
 

  PUBLIC 

www.nxp.com 

Zephyr GDB Debugger Lab 

Rev1.0, May 29, 2022 

Objectives 

In this lab, you will learn 

 Flash and debug a Zephyr application using gdb command-line  

Pre-Requisites 

This lab is written for Windows10, but Zephyr and this lab can easily be done in Linux or MacOS.  This lab 
guide was written for Zephyr release v3.0.0. 

• Follow Zephyr_Installation_Lab.pdf  
• Terminal Program, like PuTTY or Tera Term 
• Follow Zephyr_hello_world_Sample_Lab.pdf to prepare the hardware, verify environment variables, 

connect the terminal to the board 

Hardware Requirements 

• MIMXRT1060-EVKB 
• Micro-USB cable (may need two cables, see Zephyr_hello_world_Sample_Lab.pdf) 

Running the lab  

Prepare Command Line 

Before using the West commands, a command window should be opened, python virtual environment 
activated, and environment variables set.  These steps only need to be done once after a command window is 
opened.  If already done in a previous lab, skip to the next section.  See Zephyr_hello_world_Sample_Lab.pdf 
for more details. 

1. Open a normal command prompt in Windows 
2. Navigate to the zephyr directory:  

cd %userprofile%\zephyrproject\zephyr 
 

3. Activate the python virtual environment.  After activating, the prompt should now include (.venv), see 
screenshot below: 
..\.venv\Scripts\activate.bat 
 

4. Set the environmental variables.  Note, when using a command file like this to set the variables, the 
command file needs to be executed once anytime a new command window is opened:  
zephyr-env.cmd 
 

https://www.chiark.greenend.org.uk/%7Esgtatham/putty/latest.html
https://ttssh2.osdn.jp/index.html.en


 

  PUBLIC 

www.nxp.com 

5. Connect a terminal program to the board’s COM port, for help see 
Zephyr_hello_world_Sample_Lab.pdf 

 

Debugging an application with GDB 

In this section, we will walk through using GDB command line to connect to your target, set breakpoints, and 
perform a stack backtrace.  

6. Build the synchronization example using west:  
west build -b mimxrt1060_evk -d ..\build-sync samples\synchronization --pristine 
 

7. Debug the application:  
west debug -d ..\build-sync 
 



 

  PUBLIC 

www.nxp.com 

8. You should see the J-Link GDB Server pop up  

 
 



 

  PUBLIC 

www.nxp.com 

9. Reset the device  
monitor reset  
 

10. Open the source file %userprofile%/zephyrproject/zephyr/samples/synchronization/src/main.c.  
If you don’t have a preferred editor, you can use Notepad++ to view the code with line numbers.  We 
will set a breakpoint in the next step in helloLoop() at the highlighted line 50 below. 
 

void helloLoop(const char *my_name, 
               struct k_sem *my_sem, struct k_sem *other_sem) 
{ 
        const char *tname; 
        uint8_t cpu; 
        struct k_thread *current_thread; 
 
        while (1) { 
                /* take my semaphore */ 
                k_sem_take(my_sem, K_FOREVER); 
 
                current_thread = k_current_get(); 
                tname = k_thread_name_get(current_thread); 
#if CONFIG_SMP 
                cpu = arch_curr_cpu()->id; 
#else 
                cpu = 0; 
#endif 
                /* say "hello" */ 
                if (tname == NULL) { 
                        printk("%s: Hello World from cpu %d on %s!\n", 
                                my_name, cpu, CONFIG_BOARD); 
                } else { 
                        printk("%s: Hello World from cpu %d on %s!\n", 
                                tname, cpu, CONFIG_BOARD); 
                } 
 
                /* wait a while, then let other thread have a turn */ 
                k_busy_wait(100000); 
                k_msleep(SLEEPTIME); 
                k_sem_give(other_sem); 
        } 
} 

11. Set a breakpoint in application.  We will place the breakpoint at the highlighted line above:  
break main.c:50 

 

https://notepad-plus-plus.org/downloads/


 

  PUBLIC 

www.nxp.com 

12. Continue your app.  This will halt at your breakpoint.  
c 
 

13. Continue a few more times.  You will repeatedly halt at this breakpoint in the loop.  Notice the thread 
calling this loop toggles between threadA and threadB.  And the app will print a line to the terminal 
with each run through the loop  
c <repeat a few times> 
 

 
 
 

 
 

14. Display some local variables while debugging 
display current_thread 
display tname 
c <two times> 
 

 
 

15. Step into the next line  
s (for step) 
 

16. Step over a line 
n (for next) 
 



 

  PUBLIC 

www.nxp.com 

17. Perform a stack backtrace to see the history of the stack:  
bt 
  

18. Show the breakpoints:  
info breakpoints 

 
 

19. Delete your breakpoint  
delete 1  
 

20. Let the app run with no breakpoints, and see the app print to the terminal 
c 
 

21. Halt the app 
Ctrl+c 
 

22. Quit GDB with the command below.   
quit 
y 

This completes this lab. 

Additional resources:  

To learn more about GDB debugging, see this presentation about Linaro: 

 https://connect.linaro.org/resources/lvc21/lvc21-308/  

Revision History 

Rev Date Details 
1.0 5/29/2022 Initial version 

   

 

 

https://connect.linaro.org/resources/lvc21/lvc21-308/

	Zephyr GDB Debugger Lab
	Objectives
	Pre-Requisites
	Hardware Requirements
	Running the lab
	Prepare Command Line
	Debugging an application with GDB

	Additional resources:

