

Test Report Page: 1 of 10 No.: KA/2020/72311 Date: 2020/08/04

NXP SEMICONDUCTORS

HIGH TECH CAMPUS 60, 5656AG EINDHOVEN, THE NETHERLANDS

The following sample(s) was/were submitted and identified by/on behalf of the applicant as:

Sample Submitted By : NXP SEMICONDUCTORS

Sample Description : NXP WAFERS 2020 Style/Item No. : ATMC WAFER

Sample Receiving Date : 2020/07/28

Testing Period : 2020/07/28 to 2020/08/04

Test Requested (1) As specified by client, with reference to RoHS 2011/65/EU Annex II and amending

Directive (EU) 2015/863 to determine Cadmium, Lead, Mercury, Cr(VI), PBBs, PBDEs,

DBP, BBP, DEHP, DIBP contents in the submitted sample(s).

(2) Please refer to next pages for the other item(s).

Please refer to next page(s). Test Result(s)

Conclusion : (1) Based on the performed tests on submitted sample(s), the test results of Cadmium,

Lead, Mercury, Cr(VI), PBBs, PBDEs, DBP, BBP, DEHP, DIBP comply with the limits

as set by RoHS Directive (EU) 2015/863 amending Annex II to Directive 2011/65/EU.

Ray Chang Ph.D. / Ma Signed for and on beh SGS Taiwan Limited Chemical Laboratory-K

PIN CODE: FA23184D

Test Report Page: 2 of 10 No.: KA/2020/72311 Date: 2020/08/04

NXP SEMICONDUCTORS HIGH TECH CAMPUS 60, 5656AG EINDHOVEN, THE NETHERLANDS

Test Result(s)

PART NAME NO.1 : MULTICOLORED WAFER

Test Item (s)	Unit	Method	MDL	Result	Limit
				No.1	
Cadmium (Cd)	mg/kg	With reference to IEC 62321-5: 2013 and performed by ICP-OES.	2	n.d.	100
Lead (Pb)	mg/kg	With reference to IEC 62321-5: 2013 and performed by ICP-OES.	2	n.d.	1000
Mercury (Hg)	mg/kg	With reference to IEC 62321-4:2013+ AMD1:2017 and performed by ICP- OES.	2	n.d.	1000
Hexavalent Chromium Cr(VI)	mg/kg	With reference to IEC 62321-7-2:2017 and performed by UV-VIS.	8	n.d.	1000
Sum of PBBs	mg/kg		-	n.d.	1000
Monobromobiphenyl	mg/kg		5	n.d.	-
Dibromobiphenyl	mg/kg	With reference to IEC 62321-6:2015 and performed by GC/MS.	5	n.d.	-
Tribromobiphenyl	mg/kg		5	n.d.	-
Tetrabromobiphenyl	mg/kg		5	n.d.	-
Pentabromobiphenyl	mg/kg		5	n.d.	-
Hexabromobiphenyl	mg/kg		5	n.d.	-
Heptabromobiphenyl	mg/kg		5	n.d.	-
Octabromobiphenyl	mg/kg		5	n.d.	-
Nonabromobiphenyl	mg/kg		5	n.d.	-
Decabromobiphenyl	mg/kg		5	n.d.	-
Sum of PBDEs	mg/kg	With reference to IEC 62321-6:2015 and performed by GC/MS.	•	n.d.	1000
Monobromodiphenyl ether	mg/kg		5	n.d.	-
Dibromodiphenyl ether	mg/kg		5	n.d.	-
Tribromodiphenyl ether	mg/kg		5	n.d.	-
Tetrabromodiphenyl ether	mg/kg		5	n.d.	-
Pentabromodiphenyl ether	mg/kg		5	n.d.	-
Hexabromodiphenyl ether	mg/kg		5	n.d.	-
Heptabromodiphenyl ether	mg/kg		5	n.d.	-
Octabromodiphenyl ether	mg/kg		5	n.d.	-
Nonabromodiphenyl ether	mg/kg		5	n.d.	-
Decabromodiphenyl ether	mg/kg		5	n.d.	-

Test Report No.: KA/2020/72311 Page: 3 of 10 Date: 2020/08/04

NXP SEMICONDUCTORS

HIGH TECH CAMPUS 60, 5656AG EINDHOVEN, THE NETHERLANDS

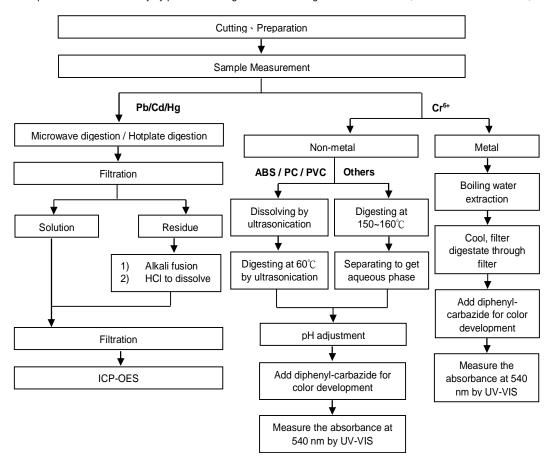
Test Item (s)	Unit	Method	MDL	Result No.1	Limit
DIBP (Di-isobutyl phthalate) (CAS No.: 84-69-5)	mg/kg	With reference to IEC 62321-8:2017. Analysis was performed by GC/MS.	50	n.d.	1000
DBP (Dibutyl phthalate) (CAS No.: 84-74-2)	mg/kg		50	n.d.	1000
BBP (Butyl Benzyl phthalate) (CAS No.: 85-68-7)	mg/kg		50	n.d.	1000
DEHP (Di- (2-ethylhexyl) phthalate) (CAS No.: 117-81-7)	mg/kg		50	n.d.	1000
DNOP (Di-n-octyl phthalate) (CAS No.: 117-84-0)	mg/kg		50	n.d.	-
DINP (Di-isononyl phthalate) (CAS No.: 28553-12-0, 68515-48-0)	mg/kg		50	n.d.	-
DIDP (Di-isodecyl phthalate) (CAS No.: 26761-40-0, 68515-49-1)	mg/kg		50	n.d.	-
DNPP(Di-n-pentyl phthalate) (CAS No.: 131-18-0)	mg/kg		50	n.d.	-
Antimony (Sb)	mg/kg	With reference to US EPA 3052: 1996. Analysis was performed by ICP-OES.	2	n.d.	-
Arsenic (As)	mg/kg		2	n.d.	-
Beryllium (Be)	mg/kg		2	n.d.	-
Halogen					
Halogen-Fluorine (F) (CAS No.: 14762-94-8)	mg/kg	With reference to BS EN 14582:2016. Analysis was performed by IC.	50	n.d.	-
Halogen-Chlorine (CI) (CAS No.: 22537-15-1)	mg/kg		50	n.d.	-
Halogen-Bromine (Br) (CAS No.: 10097-32-2)	mg/kg		50	n.d.	-
Halogen-lodine (I) (CAS No.: 14362-44-8)	mg/kg		50	n.d.	-

Test Report Page: 4 of 10 No.: KA/2020/72311 Date: 2020/08/04

NXP SEMICONDUCTORS HIGH TECH CAMPUS 60, 5656AG EINDHOVEN, THE NETHERLANDS

Note:

- 1. mg/kg = ppm; 0.1wt% = 1000ppm
- 2. n.d. = Not Detected
- 3. MDL = Method Detection Limit
- 4. " " = Not Regulated
- 5. The statement of compliance conformity is based on comparison of testing results and limits.

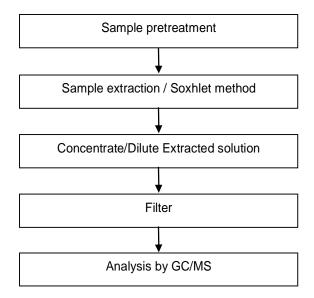


Test Report No.: KA/2020/72311 Page: 5 of 10 Date: 2020/08/04

NXP SEMICONDUCTORS HIGH TECH CAMPUS 60, 5656AG EINDHOVEN, THE NETHERLANDS

Analytical flow chart of Heavy Metal

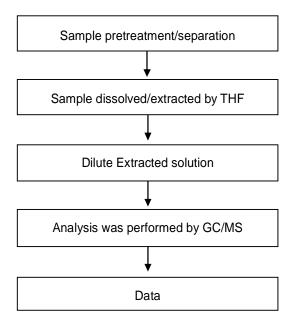
These samples were dissolved totally by pre-conditioning method according to below flow chart. (Cr6+ test method excluded)



Test Report Page: 6 of 10 No.: KA/2020/72311 Date: 2020/08/04

NXP SEMICONDUCTORS HIGH TECH CAMPUS 60, 5656AG EINDHOVEN, THE NETHERLANDS

PBB/PBDE analytical FLOW CHART

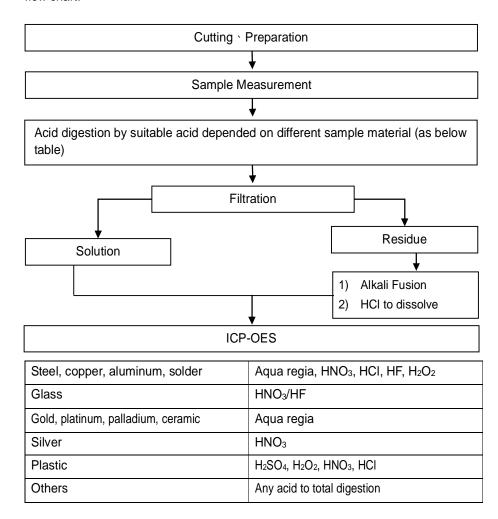


Test Report Page: 7 of 10 No.: KA/2020/72311 Date: 2020/08/04

NXP SEMICONDUCTORS HIGH TECH CAMPUS 60, 5656AG EINDHOVEN, THE NETHERLANDS

Analytical flow chart of phthalate content

[Test method: IEC 62321-8]

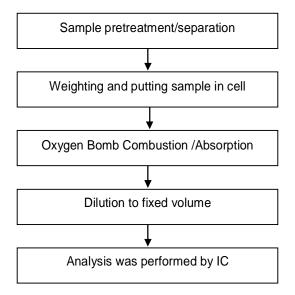


Test Report Page: 8 of 10 No.: KA/2020/72311 Date: 2020/08/04

NXP SEMICONDUCTORS HIGH TECH CAMPUS 60, 5656AG EINDHOVEN, THE NETHERLANDS

Flow Chart of digestion for the elements analysis performed by ICP-OES

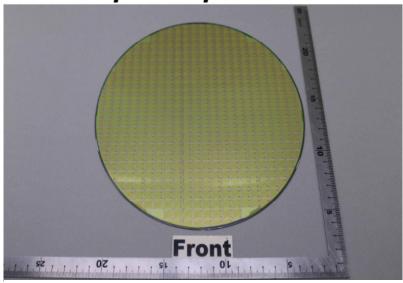
These samples were dissolved totally by pre-conditioning method according to below flow chart.



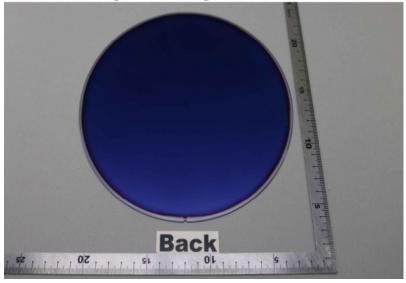
Test Report Page: 9 of 10 No.: KA/2020/72311 Date: 2020/08/04

NXP SEMICONDUCTORS HIGH TECH CAMPUS 60, 5656AG EINDHOVEN, THE NETHERLANDS

Analytical flow chart of Halogen



Test Report Page: 10 of 10 No.: KA/2020/72311 Date: 2020/08/04


NXP SEMICONDUCTORS HIGH TECH CAMPUS 60, 5656AG EINDHOVEN, THE NETHERLANDS

* The tested sample / part is marked by an arrow if it's shown on the photo. *

KA/2020/72311

KA/2020/72311

** End of Report **