<table>
<thead>
<tr>
<th>Info</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keywords</td>
<td>i²C-bus, computer control, GUI, RTC, PCF85263, PCF85363, USB</td>
</tr>
<tr>
<td>Abstract</td>
<td>User manual for the universal USB-i²C-bus interface dongle OM13518</td>
</tr>
</tbody>
</table>
Revision history

<table>
<thead>
<tr>
<th>Rev</th>
<th>Date</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>v.1</td>
<td>20140519</td>
<td>first revision</td>
</tr>
</tbody>
</table>

Contact information

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com
1. Introduction

The OM13518 dongle is an easy to use interface handler between the USB of a PC and the I²C-bus. The software control via a Graphical User Interface (GUI) allows a fast start to communicate with different circuits.

- USB-2 is used for data and the 5 V power supply.
- Three I²C-bus ports are wired in parallel.
- Cables to connect up the I²C-bus are enclosed.

2. Key features

2.1 USB-I²C interface module

The OM13518 dongle is a ready to run module. It creates a virtual COM-port via an USB connection. It provides three I²C-bus connections with 5 V option to power the application (max 450 mA).

- **Power consumption**: module/total: <50 mA/max 500 mA
- **I²C-bus clock frequency**: 245 Hz – 400 kHz
- **USB driver for Windows**: Windows XP, Windows 7, Windows 8
- **Size**: 50 mm × 40 mm × 15 mm

2.2 Software

The software control via a GUI allows a fast start to communicate to the different circuits.

Aside from the detailed GUI pages for the Real-Time Clocks, a UNIVERSAL INTERFACE allows to communicate with any I²C-bus device by entering directly the hex codes. Example: s A2 28 p

Where s stands for the I²C START and p for the I²C STOP condition.
3. Dongle

3.1 Circuit diagram

The dongle establishes the connection between the PC (USB port) and the I²C-bus interface.

![Simplified Block diagram of the OM13518](image)

3.2 Interfacing I²C-bus peripherals

The I²C-bus peripherals are connected directly with the I²C-bus. The 3 connectors Con1, Con2, and Con3 are connected in parallel and carry the four signals as also imprinted on the package:

- **+5 V**: Optional 5 V supply can be used. Total consumption of all 3 outputs must be kept below 450 mA.
- **SCL**: Serial CLock line
- **SDA**: Serial DAta line
- **GND**: Ground
In case that the periphery is connected to the +5V from the OM13518 no \(V_{DD} \) connection must be used.

Fig 2. Interfacing to the \(\text{i}^2\text{c}-\text{bus} \)

There is no need for external pull-up resistors, since 10 kΩ pull-ups are already built in the OM13518 dongle.

4. Installation

4.1 Hardware and driver installation

4.1.1 The box contains:
- One dongle
- One USB cable
- Three \(\text{i}^2\text{C} \)-bus cables:
 - One with female connector dedicated for NXP-RTC evaluation boards
 - Two cables for custom use via solder connection
 - The signal assignment is imprinted on the interface module

Fig 3. A) Dongle OM13518, B) connected to an evaluation board
4.1.2 Driver

First install the USB software driver before connecting the interface module.

- Unpack the file: `cp210x_vcp_win_xp_s2k3_vista_7_8_v6_6_1.zip`
- Install the driver in administrator mode

4.1.3 Hardware

1. Connect the USB cable with the dongle and with the PC and let the device to install. Connect the I²C-bus cable to your application; turn on the power in case an external one is needed.
2. The red LED will light up to indicate that the OM13518 successfully started up.
3. Now the system is ready for starting the GUI software

4.2 GUI Installation

1. Unpack the file `NXP_USB-I2C-RTC_GUI_V02.zip`. The latest version can be downloaded from the OM13518 home page.
2. Run the exe file: `NXP_USB-I2C-RTC_GUI_V02.exe`
3. A start window will pop up
4. Choose the right com port in the drop down list
5. Press Connect: Status changes to **Connected** and turns green

![Start window of the GUI](image-url)
5. Features of the Graphical User Interface (GUI)

The GUI can be used as a universal I²C-bus interface for controlling any peripheral circuit. Alternatively some specific windows are available e.g. for the Real-Time Clocks PCF85263 and PCF85363.

5.1 Universal I²C-bus interface

The Universal I²C interface allows controlling any circuit by entering directly the I²C-bus instructions. It is part of the Tab USB-I²C Commands.

Procedure and details:

1. Universal I²C-bus interface control, type in the following format:
 - Writing data, e.g.: \texttt{s A2 28 04 p} press Send Command
 \(s = \text{START}, A2 = \text{slave address}, 28 \ 04 = \text{data}, p = \text{STOP}\)
 - Reading data, e.g.: \texttt{s A2 28 s A3 0A p}: press Send Command
 setting address pointer, then reading 10 bytes (0Ah)
2. The sent data will be reflected in the field Transmitted Data.
3. The read data bytes are listed in the field Received Data.
4. Configuration can be saved on the PC (see section 5.2.1).
5. Configuration can be reloaded to continue with the used presetting for further tasks (see section 5.2.1.2).
6. Tabs on the GUI of the RTCs: PCF85263, PCF85363, to follow
7. Hovering the mouse-pointer over a function button, tool tips will pop up for explanations.
8. Pressing ▼ will open the list of possible options to select from.

Fig 6. Hovering the mouse-pointer and drop-down menus

5.2 GUI pages for the RTC PCF85263 and PCF85363

The objective is to have a fast and straightforward control of all the functions of the RTC. The principle for controlling is explained on the window *Time, Alarms, Timestamps* in Fig 7.
5.2.1 Save and read back the configuration

5.2.1.1 All the setting can be saved

1. Work with the GUI until you have the IC configured as desired.
2. Save the desired configuration to a file as follows: USB-I2C-Commands tab, Save Configuration, select a directory and name (see Fig 8).
3. If the GUI succeeds in writing the file, it will produce a pop-up window and then just press OK (see Fig 9).

![Confirmation window](image-url)
File Format:
The file is written in standard XML format, which almost all Operating Systems can read (see Fig 10).

```
- <ConfigData>
  - <Registers>
    <RegName>tsm_cfg_byte_b0</RegName>
    <RegValue>0</RegValue>
  </Registers>
  - <Registers>
    <RegName>tsm_cfg_byte_b1</RegName>
    <RegValue>0</RegValue>
  </Registers>
  - <Registers>
    <RegName>tsm_cfg_byte_b2</RegName>
    <RegValue>0</RegValue>
  </Registers>
```

Fig 10. XML format example

5.2.1.2 Reload the settings
1. Read back a saved configuration file with Read Configuration (see Fig 11):

![Selecting the directory and file](image-url)
2. If the GUI manages to read in the files successfully, it will produce a pop-up window and then just press OK (see Fig 12).

![Confirmation window](image)

Fig 12. Confirmation window

5.3 Examples

5.3.1 Setting the clock and reading it

1. Perform a Software reset: Reset tab, function SWR (see Fig 13).

![Reset of the software](image)

Fig 13. Reset of the software

2. Select menu Special Registers and press SWR.
3. Set the time and read back to verify that the clock is running (see Fig 7).
 - A valid time and date can be entered in the Set row, then press EXECUTE
 - The SET TIME programs the actual time based on your PC (see Fig 7 and Fig 14).
 - READ reads the current time and date of the RTC (see Fig 7 and Fig 14).
• **START** will continuously read the time at about once every second (see Fig 7 and Fig 14).

There are options to change from 24 hour to 12 hour mode, activate the 1/100s resolution and change the RTC from RTC mode (clock mode) to stop watch mode (see Fig 7 and Fig 14).

![Time control](image)

Fig 14. Time control

5.3.2 Blinking the LED at the interrupt output with the help of the watchdog

Procedure and details:

1. Perform a Software reset: Reset tab, function SWR (see Fig 15).

![Software reset](image)

Fig 15. Software reset
2. Enable \textit{INTA} for interrupt mode (see Fig 16).

![Fig 16. Enable the INTA for interrupt mode](image)

3. Enable \textit{INTA} for Watchdog (pulse at each time countdown occurs) (see Fig 17).

![Fig 17. Enable the INTA for Watchdog](image)
4. Enable the watchdog for a repeat every 2 seconds for example (see Fig 18).

![Fig 18. Enable the watchdog for a repeat every 2 seconds](image)

5. Observe the LED flashing every 2 seconds!!!

5.3.3 **Interactive quartz frequency offset correction:**

The quartz crystals come with a tolerance of typical ± 20 ppm. To correct the actual offset of the quartz in use, take the following steps:

1. Measure the frequency at CLKout pin, e.g. 32 768.51 Hz
2. Write the measured frequency in the entry field, it automatically calculates the offset and the needed correction value. 15.19 ppm or 7 correction pulses.
3. By activating **SET BYTE** the offset value is programmed in to the RTCs offset register.

Note: The offset calibration operates at the time counter level and will not result in any observable change in frequency.

![Fig 19. Offset correction](image)
5.3.4 Dedicated drop down menus are integrated for e.g.:
- Register overview: reading all the values at once
- Back-up battery control
- Timestamp
- Watch dog
- RAM
6. Legal information

6.1 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

6.2 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors’ aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductor product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer’s own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer’s sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer’s applications and products planned, as well as for the planned application and use of customer’s third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer’s applications or products, or the application or use by customer’s third party customer(s). Customer is responsible for doing all necessary testing for the customer’s applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer’s third party customer(s). NXP does not accept any liability in this respect.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Evaluation products — This product is provided on an “as is” and “with all faults” basis for evaluation purposes only. NXP Semiconductors, its affiliates and their suppliers expressly disclaim all warranties, whether express, implied or statutory, including but not limited to the implied warranties of non-infringement, merchantability and fitness for a particular purpose. The entire risk as to the quality, or arising out of the use or performance, of this product remains with customer.

In no event shall NXP Semiconductors, its affiliates or their suppliers be liable to customer for any special, indirect, consequential, punitive or incidental damages (including without limitation damages for loss of business, business interruption, loss of use, loss of data or information, and the like) arising out the use of or inability to use the product, whether or not based on tort (including negligence), strict liability, breach of contract, breach of warranty or any other theory, even if advised of the possibility of such damages.

Notwithstanding any damages that customer might incur for any reason whatsoever (including without limitation, all damages referenced above and all direct or general damages), the entire liability of NXP Semiconductors, its affiliates and their suppliers and customer’s exclusive remedy for all of the foregoing shall be limited to actual damages incurred by customer based on reasonable reliance up to the greater of the amount actually paid by customer for the product or five dollars (US$5.00). The foregoing limitations, exclusions and disclaimers shall apply to the maximum extent permitted by applicable law, even if any remedy fails of its essential purpose.

6.3 Trademarks

Notice: All referenced brands, product names, service names and trademarks are property of their respective owners.
7. List of figures

Fig 1. Simplified Block diagram of the OM13518 4
Fig 2. Interfacing to the I²C-bus 5
Fig 3. A) Dongle OM13518, B) connected to an evaluation board .. 5
Fig 4. Start window of the GUI 6
Fig 5. First Tab: USB-I²C commands 7
Fig 6. Hovering the mouse-pointer and drop-down menus ... 8
Fig 7. Window structure: Time, Alarms, Timestamps 9
Fig 8. Selecting the directory 10
Fig 9. Confirmation window .. 10
Fig 10. XML format example 11
Fig 11. Selecting the directory and file 11
Fig 12. Confirmation window 12
Fig 13. Reset of the software 12
Fig 14. Time control ... 13
Fig 15. Software reset ... 13
Fig 16. Enable the INTA for interrupt mode 14
Fig 17. Enable the INTA for Watchdog 14
Fig 18. Enable the watchdog for a repeat every 2 seconds ... 15
Fig 19. Offset correction .. 15
8. Contents

1. Introduction ... 3
2. Key features ... 3
 2.1 USB-I²C interface module 3
 2.2 Software ... 3
3. Dongle ... 4
 3.1 Circuit diagram ... 4
 3.2 Interfacing I²C-bus peripherals 4
4. Installation ... 5
 4.1 Hardware and driver installation 5
 4.1.1 The box contains: ... 5
 4.1.2 Driver ... 6
 4.1.3 Hardware .. 6
 4.2 GUI Installation ... 6
5. Features of the Graphical User Interface (GUI) .. 7
 5.1 Universal I²C-bus interface 7
 5.2 GUI pages for the RTC PCF85263 and PCF85363 ... 8
 5.2.1 Save and read back the configuration 9
 5.2.1.1 All the setting can be saved 9
 5.2.1.2 Reload the settings 11
 5.3 Examples ... 12
 5.3.1 Setting the clock and reading it 12
 5.3.2 Blinking the LED at the interrupt output with the help of the watchdog 13
 5.3.3 Interactive quartz frequency offset correction: ... 15
 5.3.4 Dedicated drop down menus are integrated for e.g.: ... 16
6. Legal information ... 17
 6.1 Definitions .. 17
 6.2 Disclaimers ... 17
 6.3 Trademarks .. 17
7. List of figures ... 18
8. Contents ... 19