Windows CE 6.0
Bare Essentials

Kurt Kennett
Microsoft Corporation
Where do we start?

We need to understand systems level software and how Windows CE fits in.
Where do we start?

- We need to understand systems level software and how Windows CE fits in.
- “Systems” has to do with the software that is in between the user programs and computer hardware.
Where do we start?

- We need to understand systems level software and how Windows CE fits in.
- “Systems” has to do with the software that is in between the user programs and computer hardware.

User Application
(ex: Word Processor)
Where do we start?

We need to understand systems level software and how Windows CE fits in.

“Systems” has to do with the software that is in between the user programs and computer hardware.
where do we start?

We need to understand systems level software and how Windows CE fits in.

“Systems” has to do with the software that is in between the user programs and computer hardware.
where do we start?

We need to understand systems level software and how Windows CE fits in.

“Systems” has to do with the software that is in between the user programs and computer hardware.
Where do we start?

We need to understand systems level software and how Windows CE fits in.

“Systems” has to do with the software that is in between the user programs and computer hardware.
where do we start?

- We need to understand systems level software and how Windows CE fits in.
- “Systems” has to do with the software that is in between the user programs and computer hardware.

Systems software provides a standard environment that application writers can depend on.
what does Windows CE do for me?

A Windows CE Operating system “Image” is a collection of systems software.
What does Windows CE do for me?

- A Windows CE Operating system “Image” is a collection of systems software.
- Microsoft includes in Windows CE 6.0 a choice of four possible CPU “architectures” that can be used to base your computer hardware on.
What does Windows CE do for me?

- A Windows CE Operating system “Image” is a collection of systems software.
- Microsoft includes in Windows CE 6.0 a choice of four possible CPU “architectures” that can be used to base your computer hardware on.
- An architecture is the structure behind a way of computing - adding, subtracting and multiplying bits, and loading them from or storing them to memory.
A Windows CE Operating system “Image” is a collection of systems software.

Microsoft includes in Windows CE 6.0 a choice of four possible CPU “architectures” that can be used to base your computer hardware on.

An architecture is the structure behind a way of computing - adding, subtracting and multiplying bits, and loading them from or storing them to memory.
what does Windows CE do for me?

- A Windows CE Operating system “Image” is a collection of systems software.
- Microsoft includes in Windows CE 6.0 a choice of four possible CPU “architectures” that can be used to base your computer hardware on.
- An architecture is the structure behind a way of computing - adding, subtracting and multiplying bits, and loading them from or storing them to memory.

```assembly
ldr r0, [r1, #8]
mov eax, dword ptr edx+8
```
what does Windows CE do for me?

- A Windows CE Operating system “Image” is a collection of systems software.

- Microsoft includes in Windows CE 6.0 a choice of four possible CPU “architectures” that can be used to base your computer hardware on.

- An architecture is the structure behind a way of computing - adding, subtracting and multiplying bits, and loading them from or storing them to memory.

- The choice of an architecture is the starting point for the design of a computer system.
CPU – Genus and Species

An architecture isn’t a physical thing. It’s a specification of how a CPU core should work.
An architecture isn’t a physical thing. It’s a specification of how a CPU core should work.

An actual implementation of an architecture version ends up as a particular CPU core.
CPU – Genus and Species

An architecture isn’t a physical thing. It’s a specification of how a CPU core should work.

An actual implementation of an architecture version ends up as a particular CPU core.
An architecture isn’t a physical thing. It’s a specification of how a CPU core should work.

An actual implementation of an architecture version ends up as a particular CPU core.

The choice of an CPU core (and therefore an architecture) is typically the second thing you do in defining a computer.
CPU – Genus and Species

- An architecture isn’t a physical thing. It’s a specification of how a CPU core should work.
- An actual implementation of an architecture version ends up as a particular CPU core.
- The choice of an CPU core (and therefore an architecture) is typically the second thing you do in defining a computer.
An architecture isn’t a physical thing. It’s a specification of how a CPU core should work.

An actual implementation of an architecture version ends up as a particular CPU core.

The choice of an CPU core (and therefore an architecture) is typically the second thing you do in defining a computer.

A CPU core is typically built into a ‘SoC’ or System-On-Chip. This is a combination of a CPU Core and some support logic and peripherals highly tuned to work with that core.
An architecture isn’t a physical thing. It’s a specification of how a CPU core should work.

An actual implementation of an architecture version ends up as a particular CPU core.

The choice of an CPU core (and therefore an architecture) is typically the second thing you do in defining a computer.

A CPU core is typically built in to a ‘SoC’ or System-On-Chip. This is a combination of a CPU Core and some support logic and peripherals highly tuned to work with that core.

The ‘SoC’ is sold as a product.
"Boards" – making a product

ARCH
X86
MIPS
ARM
SH
"Boards" – making a product
"Boards" – making a product
"Boards" – making a product

- ARCH
 - X86
 - MIPS
 - ARM
 - SH

- CPU CORE
 - 80486
 - Pentium
 - ARMv5TE
 - ARM11EJ-S

- CPU / SoC
 - MARVELL PXA27x
 - QUALCOMM 7X00
 - TI OMAP 3430
"Boards" – making a product
"Boards" – making a product

- ARCH
 - X86
 - MIPS
 - ARM
 - SH

- CPU CORE
 - 80486
 - Pentium
 - ARMv5TE
 - ARM11EJ-S

- CPU / SoC
 - MARVELL PXA27x
 - QUALCOMM 7X00
 - TI OMAP 3430

- Board
 - phyCore270
 - EM-X270
 - Mainstone II
"Boards" – making a product

ARCH
- X86
- MIPS
- ARM
- SH

CPU CORE
- 80486
- Pentium
- ARMv5TE
- ARM11EJ-S

CPU / SoC
- MARVELL PXA27x
- QUALCOMM 7X00
- TI OMAP 3430

Board
- phyCore270
- EM-X270
- Mainstone II
"Boards" – making a product

Board

phyCore270
EM-X270
Mainstone II
Software for a “Board”

A Board needs systems software to adapt it to the applications.

We call the collection of systems software that is used an operating system.
A Board needs systems software to adapt it to the applications.

We call the collection of systems software that is used an operating system.

An operating system like Windows CE is a choice.
A Board needs systems software to adapt it to the applications.

We call the collection of systems software that is used an operating system.

An operating system like Windows CE is a choice.

Usually a choice is made based on a number of factors.
Software for a “Board”

- A Board needs systems software to adapt it to the applications.
- We call the collection of systems software that is used an operating system.
- An operating system like Windows CE is a choice.
- Usually a choice is made based on a number of factors.
 - Existing applications for the OS
 - Difficulty of application development
 - Cost of licensing
 - Many other reasons
In order for the Board to be useful, the systems software must adapt its hardware so the applications can use it.
In order for the Board to be useful, the systems software must adapt its hardware so the applications can use it. A component is a piece of the systems software that allows a well defined set of functionality to operate.

- Display
- Input
- Sound
In order for the Board to be useful, the systems software must adapt its hardware so the applications can use it.

A component is a piece of the systems software that allows a well defined set of functionality to operate.

- Display
- Input
- Sound

To support the variety of needs of the systems software for a board, typically a large variety of ‘components’ are available.
Software Componentization

Board
- phyCore270
- EM-X270
- Mainstone II

OS Components
- USB HOST
- WINDOW MANAGER
- DEBUG SHELL
Software Componentization

Board
phyCore270
EM-X270
Mainstone II

OS Components
DISPLAY SYSTEM
USB HOST
WINDOW MANAGER
DEBUG SHELL
Software Componentization

Board
- phyCore270
- EM-X270
- Mainstone II

OS Components
- USB CORE
- DISPLAY SYSTEM
- USB HOST
- WINDOW MANAGER
- DEBUG SHELL
Software Componentization

Board
- phyCore270
- EM-X270
- Mainstone II

OS Components
- DEVICE MANAGER
- DISPLAY SYSTEM
- WINDOW MANAGER
- DEBUG SHELL
Defining the systems software

Board
- phyCore270
- EM-X270
- Mainstone II

Window CE “Project” (VS Solution)

OS Components
- DEVICE MANAGER
- DISPLAY SYSTEM
- WINDOW MANAGER
- DEBUG SHELL
Defining the systems software

- **Board**
 - phyCore270
 - EM-X270
 - Mainstone II

- **Window CE “Project” (VS Solution)**
 - COLLECTION OF OS COMPONENTS

- **OS Components**
 - DEVICE MANAGER
 - DISPLAY SYSTEM
 - WINDOW MANAGER
 - DEBUG SHELL
Defining the systems software

- **Board**
 - phyCore270
 - EM-X270
 - Mainstone II

- **Window CE “Project” (VS Solution)**
 - INDUSTRIAL APPLIANCE

- **OS Components**
 - DEVICE MANAGER
 - DISPLAY SYSTEM
 - WINDOW MANAGER
 - DEBUG SHELL
Defining the systems software

Board
phyCore270
EM-X270
Mainstone II

Window CE “Project” (VS Solution)
INDUSTRIAL APPLIANCE
ENTERPRISE WEB PAD

OS Components
DEVICE MANAGER
DISPLAY SYSTEM
WINDOW MANAGER
DEBUG SHELL
Defining the systems software

Board
- phyCore270
- EM-X270
- Mainstone II

Window CE “Project” (VS Solution)
- INDUSTRIAL APPLIANCE
- ENTERPRISE WEB PAD
- MY COOL WINDOWS CE PROJECT

OS Components
- DEVICE MANAGER
- DISPLAY SYSTEM
- WINDOW MANAGER
- DEBUG SHELL
Defining the systems software

Board
- phyCore270
- EM-X270
- Mainstone II

Window CE “Project” (VS Solution)
- INDUSTRIAL APPLIANCE
- ENTERPRISE WEB PAD
- MY COOL WINDOWS CE PROJECT

OS Components
- DEVICE MANAGER
- DISPLAY SYSTEM
- WINDOW MANAGER
- DEBUG SHELL
Defining the systems software

Board
- phyCore270
- EM-X270
- Mainstone II

Window CE “Project” (VS Solution)
- INDUSTRIAL APPLIANCE
- ENTERPRISE WEB PAD
- MY COOL WINDOWS CE PROJECT

OS Components
- DEVICE MANAGER
- DISPLAY SYSTEM
- WINDOW MANAGER
- DEBUG SHELL
Defining the systems software

Board
phyCore270
EM-X270
Mainstone II

Window CE “Project” (VS Solution)
INDUSTRIAL APPLIANCE
ENTERPRISE WEB PAD
MY COOL WINDOWS CE PROJECT

OS Components
DEVICE MANAGER
DISPLAY SYSTEM
WINDOW MANAGER
DEBUG SHELL
Defining the systems software

- **ARCH**
 - X86
 - MIPS
 - ARM
 - SH

- **Board**
 - phyCore270
 - EM-X270
 - Mainstone II

- **Window CE “Project” (VS Solution)**
 - INDUSTRIAL APPLIANCE
 - ENTERPRISE WEB PAD
 - MY COOL WINDOWS CE PROJECT

- **OS Components**
 - DEVICE MANAGER
 - DISPLAY SYSTEM
 - WINDOW MANAGER
 - DEBUG SHELL
For CE – what is provided?

ARCH
- X86
- MIPS
- ARM
- SH

Board
- phyCore270
- EM-X270
- Mainstone II

Window CE “Project” (VS Solution)
- INDUSTRIAL APPLCIANCE
- ENTERPRISE WEB PAD
- MY COOL WINDOWS CE PROJECT

OS Components
- DEVICE MANAGER
- DISPLAY SYSTEM
- WINDOW MANAGER
- DEBUG SHELL
For CE – what is provided?

ARCH
- X86
- MIPS
- ARM
- SH

Board
- phyCore270
- EM-X270
- Mainstone II

Window CE “Project” (VS Solution)
- INDUSTRIAL APPLIANCE
- ENTERPRISE WEB PAD
- MY COOL WINDOWS CE PROJECT

OS Components
- DEVICE MANAGER
- DISPLAY SYSTEM
- WINDOW MANAGER
- DEBUG SHELL
For CE – what is provided?

Board
- phyCore270
- EM-X270
- Mainstone II

Window CE “Project” (VS Solution)
- INDUSTRIAL APPLIANCE
- ENTERPRISE WEB PAD
- MY COOL WINDOWS CE PROJECT

OS Components
- DEVICE MANAGER
- DISPLAY SYSTEM
- WINDOW MANAGER
- DEBUG SHELL
For CE – what is provided?

Board
- phyCore270
- EM-X270
- Mainstone II

OS Components
- DEVICE MANAGER
- DISPLAY SYSTEM
- WINDOW MANAGER
- DEBUG SHELL
Defining a CE-based product

- ARM KERNEL
- BOARD
- HARDWARE

- OS COMPONENTS
 - DEVICE MANAGER
 - DISPLAY SYSTEM
 - WINDOW MANAGER
 - DEBUG SHELL
Defining a CE-based product
Defining a CE-based product

ARM KERNEL

Board Support Package

Hardware

OS Components
- DEVICE MANAGER
- DISPLAY SYSTEM
- WINDOW MANAGER
- DEBUG SHELL
The board support package
The board support package

Board Support Package

- ARM KERNEL
- OAL
- ARM Core
- Hardware

OS Components
- DEVICE MANAGER
- DISPLAY SYSTEM
- WINDOW MANAGER
- DEBUG SHELL
The board support package

- ARM KERNEL
- OAL
- ARM Core
- Hardware

OS Components
- DEVICE MANAGER
- DISPLAY SYSTEM
- WINDOW MANAGER
- DEBUG SHELL
The board support package
The board support package

- Driver
- Driver
- Driver

- ARM KERNEL
- OAL
- ARM Core
- Hardware

- OS Components
 - DEVICE MANAGER
 - DISPLAY SYSTEM
 - WINDOW MANAGER
 - DEBUG SHELL
The board support package

- ARM KERNEL
- OAL
So the bare bones are...

- An Architecture-Specific Kernel
- Systems software components
- A Board-Specific BSP (OAL and drivers)
So the bare bones are...

- An Architecture-Specific Kernel
- Systems software components
- A Board-Specific BSP (OAL and drivers)

The kernel already knows how to talk to the CPU core, which is the same for every CPU of a particular architecture.
So the bare bones are...

- An Architecture-Specific Kernel
- Systems software components
- A Board-Specific BSP (OAL and drivers)

The kernel already knows how to talk to the CPU core, which is the same for every CPU of a particular architecture.

The BSP must abstract everything else.
Summary

We now know the basics of how a Windows CE system is structured.
Summary

- We now know the basics of how a Windows CE system is structured.
- Microsoft provides a kernel for any of the four supported architectures.
Summary

- We now know the basics of how a Windows CE system is structured.
- Microsoft provides a kernel for any of the four supported architectures.
- A board support package (BSP) is the bridge between the high-level components and the specific hardware that is used.
Summary

- We now know the basics of how a Windows CE system is structured.
- Microsoft provides a kernel for any of the four supported architectures.
- A board support package (BSP) is the bridge between the high-level components and the specific hardware that is used.
- Many OS components are available for you to select from, to fulfill the needs of your customized product.