Application Note

AN2545/D
Rev. 1, 6/2004

Using MC68HC908GR/GZ
On-Chip FLASH
Programming Routines

By Kazue Kikuchi

Freescale Semiconductor, Inc.

8/16 Bit MCU Applications Engineering

Austin, Texas

Introduction

NOTE:

FLASH Overview

This product inSRPYRRESIBEHRARSHE LMLy sbiRIESBORSST.

The MC68HC908GZ16 (GZ16), MC68HC908GR16 (GR16), and
MC68HC908GZ8 (GZ8) microcontroller units (MCUs) have FLASH memory
(16 Kbytes for GZ16 and GR16; 8 Kbytes for GZ8). To program, erase, and
verify FLASH, the MCUs have on-chip FLASH support routines residing in
ROM (read-only memory). These routines may be accessed in either user
mode or monitor mode and eliminate the need to develop separate FLASH
routines for applications.

This application note describes how to call each of the routines in the user
software and what is performed and returned as confirmation of routine
execution.

With the exception of mask set errata documents, if any other Motorola
document contains information that conflicts with the information in the device
data sheet, the data sheet should be considered to have the most current and
correct data.

The FLASH cell used on the GZ8/16 and GR16 is an industry-proven split-gate
cell available from Silicon Storage Technology® (SST) in 0.5-micron geometry.
The cell uses channel hot electron injection for programming and Fowler-
Nordheim tunnelling for erasing. All programming voltages are generated
internally by a charge pump from a single connection to Vpp. More information
on the FLASH cell is available at the SST website: http://www.ssti.com.

With the quick byte programming time and the organization of the FLASH array
into 32-byte rows, the entire 16-Kbyte memory can be programmed in less than
one second. This type of FLASH is specified to withstand at least 10,000

program/erase cycles and has enhanced reliability over previous technology.

.

Z “freescale”

For More Information On This semiconductor
Go to: www.freescale

Freescale Semiconductor, Inc.

page basis. Also, an entire specified array can be mass erased. For the GZ8/16
and GR16, rows are 32 bytes and pages are 64 bytes (two rows of 32 bytes
each).

Routines Supported in ROM

GetByte

RDVRRNG

PRGRNGE

ERARNGE

DELNUS

NOTE:

In the GZ8/16 and GR16 ROM, five routines are supported. This section
introduces each routine briefly. Details are discussed in later sections.

This routine is used to receive a byte serially on the general-purpose I/O port A,
bit 0 (PTAOQ). The receiving baud rate is the same as the baud rate used in
monitor mode.

This routine is used to read FLASH locations and to verify the FLASH data
against data in specific RAM locations, which are referred to as DATA arrays.

This routine is used to program a contiguous range of FLASH locations.
Programming data is first loaded into the DATA array. PRGRNGE can be used
when the internal operating frequency (f,p) is between 2.0 MHz and 8.4 MHz.

This routine is used to erase either a page (64 bytes) or the whole array of
FLASH. It can be used when the internal operating frequency (fo) is between
2.0 MHz and 8.4 MHz.

This routine can generate a specified delay based on the values of register X
and accumulator (A) as parameters. DELNUS is used in PRGRNGE and
ERARNGE routines.

Because the ROM has a jump table, the user does not call the routines with
direct addresses. Therefore, the calling addresses will not change even when
the ROM code is updated in the future.

2 Using MC68HC908GR/GZ On-Chip FLASH Programming Routines

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

AN2545/D
Variables Used in the Routines

Variables Used in the Routines

The RDVRRNG, PRGRNGE, and ERARNGE routines require certain registers
and/or RAM locations to be initialized before calling the routines in user
software. Table 1 shows variables used in the routines and their locations.

Table 1. Variables and Their Locations

CTRLBYT

CPUSPD

LADDR

; ; Size -
Location Variable Name (Bytes) Description
$40 — $47 Reserved 8 Reserved for future use
$48 CTRLBYT 1 Control byte including MASS erase bit (bit 6)
CPU speed — fq, (in MHz) x 2 then rounded
CPUSPD 1 up to the next integer; for example,
if fop = 2.4576 MHz, CPUSPD =5
$4A, $4B LADDR 2 Last address of a 16-bit range
First location of DATA array;
DATA Varies DATA array size must match a programming
or verifying range
RegistersH:X — 2 Beginning address of a 16-bit range

The control byte (CTRLBYT) is located at RAM address $48 and is used for the
ERARNGE routine. Bit 6 in this location is used to specify either MASS (1) or
PAGE (0) erase.

To set up proper delays used in the PRGRNGE and ERARNGE routines, a
value indicating the internal operating frequency (f,,) must be stored at
CPUSPD, which is located at RAM address $49. The value is fop (in MHz) times
2 then rounded up to the next integer. For example, if fo is 4.2 MHz, the
CPUSPD value is 9. If fy is 2.5 MHz, the CPUSPD value is 5. Setting a correct
CPUSPD value is very important to program or erase the FLASH successfully.

A range specifies the FLASH locations to be read, verified, or programmed.
The 16-bit value in RAM addresses $4A and $4B holds the last address of a
range. The addresses $4A and $4B are the high and low bytes of the last
address, respectively. LADDR is used for RDVRRNG and PRGRNGE routines.

Using MC68HC908GR/GZ On-Chip FLASH Programming Routines 3

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Registers H:X

$4C. The array is used for loading program or verify data. The DATA array
must be in the zero page and its size must match the size of the range to be
programmed or verified.

In the RDVRRNG and PRGRNGE routines, registers H and X are initialized
with a 16-bit value representing the first address of a range. High and low bytes
of the address are stored to registers H and X, respectively. In the ERARNGE
routine, registers H and X are initialized with an address which is within the
page or entire array to be erased.

How to Use the Routines

GetByte

This section describes the details of each routine. Table 5 summarizes the five
routines.

GetByte is a routine that receives a byte on the general-purpose 1/0 PTAO, and
the received value is passed back to the calling routine in the accumulator (A).
This routine expects the same non-return-to-zero (NRZ) communication
protocol and baud rate that is used in monitor mode. A similar routine that is
used by the monitor echoes each received byte before attempting to receive a
new byte. It is more efficient to use this GetByte routine when user software or
data is downloaded to RAM because it eliminates the time overhead in echoing
back every byte that is received. If user software already has a built-in error
detection scheme such as checksum, data echoing back is not necessary.

This routine detects a framing error when a STOP bit is not detected. If the
carry (C) bit of the condition control register (CCR) is cleared after returning
from this routine, a framing error occurred during the data receiving process.
Therefore, the data in A is not reliable. User software is responsible for
handling such errors.

To use this routine, some hardware setup is required. The general-purpose I/O
PTAO must be pulled up. For more information, refer to the monitor ROM
section in the device data sheet.

The GZ8/16 and GR16 support different baud rates. The GZ8/16 baud rate is
defined by f,, divided by 278; the GR16 baud rate is defined by f,, divided by
256. Table 2 and Table 3 show typical PC baud rates used for these MCUs.

Using MC68HC908GR/GZ On-Chip FLASH Programming Routines

For More Information On This Product,
Go to: www.freescale.com

NOTE:

Entry Condition

Exit Condition

Example 1:
Receiving a Byte
Serially

NOTE:

Freescale Semiconductor, Inc.

AN2545/D
How to Use the Routines

Table 2. Typical Baud Rates for GZ8 and GZ16

Operation Bus Freq. (f)) Ca"’”'g:ﬁg Baud Closest PC Baud Rate
2.0 MHz 7,194 bps 7,200 bps
4.0 MHz 14,388 bps 14,400 bps
8.0 MHz 28,777 bps 28,800 bps

Table 3. Typical Baud Rates for GR16

Operation Bus Freq. (fop) cm«:mszs Baud Closest PC Baud Rate
2.4576 MHz 9,600 bps 9,600 bps
4.9152 MHz 19,200 bps 19,200 bps

Interrupts are not masked (the | bit is not set) and the COP is not serviced in
the GetByte routine. User software should ensure that interrupts are blocked
during character reception.

In hardware, PTAO must be pulled up.

In the user software, PTAO must be configured as an input.

A — Contains data received from PTAO.

C bit — Normally the C bit is set, indicating proper reception of the STOP bit.
However, if the C bit is clear, a framing error occurred. Therefore, the received
byte in A is not reliable.

Example 1 shows how to receive a byte serially on PTAO:

GETBYTE equ $1C00

bclr 0,DDRAO ;Configure Port A bit 0 as an input

jsr GETBYTE
bcc FrameError

;Call GETBYTE routine
;If C bit is clear, framing error
; occurred. Take a proper action

As soon as GetByte is called, the program will remain in this routine until a
START bit (0) is detected and a complete character is received.

Using MC68HC908GR/GZ On-Chip FLASH Programming Routines

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Send-Out Option

Verify Option

Carry (C) Bit

Entry Condition

function options:

* Send-out option — Used to read a range of FLASH locations and send
the read data to a host through communication PTAO.

* Verify option — Used to read a range of FLASH locations and to verify
the read data against the DATA array.

If the accumulator (A) is initialized with $00 at the routine entry, the read data
will be sent out serially through communication PTAOQ (send-out option). The
communication baud rate is the same as the baud rate described in the
GetByte routine. When this option is selected, the PTAO must be pulled up and
configured as an input and the PTAO data bit must be initialized to 0.

If A is initialized with a non-zero value, the read data is verified against the
DATA array (verify option) for each byte of FLASH data that does not match the
corresponding value in the DATA array. The value in the DATA array is
replaced by the data read from FLASH. All data in the DATA array must be in
the zero page and its size must match the size of a specified verify range.

The beginning and last addresses of the range to be read and/or verified are
specified as parameters in registers H:X and LADDR, respectively. In the verify
option, the carry (C) bit of the condition code register (CCR) is set if the data in
the specified range is verified successfully against the data in the DATA array.
However when the send-out option is selected, the status of the C bit is
meaningless because this function does not include the verify operation. Both
options calculate a checksum on data read in the range. This checksum, which
is the LSB of the sum of all bytes in the entire data collection, is stored in the A
upon return from the function.

Interrupts are masked (the | bit is set) when the send-out option is selected.
The COP is serviced in RDVRRNG. However, the COP timeout might still occur
in the send-out option if the COP is configured for a short timeout period.

H:X — Contains the beginning address in a range.
LADDR — Contains the last address in a range.

A — When A contains $00, read data is sent out via PTAO (send-out option is
selected). When A contains a non-zero value, read data is verified against the
DATA array (verify option is selected).

DATA array — contains data to be verified against FLASH data. For the
send-out option, the DATA array is not used.

PTAO — When the send-out option is selected, this pin must be configured as
an input and pulled up in hardware and PTAO must be initialized to 0.

Using MC68HC908GR/GZ On-Chip FLASH Programming Routines

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

AN2545/D
How to Use the Routines

Exit Condition A — Contains a checksum value.
H:X — Contains the address of the next byte just after the range read.
C bit — Indicates the verify result (only applies to the verify option).
When the C bit is set, the verify succeeded.
When the C bit is cleared, the verify failed.
DATA array — Replaced with data read from FLASH when the verify option is
selected.
Example 2: Example 2 shows how to use the verify option:
Verify Option
RDVRRNG equ $1C03
1dhx #$0000 ;Index offset into DATA array
lda #$AA ;Initial data value to store in array
Data_load:
coma
sta DATA,x ;Fill DATA array, 32 bytes data,

; to verify against programmed FLASH
aix #s1 ; data (In this example verifying data
cphx #$20 ; 1s $55, S$SAA, $55, SAA....)
bne Data_load
1ldhx #S$SCO1F ;Load last address of range to
sthx LADDR ; LADDR
1dhx #$C000 ;Load beginning address of range

; to H:X
lda #$55 ;Write non-zero value to A to select

; the verify option
jsr RDVRRNG ;Call RDVRRNG routine
bcec Error ;If bit C is cleared, verify failed

; Take a proper action

;A contains a checksum value

Example 3: Example 3 shows how to use the send-out option:
Send-Out Option
RDVRRNG equ $1C03
bclr 0,DDRA ;Configure Port A bit 0 as an input
bclr 0,PTA ;Initialize data bit to zero PTA0=0
1dhx #$C025 ;Load last address of range to
sthx LADDR ; LADDR
1dhx #$C010 ;Load beginning address of range

; to H:X
clra ;A=0 to select send-out option
jsr RDVRRNG ;Call RDVRRNG routine

;A contains a checksum value

Using MC68HC908GR/GZ On-Chip FLASH Programming Routines 7

For More Information On This Product,

Go to: www.freescale.com

Freescale Semiconductor, Inc.

into the DATA array. All data in the DATA array must be in the zero page, but
the range size is not limited to the 32-byte row size. Programming data is
passed to PRGRNGE in the DATA array. The size of the DATA array must
match the size of a specified programming range. This routine supports an
internal operating frequency between 2.0 MHz and 8.4 MHz.

For this split-gate FLASH, the programming algorithm requires a programming
time (tprog) between 30 ps and 40 ps. (Refer to the FLASH memory section in
the device data sheet.) Table 4 shows how t,. is adjusted by a CPUSPD
value in this routine. The CPUSPD value is fo, (in MHz) multiplied by 2 then
rounded up to the next integer. For example, if f, is 2.4576 MHz, the CPUSPD
value is 5. If f,, is 8.0 MHz, the CPUSPD value is 16 ($10).

Table 4. t, g vs. Bus Frequency

Operating Bus Freq. (fop) CPUSPD torog (Cycles) torog
Case1 | 2.0 MHz < fg,q < 2.5 MHz 4,5 75 30.00 1S < tyroq < 37.50 s
Case2 | 2.5 MHz < fgye < 3.0 MHz 6 90 30.00 5 < toyoq < 36.00 s
Case3 | 3.0 MHz < fgye < 4.0 MHz 7,8 CPUSPD x 3+ 99 | 30.75 15 < toyoq < 40.00 jis
Case4 | 40MHz<fg<55MHz | 9,10,11 | CPUSPDx 6+ 104 | 30.90 is < tyroq < 39.50 pis
Case5 | 5.5 MHz < fg,q < 8.4 MHz 1125 11% 1% | CPUSPDx 9+ 101 | 30.62 s < tyroq < 38.18 s

In PRGRNGE, the high programming voltage time is enabled for less than
125 us when programming a single byte at any operation bus frequency
between 2.0 MHz and 8.4 MHz. Therefore even when a row is programmed by
32 separate single-byte programming operations, the cumulative high voltage
programming time is less than the maximum tyy (4 ms). The tyy is defined as
the cumulative high voltage programming time to the same row before next
erase. For more information, refer to memory characteristics in the electrical
specifications section of the device data sheet.

This routine does not confirm that all bytes in the specified range are erased
prior to programming. Nor does this routine do a verification after programming,
so there is no return confirmation that programming was successful. To
program data successfully, the user software is responsible for these checking
operations. The RDVRRNG routine can be used to verify a programmed
FLASH range against the DATA array.

Interrupts are masked (the | bit is set) and the COP is serviced in this routine.

Using MC68HC908GR/GZ On-Chip FLASH Programming Routines

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Entry Condition

AN2545/D
How to Use the Routines

H:X — Contains the beginning address in a range.

LADDR — Contains the last address in a range.

CPUSPD — Contains an integer value equal to f,, (in MHz) times 2 and

rounded up to the next integer.

DATA array — Contains the data values to be programmed into FLASH.

Exit Condition

Example 4:
Programming a Row

H:X — Contains the address of the next byte after the range just programmed.

Example 4 shows how to program one full 32-byte row:

PRGRNGE equ

1dhx
lda
Data_load:
coma
sta

aix
cphx
bne

mov
1dhx
sthx
1dhx

jsr

$1C09

#0000
#SAA

DATA, x

#$1
#$20
Data_load

#$5, CPUSPD
#SCO1F
LADDR
#$C000

PRGRNGE

;Index offset into DATA array
;Initial data value (inverted)

;Alternate between $55 and S$SAA
;Fill DATA array, 32 bytes data,
; values to program into FLASH

; (ie. 55, AA, 55, AA....)

;fop = 2.4576MHz in this example
;Load last address of the row

; to LADDR

;Load beginning address of the

; row to H:X

;Call PRGRNGE routine

Example 5: Example 5 shows how to program one full 64-byte page:
Programming a Page
PRGRNGE equ $1C09
1dhx #$0000 ;Index offset into DATA array
clra ;Initial data value (-1)
Data_load:
inca
sta DATA,X ;Fill DATA array, 64 bytes data,
; values to program into FLASH
aix #s1 ; (ie. 01,02,03,04,...,63,64)
cphx #$40
bne Data_load
mov #$4,CPUSPD ;fop = 2.0MHz in this example
1dhx #$CO3F ;Load last address of the page
sthx LADDR ; to LADDR
1dhx #$C000 ;Load beginning address of the
; page to H:X
jsr PRGRNGE ;Call PRGRNGE routine
Using MC68HC908GR/GZ On-Chip FLASH Programming Routines 9

For More Information On This Product,

Go to: www.freescale.com

Freescale Semiconductor, Inc.

Programming a Range
Smaller than a Row

ERARNGE

Entry Condition

Exit Condition

Example 7:
Erasing an
Entire Array

shows how to program $55 and $AA at locations $E004 and $E005,
respectively.

PRGRNGE equ $1C09

mov #$55,DATA
mov #S$AA,DATA+1

mov #S$0C,CPUSPD ;fop = 6.0MHz in this example
1dhx #SE005 ;Load last address to LADDR
sthx LADDR

1dhx #$E004 ;Load beginning address to H:X
jsr PRGRNGE ;Call PRGRNGE routine

ERARNGE can be called to erase a page (64 bytes) or a whole array of FLASH.
Registers H and X can be any address within the page or array to be erased.
To select erase size, the MASS bit (bit 6) in the CTRLBYT is used. Setting the
MASS bit selects the entire array erase. Clearing the MASS bit selects the
page erase. This routine supports an internal operating frequency between
2.0 MHz and 8.4 MHz.

In this routine, both page erase time (tg,zs¢) @nd mass erase time (tygrase) are
setbetween 4 ms and 5.5 ms. The CPUSPD value is equal to f,, (in MHz) times
2 then rounded up to the next integer. For example if f,, is 3.1 MHz, the
CPUSPD is 7. If fy is 4.9152 MHz, the CPUSPD is 10 ($A).

Interrupts are masked (the | bit is set) and the COP is serviced in ERARNGE.

CTRLBYT — For MASS erase, set bit 6. For page erase, clear bit 6.
H:X — Contains an address within a desired erase page or an array.

CPUSPD — Contains an integer value equal to f,, (in MHz) times 2 then
rounded up to the next integer.

None

Example 7 shows how to erase an entire array:

ERARNGE equ $1C06

mov #$4,CPUSPD ;fop = 2.0MHz in this example
bset 6,CTRLBYT ;Select Mass erase operation
1ldhx #SE000 ;Load any Flash address to H:X
jsr ERARNGE ;Call ERARNGE routine

10

Using MC68HC908GR/GZ On-Chip FLASH Programming Routines

For More Information On This Product,
Go to: www.freescale.com

Example 8:
Erasing a Page

NOTE:

Freescale Semiconductor, Inc.

AN2545/D
How to Use the Routines

Example 8 shows how to erase a page from $E100 through $E13F:

ERARNGE equ $1C06

mov #S$0A,CPUSPD ;fop = 4.9152MHz in this example
bclr 6,CTRLBYT ;Select Page erase operation
ldhx #SE121 ;Load any address within the

; page to H:X
jsr ERARNGE ;Call ERARNGE routine

If the FLASH locations which you want to erase are protected due to the value
in the FLASH block protect register (FLBPR), the erase operation will not be
successful. However when a high voltage (Vi) is applied to the IRQ pin, the
block protection is bypassed.

When the FLASH security check fails in the normal monitor mode, the FLASH
can be re-accessed by erasing the entire FLASH array. To override the FLASH
security mechanism and erase the FLASH array using this routine, registers H
and X must contain the address of the FLASH block protect register (FLBPR).

Using MC68HC908GR/GZ On-Chip FLASH Programming Routines 11

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Initialization

Exit Condition

Example 9:
Generating a Delay

routines. It can, however, be called independently in user software. DELNUS
uses two parameters stored in the accumulator (A) and the X register (X).
Neither of these parameters is passed as an absolute value. The total delay
(cycles) resulting from this routine is:

DELNUS = 3 x (A value) x (X value) + 8 cycles

where a value of A is 4 or greater and a value of X is 1 or greater. In the
PRGRNGE and ERARNGE routines, the CPUSPD value (which is a frequency
parameter) is loaded into A.

Because this routine is called from a jump table, three additional cycles are
included in the DELNUS equation provided above.

Interrupts are not masked (the | bit is not set) and the COP is not serviced in
DELNUS.

A — Select A value between 4 and 255

X — Select X value between 1 and 255
None

Initialized A = 8 and X = 16 to generate 100 us delay at f,, = 4 MHz

DELNUS equ $1COC

lda #s8 ; [2]1A=8
ldx #s10 ;[2]1X=16
jsr DELNUS ;[4]Call DELNUS routine

In this example, the total delay time is 8 + (3 x 8 x 16 + 8) cycles = 400 cycles
(100 ps).

12

Using MC68HC908GR/GZ On-Chip FLASH Programming Routines

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

Table 5. Summary of On-Chip Flash Support Routines

AN2545/D
How to Use the Routines

GetByte RDVRRNG PRGRNGE ERARNGE DELNUS
. Get a byte data Read and/or Generate delay
foutine, | setalyough | verly | [roeme | EmsemOE | N5
PTAO a FLASH range 9 y (cycles)
Call Address $1C00 $1C03 $1C09 $1C06 $1CoC
Internal
lgz::]aet:l% — — 2 MHz - 8.4 MHz | 2 MHz - 8.4 MHz —
(fop)
Hard For send-out
Reggir‘gfn’:m Pullup on PTAO | option, pullup on N/A N/A N/A
PTAO
H:X: First address
of range
LADDR: Last
address of
range H:X: First address | ;...
A: A = $00 for of range Hﬁih'?:irezs 6 or
send-out option |LADDR: Last Bl F:ogbe
or A = $00 for address of erasedy
verify option range CPUSPD: f A: Value between
) For send-out CPUSPD: f, . -,op 4 and 255
Entry PTAO: Input : . op (in MHz) times 2 | ,,.
Conditions (DDRAO = 0) option (in MHz) times 2 then rounded u X: Value
- PTAO: Input and | thenrounded up to the next Pl between
0 data bit to the next integer 1 and 255
(DDRAO0=0, integer .
PTA0=0) Data array: C:FiLrizzs(Zfaiz
For verify option, Load data to be 0 - 206 erase
DATA array: Load | programmed =Pag

data to be
verified against
FLASH read
data

Using MC68HC908GR/GZ On-Chip FLASH Programming Routines

For More Information On This Product,
Go to: www.freescale.com

13

Freescale Semiconductor, Inc.

GetByte

RDVRRNG

PRGRNGE

ERARNGE

DELNUS

A: Data received
through PTAO

A: Checksum

H:X: Next FLASH
address

C-bit: Verify result
indicator

Conlf:l)i(tiitons C-bit: Framing (success:c=1) Hij:d’;l;sXst FLASH H:X: No change —
error indicator DATA array: Data
(error: ¢ =0) replaced with
FLASH read
data (verify
option)
I Bit — | bitis set for | bit is set | bit is set _
send-out option
COP Not Serviced Serviced Serviced Serviced Not Serviced
Subrouti PutByte(!)
alied GetBit(") for send-out DELNUS DELNUS —
option
LADDR (2 bytes), | CPUSPD, LADDR
DATA array (no (2 bytes), DATA
. . size limitation, array (no size CTRLBYT, .
RAM Variable but all data must | limitation, but all CPUSPD
be in the zero data must be in
page) the zero page)
Stack Used 9 bytes for verify
('"g:)uu‘:mg,tshe 6 bytes] 1Og:/lfens or 11 bytes 7 bytes 3 bytes
Call) send-out option

1. This routine is located in the monitor ROM.

14

Using MC68HC908GR/GZ On-Chip FLASH Programming Routines

For More Information On This Product,

Go to: www.freescale.com

Freescale Semiconductor, Inc.

AN2545/D
On-Chip Routines Flowcharts

On-Chip Routines Flowcharts

(GetByte)

\J

o ’
PTAO=0

?
¢YES

CALL GetBit ROUTINE
TO GET START BIT
(NOTE 1)

y
VES CBIT=1

NO

Y

A=$80

Y

GBit1: CALL GetBit ROUTINE
> TO GET DATA

\

(NOTE 1)

Y
ROTATE A RIGHT THROUGH C BIT

CBIT=0

?
¢ NO
CALL GetBit ROUTINE

TO GET STOP BIT
(NOTE 1)

YES

Y

RTS

NOTES:
1. GetBit routine resides in monitor ROM

Figure 1. GetByte Routine

Using MC68HC908GR/GZ On-Chip FLASH Programming Routines 15

For More Information On This Product,

Go to: www.freescale.com

Freescale Semiconductor, Inc.

(RDVRRNG)

Y

TO BE READ

CALCULATE TOTAL BYTE NUMBER

Y

STORE TOTAL BYTE NUMBER AT
RESULT AND BYTE COUNTER (STACK)

Y

ReadData: ‘

SERVICE COP

Y

READ FLASH DATA AT H:X

\

INITIAL A = $00?

NO
\

DATA ARRAY DATA =
FLASH READ DATA?

YES
Y

YES

NO

DECREMENT RESULT

NoDataMatch:]

REPLACE DATA ARRAY
WITH FLASH READ DATA

CALL PutByte ROUTINE
(NOTE 1)

A

Checksum: Y

ACCUMULATE CHECKSUM

A

NOTES:
1. PutByte routine resides in monitor ROM

NO DECREMENT BYTE
COUNTER = 0?

YES

\

NO RESULT =0 YES
?

VERIFY) VERIFY
FAIL PASS
Y Y
CLEARC BIT SET CBIT

Ly-| A=TOTAL CHECKSUM |-

RTS

Figure 2. RDVRRNG Routine

16

Using MC68HC908GR/GZ On-Chip FLASH Programming Routines

For More Information On This Product,
Go to: www.freescale.com

PRGste@:

Freescale Semiconductor, Inc.

PRGRNGE

SETIBIT
(MASK INTERRUPTS)

PRGstep7:

Y

CALCULATE TOTAL BYTE
NUMBER TO BE PROGRAMMED
AND STORE THE VALUE AT
BYTE COUNTER (STACK)

CALCULATE BYTE NUMBER TO
BE PROGRAMMED IN THE FIRST
ROW AND STORE THE VALUE
AT ROW COUNTER (STACK)

SERVICE COP

v

SET COP COUNTER =6

!

STEP 1: SET PGM BIT

!

STEP 2: READ FLBPR

v

STEP 3: WRITE ANY DATA TO
A FLASH ADDRESS (H:X)

v

STEP 4: DELAY TVNS
(NOTE 1)

v

STEP 5: SET HVEN BIT

!

STEP 6: DELAY TPGS
(NOTE 1)

READ DATA FROM DATA ARRAY

AN2545/D
On-Chip Routines Flowcharts

ClrPgmHven:

v

STEP 7: WRITE ANY DATA TO
A FLASH ADDRESS (H:X)

v

STEP 8: DELAY Tprog [CYCLES]
FOR CPUSPD =4, 5
torog = 75
FOR CPUSPD =6
torog = 90
FORCPUSPD=7,8
torog = CPUSPD X 3 + 99
FOR CPUSPD = 9 TO 11
torog = CPUSPD X 6 + 104
FOR CPUSPD = 1270 17
torog = CPUSPD x 9 + 101
(NOTE 1)

Y

HX=HX+1

NO

Y

DECREMENT BYTE YES

COUNTER =0?

TNO

DECREMENT ROW YES

COUNTER = 0?

TNO

DECREMENT COP YES

COUNTER =0?

\

\

NO
ROW COUNTER = 0?

Y

STEP 10: CLEAR PGM BIT

v

STEP 11: DELAY Tyyy
(NOTE 1)

v

STEP 12: CLEAR HVEN BIT

'

¢ YES

SET ROW COUNTER = 32 FOR
PROGRAMMING NEXT ROW

Y

BYTE COUNTER = 0?

TYES

RTS

NOTES:
1. DELNUS routine is used

Figure 3. PRGRNGE Routine

Using MC68HC908GR/GZ On-Chip FLASH Programming Routines

For More Information On This Product,
Go to: www.freescale.com

17

Freescale Semiconductor, Inc.

ERARNGE

SETIBIT
(MASK INTERRUPTS)

Y

YES MASS BIT SETS IN NO
CTRLBYT?
STEP 1: SET ERASE AND ,
VASS BITS STEP 1: SET ERASE BIT
MASS ERASE
> STEP 2: READ FLBPR -
STEP 3: WRITE ANY DATA TO
FLASH ADDRESS (H:X)
STEP 4: DELAY tyng
(NOTE 1)
STEP 5: SET HVEN BIT
Y
¢ STEP 7: CLEAR ERASE BIT
STEP 6: SET LOOP COUNTER = 40 *
ServiceCOP: ¢ STEP 8: DELAY tyyn,
(NOTE 1)
> SERVICE COP *
* STEP 9: CLEAR ALL BITS IN FLCR
CALL DELNUS ROUTINE ¢
* VES STEP 10: DELAY trey
NO DECREMENTED LOOP
COUNTER IS ZERO? ¢
RTS
NOTES:
1. DELNUS routine is used
Figure 4. ERARNGE Routine
18 Using MC68HC908GR/GZ On-Chip FLASH Programming Routines

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

AN2545/D
On-Chip Routines Flowcharts

DELNUS

DECREMENT A
(1 CYCLE)

v

LOOP: | PUSHAVALUE TO STACK
(2 CYCLES)

v

DECREMENT A
(1 CYCLE)

v

DECREMENT A
(1 CYCLE)

—
’

Y
NO DECREMENTED A >
VALUE IS $00?
(3 CYCLES)
¢ YES

PULL A VALUE FROM STACK
(2 CYCLES)

NO DECREMENTED
X VALUE IS ZERO?
(3 CYCLES)

Figure 5. Flowchart of DELNUS Routine

Using MC68HC908GR/GZ On-Chip FLASH Programming Routines 19

For More Information On This Product,
Go to: www.freescale.com

4\ Freescale Semiconductor, Inc.

On-Chip Routines Source Code

.pagewidth 98t
’.***
;* PURPOSE: These routines are embedded into ROM to support FLASH

;¥ erase, program and verify.

*

;* TARGET DEVICE: HC908GZ8/16 and HC908GR16

*

*

;* ASSEMBLER: CASM08Z

;* VERSION: 3.16

;*

;* GENERAL CODING NOTES:

;* A standard equate file "908GZ1l6vlr0.inc" is used to define all MCU
;* register and bit names. Bit names use all uppercase characters.

;* BCLR, BSET, BRCLR, and BRSET use the bit name alone while logical
*

;* instructions such as ORA use the bit name with a prefix of

;* lowercase "m" which is a bit position mask.
R R R R I R S R I S R R S I I R I I R R I R I I R I R I 2 S b I R R R I I S I e I I I R I b b S I 2 b I I b b b 2 b

*

EE R R I R R R I I S R S I I S I R I I S S I I S I S I I S SR I R R I I S I

;* ASSEMBLER DIRECTIVES
;* (BASE, MACROS, SETS, CONDITIONS, ETC.)

PR kR R R I R Sk e b e R R R R Ik kb I kR R R R I ek b Ik S b R R R I b kR I
7

base 10t ;Change default to decimal

PR R R I I I I R R R R I I R R I R IR R I R S
7

;* INCLUDED FILES

PR R R I I S R I S S I R R R I I S R S I I S S R I I S S R I I S S R I S S S
7

SNOLIST

include "908GZ16vl1r0O.inc"
$LIST
I.***
;* EQUATES

PR I b Rk Ik S R I S I R I R I Sk R S I S R I S kR R Sk R R I S
7

MASSBIT equ 6 ;MASS bit of CTRLBYT located in bit 6
ROWSIZE equ 32 ; Programming ROW Size (number of bytes)
org RamStart+8 ;Leave 8-byte offset from start of RAM

; for future use
*FOLLOWING VARIABLES SET/ACCESSED BY USER

CTRLBYT rmb 1 ;Control byte - bit 6 used for MASSBIT
CPUSPD rmb 1 ;Used to indicate CPU bus speed

; bus freqg (in MHz) * 2 then round up
LADDR rmb 2 ;Last address
DATA rmb ROWSIZE ;Allocation/Use of this space depends

; on the application
* TOTAL DATA STRUCTURE BYTES: 4+ROWSIZE

PR Rk I S S R I I S I R R R S I S I I S S R R I I I R S S S I I S S S
7

20 Using MC68HC908GR/GZ On-Chip FLASH Programming Routines

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

AN2545/D
On-Chip Routines Source Code

;* EQUATES
’.***
;* The below parameters represent values that are passed to the delay
;* routine to generate delays required for the FLASH algorithm.

;* DELNUS generates a delay of (3*A*X)+5 cycles where A normally

;* holds CPUSPD and X is loaded with Txxxx from below

ELOOPS equ 40 ;total TERASE for MASS and PAGE erase
TERASE equ 17 ; uses DELNUS w/ TERASE, ELOOPS times
; to allow COP service ~ every 100uS
TNVS equ 2 ;FLASH PGM/ERASE to HVEN Setup Time
TPGS equ 1 ;FLASH Program Hold Time
TNVH equ 1 ;FLASH High-Voltage Hold Time
TNVHL equ 17 ;FLASH High-Voltage Hold Time (MASS)
LoopCOP equ 6 ;Service COP after every 6th byte prog'ed

ekhkk Ak hkhkhkhkhkhhkdhhkdhkdkhhkdhhkdhhdkhhkdhhdkhhdhdhhkdhkrdkhdhhkdhkhkdrdhkhkdrkhdrxdrkrdrdhxkxx*x
7

; * ROUTINES

PR Rk I I I S R I I S I S R R I I R S I I S S R R I I I S I S I S I S S S S
i

org FlashROM

ekhkhk Ak hhkhkhhkhhkdh bk dhdk bk d bk dhhdkhhkhhdhhkdhdhhkdhkhrdhkdhhkdhhkdrkdhkhkdhkhdrxdkrkrhrdhxk,x%x
7

;* NAME: GetByte

;* PURPOSE:

;x Get one byte data through PTAO serially. This routine supports
P a baud rate 14,400bps @ bus frequency 4.0MHz for Gzl6 and

;* a baud rate 9,600bps @ bus frequency 2.4576MHz for GR16

;* ENTRY CONDITIONS:

; * PTAQ configured as an input

* EXIT CONDITIONS:

;* A contains a byte received when START bit is detected

:* C-bit in CCR indicates a framing error

s * If C-bit is cleared, a framing error is indicated because
:* the STOP bit was detected as a 0 instead of a one
P PTAQ configured as an input
;* SUBROUTINES CALLED: GetBit
*

; VARIABLES READ:

;* VARIABLES MODIFIED:

;* STACK USED: 6 (including the call to this routine)
;* SIZE: 20 bytes

;* DESCRIPTION: EXECUTED OUT OF ROM

i * Once called, program will remain in GetByte until a byte is
;x received. Signal to start receiving a byte is a valid

R (low) START bit.

s * This routine does not service COP.

;* NOTE: Cycle path for each bit reception must be kept the same to
;* maintain a steady baud rate.

;* bit timing for GZ16

P x 9 + (GZ GetBit) = 9 + 269 cycles = 278 cycles @ 4.0 MHZ=69.5 us
;* =14,388 bps (closest PC baud rate 14,400 bps)
:* bit timing for GR16

;¥ 9 + (GR GetBit) = 9 + 247 cycles = 256 cycles @ 2.4576 MHZ

A = 104 us = 9,600 bps

PR R R I I R I I S I S R R S I S S I I S S R I I S S R I I S I I S S S
7

Using MC68HC908GR/GZ On-Chip FLASH Programming Routines 21

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

jsr GetBit ; [5+SUB] Check sense of START bit
bcs GetByte ;[3] C-bit should be 0, else noise
lda #$80 ;[2] Rx byte done when 1 RORs into
GBitl: ; C top of loop to get 8 bits
jsr GetBit ; [5+SUB] Sense level of next bit
rora ;[1] Rotate into A from left
bcc GBitl ;[3] Continue 'till 1 RORs into C
jsr GetBit ; [5+SUB] Sense level of STOP bit
rts

PR Rk I I I R I I S I S R R I I S R S I I S S S R R I I S S I S I S S I O
7

sk kk ok k k ok ok ok ok k k ok ok k k ok ok ok ok ok k ok k ok ok k k ok ok k k ok k ok k ok k ok k
7
;* NAME: RDVRRNG

;* PURPOSE: Read and/or verify a range of FLASH memory
;* ENTRY CONDITIONS:

.k

7
.k
i

*

7

.k
7

H:X contains a start address of the FLASH address range
LADDR:LADDR+1 contains a last address of the FLASH address range
The contents of A decides if read data is transferred serially
via PTAO0 (When A=0, PTAO is used for serial transfer) or
the data is verified against the DATA array in RAM
DATA array must be in the zero page and its size must match the
size of the range to be verified.
If A=0, PTAO is configured as an input
data bit = 0 (PTA0=0)

(DDRAO=0) and

;* EXIT CONDITIONS:

*
.k
7
.k

7
*
.k
7

.k
7

A contains checksum

C-bit in CCR indicates verify result when entry A is NOT zero
If C-bit is set, the verify is successful

DATA array contains read FLASH data when entry A is NOT zero

H:X contains a next FLASH read address

I bit for data send out operation

;* SUBROUTINES CALLED: PutByte
;* VARIABLES READ: LADDR:LADDR+1,DATA array

. %
7

.k
7

.k
7

;% SIZE:

VARIABLES MODIFIED: DATA array
;* STACK USED:

(include the call to this routine)

9 bytes for Verify operation (entry A is NOT zero)

11 bytes for data send out operation (entry A is zero)
67 bytes

;* DESCRIPTION: Executed out of ROM

.k
7

.k
7
.k
7
.k
7

This routine services the COP, but there could still be a

COP timeout under the following conditions:

1) COP is not serviced within a proper period in user software
2) COP set for short timeout and Read data is sent through PTAO

;* STACK FRAME:

;x SP+1 [G] SADDR(hi) temp storage
i SP+2 [F] SADDR(lo) temp storage
;* SP+3 SP+1 [E] ByteCount - decrements to zero
P x SP+4 SP+2 [D] # of bad bytes - 0 on return means all were good
;* SP+5 SP+3 [C] Checksum - sum of all data values read
:* SP+6 SP+4 [B] Offset pointer into DATA array in RAM
;* SP+7 SP+5 [A] Verify/Read flag - l=verify/O=read
P* | |
;* | | +--reference label in square brackets
22 Using MC68HC908GR/GZ On-Chip FLASH Programming Routines

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

AN2545/D
On-Chip Routines Source Code

P | +---SP offset when SADDR not on stack
SP offset when SADDR on stack for temp storage

PRk b Rk I R I Ik kR I R Rk Sk I I kR R bk R A R R ek R R Sk
7

.k e

7

RDVRRNG : psha ;Verify (1) /Read(0) flag to Stack [A]
clra
psha ;O0ffset pointer into DATA array in
; RAM [B] (initially O0)
; increments from $00 to ByteCount
psha ;Initial Checksum to Stack [C]
;Calculate total # of bytes
txa ;SADDR(1lo) -> A
sub LADDR+1 ;SADDR (lo) - LADDR(lo) -> A
nega ;LADDR(lo) - SADDR(lo) -> A
inca ;change to l-oriented vs O-oriented
psha ;# of bytes to Stack [D] (# of bad)
; decrements to zero if all good
psha ;ByteCount to Stack [E]
; counter - decrements to zero
ReadData:
sta COPCTL ;Service COP
1lda , X ;Data from a FLASH location @ 0,X
tst 5, sp ;Check Read/Verify flag [A]
beqg Serial ;0 - send data through PTAO
;1 - verify against DATA in RAM
pshx ;Push SADDR (lo) to Stack [F]
pshh ;Push SADDR (hi) to Stack [G]
1dx 6,sp ;DATA array Pointer(lo) -> X
clrh ;H:X = 0:Pointer(lo)
cmp DATA, X ;Compare FLASH data with DATA array
bne NoDataMatch ;If not equal, skip decrement of [D]
dec 4,sp ;Data matched so decrement # of bad
NoDataMatch: sta DATA, X ;Replace DATA array value with
; value read from FLASH
pulh ;Restore SADDR (hi) pointer from [G]
pulx ;Now H:X = SADDR, A is FLASH data
bra Checksum ;Skip serial send if in Verify mode
Serial: jsr PutByte ;Read mode so send data to host
Checksum: add 3,sp ;FLASH data + checksum [C] -> A
sta 3,sp ;Update checksum [C] on stack
inc 4,sp ;Update offset into DATA array [B]
aix #1 ;Update pointer into FLASH (H:X)
dec 1,sp ;Decrement ByteCount [E]
bne ReadData ;Loop until ByteCount=0
pula ;Deallocate [E]
pula ;# of bad [D] -> A, and deallocate
;If Verify OK, A = $00
coma ;$00 -> SFF if verify OK
add #1 ;SFF -> $00; C=1 if verify was OK
pula ;Checksum [C] -> A, and deallocate
ais #2 ;Deallocate [A] and [B]
rts
Using MC68HC908GR/GZ On-Chip FLASH Programming Routines 23

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

*

*

NAME: PRGRNGE

PURPOSE :
Program a FLASH address range. Bus frequency must be
between 2.0MHz and 8.4MHz.

ENTRY CONDITIONS:
H:X contains a start address of the FLASH address range
LADDR:LADDR+1 contains a last address of the FLASH address range
DATA array must be in the zero page and its size must match the

size of the range to be programmed.

CPUSPD equals bus frequency x 2 then rounded up

EXIT CONDITIONS:
H:X contains the next address past LADDR; I-bit set

SUBROUTINES CALLED: DELNUS, ClrPgmHven

VARIABLES READ: CPUSPD, LADDR:LADDR+1, DATA array

STACK SIZE: 11 bytes (including this routine's call)

SIZE: 198 bytes (including ClrPgmHven routine)

DESCRIPTION: Executed out of ROM
This routine allows passing of a range of addresses to PRGRNGE,
which does not have to be on page boundaries, either beginning or
end. i.e., passing $8010 to $8025 is wvalid. This is to prevent
program a non-FLASH address. However, the total number of bytes
to be programmed must be less or equal to the DATA array size.
This routine services the COP, but there could still be a
COP time out if the COP is not serviced within the proper period
in user software.

PRk kR I R Ik e i b e R R Rk ek b i I kR S I Rk R Ik I Rk kI S Rk R I
7

PRGRNGE : sel ;set I bit to mask interrupts

;Calculate total # of bytes

txa ;SADDR(lo) -> A

sub LADDR+1 ;SADDR(1lo) - LADDR(lo) -> A

nega ;LADDR(1lo) - SADDR(lo) -> A

inca ;change to l-oriented vs O-oriented

psha ;Byte Counter [A] (total bytes)

clra H

psha ;DATA array index [B]

pshx ;temp save addr(lo)

pshh ;temp save addr (hi)
;Calculate total # of bytes in ROW

txa ;SADDR (lo) -> A

1dx #ROWSIZE ;ROWSIZE -> X

clrh ;H:A = 0:SADDR(1l0o)

div ;A=H:A/X;r->H SADDR(lo) /#ROWSIZE
;remainder = # of bytes left in ROW

pshh ;remainder to stack for calculation

txa ;ROWSIZE -> A

sub 1,sp ;ROWSIZE - Remainder -> A

pulh ;remainder not used, just deallocate

pulh ;recover temp addr (hi)

pulx ;recover temp addr(lo)

psha ;ROW Counter [C] bytes left in ROW

psha ;reserve space for COP Counter [D]

.k
7

.k
7

Current stack frame
SP+1 [D] COP Counter - when 0, service COP

24 Using MC68HC908GR/GZ On-Chip FLASH Programming Routines

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

SP+2
SP+3
SP+4

[C]
[B]
[A]

AN2545/D
On-Chip Routines Source Code

ROW Counter - # bytes left in current row
DATA array index - offset into RAM DATA array
Byte Counter - # bytes left in program operation

IRk I R O I S O I O
7

;* Loop top if 1lst byte,

time to service COP,

or start of a new row

;* otherwise the loop top is at PRGstep?

7

PRGstepl:

PRGstep2:

PRGstep3:

PRGstep4:

PRGstep5:

PRGstepb:

sta
1lda
sta
1lda
sta
1lda

sta

pshx
1dx
1lda
bsr

1lda
sta

1dx
1lda
bsr
pulx

COPCTL
#LoopCOP
1l,sp
#mPGM
FLCR
FLBPR

, X

#TNVS
CPUSPD
DELNUS

(mPGM+mHVEN)
FLCR

#TPGS
CPUSPD
DELNUS

;service COP
;initialize COP Counter [D]
; counts down to 0

P
i [4]

i [2]
i [31]
il

[

7

2]

w.] set PGM

w.]

4+ (3*A*X)+5]

(Prog Algo Step 1)

read FLBPR (Prog Algo Step 2)

Write to a Flash address [H:X]
w/ any data (Prog Algo Step 3)
temp save addr(lo) to free up X

Delay for time Tnvs

(Prog Algo Step 4)

set HVEN (Prog Algo Step 5)
Delay for time Tpgs

(Prog Algo Step 6)
restore addr(lo)

PR Rk I I I R I I S S S R R S I R S I I S S R I I I S I S S S I I S S
7

;* Loop top if this is not a new row and it is not time to service COP
;* PGM is already set and HVEN is already turned on

PRGstep7:

;* Current stack frame

ekhkhk Kk hkhkhkhkhkhkhkdhkhkdrkdkhkhkdhkdhkrxhkhkkhhkhkx*k
7

pshh i [2]
pshx ;2]
SP+1 [F] Current addr (lo)
SP+2 [E] Current addr (hi)
SP+3 [D] COP Counter - when O,
SP+4 [C]

SP+5 [B]

SP+6 [A] Byte Counter - #
clrh ;[1]
1dx 5,sp ;[4]
lda DATA, X ;[31]
pulx ;2]
pulh ;2]
sta ;X P l.wl
pshh ;2]
pshx i [2]

;* Compute Tprog based on bus speed

;* for slowest bus speeds

(5 or 6),

[E]
[F]

temp save addr (hi)
temp save addr (lo)

temp store so H:X available
temp store so H:X available
service COP

ROW Counter - # bytes left in current row
DATA array index - offset into RAM DATA array

bytes left in program operation

clear upper half of H:X
H:X = offset into DATA array
Read data from a DATA array
restore addr(lo) [F]
restore addr (hi) [E]
write data to Flash addr

(Prog Algo Step 7)
[E]
[F]

temp save addr (hi)
temp save addr (lo)

use in-line delays rather than

Using MC68HC908GR/GZ On-Chip FLASH Programming Routines 25

For More Information On This Product,
Go to: www.freescale.com

4\ Freescale Semiconductor, Inc.

PRGstep8: 1ldx #2 ;[2] initial default X value
lda CPUSPD ; [3] bus speed const for comparisons
Casel:
cmp #5 ;[2] If CPUSPD=5, Tprog=75 cycles
bls SkipDELNUS ;[3] skip to end of case
Case2:
cmp #6 ;[2] If CPUSPD=6, Tprog=90 cycles

[
bhi Case3 ;[3] if not, skip to Case3
dbnzx * ;[6] X*3~ or 2*3~ = 6~
[
[

nop ;[1] 1l-cycle delay
bra SkipDELNUS ;[3] skip to end of case
Case3:
cmp #8 ;[2] check for CPUSPD=7 or 8
bhi Cased ;[3] if not, skip to Cased
ldx #1 i [2]
bra DelayTprog ; [3]1 Tprog=99+3*CPUSPD cycles
Cased:
cmp #11 ;[2] check for CPUSPD=9,10, or 11
bhi Caseb ;[3] if not, skip to Caseb
ldx #2 i [2]
bra DelayTprog ;[3] Tprog=104+6*CPUSPD cycles
Case5:
ldx #$03 ;[2] If CPUSPD=12,13,14,15 or 16
; Tprog=101+9*CPUSPD cycles
DelayTprog: bsr DELNUS ; [4+ (3*A*X) +5]
.k
:.*********************************
SkipDELNUS: pulx ;[2] restore addr(lo) [F]
pulh ; [2] restore addr (hi) [E]
;* Current stack frame
;P * SP+1 [D] COP Counter - when 0, service COP
P * SP+2 [C] ROW Counter - # bytes left in current row
P * SP+3 [B] DATA array index - offset into RAM DATA array
P * SP+4 [A] Byte Counter - # bytes left in program operation

ekkhkkhkkhhkkhhk ki hkkhhhkkhhkkkrhkkhhhkkdhkhrhkkihkhkkhx*k
7

;* Byte programmed. Update pointers and counters on stack & check for
;** Done - go to RANGEsteplO, turn off PGM & HVEN, cleanup stack & RTS
;** End-of-row - go PAGEsteplO, turn off PGM & HVEN, loop to PRGstepl
; ** More-in-row/not time for COP service - loop to PRGstep7
;** COP count=0 - turn off PGM & HVEN, loop to PRGstepl
;* balance timing from prev Flash write, to PGM bit clear
; (Prog Algo Step 9)
PRGstep9: aix #1 ;[2] point to next FLASH address
inc 3,sp ; [5] Increment DATA array index [B]
dec 2,Sp ; [5] Decrement Row Counter [C]
dec 1,sp ; [5] Decrement COP Counter [D]
dec 4,sp ; [5] Decrement Byte Counter [A]

beg RANGEstepl0 ;[3] 0 if done programming last byte
tst 2,8p ; [4] Row Counter=00? (end of a row)
26 Using MC68HC908GR/GZ On-Chip FLASH Programming Routines

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

AN2545/D
On-Chip Routines Source Code

beqg PAGEstepl0 ;[3] if so, cycle HVEN then continue
tst 1,sp ; [4] COP Counter=007?
bne PRGstep7 ;[3]1 If no, just continue programming

;* Bottom of loop; not done, not new row, and not time to service COP
AR R R R R R R R R R R R RS R
H

ekkhkkhkhhkkhhk ki hkkhhhkk Kk khkkrhkk hhkkdxkkhkkrhkk kkkhx*k
7

;* time to service COP so cycle HVEN off and go to Prog Algo Step 1

nop ;[1] 1~ delay to adjust timing
sel ;[2] 2~ delay, I was already set
bsr ClrPgmHven ; [4+11] time to write cycle that

; clears PGM in ClrPgmHven
;ClrPgmHven clears PGM then HVEN
Jjmp PRGstepl ; then continue programming

;NOTE: DELNUS placed here to allow BSR instead of JSR for most calls
,.***
;* NAME: DELNUS

;* PURPOSE: Generate delay (3 * A * X) + 5 [cycles]

;* ENTRY CONDITIONS:

;* A contains an integer value equal to 4 or higher

;* X contains an integer value equal to 1 or higher

;* STACK USED: 3 bytes (including this routine's call)

* SIZE: 10 bytes

;* DESCRIPTION: EXECUTED OUT OF ROM

:* This routine is called from PRGRNGE and ERARNGE routines.

;* For example when bus frequency = 8MHz, A=16, and X=17, the

P * delay time is:
P delay time = (3 x 16 x 17) + 5 = 821 cycles (102.625us)
P * remember to consider delays associated with setup and JSR/BSR
’.***
DELNUS : deca ;11 A - 1
Loop: psha ;[2] temp save
deca ;[1] original A - 2
deca ;[1] original A - 3
dbnza * ;[3(orig A - 3)] (inner loop)
pula ;[2] recover original A - 1
dbnzx Loop ;[3] (bottom of outer loop)
;* outer loop = (X(2+41+1+(3(A-3))+2+3)) = (X(9+(3A-9)) =3 * X * A
rts ;4]

PR Rk Ik S R I S I R I I Sk S I I I S R R S S R R S Sk R R R S
7

RANGEstepl0: nsa ;[3] total 7~ delay to match timing
nsa ;[3] from beg RANGEsteplO to
nop ;[1] PRGsteplO

PAGEsteplO0: lda #2 ;[2] total 10~ delay -

[

dbnza * ;[6] (2x3~) part of time Tprog

sel ;[2] 2~ delay, I was already set
[

bsr ClrPgmHven ;[4+11] time to write cycle that
; clears PGM in ClrPgmHven
;ClrPgmHven clears PGM then HVEN
Using MC68HC908GR/GZ On-Chip FLASH Programming Routines 27

For More Information On This Product,
Go to: www.freescale.com

4\ Freescale Semiconductor, Inc.

;* SP+1 [D] COP Counter - when 0, service COP

;* SP+2 [C] ROW Counter - # bytes left in current row

:* SP+3 [B] DATA array index - offset into RAM DATA array

;* SP+4 [A] Byte Counter - # bytes left in program operation
lda 2,8p ;check Row Counter=00? (end-of-row?)
bne CheckAddr ;If not, check Byte Counter
1lda #ROWSIZE ;new row, init ROW Counter = ROWSIZE
sta 2,Sp ;update Row Counter [C] on stack

CheckAddr: lda 4,sp ;check Byte Counter=00? (done?)
bne GoPRGstepl ;1f not done, go program next byte

ekkkkhkkhhkkhkhkkkhhkkhhhkkhhkkhkkhhkkhhhkkdhxkkhkrhkkhkhkkhx*k
7

;* Programming complete, cleanup stack and return

ais #4 ;deallocate A, B, C and D
rts ;return from PRGRNGE
,.* PRGRNGE DONE hAhkhkhkkhhkhkhkkhhkkkhkhkkkk

,.*********************************
;* End of a row, go to Prog Algo Step 1 to start programming next row
GoPRGstepl: Jjmp PRGstepl ;to top of loop

PR I R I I I I R I I S I S R R I I R SR I I S S R I I I I I S I S I S S S S O
i

PRk kR I R Ik e i b e R R Rk ek b i I kR S I Rk R Ik I Rk kI S Rk R I
7

;* NAME: ClrPgmHven
;* This local sub-routine is a part of the FLASH programming
;* algorithm and called from PRGRNGE. In this routine, PGM bit is

;* cleared, time Tnvh is waited and then HVEN bit is cleared.
,.***

ClrPgmHven: pshx ;[2] temp save Addr (lo) to free up X
PRGsteplO:
sel ;[2] 2~ delay, I was already set
seil ;[2] 2~ delay, I was already set
lda #mMHVEN ; [2] clear PGM, leave HVEN=1
sta FLCR ;[..w.] Clear PGM bit in FLCR
; (Prog Algo Step 10)
PRGstepll: 1ldx #TNVH ;[2] delay for time Tnvh
lda CPUSPD ;[3] (Prog Algo Step 11)
bsr DELNUS ; [4+ (3*A*X) +5]
PRGstepl2: clra ;[1] pattern to clear HVEN
sta FLCR ;[..w.] clr HVEN (Prog Algo Step 12)
pulx ;restore Addr (lo)
rts

PR I I I I I I I S R R I I R S R I I S R R R I I I I I R I I S I R R I S
’

;* NAME: ERARNGE

;* PURPOSE:

;* Erase a page or a whole array in FLASH memory. The bus frequency
;* range must be between 2.0MHz and 8.4MHz.

;* ENTRY CONDITIONS:

; * H:X contains a FLASH address within a page or an array to be
P erased
28 Using MC68HC908GR/GZ On-Chip FLASH Programming Routines

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

AN2545/D
On-Chip Routines Source Code

* Bit 6 in CTRLBYT selects MASS erase (1) or PAGE erase (0)

Had CPUSPD equals bus frequency x 2 then rounded up

;* EXIT CONDITIONS:

;* The contents of H:X (address passed) is preserved; I-bit set
;* SUBROUTINES CALLED: DELNUS

;* VARIABLES READ: CTRLBYT, CPUSPD

* STACK USED: 7 (including the call to this routine)

;* SIZE: 70 bytes

;* DESCRIPTION: Executed out of ROM

;* Does not check for a blank range before (to see if erase is
;* necessary) or after (to see if erase was successful). This
;* routine services the COP, (but the COP could still time out if
i * it is not serviced correctly in the user software)
,.***
ERARNGE: sei ;block interrupts during erase

pshx ;temp save addr(lo) to free up X
ERAstepl: lda #mERASE

brclr MASSBIT,CTRLBYT, PageErase
;1f MASSBIT is set in the CTRLBYT,
ora #mMASS ; sets MASS and ERASE bits in A
PageErase: sta FLCR ;L. .w.] (Erase Algo Step 1)
; set ERASE only, or MASS and ERASE

ERAstep2: 1lda FLBPR ;4] (Erase Algo Step 2)

ERAstep3: sta , X s Low] (Erase Algo Step 3)
;latch addr for Flash page or block

ERAstep4d: 1ldx #TNVS ;[2] delay Tnvs (Erase Algo Step 4)
lda CPUSPD ;4]
bsr DELNUS ; [4+(3*A*X)+5) 1]
ERAstep5: lda FLCR ;[4] leave MASS and ERASE as is
ora #mHVEN ;[2] set HVEN
sta FLCR s l..w.] (Erase Algo Step 5)
ERAstep6: ;delay Terase (Erase Algo Step 6)
;slit up to allow COP service
lda #ELOOPS ;[2] initialize Loop Counter
psha ;[2] Loop Count on stack for calcs
: using ' dec 1,sp' instruction
ServiceCOP: sta COPCTL ; [4] service COP
1ldx #TERASE ;[2] about 100us delay
lda CPUSPD ;[4]
bsr DELNUS ; [4+ (3*A*X) +5)]
dec 1,sp ; [5] decrement Loop Counter
bne ServiceCOP ;[3] loop if Loop Count not zero

;* bottom of COP service loop
;* total Terase time = setup from HVEN=1 + loop + overhead to ERASE=0

;* = 5 4+ (ELOOPS(3*A*X + 27)) + 11 33,739~ @8MHz (Terase=4.217mS)
pula ;[2] deallocate Loop Counter
ERAstep7: ; (Erase Algo Step 7)
Using MC68HC908GR/GZ On-Chip FLASH Programming Routines 29

For More Information On This Product,
Go to: www.freescale.com

Software

Freescale Semiconductor, Inc.

and
sta

ERAstep8:
1ldx
lda
jsr

ERAstep9:
clra
sta

ERAsteplO:
pulx
sei
rts

;* ERARNGE DONE kkhkkkkhkkhkkhkkhkkkhkrkkikk*k

(SFF-mERASE)

FLCR

#TNVHL
CPUSPD
DELNUS

FLCR

; [2] clear ERASE bit only
s L. ow.]

; (Erase Algo Step 8)
;delay for time Tnvhl

; Tnvhl is used for both

; [4+(3*A*X)+5)] page and mass erase

; (Erase Algo Step 9)
;[1] clear all bits in FLCR

;[..w.] next 3 instructions

; including last cycle of this

; instruction make at least lus

; delay for Trcv

; (Erase Algo Step 10)
;[2] recover original addr(lo)

;[2] 2~ delay, I was already set
;[4] return from ERARNGE

This application note has a companion software file, AN2545SW.zip, available
from the Motorola semiconductor website, http://motorola.com/sps.

30

Using MC68HC908GR/GZ On-Chip FLASH Programming Routines

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

AN2545/D
On-Chip Routines Source Code

This page is intentionally blank.

Using MC68HC908GR/GZ On-Chip FLASH Programming Routines 31

For More Information On This Product,
Go to: www.freescale.com

Freescale Semiconductor, Inc.

How to Reach Us:

Home Page:
www.freescale.com

E-mail:
support@freescale.com

USA/Europe or Locations Not Listed:
Freescale Semiconductor

Technical Information Center, CH370
1300 N. Alma School Road

Chandler, Arizona 85224
+1-800-521-6274 or +1-480-768-2130
support@freescale.com

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7

81829 Muenchen, Germany

+44 1296 380 456 (English)

+46 8 52200080 (English)

+49 89 92103 559 (German)

+33 1 69 35 48 48 (French)
support@freescale.com

Japan:

Freescale Semiconductor Japan Ltd.
Headquarters

ARCO Tower 15F

1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064

Japan

0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor Hong Kong Ltd.

Technical Information Center
2 Dai King Street

Tai Po Industrial Estate

Tai Po, N.T., Hong Kong
+800 2666 8080
support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center

P.O. Box 5405

Denver, Colorado 80217
1-800-441-2447 or 303-675-2140
Fax: 303-675-2150

LDCForFreescaleSemiconductor@hibbertgroup.com

Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductor products. There are no express or
implied copyright licenses granted hereunder to design or fabricate any integrated
circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to
any products herein. Freescale Semiconductor makes no warranty, representation or
guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability arising out of the application or use of
any product or circuit, and specifically disclaims any and all liability, including without
limitation consequential or incidental damages. “Typical” parameters which may be
provided in Freescale Semiconductor data sheets and/or specifications can and do
vary in different applications and actual performance may vary over time. All operating
parameters, including “Typicals” must be validated for each customer application by
customer’s technical experts. Freescale Semiconductor does not convey any license
under its patent rights nor the rights of others. Freescale Semiconductor products are
not designed, intended, or authorized for use as components in systems intended for
surgical implant into the body, or other applications intended to support or sustain life,
or for any other application in which the failure of the Freescale Semiconductor product
could create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended or
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.

-

>~ freescale

semweonductor

AN2545/D

For More Information On This Product,

Go to: www.freescale.com

RXZB30
reachhibbert

RXZB30
reachhibbert

RXZB30
disclaimer

RXZB30
logo

	Introduction
	FLASH Overview

	Routines Supported in ROM
	GetByte
	RDVRRNG
	PRGRNGE
	ERARNGE
	DELNUS

	Variables Used in the Routines
	CTRLBYT
	CPUSPD
	LADDR
	DATA
	Registers H:X

	How to Use the Routines
	GetByte
	Entry Condition
	Exit Condition

	RDVRRNG
	Send-Out Option
	Verify Option
	Carry (C) Bit
	Entry Condition
	Exit Condition

	PRGRNGE
	Entry Condition
	Exit Condition

	ERARNGE
	Entry Condition
	Exit Condition

	DELNUS
	Initialization
	Exit Condition

	On-Chip Routines Flowcharts
	On-Chip Routines Source Code
	Software

