Designing with ARM®-based Microcontrollers

Speakers:

Danny Basler
Microcontroller Product Marketer, Freescale Semiconductor

Lotta Frimanson
Product manager for IAR Embedded Workbench and the IAR RTOS partner program

Moderator: Warren Webb, OpenSystems Media,
Designing with ARM®-based Microcontrollers

15 December 2010
Where can I find an ARM-based MCU family that offers:

► MCU ease-of-use + DSP performance

► EEPROM (on-chip)

► High precision analog

► Ultra low power

► Lots of performance, memory, peripheral, and package options

► Comprehensive run time software and development tool support from one or two vendors
Design need: MCU ease-of-use + DSP performance

ARM Cortex™-M4 Processor Microarchitecture

- Backwards compatible with ARM Cortex™-M3

- New features
 - Single cycle MAC (Up to 32 x 32 + 64 -> 64)
 - DSP extensions
 - Single Precision Floating Point Unit

- Freescale IP and Innovation
 - On-chip cache for instructions and data
 - Cross-Bar Switch for concurrent multi-master/slave accessing
 - On-chip DMA for CPU off-load
 - Low-leakage Wake-up Unit adds flexibility for low power operation

- Architected for Digital Signal Processing
 - Motor Control - advanced algorithms, longer lifespan, power efficiency
 - Automation - high calculation and algorithm bandwidth at a low cost
 - Power management – designed for low/battery powered systems
 - Audio and Video – 5x performance improvement over software, making batteries last longer
Design need: EEPROM (on-chip)

User Configurable As…

EEPROM:
- No external EEPROMs
 - Reduced system cost
- No system resource impact
 - System performance maintained
 - No complex coding schemes
- Configurable & high endurance
 - Up to 10 Million w/e cycles
- High performance
 - Fast write time = ~100 uSec
 - Erase+write = 1.5mSec
- Use cases
 - Critical data retention (power loss)
 - Frequently updated data

Program or Data Flash:
- Flexibility
 - Space for future expansion needs
 - Contiguous with main program Flash
- Efficient
 - Read-while-write with the main program Flash
- Use cases
 - Program Flash: bootloader code space
 - Data Flash: large data tables

FlexMemory

- Or a combination of both

Freescale, the Freescale logo, CodeWarrior, ColdFire and PowerquICC are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. Flexis, Processor Expert and QorIQ are trademarks of Freescale Semiconductor, Inc. Kinetis and Xtrinsic are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. The Power Architecture and Power.org word marks and the Power and Power.org logos and related marks are trademarks and service marks licensed by Power.org. ARM is the registered trademark of ARM Limited. ARM Cortex-M4 and ARM Cortex-M3 are trademarks of ARM Limited © 2010 Freescale Semiconductor, Inc.
Design need: High precision analog

Kinetis: Mixed Signal (Analog)

- **16-bit ADC**
 (All Kinetis families)
 - Fast, accurate signal conditioning
 - Configurable resolution, sample time, speed and power (8/10/12/16-bit)

- **12-bit DAC**
 (All Kinetis families)
 - Analog signal generation for audio applications

- **High Speed Comparator**
 (All Kinetis families)
 - Fast, accurate motor over-current protection

- **Programmable Gain Amplifier**
 (All Kinetis families)
 - x64 gain for small amplitude signal boost

- **Analog Voltage Reference**
 (All Kinetis families)
 - Accurate on-chip Vref eliminates need for external Vref - reduced system cost
Design need: Ultra low power

Kinetis: Ultra low power

<table>
<thead>
<tr>
<th>Feature</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 Flexible low power modes</td>
<td>(All Kinetis families)</td>
</tr>
<tr>
<td>90nm Process Technology</td>
<td>(All Kinetis families)</td>
</tr>
<tr>
<td>Low Leakage Wake-up Unit</td>
<td>(All Kinetis families)</td>
</tr>
<tr>
<td>Ultra-fast Wake-up</td>
<td>(All Kinetis families)</td>
</tr>
<tr>
<td>Clock & Power Gating</td>
<td>(All Kinetis families)</td>
</tr>
<tr>
<td>Customise power usage</td>
<td>to application requirements</td>
</tr>
<tr>
<td>•1/3 dynamic power reduction</td>
<td></td>
</tr>
<tr>
<td>•1.71-3.6V flash prog. & analog</td>
<td>peripheral operation – more battery life</td>
</tr>
<tr>
<td>Wake-up monitor for all low leakage</td>
<td>stop modes - up to 8 internal modules and 16 pins as wake-up sources</td>
</tr>
<tr>
<td>Quick wake-up from reduced power mode</td>
<td>process data, return to sleep state</td>
</tr>
<tr>
<td>Unused clocks & modules shut down</td>
<td>reducing leakage currents</td>
</tr>
</tbody>
</table>
Design need: Ultra low power

Kinetis: Power Modes

<table>
<thead>
<tr>
<th>Typical Power Modes in an embedded system</th>
<th>Cortex M4 Power Modes</th>
<th>Kinetis Extended Power Modes</th>
<th>Recovery Time</th>
<th>“Typical” Idd Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Run</td>
<td>Run</td>
<td>Run</td>
<td>-</td>
<td><200uA/MHz</td>
</tr>
<tr>
<td>Wait</td>
<td>Sleep</td>
<td>VLPR</td>
<td>-</td>
<td><200uA/MHz</td>
</tr>
<tr>
<td>Stop</td>
<td>DeepSleep</td>
<td>Wait</td>
<td>4us</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>VLPW</td>
<td>4us</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Stop</td>
<td>4us</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>VLPS</td>
<td>4us</td>
<td></td>
</tr>
</tbody>
</table>

Freescale Adds Low Leakage Wake-up Unit

- Enables complete shut-down of core logic, including WIC, further reducing leakage currents in all low power modes
- Supports 16 external input pins and 8 internal modules as wakeup sources
- Wakeup inputs are activated in LLS or VLLS modes

<table>
<thead>
<tr>
<th>LLS</th>
<th>4us</th>
<th>1.2uA - 7uA</th>
</tr>
</thead>
<tbody>
<tr>
<td>VLLS3</td>
<td>35us</td>
<td>1uA - 5uA</td>
</tr>
<tr>
<td>VLLS2</td>
<td>35us</td>
<td>750nA - 2uA</td>
</tr>
<tr>
<td>VLLS1</td>
<td>100us+EE</td>
<td>500nA – 1.5uA</td>
</tr>
</tbody>
</table>
Kinetis Product Families

Design need: Lots of performance, memory, peripheral, and package options

K70 Family
- 512KB-1MB, 196-256pin

K60 Family
- 256KB-1MB, 100-256pin

K50 Family
- 128-512KB, 64-144pin

K40 Family
- 64-512KB, 64-144pin

K30 Family
- 64-512KB, 64-144pin

K20 Family
- 32KB-1MB, 32-144pin

K10 Family
- 32KB-1MB, 32-144pin

Common System IP
- 32-bit ARM Cortex-M4 Core w/ DSP Instructions
- Next Generation Flash Memory
- High Reliability, Fast Access
- FlexMemory w/ EEPROM capability
- Memory Protection Unit
- Low Voltage, Low Power Multiple Operating Modes, Clock Gating (1.71V-3.6V with 5V tolerant I/O)
- Low-power Touch Sensing
- DMA
- -40 to 105C

Common Analog IP
- 16-bit ADC
- Programmable Gain Amplifiers
- SRAM
- UART/SPI
- Programmable Delay Block
- External Bus Interface
- Motor Control Timers
- eSDHC
- RTC

Digital IP
- CRC
- I²C
- SAi (I²S)
- Programmable Delay Block
- External Bus Interface
- Motor Control Timers
- Low-power Touch Sensing
- DMA

Development Tools
- Bundled IDE w/ Processor Expert
- Bundled OS USB, TCP/IP, Security
- Modular Tower H/ware Development System
- Application Software Stacks, Peripheral Drivers & App. Libraries (Motor Control, HMI, USB)
- Broad 3rd party ecosystem

Kinetis Product Families

- **Sampling now (144 MAPBGA)**
- **Sampling Q2 2011 (144 MAPBGA)**
- **Sampling Q4 2011 (256 MAPBGA)**
Kinetis Tower System: Reusable, Modular Development Platform

www.freescale.com/tower

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Contents</th>
<th>Price (SRP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TWR-K40X256</td>
<td>TWR-K40X256 module TWRPI-SLCD daughter card</td>
<td>$69</td>
</tr>
<tr>
<td>TWR-K40X256-KIT</td>
<td>TWR-K40X256 module TWRPI-SLCD daughter card TWR-ELEV module TWR-SER module</td>
<td>$139</td>
</tr>
<tr>
<td>TWR-K60N512</td>
<td>TWR-K60N512 module</td>
<td>$69</td>
</tr>
<tr>
<td>TWR-K60N512-KIT</td>
<td>TWR-K60N512 module TWR-ELEV module TWR-SER module</td>
<td>$139</td>
</tr>
</tbody>
</table>

- **Contents:**
 - 30 Day Evaluation version of IAR Embedded Workbench
 - Freescale MQX RTOS
 - OSJTAG Debug circuitry
 - Low power touch sensing
 - Plug in socket for expansion: Sensors, Radio, Adaptor etc…
 - SD Card
 - And more…

- Full compatible with all Tower peripheral modules

- IAR branded TWR kit will also be available and will include a J-Link lite
Free Scalable, fully-featured and proven RTOS with 32-bit MCUs

- **Full-featured and powerful**
 - BSPs incorporate tightly integrated RTOS, Middleware (USB, TCP/IP stacks), file system, and I/O drivers
 - Designed for speed and size efficiency

- **Market proven**
 - Available on Freescale processors for > 15 years
 - Used in millions of products including Medical and Heavy Industrial applications

- **Simple and scalable**
 - As small as ~10KB for smallest implementation, or scale up to support sophisticated networking and threading
 - Intuitive API & modular architecture enables straightforward fine-tuning of features
 - Production source code provided

- **Similar to other “pay-for” software OS**

Bundled Freescale MQX™ RTOS

www.freescale.com/mqx

Software integration headache

Integrated MQX Solution

✓ Stable
✓ Upgradable
✓ Easy to maintain

$95K of free Software
IAR Systems at a glance

► World-leading provider of software tools for embedded systems since 1983
► Headquarter in Uppsala, Sweden
► Worldwide presence with offices in Sweden, USA (Silicon Valley, Dallas, Boston), Brazil, Germany, UK, Belgium, France, Japan, and China
► World's largest customer base on the MCU market; 100,000+ installed licenses
► IAR newsletter reach today more than 100,000 embedded developers
The most widely used ARM development tool

► Today the most widely used tool chain for ARM-based MCU
► Only independent quality tool chain
► Present in key market segments
► Used by Freescale Kinetis lead customers
► Long partnership with Freescale on development tools for ColdFire, ColdFire+, ARM7, ARM9, S08, S12 and now Kinetis MCUs
IAR Systems Product portfolio

IAR Embedded Workbench

- Complete integrated development environment
- Project mgr, editor, debugger,
- Ready made example projects
- RTOS awareness plug-ins

IAR visualSTATE

- Tools for graphical designing, testing and implementing embedded applications based on state machines.
- 100% accurate with your code
- Good for verification and validation

IAR KickStart Kit

- Evaluation kit
- Contains development/evaluation board, software development tools with sample projects and a hardware debug probe or emulator.
- Shipping 4000 per year

Debug probes

- Integrates seamlessly into IAR Embedded Workbench and is fully plug-and-play compatible, and in addition very easy to use.
Cutting development time

► Powerful Project Manager.
► Getting started examples and board support packages.
► Comprehensive device support
 • I/O-header files
 • Debugger definition files
Building your application

IAR Embedded Workbench

- Complete development environment
- Powerful project manager
- Highly optimized C and C++ compiler
 - Compliant with CMSIS, EABI, C99,…
 - Multi-file compilation
- Intelligent linker
- Full support for Freescale Kinetis

Optimizations

- Multiple levels of optimizations for code size and execution speed.
- Optimization level can be set on a per function basis.
- Global and core specific optimizations.
- Low power requirements
- Optimizing for low power is very much the same as optimizing for speed.
Need for floating point?

► Cortex-M4 Floating Point Unit (FPU)
 • 32-bit floats (C float)
 • conversion
 • add, sub
 • multiply-accumulate, divide
 • square root

► Compiler support
 • float: hardware or library
 • double: library
DSP - interface to the non-binary world

- Motor control, audio, sensor signal conditioning, …
- Cortex-M4: MCU + DSP = DSC (Digital Signal Controller)
 - saturated operations
 - MAC
 - SIMD - SMLAD => Sum = Sum + (A x C) + (B x D)
- Extensive DSP library
 - vector/matrix
 - FIR/IIR filters
 - convolution, correlation
 - FFT/DCT
 - PID control
How to program the flash?

- C-SPY debugger has built-in flash loader support.
- Specific flash loaders are provided for Kinetis device.
- Support for download of multiple images.
Debugging

► P&E micro OSJTAG
 • Built-in on Kinetis Kxx evaluation boards
 • Just connect USB cable to evaluation board

► J-Link & J-Link Ultra
 • JTAG/SWD/SWO support
 • low bandwidth trace
 • real-time: function profiler, interrupt log, variable watch, non-intrusive printf
 • Power debugging (J-Link Ultra)

► IAR J-Link lite
 • kit variant
Freescale Kinetis MCUs – packed with trace sources

- ITM
 - Low speed real-time trace port
 - Event trace
 - Interfaces with IAR J-Link

- ETM
 - High speed real-time trace port
 - Interfaces with IAR J-Trace for Cortex-M3

- ETB
 - High speed real-time trace to internal 2 kbyte buffer
 - Interfaces with IAR J-Link

- Trace functionality in C-SPY
 - Monitoring values of static variables
 - Non-intrusive printf()
 - Direct output via ITM stimulus ports
 - Measuring execution time
 - Interrupt graph
 - Stack/heap overflow detection
 - View the call stack graph
 - Statistical function profiling
Finding difficult bugs

► Instruction trace (ETM)
 • High bandwidth instruction trace data on a 4-bit high speed trace bus.
 • Requires trace probe, for example the IAR J-Trace for Cortex-M.

► Full instruction trace
► Call hierarchy list
► Call stack visualization
Requirements on long battery life-time and minimized power consumption.

Traditionally a design goal for hardware developers using multi-meter and oscilloscope.

Power consumption is also dependent on how the hardware is used and controlled by software.

Power debugging
- Connects power consumption to source code
- Allows optimizing software for minimized power consumption
Power samples are correlated to program counter and by that with the source code.

The C-SPY debugger visualizes power consumption data both statically and dynamically in different views.

- Power profile graph in Timeline window
- Statistical power profiling in the Function Profiler window
 - Identifies functions that consume most power in the application.
- Textual log of all power samples with timestamp and program counter in the Power log window.
Integrating RTOS and middleware

► IAR RTOS partner program
 - CMX
 - Express Logic
 - FreeRTOS
 - Micrium
 - Micro Digital SMX
 - MQX
 - Quadros
 - Sciopta
 - SEGGER
 - Wittenstein

► MQX Integration
 - Port available for IAR Embedded Workbench
 - RTOS awareness plug-in in C-SPY debugger
 - Information and example projects in IAR Information Center
IAR Embedded Workbench versions for Kinetis MCUs

- IAR Embedded Workbench
- IAR Embedded Workbench Kickstart version
- IAR Embedded Workbench Cortex-M version
- IAR Embedded Workbench Evaluation version
Summary of IAR Systems offerings for Freescale Kinetis MCUs

► The most widely used C/C++ tool chain for ARM MCUs
► Support for Kinetis 10/20/30/40/60
► Freescale MQX™ RTOS integration
► Advanced trace debug functionality
 • Power debugging
 • ETM and SWO trace support
► Project examples for the Freescale Tower system
► Professional technical support organization
► Availability: Now! Contact an IAR Systems sales office.
 • Also available via Freescale Buy Direct
Kinetis + IAR – The ARM-based MCU solution that offers:

• MCU ease-of-use + DSP performance
 ✓ ARM Cortex-M4 core – powerful, efficient and sampling now

• EEPROM (on-chip)
 ✓ FlexMemory - fast, high endurance and user-configurable

• High precision analog
 ✓ 16-bit ADCs and a whole lot more…

• Ultra low power
 ✓ Multiple power modes / wake-up options, and power-savvy technology & peripherals

• Lots of performance, memory, peripheral, and package options
 ✓ >200 devices offering 50-15MHz, 32KB-1MB, connectivity, HMI, security and external interface peripherals, and package options from 32pin to 256pin

• Comprehensive run-time software and development tool support from one or two vendors
 ✓ Free Freescale MQX RTOS, powerful & easy-to-use IAR tools and the Freescale Tower System for rapid prototyping
Questions & Answers

Speakers:

Danny Basler
Microcontroller Product Marketer,
Freescale Semiconductor

Lotta Frimanson
Product manager for IAR Embedded
Workbench and the IAR RTOS partner program

Moderator: Warren Webb, OpenSystems Media
Thanks for joining us

Event archive available at:
http://ecast.opensystemsmedia.com/
E-mail us at: clong@opensystemsmedia.com

www.embedded-computing.com