A Deep Dive on the QorIQ T2080 Processor

FTF-NET-F0032

Chun Chang | Application Engineer

April 2014
Agenda

• T2080/1 Overview
• e6500 Core and Cache Hierarchy
• Power Management
• CoreNet Coherency Fabric Switch
• Data Path Acceleration Architecture (DPAA)
• SerDes Options
• Voltage ID
• eSDHC
• PCI Express
• Enablement
• Conclusion
Agenda

• T2080/1 Overview
 - T2080 Block Diagram
 - T2081 Block Diagram
 - Duad Cores comparison
Datapath Acceleration
- **SEC** - crypto acceleration 10Gbps
- **DCE** - Data Compression Engine 17.5Gbps
- **PME** – Pattern Matching Engine to 10Gbps

Processor
- 4x e6500, 64b, 1.2 - 1.8GHz
- Dual threaded, with 128b AltiVec
- 2MB shared L2; 256KB per thread

Memory Subsystem
- 512KB Platform Cache w/ECC
- 1x DDR3/3L Controllers up to 2.1GHz
- Up to 1TB addressability (40 bit physical addressing)
- HW Data Pre-fetching

Switch Fabric
- High Speed Serial IO
 - 4 PCIe Controllers: one at Gen3, three at Gen2
 - 1 with SR-IOV support
 - x8 Gen2
 - 2 sRIO Controller
 - Type 9 and 11 messaging
 - Interworking to DPAA via RMan
 - 2 SATA 2.0 3Gb/s
 - 2 USB 2.0 with PHY

Network IO
- Up to 25Gbps Simple PCD each direction
 - 4x1/10GE, 4x1GE or 2.5Gb/s SGMII
 - XFI, 10GBase-KR, XAUI, HiGig, HiGig+, SGMII, RGMII, 1000Base-KX

Device
- TSMC 28HPM Process
- 25x25mm, 896 pins, 0.8mm pitch
- Power estimated at 15.2 – 25.2W (thermal) depending on frequency

Schedule: Q3-2013 (alpha); mid-2014 qual
Datapath Acceleration
- **SEC**: crypto acceleration 10Gbps
- **DCE**: Data Compression Engine 17.5Gbps
- **PME**: Pattern Matching Engine to 10Gbps

Processor
- 4x e6500, 64b, 1.5 - 1.8GHz
- Dual threaded, with 128b AltiVec
- 2MB shared L2; 256KB per thread

Memory Subsystem
- 512KB Platform Cache w/ECC
- 1x DDR3/3L Controllers up to 2.1GHz
- Up to 1TB addressability (40 bit physical addressing)
- HW Data Pre-fetching

Switch Fabric
- 4 PCIe Controllers: one at Gen3, three at Gen2
 - 1 with SR-IOV support
 - x8 Gen2
- 2 USB 2.0 with PHY

Network IO
- Up to 25Gbps Simple PCD each direction
- 8 MACs multiplexed over:
 - 2x 10GE, 2x 2.5Gb/s SGMII, 7x GE
 - XFI, 10GBase-KR, SGMII, RGMII, 1000Base-KX

Device
- TSMC 28HPM Process
- 23x23mm, 780pins, 0.8mm pitch, pin compatible with T1042
- Power estimated at 18.7– 24.4W (thermal) depending on frequency

Schedule: samples: 2H-2014; qual Q1-15
<table>
<thead>
<tr>
<th>Feature</th>
<th>P2040</th>
<th>P2041</th>
<th>P3041</th>
<th>T1042</th>
<th>T2081</th>
<th>T2080</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cores</td>
<td>4x e500mc, 32b</td>
<td>4x e500mc, 32b</td>
<td>4x e500mc, 32b</td>
<td>4x e5500, 64b</td>
<td>4x e6500, 64b</td>
<td>4x e6500, 64b</td>
</tr>
<tr>
<td>Threads</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>Frequency</td>
<td>667MHz – 1.2GHz</td>
<td>1.2 - 1.5GHz</td>
<td>1.2 - 1.5GHz</td>
<td>1.2 - 1.4GHz</td>
<td>1.5 - 1.8GHz</td>
<td>1.2 - 1.8GHz</td>
</tr>
<tr>
<td>L2</td>
<td>None</td>
<td>512kB</td>
<td>512kB</td>
<td>1MB</td>
<td>2MB</td>
<td>2MB</td>
</tr>
<tr>
<td>L3</td>
<td>1MB</td>
<td>1MB</td>
<td>1MB</td>
<td>256kB</td>
<td>512kB</td>
<td>512kB</td>
</tr>
<tr>
<td>DDR</td>
<td>1x DDR3/3L to 1200MT/s</td>
<td>1x DDR3/3L to 1333MT/s</td>
<td>1x DDR3/3L to 1333MT/s</td>
<td>1x DDR3L/4 to 1333MT/s</td>
<td>1x DDR3/3L to 2133MT/s</td>
<td>1x DDR3/3L to 2133MT/s</td>
</tr>
<tr>
<td>SerDes</td>
<td>10 to 5GHz</td>
<td>10 to 5GHz</td>
<td>18 to 5GHz</td>
<td>8 to 5GHz</td>
<td>8 to 10GHz</td>
<td>16 to 10GHz</td>
</tr>
<tr>
<td>Enet</td>
<td>5x 1GE</td>
<td>10GE + 5x 1GE</td>
<td>10GE + 5x 1GE</td>
<td>5x 1GE</td>
<td>2x 1/10GE + 5x 1GE</td>
<td>4x 1/10GE + 4x 1GE</td>
</tr>
<tr>
<td>PCIe Cntrs</td>
<td>3 at Gen2</td>
<td>3 at Gen2</td>
<td>3 at Gen2</td>
<td>4 at Gen2</td>
<td>3 at Gen2 + 1 at Gen3</td>
<td>3 at Gen2 + 1 at Gen3</td>
</tr>
<tr>
<td>SATA2.0</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>No</td>
<td>2</td>
</tr>
<tr>
<td>USB2.0</td>
<td>2 w/ int. PHY</td>
</tr>
<tr>
<td>SRIO/Rman</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>No</td>
<td>No</td>
<td>2</td>
</tr>
<tr>
<td>Aurora</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>TDM/HDLC</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>2</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Acceleration</td>
<td>SEC, PME</td>
<td>SEC, PME</td>
<td>SEC, PME</td>
<td>SEC, PME, QE</td>
<td>SEC, PME, DCE</td>
<td>SEC, PME, DCE</td>
</tr>
</tbody>
</table>
Agenda

• T2080/1 Overview
• e6500 Core and Cache Hierarchy
 – e6500 Core Diagram
 – e6500 Pipeline
 – Additional e6500 Enhancements
 – Multi-threading Implementation
 – Load-Store / L1 Data Cache
 – Shared L2 Cache
 – Platform L3 Cache
e6500 Core Complex

- 64-bit Power Architecture
- Up to 1.8 GHz operation
- Two threads per core
- Dual load/store units, one per thread
- 40-bit Real Address
 - 1 Terabyte physical address space
- Hardware Table Walk
- L2 in cluster of 4 cores
 - Supports Share across Cluster
 - Supports L2 memory allocation to core or thread
- Power Management
 - Drowsy: Core, Cluster, Altivec
 - Wait-on-reservation instruction
 - Traditional modes
- AltiVec SIMD Unit (128b)
 - 8,16,32-bit signed/unsigned integer
 - 32-bit floating-point
 - 192 GFLOP (2GHz)
 - 8,16,32-bit Boolean
- Virtualization
 - Hypervisor
 - LRAT
 - Logical to Real Address translation mechanism for improved hypervisor performance
e6500 Pipeline
Additional e6500 Enhancements

- Faster FPU: 2X faster SP, 4X faster DP over e500mc
- New Power ISA v.2.06 Instr
 - instructions for byte- and bit-level acceleration: Parity, population count, bit permute, compare bytes, FPU convert to/from 64-bit integer
- Improved Branch Prediction
 - Double BTB size
 - Better branch prediction scheme (rate increases from 95% to 98%)
- Increase number of completion entries and rename registers from 14 to 16
- Re-architected the memory subsystem
 - Shared L2 cache with write-through L1 D cache and large store gather buffer per core
 - 2X L2 cache size per core, effectively more with sharing
- 40-bit real address
- PID0 field size increases from 8 to 14 bits => supports for more threads in many core systems
- Enhanced MP Performance: Accelerated Atomic Operations, Optimized Barrier Instructions, Fast intra-cluster sharing
- LRAT: Accelerate hypervisor performance (10-15% for workloads running in OS on HV)
- New power-reduction techniques
- Drowsy core with fast wake-up (<75% power of run mode)
- Option for AltiVec
- Changes for debug architecture
Multi-threading Implementation

- **Interrupts**
 - Interrupts are private
 - Each thread has its own interrupt signals

- **Debug**
 - Almost all resources are private. Internal debug works as if they are separate cores
 - External debug has option to halt both threads when one thread debug halts

- **Power Management**
 - Power management control is per-thread (and the associated SoC programming model will be per-thread)
 - Actual power management will only occur when both threads reach the same power management state
 - For example, when `wait` occurs on one thread, fetching stops for that thread, but we don’t go drowsy until both threads execute `wait`.
e6500 Load-Store / L1 Data Cache

- Dual Load Store Units (LSU)
 - Each LSU is dedicated to a thread
 - Separate Data MMUs and Tags
 - Shared Data Cache

- L1 Data Cache Organization
 - 32 KB
 - 8-way set associative with PLRU replacement algorithm

- Features
 - Store Gather Buffer to optimize store bandwidth
 - Store to load forwarding to reduce stalls
 - Individual line locking with persistent locks
 - Accelerated atomic operations
 - Optimized cacheable barrier instructions
e6500 Shared L2 Cache

- L2 Cache Organization
 - 2 MB
 - 4 banks of 512 KB each
 - 16-way set associative with configurable replacement algorithms

- L2 Cache Features
 - Individual line locking with persistent locks
 - Flexible way partitioning by thread
 - Allocation control for data read, data store, instruction read and stash
 - ECC protection for Data, Tag and Status
Platform L3 Cache

• Platform L3 Cache Organization
 - 512 KB
 - 16-way set associative with configurable replacement algorithms

• Platform L3 Cache Features
 - Individual line locking with persistent locks
 - Flexible way partitioning by source
 • Allocation control for data read, data store, castout, decorated read, decorated store, instruction read and stash
 - Configurable SRAM partitioning
 - ECC protection for Data, Tag and Status
Agenda

• T2080/1 Overview
• e6500 Core and Cache Hierarchy
• Power Management
 – Power Management Innovation
 – Core Power Management States
 – Cluster Power Management States
 – SOC Power Management States
e6500 Power Management Innovation

- **Wide voltage range for logic supplies to allow frequency / power tradeoff**
 - Memory arrays on a separate power supply

- **Power domain hierarchy**
 - Altivec within core
 - Cores within cluster
 - Clusters within SoC

- **Drowsy L2 Cache**
 - Bitcell leakage reduced by ~40%

- **Drowsy Core**
 - Instantaneous wakeup response with SRPG
 - Controlled through software or waterfall power management
 - Power <75% of Run-mode

- **Deep Nap Mode**
 - State not retained
 - Power < 90% of Run-mode

Focus

- Reduce energy consumption under light loads
- Enable rapid return to fully loaded conditions

- Do not have to save/restore processor state to memory
- Greater than 10x improvement in wakeup response time

- Switch supports 3 modes
 - Full On
 - Drowsy Mode
 - Deep Nap Mode (Powered Off)

Cluster 1

- Rail 0 (0v, Min to Max)
- Memory Rail (0v, Nominal)
- 1024KB Banked L2
- SW/HW Controls

e6500 Power Switches

- 32 KB I-$
- 32 KB D-$

e6500 Power Switches

- 32 KB I-$
- 32 KB D-$
e6500 Core Power Management States

<table>
<thead>
<tr>
<th>Power State</th>
<th>Initiated</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PH00</td>
<td>Default</td>
<td>Full-On. Global clocks running. Local clock gating based on unit usage and Dynamic Power Management (DPM)</td>
</tr>
<tr>
<td>PH10</td>
<td>SOC RCPM</td>
<td>Previously Doze. Global clocks running and instruction fetch is stopped. Snoops still handled</td>
</tr>
<tr>
<td>PH15</td>
<td>SOC RCPM</td>
<td>Previously Nap. Core global clocks stopped. Software must flush and invalidate caches before state entry and handle any MMU coherency issues</td>
</tr>
<tr>
<td>PH20</td>
<td>SOC RCPM</td>
<td>New State. Core PH20 mode is core power gating with state retention</td>
</tr>
<tr>
<td>PH30</td>
<td>SOC RCPM</td>
<td>New State. Core PH30 mode is core power gating without state retention. Interrupt is ignored. Return to PH00 requires a core reset.</td>
</tr>
<tr>
<td>PW10</td>
<td>Wait Instruction</td>
<td>Previously Wait. Global clocks running and instruction fetch is stopped</td>
</tr>
<tr>
<td>PW20</td>
<td>Wait Instruction</td>
<td>New State. Core global clocks stopped, power supply gated and state retained. Transition from PW10 to PW20 occurs completely under hardware control with no software intervention. Fast wake up based on hardware events.</td>
</tr>
</tbody>
</table>
e6500 Cluster Power Management States

<table>
<thead>
<tr>
<th>Power State</th>
<th>Initiated</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCL00</td>
<td>Default</td>
<td>Full-On. Global clocks running. Local clock gating based on unit usage and Dynamic Power Management (DPM)</td>
</tr>
<tr>
<td>PCL10</td>
<td>SOC RCPM</td>
<td>Clock distribution is inhibited to cluster functional unit. Clock distribution is inhibited to cluster functional unit. The L2 cache no longer continues to participate in snooping activities. Software should always flush, and then invalidate the L2 cache prior to initiating PCL10 state to ensure that any modified data is written out to backing store.</td>
</tr>
</tbody>
</table>
T2080 SOC Power Management States

<table>
<thead>
<tr>
<th>Power State</th>
<th>Initiated</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLM10</td>
<td>SOC RCPM</td>
<td>LPM10 mode is a device state which at least one core is not in PH00 (full on state).</td>
</tr>
</tbody>
</table>
| PLM20 | SOC RCPM | All cores are in PH20 state.
 – Cluster is in PCL10 state.
 – Platform clock is disabled.
 All clocks internal to the core are turned off as well as the clock in device logic so that only the modules which are required to wake up the device will still have a running clock. Core timebase is turned-off.
 The modules which can be used as a wake up source are internal timers, internal and external interrupts. After the core and I/O interfaces have shut down, ASLEEP pin is asserted. |
Agenda

- T2080/1 Overview
- e6500 Core and Cache Hierarchy
- Power Management
- CoreNet Coherency Fabric Switch
 - T2080 I/O at a Glance
 - CoreNet System Bandwidth
 - Enhancements in Platform
CoreNet Coherency Fabric Switch

Highly concurrent, 100% HW cache coherent, multi-ported fabric

- Overcomes limitations of bus based topologies
- **Completely eliminates retries** for busy conditions or cache coherency actions
 - Variable snoop response timing
 - Current owner always supplies data
 - Minimizes average latency in congested systems
- **Flexible point to point connectivity**
 - Point-to-point connectivity with flexible protocol architecture allows for pipelined interconnection between CPUs, platform caches, memory controllers, and I/O and accelerators at up to 700 MHz
- **Supports multiple, parallel address paths**
 - High address bandwidth: Key for large coherent multi-core processors
- **High data bandwidth**
 - Crossbar connectivity: reduced contention provides low latency
 - Variable width data path per device provides throughput and power optimization
 - Capable of sustaining multiple cache lines per cycle to the cores
 - Supports future expansion to coherent multi-fabric ‘clusters’ on SoC’s or coherent multi-chip systems
Advanced Power Management
- Power planes
- VID
- Cascade loading

SEC 5.2
- Enhanced RSA Operation for SSL
 - 340b RSA 25K operations
 - 680b RSA 7.8K operations
- 10Gbps DES
- 10Gbps AES
- 10G CRC

Networking
- 48 Gbps bandwidth
- 2x HiGig MAC
- IEEE 802.3az (EEE)
- IEEE 802.3bf (Time sync)
- Data Center Bridging (DCB)
 - Priority Flow Control
 - Enhanced Transmission Selection

SERDES
- Up to 10GHz
 - XFI, 10Gbase-KR, XAUI, SGMII, PCIe, SRIIO

PME
- 10G Regex Engine

DCE
- Compression
 - Deflate, GZIP, Zlib
 - 20Gbps

RMAN
- SRIIO in DPAA

PCIe Gen 3
- SRIIOV EP

DDR 3/3L
- Up to 2.1 GHz
- Works with new Prefetch block
T2080 CoreNet System Bandwidth

CoreNet™ Coherency Fabric (700MHz)

- Per core: 256b x FCore: 256 * 1800 = 461Gb/s per direction
- 256b * FPlat: 256 * 700MHz = 179Gb/s per direction
- SEC, PME, DCE: 128b * FPlat/2 = 128 * 350MHz = 45Gb/s per direction for each accelerator block.
- All OCN ports: 128b * FPlat/2 = 128 * 350MHz = 45Gb/s per direction for each SATA port
- x4 PCIe Gen3: 8GHz * 128b/130b * 4 = 31.5Gb/s per direction
- x4 PCIe Gen2 or SRIO: 5GHz * 8b/10b * 4 = 16Gb/s per direction

Related to FMan speed, not bus widths (800MHz): ~25Gb/s in each direction

Write: 256b * FPlat: 700*256 = 179Gb/s

Read: 512b * FPlat:700*256*2 = 358Gb/s

64b x Datarate 64 * 2133MT/s: 136Gb/s

DMA

DMA

SATA2: 3GHz * 8b/10b encoding = 2.4Gb/s per direction per port
Enhancements in Platform V2 (T-Series)

- **CoreNet Coherency Fabric**
 - 40-bit Real Address
 - Higher address bandwidth, Larger number of active transactions
 - 2X BW increase for: Core data ports, Memory subsystem writes, many peripheral devices
 - Improved configuration architecture
 - “Safe” mode for coherency-error tolerance during multi-core software development

- **Platform Cache**
 - Increased Write Bandwidth
 - Increased buffering for improving throughput
 - Improved data ownership tracking for performance enhancement

- **Data PreFetch**
 - Tracks CPC misses
 - Prefetches from multiple memory regions with configurable sizes
 - Selective tracking based on Requesting device, Transaction type, data/instruction access
 - Conservative prefetch requests to avoid system overloading with prefetches
 - “Confidence” based algorithm with feedback mechanism
 - Performance monitor events to evaluate the performance of Prefetch in the system
Agenda

- T2080/1 Overview
- e6500 Core and Cache Hierarchy
- Power Management
- CoreNet Coherency Fabric Switch
- Data Path Acceleration Architecture (DPAA)
 - FMAN
 - QMAN
 - BMAN
 - RMAN
 - SEC
 - PME
 - DCE
Enhancing Core Performance with Data Path Acceleration Architecture

- Compress and Decompress traffic across the Internet
- Frees CPU from draining repetitive RSA, VPN and HTTPS traffic
- Identifies traffic and targets CPU or accelerator
- Protects against internal and external Internet attacks
- Line rate 25Gbps Networking
- Quality of Service for FCoE in converged data center networking

Hardware Accelerators:

<table>
<thead>
<tr>
<th>Hardware Accelerator</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>FMAN Frame Manager</td>
<td>25 Gbps aggregate Parse, Classify, Distribute</td>
</tr>
<tr>
<td>BMAN Buffer Manager</td>
<td>64 buffer pools</td>
</tr>
<tr>
<td>QMAN Queue Manager</td>
<td>Up to 2^{24} queues</td>
</tr>
<tr>
<td>RMAN Rapid IO Manager</td>
<td>Seamless mapping sRIO to DPAA</td>
</tr>
<tr>
<td>SEC Security</td>
<td>10Gbps: IPSec, SSL, Public Key 25K/s 1024b RSA</td>
</tr>
<tr>
<td>PME Pattern Matching</td>
<td>10Gbps aggregate</td>
</tr>
<tr>
<td>DCE Data Compression</td>
<td>20Gbps aggregate</td>
</tr>
</tbody>
</table>

New Enhanced Saving CPU Cycles for higher value work
DPAA Components Check List

- QorIQ P-class devices have Datapath Three-Speed Ethernet Controller (dTSEC) and 10-Gigabit Ethernet Media Access Controller (10GEC)
- QorIQ T-class devices have Ethernet Media Access Controller (EMAC)

<table>
<thead>
<tr>
<th>QorIQ Devices DPAA Feature List</th>
<th>Revision Number</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>FMan</td>
</tr>
<tr>
<td>P1023</td>
<td>4.0</td>
</tr>
<tr>
<td>P4080/P4040 rev3</td>
<td>2.0</td>
</tr>
<tr>
<td>P2040, P2041 P3041</td>
<td>3.0</td>
</tr>
<tr>
<td>P5020, P5010</td>
<td>3.0</td>
</tr>
<tr>
<td>T2080, T2081</td>
<td>6.1</td>
</tr>
</tbody>
</table>
DPAA New Features for T2080

A short summary of T2080 enhancements over the first generation DPAA (as implemented in the P3041) is provided below:

- **Frame Manager**
 - 2x performance increase (up to 25 Gbps per FMan)
 - Storage profiles
 - HiGig
 - Energy efficient Ethernet
- **SEC 5.2**
 - 2x performance increase for symmetric encryption and protocol processing
 - Up to 10 Gbps for IPsec @ Imix
 - 10x performance increase for public key algorithms
 - Support for 3GPP Confidentiality and Integrity Algorithms 128-EEA3 & 128-EIA3 (ZUK)
- **DCE 1.0**, new accelerator for compression/decompression
- **RMan** (Serial RapidIO Manager)
 - Included in P2/P3/P5/T2/T4 products
- **DPAA overall capabilities**
- **Data Center Bridging**
- **Egress Traffic Shaping**
New Features for T2080 (continue…)

- T208x has a total of 50 software portals (SP), increase from 10 SP found in the P-class processors
- Supports Customer Edge Egress Traffic Management (CEETM) that provides hierarchical class based scheduling and traffic shaping:
 - Available as an alternate to FQ/WQ scheduling mode on the egress side of specific direct connect portals
 - Enhanced class-based scheduling supporting 16 class queues per channel
 - Token bucket based dual rate shaping representing Committed Rate (CR) and Excess Rate (ER)
 - Congestion avoidance mechanism equivalent to that provided by FQ congestion groups
- A total of 48 algorithmic sequencers are provided, allowing multiple enqueue/dequeue operations to execute simultaneously
- Support up to 295M enqueue/dequeue operations per second
Frame Manager

Frame Manager is responsible for moving packets into and out of the datapath

- 8 Ethernet MACs
 - 8 x 1GE
 - 4 x 2.5GE
 - 4 x 10GE

- Parse
- “Coarse” classification
- Packet distribution across queues for load spreading
- Policing
Frame Manager Flow Chart

- **MAC**
 - Unicast DA match
 - Multicast/Broadcast filter
 - CRC check

- **BMI**
 - Transfer Frame to Memory
 - Bulk one’s complement checksum

- **Parser**
 - Parse/identify common L2-L4 protocols
 - Branch to soft examine sequence for custom protocols
 - Populate parse results for software use
 - Update checksums calculations

- **Policer**
 - Dual rate tri-color mark frame according to classification

- **KeyGen**
 - Generate Queue ID via programmable mechanism

- **Coarse Classify**
 - Perform exact match directed queue identification

- **BMI**
 - De-allocate buffers, discard packet on drop decision

- **QMI**
 - Enqueue description of packet to Queue Manager

- **KeyGen**
 - Identify course classification routine from parse results
Datapath Infrastructure: Queue Manager

- **QMan provides a way to inter-connect DPAA components**
 - Cores (including IPC)
 - Hardware offload accelerators
 - Network interfaces – Frame Manager

- **Queue management**
 - High performance interfaces (“portals”) for enqueue/dequeue
 - Internal buffering of queue/frame data to enhance performance

- **Congestion avoidance and management**
 - RED/WRED
 - Tail drop for single queues and aggregates of queues
 - Congestion notification for “loss-less” flow control

- **Load spreading across processing engines (cores, HW accelerators)**
 - Order restoration
 - Order preservation/atomicity

- **Delivery to cache/HW accelerators of per queue context information with the data (Frames)**
 - This is an important offload for software using hardware accelerators
FMan/QMan Ingress Packet Processing

1. Packets Arriving
2. Buffer Acquisition Request
3. Packet Data written to main memory subsystem
4. Classification driven enqueue distribution

References to Packet

16M Queues (Frame Queues)

Packets in process

MURAM

Buffer Reference

10G 1G 1G 1G 1G

Frontside Cache

DDR SDRAM

Packet Data Stored in H/W managed buffers

Bman

FMan

QMan

Packet Data written to main memory subsystem
Offline Parsing Example

Core formats data in packet delimited units. Can be L2, L3, or L4 packets

Core sends enqueue message to Qman with reference to formatted packet

Fman dequeues packet and performs parse, classify, police just as Ethernet packets

Fman based on classification enqueues packet

Data written to memory from external host (MemWr)

Note: Not shown, but an external device attached to PCIe or SRIO could perform the enqueue operation itself by accessing a software memory mapped Qman portal.
Datapath Infrastructure: Buffer Manager

- Standardized command interface to SW and HW
 - Up to 50 software portals for software: resolves any multi-core race scenario
 - Up to 6 HW portal per HW block: simplified command for HW Accelerators
 - Up to 64 separate pools of free buffers

- BMan keeps a small per-pool stockpile of buffer pointers in internal memory
 - Stockpile of 64 buffer pointers per pool, maximum 2G buffer pointers
 - Absorbs bursts of acquire/release commands without external memory access
 - Minimized access to memory for buffer pool management.

- Pools (buffer pointers) overflow into DRAM

- LIFO buffer allocation policy
 - A released buffer is immediately used for receiving new data, using cache lines previously allocated
Fman Modular Architecture Processing Pipeline

MAC

QMan

QMI / BMI

BMI / DMA

Policer

PCD

BMI / BMan

BMI

Core / SW

QMan active queue mgmt and scheduling (WRED)

QMI instructs QMan to enqueues FD

BMI releases internal buffer on completion

BMI instructs DMA to write frame IC and header to ext. buffer

Per-group policing (RFC2698/4115)

Multiple stages

Parse / Classify / Distribute → Determine queue ID#

Based upon Layer-2 packet size, BMI requests “right sized” buffer to BMan

BMI streams and allocates internal buffer for incoming frame + IC (Internal Context)

Calculate raw L4 checksum for parser

MAC Rx and validate

Rx

QorIQ T2080

64-bit DDR3/4L Memory Controller

2MB Banked L2

Coherency Fabric

Peripheral Access Mgmt Unit

Peripheral Port(s)

DCE 1.0

DCC

Buffer Mgr

QMan

BMan

FD

BP

BMI

QMI

Internal Ctx

Shared Memory

Keygen

Classify/Distrib

Parser

FPC

DMA

FMC

Policer

IC

MACs

10GE

1GE

Frame
RapidIO Message Manager

- RapidIO Rev 2.1 Compliant
- Dual controllers
- 1.25/2.5/3.125/5GBaud operation
 - 1x, 2x, 4x operation
- Extensive Transaction Type support
 - Type 9 Data Streaming
 - Type 10 Doorbells
 - Type 11 messaging
 - NWRITE/SWRITE
 - Port-write
- Support for hundreds of ingress/egress queues
- Robust QoS
- Direct interworking between Ethernet and RapidIO in hardware
 - No runtime CPU intervention required
Security Engine (SEC 5.2)

1. Public Key Hardware Accelerator (PKHA)
 - RSA and Diffie-Hellman (to 4096b)
 - Elliptic curve cryptography (1024b)
 - Supports Run Time Equalization

2. Random Number Generators (RNG4)
 - NIST Certified

3. Snow 3G Hardware Accelerators (STHA)
 - Implements Snow 3.0
 - One for Encryption (F8), one for Integrity (F9)

4. ZUC Hardware Accelerators (ZHA)
 - One for Encryption, one for Integrity

5. ARC Four Hardware Accelerator (AFHA)
 - Compatible with RC4 algorithm

6. Kasumi F8/F9 Hardware Accelerators (KFHA)
 - F8, F9 as required for 3GPP
 - A5/3 for GSM and EDGE
 - GEA-3 for GPRS

7. Message Digest Hardware Accelerators (MDHA)
 - SHA-1, SHA-2 256, 384, 512-bit digests
 - MD5 128-bit digest
 - HMAC with all algorithms

8. Advanced Encryption Standard Accelerators (AESA)
 - Key lengths of 128-, 192-, and 256-bit
 - ECB, CBC, CTR, CCM, GCM, CMAC, OFB, CFB, and XTS

9. Data Encryption Standard Accelerators (DESA)
 - DES, 3DES (2K, 3K)
 - ECB, CBC, OFB modes

10. CRC Unit
 - CRC32, CRC32C, 802.16e OFDMA CRC

Header & Trailer off-load for the following Security Protocols:
 - IPSec, SSL/TLS, 3G RLC, PDCP, SRTP, 802.11i, 802.16e, 802.1ae
Pattern Matching Engine (PME) 2.1

- Regex support plus significant extensions:
 - Patterns can be split into 256 sets each of which can contain 16 subsets
 - 32K patterns of up to 128B length
 - 9.6 Gbps raw performance
- Combined hash/NFA technology
 - No “explosion” in number of patterns due to wildcards
 - Low system memory utilization
 - Fast pattern database compiles and incremental updates
- Matching across “work units”
 - Finds patterns in streamed data
- Pipeline of processing
 - PME offers pipeline of filtering, matching, and behavior base engine for complete pattern matching solution
Life of a Packet in PME

Frame Queue: A

- Patterns
 - Patt1 /free/ tag=0x0001
 - Patt2 /freescale/ tag=0x0002

- KES
 - Compare hash value of incoming data(frames) against all patterns

- DXE
 - Retrieve the pattern with matched hash value for a final comparison

- SRE
 - Optionally post process match result before sending the report to the CPU
Decompression and Compression Engine (DCE 1.0)

- **Deflate**
 - As specified as in RFC1951
- **GZIP**
 - As specified in RFC1952
- **Zlib**
 - As specified in RFC1950
 - Interoperable with the zlib 1.2.5 compression library
- **Encoding**
 - Supports Base 64 encoding and decoding (RFC4648).
- **Operate up to 600 MHz**
 - 10 Gbps Compress
 - 10 Gbps Decompress
 - 20 Gbps Aggregate
Agenda

• T2080/1 Overview
• e6500 Core and Cache Hierarchy
• Power Management
• CoreNet Coherency Fabric Switch
• Data Path Acceleration Architecture (DPAA)
• SerDes Options
 - SerDes Lane Multiplexing
 - SerDes Supported Protocols
T2080 SerDes Lane Multiplexing

<table>
<thead>
<tr>
<th>SRDS_PKTCL_S</th>
<th>Lane A</th>
<th>Lane B</th>
<th>Lane C</th>
<th>Lane D</th>
<th>Lane E</th>
<th>Lane F</th>
<th>Lane G</th>
<th>Lane H</th>
<th>Parallel Port availability</th>
</tr>
</thead>
<tbody>
<tr>
<td>1C</td>
<td>SGMII</td>
<td>SGMII</td>
<td>SGMII</td>
<td>SGMII</td>
<td>SGMII</td>
<td>SGMII</td>
<td>SGMII</td>
<td>SGMII</td>
<td>2 RGMII (FMAN MAC #3, #4/#10)</td>
</tr>
<tr>
<td></td>
<td>(m9)</td>
<td>(m10)</td>
<td>(m1)</td>
<td>(m2)</td>
<td>(m3)</td>
<td>(m4)</td>
<td>(m5)</td>
<td>(m6)</td>
<td></td>
</tr>
<tr>
<td>95</td>
<td>SGMII</td>
<td>SGMII</td>
<td>SGMII</td>
<td>SGMII</td>
<td>SGMII</td>
<td>SGMII</td>
<td>SGMII</td>
<td>SGMII</td>
<td>2 RGMII (FMAN MAC #3, #4/#10)</td>
</tr>
<tr>
<td></td>
<td>(m9)</td>
<td>(10)</td>
<td>(m1)</td>
<td>(m2)</td>
<td>(m3)</td>
<td>(m4)</td>
<td>(m5)</td>
<td>(m6)</td>
<td></td>
</tr>
<tr>
<td>3.125G</td>
<td>3.125G</td>
<td>3.125G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A2</td>
<td>SGMII</td>
<td>SGMII</td>
<td>SGMII</td>
<td>SGMII</td>
<td>SGMII</td>
<td>SGMII</td>
<td>SGMII</td>
<td>SGMII</td>
<td>2 RGMII (FMAN MAC #3, #4/#10)</td>
</tr>
<tr>
<td></td>
<td>(m9)</td>
<td>(m10)</td>
<td>(m1)</td>
<td>(m2)</td>
<td>(m3)</td>
<td>(m4)</td>
<td>(m5)</td>
<td>(m6)</td>
<td></td>
</tr>
<tr>
<td>94</td>
<td>SGMII</td>
<td>SGMII</td>
<td>SGMII</td>
<td>SGMII</td>
<td>SGMII</td>
<td>SGMII</td>
<td>SGMII</td>
<td>SGMII</td>
<td>2 RGMII (FMAN MAC #3, #4/#10)</td>
</tr>
<tr>
<td></td>
<td>(m9)</td>
<td>(10)</td>
<td>(m1)</td>
<td>(m2)</td>
<td>(m3)</td>
<td>(m4)</td>
<td>(m5)</td>
<td>(m6)</td>
<td></td>
</tr>
<tr>
<td>3.125G</td>
<td>3.125G</td>
<td>3.125G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>51</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2 RGMII (FMAN MAC #3, #4/#10)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>5F</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2 RGMII (FMAN MAC #3, #4/#10)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>65</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2 RGMII (FMAN MAC #3, #4/#10)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>6B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2 RGMII (FMAN MAC #3, #4/#10)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>6C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2 RGMII (FMAN MAC #3, #4/#10)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>6D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2 RGMII (FMAN MAC #3, #4/#10)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>AB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2 RGMII (FMAN MAC #3, #4/#10)</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Legend:
- **Lane Multiplexing**
- **SGMII**
- **PCIe**
- **HiGig**
- **XFI**
- **PCIe3**
- **PCIe4**
- **Parallel Port availability**
T2080 SerDes Supported Protocols

<table>
<thead>
<tr>
<th>Product</th>
<th>PCIe</th>
<th>SRIO</th>
<th>Aurora</th>
<th>SGMII</th>
<th>XAUI</th>
<th>HigGig</th>
<th>XFI</th>
<th>SATA</th>
</tr>
</thead>
<tbody>
<tr>
<td>T2080</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>8</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>T2081</td>
<td>4</td>
<td>x</td>
<td>x</td>
<td>5</td>
<td>x</td>
<td>x</td>
<td>2</td>
<td>x</td>
</tr>
</tbody>
</table>

- Numbers indicate the maximum that can be supported.
Agenda

- T2080/1 Overview
- e6500 Core and Cache Hierarchy
- Power Management
- CoreNet Coherency Fabric Switch
- Data Path Acceleration Architecture (DPAA)
- SerDes Options
- Voltage ID
 - What is VID?
 - Basic Steps for System to implement VID
What is VID?

- VID is a specific method of selecting the optimum voltage-level to guarantee performance and power targets.
- QorIQ device contains fuse block registers defining required voltage level. This eFUSE definition is accessed through the Fuse Status Register (DCFG_FUSESR).
- Customer software will read the VID value from factory-set efuse values and configure regulator values appropriately.
- For T2080, the core VDD value will range from 1.025V to 0.975V in 12.5mV steps

<table>
<thead>
<tr>
<th>Power Pins</th>
<th>Power Islands on T2080</th>
</tr>
</thead>
<tbody>
<tr>
<td>VDD</td>
<td>Core and Platform</td>
</tr>
<tr>
<td>USB_SVDD</td>
<td>USB supply</td>
</tr>
</tbody>
</table>

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Start up voltage</td>
<td>1.025 ± 30mV</td>
</tr>
<tr>
<td>During normal</td>
<td>VID ± 30mV</td>
</tr>
<tr>
<td>operation</td>
<td></td>
</tr>
</tbody>
</table>
Basic Steps for System to implement VID

• At power up time zero, regulator must come up at default voltage as defined per product. For T2080, that is 1.025V.

• VERY EARLY in the boot code and before many high speed or other power hungry features or interfaces are turned on, the DCFG_FUSES register is read for the VID information. This value is translated into whatever commands to program up the new voltage value for the regulator.

• Once the regulator is sent the new values, a period of time needs to pass to allow the regulator to change values BEFORE power hungry features and higher clock rates are enabled/changed.
Agenda

• T2080/1 Overview
• e6500 Core and Cache Hierarchy
• Power Management
• CoreNet Coherency Fabric Switch
• Data Path Acceleration Architecture (DPAA)
• SerDes Options
• Voltage ID
• eSDHC
 - New Features
 - Interface New Signals
 - Supported SD Card Modes
 - Examples
eSDHC New Features

- Supports SDXC cards
 - Up to 2TB space
- Supports cards with UHS-I speed grade
 - Ultra high speed grade
 - SDR12, SDR25, SDR50, SDR104, DDR50
 - UHS-I cards work on 1.8V signaling
 - On board dual voltage regulators are needed to support UHS-I cards because card initialization happens at 3.3V and regular operations happen at 1.8V
 - SD controller provides a signal to control the voltage regulator. The signal is controlled via SDHC_VS bit
- eMMC 4.5 support (HS200, DDR)
eSDHC Interface New Signals

- **SDHC_CMD_DIR** - Command Line Direction Control
- **SDHC_DAT0_DIR** - DAT0 Line Direction Control
- **SDHC_DAT123_DIR** - DAT1 to DAT3 Line direction control
 - DIR signals are required to change direction of external voltage translator
 - Separate DIR signals are implemented to support card interrupt on DAT1 in single bit mode
- **SDHC_VS** - External voltage select, to change voltage of external regulator
- **SDHC_CLK_SYNC_IN** – SYNC clock input
- **SDHC_CLK_SYNC_OUT** – SYNC clock output
Supported SD Card Modes

<table>
<thead>
<tr>
<th>Mode</th>
<th>1 bit Support</th>
<th>4 bit Support</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>T1040</td>
<td>SD (3.0)</td>
</tr>
<tr>
<td>DS</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>HS</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>SDR12</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>SDR25</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>SDR50</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>SDR104</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>DDR50</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>
Supported MMC/eMMC Modes

<table>
<thead>
<tr>
<th>Mode</th>
<th>1 bit Support</th>
<th>4 bit Support</th>
<th>8 bit support</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>T2080</td>
<td>T2080</td>
<td>T2080</td>
</tr>
<tr>
<td>DS</td>
<td>eMMC (4.5)</td>
<td>eMMC (4.5)</td>
<td>eMMC (4.5)</td>
</tr>
<tr>
<td>HS</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>HS200</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>DDR</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>

- **DS**: Yes/Yes/Yes/Yes
- **HS**: Yes/Yes/Yes/Yes
- **HS200**: No/No/Yes/Yes
- **DDR**: No/No/Yes/Yes
SD Card Connections for T2080 (DS and HS Modes)

T2080

1.8 V 1.8 V

Voltage Translator

3.3 V 3.3 V

SD CARD

CMD, DAT[0], DAT[1:3], CLK, CD_B, WP

• Other signals should be left NC
• SYNC_OUT should be pulled-down with a weak resistor or the pin should be configured for alternate functionality
MMC Card Connections for T2080 (DS, HS, HS200 Modes)

- T2080
- Voltage Translator
- MMC (3.3V)

-CMD, DAT[0], DAT[1:7], CLK, CD

- Other signals should be left NC
- SYNC_OUT should be pulled-down with a weak resistor or the pin should be configured for alternate functionality
- Voltage translator is not needed for 1.8V MMC.
MMC (3.3V) Connections for T2080 (DDR Mode)

- In DDR mode all the input signals are sampled with respect to SYNC_IN
- Other signals should be left NC
- SYNC_OUT should be pulled-down with a weak resistor or the pin should be configured for alternate functionality
- Voltage translator is not needed for 1.8V MMC.
MMC (1.8V) Connections for T2080 (DDR Mode)

- In DDR mode all the input signals are sampled wrt SYNC_IN.
- Other signals should be left NC.
- CMD, DAT[0], DAT[1:7], CLK, CD

Diagram

- 1.8V connections between T2080 and MMC (1.8V)
- Sdhc_clk_sync_out from T2080 to MMC
- Sdhc_clk_sync_in from MMC to T2080
Agenda

• T2080/1 Overview
• e6500 Core and Cache Hierarchy
• Power Management
• CoreNet Coherency Fabric Switch
• Data Path Acceleration Architecture (DPAA)
• SerDes Options
• Voltage ID
• eSDHC
• PCI Express
PCI Express

- This chip instantiates four PCI Express controllers, each with the following key features:
 - One PCI Express controller supports end-point SR-IOV
 - Two physical functions
 - 64 virtual functions per physical function
 - Eight MSI-X per either physical function or virtual function
 - Two PCI Express controllers support 2.0 (maximum lane width off x8)
 - Two PCI Express controllers support 3.0 (maximum lane width of x4)
 - Power-on reset configuration options allow root complex or endpoint functionality
 - x8, x4, x2, and x1 link widths support
 - Both 32- and 64-bit addressing and 256-byte maximum payload size
 - Inbound INTx transactions
 - Message signaled interrupt (MSI) transactions
PCle SR-IOV End Point

Use Case: T2080 as services card, Converged Network Adapter, “Intelligent NIC”.

Single Management physical or virtual machine on host handles end-point configuration.

Each Virtual Machine running on Host thinks it has a private version of the services card.

Translation agent (in host or chipset) performs PAMU like address translation on behalf of the VFs.

Goal:
Single controller (up to x4 Gen 3), 1 PF, 64 VFs
PCIe Sub System

16 SERES PCIe Configuration

<table>
<thead>
<tr>
<th></th>
<th>PCIe1</th>
<th>PCIe2</th>
<th>PCIe3</th>
<th>PCIe4</th>
</tr>
</thead>
<tbody>
<tr>
<td>x8_{gen2}</td>
<td>x4_{gen2}</td>
<td>x8_{gen2}</td>
<td>x4_{gen2}</td>
<td></td>
</tr>
<tr>
<td>x4_{gen3}</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

X8 Gen2 or x4 Gen3 RC/EP
EP SRIOV
2 PF/64VF
8xMSI-X per VF/PF

Total of 16 lanes
Agenda

- T2080/1 Overview
- e6500 Core and Cache Hierarchy
- Power Management
- CoreNet Coherency Fabric Switch
- Data Path Acceleration Architecture (DPAA)
- SerDes Options
- Voltage ID
- eSDHC
- PCI Express
- Enablement
 - Software & Tools
 - Collaterals / Documentation
T2080 Software & Tools at a Glance

• Two Reference Design Boards
 – T2080 QDS
 – T2080 RDB

• Software Support
 – SDK 1.5
 – SDK support includes
 ▪ Legacy features (refer SDK 1.4 release notes)
 ▪ New features
 ▪ FMAN and Linux based drivers

• QorIQ Configuration Suite

• Code Warrior based debugger, flash programmer
T2080 RDB Block Diagram

Clocks, POR, Reset and Power supply Circuit

USB Conn *2
SFP+ 10G Optics Module
SFP+ 10G Optics Module
RJ45 Transformer
RJ45 Transformer
Golden Finger
PCle x1 Slot
C293 Coprocessor
SATA_conn x2

RJ45 X2
Magnetic (GST5009LF)
Magnetic (GST5009LF)
RTL8211E-VB (RGMII-->Copper)
RTL8211E-VB (RGMII-->Copper)

TXD,RXD,RTS,CTS
TXD,RXD,RTS,CTS

MAX3232
MAX3232

PCIe x4
PCIe x4
PCIe x2
PCIe x4

T2080

CPLD (EPM570G)

Nor Flash
S29GL01GP11T1FV10 (128MB)

NAND Flash
MT29FG08ABABAWP-121T (1GB)

SPI Flash
N25Q512A13GSP40F (64MB)

Micro SD Card

SPI

SDHC

Local Bus (16bit)

Local Bus (8bit)

Other control

Power-on conf

Interrupt

RESET

SPI Bus

SDHC Bus

Micro SD card

Temp Sensor (ADT7481)
RTC (DS1339U)
Clock generator (IDT9750V0641)
Power regulator (IR36021)

I2C EEPROM (AT24C256)

Battery Backup

Address:0x68

Address:0x6A

Address:0x64c

Address:0x60

Address:0x60

I2C2_SFP1
I2C2_SFP2
NOT USE
I2C2_PEX48

I2C 1

I2C 2

I2C 3

DDR3L 72bit

SPD Address:0x51

Address:0x60

2.133G,DDR3L/72bit 4GB (SODIMM)
Collaterals / Documentation

On the Core:
• e6500 core Reference Manual (Rev I , 2013)

On the SoC device:
• T2080 Fact-sheet and Product brief
• HW Spec Rev E
• Reference Manual Rev C
• Advanced Debug and Performance Monitoring Reference Manual
• Errata-sheet Rev B
• Application Notes
 AN4804 – T2080 Design Checklist
 AN4773 - Migration Guide from T2081 to T1040
Agenda

• T2080/1 Overview
• e6500 Core and Cache Hierarchy
• Power Management
• CoreNet Coherency Fabric Switch
• Data Path Acceleration Architecture (DPAA)
• SerDes Options
• Voltage ID
• eSDHC
• PCI Express
• Enablement
• Conclusion
QorIQ T2 Families Extend Market Leadership

- First 64-bit embedded processor with eight virtual core and DPAA
 - Reduces system cost, design complexity and power

- One of the industry’s most scalable, pin-compatible family of devices
 - The T2 processor is primarily intended to succeed our successful P3041 and P2041 mid-range series of quad-core devices.
 - The T2081 is a smaller-package version of the T2080, which is pin-compatible with the quad-core T1 family.

- Ideal for mid-range control plane applications or mixed control and data plane applications.
Introducing The QorIQ LS2 Family

Breakthrough, software-defined approach to advance the world’s new virtualized networks

New, high-performance architecture built with ease-of-use in mind
Groundbreaking, flexible architecture that abstracts hardware complexity and enables customers to focus their resources on innovation at the application level

Optimized for software-defined networking applications
Balanced integration of CPU performance with network I/O and C-programmable datapath acceleration that is right-sized (power/performance/cost) to deliver advanced SoC technology for the SDN era

Extending the industry’s broadest portfolio of 64-bit multicore SoCs
Built on the ARM® Cortex®-A57 architecture with integrated L2 switch enabling interconnect and peripherals to provide a complete system-on-chip solution
QorIQ LS2 Family

Key Features

SDN/NFV Switching

Data Center

Wireless Access

Unprecedented performance and ease of use for smarter, more capable networks

High performance cores with leading interconnect and memory bandwidth
- 8x ARM Cortex-A57 cores, 2.0GHz, 4MB L2 cache, w Neon SIMD
- 1MB L3 platform cache w/ECC
- 2x 64b DDR4 up to 2.4GT/s

A high performance datapath designed with software developers in mind
- New datapath hardware and abstracted acceleration that is called via standard Linux objects
- 40 Gbps Packet processing performance with 20Gbps acceleration (crypto, Pattern Match/RegEx, Data Compression)
- Management complex provides all init/setup/teardown tasks

Leading network I/O integration
- 8x1/10GbE + 8x1G, MACSec on up to 4x 1/10GbE
- Integrated L2 switching capability for cost savings
- 4 PCIe Gen3 controllers, 1 with SR-IOV support
- 2 x SATA 3.0, 2 x USB 3.0 with PHY
See the LS2 Family First in the Tech Lab!

4 new demos built on QorIQ LS2 processors:

- Performance Analysis Made Easy
- Leave the Packet Processing To Us
- Combining Ease of Use with Performance
- Tools for Every Step of Your Design
• Compliant to Serial ATA 2.6
• Supports speeds: 1.5 Gbps (first-generation SATA), 3 Gbps (second-generation SATA)
• Supports advanced technology attachment packet interface (ATAPI) devices
• High-speed descriptor-based DMA controller
• Native command queuing (NCQ) commands
• Supports port multiplier operation
• Supports hot plug including asynchronous signal recovery

See AN111 of FTF08 for more details
• Complies with USB Specification Rev 2.0
• Operates as a standalone USB host controller
 - Enhanced host controller interface (EHCI)
• High-speed (480 Mbps), full-speed (12 Mbps), and low-speed (1.5 Mbps) operation. Low speed is only supported in host mode.
• On-chip, USB-2.0, full-speed/high-speed PHY with UTMI
• Operates as a standalone USB device
 - Supports one upstream facing port
 - Supports six bidirectional USB endpoints
Target Application: 20Gb/s iNIC

- Well-balanced device for 20Gb/s bi-directional application:
 - FMan moves about 25Gb/s
 - 3x DMA engines move about 20Gb/s
 - x4 Gen3 or x8 Gen2 PCIe moves 32Gb/s
- SR-IOV allows virtual machines on host to see a private iNIC
- 15.5W power fits in 30W slot-provided power budget
- Improved PCIe Endpoint capabilities support customization of Device ID, Class Code, and Vendor ID. Driver can be stored in Expansion ROM
- Offload accelerators for services cards: 10Gb/s IPSEC or Kasumi, 10Gb/s pattern matching, 17.5Gb/s data compression
- PCIe card reference board available
Data Center Ethernet: PFC & Bandwidth Management

Priority Flow Control

- Enables lossless behavior for each class of service
- PAUSE sent per virtual lane when buffers limit exceeded
- IEEE 802.1Qbb

ETS CoS-based Bandwidth Management

- Enables intelligent sharing of bandwidth between traffic classes control of bandwidth
- 802.1Qaz

10 GE Realized Traffic Utilization

- Offered Traffic
 - t1: 3G/s, 3G/s, 3G/s
 - t2: 3G/s, 4G/s, 6G/s
 - t3: 3G/s, 3G/s, 3G/s

- Realized Traffic
 - t1: 3G/s, HPC Traffic 3G/s, 2G/s
 - t2: 3G/s, Storage Traffic 3G/s, 3G/s
 - t3: 3G/s, LAN Traffic 4G/s, 5G/s
DCE Outputs

- DCE enqueues results to SW via Frame Queues as defined by FQ Context_B field. When buffers obtained from BMan, buffer pool ID defined by Output FQ
- Each result is defined by a Frame Descriptor, which includes a Status field
- DCE updates flow stream context located at Context_A as needed
LRAT: Hypervisor Performance Improvement

- Addition of Logical to Real Address Translation in hardware
- Benefits systems where multiple applications run on multiple OSes running on the hypervisor
- Removes the hypervisor penalty associated with TLB faults
- Performance Improvement
 - Expect 10-15% performance increase for normal workloads
 - Greater improvement expected for benchmarks like stream or lmbench
T2 Advanced Power and Energy Management

- Run, Doze, Nap
- Wait
- Altivec Drowsy
 - Auto and SW controlled – maintain state
- Core Drowsy
 - Auto and SW controlled – maintain state
 - Dynamic Clock gating

- Run, Nap
 - Cores and L2
- Dynamic Frequency Scaling (DFS) of the Cluster
- Drowsy Cluster (cores)
- Dynamic clock gating

- SoC Sleep with state retention
- SoC Sleep with RST
- Cascade Power Management
- Self Refresh
- Dynamic clock gating
- Energy Efficient Ethernet (EEE)
DPAA Terminology

- **Buffer**: Unit of contiguous memory, allocated by software
- **Frame**: Buffer(s) that hold a data element (generally a packet)
 - Frames can be single buffers or multiple buffers (scatter/gather lists)
 - A “simple frame” has one delimited data element
 - A “multi-buffer frame” has two or more data elements
- **Frame Descriptor (FD)**: Proxy structure used to represent frames
- **Frame Queue**:
 - FIFO of related Frames Descriptor. (e.g. TCP session)
 - The basic queuing structure supported by QMan

Frame Queue Descriptor (FQD): Structure used to manage Frame Queues
Frame Descriptor: STATUS/CMD Treatment

- PME Frame Descriptor Commands
 - b111 NOP NOP Command
 - b101 FCR Flow Context Read Command
 - b100 FCW Flow Context Write Command
 - b001 PMTCC Table Configuration Command
 - b000 SCAN Scan Command

```
<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>DD</td>
<td></td>
</tr>
<tr>
<td>LIODN offset</td>
<td></td>
</tr>
<tr>
<td>BPID</td>
<td></td>
</tr>
<tr>
<td>ELIODN offset</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>addr</td>
<td></td>
</tr>
</tbody>
</table>

addr (cont)
```

Format	Offset	Length

Status/CMD

Scan b000

<table>
<thead>
<tr>
<th>SRV</th>
<th>F</th>
<th>S/R</th>
<th>SET</th>
<th>Subset</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Data Center Bridging (DCB) Overview

- QMan 1.2 (e.g. QorIQ T208x) supports Data Center Bridging (DCB)
- DCB refers to a series of inter-related IEEE specifications collectively designed to enhance Ethernet LAN traffic prioritization and congestion management
- DCB can be used in:
 - Between data center network nodes
 - LAN/network traffic
 - Storage Area Network (SAN) [e.g. Fiber Channel (loss sensitive)]
 - IPC traffic [e.g. Infiniband (low latency)]
- The DPAA is compliant with the following DCB specifications (traffic management related):
 - IEEE Std. 802.1Qbb: Priority-based flow control (PFC)
 - To avoid frame loss, PFC Pause frames can be sent autonomously by HW
 - IEEE Std. 802.1Qaz: Enhanced transmission selection (ETS)
 - Support weighted bandwidth fairness
 - IEEE 802.1Qau: Quantized Congestion Notification (QCN)
 - End-to-end congestion control mechanism
Queue Management

- QMan provides a way to inter-connect DPAA components
 - Cores (including IPC)
 - Hardware offload accelerators
 - Network interfaces – Frame Manager
- Queue management
 - High performance interfaces (“portals”) for enqueue/dequeue
 - Internal buffering of queue/frame data to enhance performance
- Congestion avoidance and management
 - RED/WRED
 - Tail drop for single queues and aggregates of queues
 - Congestion notification for “loss-less” flow control
- Load spreading across processing engines (cores, HW accelerators)
 - Order restoration
 - Order preservation/atomicity
- Delivery to cache/HW accelerators of per queue context information with the data (Frames)
 - This is an important offload for software using hardware accelerators
DPAA Building Block: Frame Descriptor (FD)

Simple Frame

Multi-buffer Frame (Scatter/gather)

Frame Descriptor

<table>
<thead>
<tr>
<th>D</th>
<th>PID</th>
<th>BPID</th>
<th>Address</th>
<th>Offset</th>
<th>Length</th>
<th>Status/Cmd</th>
</tr>
</thead>
<tbody>
<tr>
<td>000</td>
<td>PID</td>
<td>BPID</td>
<td>Address</td>
<td>Offset</td>
<td>Length</td>
<td>Status/Cmd</td>
</tr>
</tbody>
</table>

Buffer

Packet

Frame Descriptor

<table>
<thead>
<tr>
<th>D</th>
<th>PID</th>
<th>BPID</th>
<th>Address</th>
<th>Offset</th>
<th>Length</th>
<th>Status/Cmd</th>
</tr>
</thead>
<tbody>
<tr>
<td>000</td>
<td>PID</td>
<td>BPID</td>
<td>Address</td>
<td>Offset</td>
<td>Length</td>
<td>Status/Cmd</td>
</tr>
</tbody>
</table>

S/G List

<table>
<thead>
<tr>
<th>Address</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>BPID</td>
<td>Offset (=0)</td>
</tr>
</tbody>
</table>

Data

Packet
DCE Inputs

- SW enqueues work to DCE via Frame Queues. FQs define the flow for stateful processing.
- FQ initialization creates a location for the DCE to use when storing flow stream context.
- Each work item within the flow is defined by a Frame Descriptor, which includes length, pointer, offsets, and commands.
- DCE has separate channels for compress and decompress.
e500mc/e6500 Caching Structure Differences

<table>
<thead>
<tr>
<th></th>
<th>e500mc</th>
<th>e6500</th>
<th>Implication</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1</td>
<td>32kB. Can lock per core</td>
<td>32kB. Can lock per core</td>
<td>e6500 doesn’t lock per thread.</td>
</tr>
<tr>
<td>L2</td>
<td>128kB per core</td>
<td>2MB shared</td>
<td>There will be a somewhat different latency profile, overall improved for e6500</td>
</tr>
<tr>
<td>L3</td>
<td>1MB</td>
<td>512kB</td>
<td></td>
</tr>
</tbody>
</table>

- Cache changes are transparent to user application
- L1 locking is less granular in e6500
e6500 Core Complex

- 64-bit Power Architecture
- 28 nm Technology
- e5500 core features plus:
 - Shared L2 in cluster of 4 cores
 - 2 MB 16-way, 4 Banks
 - Scalable from 128 KB-4 MB
 - High-performance eLink bus between coreLd/St and instruction fetch units
- Power
 - Drowsy core and caches
 - Power Mgt Unit
 - Wait-on-reservation instruction
- Enhanced MP Performance
 - Accelerated Atomic Operations
 - Optimized Barrier Instructions
 - Fast intra-cluster sharing
- AltiVec SIMD Unit
- CoreNet BIU
 - 256-bit Din and Dout data busses
- 40-bit Real Address
 - 1 Terabyte physical address space
- LRAT
 - Logical to Real Address translation mechanism for improved hypervisor performance

Each thread: Superscalar, seven-issue, out-of-order execution/in-order completion
Branch unit with a 1024-entry, 4-way set associative Branch Target/History
Three integer units: 2 Simple, 1 Complex for integer Multiply & Divide, 1 Floating-point Unit, 1 Altivec Unit, 2 Load/Store Units
64 TLB SuperPages, 1024-entry 4K Pages, 40-bit Physical Address
P3041 vs T2080 Core Compatibility

e6500 and e500mc Compatibility

- User code runs equally well on e6500 or e500mc
 - Interrupts per thread
 - Soft reset per thread (hard reset per core only)
 - Debug state per thread
- Changes are hidden by OS
 - L2 initialization uses a different register
 - Cache locking controlled differently
- P4080 SDK, emulated for e6500, didn’t require changes
- Additional enablement for new features not present on e500mc: 64b, drowsy power manager, Altivec
P3041 vs. T2080 DPAA Differences

- API enables minimal changes moving from P3041 to T2080
- SDK running on P3041 can be running with no changes for T2080
- Changes required to take advantage of new features:
 - Data compression engine
 - Storage Profiles
 - Data Center Bridging
 - Traffic Management
- Other
 - 8x GE sourced by single FMan on T2080 sources vs. single Fman on P3041
Ethernet Termination

Ethernet enhancements compared to P2041/P3041:

- Storage Profile selection (up to 32 Profiles per port) based on classification. Where storage profile contains
 - LIOPN offset
 - Up to four buffer pools per Storage Profile
 - Buffer Start margin/End margin configuration
 - S/G disable
 - Flow control configuration.
- IEEE802.3az (Energy Efficient Ethernet)
- IEEE802.3bf (Time sync)
- TX confirmation/error queue enhancements
 - Ability to configure separate FQID for normal confirmations vs errors
- Separate FD status for Overflow and physical error
- Egress Shaping (Definition in process)

- T2080 supports Datacenter Bridging
 - Priority Flow Control (PFC, IEEE 802.1Qbb)
 - Enhanced Transmission Selection (ETS, IEEE 802.1Qaz)
 - Data Center Bridging Exchange Notification (DCBX, currently part of IEEE 802.1Qaz, leverages 802.1AB (LLDP))