1 Block HV2 LDMOS Device
Number of fingers: 56, Periphery: 5.04 mm
Frequency: 1 GHz, V_{DS} =26 v & I_{DS} =2.0 mA/mm
50 ohm Termination
Solid:Simulated & Points:Measured

Output Power at Fundamental vs. Available Input Power
Single Tone Excitation

Transducer Gain vs. Available Input Power
Single Tone Excitation

Power Gain vs. Available Input Power
Single Tone Excitation

Drain Efficiency vs. Available Input Power
Single Tone Excitation
1 Block HV2 LDMOS Device
Number of fingers: 56, Periphery: 5.04 mm
Frequency: 1 GHz, $V_{DS}=26$ v & $I_{DS}=2.0$ mA/mm
50 ohm Termination
Solid: Simulated & Points: Measured

Drain Current vs. Available Input Power
Single Tone Excitation

Output Power at 2fo vs. Available Input Power
Single Tone Excitation

Output Power at 3fo vs. Available Input Power
Single Tone Excitation

Input Return Loss vs. Available Input Power
Single Tone Excitation
1 Block HV2 LDMOS Device
Number of fingers: 56, Periphery: 5.04 mm
Frequency: 1 GHz, $V_{DS} = 26 \, \text{v}$ & $I_{DS} = 2.0 \, \text{mA/mm}$
Tuned for Power
Solid: Simulated & Points: Measured

Output Power at Fundamental vs. Available Input Power
Single Tone Excitation

Transducer Gain vs. Available Input Power
Single Tone Excitation

Power Gain vs. Available Input Power
Single Tone Excitation

Drain Efficiency vs. Available Input Power
Single Tone Excitation
1 Block HV2 LDMOS Device
Number of fingers: 56, Periphery: 5.04 mm
Frequency: 1 GHz, $V_{DS} = 26$ v & $I_{DS} = 2.0$ mA/mm
Tuned for Power
Solid: Simulated & Points: Measured

Drain Current vs. Available Input Power
Output Power at 2fo vs. Available Input Power
Output Power at 3fo vs. Available Input Power
Input Return Loss vs. Available Input Power

Single Tone Excitation
1 Block HV2 LDMOS Device
Number of fingers: 56, Periphery: 5.04 mm
Frequency: 1 GHz, V_{DS} = 26 V & I_{DS} = 2.0 mA/mm
Tuned for Efficiency
Solid: Simulated & Points: Measured

Simulated: hv2emd09swp1.txt & Measured: hv2emd09.swp
Rev/Date: Rev0/0298
1 Block HV2 LDMOS Device
Number of fingers: 56, Periphery: 5.04 mm
Frequency: 1 GHz, $V_{DS} = 26$ v & $I_{DS} = 2.0$ mA/mm
Tuned for Efficiency
Solid: Simulated & Points: Measured

Drain Current vs. Available Input Power
Single Tone Excitation

Output Power at 2fo vs. Available Input Power
Single Tone Excitation

Output Power at 3fo vs. Available Input Power
Single Tone Excitation

Input Return Loss vs. Available Input Power
Single Tone Excitation

Simulated: hv2emd09swp1.txt & Measured: hv2emd09.swp
Rev/Date: Rev0/0298
1 Block HV2 LDMOS Device
Number of fingers: 56, Periphery: 5.04 mm
Frequency: 1 GHz, V_{DS} = 26 V & I_{DS} = 2.0 mA/mm
Tuned for Power & Efficiency
Solid: Simulated & Points: Measured

Output Power at Fundamental vs. Available Input Power
Single Tone Excitation

Transducer Gain vs. Available Input Power
Single Tone Excitation

Power Gain vs. Available Input Power
Single Tone Excitation

Drain Efficiency vs. Available Input Power
Single Tone Excitation
1 Block HV2 LDMOS Device
Number of fingers: 56, Periphery: 5.04 mm
Frequency: 1 GHz, $V_{DS} = 26\text{ v}$ & $I_{DS} = 2.0\text{ mA/mm}$
Tuned for Power & Efficiency
Solid: Simulated & Points: Measured

Drain Current vs. Available Input Power
Single Tone Excitation

Output Power at 2fo vs. Available Input Power
Single Tone Excitation

Output Power at 3fo vs. Available Input Power
Single Tone Excitation

Input Return Loss vs. Available Input Power
Single Tone Excitation

Simulated: hv2ped09swp1.txt & Measured: hv2ped09.swp
Rev/Date: Rev0/0298
1 Block HV2 LDMOS Device
Number of fingers: 56, Periphery: 5.04 mm
Frequency: 1 GHz, \(V_{DS} = 26\) V & \(I_{DS} = 2.0\) mA/mm
50 ohm Termination
Solid: Simulated & Points: Measured

Total Output Power vs. Available Input Power
Two Tone Excitation with 1 MHz Separation

Transducer Gain vs. Available Input Power
Two Tone Excitation with 1 MHz Separation

Power Gain vs. Available Input Power
Two Tone Excitation with 1 MHz Separation

PAE vs. Available Input Power
Two Tone Excitation with 1 MHz Separation

Rev/Date: Rev0/0298
Drain Current vs. Available Input Power
Two Tone Excitation with 1 MHz Separation

Drain Efficiency vs. Available Input Power
Two Tone Excitation with 1 MHz Separation

Output Power at Highest 3IMD vs. Available Input Power
Two Tone Excitation with 1 MHz Separation

Input Return Loss vs. Available Input Power
Two Tone Excitation with 1 MHz Separation

1 Block HV2 LDMOS Device
Number of fingers: 56, Periphery: 5.04 mm
Frequency: 1 GHz, $V_{DS} = 26\, \text{V}$ & $I_{DS} = 2.0\, \text{mA/mm}$

50 ohm Termination
Solid: Simulated & Points: Measured

Simulated: h2i50d09swp1.txt & Measured: h2i50d09.swp

Rev/Date: Rev0/0298
1 Block HV2 LDMOS Device
Number of fingers: 56, Periphery: 5.04 mm
Frequency: 1 GHz, $V_{DS} = 26\, \text{V}$ & $I_{DS} = 2.0\, \text{mA/mm}$
Tuned for Power
Solid: Simulated & Points: Measured

Total Output Power vs. Available Input Power
Two Tone Excitation with 1 MHz Separation

Transducer Gain vs. Available Input Power
Two Tone Excitation with 1 MHz Separation

Power Gain vs. Available Input Power
Two Tone Excitation with 1 MHz Separation

PAE vs. Available Input Power
Two Tone Excitation with 1 MHz Separation

Simulated: h2ipmd09swp1.txt & Measured: h2ipmd09.swp
Rev/Date: Rev0/0298
1 Block HV2 LDMOS Device
Number of fingers: 56, Periphery: 5.04 mm
Frequency: 1 GHz, \(V_{DS} = 26 \text{ v} \) & \(I_{DS} = 2.0 \text{ mA/mm} \)
Tuned for Power
Solid:Simulated & Points:Measured

Drain Current vs. Available Input Power
Two Tone Excitation with 1 MHz Separation

Drain Efficiency vs. Available Input Power
Two Tone Excitation with 1 MHz Separation

Output Power at Highest 3IMD vs. Available Input Power
Two Tone Excitation with 1 MHz Separation

Input Return Loss vs. Available Input Power
Two Tone Excitation with 1 MHz Separation
1 Block HV2 LDMOS Device
Number of fingers: 56, Periphery: 5.04 mm
Frequency: 1 GHz, $V_{DS} = 26$ V & $I_{DS} = 2.0$ mA/mm
Tuned for Efficiency
Solid: Simulated & Points: Measured

Total Output Power vs. Available Input Power
Two Tone Excitation with 1 MHz Separation

Transducer Gain vs. Available Input Power
Two Tone Excitation with 1 MHz Separation

Power Gain vs. Available Input Power
Two Tone Excitation with 1 MHz Separation

PAE vs. Available Input Power
Two Tone Excitation with 1 MHz Separation

Simulated: h2iemd09swp1.txt & Measured: h2iemd09.swp
Rev/Date: Rev0/0298
1 Block HV2 LDMOS Device
Number of fingers: 56, Periphery: 5.04 mm
Frequency: 1 GHz, $V_{DS} = 26 \text{ V} \& I_{DS} = 2.0 \text{ mA/mm}$
Tuned for Efficiency
Solid:Simulated & Points:Measured

Drain Current vs. Available Input Power
Two Tone Excitation with 1 MHz Separation

Drain Efficiency vs. Available Input Power
Two Tone Excitation with 1 MHz Separation

Output Power at Highest 3IMD vs. Available Input Power
Two Tone Excitation with 1 MHz Separation

Input Return Loss vs. Available Input Power
Two Tone Excitation with 1 MHz Separation

Simulated:h2iemd09swp1.txt & Measured:h2iemd09.swp
Rev/Date: Rev0/0298
1 Block HV2 LDMOS Device
Number of fingers: 56, Periphery: 5.04 mm
Frequency: 1 GHz, $V_{DS} = 26$ v & $I_{DS} = 2.0$ mA/mm
Tuned for Power & Efficiency
Solid: Simulated & Points: Measured

Total Output Power vs. Available Input Power
Two Tone Excitation with 1 MHz Separation

Transducer Gain vs. Available Input Power
Two Tone Excitation with 1 MHz Separation

Power Gain vs. Available Input Power
Two Tone Excitation with 1 MHz Separation

PAE vs. Available Input Power
Two Tone Excitation with 1 MHz Separation

Simulated: h2iped09swp1.txt & Measured: h2iped09.swp
Rev/Date: Rev00298
1 Block HV2 LDMOS Device
Number of fingers: 56, Periphery: 5.04 mm
Frequency: 1 GHz, \(V_{DS}=26\) V & \(I_{DS}=2.0\) mA/mm
Tuned for Power & Efficiency
Solid: Simulated & Points: Measured

Drain Current vs. Available Input Power
Two Tone Excitation with 1 MHz Separation

Drain Efficiency vs. Available Input Power
Two Tone Excitation with 1 MHz Separation

Output Power at Highest 3IMD vs. Available Input Power
Two Tone Excitation with 1 MHz Separation

Input Return Loss vs. Available Input Power
Two Tone Excitation with 1 MHz Separation

Simulated: h2iped09swp1.txt & Measured: h2iped09.swp
Rev/Date: Rev0/0298
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

How to reach us:
USA/EUROPE/Locations Not Listed: Motorola Literature Distribution:
P.O. Box 5405, Denver, Colorado 80217. 1–303–675–2140 or 1–800–441–2447

Customer Focus Center: 1–800–521–8274

Mfax™: RMFAX0@email.sps.mot.com— TOUCHTONE 1–602–244–6609
Motorola Fax Back System — US & Canada ONLY 1–800–774–1848
— http://sps.motorola.com/mfax/

HOME PAGE: http://motorola.com/sps/

© Motorola, Inc. 1998