|
2

Rev1.0, May 29, 2022

In this lab, you will learn

- Flash and debug a Zephyr application using gdb command-line

This lab is written for Windows10, but Zephyr and this lab can easily be done in Linux or MacOS. This lab
guide was written for Zephyr release v3.0.0.

e Follow Zephyr_Installation_Lab.pdf

e Terminal Program, like PuTTY or Tera Term

e Follow Zephyr_hello_world_Sample_Lab.pdf to prepare the hardware, verify environment variables,
connect the terminal to the board

e MIMXRT1060-EVKB
e Micro-USB cable (may need two cables, see Zephyr_hello_world_Sample_Lab.pdf)

Before using the West commands, a command window should be opened, python virtual environment
activated, and environment variables set. These steps only need to be done once after a command window is
opened. If already done in a previous lab, skip to the next section. See Zephyr_hello_world_Sample_Lab.pdf
for more details.

Open a normal command prompt in Windows
Navigate to the zephyr directory:
cd %userprofile%\zephyrproject\zephyr

N —

3. Activate the python virtual environment. After activating, the prompt should now include (.venv), see
screenshot below:
..\.venv\Scripts\activate.bat

4. Setthe environmental variables. Note, when using a command file like this to set the variables, the
command file needs to be executed once anytime a new command window is opened:
zephyr-env.cmd

PUBLIC

Www.nxp.com

https://www.chiark.greenend.org.uk/%7Esgtatham/putty/latest.html
https://ttssh2.osdn.jp/index.html.en

5. Connect a terminal program to the board’s COM port, for help see
Zephyr_hello_world_Sample_Lab.pdf

#2 PUTTY Configuration ? >
Category:
=- Sgssion | Basic options for your PUTTY session |
- Logging

' Temingl Specify the destination you want to connect to
= e""K';:boa » Serial ine Speed
- Bel Icoma | [115200] |

- Features Connection type:
&~ Window OssH (O Cther: | Telnet v
- Appearance

- Behaviour Load, save or delete a stored session

- Translation Fevil Femmwes
[#- Selection |

- Colours

[=)- Connection Defautt Settings -~ Load
. Data COMD3
Comp4 5

- Proxy COMO5 =
- 55H COMDG

- Seral COMO7 Delete

. Telnet Comos =

- Rlogin

- SUUPDUP Close window on exit:

(O Mways (O MNever (@) Only on clean exit

About Help QOpen Cancel

In this section, we will walk through using GDB command line to connect to your target, set breakpoints, and
perform a stack backtrace.

6. Build the synchronization example using west:
west build -b mimxrt1060_evk -d ..\build-sync samples\synchronization --pristine

7. Debug the application:
west debug -d ..\build-sync

PUBLIC

Www.nxp.com

8. You should see the J-Link GDB Server pop up

| B Command Prompt - west debug -d \build-sync -_ O =

< build

ﬂ SEGGER. J-Link GDB Server V7.62¢ - X
File Help
GDB [127.0.0.1, 1client connected | || [stay on top
J-ink |Connected | I |SWD | |ZUDD kHz | [show log window
Device [MIMYRT 10620064 (Haltd) |] [3.30v | [lttie endian | O] Generate logfile
Logfile |(Not enabled) | [verify download
Clear Log
23 KB downloaded Connected to target
——
PUBLIC

Www.nxp.com

\r
4\

9. Reset the device
monitor reset

10. Open the source file %userprofile%/zephyrproject/zephyr/samples/synchronization/src/main.c.
If you don't have a preferred editor, you can use Notepad++ to view the code with line numbers. We
will set a breakpoint in the next step in helloLoop() at the highlighted line 50 below.

void helloLoop (const char *my name,
struct k sem *my sem, struct k sem *other sem)
{
const char *tname;
uint8 t cpu;
struct k thread *current thread;

while (1) {
/* take my semaphore */

k sem take (my sem, K FOREVER);

current thread = k current get();

tname = k thread name get (current thread);
#if CONFIG_SMP
cpu = arch curr cpu()->id;
felse
cpu = 0;
fendif
/* say "hello" */
if (tname == NULL) {
printk ("$s: Hello World from cpu %d on %s!\n",

my name, cpu, CONFIG BOARD) ;
} else {
printk ("$s: Hello World from cpu %d on %s!\n",
tname, cpu, CONFIG BOARD) ;

}

/* wait a while, then let other thread have a turn */
k busy wait (100000);

k msleep (SLEEPTIME) ;

k sem give (other sem);

11. Set a breakpoint in application. We will place the breakpoint at the highlighted line above:
break main.c:50

) break main.c:5@

kpoint 1 at

PUBLIC

Www.nxp.com

https://notepad-plus-plus.org/downloads/

Yy
4\

12. Continue your app. This will halt at your breakpoint.
c

13. Continue a few more times. You will repeatedly halt at this breakpoint in the loop. Notice the thread
calling this loop toggles between threadA and threadB. And the app will print a line to the terminal
with each run through the loop
¢ <repeat a few times>

Breakpoint 1, he (< .8> "threadA”, 2c <threadA_sem>,

inuing.

Breakpoint 1, he (d <_ func__.1> "threadB",
=3
tname =

Breakpoint 1,
=@
58 tname

E8 COMS3 - PuTTY — O X

14. Display some local variables while debugging
display current_thread
display thame
¢ <two times>

Breakpoint 1, he 6 5d5d < func > "threadB"”, readB_sem>,

urrent_th

15. Step into the next line
s (for step)

16. Step over a line
n (for next)

PUBLIC

Www.nxp.com

\r
4\

17. Perform a stack backtrace to see the history of the stack:
bt

18. Show the breakpoints:
nf breakpoints

Disp Enb Address What

keep in hellolLoop at

19. Delete your breakpoint
delete 1

20. Let the app run with no breakpoints, and see the app print to the terminal
c

21. Halt the app
Ctrl+c

22. Quit GDB with the command below.

quit
y

This completes this lab.

To learn more about GDB debugging, see this presentation about Linaro:

https://connect.linaro.org/resources/lvc21/lvc21-308/

Revision History

Rev Date Details
1.0 5/29/2022 | Initial version

PUBLIC

Www.nxp.com

https://connect.linaro.org/resources/lvc21/lvc21-308/

	Zephyr GDB Debugger Lab
	Objectives
	Pre-Requisites
	Hardware Requirements
	Running the lab
	Prepare Command Line
	Debugging an application with GDB

	Additional resources:

