Enabling flexible multi-standard base-station designs

MAPLE Hardware Accelerator and SC3850 DSP Core

Ron Bercovich
DSP IP Manager

Itay Peled
Project Leader, DSP Platform Architecture
MSC8156 multicore digital signal processor (DSP) product using the SC3850 DSP cores and MAPLE-B accelerators

MAPLE-B accelerators
 • Programmable accelerators concept
 • Programming model
 • Accelerated functions and standards compliance

SC3850 DSP built on StarCore® technology
 • Architecture overview
 • Performance
 • L1 and L2 cache sub-system

Summary
MSC8156E 45 nm Six-Core DSP

- Six SC3850 Cores Subsystems (up to 6 GHz/48 GMACs) each with:
 - SC3850 DSP core at up to 1 GHz (8 GMACs 16b or 8b)
 - 512 KB unified L2 cache / M2 memory
 - 32 KB I-cache, 32 KB D-cache, WBB, WTB, MMU, PIC
- Internal/External Memories/Caches
 - 1056 KB M3 shared memory (SRAM)
 - Two DDR 2/3 64-bit SDRAM interfaces at up to 800 MHz
- CLASS – Chip-Level Arbitration and Switching Fabric
 - Non-Blocking, fully pipelined, low latency
 - Full fabric 12 masters to eight slaves, up to 512 Gbps throughput
- MAPLE-B – Baseband Accelerator
 - Turbo/Viterbi decoder up to 200/115 Mbps
 - supporting: 3G-LTE, 802.16, 3G, CDMA2K standards
 - FFT and DFT accelerators up to 280 and 175 Msps
 - Multi-standard CRC check and insertion
- Security Engine (Talitos 3.1)
 - Data and code protection (AES, SHA, Kasumi, SNOW3G)
- High Speed Interconnects
 - Dual 4x/1x Serial RapidIO® at 1.25/2.5/3.125 Gbaud
 - PCI Express® 4x/1x
- Dual RISC QUICCEngine™ Technology Supporting
 - Dual SGMI/RGMII Gigabit Ethernet ports
 - Eth. L1 Protocols, Talitos control and Serial RapidIO offload
- TDM Highway
 - 1024 ch., 400Mbps, divided into four ports of 256
- DMA Engine
 - 16 bi-directional channels w/ external req/ack
- Eight Hardware Semaphores
- Other Peripheral Interfaces
 - SPI, UART, I²C, 32 GPIO, 16 Timers, 96 KB boot ROM, JTAG/SAP, 8 WDT
- Technology
 - 45 nm SOI, 1V core, 2.5, 1.8/1.5V I/O
 - FCBPGA (29x29) 1mm pitch, RoHS

Now Sampling
Multi-Accelerator-Platform for Baseband

MAPLE-B
MAPLE-B Accelerator Overview

► Software friendly buffer descriptor based handshake and task assignment with minimal overhead on DSP cores for control

► Highly flexible and programmable Turbo and Viterbi decoder supporting various configurable decoding parameters
 • High throughput Turbo decoding for low latency and advanced antenna systems
 • Low latency multi-standard Viterbi decoding for data/control channels
 • Multi-standard capable: UMTS, CDMA2K, WiMAX and Long Term Evolution (LTE)
 • Flexible rate de-matching schemes for multiple standards, accelerating HARQ functionality

► Flexible and advanced FFT/DFT acceleration:
 • FFT/iFFT for sizes 128, 256, 512, 1024, 2048 points
 • DFT/iDFT for LTE sizes

► High speed CRC calculation/check accelerator for:
 • LTE code and transport block in UL and DL
 • WiMAX PHY Burst CRC in UL and DL
MAPLE-B Block Diagram

PSIF : Programmable System Interface
TVPE: Turbo/Viterbi Processing Engine
FFTPE: FFT Processing Engine
DFTPE: DFT Processing Engine

BD’s write/read and debug by DSP core/host
Data write/read by MAPLE
64b 450 MHz
2x 64b 450 MHz

Interrupts
PSIF config

Arbitration and switching

PSIF
MAG2DRAM
System DMA Engine
Local DMA/ CRC PE x2
IRAM 16kB
RISC 0 Core
RISC 1 Core
IRAM 16kB
PIC
CE Slave

Routing and Config
I/O Data Buffer
Twiddles Memory
SBIF

Arbitration and switching

DRAM
DATA SRAM
16kB
DATA SRAM
16kB

SIF
TVPE
SIF

EXT MEM
CD; NII, HO MEM
EXTL
CDL
NIIL HOL

VRE DRE0 DRE1 DRE2 DRE3
CTL

I/O Data Buffer
Routing and Config
Radix 2 Cells
Radix 4 Cells
Radix 8 Cells
Routing and Config
Radix 2 Cells
Radix 3 Cells
Radix 4 Cells
Radix 5 Cells

MISSING TEXT: Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc. 2009.
MAPLE-B Block Diagram

Programmable System Interface Based on RISC Engines:

- Flexibility and standards adaption
- Buffer descriptors parsing and system handshake
- DMA capabilities, and high system BW support
- Low level task control and split
- CRC acceleration

PSIF: Programmable System Interface
TVPE: Turbo/Viterbi Processing Engine
FFTPE: FFT Processing Engine
DFTPE: DFT Processing Engine

SDRAM 16kB
SRAM 16kB
SRAM 16kB

Routing and Config
I/O Data
Buffer
Routing and Config
Routing and Config
Twiddles
Memory
Twiddles
Memory
SBIF
SBIF

CDL
CD, NII, HO MEM

EXTL
EXT MEM

VRE DRE0 DRE1 DRE2 DRE3

CTL

BD’s write/read and debug by DSP core/host
Data write/read by MAPLE

Interrupts
PSIF config

64b 450 MHz
2x 64b 450 MHz

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc. 2009.
MAPLE-B Block Diagram

Programmable System Interface Based on RISC Engines:
- Flexibility and standards adaption
- Buffer descriptors parsing and system handshake
- DMA capabilities, and high system BW support
- Low level task control and split
- CRC acceleration

Turbo-Viterbi Processing Element:
- SIMD parallelism
- Novel heuristics and Radix 4 architecture
- >10x the throughput of existent industry/competitor solutions
- Multi-standard capable:
 - binary/duo,
 - tail-bit/trellis termination,
 - configurable interleaver

PSIF: Programmable System Interface
TVPE: Turbo/Viterbi Processing Engine
FFTPE: FFT Processing Engine
DFTPE: DFT Processing Engine

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc. 2009.
Programmable System Interface Based on RISC Engines:
- Flexibility and standards adaptation
- Buffer descriptors parsing and system handshake
- DMA capabilities, and high system BW support
- Low level task control and split
- CRC acceleration

Turbo-Viterbi Processing Element:
- SIMD parallelism
- Novel heuristics and Radix 4 architecture
- >10x the throughput of existent industry/competitor solutions
- Multi-standard capable:
 - binary/duo,
 - tail-bit/trellis termination,
 - configurable interleaver

FFT/IFFT and DFT/iDFT Processing Elements:
- High throughput engines
- Multi-Radix implementation
- Novel precision handling techniques
- Power, area, performance optimized vs. software implementations

PSIF : Programmable System Interface
TVPE : Turbo/Viterbi Processing Engine
FFTPE : FFT Processing Engine
DFTPE : DFT Processing Engine
MAPLE-B Block Diagram

PSIF : Programmable System Interface
TVPE : Turbo/Viterbi Processing Engine
FFTPE : FFT Processing Engine
DFTPE : DFT Processing Engine

BD’s write/read and debug by DSP core/host
Data write/read by MAPLE

64b 450 MHz
2x 64b 450 MHz

Interrupts
PSIF config

Arbitration and switching
PSIF overview

- RISC based programmable system interface
- Hardware scheduler
- Firmware based buffer descriptors parsing and arbitration
- DMA and DMA control for input/output data via two master interfaces
- Direct access for BD’s placement by DSP cores or other hosts via fast slave interface
- Local DMA for CRC acceleration and future extensions
- Programmable interrupt controller
- Standard SRAM* interface to PE’s (TVPE, DFTPE, FFTPE)
- Low level control and configuration of PE’s
- Emulate system behavior of “Yet Another Slave DSP Core”
MAPLE-B Programming Model Overview

► Buffer Descriptor (BD) based programming model:
 • Up to eight high-priority BD rings and eight low-priority BD rings per each processing element for multiple master support – multicore awareness
 • MAPLE-B round robin with priority arbitration between jobs
 • 12 KB MAPLE-B internal memory dedicated for BD rings in internal memory
 • TaskID for every job in BD for debug/tracking purposes

► Minimal overhead for DSP core
 • MAPLE-B reads input data using its embedded DMA from any system memory location: M2/L2/M3/DDR
 • MAPLE-B writes results to any system memory location: M2/L2/M3/DDR
 • Interrupts and/or BD polling command done indication to DSP cores
 • Supports direct Serial RapidIO® door-bell generation for job completion indication to external host sharing or controlling certain MAPLE BD rings
Ring Descriptors and Buffer Descriptor

- Located inside MAPLE
- Multiple priorities
- Small handling fee for RISC processors
Ring Descriptors and Buffer Descriptor

Up to 12 KB Total
FFTPE highlights

- High throughput, low power FFT/iFFT transform processing element
- Build from Radix2, Radix4 and Radix8 elements
- Single, 64-bit PSIF interface for control and data
- Support 128, 256, 512, 1024 and 2048 points transforms
- 32-bit (16I, 16Q) input and output data
- Internal twiddles ROM memory
- Advanced scaling methods including:
 - User defined down scaling per stage of 0-4 bits
 - Adaptive scaling (block-floating emulation) with overall scaling option
- Guard bands and DC carrier insertion for iFFT optimization
- Job (BD) repeat option for reduced configuration and increased throughput with adjacent I/O data structures
DFTPE highlights

- High throughput, low power FFT/iFFT, DFT/iDFT transform processing element
- Build from Radix2, Radix3, Radix4 and Radix5 elements
- Single, 64-bit PSIF interface for control and data
- Support 128, 256, 512, 1024 points FFT/iFFT transforms
- Support 3G LTE standard DFT/iDFT transforms from 12 to 1200 and 1536 points
- 32-bit (16I, 16Q) input and output data
- Internal twiddles ROM memory
- Advanced scaling methods including:
 - User defined down scaling per stage of 0-4 bits
 - Adaptive scaling (block-floating emulation) with overall scaling option
- Guard bands and DC carrier insertion for iFFT optimization
- Job (BD) repeat option for reduced configuration and increased throughput with adjacent I/O data structures
TVPE highlights

- High throughput, low power Turbo or Viterbi decoding
- Multi-standard, multi-algorithm support via:
 - Binary and duo binary decoder
 - Tail-bit and zero tail trellis termination support
 - MaxLogMap and HybridLinearLogMap
 - Multi-iteration Viterbi decoding WAVA*
- Dual, 64 bit PSIF interface for control and data
- Radix4, NII-X architecture
- 8-bit soft LLR inputs and soft/hard outputs
- Rate-de-matching support for LTE, WCDMA, WiMAX
- Periodic de-puncturing for CDMA2K and Viterbi
- Various Input data structures to support trade-off between DSP core pre-processing MIPS and Turbo decoding throughput
- Support for APQ and CRC early stopping criterias
WiMAX Systems

<table>
<thead>
<tr>
<th>Feature</th>
<th>MAPLE-B (MSC8156)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turbo decoding</td>
<td>> 195 Mbps (6 iterations)</td>
</tr>
<tr>
<td>Optional support for sub-block de-interleaving</td>
<td></td>
</tr>
<tr>
<td>Viterbi decoding</td>
<td>> 100 Mbps (tail-biting multi-iteration)</td>
</tr>
<tr>
<td>Optional support for periodic de-puncturing</td>
<td></td>
</tr>
<tr>
<td>FFT/IFFT</td>
<td>> 350 Msps using 2 units (FFTPE, DFTPE)</td>
</tr>
<tr>
<td>Optional support for guard bands insertion</td>
<td></td>
</tr>
<tr>
<td>CRC</td>
<td>> 10 Gbps , CRC16 (PDU)</td>
</tr>
<tr>
<td>insertion for DL and check for UL</td>
<td></td>
</tr>
</tbody>
</table>

3GLTE FDD/TDD Systems

<table>
<thead>
<tr>
<th>Feature</th>
<th>MAPLE-B (MSC8156)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turbo decoding</td>
<td>> 200 Mbps (6 iterations)</td>
</tr>
<tr>
<td>Optional support for sub-block de-interleaving</td>
<td></td>
</tr>
<tr>
<td>Viterbi decoding</td>
<td>> 100 Mbps (tail-biting multi-iteration)</td>
</tr>
<tr>
<td>Optional support for periodic de-puncturing</td>
<td></td>
</tr>
<tr>
<td>FFT/IFFT/DFT/IDFT</td>
<td>> 280 Msps FFT using FFTPE</td>
</tr>
<tr>
<td>Optional support for guard bands insertion</td>
<td>> 175 Msps DFT using DFTPE</td>
</tr>
<tr>
<td>CRC</td>
<td>> 10 Gbps , CRC24A, CRC24B</td>
</tr>
<tr>
<td>insertion for downlink and check for uplink</td>
<td></td>
</tr>
</tbody>
</table>

UMTS – WCDMA, HSPA+

<table>
<thead>
<tr>
<th>Feature</th>
<th>MAPLE-B (MSC8156)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turbo decoding</td>
<td>> 165 Mbps (6 iterations)</td>
</tr>
<tr>
<td>Viterbi decoding</td>
<td>> 115 Mbps (zero tail, K=9)</td>
</tr>
<tr>
<td>Optional support for periodic de-puncturing</td>
<td></td>
</tr>
<tr>
<td>FFT/IFFT</td>
<td>> 350 Msps FFT using FFTPE and DFTPE</td>
</tr>
<tr>
<td>CRC</td>
<td>> 10 Gbps , CRC24</td>
</tr>
<tr>
<td>insertion for DL and check for UL</td>
<td></td>
</tr>
</tbody>
</table>
3G LTE PDSCH/DLSCH Acceleration using MAPLE-B

Example
Advanced programming model

- Buffer descriptors based job assignment
- Multiple buffer descriptor rings for multicore system
- System optimization via:
 - Multi job assignment, advanced alignment
 - Flexible interrupt assignment to any DSP core
 - Embedded DMA with direct access to L2 cache or M2/M3/DDR
 - Full off-load of accelerators programming and control

High capacity processing elements (Coprocessors)

- Optimized for low latency, high throughput system performance
- Local to DSP FFT and DFT acceleration for:
 - OFDMA/SC-FDMA processing
 - Ranging/RACH acceleration
 - Frequency domain processing acceleration for HSPA
- 6144-bit LTE code block: ~40 usec decoding latency
SC3850 DSP Core and Subsystem
StarCore® Architecture Roadmap

- Enhanced control code support
- Dual MAC

- MMU support
- Additional ASI
- Enhanced video
- Dynamic branch prediction
- Additional SIMD instructions

- Memory protection
- Prediction

- Up to 6-Issue VLIW Architecture
- VLES
- SIMD

MSC8101/3, MSC8122/26/12/13, Wireless subscriber

V2

8144/E/EC

V7 products...

V6 SC3850 products...

V5 815x SC3400 products...

V3 MXC (2.5G, 3G, 3.5G)

MSC8101/3, MSC8122/26/12/13, Wireless subscriber

V2 SC1000 products...

SC140e products...

SC3400 products...

SC3850 products...
StarCore® Feature Evolution

<table>
<thead>
<tr>
<th></th>
<th>SC140 (V2)</th>
<th>SC140e (V3)</th>
<th>SC3400 (V5)</th>
<th>SC3850 (V6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shared features</td>
<td>6 issue, statically scheduled VLES model: 4 DALU + 2 AGU</td>
<td>128-bit instruction fetch, 2x64 data ports (3 memory accesses per cycle)</td>
<td>Backward binary compatibility between all family members (16-bit basic inst. set)</td>
<td></td>
</tr>
<tr>
<td>Pipeline Stages</td>
<td>5 (600 MHz @90G)</td>
<td>5 (250 MHz @90LP)</td>
<td>12 (1 Ghz @90SOI)</td>
<td>12 (1 Ghz @45SOI)</td>
</tr>
<tr>
<td>Instructions</td>
<td>Baseline</td>
<td>Minor additions</td>
<td>Video, SIMD2</td>
<td>Control ISA, Dual MPY Cache instructions</td>
</tr>
<tr>
<td>Precise exceptions</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Privilege levels</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Micro-arch. Features</td>
<td>1 VLES speculation</td>
<td>1 VLES speculation</td>
<td>BTB, 4 VLES spec., 1 COF deep</td>
<td>BTB, 4 VLES spec., nested COF</td>
</tr>
<tr>
<td>Platform</td>
<td>M1 + L1 Icache</td>
<td>MMU, L1 I/D cache</td>
<td>L1, MMU, M2</td>
<td>L1, MMU, L2/M2</td>
</tr>
</tbody>
</table>
SC3850 DSP Core Key Architectural Features

► Statically scheduled VLIW
 • VLES model – Variable Length Execution Set
 • 6-issue: 4 DALU + 2 AGU + loop dispatched per cycle

► Very high numerical throughput
 • Two 16x16 multipliers per Data ALU, eight total
 • Support for extended precision and complex multiplication
 • Four zero-overhead hardware loops
 • Application-specific instructions: FFT, complex algebra and more
 • 2x64-bit load/stores per cycle; Multivariable access to/from multiple registers with pack/unpack
 • Compact instructions perform multiple intrinsic functions (e.g. MAC, complex multiply, scale/saturate/round as part of the store)

► Very good support for control code
 • Dynamic branch prediction (BTB), speculative execution
 • Fully predicated instruction set

► Good OS support
 • Precise exceptions for MMU support, including during hardware loops
 • Dual stack pointer management in hardware
The StarCore core consists of the following main units:

- Data arithmetic logic unit (DALU) that contains four instances of an arithmetic logic unit (ALU) and a data register file
- Address generation unit (AGU) that contains two address arithmetic units (AAU) and an address register file
- Program control unit (PCU)
Dual Multiply ISA

Single MAC operation (SC140/SC3400)

\[\text{mac } Da,Db,Dn \]
\[Dn + (Da.H \times Db.H) \rightarrow Dn \]

Dual MAC – SIMD2 MAC (SC3850)

\[\text{mac2 } Da,Db,Dn \]
\[Dn.WH + (Da.H \times Db.H) \rightarrow Dn.WH \]
\[Dn.WL + (Da.L \times Db.L) \rightarrow Dn.WL \]

Dual MAC – double throughput MAC (SC3850)

\[\text{dmac } Da,Db,Dn \]
\[Dn + (Da.H \times Db.H) + (Da.L \times Db.L) \rightarrow Dn \]
SC3850 DSP Core Data Processing Throughput

- DALU calculations are based on 40-bit registers
- The two multipliers of each ALU can be used in various ways:
 - SIMD2 or dot-product multiplication
 - Complex multiplication
 - Extended precision multiplication (16x32, 32x32)

<table>
<thead>
<tr>
<th>Operation</th>
<th>Precision</th>
<th>Operations per cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Real Multiply</td>
<td>16x16</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>16x32</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>32x32</td>
<td>2</td>
</tr>
<tr>
<td>Complex Multiply</td>
<td>16x16</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>16x32</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kernel</th>
<th>SC3850</th>
</tr>
</thead>
<tbody>
<tr>
<td>Real block FIR 16x16</td>
<td>NT/8</td>
</tr>
<tr>
<td>Complex FIR 16x16</td>
<td>NT/2</td>
</tr>
<tr>
<td>Dot Product 16x16</td>
<td>N/4</td>
</tr>
</tbody>
</table>

N: samples
T: Taps
SC3850 DSP Sub-System Features – Caches

► Caches optimized to give best performance reducing TTM

► L1 caches
 • Instructions and data caches both: 32 KB, 8 way
 ▪ Data cache supports write back allocate and write through policies
 • Advanced automatic pre-fetching:
 ▪ Line pre-fetch with critical word first and next line pre-fetch
 • Software-controlled pre-fetching with cache control instructions

► L2/M2 memory system
 • 512 KB, configurable as L2 cache or M2 SRAM in 64 KB banks
 • M2 SRAM accessible by DMA
 • L2 cache: 8-ways, unified program and data
 • Programmable cache way partitioning according to address ranges
 • Low latency to the core (10-12 cycles)
 • Software-triggered DMA like pre-fetch channels operate in the background
 • DMA based “stashing” to DDRz
L2 cache software pre-fetch (SWPF), L1 DFETCH and PFETCH

- L2 SWPF of code2 and/or data2
- PFETCH (code2) and/or DFETCH (data2)
- Task1(code1,data1) Execution

- L2 SWPF of code3 and/or data3
- PFETCH (code3) and/or DFETCH (data3)
- Task2(code2,data2) Execution

- L2 SWPF of code3 and/or data3
- PFETCH (code3) and/or DFETCH (data3)
- Task3(code3,data3) Execution

Legend:
- Inline fetch into L1 caches
- Background fetch into L2 caches
- In reality: Smaller and more frequent

Fetch “SW Pipeline”

Task1(code1,data1) Execution
Task2(code2,data2) Execution
Task3(code3,data3) Execution

time
Cache vs. DMA Model in SC3850 DSP Subsystem

DMA SW Model
- All in M2
- Highest performance
- High effort
- Generate higher bus load
- Expert mode – higher TTM

Mixed Model
- L2 is partly M2

Scheduled Cache SW model
- 100% L2 + SWPF
- Critical code/data in M2
- Consider using L2 cache partitioning
- High performance
- Moderate effort

Cache SW model
- 100% L2
- All in DDR/M3
- Good performance
- Low effort

Effort
SC3850 DSP Sub-System Features – Benefits of the MMU

► Memory protection, translation and precise exceptions
► Simpler, abstract software model - not SoC specific
► Good support for multicore devices
 • Code written once, unaware of the core it will actually run on
 • Specific memory allocated per channel instance, on a specific core
► Easier debug, faster time to market
 • MMU errors quickly catch when a task accesses out of bounds
 • Virtual addressing allows simpler code re-use
► Better MTBF (Mean Time Between Errors)
 Channels are isolated from each other and from system code
 • System code and privileged registers protected in supervisor level
 • An errant task will not bring down the whole system
 • Precise exceptions serviced before the error executes, allowing recovery in some cases
SC3850 DSP Sub-System Features – Debug and Profile

Debug:
- Rich brakepoint capabilities
- Cache aware debug
- PC trace with task information
- Remote debug capability

Profile:
- Performance optimization using detailed core stall information
- Measuring RTOS and system overhead
- Profiling at a function level
- Constraint violation monitors
CodeWarrior™ Developer Studio is a highly integrated toolchain providing the most comprehensive support of Freescale DSPs built on StarCore® technology.

► Complete build and debug environment united in Eclipse IDE
► Robust platform for development
► Performance optimized StarCore DSP compiler
► Multicore capabilities in every component
 • SmartDSP OS, IDE, SA, debugger, simulator
CodeWarrior™ Development Studio for StarCore® v10.0
A complete development environment under Eclipse

► Eclipse IDE
 • Configuration Wizards
 • Plug-in architecture
 • Third party community

► StarCore Build Tools
 • v23 performance C/C++ compiler
 • New linker
 - Redesigned for usability
 - Available for beta testing
 - Old linker still included as default
 - New linker will become default in beta release

► Simulation
 • Functional and cycle accurate

► SmartDSP OS
 • Enhanced performance and networking
 • High speed data io via SmartDSP HEAT

► StarCore Debugger
 • Multicore and multi-DSP
 • MSC8144 and MSC8156 targets

► Trace and Profile
 • Trace data offload via Ethernet using SmartDSP HEAT technology
Summary

► SC3850 cores and sub-systems are optimized for baseband processing using advanced core architecture and high performance and flexible multi-level cache system

► MAPLE-B provides innovative hardware acceleration platform for baseband processing

► SC3850 DSP cores coupled with MAPLE-B acceleration in MSC8156 DSP processor provide unique combination of processing power and flexibility for current and future multi-standard base station designs
Thank you for attending this presentation. We’ll now take a few moments for the audience’s questions and then we’ll begin the question and answer session.