Integration Challenges of 0.1µm CMOS Cu/Low-k Interconnects

Motorola, Inc./AMD Alliance
Dan Noble Center, Digital DNA Laboratories
Austin, TX, 78728

Abstract

The integration challenges of a low-k dielectric (k<3) to form multi-level Cu interconnects for the next generation 0.1µm CMOS technology are presented. Process improvements to overcome these challenges are highlighted which include etchfront control, resist poisoning, high aspect ratio metallization, and improved CMP planarity. The maturity of this technology has been demonstrated through high yield of a 4MB SRAM test vehicle.

Introduction

To achieve circuit speed enhancements, Motorola has utilized dual inlaid Cu interconnects for four generations, since the 0.2µm technology node (1-4). With rapidly decreasing feature sizes, low-k dielectric and passivation materials have been inserted to address the need for additional RC delay reductions. The RC reduction of low-k materials is dependent on the integration strategy, which impacts the effective k value (k-eff) of the dielectric stack. Fig. 1 shows the steady intra-level capacitance reduction achieved by introduction of low-k materials (k<3) at the metal level vs. metal/via levels for 0.13µm and 0.1µm technology nodes, respectively. With feature size and k-value reduction comes integration challenges specific to low-k films including etch optimization, resist poisoning, high aspect ratio metallization and CMP planarity.

Table 1. Layout rules for 0.10µm vs. 0.13µm CMOS technology.

<table>
<thead>
<tr>
<th>Layer</th>
<th>0.13 µm</th>
<th>0.10 µm</th>
<th>Shrink</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metal 1 Line/Space</td>
<td>0.18/0.18</td>
<td>0.12/0.12</td>
<td>33 %</td>
</tr>
<tr>
<td>Metal 2-8 Line/Space</td>
<td>0.21/0.21</td>
<td>0.14/0.14</td>
<td>33 %</td>
</tr>
<tr>
<td>Via Size/Space</td>
<td>0.18/0.24</td>
<td>0.13/0.15</td>
<td>28 %</td>
</tr>
</tbody>
</table>

This paper will first present the interconnect performance of an OSG based low-k/Cu multi-level backend and then will highlight unit process solutions developed to achieve successful low-k integration.

BEOL Process Integration

Key BEOL design rules supporting our 0.1µm 8LM technology platform, with a 6T SRAM cell size of 1.16µm², are shown in Table 1 (4). To pattern these dimensions, 193nm photolithography is used at critical levels. Extensive optical proximity correction (OPC), optimized resist and etch processes, and standard 248nm lithography are used for dual-inlaid levels from M2/V1 and above. Low-k materials for Cu passivation have been used to reduce k-eff, and timed etches have been developed to eliminate the use of a mid-etch stop layer. Fig 2. shows a two-dimensional SEM x-section of our 4M TDSRAM test vehicle at M3.

Fig 2. SEM x-section of interconnect structure with Cu/Low-k (k<3) at all metal/via levels.

Through optimization of the low-k dielectric stack and Cu CMP processes, tight M1 sheet resistances have been achieved for both isolated lines and lines with 0.5µm wide neighbors, as shown in Fig 3. Low leakages for unpassivated M1 twin-serpentine structures are seen in Fig 4. Dual-inlaid via chain yield has been demonstrated for
both 8.6M vias and stacked M1-M3 via chains, as shown in Fig 5. High 4M TDSRAM yield has been achieved by leveraging a foundation of unit process development for low-k films, as highlighted in the following sections.

Etch Process Optimization

The use of low-k dielectrics in BEOL integration has required extensive changes in both etch and ash chemistries. For example, low-k films are more susceptible to ash damage and require a shift away from standard oxidizing chemistries. This is particularly challenging for dual inlaid structures which often require aggressive processing that is more likely to harm the low-k materials.

In order to achieve the lowest integrated k value of dual inlaid structures, it is advantageous to eliminate the middle stop layer (MSL). However, trench bottom profile control becomes more difficult without a MSL to prevent continued etch during the etch stop layer (ESL) open and to prevent damage during the ash. Fig 6 shows fully etched SEM cross-sections of a via chain structure. Etch process A shows less corner erosion at the via/trench bottom intersection compared to process B. However, even etch A shows erosion as a result of the aggressive ESL etch used to reduce defectivity.

Fig 7 shows two different ash processes on the same low-k material. Both SEM samples were prepared at the same time under identical conditions to allow a qualitative comparison. Stain delineation is used to highlight etch damage, as shown by arrows in Fig 7. While not a substitute for more quantitative measurements, stain delineation easily demonstrates the reduction in low-k resist A, as quantified by defect metrology tools. The use of an alternate resist has also eliminated resist poisoning with the VFTL integration.

Resist/Integration Optimization

Resist poisoning associated with low-k films is well known and is a function of the dielectric stack and resist selection (5). We have shown elimination of via poisoning with a TFVL based low-k integration compared with VFTL for resist A, as quantified by defect metrology tools. The use of an alternate resist has also eliminated resist poisoning with the VFTL integration.

Metals Process Optimization

Ionized PVD Tantalum (nitride) based barriers have served the industry well since the 0.22µm Cu technology node. However, PVD barriers can show less than 10% step coverage for high aspect ratios vias. Tighter geometry along with low-k integration challenges have driven investigation of Ti, Ta, and W based barrier materials in addition to alternate deposition techniques (6). Fig 8 shows improved PVD barrier sidewall coverage through process optimization along with a reduced bottom thickness to reduce the via resistance. Fig 9A shows the via resistance reduction of a 14M via chain with ALD, CVD vs. PVD.
For ultra low-k (ULK) materials with larger pore sizes, PVD barriers may not be able to provide continuous coverage. Although CVD and ALD barriers can provide ultra-thin (<5nm) conformal coverage, many new integration challenges associated with these barriers must be resolved before wide acceptance with low-k and ULK materials is seen. Some of these challenges include absorption and diffusion of deposition gases into the ULK, preclean compatibility, acceptable EM, seed and CMP performance, metrology availability, and cost of ownership improvement.

CMP Optimization

Development of CMP processes with low defectivity for low-k materials poses a significant challenge because of their reduced hardness and modulus. The use of a cap material with good low-k adhesion and minimal low-k damage improves planarity, as seen in Fig 10. For ULK materials (k<2.5), increased cap adhesion greatly improves interline leakage. This may result from reduced delamination and microcracks in the cap layer. Improvement in the incoming Cu plate uniformity, shown in Fig 11, can also significantly impact CMP planarity.

To increase device yield, low-k compatible CMP post-polish cleaning chemistries have also been developed. This new process and in-house formulation drastically reduce slurry precipitates and prevent photo-voltaic dendritic corrosion. Improved Cu surface passivation is observed as well.

Conclusion

Successful integration of low-k (k<3)/Cu interconnects for the 0.1µm CMOS technology has been demonstrated. Unit process development in photo, etch, metals and CMP has overcome low-k integration challenges to deliver a robust backend for next generation low power and high performance products.

Acknowledgements: Authors wish to acknowledge support of the Dan Noble Center Physical Analysis Lab.

References