
Freescale Semiconductor
Author, Rick Grehan

Document Number: CODEPROFILERWP
Rev. 0
11/2005

Code Profilers
Choosing a Tool for Analyzing Performance

A profiler is a development tool that lets you look inside your application to see

how each component—each routine, each block, sometimes each line and even

each instruction—performs. You can find and correct your application’s bottlenecks.

How do they work this magic?

1. Passive Profilers ...3

1.1 How It Is Done—PC Sampling4

1.2 It Is Statistical ..4

2. Active Profilers ...4

2.1 Methods of Instrumentation5

3. Source Code Instrumentation5

3.1 Instrumenting by Hand5

4. Object Code Instrumentation5

4.1 Direct Modification6

4.2 Indirect Modification7

5. Object Instrumentation vs. Source
Instrumentation ...7

5.1 Data-Gathering Techniques8

5.1.1 Time-Stamping8

5.1.2 Cycle-Counting8

6. Comparing Passive and Active
Profilers ...9

6.1 Passive Profilers—Advantages9

6.2 Passive Profilers—Disadvantages9

6.3 Active Profilers—Advantages10

6.4 Active Profilers—Disadvantages11

7. Conclusion ...12

8. Addendum: Recursion and
Hierarchies ..12

CONTENTS

Freescale Semiconductor Code Profilers: Choosing a Tool for Analyzing Performance, Rev. 0 3

A software application usually progresses through a series of phases as it goes from concept to reality. Those phases—
analysis, design, implementation and test—have been (and continue to be) well-explored by hosts of software
methodologists. However, you can reveal an omission to this list of phases if you translate them from their formal names
into more casual terms:

> Decide what the program is going to do.

> Decide how the program is going to do it.

> Make the program do it.

> Verify that you made the program do what it was supposed to do.

The missing ingredient is one of degree and occurs (or, should occur) at the last step.

You have verified that the program does its job...but have you verified that it does it well? Is the program efficient? Have
you verified that its execution speed cannot be improved? What tool could you use to answer these questions?

The answer to this last question—and, therefore, that which will allow you to answer the other questions—is a profiler.

The name profiler gives its purpose away. A profiler creates a profile of an application’s execution. And, to explain what
we mean by that, consider yourself to be in the situation we described at the outset. You have written an application, it
works and now you want to improve the application’s performance, to make it run faster. How do you do that?

Well, you could create a large amount of test data, sit down in front of a computer, grab a stopwatch, feed the data to the
application and time how long it takes to execute. This gets you partway to your answer, but there’s a problem with this
approach.

A program is not a monolithic entity; it is composed of routines that call other routines that call other routines, and so on
in a complex web of interdependent functions. Also, if you have used statically linked or dynamically linked libraries in your
application, then you have added more layers of functional interdependency that involve code for which you do not even
have the source.

So, the problem is this: If your application is running slowly, what parts of it are running slowly? From the outside, it looks
like the whole thing is running slowly. But, it could be that a single, fundamental algorithm used repeatedly throughout
your application is the only bottleneck. That algorithm may constitute a small fraction of your source code, so that
searching other parts of your application for opportunities of improvement is, literally, a waste of time. You need to focus
on that algorithm exclusively.

To do that, you need a profile, a map of your application’s performance, so that you can see the individual parts’
contributions to the application’s overall execution.

That is the job of a profiling tool. It lets you examine the execution behavior of your application in such a way that you can
determine where your application is spending its time. Most profiling tools actually provide graphical output that lets you
quickly identify performance “hotspots” so you do not waste time wading through source code that is not a problem in
the first place.

In this white paper, we are going to examine how profilers do what they do. As you will see, how a profiler works
determines that profiler’s capabilities. Not all profiling technologies are equal, and, therefore, not all profilers are equal.

We will begin by defining and describing the two broad categories into which profilers fall: passive profilers and active
profilers. In our descriptions, we will examine the characteristics—positive and negative—inherent in each category.

1. Passive Profilers

A passive profiler gathers execution information about an application without modifying that application. Passive profilers
are passive in that they stand outside the application and watch its performance from a distance, sort of like a coach
standing on the sidelines and measuring the performance of his running athletes with a stopwatch.

This is in contrast to active profilers, which modify (or instrument) the application. While a passive profiler works from the
outside (of the application), an active profiler works from the inside. (We will describe active profilers in more detail later.)

4 Code Profilers: Choosing a Tool for Analyzing Performance, Rev. 0 Freescale Semiconductor

1.1 How It Is Done—PC Sampling

Virtually all passive profilers gather data using a technique called PC sampling. Do not be thrown off by the acronym PC,
which has several meanings. In this case, it means program counter: the register inside the CPU that keeps track of a
program’s current execution location.

A passive profiler will typically install an interrupt service routine (ISR) that is triggered by a timer interrupt. (The ISR is
installed prior to running the application.) As the application executes, the timer interrupt triggers the ISR, which wakes
up, records the location of the program counter, then goes back to sleep, at which time the application resumes
execution.

(Note: Most modern computer systems and their accompanying operating systems provide timer interrupts that are easy
to hook into. Creating a timer-interrupt-driven ISR is a straightforward task.)

Over a long enough period of time (that is, if the application runs long enough) the profiler will collect enough samples to
paint a reasonably accurate picture of where the application is spending its time. Provided that the profiling tool has
access to the application’s symbolic information, the tool can—for each sample—deduce what routine is being executed.
In fact, if enough samples are taken, and the locations of those samples are well-distributed throughout the application,
the profiling tool can even generate execution information for individual instructions in the application.

More samples will be taken in code that consumes more CPU time; fewer samples will be taken in code that consumes
less CPU time. This is the essence of PC sampling.

1.2 It Is Statistical

PC sampling is inherently a statistical technique. The information it reports is an approximation, and the accuracy of that
approximation depends on such factors as:

The number of samples taken. Taking more samples will generate a more accurate execution profile. Unfortunately,
there are no clear-cut rules for determining how many samples are enough. Figuring that out is typically a matter of
successive approximation: Take a passel of samples, record the results, then rerun the application, take twice as many
samples as before and see if the results from the two runs vary widely. If not, you are probably taking enough samples. If
so, repeat (adding more samples to each run) until the differences between successive runs falls below a reasonable
threshold (usually, around five percent). Of course, taking more samples can mean two things: increasing the sampling
rate, or running the application longer. You will have to decide, based on your application, which is the course to take in a
given situation.

The sample rate. Again, this is not an easy thing to determine. The profiler might perturb the application’s real behavior.
Sample at too high a frequency and the system spends more time in the sampling ISR than in the application. Sample at
too low a frequency and the data could be so coarse as to be useless.

Other applications in the system. PC sampling profiles the application live; other applications and OS background
tasks could be running during the profiling session. Hence, the resulting data can be affected by code outside the target
application. If, for example, between two samples taken by the profiler, the application had been interrupted by an OS
task, the profiler—having no knowledge of that interruption—would assume that the CPU’s time between those samples
had been taken up solely by the application.

We will discuss this particular problem in greater detail later.

Now that we have examined the intricacies of passive profilers and seen how they use PC sampling to monitor an
application’s performance from the outside, let us move over to active profilers.

2. Active Profilers

Active profilers use different methods to monitor the application. They gather performance data from the inside of the
application.

Whereas passive profilers take an “I’ll stand back and watch” approach, active profilers actually modify the application.

Jump back to the analogy of the coach. If the passive profiler is a coach observing from a distance with a stopwatch, then
an active profiler is a coach who—armed with the latest in medical telemetry equipment—attaches instruments to his
athletes to measure their performance. An active profiler attaches probes or instrumentation code to the application
(within the application, in fact). This instrumentation code feeds performance data to the profiling tool. (The data is logged
either in memory or to a file while the application runs. The profiling tool reads the logged information after the application
completes.)

Freescale Semiconductor Code Profilers: Choosing a Tool for Analyzing Performance, Rev. 0 5

The fact that the profiler is modifying the application could cause problems. The profiler must make modifications in such
a way that the application’s performance is altered as little as possible. Back to the image of the coach attaching
monitoring instruments to the athletes: too many instruments attached, or attached so that they encumber the athletes,
and the information collected is useless. The athlete’s performance will have been altered by the instrumentation.
Similarly, if the instrumentation code added to the application impedes the application’s execution, the collected data
could be corrupted.

Developers of active profilers face the age-old problem of how to invade a system in order to observe it but, in so doing,
not modify the system so that the observations are invalid.

How, then, do active profilers instrument the code?

2.1 Methods of Instrumentation

Active profilers attach instrumentation in two ways:

> Instrumenting source code.

> Instrumenting object (executable) code.

Each has its advantages and disadvantages. Also, there are variations on the fundamental theme of each technique.

3. Source Code Instrumentation

A profiling tool that uses source code instrumentation adds profiling code to the application’s source. Hence, the profiling
code is compiled into the final executable right alongside the application’s source code.

There are a couple of ways that a profiling tool can instrument source code.

One way is via a collection of cleverly defined macros that the user adds to the application by including a header file.
These macros are defined so that they invoke calls into profiling library routines (which are linked into the application) at
strategic locations in the code. (Note: This technique is usually used by code-coverage tools.)

Another way a tool can instrument source code is by using a preprocessor that parses the code before it is passed to the
compiler. The preprocessor locates function calls and basic blocks and adds calls at those locations so that—at
runtime—when a function is called or a basic block is entered, a profiling library routine is called that logs the activity.

3.1 Instrumenting by Hand

Actually, source code instrumentation can be done manually. Most programmers have, at one time or another, probably
fallen back on the “debug-by-printf()” technique: peppering code with strategically located printf() statements as
a first attempt at locating where a crash occurs, or as a means of printing out suspect variables at important points in the
application’s execution.

Using an operating system’s get current time functions to create stopwatch routines, a programmer could use a similar
technique to measure duration between two points in a program’s execution. One routine would start the stopwatch
(record the current time); the other would stop the stopwatch (read the current time and calculate the time elapsed since
the start stopwatch call) and write the results to a log buffer or file. Thus, the programmer would do manually what many
profilers do automatically.

Of course, the foremost drawback to “hand” profiling is that it is tedious and error-prone. If you insert the stopwatch calls
yourself, you have to remember to go back and take them out when you’ve finished profiling. Otherwise, you will release
an application that emits profiling information to an unsuspecting user.

In addition, you have to be careful not to get too enthusiastic about adding measurement code. Depending on how many
additional calls you insert, you could cause a substantial increase in executable size. And, if you collect a lot of time
measurements and log the data to disk, you can significantly slow down the application.

4. Object Code Instrumentation

The second instrumentation technique is object code instrumentation. Tools that use object code instrumentation add
their measurement code at a later step: after the executable has been created. Profilers that use object code
instrumentation operate in one of two ways: direct modification and indirect modification.

6 Code Profilers: Choosing a Tool for Analyzing Performance, Rev. 0 Freescale Semiconductor

4.1 Direct Modification

Direct modification is also referred to as binary patching. A tool that uses binary patching employs a method similar to the
method that debuggers use to set breakpoints in an application. A debugger sets a breakpoint in an application by
replacing one or more of the application’s machine instructions—at the breakpoint location—with a specific machine
instruction called a break instruction. The application executes and, at some point, hits the break instruction. When the
break instruction executes, it causes what amounts to a jump into the debugger. Of course, the instruction that has been
replaced by the break instruction is executed first, so that correctness of execution is maintained. The mechanics are
similar if the application is being profiled. When the break instruction is encountered, program flow transfers into the
profiler.

(Note: What has been described here is referred to as a soft breakpoint. A soft breakpoint works by modifying the code.
However, some processors provide breakpoint registers that a debugger—or profiler—can set by loading the register with
the address of the intended breakpoint. When a program’s execution encounters the address, the CPU vectors into
debugger code just as it would if a break instruction had been executed.)

The profiler patches the executable in this manner, placing probes at strategic locations within the code. Precisely where
the probes are placed depends on the extent of the desired profiling. For example, if the user simply wanted to measure
the execution time of a single function, the profiler would place test points before and after the function call.

FIGURE 1. HAND-INSTRUMENTING SOURCE CODE. THIS HEAPSORT ALGORITHM HAS BEEN HAND-INSTRUMENTED WITH THE
StartStopwatch() AND StopStopwatch() USER-WRITTEN ROUTINES. StartStopwatch() READS THE CURRENT TIME AND STORES
IT IN THE VARIABLE DURATION. StopStopwatch() ALSO READS THE CURRENT TIME AND USES THE TIME STORED IN DURATION TO
CALCULATE THE ELAPSED TIME SINCE THE StartStopwatch() CALL. StopStopwatch() PRINTS THE ELAPSED TIME. NOTE THAT, FOR
BEST ACCURACY, THE USER WILL HAVE TO FIND SOME MEANS OF ACCOUNTING FOR THE TIME TAKEN BY THE StartStopwatch() AND
StopStopwatch() CALLS THEMSELVES.

Freescale Semiconductor Code Profilers: Choosing a Tool for Analyzing Performance, Rev. 0 7

4.2 Indirect Modification

A profiling tool that uses indirect modification instruments the executable in a three-step process. First, the tool reads the
executable file and translates it into an intermediate representation (IR). This is sort of like translating the executable from
one language to another (the source being machine language, the destination being the IR). However, the IR is not a
language in the sense of C or assembly language. It consists of data structures that allow the profiler to store information
regarding the overall organization of the application. (This information is gathered during the translation process.)

The profiler then instruments the IR and retranslates the instrumented IR form of the application back into executable
form. As a result, the executable has instrumentation code built-in.

Admittedly, this seems convoluted. Why convert to an intermediate representation, instrument that, then reconvert back to
executable form? Why not instrument the executable directly?

First, indirect instrumentation gives the tool greater control over the structure of the final application. Since the tool is
building the executable, the tool can control where in memory the instrumentation code is placed in relation to the
application code. The tool can, for example, place all the instrumentation code at the end of the application’s text area, so
that the topology of the application—that is, where the application’s routines are placed in memory relative to one
another—is undisturbed.

In addition, the process of translating the executable into the intermediate representation provides useful information to
the profiling tool. This information, used in conjunction with symbolic information (generated by the compiler) allows the
profiler to identify, for example, basic blocks of code, which is how the profiler knows where to insert instrumentation
code. (Note: The information that the profiler gathers while converting from the executable to the IR can be used to make
other testing tools. For example, because the profiler translates the entire executable, it has all the information it needs to
provide code-coverage testing.)

(Note: Notice an important difference between the source and object instrumentation used by active profilers and the PC
sampling technique used by passive profilers. PC sampling is inherently random; whatever routine is executing in the
application when the timer interrupt goes off is whatever gets sampled. Active profilers place their instrumentation code in
the application at known locations.)

5. Object Instrumentation vs. Source Instrumentation

Object code instrumentation has some obvious (and non-obvious) advantages over source code modification that, we
believe, argue in favor of object code instrumentation tools. With an object code instrumentation profiler:

You do not need source code to profile your application. This advantage might, at first, seem specious. A
developer will almost always have access to the source for the target application. However, there may be instances in
which the developer will want to include third-party libraries (for which source is not available) in the profiling. In those
instances, object code instrumentation is the only choice. (Note: Of course, there are times when you want to exclude
third-party libraries from the profiling. You may want to focus exclusively on the times generated by routines in your
application—code you actually have control over.)

There is a less apparent development time advantage associated with this. As you will see, many active
profilers offer more than one data-gathering technique. With an object code instrumentation package, you can change
the data-gathering technique without having to recompile the source code. And, if the profiler is intelligent enough to
cache the IR of the target, switching to a new data-gathering technique is even faster.

An object code instrumentation tool can control the impact of the instrumentation code on the
application’s topology. Source code modification adds instrumentation routines to the application’s source code.
Consequently, the in-memory location of the executable code generated by the instrumentation routines is at the
discretion of the compiler and linker. The instrumented application’s in-memory floor plan can be significantly different
from that of the uninstrumented application. Consequently, the uninstrumented application’s performance characteristics
can be very different from the instrumented version. (The reason is that the source code inserted by the tool will cause
the routines in the instrumented application to be linked into a different memory location than in the uninstrumented form.
The performance of the processor’s instruction cache will be different for the instrumented application than for its
uninstrumented version. Consequently, the developer might see—and alter code in order to correct—poor instruction
cache behavior caused by the presence of instrumentation code.)

This is a classic example of how observing a system will perturb its performance. The performance analysis tool must be
cautious about how it instruments the executable. The presence of the instrumentation code could change the
performance profile of the executable so much that the reported data is misleading...and alterations that the programmer
makes to improve the code can actually degrade the final executable.

8 Code Profilers: Choosing a Tool for Analyzing Performance, Rev. 0 Freescale Semiconductor

Object code instrumentation modifies the executable, and therefore has access to the application’s topology. If the
instrumenting tool is careful, it can place the instrumenting code after the application’s text area. Consequently, the
topology of the application is less affected.

(Note: Most programmers can remember function nesting in their application to at least one level. That is, they know
which child routines are called by a selected parent routine. However, to carry the family tree metaphor a bit farther,
programmers are less aware of grandchild, great-grandchild, etc., relationships. A problem routine down deep in the
hierarchy can impede the performance of higher-level routines that call it.)

5.1 Data-Gathering Techniques

Now that we have looked at the advantages that object code instrumentation profilers have over source code
instrumentation tools, let us examine the data-gathering techniques that object code instrumentation tools employ. There
are two such techniques: time-stamping and cycle-counting.

In a way, these techniques are complementary—each reveals a different aspect of an application’s performance. A deeper
investigation into each technique will make this apparent.

5.1.1 Time-Stamping

Time-stamping is similar to the manual instrumentation that we described in the “Instrumenting by Hand” section
above. It is like setting stopwatches throughout your code to measure execution durations. The profiling tool
brackets regions of code in the target application with calls into the tool’s library.

Time-stamping is sufficient for measuring the execution time of functions and basic blocks of code (i.e., for(),
while() and do() loops, as well as the true and false arms of an if() statement). You cannot, however, use
time-stamping to measure the time taken by individual lines of code (much less a single instruction). The code
overhead—adding measurement code for each instruction—makes that infeasible.

Because time-stamping measures actual time intervals while the application is running, it has some of the same
advantages and disadvantages of PC sampling. If you want to see test application behavior while other
applications are running, time-stamping will feel the effects of those other applications. As stated earlier, this could
be good or bad, depending on your needs. Should you need to isolate measurements to the target application
alone, time-stamping will not get you there.

But cycle-counting, the other data-gathering technique, will.

5.1.2 Cycle-Counting

A system using cycle-counting actually counts processor cycles taken by individual machine instructions in the
application. The tool can then determine the amount of time taken by a block of code by adding up the cycles of all
the instructions in that block of code and multiplying appropriately to account for repeated execution of instructions
in a loop.

Though this scheme might appear to produce exact results, the results are unfortunately approximate. A tool
employing cycle-counting will use static instruction information to determine the cycle time for a specific
instruction. This static information is no more than the information as reported by the processor’s manufacturer in
that processor’s data sheets. Consequently, the cycle-counts used are optimistic: they do not account for runtime
situations that can increase the number of cycles that the instruction requires. Such situations include cache
misses, misaligned data, mispredicted branches and so on—things that happen at runtime and cannot be predicted
by simply examining the individual instructions of the application.

(Note: We do not want to sound too negative, here. The static model used by most profilers is not uselessly
simplistic. Some active profilers, for example, actually examine instruction sequences, will recognize pipeline stalls
and can factor in the time added by the stall.)

Note that cycle-counting is available only to tools that use object code instrumentation. To use cycle-counting, the
tool must have access to the machine code instructions of the executable. A source code instrumentation tool
works on the wrong side of the compiler; it cannot know what instructions will be generated, and therefore cannot
use cycle-counting.

Freescale Semiconductor Code Profilers: Choosing a Tool for Analyzing Performance, Rev. 0 9

Instruction Clocks with aligned data Clock with misaligned data

MOV 1 4
EAX,[EBX]

FIGURE 2. MISSED BY CYCLE-COUNTING. THE ABOVE TABLE SHOWS THE 486 INSTRUCTION FOR LOADING THE EXTENDED AX REGISTER
INDIRECTLY THROUGH THE EXTENDED BX REGISTER. IF THE DATA IS ALIGNED—THAT IS, IF THE ADDRESS IN THE EXTENDED BX REGISTER IS
EVENLY DIVISIBLE BY 4—THEN THE FETCH REQUIRES ONLY ONE CLOCK. (ON A 25 MHZ 486, ONE CLOCK IS 40 NS.) HOWEVER, IF THE FETCH IS
AT A MISALIGNED ADDRESS, THE INSTRUCTION TAKES AN ADDITIONAL THREE CLOCKS. (THIS IS WHY ALIGNING A LARGE ARRAY TO AN
ADDRESS AMENABLE TO THE ARRAY’S DATA TYPE IS SO IMPORTANT. IT CAN SIGNIFICANTLY IMPROVE PROCESSING TIME.) UNFORTUNATELY,
A PROFILER THAT USES CYCLE-COUNTING CANNOT KNOW WHETHER THE ADDRESS IN THE EXTENDED BX REGISTER IS ALIGNED; THAT
INFORMATION IS NOT AVAILABLE UNTIL RUNTIME. SO, THE PROFILER WOULD COUNT THE INSTRUCTION AS TAKING ONE CLOCK CYCLE,
WHEN—IF THE DATA IS MISALIGNED—IT MIGHT TAKE FOUR. HENCE, SUCH A PROFILER’S REPORT IS LIKELY TO BE MORE OPTIMISTIC
THAN REALISTIC.

6. Comparing Passive and Active Profilers

We have looked at the characteristics of passive and active profilers. We have also examined the different data-gathering
techniques that each employ. Let us recap, collect the facts we have seen so far and do a comparison.

6.1 Passive Profilers—Advantages

There is at least one advantage that passive profilers have over active profilers: they are less intrusive. Passive profilers do
not alter the structure of the application. The developer, at least, has the assurance that the application being tested is
largely in the form it will be in at delivery time. (We say largely because it is likely that the developer will compile the
application with symbolic information attached. This allows the profiler to match instructions in the executable to the lines
of source code that generated them. However, some symbolic formats include the symbolic information in the executable,
and consequently create a larger, slower-running executable than the release version of the application.)

Therefore, passive profilers that use PC sampling have—as compared to active profilers—a minimal impact on the
performance of the application. Recall that a profiler using PC sampling will install a timer interrupt at application start-up.
After that, the application is completely unaware of the profiler’s presence. When the timer interrupt fires, the profiler’s
ISR wakes up, samples the application’s PC, saves that in the log, then exits. Consequently, the profiler performs little
processing at application runtime.

6.2 Passive Profilers—Disadvantages

On the other hand, passive profilers have several drawbacks:

The data captured is flat. Because the passive profiler uses random PC sampling, the data gathering ISR (awakened
by a timer tick) is awakened at unknown locations in the application’s execution. It cannot, then, decipher the contents of
the stack to deduce the structure of the call chain. Simply put, the profiler can determine which routine is being executed,
but it cannot know who called that routine.

FIGURE 3. MULTIPLE PARENTS. IN MANY APPLICATIONS, A SINGLE ROUTINE WILL BE CALLED BY SEVERAL OTHER ROUTINES. PUT ANOTHER
WAY, A GIVEN CHILD FUNCTION WILL HAVE MULTIPLE PARENTS, AS ILLUSTRATED ABOVE. PASSIVE PROFILERS HAVE A FLAT VIEW OF THE
FUNCTIONS WITHIN THE APPLICATION, AND CANNOT KNOW HOW MUCH OF childA()’S TOTAL TIME IS SPENT AS A CHILD OF funcA(), AND
HOW MUCH IS SPENT AS A CHILD OF funcB(). THIS IS INFORMATION CRITICAL FOR A PROGRAMMER; childA()’S EXECUTION TIME CAN
BE DEPENDENT ON ITS INPUT PARAMETERS, AND funcA() MAY—LIKELY WILL, IN FACT—CALL childA() WITH A DIFFERENT SET OF INPUTS
THAN WILL funcB().

main()

funcC()funcA() funcB()

childA()

main()
{ funcA();
 funcB();
 funcC();
}

funcA()
{ childA(); }

funcB()
{ childA(); }

funcC()
{ ... }

childA()
{ ... }

10 Code Profilers: Choosing a Tool for Analyzing Performance, Rev. 0 Freescale Semiconductor

So, if a single routine has more than one parent (called from different locations in the application), a passive profiler is
unable to collect the information needed to determine that function’s contributions to the execution times of its parents. A
developer cannot determine if one parent is calling the routine more than any other; therefore, the developer cannot get
information needed to determine whether a fault resides in the parent routine (which could be calling the child routine an
inordinate number of times) or in the child routine.

Reported times are affected by other applications. A passive profiler using PC sampling installs an ISR that
repeatedly wakes up and samples the program counter. If the application under test is running in a multitasking operating
system (virtually all desktop operating systems have some level of multitasking), then is possible—likely even—that code
other than that in the application will be executing between samples taken by the profiler. The collected data will suggest
that the application performance is below its true level.

In some cases, this is a plus. It can be worthwhile to see how the runtime of an application is affected by competing
applications in the operating system, since that is the environment of the final application.

On the other hand, it can be a disadvantage if a programmer’s interest is in the performance of the application only. Other
application or system tasks simply pollute the test data and make it all the more difficult to locate the application’s
problem areas.

Data capture is a statistical process. To get an accurate picture of an application’s profile, most passive profilers
recommend you run several sample sessions, and at different sampling frequencies. Since passive profiling is not immune
to other applications in the system, it is possible that one of the sampling sessions is polluted by the sudden execution of
an OS task or another application consuming inordinate amounts of CPU time. A developer unaware of the intruding task
or application could be thrown off by the data.

6.3 Active Profilers—Advantages

Having examined the advantages and disadvantages of passive profilers, let us turn our attention to active profilers.

Can use multiple data gathering techniques. While passive profilers are more or less limited to PC sampling, active
profilers can offer two data-gathering techniques: time-stamping and cycle-counting.

These two techniques provide different views into the performance of an application, and therefore give a clearer picture
of what is going on than one view alone. As described earlier, cycle-counting’s times reported are overly optimistic,
showing the application’s best-case performance. Time-stamping, on the other hand, gathers its data in real-time, and
therefore returns times that are more in line with what the application will exhibit while it is executing in the real world.
Time-stamping’s reported results will be pessimistic as compared to cycle-counting’s results. (Note: Not all active
profilers offer both techniques.)

Can produce hierarchical information. Active profilers have access to the internal structure of the application and
can apply this information at runtime. Consequently, they can determine who is calling whom and build charts that show
function call chains. In addition, they can annotate the function call chains to show how often a given child function is
called by each parent.

May not require source. If the active profiler uses object code instrumentation, you do not need the source to profile
an application. As we mentioned earlier, this can be a great benefit if you are working with third-party libraries for which
you do not have the source. You can take into account the performance of the library.

Freescale Semiconductor Code Profilers: Choosing a Tool for Analyzing Performance, Rev. 0 11

Can build control flow graphs. Since active profilers work either with the source (source code instrumentation) or
object and symbolic code (binary-code instrumentation), such tools have enough information to construct control flow
graphs. Control flow graphs allow the developer to see the hierarchy of routines within the application. The result is often
displayed in the form of a tree, showing parent/child relationships.

FIGURE 4. CONTROL FLOW. THIS SCREEN SHOT FROM FREESCALE’S CODEWARRIOR ANALYSIS TOOLS SHOWS A CALL CHAIN VIEW IN THE
UPPER WINDOW. THIS PARTICULAR VIEW IS REFERRED TO AS THE CRITICAL CHAIN VIEW AND SHOWS THE LINEAGE OF PARENT, CHILD,
GRANDCHILD, ETC., ROUTINES THAT REPRESENT THAT BRANCH OF THE FUNCTION TREE WHERE THE MOST TIME IS BEING SPENT.

In addition, there are advantages associated with the data-gathering techniques that active profilers use.

Cycle-counting is immune to other applications in the system. If a profiler uses cycle-counting, the reported time
is not affected by other applications in the system. Cycle-counting allows you to focus on the performance of single
instructions.

Time-stamping accounts for runtime effects. Since time-stamping runs the code live, it captures the effects of
runtime hold-ups such as cache misses, misaligned data and so on. This, therefore, complements the view of the
application as provided by cycle-counting.

6.4 Active Profilers—Disadvantages

To be fair, there are some disadvantages to using an active profiler.

Ability to profile third-party code may be of limited use. If you do not have the symbolic information available for a
third-party library, the profiler has to treat the library as something of a black box. True, you can perform cycle-counting
profiling on the application, but this forces you to deal with assembly language. Reverse-engineering assembly
language—without the high-level source that generated it—is anything but easy.

The profiler can increase application size. Because the active profiler adds code to the executable, it increases the
executable size. (If the profiler is smart, the application portion of the instrumented executable will be unaware of the
instrumentation code.) How much of an increase depends on how enthusiastic the developer gets about profiling. Time-
stamping every function call and basic block can add a lot of calls. Cycle-counting increases the size of the application
as well—more, in fact—than time-stamping, since cycle-counting adds instrumentation code for every basic block, rather
than for every function.

Cycle-counting is static. We have already stated that cycle-counting instrumentation is static in nature. It cannot
measure runtime effects, and therefore gives an optimistic approximation of performance.

Time-stamping is affected by other applications. Meanwhile, time-stamping suffers from much the same problem
as PC sampling. Time-stamping cannot filter out the effects of other applications that may be running concurrently with
the application under test.

12 Code Profilers: Choosing a Tool for Analyzing Performance, Rev. 0 Freescale Semiconductor

In fact, time-stamping is less flexible than PC sampling. An OS-aware PC sampling system can gather data for all the
applications running in the operating system. You can therefore get not only a profile of the execution of the target
application, but of other applications and operating system processes as well. This would be handy, for example, in a
situation where a separate application or OS process was actually the hold-up, making your application seem pokey. By
comparison, time-stamping code runs only within the context of the application being instrumented and has no access to
other applications or OS processes.

7. Conclusion

We began this white paper with a scenario that, we hope, illustrated the importance of profiling in the development
process. Verification of correct execution is of paramount importance. Optimizing that execution can mean the difference
between a working application that succeeds in the marketplace, and a working application that fails.

With that in mind, we embarked on a discussion of profilers. We showed that profilers can be either passive or active,
and described the characteristics of each. We hope we have given an even-handed disclosure of the pros and cons of
passive and active profilers, and of the various data-gathering techniques they employ.

It is our conclusion that, having examined all the facts, for fine-tuning the performance of an application, active profilers
are superior tools to passive profilers. In addition, active profilers that employ object code instrumentation offer more
advantages than source code instrumentation profilers.

In the final analysis, however, the tool you select depends on your profiling requirements. No single tool (yet) offers a one-
stop shopping solution to all conceivable profiling needs. If, for example, you need to profile the overall performance of a
computer system—OS, applications, device drivers, the works—then a PC sampling profiler is the only way to go. If, on
the other hand, you need to step through your code with microscopic accuracy, fine-tuning individual machine
instructions, then an active profiler with cycle-counting cannot be beat. You will have to be the final judge; we can only
hope that the information presented here helps in your search for the ideal profiler.

8. Addendum: Recursion and Hierarchies

We have established that the hierarchical view of function interaction as provided by active profilers can be a powerful
tool in tracking down performance hotspots.

However, if the profiler does not handle hierarchical views properly, they can, in some situations, confuse an unwary user.

How? The answer comes when you realize that functions are not always associated in simple parent/child relationships.
In a recursive algorithm, a function might call itself, either directly or indirectly, through another function.

Consider how a profiler might provide a hierarchical representation of recursion, and—more importantly—how that profiler
would go about reporting the results. In a simple parent/child relationship where function A calls function B, a profiler can
report data that indicates that “function B contributes xx time to the overall execution of function A.”

Simple enough—but what if function A calls function B, which turns around and calls function A again, which then calls
function C. If the profiler is not smart enough, it could calculate a portion of function A’s time twice—once as a parent,
and again as a child of function B.

As an example of how tools deal with this, Freescale’s CodeWarrior Analysis Tools keep track of call graphs and are able
to identify loops that indicate that recursion is taking place. The CodeWarrior Analysis Tools short-circuits their own data-
gathering when such a situation occurs, so that function A’s time is not counted twice.

In conclusion, keep this in mind as you investigate profiling tools. Simply having hierarchical views is one thing; managing
those views effectively in complex situations like recursion is another.

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other
product or service names are the property of their respective owners.
© Freescale Semiconductor, Inc., 2005.

Document Number: CODEPROFILERWP
Rev. 0
11/2005

How to Reach Us:

Home Page:
www.freescale.com

e-mail:
support@freescale.com

USA/Europe or Locations Not Listed:
Freescale Semiconductor

Technical Information Center, CH370

1300 N. Alma School Road

Chandler, Arizona 85224

1-800-521-6274

480-768-2130

support@freescale.com

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH

Technical Information Center

Schatzbogen 7

81829 Muenchen, Germany

+44 1296 380 456 (English)

+46 8 52200080 (English)

+49 89 92103 559 (German)

+33 1 69 35 48 48 (French)

support@freescale.com

Japan:
Freescale Semiconductor Japan Ltd.

Headquarters

ARCO Tower 15F

1-8-1, Shimo-Meguro, Meguro-ku,

Tokyo 153-0064, Japan

0120 191014

+81 3 5437 9125

support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor Hong Kong Ltd.

Technical Information Center

2 Dai King Street

Tai Po Industrial Estate,

Tai Po, N.T., Hong Kong

+800 2666 8080

support.asia@freescale.com

For Literature Requests Only:
Freescale Semiconductor

Literature Distribution Center

P.O. Box 5405

Denver, Colorado 80217

1-800-441-2447

303-675-2140

Fax: 303-675-2150

LDCForFreescaleSemiconductor

@hibbertgroup.com

Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor
products. There are no express or implied copyright license granted hereunder to design or fabricate
any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale
Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular
purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit,
and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical”
parameters which may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different
applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for
each customer application by customer’s technical experts. Freescale Semiconductor does not convey any license under its
patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as
components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or
for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal
injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries,
affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out
of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if
such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

