Challenges and Technologies
The Human Friendly Vehicle in 2030 and Beyond

Steven P. Nelson
Director, Global Automotive Marketing
Agenda

- Growth of Automotive Electronics
- Advanced Vehicle Architecture
- Sustainable Mobility
- Managed Infrastructure
- Summary

Fun, Safe, and Sustainable Transportation
Global leadership in Embedded Processing and Connectivity Solutions

#1 in RF for Wireless Infrastructure

Nearly 7 of every 10 mobile phone calls are made using Freescale Base Station Products

#1 Supplier of Automotive ICs

1 of every 2 new cars worldwide are powered by Freescale Technology

#1 in Communications Processors

Have shipped more than 185 million communications processor units

#2 Supplier of Microcontrollers

Shipped 18 Microcontrollers every second in 2008

Shipped 9 Industrial microcontrollers every second in 2008
$5.2B Revenues (2008)
- 30% automotive
- No.1 automotive semiconductor supplier for more than 30 years

No.1 in total auto ICs
No.1 in auto microcontrollers
No.2 in MEMS sensors
Human Friendly Vehicle

► Fun
 • Performance
 • Traffic
 • Driver assistance

► Safe
 • Accident avoidance
 • Occupant protection
 • Reliability

► Sustainable
 • Low impact on the environment
 • Production, use and recycle
The Financial Crisis is Not Changing the Fundamental Issues

- Increasing world wide population
- Increasing energy usage and shortage of oil
- Increasing World Mobility
- Too much Greenhouse Gas emissions

This is Why We Are Here
The Case for Electronics

<table>
<thead>
<tr>
<th></th>
<th>1983 BMW 323i</th>
<th>2006 BMW 325i</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fuel consumption</td>
<td>10.31/100 km</td>
<td>8.4/100 km</td>
</tr>
<tr>
<td>Acceleration</td>
<td>9.2 s</td>
<td>7.0 s</td>
</tr>
<tr>
<td>Emission</td>
<td>ECE R15-04</td>
<td>EU 4</td>
</tr>
<tr>
<td>Aerodynamic Resistance</td>
<td>0.40 x 1.85 m²</td>
<td>0.29 x 2.15 m²</td>
</tr>
<tr>
<td>Weight</td>
<td>1080 kg</td>
<td>1490 kg</td>
</tr>
<tr>
<td>Power</td>
<td>102 kW</td>
<td>160 kW</td>
</tr>
<tr>
<td>Engine torque</td>
<td>205 Nm</td>
<td>250 Nm</td>
</tr>
</tbody>
</table>

Source: BMW Presentation, FTF Orlando, 2008, Dr. Michael Wurtenburger
Automotive Electronic Content Growth

“80% percent of innovation is electronic”
“Impossible to comply with regulation without electronic systems”
-Automotive OEM

Electronic cost as % of total car cost

2005: 30%
2010: 35%

Sources: Bosch, PSA, Freescale Strategy

The Road Ahead

• Electronics are imperative to balancing increasing individual transportation and reducing fuel cost, emissions and casualties

- Advanced Driver Assistance
- Active-Passive Safety
- Green Powertrain
- Radar / Vision
- Telematics
- Infotainment

• Consumer awareness, legislation and competitive differentiation join forces driving electronic content

Airbag
ABS / ESP
Body Electronics
Multiplexing

“80% percent of innovation is electronic”
“Impossible to comply with regulation without electronic systems”
-Automotive OEM

Electronic Fuel Injection

50%

Freescale™ and the Freescale logo are trademarks or registered trademarks of Freescale Semiconductor, Inc in the U.S.A and other countries. All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc. 2009.
Automotive Semiconductors in 2030

► Process node trails ‘industry leading’ by ~7 years and ~ 5 nodes
 • Volume production today mostly on 180nm
 • Ramping 90nm, development on 65nm
 • Analog further behind

► Trends / Issues
 • Redundant/Parallel architectures
 • Application specific vs. generic MPU
 • Dedicated hardware
 • Power consumption at smaller nodes

The industry has traditionally found a way around technical hurdles!
Advanced Vehicle Architecture
Vehicle Architecture: Today’s Global Basic Vehicle

- Immobilizer
- Body Controller
- Instrument Cluster
- Engine Management
- Radio
- Airbag
- Anti-lock Braking

CAN
Proprietary Communication

= Optional
Vehicle Architecture:
2009 Architectural Leader

- Immobilizer
- RKE and TPMS Rx
- Instrument Cluster
- Radio
- Nav
- Engine Management

Body Controller / Gateway:
- Seat modules
- Alarm
- Rear module
- HVAC
- Blower
- Door module
- Rear Lighting
- Sunroof
- Lighting L
- Lighting R
- Temp
- Wipers
- Battery management
- SJB
- Blind Spot Detection
- Anti-lock Braking
- Sensor cluster
- Airbag
- Occupant Classification
- Driver Seat Belt Pretent.
- Pass. Seat Belt Pretent.
- Integrated Chassis Management
- NOX
- 4x4
- Park Assist
- Park Assist

- Amplifier
- Video
- Video
- Glow Plug
- Cooling Fan
- Fuel Pump
- Transmission
- Active Steering
- Suspension
- Suspension
- Suspension
- Park Assist
- Adaptive Cruise Ctrl

- CAN
- Diagnostic CAN
- LIN
- FlexRay
- MOST
Why is This important?

► Networked systems increase in capability as the number of nodes increases
► New features are enabled
► Balance complexity for the average consumer
► Risk being too ‘clever’
 • System operates as designed but incorrectly programmed or operated
 • Remote system programming will be required

• Limit top speed
• Prevents deactivation safety systems
• Limits audio sound level
• Set a speed alert chime
• Mutes the audio system if the seat belts are not buckled
• Warns of a low fuel sooner
Aging Population

► Improved Navigation
 • Intelligent / Safe routing
 • Out of Area notification

► Driver Capability and Skill
 • Alertness
 • Safety event reporting
 ▪ Lane departure
 ▪ Over/Under speed limit

► Medical Condition Awareness
 • Automatic notification
 • Autonomous operation in medical emergency
 • Integrated medical sensing

Diagnostic Steering Wheel
Sustainable Mobility
Efficiency Requires Improvements in Many Areas

Powertrain
- Hi Precision/Direct Injection
- Single/Multiple Turbo
- Improved Transmissions
- Start/Stop
- Mild/Full Hybrid
- EV

Prediction
- Driver behavior
- Route topology
- Weather
- Managed Infrastructure

Resistance
- Rolling Resistance
- Light Weight Materials
- Cable harnesses
- Reduced Hydraulics
- Increased Electrification
- Active Aerodynamics

Energy Sources
- Bio Diesel
- Gasoline
- Natural Gas
- Alternative Fuels
- Hydrogen
- Electric
Prediction is a Critical Component

Energy Management with Prediction

- Topology
- Traffic Conditions
- Weather / Temperature
- Traffic Signals / State
- Hybrid Energy Usage

All constantly transmitted to the car’s Energy Management System
Personal Freedom vs. Efficiency

► Daily Commute Scenario
 • Submitted daily commute plan
 • Trip logistics transmitted to the car from central auto management
 • Departure time
 • Routing and speed
 • Parking slot

► Issues
 • Ad-Hoc driving
 • Biology breaks
 • Essence of personal transportation
Future Communications Scenarios
- Car to Car
- Car to Infrastructure

Capabilities
- Advanced Safety
- Accident avoidance / prediction
- Dynamic re-routing
- Surface conditions
- Road maintenance

Desired Benefits
- Driver awareness / impairment / ability
- Green Driving behavior

Automobiles with limited capability must be able to co-exist with advanced platforms
Active Safety and Driver Interaction

► Collision Detection
 • Radar
 • Car2Car
 • GPS
 • Car2Infrastructure

► Response
 • Wheel shake
 • Audible/Visible
 • Braking/Turning

► Returning control to the driver
 • Determine that danger has passed

Cars safe enough to build using less sturdy materials
Managed Infrastructure
Western Hemisphere vs. BRIC

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Unit</th>
<th>USA</th>
<th>EU27</th>
<th>Japan</th>
<th>Total or Avg.</th>
<th>Brazil</th>
<th>Russia</th>
<th>India</th>
<th>China</th>
<th>Total or Avg.</th>
<th>Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Population</td>
<td>Mio hab</td>
<td>307</td>
<td>491</td>
<td>127</td>
<td>925</td>
<td>198</td>
<td>140</td>
<td>1166</td>
<td>1338</td>
<td>2842</td>
<td>3.07</td>
</tr>
<tr>
<td>GDP per capita</td>
<td>US$</td>
<td>$47,000</td>
<td>$33,400</td>
<td>$34,200</td>
<td>$38,024</td>
<td>$10,100</td>
<td>$15,800</td>
<td>$2,800</td>
<td>$6,000</td>
<td>$5456</td>
<td>0.14</td>
</tr>
<tr>
<td>Land area</td>
<td>Mio sq km</td>
<td>9.1</td>
<td>4.3</td>
<td>0.374</td>
<td>13.774</td>
<td>8.4</td>
<td>16.9</td>
<td>2.9</td>
<td>9.3</td>
<td>37.5</td>
<td>2.72</td>
</tr>
<tr>
<td>Total road</td>
<td>‘000s of km</td>
<td>6465</td>
<td>5454</td>
<td>1196</td>
<td>13115</td>
<td>1751</td>
<td>933</td>
<td>3316</td>
<td>1930</td>
<td>7930</td>
<td>0.60</td>
</tr>
<tr>
<td>Car parc</td>
<td>Mio of cars</td>
<td>240</td>
<td>250</td>
<td>61</td>
<td>551</td>
<td>24</td>
<td>38</td>
<td>13</td>
<td>37</td>
<td>111</td>
<td>0.20</td>
</tr>
<tr>
<td>Car density</td>
<td># cars per 1000 hab.</td>
<td>782</td>
<td>509</td>
<td>480</td>
<td>596</td>
<td>123</td>
<td>268</td>
<td>11</td>
<td>27</td>
<td>39</td>
<td>0.07</td>
</tr>
<tr>
<td>Car density</td>
<td># cars per km of road</td>
<td>37</td>
<td>46</td>
<td>51</td>
<td>42</td>
<td>14</td>
<td>40</td>
<td>4</td>
<td>19</td>
<td>14</td>
<td>0.33</td>
</tr>
</tbody>
</table>

Source: US Central Intelligence Agency – CIA, world fact book

Developed Infrastructure for Transportation Management will be Critical
Managed Infrastructure

- Segregation of common platforms
- Smoothing of vehicle flow
- Active lane management

Embedded Energy
Advanced Infrastructure and Telematics

Extension of your ‘Virtual Self’

- Car Configuration
- Personal and Business Content
- Real time interaction with the outside world
- Personal Privacy?
Summary

- Incremental progress on multiple fronts
- Critical mass of key technologies
- Ultimate reliability of hardware and software
- Changes in consumer behavior
- Roll of government regulation

The processing power will be available!