Enabling the Migration to an All-IP Network

Colin Cureton
Product Marketer
Enable next generation broadband networking systems to deliver a seamless user experience via processors offering:

- High-performance cores for control and data plane
- Leading-edge performance for power
- Intelligent IP and security processing
- Flexible, programmability
- Ability to leverage historical and future software investment
- Low risk “value-add” ecosystem
Evolution within Specific Applications

Network Evolution

3G Network

- MSC Server / MGW
- RNC
- Node B
- WCDMA (HSDPA)
- ATM

LTE Evolved 3G Network

- aGW
- eNB
- X2
- S1
- IP Routing

- Evolved RAN
 - Low latency
 - Low cost, simple Architecture

- Consolidated GSN/RNC Functions

- LTE Radio
 - Low Latency RLC/PHY
 - 50M – 100Mbps
 - OFDM, MIMO

Technology Challenges

- Significantly higher data rates – to 100/50 Mbps (down/up)
- Flexible spectrum (FDD/TDD), co-existing with 3G
- Improved spectral efficiency (using OFDM and MIMO)
- Improved control plane and user plane latency
- “All IP” network friendly
- Reduced cost for operator and user

Base Station Platform Benefits

- Higher processing performance
- Scalable, programmable performance
- OFDM /MIMO DSP signal processing
- Low latency interconnect and optimized scheduling
- Integrated IP interconnect
- Consolidation, reuse, power savings
Transitional Challenges

► **Application Challenges:**

- Acceleration of network connected devices
 - Mix of services: voice and data
 - Mix of protocols: IP, Ethernet, MPLS, TDM, ATM, IMA, A-bis/A-ter, PseudoWire…
 - Mix of physical layer: E1/T1, PDH, SDH/SONET, OFDM-base microwave, g.SHDSL, ADSL2+, PON, Point2Point Ethernet. …

- Growing broadband wireline/wireless data-rates (including Gigabit IP forwarding)

- Lower power to reduce OPEX and carbon footprint
Migrating to all IP - Options for OEMs

- Distinct legacy or IP only support

- Systems are designed with either:
 - Network interface cards (NICs) only capable of supporting legacy or IP interfaces
 - OR
 - Distinct components on the system to support legacy and IP

- Requires design, support maintenance of distinct solutions for IP and legacy data path solutions.

- Multi-protocol design

- Systems are designed to support legacy and future all IP requirements

- Single hardware and software designs, consistent programming model for data path (DP) and core

- Balance of DP and core performance to allow system to be optimized for different protocols and applications
Power Architecture® Technology Platform Roadmap
Increasing Performance, Reducing Power

Increasing Performance (Frequency, System Performance)

- PowerQUICC® I
- PowerQUICC II
- PowerQUICC II Pro
- PowerQUICC III
- MPC86XX

Decreasing Power

- QorIQ™ P1 platform
 45 nm process technology
- QorIQ™ P2 platform
 45 nm process technology
- QorIQ™ P3 platform
 45 nm process technology
- QorIQ P4 platform
 45 nm process technology
- QorIQ™ P5 platform
 45 nm process technology

Next Generation Core and Platform –
> Increased frequency
> Higher bandwidth
> Improved system performance within five power bands

Freescale™ and the Freescale logo are trademarks or registered trademarks of Freescale Semiconductor, Inc in the U.S. and all other countries. All other product or service names are the property of their respective owners. The Power Architecture and Power.org word marks and the Power and Power.org logos and related marks are trademarks and service marks licensed by Power.org. © Freescale Semiconductor, Inc. 2009.
QorIQ™ P4 Series P4080 Block Diagram

- Eight e500 cores to 1.5 GHz
- 128 KB backside L2 cache
- 2 MB front side L3 cache
- 2x 10GE + 8x GE
- Enhanced local bus controller
- 18 lanes 5 GHz SerDes
 - Three PCI Express® 2.0 controllers
 - Two Serial RapidIO® 1.2 controllers
- Two USB controllers with ULPI interface to external PHY
- Aurora debug port
- CoreNet coherency fabric
 - Eliminates shared bus contention and supports dramatically higher address issue bandwidth to “feed” multiple cores
 - Scales to support more than 32 cores
 - Can support heterogeneous cores
- Tri-level cache hierarchy
 - Power Architecture™ cores with backside L2 caches
 - Multiple L3 shared caches
 - Multiple memory controllers
- On-demand application acceleration
 - Frame Manager, Buffer Manager, Queue Manager
 - Crypto and pattern match acceleration
- Virtualization
 - Autonomous core operation
 - Memory protected from bad code
Dual-core P2020 Block Diagram

- **Dual e500 core built on Power Architecture™ technology**
 - 800 - 1200 MHz
 - 512 KB frontside L2 cache w/ ECC, hardware cache coherent
 - 36-bit physical addressing, DP-FPU

- **System unit**
 - 64-/32-bit DDR2/DDR3 with ECC
 - Integrated SEC 3.1 security engine
 - Open-PIC interrupt controller, Perf Mon, 2x I²C, timers, 16 GPIO’s, DUART
 - 16-bit enhanced local bus supports booting from NAND flash
 - One USB 2.0 host controller with ULPI interface
 - SPI controller supporting booting from SPI serial flash
 - SD/MMC card controller supporting booting from flash cards
 - Three 10/100/1000 Enhanced Triple Speed Ethernet Controllers (eTSEC) w/ jumbo frame support, SGMII interface
 - Enhanced features: parser/filer, QOS, IP-checksum offload, lossless flow control
 - IEEE® 1588v2 support
 - Two Serial RapidIO® controllers with integrated message unit operating up to 3.125 GHz
 - Three PCI Express® 1.0a controllers operating at 2.5 GHz

- **Process and package**
 - 45 nm SOI, 0C to 125C Tj with -40C to 125C Tj option
 - 689-pin TePBGAII
MPC8569 PowerQUICC® III
Bridging the Gap to the All-IP Network

- e500 Core built on Power Architecture® technology
 - 800 MHz to 1.33 GHz
 - 512 KB L2 cache w/ ECC
 - 36-bit physical addressing
 - Double Precision Floating Point
- System interfaces
 - 64-bit or 2x32-bit DDR2/3 w/ ECC
 - 800 Mbps/pin data rate
 - 16-bit Local Bus for SRAM/flash
 - Timers, DUART, 2x I²C, GPIO, SPI
 - USB 2.0 full speed
- High-speed serial interfaces
 - Dual SGMII
 - Dual x1 Serial RapidIO® or PCI Express®
- QUICC Engine™
 - 4 RISCs up to 667 MHz
 - Maximum of eight Ethernet interfaces, one per UCC:
 - 4 x Gigabit Ethernet (up to 2 w/SGMII)
 - Up to 8 x 10/100 Ethernet
 - Multi-PHY UTOPIA/POS-PHY L2 (16-bit)
 - IEEE® 1588 support v2
 - 16 x T1/E1 (512 x 64kbps channels)
- Security engine (SEC3.0)
 - ARC4, 3DES, AES, RSA/ECC, RNG, XOR, Single pass SSL/TLS, Kasumi, SNOW
- Four-channel DMA
- 45 nm SOI process technology
- Target <7W power (@ 800 MHz e500)
QUICC Engine™ – Protocol Termination vs. Interworking

► Protocol Termination:
 • Both control and data plane traffic are terminated by the CPU
 • Predominant approach used with CPM based PowerQUICC devices
 • Protocol processing and interworking is performed by CPU software

► Protocol Interworking:
 • Data plane traffic is forwarded directly by QUICC Engine™ technology. Control plane traffic is terminated by the CPU.
 • Benefits: Greater headroom in CPU, improved throughput, minimized latency and jitter
 • Powerful API and drivers provided to facilitate effective use of interworking

• Interworking applications are typically complex from a Freescale solution perspective, and often customer specific, as they rely upon implementing functions previously done using CPU software in microcode

• Termination applications rely upon customer implemented software, and therefore are less complex from a Freescale solution perspective
Device drivers:
• Modular set of platform, peripheral and protocol device drivers
• Operating system independent APIs (e.g. bare board) for customer application use and porting
 ▪ Operating system porting guide provided
• Platform level drivers supported – MMU, cache, interrupt controller, memory controllers, timers, DUART, I2C, security, etc.
• Built-in use cases demonstrating functionality and performance
• Complete device driver source code and comprehensive documentation provided

Comprehensive feature set, including:
• Interrupt or polling modes for communication peripherals
• Statistics gathering
• Protocol interworking
• Support for both default (simple) and advanced (detailed) driver configurations
• External memory management for parameters, tables and buffer descriptors (BDs)
• Memory management support for system bus, secondary bus and local bus

Hardware support:
• Support for MDS processor and I/O boards
QUICC Engine™ Linux® Drivers
(offer consistent user space and bare board API)

QUICC Engine Linux driver package contains:
- Low-level drivers (bare board)
- User space libraries
- The user space API is a mirror of the bare board API

Supported features include:
- Ethernet termination
- ATM termination
- IMA termination
- PPP termination
- ATM2ETH interworking
- ETH2ETH interworking
- PPP2ETH interworking
- ATMoIMA2ETH interworking
- Packet filtering
Software Migration – Preserving API Architecture

API

<table>
<thead>
<tr>
<th>Legacy Features</th>
<th>API</th>
<th>Legacy IP Specific</th>
<th>IP Only (Today)</th>
<th>Common Features</th>
<th>IP Specific</th>
<th>Future DPAA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Legacy Features</td>
<td>API</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IP Only</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Legacy Architecture</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Future DPAA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Features

IP Features
Software Migration

Application Code

Libraries

Operating System

BB Application Code

API

Driver

Driver

Driver

Hardware

Legacy Architecture

IP Only Architecture

Future DPAA

Software

Hardware
Freescale: Enabling the Migration to an All-IP Network

<table>
<thead>
<tr>
<th>High Performance cores for control and data plane</th>
<th>Industry leading Power Architecture® based e500 cores</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leading-edge performance for power</td>
<td>Low power designs, 45 nm process technology</td>
</tr>
<tr>
<td>Intelligent IP and security processing</td>
<td>Range of optimized data path and security accelerators</td>
</tr>
<tr>
<td>Flexible, programmability</td>
<td>Fully programmable devices</td>
</tr>
<tr>
<td>Ability to leverage historical and future software investment</td>
<td>Clear migration path between devices</td>
</tr>
<tr>
<td>Low Risk “value-add” eco-system</td>
<td>One of the most established eco-systems in the industry</td>
</tr>
</tbody>
</table>
Thank you for attending this presentation

We’ll now take a few moments for the audience’s questions and then we’ll begin the question and answer session