Memory Test Software for the M 68000 Family

By Gordon Lawton
Datacommunications Applications
Motorola, East Kilbride, Scotland

Introduction
On initialisation, many embedded systems will run a complete system test to
identify any problems. As memory arrays become larger, the potential for
errors increases, so an integral part of the system test are memory tests. It is
important that such code is compact and fast to minimize the overall effect on
the system.

This Engineering Bulletin contains memory test code for 68K family
processors. The code is written is 68K assembly code to optimise exectution
time and reduce size.

Test Methodology
The code executes the memory tests sequentially as shown in figure 1. If a
test fails the code aborts and flags the error. On successful completion of all
the a pass flag is set.

C START)
J Error

——p
data R/W
o |
Error
—
data to addr
o |
Error
. —b
memory fill
OK i Error v
walking O's / 1's Fail
o |
Pass

'
C END)‘7

Figure 1. Memory Test Flow Diagram

The test are carried out over all the memory locations. The code consists of
four separate tests:

* Data write with read-back compare
* Write data address to memory

* Memory Fill and Test

* Walking 0's and 1's

Data write with read-back compare
This test writes several data patterns, $0, $5, $A and $F, to each memory
location. and then reads the data back into a CPU register. The register
contents are then compared with the original data. In effect the test run four
times, once for each pattern. Read and write cycles are long word wide. The
outcome of this test verifies correct storage operation to RAM.

Write data address to memory
This test stores every memory address as a data value to store at that address.
This stored value is then read-back and compared with the original address
value. The whole of memory is filled with data before the read-back
operation begins. If the comparison is correct then all address lines must be
functioning correctly.

Memory Fill and Test
All internal RAM is filled with a background pattern of $0. A selected location
is then loaded with a data pattern SAAAAAAAA. The module then checks
all other locations to determine if any location containing the background
pattern has been modified, ie it checks for aliasing. This test checks that the
address and data lines are correctly connected.

Walking 0's and 1's
This is a bit oriented test which, after block filling memory with 1's, sets every
bit to 0 and then back to 1 sequentially. When the bit is set to 0, the data is

compared with the known correct value to check for correct operation of each
bit of RAM.

Assembly Code Operation
The assembly code rountines below define start and end addresses, MEMST
and MEMEND. These should be set as for the system memory. On
successful operation the contents of D1 are $12345678. On a test failure the
contents of the D1 are $DEADDEAD. The erroneous address will be stored in
A2. In this example a TRAP #$0 command is used to return control to a
dubugger, this should be altered for specific systems.

% ke ok b ok sk ok sk ok sk ok sk 3k 3k 3k ok 3k sk sk ok sk ok sk sk 3k 9k 3k 3k sk ok sk ok sk ok sk 3k 3k 3k ke 3k sk ok ok ok sk 3k ok 3k ok 3k ok ok ok sk ok sk ok sk ok ke ok sk ok ok ok ok ok kK
Memory Test Gordon Lawton

Last Modified: 31/3/94 Version 1.0

this code runs a suite of memory tests over a specified memory
area. The tests are as follows:

data r/w

data/address connectivety
memory fill test

walking 1/0s test

A fuller description of the code is given in the subroutines.

<C> Copyright Motorola 1994

Change History: Ver 1.0 Initial release
ke ok ok o o o o ok ook K oo ok o ook ok ok o o ok o ok ook ok o oo ok oo oo ok o koo ok ok ok o o ok sk ok ok ok o o ok ook

*OK K K K K K K K ¥ K X ¥ ¥
L N S R R I

* Initial conditions: NONE *
* Final conditions: Memory Tested *
* *
* Input parameters: NONE *
* Qutput parameters: Test results in D1 *
* Pass: $12345678 in D1 *
* Fail: $DEADDEAD in D1 *
sk ke ok ok ok ok ke sk sk ok sk ok sk ok ok ok ke sk ke ok sk ok ke ok sk sk ok ok ok ok sk ke ok ok ok ok ok ok sk ok sk ok sk ke ok ok ok ok ok
* Definition of constants used in the code *
MEMST EQU $02000000 Memory to be tested start address
MEMEND EQU $020FFFFF Memory to be tested end address
PATTERNA EQU SAAAAAAAA Test pattern A
PATTERNB EQU $55555555 Test pattern B
PATTERNC EQU $FFFFFFFF Test pattern C
* XRAM_Test *
* ALl memory tests are called from this routine *
* The exit TRAP requires to be altered depending *
* on the system used *
MOVEA. L #MEMST ,AQ load start address
MOVEA. L #MEMEND, A1l load end address
BSR XRAMDRW do ram data r/w test
BSR XRAMDA do ram data address test
BSR XRAMMF do ram memory fill test
BSR XRAMWALK do ram walking 1/@s test
MOVE.L #$12345678,D1 put pattern in dl1 if passed
EXIT TRAP #%0 exit back to probe debugger
* RAM_Data_R/W *
* *
* Test writes a data pattern to memory then reads *
* Tt back to check it has been written correctly *
* This test is run for 00000000, 55555555, AAAAAAAA *
* and FFFFFFFF. It will verify correct storage *
* operation of the RAM. *
* *
* Initial conditions: NONE *
* Final conditions: Pass: then return *
* Fail: then error routine *
* Input parameters: AQ = MEMST, Al = MEMEND *
* Qutput parameters: NONE *
XRAMDRW MOVE.L AQ,A2 copy start address
CLR.L D4 clear to write 0s
FILL1 MOVE. L D4, (A2)+ write to memory
CMPA. L A2,Al check location
BPL FILL1 at end of block?
MOVE.L AQ,A2 copy start address
COMP1 CMP.L (A2)+,D4 check written ok
BNE.L XDRERR quit on error
CMPA. L A2,Al check location
BPL COMP1 at end of block
MOVE.L AQ,A2 copy start address
MOVE. L #PATTERNB, D4 This time write 5s
FILL2 MOVE. L D4, (A2)+ write to memory
CMPA. L A2,Al check location

BPL FILL2 at end of block?

MOVE. L AQ,A2 copy start address

COMP2 CMP.L (A2)+,D4 check written ok
BNE. L XDRERR quit on error
CMPA . L A2,A1 check location
BPL COMP2 at end of block
MOVE.L AQ,A2 copy start address
MOVE.L #PATTERNA,D4 This time write As
FILL3 MOVE.L D4, (A2)+ write to memory
CMPA . L A2,A1 check location
BPL FILL3 at end of block?
MOVE.L AO,A2 copy start address
COMP3 CMP.L (A2)+,D4 check written ok
BNE.L XDRERR quit on error
CMPA. L A2,A1 check location
BPL COMP3 at end of block
MOVE.L AO,A2 copy start address
MOVE.L #PATTERNC, D4 This time write Fs
FILL4 MOVE.L D4, (A2)+ write to memory
CMPA. L A2,A1 check location
BPL FILL4 at end of block?
MOVE.L AO,A2 copy start address
COMP4 CMP. L (A2)+,D4 check written ok
BEQ.L XDROK quit on error
XDRERR BSR XRAMERR jump to error routine
XDROK CMPA. L A2,Al1 check location
BPL COMP4 at end of block
RTS Return to do next test
* RAM_Data_Address *
* This test uses the current memory address *
* as a data value to store at the address The *
* data is read back and compared thus tests *
* the address lines *
* *
* Initial conditions: NONE *
* Final conditions: Pass: then return *
* Fail: then error routine *
* Input parameters: A@ = MEMST, Al = MEMEND *
* Qutput parameters: NONE *
XRAMDA MOVE. L AQ,A2 copy start address
FILLS MOVE.L A2,(A2)+ write addr as data to addr
CMPA.L A2,A1 check location
BPL FILLS at end of block?
MOVE. L AQ,A2 copy start address
COMPS CMPA.L (A2),A2 write address as data to itself
BNE.L XDAERR quit on error
TST.L (A2)+ ignore test, increment address
CMPA. L AZ2,A1 check location
BPL COMP5 at end of block?
BRA XDAOK skip error call if here
XDAERR BSR XRAMERR jump to error routine
XDAOK RTS Return to do next test
* RAM_Memory_Fill *
* After memory is filled with a background of @s *
* a single location is written with a pattern. *
* this checks if the data and address lines are *
* connected correctly *
* *
* Initial conditions: NONE *
* Final conditions: Pass: then return *
* Fail: then error routine *
* Input parameters: A@ = MEMST, Al = MEMEND *
* Output parameters: NONE *
XRAMMF MOVE. L AQ,A2 copy start address
CLR.L D4 clear to write 0s
FILL6 MOVE.L D4, (A2)+ write to memory
CMPA. L A2,Al check location
BPL FILLG at end of block?
MOVE. L Al,A2 copy end address
SUBA.L AQ,A2 start-end = block length
MOVE. L A2,D4 put length in D4 for shift

LSR.L #$4,D4 divide by 16 to get offset

LSL.L #$2,D4
MOVE.L #PATTERNA, D5
MOVE.L D5,0CAQ,D4.L)
LEA.L 0(A0,D4.L),A3
MOVE.L AO,A2
COMP6 TST.L (A2)
BEQ MFPASS
CMPA. L A3,A2
BNE XMFERR
CMP. L (A2),D5
BNE XMFERR
MFPASS TST.L (A2)+
CMP. L A2,A1
BPL COMP6
BRA XMFOK
XMFERR BSR XRAMERR
XMFOK RTS
* RAM_Walking_1/0
* after block filling the memory with 1s every
* bit is set to 0, tested, and set back to 1
*
* Initial conditions: NONE
* Final conditions: Pass: then return
*
* Input parameters: AQ = MEMST, Al = MEMEND
* Qutput parameters: NONE
XRAMWALK MOVE.L AQ,A2
MOVE. L #PATTERNC, D4
FILL7 MOVE.L D4,(A2)+
CMPA. L A2,A1
BPL FILL?7
MOVE. L AQ,A2
MOVE. L #$FFFFFFFE,D4
COMP7 MOVE.L #$1F, DS
WALKLOOP MOVE.L D4,(A2)
CMP.L (A2),D4
BNE XWKERR
ROL.L #$1,D4
DBF D5 ,WALKLOOP
MOVE.L #PATTERNC, (A2)+
CMP. L A2,A1
BPL COMP7
BRA XWKOK
XWKERR BSR XRAMERR
XWKOK RTS
* ERROR HANDLING ROUNTINE
* Set error pattern on D1
*
* Initial conditions: Failure
* Final conditions: Error condition set
* Input parameters: NONE
* Qutput parameters: D1 = DEADDEAD
*
XRAMERR MOVE. L #$DEADDEAD, D1
BRA EXIT

end

Fail: then error routine

mult by 4 :long word aligned
copy As pattern

write patA to start+offset
copy address of offset
copy start address

make sure location is @
ok if @

at offset?

error if not at offset
check data at offset

quit if not correct
increment address

check location

at end of block?

skip error call if here
jump to error routine
Return to do next test

LR N S I

copy start address

This time write Fs
write to memory

check location

at end of block?

copy start address
blank LSB

count of 31

write next bit memory
bit 0.K?

error if not the same
blank next bit

at last bit?

clear last bit, inc address
check location

at end of block?

skip error call if here
jump to error routine
return to main routine

* K K ¥ X X ¥ ¥

set error pattern
exit

