Long-Term Evolution Protocol: How the Standard Impacts Media Access Control

Tim Godfrey
WMSG Advanced Technology

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc. 2007-2008.
Agenda

► Introduction to Media Access Controls (MAC)
► Protocol design as a result of application requirements
 • History and scope of standards
 • Comparison of long-term evolution (LTE) and WLAN architectures
 • Comparison how the MAC sees the baseband physical layer (PHY)
► Frames and packets – a timeline overview
► Life of a packet – a protocol overview
► LTE Protocol Operation
 • Management and control functions
 • Scheduling and QoS
 • Handover and roaming
 • Power save functions
► Conclusion
Introduction

What is this presentation?
• An overview of the MAC for 3GPP™ LTE (Long Term Evolution, also referred to as E-UTRAN).
• Comparison with other MAC standards, such as 802.11.

Why is it important?
• LTE is the latest generation of the 3GPP™ standards
• IP-only network support data rates up to 100 Mbps
• Deployment starting in 2009
• This presentation will describe all these functions, which consist of the MAC, Radio Link Control (RLC), Packet Data Convergence Protocol (PDCP), and Radio Resource Control (RRC)
What is the MAC?

► Medium Access Control – controlling access to a shared medium
- The medium is the radio spectrum
- Who gets to transmit?
- When to transmit?
- How much and how fast to transmit?

► What is casually called “the MAC” varies between LTE and WLAN
- The informal use is to refer to the function that deals in “packets” on the top side, and controls a radio Modem on the bottom side
- in 3GPP standards this function contains the MAC, RLC, PDCP, and RRC
- In 802.11, the MAC is everything between the packet interface and the PHY
Protocol design: driven by use cases and requirements

► WLAN grew out of LAN technologies such as Ethernet
 • Data communication was primary application – voice added recently
 • Mobility and handoff were added recently
 • Requirement for fair and equal access for all nodes

► LTE grows out of cellular standards: Global System for Mobile Communications (GSM) and Universal Mobile Telecommunications System (UMTS)
 • Voice communication was primary application – data added recently
 • Mobility and handoff were requirements from the start
 • Requirement for central management of all nodes
The spectrum of spectrum

- WLAN
 - Designed to work in free spectrum
 - Not highly optimized – packet headers and contention time result in significant overhead
 - Simple protocol, easy to implement
 - Designed to work in shared spectrum
 - Protocol is robust to interference

- LTE
 - Protocol designed to maximize utilization of expensive spectrum
 - Every mS and Hz is utilized to carry the maximum data
 - Protocol very complex and highly optimized
 - Designed to work in licensed spectrum
 - Poor tolerance to interference
 - Network planning required
The spectrum of symmetry

<table>
<thead>
<tr>
<th>Almost Symmetrical</th>
<th>Highly Asymmetrical</th>
</tr>
</thead>
</table>

WLAN
- Station and Access points are basically the same
 - Access point consists of station with some additional software
- Identical power
- Identical modulation
- Peer-to-peer communication possible

LTE
- UE and Base Station are very different
- Uplink and downlink power are different
- Uplink and downlink modulation are different
- Peer-to-peer communication not supported
The spectrum of connection model

Packet Switched ► WLAN ◄ LTE ► LTE ◄ Circuit Switched

► WLAN

► 802.11 evolved from Ethernet
 • Packet switched LAN data networks

► LTE

► LTE evolved from GSM and 3GPP 3G (WCDMA)
 • Originally circuit switched only

► 802.11 evolved towards “circuit switched like” capabilities in 802.11e, but retains packet-oriented PHY

► LTE supports packet switched model at the SAP, but retains a circuit switched model at the PHY
The spectrum of control

Distributed <-> **Centralized**

WLAN
- Access is by CSMA/CA
 - Probabilistic - based on random backoff
- AP has no "privilege" over stations
 - Except rarely used PCF or HCCA
- Networks function without frequency planning

LTE
- All client access is scheduled
- Base Station has absolute control over network device operation
- Adjacent networks require frequency planning
History and scope of wireless standards

<table>
<thead>
<tr>
<th>WLAN standardized IEEE in Project 802</th>
<th>LTE standardized by 3GPP</th>
</tr>
</thead>
<tbody>
<tr>
<td>• First 802 standard was Ethernet</td>
<td>• 3rd Generation Partnership Project</td>
</tr>
<tr>
<td></td>
<td>• Grew out of GSM cellular standards</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>802 standards’ scope limited to MAC and PHY</th>
<th>3GPP standards specify entire system</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• Air Interface, Protocol stack, Inter-network</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Work on 802.11 started in 1990</th>
<th>Work on LTE started in 2004</th>
</tr>
</thead>
</table>

| Voting-driven selection process | Consensus-driven selection process |
Comparison of wireless architectures

- **AP** – Access Point
 - Base Station

- **STA** – Station (user equipment)
 - BSS – Basic Service Set
 - ESS – Extended Service Set

- **Portal** – gateway to Internet
 - DS – Distribution System (between APs)

- **eNB** – Enhanced Node B
 - Base station

- **UE** – User Equipment

- **EPC** – Evolved Packet Core
 - MME – Mobility Mgmt Entity (Control Plane)
 - SAE – System Architecture Evolved (User Plane)
Comparison of how the MAC sees the PHY

► WLAN
 • PHY is half-duplex
 • PHY is packet oriented – sync on each packet
 • PHY provides a single channel with a single modulation for each packet

► LTE
 • PHY is typically full-duplex
 • PHY operates continuously – sync is interspersed
 • PHY provides multiple channels simultaneously with varying modulation

► Impact on the MAC
 • The WLAN PHY interface to the MAC is by a PDU (Protocol Data Unit)
 ▪ One (or more with aggregation) packet
 ▪ The MAC controls when to send and when to expect reception in time
 • The LTE PHY interfaces with a Transport Block
 ▪ Corresponding to the data carried in a period of time (radio subframe: 1 mS)
 ▪ The MAC controls what to send in a given time
Frames and packet timelines - LTE

Each sub-frame contains 14 OFDM Symbols

PDCP SDUs

PDCP PDUs

RLC SDUs

RLC PDUs

MAC SDUs

MAC PDUs

Transport Block

#0 #1 #2 #18 #19

slot ➞ Sub-frame ➞ One radio frame = 10ms

Data

Data

Data

PDCP Hdr

PDCP Hdr

PDCP Hdr

n

n+1

n+2

RLC Hdr

MAC Hdr

Padding

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc. 2007-2008.
Frames and packet timelines - WLAN

MAC
Medium Access Control

PHY
Physical Layer

Data

MAC SDUs

802.11n Aggregation

MAC PDUs

- MAC Hdr
- ICV

PHY HDR

Beacon
(typically 1 every 100mS)

Packet length ranges over 3 orders of magnitude
10uS to >10mS
Life of a Packet

► The preceding slides show the structure of packets in time

► The following section traces the flow of a packet through the sublayers of the LTE stack

► The downlink direction (from network to terminal) is covered first

► An uplink packet is then described, highlighting any differences
Life of a packet - Downlink

- The Transport Block
 - Delivered from PHY to MAC
 - Contains data from previous radio subframe
 - May contain multiple or partial packets
 - Depending on scheduling and modulation

The Transport Block
- Delivered from PHY to MAC
- Contains data from previous radio subframe
- May contain multiple or partial packets
 - Depending on scheduling and modulation
Life of a packet – Downlink – MAC layer

MAC Functions
- Hybrid ARQ
- Mapping
 - Transport ↔ Logical
 - Mux / DeMux
- Scheduling (uplink)
- Format selection
- Measurements (RRC)
MAC - Downlink - Hybrid ARQ

- Retransmission of Transport blocks for error recovery
 - MAC sends “NACK” message when TB fails CRC
 - Transport Blocks with errors are retained
 - PHY retransmits with different puncturing code
 - Retransmission combined with saved transport block(s)
 - When correct transport block is decoded, MAC signals “ACK”
 - Multiple HARQ processes run in parallel – retry several TBs

- Hybrid ARQ function involves both MAC and PHY
 - PHY performs retention and recombination (incremental redundancy)
 - MAC controls signaling

Simplified HARQ Operation

- First TB CRC = Fail
- Retry TB CRC = Fail
- HARQ Combined CRC = Good

Bad Bits
MAC channels

► Logical Channels exist at the top of the MAC
 • Represent data transfer services offered by the MAC
 • They are defined by what type of information they carry

► Types of Logical Channels
 • Control channels (for control plane data)
 • Traffic channels (for user plane data)

► Transport Channels exist at the bottom of the MAC
 • Represent data transfer services offered by the PHY
 • They are defined by how the information is carried
A valid Transport block is available from the HARQ process
Next, the transport channels are mapped to logical channels

Logical Channels
- PCCH: Paging Control Chan
- BCCH: Broadcast Ctrl Chan
- DCCH: Dedicated Ctrl Chan
- DTCH: Dedicated Traffic Chan
- MCCH: Multicast Ctrl Chan
- MTCH: Multicast Traffic Chan

Transport Channels
- PCH: Paging Channel
- BCH: Broadcast Channel
- DL-SCH: Downlink Shared Ch
- MCH: Multicast Channel
MAC – Format selection, measurements

► The MAC sets the transport format on downlink
 • The eNB includes information in each transport block that specifies the format (MCS: Modulation Coding Scheme) for the next Transport Block
 • The MAC configures the PHY for the next TB

► The MAC coordinates measurements
 • From local PHY to RRC regarding local
 ▪ RRC reports back to eNB via control messages
 • From eNB to RRC
 ▪ RRC controls local PHY modulation and configuration settings

► MAC measurements support downlink scheduling
 • Rates and radio conditions at the UE are used by the eNB
 • If the rate is high, fewer time slots are needed to send data
Life of a packet – Downlink – RLC layer

Radio Link Control

RLC Functions
- Segmentation and re-assembly
- Transparent Mode (TM), Acknowledged mode (AM), or Unacknowledged mode (UM)
- In-Sequence delivery and duplicate detection
Segmentation: unpacking an RLC PDU into RLC SDUs

- The RLC PDU size is based on transport block size.
- If an RLC SDU is large, or the available radio data rate is low (result in small transport blocks), the RLC SDU may be split among several RLC PDUs.
- If the RLC SDU is small, or the available radio data rate is high, several RLC SDUs may be packed into a single PDU.
- In many cases both splitting and packing may be present:

![Diagram of RLC Segmentation](image)
RLC In-Order Delivery

The RLC ensures in-order delivery of SDUs

- Out of order packets can be delivered during handover
- The PDU sequence number carried by the RLC header is independent of the SDU sequence number (i.e. PDCP sequence number);
- An RLC SDU is built from (one or more) RLC PDUs for downlink.
- Ordering is corrected in the RLC using sequence numbers
RLC Modes

► Transparent
 • No RLC header

► Unacknowledged and Acknowledged
 • RLC header is used

► ARQ and HARQ Interactions
 • ARQ applies to an RLC SDU
 • HARQ applies to a transport block
 ▪ May contain partial SDU, one SDU, or multiple SDUs
 • If HARQ transmitter detects a failed delivery of a TB due to e.g. maximum retransmission limit is reached the relevant transmitting ARQ entities are notified and potential retransmissions and re-segmentation can be initiated
Packet Data Convergence Protocol (PDCP)

PDCP Functions

- User plane
 - Decryption
 - ROHC Header Decompression
 - Transfer of user data
- Control Plane
 - Decryption
 - Integrity Protection

One PDCP instance per radio bearer
ROHC – Robust Header Compression
• Defined in IETF RFC 3095

Payload size for VoIP
e.g. G.723.1 codec

IP Header Payload

Token Payload

40 bytes

24 bytes

4 bytes
PDCP – Ciphering and integrity protection

► Ciphering (Encryption / Decryption)
 • Protects User Plane data
 • Protects RRC (Radio Resource Control) Data
 • Protects NAS (Non Access Stratum) Data

► Processing order in PDCP
 • For downlink, first decryption then ROHC decompression
 • For uplink, first ROHC compression, then encryption

► Details of LTE security architecture are still being defined in 3GPP™ SA3 (System Architecture Working Group 3)
Key Differences

- Peak data rate is half that of downlink
- Access is granted by eNB
- Changes in Logical Channels and Transport channels
- Use of Random Access for initial TX
Life of a packet – Uplink – PDCP layer

Packet Data Convergence Protocol

PDCP Functions
- Symmetrical for Uplink and Downlink

Uplink Processing
- Header Compression
- Encryption

Physical Channels
PHY (DL-OFDM, UL-SC-FDMA)

Transport Channels
Logical Channels
Radio Bearers
User Traffic

Layer 1
Layer 2
Layer 3

Host

RRC PDUs
PDCP PDUs

RRC
PDCP Ctrl
RLC Ctrl
MAC Ctrl
L1 Ctrl

PDCP
MAC
RLC

Layer 2

Layer 3

PS NAS

User Traffic

Packet Data Convergence Protocol
Life of a packet – Uplink – RLC layer

- **Radio Link Control**
- **RLC Functions**
 - Symmetrical for Uplink and Downlink
- **Uplink Function**
 - Apply RLC headers
 - Segment and concatenate into Transport Blocks (per radio bearer)
Segmentation is the process of packing an RLC SDU into a size appropriate for transport blocks:

- The RLC PDU size is chosen based on the transport block size for the radio bearer.
- If the RLC SDU is large, or the available radio data rate is low, the RLC SDU may be split into several RLC PDUs.
- If the RLC SDU is small, or the available radio data rate is high, several RLC SDUs may be packed into a single PDU.
- In many cases both splitting and packing occur:

![Diagram](image.png)
Life of a packet – Uplink – MAC layer

MAC Functions
- Significantly different between Uplink and Downlink

Uplink Functions
- Random Access Channel
- Scheduling
- Building headers
- Transport Format selection

Layer 3
- PS NAS
- RRC
- RRC PDUs

Layer 2
- Layer 3 functionalities
- PDCP
- PDCP PDUs
- RLC
- RLC PDUs
- MAC
- MAC PDUs

Layer 1
- PHY (DL-OFDM, UL-SC-FDMA)

MAC – Transport Format Selection

► The MAC determines the Transport Format
 • The Uplink Shared Channel (UL-SCH) is the primary transport channel

► Format variables are modulation and coding, which determine data rate.
 • The MAC determines the capacity of a transport block based on the transport format
UL-SCH: Uplink Shared Channel
- The CCCH (Common Control Channel), DCCH (Dedicated Control Channel), and DTCH (Dedicated Traffic Channel) are all mapped to the Uplink Shared Channel

RACH: Random Access Channel
- All MAC transmissions on the UL-SCH must be scheduled
- When the UE is not connected, no transmit slots are ever scheduled
- The RACH provides a means for disconnected devices to transmit
MAC – Random Access Procedure

The Random Access Procedure is used for four cases:
- Initial access from disconnected state (RRC_IDLE)
- Handover requiring random access procedure
- DL or UL data arrival during RRC_CONNECTED after UL PHY has lost synchronization (possibly due to power save operation)
- UL data arrival when are no dedicated scheduling request channels available

There are two forms of the Random Access Procedure
- Contention based (applicable to all four events)
- Non-contention based (applicable to only handover and DL data arrival)
MAC – Contention Based Random Access

1. **Random Access Preamble**
 - Uses CDMA-like coding to allow simultaneous transmissions to be decoded
 - 6 bit random ID

2. **Random Access Response**
 - Sent on DL-SCH (Downlink Shared Channel)
 - Sent within a time window of a few TTI
 - For initial access, conveys at least RA-preamble identifier, Timing Alignment information, initial UL grant and assignment of Temporary C-RNTI
 - One or more UE’s may be addressed in one response

3. **Scheduled Transmission**
 - Uses HARQ and RLC Transparent Mode
 - Conveys UE Identifier

4. **Contention Resolution**
 - Optional – used by eNB to end Random Access procedure
MAC – Non-Contention Based Random Access

1. Random access preamble assignment
 • eNB assigns the 6 bit preamble code
2. Random access preamble
 • UE transmits the assigned preamble
3. Random access response
 • Same as for contention based RA
 • Sent on DL-SCH (Downlink Shared Channel)
 • Sent within a time window of a few TTI
 • Conveys at least:
 ▪ Timing Alignment information and initial UL grant for handover
 ▪ Timing Alignment information for DL data arrival;
 ▪ In addition, RA-preamble identifier if addressed to RA-RNTI on L1/L2 control channel.
 • One or more UE’s may be addressed in one response
MAC – Uplink Scheduling

► All access to the uplink shared channel (UL-SCH) is scheduled

► Uplink scheduling information is carried on the physical downlink control channel
 • Along with
 ▪ Transport format, resource allocation, and hybrid-ARQ information related to DL-SCH
 ▪ ACK/NAK in response to uplink transmission.
 • Modulation for control channels is QPSK (most robust)

► The UE sends an Uplink Scheduling Request to the eNB
 • The eNB responds with a grant.
Life of a Packet - Conclusion

Downlink

Uplink

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc. 2007-2008.
LTE Protocol Operation
The eNB allocates physical layer resources for the UL and DL SCH

- Resources are Physical Resource Blocks (PRB) and Modulation Coding Scheme (MCS)
 - MCS determines bit rate, and thus capacity of PRB
- Allocations may be valid for one or more TTI’s (Transmission Time Int)
 - TTI interval is one Sub-Frame (1mS)

Four types of scheduling allocations to a given UE:

- Short lived dynamic allocation
 - Both PRB(s) and allowed MCS are allocated for a defined duration
- Short lived fixed allocation
 - PRB(s) are allocated for a defined duration, and the allowed MCS is allocated for an undefined duration
- Long lived dynamic allocation
 - PRB(s) are allocated for an undefined duration, and the MCS is dynamically controlled by the network
- Long lived fixed allocation
 - Both PRB(s) and allowed MCS are allocated for an undefined duration.
C-RNTI (dynamic UE identifier) is found on control channel (PDCCH)
- Indicates upcoming downlink resource is scheduled for this UE
Downlink scheduling with HARQ

- C-RNTI (dynamic UE identifier) is found on control channel (PDCCH)
 - Indicates upcoming downlink resource is scheduled for this UE
- HARQ generates ACK or NACK for each DL transport block
 - Asynchronous – UE can respond with ACK/NACK in variable amount of time
 - ACK / NACK is send on L1/L2 control channel (PUCCH)
Uplink scheduling with HARQ

- C-RNTI (dynamic UE identifier) is found on control channel (PDCCH)
 - Indicates upcoming uplink resource is scheduled for this UE
 - Carries ACK / NACK messages for uplink data transport blocks
- HARQ is synchronous
 - Fixed time from UL to ack/nack on DL from eNB

RLC and up

MAC

- TX in Slot 7
- De-queue Multiplex
- TX in Slot 13
- De-queue Multiplex
- TX in Slot 18

DL-SCH

PDCCH

- ACK
- NACK

UL-SCH

- RETX

► C-RNTI (dynamic UE identifier) is found on control channel (PDCCH)
 - Indicates upcoming uplink resource is scheduled for this UE
 - Carries ACK / NACK messages for uplink data transport blocks

► HARQ is synchronous
 - Fixed time from UL to ack/nack on DL from eNB
QoS Architecture

► LTE architecture support “Hard QoS”
 • End-to-end Quality of Service
 • Guaranteed Bit Rate (GBR) for Radio Bearers

► Evolved Packet System (EPS) bearers
 • One to One correspondence with RLC Radio Bearers
 • Provide support for Traffic Flow Templates (TFT)

► Types of EPS Bearers
 • GBR Bearer – resources permanently allocated by admission control
 • Non-GBR Bearer – no admission control
 • Dedicated Bearer – associated with specific TFT (GBR or non-GBR)
 • Default Bearer – Non GBR, “catch-all” for unassigned traffic
Management and Control Functions

▶ UE management and control is handled in the Radio Resource Control (RRC)

▶ Functions handled by RRC
 • Broadcast of system information to the AS and NAS
 • Paging
 • RRC connection management (UE ↔ eNB)
 • Integrity Protection and Ciphering of RRC messages
 ▪ RRC uses different keys than User Plane
 • Radio Bearer control (logical channels at top of PDCP)
 • Mobility functions (handover and cell reselection)
 • UE measurement reporting and control
 • QoS Management

▶ RRC States
 • RRC_Idle – not active, but ID assigned and tracked by the network
 • RRC_Connected – active operation, with context in eNB
Handover and roaming

► WLAN Handover
 • Station dis-associates with one AP and associates with another
 • All APs must be part of the same ESS (Extended Service Set)
 • 802.11r extends basic functions to enable secure, make-before-break

► LTE Handover
 • Intra-RAT (within one Radio Access Technology)
 ▪ Basic handover from one eNB to another, all a part of LTE network
 ▪ Seamless transition assumed – less than 10mS interruption
 • Inter-RAT (between Radio Access Technologies)
 ▪ Handover between LTE and any other network
 – GSM, 3G (WCDMA), even WLAN
 ▪ Inter-RAT handover involves higher layers
 – Different radio modems are often involved
 ▪ Call continuity assumed
 – Some disruption possible (up to 300mS) per current thinking in 3GPP SA1 WG
Handover – Measurement

► In a single-radio architecture, it is challenging to monitor other networks while the receiver is active
 • The radio can only receive on one channel at a time
 • The radio needs to listen on other frequencies to determine if a better base station (access point) is available to make a decision to switch

► In 802.11, the process for roaming/handover is not standardized
 • The radio must temporarily leave the current channel to check others
 • 802.11k defines measurements
 • Except in scheduled modes, there is a chance of missing a packet
 • The client device is responsible for making the roaming decision
Handover – Measurement

► In LTE, the measurement and handover process is fully specified
 • Handover occurs in the active state
 ▪ Controlled by the network (eNB)
 ▪ The network uses measurements from the UE (and its own knowledge of the network topology) to determine when to handover a UE, and to which eNB.
 • Cell Re-selection occurs in the idle state
 ▪ Controlled by the mobile device (UE)

► LTE measurements
 • In the active state, the eNB provides measurement gaps in the scheduling of the UE.
 • The gap provides the UE sufficient time to change frequency, make a measurement, and switch back to the active channel.
The LTE network provides the UE with neighbor lists

- Based on the network knowledge configuration, the eNB provides the UE with neighboring eNB’s identifiers and their frequency.
- The UE measures the signal quality of the neighbors it can receive (during measurement gaps or idle periods)
- The UE reports results back to the eNB
- The network decides the best handover (if any), based on signal quality, network utilization, etc.
The LTE network provides the UE with neighbor lists

- Based on the network knowledge configuration, the eNB provides the UE with neighboring eNB’s identifiers and their frequency.
- The UE measures the signal quality of the neighbors it can receive (during measurement gaps or idle periods)
- The UE reports results back to the eNB
- The network decides the best handover (if any), based on signal quality, network utilization, etc.
The LTE network provides the UE with neighbor lists

- Based on the network knowledge configuration, the eNB provides the UE with neighboring eNB’s identifiers and their frequency.
- The UE measures the signal quality of the neighbors it can receive (during measurement gaps or idle periods)
- The UE reports results back to the eNB
- The network decides the best handover (if any), based on signal quality, network utilization, etc.
Power Save operation

► In both LTE and WLAN, the receiver uses significant power
 • RF Transceiver, fast A/D Converters, wideband signal processing, etc

► Both standards provide power save mechanisms
 • The radio modem can be turned off for “most” of the time
 • The device stays connected to the network with reduced throughput.
 • The receiver is turned on at specific times for updates
 • Devices can quickly transition to full power mode for full performance

► 802.11 Power save modes
 • “Legacy” Power Save mode defined in the original standard
 • Automatic Power Save Delivery (APSD)
 ▪ Added in 802.11e, enhanced in 802.11n
 ▪ Two forms – Scheduled APSD, and Unscheduled APSD
Discontinuous Reception (DRX) and Discontinuous Transmission (DTX) are the power save function in LTE.

DRX details are still being developed.
- Current plan of record is a two-step approach.

Realtime packets (e.g. VoIP) transmitted to UE.
Conclusion

Key points on the LTE MAC

- Complex – highly optimized
- Continuous PHY transmission on downlink
- Fully scheduled operation
- Multiple logical channels carried over link
Functional view of the stack
RLC Data Flow Functional Blocks

RLC (C-plane)
- DL ARQ SM
- DL SDU Builder
- LTE RLC Rx task
- Logic channels traffic queues
 - PCCH
 - BCCH
 - DCCH
 - DTCH
 - MCCH
 - MTCH

PDPC (U-plane)
- LTE RLC Tx task
- UL RLC PDU builder (Seg/Concat/Re-seg)
- Output RLC PDUs

RRC (C-plane)
- AM only
- RLC Config from RRC
- Output RLC SDUs to RRC and PDPC, via RB Queues
- UL queue per bearer ID
- UL ARQ SM
- UL queue per bearer ID
- Input RLC SDU to RLC via RB Queues

PDPC (U-plane)
- AM only
- RLC SDU
- Function call
- Rx_PDU()
- MAC Scheduling per RB
- Logic channels traffic queues
 - DCCH
 - DTCH
 - MCCH
 - MTCH

MAC Rx
- Input RLC PDUs

HARQ
- Rebuild RLC SDUs
- Ack/Nack to send
- MAC Rx
- Ack/Nack Received
- MAC Tx
PDCP Data Flow Functional Blocks

RRC L2 Control

Host Layer
- Output PDCP SDU to Host interface, via one common Queue
- Enqueue PDCP SDU

RoHC Decompressor

Decryption

PDCP RX Main

PDCP RX

RLC RX

DL queue per bearer ID

Output RLC SDUs to PDCP, via RB Queues

Input PDCP SDU to PDCP, via one common Queue

Dequeue PDCP SDU

ROHC_Compress

RoHC Compressor

Encryption

PDCP TX Main

PDCP TX

Encryption

Enqueue PDCP PDU

UL queue per bearer ID

Input RLC SDU to RLC, via RB Queues

Dequeue PDCP PDU

Output RLC SDUs to PDCP, via RB Queues

Signal

Signal

Signal

Signal

Signal
RRC Functional Blocks

LTE Radio Resource Control (RRC)

API to L3

Mobility
NAS Message Transfer
MBMS Services
Security
QOS Services
Radio Bearer Management
NAS System Info Processing
AS System Info Processing

RRC Main Task

Cell Search
Access Stratum Measurements
Power Mgmt DRX/DTX
Paging
Access

L1 Control

LTE PHY Driver
LTE RF Driver

LTE PDCP

Rx on CCCH
Tx on SRB1
Tx on SRB0

LTE RLC

BCCH
PCH
MCCH
Rx on SRB1
Rx on SRB0

LTE MAC

Rx SU-1 on DL-SCH

Tx on RACH

Routing Services

RRC Msg In
RRC Msg Out

UE MIB

LTE PHY Driver
LTE RF Driver

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc. 2007-2008.