
UG10338
i.MX Machine Learning User Guide for Android
Rev. 1.0 — 28 October 2025 User guide

Document information
Information Content

Keywords Android, i.MX, Machine Learning

Abstract This document describes how to deploy part of the eIQ Core into the NXP Android BSP and how
to develop Machine Learning (ML) applications based on NXP eIQ. It particularly describes the
deployment of the TensorFlow Lite (TFLite) inference engine and related delegates for on-chip ML
accelerators (NPU and GPU) available on the i.MX 8M Plus and i.MX 95 applications processors.

https://www.nxp.com

NXP Semiconductors UG10338
i.MX Machine Learning User Guide for Android

1 Introduction

This document describes how to deploy part of the eIQ Core into the NXP Android BSP and how to develop
Machine Learning (ML) applications based on NXP eIQ. It particularly describes the deployment of the
TensorFlow Lite (TFLite) inference engine and related delegates for on-chip ML accelerators (NPU and GPU)
available on the i.MX 8M Plus and i.MX 95 applications processors.

It aims to provide ways to use the ML hardware accelerators and this achieves comparable ML performance
as that available on the NXP Yocto Linux platform. The following hardware accelerators are addressed in this
document:

• NPU using the VX Delegate on the i.MX 8M Plus platform
• eIQ Neutron NPU using the Neutron Delegate on the i.MX 95 platform

To demonstrate the way to use NPU accelerators on NXP devices, we have pre-installed three applications for
classification using MobileNet V1, model benchmarking, and an end-to-end classification demo. This document
first describes the usages of these applications in prebuilt images. NXP TFLite libraries are also provided for
the Android platform. Users can develop their own ML applications based on NXP TFLite. This document then
describes how to use the NXP TFLite libraries to develop ML applications, and provides the steps to build eIQ
Core packages from the source code if users need to add customized features.

The requirements to follow this document are as follows:

• i.MX 8M Plus or i.MX 95 Evaluation Kit
• Build Host machine with the Linux OS and +450 GB free disk space, +16 GB RAM
• Debug/Deployment Host machine to push/pull data to/from the i.MX target: Linux or Windows machine

Note: This document describes the deployment on the Android 16.0.0_1.0.0 BSP and eIQ Core
LF6.12.34_2.1.0 releases.

2 NNAPI Delegate and dedicated delegate

The standard way to access the Machine Learning (ML) accelerators on Android is through the Neural Networks
API (NNAPI), such as by using the NNAPI Delegate in the TensorFlow Lite inference engine.

The NNAPI is a software layer defined by the Android OS that facilitates the execution of compute-intensive
operations by coordinating the available hardware, such as CPU, GPU, and other ML hardware accelerators. It
is a part of the Android public API since level 27 and adds new features with every Android release. The NNAPI
can be used by different inference engines, for example, through the NNAPI Delegate in TensorFlow Lite or
NNAPI provider in ONNX Runtime.

As the NNAPI is defined by the Android OS, discrepancies between NNAPI specifications, the supported
capabilities of the acceleration hardware (provided by device manufacturers), and the inference engines
(developed by third-party organizations) are common. For example, on i.MX platforms, there is strong
alignment between TensorFlow Lite operator definitions and the operators supported by the NPU. On the other
hand, NNAPI needs to support multiple hardware backends (CPU, GPU, custom accelerators) from multiple
manufacturers, as well as support multiple inference engines. This broad scope necessitates a best-effort
approach in NNAPI’s operator definitions to serve all stakeholders. As a result, the NNAPI Delegate may assign
operators that could otherwise run on the NPU to the CPU, which can negatively impact overall inference
performance.

Compared to NNAPI, dedicated delegates for particular hardware accelerators, such as VX Delegate for
i.MX 8M Plus and Neutron Delegate for i.MX 95 platforms, are fully aligned with NPU capabilities. The NPU
delegates (VX Delegate and Neutron Delegate) are key components of the eIQ software enablement stack to
apply the hardware acceleration on the ML workload. They are already supported in the NXP Embedded Linux

UG10338 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 1.0 — 28 October 2025 Document feedback
2 / 23

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10338

NXP Semiconductors UG10338
i.MX Machine Learning User Guide for Android

for i.MX Applications Processors, with proven acceleration of embedded ML models. This document describes
how to use the delegates in TensorFlow Android applications.

3 Pre-installed ML applications

There are three pre-installed Machine Learning (ML) applications that are built on the NXP eIQ core: label
image, benchmark_model, and TfliteCameraDemo. Users need to flash the pre-built NXP Android images
and boot up the Android OS, and then follow the steps below to run these applications.

3.1 Preparation

3.1.1 Installing the ADB

Android Debug Bridge (ADB), which is included in the platform-tools package, is used to interact with the
i.MX application processors running the Android OS. platform-tools must be present on the host connected
to the target platform.

For more information, see SDK Platform Tools release notes.

3.1.2 Downloading the MobileNet v1 model and test files

Download and extract the float point and quantized Mobilenet V1 models below:

• mobilenet_v1_1.0_224_quant.tgz
• mobilenet_v1_1.0_224.tgz

Download the label for Mobilenet V1 from https://storage.googleapis.com/download.tensorflow.org/data/Image
NetLabels.txt.

Download the sample image from https://github.com/tensorflow/tensorflow/blob/master/tensorflow/lite/examples/
label_image/testdata/grace_hopper.bmp.

3.1.3 Installing eIQ Toolkit

The eIQ Neutron NPU is integrated into the i.MX 95 SoC. To run the models on the eIQ Neutron, convert the
models into Neutron Graph by using neutron-converter, which is part of eIQ Toolkit.

The eIQ Toolkit 1.17 is used for Android 16.0.0_1.0.0. The download link and user guide can be found on eIQ®

Toolkit for End-to-End Model Development and Deployment. See Section "Neutron converter" in the user guide
for the usage and supported models.

3.2 Label Image
Label Image is a classic TensorFlow Lite (TFLite) application that shows how to perform image classification
using a pre-trained TFLite model. TensorFlow Lite provides C++ and Python implementations of the Label
Image. In addition, the NXP eIQ Core provides Java implementation for Android OS.

• Push the model and test data to the Android OS:
$ adb push mobilenet_v1_1.0_224_quant.tflite grace_hopper.bmp /data/local/tmp
$ adb push ImageNetLabels.txt /data/local/tmp/labels.txt

• Run the Label Image on the CPU:
$ adb shell logcat -c
$ adb shell am start -S -n org.tensorflow.lite.label_image/.LabelImageActivity \
 --es graph "/data/local/tmp/mobilenet_v1_1.0_224_quant.tflite " \

UG10338 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 1.0 — 28 October 2025 Document feedback
3 / 23

https://developer.android.com/tools/releases/platform-tools
https://storage.googleapis.com/download.tensorflow.org/models/mobilenet_v1_2018_08_02/mobilenet_v1_1.0_224_quant.tgz
https://storage.googleapis.com/download.tensorflow.org/models/mobilenet_v1_2018_02_22/mobilenet_v1_1.0_224.tgz
https://storage.googleapis.com/download.tensorflow.org/data/ImageNetLabels.txt
https://storage.googleapis.com/download.tensorflow.org/data/ImageNetLabels.txt
https://github.com/tensorflow/tensorflow/blob/master/tensorflow/lite/examples/label_image/testdata/grace_hopper.bmp
https://github.com/tensorflow/tensorflow/blob/master/tensorflow/lite/examples/label_image/testdata/grace_hopper.bmp
https://www.nxp.com/design/design-center/software/eiq-ai-development-environment/eiq-toolkit-for-end-to-end-model-development-and-deployment:EIQ-TOOLKIT
https://www.nxp.com/design/design-center/software/eiq-ai-development-environment/eiq-toolkit-for-end-to-end-model-development-and-deployment:EIQ-TOOLKIT
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10338

NXP Semiconductors UG10338
i.MX Machine Learning User Guide for Android

 --es label "/data/local/tmp/labels.txt" \
 --es image "/data/local/tmp/grace_hopper.bmp"
$ adb shell logcat | grep "LabelImage"

The following output is expected.

Figure 1. Expected output
• Run the Label Image on the NPU:

The eIQ TFLite runs the model on the NPU through an external delegate. To enable operator execution on the
NPU, specify the delegate library path to the ext_delegate argument.
– For i.MX 8M Plus:

$ adb shell am start -S -n org.tensorflow.lite.label_image/.LabelImageActivity \
 --es graph "/data/local/tmp/mobilenet_v1_1.0_224_quant.tflite " \
 --es label "/data/local/tmp/labels.txt" \
 --es image "/data/local/tmp/grace_hopper.bmp" \
 --es ext_delegate "/vendor/lib64/libvx_delegate.so"

– For i.MX 95:
Convert the TFLite model to Neutron Graph, and push the converted model to /data/local/tmp on the
Android OS.
Since mobilenet_v1_1.0_224_quant.tflite has asymmetric uint8 weights and Neutron only
supports symmetric int8 weights, add the --convert-inputs-uint8-to-int8 --convert-outputs-
uint8-to-int8 parameter to neutron-converter. If your model has symmetric int8 weight only, you
do not need to add such a parameter.
$./neutron-converter --target imx95 \
--input mobilenet_v1_1.0_224_quant.tflite \
--output mobilenet_v1_1.0_224_quant_neutron.tflite \
--convert-inputs-uint8-to-int8 \
--convert-outputs-uint8-to-int8
$ adb push mobilenet_v1_1.0_224_quant_neutron.tflite /data/local/tmp
$ adb shell logcat -c
$ adb shell am start -S -n org.tensorflow.lite.label_image/.LabelImageActivity \
 --es graph "/data/local/tmp/mobilenet_v1_1.0_224_quant_neutron.tflite " \
 --es label "/data/local/tmp/labels.txt" \
 --es image "/data/local/tmp/grace_hopper.bmp" \
 --es ext_delegate "/vendor/lib64/libneutron_delegate.so"
$ adb shell logcat | grep "LabelImage"

3.3 Benchmark Model
The benchmark_model evaluates the performance of a selected model and supports the use of different
delegates. It is useful to compare the performance difference among the delegates.

The Android application for Benchmark Model (benchmark_model.apk), which implements an Android
activity in Java, uses the JNI to run the inference in the native code. The native code contains the logic to
include external delegates (such as the VX or Neutron Delegate).

UG10338 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 1.0 — 28 October 2025 Document feedback
4 / 23

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10338

NXP Semiconductors UG10338
i.MX Machine Learning User Guide for Android

Although you can run benchmark_model with multiple threads, there is a limitation on the Android OS that
the application process is running on a single core. Therefore, it is not beneficial to run the benchmark_model
with multiple threads. To measure a better performance with multiple threads, use C++ implementation of
benchmark_model. See Section 5.3 to compile the benchmark_model binary from the C++ source code.

• Run benchmark_model on the CPU:

$ adb shell logcat -c
$ adb shell am start -S -n
 org.tensorflow.lite.benchmark/.BenchmarkModelActivity \
 --es args '" --graph=/data/local/tmp/mobilenet_v1_1.0_224_quant.tflite \
 --num_threads=1 "'
$ adb shell logcat | grep tflite

Figure 2. Running benchmark_model on the CPU
• Run benchmark_model on the NPU:

– For i.MX 8M Plus:

delegate=libvx_delegate.so
model=mobilenet_v1_1.0_224_quant.tflite

– For i.MX 95:

delegate=libneutron_delegate.so
model=mobilenet_v1_1.0_224_quant_neutron.tflite

– For i.MX 8M Plus and i.MX 95:

$ adb shell am start -S -n
 org.tensorflow.lite.benchmark/.BenchmarkModelActivity --es args '" \
 --graph=/data/local/tmp/${model} \
 --external_delegate_path=/vendor/lib64/${delegate} "'

• Run benchmark_model on the GPU:
– For i.MX 8M Plus:

$ adb shell setprop vendor.USE_GPU_INFERENCE 1
$ adb shell am start -S -n
 org.tensorflow.lite.benchmark/.BenchmarkModelActivity --es args '" \
 --graph=/data/local/tmp/mobilenet_v1_1.0_224_quant.tflite \
 --external_delegate_path=/vendor/lib64/libvx_delegate.so "'

– For i.MX 95, you can choose to run with either the OpenGL library or OpenCL library through the
gpu_backend parameter:

$ adb shell am start -S -n
 org.tensorflow.lite.benchmark/.BenchmarkModelActivity --es args '" \
 --graph=/data/local/tmp/mobilenet_v1_1.0_224_quant.tflite \
 --use_gpu=true --gpu_backend=cl"'
Execution log:
tflite_BenchmarkModelActivity: Running TensorFlow Lite benchmark with args:
 --graph=/data/local/tmp/mobilenet_v1_1.0_224_quant.tflite --use_gpu=true --
gpu_backend=cl

UG10338 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 1.0 — 28 October 2025 Document feedback
5 / 23

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10338

NXP Semiconductors UG10338
i.MX Machine Learning User Guide for Android

tflite : Log parameter values verbosely: [0]
tflite : Graph: [/data/local/tmp/mobilenet_v1_1.0_224_quant.tflite]
tflite : Signature to run: []
tflite : Use gpu: [1]
tflite : GPU backend: [cl]
tflite : Loaded model /data/local/tmp/mobilenet_v1_1.0_224_quant.tflite
tflite : Initialized TensorFlow Lite runtime.
tflite : Created TensorFlow Lite delegate for GPU.
tflite : GPU delegate created.
tflite : Loaded OpenCL library with dlopen.
tflite : Replacing 31 out of 31 node(s) with delegate (TfLiteGpuDelegateV2)
 node, yielding 1 partitions for subgraph 0.
tflite : Initialized OpenCL-based API.
tflite : Created 1 GPU delegate kernels.
tflite : Explicitly applied GPU delegate, and the model graph will be
 completely executed by the delegate.
tflite : The input model file size (MB): 4.27635
tflite : Initialized session in 1539.39ms.
tflite : Running benchmark for at least 1 iterations and at least 0.5
 seconds but terminate if exceeding 150 seconds.
tflite : count=11 first=47749 curr=45925 min=45872 max=47749 avg=46098.3
 std=525 p5=45872 median=45907 p95=47749
tflite : Running benchmark for at least 50 iterations and at least 1 seconds
 but terminate if exceeding 150 seconds.
tflite : count=50 first=46064 curr=24565 min=24520 max=46064 avg=25220.2
 std=3236 p5=24535 median=24592 p95=25557
tflite : Inference timings in us: Init: 1539387, First inference: 47749,
 Warmup (avg): 46098.3, Inference (avg): 25220.2
tflite : Note: as the benchmark tool itself affects memory footprint, the
 following is only APPROXIMATE to the actual memory footprint of the model at
 runtime. Take the information at your discretion.
tflite : Memory footprint delta from the start of the tool (MB):
 init=109.492 overall=109.492

$ adb shell am start -S -n
 org.tensorflow.lite.benchmark/.BenchmarkModelActivity --es args '" \
 --graph=/data/local/tmp/mobilenet_v1_1.0_224_quant.tflite \
 --use_gpu=true --gpu_backend=gl"'
Execution log:
tflite_BenchmarkModelActivity: Running TensorFlow Lite benchmark with args:
 --graph=/data/local/tmp/mobilenet_v1_1.0_224_quant.tflite --use_gpu=true --
gpu_backend=gl
tflite : Log parameter values verbosely: [0]
tflite : Graph: [/data/local/tmp/mobilenet_v1_1.0_224_quant.tflite]
tflite : Signature to run: []
tflite : Use gpu: [1]
tflite : GPU backend: [gl]
tflite : Loaded model /data/local/tmp/mobilenet_v1_1.0_224_quant.tflite
tflite : Initialized TensorFlow Lite runtime.
tflite : Created TensorFlow Lite delegate for GPU.
tflite : GPU delegate created.
tflite : Loaded OpenCL library with dlopen.
tflite : Replacing 31 out of 31 node(s) with delegate (TfLiteGpuDelegateV2)
 node, yielding 1 partitions for subgraph 0.
tflite : Initialized OpenGL-based API.
tflite : Created 1 GPU delegate kernels.
tflite : Explicitly applied GPU delegate, and the model graph will be
 completely executed by the delegate.
tflite : The input model file size (MB): 4.27635
tflite : Initialized session in 1728.02ms.

UG10338 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 1.0 — 28 October 2025 Document feedback
6 / 23

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10338

NXP Semiconductors UG10338
i.MX Machine Learning User Guide for Android

tflite : Running benchmark for at least 1 iterations and at least 0.5
 seconds but terminate if exceeding 150 seconds.
tflite : count=4 first=148819 curr=73520 min=73520 max=148819 avg=125950
 std=30684 p5=73520 median=146084 p95=148819
tflite : Running benchmark for at least 50 iterations and at least 1 seconds
 but terminate if exceeding 150 seconds.
tflite : count=50 first=74249 curr=75852 min=73382 max=76567 avg=74403.9
 std=979 p5=73535 median=73917 p95=76239
tflite : Inference timings in us: Init: 1728018, First inference: 148819,
 Warmup (avg): 125950, Inference (avg): 74403.9
tflite : Note: as the benchmark tool itself affects memory footprint, the
 following is only APPROXIMATE to the actual memory footprint of the model at
 runtime. Take the information at your discretion.
tflite : Memory footprint delta from the start of the tool (MB):
 init=129.609 overall=129.609

3.4 TFLite Camera Demo
TFLite Camera Demo is a sample Android GUI application that performs real-time image classification using
TensorFlow Lite and the device’s camera. It supports multiple inference accelerators on the NXP devices. For
i.MX 8M Plus, it supports CPU, NNAPI, and NPU. For i.MX 95, it supports CPU, GPU, and NPU.

To run the application, click TFLite Camera Demo on the application panel. If the application is running in
landscape mode, run adb shell settings put system user_rotation 0 to change it to portrait
mode.

UG10338 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 1.0 — 28 October 2025 Document feedback
7 / 23

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10338

NXP Semiconductors UG10338
i.MX Machine Learning User Guide for Android

Figure 3. TFLite Camera Demo

4 Building Android applications based on the NXP eIQ Core

The NXP eIQ Core provides TensorFlow Lite (TFLite) run-time libraries for the Android OS in the AAR format.
Users can build their own TFLite applications for the Android OS based on these libraries.

This section takes the TFLite Camera Demo as an example to illustrate how to develop Android applications
with the eIQ Core TFLite libraries for the Android OS.

4.1 eIQ TFLite libraries for the Android OS
There are 5 TFLite libraries for the Android OS under vendor/nxp/neutron-software-stack/Android/
TfLiteLib of the NXP Android BSP release package:

• tensorflow-lite-api.aar: contains the Java API layer of TFLite Runtime.

UG10338 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 1.0 — 28 October 2025 Document feedback
8 / 23

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10338

NXP Semiconductors UG10338
i.MX Machine Learning User Guide for Android

• tensorflow-lite.aar: contains the implementation of TFLite Runtime, including Interpreter class and
other essential APIs for running inference. It also contains the native library (libtensorflowlite_jni.so)
and header files.

• tensorflow-lite-gpu-api.aar: contains the Java API layer for the GPU delegate.
• tensorflow-lite-gpu.aar: contains Java APIs for using a GPU delegate (GpuDelegate class) and the

native GPU delegate library (libtensorflowlite_gpu_jni.so).
• tensorflow-lite-external-delegate.aar: contains Java APIs for using an external delegate

(ExternalDelegate class) and native external delegate library (libtensorflowlite_external_
delegate_jni.so).

4.2 Creating a TFLite interpreter with the NPU delegate
The Interpreter class in TensorFlow Lite (TFLite) is the core API used to run the inference with a TFLite
model on the Android OS. It provides a simple interface to load a .tflite model, allocate tensors, and run
predictions with specific hardware accelerators through the interfaces known as ‘delegate’. The TFLite includes
a few built-in delegates, such as the following:

• XNNPack delegate, which is a highly optimized library for the NN inference on the CPU.
• GPUDelegate, which enables the NN inference on the GPU instead of the CPU.

In addition to built-in delegates, TFLite also supports third-party delegates and calls these delegates through the
ExternalDelegate class. The following code snippet shows how to create an external delegate instance for the
NPU on NXP devices and create an interpreter instance to invoke the inference.

import org.tensorflow.lite.Interpreter;
import org.tensorflow.lite.DataType;
import org.tensorflow.lite.external.ExternalDelegate;

Interpreter.Options options = new Interpreter.Options();
options.setNumThreads(numThreads);
// Enable XNNPack so that unsupported operators of NPU can be offloaded to
 XNNPack delegate
options.setUseXNNPACK(true);
// delegate is the path to NPU delegate, it is /vendor/lib64/libvx_delegate.so
 on i.MX 8M Plus and /vendor/lib64/libneutron_delegate.so on i.MX 95
ExternalDelegate.Options extDelegateOptions = new
 ExternalDelegate.Options(delegate);
ExternalDelegate extDelegate = new ExternalDelegate(extDelegateOptions);
options.addDelegate(extDelegate);
// The model is same as what we used in chapter 3
Interpreter interpreter = new Interpreter(model_path, options);
interpreter.allocateTensors();
// Create inputData and outputData before run inference
interpreter.run(inputData, outputData);

4.3 Adding eIQ TFLite libraries in the build file

4.3.1 Gradle build

Perform the following steps:

1. Copy the libraries to the application directory:

$ mkdir <app_dir>/libs
$ cp <imx_android>/vendor/nxp/neutron-software-stack/Android/TfLiteLib/*
 <app_dir>/libs

UG10338 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 1.0 — 28 October 2025 Document feedback
9 / 23

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10338

NXP Semiconductors UG10338
i.MX Machine Learning User Guide for Android

2. Edit build.gradle for the application. Include libraries in the application.

repositories {
 …
 flatDir {
 dirs 'libs'
 }
}
dependencies {
 …
 // Use NXP eIQ TensorFlowLite library
 implementation(name: 'tensorflow-lite', ext: 'aar')
 implementation(name: 'tensorflow-lite-api', ext: 'aar')
 implementation(name: 'tensorflow-lite-gpu', ext: 'aar')
 implementation(name: 'tensorflow-lite-gpu-api', ext: 'aar')
 implementation(name: 'tensorflow-lite-external-delegate', ext: 'aar')
}

4.3.2 Bazel build

Perform the following steps:

1. Copy the libraries to the application directory:

$ mkdir <app_dir>/libs
$ cp <imx_android>/vendor/nxp/neutron-software-stack/Android/TfLiteLib/*
 <app_dir>/libs

2. Edit BUILD for the application to add the following dependency:

aar_import(
 name = "tensorflow_lite_api",
 aar = "libs/tensorflow-lite-api.aar"
)

aar_import(
 name = "tensorflow_lite",
 aar = "libs/tensorflow-lite.aar",
 deps = [":tensorflow_lite_api"],
)
aar_import(
 name = "tensorflow_lite_gpu",
 aar = "libs/tensorflow-lite-gpu.aar",
 deps = [":tensorflow_lite_api"],
)

aar_import(
 name = "tensorflow_lite_gpu_api",
 aar = "libs/tensorflow-lite-gpu-api.aar"
)

aar_import(
 name = "tensorflow_lite_external_delegate",
 aar = "libs/tensorflow-lite-external-delegate.aar",
 deps = [":tensorflow_lite_api"],
)
android_binary(
 name = "APPName",
 srcs = glob(["src/**/*.java"]),
 custom_package = "org.tensorflow.lite. APPName ",
 manifest = "AndroidManifest.xml",

UG10338 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 1.0 — 28 October 2025 Document feedback
10 / 23

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10338

NXP Semiconductors UG10338
i.MX Machine Learning User Guide for Android

 tags = ["manual"],
 deps = [
 ":tensorflow_lite",
 ":tensorflow_lite_api",
 ":tensorflow_lite_gpu",
 ":tensorflow_lite_gpu_api",
 ":tensorflow_lite_external_delegate"
]
)

4.4 Building the TFLite Camera Demo based on the eIQ Core
The TFLite libraries for the Android OS are included in the Android BSP package. Download the Android
16.0.0_1.0.0 release package and unzip it in a directory.

$ tar -xzvf imx-android-16.0.0_1.0.0.tar.gz -C android-16.0.0

Set up the i.MX Android root path:

$ source <Path_to_unziped_package>/imx_android_setup.sh
$ export MY_ANDROID=`pwd`

After sourcing the setup script, the working directory points to the root where all the required sources have
been extracted (will be referred to as MY_ANDROID from here on). This working directory contains the following
relevant resources:

• ${MY_ANDROID}/vendor/nxp/fsl-proprietary/gpu-viv: contains GPU/NPU drivers.
• ${MY_ANDROID}/vendor/nxp/fsl-proprietary/include: contains GPU/NPU driver headers.
• ${MY_ANDROID}/vendor/nxp/neutron-software-stack/Android/TfLiteLib: contains Android

libraries in the AAR format.
• ${MY_ANDROID}/device/nxp/: contains Android build and configuration files for NXP platforms, primarily

Kati .mk files, and configurations for specific devices, including Security-Enhanced Linux (SELinux) policy
descriptions.

5 Building and updating the pre-installed application from sources

This section describes how to build and update the pre-installed TFLite applications for the Android OS using
NXP Tensorflow and Android sources.

5.1 Preparation
1. Prepare the Ubuntu 22.04 host with desktop and install JDK 1.8.0.

$ sudo apt install openjdk-8-jdk

Make sure that the Java in PATH points to Java 1.8.0.

$ java -version
openjdk version "1.8.0_462"
OpenJDK Runtime Environment (build 1.8.0_462-8u462-ga~us1-0ubuntu2~22.04.2-
b08)
OpenJDK 64-Bit Server VM (build 25.462-b08, mixed mode)

2. Bazel 6.5.0 is used to build the Label Image and Benchmark Model.

$ sudo apt install bazel-6.5.0

UG10338 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 1.0 — 28 October 2025 Document feedback
11 / 23

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10338

NXP Semiconductors UG10338
i.MX Machine Learning User Guide for Android

3. Clone the NXP TensorFlow repository.

$ mkdir imx-eiq-core-android && cd imx-eiq-core-android && export
 EIQ_CORE_ROOT=`pwd`
$ git clone --recurse-submodules https://github.com/nxp-imx/tensorflow-
imx.git --branch lf-6.12.34_2.1.0_android

4. Configure the Android Studio to download NDK and build tools.
a. Download Android Studio 4.1.3.

$ wget https://redirector.gvt1.com/edgedl/android/studio/ide-zips/4.1.3.0/
android-studio-ide-201.7199119-linux.tar.gz
$ tar xvfz android-studio-ide-201.7199119-linux.tar.gz -C $EIQ_CORE_ROOT
$ mkdir ${EIQ_CORE_ROOT}/android-sdk

b. Open Ubuntu desktop and navigate to ${EIQ_CORE_ROOT}/android-studio/bin and run
studio.sh.

c. Change the SDK location to ${EIQ_CORE_ROOT}/android-sdk.

Figure 4. Android Studio setup (1)

UG10338 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 1.0 — 28 October 2025 Document feedback
12 / 23

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10338

NXP Semiconductors UG10338
i.MX Machine Learning User Guide for Android

Figure 5. Android Studio setup (2)
d. Select SDK Manager from Configure.

Figure 6. Android Studio configuration
i. Select Android SDK Platform 26 and Sources for Android 26 from SDK Platforms.
ii. Select NDK 26.2.11394342, Build Tool 30.0.3, and Command-line Tool (latest) from SDK Tools.
iii. Apply the changes. The studio then downloads the SDK stuff to ${EIQ_CORE_ROOT}/android-

sdk.

UG10338 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 1.0 — 28 October 2025 Document feedback
13 / 23

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10338

NXP Semiconductors UG10338
i.MX Machine Learning User Guide for Android

5. Configure the Bazel build environment and NDK tools for TensorFlow by running ./configure. The
configuration step also asks for the local Python interpreter and library paths, which are not mandatory for
following the application note but is useful for additional features. Other required variables can be defaulted.

$ cd ${EIQ_CORE_ROOT}/tensorflow-imx && ./configure

Edit .bazelrc, and append the following lines in the end of the file:

build --action_env ANDROID_NDK_HOME="${EIQ_CORE_ROOT}/android-sdk/
ndk/26.2.11394342"
build --action_env ANDROID_NDK_VERSION="26"
build --action_env ANDROID_NDK_API_LEVEL="26"
build --action_env ANDROID_BUILD_TOOLS_VERSION="30.0.3"
build --action_env ANDROID_SDK_API_LEVEL="26"
build --action_env ANDROID_SDK_HOME="${EIQ_CORE_ROOT}/android-sdk"

5.2 Building the Label Image

5.2.1 Building the APK

Run the following command:

$ bazel build -c opt --config=android_arm64 tensorflow/lite/examples/
label_image/android:label_image

The APK is then generated at:

• bazel-bin/tensorflow/lite/examples/label_image/android/label_image.apk for debugging
• bazel-bin/tensorflow/lite/examples/label_image/android/label_image_unsigned.apk

for signing

5.2.2 Building the C++ binary

TensorFlow Lite provides the C++ version of the Label Image that can be executed in the Android shell
environment with better performance. Run the following Bazel command to build it.

$ bazel build -c opt --config=android_arm64 tensorflow/lite/examples/
label_image:label_image

The binary is generated at bazel-bin/tensorflow/lite/examples/label_image/label_image. Run
the binary on the Android OS with the following commands:

1. Follow Section 3.2 to push the model, label, and image to the Android OS.
2. Copy label_image to the Android OS, and then execute it in the Android shell.

$ adb push label_image /data/local/tmp/
$ adb shell
$ cd /data/local/tmp

• Run the model on the CPU:

$./label_image -m mobilenet_v1_1.0_224_quant.tflite -l labels.txt -i
 grace_hopper.bmp

• Run the model on the NPU on i.MX 8M Plus:

$./label_image -m mobilenet_v1_1.0_224_quant.tflite -l labels.txt -i
 grace_hopper.bmp --external_delegate_path=/vendor/lib64/libvx_delegate.so

UG10338 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 1.0 — 28 October 2025 Document feedback
14 / 23

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10338

NXP Semiconductors UG10338
i.MX Machine Learning User Guide for Android

• Run the model on the NPU on i.MX 95:

$./label_image -m mobilenet_v1_1.0_224_quant_neutron.tflite -l
 labels.txt -i grace_hopper.bmp --external_delegate_path=/vendor/lib64/
libneutron_delegate.so
INFO: Loaded model mobilenet_v1_1.0_224_quant_neutron.tflite
INFO: resolved reporter
INFO: Initialized TensorFlow Lite runtime.
INFO: EXTERNAL delegate created.
INFO: NeutronDelegate delegate: 1 nodes delegated out of 4 nodes with 1
 partitions.

VERBOSE: Replacing 1 out of 4 node(s) with delegate (NeutronDelegate) node,
 yielding 3 partitions for subgraph 0.
INFO: Neutron delegate version: v1.0.0-be8bf399, zerocp enabled.
INFO: Applied EXTERNAL delegate.
INFO: Created TensorFlow Lite XNNPACK delegate for CPU.
INFO: invoked
INFO: average time: 1.491 ms
INFO: 0.729412: 653 military uniform
INFO: 0.164706: 907 Windsor tie
INFO: 0.0196078: 458 bow tie
INFO: 0.00784314: 835 suit
INFO: 0.00784314: 466 bulletproof vest

5.3 Building the Benchmark Model

5.3.1 Building the APK

Run the following command:

$ bazel build -c opt --config=android_arm64 tensorflow/lite/tools/benchmark/
android:benchmark_model

The APK is then generated at:

• bazel-bin/tensorflow/lite/tools/benchmark/android/benchmark_model.apk for debugging
• bazel-bin/tensorflow/lite/tools/benchmark/android/benchmark_model_unsigned.apk for

signing

5.3.2 Building the C++ binary

As described in Section 3.3, the pre-installed benchmark_model.apk can only benchmark the single
core performance. In contrast, the benchmark_model binary can run with multiple cores to get the best
performance, especially for inference benchmark on CPUs.

$ bazel build -c opt --config=android_arm64 tensorflow/lite/tools/
benchmark:benchmark_model

The binary is generated at bazel-bin/tensorflow/lite/tools/benchmark/benchmark_model.

• Benchmark Model inference performance for the CPU:

$ adb push benchmark_model /data/local/tmp/
$ adb shell
$ cd /data/local/tmp

UG10338 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 1.0 — 28 October 2025 Document feedback
15 / 23

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10338

NXP Semiconductors UG10338
i.MX Machine Learning User Guide for Android

$./benchmark_model --graph=mobilenet_v1_1.0_224_quant.tflite --
num_threads=<num_of_cores>
INFO: STARTING!
INFO: Log parameter values verbosely: [0]
INFO: Num threads: [6]
INFO: Graph: [mobilenet_v1_1.0_224_quant.tflite]
INFO: Signature to run: []
INFO: #threads used for CPU inference: [6]
INFO: Loaded model mobilenet_v1_1.0_224_quant.tflite
INFO: Initialized TensorFlow Lite runtime.
INFO: Created TensorFlow Lite XNNPACK delegate for CPU.
INFO: The input model file size (MB): 4.27635
INFO: Initialized session in 7.094ms.
INFO: Running benchmark for at least 1 iterations and at least 0.5 seconds but
 terminate if exceeding 150 seconds.
INFO: count=42 first=17689 curr=11871 min=11847 max=17689 avg=12103.8 std=885
 p5=11851 median=11926 p95=12221

INFO: Running benchmark for at least 50 iterations and at least 1 seconds but
 terminate if exceeding 150 seconds.
INFO: count=83 first=12945 curr=12015 min=11843 max=13839 avg=12028.5 std=275
 p5=11855 median=11979 p95=12258

INFO: Inference timings in us: Init: 7094, First inference: 17689, Warmup
 (avg): 12103.8, Inference (avg): 12028.5
INFO: Note: as the benchmark tool itself affects memory footprint, the
 following is only APPROXIMATE to the actual memory footprint of the model at
 runtime. Take the information at your discretion.
INFO: Memory footprint delta from the start of the tool (MB): init=3.64062
 overall=9.22656

• Benchmark Model inference performance for the NPU on i.MX 8M Plus:

$./benchmark_model --graph=mobilenet_v1_1.0_224_quant.tflite --num_threads=4
 --external_delegate_path=/vendor/lib64/libvx_delegate.so

• Benchmark Model inference performance for the NPU on i.MX 95:

$./benchmark_model --graph=mobilenet_v1_1.0_224_quant_neutron.tflite --
num_threads=6 --external_delegate_path=/vendor/lib64/libneutron_delegate.so

5.4 Building the TFLite Camera Demo
Android Studio+Gradle is used to build tflitecamerademo.apk.

1. Copy the eIQ TFLite libraries to ${EIQ_CORE_ROOT}/tensorflow-imx/tensorflow/lite/java/
demo/app/libs.

2. Open Android Studio, select Open an Existing Project, and then open ${EIQ_CORE_ROOT}/
tensorflow-imx/tensorflow/lite/java/demo.

3. After the project synchronization is completed, click Build -> Build bundles(s)/APK(s) -> Build APKs.

The APK is then generated at ./build/outputs/apk/debug/app-debug.apk.

5.5 Rebuilding the Android image with updated applications
To rebuild the Android image with updated applications, perform the following steps:

UG10338 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 1.0 — 28 October 2025 Document feedback
16 / 23

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10338

NXP Semiconductors UG10338
i.MX Machine Learning User Guide for Android

1. Download Android 16.0.0_1.0.0 BSP package and the Android User's Guide (UG10156) from Android
OS for i.MX Applications Processors, and extract the Android BSP package to ${EIQ_CORE_ROOT}/
android_16.0.0 (will be referred to as MY_ANDROID from here on).

2. Follow Section "Building Android images" in the Android User's Guide (UG10156) to download the GCC
toolchain for AArch32 and AArch64, clang, kernel-build-tools, rust, and clang-tools.

3. Copy label_image.apk, benchmark_model.apk, and app-debug.apk built in Section 5.2.1,
Section 5.3.1, and Section 5.4 to ${MY_ANDROID}/vendor/nxp/neutron-software-stack/
Android/TfLiteApks/. Rename app-debug.apk to TfliteCameraDemo.apk.

4. Follow the Android User's Guide (UG10156) to build and flash images for your device, and boot up the
Android OS. The updated applications are on the Android OS. See Section 3 for the usages.

6 Installing a third-party application to the Android OS

Assume that you have built your own application based on the eIQ Core for the Android OS and you want to
install it to the Android OS. However, the application cannot work with the NPU after the installation due to
SELinux security policy. You need to grant the NPU libraries access permissions to user applications.

Follow Section 5.5 to set up the building environment for Android 16. The Android source code contains the
following relevant resources:

• ${MY_ANDROID}/vendor/nxp/fsl-proprietary/gpu-viv: contains GPU/NPU drivers.
• ${MY_ANDROID}/vendor/nxp/fsl-proprietary/include: contains GPU/NPU driver headers.
• ${MY_ANDROID}/vendor/nxp/neutron-software-stack/Android/TfLiteLib: contains Android

libraries in the AAR format.
• ${MY_ANDROID}/device/nxp/: contains Android build and configuration files for NXP platforms, primarily

Kati .mk files, and configurations for specific devices, including Security-Enhanced Linux (SELinux) policy
descriptions.

6.1 Adding additional native libraries
From Android 7 onwards, AOSP allows providing additional native libraries accessible to applications by
ubicating them into specific library folders and explicitly listing them in a .txt file.

This is relevant as the VX Delegate has dynamic dependencies on the TIM-VX library for i.MX 8M Plus, and the
Neutron Delegate also has dependencies on the Neutron Driver library.

As this file is not generated by default, add it into the vendor partition of the Android image:

1. Create an empty public.libraries.txt file in the device config directory ${MY_ANDROID}/device/
nxp/<family>/<board>.

2. Add the following listed shared objects to the public.libraries.txt (each one in a line):
• For i.MX 8M Plus (${MY_ANDROID}/device/nxp/imx8m/evk_8mp/public.libraries.txt):

libtim-vx.so

• For i.MX 95 (${MY_ANDROID}/device/nxp/imx9/evk_95/public.libraries.txt):

libNeutronDriver.so

To allow the GPU Delegate for the i.MX 95 target, add libOpenCL.so to the public.libraries.txt
file as well.

3. Add the updated public.libraries.txt file in the list of artifacts to copy to the image for your device.
The patch below is for the i.MX 8M Plus platform. For i.MX 95, modify the imx9/evk_95/evk_95.mk file
in the same way.

diff --git a/imx8m/evk_8mp/evk_8mp.mk b/imx8m/evk_8mp/evk_8mp.mk

UG10338 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 1.0 — 28 October 2025 Document feedback
17 / 23

https://www.nxp.com/design/design-center/software/embedded-software/i-mx-software/android-os-for-i-mx-applications-processors:IMXANDROID
https://www.nxp.com/design/design-center/software/embedded-software/i-mx-software/android-os-for-i-mx-applications-processors:IMXANDROID
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10338

NXP Semiconductors UG10338
i.MX Machine Learning User Guide for Android

index eb5d3056..6f51d1a0 100644
--- a/imx8m/evk_8mp/evk_8mp.mk
+++ b/imx8m/evk_8mp/evk_8mp.mk
@@ -594,6 +594,9 @@ PRODUCT_COPY_FILES += \
 PRODUCT_COPY_FILES += \
 frameworks/native/data/etc/android.software.device_id_attestation.xml:
$(TARGET_COPY_OUT_VENDOR)/etc/permissions/
android.software.device_id_attestation.xml

+# public vendor libs
+PRODUCT_COPY_FILES += \
+ $(IMX_DEVICE_PATH)/public.libraries.txt:$(TARGET_COPY_OUT_VENDOR)/etc/
public.libraries.txt
+
 # Included GMS package
 ifeq ($(filter TRUE true 1,$(IMX_BUILD_32BIT_ROOTFS)
 $(IMX_BUILD_32BIT_64BIT_ROOTFS)),)
 $(call inherit-product-if-exists, vendor/partner_gms/products/
gms_64bit_only.mk)

6.2 Configuring SELinux labels for native libraries
Android uses Security-Enhanced Linux (SELinux) to enforce mandatory access control over all processes.
SELinux works in two modes: permissive and enforcing. In both modes, permission denials are logged, but in
the enforcing case, the kernel ensures that the access is not granted. Since Android 7, there were major native
symbol restrictions for linking and loading, including dlopen-related operations, which are relevant to the VX
Delegate enablement for i.MX 8M Plus and Neutron Delegate for i.MX 95.

To avoid this issue and allow applications using the VX Delegate and Neutron Delegate to run in restrictive
mode, a set of vendors shared libraries need to be labeled as vendor_app_file:

For the i.MX 8M Plus, modify the /imx8m/sepolicy/file_contexts b/imx8m/sepolicy/ file as shown
in the patch below:

diff --git a/imx8m/sepolicy/file_contexts b/imx8m/sepolicy/file_contexts
index 8c160239..ba7fa202 100644
--- a/imx8m/sepolicy/file_contexts
+++ b/imx8m/sepolicy/file_contexts
@@ -39,6 +39,14 @@
 /vendor/lib(64)?/libGLSLC\.so u:object_r:same_process_hal_file:s0
 /vendor/lib(64)?/libVSC\.so u:object_r:same_process_hal_file:s0
 /vendor/lib(64)?/libGAL\.so u:object_r:same_process_hal_file:s0

+/vendor/lib(64)?/libOpenVX\.so u:object_r:vendor_app_file:s0
+/vendor/lib(64)?/libOpenVXU\.so u:object_r:vendor_app_file:s0
+/vendor/lib(64)?/libarchmodelSw\.so u:object_r:vendor_app_file:s0
+/vendor/lib(64)?/libNNArchPerf\.so u:object_r:vendor_app_file:s0
+/vendor/lib(64)?/libNNVXCBinary-evis2\.so u:object_r:vendor_app_file:s0
+/vendor/lib(64)?/libOvx12VXCBinary-evis2\.so u:object_r:vendor_app_file:s0
+/vendor/lib(64)?/libNNGPUBinary-evis2\.so u:object_r:vendor_app_file:s0
+/vendor/lib(64)?/libtim-vx\.so u:object_r:vendor_app_file:s0
+
 /vendor/lib(64)?/hw/vulkan\.imx\.so u:object_r:same_process_hal_file:s0
 /vendor/lib(64)?/hw/gralloc_viv\.imx\.so u:object_r:same_process_hal_file:s0

UG10338 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 1.0 — 28 October 2025 Document feedback
18 / 23

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10338

NXP Semiconductors UG10338
i.MX Machine Learning User Guide for Android

For the i.MX 95, add only libNeutronDriver.so to the contextcmake bui file:

+/vendor/lib(64)?/libNeutronDriver\.so
 u:object_r:vendor_app_file:s0

6.3 Booting the Android OS in permissive mode
To boot the Android OS in permissive mode, perform the following steps:

1. Follow the Android User's Guide (UG10156) to build and flash the image to the target device.
2. Connect the console through the serial port of the target. Access U-Boot and set extra bootargs, and then

boot the Android OS.
3. After accessing the system prompt, check if the libraries have been added.

6.4 Installing and executing applications
With ADB, applications can be installed by using the following command (ensure that the Android OS is booted
and running):

$ adb install -r -d -g <Path_to_the_apk>

Where:

• -r: Reinstalls the application, keeping the data.
• -d: Allows version code downgrade.
• -g: Grants all permissions defined in the application manifest file.

If the installation succeeds, you can check the installation path by using the adb shell commands, which
provide most of the usual Unix command-line tools. Using ls-based commands, the base path for the
application can be found in /data/app/<gen_string_1>/<package_name>-<gen_string_2>/. Inside
this path, lib/arm64 contains the TFLite JNI libraries.

-rwxr-xr-x 1 system system 226816 2010-01-01 00:00
 libtensorflowlite_external_delegate_jni.so
-rwxr-xr-x 1 system system 2519344 2010-01-01 00:00 libtensorflowlite_gpu_jni.so
-rwxr-xr-x 1 system system 4001112 2010-01-01 00:00 libtensorflowlite_jni.so

If navigation with ls is restricted, adb root can be used to access the restricted file systems. To return to non-
root mode, use adb unroot. These commands affect the ADB daemon (adbd) in the platform, which means
that the root session may exceed the terminal life cycle.

To run the command-line applications or GUI applications, see Section 3.

7 Optimization

For some cases, you may need to do extra configuration to get optimized performance.

UG10338 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 1.0 — 28 October 2025 Document feedback
19 / 23

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10338

NXP Semiconductors UG10338
i.MX Machine Learning User Guide for Android

7.1 General

7.1.1 Using Per-Channel-Quantization (PCQ) model instead of Per-Tensor-Quantization (PTQ)
model

Since TFLite 2.18, the XNNPack Delegate discards optimization for asymmetric uint8 Conv2D operators. Model
performance significantly degrades on the CPU when using asymmetric uint8 Conv2D operators, such as
MobileNet V1/V2 and Inception V4 model.

A workaround is to convert asymmetric uint8 Conv2D to symmetric int8 Conv2D. This conversion can be
facilitated using the tflite-optimizer tool available in the eIQ Toolkit.

eIQ_Toolkit/bin $./tflite-optimizer --input <original model path> --output
 <converted model path> --run=ConvertAsymUint8ToSymInt8

7.1.2 Setting the CPU to performance mode

By default, the CPU operates in ondemand mode, which decides how the CPU frequency should be adjusted
based on system load. You need to set the CPU to performance mode.

$ echo performance > /sys/devices/system/cpu/cpu0/cpufreq/scaling_governor

7.2 i.MX 8M Plus

7.2.1 PCQ model enablement for i.MX 8M Plus

To enable optimal execution of Per Channel Quantized (PCQ) models, additional configuration is required by
the NPU on i.MX 8M Plus. From an adb shell, run the following commands:

$ setprop vendor.VIV_VX_ENABLE_GRAPH_TRANSFORM -pcq:1
$ setprop vendor.VIV_VX_SET_PER_CHANNEL_ENTROPY 0.35

You can validate the properties by using getprop. Without these properties, a noticeable drop in performance
is expected.

7.2.2 Hardware accelerators warmup time for i.MX 8M Plus

For TensorFlow Lite, the initial execution of model inference takes longer time due to the model graph
initialization needed by the GPU/NPU hardware accelerator. The initialization phase is known as warmup. To
reduce this initialization time for subsequent applications running on the i.MX 8M Plus target, the information
generated during the initial OpenVX graph processing can be saved to disk. To enable this optimization, the
following environment variables should be set:

$ setprop vendor.VIV_VX_ENABLE_CACHE_GRAPH_BINARY 1
$ setprop vendor.VIV_VX_CACHE_BINARY_GRAPH_DIR `pwd`

When these environment variables are set, the result of the OpenVX graph compilation is saved to disk as
network binary graph files (*.nb). During runtime, a quick hash check is performed on the network, and if it
matches the hash of the corresponding .nb file, the graph is directly loaded into NPU memory.

UG10338 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 1.0 — 28 October 2025 Document feedback
20 / 23

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10338

NXP Semiconductors UG10338
i.MX Machine Learning User Guide for Android

7.3 i.MX 95

7.3.1 Disabling DDR clock gating

On the i.MX 95, DDR clock gating is enabled by default to reduce power consumption during idle states.
However, this feature may negatively impact TensorFlow Lite performance. To mitigate this, disable DDR clock
gating in the System Manager. Assuming the console serial port is /dev/ttyUSB2, the corresponding System
Manager console is accessible through /dev/ttyUSB3.

>$ mm 0x4e010010 0

This configuration will be lost after power-down.

8 Note About the Source Code in the Document

Example code shown in this document has the following copyright and BSD-3-Clause license:

Copyright 2025 NXP Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other materials provided with the distribution.

3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or
promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

9 Revision History

Document ID Release date Description

UG10338 v.1.0 28 October 2025 Initial release, new document added for the i.MX android-16.0.0_1.0.0
release.

Table 1. Revision history

UG10338 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 1.0 — 28 October 2025 Document feedback
21 / 23

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10338

NXP Semiconductors UG10338
i.MX Machine Learning User Guide for Android

Legal information

Definitions
Draft — A draft status on a document indicates that the content is still
under internal review and subject to formal approval, which may result
in modifications or additions. NXP Semiconductors does not give any
representations or warranties as to the accuracy or completeness of
information included in a draft version of a document and shall have no
liability for the consequences of use of such information.

Disclaimers
Limited warranty and liability — Information in this document is believed
to be accurate and reliable. However, NXP Semiconductors does not give
any representations or warranties, expressed or implied, as to the accuracy
or completeness of such information and shall have no liability for the
consequences of use of such information. NXP Semiconductors takes no
responsibility for the content in this document if provided by an information
source outside of NXP Semiconductors.
In no event shall NXP Semiconductors be liable for any indirect, incidental,
punitive, special or consequential damages (including - without limitation -
lost profits, lost savings, business interruption, costs related to the removal
or replacement of any products or rework charges) whether or not such
damages are based on tort (including negligence), warranty, breach of
contract or any other legal theory.
Notwithstanding any damages that customer might incur for any reason
whatsoever, NXP Semiconductors’ aggregate and cumulative liability
towards customer for the products described herein shall be limited in
accordance with the Terms and conditions of commercial sale of NXP
Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to
make changes to information published in this document, including without
limitation specifications and product descriptions, at any time and without
notice. This document supersedes and replaces all information supplied prior
to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed,
authorized or warranted to be suitable for use in life support, life-critical or
safety-critical systems or equipment, nor in applications where failure or
malfunction of an NXP Semiconductors product can reasonably be expected
to result in personal injury, death or severe property or environmental
damage. NXP Semiconductors and its suppliers accept no liability for
inclusion and/or use of NXP Semiconductors products in such equipment or
applications and therefore such inclusion and/or use is at the customer’s own
risk.

Applications — Applications that are described herein for any of these
products are for illustrative purposes only. NXP Semiconductors makes no
representation or warranty that such applications will be suitable for the
specified use without further testing or modification.
Customers are responsible for the design and operation of their
applications and products using NXP Semiconductors products, and NXP
Semiconductors accepts no liability for any assistance with applications or
customer product design. It is customer’s sole responsibility to determine
whether the NXP Semiconductors product is suitable and fit for the
customer’s applications and products planned, as well as for the planned
application and use of customer’s third party customer(s). Customers should
provide appropriate design and operating safeguards to minimize the risks
associated with their applications and products.
NXP Semiconductors does not accept any liability related to any default,
damage, costs or problem which is based on any weakness or default
in the customer’s applications or products, or the application or use by
customer’s third party customer(s). Customer is responsible for doing all
necessary testing for the customer’s applications and products using NXP
Semiconductors products in order to avoid a default of the applications
and the products or of the application or use by customer’s third party
customer(s). NXP does not accept any liability in this respect.

Terms and conditions of commercial sale — NXP Semiconductors
products are sold subject to the general terms and conditions of commercial
sale, as published at https://www.nxp.com/profile/terms, unless otherwise
agreed in a valid written individual agreement. In case an individual
agreement is concluded only the terms and conditions of the respective
agreement shall apply. NXP Semiconductors hereby expressly objects to
applying the customer’s general terms and conditions with regard to the
purchase of NXP Semiconductors products by customer.

Export control — This document as well as the item(s) described herein
may be subject to export control regulations. Export might require a prior
authorization from competent authorities.

Suitability for use in non-automotive qualified products — Unless
this document expressly states that this specific NXP Semiconductors
product is automotive qualified, the product is not suitable for automotive
use. It is neither qualified nor tested in accordance with automotive testing
or application requirements. NXP Semiconductors accepts no liability for
inclusion and/or use of non-automotive qualified products in automotive
equipment or applications.
In the event that customer uses the product for design-in and use in
automotive applications to automotive specifications and standards,
customer (a) shall use the product without NXP Semiconductors’ warranty
of the product for such automotive applications, use and specifications, and
(b) whenever customer uses the product for automotive applications beyond
NXP Semiconductors’ specifications such use shall be solely at customer’s
own risk, and (c) customer fully indemnifies NXP Semiconductors for any
liability, damages or failed product claims resulting from customer design and
use of the product for automotive applications beyond NXP Semiconductors’
standard warranty and NXP Semiconductors’ product specifications.

HTML publications — An HTML version, if available, of this document is
provided as a courtesy. Definitive information is contained in the applicable
document in PDF format. If there is a discrepancy between the HTML
document and the PDF document, the PDF document has priority.

Translations — A non-English (translated) version of a document, including
the legal information in that document, is for reference only. The English
version shall prevail in case of any discrepancy between the translated and
English versions.

Security — Customer understands that all NXP products may be subject to
unidentified vulnerabilities or may support established security standards or
specifications with known limitations. Customer is responsible for the design
and operation of its applications and products throughout their lifecycles
to reduce the effect of these vulnerabilities on customer’s applications
and products. Customer’s responsibility also extends to other open and/or
proprietary technologies supported by NXP products for use in customer’s
applications. NXP accepts no liability for any vulnerability. Customer should
regularly check security updates from NXP and follow up appropriately.
Customer shall select products with security features that best meet rules,
regulations, and standards of the intended application and make the
ultimate design decisions regarding its products and is solely responsible
for compliance with all legal, regulatory, and security related requirements
concerning its products, regardless of any information or support that may be
provided by NXP.
NXP has a Product Security Incident Response Team (PSIRT) (reachable
at PSIRT@nxp.com) that manages the investigation, reporting, and solution
release to security vulnerabilities of NXP products.

NXP B.V. — NXP B.V. is not an operating company and it does not distribute
or sell products.

Trademarks
Notice: All referenced brands, product names, service names, and
trademarks are the property of their respective owners.
NXP — wordmark and logo are trademarks of NXP B.V.

UG10338 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 1.0 — 28 October 2025 Document feedback
22 / 23

mailto:PSIRT@nxp.com
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10338

NXP Semiconductors UG10338
i.MX Machine Learning User Guide for Android

Contents
1 Introduction .. 2
2 NNAPI Delegate and dedicated delegate 2
3 Pre-installed ML applications 3
3.1 Preparation .. 3
3.1.1 Installing the ADB ..3
3.1.2 Downloading the MobileNet v1 model and

test files ... 3
3.1.3 Installing eIQ Toolkit .. 3
3.2 Label Image ...3
3.3 Benchmark Model ..4
3.4 TFLite Camera Demo ..7
4 Building Android applications based on

the NXP eIQ Core .. 8
4.1 eIQ TFLite libraries for the Android OS 8
4.2 Creating a TFLite interpreter with the NPU

delegate ... 9
4.3 Adding eIQ TFLite libraries in the build file 9
4.3.1 Gradle build ... 9
4.3.2 Bazel build ... 10
4.4 Building the TFLite Camera Demo based

on the eIQ Core .. 11
5 Building and updating the pre-installed

application from sources11
5.1 Preparation .. 11
5.2 Building the Label Image14
5.2.1 Building the APK ... 14
5.2.2 Building the C++ binary 14
5.3 Building the Benchmark Model15
5.3.1 Building the APK ... 15
5.3.2 Building the C++ binary 15
5.4 Building the TFLite Camera Demo 16
5.5 Rebuilding the Android image with updated

applications .. 16
6 Installing a third-party application to the

Android OS ...17
6.1 Adding additional native libraries17
6.2 Configuring SELinux labels for native

libraries .. 18
6.3 Booting the Android OS in permissive mode ... 19
6.4 Installing and executing applications 19
7 Optimization ... 19
7.1 General .. 20
7.1.1 Using Per-Channel-Quantization (PCQ)

model instead of Per-Tensor-Quantization
(PTQ) model .. 20

7.1.2 Setting the CPU to performance mode20
7.2 i.MX 8M Plus ... 20
7.2.1 PCQ model enablement for i.MX 8M Plus 20
7.2.2 Hardware accelerators warmup time for

i.MX 8M Plus ... 20
7.3 i.MX 95 .. 21
7.3.1 Disabling DDR clock gating21

8 Note About the Source Code in the
Document ... 21

9 Revision History .. 21
Legal information ...22

Please be aware that important notices concerning this document and the product(s)
described herein, have been included in section 'Legal information'.

© 2025 NXP B.V. All rights reserved.
For more information, please visit: https://www.nxp.com Document feedback

Date of release: 28 October 2025
Document identifier: UG10338

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10338

	1 Introduction
	2 NNAPI Delegate and dedicated delegate
	3 Pre-installed ML applications
	3.1 Preparation
	3.1.1 Installing the ADB
	3.1.2 Downloading the MobileNet v1 model and test files
	3.1.3 Installing eIQ Toolkit

	3.2 Label Image
	3.3 Benchmark Model
	3.4 TFLite Camera Demo

	4 Building Android applications based on the NXP eIQ Core
	4.1 eIQ TFLite libraries for the Android OS
	4.2 Creating a TFLite interpreter with the NPU delegate
	4.3 Adding eIQ TFLite libraries in the build file
	4.3.1 Gradle build
	4.3.2 Bazel build

	4.4 Building the TFLite Camera Demo based on the eIQ Core

	5 Building and updating the pre-installed application from sources
	5.1 Preparation
	5.2 Building the Label Image
	5.2.1 Building the APK
	5.2.2 Building the C++ binary

	5.3 Building the Benchmark Model
	5.3.1 Building the APK
	5.3.2 Building the C++ binary

	5.4 Building the TFLite Camera Demo
	5.5 Rebuilding the Android image with updated applications

	6 Installing a third-party application to the Android OS
	6.1 Adding additional native libraries
	6.2 Configuring SELinux labels for native libraries
	6.3 Booting the Android OS in permissive mode
	6.4 Installing and executing applications

	7 Optimization
	7.1 General
	7.1.1 Using Per-Channel-Quantization (PCQ) model instead of Per-Tensor-Quantization (PTQ) model
	7.1.2 Setting the CPU to performance mode

	7.2 i.MX 8M Plus
	7.2.1 PCQ model enablement for i.MX 8M Plus
	7.2.2 Hardware accelerators warmup time for i.MX 8M Plus

	7.3 i.MX 95
	7.3.1 Disabling DDR clock gating

	8 Note About the Source Code in the Document
	9 Revision History
	Legal information
	Contents

