

Secure Boot
For QorIQ Communications Processors

freescale.com

White Paper

2

QorIQ Communications Platforms

Introduction
Security continues to be an increasingly

important concern in the design of modern

systems. Threats against networks and

network-connected devices are real and

growing. With an estimated $40 billion (USD)*

of data loss per year, service providers and

end users are becoming painfully aware of the

consequences of unsecured networks

and databases.

As the market leader in embedded

communications processors, Freescale

understands the foundational role our

processors can play in securing the traffic

passing through networks as well as the

potential for processors to harden network

nodes and connected devices against attack,

effectively making them trusted systems. A

trusted system is a system that does what its

builder (OEM) and users expect it to do, and

specifically does not do other things which the

OEM and/or users would consider attacks.

The starting point for a trusted system is

assurance that it boots and executes only

authentic code. Consequently, secure boot

is a cornerstone of the QorIQ platform’s trust

architecture, which also includes secure

runtime, secure debug, tamper detection

and device-specific secret key usage. The

QorIQ P1010 processor, along with the

P2040, P2041, P3041, P4080, P4040,

P5020 and P5010, implements the trust

architecture, providing system developers

with the hardware anchor points needed to

develop a trusted system. The secure boot

information contained in this white paper,

though specifically referencing the P1010

processor, applies to the other products listed

here as well.

Objectives of Secure Boot
Secure boot is a process through which the

P1010 determines whether the system’s

image is trusted. The P1010 doesn’t know the

intent of the code, and has no objective way

of knowing whether the code will attempt to

do malicious things. Therefore, in the context

of secure boot, trusted = authentic. System

developers digitally sign their code to allow

the P1010 to distinguish authentic trusted

code from untrusted non-authentic code.

The ability to distinguish between trusted

and untrusted code enables the following

capabilities:

• Prevent the CPU from running untrusted

code rather than authentic OEM

signed code

• Detect and reject modified security

configuration values and device secrets

• Allow trusted code to use a device-

specific, one-time programmable master

key (OTPMK) when the trust architecture

says the P1010 is in a secure state

• Prevent extraction of sensitive values

from the device by any means, short of

de-processing

Note that while some developers have a

critical need to know their systems are

hardened against attack, this isn’t a universal

requirement. Consequently, the secure boot

and trust architecture are disabled by default.

Developers not implementing trust features

can ignore their existence.

Also note that developers who choose

to leverage the trust architecture are not

dependent on Freescale to provision devices

or sign code. P1010 devices are sold ready

for provisioning with very little impact to board

design or the developer’s manufacturing

flow, and code signing is performed using

tools provided as part of the P1010 software

development kit (SDK).

Code Signing
The starting point for a trusted platform is

the creation (by the developer) of a bug-

free and malware-free code base. Once the

developer “trusts” the code, the developer

digitally signs the code so that accidental or

deliberate modifications to the code base will

be detected during the secure boot cycle.

As shown in the figure at right, the OEM

calculates a hash over the system code

(executable instructions and configuration

information). It is possible (even advantageous)

for portions of the code to be encrypted—

this prevents attackers from stealing the code

from flash.

The OEM generates an RSA public and

private key pair. It is the responsibility of the

OEM to tightly control access to the RSA

private signature key.

If this key is ever exposed, attackers will be

able to generate alternate images that will

pass secure boot. If this key is ever lost, the

OEM will be unable to update the image.

The hash is signed using an RSA private

signature key. This encrypted hash is known

as a digital signature, and the digital signature

is appended to the code, with both being

written to flash (or other system non-volatile

memory). Another hash is calculated over

the public key which the P1010 will use to

validate the system’s code. This hash value

(the super root key hash) is programmed into

a fuse block within the P1010.

Secure Boot Sequence
At a high level, secure boot entails the P1010

using the RSA public key (super root key) to

decrypt the signed hash while simultaneously

recalculating the SHA-256 hash over the

system code. The P1010 compares the

decrypted original hash to the freshly

calculated hash and, if the values match,

the code is considered authentic. In reality,

however, this process involves a few

more steps.

Pre-Boot Phase
When the device is first powered on, reset

control logic blocks all device activity

(including scan and debug activity) until fuse

values can be accurately sensed. The most

important fuse value at this stage of operation

is the intent to secure (ITS) bit. When an OEM

sets ITS in the security fuse processor, they

intend for the system to operate in a secure

and trusted manner or not at all. The setting

of ITS determines the default settings of a

range of configuration registers within the

device, essentially locking down interfaces,

memory permissions and MMU configurations

until trusted software is executing.

When the ITS bit is set, the system jumps to

an internal boot ROM (IBR) for booting. The

contents of this ROM include the internal

secure boot code (ISBC), which checks the

cfg_rom_loc value to determine the location

of the code the developer wants to run,

assuming secure boot passes.

3

QorIQ Communications Platforms

ISBC Boot Phase
The internal secure boot code (ISBC) is

Freescale-developed code that performs

device security health checks and verification

of the digital signature over the developer’s

code in external non volatile (NV) RAM. The

developer’s code could be a monolithic image

including bootloader, OS and applications,

or secure boot could involve a chain of

validations, where the ISBC validates the

bootloader, the bootloader validates the OS

and the OS validates the applications. The

Freescale SDKs for trust architecture devices

include an example of a chain of validations,

starting with the ISBC validating a modified

version of u-boot referred to as trusted

u-boot. In some documentation, trusted

u-boot is also referred to as the external

secure boot code (ESBC).

The ISBC’s main function is to verify the

authenticity of the ESBC, which performs

more extensive device configuration and code

authentication similar to that performed by

the ISBC. The ISBC accesses main memory

to obtain the ESBC code from a predefined

address. The ISBC relies on a header file

called the command sequence file (CSF)

header to determine that it has found a

potentially valid image, and to know the size

and other characteristics of the image to be

validated. This CSF header is added to the

developer’s image by the Freescale code

signing tool. If the ISBC successfully validates

the image (ESBC in this example), it puts

the P1010 into a secure state and jumps to

an entry point within the ESBC. If the digital

signature validation fails, the P1010 goes into

a FAIL state and refuses to boot.

ESBC Phase
Unlike the ISBC, which is in an internal

ROM and therefore unchangeable, the

ESBC (trusted u-boot) is Freescale-supplied

reference code, and can be changed by

OEMs. Consequently, the description

here is based on the Freescale reference

implementation—other actions are possible.

Trusted u-boot performs typical u-boot

configuration functions, such as mapping

physical memory, initializing the network

interfaces and data path infrastructure, and

loading next-stage software such as the OS

(trusted u-boot client) into main memory. The

trusted u-boot client has the same format

CSF header prepended to it as trusted u-boot

have, which allows trusted u-boot to perform

signature validation over the trusted u-boot

client. The public key used for this validation

can be the same as used by the ISBC, or

it can be a new public key from the trusted

u-boot client’s CSF header. If the signature

passes, trusted u-boot jumps to the entry

point within the client and begins execution.

At this point, the developer’s authentic device

configurations, OS and applications can be

considered to be running.

If trusted u-boot fails to validate the trusted

u-boot client, the P1010 goes into a FAIL

state and the CPU spins until the device

is reset.

Conclusion
With the explosive growth in network

connected devices, the need for security

assurance from embedded systems has

grown considerably. Networking, access and

industrial embedded systems are multi-billion

dollar industries, and the economic impact of

the unavailability of these embedded systems

(or, of being practically unavailable due to lack

of trust in their operation) is many times larger.

Open source code is increasingly treated like

modules to be downloaded and plugged into

holes in an OEM’s own software offerings,

despite the unknown origins and without

thorough analysis for backdoors.

The Freescale QorIQ processor portfolio has

deliberately designed trusted subsystems into

its devices that allow users to meet assured

computing goals without comprising the

performance requirements of the mission. The

QorIQ platform’s trust architecture, available

in the P1010, P2040, P2041, P3041, P4040,

P4080, P5010 and P5020, provides OEMs

with the hardware anchor points they need

to develop a trusted system. Additional

hardware support during boot time assures

that boot and runtime code is trusted before

execution and prevents unauthorized debug

access to secure state. The trust architecture

and secure boot features within the QorIQ

processors provide the OEM the tools

necessary to achieve assured computing

within the system requirements of size, weight

and power.

Code Integrity Via the Trusted Boot Process

OEM System Provisioning

D, N
Private Key
Encryption

Note: Program and Signature may also be encrypted for IP protection.
Private Key has to be carefully managed and protected.

Fuse Box
Public Key/

Hash

Message
Digest Hash

SignatureSignature

Private
Key

Public
Keys

Public Key Public Key Verify Key
List

System
Image

System
Image

E, N

HashE Mod N

Trusted Boot

Internal Secure Boot Code

Fuse Box
Public Key/
List Hash

Public Key
Encryption

Authentication
Result

Compare
Hash Sum

Message
Digest Hash

Hash
Key/List

Code Integrity Via the Trusted Boot Process

Freescale, the Freescale logo and QorIQ are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm.
All other product or service names are the property of their respective owners.
© 2011, 2013 Freescale Semiconductor, Inc.

Document Number: QORIQSECBOOTWP REV 1

For more information, visit
freescale.com/QorIQ and freescale.com/security

Home Page:
freescale.com

QorIQ Portfolio Information:
freescale.com/QorIQ

e-mail:
support@freescale.com

USA/Europe or Locations Not Listed:
Freescale Semiconductor
Technical Information Center, CH370
1300 N. Alma School Road
Chandler, Arizona 85224
1-800-521-6274
480-768-2130
support@freescale.com

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
support@freescale.com

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064, Japan
0120 191014
+81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor Hong Kong Ltd.
Technical Information Center
2 Dai King Street
Tai Po Industrial Estate,
Tai Po, N.T., Hong Kong
+800 2666 8080
support.asia@freescale.com

Information in this document is provided solely to enable system and software implementers to use Freescale
Semiconductor products. There are no express or implied copyright license granted hereunder to design or
fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein.
Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products
for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application
or use of any product or circuit, and specifically disclaims any and all liability, including without limitation
consequential or incidental damages. “Typical” parameters which may be provided in Freescale Semiconductor
data sheets and/or specifications can and do vary in different applications and actual performance may vary
over time. All operating parameters, including “Typicals” must be validated for each customer application by
customer’s technical experts. Freescale Semiconductor does not convey any license under its patent rights nor
the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as
components in systems intended for surgical implant into the body, or other applications intended to support or
sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create
a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor
products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale
Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims,
costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of
personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that
Freescale Semiconductor was negligent regarding the design or manufacture of the part.

How to Reach Us:

