Document information

<table>
<thead>
<tr>
<th>Information</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keywords</td>
<td>TEA2209T, TEA2209DB1584, active bridge rectifier controller, X-capacitor discharge, self-supplying, high efficiency, traditional diode bridge, power supply, demo board</td>
</tr>
<tr>
<td>Abstract</td>
<td>The TEA2209T is an active bridge rectifier controller replacing the traditional diode bridge. Using the TEA2209T with low-ohmic high-voltage external MOSFETs significantly improves the efficiency of the power converter as the typical rectifier diode-forward conduction losses are eliminated. In addition, the TEA2209T includes an X-capacitor discharge function. To reduce power consumption at a standby condition, an external signal via the COMP pin can disable the TEA2209T. This user manual describes how the TEA2209DB1584 demo board can be used to replace the traditional diode bridge. This demo board contains a TEA2209T and four low-ohmic high-voltage MOSFETs.</td>
</tr>
</tbody>
</table>
Revision History

<table>
<thead>
<tr>
<th>Rev</th>
<th>Date</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>v.1.1</td>
<td>20210406</td>
<td>Updated version</td>
</tr>
</tbody>
</table>

Modifications:
- Figure 6 in Section 5 has been updated.
- Figure 9 in Section 6.3 has been updated.

<table>
<thead>
<tr>
<th>Rev</th>
<th>Date</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>v.1</td>
<td>20210129</td>
<td>Initial version</td>
</tr>
</tbody>
</table>
1 Introduction

Note: This product has not undergone formal EU EMC assessment. As a component used in a research environment, it is the responsibility of the user to ensure that the finished assembly does not cause undue interference when used. It cannot be CE marked unless assessed.

WARNING

Lethal voltage and fire ignition hazard

The non-insulated high voltages that are present when operating this product, constitute a risk of electric shock, personal injury, death and/or ignition of fire. This product is intended for evaluation purposes only. It shall be operated in a designated test area by personnel qualified according to local requirements and labor laws to work with non-insulated mains voltages and high-voltage circuits. This product shall never be operated unattended.

This user manual describes the TEA2209DB1584 demo board. It provides a functional description, supported with instructions on how to connect the board to obtain the best results and performance.

The TEA2209T is a product of a new generation of active bridge rectifier controllers replacing the traditional diode bridge.

Using the TEA2209T with low-ohmic high-voltage external MOSFETs significantly improves the efficiency of the power converter as the typical rectifier diode-forward conduction losses are eliminated. Efficiency can improve up to about 1.4 % at 90 V (AC) mains voltage.

The TEA2209T is intended for power supplies with a boost-type power-factor controller as a first stage. The second stage can be a resonant controller, a flyback controller, or any other controller topology. It can be used in all power supplies requiring high efficiency such as adapters, server and telecom power supplies, desktop PCs, all-in-all PC power supplies, and television power supplies.

![Figure 1. Pin configuration diagram (SO16)](image-url)
1.1 Features

- Elimination of forward conduction losses of the diode rectifier bridge
- Very low IC power consumption (2 mW)
- Integrated high-voltage level shifters
- Directly drives four rectifier MOSFETs
- Very low external part count
- Integrated X-capacitor discharge (2 mA)
- Self-supplying
- Full-wave drive improving total harmonic distortion (THD)
- Undervoltage lockout (UVLO) for high-side and low-side drivers
- Drain-source overvoltage protection for all external power MOSFETs
- Gate pull-down currents at start-up for all external power MOSFETs
- Disable function for all external power FETs

2 Safety warning

This demo board is connected to the mains voltage. Avoid touching the board while it is connected to the mains voltage and when it is in operation. An isolated housing is obligatory when used in uncontrolled, non-laboratory environments. Galvanic isolation from the mains phase using a fixed or variable transformer is always recommended.

![Isolation symbols](attachment:019aab173.png)
![Isolation symbols](attachment:019aab174.png)

a. Isolated
b. Not isolated

Figure 2. Isolation symbols
3 Board photographs

The TEA2209DB1584 demo board consists of the TEA2209T in an SO16 package with four MOSFETs (600 V; 28 mΩ). Figure 3 shows the front side of demo board.

Figure 3. TEA2209DB1584 demo board photograph
4 TEA2209DB1584 demo board setup

The TEA2209DB1584 demo board contains four 600 V/28 mΩ MOSFETs. It makes the board suitable for universal AC input and output power applications of several hundreds of Watts. The TEA2209DB1584 demo board contains four leads that can easily replace a traditional diode bridge. The outer two leads are connected to positive and negative rectified voltages. The inner two leads are connected to AC mains lines. These four leads are pin-to-pin with typical bridge rectifier diodes pins. Figure 4 describes the difference between bridge diodes and active bridge configurations.

Figure 4. Diode bridge configuration versus TEA2209DB1584 demo board typical configuration
Figure 5 shows an example of the TEA2209DB1584 demo board mounted on an NXP Semiconductors TEA2016DB1519 demo board.
5 Operation

The TEA2209T is a controller IC for an active bridge rectifier. It can directly drive the four MOSFETs in an active bridge. Figure 6 shows a typical configuration. As the output is a rectified sine wave, a boost-type power-factor circuit must follow the application.

![Figure 6. Typical configuration](image)

The control circuit of the TEA2209T senses the polarity of the mains voltage between pins L and R. Depending on the polarity, either GATELL or GATELR is switched on. The comparator in the control circuit, which compares the L and R voltages, has thresholds of 250 mV and −250 mV depending on the slope polarity. If the difference voltage between L and R is less than 250 mV both GATELL and GATELR are low.

The gate drivers are high-current rail-to-rail MOS output drivers. An on-chip supply circuit which draws current from either L or R generates the gate driver voltage. After a zero-crossing of the mains voltage, the supply capacitor \(C_{VCC} \) is charged to the regulation level \(V_{reg} \). Then the discharge state is entered. The resulting power dissipation from the mains voltage is about 1 mW excluding gate charge losses of the external power MOSFETs. These gate charge losses typically add 1 mW of dissipation.

At start-up, the supply capacitor is first charged to the \(V_{start} \) voltage and enters the start-up state. After a next zero-crossing of the mains voltage, the supply capacitor is charged to \(V_{reg} \) in the charging state. When the voltage at the supply capacitor exceeds \(V_{dis} \), the gate driver outputs are enabled. When all drivers are active, the MOSFETs take over the role of the diodes which, compared to a passive diode rectifier bridge, results in lower power loss.

When the mains voltage is disconnected, the internal bias current in the discharge state discharges the supply capacitor. When the voltage at pin VCC drops to below \(V_{dis} \), the X-capacitor discharge state is entered, which draws 2 mA of current from VR to discharge the X-capacitor. The waiting time \(t_d \) until X-capacitor discharge starts is:
Using a typical value of 2.2 μF for C_{VCC} yields about 0.24 s. While VR discharges the X-capacitor, the mains can be reconnected. In that case, the charge mode is entered again. Figure 7 describes the start-up, the normal operation, and the power-off of the TEA2209T.
6 Performance

6.1 Test facilities

- Oscilloscope: Agilent Technologies DSOX3034T
- AC power source: Chroma 61504
- Electronic load: Chroma 63600-2
- Digital power meter: WT210
- Power board: TEA2016DB1519

6.2 Test setup

To measure the system performance the TEA2209DB1584 is mounted on the TEA2016DB1519. The diode bridge rectifier, BD101, is removed from the TEA2016DB1519 and replaced by the TEA2209DB1584. Figure 8 shows details of the test setup.
When the MOSFET pin open test for active bridge is required, add a diode in parallel to each active bridge MOSFET.

To enable or disable active bridge operation via the COMP pin, the TEA2209T supports an external signal. This COMP pin is connected to digital high/low signal output from the MCU or the PFC gate signal throughout RC filter. When the PFC gate signal is used, the PFC gate pin can be connected to the TEA2209DB1584 directly, because the RC filter is already implemented. When a digital high/low signal is input, remove the C4 capacitor on the TEA2209DB1584 to avoid additional delay time.
6.3 Design guideline for COMP and COMP_POL

The TEA2209T can disable gate drivers using an external signal. The external signal is connected to the COMP pin. Depending on the COMP_POL selection, either a high level or a low level on the COMP pin disables gate operation. Table 1 shows the functionality of COMP and COMP_POL. When COMP pin voltage exceeds 1.3 V, the COMP level is HIGH. When the COMP pin voltage is lower than 0.95 V, the COMP level is LOW.

<table>
<thead>
<tr>
<th>COMP</th>
<th>COMP_POL = VCC</th>
<th>COMP_POL = GND</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIGH</td>
<td>All gate drivers are disabled</td>
<td>All gate drivers are enabled</td>
</tr>
<tr>
<td>LOW</td>
<td>All gate drivers are enabled</td>
<td>All gate drivers are disabled</td>
</tr>
</tbody>
</table>

Disabling all gate drivers is helpful to reduce power loss and increase efficiency at a low-load condition. A signal from a microprocessor can disable gate drivers. When there is no microprocessor on the system, the PFC gate signal can be used to disable the gate drivers at light load throughout the external circuit. Figure 9 shows an application example with PFC gate signal. The PFC gate duty-ratio, the PFC gate level, and the external resistor divider determine the COMP level. When PFC operates in burst mode, COMP level has ripple according to burst mode frequency. Whenever the ripple exceeds 1.3 V threshold, gate drivers are enabled. Section 6.5 shows the test waveform.

The TEA2209DB1584 implements an external RC filter with \(R_{\text{COMP_high}} = 18 \, \text{k}\Omega \), \(R_{\text{COMP_low}} = 180 \, \text{k}\Omega \), \(C_{\text{COMP_high}} = 2.2 \, \mu\text{F} \) and 1N4148. To adjust the output power level which disables gate drivers, change \(R_{\text{COMP_high}} \). As reducing \(R_{\text{COMP_high}} \) value, gate drivers can be disabled at lower power levels. Section 6.8.2 gives the test result with the TEA2016DB1519.
6.4 Start-up sequence

After AC mains voltage is applied, the body diodes of the MOSFET rectifiers are connected until the TEA2209T is enabled. The internal self-bias circuit from the rectified mains voltage, VR, supplies the VCC.

Depending on the output load condition, the COMP pin voltage may vary. At 264 V (AC) and a no-load condition, the TEA2209T is disabled. At 90 V (AC) and a no-load condition, however, the COMP pin level is high enough to enable the TEA2209T when PFC gate signals are available.

When the 3.3 V (DC) external source level to enable the TEA2209T is connected to the COMP pin, TEA2209T is enabled when VCC has reached the V_{start} level. As mentioned in Section 6.2, the C4 capacitor is removed from the TEA2209DB1584 demo board. Figure 12 and Figure 13 show the start-up sequences when an external 3.3 V (DC) source is connected to COMP pin.

![Graphs showing start-up sequences](image-url)

Figure 10. Start-up sequence at no load; PFC gate signal connected to COMP pin

- CH1: AC mains (300 V/div)
- CH2: VCC (5 V/div)
- CH3: GATELL (10 V/div)
- CH4: COMP (5 V/div)
- Time: 200 ms/div

a. 90 V (AC)

b. 264 V (AC)
Figure 11. Start-up sequence at 240 W load; PFC gate signal connected to COMP pin

- CH1: AC mains (300 V/div)
- CH2: VCC (5 V/div)
- CH3: GATELL (10 V/div)
- CH4: COMP (5 V/div)
- Time: 100 ms/div
 - a. 90 V (AC)
 - b. 264 V (AC)

Figure 12. Start-up sequence at no load; 3.3 V (DC) connected to COMP pin

- CH1: AC mains (300 V/div)
- CH2: VCC (5 V/div)
- CH3: GATELL (10 V/div)
- CH4: COMP (2 V/div)
- Time: 20 ms/div
 - a. 90 V (AC)
 - b. 264 V (AC)
6.5 Normal operation

6.5.1 Connecting the PFC gate signal to the COMP pin

When the voltage between L and R is higher than 250 mV, the GATEHL and GATELR are enabled. When the voltage between L and R is below −250 mV, the GATEHR and GATELL are enabled. Depending the +250 mV and −250 mV detection thresholds, dead time occurs between the gates. At no load, the PFC of the TEA2016 operates in burst mode. Because the on-time of the PFC gate and the switching period in burst mode are long at 90 V (AC) and no load, the TEA2209T is enabled in every PFC burst period.
Figure 14. Normal operation at no load; the PFC gate signal is connected to the COMP pin

Figure 15. Normal operation at 90 V (AC)/240 W load; the PFC gate signal is connected to the COMP pin
6.5.2 Connecting the external DC signal to the COMP pin

When the COMP level exceeds 1.3 V, the TEA2209T is enabled. Before enabling the first gate signal after TEA2209 is enabled, it can have a maximum of around a half mains cycle delay time because of the MOSFET drain-source overvoltage protection. As soon as COMP level is below 0.95 V, the TEA2209T is disabled.
6.6 Output dynamic load condition operation

Output dynamic load is applied between 240 W and a no-load condition. The dynamic load period is 14 ms. Regardless of the output load condition, the gates operate well in alignment with the mains polarity without shoot-through. Because the output dynamic load frequency is lower than the RC filter design on the COMP pin, the COMP level is still the DC level. The COMP level is in accordance with the average output load.
6.7 Efficiency test result and R_{DSon} selection

The efficiency test result includes power losses of bridge rectifiers and other power stages, such as PFC and LLC. However, throughout the active bridge incorporated in the TEA2209T an efficiency improvement compared a diode bridge can be seen. Depending on the different R_{DSon} values of the active bridge MOSFET, the efficiency improvement varies.

Figure 20. Efficiency comparison between diode and active bridge at 115 V (AC)
Figure 21 shows the comparison between different MOSFET R_{DSon} values and the number of diodes in parallel at 115 V (AC). To see the improvement achieved with the active bridge with a MOSFET at its worst condition, the efficiency is calculated at a junction temperature of 125 °C. The efficiency improvement can reduce the temperature on the bridge rectifier. It helps to increase power density.

![Efficiency comparison graph](aaa-037227)

Efficiency drop comparison calculation based on 115 V (AC) input and a die temperature of 125 °C (bridge diode bridge: GSIB15A60; 15 A; 600 V; 20 A 600 V).

1. One diode bridge (eff_drop_Diode_125deg_onePoVin_rms)
2. Two diode bridges parallel (eff_drop_Diode_125deg_twoPoVin_rms)
3. Three diode bridges parallel (eff_drop_Diode_125deg_threePoVin_rms)
4. Active bridge with MOSFET $R_{DSon} = 30 \text{ mΩ}$ (eff_drop_Active_125degPo0.030, 2, Vin_rms)
5. Active bridge with MOSFET $R_{DSon} = 25 \text{ mΩ}$ (eff_drop_Active_125degPo0.025, 2, Vin_rms)
6. Active bridge with MOSFET $R_{DSon} = 20 \text{ mΩ}$ (eff_drop_Active_125degPo0.02, 2, Vin_rms)
7. Active bridge with MOSFET $R_{DSon} = 15 \text{ mΩ}$ (eff_drop_Active_125degPo0.015, 2, Vin_rms)
8. Active bridge with MOSFET $R_{DSon} = 10 \text{ mΩ}$ (eff_drop_Active_125degPo0.01, 2, Vin_rms)

Figure 21. Efficiency improvement based on different R_{DSon} values at 115 V (AC)

Example:

When an R_{DSon} of 0.015 Ω is used on a MOSFET for a 500 W design, the efficiency improvement that can be achieved, when compared to a single diode for a diode bridge, is 1.2 %.

6.8 Standby power consumption test result and design guidelines

6.8.1 Recommended setting for low standby power consumption

When active bridge is enabled, the rectified AC mains voltage is a full-wave rectified waveform even at no-load condition. Although a full wave rectified waveform achieves a better THD performance, it can make an additional current path on capacitors (which are placed on the rectified mains voltage). The result is extra power losses on these capacitors because of ESR. To minimize standby power consumption, disable the TEA2209T via COMP pin. To disable the TEA2209T at a no-load condition, either the external DC level or the PFC gate signal can be selected. When the PFC gate signal is used, an external RC filter can adjust a power level which disables the TEA2209T.
Table 2. Standby power consumption

<table>
<thead>
<tr>
<th>Standby power consumption</th>
<th>115 V (AC) and no load (mW)</th>
<th>230 V (AC) and no load (mW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TEA2209DB1584 standalone</td>
<td>3.8</td>
<td>7.4</td>
</tr>
<tr>
<td>(COMP = low)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TEA2016DB1519</td>
<td>33</td>
<td>52</td>
</tr>
</tbody>
</table>

6.8.2 Enable and disable power levels; PFC gate connected to COMP pin

When the COMP pin is connected to PFC gate throughout external RC filter, the COMP level is increased as increasing output power level. Table 3 shows enable and disable power levels with PFC gate connection.

Table 3. Enable and disable power levels; the PFC gate is connected to the COMP pin

<table>
<thead>
<tr>
<th>90 V (AC)</th>
<th>115 V (AC)</th>
<th>230 V (AC)</th>
<th>264 V (AC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TEA2209T enable power level</td>
<td>2.0 W</td>
<td>2.5 W</td>
<td>7.4 W</td>
</tr>
<tr>
<td>TEA2209T disable power level</td>
<td>1.8 W</td>
<td>2.4 W</td>
<td>7.2 W</td>
</tr>
</tbody>
</table>
6.9 AC power-off sequence and X-capacitor discharge test

If the X-capacitor discharge function is activated, the discharge current flows from VR to Ground via the internal path of the IC. After AC mains is disconnected, the VCC capacitor is discharged. While VCC is discharged to V_{dis}, the X-capacitor discharge current is not enabled. This delay time (t_d) can be adjusted with different VCC capacitors. After VCC is decreased to V_{dis}, the X-capacitor discharge current is enabled. It takes 370 ms to discharge the 940 nF X-capacitor and the 1470 nF capacitor on the rectified AC mains voltage.

![Image: X-capacitor discharge test](image.png)

Figure 22. X-capacitor discharge test at 264 V (AC) and a no-load condition; the PFC gate is connected to the COMP pin

CH1: AC mains voltage (300 V/div)
CH2: VCC (5 V/div)
CH3: GATELL (10 V/div)
CH4: COMP (5 V/div)
Time: 200 ms/div
6.10 AC mains transition test

When the AC mains voltage is changed from high mains to low mains, or vice versa, no shoot-through occurs. The active bridge operates normally.

![Waveform of AC mains transition test](image)

CH1: AC mains voltage (300 V/div)
CH2: GATELR (5 V/div)
CH3: GATELL (10 V/div)
CH4: COMP (5 V/div)
Time: 50 ms/div and 5 ms/div
a. Mains change from 90 V (AC) to 264 V (AC)
b. Mains change from 264 V (AC) to 90 V (AC)

Figure 23. AC mains voltage transition test at a 240 W load; the PFC gate is connected to the COMP pin

6.11 Surge test result

To test the system surge, the TEA2209DB1584 is mounted on the TEA2016DB1519. In addition, one MOV, 14D511, is added between two AC mains lines. Figure 24 shows the MOV position. Surge test can pass up to 5 kV without damage, which is same test result as with the diode bridge.

Additionally, to increase power capability, the R107 and R108 resistors on the TEA2016DB1519 are changed to a metal-alloy type. The power rating of the R106 is also increased.

![Circuit diagram adding MOV 14D511](image)

Figure 24. Circuit diagram which adding MOV 14D511 on the AC mains lines
Table 4. Surge test result, EN61000-4-5

<table>
<thead>
<tr>
<th>Surge voltage (V)</th>
<th>Surge degree</th>
<th>Test result</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000</td>
<td>0 deg, 90 deg, 180 deg, 270 deg</td>
<td>pass without damage</td>
</tr>
<tr>
<td>2000</td>
<td>0 deg, 90 deg, 180 deg, 270 deg</td>
<td>pass without damage</td>
</tr>
<tr>
<td>3000</td>
<td>0 deg, 90 deg, 180 deg, 270 deg</td>
<td>pass without damage</td>
</tr>
<tr>
<td>4000</td>
<td>0 deg, 90 deg, 180 deg, 270 deg</td>
<td>pass without damage</td>
</tr>
<tr>
<td>5000</td>
<td>0 deg, 90 deg, 180 deg, 270 deg</td>
<td>pass without damage</td>
</tr>
</tbody>
</table>

7 Schematic

Figure 25. Schematic diagram
8 Bill of materials (BOM)

Table 5. Bill of materials (BOM)

<table>
<thead>
<tr>
<th>Part reference</th>
<th>Values and description</th>
<th>Part number</th>
<th>Manufacturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1; C2</td>
<td>capacitor; 220 nF; 10 %; 50 V; X7R; 0603</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>C3; C4</td>
<td>capacitor; 2.2 μF; 10 %; 25 V; X7R; 0805</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Q1; Q2; Q3; Q4</td>
<td>MOSFET-N; 600 V; 75 A</td>
<td>IPT60R028G7</td>
<td>Infineon</td>
</tr>
<tr>
<td>R1; R2; R3; R4; R6; R8; R10</td>
<td>resistor; jumper; 0 Ω; 100 mW; 0603</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>R5</td>
<td>resistor; not mounted; jumper; 0 Ω; 100 mW; 0603</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>R7</td>
<td>resistor; jumper; 18 kΩ; 100 mW; 0603</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>R9</td>
<td>resistor; jumper; 180 kΩ; 100 mW; 0603</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>D1</td>
<td>diode; fast switching; SOD123</td>
<td>1N4148W</td>
<td>Diodes</td>
</tr>
<tr>
<td>U1</td>
<td>active bridge rectifier controller</td>
<td>TEA2209T</td>
<td>NXP Semiconductors</td>
</tr>
</tbody>
</table>
9 Layout

a. Front view layout and assembly

b. Back view layout and assembly

Figure 26. TEA2209DB1584 demo board layout
10 Abbreviations

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MOSFET</td>
<td>metal-oxide semiconductor field-effect transistor</td>
</tr>
<tr>
<td>UVLO</td>
<td>undervoltage lockout</td>
</tr>
<tr>
<td>THD</td>
<td>total harmonic distortion</td>
</tr>
<tr>
<td>PCB</td>
<td>printed-circuit board</td>
</tr>
</tbody>
</table>

11 References

[1] TEA2209T data sheet — Active bridge rectifier controller; 2020, NXP Semiconductors
12 Legal information

12.1 Definitions

Draft — A draft status on a document indicates that the content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included in a draft version of a document and shall have no liability for the consequences of use of such information.

12.2 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes no responsibility for the content in this document if provided by an information source outside of NXP Semiconductors. In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory. Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors and its suppliers accept no liability for the consequences of use of such information. NXP Semiconductors accepts no representation or warranty that such applications will be suitable for the specified use without further testing or modification. Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer’s sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer’s applications and products planned, as well as for the planned application and use of NXP Semiconductors products, and NXP Semiconductors accepts no liability related to any default, damage, costs or problem which is based on any weakness or default in the customer’s applications or products, or the application or use by customer’s third party customer(s).

Applications — NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification. Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no representation or warranty that such applications will be suitable for the specified use without further testing or modification. Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer’s sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer’s applications and products planned, as well as for the planned application and use of NXP Semiconductors products, and NXP Semiconductors accepts no liability related to any default, damage, costs or problem which is based on any weakness or default in the customer’s applications or products, or the application or use by customer’s third party customer(s).

12.3 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

GreenChip — is a trademark of NXP B.V.
NXP — wordmark and logo are trademarks of NXP B.V.