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Introduction
Prism is a software analysis tool which provides support to optimize code for multicore platforms. This example 

illustrates how Prism was used to assist porting Freescale Semiconductor’s LTE Layer 2 software from a single-core 

processor, based on Power Architecture® technology, to Freescale’s QorIQ P4080 eight-core processor. It focuses 

on parallel programming related issues which would have been difficult and time consuming to resolve without the 

use of Prism. These issues can be classified as optimizations and defect resolutions. Using Prism, improved code 

quality and reduced development time ultimately saved both development and maintenance cost.
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1 Freescale’s LTE Layer2 Software

For several years, Freescale has been developing LTE code for processors built on Power Architecture technology. 

The majority of this development has concentrated on Layer 2, which is medium access controller (MAC), radio 

link controller (RLC) and packet data convergence protocol (PDCP). Moreover, development was initially focused 

on single-core devices. Recently the LTE Layer 2 code has been ported to the multicore QorIQ communications 

platforms. During this transition a number of issues related to parallel programming were encountered. Prism was 

successfully used to assist in the resolution of these issues. 

2 Understanding Your Multicore Application on QorIQ Processors

A QorIQ platform can provide up to eight cores (P4080), making it ideal for high-bandwidth telecom applications 

such as LTE. In order to utilize the available processing power it is vital to ensure a threaded application runs 

efficiently. This is especially important when moving an application from a single-core to multicore device due to the 

potential magnification of any minor issue.

Understanding the dynamic behavior of an application can be very difficult. Even if an application is deemed bug 

free, how can it be examined to ensure it is running optimally?

Prism allows for the capture and analysis of dynamic software activity on QorIQ devices, enabling quick 

identification of any performance bottlenecks which can occur during execution. Furthermore, Prism is able to 

pinpoint potential issues, such as data races, in a threaded implementation including the ability to trace issues back 

to the root cause in the source code.

3 Implementing LTE Up/Downlink Parallel Processing

A LTE base station must be capable of processing multiple users on both the uplink and downlink within a 1 ms 

time window. On traditional single-core devices, this is achieved by using a low priority thread to receive IP network 

traffic and a high priority thread to execute the downlink and uplink sequentially. Consequentially, this restricts each 

part of the processing chain to a slice of the 1 ms processing budget.

The following code fragments highlight the sequential implementation:

Figure 1: LTE Sequential Processing Flow
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The up/downlink functions are called in a loop, which iterates based on a 1 ms timer, to process data accumulated 

in various buffers. The downlink processes the incoming data stream (from the IP network) and places the results 

into a buffer. Ordinarily, this data would be sent to Layer 1 for processing, however, the test application routes the 

data to the L2 uplink. The uplink function processes the data during the next loop iteration. This flow is supported 

by using two destinations for the data generated by the downlink.

A QorIQ multicore platform provides an opportunity to run IP packet reception, uplink processing and downlink 

processing simultaneously. This can be achieved by using multiple threads on a Linux® operating system (OS) to 

spread the workload across multiple cores. In this example, the initial partitioning between up and downlinks has 

been made with the entire uplink processing taking place in its own thread while the downlink process continues to 

run in the original main thread of the application. The following code fragments show how this was implemented.

Figure 2: Initial Threaded Implementation

3.1 Optimizing LTE Up/Downlink Parallel Processing

When the performance was measured on a P4080 processor, it was determined that the code was not running at 

expected rates. To investigate further and determine where to optimize, the application testbench was run again 

with Prism trace capture enabled. Once loaded into Prism, it quickly became obvious that the uplink and downlink 

were not running in parallel. This can be seen clearly in the following screen shot of the Schedule View in Prism:
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Figure 3: Schedule View of Original Trace Showing Serialization of Uplink and Downlink Threads

In this view, Prism shows the activity of the two application threads (uplink and main which runs the downlink 

function) and they are clearly serialized due to synchronization through a conditional variable. After utilizing Prism to 

pinpoint the relevant lines of source code, it became apparent that it is the pthread_cond_signal (&uplink_condition) 

call in the run_uplink (void) function which signals the uplink thread to begin processing. This call is made after the 

downlink processing has completed due to the processing flow of the original sequential code. 

The solution is to call the run_uplink (void) function before starting downlink processing, enabling the uplink thread 

to begin executing while the main thread continues running the downlink routine in parallel. Making the code 

change outlined in Figure 4 and re-tracing allows us to see the impact in the Prism Schedule view (see Figure 5).

Figure 4: Optimized Processing Flow
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Figure 5: Uplink and Downlink Running in Parallel 

Now there is substantial parallel execution and a corresponding performance increase.

4 LTE Execution Error Analysis

Although the parallel implementation successfully executed all static tests, random failures were experienced when 

using variable network traffic loads. Prism was used to successfully detect issues which would have otherwise been 

difficult to identify.

4.1 LTE HARQ Process Corruption

When a transport block is sent by the base station on the downlink it is stored by the MAC layer until feedback 

is received from the User Equipment (UE). This allows the transport block to be retransmitted with minimal delay 

upon error detection. This process is known as hybrid automatic repeat request (HARQ). Downlink HARQ feedback 

is received from the UE on the uplink. Therefore, the obvious solution is to have the uplink process the HARQ 

feedback upon reception. This works successfully if the uplink and downlink are processed sequentially. However, 

using the Prism Data Race View (see Figure 6) it was quickly established that HARQ process corruption was 

possible due to the uplink and downlink threads accessing the HARQ-related structures simultaneously. Realization 

of the issue is shown in the schedule view where downlink access to the HARQ structures punctuates the uplink 

access. Finally, the exact source code lines are identified in the source code window. The solution is for the uplink 

to gather the downlink HARQ feedback but leave processing to the downlink thread. This removes the dependency 

between the threads and consequently the resulting processing issue.
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Figure 6: HARQ Process Race Condition

4.2 IP Network Packet Reception and Downlink MAC Scheduling  
Erroneous Interaction

When packets are received from the IP network they are processed by the PDCP layer before being passed to the 

RLC as logical channel service data units (SDUs). The RLC generates a RLC protocol data unit (PDU) for a given 

logical channel using its stored SDUs when requested from the downlink MAC scheduler. As a result, there are two 

sources which access the pool of RLC SDUs. During LTE software porting this potential conflict was addressed 

by using software locks to ensure synchronized access to the RLC buffer pool. However, a side effect of this 

interaction was overlooked. 

In order to ensure an efficient scheduler implementation, the Freescale RLC informs the MAC scheduler when the 

status of a particular RLC logical channel changes, i.e., if a channel changes from empty to non-empty or from 

non-empty to empty. This ensures the MAC scheduler only processes channels containing data rather than all open 

logical channels.  This feature operated effectively on single-core devices. Unfortunately, in a multicore environment, 

it produced an error which manifested as an occasional crash when processing variable network traffic, making the 

issue difficult to replicate and debug. 

Executing the LTE software and capturing a trace allowed the issue to be tracked down without construction of an 

environment to replicate the problem. Prism’s Data Races feature (see Figure 7) outlined an issue with access to the 

list of “active” logical channels. Moreover, it pin-pointed the lines of code which caused the data race. Furthermore, 

Prism’s “Dependencies” features (see Figure 8) highlighted other related dependencies. This ensured that the 

scope of the issue was clear, which permitted a holistic view when designing the resolution. The solution is to store 

any logical channel status changes which occur during scheduling in a mirror list and then apply the changes on 

completion of scheduling.
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Figure 7: Packet Reception and Scheduling Race Condition

 
Figure 8: Packet Reception and Scheduling Data Dependency

 

5 Conclusion
Prism can be used to quickly identify and resolve performance issues and to locate code defects in an LTE 

implementation running on a P4080 processor. In addition to verification and performance optimizations, Prism 

supports “What If” analysis features to analyze how sequential code can be parallelized to run on multiple cores. 

Combined, these features allow the developer to quickly and efficiently target software onto multiple cores.

The QorIQ platform, with its extensive ecosystem of tools and software, provides a low risk path to high-

performance multicore for telecom software developers.
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