

AN10695
Using the LPC288x in audio application

Rev. 01 — 12 February 2008 Application note

Document information

Info Content

Keywords LPC2888, LPC2880, Audio, DADC, DDAC, I2S, CGU, design rules,
application software

Abstract This application note provides design rules, application schematics and
provides the steps involved in programming the LPC288x
peripherals/blocks used for audio applications.

NXP Semiconductors AN10695
 Using the LPC288x in audio application

AN10695_1 © NXP B.V. 2008. All rights reserved.

Application note Rev. 01 — 12 February 2008 2 of 20

Contact information
For additional information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com

Revision history

Rev Date Description

01 20080212 Initial version

NXP Semiconductors AN10695
 Using the LPC288x in audio application

AN10695_1 © NXP B.V. 2008. All rights reserved.

Application note Rev. 01 — 12 February 2008 3 of 20

1. Introduction
This application note provides details on how to use the LPC288x (LPC2888/LPC2880)
in an audio application. This document shows design rules/schematics and the steps
involved in programming the LPC288x peripherals used for audio applications.

LPC288x modules covered in this application note are Dual channel 16-bit analog to
digital converter, I2S input module (DAI), I2S output module (DAO), and Dual channel
16-bit digital to analog converter.

For each module, the following sections are provided:

1. Overview

2. Application Description

a. Design rules

 b. Application Schematic

 c. Application Software (code example only for CGU configuration)

2. Dual channel 16-bit analog to digital converter

2.1 Overview
The ADC circuitry consists of two identical 16-bit Sigma-Delta converters. In order to
allow use for synchronized sampling applications, such as stereo audio, the converters
are synchronized so that the two channels operate on “left” and “right” data which are
sampled at the same time.

2.2 Application description
2.2.1 Design rules

AINR and AINL both need to be foreseen with a 1M pull-down resistor to ground. Both
resistors need to be as close as possible to the inputs of the IC for the suppression of
idle tones.

2.2.2 Application diagram
Fig 1 shows how the ADC should be connected when used. When this part is not used
the supplies must be connected and the inputs can be left open. In software this part
must be set in power down using the power control registers in the CGU (Clock
Generation Unit).

NXP Semiconductors AN10695
 Using the LPC288x in audio application

AN10695_1 © NXP B.V. 2008. All rights reserved.

Application note Rev. 01 — 12 February 2008 4 of 20

Fig 1. DADC

2.2.3 Application software
2.2.3.1 Programming the Dual ADC and SAI4

(System initialization (reset) code should include the following steps if the Dual ADC and
SAI4 are used in the application)

1. Write the Stream I/O Configuration register with the prescribed/fixed bits. If the
DAI is used for I2S input, be sure that the DAI_OE bit is set properly for the DAI
mode (see User Manual, Section 19–4.1 on page 253).

2. Program the CGU to provide 128 times the Nyquist sampling frequency for the
Dual ADC and decimator, and route this to its DADC_CLK and DADC_DCLK
outputs. For example, if audio with sampled at 44.1 kHz is (or will be) present on
AINL and AINR, DADC_CLK and DADC_DCLK should be 5644.8 kHz.

The code example below shows how to program the CGU for the DADC.
In this example, the High Speed PLL uses the fast (12 MHz) oscillator as input and
generates the 22.5792MHz. This example uses the “DAIO” selection stage and register
DAIOFDCR1 as Fractional Divider register (compare to Table 7–71): The selection stage
(DAIO) selects the High Speed PLL and generates the output clock (DAIO base clock,
i.e. 22.5792MHz, 512fS) which is fed to all the DAIO spreading stages. The DADC CLK

NXP Semiconductors AN10695
 Using the LPC288x in audio application

AN10695_1 © NXP B.V. 2008. All rights reserved.

Application note Rev. 01 — 12 February 2008 5 of 20

and the DADC DCLK are programmed as 1/4 of the DAIO base clock by the fractional
divider (DAIOFDCR1), i.e. 5.6448MHz, 128fS.

C Code
1 #include "LPC288x.h"
2
3 /* Divided by 4 */
4 #define DAIOFDCR1_MADD 0x48
5 #define DAIOFDCR1_MSUB 0xE8
6
7 /**
8 * Initialize High Speed PLL
9 ***
10 /
11 HPMODE = 0x04; /* Power down the High Speed PLL */
12 HPFIN = 0x01; /* Select main oscillator as PLL's input clock */
13 HPNDEC = 131; /* Refer to User Manual Table 7–41 */
14 HPMDEC = 1408; /* Refer to User Manual Table 7–41 */
15 HPPDEC = 23; /* Refer to User Manual Table 7–41 */
16 HPSELR = 8; /* Refer to User Manual Table 7–41 */
17 HPSELI = 2; /* Refer to User Manual Table 7–41 */
18 HPSELP = 31; /* Refer to User Manual Table 7–41 */
19 HPMODE = 0x01; /* Power up the High Speed PLL */
20 while ((HPSTAT & 1) == 0) {}; /* Wait for PLL to lock */
21
22 /**
23 * Configure Selection Stages
24 ***
25 /
26 /* Selects High Speed PLL for “side 2” of selection stage*/
27 DAIOFSR2 = 0x07;
28 /* Enables side 2 of the stage */
29 DAIOSCR = 0x02;
30
31 /**
32 * Configure Spreading Stages
33 **/
34 /* Disable Fractional Divider in the Base Control register. */
35 DAIOBCR = 0;
36
37 /* Clear RUN bit in FDCR, fractional divider 1 */
38 DAIOFDCR1 &= ~0x01;

39 /* Reset FDR by setting bit 1(FDRES), set FDSTRCH bit,
40 MADD is 0x48(72), MSUB is 0xE8(232). where m = 0x60 and n = 0x18.
41 FDR is divided by 4. */
42 config = (((DAIOFDCR1_MSUB << 8) | DAIOFDCR1_MADD) << 3) | (0x1 << 2)
43 | (0x1 << 1);

NXP Semiconductors AN10695
 Using the LPC288x in audio application

AN10695_1 © NXP B.V. 2008. All rights reserved.

Application note Rev. 01 — 12 February 2008 6 of 20

44 DAIOFDCR1 = config;
45
46 /* Clear Reset(FDRES) bit */
47 config &= ~0x2;
48 DAIOFDCR1 = config;
49
50 /* Set RUN bit (FDRUN) */
51 config |= 0x1;
52 DAIOFDCR1 = config;
53
54 /**
55 * Enable Select Register setting. ESR with 3 bit fields.
56 * Bit 0 ESR_EN is 1 causing spreading stage output clock under
57 * the control of the fractional divider, which runs slower
58 * than the selection stage clock. ESR_SEL, bits 3:1 is 1, FDR1 is * *
59 * selected for DDAC ESR2, DADC ESR1, DADC ESR2.
60 ***
61 /
62 DADCESR1 = (0x1<<1) | (0x1<<0);
63 DADCESR2 = (0x1<<1) | (0x1<<0);
64
65 /**
66 * Base Control Register, set bit 0(FDRUN) to start all the FDRs.
67 ***
68 /
69 DAIOBCR = 0x1;

3. If the PGAs are to be active initially, write the DAINCTRL register to set their
starting gain.

4. Write the fixed/specified values to the DADCCTRL register, plus the Dither bits if
this feature is desired.

5. Write the Decimator Control register with the desired initial values, including a 1
in the ENTIMER bit. ENTIMER disables the Decimator from sending values to
SAI4 until its outputs are valid. (See Table 21–311 in User Manual which shows
the delay as a function of whether the two DC blocking filters are enabled.

6. Write the SAI4 Interrupt Request register in the interrupt controller (INT_REQ19 -
0x8030 044C) to enable SAI4 interrupts at the desired priority level (See User
Manual Section 9–5.1).

7. Write the SAI4 Mask register with zero (es) in the desired interrupt condition(s).
For fully interrupt-driven applications, write a 0 in one of the LNMTMK,
LHALFMK, or LFULMK bits. For dedicated DMA, write a 0 to LOVER to allow
interrupt for overrun (which indicates an error in DMA operation or
programming). For dynamically assigned DMA in Slave mode, write a 0 to
LNMTMK.

NXP Semiconductors AN10695
 Using the LPC288x in audio application

AN10695_1 © NXP B.V. 2008. All rights reserved.

Application note Rev. 01 — 12 February 2008 7 of 20

Since L and R values are always loaded from the decimator into SAI4 together, there is
no reason to enable both L and R interrupts. Of course the corresponding R condition(s)
can be enabled instead of the L condition(s).

3. I2S input module (DAI) and I2S output module (DAO)

3.1 Overview
The LPC288x can input a single- or dual-channel audio stream from an Inter-IC Sound
(I2S) bus. The I2S input module is called the DAI. It can capture serial data in standard
Philips IIS format, or in right-justified 16-, 18-, 20-, or 24-bit format.

The LPC288x can output a single- or dual-channel audio stream to an I2S bus. The I2S
output module is called the DAO. It can output serial data in standard Philips IIS format,
or in right-justified 16-, 18-, 20-, or 24-bit format.

3.2 Application description
3.2.1 Design rules

The BCK and WS can also be used in I2S master mode, meaning that these inputs can
also be switched as outputs to generate a bit clock and word select for a slave device. In
this case the slave only returns the data.

3.2.2 Application diagram
Fig 2 shows how the DAI and DAO Interface should be connected when used.

NXP Semiconductors AN10695
 Using the LPC288x in audio application

AN10695_1 © NXP B.V. 2008. All rights reserved.

Application note Rev. 01 — 12 February 2008 8 of 20

Fig 2. DAI and DAO

3.2.3 Application Software
3.2.3.1 Programming the DAO and SAO1

(System initialization (reset) code should include the following steps if the DAO and
SAO1 are used in the application)

1. Write the desired format codes to the I2S Format register.

2. Write the Stream I/O Configuration register with the prescribed/fixed bits. If the DAI is
used for I2S input, be sure that the DAI_OE bit is set properly for the DAI mode (See
User Manual Section 19–4.1).

3. Program the CGU to provide the desired DAO bit clock and route it to its DAO_BCK
output, and program a fractional divider to divide that bit clock by twice the number of bits
per word in stretched mode, and route the fractional divider output to its DAO_WS
output.
The below example will show how to program the CGU for the DAO
In this example, the High Speed PLL uses the fast (12 MHz) oscillator as input and
generates the 22.5792MHz. This example uses the “DAIO” selection stage and registers
DAIOFDCR3, DAIOFDCR4 and DAIOFDCR5 as Fractional Divider registers (Compare to
Table 7–71 in User Manual):

NXP Semiconductors AN10695
 Using the LPC288x in audio application

AN10695_1 © NXP B.V. 2008. All rights reserved.

Application note Rev. 01 — 12 February 2008 9 of 20

The selection stage (DAIO) selects the High Speed PLL and generates the output clock
(DAIO base clock, i.e. 22.5792MHz, 512fS) which is fed to all the DAIO spreading
stages.

The DAO CLK is programmed as 1/2 of the DAIO base clock by the fractional divider
(DAIOFDCR3), i.e. 11.2896MHz, 256fS. The DAO WS is programmed as 1/512 of the
DAIO base clock by the fractional divider (DAIOFDCR4), i.e. 44.1 KHz, fS. The DAO
BCK is programmed as 1/16 of the DAIO base clock by the fractional divider
(DAIOFDCR5), i.e. 1.4112MHz, 32fS.

C Code
70 #include "LPC288x.h"
71
72 /* Divide by 2 */
73 #define DAIOFDCR3_MADD 0x48
74 #define DAIOFDCR3_MSUB 0xB8
75
76 /* Divide by 512 */
77 #define DAIOFDCR4_MADD 0x1FF
78 #define DAIOFDCR4_MSUB 0x3FF
79
80 /* Divide by 16 */
81 #define DAIOFDCR5_MADD 0x78
82 #define DAIOFDCR5_MSUB 0xF8
83
84 /***
85 * Initialize High Speed PLL
86 **
87 */
88 HPMODE = 0x04; /* Power down the High Speed PLL */
89 HPFIN = 0x01; /* Select main oscillator as PLL's input clock */
90 HPNDEC = 131; /* Refer to User Manual Table 7–41 */
91 HPMDEC = 1408; /* Refer to User Manual Table 7–41 */
92 HPPDEC = 23; /* Refer to User Manual Table 7–41 */
93 HPSELR = 8; /* Refer to User Manual Table 7–41 */
94 HPSELI = 2; /* Refer to User Manual Table 7–41 */
95 HPSELP = 31; /* Refer to User Manual Table 7–41 */
96 HPMODE = 0x01; /* Power up the High Speed PLL */
97 while ((HPSTAT & 1) == 0) {}; /* Wait for PLL to lock */
98
99 /**
100 * Configure Selection Stages
101 ***
102 /
103 /* Selects the High Speed PLL for “side 2” of the selection stage */
104 DAIOFSR2 = 0x07;
105 /* Enables side 2 of the stage */
106 DAIOSCR = 0x02;

NXP Semiconductors AN10695
 Using the LPC288x in audio application

AN10695_1 © NXP B.V. 2008. All rights reserved.

Application note Rev. 01 — 12 February 2008 10 of 20

107 /**
108 * Configure Spreading Stages
109 ***
110 /
111 /* Disable Fractional Divider in the Base Control register. */
112 DAIOBCR = 0;
113 /* Clear RUN bit in FDCR, fractional divider 3 */
114 DAIOFDCR3 &= ~0x01;
115
116 /* Reset FDR by setting bit 1(FDRES), set FDSTRCH bit,
117 MADD is 0x48(72), MSUB is 0xB8(184). where m = 0x90 and n = 0x48. FDR
118 is divided by 2. */
119 config = (((DAIOFDCR3_MSUB << 8) | DAIOFDCR3_MADD) << 3) | (0x1 << 2)
120 | (0x1 << 1);
121 DAIOFDCR3 = config;
122
123 /* Clear Reset(FDRES) bit */
124 config &= ~0x2;
125 DAIOFDCR3 = config;
126
127 /* Set RUN bit(FDRUN). */
128 config |= 0x1;
129 DAIOFDCR3 = config;
130
131 /**
132 * Enable Select Register setting. ESR with 3 bit fields.
133 * Bit 0 ESR_EN is 1 causing spreading stage output clock under
134 * the control of the fractional divider, which runs slower than the
135 * selection stage clock.
136 * ESR_SEL, bits 3:1 is 3, FDR3 is selected for DAO ESR1.
137 ***
138 /
139 DAOESR1 = (0x3<<1) | (0x1<<0);
140
141 /* Clear RUN bit in FDCR, fractional divider 4 */
142 DAIOFDCR4 &= ~0x01;
143
144 /* Reset FDR by setting bit 1(FDRES), set FDSTRCH bit, MADD is
145 0x1FF(511), MSUB is 0x3FF(1023). where m = 0x200 and n = 0x001. FDR
146 is divided by 512. */
147 config = (((DAIOFDCR4_MSUB << 10) | DAIOFDCR4_MADD) << 3) | (0x1 <<
148 2) | (0x1 << 1);
149 DAIOFDCR4 = config;
150
151 /* Clear Reset(FDRES) bit */
152 config &= ~0x2;

NXP Semiconductors AN10695
 Using the LPC288x in audio application

AN10695_1 © NXP B.V. 2008. All rights reserved.

Application note Rev. 01 — 12 February 2008 11 of 20

153 DAIOFDCR4 = config;
154
155 /* Set RUN bit(FDRUN). */
156 config |= 0x1;
157 DAIOFDCR4 = config;
158
159 /**
160 * Enable Select Register setting. ESR with 3 bit fields.
161 * Bit 0 ESR_EN is 1 causing spreading stage output clock under
162 * the control of the fractional divider, which runs slower
163 * than the selection stage clock. ESR_SEL, bits 3:1 is 4, FDR4 is
164 * selected for DA1 ESR2, DAO ESR2.
165 ***
166 /
167 DAOESR2 = (0x4<<1) | (0x1<<0);
168 /* Clear RUN bit in FDCR, fractional divider 5 */
169 DAIOFDCR5 &= ~0x01;
170
171 /* Reset FDR by setting bit 1(FDRES), set FDSTRCH bit, MADD is
172 0x78(120), MSUB is 0xF8(248). where m = 0x80 and n = 0x08. FDR is
173 divided by 16.*/
174 config = (((DAIOFDCR5_MSUB << 8) | DAIOFDCR5_MADD) << 3) | (0x1 << 2)
175 | (0x1 << 1);
176 DAIOFDCR5 = config;
177
178 /* Clear Reset(FDRES) bit */
179 config &= ~0x2;
180 DAIOFDCR5 = config;
181
182 /* Set RUN bit(FDRUN). */
183 config |= 0x1;
184 DAIOFDCR5 = config;
185
186 /**
187 * Enable Select Register setting. ESR with 3 bit fields. bit 0
188 * ESR_EN is 1 causing spreading stage output clock under the control
189 * of the fractional divider, which runs slower than the selection
190 * stage clock. ESR_SEL, bits 3:1 is 5, FDR5 is selected for DAI ESR1.
191 ***
192 /
193 DAOESR3 = (0x5<<1) | (0x1<<0);
194
195 /* Base Control Register, set bit 0(FDRUN) to start all the FDRs. */
196 DAIOBCR = 0x1;

NXP Semiconductors AN10695
 Using the LPC288x in audio application

AN10695_1 © NXP B.V. 2008. All rights reserved.

Application note Rev. 01 — 12 February 2008 12 of 20

4. Write the SAO1 Interrupt Request register in the interrupt controller (INT_REQ20 -
0x8030 0460) to enable SAO1 interrupts at the desired priority level (See User Manual
Section 9–5.1).

5. Write the SAO1 Mask register with zero (es) in the desired interrupt condition(s). For
fully interrupt-driven applications, write a 0 to the LMTMK or LHALFMK bit (or RMTMK or
RHALFMK if only the R channel is used). For DMA operation, write a 0 to LUNDER
and/or RUNDER to allow interrupt for under run (which indicates an error in DMA
operation or programming).

Since DAO always shifts the L and R values together, except for LUNDER and RUNDER
when using two DMA channels, there is no reason to enable both L and R interrupts.

3.2.3.2 Programming the DAI and SAI1
(System initialization (reset) code should include the following steps if the DAI and SAI1
are used in the application)

1. Write the desired format codes to the I2S Format register.

2. Write the Stream I/O Configuration register with the prescribed/fixed bits, and 1 in the
DAI_OE bit for Master mode, 0 for Slave mode.

3. In Slave mode, program the High Speed PLL to take its input from either the BCKI pin
or the WSI pin. If the ratio between the bit clock and the sampling frequency is known,
use the BCKI pin. If not, use WSI. Particularly when using WSI, note that the HS PLL has
problems locking to a frequency less than 100 kHz. In Master mode, program the HS
PLL to take its input from the Main oscillator.

4. Program the CGU to provide the proper DAI clocking. In Slave mode the external I2S
bit clock arrives on the BCKI pin -- program the CGU to route this clock to its DAI_XBCK
output. In Master mode, program the CGU to generate the bit clock and route it to its
DAI_BCKI output, and program a fractional divider to divide that bit clock by twice the
number of bits per word in stretched mode, and route the fractional divider output to its
DAI_WS output.

The following example shows how to program the CGU for the DAI

In this example, the DAI is programmed to operate in Slave mode. Therefore, this
example uses the “DAI” selection stage (compare to Table 7–71 in User Manual):

The selection stage (DAI) selects the DAI BCK pin and generates the output clock (DAI
base clock) which is fed to the DAI spreading stage (DAI BCK).

C Code
197 #include "LPC288x.h"
198 /**
199 * Configurate Selection Stages
200 ***
201 /
202 /* Selects the DAI BCK pin for “side 2” of the selection stage */
203 DAIFSR2 = 0x03;
204 /* Enables side 2 of the stage */
205 DAISCR = 0x02;

NXP Semiconductors AN10695
 Using the LPC288x in audio application

AN10695_1 © NXP B.V. 2008. All rights reserved.

Application note Rev. 01 — 12 February 2008 13 of 20

5. Write the SAI1 Interrupt Request register in the interrupt controller (INT_REQ16 -
0x8030 0440) to enable SAI1 interrupts at the desired priority level (See User Manual
Section 9–5.1).

6. Write the SAI1 Mask register with zero (es) in the desired interrupt condition(s). For
fully interrupt-driven applications, write a 0 in one of the LNMTMK, LHALFMK, or
LFULMK bits. For dedicated DMA, write a 0 to LOVER to allow interrupt for overrun
(which indicates an error in DMA operation or programming). For dynamically assigned
DMA in Slave mode, write a 0 to LNMTMK.

Since L and R values are always loaded from the DAI into SAI1 together, there is no
reason to enable both L and R interrupts. Of course the corresponding R condition(s) can
be enabled instead of the L condition(s).

4. Dual channel 16-bit digital to analog converter

4.1 Overview
The dual channel bit stream DAC can be used for stereo audio and other one- or two-
channel D-to-A applications, particularly those involving regular, periodic conversion. The
basic architecture of the block consists of an input block that receives 24-bit inputs at the
Nyquist sample frequency of interest (fs), up-samples and interpolates to 128 fs using
16-bit coefficients and performs noise shaping, after which the digital results are
converted to analog voltages.

4.2 Application description
4.2.1 Design rules

Because of the low rejection ratio of VREFP and VREFN the supply to these pins needs
to be very clean to prevent unwanted distortion in the audio signal. One of the
possibilities to do this is to provide a big capacitor between VREFP and VREFN. If even
higher audio performance is needed then it is advised to provide an external LDO which
is going to provide the supply for the SDAC.

4.2.2 Application diagram
Fig 3 shows how the DAC should be connected when used. The schematic shows how
to connect the DAC with VREFP decoupling. The schematic also shows how to connect
the DAC with an external LDO.

NXP Semiconductors AN10695
 Using the LPC288x in audio application

AN10695_1 © NXP B.V. 2008. All rights reserved.

Application note Rev. 01 — 12 February 2008 14 of 20

Fig 3. DDAC

4.2.3 Application software
4.2.3.1 Programming the DAO and SAO2

(System initialization (reset) code should include the following steps if the Dual DAC and
SAO2 are used in the application)

1. Write the Stream I/O Configuration register with the prescribed/fixed bits. If the DAI is
used for I2S input, be sure that the DAI_OE bit is set properly for the DAI mode (See
User Manual Section 19–4.1).

2. Write the DDACCTRL and DDACSET registers with the desired values. Set PD in
DDACCTRL to 1 initially, per step 1 of User Manual Section 22–6.2.

3. Program the CGU to provide the following clocks:
a. 128 fs on its DDAC_DCLK output
b. 256 fs on its DDAC_CLK output if 8 kHz ≤ fs ≤ 32 kHz and the MODE field in
 DDACCTRL is 00, otherwise 128 fs on DDAC_CLK.
c. fs on its DAO_WS output (this signal is used for both the DAO and the dual DAC)

Following example shows how to program the CGU for the DDAC.
In this example, the High Speed PLL uses the fast (12 MHz) oscillator as input and
generates the 22.5792MHz. This example uses the “DAIO” selection stage and registers
DAIOFDCR0, DAIOFDCR1 and DAIOFDCR4 as Fractional Divider registers (compare to
Table 7–71 in User Manual):

NXP Semiconductors AN10695
 Using the LPC288x in audio application

AN10695_1 © NXP B.V. 2008. All rights reserved.

Application note Rev. 01 — 12 February 2008 15 of 20

The selection stage (DAIO) selects the High Speed PLL and generates the output clock
(DAIO base clock, i.e. 22.5792MHz, 512fS) which is fed to all the DAIO spreading
stages.

The DDAC CLK is programmed as 1/4 of the DAIO base clock by the fractional divider
(DAIOFDCR0), i.e. 5.6448MHz, 128fS. The DDAC DCLK is programmed as 1/4 of the
DAIO base clock by the fractional divider (DAIOFDCR1), i.e. 5.6448MHz, 128fS. The
DAO WS is programmed as 1/512 of the DAIO base clock by the fractional divider
(DAIOFDCR4), i.e. 44.1KHz, fS.

C Code

206 #include "LPC288x.h"
207
208 /* Divide by 4 */
209 #define DAIOFDCR0_MADD 0x48
210 #define DAIOFDCR0_MSUB 0xE8
211
212 /* Divide by 4 */
213 #define DAIOFDCR1_MADD 0x48
214 #define DAIOFDCR1_MSUB 0xE8
215
216 /* Divide by 512 */
217 #define DAIOFDCR4_MADD 0x1FF
218 #define DAIOFDCR4_MSUB 0x3FF
219
220 /**
221 * Initialize High Speed PLL
222 ***
223 /
224 HPMODE = 0x04; /* Power down the High Speed PLL */
225 HPFIN = 0x01; /* Select main oscillator as PLL's input clock */
226 HPNDEC = 131; /* Refer to User Manual Table 7–41 */
227 HPMDEC = 1408; /* Refer to User Manual Table 7–41 */
228 HPPDEC = 23; /* Refer to User Manual Table 7–41 */
229 HPSELR = 8; /* Refer to User Manual Table 7–41 */
230
231 HPSELI = 2; /* Refer to User Manual Table 7–41 */
232 HPSELP = 31; /* Refer to User Manual Table 7–41 */
233 HPMODE = 0x01; /* Power up the High Speed PLL */
234 while ((HPSTAT & 1) == 0) {}; /* Wait for PLL to lock */
235
236 /**
237 * Configure Selection Stages
238 ***
239 /
240 /* Selects the High Speed PLL for “side 2” of the selection stage */
241 DAIOFSR2 = 0x07;
242 /* Enables side 2 of the stage */

NXP Semiconductors AN10695
 Using the LPC288x in audio application

AN10695_1 © NXP B.V. 2008. All rights reserved.

Application note Rev. 01 — 12 February 2008 16 of 20

243 DAIOSCR = 0x02;
244
245 /**
246 * Configure Spreading Stages
247 ***
248 /
249
250 /* Disable Fractional Divider in the Base Control register. */
251 DAIOBCR = 0;
252
253 /* Clear RUN bit in FDCR, fractional divider 0 */
254 DAIOFDCR0 &= ~0x01;
255
256 /* Reset FDR by setting bit 1(FDRES), set FDSTRCH bit, MADD is
257 0x48(72), MSUB is 0xE8(232). where m = 0x60 and n = 0x18. FDR is
258 divided by 4. */
259 config = (((DAIOFDCR0_MSUB << 8) | DAIOFDCR0_MADD) << 3) | (0x1 << 2)
260 | (0x1 << 1);
261 DAIOFDCR0 = config;
262
263 /* Clear Reset(FDRES) bit */
264 config &= ~0x2;
265 DAIOFDCR0 = config;
266
267 /* Set RUN bit(FDRUN). */
268 config |= 0x1;
269 DAIOFDCR0 = config;
270
271 /**
272 * Enable Select Register setting. ESR with 3 bit fields.
273 * Bit 0ESR_EN is 1 causing spreading stage output clock under the
274 * control of the fractional divider, which runs slower
275 * than the selection stage clock. ESR_SEL, bits 3:1 is 0, FDR0 is
276 * selected for DDAC ESR1.

277 ***
278 /
279 DDACESR1 = (0x0<<1) | (0x1<<0);
280
281 /* Clear RUN bit in FDCR, fractional divider 1 */
282 DAIOFDCR1 &= ~0x01;
283
284 /* Reset FDR by setting bit 1(FDRES), set FDSTRCH bit, MADD is
285 0x48(72), MSUB is 0xE8(232). where m = 0x60 and n = 0x18. FDR is
286 divided by 4. */
287 config = (((DAIOFDCR1_MSUB << 8) | DAIOFDCR1_MADD) << 3) | (0x1 << 2)

NXP Semiconductors AN10695
 Using the LPC288x in audio application

AN10695_1 © NXP B.V. 2008. All rights reserved.

Application note Rev. 01 — 12 February 2008 17 of 20

288 | (0x1 << 1);
289 DAIOFDCR1 = config;
290
291 /* Clear Reset(FDRES) bit */
292 config &= ~0x2;
293 DAIOFDCR1 = config;
294
295 /* Set RUN bit(FDRUN). */
296 config |= 0x1;
297 DAIOFDCR1 = config;
298
299 /**
300 * Enable Select Register setting. ESR with 3 bit fields. Bit 0 ESR_EN
301 * is 1 causing spreading stage output clock under the control of the
302 * fractional divider, which runs slower than the selection stage
303 * clock. ESR_SEL, bits 3:1 is 1, FDR1 is selected for DDAC ESR2, DADC
304 * ESR1, DADC ESR2.
305 ***
306 */
307 DDACESR2 = (0x1<<1) | (0x1<<0);
308
309 /* Clear RUN bit in FDCR, fractional divider 4 */
310 DAIOFDCR4 &= ~0x01;
311
312 /* Reset FDR by setting bit 1(FDRES), set FDSTRCH bit, MADD is
313 0x1FF(511), MSUB is 0x3FF(1023). where m = 0x200 and n = 0x001. FDR
314 is divided by 512. */
315 config = (((DAIOFDCR4_MSUB << 10) | DAIOFDCR4_MADD) << 3) | (0x1 <<
316 2) | (0x1 << 1);
317 DAIOFDCR4 = config;
318
319 /* Clear Reset(FDRES) bit */
320 config &= ~0x2;
321 DAIOFDCR4 = config;

322 /* Set RUN bit(FDRUN). */
323 config |= 0x1;
324 DAIOFDCR4 = config;
325
326 /**
327 * Enable Select Register setting. ESR with 3 bit fields.
328 * Bit 0 ESR_EN is 1 causing spreading stage output clock under the
329 * control of the fractional divider, which runs slower than the
330 * selection stage clock. ESR_SEL, bits 3:1 is 4, FDR4 is
331 * selected for DA1 ESR2, DAO ESR2.

NXP Semiconductors AN10695
 Using the LPC288x in audio application

AN10695_1 © NXP B.V. 2008. All rights reserved.

Application note Rev. 01 — 12 February 2008 18 of 20

332 ***
333 /
334 DAOESR2 = (0x4<<1) | (0x1<<0);
335
336 /* Base Control Register, set bit 0(FDRUN) to start all the FDRs. */
337 DAIOBCR = 0x1;

4. Perform the power-up procedure described in User Manual Section 22–6.2.

5. Write the SAO2 Interrupt Request register in the interrupt controller (INT_REQ21 -
0x8030 0464) to enable SAO2 interrupts at the desired priority level (see User Manual
Section 9–5.1).

6. Write the SAO2 Mask register with zero (es) in the desired interrupt condition(s). For
fully interrupt-driven applications, write a 0 to the LMTMK or LHALFMK bit (or RMTMK or
RHALFMK if only the R channel is used). For DMA operation, write a 0 to LUNDER
and/or RUNDER to allow interrupt for under run (which indicates an error in DMA
operation or programming).

Since L and R values are removed from the SAO simultaneously, except for LUNDER
and RUNDER when using two DMA channels, there is no reason to enable both L and R
interrupts.

NXP Semiconductors AN10695
 Using the LPC288x in audio application

AN10695_1 © NXP B.V. 2008. All rights reserved.

Application note Rev. 01 — 12 February 2008 19 of 20

5. Legal information

a. Definitions
Draft — The document is a draft version only. The content is still under
internal review and subject to formal approval, which may result in
modifications or additions. NXP Semiconductors does not give any
representations or warranties as to the accuracy or completeness of
information included herein and shall have no liability for the consequences
of use of such information.

b. Disclaimers
General — Information in this document is believed to be accurate and
reliable. However, NXP Semiconductors does not give any representations
or warranties, expressed or implied, as to the accuracy or completeness of
such information and shall have no liability for the consequences of use of
such information.

Right to make changes — NXP Semiconductors reserves the right to make
changes to information published in this document, including without
limitation specifications and product descriptions, at any time and without
notice. This document supersedes and replaces all information supplied prior
to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed,
authorized or warranted to be suitable for use in medical, military, aircraft,
space or life support equipment, nor in applications where failure or
malfunction of a NXP Semiconductors product can reasonably be expected
to result in personal injury, death or severe property or environmental
damage. NXP Semiconductors accepts no liability for inclusion and/or use of
NXP Semiconductors products in such equipment or applications and
therefore such inclusion and/or use is for the customer’s own risk.

Applications — Applications that are described herein for any of these
products are for illustrative purposes only. NXP Semiconductors makes no
representation or warranty that such applications will be suitable for the
specified use without further testing or modification.

c. Trademarks
Notice: All referenced brands, product names, service names and
trademarks are property of their respective owners.

NXP Semiconductors AN10695
 Using the LPC288x in audio application

Please be aware that important notices concerning this document and the product(s)
described herein, have been included in the section 'Legal information'.

 © NXP B.V. 2008. All rights reserved.

For more information, please visit: http://www.nxp.com
For sales office addresses, email to: salesaddresses@nxp.com

Date of release: 12 February 2008
Document identifier: AN10695_1

6. Contents

1. Introduction ...3
2. Dual channel 16-bit analog to digital

converter ..3
2.1 Overview ..3
2.2 Application description3
2.2.1 Design rules ...3
2.2.2 Application diagram..3
2.2.3 Application software ...4
2.2.3.1 Programming the Dual ADC and SAI44
3. I2S input module (DAI) and I2S output

module (DAO) ..7
3.1 Overview ..7
3.2 Application description7
3.2.1 Design rules ...7
3.2.2 Application diagram..7
3.2.3 Application Software ..8
3.2.3.1 Programming the DAO and SAO18
3.2.3.2 Programming the DAI and SAI112
4. Dual channel 16-bit digital to analog

converter ..13
4.1 Overview ..13
4.2 Application description13
4.2.1 Design rules ...13
4.2.2 Application diagram..13
4.2.3 Application software ...14
4.2.3.1 Programming the DAO and SAO214
5. Legal information ..19
a. Definitions ..19
b. Disclaimers...19
c. Trademarks ..19
6. Contents...20

	1. Introduction
	2. Dual channel 16-bit analog to digital converter
	2.1 Overview
	2.2 Application description
	2.2.1 Design rules
	2.2.2 Application diagram
	2.2.3 Application software
	2.2.3.1 Programming the Dual ADC and SAI4

	3. I2S input module (DAI) and I2S output module (DAO)
	3.1 Overview
	3.2 Application description
	3.2.1 Design rules
	3.2.2 Application diagram
	3.2.3 Application Software
	3.2.3.1 Programming the DAO and SAO1
	3.2.3.2 Programming the DAI and SAI1

	4. Dual channel 16-bit digital to analog converter
	4.1 Overview
	4.2 Application description
	4.2.1 Design rules
	4.2.2 Application diagram
	4.2.3 Application software
	4.2.3.1 Programming the DAO and SAO2

	5. Legal information
	a. Definitions
	b. Disclaimers
	c. Trademarks

	6. Contents

