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1	 INTRODUCTION

Just about every new device and electronics system entering the market is in one way or another connected to 
its environment, and often directly or indirectly, to the internet. A complex building control system, for example, 
may contain many smaller sensor nodes that send data through a wireless connection to a local gateway or 
through the gateway’s internet connection to a backend system. In another example, a connected vehicle, edge 
nodes provide a range of functions, from seat adjustments to engine control. Each node is interconnected using 
an in-vehicle network. The network connects to a backend server through a cellular modem, which may also 
be connected to the vehicle’s network gateway. A similar architecture also exists for industrial automation and 
control systems (IACS).

These modern systems are susceptible to cyberattacks, which increase the importance of mandatory security 
requirements for many of the integrated circuits (ICs) used in these systems. There are several ways to implement 
protection, or countermeasures, against cyberattacks. One solution becoming more common is the integration 
of security subsystems into ICs. This solution can help enforce security policies on the IC itself (i.e, platform 
security). It also protects assets, including code (software), data, and cryptographic keys when when at rest 
(stored), in use, or in transit (e.g. processed, communicated).

This paper describes common concepts and usage paradigms of security subsystems that are integrated into 
and are part of a larger microcontroller or system-on-chip (SoC) device. It should be noted that individual 
implementations may deviate from the descriptions featured here due to the specific needs of an intended IC 
application.

1.1	 Intended audience

The intended audiences for this whitepaper are hardware and software architects and design and support 
engineers who need to understand security subsystems. This whitepaper also provides a good introduction for 
non-engineers who want to learn more.

The concepts of a security subsystem outlined in this whitepaper are described from a user’s perspective. This 
paper intentionally does not give technical implementation details of the inner workings of security subsystems 
but instead describes its concepts and usage paradigms. This paper describes the common elements and 
features of modern security subsystems.

2	 What is a security subsystem?

A security subsystem is a dedicated subsystem within an IC (i.e., microcontroller or SoC). Several terms refer to 
such subsystems, including integrated (or on-chip) security subsystems. In the automotive market, they are often 
referenced as the secure hardware extension (SHE) module or the hardware security module (HSM).

As part of a larger system, a security subsystem provides services to applications and manages and protects 
cryptographic assets. Due to its integration into the IC system, the security subsystem also provides a way to 
guard the platform integrity for the entire IC. While security companion ICS (e.g., TPMs, secure elements) may 
also implement many concepts described in this paper, platform integrity is a state that generally cannot be 
reached through external (slave) components.

2.1	 Objectives

The primary objectives for security subsystems are to:

•	 Provide security services to the application, and support securing application code and data in transit and at 
rest

•	 Provide platform security and protect platform integrity as well as the confidentiality and availability of critical 
assets where needed; these functions includes controlling the application environment in various ways (e.g., 
secure boot) and enforcing security policies

•	 Protect cryptographic keys from software attacks by moving the control over critical assets (in particular, 
cryptographic keys) from the application domain into a separate domain
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The exact definition of the functions a security subsystem provides depends on the application and system. It 
could provide security services, platform security or some other security feature.

2.2	 Architecture

A microprocessor system with a security subsystem splits into two domains: the application domain and the 
security subsystem domain. The application domain consists of an environment that provides common resources, 
such as one or more application processors, RAM, flash, and peripherals. The security subsystem domain hosts or 
controls security-related assets and services.
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Figure 1: Logical view of security subsystem domain and application domain

The security subsystem is embedded into an IC/SoC and equipped with controls and privileged access to system 
resources. During system power-on, the security subsystem is one of the first entities to be initialized. During the 
next steps of system initialization, it assumes the vital role of secure system bring-up.
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Figure 2: Simplified example of a security subsystem integrated into an IC

For simplicity, the security subsystem is sketched here as a single (monolithic) entity. In practice, the subsystem 
may have a more distributed (physical) architecture. This architecture consists of several interconnected modules 
distributed across the IC architecture.
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2.3	 Industry specifications

During the last decade, integrated security subsystems have gained increased popularity and have become a 
mandatory requirement in some markets and applications. 

The automotive market provides a good example for increasingly popular integrated security subsystems. In 
2008, the SHE specification [1] introduced the concept of a configurable security subsystem for automotive 
microcontrollers. Within two years, the e-Safety Vehicle intrusion Protected Application’s (EVITA’s) HSM 
specification extended this concept into a programmable subsystem in three flavors (full, medium, and light), 
to address a broader range of use cases. SHE and EVITA have been instrumental in introducing the concept of 
on-chip security subsystems, including associated usage paradigms such as key usage policies and secure boot, 
to a broader automotive audience. Since the introduction of the specifications, there has been limited discussion 
on the need for such subsystems because nearly every customer requirement specification today includes an 
item on SHE and EVITA compatibility. However, neither specification has been maintained or updated, while 
automotive systems and applications and the associated security requirements have evolved. Nowadays, vehicle 
manufacturers are therefore creating their technical specifications, usually based on SHE and EVITA, and are 
including select aspects of other specifications such as FIPS 140-2 [2], and SAE J3101 [3]. 

Security subsystems are not specific to automotive. In 2013, Microsoft introduced a security subsystem in the 
Xbox One’s system-on-chip (SoC) that featured a processing core, cryptographic engines, a random number 
generator, and dedicated memories. This subsystem provides security services to and enforces security policies 
on the SoC. More recently, Microsoft is marketing a derivative, called Pluton, an IoT security subsystem for Azure 
Sphere [4].

In the mobile phone markets, the two prevailing operating systems Android and iOS include support for 
hardware-backed key storage, yet the concept of using (or concealing) cryptographic keys through services is 
missing. Within the Android ecosystem, there exist further recommendations and reference flows to enable a 
hardware-supported verified boot process as well as security services implemented in a TEE environment.

Another example is the Arm® platform security architecture (PSA) concept, announced in 2017, which proposes 
a similar architecture for IoT applications. Here, the basic idea is to secure assets by separating them from 
the application firmware and hardware as well. This security is achieved by introducing a secure processing 
environment (SPE) for the sensitive assets and the code that manages them. The SPE is isolated from the non-
secure processing environment (NSPE), in which the main application and communication firmware executes. 
The way this split is implemented is different from the SHE-defined process as it permits a logical rather than a 
physical split.

2.4	 Hardware Security Module

Security subsystems as described in this whitepaper are sometimes also referred to as (integrated) hardware 
security modules (HSMs), which is particularly true for the automotive industry due to the EVITA HSM 
specification. However, the term hardware security module is used differently in other markets and applications, 
where it may also refer to different solutions including:

•	 a dedicated tamper-proof physical computing device for mission-critical infrastructure (e.g., PKI)

•	 a compute module (e.g., an extension card) inside a computer system

•	 a software implementation (software HSM)

•	 a stand-alone security coprocessor (e.g., secure element or TPM)

•	 a subsystem within an IC

To avoid confusion, we refrain from using HSM in the remainder of this whitepaper. The focus of this paper is 
set on security subsystems (last definition from the above list), which we define as central or distributed security 
subsystem integrated within a larger IC.
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3	 Security services

A security subsystem provides security services to the application, to support it in tasks such as encrypting or 
decrypting chunks of data, verifying the authenticity and integrity of received messages, and associated key 
management. 

A security subsystem also protects confidential keys from disclosure to the application and from an adversary 
controlling the application. In general, keys reside within the security subsystem and are referenced through an 
identifier when the application wants to make use of a security service; the keys themselves are not exposed to the 
application. 

Furthermore, access to the security subsystem’s services is typically restricted to authenticated applications only 
(i.e., code that passed secure boot). See section 4.3.1.

3.1	 Service requests

To use the security subsystem’s services, an application issues a service request. The security subsystem may serve 
such a request immediately or at a later time. Service requests that cannot be answered immediately are handled 
as service jobs with the security subsystem. Modern security subsystems can handle multiple service jobs at once.

A service request typically contains information such as source and destination memory pointers and reference to 
the key that is to be used. Cryptographic keys stored in the security subsystem are referenced through a unique key 
identifier. 

3.2	 Key management

The security subsystem manages cryptographic keys and protects their integrity and confidentiality. Cryptographic 
keys are stored separately from applications in a dedicated memory region, which is either physically protected 
from access through the application or protected through cryptographic means, e.g., an encrypted region within 
shared non-volatile memory.

A security subsystem can securely handle and protect cryptographic keys of various types, i.e., keys that are used 
in symmetric, as well as in asymmetric schemes. All cryptographic keys are organized in slots and, as stated above, 
addressed through a unique reference; namely, a key (slot) identifier. Some implementations of security subsystems 
allow the organization of keys into groups and subgroups.

3.2.1	Key generation

A security subsystem allows the (internal) generation of cryptographic keys. To mitigate the risk of key exposure, 
keys may be generated within a security subsystem and thus always remain within control boundaries of the security 
subsystem.

Internal key generation may constitute an alternative to key injection, e.g., in situations in which the device is 
already deployed (in use) or the production environment cannot be trusted to protect the confidentiality of a 
cryptographic key.

3.2.2	Key derivation

A security subsystem typically also supports key derivation, which is a fundamental concept to limit the exposure 
of a secret key during use. In a key derivation process, a secret (long-term) key along with one or more additional 
parameters is input to a key derivation function. Additional parameters for key derivation are typically a composition 
of static and randomly selected inputs, e.g., a static subject string concatenated with a random nonce value.

Key derivation is a common technique used in communication protocols such as TLS. In TLS 1.3, for example, 
long-term keys of two communicating entities and session-related information are combined in a key schedule to 
derive a number of ephemeral keys. After a successful handshake among the two communication partners, these 
keys are used to protect the confidentiality and authenticity of record (payload) data.

As with all cryptographic primitives, a security subsystem should only implement standardized and proven 
algorithms for key derivation.
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3.2.3	Key import, export and update

As an alternative to local key generation, a security subsystem typically also allows the import and update 
operations on cryptographic keys to support use cases in which the keys are generated elsewhere (e.g., in a PKI) 
and securely transferred to the subsystem.

An import operation of a cryptographic key into an unpopulated key slot is typically permitted during some 
stages of a device’s lifecycle (see section 4.4) only. Furthermore, to prevent unauthorized use of the update 
mechanism, a key update operation typically requires proof of knowledge of either the to-be-updated key in the 
target key slot or of a cryptographic key associated with the update procedure.

A key export operation is conducted if cryptographic keys are to be exported from the security subsystem. 
Export of (secret) keys shall only be permitted in protected (e.g., encrypted and authenticated) format, and not in 
unprotected (e.g., plain text) format, as that would defeat the key protection offered by the subsystem.

3.2.4	Key usage policies

Each cryptographic key has attributes (key flags) assigned to it, which are used to define its key usage policy. 
Based on the setting of key attributes, a security subsystem may permit or deny usage of security service with 
a given key. Thus, key attributes are a way to define and enforce usage restrictions on cryptographic keys. The 
owner of the respective key, e.g., the IC manufacturer (for platform-related keys) or the user of the subsystem (for 
customer keys) defines key attributes. 

For example, a symmetric firmware authentication key stored in the subsystem can be restricted to be used for 
verification only, but not for the generation of authentication tags. This way, the key cannot be misused to sign 
and execute a manipulated firmware image, e.g., by malicious (compromised) application code running on the IC 
containing the subsystem.

Also, key import, update and export capabilities (see the previous section) are typically restricted by policy. The 
reason for this is that a subsystem typically needs to support a wide variety of use cases and users. Such policy 
allows users that don’t need key export capabilities to restrict (disable) all export capabilities on secret keys, 
whereas other users that need these capabilities, can leave it enabled.

3.3	 Encryption services

Encryption services can be used by the application to protect the confidentiality of application data. A typical 
example is the protection of data transferred over (unprotected and/or untrusted) communication channels.

Security subsystems generally support encryption and decryption using various cipher modes and schemes, 
based on symmetric and asymmetric ciphers. Examples include AES-CBC, AES-CCM, RSA and ECIES. Encryption 
operations can be triggered explicitly, e.g., through security services, or implicitly, through on-the-fly encryption 
services (where available).

3.3.1	On-the-fly encryption

An on-the-fly encryption service performs encryption or decryption operations without an explicit request from 
the application, but rather on-demand, when the application reads or writes specific memories or regions 
therein. Keys used with on-the-fly encryption services are managed by the security subsystem, similar to other 
cryptographic services. On-the-fly encryption services may be configured during system runtime, or once in an IC 
system’s lifetime as part of the system’s persistent configuration.

Where available, on-the-fly encryption services allow applications to access memories (e.g., RAM or flash) in a 
transparent manner. This access means that an application can perform read or write operations on the memory 
without explicitly performing encryption or decryption operations. Rather, the application addresses the memory 
contents like any other (non-encrypted) memory. This technique may, for example, be employed for firmware 
encryption.
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3.4	 Data authentication services

Data authentication services can be used by the application(s) to protect and/or verify the authenticity and 
integrity of code and data, by generating or verifying MAC tags or digital signatures. Signing and verification 
services may be used in various applications such as network communication or firmware verification.

In the case of a symmetric scheme (such as a MAC), the secret key must be known to the verification service 
inside the security subsystem. However, the key’s usage policy may restrict its use to verification only. In such 
cases, the application is unable to forge a valid MAC tag for an arbitrary message (see also section 3.2.4).

3.5	 Entity authentication and key agreement services

Entity authentication describes the process of authentication among different entities. In its simplest form, 
one entity (the prover) provides proof of knowledge of secret value to another entity (the verifier), e.g., by 
supplying a password. More sophisticated and adequate forms of entity authentication protocols provide mutual 
authentication with zero-knowledge proofs.

If an application demands secure communication after initial authentication, protocols that implement 
authentication with key agreement are the preferred choice. Popular examples of such protocols include the 
handshake protocols of TLS, IKE(v2) as well as various EAP methods.

To perform authentication, either a shared secret or a public/private keypair is required. Security subsystems 
may be utilized to store such information as part of their key storage database. To support a specific protocol 
implementation however, additional support from the security subsystem is needed in order to retain 
secret information within the control of the security subsystem. A security subsystem may implement entity 
authentication and key agreement as part of a larger protocol support service, such as a TLS or IPsec support 
stack, or a subset thereof, e.g., as (separate) key derivation and message authentication services.

3.6	 Random number generator

Security subsystems typically provide services for random number generation. Through such services, an 
application may obtain high-entropy random numbers from a hardware entropy source. Random numbers are 
also used by the security subsystem itself, e.g., for the signature generation or when cryptographic keys are 
generated by the security subsystem.

Security subsystems typically offer two types of random number generators: a true random number generator 
(TRNG) and pseudorandom number generator (PRNG). A true random number generator is comprised of one 
or more high-quality entropy sources. A pseudorandom number generator is a deterministic algorithm that 
produces a limited sequence output based on an input or local state (seed).

Entropy sources used in a TRNG are intrinsically slow and do not always meet an application’s requirements. 
Therefore, the TRNG’s output is used to extend an entropy pool. The contents of the entropy pool are used as a 
seed to a PRNG, which is much faster than a TRNG, and the PRNG’s output is made available to an application.

Due to its deterministic nature, a PRNG produces the same result when seeded with a static input. To overcome 
this limitation, the entropy pool is iterated (and every now and then extended with further data produced by the 
TRNG) whenever an application obtains data through the PRNG.

TRNG
extend seed extract

iterate

Entropy
pool

PRNG Application

Figure 3: Interaction between TRNG and PRNG functions
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Extension of the entropy pool and iteration usually happen asynchronously so that an application may make high 
bandwidth use of the PRNG without waiting for the next TRNG result.

As part of a random number generator implementation, tests to assess the quality of the entropy may be 
implemented. Such tests (for example, as defined in BSI AIS-31 [5]) are either offline or online tests, meaning the 
quality of entropy is tested during runtime or offline. Testing and pooling of entropy data inside the context of a 
security subsystem not only offloads the task, but also helps to obtain reliable and fast sourcing of entropy data.

3.7	 Monotonic counters

Security subsystems can also provide monotonic counters. This allows the application to access a trusted state 
value implemented in the security subsystems. Monotonic counters are useful in various applications, e.g., for 
logging, freshness assurance, in communication protocols and rollback protection.

Monotonic counter service is a service that protects the state of a counter. Monotonic counters can, as their 
name implies, not be reset or decremented, but may only be incremented by one (or more).

4	 Platform security

Next to providing security services to the application, a security subsystem typically also provides platform 
security to protect the integrity and availability of critical assets, and their confidentiality, where needed. These 
assets can be parts of the hardware implementation, as well as code or secrets stored therein. To warrant 
platform integrity, a security subsystem requires control over parts of the IC architecture and may implement 
validation mechanisms, such as secure boot (see section 4.3), hardware-enforced isolation and runtime 
monitoring services (see section 4.4).

4.1	 System architecture aspects

A security subsystem must be able to monitor, validate and control the application and its environment to 
enforce relevant security policies (see 4.2). The security subsystem may, for example, reset the application 
processor or pause its operation. Violations of the system security policy are typically sanctioned by putting the 
system into a secure state (reset) and/or restricting access to security services and associated assets. Depending 
on the criticality of a security policy violation and system policy, security reactions may also result in other 
actions, such as notifications (e.g., through an interrupt) to an application.

To warrant platform security and to enforce security policies on a larger IC system, the security subsystem 
requires permanent or temporary control over resources. There are various ways to achieve this control: through 
configuration during system initialization, resource isolation, specific control channels to an ICs subsystem 
and many other means. Implementations of IC systems with embedded security subsystem typically employ a 
selection of various methodologies that are tailored to the system and application needs of a specific IC design.

In order to operate independently and in complete isolation from application domains, the security subsystem 
requires exclusive access to its own resources and isolation from other components of the IC system. 
Communication between the security subsystem and its environment happens through well-defined interfaces, 
such as service interfaces described in section 3.
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4.2	 System security policies

System security policies describe system behavior, usage conditions and usage restrictions. Security policies are 
configured as part of a device provisioning process, as part of an update procedure or at runtime (e.g., during 
initialization). 

The system security policy is usually comprised of multiple configuration options that affect peripherals, 
subsystems or an entire IC. Here are some examples:

•	 Debug access: Configuration options to describe access modalities for debug functionality

•	 Secure boot: Configuration of secure boot features of the system, e.g., to define sanctions and system 
behavior in case of secure boot failure

•	 System memories: Configuration to manage the partitioning of, and access to, memories

•	 Firmware protection: Options for firmware readout protection on devices with internal flash, or options for 
firmware encryption for devices using an external flash

•	 Access to security services: Options to restrict access to the security subsystem’s services, e.g., the option 
to enforce a rule that only authenticated applications (i.e., code that passed secure boot) can access those 
services and to protect access by adversarial code.

The above list is by no means exhaustive. There are many more options available that are specific to a particular 
IC system.

System configuration is typically also tied to the system’s state and lifecycle configuration. Depending on 
the system implementation, some restrictions are automatically applied during certain lifecycles. Lifecycle 
configuration may as well restrict further re-configuration of the system. For example, when the device is put into 
an in-field lifecycle, it may not permit further reconfiguration of some or all options.

It should be noted that general-purpose devices such as microprocessors allow manifold options for platform 
configuration. For example, security functionality may require explicit enablement, or device debug functionality 
may need to be disabled through configuration. IC system configuration options should therefore be selected 
wisely, not to allow unintended side effects.

4.3	 System bring-up

Similar to software applications, hardware units in IC systems also require some form of initialization. There 
are peripheral components to configure, memory controllers to set up and many other application-specific 
subsystems to initialize before software applications may even start executing on a complex IC system.

As part of such an initialization process, a security subsystem may validate platform integrity and perform 
necessary actions to securely initialize an IC system, e.g., by configuring memory barriers. The validation process 
can be extended to also verify the integrity and authenticity of firmware, the latter commonly being referred to 
as secure boot (see the next section).

4.3.1	Secure boot

A major milestone to achieve protection of an application is secure boot. In a secure boot process, the 
authenticity of the application firmware is verified through cryptographic validation. Only if the verification 
confirms the authenticity of the application firmware, the security subsystem permits access to its services 
and allows the application to execute on the application processor(s). In case the verification fails, the security 
subsystem may reset the system or apply other sanctions.

The term secure boot originates from the PC industry. In other markets and industries, different terminology 
may be used, including verified boot, measured boot and authenticated boot, to more specifically indicate that 
the code’s authenticity and integrity is verified during boot. Also, the term secure boot may be used to imply 
sometimes that the confidentiality of the code is (also) protected. In this whitepaper, we limit the scope of secure 
boot to the verification of authenticity and integrity only.
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4.3.1.1	 Boot stages

As part of its configuration, secure boot may be set up to verify a (small) subset of the application firmware, e.g., 
the application bootloader. Further stages of software (e.g., OS and applications) can be verified by applying the 
secure boot concept during further software initialization to establish a chain of trust, starting from (hardware-
assisted) secure boot down to each component of a software stack. Subsequent application of the verification 
principle is referred to as chain verification.

In chain verification, the software can make use of security services provided by the security subsystem as shown 
in Figure 4:

1)	As part of a secure boot verification, the bootloader application is verified

2)	After successful verification, the application processor is commanded to start execution of the bootloader 
application, e.g., by releasing the reset signal

3)	The bootloader makes use of a verification service provided by the security subsystem

4)	The bootloader hands execution to the firmware, typically by issuing a JUMP instruction to the start address of 
the firmware in memory

Secure
Boot

1 Verify

3 Verify

5 Verify

4 Execute

6 Execute

2 Start

Security
Engine

Application
Processor(s)

Bootloader
(stage 1)

Firmware
(stage 2)

Firmware
(stage 3)

Verification
Service

Verification
Service

Figure 4: Chain verification process assisted by secure boot and signature verification services

4.3.1.2	 Root-of-trust for secure boot

The first boot code, i.e., the first code that starts after power-on reset (“Secure Boot” in Figure 4), is an essential 
part of the Trusted Code Base (TCB) and acts as root-of-trust (RoT) for the secure boot process and the further 
system. As such, this code shall be protected against modification, which is typically achieved by storing it in a 
read-only memory (ROM). Furthermore, this initial boot code shall be kept as simple (small) as possible and be 
thoroughly reviewed for bugs and vulnerabilities. Such review can be a combination of using automated tools to 
detect common coding weaknesses and using manual code reviews to identify specific (remaining) weaknesses.

4.3.1.3	 Firmware verification options

Several options are available to cryptographically assure the authenticity of (part of) a given firmware image. 
Common options include signature schemes (e.g., PKCS#1-RSASSA [6], ECDSA or EdDSA) and message 
authentication schemes (e.g., CMAC [7] or HMAC [8]).
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Signature schemes are generally the preferred choice in situations where key confidentiality cannot be assured, 
as signature verification does not involve any secrets (rather, it involves a public key). This may be the case if the 
production environment cannot be trusted.

Signature schemes are computationally intensive. Therefore, the security subsystem may offer the option to verify 
the signature only once (during firmware installation) and replace it with a cryptographic hash or MAC tag. This 
will significantly reduce the latency for secure boot (firmware verification). However, such a shortcut may only 
be taken if the implementation has means to adequately protect the hash value or the secret key that is used 
for MAC tag verification. This generally requires a dedicated memory region that is controlled by the security 
subsystem.

4.3.1.4	 Sequential boot vs. parallel boot

Secure boot comes in many flavors due to various configuration and implementation options. The most common 
way to securely initialize a system is verification prior to execution of the application firmware (sequential secure 
boot).

However, sequential verification may not be the best option for time-critical applications. In such cases, a parallel 
secure boot mode may be a viable option, which means that execution of the code is being started (executed) 
while authentication takes place in parallel and that corrective action (e.g., reset of the application core) is taken 
if the authentication fails. Therefore, the parallel boot option provides a different tradeoff between latency 
and security, as it allows a shorter time-to-availability for critical functions, while providing a short window of 
opportunity for an attacker due to the delayed authentication.

On many multiprocessor systems, secure boot options can be distinctively configured for individual application 
processors, allowing some cores to use sequential boot mode while others use the parallel boot mode.

4.3.1.5	 Confidentiality protection

Beyond being vital to system integrity, the firmware is a high-value asset that may require confidentiality 
protection in addition to integrity and authenticity protection.

In devices that store firmware in an on-chip flash area, the firmware is guarded against many non-invasive attacks 
through readout protection. Conducting invasive attacks is possible; however, the effort and cost of invasive 
attacks typically exceed the asset’s value. For that reason, on-chip firmware readout protection resembles 
adequate protection in many cases.

When the risk of invasive attacks against on-chip flash is deemed unacceptable, or when external flash is used, 
the security subsystem may need to provide additional protection mechanisms such as on-the-fly decryption and 
verification services to protect the integrity of firmware stored in NVM.

4.4	 Runtime integrity protection

As previously indicated, additional protection mechanisms may be needed to maintain a secure state after boot, 
i.e., during the execution of the application. Modern security subsystems therefore may feature runtime integrity 
protection mechanisms such as regular verification of (configurable) memory regions to validate platform integrity 
or security sensors to monitor the IC.

4.4.1	Runtime memory protection

Runtime memory protection is a security service that may be utilized to verify the integrity of application code 
and data at runtime. Integrity checks are initiated periodically or triggered through events. The service may be 
utilized to protect code and data from unauthorized modification.

Runtime memory protection may be used to verify the integrity of critical application code or data. Generally, 
runtime memory protection makes sense for memories whose contents remain unchanged throughout longer 
periods of time. Examples to which this may apply include operating system code, interrupt vector tables, 
interrupt handlers or monitoring software.
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4.4.2	Security sensors

Security sensors aim at protecting from local adversaries that conduct physical attacks (such as glitching using a 
laser or EMFI) on the microprocessor or the security subsystem.

To prevent false-positive detection, implementations with security sensors may not directly initiate an action after 
a single-source sensor event. Instead, sensor events from multiple sources are evaluated and correlated. A single 
sensor event may, however, result in a temporary sanction (e.g., pause in operations), while a series of correlated 
events can result in a platform reset.

Sanctions and threshold levels for sensor events can typically be configured as part of the system configuration. 
In addition, a security subsystem may also be configured to inform the application about sensor events, e.g., 
through interrupts and/or status registers.

4.5	 System lifecycle

IC systems employ a concept of lifecycles which reflects the distinct steps of IC production and manufacturing 
of the device into which the IC is embedded. During IC production, the IC is tested and embedded into its 
package by the IC manufacturer. Some initial configuration and firmware may be provisioned to the device 
during IC manufacturing.

When an IC arrives at a system manufacturer, it is in a lifecycle configuration in which it accepts requests for 
further programming, debugging and configuration. This state is also referred to as an open or virgin mode. 
Depending on the implementation, the IC may also be pre-provisioned with credentials supplied by the IC 
manufacturer, e.g., firmware, keys and configuration.

• IC Manufacturing
• Testing
• Initial Trust Provisioning
• Configuration

Open Lifecycle State In-field Lifecycle State

IC Manufacturer SystemsManufacturer
• Programming
• Board Assembly And Test
• Trust Provisioning
• Configuration

Figure 5: Common device lifecycle

During system manufacturing, the device is programmed and configured to another lifecycle state, which is 
commonly referred to as the in-field lifecycle. At this stage, the device may be configured (through a security 
policy; see section 4.2) to accept no further configuration or programming.

The in-field lifecycle may only be left under certain conditions. A transition into another lifecycle from in-field 
commonly entails erasure of all firmware data, security assets and configuration, setting the device back into the 
previous open lifecycle, or in a further failure analysis lifecycle. The conditions under which a transition out of the 
in-field lifecycle is allowed are different among implementations of different semiconductor products and/or may 
be specified through device configuration.

A transition to a failure analysis state may even render the part useless for further normal use, e.g., by irreversibly 
disabling some of the functionality needed during normal operation. This limits the possibilities for an attacker to 
misuse this lifecycle to e.g., reconfigure the device. 
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4.5.1	Lifecycles in automotive products

The E&E architecture of modern vehicles can be comprised of over a hundred distinct electronic control units 
(ECUs) that various suppliers develop and manufacture. In the automotive industry, various suppliers typically 
conduct engineering and development activities while the final assembly of the vehicle happens on OEM grounds.

In an automotive production lifecycle, an IC becomes part of a larger vehicle subsystem (ECU) during tier-1 
production. After assembly, the ECU is tested, keys are provisioned, and firmware is programmed. Before the 
ECU leaves the tier-1 production facilities, the IC’s lifecycle is advanced into a further lifecycle, enabling the first 
protection mechanisms to protect Tier-1 firmware and keys.

At the OEM’s production line, the device, as part of a larger system (ECU), is deployed into the vehicle and 
provisioned with further configuration and keys. Before the readily assembled vehicle leaves the OEM production 
facilities, the IC’s lifecycle is once again advanced to a next stage to enable all protection mechanisms of the 
device.

NXP Tier-1
Delivery
Lifecycle

Tier-1
Firmware and Keys

OEM
Production
Lifecycle

In-field
Lifecycle

OEM
Keys

Figure 6: Device lifecycle in automotive applications

To accommodate such distributed development and manufacturing activities between Tier-1s and OEMs, the 
lifecycle model for automotive ICs extends the standard lifecycle model by a secondary production lifecycle 
stage that is tailored to the needs during OEM production and vehicle assembly. In the secondary (OEM 
production) lifecycle stage, the device allows partial configuration and provisioning of additional assets while 
protecting the integrity and confidentiality of supplier-owned assets.

5	 Conclusions

As part of a larger system, a security subsystem provides services to applications, manages and protects 
cryptographic assets, and provides platform security features including secure boot and security policy 
enforcement. Security subsystems are a leap step with regards to platform integrity and key management, filling 
a gap to serve system-level protection needs that cannot be addressed through software solutions or external 
components. In contrast to conventional security solutions, which are often point-solutions that address the 
needs of a very specific use case, modern security subsystems set the foundation to enable holistic platform 
security. Embedded in general purpose processors and microcontrollers, security subsystems are serving security 
needs of a large variety of different applications and use cases.

During the last decade, such integrated security subsystems have gained increased popularity and have become 
a mandatory requirement in some markets and applications. The key enabler that led to traction in these markets 
can be clearly identified, namely standardization of software APIs and hardware functionality. Examples include 
the AUTOSAR software stack and SHE/Evita specifications in the automotive market, and the mobile phone 
ecosystem which have partially adopted similar concepts with the recent extensions of API definitions to support 
hardware-based keystores and reference flows for a hardware-anchored verified boot process.
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What can be seen from above examples, is that standardization is key to adoption of integrated security 
subsystem concepts. Although standardized solutions are not yet visible in all markets, the requirements for 
enhanced platform security are clearly visible today. Some promising steps have already been taken, suggesting 
it is only a matter of time until we see broad and standardized adoption of enhanced platform security concepts.

6	 Appendix: terms and abbreviations

For the purposes of this paper, the following terms, definitions and abbreviations apply.

6.1	 Terms and definitions

Term Definition

Asymmetric/
symmetric 
cryptography 
scheme

In the field of cryptography, there generally exist two classes of cryptographic schemes, namely symmetric and asymmetric 
schemes. Symmetric schemes make use of a secret key that is shared among all entities that perform operations using the 
cryptographic scheme. In asymmetric schemes, there generally exists a pair of keys that are called private and public keys. 
A private key is used to perform signature generation and decryption operations, whereas the public key is used to perform 
signature verification and encryption operations.

Cryptographic 
hash function

One-way compression function that maps an arbitrary-length input (e.g., firmware data or a message) to a fixed-length 
output (the hash value). By definition, a secure cryptographic hash function aims to achieve security objectives preimage 
resistance and second preimage resistance. In layman’s terms, this means that it is practically infeasible to find (construct) 
another input (firmware) that results in the same output (hash value). Therefore, it is very hard to modify a firmware image 
without being detected by a mismatch in the (stored) hash value.

Digital signature A digital signature is the result of a signing operation using an asymmetric algorithm. The verifier uses a public key for 
signature verification and the sender is required to know the corresponding private key in order to generate a valid 
signature.

Embedded 
software

Software that is part of the system supplied by the control manufacturer and which is not accessible for modification by the 
user

Firmware Program code (software) and data stored in an electronic unit. This could therefore indicate low-level driver code, as well as 
application code and data that is stored in an embedded system such as a vehicle ECU.

MAC Short for message authentication code, referring to a function, operation or algorithm that implements a one-way, 
symmetric message authentication function.

MAC tag A MAC tag is the result of a MAC operation in which the sender and verifier are using a (symmetric) MAC function with a 
shared secret key and a message. 

Private key, 
public key

Private and public keys are used in asymmetric schemes. In such schemes, the private key remains with the key owner, the 
public key is shared with communication partners.

Secret key A secret key is a confidential key used for symmetric encryption schemes.

Software Program code

6.2	 Abbreviations

Abbreviation Definition

ECU Electronic Control Unit

EVITA EVITA was a project co-funded by the European Union within the Seventh Framework Programme for research and 
technological development. Its objective was to design, verify, and prototype architecture for automotive on-board 
networks where security-relevant components are protected against tampering, and sensitive data are protected against 
compromise.

HIS Herstellerinitiative Software (German for ‘OEM software initiative’) was an interest group consisting of the car manufacturers 
Audi, BMW, Daimler AG, Porsche, and Volkswagen [9]. This group created the SHE specification.

HSM Short for hardware security module. In the automotive context, this is a security unit, which can be a standalone device, or a 
subsystem that is integrated in a microcontroller as described in this whitepaper. Outside the automotive domain, this term 
has a different meaning. Please also see section 2.4.

IACS Industrial automation and control systems

NAD Network access device. A device (modem) that connects a system to a larger communication network such as the internet.

RoT The root of trust (RoT) is one or more entities or assumptions beyond the scope of a system that are implicitly trusted, e.g., 
mathematical assumptions, but also hardware or software implementations.

SHE The secure hardware extension (SHE) is an on-chip extension to any given microcontroller. The SHE specification essentially 
describes one specific way to implement a security subsystem. The SHE specification was created in 2008 by the HIS 
workgroup [9]. The SHE specification has been re-published through AUTOSAR in 2019 [1].

SoC System on Chip; generally referring to a larger IC system, comprised of multiple application cores

TCB The trusted computing base (TCB) of a system is the set of all hardware and software components that are critical to the 
security of that system. Bugs or vulnerabilities inside the TCB might jeopardize the security properties of the entire system.
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