "Update successfully applied, waiting to
reboot" in the logcat.

Note:

UG10176 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. automotive-15.0.0_2.1.0 — 14 October 2025 Document feedback

26 /69

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10176

NXP Semiconductors U G1 01 76

Android Automotive User's Guide

Make sure that the -- header equals to the exact content of payload properties.txt. No more "space" or
“return” characters.

7.2.2 Using a customized application to update the Android platform

Google provides a reference OTA application (named as SystemUpdaterSample)under ${MY ANDROID}/
bootable/recovery/updater sample, which can do OTA job. Perform the following steps to use this
application:

1. Generate a JSON configuration file from the OTA package.

out/host/linux-x86/bin/gen update config \
—--ab_install type=STREAMING \

--ab_force switch slot \

full-ota.zip \

full-ota.json \
http://192.168.1.1:10888/full-ota.zip

And you can use the following command to generate an incremental OTA JSON file:

out/host/linux-x86/bin/gen update config \
—--ab_install type=STREAMING \

--ab_force switch slot \

incremental-ota.zip \

incremental-ota.json \
http://192.168.1.1:10888/incremental-ota.zip

Note:
http://192.168.1.1:10888/full-ota.zip is a remote server address, which can hold your OTA package.

2. Set up the HTTP server (for example, 1ighttpd, apache).
You need one HTTP server to hold OTA packages.

scp full-ota.zip ${server ota folder}
scp incremental-ota.zip ${server ota folder}
Note:
* server ota_ folder is one folder on your remote server to hold OTA packages.
e full-ota.zipand incremental-ota.zip are built from Section 7.1.2 and Section 7.1.3.

3. Push JSON files to the board.
Use the following command to push JSON files to the board:

adb push full-ota.json /data/local/tmp
adb push incremental-ota.json /data/local/tmp

Then use the following command to move JSON files to the private folder of the SystemUpdaterSample
application:

su
mkdir -m 777 -p /data/user/0/com.example.android.systemupdatersample/files
mkdir -m 777 -p /data/user/0/com.example.android.systemupdatersample/files/
configs

cp /data/local/tmp/*.json /data/user/0/
com.example.android.systemupdatersample/files/configs

chmod 777 /data/user/0/com.example.android.systemupdatersample/files/configs/
*.json

Note:
If you use the Android Automotive system, move JSON files to the user /10 folder as follows:

su
mkdir -m 777 -p /data/user/10/com.example.android.systemupdatersample/files

UG10176 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.
User guide Rev. automotive-15.0.0_2.1.0 — 14 October 2025 Document feedback
27169

http://192.168.1.1:10888/full-ota.zip
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10176

NXP Semiconductors U G1 01 76

Android Automotive User's Guide

mkdir -m 777 -p /data/user/10/com.example.android.systemupdatersample/files/
configs

cp /data/local/tmp/*.json /data/user/10/
com.example.android.systemupdatersample/files/configs

chmod 777 /data/user/10/com.example.android.systemupdatersample/files/
configs/*.json

4. Open the SystemUpdaterSample OTA application.
There are many buttons on the Ul. Their brief description is as follows:

Reload - reloads update configs from device storage.

View config - shows selected update config.

Apply - applies selected update config.

Stop - cancel running update, calls UpdateEngine#cancel.

Reset - reset update, calls UpdateEngine#resetStatus, can be called only when
update is not running.

Suspend - suspend running update, uses UpdateEngineffcancel.

Resume - resumes suspended update, uses UpdateEngine#applyPayload.

Switch Slot - if ab config.force switch slot config set true, this button
will be enabled after payload is applied, to switch A/B slot on next reboot.

First, choose the desired JSON configuration file, and then click the APPLY button to do the update.
After the update is complete, you can see "SUCCESS" in the Engine error text field, and
"REBOOT_REQUIRED" in the Updater state text field. Then, reboot the board to finish the whole OTA
update.

The OTA package includes the dtbo image, which stores the board's DTB. There may be many DTBs for one
board. For example, in ${MY ANDROID}/device/nxp/imx8qg/mek 8qg/BoardConfig.mk:

TARGET BOARD DTS CONFIG := imx8gm:imx8gm-mek-car.dtb imx8gxp:imx8gxp-mek-car.dtb

There is one variable to specify which dtbo image is stored in the OTA package:

BOARD PREBUILT DTBOIMAGE := out/target/product/mek 8qg/dtbo-imx8gm.img

Therefore, the default OTA package can only be applied for the mek 8qm board.To generate an OTA package
for mek 8gxp, modify this BOARD PREBUILT DTBOIMAGE as follows:

BOARD PREBUILT DTBOIMAGE := out/target/product/mek 8qg/dtbo-imx8gxp.img

The OTA package includes the bootloader image, which is specified by the following variable in $ {MY
ANDROID} /device/nxp/imx8q/mek 8qg/BoardConfig.mk:

BOARD OTA BOOTLOADERIMAGE := out/target/product/mek 8q/obj/UBOOT COLLECTION/
bootloader-imx8qm.img

To generate an OTA package for mek 8qgxp, modify BOARD OTA BOOTLOADERIMAGE as follows:

BOARD OTA BOOTLOADERIMAGE := out/target/product/mek 8qg/obj/UBOOT COLLECTION/
bootloader-imx8gxp.img

For detailed information about A/B OTA updates, see https://source.android.com/devices/tech/ota/ab/.

For information about the SystemUpdaterSample application, see https://android.googlesource.com/platform/
bootable/recovery/+/refs/heads/master/updater_sample/.

UG10176 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.
User guide Rev. automotive-15.0.0_2.1.0 — 14 October 2025 Document feedback
28/69

https://source.android.com/devices/tech/ota/ab/
https://android.googlesource.com/platform/bootable/recovery/+/refs/heads/master/updater_sample/
https://android.googlesource.com/platform/bootable/recovery/+/refs/heads/master/updater_sample/
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10176

NXP Semiconductors U G1 01 76

Android Automotive User's Guide

8 Customized Configuration

8.1 Camera configuration

Exterior View System (EVS) is supported in i.MX Android Automotive release. This feature supports a fastboot
camera, which starts camera within 1 second when the board is powered on.

This section describes how this feature is implemented and how the interfaces are used to control the EVS
function. This can help customers to do customization work on the EVS function.

8.1.1 Switching between camera models on i.MX 95 EVK

The default evk 95 and verdin images use OX03C10 cameras, which do not support the fast boot camera
feature. Instead, the AP1302 (RPI_CAM MIPI)is required for this feature. This section describes how to set up
the i.MX 95 device for the AP1302 camera, as it is required to download the AP1302 firmware and flash it along
with the Device Tree configured for AP1302 and a Linux kernel boot parameter.

8.1.1.1 Obtaining the AP1302 firmware

The AP1302 camera third-party firmware is not a part of this release. Therefore, it needs to be downloaded
manually and added into both Android OS and Cortex-M7 application, the rear view camera smdemo,
which requires compilation of the bootloader.

To get the AP1302 firmware into the EVK board running the Android Automotive image, perform the following
steps:

1. Obtain the AP1302 firmware: ap1302_60fps_ar0144_27M_2Lane_awb_tuning.bin.
2. Rename the firmware ap1302 60fps ar0144 27M 2Lane awb_ tuning.binto
apl30x _ar0144 single fw.bin.

mv apl302 60fps ar0144 27M 2Lane awb tuning.bin apl30x ar0144 single fw.bin

3. Remount the file systems on the device to get the write permission on the vendor partition using ADB. When
the remount command is run for the first time, the device needs to be rebooted for the command to work.

adb root

adb remount

Reboot device if ADB request reboot. Then send the remount command again:
adb reboot

adb root

adb remount

4. Upload the firmware and restart the EVK:

adb push apl30x _ar0144 single fw.bin /vendor/firmware
adb reboot

5. Add the AP1302 firmware into the fastboot camera demo rear view camera sm. Run this command
in the root of Android sources, the same folder in which the 1unch and imx_make.sh commands are

executed.
xxd -i apl30x ar0144 single fw.bin > vendor/nxp/mcu-sdk-auto/SDK EVK-MIMX95/
boards/\
UG10176 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.
User guide Rev. automotive-15.0.0_2.1.0 — 14 October 2025 Document feedback

29/69

https://github.com/ONSemiconductor/ap1302_binaries/blob/cfdfc8aab37b3704a9fbabfdce5ecabcffcc9029/NXP_i.MX93/ap1302_60fps_ar0144_27M_2Lane_awb_tuning.bin
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10176

NXP Semiconductors U G1 01 76

Android Automotive User's Guide

imx951pdSevkl9/demo apps/rear view camera sm/cm7/
apl30x ar0144 single fw bin.c

6. Make the generated variables in const of ap130x_ar0144 single fw bin.c.
a. In a text editor, open the file vendor/nxp/mcu-sdk-auto/SDK_EVK-MIMX95/boards/
imx951pd5evkl9/demo_apps/rear view camera sm/cm7/apl30x _ar0144 single fw

bin.c.
b. Add const qualifier to the ap130x _ar0144 single fw bin and
apl30x ar0144 single fw bin len variables, and then save the file. The result looks like this:

const unsigned char apl30x ar0144 single fw bin[] = {
0x17, 0x23, 0x00, 0x00, OxFF, OxFF, 0x00, 0x00,

}

const unsigned int apl30x ar0144 single fw bin len = 80528;

7. Rebuild the bootloader and flash it into the i.MX 95 EVK.
a. Set up the build environment as described in Section 3.4.

b. Rebuild the bootloader.

./imx-make.sh -jl14 bootloader

c. Set the EVK board into fastboot mode. For details, see Section 5.

In U-Boot console
fastboot 0

d. Flash the rebuilt bootloader images.

cd out 95/target/product/evk 95
sudo fastboot flash bootloader(0 spl-imx95.bin
sudo fastboot flash bootloader a bootloader-imx95.img

8. Having firmware ready for the camera, configure the Android platform to use it. This is described in
Section 8.1.1.2.

8.1.1.2 Change camera type in Device-Tree and U-Boot
By default, the i.MX 95 image is configured for the OX03C10 camera.

To use AP1302, perform the following steps:
1. Flash the ap1302 Device Tree Blob that you select into evk 95 (for example, dtbo-imx95-
apl302.img):
fastboot flash dtbo dtbo-imx95-apl302.img

Note: List of Device Tree configurations could be found in Section 4.
2. Update boot args. In U-Boot command mode, run the following command:

setenv append bootargs androidboot.camera.layout=apl302

saveenv
boot

To switch back to OX03C10, perform the following steps:
1. Flash the Device Tree Blob that you select without ap1302 in the name (for example, dtbo-imx95. img):

fastboot flash dtbo dtbo-imx95.img

2. Update boot_args. In U-Boot command mode, run the following command:

setenv append bootargs

© 2025 NXP B.V. All rights reserved.
Document feedback
30/69

All information provided in this document is subject to legal disclaimers.

Rev. automotive-15.0.0_2.1.0 — 14 October 2025

UG10176
User guide

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10176

NXP Semiconductors U G1 01 76

Android Automotive User's Guide

saveenv
boot

8.1.2 Interfaces to control the EVS function

8.1.2.1 Starting the EVS function with images in automotive-15.0.0_2.1.0_image 8qmek _
car.tar.gz

With images in automotive-15.0.0 2.1.0 image 8qmek car.tar.gz, the Arm Cortex-A core runs
Android Automotive system and the Arm Cortex-M core runs RTOS collaborate to realize this EVS function. The
work sequence chart of EVS is shown in the following figure. It starts with the board power on.

M core A core
M4 application Linux driver User space

boot animation

get simulation gear event

press ‘gear 2' in m4 console

camera shown
in display

boot complete
—_—

register to M4 core
failed to register
register to M4 core
failed to register

get simulation gear event

press ‘gear 4' in m4 console

M4 will release register to M4 core

cameral/display resource

register succesfully

set prop vendor.vehicle.register
send uevent to user space

start boot_completed_core_sh

probe camera/display driver
android Ul is shown

get simulation gear event

press ‘gear 2' in m4 console get event

set prop vendor.vehicle.event
send uevent to user space

start evs_app

aaa-058143

Figure 1. EVS sequence chart with Cortex-M core and Cortex-A core collaborated together

Rear view camera (RVC) is only supported in Android cars. The following is the registration process of the
vehicle client.

1. Setvendor.all.system server.ready to1in frameworks/base/packages/SystemUI/src/
com/android/systemui/SystemUIApplication. java.

2. Write 1to /sys/devices/platform/vehicle rpmsg m4/register in AP. Register the RPMsg client
to the Cortex-M side.

3. Cortex-M4 releases cameraldisplay resource and sends Response of RPMsg client register. If the
registration status is successful, go to Step 5; otherwise, go to Step 4.

4. AP gets state values VEHICLE GEAR and register ready.

5. Send extcon set state synctoevs servicein AP. vendor.vehicle.register is then set.

6. Start boot completed core sh, which probes the display/camera modules.

UG10176 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. automotive-15.0.0_2.1.0 — 14 October 2025 Document feedback
31/69

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10176

NXP Semiconductors

UG10176

Android Automotive User's Guide

i.MX 8QuadMax MEK and i.MX 8QuadXPlus MEK both support single-rearview camera. To start the single-

rearview camera:

1. Connect the camera as described in the Android Automotive Quick Start Guide (UG10177).

2. Open the Cortex-M4 console.

Cortex-M4 console on the i.MX 8QuadXPlus MEK board: USB-to-UART port has two consoles. One is a

Cortex-A core console, and the other one is a Cortex-M4 console.

Cortex-M4 console on i.MX 8QuadMax MEK board: RS-232 port on the base board.

3. Input gear 2 on the Cortex-M4 console when the board is powered on and Android Automotive running on

Cortex-A core is not fully booted. The rearview camera appears on the screen.

Input gear 4 when Android Automotive is fully booted. The Android Ul appears on the screen.
4. Input gear 2 on the Cortex-M4 console after Android system boot is complete. The rearview camera

appears on the screen.

Input gear 4 on the Cortex-M4 console. The Android Ul appears on the screen.

Note:

* Inputting gear 2 on the Cortex-M4 console indicates that the Cortex-M4 core gets the reverse signal.
* Inputting gear 4 on the Cortex-M4 console indicates that the Cortex-M4 core gets the drive signal.

i.MX 8QuadMax MEK and i.MX 8QuadXPlus MEK with silicon revision CO chip also support multiple EVS
cameras. The relationship between the orientation of cameras and hardware connection is shown as follows.

Table 15. Relationship between the orientation of cameras and hardware connection

Hardware connection Camera orientation
INO Rear

IN1 Front

IN2 Right

IN3 Left

The logic to handle the vehicle information is shown with the following pseudo code:

if (gear state == reverse)
show rear camera view

else if (turn signal == right)
show right camera view

else if (turn signal == left)
show left camera

else if (gear state == park)
show all cameras' view

else

show no camera view

The meaning of the commands input on the Cortex-M4 console is as follows.

Table 16. Meaning of commands input on the Cortex-M4 console

Command Meaning

turn 0 Not turn

turn 1 Turn right

turn 2 Turn left

gear 1 Park

gear 2 Reverse

UG10176 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.
User guide Rev. automotive-15.0.0_2.1.0 — 14 October 2025 Document feedback

32/69

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10176

NXP Semiconductors U G1 01 76

Android Automotive User's Guide

Table 16. Meaning of commands input on the Cortex-M4 console...continued

Command Meaning

gear 4 Drive

To start the multiple-EVS-camera function:

1. Input su && start evs_ app on the AP console to start evs app. You can also start the rearview
camera on the Cortex-M4 console with gear 2. The display should be rear camera view.

2. Input gear 1 on the Cortex-M4 console. All cameras must be connected to the board.
= N

Figure 2. All cameras' views on the display

3. Input turn 1 on the Cortex-M4 console. It shows the right camera view on the display.
4. Input turn 2 on the Cortex-M4 console. It shows the left camera view on the display.
5. Input turn 0 on the Cortex-M4 console. It shows all cameras' views on the display.

6. Stop EVS with stop evs_app on the Cortex-A core console.

Note:

You can input gear 2 on the Cortex-M4 console anytime in the boot process to start the rearview camera.

8.1.2.2 Starting the EVS function with images in automotive-15.0.0_2.1.0_image 8qmek _
car2.tar.gz

With images in automotive-15.0.0 2.1.0 image 8gmek car2.tar.gz, the EVS function is realized on
Android Automotive running on the Cortex-A core.

i.MX 8QuadMax MEK and i.MX 8QuadXPlus MEK both support a single-rearview camera. To start the single-
rearview camera:

1. Connect the camera as described in the Android Automotive Quick Start Guide (UG10177).

2. Open the Cortex-A core console.
Input su && start evs app on the Cortex-A console to start evs app. You can also start the rearview
camera with echo 2 > /sys/devices/platform/vehicle-dummy/gear on the Cortex-A console.
The display should be rear camera view. Input stop evs_app on the Cortex-A console to stop the
rearview camera EVS function.

i.MX 8QuadMax MEK and i.MX 8QuadXPlus MEK with silicon revision CO chip can also support multiple EVS
cameras.

The relationship between the orientation of cameras and hardware connection is shown as follows.

UG10176 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. automotive-15.0.0_2.1.0 — 14 October 2025 Document feedback
33/69

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10176

NXP Semiconductors

UG10176

Android Automotive User's Guide

Table 17. Relationship between the orientation of cameras and hardware connection

Hardware connection Camera orientation
INO Rear
IN1 Front
IN2 Right
IN3 Left

The logic to handle the vehicle information is shown with the following pseudo code:

if (gear state == reverse)
show rear camera view

else if (turn signal == right)
show right camera view

else if (turn signal == left)
show left camera

else if (gear state == park)
show all cameras' view

else

show no camera view

The meaning of the commands input on the Cortex-A core console is as follows.

Table 18. Meaning of commands input on the Cortex-A core console

Command Meaning
echo 0 > /sys/devices/platform/vehicle- Not turn
dummy/turn

echo 1 > /sys/devices/platform/vehicle- Turn right
dummy/turn

echo 2 > /sys/devices/platform/vehicle- Turn left
dummy/turn

echo 1 > /sys/devices/platform/vehicle- Park
dummy/gear

echo 2 > /sys/devices/platform/vehicle- Reverse
dummy/gear

echo 4 > /sys/devices/platform/vehicle- Drive
dummy/gear

To start the multiple-EVS-camera function:

1. Input su && start evs_ app on the Cortex-A console to start evs app. You can also start the rearview
camera with echo 2 > sys/devices/platform/vehicle-dummy/gear on the Cortex-A console. The

display should be rear camera view.

2. Inputecho 1 > sys/devices/platform/vehicle-dummy/gear on the Cortex-A console. All
cameras must be connected to the board.
UG10176 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.
User guide Rev. automotive-15.0.0_2.1.0 — 14 October 2025 Document feedback

34/69

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10176

NXP Semiconductors U G1 01 76

Android Automotive User's Guide

Figure 3. All cameras' views on the display

3. Inputecho 1 > sys/devices/platform/vehicle-dummy/turn on the Cortex-A console. It shows
the right camera view on the display.

4. Inputecho 2 > sys/devices/platform/vehicle-dummy/turn on the Cortex-A console. It shows
the left camera view on the display.

5. Inputecho 0 > sys/devices/platform/vehicle-dummy/turn on the Cortex-A console. It shows all
cameras' views on the display.

6. Stop EVS with stop evs_app on the Cortex-A console.

8.1.3 EVS related code

Forimages in automotive-15.0.0 2.1.0 image 8amek car.tar.gz, the Cortex-M4 core runs with its
code on the DDR on the i.MX board. It is responsible for the following work:

» Take over control of the camera/display before the Android system is fully booted.
* Get the vehicle event and pass this event to the Cortex-A core.

Source code for the Cortex-M4 core is in the $ {MY ANDROID}/vendor/nxp/mcu-sdk-auto directory.

After modifying the Cortex-M4 core source code, execute the following command to build and update the
Cortex-M4 image:

cd $ {MY ANDROID}

source build/envsetup.sh

lunch mek 8g car-nxp stable-userdebug
./imx-make.sh bootloader -3j4

The directory of EVS related code running on the Cortex-A core is listed as follows:

* EVS HAL: ${MY ANDROID}/vendor/nxp-opensource/imx/evs hal

* EVS service: ${MY ANDROID}/vendor/nxp-opensource/imx/evs/evs service

* EVS kernel driver: $ {MY ANDROID}/vendor/nxp-opensource/kernel imx/drivers/mxc/vehicle
» EVS application: $ {MY ANDROID}/vendor/nxp-opensource/imx/evs/evs_app

After modifying the Cortex-A core source code, build the whole system to update Android Automotive images.

8.1.4 Communication protocol between Cortex-A core and Cortex-M4 core

Images in automotive-15.0.0 2.1.0 image 8gmek car.tar.gz are built with the target lunched with
mek 8g_ car-userdebug. The EVS function in this package is realized with both the Cortex-A core and the
Cortex-M4 core.

UG10176 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.
User guide Rev. automotive-15.0.0_2.1.0 — 14 October 2025 Document feedback
35/69

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10176

NXP Semiconductors

UG10176

Android Automotive User's Guide

The following table lists the communication commands and related response packet between the Cortex-A core

and the Cortex-M4 core.

Table 19. SRTM AUTO Control Category Command Table (Cortex-A -> Cortex-M4)

Category |Version Type Command |Data Function
0x08 0x0100 REQUEST |REGISTER |Data[0-3]: clientId Registers the RPMsg client. c1lientId
Data[4]: reserved indicates different clients. partition
Data[5]: partition indicates the Android partition.
Data[6-15]: reserved Partition: OxFF: This parameteris
invalid.
0x08 0x0100 REQUEST |UNREGI Data[0-3]: clientId Unregisters the RPMsg client. Cortex-
STER Data[4]: reserved M and remote processor cannot
Data[5]: causeOf commu:nicate a.geclii.n. 'tl'httahcauseOff
arameter can indicate the reason for
Data[6-15]: reserved ﬁnregister.
causeOf: 0x00: AP powers off.
0x08 0x0100 REQUEST |CONTROL Data[0-3]: clientId Sends a control command to Cortex-
Data[4]: reserved M to request Cortex-M to do some
Data[5-6]: controlCode actions. It needs to qomplgte and give
Data[7-10]: timeout a response to Android in "timeout" ms.
Reserved for future.
Data[11-15]: control]
Param Example: .
Data[15]: 1ndex . con?%olCode: 0x0000: Air
conditioner temperature
* controlParam: 4bytes
(float): Temperature
e Index: Left or right.
0x08 0x0100 REQUEST |PWR_ Data[0-3]: clientId Reports the Android power state.
REPORT Data[4]: reserved androidPwrState:
Data[5-6]: androidPwr |* 0x0000: BOOT COMPLETE
State * 0x0001: DEEP_SLEEP ENTRY
Data[7-10]: time_ * 0x0002: DEEP SLEEP EXIT
postpone » 0x0003: SHUTDOWN POSTPONE
Data[11-15]: reserved |e 0x0004: SHUTDOWN START
¢ 0x0005: DISPLAY OFF
* 0x0006: DISPLAY ON
0x08 0x0100 REQUEST |GET INFO |Data[0-3]: clientId Gets information from the Cortex-M
Data[4]: reserved side. Android and Cortex-M should
Data[5-6]: infoIndex have thg same information table. The
Data[7-15]: reserved information includes the sensor data,
fuel data, battery data, and so on.
infoIndex:0x0001: Vehicle unique
ID.
0x08 0x0100 RES BOOT_ Data[0-3]: clientId Responds to Cortex-M's boot reason
PONSE REASON Data[4]: retCode request (USER_POWER _ON, DOOR__
Data[5-15]: reserved OPEN, DOOR_UNLOCK, REMOTE_START,
TIMER).
0x08 0x0100 RES PWR_CTRL |Data[0-3]: clientId Responds to the current power state of
PONSE Data[4]: retCode the Android OS.
Data[5-6]: androidPwr
State
Data[7-15]: reserved
UG10176 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.
User guide Rev. automotive-15.0.0_2.1.0 — 14 October 2025 Document feedback

36/69

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10176

NXP Semiconductors

UG10176

Android Automotive User's Guide

Table 19. SRTM AUTO Control Category Command Table (Cortex-A -> Cortex-M4)...continued

Category |Version Type Command |Data Function
0x08 0x0100 RES VSTATE Data[0-3]: clientId Responds to the control command from
PONSE the Cortex-M side. state indicates the

Data[4]: retCode
Data[5-6]: unitType
Data[7-15]: reserved

current VI state.

Table 20. SRTM AUTO Control Category Command

Table (Cortex-M4 -> Corte

x-A)

Category |Version Type Command |Data Function
0x08 0x0100 RES REGISTER |Data[0-3]: clientId Response of the RPMsg client register
PONSE Data[4]: retCode (success, failed).
Data[5-6]: mcuOperate |mcuOperateMode: indicates the
Mode Cortex-M work state.
Data[7-15]: reserved * SHARED RESOURCE_FREE: 0x0000.
* SHARED RESOURCE_OCCUPIED:
0x0001.
0x08 0x0100 RES UNREGI Data[0-3]: clientId Response of the RPMsg client
PONSE STER Data[4]: retCode unregister.
Data[5-15]: reserved
0x08 0x0100 RES CONTROL Data[0-3]: clientId Response to the result of the control
PONSE Data[4]: retCode request. The MCU performs some
Data[5-6]: actionState actions to complete Android’s request.
Data[7-15]: reserved actionState is not used currently.
0x08 0x0100 RES PWR_ Data[0-3]: clientId Response to Android power state
PONSE REPORT Data[4]: retCode report.
Data[5-15]: reserved
0x08 0x0100 RES GET_INFO |Data[0-3]: clientId Response to the GET INFO request.
PONSE Data[4]: retCode infoIndex should be the same as
Data[5-6]: infolndex request index. The length of infoData
Data[7-14]: dat should be specific according to info
o ata Index. The information includes sensor
Data[15]: reserve data, fuel data, and battery data. And
it is a response packet to Android's
request.
0x08 0x0100 REQUEST |BOOT _ Data[0-3]: clientId Notifies the Android system why VMCU
REASON Data[4]: reserved boots the Cortex-A core (Android). It
Data[5]: bootReason is sent after the MCU sends a normal
. drive command to the Android system.
Data[6-15]: reserved
bootReason:
* 0x00: USER_POWER ON
* 0x01: DOOR_OPEN
* 0x02: DOOR_UNLOCK
* 0x03: REMOTE START
0x08 0x0100 REQUEST |pwR CTRL |Data[0-3]: clientId Requests the Android system to enter
Data[4]: reserved a specific power state (ON_DISP OFF,
Data[5-6]: powerState |ON_FULL, SHUTDOWN PREPARE)
Req powerStateReq:
Data[7-8]: addition e 0x0000: ON_DISP OFF
Param * 0x0001: ON_FULL
Data[9-15]: reserved * 0x0002: SHUTDOWN PREPARE
UG10176 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.
User guide Rev. automotive-15.0.0_2.1.0 — 14 October 2025 Document feedback

37/69

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10176

NXP Semiconductors U G1 01 76

Android Automotive User's Guide

Table 20. SRTM AUTO Control Category Command Table (Cortex-M4 -> Cortex-A)...continued

Category |Version Type Command |Data Function
0x08 0x0100 REQUEST |VSTATE Data[0-3]: clientId Requests the Vehicle state to Android
Data[4]: reserved (Door open/close/lock/unlock, Fan on/

off/speed/recycle/direction, AC on/
offftemperature, heater on/off/power,
defrost on/off/front/back)

(mute/unmute, volume adjust, rear view
camera on/off, lights on/off ...)
unitType indicates the type of each
unit of vehicle, such as door, fan, and
air condition. statevalue indicates
the unit state parameter.

Data[5-6]: unitType
Data[7-10]: statevalue
Data[11-15]: reserved

8.1.5 Delay of cameral/display module probe

The RVC is occupied by the Cortex-M4 core in early stage when booting up in an Android car. AP needs to
separate camera/display resource in boot stage. There are two resources that need to pay attention in AP boot
stage: clock and power domain.

1. Separate clock in boot stage.
a. Add CONFIG VEHICLE CLK POST INIT, which does not register camera/display related CLK in c1k-
imx8gxp.c and clk-imx8qgm.c.
b. Add clk-post-imx8qgm.c and clk-post-imx8gxp.c, which are probed in
notice evs_ released.
2. Separate power domain in boot stage.
SC_ R CSI 0/SC_R _LVDS 1/SC_R DC_1/SC_R_ISI_CHO are used at Cortex-M4 side. The related power
domain used in DTS needs to be removed under the DTS node vehicle rpmsg m4.

* The node whose power domain is pd_dc1l needs to be moved into vehicle rpmsg m4.

* The node whose power domain is under pd_dc1 (such as pd_mipi1/pd_lvds1/pd_mipi1_i2c0/..) needs to
be moved into the DTS node vehicle rpmsg m4.

* The node whose power domain is pd_isi ch0 needs to be moved into the DTS node
vehicle rpmsg m4.

* The node whose power domain is under pd_isi chO (such as pd_csiO/pd_csi1/..) needs to be moved
into the DTS node vehicle rpmsg m4.

* The camera node needs to be moved into the DTS node vehicle rpmsg m4.

8.2 Audio configuration

8.2.1 Routing audio stream to different sound cards

In Android Automotive, different audio streams are routed to different sound cards. When configured, the route
is statically decided, unlike the dynamically routed in the standard Android image.

In the Android Automotive release, the route is configured as follows:

» CPU board audio jack (WM896x codec) is routed to bus0 media out. This audio bus plays all types of
sounds such as media, calls, alarms, and alerts.

» Extended audio board (CS42888) is routed to bus100_audio_ zone 1 audio bus. This audio bus plays all
types of sounds. The bus is for emulation of the passenger rear audio zone and is optional.

UG10176 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.
User guide Rev. automotive-15.0.0_2.1.0 — 14 October 2025 Document feedback
38/69

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10176

NXP Semiconductors U G1 01 76

Android Automotive User's Guide

8.3 Display configuration

8.3.1 Configuring the logical display density

The Android Ul framework defines a set of standard logical densities to help application developers target
application resources. Device implementations must report one of the following logical Android framework
densities:

* 120 dpi, known as 'ldpi'

* 160 dpi, known as 'mdpi'
* 213 dpi, known as 'tvdpi'
240 dpi, known as 'hdpi'
320 dpi, known as 'xhdpi'
* 480 dpi, known as 'xxhdpi'

Device implementations should define the standard Android framework density that is numerically closest to the
physical density of the screen, unless that logical density pushes the reported screen size below the minimum
supported.

The default display density value is defined in ${MY ANDROID}/device/nxp/imx8q/mek 8q/Board
Config.mk as shown below:

BOARD KERNEL CMDLINE += androidboot.lcd density=200

The display density value can be changed by modifying the related lines mentioned above in $ {MY ANDROID}/
device/nxp/imx8q/mek 8q/BoardConfig.mk and then recompiling the code or setting (the density value)
in U-Boot command line as bootargs during boot-up.

8.3.2 Starting the cluster display

Cluster display is supported in the i.MX Android Automotive release package. With this feature, two displays
connected to the board can display different content.

To do customization work on this function, you need to know how this function can be started and controlled.
i.MX 8QuadMax and i.MX 8QuadXPlus MEK:

To start the cluster display, connect the two i.MX mini SAS cables with the LVDS-to-HDMI adapters to the
"LVDSO0" and "LVDS1" ports of the board. After the system boots into the Android launcher, different content is
displayed on the two displays connected to the board.

i.MX 95 EVK:

To evaluate the cluster display on i.MX 95 EVK, flash dtbo-imx95-mipi-1vdsl.img, vbmeta-imx95-
mipi-1lvdsl.img and connect the two mini SAS cables with the MIPI-to-HDMI and LVDS-to-HDMI adapters to
the "MIPI_DSI" and "LVDS1" ports of the board.

8.3.3 Enabling the multiple-display function
The following boards support more than one display.

Table 21. Displays supported by different boards

‘ Board Number of displays Display port ‘
i.MX 8QuadMax MEK 4 If a physical HDMI output (J6) is used: HDMI_TX, LVDS0_CHO,
LVDS1_CHO0, MIPI_DSI1

UG10176 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.
User guide Rev. automotive-15.0.0_2.1.0 — 14 October 2025 Document feedback
39/69

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10176

NXP Semiconductors U G1 01 76

Android Automotive User's Guide

Table 21. Displays supported by different boards...continued

Board Number of displays Display port

If a physical HDMI output (J6) is not used: LVDS0_CHO and
LVDS1_CHO, MIPI_DSIO and MIPI_DSI1

i.MX 8QuadXPlus MEK 2 DSI0/LVDSIO, DSI1/LVDSI1
i.MX 95 EVK 2 MIPI_DSI, LVDS1

The two displays on i.MX 8QuadXPlus MEK are enabled by default.

The multiple-display without physical HDMI output (J6) displays on i.MX 8QuadMax MEK are enabled by
default.

To evaluate the multiple-display with physical HDMI output (J6) on i.MX 8QuadMax MEK, flash dtbo-imx8qgm-
md. img, vbmeta-imx8gm-md. img, and u-boot-imx8gm-md. imx

To evaluate the multiple-display on i.MX 95 EVK, flash dtbo-imx95-mipi-1vdsl.img and vbmeta-imx95-
mipi-lvdsl.img.

8.3.3.1 Binding the display port with the input port

The display port and input port are bound together based on the input device location and display-id. /vendor/
etc/input-port-associations.xml is used to do this work when the system is running, but the input
device location and display-id vary with the connection forms of these ports with corresponding input and
display devices, which means that the input location and display-id need to be retrieved before the connection is
fixed.

The source file of /vendor/etc/input-port-associations.xml is in the repository under the
${MY ANDROID}/device/nxp/ directory.

Take i.MX 8QuadMax MEK as an example:

1. Use the following commands to get the display port number:

dumpsys SurfaceFlinger --display-id

Display 4693505326422272 (HWC display 0): port=0 pnpId=DEL displayName="DELL
pP2314T"

Display 4693505326422273 (HWC display 1): port=1 pnpId=NXP displayName="NXP
Android"

Display 4692921138614786 (HWC display 2): port=2 pnpIld=NXP displayName="NXP
Android"

Display 18309706364381699 (HWC display 3): port=3 pnpld=NXP displayName="NXP
Android"

2. Use the following commands to get the touch input location:

getevent -i | grep location location:
location: "usb-xhci-hcd.l.auto-1.3.4/input0"
location: "usb-xhci-hcd.l.auto-1.2.4/inputO"

3. Bind the display port and input location as follows and modify the configuration file. This file needs to be
modified according to the actual connection. One display port can be bound with multiple input ports.

<ports>

<port display="0" input="usb-xhci-hcd.1l.auto-1.1.4/input0" />
<port display="1" input="usb-xhci-hcd.l.auto-1.2.4/input0" />
<port display="2" input="usb-xhci-hcd.l.auto-1.3.4/input0" />
<port display="3" input="usb-xhci-hcd.l.auto-1.4.4/input0" />

<port display="0" input="usb-xhci-hcd.l.auto-1.4/input0"™ />
<port display="0" input="usb-ci hdrc.0-1.4/input0" />

UG10176 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.
User guide Rev. automotive-15.0.0_2.1.0 — 14 October 2025 Document feedback
40/ 69

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10176

NXP Semiconductors U G1 01 76

Android Automotive User's Guide

</ports>

To make the modifications take effect, you can modify the source file under the s {MY ANDROID}/device/
nxp/ directory and re-build the images. Keep the connection of display devices and input devices unchanged
and reflash the images. You can also disable DM-verity on the board and then use the adb push command to
push the file to the vendor partition to overwrite the original one.

8.3.3.2 Enabling multi-client input method

Only multi-client IMEs support typing at the same time with different displays. The following is the way to enable
the pre-installed multi-client IME.

Enable multi-client IME for the side-loaded sample multi-client IME

adb root

adb shell setprop persist.debug.multi client ime
com.example.android.multiclientinputmethod/.MultiClientInputMethod

adb reboot

To disable multi-client IME on non-supported devices, clear persist.debug.multi client ime as follows.
Then, reboot the system to make it take effect.

Disable multi-client IME again

adb root

adb shell "setprop persist.debug.multi client ime ''""
adb reboot

The pre-installed multi-client IME in the system is a sample multi-client IME from AOSP. The performance

is not as good as the default Google Input Method Editor. To develop multi-client IME, see the document in
source code ($ {MY ANDROID}/frameworks/base/services/core/java/com/android/server/
inputmethod/multi-client-ime.md).

8.3.3.3 User's zone configuration in multi-display mode

The multi-zone launcher application is automatically started on the secondary displays in multi-display mode.
The multi-zone launcher application provides the interface for a multi-user and zone support, supporting
multiple-user settings, applications, and data. Android Automotive relies on Android's multi-user support to
provide a shared device experience, wherein each device user is intended to be used by a different physical
person and zone. The display output port (DSI, LVDS, HDMI) and a passenger zone configuration is bound with
the display-id. /vendor/etc/displayconfig/display layout configuration.xml is used to
do this work when the system is running, but the passenger zone configuration and display-id vary with the
connection forms of these ports with corresponding input and display devices, which means that the passenger
zone and display-id need to be retrieved before the connection is fixed.

The source file of /vendor/etc/displayconfig/display layout configuration.xml isin the
repository under the $ {MY ANDROID}/device/nxp/ directory.

Take i.MX 8QuadMax MEK as an example:

1. Use the following commands to get the display port number:

dumpsys SurfaceFlinger --display-id

Display 4616379502225925632 (HWC display 0): port=0 pnpId=DEL
displayName="DELL U2412M"

Display 4616379120519781377 (HWC display 1): port=1 pnpId=DEL
displayName="DELL P2412H"

Display 4616379502225925634 (HWC display 2): port=2 pnpId=DEL
displayName="DELL U2412M"

UG10176 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. automotive-15.0.0_2.1.0 — 14 October 2025 Document feedback
41/69

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10176

NXP Semiconductors U G1 01 76

Android Automotive User's Guide

Display 4616378750182017539 (HWC display 3): port=3 pnpId=DEL
displayName="DELL U2417H"

2. Bind the display port and input location as follows and modify the configuration file. This file needs to be
modified according to the actual connection. One display port can be bound with multiple input ports.

<layouts>
<layout>
<!-- Use the default state -->
<state>-1</state>

<!-- Primary display port -->

<display enabled="true" defaultDisplay="true"/>
<address/>4616379120519781376</address/>

</display/>

<!-- Display cluster port -->

<display enabled="true" defaultDisplay="false"/>
<address/>4616379502225925633</address/>

</display/>

<!-- Passenger 1 display port -->
<display enabled="true" defaultDisplay="false"
displayGroup="passenger displayl"/>
<address/>4616379502225925634</address/>
</display/>

<!-- Passenger 2 display port -->
<display enabled="true" defaultDisplay="false"
displayGroup="passenger display2"/>
<address/>4616378750182017539</address/>
</display/>
</layout>
</layouts>

To make the modifications take effect, you can modify the source file under the $ {MY ANDROID}/device/
nxp/ directory and re-build the images. Keep the connection of the display devices and input devices
unchanged and reflash the images. You can also disable DM-verity on the board and then use the adb push
command to push the file to the vendor partition to overwrite the original one.

8.3.4 Configuring the primary display resolution

The whole Android Ul stack needs a display resolution to be defined before Android framework boots up.

In normal Android and car2 build, the display resolution is obtained when enumerating /dev/dri/cardXin
display HAL. The system selects the best aligned resolution when the ro.boot.displaymode property is set,
or select the default "1080p60" when the property is not set.

In car build, the predefined resolution is defined by the ro.boot.fake.ui resolution property and it
should be aligned with physical display device. When the physical display is ready, the PollFileThread gets the
event and enumerates the /dev/dri/cardX again to configure the physical display.

When the MCU takes over the display, the resolution of the display is hardcoded in the MCU-SDK code by
macro APP_FRAME HEIGHT and APP_FRAME WIDTH inthe isi example.h file. This resolution should align
with Android Ul settings, or the display experience is different.

UG10176 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.
User guide Rev. automotive-15.0.0_2.1.0 — 14 October 2025 Document feedback
4269

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10176

NXP Semiconductors

UG10176

8.4 HVAC configuration

Android Automotive User's Guide

HVAC is short for "Heating, Ventilation and Air Conditioning". This section describes the interfaces to control the
HVAC system. It helps customers to do customization work on HVAC.

8.4.1 Interfaces to control the HVAC system

For images in automotive-15.0.0 2.1.0 image 8gmek car.tar.gz built with the lunch target
mek 8g_car-userdebug, see the following table to control the HVAC system.

Table 22. HVAC test items for automotive-15.0.0_2.1.0_image_8qmek_car.tar.gz

AP-> Cortex-M

Cortex-M -> AP (input on
the Cortex-M console)

Comment

AC ON

The Cortex-M console has the
following print when AC is on:
Android control: AC ON,
on/off

=>report ac_on 0/1

The AC on the panel is on/
off.

Fan direction

Android control: FAN
DIRECTION, 0x2

Typical value:

0x1 (to face)

0x2 (to floor)

0x03 (to face and floor)
0x06 (to floor and defrost)

=>report fan
direction 0x1/0x2/0x
03/0x06

It sets the fan direction.

Fan speed

Android control: FAN
SPEED, 0x6

Typical value: 0x00(off)/0x01/0x02/
0x03/0x04/0x05/0x06(MAX)

=>report fan speed 1/
2/3/4/5/6
It sets the fan speed.

HVAC power on

The cortex-M console has the
following print when HVAC is on:
Android control: HVAC
POWER ON, on/off

=>report hvac power
0/1
It sets the HVAC power.

AUTO ON The Cortex-M Console has the =>report auto on 0/1 |-
following print when HVAC is auto: | AUTO on the panel is on/off.
Android control: AUTO ON,
on/off

Defrost Left one: Android control: Left one: =>report -
DEFROST, index=1, on/off defrost 0/1 1
Right one: Android control: The defrost on the panel is
DEFROST, index=2, on/off on/off.

Right one: =>report
defrost 0/1 2

The defrost on the panel is
on/off.

Temperature Left temp +-: Android control: |=>report ac_ temp The formula for Celsius to
AC_TEMP, index=32, 23.45 32/ 64 Sends the Fahrenheit conversion is as
temp=16.16 23.45 Centigrade value to follows:

Right temp +-: Android the Android side, and the left/ |cDegrees = ((fDegrees -
control: AC_TEMP, right HVAC temperature bar | MIN_Fahrenheit) / (MAX_
index=64, temp=18.18 changes to 74. FAHRENHEIT - MIN_
Fahrenheit)) * (MAX_
UG10176 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.
User guide Rev. automotive-15.0.0_2.1.0 — 14 October 2025 Document feedback

43 /69

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10176

NXP Semiconductors

UG10176

Android Automotive User's Guide

Table 22. HVAC test items for automotive-15.0.0_2.1.0_image_8qmek_car.tar.gz...continued

AP-> Cortex-M

Cortex-M -> AP (input on
the Cortex-M console)

Comment

CELSIUS- MIN_CELSIUS) +
MIN_CELSIUS

Where,

MIN_Fahrenheit = 60,
MAX_FAHRENHEIT = 84,
MAX_CELSIUS = 28, MIN_

0,1,2,3

Right one: Android control:
SEAT TEMP, index=4, values
0,1,2,3

CELSIUS = 16
RECIRC The Cortex-M console has the =>report recirc on 0/ |-
following print when recirc is on: 1
Android control: RECIRC RECIRC on the panel is on/
ON, off/on off
SEAT TEMPER Left one: Android control: =>report seat temp -
ATURE SEAT TEMP, index=1, values [1/4 0/1/2/3

For images in automotive-15.0.0 2.1.0 image 8qgmek car2.tar.gz built with the lunch target
mek 8g_ car2-userdebug, see the following table to control the HVAC system.

Table 23. HVAC test items for automotive-15.0.0_2.1.0_image_8qmek_car2.tar.gz

AP-> dummy vehicle driver

Cortex-M -> dummy vehicle
driver

Comment

AC ON

The AP Console has the following
print when AC is off/on: set fan AC
on with value 0/1

echo 0/1 > /sys/
devices/platform/
vehicle-dummy/ac_on
The AC on the panel is on/
off.

Fan direction

Set fan direction with value 8
Typical value:

0x1 (to face)

0x2 (to floor)

0x03 (to face and floor)
0x06 (to floor and defrost)

echo 1/2/3/6 > /sys/
devices/platform/
vehicle-dummy/fan dir
ection

Fan speed

Set fan speed with value 8

Typical value: 0x00(off)/0x01/0x02/
0x03/0x04/0x05/0x06(MAX)

echo 1/2/3/4/5/6 > /
sys/devices/platform/
vehicle-dummy/fan
speed

It sets the fan speed.

HVAC power on

HVAC on: Android control:
HVAC_POWER ON, on/off

echo 0/1 > /sys/
devices/platform/
vehicle-dummy/hvac_on

AUTO ON Set auto on with value 0/1 echo 0/1 > /sys/
Set auto off/on devices/platform/
vehicle-dummy/auto_on
AUTO on the panel is on/off.
UG10176 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.
User guide Rev. automotive-15.0.0_2.1.0 — 14 October 2025 Document feedback

4469

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10176

NXP Semiconductors

UG10176

Android Automotive User's Guide

Table 23. HVAC test items for automotive-15.0.0_2.1.0_image_8qmek_car2.tar.gz...continued

AP-> dummy vehicle driver

Cortex-M -> dummy vehicle
driver

Comment

Defrost

Left one: set defroster index
1 with value 0/1

Right one: set defroster index
2 with value 0/1

Left one: echo 0/1

> /sys/devices/
platform/vehicle-
dummy/defrost_right
The defrost on the panel is
close/open.

Right one: echo 0/

1 > /sys/devices/
platform/vehicle-
dummy/defrost right
The defrost on the panel is
on/off.

Temperature

Left temp +-: set temp index 32
with value 1097859072

Right temp +-: set temp index 64
with value 1100422258

echo 1095528903 > /
sys/devices/platform/
vehicle-dummy/temp
left

The left HVAC temperature
bar changes to 55.

The formula for Celsius to
Fahrenheit conversion is as
follows:

cDegrees = ((fDegrees -
MIN_Fahrenheit) / (MAX_
FAHRENHEIT - MIN_
Fahrenheit)) * (MAX_
CELSIUS- MIN_CELSIUS) +
MIN_CELSIUS

Where,

MIN_Fahrenheit = 60,
MAX_FAHRENHEIT = 84,
MAX_CELSIUS = 28, MIN_
CELSIUS = 16

RECIRC

Recirc on: set recirc on with value 0/1

echo 0/1 > /sys/
devices/platform/
vehicle-dummy/recirc
on

RECIRC on the panel is on/
off.

SEAT TEMPER
ATURE

Control seat temperature with values
0/1/2/3/4. Value 0 means OFF.

echo 0/1/2/3

> /sys/devices/
platform/ vehicle-
dummy/seat temp left
echo 0/1/2/3

> /sys/devices/
platform/ vehicle-
dummy/seat temp right

8.5 USB configuration

8.5.1 Enabling USB 2.0 in U-Boot for i.MX 8QuadMax/8QuadXPlus MEK

There are both USB 2.0 and USB 3.0 ports on i.MX 8QuadMax/8QuadXPlus MEK board. Because U-Boot can
support only one USB gadget driver, the USB 3.0 port is enabled by default. To use the USB 2.0 port, modify the
configurations to enable it and disable the USB 3.0 gadget driver.

UG10176
User guide

All information provided in this document is subject to legal disclaimers.

Rev. automotive-15.0.0_2.1.0 — 14 October 2025

© 2025 NXP B.V. All rights reserved.
Document feedback
45/ 69

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10176

NXP Semiconductors U G1 01 76

Android Automotive User's Guide

For i.MX 8QuadMax MEK, to enable USB 2.0 for the u-boot-imx8gm. imx, make the following changes under
${MY ANDROID}/vendor/nxp-opensource/uboot-imx:

diff --git a/configs/imx8gm mek androidauto trusty defconfig b/configs/
imx8gm mek androidauto trusty defconflg

index 9ceb9d58fl..a54766eb6a 100644

--- a/configs/imx8gm mek androidauto trusty defconfig
+++ b/configs/imx8qm mek androidauto _trusty defconfig
@@ -101,13 +101,11 @@ CONFIG SPL DM USB GADGET=y
CONFIG USB=y

CONFIG USB GADGET=y

-#CONFIG CI UDC=y

+CONFIG CI UDC=y

CONFIG USB GADGET DOWNLOAD=y

CONFIG USB GADGET MANUFACTURER="FSL"

CONFIG USB GADGET VENDOR NUM=0x0525

CONFIG USB GADGET PRODUCT NUM=0xa4ab

—CONFIG USB CDNS3= 4

-CONFIG USB CDNS3 GADGET= 4
CONFIG_USB_GADGET_DUALSPEED %

CONFIG SPL USB_GADGET=y

@@ -124,7 +122,7 @@ CONFIG FSL FASTBOOT=y

CONFIG FASTBOOT BUF ADDR=0x98000000

CONFIG FASTBOOT BUF SIZE=0x19000000

CONFIG FASTBOOT FLASH= %

—CONFIG FASTBOOT ~USB_DEV=1

+CONFIG FASTBOOT USB DEV=0

CONFIG BOOTAUX RESERVED MEM BASE=0x88800000

CONFIG BOOTAUX RESERVED MEM SIZE=0x02000000

diff --git a/include/configs/imx8gm mek android auto.h b/include/configs/
imx8gm mek android auto.h

index 793530cé6la..5befl7b451 100644

--- a/include/configs/imx8gm mek android auto.h

+++ b/include/configs/imx8gm mek android auto.h

@@ -51,7 +51,6 @@

#define CONFIG SYS MALLOC LEN (64 * sz 1M)
#endif

-#define CONFIG FASTBOOT USB DEV 1

#define CONFIG . ANDROID RECOVERY

#define CONFIG CMD__ BOOTA

For i.MX 8QuadXPlus, to enable USB2.0 for the u-boot-imx8gxp . imx, make the following changes under
${MY ANDROID}/vendor/nxp-opensource/uboot-imx:

diff --git a/configs/imx8gxp mek androidauto trusty defconfig b/configs/
imx8gxp mek androidauto trusty defconflg

index e3f60821b0..6b59fa7lab 100644

--- a/configs/imx8gxp mek androidauto trusty defconfig
+++ b/configs/imx8gxp mek androidauto trusty defconfig
@@ -103,13 +103,11 @E CONFIG SPL DM USB GADGET=y
CONFIG USB=y

CONFIG _USB GADGET=y

-#CONFIG_CI UDC=y

+CONFIG CI UDC=y

CONFIG USB GADGET DOWNLOAD=y

CONFIG USB GADGET MANUFACTURER—"FSL"

CONFIG USB GADGET VENDOR NUM=0x0525

CONFIG USB GADGET PRODUCT ~ NUM=0xa4ab5

—CONFIG USB CDNS3= %

UG10176 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.
User guide Rev. automotive-15.0.0_2.1.0 — 14 October 2025 Document feedback
46/ 69

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10176

NXP Semiconductors U G1 01 76

Android Automotive User's Guide

—-CONFIG USB CDNS3 GADGET=y

CONFIG USB GADGET DUALSPEED= %

CONFIG SPL USB GADGET= %
CONFIG_SPL USB SDP SUPPORT=y

@@ -124,7 +122,7 @@ CONFIG FSL FASTBOOT=y

CONFIG FASTBOOT BUF ADDR=0x98000000

CONFIG FASTBOOT BUF SIZE=0x19000000

CONFIG FASTBOOT FLASH=y

—CONFIG FASTBOOT ~USB_DEV=1

+CONFIG FASTBOOT USB DEV=0

CONFIG SYS I2C IMX VIRT I2C=y

CONFIG I2C MUX IMX VIRT= y

CONFIG IMX VSERVICE SHARED BUFFER=0x90000000
diff --git a/lnclude/conflgs/1mx8qxp mek android auto.h b/include/configs/
imx8gxp mek android auto.h

index 95ec29d307..376b306c72 100644

--- a/include/configs/imx8gxp mek android auto.h
+++ b/include/configs/imx8gxp mek andr01d auto.h
@@ -45,7 +45,6 Q@

fendif

#define CONFIG SKIP RESOURCE CHECKING

-#define CONFIG FASTBOOT USB DEV 1

#define CONFIG ANDROID RECOVERY

#define CONFIG_CMD BOOTA

More than one defconfig file is used to build U-Boot images for one platform. Make the same changes on
defconfig files as above to enable USB 2.0 for other U-Boot images. You can use the following command under
the $ {MY ANDROID}/vendor/nxp-opensource/uboot-imx/ directory to list all related defconfig files:

1s configs | grep "imx8qg.*android.*"

Note:

U-Boot used by UUU is compiled with imx8qm mek android.h and imx8gxp mek android.h, notthe
imx8gm mek android auto.hand imx8gxp mek android auto.h listed above.

8.6 Trusty OS/security configuration

Trusty OS firmware is used in the i.MX Android 15 release as TEE, which supports security features.

The i.MX Trusty OS is based on the AOSP Trusty OS and supports the i.MX 8QuadMax MEK and i.MX
8QuadXplus MEK boards. This section describes some basic configurations to make the Trusty OS work on
MEK boards. For more configurations about security-related features, see the i.MX Android Security User's
Guide (UG10158).

Customers can modify the Trusty OS code to make different configurations and enable different features. First,
u

1. Use the following commands to fetch code to build the target Trusty OS binary. Create a directory for the
Trusty OS code and enter this directory.

$ repo init -u https://github.com/nxp-imx/imx-manifest.git -b imx-android-15
-m imx-trusty-automotive-15.0.0 2.1.0.xml

$ repo sync

$ source trusty/vendor/google/aosp/scripts/envsetup.sh

$./trusty/vendor/google/aosp/scripts/build.py imx8gxp #i.MX 8QuadXPlus MEK

S cp S{TRUSTY REPO ROOT}/build-imx8qgxp/lk.bin ${MY ANDROID}/vendor/nxp/fsl-

proprietary/uboot-firmware/imx8qg car/tee-imx8gx.bin

UG10176 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.
User guide Rev. automotive-15.0.0_2.1.0 — 14 October 2025 Document feedback
47169

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10176

NXP Semiconductors U G1 01 76

Android Automotive User's Guide

2. Build the images, and tee-imx8qgx.bin is integrated into bootloader-imx8gxp.img and
bootloader-imx8gxp-secure-unlock. img. Flash the spl-imx8gxp.bin and bootloader-
imx8gxp. img files to the target device.

Note:

* Fori.MX 8QuadMax MEK, use make imx8gm a72 to build the Trusty OS image, and copy final lk.bin
to ${MY ANDROID}/vendor/nxp/fsl-proprietary/uboot-firmware/imx8q car/tee-imx8qm.
bin.

* S{TRUSTY REPO ROOT} is the root directory of the Trusty OS codebase.

* ${MY ANDROID} is the root directory of the Android codebase.

8.6.1 Initializing the secure storage for Trusty OS

Trusty OS uses the secure storage to protect userdata. This secure storage is based on RPMB on the eMMC
chip. RPMB needs to be initialized with a key, and the default execution flow of images does not make this
initialization.

The RPMB can be initialized with the hardware bound key or vendor specified key. The RPMB key cannot be
changed once it is set.

* To set a hardware bound key, perform the following operation:
Make your board enter fastboot mode, and then execute the following command on the host side:

fastboot oem set-rpmb-hardware-key

After the board is rebooted, the RPMB service in Trusty OS is initialized successfully.

» To set a vendor specified key, perform the following operation:
Make your board enter fastboot mode, and then execute the following commands on the host side:

fastboot stage < path-to-your-rpmb-key >
fastboot oem set-rpmb-staged-key

After the board is rebooted, the RPMB service in the Trusty OS is initialized successfully.

Note:

— This method does not work on the platforms without CAAM (for example, i.MX 95).

— The RPMB key should start with magic "RPMB" and be followed with 32 bytes hexadecimal key.

— A prebuilt romb_key test.bin whose key is fixed 32 bytes hexadecimal 0x00 is provided. It is generated
with the following shell commands:

touch rpmb key test.bin

echo -n "RPMB" > rpmb key test.bin

echo -n -e '"\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\
x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"' >> rpmb key test.bin

The \xHH means eight-bit character whose value is the hexadecimal value 'HH'. You can replace "00" above
with the key you want to set.

* Note:
For more details, see the i.MX Android Security User's Guide (UG10158).

8.6.2 AVB key provision

The AVB key consists of a pair of public and private keys. The private key is used by the host to sign the
vbmeta image. The public key is used by AVB to authenticate the vbmeta image. The following figure shows the

UG10176 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.
User guide Rev. automotive-15.0.0_2.1.0 — 14 October 2025 Document feedback
48 /69

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10176

NXP Semiconductors U G1 01 76

Android Automotive User's Guide

relationships between the private key and vbmeta. Without Trusty OS, the public key is hard-coded in U-Boot.
With Trusty OS, it is saved in secure storage.

| Private key | HOST

) Sign }
Unsigned Signed
vbmeta vbmeta

Authenticat
Public key uthenticate

DEVICE

aaa-058144

Figure 4. Relationship between AVB key and vbmeta

8.6.2.1 Generating the AVB key to sign images

The OpenSSL provides some commands to generate the private key. For example, you can use the following
commands to generate the RSA-4096 private key test rsa4096 private.pem:

openssl genpkey -algorithm RSA -pkeyopt rsa keygen bits:4096 -outform PEM -out
test rsad4096 private.pem

The public key can be extracted from the private key. The avbtool in ${MY ANDROID}/external/avb
supports such commands. You can get the public key test rsa4096 public.bin with the following
commands:

avbtool extract public key --key test rsad4096 private.pem --output
test rsad4096 public.bin

By default, the Android build system uses the algorithm SHA256_RSA4096 with the private key from $ {MY
ANDROID}/external/avb/test/data/testkey rsa4096.pem. This can be overridden by setting the
BOARD AVB ALGORITHM and BOARD AVB KEY PATH to use different algorithm and private key:

BOARD AVB ALGORITHM := <algorithm-type>
BOARD AVB KEY PATH := <key-path>

Algorithm SHA256 RSA4096 is recommended, so Cryptographic Acceleration and Assurance Module (CAAM)
can help accelerate the hash calculation. The Android build system signs the vbmeta image with the private key
above and stores one copy of the public key in the signed vbmeta image. During AVB verification, the U-Boot
validates the public key first and then uses the public key to authenticate the signed vbmeta image.

8.6.2.2 How to set the vbmeta public key

The public key must be stored in Trusty OS backed RPMB for Android system when Trusty OS is enabled.
Perform the following steps to set the public key.

Make your board enter fastboot mode, and execute the following commands on the host side:

fastboot stage ${your-key-directory}/test rsa4096 public.bin
fastboot oem set-public-key

UG10176 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.
User guide Rev. automotive-15.0.0_2.1.0 — 14 October 2025 Document feedback
49 /69

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10176

NXP Semiconductors U G1 01 76

Android Automotive User's Guide

The public key test rsa4096 public.bin should be extracted from the specified private key. If no private
key is specified, set the public key as prebuilt testkey public rsa4096.bin, which is extracted from the
default private key testkey rsa4096.pem.

8.6.3 Key attestation

The keystore key attestation aims to provide a way to strongly determine if an asymmetric key pair is hardware-
backed, what the properties of the key are, and what constraints are applied to its usage.

Google provides the attestation "keybox", which contains private keys (RSA and ECDSA) and the
corresponding certificate chains to partners from the Android Partner Front End (APFE). After retrieving the
"keybox" from Google, you need to parse the "keybox" and provision the keys and certificates to secure storage.
Both keys and certificates should be Distinguished Encoding Rules (DER) encoded.

Fastboot commands are provided to provision the attestation keys and certificates. Make sure the secure
storage is properly initialized for Trusty OS:

» Set RSA private key:

fastboot stage <path-to-rsa-private-key>
fastboot oem set-rsa-atte-key

» Set ECDSA private key:

fastboot stage <path-to-ecdsa-private-key>
fastboot ocem set-ec-atte-key

* Append RSA certificate chain:

fastboot stage <path-to-rsa-atte-cert>
fastboot oem append-rsa-atte-cert

Note:
This command may need to be executed multiple times to append the whole cetrtificate chain.
* Append ECDSA certificate chain:

fastboot stage <path-to-ecdsa-cert>
fastboot oem append-ec-atte-cert

Note:
This command may need to be executed multiple times to append the whole certificate chain.

After provisioning all the keys and certificates, the keystore attestation feature should work properly. Besides,
secure provision provides a way to prevent the plaintext attestation keys and certificates from exposure. For
more details, see the i.MX Android Security User's Guide (ASUG).

8.7 SCFW configuration

SCFW is a binary stored in $ {MY ANDROID}/vendor/nxp/fsl-proprietary/uboot-firmware, builtinto
bootloader.

To customize the SCFW, download the SCFW porting kit on the i.MX Software and Development Tools page.
For this release, click Embedded Linux, and then click the RELEASES tab. Find the Linux LF6.6.52_2.2.0
release and download its corresponding SCFW Porting kit. Then, decompress the file with the following
commands:

tar -zxvf imx-scfw-porting-kit-1.18.0.tar.gz
cd packages

chmod a+x imx-scfw-porting-kit-1.18.0.bin
./imx-scfw-porting-kit-1.18.0.bin

UG10176 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.
User guide Rev. automotive-15.0.0_2.1.0 — 14 October 2025 Document feedback
50/69

https://www.nxp.com/imx6tools
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10176

NXP Semiconductors U G1 01 76

Android Automotive User's Guide

cd imx-scfw-porting-kit-1.18.0/src
tar -zxvf scfw export mx8gm bO.tar.gz # for i1.MX 8QuadMax MEK
tar -zxvf scfw export mx8gx bO.tar.gz # for 1.MX 8QuadXPlus MEK

The SCFW porting kit contains prebuilt binaries, libraries, and configuration files. For the board configuration
file, taking i.MX 8QuadXPlus MEK as an example, it is the scfw_export mx8gx b0/platform/board/
mx8gx mek/board.c. Based on this file, some changes are made for Android Automotive and the file is
stored in ${MY ANDROID}/vendor/nxp/fsl-proprietary/uboot-firmware/imx8q car/board-
imx8gxp.c.

You can copy board-imx8gxp.c/board-imx8gm.c in vendor/nxp/fsl-proprietary tothe SCFW
porting kit, modify it, and then build the SCFW.

The following are steps to build SCFW (taking i.MX 8QuadXPlus as example):

1. Download the GCC tool from the arm Developer GNU-RM Downloads page. It is recommended to
download the version of "6-2017-q2-update" as it is verified.

2. Unzip the GCC tool to /opt/scfw_gcc.

Export TOOLS="/opt/scfw-gcc".

4. Copy the board configuration file from $ {MY ANDROID}/vendor/nxp/fsl-proprietary/uboot-
firmware/imx8qg/board-imx8gxp . c to the porting kit.

w

cp S${MY ANDROID}/vendor/nxp/fsl-proprietary/uboot-firmware/imx8q/board-
imx8gxp.c scfw export mx8gx b0/platform/board/mx8gx mek/board.c

5. Build SCFW.

cd scfw_export mx8gx b0 # enter the directory just uncompressed for i.MX
8QuadXPlus MEK

make clean

make gx R=B0 B=mek

6. Copy the SCFW binary to the uboot-firmware folder.

cp build mx8qgx b0/scfw _tcm.bin ${MY ANDROID}/vendor/nxp/fsl-proprietary/
uboot-firmware/imx8qg car/mx8gx-scfw-tcm.bin

7. Build the bootloader.

cd $ {MY ANDROID}
./imx-make.sh bootloader -j4

Note:
To build SCFW for i.MX 8QuadMax MEK, use qgm to replace gx in the steps above.

8.8 Power state configuration

Android automotive power HAL supports power request property, which can be used to control the system
power state: ON, OFF, or suspend.

It is assumed that the power state of the Cortex-A core is controlled by separate power controller. In the
following use case, MCU and dummy vehicle driver play the role of power controller in the car and car2 image
accordingly.

Connect the board to a BT device to better show the system power state.

UG10176 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.
User guide Rev. automotive-15.0.0_2.1.0 — 14 October 2025 Document feedback
51/69

https://developer.arm.com/tools-and-software/open-source-software/developer-tools/gnu-toolchain/gnu-rm/downloads
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10176

NXP Semiconductors

UG10176

Table 24. Power state configuration

Android Automotive User's Guide

Power control
from car MCU

Power control from car2 AP
console

Comment

devices/platform/vehicle-
dummy/power req

console
shutdown now |power 1 1 echo "1 1" > /sys/ The system shuts down right now. Then, long press
devices/platform/vehicle- |the power-on key to wake up the system.
dummy/power req
suspend power 1 2 echo "1 2" > /sys/ The system disconnects from BT, waits for all tasks
devices/platform/vehicle- |to be done, and then enter suspend mode. Press
dummy/power req the power-on key to wake up the system. BT is
connected again. The system wakes up by itself
every 60 seconds due to battery health checking.
shutdown power 1 3 echo "1 3" > /sys/ The system waits for all tasks to be done, and then
postpone devices/platform/vehicle- |shuts down.
dummy/power req
cancel power 2 0 echo "2 0" > /sys/ Cancel the shutdown and suspend command if

it has not been executed. First, enter power 1

3 for carimage or echo 1 3 to power req for
car2 image. The system disconnects from the BT,
turns off the display, and prepares for shutdown.
Before the system shuts down, enter power 2 0
for car image (or echo 2 0 to power regq for car2
image). The system cancels shutdown command,
turns on the display, and connects BT.

8.9 Boot time tuning

8.9.1 Boot time overview

In this document, the boot time is the time it takes the board the to start from cold boot to when Android
Automotive Launcher Ul appears on the display screen when the hardware is not in the first-time boot from
factory. Due to the fact that the first successful boot sets up the accelerating software executing environment, it
takes longer time to boot.

NXP makes the boot time shorter in U-Boot, Linux kernel, and Android framework. To improve the debug
efficiency, some debug purpose modules and interfaces are kept in the release. Before the product is ready
to ship, these modules and interfaces can be configured to save the boot time and make the boot time
performance best in the final product.

8.9.2 What NXP did to tune the boot time

To make Android Automotive boot faster, lots of changes were made on different modules to achieve better
performance. The following changes impact the boot time:

* Removed the debug command in U-Boot and Linux kernel to save its initialization time and image size.
* Built Linux kernel as zimage to save the image size.
* Removed unused driver in U-Boot and Linux kernel.

* Make some drivers as kernel module, and load them when Android boot is completed so that the connectivity
devices and camera driver are initialized after the Android Automotive Launcher Ul is shown on the display.

This makes the Android Automotive Launcher Ul show earlier.

¢ Removed unused device from Android Framework, such as Ethernet, Sensors.
» Refined Android Verify Boot procedure.
» Optimized Android Framework to make service execute on different CPUs.

UG10176

All information provided in this document is subject to legal disclaimers.

© 2025 NXP B.V. All rights reserved.

User guide

Rev. automotive-15.0.0_2.1.0 — 14 October 2025

Document feedback
52/69

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10176

NXP Semiconductors U G1 01 76

Android Automotive User's Guide

» Delayed some non-critical services for SystemUIl module of Android after boot is completed.
» Delayed Zygote32 to when Ul is shown.

Delayed Bluetooth service to when Ul is shown.

* Removed some unused service in Android Framework.

* Booted from the Cortex-A72 core instead of Cortex-A53 (only for i.MX 8QuadMax MEK).

All the changes above do not impact any of the functions and the performance except the boot time.

8.9.3 How to get the shorter boot time

For debug and development purpose, the U-Boot boot delay and the logs in U-Boot, Trusty OS, and Linux
kernel are enabled by default. In field measurement, the Linux kernel dmesg takes about 1.15 seconds during
the boot process because UART is a slow device. Therefore, before the final product, it is recommended to
remove the U-Boot delay and the logs in U-Boot, Trusty OS, and Linux Kernel by performing the following
operations:

1. Set CONFIG_BOOTDELAY=-2 in the U-Boot defconfig file to remove boot delay.
2. Remove CONFIG SPL SERIAL SUPPORT=y in U-Boot defconfig file to disable logs at SPL stage.

3. Set CONFIG SERIAL PRESENT=n in U-Boot defconfig file to disable logs in U-Boot proper. Disable the
UART node in U-Boot DTS. Take i.MX 8QuadMax as example:

--— a/arch/arm/dts/fsl-imx8gm-mek-auto.dts

+++ b/arch/arm/dts/fsl-imx8gm-mek-auto.dts

diff --git a/arch/arm/dts/fsl-imx8gm-mek-auto.dts b/arch/arm/dts/fsl-imx8gm-
mek-auto.dts

index 46leed6fa8..58356el466 100644

--- a/arch/arm/dts/fsl-imx8gm-mek-auto.dts

+++ b/arch/arm/dts/fsl-imx8gm-mek-auto.dts

@@ -54,6 +54,10 @@

i

}i

+&lpuart0 {

+ status = "disabled";

t}7

/delete-node/ &pd dcO;

/delete-node/ &pd dcl;

/delete-node/ &pd isi chO;

eDisable "DEBUG" in Trusty OS to remove TA logs like below:
diff --git a/project/imx8-inc.mk b/project/imx8-inc.mk
index e58clb5a..8c20e99 100644

-—— a/project/imx8-inc.mk

+++ b/project/imx8-inc.mk

@@ -16,7 +16,7 @@

LOCAL DIR := $(GET_LOCAL_DIR)

-DEBUG := 1

+DEBUG := 0

WITH SMP := 1

SMP MAX CPUS ?= 4

SMP_CPU_CLUSTER SHIFT 2= 2

4. Modify the Linux bootargs in build system. Append 1loglevel=0 in it, which will prevent the dmesg printing
on the console when the system is booted.

5. By default, the images are built by userdebug build. When it is changed to user build, it saves about 0.5
seconds boot time.

Note:

UG10176 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.
User guide Rev. automotive-15.0.0_2.1.0 — 14 October 2025 Document feedback
53/69

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10176

NXP Semiconductors U G1 01 76

Android Automotive User's Guide

When setting 1oglevel=0, the debug message is not displayed directly to the console. To check it, however,
you can use the sdmesg command in the shell to output it.

8.9.4 How to build system.img with squashfs files system type

The default file system of system. img is ext4. After the system. img file system type is changed to
squashfs, the system. img size can be reduced to about 50%. Smaller storage size costs more CPU
resource but less eMMC IO operation, so this is a balanced option between IO and CPU loading. By default,
this is not enabled. If the target device has a strong CPU but weak eMMC, squashfs is an option for boot time
tuning.

To change the default file system type to squashfs, perform the following steps:

1. Add the following Linux kernel macro in $ {MY ANDROID}/vendor/nxp-opensource/kernel imx/
arch/arm64/configs/android_car_coﬁ%ig: B
* CONFIG SQUASHFS=y
* CONFIG SQUASHFS LzZ4=y
¢ CONFIG SQUASHFS XATTR=y
* CONFIG_SQUASHFS_DECOMP MULTI=y
2. Add the following configuration in $ {MY ANDROID}/device/nxp/imx8q/mek 8q/BoardConfig.mk

BOARD SYSTEMIMAGE FILE SYSTEM TYPE := squashfs

Rebuild the whole images for the mek_8q board. It can shorten the automotive boot time for the i.MX
8QuadMax MEK Board, but there is no boot time optimization on the i.MX 8QuadXPlus MEK Board.

8.9.5 How to measure the boot time

Per the definition of the boot time described in Section 8.9.1, users need to measure the boot time duration from
power-on to when the display shows the desktop.

Pay attention to the following:

» Keep the device in lock state by Sfastboot oem lock.

* Make sure that the device is powered down safely. Ssetprop sys.powerctl shutdown makes the device
power down safely. Or the fsck scans the storage during the booting time and it costs 1 to 2 seconds.

» Make sure the action of Section 8.9.3 has been done.

The boot time is different for different boot that the AOSP Android Framework schedules the system services.
To evaluate the boot time performance, calculate the average values based on about 50 times boot. According
to the boot time analyzing tools provided by Google (https://source.android.com/devices/tech/perf/boot-

times), evaluate the time by that first sys .boot completed=1 shown from initialization logs. The process is
easier. You can also get the bootanylaze tool from $ {MY ANDROID}/system/extras/boottime tools/
bootanalyze. To make sure that this log is printed, append printk.devkmsg=on in bootargs. Based on the
timestamp for the first time, sys.boot completed=1 is displayed in the log. This is the boot time from kernel
started to Android Framework boot completed.

Then, evaluate the boot time for the modules, which boot before the Linux kernel. It is easy to evaluate it by
adding the following codes to print the timer value before jumping to Linux in U-Boot.

diff --git a/arch/arm/lib/bootm.c b/arch/arm/lib/bootm.c

index 96cac780b5..aae07a98ba 100644

--— a/arch/arm/lib/bootm.c

+++ b/arch/arm/lib/bootm.c

@@ -423,6 +423,8 @@ int do bootm linux(int flag, int argc, char * const argv([],
return 0;

}

UG10176 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. automotive-15.0.0_2.1.0 — 14 October 2025 Document feedback
54 /69

https://source.android.com/devices/tech/perf/boot-times
https://source.android.com/devices/tech/perf/boot-times
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10176

NXP Semiconductors U G1 01 76

Android Automotive User's Guide

+ printf ("$d\n", get timer (0));

+

if (flag & (BOOTM_STATE_OS_GO | BOOTM_STATE_OS_FAKE_GO)) {
boot jump linux (images, flag);
return 0;

The boot evaluation by software is the sum of the timestamp for the first time we see
sys.boot completed=1 and the timer values printed in U-Boot.

8.10 Configuration for the load orders of driver modules

8.10.1 Why does Android Automotive have driver load orders

As the boot time performance of Android Automotive is important, make Linux kernel boot as soon as possible
to enable some critical services earlier. Therefore, some drivers that are not critical for the Android Automotive
booting are not loaded during the early boot stage. The set of drivers is built into kernel modules during build
time and are loaded and probed after the Android Automotive key service boots successfully. This makes the
display and Ul ready earlier.

In this release, the following module-related drivers are probe before the initialization process starts:

» Camera (only inmek 8q car)
* USB
* Wi-Fi

8.10.2 How does the non-critical driver load

In i.MX Android Automotive, there are two kinds of build. The mek 8g car and mek 8g car2.mek 8qg car
have special design to support the EVS features, which use the Arm Cortex-M4 core to handle camera-related
modules before the Android display related service is ready. Therefore, mek 8g car andmek 8qg car2 loads
different driver modules in different stages.

In i.MX Android Automotive, all kernel driver modules are loaded in init. rc by the script named
init.insmod.sh.

Formek 8qg_ car, when the EVS service running in the Arm Cortex-M4 core releases the hardware resource
for camera modules, Android Automotive loads the camera-related driver modules. This typically happens
when the late start service is triggered in init. rc, if the EVS service running in Android Automotive

is initialized successfully. This part of drivers is listed in $ {MY ANDROID}/device/nxp/imx8g/mek 8g/
setup.core.cfqg. After the core drivers are probed successfully, it triggers low-priority driver modules to load
and probe by triggering the service named boot completed main sh, which loads drivers listed in $ {MY
ANDROID}/device/nxp/imx8g/mek 8g/setup.main.cfgin init.rc. The "main" drivers are the rest of
driver modules.

Formek 8g car2, notlike mek 8qg_ car, it has no "core" driver modules to be loaded and probed during the
boot process. As all necessary camera driver modules are built in inside the kernel image, like mek 8q car,

the "main" drivers are the same ones like rfkill for BT, USB, and Wi-Fi. The driver load and probe are triggered
once sys.boot completed property is set to be 1. This is handled in init.rc.

8.10.3 How to change driver load orders

Generally, the driver follows the priority below to be loaded:

* Built-in
e Listedinearly.init car gki.cfg

UG10176 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.
User guide Rev. automotive-15.0.0_2.1.0 — 14 October 2025 Document feedback
55/69

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10176

NXP Semiconductors U G1 01 76

Android Automotive User's Guide

e Listed in setup.main.gki.cfg

In each cfg file, the drivers are loaded one by one. To change the driver load orders, in early.init.cfgor
setup.main.cfgq, just change the text list order. If some built-in drivers need to be loaded in low priority, follow
the changes below:

* In the kernel defconfig file, mark specific CONFIG to be m instead of y .

* Modify the BOARD VENDOR_KERNEL MODULES in ${MY ANDROID}/device/nxp/imx8q/mek 8q/Share
dBoardConfig.mk to copy the specific .ko files to the target image.

* Add the driver module name in early.init car gki.cfgorsetup.main.gki.cfg based on its loading
priority.

8.11 Dual-bootloader configuration

8.11.1 Dual-bootloader layout

Dual-bootloader feature splits the default u-boot . imx into two parts: spl.bin and bootloader.img. The
spl.bin goes to the bootloader0 partition, which is managed by U-Boot itself. The bootloader.img goes to the
bootloader_a/bootloader b partitions, which are managed by GPT and thus gets a chance to be updated.

The layout of dual-bootloader is as follows (taking i.MX 8Quad as an example):

The bootloader. img contains U-Boot proper, Arm Trusted Firmware, and Trusty OS. All of them can be
updated easily through OTA to fix some power or security issues.

8.11.2 Configuring dual-bootloader

Dual-bootloader feature is enabled for Android Automotive by default. It is enabled by configuring
CONFIG DUAL BOOTLOADER in U-Boot. Take i.MX 8Quad as an example:

diff --git a/configs/imx8gm mek androidauto trusty defconfig b/configs/
imx8gm mek androidauto trusty defconfig

index 82ecbca..e0b210e 100644

--- a/configs/imx8gm mek androidauto trusty defconfig

+++ b/configs/imx8qm mek androidauto _trusty defconfig

@@ -170,4 +170,4 @E CONFIG APPEND BOOTARGS=y

CONFIG LIBAVB=y

CONFIG SHA256=y

CONFIG SPL MMC WRITE=y

+CONFIG DUAL BOOTLOADER= %

diff --git a/configs/imx8gxp mek androidauto trusty defconfig b/configs/
imx8gxp mek androidauto trusty defconfig

index 30fe32d..2£709d2 100644

--— a/configs/imx8gxp mek androidauto trusty defconfig

+++ b/configs/imx8gxp mek androidauto _trusty defconfig

@@ -179,4 +179,4 Q@@ CONFIG_APPEND_BOOTARGS %

CONFIG LIBAVB=y

CONFIG SHA256=y

CONFIG SPL MMC WRITE=y

+CONFIG DUAL BOOTLOADER= \%

Then, imx-mkimage needs to pack spl.bin and bootloader.img separately. Taking i.MX 8QuadMax and
i.MX 8QuadXPlus as an example, two targets are used to handle the dual-bootloader image generation with
Cortex-M4 images in imx-mkimage:

i.MX 8QuadMax: flash b0 spl container m4 1 trusty

UG10176 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.
User guide Rev. automotive-15.0.0_2.1.0 — 14 October 2025 Document feedback
56 /69

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10176

NXP Semiconductors U G1 01 76

Android Automotive User's Guide

i.MX 8QuadXPlus: flash all spl container ddr car

When Trusty OS is enabled, bootloader rollback index can be used to prevent rollback attack. For more details
to set the bootloader rollback index, see Section 2.3.5 in the i.MX Android Security User's Guide (ASUG).

Besides, after enabling dual-bootloader, the steps to sign images with the CST tool are different. For more
information, see Section 2.1 in the i.MX Android Security User's Guide (ASUG).

8.12 Miscellaneous configuration

8.12.1 Changing boot command line in boot.img

After boot . img is used, the default kernel boot command line is stored inside this image. It packages together
during Android build.

You can change this by changing BOARD_KERNEL_CMDLINE's definition in the $ {MY ANDROID}/device/
nxp/imx8qg/mek 8qg/BoardConfig.mk file.

8.12.2 Notices before the debugging work

When doing the customization work, you may need to do some debugging work. The debugging work will be
convenient and flexible if the read-only filesystems are remounted as writable, so that files in it can be replaced
with the adb push command. It helps to avoid flashing the images again and saves time.

To remount the read-only filesystems, perform the following steps:

1. Unlock the device.
2. Boot up the system to Android platform.
3. Execute the following commands on the host. The second command takes seconds to finish.

$ adb root
S adb disable-verity

4. Reboot the device, and execute the following command on the host:

$ adb root
$ adb remount

Then, the images can be pushed to the board with the adb push command. Before the further debugging
work, be aware of the following notices:

* Do not erase the "userdata" partition after adb disable-verity is executed.
With the dynamic partition feature enabled in i.MX Android images, and the size is not specified for system,
system_ext, vendor, and product partitions when building the images, overlayfs is used when remounting the
read-only filesystems. An upper directory that can be written in OverlayFS is needed in this condition. When
the adb push command is executed, the files are pushed to the upper directory of OverlayFS, while the
original read-only filesystems are not modified.
i.MX Android images use only one partition named "super" to store images in logical partitions, and
ext4 filesystem is used for the userdata partition, which is mounted on /data. When executing the adb
disable-verity command, an image is allocated under /data/gsi/remount/scratch.img.0000. Its
size is half the size of the "super" partition and should not be greater than 2 GB. The layout information of this
image is stored in /metadata/gsi/remount/lpmetadata in the format logical partition metadata.
When rebooting the system, at the first stage of the init program, the information in /metadata/gsi/
remount/lpmetadata is used to create a logical partition named "scratch", and it is mounted on /mnt/
scratch. This is used as the upper directory in OverlayFS used in remount. When the adb push command
is executed to modify the originally read-only filesystems, files are written to the "scratch" partition.

UG10176 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.
User guide Rev. automotive-15.0.0_2.1.0 — 14 October 2025 Document feedback
57/69

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10176

NXP Semiconductors U G1 01 76

Android Automotive User's Guide

At the first stage of the init program, the userdata partition is not mounted. The code judges whether the
backing image of the scratch partition exists in the userdata partition by checking whether the /metadata/
gsi/remount/lpmetadata file can be accessed. Therefore, if the userdata partition is erased, but the
logical partition is still created, this could be catastrophic and may make the system crash.

* To make changes to files from the console, execute remount on the console first.
adb and sh are in different mount namespaces. adb remount does not change the mount status that
sh sees.

* For MEK boards, if files need to be pushed to /vendor/etc, push them to another path.
Images for i.MX 8Quad Max MEK and i.MX 8QuadXPlus MEK are built together with one target. Media codec
configuration files' names and paths are hardcoded in framework, while these two SoCs need different media
codec configurations. It means that the media codec configuration files for these two boards with different
content should have the same name and being accessed with the same path. Therefore, OverlayFS is used,
and images for these two boards have different OverlayFS upper directories. The mount command can be
found in ${MY ANDROID}/device/nxp/imx8g/mek 8qg/init.rc

mount overlay overlay /vendor/etc ro lowerdir=/vendor/vendor overlay soc/
${ro.boot.soc_type}/vendor/etc:/vendor/etc,override creds=off

The value of $ {ro.boot.soc_type} can be imx8gxp or imx8am here.

With the preceding command executed, access to files under /vendor/etc can access files both under
/vendor/etc and /vendor/vendor overlay soc/${ro.boot.soc type}/vendor/etc. The /
vendor/vendor overlay soc/${ro.boot.soc type}/vendor/etc:/vendor/etc directory is the
upper directory in OverlayFS and /vendor/etc is both the lower directory and mount point.

After remount, the lower directory /vendor/etc is still read-only, and files can be pushed to other sub-paths
under /vendor except /vendor/etc. To push a modified file, which should be accessed from /vendor/
etc, pushitto /vendor/vendor overlay soc/${ro.boot.soc_ type}/vendor/etc, and then reboot
the system to make it take effect.

For example, if you modified the file cdnhdmi config.json, a file should be under /vendor/etc/
configs/audio/. Execute the following commands on the console:

su
umask 000

cd /vendor/vendor overlay soc/imx8gm/vendor/etc/
mkdir -p configs/audio/

Then, execute the following commands on the host:

sudo adb push cdnhdmi config.json /vendor/vendor overlay soc/imx8gm/vendor/etc/

At last, reboot the device to make this change take effect.
There are two limitations here:
— To delete a file under /vendor/etc/, you can only rebuild the image and flash the vendor image again.

— The OverlayFS is mounted with a command in an init . zc file. The init . rc files are all parsed by the init
program before the OverlayFS is mounted. Therefore, to modify init . rc files under /vendor/etc, you can
only rebuild the image and flash the vendor image again.

9 Generic Kernel Image (GKI) Development

The Generic Kernel Image (GKI) project addresses kernel fragmentation by unifying the core kernel and moving
SoC and board support out of the core kernel into loadable modules. The GKI kernel presents a stable Kernel
Module Interface (KMI) for kernel modules, so modules and kernel can be updated independently.

Devices that launch with the Android 14 (2023) platform release using kernel versions v5.15 or higher are
required to ship with the GKI kernel.

The following boards have enabled GKI:
UG10176 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. automotive-15.0.0_2.1.0 — 14 October 2025 Document feedback
58 /69

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10176

NXP Semiconductors U G1 01 76

Android Automotive User's Guide

¢ i.MX 8QuadMax MEK Board
¢ i.MX 8QuadXPlus MEK Board
* i.MX 95 EVK/Verdin Board

9.1 Changes after GKI enabled

* boot.img
After GKl is enabled, boot . img is a composite image, which includes the Android Open Source Project
(AOSP) generic kernel image and boot parameters.
It is built from one prebuilt boot . img, stored in the Android source code ${MY ANDROID}/vendor/nxp/
fsl-proprietary/gki/boot.img. This boot.img is certified and released from AOSP, and then signed
with the AVB key to generate the final boot . img.
By default, the UUU and fastboot script flash this image.
To build boot . img, run ./imx-make.sh ormake bootimage

* system dlkm.img
system_dlkm.img is signed by Google using the kernel build-time key pair and is compatible only with the
GKl it is built with. There is no ABI stability between boot .img and system dlkm.img. For modules to load
correctly during runtime, boot .img and system dlkm.img must be built and updated together.

* boot-imx.img
boot-imx. img is built from the i.MX kernel tree for debugging purposes. By default, it is built out by imx-
make.sh with TARGET IMX KERNEL=true, and then renamed from boot . img to boot-imx.img. For
details, see the last piece of code in the imx-make. sh build script.
Note: boot.imgand boot-imx.img are generated by the imx-make . sh script as follows.

TARGET IMX KERNEL=true make ${parallel option} ${build bootimage}

${bu1ld vendorbootimage} s{build dtboimage} ${build vendordlkmimage} || exit
if [-n "${bu1ld bootlmage}"] Il [${build whole android flag} -eq 1], then
if [${TARGET PRODUCT} = "evk 8mp"] || [${TARGET PRODUCT} = "evk 8mn"] \

[l [${TARGET_PRODUCT} = "evk_8ulp" 7 01 [${TARGET PRODUCT} = "mek 8g"] \

[l [${TARGET PRODUCT} = "mek_8q_car" 7 1 [${TARGET PRODUCT} =

"mek 8q car2"] \

[l [${TARGET PRODUCT} = "evk_95_car" 7 1 [${TARGET_PRODUCT} =

"evk 95 car2"] \

[l [S{TARGET_PRODUCT} = "evk_8mm" 7 0 [S{TARGET_PRODUCT} = "evk_8mq"], then

if [${sign gki} -eq 1]; then
mv ${OUT}/boot.img S${OUT}/boot—imx.img
make bootimage
fi
fi
fi

To build boot-imx.img, run . /imx-make.sh or TARGET IMX KERNEL=true make bootimage && mv
${OUT}/boot.img ${OUT}/boot-imx.img.
» Kernel defconfig
The kernel . config is generated by one generic gki defconfig along with one board-specific config, like
imx89q car gki.fragment
* Driver modules
As GKI requires, all vendor drivers need to be built as modules. Their configs are set as "m" in the board-
specific configuration file mentioned above. In addition, explicitly install those modules on board by adding
them to the following two Android predefined macros. For example, see $ {MY ANDROID}/device/nxp/
imx8g/mek 8qg/SharedBoardConfig.mk:
— BOARD VENDOR RAMDISK KERNEL MODULES
Modules under this macro are copled to ${MY ANDROID}/out/target/product/mek 8gvendor
ramdisk/1lib/modules, and then built as vendor boot.img. They are installed to the kernel in the first
stage of initialization. In general, put essential modules here and be careful of the sequence.

UG10176 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.
User guide Rev. automotive-15.0.0_2.1.0 — 14 October 2025 Document feedback
59/69

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10176

NXP Semiconductors U G1 01 76

Android Automotive User's Guide

— BOARD VENDOR KERNEL MODULES
Modules under this macro are copied to $ {MY ANDROID}/out/target/product/mek 8qg/ven
dor dlkm/lib/modules, and then built as vendor dlkm.img. They are installed later than
vendor ramdisk, after the Android filesystem is ready.

Note:

Due to SoC errata TKT340553 in i.MX 8QuadMax, GKI is not fully enabled. The boot 8g car.img and
system dlkm staging 8q car are built locally for both i.MX 8QuadMax and i.MX 8QuadXPlus.

9.2 How to add new drivers

To add new drivers, perform the following steps:

1. Set the driver configuration to m in the configuration fragment file of the board:

diff --git a/arch/armé64/configs/imx8q car gki.fragment b/arch/armé4/configs/
imx8qg car gki.fragment
index 594bf1228f72..b5585c423bbf 100644
--- a/arch/armé64/configs/imx8qg car gki.fragment
+++ b/arch/arm64/configs/imx8qg car gki.fragment
@@ -109,3 +109,5 @R CONFIG DMABUF IMX=m
CONFIG IMX SENTNL MU is not set
CONFIG_IMX RPMSG _TTY is not set
+CONFIG ZRAM=m
+CONFIG ZSMALLOC=m

2. Add the driver . ko files to the board:
Note: If other driver modules depend on them, put them before others.

diff --git a/imx8g/mek 8qg/SharedBoardConfig.mk b/imx8g/mek 8qg/
SharedBoardConfig.mk

index df7850b0b285..84d136¢c224cd 100644

--- a/imx8qg/mek 8qg/SharedBoardConfig.mk

+++ b/imx8g/mek 8qg/SharedBoardConfig.mk

@@ -102,6 +104,10 @@ endif

BOARD VENDOR RAMDISK KERNEL MODULES += \
+$ (KERNEL OUT) /mm/zsmalloc.ko \

+$ (KERNEL OUT) /crypto/lzo.ko \

+$ (KERNEL OUT) /crypto/lzo-rle.ko \

+$ (KERNEL OUT) /drivers/block/zram/zram.ko \
$ (KERNEL OUT) /drivers/soc/imx/soc-imx8m.ko \

3. Fix the symbol issues.
If some symbols are not exported but used by the added driver modules, perform the following steps to
export them:
a. Export symbols with EXPORT SYMBOL GPL (xxX).
Note: If the symbols are in the core kernel code (which means not in the loadable modules), such
changes must upstream to the AOSP GKI Kernel tree.

b. Add symbols to the AOSP GKI Kernel tree gki/aarch64/abi.stg.

9.3 How to build GKI locally

In the development stage, it is useful to build the GKI image locally to verify drivers.

1. Prepare the GKI Kernel build repository (taking the 6.6 kernel as an example):

mkdir gki && cd gki

UG10176 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.
User guide Rev. automotive-15.0.0_2.1.0 — 14 October 2025 Document feedback
60 /69

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10176

NXP Semiconductors U G1 01 76

Android Automotive User's Guide

repo init -u https://android.googlesource.com/kernel/manifest -b common-
androidl5-6.6
repo sync

N

. (Optional) Enable the early console.
Early console is useful. If the system is stuck at "Starting kernel ...", apply the following changes in
the GKI Kernel tree gki /common.

{MY ANDROID}/vendor/nxp-opensource/imx-gki/debug patches/0001-MA-19811-
ttyimx
earlycon-Support-lpuart-earlycon.patch

3. Build the GKI Image.

tools/bazel run //common:kernel aarché64 dist

The GKl boot . img is obtained from out/kernel aarché64/dist/boot.img. The GKI
system dlkm staging archive.tar.gz is obtained from out/kernel aarché64/dist/system
dlkm staging archive.tar.gz.

4. Build Android boot.img and system dlkm.img.

cp out/kernel aarch64/dist/boot.img {MY ANDROID}/vendor/nxp-opensource/imx-
gki/boot 8q[95] car.img

cp system dlkm staging archive.tar.gz {MY ANDROID}/vendor/nxp-opensource/imx-
gki/system dlkm staging archive.tar.gz

5. Build Android boot 8g_ car.imgand system dlkm 8q.img (only for i.MX 8QuadXPlus and i.MX
8QuadMax MEK boards).
To address TKT340553 Errata and support for multiple-state domains, i.MX 8QuadXPlus and i.MX
8QuadMax require boot 8q car.imgand system dlkm 8q.img. Thisboot 8qg car.img and
system dlkm staging 8q_car are built locally with aosp/androidl6-6.12. Then, the following
patches from {MY ANDROID}/ vendor/nxp-opensource/imx-gki/boot 8g patches are added:

0001-MLK-16005-2-armé64-tlb-add-the-SW-workaround-for-i.MX.patch
0002-ANDROID-ABI-Update-symbol-list-for-imx.patch
0003-PM-Domains-Move-the-Subdomain-check-into- genpd powe.patch
0004-PM-Domains-Support-enter-deepest-state-for-multiple-.patch
0005-PM-Domains-Choose-the-deepest-state-to-enter-if-no-d.patch
0006-PM-Domains-remove-no-governor-for-states-warning.patch
0007-Car-support-enable-performance-gov.patch

Then update the AOSP symbol list according to Section 9.4. These patches are going upstream.

6. Build Android boot 95 car.imgand system dlkm 95.img (only for i.MX 95 board).
To avoid receive timeouts when using SCMI for data transfer, i.MX 95 requires boot 95 car.img
and system dlkm 95.img. The boot 95 car.imgand system dlkm staging 95.img are
built locally with aosp/ androidl6-6.12. Then, the following patch from {MY ANDROID}/vendor/
nxpopensource/imx-gki/boot 95 patches are added:

0001-ILIE-12-include-videodev2.h-Add-meta-formats-used-fo.patch
0002-ILIE-17-media-v4l2-core-Add-meta-neoisp-formats-desc.patch
0003-PCI-dwc-Fix-resume-failure-if-no-EP-is-connected-at-.patch
0004-LF-13477-PCI-dwc-1i.MX6QP-suspend-resume-hang-on-PCIe.patch
0005-Car-support-enable-performance-gov.patch

Then update the AOSP symbol list according to Section 9.4. These patches are going upstream.

UG10176 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.
User guide Rev. automotive-15.0.0_2.1.0 — 14 October 2025 Document feedback
61/69

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10176

NXP Semiconductors U G1 01 76

Android Automotive User's Guide

9.4 How to export new symbols

AOSP GKI image only exports those symbols listed at gki/aarch64/abi.stg. To update them, see the
official document: https://source.android.com/devices/architecture/kernel/abi-monitor. The following is a quick
start guide to export new symbols.

1. Check the AOSP symbol list (gki/aarché64/abi.stg)

mkdir gki && cd gki (Make sure folder gki is not inside of ${MY ANDROID})
repo init -u https://android.googlesource.com/kernel/manifest -b common-
androidl6e-6.12

repo sync

cd common

Check gki/aarch64/abi.stg for the symbol you need. If it is already there, you only need to find a
release from Android GKI Release Builds that includes the required symbol. Then, see Section 9.5 to
update boot.img and system dlkm.img.

2. Generate the device symbol list (gki/aarch64/symbols/imx). If you do not find the symbol you need in
gki/aarché64/abi.stg, continue to work in the common folder.
Note: Switch the kernel in this common folder from AOSP to its own device kernel and apply all your local
patches that may require new symbols.

git remote add device https://github.com/nxp-imx/linux-imx.git

git remote update

git fetch device --tags

git checkout automotive-15.0.0 2.1.0

git apply <all device patches if needed>

cd

(Due to ISP and wifi code is out of kernel tree, set it explicitly to collect
their symbols)

In -s ${MY ANDROID}/vendor/nxp-opensource/verisilicon sw_isp vvcam
verisilicon sw_isp vvcam

1n -s ${MY ANDROID}/vendor/nxp-opensource/nxp-mwifiex nxp-mwifiex
tools/bazel run //common:imx abi update symbol list

Then, common/gki/aarch64/symbols/imx is updated
3. Update the AOSP symbol list (android/abi gki aarch64.stqg).

cd gki
cp common/gki/aarch64/symbols/imx /tmp/imx
cd common

Note: Switch the kernel in this common folder from its own device kernel to the AOSP kernel.

git reset --hard
git checkout aosp/androidl6-6.12
cp /tmp/imx gki/aarch64/symbols/imx

Note: Verify new symbols. If any existing symbols are removed, add them back. Then, keep what you need
and remove the extras; otherwise, kernel aarch64_abi_update or upstream will fail.

cd
tools/bazel run //common:kernel aarch64 abi update

Then, common/gki/aarch64/abi.stg is updated
4. Build Android boot 8qg car.imgand system dlkm.img locally.

cp out/kernel aarch64/dist/boot.img {MY ANDROID}/vendor/nxp-opensource/imx-
gki/boot 8q car.img

cp system dlkm staging archive.tar.gz {MY ANDROID}/vendor/nxp-opensource/imx-
gki/system dlkm staging archive.tar.gz

cd {MY ANDROID}/vendor/nxp-opensource/imx-gki

UG10176 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.
User guide Rev. automotive-15.0.0_2.1.0 — 14 October 2025 Document feedback
62 /69

https://source.android.com/devices/architecture/kernel/abi-monitor
https://source.android.com/docs/core/architecture/kernel/gki-release-builds
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10176

NXP Semiconductors U G1 01 76

Android Automotive User's Guide

tar -xzf system dlkm staging archive.tar.gz -C system dlkm staging 8q car

5. If you want AOSP released GKI image to export these symbols, upstream the two files gki/aarch64/
abi.stgand gki/aarch64/symbols/imx to AOSP.
9.5 How to update the GKI image

To update the GKI image, perform the following steps:

1. Download GKl boot . img from Google. Put boot . img in ${MY ANDROID}/vendor/nxp/fsl-
proprietary/gki/boot.img. Run the following command to build signed boot . img.

./imx-make.sh bootimage
or
make bootimage

2. Download GKI system dlkm staging archive.tar.gz from Google. Put
system dlkm staging archive.tar.gzin ${MY ANDROID}/vendor/nxp/fsl-proprietary/
gki/system dlkm staging archive.tar.gz.Unzip system dlkm staging archive.tar.gz
to system dlkm staging. Run the following command to build system dlkm.img.

make system dlkmimage

3. Getboot.imgand system dlkm staging archive.tar.gz from the https://source.android.com/
docs/core/architecture/kernel/gki-release-builds.

10 Acronyms

Table 25. Acronyms

Acronym Description

AOSP Android Open Source Project

BT Bluetooth

CST (NXP) Code Signing Tool

eMMC Embedded Multi-Media Card

EVK Evaluation Kit

EVS Android Exterior View System

GAS Google Automotive Services

GCC GNU Compiler collection

GPT GUID partition table

HVAC Heating, ventilation, and air conditioning
MEK Multisensory Enablement Kit

0s Operating system

PC Personal (host) computer

SoC System on Chip

SPL U-Boot Secondary Program Loader
OTA Over-The-Air programming

SOF Sound Open Firmware

U-Boot Universal Boot Loader

UG10176 Allinformation provided in this document is subject to legal disclaimers. ©2025 NXP B.V. All rights reserved.
User guide Rev. automotive-15.0.0_2.1.0 — 14 October 2025 Document feedback

63 /69

https://source.android.com/docs/core/architecture/kernel/gki-release-builds
https://source.android.com/docs/core/architecture/kernel/gki-release-builds
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10176

NXP Semiconductors U G1 01 76

Android Automotive User's Guide

11 Note About the Source Code in the Document

Example code shown in this document has the following copyright and BSD-3-Clause license:

Copyright 2025 NXP Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other materials provided with the distribution.

3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or
promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS I1S" AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN

ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

12 Revision History

This table provides the revision history.

Table 26. Revision history

Document ID Release date Description

UG10176 v.automotive-15.0.0_2.1.0 14 October 2025 |i.MX 8QuadXPlus/8QuadMax MEK (Silicon Revision B0, CO)
GA release, i.MX 95 EVK (Silicon 19x19 Revision A1, BO)
and i.MX 95 Verdin (Silicon 19x19 Revision A1, BO) Beta

UG10176 v.automotive-15.0.0_1.3.0 21 July 2025 i.MX 8QuadXPlus/8QuadMax MEK (Silicon Revision B0, CO0)
GA release, i.MX 95 EVK (Silicon Revision A1 19x19) and
i.MX 95 Verdin (Silicon Revision A1 19x19) Beta

UG10176 v.automotive-15.0.0_1.1.0 15 May 2025 i.MX 8QuadXPlus/8QuadMax MEK (Silicon Revision B0,
C0) GA release, i.MX 95 EVK (Silicon Revision A1 19x19)
Beta, and i.MX 95 Verdin (Silicon Revision A1 19x19)
Experimental

UG10176 v.automotive-14.0.0_2.3.0 23 January 2025 |i.MX 8QuadXPlus/8QuadMax MEK (Silicon Revision BO,
C0) GA release, i.MX 95 EVK (Silicon Revision A1 19x19)
Beta, and i.MX 95 Verdin (Silicon Revision A1 19x19)
Experimental

UG10176 v.automotive-14.0.0_2.1.0 7 November 2024 |i.MX 8QuadXPlus/8QuadMax MEK (Silicon Revision BO, CO0)
GA release, i.MX 95 EVK (Silicon Revision A1 19x19) Alpha

(EAR)

AAUG_14.0.0_1.1.0 20 June 2024 i.MX 8QuadXPlus/8QuadMax MEK (Silicon Revision B0, C0)
GA release

automotive-13.0.0_2.3.0 4 January 2024 i.MX 8QuadXPlus/8QuadMax MEK (Silicon Revision B0, C0)
GA release

UG10176 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. automotive-15.0.0_2.1.0 — 14 October 2025 Document feedback

64 /69

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10176

NXP Semiconductors

UG10176

Table 26. Revision history...continued

Android Automotive User's Guide

Document ID Release date Description

automotive-13.0.0_2.1.0 10/2023 i.MX 8QuadXPlus/8QuadMax MEK (Silicon Revision B0, CO0)
GA release

automotive-13.0.0_1.3.0 07/2023 i.MX 8QuadXPlus/8QuadMax MEK (Silicon Revision B0, CO0)
GA release

automotive-13.0.0_1.1.0 05/2023 i.MX 8QuadXPlus/8QuadMax MEK (Silicon Revision B0, CO0)
GA release

automotive-12.1.0_1.1.0 12/2022 i.MX 8QuadXPlus/8QuadMax MEK (Silicon Revision B0, CO0)
GA release

automotive-12.0.0_2.1.0 09/2022 i.MX 8QuadXPlus/8QuadMax MEK (Silicon Revision B0, CO0)
GA release

automotive-12.0.0_1.1.0 06/2022 i.MX 8QuadXPlus/8QuadMax MEK (Silicon Revision B0, CO0)
GA release

automotive-11.0.0_2.5.0 03/2022 i.MX 8QuadXPlus/8QuadMax MEK (Silicon Revision B0, CO0)
GA release

automotive-11.0.0_2.3.0 12/2021 i.MX 8QuadXPlus/8QuadMax MEK (Silicon Revision B0, CO0)
GA release

automotive-11.0.0_2.1.0 11/2021 Added the examples for i.MX 8QuadXPlus and upgraded the
tool version

android-11.0.0_1.1.0-AUTO 01/2021 i.MX 8QuadXPlus/8QuadMax MEK GA release

android-10.0.0_2.4.0 07/2020 i.MX 8QuadMax MEK GA release

android-10.0.0_2.2.0-AUTO 06/2020 i.MX 8QuadXPlus/8QuadMax MEK GA release

automotive-10.0.0_1.1.0 03/2020 Deleted the Android 10 image

automotive-10.0.0_1.1.0 03/2020 i.MX 8QuadXPlus/8QuadMax MEK (Silicon Revision B0) GA
release

P9.0.0_2.1.0-AUTO-ga 08/2019 Updated the location of the SCFW porting kit

P9.0.0_2.1.0-AUTO-ga 04/2019 i.MX 8QuadXPlus/8QuadMax Automotive GA release

P9.0.0_1.0.2-AUTO-beta 01/2019 i.MX 8QuadXPlus/8QuadMax Automotive Beta release

P9.0.0_1.0.2-AUTO-alpha 11/2018 i.MX 8QuadXPlus/8QuadMax Automotive Alpha release

08.1.0_1.1.0_AUTO-beta 05/2018 i.MX 8QuadXPlus/8QuadMax Beta release

08.1.0_1.1.0_AUTO-EAR 02/2018 Initial release

UG10176

All information provided in this document is subject to legal disclaimers.

© 2025 NXP B.V. All rights reserved.

User guide

Rev. automotive-15.0.0_2.1.0 — 14 October 2025

Document feedback
65/69

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10176

NXP Semiconductors

UG10176

Legal information

Android Automotive User's Guide

Definitions

Draft — A draft status on a document indicates that the content is still
under internal review and subject to formal approval, which may result
in modifications or additions. NXP Semiconductors does not give any
representations or warranties as to the accuracy or completeness of
information included in a draft version of a document and shall have no
liability for the consequences of use of such information.

Disclaimers

Limited warranty and liability — Information in this document is believed
to be accurate and reliable. However, NXP Semiconductors does not give
any representations or warranties, expressed or implied, as to the accuracy
or completeness of such information and shall have no liability for the
consequences of use of such information. NXP Semiconductors takes no
responsibility for the content in this document if provided by an information
source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental,
punitive, special or consequential damages (including - without limitation -
lost profits, lost savings, business interruption, costs related to the removal
or replacement of any products or rework charges) whether or not such
damages are based on tort (including negligence), warranty, breach of
contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason
whatsoever, NXP Semiconductors’ aggregate and cumulative liability
towards customer for the products described herein shall be limited in
accordance with the Terms and conditions of commercial sale of NXP
Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to

make changes to information published in this document, including without
limitation specifications and product descriptions, at any time and without
notice. This document supersedes and replaces all information supplied prior
to the publication hereof.

Applications — Applications that are described herein for any of these
products are for illustrative purposes only. NXP Semiconductors makes no
representation or warranty that such applications will be suitable for the
specified use without further testing or modification.

Customers are responsible for the design and operation of their
applications and products using NXP Semiconductors products, and NXP
Semiconductors accepts no liability for any assistance with applications or
customer product design. It is customer’s sole responsibility to determine
whether the NXP Semiconductors product is suitable and fit for the
customer’s applications and products planned, as well as for the planned
application and use of customer’s third party customer(s). Customers should
provide appropriate design and operating safeguards to minimize the risks
associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default,
damage, costs or problem which is based on any weakness or default

in the customer’s applications or products, or the application or use by
customer’s third party customer(s). Customer is responsible for doing all
necessary testing for the customer’s applications and products using NXP
Semiconductors products in order to avoid a default of the applications
and the products or of the application or use by customer’s third party
customer(s). NXP does not accept any liability in this respect.

Terms and conditions of commercial sale — NXP Semiconductors
products are sold subject to the general terms and conditions of commercial
sale, as published at https://www.nxp.com/profile/terms, unless otherwise
agreed in a valid written individual agreement. In case an individual
agreement is concluded only the terms and conditions of the respective
agreement shall apply. NXP Semiconductors hereby expressly objects to
applying the customer’s general terms and conditions with regard to the
purchase of NXP Semiconductors products by customer.

UG10176

All information provided in this document is subject to legal disclaimers.

Suitability for use in automotive applications — This NXP product has
been qualified for use in automotive applications. If this product is used

by customer in the development of, or for incorporation into, products or
services (a) used in safety critical applications or (b) in which failure could
lead to death, personal injury, or severe physical or environmental damage
(such products and services hereinafter referred to as “Critical Applications”),
then customer makes the ultimate design decisions regarding its products
and is solely responsible for compliance with all legal, regulatory, safety,
and security related requirements concerning its products, regardless of
any information or support that may be provided by NXP. As such, customer
assumes all risk related to use of any products in Critical Applications and
NXP and its suppliers shall not be liable for any such use by customer.
Accordingly, customer will indemnify and hold NXP harmless from any
claims, liabilities, damages and associated costs and expenses (including
attorneys’ fees) that NXP may incur related to customer’s incorporation of
any product in a Critical Application.

Export control — This document as well as the item(s) described herein
may be subject to export control regulations. Export might require a prior
authorization from competent authorities.

HTML publications — An HTML version, if available, of this document is
provided as a courtesy. Definitive information is contained in the applicable
document in PDF format. If there is a discrepancy between the HTML
document and the PDF document, the PDF document has priority.

Translations — A non-English (translated) version of a document, including
the legal information in that document, is for reference only. The English
version shall prevail in case of any discrepancy between the translated and
English versions.

Security — Customer understands that all NXP products may be subject to
unidentified vulnerabilities or may support established security standards or
specifications with known limitations. Customer is responsible for the design
and operation of its applications and products throughout their lifecycles

to reduce the effect of these vulnerabilities on customer’s applications

and products. Customer’s responsibility also extends to other open and/or
proprietary technologies supported by NXP products for use in customer’s
applications. NXP accepts no liability for any vulnerability. Customer should
regularly check security updates from NXP and follow up appropriately.
Customer shall select products with security features that best meet rules,
regulations, and standards of the intended application and make the
ultimate design decisions regarding its products and is solely responsible
for compliance with all legal, regulatory, and security related requirements
concerning its products, regardless of any information or support that may be
provided by NXP.

NXP has a Product Security Incident Response Team (PSIRT) (reachable
at PSIRT@nxp.com) that manages the investigation, reporting, and solution
release to security vulnerabilities of NXP products.

NXP B.V. — NXP B.V. is not an operating company and it does not distribute
or sell products.

Trademarks

Notice: All referenced brands, product names, service names, and
trademarks are the property of their respective owners.

NXP — wordmark and logo are trademarks of NXP B.V.

AMBA, Arm, Arm7, Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE,
Cordio, CoreLink, CoreSight, Cortex, DesignStart, DynamiQ, Jazelle,
Keil, Mali, Mbed, Mbed Enabled, NEON, POP, RealView, SecurCore,
Socrates, Thumb, TrustZone, ULINK, ULINK2, ULINK-ME, ULINK-
PLUS, ULINKpro, pVision, Versatile — are trademarks and/or registered
trademarks of Arm Limited (or its subsidiaries or affiliates) in the US and/or
elsewhere. The related technology may be protected by any or all of patents,
copyrights, designs and trade secrets. All rights reserved.

Bluetooth — the Bluetooth wordmark and logos are registered trademarks
owned by Bluetooth SIG, Inc. and any use of such marks by NXP
Semiconductors is under license.

© 2025 NXP B.V. All rights reserved.

User guide

Rev. automotive-15.0.0_2.1.0 — 14 October 2025

Document feedback
66 /69

mailto:PSIRT@nxp.com
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10176

NXP Semiconductors U G1 01 76

Android Automotive User's Guide

Microsoft, Azure, and ThreadX — are trademarks of the Microsoft group of

companies.
UG10176 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.
User guide Rev. automotive-15.0.0_2.1.0 — 14 October 2025 Document feedback

67 /69

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10176

NXP Semiconductors

UG10176

Android Automotive User's Guide

Contents
1 OVEIVIBW ... 2 8.1.2.2 Starting the EVS function with images
2 Preparationcoooocciiiiirrerre s 2 in automotive-15.0.0_2.1.0_image_8gmek__
21 Setting up your computercccccoeeiiiiieeniins 2 CaAr2.8ar.9Z e 33
2.2 Unpacking the Android release package 3 8.1. EVS related codecccoiiiiiiiiiiiie 35
3 Building the Android platform for i.MX 3 8.1. Communication protocol between Cortex-A
3.1 Getting i.MX Android release source code 3 core and Cortex-M4 corecccoevieeeeeeeinneen. 35
3.2 Building Android imagescccccceeviiiiieeeeiinenn. 4 8.1.5 Delay of camera/display module probe 38
3.2.1 Configuration examples of building i.MX 8.2 Audio configurationcccciiiiiii 38
AEVICES et 9 8.2.1 Routing audio stream to different sound
3.2.2 Build mode selectionccccocviiiiiiniiccine. 9 CANAS ittt 38
3.23 Build with the GAS packagecccccoceeeenie 10 8.3 Display configurationc.cccoooiiiiiiiieenie 39
3.3 Building an Android image with Docker 10 8.3.1 Configuring the logical display density 39
3.4 Building U-Boot imagesccccoccceieiiiicnnenn. 11 8.3.2 Starting the cluster displayccccooceiiiinen. 39
3.5 Building a kernel imagecccoccooiieiiiine. 12 8.3.3 Enabling the multiple-display function 39
3.6 Building boot.img ..o 13 8.3.3.1 Binding the display port with the input port 40
3.7 Building dtbo.imgoocciiiiii 13 8.3.3.2 Enabling multi-client input method 41
4 Running the Android Platform with a 8.3.3.3 User's zone configuration in multi-display
Prebuilt Image ... 13 MOAE et 41
5 Programming Imagescccccoommriciiennnnnnnns 17 8.34 Configuring the primary display resolution 42
51 System on eMMC ... 17 8.4 HVAC configurationcccoccooiiiiiiiiiienne 43
51.1 Storage partitionsccocceiiiiiiiiiiiee 17 8.4.1 Interfaces to control the HVAC system 43
51.2 Downloading images with UUU 18 8.5 USB configurationccccooiiiiiiiiiiiiee e 45
51.3 Downloading images with fastboot_imx_ 8.5.1 Enabling USB 2.0 in U-Boot for i.MX
flashall scriptcoooeiiiiieiii e, 19 8QuadMax/8QuadXPlus MEKcccee.... 45
51.4 Downloading a single image with fastboot 20 8.6 Trusty OS/security configuration 47
6 BoOotingccoomieriee e 21 8.6.1 Initializing the secure storage for Trusty OS 48
6.1 Booting from eMMC ... 21 8.6.2 AVB Key provisioncccccoeceieeeiiiiieeee e 48
6.1.1 Booting from eMMC on the i.MX 8.6.2.1 Generating the AVB key to sign images 49
8QuadXPlus/8QuadMax MEK board 21 8.6.2.2 How to set the vbmeta public key 49
6.1.2 Booting from eMMC on the i.MX 95 EVK 8.6.3 Key attestation ... 50
board ... 22 8.7 SCFW configurationcccoooiiiiiiiiiieeeee 50
6.2 Boot-up configurationsccccciiiiiiiiiiinie 22 8.8 Power state configurationcccocoeeeei. 51
6.2.1 U-Boot environment ... 22 8.9 Boot time tuningcccoooiiii 52
6.2.2 Kernel command line (bootargs) 22 8.9.1 Boot time overviewcccccoiiiiiiiiiees 52
6.2.3 DM-verity configurationcccccooiiiiininnne. 24 8.9.2 What NXP did to tune the boot time 52
7 Over-The-Air (OTA) Updatecccoeeriiicannees 24 8.9.3 How to get the shorter boot time 53
71 Building OTA update packagesccccceeeuue 24 8.94 How to build system.img with squashfs files
711 Building target filesccccoiiiiiiiis 24 System type ..o 54
71.2 Building a full update packageccccooe..ce 25 8.9.5 How to measure the boot time 54
713 Building an incremental update package 25 8.10 Configuration for the load orders of driver
7.2 Implementing OTA updateccccceeriiineen.n. 26 MOAUIESvvveeeiieieieeeeeeeeeeee e, 55
7.21 Using update_engine_client to update the 8.10.1 Why does Android Automotive have driver
Android platform ..o, 26 [0ad Ordersccvvvveeiiiieieeeeee e 55
722 Using a customized application to update 8.10.2 How does the non-critical driver load 55
the Android platformcccoooiiiiiiiiie. 27 8.10.3 How to change driver load orders 55
8 Customized Configurationcccceveeeeees 29 8.11 Dual-bootloader configuration 56
8.1 Camera configurationcccoccooieiiiiiinnen. 29 8.11.1 Dual-bootloader layoutcccooiiieiiiiiee. 56
8.1.1 Switching between camera models on i.MX 8.11.2 Configuring dual-bootloadercccceeenee 56
95 EVK e 29 8.12 Miscellaneous configurationccccc.oeee 57
8.1.1 Obtaining the AP1302 firmware 29 8.12.1 Changing boot command line in boot.img 57
8.1 Change camera type in Device-Tree and U- 8.12.2 Notices before the debugging work 57
BOOL i 30 9 Generic Kernel Image (GKiI)
8.1.2 Interfaces to control the EVS function 31 Development ... 58
8.1.2.1 Starting the EVS function with images 9.1 Changes after GKI enabledc......... 59
in automotive-15.0.0_2.1.0_image_8gmek_ 9.2 How to add new driversccooeeiiivinininnns 60
Cartargz ..coooieiiiiiee e 31 9.3 How to build GKI locallyccccoeiiiiiiieinnee. 60

UG10176

All information provided in this document is subject to legal disclaimers.

© 2025 NXP B.V. All rights reserved.

User guide

Rev. automotive-15.0.0_2.1.0 — 14 October 2025

Document feedback
68 /69

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10176

NXP Semiconductors

UG10176

9.4
9.5
10
1"

12

How to export new symbolsc.ccoceeerneen. 62
How to update the GKI imagecccocueenee 63
ACIONYMSoeeviiriririer e 63

Note About the Source Code in the

Documentocooccciiiiieeerrrrrr s
Revision History ...
Legal informationcccccviiiiniiennienninen,

Android Automotive User's Guide

Please be aware that important notices concerning this document and the product(s)
described herein, have been included in section 'Legal information'.

© 2025 NXP B.V. All rights reserved.

For more information, please visit: https://www.nxp.com Document feedback

Date of release: 14 October 2025
Document identifier: UG10176

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10176

	1 Overview
	2 Preparation
	2.1 Setting up your computer
	2.2 Unpacking the Android release package

	3 Building the Android platform for i.MX
	3.1 Getting i.MX Android release source code
	3.2 Building Android images
	3.2.1 Configuration examples of building i.MX devices
	3.2.2 Build mode selection
	3.2.3 Build with the GAS package

	3.3 Building an Android image with Docker
	3.4 Building U-Boot images
	3.5 Building a kernel image
	3.6 Building boot.img
	3.7 Building dtbo.img

	4 Running the Android Platform with a Prebuilt Image
	5 Programming Images
	5.1 System on eMMC
	5.1.1 Storage partitions
	5.1.2 Downloading images with UUU
	5.1.3 Downloading images with fastboot_imx_flashall script
	5.1.4 Downloading a single image with fastboot

	6 Booting
	6.1 Booting from eMMC
	6.1.1 Booting from eMMC on the i.MX 8QuadXPlus/8QuadMax MEK board
	6.1.2 Booting from eMMC on the i.MX 95 EVK board

	6.2 Boot-up configurations
	6.2.1 U-Boot environment
	6.2.2 Kernel command line (bootargs)
	6.2.3 DM-verity configuration

	7 Over-The-Air (OTA) Update
	7.1 Building OTA update packages
	7.1.1 Building target files
	7.1.2 Building a full update package
	7.1.3 Building an incremental update package

	7.2 Implementing OTA update
	7.2.1 Using update_engine_client to update the Android platform
	7.2.2 Using a customized application to update the Android platform

	8 Customized Configuration
	8.1 Camera configuration
	8.1.1 Switching between camera models on i.MX 95 EVK
	8.1.1.1 Obtaining the AP1302 firmware
	8.1.1.2 Change camera type in Device-Tree and U-Boot

	8.1.2 Interfaces to control the EVS function
	8.1.2.1 Starting the EVS function with images in automotive-15.0.0_2.1.0_image_8qmek_car.tar.gz
	8.1.2.2 Starting the EVS function with images in automotive-15.0.0_2.1.0_image_8qmek_car2.tar.gz

	8.1.3 EVS related code
	8.1.4 Communication protocol between Cortex-A core and Cortex-M4 core
	8.1.5 Delay of camera/display module probe

	8.2 Audio configuration
	8.2.1 Routing audio stream to different sound cards

	8.3 Display configuration
	8.3.1 Configuring the logical display density
	8.3.2 Starting the cluster display
	8.3.3 Enabling the multiple-display function
	8.3.3.1 Binding the display port with the input port
	8.3.3.2 Enabling multi-client input method
	8.3.3.3 User's zone configuration in multi-display mode

	8.3.4 Configuring the primary display resolution

	8.4 HVAC configuration
	8.4.1 Interfaces to control the HVAC system

	8.5 USB configuration
	8.5.1 Enabling USB 2.0 in U-Boot for i.MX 8QuadMax/8QuadXPlus MEK

	8.6 Trusty OS/security configuration
	8.6.1 Initializing the secure storage for Trusty OS
	8.6.2 AVB key provision
	8.6.2.1 Generating the AVB key to sign images
	8.6.2.2 How to set the vbmeta public key

	8.6.3 Key attestation

	8.7 SCFW configuration
	8.8 Power state configuration
	8.9 Boot time tuning
	8.9.1 Boot time overview
	8.9.2 What NXP did to tune the boot time
	8.9.3 How to get the shorter boot time
	8.9.4 How to build system.img with squashfs files system type
	8.9.5 How to measure the boot time

	8.10 Configuration for the load orders of driver modules
	8.10.1 Why does Android Automotive have driver load orders
	8.10.2 How does the non-critical driver load
	8.10.3 How to change driver load orders

	8.11 Dual-bootloader configuration
	8.11.1 Dual-bootloader layout
	8.11.2 Configuring dual-bootloader

	8.12 Miscellaneous configuration
	8.12.1 Changing boot command line in boot.img
	8.12.2 Notices before the debugging work

	9 Generic Kernel Image (GKI) Development
	9.1 Changes after GKI enabled
	9.2 How to add new drivers
	9.3 How to build GKI locally
	9.4 How to export new symbols
	9.5 How to update the GKI image

	10 Acronyms
	11 Note About the Source Code in the Document
	12 Revision History
	Legal information
	Contents

