Test Report No. : CE/2018/22891 Date : 2018/02/26

NIPPON MICROMETAL CORPORATION
158-1, SAYAMAGAHARA IRUMA-CITY, SAITAMA 358-0032, JAPAN

The following samples was/were submitted and identified by/on behalf of the applicant as :

<table>
<thead>
<tr>
<th>Sample Description</th>
<th>NIPPON COPPER WIRE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Style/Item No.</td>
<td>COPPER WIRE(EX1p)</td>
</tr>
<tr>
<td>Sample Receiving Date</td>
<td>2018/02/12</td>
</tr>
<tr>
<td>Testing Period</td>
<td>2018/02/12 TO 2018/02/26</td>
</tr>
</tbody>
</table>

Test Result(s) : Please refer to following pages.
Test Result(s)

PART NAME No.1: SILVER COLORED METAL WIRE (INCLUDING THE PLATING LAYER)

<table>
<thead>
<tr>
<th>Test Item(s)</th>
<th>Unit</th>
<th>Method</th>
<th>MDL</th>
<th>Result No.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cadmium (Cd)</td>
<td>mg/kg</td>
<td>With reference to IEC 62321-5 (2013) and performed by ICP-AES.</td>
<td>2</td>
<td>n.d.</td>
</tr>
<tr>
<td>Lead (Pb)</td>
<td>mg/kg</td>
<td>With reference to IEC 62321-4 (2013) and performed by ICP-AES.</td>
<td>2</td>
<td>n.d.</td>
</tr>
<tr>
<td>Mercury (Hg)</td>
<td>mg/kg</td>
<td>With reference to IEC 62321-7-1 (2015) and performed by UV-VIS.</td>
<td>0.10</td>
<td>n.d.</td>
</tr>
<tr>
<td>Hexavalent Chromium Cr(VI)(#2)</td>
<td>µg/cm²</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sum of PBBs</td>
<td>mg/kg</td>
<td>With reference to IEC 62321-6 (2015) and performed by GC/MS.</td>
<td></td>
<td>n.d.</td>
</tr>
<tr>
<td>Monobromobiphenyl</td>
<td>mg/kg</td>
<td></td>
<td>5</td>
<td>n.d.</td>
</tr>
<tr>
<td>Dibromobiphenyl</td>
<td>mg/kg</td>
<td></td>
<td>5</td>
<td>n.d.</td>
</tr>
<tr>
<td>Tribromobiphenyl</td>
<td>mg/kg</td>
<td></td>
<td>5</td>
<td>n.d.</td>
</tr>
<tr>
<td>Tetrabromobiphenyl</td>
<td>mg/kg</td>
<td></td>
<td>5</td>
<td>n.d.</td>
</tr>
<tr>
<td>Pentabromobiphenyl</td>
<td>mg/kg</td>
<td></td>
<td>5</td>
<td>n.d.</td>
</tr>
<tr>
<td>Hexabromobiphenyl</td>
<td>mg/kg</td>
<td></td>
<td>5</td>
<td>n.d.</td>
</tr>
<tr>
<td>Heptabromobiphenyl</td>
<td>mg/kg</td>
<td></td>
<td>5</td>
<td>n.d.</td>
</tr>
<tr>
<td>Octabromobiphenyl</td>
<td>mg/kg</td>
<td></td>
<td>5</td>
<td>n.d.</td>
</tr>
<tr>
<td>Nonabromobiphenyl</td>
<td>mg/kg</td>
<td></td>
<td>5</td>
<td>n.d.</td>
</tr>
<tr>
<td>Decabromobiphenyl</td>
<td>mg/kg</td>
<td></td>
<td>5</td>
<td>n.d.</td>
</tr>
<tr>
<td>Sum of PBDEs</td>
<td>mg/kg</td>
<td>With reference to IEC 62321-6 (2015) and performed by GC/MS.</td>
<td></td>
<td>n.d.</td>
</tr>
<tr>
<td>Monobromodiphenyl ether</td>
<td>mg/kg</td>
<td></td>
<td>5</td>
<td>n.d.</td>
</tr>
<tr>
<td>Dibromodiphenyl ether</td>
<td>mg/kg</td>
<td></td>
<td>5</td>
<td>n.d.</td>
</tr>
<tr>
<td>Tribromodiphenyl ether</td>
<td>mg/kg</td>
<td></td>
<td>5</td>
<td>n.d.</td>
</tr>
<tr>
<td>Tetrabromodiphenyl ether</td>
<td>mg/kg</td>
<td></td>
<td>5</td>
<td>n.d.</td>
</tr>
<tr>
<td>Pentabromodiphenyl ether</td>
<td>mg/kg</td>
<td></td>
<td>5</td>
<td>n.d.</td>
</tr>
<tr>
<td>Hexabromodiphenyl ether</td>
<td>mg/kg</td>
<td></td>
<td>5</td>
<td>n.d.</td>
</tr>
<tr>
<td>Heptabromodiphenyl ether</td>
<td>mg/kg</td>
<td></td>
<td>5</td>
<td>n.d.</td>
</tr>
<tr>
<td>Octabromodiphenyl ether</td>
<td>mg/kg</td>
<td></td>
<td>5</td>
<td>n.d.</td>
</tr>
<tr>
<td>Nonabromodiphenyl ether</td>
<td>mg/kg</td>
<td></td>
<td>5</td>
<td>n.d.</td>
</tr>
<tr>
<td>Decabromodiphenyl ether</td>
<td>mg/kg</td>
<td></td>
<td>5</td>
<td>n.d.</td>
</tr>
</tbody>
</table>
Test Item(s)

<table>
<thead>
<tr>
<th>Test Item(s)</th>
<th>Unit</th>
<th>Method</th>
<th>MDL</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polychlorinated Biphenyls (PCBs) (CAS No.: 1336-36-3)</td>
<td>mg/kg</td>
<td>With reference to US EPA 3550C (2007). Analysis was performed by GC/MS.</td>
<td>0.5</td>
<td>n.d.</td>
</tr>
<tr>
<td>Polychlorinated Naphthalene (PCNs)</td>
<td>mg/kg</td>
<td>With reference to US EPA 3550C (2007). Analysis was performed by GC/MS.</td>
<td>5</td>
<td>n.d.</td>
</tr>
<tr>
<td>Polychlorinated Terphenyls (PCTs)</td>
<td>mg/kg</td>
<td>With reference to US EPA 3550C (2007). Analysis was performed by GC/MS.</td>
<td>0.5</td>
<td>n.d.</td>
</tr>
<tr>
<td>Alkanes, C10-13, chloro (Short Chain Chlorinated Paraffins) (CAS No.: 85535-84-8)</td>
<td>mg/kg</td>
<td>With reference to US EPA 3550C (2007). Analysis was performed by GC/MS.</td>
<td>100</td>
<td>n.d.</td>
</tr>
<tr>
<td>Tributyl Tin (TBT)</td>
<td>mg/kg</td>
<td></td>
<td>0.03</td>
<td>n.d.</td>
</tr>
<tr>
<td>Triphenyl Tin (TphT)</td>
<td>mg/kg</td>
<td></td>
<td>0.03</td>
<td>n.d.</td>
</tr>
<tr>
<td>Bis(tributyltin)oxide (TBTO)**</td>
<td>mg/kg</td>
<td>With reference to ISO 17353 (2004). Analysis was performed by GC/FPD.</td>
<td>-</td>
<td>n.d.</td>
</tr>
<tr>
<td>Dibutyl Tin (DBT)</td>
<td>mg/kg</td>
<td></td>
<td>0.03</td>
<td>n.d.</td>
</tr>
<tr>
<td>Dioctyl Tin (DOT)</td>
<td>mg/kg</td>
<td></td>
<td>0.03</td>
<td>n.d.</td>
</tr>
</tbody>
</table>

Halogen

<table>
<thead>
<tr>
<th>Test Item(s)</th>
<th>Unit</th>
<th>Method</th>
<th>MDL</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Halogen-Fluorine (F) (CAS No.: 14762-94-8)</td>
<td>mg/kg</td>
<td>With reference to BS EN 14582 (2016). Analysis was performed by IC.</td>
<td>50</td>
<td>n.d.</td>
</tr>
<tr>
<td>Halogen-Chlorine (Cl) (CAS No.: 22537-15-1)</td>
<td>mg/kg</td>
<td></td>
<td>50</td>
<td>n.d.</td>
</tr>
<tr>
<td>Halogen-Bromine (Br) (CAS No.: 10097-32-2)</td>
<td>mg/kg</td>
<td></td>
<td>50</td>
<td>n.d.</td>
</tr>
<tr>
<td>Halogen-Iodine (I) (CAS No.: 14362-44-8)</td>
<td>mg/kg</td>
<td></td>
<td>50</td>
<td>n.d.</td>
</tr>
<tr>
<td>Antimony (Sb)</td>
<td>mg/kg</td>
<td>With reference to US EPA 3052 (1996). Analysis was performed by ICP-AES.</td>
<td>2</td>
<td>n.d.</td>
</tr>
<tr>
<td>Beryllium (Be)</td>
<td>mg/kg</td>
<td>With reference to US EPA 3050B (1996). Analysis was performed by ICP-AES.</td>
<td>2</td>
<td>n.d.</td>
</tr>
<tr>
<td>Arsenic (As)</td>
<td>mg/kg</td>
<td>With reference to US EPA 3050B (1996). Analysis was performed by ICP-AES.</td>
<td>2</td>
<td>n.d.</td>
</tr>
<tr>
<td>Perfluorooctane sulfonates (PFOS-Acid, Metal Salt, Amide)</td>
<td>mg/kg</td>
<td>With reference to US EPA 3550C (2007). Analysis was performed by LC/MS.</td>
<td>10</td>
<td>n.d.</td>
</tr>
<tr>
<td>PFOA (CAS No.: 335-67-1)</td>
<td>mg/kg</td>
<td>With reference to US EPA 3550C (2007). Analysis was performed by LC/MS.</td>
<td>10</td>
<td>n.d.</td>
</tr>
<tr>
<td>Test Item(s)</td>
<td>Unit</td>
<td>Method</td>
<td>MDL</td>
<td>Result</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
<td>-------------------------------</td>
<td>------</td>
<td>---------</td>
</tr>
<tr>
<td>PVC</td>
<td></td>
<td>Analysis was performed by FTIR and FLAME Test.</td>
<td>-</td>
<td>Negative</td>
</tr>
<tr>
<td>BBP (Butyl Benzyl phthalate) (CAS No.: 85-68-7)</td>
<td>mg/kg</td>
<td></td>
<td>50</td>
<td>n.d.</td>
</tr>
<tr>
<td>DBP (Dibutyl phthalate) (CAS No.: 84-74-2)</td>
<td>mg/kg</td>
<td></td>
<td>50</td>
<td>n.d.</td>
</tr>
<tr>
<td>DEHP (Di-(2-ethylhexyl) phthalate) (CAS No.: 117-81-7)</td>
<td>mg/kg</td>
<td></td>
<td>50</td>
<td>n.d.</td>
</tr>
<tr>
<td>DIBP (Di-isobutyl phthalate) (CAS No.: 84-69-5)</td>
<td>mg/kg</td>
<td></td>
<td>50</td>
<td>n.d.</td>
</tr>
<tr>
<td>DIDP (Di-isodecyl phthalate) (CAS No.: 26761-40-0; 68515-49-1)</td>
<td>mg/kg</td>
<td></td>
<td>50</td>
<td>n.d.</td>
</tr>
<tr>
<td>DINP (Di-isonyl phthalate) (CAS No.: 28553-12-0; 68515-48-0)</td>
<td>mg/kg</td>
<td>With reference to IEC 62321-8 (2017). Analysis was performed by GC/MS.</td>
<td>50</td>
<td>n.d.</td>
</tr>
<tr>
<td>DNOP (Di-n-octyl phthalate) (CAS No.: 117-84-0)</td>
<td>mg/kg</td>
<td></td>
<td>50</td>
<td>n.d.</td>
</tr>
<tr>
<td>DNHP (Di-n-hexyl phthalate) (CAS No.: 84-75-3)</td>
<td>mg/kg</td>
<td></td>
<td>50</td>
<td>n.d.</td>
</tr>
<tr>
<td>DNPP (Di-n-pentyl phthalate) (CAS No.: 131-18-0)</td>
<td>mg/kg</td>
<td></td>
<td>50</td>
<td>n.d.</td>
</tr>
<tr>
<td>DIHP (1,2-Benzene dicarboxylic acid, di-C6-8-branched alkyl esters, C7-rich) (CAS No.: 71888-89-6)</td>
<td>mg/kg</td>
<td></td>
<td>50</td>
<td>n.d.</td>
</tr>
<tr>
<td>Hexabromocyclododecane (HBCDD) and all major diastereoisomers identified (α-HBCDD, β- HBCDD, γ- HBCDD) (CAS No.: 25637-99-4 and 3194-55-6 (134237-51-7, 134237-50-6, 134237-52-8))</td>
<td>mg/kg</td>
<td>With reference to IEC 62321 (2008). Analysis was performed by GC/MS.</td>
<td>5</td>
<td>n.d.</td>
</tr>
<tr>
<td>Red phosphorus</td>
<td></td>
<td>Analysis was performed by Pyrolyzer-GC/MS.</td>
<td>-</td>
<td>Negative</td>
</tr>
</tbody>
</table>
Test Report
No. : CE/2018/22891
Date : 2018/02/26

NIPPON MICROMETAL CORPORATION
158-1, SAYAMAGAHARA IRUMA-CITY, SAITAMA 358-0032, JAPAN

Note :
1. mg/kg = ppm ; 0.1wt% = 1000ppm
2. MDL = Method Detection Limit
3. n.d. = Not Detected = less than MDL
4. " - " = Not Regulated
5. ** = Qualitative analysis (No Unit)
6. Negative = Undetectable / Positive = Detectable
7. (#2) =
 a. The sample is positive for Cr(VI) if the Cr(VI) concentration is greater than 0.13 µg/cm².
 The sample coating is considered to contain Cr(VI)
 b. The sample is negative for Cr(VI) if Cr(VI) is n.d. (concentration less than 0.10 µg/cm²).
 The coating is considered a non-Cr(VI) based coating
 c. The result between 0.10 µg/cm² and 0.13 µg/cm² is considered to be inconclusive - unavoidable
 coating variations may influence the determination.
8. ***: The substance was calculated by the test results of Tributyl Tin. The MDL was evaluated for Tributyl Tin.
10. The sample(s) was/were analyzed on behalf of the applicant as mixing sample in one testing. The above
 result(s) was/were only given as the informality value.

PFOS Reference Information : POPs - (EU) 757/2010
Outlawing PFOS as substances or preparations in concentrations above 0.001% (10ppm), in semi-finished
products or articles or parts at a level above 0.1%(1000ppm), in textiles or other coated materials above 1µg/m².

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx
Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company’s findings at the time of its intervention only and within the limits of client’s instruction, if any. The Company’s sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced, except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested.

SGS Taiwan Ltd. 台灣檢驗科技股份有限公司
25, Wu Chyuan 7th Road, New Taipei Industrial Park, Wu Ku District, New Taipei City, Taiwan
t+886 (02)2299 3939 f+886 (02)2299 3237 www.sgs.tw

Member of the SGS Group
Analytical flow chart of Heavy Metal

These samples were dissolved totally by pre-conditioning method according to below flow chart. (Cr⁶⁺ test method excluded)

- Technician: JR Wang
- Supervisor: Troy Chang

1. Cutting - Preparation

2. Sample Measurement

- Pb/Cd/Hg
 - Acid digestion with microwave / hotplate
 - Filtration
 - Solution
 - 1) Alkali fusion
 - 2) HCl to dissolve
 - Residue

- Cr₄⁺
 - Non-metal
 - Metal
 - ABS / PC / PVC
 - Others
 - Boiling water extraction

- Dissolving by ultrasonication
 - Digesting at 60°C by ultrasonication
 - Separating to get aqueous phase
 - Digesting at 150~160°C
 - pH adjustment
 - Add diphenyl-carbazide for color development
 - Measure the absorbance at 540 nm by UV-VIS

- ICP-AES

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained herein reflects the Company’s findings at the time of its intervention only and within the limits of client’s instruction, if any. The Company’s sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced, except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested.

SGS Taiwan Ltd. 台灣檢驗科技股份有限公司 25, Wu Chyuan 7th Road, New Taipei Industrial Park, Wu Ku District, New Taipei City, Taiwan 台北市五股區新北產業園區五股七路25號 T+886 (02)2299 3939 F+886 (02)2299 3237 www.sgs.tw

Member of the SGS Group
Analytical flow chart – PBB / PBDE

First testing process
Optional screen process
Confirmation process

Sample
Sample pretreatment
Screen analysis
Sample extraction / Soxhlet method
Concentrate/Dilute
Extracted solution
Filter
GC/MS

Technician : Yaling Tu
Supervisor: Troy Chang
Analytical flow chart - PCBs

- Technician: Yaling Tu
- Supervisor: Troy Chang

1. Sample pretreatment
2. Sample extraction / Ultrasonic method
3. Concentrate/Dilute Extracted solution
4. Filter
5. Analysis was performed by GC/MS
6. Data
Test Report
No.: CE/2018/22891
Date: 2018/02/26

NIPPON MICROMETAL CORPORATION
158-1, SAYAMAGAHARA IRUMA-CITY, SAITAMA 358-0032, JAPAN

Analytical flow chart - PCNs

- Technician: Yaling Tu
- Supervisor: Troy Chang

Sample pretreatment

Sample extraction / Ultrasonic method

Concentrate/Dilute Extracted solution

Filter

Analysis was performed by GC/MS

Data

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company’s findings at the time of its intervention only and within the limits of client’s instruction, if any. The Company’s sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced, except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested.
Analytical flow chart - PCTs

- Technician: Barry Tseng
- Supervisor: Troy Chang

Sample pretreatment

Sample extraction / Ultrasonic method

Concentrate/Dilute Extracted solution

Filter

Analysis was performed by GC/MS

Data

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested.
Analytical flow chart - Chlorinated Paraffins

- Technician: Yaling Tu
- Supervisor: Troy Chang

1. Sample pretreatment
2. Sample extraction / Ultrasonic method
3. Concentrate/Dilute Extracted solution
4. Filter
5. Analysis was performed by GC/MS
6. Data
Analytical flow chart - Organic-Tin

- Technician: Yaling Tu
- Supervisor: Troy Chang

Sample pretreatment

Sample extraction by organic solvent

Derived by Sodium tetraethylborate

Concentrate/Dilute Extracted solution

Analysis was performed by GC/FPD

Data
Analytical flow chart - Halogen

- Technician: Rita Chen
- Supervisor: Troy Chang

Sample pretreatment / Separation

Weighting and putting sample in cell

Oxygen Bomb Combustion / Absorption

Dilution to fixed volume

Analysis was performed by IC
These samples were dissolved totally by pre-conditioning method according to below flow chart.

- Technician: JR Wang
- Supervisor: Troy Chang

Flow Chart of digestion for the elements analysis performed by ICP-AES

```
<table>
<thead>
<tr>
<th>Cutting / Preparation</th>
<th>Sample Measurement</th>
<th>Acid digestion by suitable acid depended on different sample material (as below table)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Filteration</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Solution</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Residue</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1) Alkali Fusion</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2) HCl to dissolve</td>
</tr>
<tr>
<td>Steel, copper, aluminum, solder</td>
<td>Aqua regia, HNO₃, HCl, HF, H₂O₂</td>
<td></td>
</tr>
<tr>
<td>Glass</td>
<td>HNO₃, HF</td>
<td></td>
</tr>
<tr>
<td>Gold, platinum, palladium, ceramic</td>
<td>Aqua regia</td>
<td></td>
</tr>
<tr>
<td>Silver</td>
<td>HNO₃</td>
<td></td>
</tr>
<tr>
<td>Plastic</td>
<td>H₂SO₄, H₂O₂, HNO₃, HCl</td>
<td></td>
</tr>
<tr>
<td>Others</td>
<td>Added appropriate reagent to total digestion</td>
<td></td>
</tr>
</tbody>
</table>
```

These samples were dissolved totally by pre-conditioning method according to below flow chart.
Analytical flow chart - PFOA/PFOS

- Technician: Yaling Tu
- Supervisor: Troy Chang

1. Sample pretreatment
2. Sample extraction by Ultrasonic extraction (Reference method: US EPA 3550C)
3. Concentrate/Dilute Extracted solution
4. Analysis was performed by LC/MS
5. Data
Analysis flow chart - PVC

- Technician: Yaling Tu
- Supervisor: Troy Chang

Sample pre-treatment → Flame test → Sample analyzed by FTIR → Check wave-number of C-Cl bonding → Data
Analytical flow chart - Phthalate

- Technician: Andy Hsu
- Supervisor: Troy Chang

【Test method: IEC 62321-8】

Sample pretreatment/separation

Sample dissolved/extracted by THF

Dilute Extracted solution

Analysis was performed by GC/MS
Analytical flow chart - HBCDD

- Technician: Yaling Tu
- Supervisor: Troy Chang

1. Sample pretreatment
2. Sample extraction / Ultrasonic method
3. Concentrate/Dilute Extracted solution
4. Filter
5. Analysis was performed by GC/MS
6. Data

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Termse-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company’s findings at the time of its intervention only and within the limits of client’s instruction, if any. The Company’s sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced, except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested.

SGS Taiwan Ltd. 台湾檢驗科技股份有限公司
25, Wu Chyuan 7th Road, New Taipei Industrial Park, Wu Ku District, New Taipei City, Taiwan /
+886 (02)2299 3939 f+886 (02)2299 3237 www.sgs.tw

Member of the SGS Group
Analytical flow chart - Red phosphorus

- Technician: Yaling Tu
- Supervisor: Troy Chang

Sample pretreatment

Take sample and put it into sample cup

Analysis was performed by py-GC/MS

DATA

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained herein reflects the Company’s findings at the time of its intervention only and within the limits of client’s instruction, if any. The Company’s sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced, except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested.
Test Report

No. : CE/2018/22891
Date : 2018/02/26

NIPPON MICROMETAL CORPORATION
158-1, SAYAMAGAHARA IRUMA-CITY, SAITAMA 358-0032, JAPAN

* The tested sample / part is marked by an arrow if it’s shown on the photo. *

CE/2018/22891

** End of Report **