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Introduction
Security continues to be an increasingly 

important concern in the design of modern 

systems. Threats against networks and 

network-connected devices are real and 

growing. With an estimated $40 billion (USD)* 

of data loss per year, service providers and 

end users are becoming painfully aware of the 

consequences of unsecured networks  

and databases.

As the market leader in embedded 

communications processors, Freescale 

understands the foundational role our 

processors can play in securing the traffic 

passing through networks as well as the 

potential for processors to harden network 

nodes and connected devices against attack, 

effectively making them trusted systems. A 

trusted system is a system that does what its 

builder (OEM) and users expect it to do, and 

specifically does not do other things which the 

OEM and/or users would consider attacks.

The starting point for a trusted system is 

assurance that it boots and executes only 

authentic code. Consequently, secure boot 

is a cornerstone of the QorIQ platform’s trust 

architecture, which also includes secure 

runtime, secure debug, tamper detection 

and device-specific secret key usage. The 

QorIQ P1010 processor, along with the 

P2040, P2041, P3041, P4080, P4040, 

P5020 and P5010, implements the trust 

architecture, providing system developers 

with the hardware anchor points needed to 

develop a trusted system. The secure boot 

information contained in this white paper, 

though specifically referencing the P1010 

processor, applies to the other products listed 

here as well.

Objectives of Secure Boot 
Secure boot is a process through which the 

P1010 determines whether the system’s 

image is trusted. The P1010 doesn’t know the 

intent of the code, and has no objective way 

of knowing whether the code will attempt to 

do malicious things. Therefore, in the context 

of secure boot, trusted = authentic. System 

developers digitally sign their code to allow 

the P1010 to distinguish authentic trusted 

code from untrusted non-authentic code.

The ability to distinguish between trusted 

and untrusted code enables the following 

capabilities: 

• Prevent the CPU from running untrusted 

code rather than authentic OEM  

signed code 

• Detect and reject modified security 

configuration values and device secrets

• Allow trusted code to use a device-

specific, one-time programmable master 

key (OTPMK) when the trust architecture 

says the P1010 is in a secure state

• Prevent extraction of sensitive values 

from the device by any means, short of 

de-processing

Note that while some developers have a 

critical need to know their systems are 

hardened against attack, this isn’t a universal 

requirement. Consequently, the secure boot 

and trust architecture are disabled by default. 

Developers not implementing trust features 

can ignore their existence.

Also note that developers who choose 

to leverage the trust architecture are not 

dependent on Freescale to provision devices 

or sign code. P1010 devices are sold ready 

for provisioning with very little impact to board 

design or the developer’s manufacturing 

flow, and code signing is performed using 

tools provided as part of the P1010 software 

development kit (SDK).  

Code Signing 
The starting point for a trusted platform is 

the creation (by the developer) of a bug-

free and malware-free code base. Once the 

developer “trusts” the code, the developer 

digitally signs the code so that accidental or 

deliberate modifications to the code base will 

be detected during the secure boot cycle.

As shown in the figure at right, the OEM 

calculates a hash over the system code 

(executable instructions and configuration 

information). It is possible (even advantageous) 

for portions of the code to be encrypted— 

this prevents attackers from stealing the code 

from flash.

The OEM generates an RSA public and 

private key pair. It is the responsibility of the 

OEM to tightly control access to the RSA 

private signature key. 

If this key is ever exposed, attackers will be 

able to generate alternate images that will 

pass secure boot. If this key is ever lost, the 

OEM will be unable to update the image.

The hash is signed using an RSA private 

signature key. This encrypted hash is known 

as a digital signature, and the digital signature 

is appended to the code, with both being 

written to flash (or other system non-volatile 

memory). Another hash is calculated over 

the public key which the P1010 will use to 

validate the system’s code. This hash value 

(the super root key hash) is programmed into 

a fuse block within the P1010.

Secure Boot Sequence
At a high level, secure boot entails the P1010 

using the RSA public key (super root key) to 

decrypt the signed hash while simultaneously 

recalculating the SHA-256 hash over the 

system code. The P1010 compares the 

decrypted original hash to the freshly 

calculated hash and, if the values match, 

the code is considered authentic. In reality, 

however, this process involves a few  

more steps.

Pre-Boot Phase
When the device is first powered on, reset 

control logic blocks all device activity 

(including scan and debug activity) until fuse 

values can be accurately sensed. The most 

important fuse value at this stage of operation 

is the intent to secure (ITS) bit. When an OEM 

sets ITS in the security fuse processor, they 

intend for the system to operate in a secure 

and trusted manner or not at all. The setting 

of ITS determines the default settings of a 

range of configuration registers within the 

device, essentially locking down interfaces, 

memory permissions and MMU configurations 

until trusted software is executing.

When the ITS bit is set, the system jumps to 

an internal boot ROM (IBR) for booting. The 

contents of this ROM include the internal 

secure boot code (ISBC), which checks the 

cfg_rom_loc value to determine the location 

of the code the developer wants to run, 

assuming secure boot passes.
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ISBC Boot Phase
The internal secure boot code (ISBC) is 

Freescale-developed code that performs 

device security health checks and verification 

of the digital signature over the developer’s 

code in external non volatile (NV) RAM. The 

developer’s code could be a monolithic image 

including bootloader, OS and applications, 

or secure boot could involve a chain of 

validations, where the ISBC validates the 

bootloader, the bootloader validates the OS 

and the OS validates the applications. The 

Freescale SDKs for trust architecture devices 

include an example of a chain of validations, 

starting with the ISBC validating a modified 

version of u-boot referred to as trusted 

u-boot. In some documentation, trusted 

u-boot is also referred to as the external 

secure boot code (ESBC). 

The ISBC’s main function is to verify the 

authenticity of the ESBC, which performs 

more extensive device configuration and code 

authentication similar to that performed by 

the ISBC. The ISBC accesses main memory 

to obtain the ESBC code from a predefined 

address. The ISBC relies on a header file 

called the command sequence file (CSF) 

header to determine that it has found a 

potentially valid image, and to know the size 

and other characteristics of the image to be 

validated. This CSF header is added to the 

developer’s image by the Freescale code 

signing tool. If the ISBC successfully validates 

the image (ESBC in this example), it puts 

the P1010 into a secure state and jumps to 

an entry point within the ESBC. If the digital 

signature validation fails, the P1010 goes into 

a FAIL state and refuses to boot.

ESBC Phase
Unlike the ISBC, which is in an internal 

ROM and therefore unchangeable, the 

ESBC (trusted u-boot) is Freescale-supplied 

reference code, and can be changed by 

OEMs. Consequently, the description 

here is based on the Freescale reference 

implementation—other actions are possible.

Trusted u-boot performs typical u-boot 

configuration functions, such as mapping 

physical memory, initializing the network 

interfaces and data path infrastructure, and 

loading next-stage software such as the OS 

(trusted u-boot client) into main memory. The 

trusted u-boot client has the same format 

CSF header prepended to it as trusted u-boot 

have, which allows trusted u-boot to perform 

signature validation over the trusted u-boot 

client. The public key used for this validation 

can be the same as used by the ISBC, or 

it can be a new public key from the trusted 

u-boot client’s CSF header. If the signature 

passes, trusted u-boot jumps to the entry 

point within the client and begins execution. 

At this point, the developer’s authentic device 

configurations, OS and applications can be 

considered to be running.

If trusted u-boot fails to validate the trusted 

u-boot client, the P1010 goes into a FAIL 

state and the CPU spins until the device  

is reset.  

Conclusion
With the explosive growth in network 

connected devices, the need for security 

assurance from embedded systems has 

grown considerably. Networking, access and 

industrial embedded systems are multi-billion 

dollar industries, and the economic impact of 

the unavailability of these embedded systems 

(or, of being practically unavailable due to lack 

of trust in their operation) is many times larger. 

Open source code is increasingly treated like 

modules to be downloaded and plugged into 

holes in an OEM’s own software offerings, 

despite the unknown origins and without 

thorough analysis for backdoors.

The Freescale QorIQ processor portfolio has 

deliberately designed trusted subsystems into 

its devices that allow users to meet assured 

computing goals without comprising the 

performance requirements of the mission. The 

QorIQ platform’s trust architecture, available 

in the P1010, P2040, P2041, P3041, P4040, 

P4080, P5010 and P5020, provides OEMs 

with the hardware anchor points they need 

to develop a trusted system. Additional 

hardware support during boot time assures 

that boot and runtime code is trusted before 

execution and prevents unauthorized debug 

access to secure state. The trust architecture 

and secure boot features within the QorIQ 

processors provide the OEM the tools 

necessary to achieve assured computing 

within the system requirements of size, weight 

and power. 
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