This document is an introduction to the QN9080-001-M17 DK board.
1. Introduction

The QN9080-001-M17 DK board is designed to ease the evaluation of the chip's functions and performance on customer side to make it easy to control, connect, and debug the extension hardware and make it easy for the customer to develop and debug firmware.

1.1 Purpose

This document introduces all functions of the QN9080-001-M17 DK board and describes all its parts in detail.

1.2 Kit contents

QN9080-001-M17 DK includes the following:

- QN9080-001-M17 DK board.
- QN9080 USB dongle.
- NFC antenna.
- USB cable.
2. Hardware description

The QN9080-001-M17 DK board provides easy access to peripherals, such as buttons and LEDs. The board also provides useful interfaces, such as the USB port for UART communication, the CMSIS-DAP debugger, and the standard Arduino and Pmod connector. The USB dongle is a Bluetooth® device powered by QN9080. It acts as a master/slave when communicating with QN9080-001-M17 devices.

2.1 Hardware overview

The QN9080-001-M17 DK board is shown in Fig 1. The detailed information is listed in Table 1.

![Fig 1. Board overview](image)

<table>
<thead>
<tr>
<th>Number</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>QN9080-001-M17 USB port</td>
<td>The QN9080-001-M17 USB port provides power supply to the whole board and the USB interface of the QN9080-001-M17 chip.</td>
</tr>
<tr>
<td>2</td>
<td>LPC4322 USB port</td>
<td>The LPC4322 USB port provides power supply to the whole board and the USB interface is connected to LPC4322.</td>
</tr>
<tr>
<td>3</td>
<td>LPC4322</td>
<td>LPC4322 works as a JTAG/SWD debugger.</td>
</tr>
<tr>
<td>4</td>
<td>QN9080-001-M17 module</td>
<td>The QN9080-001-M17 module board.</td>
</tr>
<tr>
<td>5</td>
<td>Jumper JP1</td>
<td>This jumper selects the JTAG/SWD debugging target:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Open: on-board target (default).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Short: off-board target.</td>
</tr>
<tr>
<td>6</td>
<td>Jumper JP5</td>
<td>This jumper selects the LPC4322 working mode:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Short: DFU mode enabled.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Open: normal mode (default).</td>
</tr>
</tbody>
</table>
Table 1. QN9080-001-M17 DK board’s mark information list

<table>
<thead>
<tr>
<th>Number</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Jumper JP7</td>
<td>This jumper selects the QN9080-001-M17 module power supply voltage:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 1-2: 1.8 V power supply.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 2-3: 3.0 V power supply (default).</td>
</tr>
<tr>
<td>8</td>
<td>Jumper JP8</td>
<td>This jumper selects the transceiver mode to QN9080-001-M17 UART:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Short: UART interface enabled (default).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Open: UART interface disabled.</td>
</tr>
<tr>
<td>9</td>
<td>Jumper JP11</td>
<td>This jumper selects the transceiver mode to the QN9080-001-M17 I2C interface:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Short: I2C interface enabled (default).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Open: I2C interface disabled.</td>
</tr>
<tr>
<td>10</td>
<td>Header J5 and J7</td>
<td>QN9080-001-M17 GPIO for testing and compatible with the Arduino interface.</td>
</tr>
<tr>
<td>11</td>
<td>Header J4 and J6</td>
<td>QN9080-001-M17 GPIO for testing and compatible with the Arduino interface.</td>
</tr>
<tr>
<td>12</td>
<td>Jumper JP12, JP13,</td>
<td>These jumpers are used for the power consumption test.</td>
</tr>
<tr>
<td></td>
<td>JP14</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Header J8</td>
<td>PMod interface connector, compatible with PMod.</td>
</tr>
<tr>
<td>14</td>
<td>Debugger connector</td>
<td>Used to offer the JTAG/SWD interfaces to the off-board target.</td>
</tr>
<tr>
<td>15</td>
<td>Jumper JP2</td>
<td>This jumper selects the QN9080-001-M17 power supply source: on-board power or EXT power.</td>
</tr>
<tr>
<td>16</td>
<td>Button3 SW3</td>
<td>Button3 resets the QN9080-001-M17 chip.</td>
</tr>
<tr>
<td>17</td>
<td>Button1 SW1</td>
<td>Button1 is used for user-defined function.</td>
</tr>
<tr>
<td>18</td>
<td>Button2 SW2</td>
<td>Button2 is used for user-defined function.</td>
</tr>
<tr>
<td>19</td>
<td>Jumper JP15</td>
<td>Jumper used to enable the QN9080-001-M17 ISP function.</td>
</tr>
<tr>
<td>20</td>
<td>GND Pin</td>
<td>GND pin used as the test point of ground.</td>
</tr>
<tr>
<td>21</td>
<td>Jumper JP16</td>
<td>Jumper used to eliminate the leakage from the USB interface when the DK board is powered by a battery.</td>
</tr>
</tbody>
</table>

2.2 Default jumper settings on the DK board

As shown in Fig 2, the power, JTAG/SWD, UART, and I2C enable jumpers are connected by default. Table 2 and Table 5 show the jumpers’ functions and correct connection.
Table 2. QN9080-001-M17 DK board’s default jumper settings

<table>
<thead>
<tr>
<th>Jumper</th>
<th>Jumper setting</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>JP2</td>
<td>Pin 1, 2 shorted</td>
<td>QN9080-001-M17’s on-board target.</td>
</tr>
<tr>
<td>JP7</td>
<td>Pin 2, 3 shorted</td>
<td>QN9080-001-M17’s power (3 V).</td>
</tr>
<tr>
<td>JP8</td>
<td>Pin 1, 2 shorted</td>
<td>UART path enabled.</td>
</tr>
<tr>
<td>JP11</td>
<td>Pin 1, 2 shorted</td>
<td>I²C path enabled.</td>
</tr>
<tr>
<td>JP16</td>
<td>Pin 1, 2 shorted</td>
<td>When the DK board is powered by a battery, leave it open.</td>
</tr>
<tr>
<td>J1 (on-module board)</td>
<td>Pin 1, 2 shorted</td>
<td>Internal NTAG powered on.</td>
</tr>
<tr>
<td>J2 (on-module board)</td>
<td>Pin 1, 2 shorted</td>
<td>When the module board is powered from the main board.</td>
</tr>
</tbody>
</table>

2.3 LPC4322 debugger

The LPC4322 debugger supports both the CMSIS-DAP (default) and the J-Link interface. It provides both the SWD/JTAG and UART interfaces. See section 4.4 in document UM11097 on how to change the debug interface to J-Link and the other way round. You may download or update the firmware to the QN9080-001-M17 device using UART or JTAG/SWD interfaces. There is a debugger connector to program and debug an off-board target (shown in Fig 3).
2.4 **QN9080-001-M17 module**

The QN9080-001-M17 module integrates the BLE radio, controller, protocol stack, BLE antenna, NTAG, clocks, and profile software on a single chip, which provides a flexible and easy usage of the BLE SoC solution. It includes a high-performance MCU (32-bit Arm® Cortex®-M4F), on-chip memory, and peripherals for users to develop a truly single-chip wireless MCU solution.

![Module Board Details](image)

Table 3. QN9080-001-M17 module board’s mark information list

<table>
<thead>
<tr>
<th>Number</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Jumper J2</td>
<td>Jumper used to select the power NTAG inside.</td>
</tr>
<tr>
<td>2</td>
<td>Jumper J1</td>
<td>Jumper used to select the power for QN9080-001-M17.</td>
</tr>
<tr>
<td>3</td>
<td>Connector J4</td>
<td>Connector used to connect the NTAG antenna.</td>
</tr>
</tbody>
</table>

Table 4. QN9080-001-M17 DK module's default jumper settings

<table>
<thead>
<tr>
<th>Jumper</th>
<th>Jumper setting</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>J1</td>
<td>Pin 1, 2 shorted</td>
<td>The NTAG inside shares the same power supply with the QN9080 inside.</td>
</tr>
<tr>
<td>J2</td>
<td>Pin 1, 2 shorted</td>
<td>QN9080-001-M17 is powered by an on-board power supply.</td>
</tr>
</tbody>
</table>
The QN9080-001-M17 module is shown in Fig 5.

![QN9080-001-M17 module board](image1)

Fig 6. NTAG antenna board

2.5 GPIO and Arduino interfaces

On the QN9080-001-M17 DK board, the J4, J5, J6, and J7 connectors all provide GPIO connection outputs. The board is also compatible with the Arduino board interface. The interface schematic is shown in Fig 7.

![Arduino Shield receptacles R4](image2)

Fig 7. QN9080-001-M17 DK board GPIO and Arduino interface
2.6 QN9080-001-M17 reset button

The reset button provides a hardware reset to the QN9080-001-M17 device, as shown in Fig 8.

![Fig 8. Reset button](image)

2.7 ISP mode jumper

JP15 is the ISP mode jumper used to set the QN9080-001-M17 mode. When the jumper is shorted, the PB02 chip mode pin is connected to the GND and this function is enabled. When the jumper is open, the ISP mode function is disabled, as shown in Fig 9.

![Fig 9. Chip mode jumper](image)

2.8 SWD/JTAG interface

The board provides a SWD/JTAG interface to be used by an external debugger, as shown in Fig 10.

![Fig 10. Debugger interface](image)
2.9 Buttons

As shown in Fig 11, the DK board offers three buttons. When using the SW1 and SW2 buttons, the GPIO must be configured as the input. The logic LOW input is applied to the GPIO when a button is pressed.

The SW3 button is used to reset the QN9080-001-M17 chip. Press the button to reset the QN9080-001-M17.

2.10 LED

The board offers a 3-color RGB LED. The connections are shown in Fig 12. The LED lights up when the corresponding GPIO outputs switch to the logic high level. The GPIO control pins are QN_PA13, QN_PA25, and QN_PA31. The GPIO QN_PA13 can work in the PWM out mode. Therefore, the brightness of the LED can change with the PWM pulse width.
3. DK board application function

3.1 CMSIS-DAP interface

The QN9080-001-M17 DK board offers the JTAG/SWD interface either to on-board or off-board QN9080-001-M17 targets. It also provides the USB-to-UART interface for QN9080-001-M17.

To change to the CMSIS-DAP interface, see Chapter 4.4 in document UM11097.

3.1.1 CMSIS-DAP to on-board QN9080-001-M17

When programing or debugging a QN9080-001-M17 device using the CMSIS-DAP interface, JP1 and JP2 must be configured according to Table 5.

<table>
<thead>
<tr>
<th>JP1</th>
<th>JP2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Open</td>
<td>Short pin 1, 2, QN9080-001-M17 power enable.</td>
</tr>
</tbody>
</table>

When downloading firmware to QN9080-001-M17 with the ISP mode, enable the UART path and set the chip mode pin to ground. The jumper setting is shown in Table 6.

<table>
<thead>
<tr>
<th>JP8</th>
<th>JP15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Short, UART path enable.</td>
<td>Short, ISP mode enable.</td>
</tr>
</tbody>
</table>

The ISP download operation flow is shown in Fig 13.

![Fig 13. ISP download operation flow](image)

After the ISP download operation, remove the jumper cap on jumper JP15 and leave the JP15 open. Then, the QN9080-001-M17 can go into the normal mode normally.

3.1.2 CMSIS-DAP to off-board target

When using the QN9080-001-M17 DK board to program or debug off-board targets using the JTAG/SWD interface, JP1 and JP2 must be configured according to Table 7.

<table>
<thead>
<tr>
<th>JP1</th>
<th>JP2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Short, CMSIS-DAP target is off-board target.</td>
<td>Short pin 2,3, 3 V power disable on JTAG/SWD connector.</td>
</tr>
</tbody>
</table>

3.2 Current consumption test

The QN9080-001-M17 DK board provides two ways to measure the QN9080-001-M17 chip current consumption. One way is to measure the current by the on-board precise resistor used for the I-to-V conversion. The small voltage signal is amplified by the operation amplifier and fed to the ADC. Then, it can be calculated by LPC4322 and shown in the MCUXpresso IDE. Another way is to measure the current by an external ammeter on jumper JP14.
On the QN9080SIP module board, remove the jumper on J1 and short Pin1 and Pin2 of the J2 to measure the QN9080 current draw only.

3.2.1 Current test using LPC4322

The QN9080-001-M17 DK board has an on-board current measurement circuit consisting of the MAX9634T (U18) current monitor chip and the 12-bit ADC (ADC122SO21, U19) with 12-bit sampling from 50 ksp to 200 ksp. The on-board MAX9634T current monitor measures the voltage across the QN9080-001-M17 VCC V-sense resistors; either 8.24 Ω or 4.12 Ω if JP13 is installed. MAX9634 multiplies the sense voltage 25 times to provide a voltage range suitable for the ADC to measure.

A 2-input analog mux is used to select the channel to be measured; either the QN9080-001-M17 or the devices from the expansion board on the DK extension connectors. The current measurement circuit is controlled by the Link2 processor and is not user-programmable. The power-measurement utilities with this feature are available only after installing the MCUXpresso IDE.

Due to the input offset voltage variations in MAX9634, the current-measurement circuit is not recommended for measuring currents below 150 μA.

The QN9080-001-M17 current can be measured by the voltage across a sense resistor in series with the supply. The voltage across a series 4.12-Ω resistor with the target QN9080-001-M17 VCC can be manually measured at JP12 on the PCB. Use the Ohm’s law to calculate the current (QN9080-001-M17 current = measured voltage / 4.12 Ω). For example, if the measured voltage is 10 mV, then 10e-3 / 4.12 Ω = 2.44 mA. Note that the current consumed by MAX9634 used in the on-board current measurement is included in the voltage measured on this resistor. The detailed schematic is shown in **Fig 14**.

![QN908x Consumption|Current Test](image)

Fig 14. Current test using the LPC processor

When performing the current test using the Link2 processor, jumpers JP12, JP13, and JP14 must be set according to **Table 8**.

<table>
<thead>
<tr>
<th>Jumper</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>JP12</td>
<td>Open when used for the Link2 processor current test.</td>
</tr>
<tr>
<td>JP13</td>
<td>Open when used for the Link2 processor current test.</td>
</tr>
<tr>
<td>JP14</td>
<td>Short when no digital ammeter in series.</td>
</tr>
</tbody>
</table>
3.2.2 Current test using a digital ammeter

When performing the current test using an external digital ammeter, jumpers JP12, JP13, and JP14 must be set according to Table 9. Use a jumper cap to short the pins. The schematic is shown in Fig 15.

![Fig 15. Current test using an ammeter](image1.png)

When performing the current test using an ammeter, jumpers JP12, JP13, and JP14 must be set according to Table 9.

<table>
<thead>
<tr>
<th>Jumper</th>
<th>Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>JP12</td>
<td>Short when used for Ammeter current test.</td>
</tr>
<tr>
<td>JP13</td>
<td>Short when used for Ammeter current test.</td>
</tr>
<tr>
<td>JP14</td>
<td>Need an ammeter in series.</td>
</tr>
</tbody>
</table>

3.2.3 Current test using a DC power analyzer

Measure the current using a DC power analyzer in these two ways: one way is to use the DC power analyzer as an ammeter that shares the same settings as the ammeter test, and the other way is to use the DC power analyzer as the power supply for the DUT.

In this case, the QN9080-001-M17 module is powered by the DC power analyzer. The QN_VCC power pin is on jumper JP14, where a triangle symbol indicates the pin. The GND pin near jumper TP13 can be also used as the power ground.

![Fig 16. QN_VCC power pin](image2.png)
4. QN9080 USB dongle

4.1 Dongle hardware

The QN9080 USB dongle works together with the Connectivity QTool and behaves either as a master or a slave when talking to the QN9080-001-M17 DK (or other devices). As shown in Fig 18, the USB dongle receives commands from the Connectivity QTool via a virtual COM port, which initializes the QN9080 dongle either as a master device or a slave device. All tests can be performed by the Connectivity QTool after the initialization.

To update the firmware of the QN9080 USB dongle, see Chapter 4.3 in document UM11097.

4.2 Dongle connection

The QN9080 USB dongle is a USB-interfaced device with the QN9080 built in. With the driver and SDK installed on your computer (See Chapter 4.2 in document UM11097), use the Connectivity QTool in the SDK to control the QN9080 in the dongle to work as a central/peripheral device. The DK board is supplied from the USB port and works as a peripheral/central device. The dongle connection is illustrated in Fig 18. See the Connectivity QTool user manual for information about the Connectivity QTool usage.
5. Appendix

5.1 Schematics

5.1.1 QN9080-001-M17 DK main board

The QN9080-001-M17 DK board schematic has five parts: power, LPC processor, QN9080-001-M17-BLE, QN9080-001-M17-function, and Arduino interface.

![Schematic Diagram]

Fig 19. Power schematic of the QN9080-001-M17 DK board
Fig 20. LPC processor schematic of the QN9080-001-M17 DK board
Fig 21. QN908x-BLE schematic of the QN9080-001-M17 DK board

Fig 22. QN908x-function schematic of the QN9080-001-M17 DK board
5.1.2 QN9080-001-M17 module board

Fig 23. Arduino interface schematic of the QN9080-001-M17 DK board

Fig 24. QN9080-001-M17 module board
5.2 PCB layout

5.2.1 QN9080-001-M17 DK main board

Fig 25. Top etch

Fig 26. GND plane
Fig 27. PWR plane

Fig 28. Bottom etch
Fig 29. Top silkscreen

Fig 30. Bottom silkscreen
5.2.2 QN9080-001-M17 board

Fig 31. Top etch

Fig 32. GND plane
5.3 Dimensions of the PCB board

5.3.1 QN9080-001-M17 DK board

Fig 35. Top silkscreen

Fig 36. Dimensions of the QN9080-001-M17 DK board
5.3.2 QN9080-001-M17 module

Fig 37. Dimensions of the QN9080-001-M17 module board

5.4 Notes for using a lithium battery

When using a lithium battery as the power supply for the QN9080-001-M17 module, pay attention to the following:

- To avoid current leakage from the QN9080-001-M17 USB data line, leave JP16 open.
- To avoid current leakage from the 3-color LED, remove resistors R48, R49, and R50.

Fig 38. Lithium battery on the QN9080-001-M17 DK board
5.5 Statements

5.5.1 FCC compliance statement

Changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.

This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation.

If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

◆ Reorient or relocate the receiving antenna.
◆ Increase the separation between the equipment and receiver.
◆ Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
◆ Consult the dealer or an experienced radio/TV technician for help.

IC Compliance Statement

This device complies with Industry Canada license-exempt RSS standard(s). Operation is subject to the following conditions: (1) this device may not cause interference, and (2) this device must accept any interference, including interference that may cause undesired operation of the device.
6. Legal information

6.1 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

6.2 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes no responsibility for the content in this document if provided by an information source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors’ aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical, safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer’s own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer’s sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer’s applications and products planned, as well as for the planned application and use of customer’s third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer’s applications or products, or the application or use by customer’s third party customer(s). Customer is responsible for doing all necessary testing for the customer’s applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer’s third party customer(s). NXP does not accept any liability in this respect.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

Evaluation products — This product is provided on an “as is” and “with all faults” basis for evaluation purposes only. NXP Semiconductors, its affiliates and their suppliers expressly disclaim all warranties, whether express, implied or statutory, including but not limited to the implied warranties of non-infringement, merchantability and fitness for a particular purpose. The entire risk as to the quality, or arising out of the use or performance, of this product remains with customer.

In no event shall NXP Semiconductors, its affiliates or their suppliers be liable to customer for any special, indirect, consequential, punitive or incidental damages (including without limitation damages for loss of business, business interruption, loss of use, loss of data or information, and the like) arising out the use of or inability to use the product, whether or not based on tort (including negligence), strict liability, breach of contract, breach of warranty or any other theory, even if advised of the possibility of such damages.

Notwithstanding any damages that customer might incur for any reason whatsoever (including without limitation, all damages referenced above and all direct or general damages), the entire liability of NXP Semiconductors, its affiliates and their suppliers and customer’s exclusive remedy for all of the foregoing shall be limited to actual damages incurred by customer based on reasonable reliance up to the greater of the amount actually paid by customer for the product or five dollars (US$5.00). The foregoing limitations, exclusions and disclaimers shall apply to the maximum extent permitted by applicable law, even if any remedy fails of its essential purpose.

6.3 Licenses

Purchase of NXP <xxx> components

<License statement text>

6.4 Patents

Notice is herewith given that the subject device uses one or more of the following patents and that each of these patents may have corresponding patents in other jurisdictions.

<Patent ID> — owned by <Company name>

6.5 Trademarks

Notice: All referenced brands, product names, service names and trademarks are property of their respective owners.

<Name> — is a trademark of NXP Semiconductors N.V.
Contents

1. Introduction ..2
 1.1 Purpose ...2
 1.2 Kit contents ..2
2. Hardware description ..3
 2.1 Hardware overview ..3
 2.2 Default jumper settings on the DK board4
 2.3 CMSIS-DAP debugger ..5
 2.4 QN9080-001-M17 module ...6
 2.5 GPIO and Arduino interfaces7
 2.6 QN9080-001-M17 reset button8
 2.7 ISP mode jumper ..8
 2.8 JTAG interface ..8
 2.9 Buttons ...9
 2.10 LED ...9
3. DK board application function10
 3.1 CMSIS-DAP interface ..10
 3.2 Current consumption test ..10
4. QN9080 USB dongle ..13
 4.1 Dongle hardware ..13
 4.2 Dongle connection ..13
5. Appendix ..14
 5.1 Schematics ..14
 5.2 PCB layout ..18
 5.3 Dimensions of the PCB board23
 5.4 Notes for using a lithium battery24
 5.5 Statements ..25
6. Legal information ..26
 6.1 Definitions ..26
 6.2 Disclaimers ..26
 6.3 Licenses ..26
 6.4 Patents ..26
 6.5 Trademarks ..26
7. Contents ..27

Please be aware that important notices concerning this document and the product(s) described herein, have been included in the section 'Legal information'.

© NXP B.V. 2019. All rights reserved.
For more information, visit: http://www.nxp.com
Date of release: January 2019
Document identifier: UM11184