
White Paper

Tuning QorIQ Processor Performance
with Prism Software Analysis
Processor enablement

Freescale Semiconductor, Inc and CriticalBlue. 3

Introduction
Prism is a software analysis tool which provides support to optimize code for multicore platforms. This example

illustrates how Prism was used to assist porting Freescale Semiconductor’s LTE Layer 2 software from a single-core

processor, based on Power Architecture® technology, to Freescale’s QorIQ P4080 eight-core processor. It focuses

on parallel programming related issues which would have been difficult and time consuming to resolve without the

use of Prism. These issues can be classified as optimizations and defect resolutions. Using Prism, improved code

quality and reduced development time ultimately saved both development and maintenance cost.

Contents

1 Freescale’s LTE Layer2 Software .. 4

2 Understanding Your Multicore Application on QorIQ Processors .. 4

3 Implementing LTE Up/Downlink Parallel Processing .. 4

3.1 Optimizing LTE Up/Downlink Parallel Processing .. 5

4 LTE Execution Error Analysis .. 7

4.1 LTE HARQ Process Corruption .. 7

4.2 IP Network Packet Reception and Downlink MAC Scheduling Erroneous Interaction 8

5 Conclusion .. 9

4 Freescale Semiconductor, Inc and CriticalBlue.

1 Freescale’s LTE Layer2 Software

For several years, Freescale has been developing LTE code for processors built on Power Architecture technology.

The majority of this development has concentrated on Layer 2, which is medium access controller (MAC), radio

link controller (RLC) and packet data convergence protocol (PDCP). Moreover, development was initially focused

on single-core devices. Recently the LTE Layer 2 code has been ported to the multicore QorIQ communications

platforms. During this transition a number of issues related to parallel programming were encountered. Prism was

successfully used to assist in the resolution of these issues.

2 Understanding Your Multicore Application on QorIQ Processors

A QorIQ platform can provide up to eight cores (P4080), making it ideal for high-bandwidth telecom applications

such as LTE. In order to utilize the available processing power it is vital to ensure a threaded application runs

efficiently. This is especially important when moving an application from a single-core to multicore device due to the

potential magnification of any minor issue.

Understanding the dynamic behavior of an application can be very difficult. Even if an application is deemed bug

free, how can it be examined to ensure it is running optimally?

Prism allows for the capture and analysis of dynamic software activity on QorIQ devices, enabling quick

identification of any performance bottlenecks which can occur during execution. Furthermore, Prism is able to

pinpoint potential issues, such as data races, in a threaded implementation including the ability to trace issues back

to the root cause in the source code.

3 Implementing LTE Up/Downlink Parallel Processing

A LTE base station must be capable of processing multiple users on both the uplink and downlink within a 1 ms

time window. On traditional single-core devices, this is achieved by using a low priority thread to receive IP network

traffic and a high priority thread to execute the downlink and uplink sequentially. Consequentially, this restricts each

part of the processing chain to a slice of the 1 ms processing budget.

The following code fragments highlight the sequential implementation:

Figure 1: LTE Sequential Processing Flow

Freescale Semiconductor, Inc and CriticalBlue. 5

The up/downlink functions are called in a loop, which iterates based on a 1 ms timer, to process data accumulated

in various buffers. The downlink processes the incoming data stream (from the IP network) and places the results

into a buffer. Ordinarily, this data would be sent to Layer 1 for processing, however, the test application routes the

data to the L2 uplink. The uplink function processes the data during the next loop iteration. This flow is supported

by using two destinations for the data generated by the downlink.

A QorIQ multicore platform provides an opportunity to run IP packet reception, uplink processing and downlink

processing simultaneously. This can be achieved by using multiple threads on a Linux® operating system (OS) to

spread the workload across multiple cores. In this example, the initial partitioning between up and downlinks has

been made with the entire uplink processing taking place in its own thread while the downlink process continues to

run in the original main thread of the application. The following code fragments show how this was implemented.

Figure 2: Initial Threaded Implementation

3.1 Optimizing LTE Up/Downlink Parallel Processing

When the performance was measured on a P4080 processor, it was determined that the code was not running at

expected rates. To investigate further and determine where to optimize, the application testbench was run again

with Prism trace capture enabled. Once loaded into Prism, it quickly became obvious that the uplink and downlink

were not running in parallel. This can be seen clearly in the following screen shot of the Schedule View in Prism:

6 Freescale Semiconductor, Inc and CriticalBlue.

Figure 3: Schedule View of Original Trace Showing Serialization of Uplink and Downlink Threads

In this view, Prism shows the activity of the two application threads (uplink and main which runs the downlink

function) and they are clearly serialized due to synchronization through a conditional variable. After utilizing Prism to

pinpoint the relevant lines of source code, it became apparent that it is the pthread_cond_signal (&uplink_condition)

call in the run_uplink (void) function which signals the uplink thread to begin processing. This call is made after the

downlink processing has completed due to the processing flow of the original sequential code.

The solution is to call the run_uplink (void) function before starting downlink processing, enabling the uplink thread

to begin executing while the main thread continues running the downlink routine in parallel. Making the code

change outlined in Figure 4 and re-tracing allows us to see the impact in the Prism Schedule view (see Figure 5).

Figure 4: Optimized Processing Flow

Freescale Semiconductor, Inc and CriticalBlue. 7

Figure 5: Uplink and Downlink Running in Parallel

Now there is substantial parallel execution and a corresponding performance increase.

4 LTE Execution Error Analysis

Although the parallel implementation successfully executed all static tests, random failures were experienced when

using variable network traffic loads. Prism was used to successfully detect issues which would have otherwise been

difficult to identify.

4.1 LTE HARQ Process Corruption

When a transport block is sent by the base station on the downlink it is stored by the MAC layer until feedback

is received from the User Equipment (UE). This allows the transport block to be retransmitted with minimal delay

upon error detection. This process is known as hybrid automatic repeat request (HARQ). Downlink HARQ feedback

is received from the UE on the uplink. Therefore, the obvious solution is to have the uplink process the HARQ

feedback upon reception. This works successfully if the uplink and downlink are processed sequentially. However,

using the Prism Data Race View (see Figure 6) it was quickly established that HARQ process corruption was

possible due to the uplink and downlink threads accessing the HARQ-related structures simultaneously. Realization

of the issue is shown in the schedule view where downlink access to the HARQ structures punctuates the uplink

access. Finally, the exact source code lines are identified in the source code window. The solution is for the uplink

to gather the downlink HARQ feedback but leave processing to the downlink thread. This removes the dependency

between the threads and consequently the resulting processing issue.

8 Freescale Semiconductor, Inc and CriticalBlue.

Figure 6: HARQ Process Race Condition

4.2 IP Network Packet Reception and Downlink MAC Scheduling
Erroneous Interaction

When packets are received from the IP network they are processed by the PDCP layer before being passed to the

RLC as logical channel service data units (SDUs). The RLC generates a RLC protocol data unit (PDU) for a given

logical channel using its stored SDUs when requested from the downlink MAC scheduler. As a result, there are two

sources which access the pool of RLC SDUs. During LTE software porting this potential conflict was addressed

by using software locks to ensure synchronized access to the RLC buffer pool. However, a side effect of this

interaction was overlooked.

In order to ensure an efficient scheduler implementation, the Freescale RLC informs the MAC scheduler when the

status of a particular RLC logical channel changes, i.e., if a channel changes from empty to non-empty or from

non-empty to empty. This ensures the MAC scheduler only processes channels containing data rather than all open

logical channels. This feature operated effectively on single-core devices. Unfortunately, in a multicore environment,

it produced an error which manifested as an occasional crash when processing variable network traffic, making the

issue difficult to replicate and debug.

Executing the LTE software and capturing a trace allowed the issue to be tracked down without construction of an

environment to replicate the problem. Prism’s Data Races feature (see Figure 7) outlined an issue with access to the

list of “active” logical channels. Moreover, it pin-pointed the lines of code which caused the data race. Furthermore,

Prism’s “Dependencies” features (see Figure 8) highlighted other related dependencies. This ensured that the

scope of the issue was clear, which permitted a holistic view when designing the resolution. The solution is to store

any logical channel status changes which occur during scheduling in a mirror list and then apply the changes on

completion of scheduling.

Freescale Semiconductor, Inc and CriticalBlue. 9

Figure 7: Packet Reception and Scheduling Race Condition

Figure 8: Packet Reception and Scheduling Data Dependency

5 Conclusion
Prism can be used to quickly identify and resolve performance issues and to locate code defects in an LTE

implementation running on a P4080 processor. In addition to verification and performance optimizations, Prism

supports “What If” analysis features to analyze how sequential code can be parallelized to run on multiple cores.

Combined, these features allow the developer to quickly and efficiently target software onto multiple cores.

The QorIQ platform, with its extensive ecosystem of tools and software, provides a low risk path to high-

performance multicore for telecom software developers.

Freescale, the Freescale logo are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off.
QorIQ is trademark of Freescale Semiconductor, Inc. All other product or service names are the property
of their respective owners. The Power Architecture and Power.org word marks and the Power and Power.
org logos and related marks are trademarks and service marks licensed by Power.org.
© 2010 Freescale Semiconductor, Inc.
Document Number: LTEWHTPPRCRTBLA4
REV 0

Home Page:
www.freescale.com

Power Architecture Information:
www.freescale.com/powerarchitecture

Web Support:
www.freescale.com/support

USA/Europe or Locations Not Listed:
Freescale Semiconductor, Inc.
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
+1-800-521-6274 or +1-480-768-2130
www.freescale.com/support

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
www.freescale.com/support

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064, Japan
0120 191014
+81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor Hong Kong Ltd.
Technical Information Center
2 Dai King Street
Tai Po Industrial Estate,
Tai Po, N.T., Hong Kong
+800 2666 8080
support.asia@freescale.com

For Literature Requests Only:
Freescale Semiconductor
Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
1-800-441-2447
303-675-2140
Fax: 303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com

Home Page: www.criticalblue.com

Prism Evaluation Request:
www.criticalblue.com/prism/eval

CriticalBlue UK
181 The Pleasance
Edinburgh
EH8 9RU
United Kingdom
Tel: +44 131 655 1500
Fax: +44 131 655 1501
enquiries@criticalblue.com

CriticalBlue USA
San Jose, California
2033 Gateway Place
6th Floor
San Jose, CA 95110
USA
Tel: +1 408 573 3609
Fax: +1 408 437 1201
enquiries_us@criticalblue.com

CriticalBlue JAPAN
Tokyo
Tel: +81(0) 70 6473 5856
enquiries_jp@criticalblue.com

Information in this document is provided solely
to enable system and software implementers to
use Freescale Semiconductor products. There are
no express or implied copyright license granted
hereunder to design or fabricate any integrated
circuits or integrated circuits based on the
information in this document.

Freescale Semiconductor reserves the right to make
changes without further notice to any products
herein. Freescale Semiconductor makes no warranty,
representation or guarantee regarding the suitability
of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability
arising out of the application or use of any product
or circuit, and specifically disclaims any and all
liability, including without limitation consequential or
incidental damages. “Typical” parameters which may
be provided in Freescale Semiconductor data sheets
and/or specifications can and do vary in different
applications and actual performance may vary over
time. All operating parameters, including “Typicals”
must be validated for each customer application
by customer’s technical experts. Freescale
Semiconductor does not convey any license under
its patent rights nor the rights of others. Freescale
Semiconductor products are not designed, intended,
or authorized for use as components in systems
intended for surgical implant into the body, or other
applications intended to support or sustain life, or
for any other application in which the failure of the
Freescale Semiconductor product could create
a situation where personal injury or death may
occur. Should Buyer purchase or use Freescale
Semiconductor products for any such unintended
or unauthorized application, Buyer shall indemnify
and hold Freescale Semiconductor and its officers,
employees, subsidiaries, affiliates, and distributors
harmless against all claims, costs, damages, and
expenses, and reasonable attorney fees arising
out of, directly or indirectly, any claim of personal
injury or death associated with such unintended or
unauthorized use, even if such claim alleges that
Freescale Semiconductor was negligent regarding
the design or manufacture of the part.

How to Reach Us:

