Use of Stack Simplifies M68HC11 Programming

By Gordon Doughman

Introduction

The architectural extensions of the M6800 incorporated into the M68HC11 allow easy manipulation of data residing on the stack of the microcontroller unit (MCU).

The M68HC11 central processor unit (CPU) automatically uses the stack for these two purposes:

- Each time the CPU executes a branch-to-subroutine (BSR) or jump-to-subroutine (JSR) instruction, it pushes a return address onto the stack. This procedure allows the CPU to resume execution with the instruction following the BSR or JSR when the program returns from the subroutine.

- Second, just before the MCU executes an interrupt service routine, the CPU saves its register contents on the stack, allowing the registers to be restored when the CPU executes a return-from-interrupt (RTI) instruction at the end of the interrupt service routine.

Two additional uses of the M68HC11 stack discussed in this application note are the storage of local or temporary variable values and subroutine parameter passing.
Using the stack for local variables and parameter passing provides the assembly language programmer with the following benefits:

• First, since a routine allocates storage space for local variables and parameters upon entry and releases the storage upon exit, the same temporary memory space can be reused by program routines that run in succession. This reuse can result in a substantial savings in the total amount of RAM required by a program.

• Second, allocating a new set of local variables and parameters when entering a routine makes it both re-entrant and recursive. Routines that possess these two properties can make a programmer’s job much easier when debugging a program in a real-time, interrupt-driven environment.

• Third, placing local variables and parameters on the stack helps to promote modular programming. Because all temporary storage required by a routine is allocated and deallocated by the program module itself, it can be easily detached from the main program for reuse or replacement.

• The final major benefit of using the stack for local variables and parameters becomes apparent during the debugging process. Because a routine’s local variables and parameters exist only while it is executing, it is very unlikely that one routine will accidentally modify the local variables and parameters of another routine. Once the programmer has written and debugged a routine, time can be spent finding logical errors and/or problems associated with the interaction of the different routines in a program.

The goal of this application note is to help the assembly language programmer understand the following topics:

• Basic operation of the M68HC11 stack
• Concept of the local and global variables
• Subroutine parameter passing
• Use of the M68HC11 instruction set to support local variables and parameter passing
M68HC11 Stack Operation

The M68HC11 supports a stack through the use of the CPU stack pointer (SP) register. The SP is a 16-bit register that points to an area of RAM used for stack storage. Because the SP is 16 bits wide, the stack can be located anywhere in the M68HC11 64-Kbyte address space. The SP contents are undefined at power-up and are normally initialized in the first few instructions of a program. Each time a byte is pushed onto the stack, the SP is automatically decremented. Therefore, the initial value loaded into the SP is usually the address of the last RAM location in a system. Thus, as more information is pushed onto the stack, the stack area grows downward (the SP points to lower addresses) in the memory map. The SP always contains the address of the next available location on the stack.

As previously mentioned, the stack on the M68HC11 is used automatically by the CPU hardware during subroutine calls/returns and during the servicing of interrupts. When a subroutine is called by a JSR or BSR instruction, the address of the instruction following the JSR or BSR is automatically pushed onto the stack.

Since the M68HC11 only has an 8-bit data bus, two separate push operations are performed by the CPU hardware. During the first push operation, the low-order eight bits (b7–b0) of the return address are placed on the stack. The second push operation places the high-order eight bits (b15–b8) of the return address on the stack at the next lower address in memory. Performing the operation in this order leaves the 16-bit return address on the stack in the order that all 16-bit numbers are stored in memory, with the high-order eight bits at the lower address.

After a JSR or BSR instruction, the stack appears as shown in Figure 1.
Whenever an unmasked interrupt occurs, the contents of all CPU registers (with the exception of the SP itself) are pushed onto the stack as shown in Figure 2. After the registers are stacked, CPU execution continues at an address specified by the vector for the pending interrupt source. Upon completion of the interrupt service routine, the execution of an RTI instruction restores the previously saved CPU registers by pulling them off the stack in the reverse order in which they were pushed onto the stack. Since the entire state of the CPU is restored, execution resumes as if the interrupt had not occurred.
The M68HC11 instruction set contains instructions that allow the individual CPU registers to be pushed onto and pulled off the stack. For example, if the value contained in one of the CPU registers needs to be saved before a particular subroutine call, a push instruction places the register value on the stack. When the subroutine returns, a pull instruction restores the contents of the CPU register. These instructions not only allow the stack to be used as temporary data storage but also allow the construction of recursive and re-entrant subroutines.

M68HC11 instructions that involve the direct manipulation of the SP are listed in Table 1.

Figure 2. Stack Contents after an Interrupt

The M68HC11 instruction set contains instructions that allow the individual CPU registers to be pushed onto and pulled off the stack. For example, if the value contained in one of the CPU registers needs to be saved before a particular subroutine call, a push instruction places the register value on the stack. When the subroutine returns, a pull instruction restores the contents of the CPU register. These instructions not only allow the stack to be used as temporary data storage but also allow the construction of recursive and re-entrant subroutines.

M68HC11 instructions that involve the direct manipulation of the SP are listed in Table 1.
Stack Usage

Although most assembly language programmers use the M68HC11 stack for subroutine return addresses, register contents during interrupt processing and temporary CPU register storage, more powerful programming techniques can make additional use of the stack.

Most high-level language compilers for modern, block-structured, high-level languages make use of the stack for two additional functions: passing parameters and local or temporary variable storage. By borrowing some of these techniques, programmers can write assembly language programs that are much more reliable, easier to maintain, and easier to debug.

Table 1. Instructions Involving Direct Manipulation of the SP

<table>
<thead>
<tr>
<th>Instruction Mnemonic</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSHA</td>
<td>Push accumulator A onto the stack.</td>
</tr>
<tr>
<td>PSHB</td>
<td>Push accumulator B onto the stack.</td>
</tr>
<tr>
<td>PULA</td>
<td>Pull accumulator A off the stack.</td>
</tr>
<tr>
<td>PULB</td>
<td>Pull accumulator B off the stack.</td>
</tr>
<tr>
<td>PSHX</td>
<td>Push index register X onto the stack.</td>
</tr>
<tr>
<td>PSHY</td>
<td>Push index register Y onto the stack.</td>
</tr>
<tr>
<td>PULX</td>
<td>Pull index register X off the stack.</td>
</tr>
<tr>
<td>PULY</td>
<td>Pull index register Y off the stack.</td>
</tr>
<tr>
<td>INS</td>
<td>Increment the stack pointer by 1.</td>
</tr>
<tr>
<td>DES</td>
<td>Decrement the stack pointer by 1.</td>
</tr>
<tr>
<td>TXS</td>
<td>Place the contents of index register X – 1 in the stack pointer.</td>
</tr>
<tr>
<td>TYS</td>
<td>Place the contents of the index register Y – 1 in the stack pointer.</td>
</tr>
<tr>
<td>TSX</td>
<td>Place the contents of the stack pointer +1 in index register X.</td>
</tr>
<tr>
<td>TSY</td>
<td>Place the contents of the stack pointer +1 in index register Y.</td>
</tr>
</tbody>
</table>
Variables in Assembly Language

Computer programs rarely operate on data directly; instead, the program refers to variables. A variable is a physical location in computer memory that can be used to hold different values while the program runs. Variables usually have an identifier or name associated with them. Using names to refer to data contained in memory is much easier than trying to remember a long string of binary or hexadecimal numbers.

Besides a name and an address, variables may have several other attributes. Depending on the programming language, variable declarations may assign attributes to the variables restricting both the scope and extent of the variable. The scope of a variable is the range of program text in which a particular variable is known and can be used. The extent of a variable is the time during which a computer associates physical storage with a variable name.

In assembly language, the scope of variables is usually global — for instance, variables may be referenced throughout the text of a program. Though some assemblers may provide mechanisms to restrict the scope of declared variables, many assembly language programmers do not use these features. A programmer using assembly language usually declares variables by employing an assembler directive as shown in Listing 1. This method assigns fixed storage locations to the variables. The extent of variables declared this way is for the entire program execution — for instance, the storage locations assigned to the variables at assembly time remain allocated during the entire time the program is executing.
Further examination of the variable declarations in Listing 1 shows that several variables are used for intermediate calculation results or for temporary CPU register storage. This example is typical of the way many assembly language programmers allocate temporary storage. Each time they write a routine requiring temporary variable storage, they allocate an additional set of global variables. The use of this technique can lead to the inefficient use of RAM if there are many routines within a program requiring temporary storage.

In an effort to make more efficient use of the limited amount of RAM on single-chip MCUs, some programmers use a technique known as “variable sharing.” Listing 2 shows a portion of a listing using this technique. In this program, more than one routine shares the use of a single temporary variable. To keep track of which routines use which variables, each line, in addition to the variable declaration, contains a list of the routines using that particular variable. In small programs, it may not be too difficult to manage temporary variables this way; however, in large programs having hundreds or thousands of routines using temporary variables, it becomes impossible to keep track of which routines use which temporary variables at any given time.
The sharing of temporary variable storage shown in Listing 2 can produce debugging problems that are extremely hard to find. The chances of having one routine unintentionally modify the temporary storage of another can become quite high in large programs. In interrupt-driven, real-time systems, the sharing of temporary variables by various routines can become disastrous.

Consider the situation illustrated in Figure 3. Subroutine A and subroutine B both share the temporary variable Temp1. Initially, there seems to be no problem since subroutine A and subroutine B do not call one another. Yet, consider what happens if an interrupt occurs during the execution of subroutine A. Because of the interrupt, subroutine B is called indirectly through subroutine C. The execution of subroutine B causes any value placed in Temp1 by subroutine A before the interrupt to be overwritten! Because interrupts usually occur asynchronously to main program execution, the program may appear to operate properly most of the time and crash randomly, depending on when an interrupt occurs. This type of apparently random program failure can be almost impossible to find.

Listing 2. Declaring Global Variables in Assembly Language

The sharing of temporary variable storage shown in Listing 2 can produce debugging problems that are extremely hard to find. The chances of having one routine unintentionally modify the temporary storage of another can become quite high in large programs. In interrupt-driven, real-time systems, the sharing of temporary variables by various routines can become disastrous.

Consider the situation illustrated in Figure 3. Subroutine A and subroutine B both share the temporary variable Temp1. Initially, there seems to be no problem since subroutine A and subroutine B do not call one another. Yet, consider what happens if an interrupt occurs during the execution of subroutine A. Because of the interrupt, subroutine B is called indirectly through subroutine C. The execution of subroutine B causes any value placed in Temp1 by subroutine A before the interrupt to be overwritten! Because interrupts usually occur asynchronously to main program execution, the program may appear to operate properly most of the time and crash randomly, depending on when an interrupt occurs. This type of apparently random program failure can be almost impossible to find.

Listing 2. Declaring Global Variables in Assembly Language

```
* RAM LOCATIONS
*
* ORG $0
* variables - used by: ***
PTR0 RMB 2 main,readbuff,incbuff,AS
PTR1 RMB 2 main,BR,DU,M0,AS,EX
PTR2 RMB 2 EX,DU,M0,AS
PTR3 RMB 2 EX,H0,M0,AS
PTR4 RMB 2 EX,AS
PTR5 RMB 2 EX,AS,BOOT
PTR6 RMB 2 EX,AS,BOOT
PTR7 RMB 2 EX,AS
PTR8 RMB 2 AS
TMP1 RMB 1 main,hexbin,buffarg,termarg
TMP2 RMB 1 GO,H0,AS,LOAD
TMP3 RMB 1 AS,LOAD
TMP4 RMB 1 TR,H0,ME,AS,LOAD
```

For More Information On This Product, Go to: www.freescale.com
Although this example may seem overly simplistic, a program that contains hundreds or thousands of routines makes it nearly impossible to keep track of which subroutines are using what variables at any specific time, particularly if the main program and interrupt service routines share subroutines. The solution to this type of problem may seem simple — do not allow any subroutines to share globally declared temporary variables. This solution is acceptable provided enough RAM is available for all required temporary variables. A better solution to this problem can be found by examining the way modern, block-structured, high-level languages use temporary variables.

Variables in Block-Structured High-Level Languages

Most block-structured, high-level languages, notably C and Pascal, provide the ability to limit both the scope and the extent of variables as part of the language definition. In both C and Pascal, the scope of a variable is local to the block in which it is declared. The scope of variables declared outside of a block (function or procedure) is usually global. These global variables are similar to the ones declared in the main program.
assembly language shown in Listing 1. They can be accessed by all routines within a program, and they remain in existence throughout the entire time the program executes. Listing 3 shows an example of how global variables are declared in C and Pascal.

Listing 3. Declaring Global Variables in High-Level Languages

<table>
<thead>
<tr>
<th>Pascal</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>var</td>
<td>int x, y;</td>
</tr>
<tr>
<td>x, y: integer;</td>
<td>char j;</td>
</tr>
<tr>
<td>j: char;</td>
<td>int z;</td>
</tr>
<tr>
<td>z: boolean;</td>
<td>int num[9];</td>
</tr>
</tbody>
</table>
| num: array[1..10] of | struct Date {
| integer; | int x, y; |
| Date: record | int Day; |
| Month: integer; | int Year; |
| Day: integer; | |
| Year: integer; | |
| end; | |

program(input, output); main()
.
.
.
end.

Variables declared within a function or procedure have their scope limited to that function or procedure. The extent of these variables is also limited. These variables, known as local or automatic variables, come into existence when the functions or procedures that contain them are called. When a function or procedure finishes execution, the local variables disappear, and the memory locations occupied by them can be used again. Listing 4 shows an example of how local variables are declared in C and Pascal. In both examples, the variables i and j are local to procedure/function A and do not exist outside them.
There are several benefits of using local variables:

- First, the restricted life of local variables can result in memory savings. Since storage for local variables is allocated upon entry to a routine and released upon exit from a routine, the same temporary memory space can be used by many different program routines. If two routines are run in succession, each can use the same storage locations.

- Second, since a new set of local variables is allocated each time the procedure or function is entered, it makes the routine both recursive and re-entrant. A re-entrant routine is one that allocates a new set of local variables upon entry. When complex programs are run in a real-time, interrupt-driven environment, the interrupt handlers may call the routine that was interrupted. Making routines re-entrant can greatly simplify a programmer’s job during the debugging process in a real-time environment. The same properties that make a routine re-entrant also make a routine recursive. A recursive routine is one that can call itself.

- Third, the use of local variables helps to promote modular programming. A program module is a self-contained program element that can be easily detached from the main program either for reuse in another program or for replacement. Since any storage space for local variables is allocated and deal-located by the program module itself, the module code can easily be copied from a single place within one program and reused in another program.
A fourth benefit of using local variables is evidenced during the debugging process. In complex programs, there may be hundreds or thousands of routines that have to interact with each other. Since local variables help isolate any changes made within a routine, debugging becomes a much simpler process. Once routines are written and debugged, the programmer does not have to worry about one routine accidentally modifying the local variables of another. Instead, time can be spent finding any logical errors and/or problems associated with the interaction of routines in the program.

Even with all the benefits provided by the use of local variables, there are some costs associated with their use. On the M68HC11, programs using local variables tend to be slightly larger and slower than programs using only global variables because the addressing modes required to access the local variables can make the instruction somewhat longer and may cause longer execution time. Given the benefits of using local variables, a slightly larger and slower program is usually well worth the cost.

The reusable memory storage for local variables is usually taken from the same memory space used for the MCU's hardware stack. Placing local variables on the hardware stack leaves them intact even if the routine using them is interrupted. The specifics of allocating, deallocating, and accessing local variables residing on the M68HC11 stack is discussed in Using the M68HC11 Stack.

To make routines more flexible and to vary their actions each time they are called, different information must be passed to the routines. Generally, most assembly language programmers use the CPU registers to pass information to a subroutine. Using this technique is acceptable as long as the amount of information to be passed to the subroutine fits within the available CPU registers.

When the amount of information to be passed to a routine exceeds the space available in the CPU registers, the information can be passed in a set of global variables. This technique may be acceptable for some situations, but it can also cause problems that make debugging difficult. One problem with passing parameters in this manner is that it makes a
routine non-re-entrant. Referring to Figure 4, assume that subroutine A’s parameters are passed in a set of global variables. If subroutine A is called either by the main program or by subroutine C as a result of an interrupt, the program will work correctly. If an interrupt occurs during the execution of subroutine A, the original parameters passed by the main program will be overwritten when subroutine C calls subroutine A. When the processor returns from the interrupt and resumes execution of subroutine A, it will be using incorrect parameter data, and the results passed back to the main program will most likely be incorrect.

Figure 4. Subroutine Calling Chain

Because interrupts usually occur asynchronously to main program execution, the program may appear to operate properly most of the time and crash randomly. This type of problem can be extremely difficult to locate and can make debugging of real-time, interrupt-driven systems very difficult. Passing the parameters on the stack completely solves this problem. When subroutine C calls subroutine A as a result of the interrupt, a new set of parameters is placed on the stack while the original parameters remain undisturbed. Figure 5 shows the state of the stack after an interrupt.
In addition to where parameters are passed, there is also an issue of how parameters are passed. Subroutine parameters can be passed either by value or by reference. When a parameter is passed by value, the parameter acts as a local variable whose initial value is provided by the calling routine. Any modification of the supplied value has no effect on the original data that was passed to the subroutine. Thus a subroutine can import values but not export values by means of value parameters.

Passing a parameter by reference is one method used to pass results back to a calling subroutine. These types of parameters are known as variable parameters. When using variable parameters, the address of the actual parameter is passed to the subroutine rather than a value. The passed address can be a local variable of the calling routine or even the address of a global variable. Whenever a subroutine has to effect a
permanent change in the values passed to it, the parameters must be passed by reference rather than by value.

Consider the following example in both C and Pascal that exchanges the value of two integers:

Pascal Call By Value

```pascal
procedure SwapInt (x, y: integer); var
  Temp: integer;
begin
  Temp := x;
  x := y;
  y := Temp
end;
```

C Call By Value

```c
void SwapInt (int x, y)
{
  int Temp;
  Temp = x;
  x = y;
  y = Temp
}
```

Pascal Call By Reference

```pascal
procedure SwapInt (var x, y: integer); var
  Temp: integer;
begin
  Temp := x;
  x := y;
  y := Temp
end;
```

C Call By Reference

```c
void SwapInt (int *x, *y)
{
  int Temp;
  Temp = *x;
  *x = *y;
  *y = Temp
}
```

Call of "SwapInt" Using Either Method

```pascal
program (output);
var
  z, w: integer;
begin
  z := 2;
  w := 4;
  SwapInt (z, w);
end;
```

Call Of "SwapInt" Using Call by Reference

```c
main( )
{
  int w, z;
  z = 2;
  w = 4;
  SwapInt (&z, &w);
}
```

Listing 5. Passing Parameters by Reference and by Value

If the call-by-value routine were to be used in this example, the routine would not work as the programmer might expect. It would exchange the local values of \(x \) and \(y \) within the \(\text{SwapInt} \) routine, but it would have no effect on the actual variables in the routine’s call statement. For the \(\text{SwapInt} \) routine to work properly, the routine must be declared so that the parameters are passed by reference rather than by value. As mentioned previously, passing a parameter by reference passes the address of the actual parameter. In the example in **Listing 5**, using the call-by-reference routine, the addresses of the variables \(z \) and \(w \) are passed to the \(\text{SwapInt} \) routine when it is called from the main program. This procedure allows the \(\text{SwapInt} \) routine to exchange the actual values of the variables passed to the routine.
Function/Subroutine
Return Values

Most subroutines or functions, if they are to perform a useful action in a program, will return one or more values to the calling routine. Any value or status can be returned using one of the three methods previously described. When a subroutine only needs to return a single value, one of the CPU registers is commonly used to pass the value back to the calling routine. This simple, safe technique allows the routine to remain re-entrant. This method is used most often by C compilers to return a value from a function.

Similar to the situation that exists when passing parameters in the CPU registers, there may be times when a routine must return more information than will fit in the CPU registers. The information can be returned in a set of global variables; however, as previously described, this method poses the same problems as passing parameters in this manner. Returning results in global variables makes the routine non-re-entrant and can cause the same debugging problems previously described.

A better way to return large amounts of data from a subroutine is to allocate the required amount of space on the stack either just before or just after pushing a routine’s parameters onto the stack. This method possesses the same benefits of passing parameters on the stack — it makes the routine completely re-entrant and self-contained. Most Pascal compilers return function values in this manner.

Using the M68HC11 Stack

This section specifically discusses how to allocate, deallocate, and access both local variables and parameters residing on the M68HC11 stack. The programmer’s model of the M68HC11 is shown in Figure 6. The following paragraphs briefly describe the CPU registers and their usage.
Figure 6. M68HC11 Programmer’s Model

The A and B accumulators are used to hold operands and the results of arithmetic and logic operations. These two 8-bit registers can be concatenated to form a single 16-bit D accumulator to support the M68HC11 16-bit arithmetic instructions. The A and B accumulators can easily be used to push data onto or pull data off the stack.

The X and Y index registers are used in conjunction with the CPU indexed addressing mode. The indexed addressing mode uses the contents of the 16-bit index register in addition to a fixed 8-bit unsigned offset that is part of the instruction to form the effective address of the operand to be used by the instruction. The index registers play a very important role in accessing data residing on the stack.

The CPU SP is a 16-bit register that points to an area of RAM used for stack storage. The stack is used automatically during subroutine calls to save the address of the instruction that follows the call. When an interrupt occurs, the stack is used automatically by the CPU to save the...
entire CPU register contents on the stack (except for the SP itself). The SP always contains the address of the next available location on the stack.

The program counter (PC) is a 16-bit register used to hold the address of the next instruction to be executed.

The condition code register (CCR) contains five status indicators and two interrupt mask bits. The status bits reflect the results of arithmetic and other operations of the CPU as it performs instructions.

Before considering the specifics of parameter passing and the utilization of local variables that reside on the M68HC11 stack, the method used to access the information placed on the stack will be discussed. One M68HC11 index register and the CPU indexed addressing mode are used to access parameters or local variables residing on the stack. With respect to the indexed addressing mode, the contents of one of the 16 bit index registers plus a fixed unsigned offset is used in calculating the effective address of an instruction’s operand. The unsigned offset, contained in a single byte following the instruction opcode, can only accommodate positive offsets in the range 0–255. Thus, the indexed addressing mode can only access information at addresses that are between 0 and 255 bytes greater than the base address contained in one of the index registers. Figure 7 illustrates how to calculate the effective address of an instruction using the indexed addressing mode.

Figure 7. Effective Address Calculation for Indexed Addressing Mode
As information is pushed onto the M68HC11 stack, the SP is decremented, signifying that the information placed on the stack resides at addresses greater than the address contained in the SP. The use of indexed addressing is ideal for accessing information residing on the M68HC11 stack. The example shown in Figure 8 illustrates how information on the stack is manipulated.

![Diagram of higher addresses and lower addresses](image)

Figure 8. Stack Data Access Example

As **Figure 8** shows, the SP is pointing to the next available address, and the Y index register is pointing to the last data placed on the stack. The instruction `LDD 1, Y` will load the value of the local variable `x` into the D accumulator. To access the parameter `Num`, the instruction `LDD 7, Y` can be used. Any instructions that support the indexed addressing mode can be used to manipulate stack data.

Passing Parameters

Parameters are easily placed on the M68HC11 stack by CPU push instructions. **Table 2** lists the push instructions available on the M68HC11. Note that there is not a single instruction for pushing the D accumulator onto the stack. A PSHD instruction can easily be simulated.
by executing the two instructions PSHB and PSHA. These two instructions must be executed in this order to keep the value pushed onto the stack consistent with the way 16-bit values are stored in memory — for example, 16-bit values are placed in memory with the most significant eight bits at a lower address than the least significant eight bits. By following this convention, a 16-bit parameter pushed onto the stack in this manner is easily retrieved using one of the 16-bit load instructions.

<table>
<thead>
<tr>
<th>Instruction Mnemonic</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSHA</td>
<td>Push accumulator A onto the stack.</td>
</tr>
<tr>
<td>PSHB</td>
<td>Push accumulator B onto the stack.</td>
</tr>
<tr>
<td>PSHX</td>
<td>Push index register X onto the stack.</td>
</tr>
<tr>
<td>PSHY</td>
<td>Push index register Y onto the stack.</td>
</tr>
</tbody>
</table>

As previously mentioned, parameters can be passed either by value or by reference. Consider a function, `Int2Asc`, that converts a signed 16-bit integer to ASCII text and places the ASCII characters in a text buffer.

The function requires two parameters: the number to be converted into ASCII text and a pointer to a buffer where the ASCII text is to be stored. The first parameter is passed to the subroutine by value because the actual number to be converted is passed to the function. The second parameter is passed by reference because a pointer to the buffer is passed to the routine and not the buffer itself.

A function declaration written in C is shown in Listing 6.

```c
void Int2Asc(int Num; char *Buff)
{
    int Pwr10 = 10000;
    char zs = 0;
    .
    .
    .
}
```

Listing 6. Function Declaration of Int2Asc
Before calling an equivalent routine written in M68HC11 assembly language, the two parameters will be pushed onto the stack as shown in Listing 7.

```
LDX    ErrorNum    ; Get the value of the current error.
PSHX   ; Place it on the stack.
LDX    #OutBuff    ; Get the address of the Output buffer.
PSHX   ; Place it on the stack.
JSR    Int2Asc     ; Go convert the number.
```

Listing 7. Placing Parameters on the M68HC11 Stack

Using the immediate addressing mode with the second load index register X (LDX) instruction loads the address of OutBuff into the X index register rather than the 16-bit value contained in the memory locations OutBuff and OutBuff+1. After both parameters have been pushed onto the stack, the function is called with a JSR instruction. Upon entry to the subroutine Int2Asc, the parameters reside just above the return address, as shown in Figure 9.

![Figure 9. Location of Parameters Passed on the Stack](image)

Allocating Local Variables

Four basic techniques can be used to allocate local variables that reside on the stack. Choosing which one to use depends upon the total amount of storage required for the local variables and whether the variables need to have an initial value assigned to them. Of course, a combination of all four techniques can be used.
One technique used to allocate space on the stack for local storage involves the use of the decrement stack pointer (DES) instruction. The DES instruction subtracts one from the value of the SP each time the instruction is executed, allocating one byte of local variable storage for each DES instruction. This technique is a simple and direct way of allocating local storage but becomes impractical when large amounts of local storage are required. For instance, if 100 bytes of local storage are required for a subroutine, 100 DES instructions are needed to allocate the required amount of storage. This required amount is clearly unacceptable since each DES instruction requires one byte of program memory. Even if a small program loop is set up to execute 100 DES instructions, the subroutine will suffer a severe execution speed penalty each time the routine is entered.

Using the previously described technique requires one byte of program storage for each byte of local storage that is allocated. Since allocating local storage simply involves decrementing the SP, the PSHX instruction can be used to allocate two bytes of local storage space for each executed PSHX instruction. The actual contents of the X index register are irrelevant because the only concern is decrementing the SP. The use of this technique can be confusing if not properly documented, since it is not directly obvious what is being accomplished with five or six sequentially executed PSHX instructions.

Many times it is necessary to initialize local variables with a particular value before they are used. The same technique used to push parameters onto the stack before a subroutine call also can be used to allocate space for local variables and simultaneously assign initial values to them. This procedure is accomplished by loading one of the CPU registers with a variable’s initial value and executing a PSH instruction. The program fragment in Listing 8 shows the use of this technique to allocate and initialize both an 8- and 16-bit local variable.

```
Int2Asc equ *

ldx #10000 ; get the initial value of Pwr10.
pshx ; allocate and initialize it.
clra ; initial value of zs is zero.
psha ; allocate and initialize it.
```

Listing 8. Allocating and Initializing Local Variables
If more than 13 bytes of local storage are required by a subroutine, a fourth technique allocates storage more efficiently than using multiple
DES or PSHX instructions. Since there are not any instructions that allow arithmetic to be performed directly on the SP, the fourth technique involves using several M68HC11 instructions. These instructions adjust the value of the SP downward in memory, allocating the required amount of local storage. Listing 9 shows the instruction sequence required to allocate an arbitrary number of bytes of local storage.

Listing 9. Allocation of More Than 13 Bytes for Local Storage

```asm
SinCos equ *
    ;
tsx          ; SP+1 → X.
xgdx         ; exchange the contents of x and d.
subd       #xxxx    ; subtract the required amt. of storage.
xgdx         ; place the result back into x.
txs          ; X-1 → SP. Update the SP.
```

Since no single instruction allows the contents of the SP to be transferred to the D accumulator, the 2-instruction sequence transfer from SP to index register X or Y; exchange double accumulator and index register X or Y (TSX; XGDX, or TSY; XGDY) must be used. Placing the SP value in the D accumulator allows the use of the 16-bit subtract instruction to adjust the value of the SP. The subtract double accumulator (SUBD) instruction will subtract the 16-bit value xxxx from the contents of the D accumulator. To place this new value in the SP, the 2-instruction sequence XGDX; TXS or XGDY; TYS is used.

NOTE: Actually, the TSX or TSY instruction causes the SP value plus 1 to be transferred to either the X or Y index register (SP + 1 → X or SP + 1 → Y). This transfer does not pose a problem because when the SP is updated with the TXS or TYS instruction 1 is subtracted from the value of the index register (X – 1 → SP or Y – 1 → SP) before the SP is updated. Remember that since the SP points to the next available location on the stack, adding 1 to its value before the execution of the TSX or TSY instruction makes the X or Y index register point to the last data placed on the stack.
Creating a Complete Stack Frame

In addition to providing storage space for local variables and parameters, a complete stack frame (sometimes called an activation record) must contain two additional pieces of information: a return address and a pointer to the base of the stack frame of any previous routines. The return address is placed on the stack automatically by the M68HC11 when it executes either a JSR or BSR instruction. As shown in Figure 9, the return address is placed on the stack just below a subroutine’s parameters.

Before using either the X or Y index register to access a routine’s parameters or local variables, the contents of the register must first be saved. The index register contents, known as the stack frame pointer, may contain the base address of a stack frame for a routine from which control was transferred. This pointer must be maintained so that when control is returned to the calling routine, the calling routine’s environment can be restored to its previous state. Even if a routine has no local variables or parameters, the contents of the index register being used as the stack frame pointer must be saved before the register is used for any other purpose.

The best time to save the value of the previous stack frame pointer is immediately upon entry to a subroutine, which places the previous stack frame pointer immediately below the return address (see Figure 10).

After space for local variables has been allocated, the stack frame pointer for the new subroutine needs to be initialized. By transferring the contents of the SP to either the X or Y index register using the TSX or TSY instruction, a new stack frame is created.

Figure 10. Location of the Stack Frame Pointer
In summary, creating a complete stack frame involves the following three steps after entering a subroutine:

1. Immediately upon entry to a subroutine, the contents of the index register being used as the stack frame pointer must be saved by using either the PSHX or PSHY instruction.

2. Storage space for the routine's local variables should be allocated using one of the three methods described earlier.

3. The new stack frame pointer must be initialized using either the TSX or TSY instruction.

The last issue to discuss is which index register to use as the stack frame pointer. In terms of code size and speed, the X index register would be the most logical choice since all instructions involving the Y index register require one additional opcode byte and one additional clock cycle to execute. However, if a program is not making extensive use of the stack for local variables and parameters but is performing extensive array or table manipulations, the Y index register may be a better choice. No matter which index register is used as the stack frame pointer, it should be, if at all possible, dedicated to that use throughout a program. Program debugging is much easier if the contents of a single index register can always be expected to point to the current stack frame.

As mentioned in **Using the M68HC11 Stack**, local variables and parameters are accessed by using instructions that support the indexed addressing mode. The following list identifies the local and store instructions as well as all arithmetic and logic instructions that support indexed addressing. Because most M68HC11 instructions support indexed addressing, it is just as code efficient to manipulate local variables that reside on the stack as it is to manipulate global variables using direct or extended addressing. **Figure 11(a)** illustrates a complete allocation frame as used by a subroutine.
Using the indexed addressing mode to access data contained in a stack frame places a restriction on the combined size of local variables and parameters. Since the indexed addressing mode functions by adding an unsigned 8-bit offset to the contents of the 16-bit index register, the indexed addressing mode can only access information at addresses that are between 0 and 255 bytes greater than the base address contained in one of the index registers. Consequently, the maximum size of a single stack frame is restricted to 256 bytes. If no parameters are passed to a routine on the stack, then the entire 256 bytes are available for local variables. However, when parameters are passed on the stack, not only is the space occupied by the parameters unavailable for use as local variables, but the subroutine return address and previous stack frame pointer reduce the amount of available space by an additional four bytes.

In most embedded control applications that use the M68HC11 in single-chip mode, this limit on the combined size of parameters and local variables for a single stack frame is rarely a concern since the amount of on-chip RAM is limited. Several techniques can be used to work around the limit imposed by the indexed addressing mode; however, they are extremely wasteful in terms of code space and execution speed.

NOTE: In reality, the amount of memory available for local storage in a single stack frame is 257 bytes. Because the M68HC11 is capable of loading and storing 16 bits of data with a single instruction, it is possible to access one byte beyond the contents of the index register plus the fixed offset of 255 with the 16-bit load and store instructions.

Deallocating the Stack Frame

When a subroutine has completed execution, the stack space allocated for the stack frame must be released so the memory can be reused by subsequent subroutine calls. The deallocation of the stack frame includes not only the removal of the space occupied by the local storage, but also the restoration of the previous stack frame pointer and the removal of space occupied by any parameters that were passed to the subroutine.

The process of freeing the memory occupied by the stack frame is simply a matter of adjusting the value of the SP upward in memory. The
SP must be adjusted upward by the same amount that it was adjusted downward when the space for the stack frame was allocated. Either of the following methods can be used to perform this task.

The most obvious way to perform the deallocation is to reverse the process used to allocate the storage. Removing the stack frame in this manner involves these three basic steps.

First, the storage occupied by any local variables must be removed from the stack area by using the reverse of one of the techniques described in *Allocating Local Variables*. Alternately, the technique shown in Listing 10 can be used. This technique involves adjusting the value of the SP upward in memory by the same amount it was adjusted downward when the space was allocated.

Second, the previous stack frame pointer must be restored. Because the previous stack frame pointer is now on the top of the stack, the use of a pull index register X or Y from the stack (PULX or PULY) instruction is all that is needed to perform this operation. At this point, the return address is on the top of the stack. Simply executing a return-from-subroutine (RTS) instruction returns program execution to the instruction following the subroutine call.

After returning to the calling routine, any parameters that were pushed onto the stack before the subroutine call must now be removed. This places the burden of removing subroutine parameters on the calling routine rather than on the called routine. This method of removing subroutine parameters is perfectly acceptable and is the one most often used by C language compilers.

Removing the parameters can be as simple as a 1-instruction operation. If the X or Y index register contains the address of the current stack frame pointer, simply executing a TXS or TYS instruction places the SP just below the stack frame pointer. If the X or Y index register does not contain the address of the current stack frame pointer, an alternate method must be used to remove the parameters. Figure 11 illustrates the state of the stack at each stage of the deallocation process.

Listing 10. Alternate Method for Deallocating Local Storage

```
LBAD #LOCLEN    Get size of local storage into the B register.
ABX             Add it to the current stack frame pointer.
TXS             Deallocate the local storage.
```

For More Information On This Product, Go to: www.freescale.com
An alternative method requires the called routine to remove the entire stack frame, including any parameters passed to it. This method may not be as code efficient as the first method since it requires a fixed number of instructions to release the storage space occupied by the entire stack frame. Listing 11 shows the instruction sequence necessary to deallocate the stack frame when the X index register is being used as the stack frame pointer. This 4-instruction sequence requires nine bytes of program storage space and 18 cycles to execute but removes the entire stack frame, regardless of the size. This method of stack frame deallocation has one drawback — the X or Y index register must always contain a valid stack frame pointer. Thus, all subroutines, even if they do not require parameters or local variables, must “mark” the current state of the stack upon entry by executing a PSHX; TSX or PSHY; TSY instruction sequence.

NOTE: In Listing 11, RA is the offset value to the <Return Address> and PSFP is the offset value to the <Previous Stack Frame Pointer>.

```assembly
LDY RA,X         Load the return address into the Y register.
LDX PSFP,X       Restore the previous stack frame pointer.
TXS              Remove the entire stack frame.
JMP 0,Y          Return to the calling routine.
```

Listing 11. Alternate Method for Deallocating Entire Stack Frame

In summary, choosing a method to deallocate the stack frame involves a trade-off between code size and execution speed. Using the first method results in the smallest amount of code being generated but may take longer to execute than the method shown in Listing 11.
Figure 11. Deallocation of the Stack Frame
Support Macros

The following macros may be used to help in managing stack frames in M68HC11 programs. Using these macros may not provide the smallest or fastest code in all situations but should make the program easier to write and debug. Although the macros were written for the Micro Dialects μASM-HC11™ assembler that runs on the Macintosh®, they can be used with other assemblers with some modification. The following paragraph explains the way parameters are passed and referenced in the Micro Dialects assembler and should help in the conversion process.

When a macro is defined, parameters are not declared. When a macro is invoked, the parameters appear in the operand field following the macro name. Within a macro definition, parameters are referenced by using a colon (:) followed by a single decimal digit (0–9). Therefore, within the body of the macro, the first parameter is referenced by using :0, the second parameter is referenced by using :1, and so forth. Parameter substitution is performed strictly on a textual substitution basis.

The link macro shown in Listing 12 can be used to allocate a complete stack frame after entry into a subroutine. The link macro performs the following functions:

- Saves the previous stack frame pointer
- Allocates the required number of bytes of local storage
- Initializes a new stack frame pointer

The calling convention for the link macro is:

\[
\text{link} \quad <s.f. \ reg>, <\text{storage \ bytes}>
\]

The first parameter passed to the macro is the name of the index register being used as the stack frame pointer (either X or Y). Although no check is made to ensure that a legal index register name is passed to the macro, the assembler will produce an "Unrecognized Mnemonic" error message when the macro is expanded. The second parameter is the number of bytes of local storage required by the subroutine.

μASM-HC11 is a trademark of Micro Dialects.
Macintosh is a registered trademark of Apple Computer, Inc.
The return and deallocate (rtd) macro shown in Listing 13 can be used to partially deallocate a subroutine stack frame. The rtd macro performs the following functions:

- Deallocates local storage
- Restores the previous stack frame pointer
- Returns to the calling routine

The rtd macro does not remove any parameters from the stack that may have been passed to the subroutine. Removal of any parameters must be performed by the calling routine. This macro is useful when no parameters are passed to a subroutine or when parameters are passed in registers. The calling convention for the rtd macro is:

```
rtd <s.f. reg>,<storage bytes>
```

Like the link macro, the first parameter passed to the rtd macro is the name of the index register being used as the stack frame pointer (either X or Y). Again, although no check is made to ensure that a legal index register name is passed to the macro, the assembler will produce an "Unrecognized Mnemonic" error message when the macro is expanded. The second parameter is the number of bytes of local storage allocated when the subroutine was entered.

```
link macro
psh:0
  t:0
  xgd:0
  subd #:1
  xgd:0
  t:0s
endm

Listing 12. Link Macro
```

```
rtd macro
  ldab #:1
  ab:0
  t:0s
  pul:0
  rts
endm

Listing 13. Return and Deallocate Macro
```

The only drawback in using this macro is that it uses the B accumulator when deallocating a subroutine’s local storage, preventing a subroutine from returning a 16-bit result in the D accumulator. A simple solution to
the problem is to surround the load accumulator B (LDAB) and add accumulator B to index register X or Y (ABX/ABY) instructions with the PSHB/PULB instruction pair as shown in Listing 14. This macro, renamed frtd for function return and deallocate, allows the D accumulator to be loaded with a return value immediately before the macro is called. A second solution to this problem is to place all return values on the stack as described in Function/ Subroutine Return Values, allowing the calling routine to retrieve the returned value and then remove it along with the parameters.

```
frtd    macro
pshb    ; save the lower byte of the return value.
ldab    #:1 ; number of bytes to deallocate.
ab:0    ; add it to the current stack frame pointer.
pulb    ; restore the lower byte of the return value.
t:0s    ; deallocate storage by updating the stack pointer.
pul:0   ; restore the previous stack frame pointer.
rts     ; return to the calling routine.
endm
```

Listing 14. Function Return and Deallocate Macro

The return and deallocate using x (rtdx) and return and deallocate using y (rtdy) macros shown in Listing 15 can be used to completely deallocate a subroutine stack frame, including any parameters that were passed on the stack. The rtdx and rtdy macros perform the following functions:

- Deallocates the entire stack frame, including local storage and passed parameters
- Restores the previous stack frame pointer
- Returns to the calling routine

The calling convention for the rtdx and rtdy macros is as follows:

```
rtdx    <storage bytes> or rtdy    <storage bytes>
```

The only parameter passed to the macros is the number of local storage bytes allocated upon entry to the subroutine. These macros have an advantage over the rtd macro in that the A and B accumulators are not used during deallocation, which allows a return value to be loaded into the A, B, or D registers before execution of the rtdx or rtdy macro.
The only restriction to using the rtdx and rtdy macros is that a valid stack frame pointer for the previous subroutine must be present in either the X or Y index register when the register is pushed onto the stack at the beginning of the subroutine. Even if a subroutine has no local variables in it or no parameters passed to it, a PSHX and TSX instruction must be executed immediately upon entry to a subroutine to save the previous stack frame pointer and "mark" the current state of the stack. Before returning, a PULX instruction must be executed to restore the previous stack frame pointer.

This restriction implies that, somewhere in the program, the index register to be used as the stack frame pointer must be initialized with a valid value. If either the X or Y index register is to be dedicated for use as a stack frame pointer, the index register must be initialized at the beginning of the program. The initial value loaded into the index register should be one more than the value loaded into the stack pointer, which is easily accomplished by executing the TSX instruction immediately after initializing the stack pointer.

In summary, the use of the rtdx and rtdy macros are convenient in that they remove both parameters and local variables passed to subroutines. However, their use will cost three extra instructions in subroutines that do not have local variables or parameters but call subroutines that use local variables or have parameters passed to them.

Listing 15. rtdx and rtdy Macros

```assembly
rtdx  macro
ldy  :0+2,x  ; Load the return address into the Y index register.
ldx  :0,x    ; restore the previous stack frame pointer.
txs   ; Update the stack pointer, removing the storage space.
jmp  0,y     ; Return to the calling routine.
en:dm
```

```assembly
rtdy  macro
ldx  :0+2,y  ; Load the return address into the X index register.
ldy  :0,y    ; restore the previous stack frame pointer.
tys   ; Update the stack pointer, removing the storage space.
jmp  0,x     ; Return to the calling routine.
en:dm
```

Examples

Appendix A. Example Listings contains several examples that use the techniques described to manage local storage, parameter passing, and allocation/deallocation of stack frames.
Appendix A. Example Listings

The author reserves the right to make changes to this file. Although this software has been carefully reviewed and is believed to be reliable, neither Freescale nor the author assumes any liability arising from its use. This software may be freely used and/or modified at no cost or obligation to the user.

The following macros may be used to help in managing stack frames in M68HC11 programs. The macros were written for Micro Dialects µASM-HC11 assembler that runs on the Macintosh but may be used with other assemblers with some modification. The following discussion of the way parameters are passed and referenced should help in the conversion process.

Within a macro, parameters are referenced by using a colon (:) followed by a single decimal digit (0–9). Therefore, within the body of the macro the first parameter is referenced by using ':0', the second parameter is referenced by using ':1', and so forth. Parameter substitution is performed strictly on a textual substitution basis.

The link macro may be used to allocate a complete stack frame after entry into a subroutine. The link macro performs the following functions:
1) Saves the previous stack frame pointer; 2) Allocates the requested number of bytes of local storage; 3) Initializes a new stack frame pointer.

Usage: link <s.f. reg>,<storage bytes>

The first parameter passed to link is the index register that is being used as the stack frame pointer (either x or y). Although no check is made to ensure that a legal index register name is passed to the macro, the assembler will produce an "Unrecognized Mnemonic" error message when the macro is expanded. The second parameter is the number of bytes of local storage required by the subroutine.

```
M link macro
M psh:0 ; Save the previous stack frame pointer.
M ts:0 ; Transfer the stack pointer into :0.
M xgd:0 ; Transfer :0 into D.
M subd #:1 ; subtract the required amount of local storage.
M xgd:0 ; Initialize the new stack frame pointer.
M t:0s ; Update the stack pointer with new value.
M endm
```
The rtd (Return and Deallocate) macro may be used to partially deallocate a subroutine stack frame that includes parameters passed on the stack. The rtd macro performs the following functions: 1) Deallocates local storage; 2) Restores the previous stack frame pointer; 3) Returns to the calling routine. Rtd DOES NOT remove any parameters from the stack. This function must be performed by the calling routine. This macro is useful when parameters are passed in registers rather than on the stack.

Usage: rtd <s.f. reg>,<storage bytes>

The first parameter passed to link is the index register that is being used as the stack frame pointer (either x or y). Although no check is made to ensure that a legal index register name is passed to the macro, the assembler will produce an "Unrecognized Mnemonic" error message when the macro is expanded. The second parameter is the number of bytes of local storage used by the subroutine.

rtd macro

```
ldab #:1 ; number of bytes to deallocate.
ab:0 ; add it to the current stack frame pointer.
t:0s ; deallocate storage by updating the stack pointer
pul:0 ; restore the previous stack frame pointer
rts ; return to the calling routine
```

frtd macro

```
pshb ; save the lower byte of the return value.
ldab #:1 ; number of bytes to deallocate.
ab:0 ; add it to the current stack frame pointer.
pulb ; restore the lower byte of the return value.
t:0s ; deallocate storage by updating the stack pointer
pul:0 ; restore the previous stack frame pointer.
rts ; return to the calling routine.
```
The rtdx and rtdy (Return and Deallocate using x or y) macros may be used
to completely deallocate a subroutine stack frame including parameters that
were passed on the stack. The rtdx macro performs the following functions:
1) Deallocates the entire stack frame including local storage and passed
parameters; 2) restores the previous stack frame pointer; and 3) Returns
to the calling routine.

Usage: rtdx <storage bytes>
Usage: rtdy <storage bytes>

The only parameter passed to the routines is the number of bytes of local
storage that were originally allocated upon entry to the subroutine. These
macros have the advantage that the a and b accumulators are not used during the
deallocation process. This allows a value to be loaded into a, b, or d register
before execution of the rtdx or rtdy macro and returned to calling routine.

The rtdx macro
M ldy :0+2,x ; Load return address into the y-index register.
M ldx :0,x ; restore the previous stack frame pointer
M txs ; Update stack pointer, removing storage space.
M jmp 0,y ; Return to the calling routine.
M endm

The rtdy macro
M ldx :0+2,y ; Load return address into the x-index register.
M ldy :0,y ; restore the previous stack frame pointer.
M tys ; Update stack pointer, removing storage space.
M jmp 0,x ; Return to the calling routine.
M endm

The pshd macro pushes the 16-bit d-accumulator onto the stack. The
b-accumulator is pushed first so that the least significant 8-bits of
the 16-bit number appear on the stack at the higher address. This is
consistent with the way all 16-bit numbers are stored in memory.

Usage: pshd

No parameters are required by the macro.

The pshd macro
M pshb
M psha
M endm
M endm
The puld macro pulls the top two bytes from the stack and places them in the 16-bit d-accumulator. The first byte pulled from the stack is placed in the a-accumulator; the second byte pulled from the stack is placed in the b-accumulator. The pull order is consistent with the way all 16-bit numbers are stored in memory.

Usage: puld

No parameters are required by the macro.

```asm
M puld macro
M pula
M pulb
M endm
```

The clrd macro uses the clra and clrb instructions to clear the 16-bit d-accumulator.

Usage: clrd

No parameters are required by the macro.

```asm
M clrd macro
M clra
M clrb
M endm
```

The author reserves the right to makes changes to this file. Although this software has been carefully reviewed and is believed to be reliable, neither Freescale nor the author assumes any liability arising from its use. This software may be freely used and/or modified at no cost or obligation to the user.

Written By
Gordon Doughman

This subroutine converts a 16-bit binary integer to a null terminated ASCII string. Three parameters are passed to the subroutine on the stack. The first parameter is the 16-bit binary number to be converted. The second parameter is the address of a buffer where the null terminated ASCII string will be placed. The buffer should be at least 7 bytes long. The third parameter is a boolean flag indicating whether the number passed in the first parameter is a signed or unsigned 16-bit number. If the byte
flag is zero, the number is converted as an unsigned number. If the byte
is non-zero, the number will be converted as a 16-bit signed number.
Parameters are pushed onto the stack in the following order 1) Signed Flag;
2) Pointer to ASCII buffer; 3) Number to be converted. A typical
calling sequence would be:

 clr a ; Do the conversion as an unsigned number
 psha ; put the flag on the stack.
 ldd #Buffer ; get the address of the ascii buffer.
 pshd ; put the address on the stack.
 ldd Num ; Get the number to convert.
 pshd ; Put it on the stack
 jsr Int2Asc ; Go convert the number.

This subroutine has two local variables. The first, zs, is a boolean variable
used to suppress leading zeros when doing a conversion. It is located at an
offset of 0 from the stack frame pointer. The second local, Divisor, is a 16-
bit variable. It is used to divide the number being converted by succeedingly
lower powers of 10. Divisor is located at an offset of 1 from the local stack
frame pointer.

NOTE: This routine was written assuming that the previous stack frame pointer
is the x-index register. HOWEVER, because the x-index register is required
by the integer divide instruction, the y-index register is used as the
stack frame pointer WITHIN the Int2Asc subroutine.

Declare locals

 PCSave set * ; save the current PC value
 org 0 ; set PC to 0 for offsets to locals
 zs rmb 1 ; declare zs variable.
 Divisor rmb 2 ; declare Divisor variable.
 LocSize set * ; number of bytes of local storage.
 org PCSave
 Num equ LocSize+4 ; offset to Num parameter.
 BuffP equ LocSize+6 ; offset to BuffP parameter.
 Signed equ LocSize+8 ; offset to Signed parameter.
 Int2Asc equ * ; save the previous stack frame pointer.
 ldd #10000 ; initialize the divisor to 10000.
 pshd
 pshb
 psha
 clr a ; initialize zs to 0.
 psha
 ldd num,y ; get the number to convert. Is it zero?
 bne Int2Asc1 ; no go do the conversion.
 ldd #3000 ; yes.
 ldx BuffP,y ; point to the buffer.
 std 0,y ; just put an ASCII 0 in the buffer.
 bra Int2Asc5 ; then return.
 tst Signed,y ; do the conversion as a signed number?
This subroutine performs a 16 x 16 bit unsigned multiply and produces a 32-bit result. Two 16-bit numbers are passed to the subroutine on the stack. The 32-bit result is returned on the stack in place of the two 16-bit parameters. This allows the calling routine to easily pull the product from the stack and store the result. Because multiplication is a commutative operation, the order in which the parameters are pushed onto the stack is unimportant. A typical calling sequence would be:

```
ldd Num1
pshd
ldd Num2
pshd
jsr Mul16x16
puld
```
This subroutine has four local variables. Each variable occupies 1 byte on the stack. These four bytes are used to hold the partial product as the final answer is being computed. These four byte variables are treated as 16-bit variables during the calculation.

NOTE: This routine was written assuming that the stack frame pointer is the x-index register.

Declare locals

Declare parameters

cycles clear

allocate & initialize the locals prd0 – prd3

initialize the new stack frame pointer.

get the ls byte of factor 1.

get the ms byte of factor 1.

get the ms byte of factor 2.

multiply them.

get the ms byte of factor 1.

get the ms byte of factor 2.

multiply them.

add the result into the partial product.

save the result.

get the ls byte of factor 1.

get the ls byte of factor 2.

multiply them.

add the result into the partial product.

add the result into the partial product.
This subroutine performs a 32 by 16 bit unsigned divide and produces a 32-bit quotient and a 16-bit remainder. Both the divisor and dividend are passed to the subroutine on the stack. The 32-bit quotient and 16-bit remainder are returned on the stack in place of the divisor and dividend. This allows the calling routine to easily pull the answer from the stack and store the result.

The divisor is pushed onto the stack first, followed by the lower 16-bits of the dividend and finally the upper 16-bits of the dividend. A typical calling sequence would be:

```
ldd Divisor
pshd
ldd Dividend+2
pshd
ldd Dividend
pshd
jsr Div32x16
puld
std Quotient
puld
std Quotient+2
puld
std Remainder
.
.
.
.
```

This subroutine has two local variables. A 32-bit variable for partial quotient results that is treated as two 16-bit variables and a 16-bit variable for intermediate remainder results.

NOTE: This routine was written assuming that the previous stack frame pointer is the x-index register. HOWEVER, because the x-index register is required by the integer and fractional divide instructions, the y-index register is used as the stack frame pointer WITHIN the Div32x16 subroutine.

```
00AC PCSave set * ; save the current PC value.
0000 org 0 ; set PC to 0 for offsets to locals.
0002 Quo0 rmb 2 ; declare upper 16-bits of quotient.
0004 Quo2 rmb 2 ; declare lower 16-bits of quotient.
0006 Rem rmb 2 ; declare remainder.
```
Application Note
Appendix A. Example Listings

477 0006 LocSize set * ; number of bytes of local storage.
478 00AB org PCSave
479 *
480 * Offsets to parameters
481 *
482 000A Num0 equ LocSize+4 ; upper 16-bits of Dividend.
483 000C Num2 equ LocSize+6 ; lower 16-bits of Dividend.
484 000E Denm equ LocSize+8 ; 16-bit divisor.
485 *
486 cycles clear
487 *
488 00AB Div32x16 equ * ; save the previous stack frame pointer.
489 00AB 3C [4] pshx ; clear the d-accumulator
490 00AC clrd ; allocate & initialize the locals.
491 00AC 4F [2] clra
492 00AD 5F [2] clrb
493 00AE pshd
494 00AE 37 [3] pshb
495 00AF 36 [3] psha
496 00B0 pshd
497 00B0 37 [3] pshb
498 00B1 36 [3] psha
499 00B2 pshd
500 00B2 37 [3] pshb
501 00B3 36 [3] psha
502 00B4 1830 [4] tsy ; initialize y as the new stack frame pointer.
503 00B6 18EC0A [6] ldd Num0,y ; load the upper 16-bits of the dividend.
504 00B9 CDA30E [7] cpd Denn,y ; is the divisor>the upper 16-bits of dividend?
505 00BC 2507 [3] blo Div32x16a ; yes. use a fractional divide on initial value.
506 00BE CDEE0E [6] ldx Denn,y ; load the divisor into x. ; divide the upper 16 bits by the divisor.
507 00C1 02 [41] idiv
508 00C2 CDF00 [6] stx Quo0,y ; save the partial quotient.
509 00C5 CDEE0E [6]Div32x16a ldx Denn,y ; load the divisor into x.
510 00C8 03 [41] fdiv ; resolve remainder into a 16-bit fractional part.
511 00CC 03 [41] std Quo2,y ; save the partial result.
512 00CC 18ED04 [6] std Rem,y ; save the remainder of the fractional divide (partial remainder).
513 00CF 18EC0C [6] ldd Num2,y ; get the lower 16-bits of the dividend.
514 00D2 CDEE0E [6] ldx Denn,y ; get the denominator again.
515 00D5 02 [41] idiv ; resolve the remaining quotient.
516 00D6 18E304 [7] addd Rem,y ; add the previous remainder to this remainder.
517 00D9 18ED04 [6] std Rem,y ; save the total remainder.
518 00DC 8F [3] xgdx ; put last partial quotient into d-accumulator...
519 ...
520 00DD 18E302 [7] addd Quo2,y ; & save the total remainder in x.
521 00EE 18ED0C [6] std Rem,y ; add partial quotient to the lower 16-bits of the quotient.
522 00E3 18ECC0 [6] ldd Quo0,y ; save the result.
523 00E6 C900 [2] adcb #0 ; get the upper 16-bits of the quotient.
524 00EB 8900 [2] adca #0 ; add the possible carry to the lower 8-bits.
525 00EA 18ED0A [6] std Num2,y ; add the possible carry to the upper 8-bits.
526 00ED 8F [3] xgdx ; save the result.
527 00EE CDA30E [7] cmqd Denn,y ; get the total fractional remainder > the divisor?
528 00F1 2519 [3] blo Div32x16b ; no. we’re finished.
529 00F3 18A30E [7] subd Denn,y ; yes. It will be < than 2 * Divisor.
530 00F6 18ED04 [6] std Rem,y ; save the final remainder.
531 00F9 18EC0C [6] ldd Num2,y ; now we must add 1 to the 32-bit quotient.
532 00FC C30001 [4] addd #1 ; add 1 to the lower 16-bits.
533 00FF 18ED0C [6] std Num2,y ; save the result.
534 0102 18EC0A [6] ldd Num0,y ; get the upper 16-bits.
535 0105 C900 [2] adcb #0 ; get the upper 16-bits.

For More Information On This Product, Go to: www.freescale.com
Application Note

536 0107 8900 [2] adca #0 ; add the possible carry to the upper 8-bits.
537 0109 18ED0A [6] std Num0,y ; save the result.
538 010C 18EDC4 [6] ldd Rem,y ; get the final remainder.
539 010E 18ED68 [6] std Denm,y ; overwrite the divisor.
540 0111 30 [3] tsx ; need to do this for rtd to work correctly. See NOTE.

541 0111 0113 rtd x,LocSize ; deallocate locals & return.
542 0113 0113 C606 [2] ldab #LocSize ; number of bytes to deallocate.
545 0117 0117 38 [5] pulx ; restore the previous stack frame pointer.
546 0118 0118 39 [5] rts ; return to the calling routine.
547 *
548 cycles total=347
549 *
Errors: None
Labels: 30
Last Program Address: $0118
Last Storage Address: $FFFF
Program Bytes: $0119 281
Storage Bytes: $000D 13

How to Reach Us:

Home Page:
www.freescale.com

E-mail:
support@freescale.com

USA/Europe or Locations Not Listed:
Freescale Semiconductor
Technical Information Center, CH370
1300 N. Alma School Road
Chandler, Arizona 85224
+1-800-521-6274 or +1-480-768-2130
support@freescale.com

Europe, Middle East, and Africa:
Freescale Hallbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 5220080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
support@freescale.com

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064
Japan
0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor Hong Kong Ltd.
Technical Information Center
2 Dai King Street
Tai Po Industrial Estate
Tai Po, N.T., Hong Kong
+800 2666 8080
support.asia@freescale.com

For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
1-800-441-2447 or 303-675-2140
Fax: 303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com

Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document. Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters which may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.