

Date: 13-Jun-2025 Page: 1 of 18 No.: EKR25600351

LINTEC Corporation

1-1-1 Koishikawa, Bunkyo-Ku, Tokyo 112-0002 Japan

The following sample(s) was/were submitted and identified by the applicant as:

Sample Submitted By **LINTEC Corporation**

Sample Name ADWILL LE5000 PXAKS(REGARDLESS OF THICKNESS AND SIZE)

Style/Item No. ADWILL LE5000 P6AKS, ADWILL LE5000 P8AKS, ADWILL LE5000 P12AKS

Order No. 250602-LT-RN-01-184

Sample Receiving Date

06-Jun-2025

Testing Period

06-Jun-2025 to 13-Jun-2025

Test Requested

(1) As specified by client, with reference to RoHS 2011/65/EU Annex II and amending Directive (EU) 2015/863 to determine Cadmium, Lead, Mercury, Cr(VI), PBBs, PBDEs, DBP, BBP, DEHP, DIBP contents in the submitted sample(s).

(2) Please refer to next pages for the other item(s).

Test Results

Please refer to following pages.

Conclusion

Based on the performed tests on selected part of submitted sample(s), the test results of Cadmium, Lead, Mercury, Cr(VI), PBBs, PBDEs, DBP, BBP, DEHP, DIBP comply with the limits as set by RoHS Directive (EU) 2015/863 amending Annex II to

Directive 2011/65/EU.

Ray Chang, Ph.D./Depart the vivian Signed for and on behalf SĞS TAIWAN LTD. Chemical Laboratory-Kaohsiung

No.: EKR25600351 Date: 13-Jun-2025 Page: 2 of 18

LINTEC Corporation 1-1-1 Koishikawa, Bunkyo-Ku, Tokyo 112-0002 Japan

Test Part Description

No.1 : WHITE ADHESIVE (EXCLUDING THE RELEASE LINNER)

Test Result(s)

Test Item(s)	Method	Unit	MDL	Result	Limit
				No.1	100
Cadmium (Cd)	With reference to IEC 62321-5: 2013,	mg/kg	2	n.d.	100
	analysis was performed by ICP-OES.				1000
Lead (Pb)	With reference to IEC 62321-5: 2013,	mg/kg	2	n.d.	1000
	analysis was performed by ICP-OES.				1000
Mercury (Hg)	With reference to IEC 62321-4: 2013+	mg/kg	2	n.d.	1000
	AMD1: 2017, analysis was performed				
	by ICP-OES.				
Hexavalent Chromium Cr(VI)	With reference to IEC 62321-7-2: 2017,	mg/kg	8	n.d.	1000
	analysis was performed by UV-VIS.				
Monobromobiphenyl		mg/kg	5	n.d.	-
Dibromobiphenyl		mg/kg	5	n.d.	-
Tribromobiphenyl		mg/kg	5	n.d.	-
Tetrabromobiphenyl		mg/kg	5	n.d.	-
Pentabromobiphenyl		mg/kg	5	n.d.	-
Hexabromobiphenyl		mg/kg	5	n.d.	-
Heptabromobiphenyl		mg/kg	5	n.d.	-
Octabromobiphenyl		mg/kg	5	n.d.	-
Nonabromobiphenyl		mg/kg	5	n.d.	-
Decabromobiphenyl		mg/kg	5	n.d.	-
Sum of PBBs	With reference to IEC 62321-6: 2015,	mg/kg	1	n.d.	1000
Monobromodiphenyl ether	analysis was performed by GC/MS.	mg/kg	5	n.d.	ı
Dibromodiphenyl ether		mg/kg	5	n.d.	ı
Tribromodiphenyl ether		mg/kg	5	n.d.	-
Tetrabromodiphenyl ether		mg/kg	5	n.d.	-
Pentabromodiphenyl ether		mg/kg	5	n.d.	-
Hexabromodiphenyl ether		mg/kg	5	n.d.	-
Heptabromodiphenyl ether		mg/kg	5	n.d.	
Octabromodiphenyl ether		mg/kg	5	n.d.	-
Nonabromodiphenyl ether		mg/kg	5	n.d.	-
Decabromodiphenyl ether		mg/kg	5	n.d.	
Sum of PBDEs		mg/kg	-	n.d.	1000

No.: EKR25600351 Date: 13-Jun-2025 Page: 3 of 18

LINTEC Corporation

1-1-1 Koishikawa, Bunkyo-Ku, Tokyo 112-0002 Japan

Test Item(s)	Method	Unit	MDL	Result No.1	Limit
Antimony (Sb) (CAS No.: 7440-36-0)	With reference to US EPA 3052: 1996, analysis was performed by ICP-OES.	mg/kg	2	n.d.	-
Beryllium (Be) (CAS No.: 7440-41-7)	With reference to US EPA 3052: 1996, analysis was performed by ICP-OES.	mg/kg	2	n.d.	-
Phosphorus (P) (CAS No.: 7723-14-0)	With reference to US EPA 3052: 1996, analysis was performed by ICP-OES.	mg/kg	2	12.0	-
Polychlorinated biphenyls (PCBs)	With reference to US EPA 3550C: 2007, analysis was performed by GC/MS.	mg/kg	0.5	n.d.	-
Polychlorinated naphthalene (PCNs)	With reference to US EPA 3550C: 2007, analysis was performed by GC/MS.	mg/kg	5	n.d.	-
Polychlorinated terphenyls (PCTs)	With reference to US EPA 3550C: 2007, analysis was performed by GC/MS.	mg/kg	0.5	n.d.	-
Short Chain Chlorinated Paraffins(C10-C13) (SCCP) (CAS No.: 85535-84-8)	With reference to ISO 18219-1: 2021, analysis was performed by GC/MS.	mg/kg	50	n.d.	-
Fluorine (F) (CAS No.: 14762-94-8)		mg/kg	50	n.d.	-
Chlorine (Cl) (CAS No.: 22537-15-1)	With reference to BS EN 14582: 2016,	mg/kg	50	583	-
Bromine (Br) (CAS No.: 10097-32-2)	analysis was performed by IC.	mg/kg	50	n.d.	-
lodine (I) (CAS No.: 14362-44-8)		mg/kg	50	n.d.	-
Tributyl tin (TBT)	With reference to ISO 17353: 2004, analysis was performed by GC/FPD.	mg/kg	0.03	n.d.	-
Triphenyl tin (TPT)	With reference to ISO 17353: 2004, analysis was performed by GC/FPD.	mg/kg	0.03	n.d.	-
Bis(tributyltin) oxide (TBTO) (CAS No.: 56-35-9)	Calculated from the result of Tributyl Tin (TBT).	mg/kg	0.03 ▲	n.d.	-
Dibutyl tin (DBT)	With reference to ISO 17353: 2004, analysis was performed by GC/FPD.	mg/kg	0.03	n.d.	-
Dioctyl tin (DOT)	With reference to ISO 17353: 2004, analysis was performed by GC/FPD.	mg/kg	0.03	n.d.	-
Perfluorooctane sulfonates and its salts (PFOS and its salts) (CAS No.: 1763-23-1 and its salts)	With reference to CEN/TS 15968: 2010, analysis was performed by LC/MS/MS.	mg/kg	0.01	n.d.	-
Perfluorooctanoic acid and its salts (PFOA and its salts) (CAS No.: 335-67-1 and its salts)	With reference to CEN/TS 15968: 2010, analysis was performed by LC/MS/MS.	mg/kg	0.01	n.d.	-

No.: EKR25600351 Date: 13-Jun-2025 Page: 4 of 18

LINTEC Corporation

1-1-1 Koishikawa, Bunkyo-Ku, Tokyo 112-0002 Japan

Test Item(s)	Method	Unit	MDL	Result	Limit
				No.1	
Dibutyl phthalate (DBP)		mg/kg	50	n.d.	1000
Butyl benzyl phthalate (BBP)		mg/kg	50	n.d.	1000
Diisobutyl phthalate (DIBP)		mg/kg	50	n.d.	1000
Di-(2-ethylhexyl) phthalate (DEHP)		mg/kg	50	n.d.	1000
Diisodecyl phthalate (DIDP) (CAS	With reference to IEC 62321-8: 2017, analysis was performed by GC/MS.	mg/kg	50	n.d.	-
No.: 26761-40-0, 68515-49-1) Diisononyl phthalate (DINP) (CAS No.: 28553-12-0, 68515-48-0)	analysis was performed by Ge/Wis.	mg/kg	50	n.d.	-
Di-n-octyl phthalate (DNOP) (CAS No.: 117-84-0)		mg/kg	50	n.d.	-
Hexabromocyclododecane (HBCDD) and all major diastereoisomers identified (α - HBCDD, β - HBCDD, γ - HBCDD) (CAS No.: 25637-99-4, 3194-55-6 (134237-51-7, 134237-50-6, 134237-52-8))	With reference to IEC 62321: 2008, analysis was performed by GC/MS.	mg/kg	5	n.d.	-
Polyvinyl chloride (PVC)	With reference to ASTM E1252: 2021, analysis was performed by FT-IR and Flame Test.	**	ı	Negative	-

Note:

- 1. mg/kg = ppm; 0.1wt% = 0.1% = 1000ppm
- 2. MDL = Method Detection Limit
- 3. n.d. = Not Detected (Less than MDL)
- 4. "-" = Not Regulated
- 5. **= Qualitative analysis (No Unit)
- 6. Negative = Undetectable; Positive = Detectable
- 7. ▲ : The MDL was evaluated for element / tested substance.

Conversion Formula : $AX = A \times F$

AX	Α	F
Bis(tributyltin)oxide (TBTO)	Tributyl Tin (TBT)	1.0276

Parameter Conversion Table: https://eecloud.sgs.com/Region_TW/DocDownload.aspx?name=Others

8. Unless otherwise stated, the decision rule for conformity reporting is based on Binary Statement for Simple Acceptance Rule (w=0) stated in ILAC-G8:09/2019. According to this rule, the judgement of conformity is based on the comparing test results with limits.

No.: EKR25600351 Date: 13-Jun-2025 Page: 5 of 18

LINTEC Corporation 1-1-1 Koishikawa, Bunkyo-Ku, Tokyo 112-0002 Japan

PFAS Remark:

The quantitative technology of PFAS is to analyze the specific structure of PFAS substances. However, PFAS acid and its salts with the same carbon number group have the same specific structure that can be identified. The tested results of the analyzed specific structure cannot be distinguished to identify the contribution from PFAS acid or its salts. Therefore, the tested results display the sum of concentrations of PFAS acids and its salts with the same carbon number group. The concentration of PFAS substances in the below table have been included in the tested results, please refer to the table for relevant information: (The listed PFAS substances are examples only, it do not include all PFAS salts with the same carbon number group.)

Group Name	Substance Name	CAS No.
	Perfluorooctane sulfonates (PFOS)	1763-23-1
	Potassium perfluorooctanesulfonate (PFOS-K)	2795-39-3
	Perfluorooctanesulfonic acid, lithium salt (PFOS-Li)	29457-72-5
	Perfluorooctanesulfonic acid, ammonium salt (PFOS-NH ₄)	29081-56-9
	Perfluorooctane sulfonate diethanolamine salt (PFOS-NH(C2H4OH)2)	70225-14-8
	Perfluorooctanesulfonic acid, tetraethylammonium salt (PFOSN(C_2H_5) ₄)	56773-42-3
PFOS, its salts & derivatives	N-decyl-N,N-dimethyldecan-1-aminium 1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,8-heptadecafluorooctane-1- sulfonate (PFOS-DDA)	251099-16-8
	TetrabutylAmmonium perfluorooctanesulfonate (PFOS- $N(C_4H_9)_4$)	111873-33-7
	Perfluorooctane sulfonyl fluoride (POSF)	307-35-7
	Perfluorooctanesulfonic acid, magnesium salt (PFOS-Mg)	91036-71-4
	Perfluorooctanesulfonic acid, sodium salt (PFOS-Na)	4021-47-0
	Piperidine 1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,8-heptadecafluorooctanesulfonate	71463-74-6

No.: EKR25600351 Date: 13-Jun-2025 Page: 6 of 18

LINTEC Corporation

1-1-1 Koishikawa, Bunkyo-Ku, Tokyo 112-0002 Japan

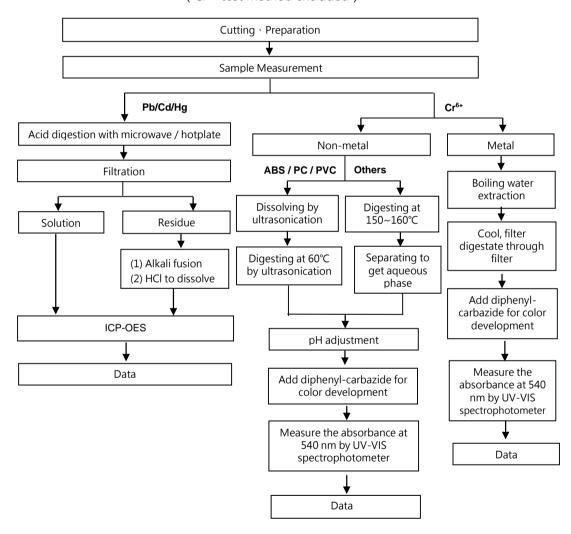
Group Name	Substance Name	CAS No.
	Perfluorooctanesulfonate (anion)	45298-90-6
	$\begin{array}{c} \hbox{1-Octanesulfonic acid, 1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,8-} \\ \hbox{heptadecafluoro-, compd. with N,N-diethylethanamine (1:1)} \\ \hbox{(PFOS-N(C$_2$H$_5)$_3)} \end{array}$	54439-46-2
	Methanaminium, N,N,N-trimethyl-, 1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,8-heptadecafluoro-1- octanesulfonate (1:1) (PFOS-N(CH ₃) ₄)	56773-44-5
	1-Pentanaminium, N,N,N-tripropyl-, 1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,8-heptadecafluoro-1-octanesulfonate (1:1) (PFOS-N(C_3H_7) ₃ (C_5H_{11}))	56773-56-9
	$\begin{array}{lll} \hbox{1-Butanaminium, N,N-dibutyl-N-methyl-,} \\ \hbox{1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,8-heptadecafluoro-1-} \\ \hbox{octanesulfonate (1:1) (PFOS-N(C_4H_9)_3(CH_3))} \end{array}$	124472-68-0
	lodonium, bis[4-(1,1-dimethylethyl)phenyl]-, 1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,8-heptadecafluoro-1- octanesulfonate (1:1)	213740-80-8
PFOS, its salts & derivatives	Sulfonium, diphenyl(2,4,6-trimethylphenyl)-, 1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,8-heptadecafluoro-1- octanesulfonate (1:1)	258341-99-0
	Pyridinium, 1-hexadecyl-, 1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,8-heptadecafluoro-1-octanesulfonate (1:1)	334529-63-4
	1-Decanaminium, N,N,N-triethyl-, 1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,8-heptadecafluoro-1- octanesulfonate (1:1)	773895-92-4
	Tetrabutylphosphonium perfluorooctane sulfonate (PFOS- $P(C_4H_9)_4$))	2185049-59-4
	Perfluorooctanesulfonic acid diethylamine salt (PFOS-C ₄ H ₁₁ N)	2205029-08-7
	$\label{eq:heptyldimethyl} Heptyldimethyl \ \{2-[(2-methylprop-2-enoyl)oxy]ethyl\} azanium perfluorooctanesulfonate \ (PFOS-C_{15}H_{30}NO_2)$	1203998-97-3
	1-Octanesulfonic acid, 1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,8-heptadecafluoro-, 1,1'-anhydride (PFOSAN)	423-92-7

No.: EKR25600351 Date: 13-Jun-2025 Page: 7 of 18

LINTEC Corporation

1-1-1 Koishikawa, Bunkyo-Ku, Tokyo 112-0002 Japan

Group Name	Substance Name	CAS No.
	Perfluorooctanoic acid (PFOA)	335-67-1
	Sodium perfluorooctanoate (PFOA-Na)	335-95-5
	Potassium perfluorooctanoate (PFOA-K)	2395-00-8
	Silver perfluorooctanote (PFOA-Ag)	335-93-3
	Perfluorooctanoyl fluoride (PFOA-F)	335-66-0
	Ammonium pentadecafluorooctanoate (APFO)	3825-26-1
	Lithium perfluorooctanoate (PFOA-Li)	17125-58-5
	Cobalt perfluorooctanoate (PFOA-Co)	35965-01-6
	Cesium perfluorooctanoate (PFOA-Cs)	17125-60-9
	Octanoic acid, 2,2,3,3,4,4,5,5,6,6,7,7,8,8,8-pentadecafluoro-, chromium(3+) (PFOA-Cr(3 ⁺))	68141-02-6
	Pentadecafluorooctanoic acidpiperazine (2/1)PFOA- $NH(C_4H_{10}N)$	423-52-9
	Pentadecafluorooctanoate (anion)	45285-51-6
	Perfluorooctanoic Anhydride	33496-48-9
PFOA, its salts & derivatives	Ethanaminium, N,N,N-triethyl-, 2,2,3,3,4,4,5,5,6,6,7,7,8,8,8-pentadecafluorooctanoate (1:1)	98241-25-9
	Tetramethylammoniumperfluoroctanoat	32609-65-7
	1-Propanaminium, N,N,N-tripropyl-, 2,2,3,3,4,4,5,5,6,6,7,7,8,8,8-pentadecafluorooctanoate (1:1)	277749-00-5
	Octanoic acid, 2,2,3,3,4,4,5,5,6,6,7,7,8,8,8-pentadecafluoro-, potassium salt, hydrate (1:1:2) (PFOA-K(H ₂ O) ₂)	98065-31-7
	Octanoic acid, 2,2,3,3,4,4,5,5,6,6,7,7,8,8,8-pentadecafluoro-, compd. with ethanamine (1:1) (PFOA-C ₂ H ₇ N)	1376936-03-6
	Octanoic acid, pentadecafluoro-, compd. with pyridine (1:1) (9CI) (PFOA- C_5H_5N)	95658-47-2
	Pentadecafluorooctanoic acid- 1-phenylpiperazine(1:1) (PFOA- $C_{10}H_{14}N_2$)	1514-68-7
	1-Octanaminium, N,N,N-trimethyl-, 2,2,3,3,4,4,5,5,6,6,7,7,8,8,8-pentadecafluorooctanoate (1:1) (PFOA- C ₁₁ H ₂₆ N)	927835-01-6

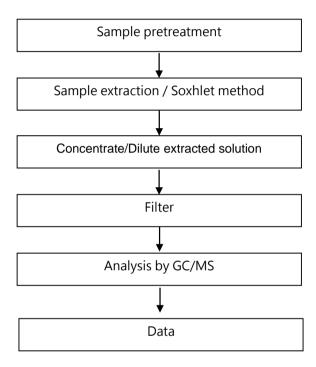


No.: EKR25600351 Date: 13-Jun-2025 Page: 8 of 18

LINTEC Corporation 1-1-1 Koishikawa, Bunkyo-Ku, Tokyo 112-0002 Japan

Analytical flow chart of Heavy Metal

These samples were dissolved totally by pre-conditioning method according to below flow chart. (Cr^{6+} test method excluded)

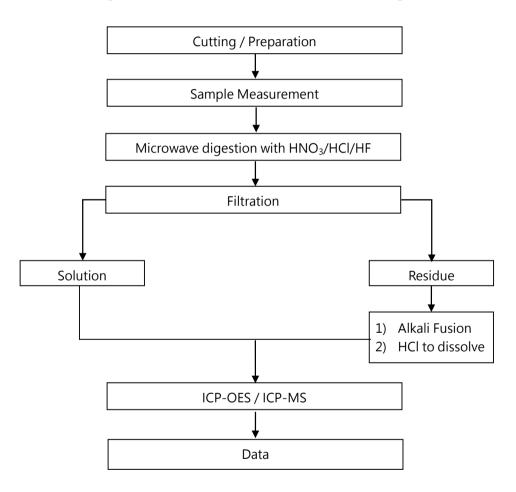


No.: EKR25600351 Date: 13-Jun-2025 Page: 9 of 18

LINTEC Corporation 1-1-1 Koishikawa, Bunkyo-Ku, Tokyo 112-0002 Japan

PBB/PBDE analytical FLOW CHART

LINTEC Corporation 1-1-1 Koishikawa, Bunkyo-Ku, Tokyo 112-0002 Japan


No.: EKR25600351

Analytical flow chart of Elements (Heavy metal included)

Date: 13-Jun-2025

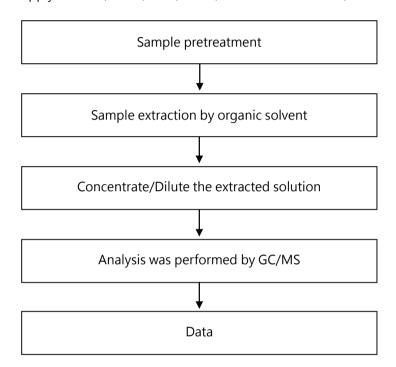
These samples were dissolved totally by pre-conditioning method according to below flow chart.

【Reference method: US EPA 3051、US EPA 3052】

* US EPA 3051 method does not add HF.

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at https://www.sgs.com.tw/terms-of-service. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of client's instruction, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced, except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested.

Page: 10 of 18


LINTEC Corporation
1-1-1 Koishikawa, Bunkyo-Ku, Tokyo 112-0002 Japan

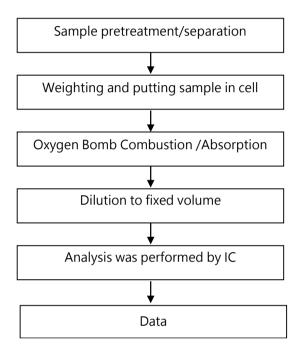
No.: EKR25600351

Analytical flow chart

Date: 13-Jun-2025

* Apply to: PCBs, PCNs, PCTs, Mirex, Chlorinated Paraffins, DBBT

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at https://www.sgs.com.tw/terms-of-service. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of client's instruction, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced, except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested.

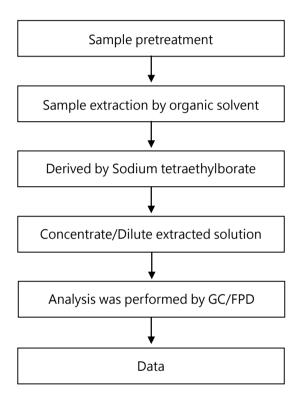

Page: 11 of 18

No.: EKR25600351 Date: 13-Jun-2025

LINTEC Corporation 1-1-1 Koishikawa, Bunkyo-Ku, Tokyo 112-0002 Japan

Analytical flow chart of Halogen

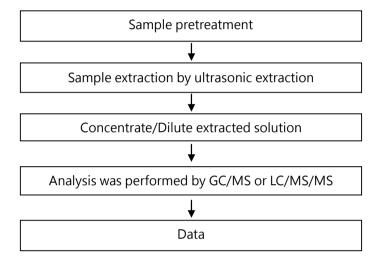
This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at https://www.sgs.com.tw/terms-of-service. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of client's instruction, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced, except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested.


Page: 12 of 18

No.: EKR25600351 Date: 13-Jun-2025 Page: 13 of 18

LINTEC Corporation 1-1-1 Koishikawa, Bunkyo-Ku, Tokyo 112-0002 Japan

Analytical flow chart - Organic-Tin



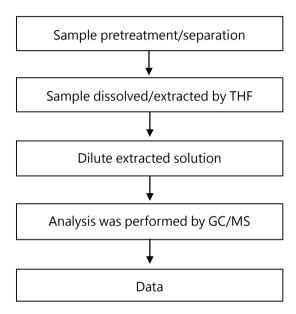
No.: EKR25600351 Date: 13-Jun-2025

LINTEC Corporation 1-1-1 Koishikawa, Bunkyo-Ku, Tokyo 112-0002 Japan

Analytical flow chart - PFAS (including PFOA/PFOS/its related compound, etc.)

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at https://www.sgs.com.tw/terms-of-service. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of client's instruction, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced, except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested.

Page: 14 of 18

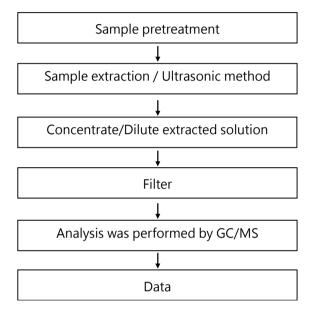


No.: EKR25600351 Date: 13-Jun-2025 Page: 15 of 18

LINTEC Corporation 1-1-1 Koishikawa, Bunkyo-Ku, Tokyo 112-0002 Japan

Analytical flow chart of phthalate content

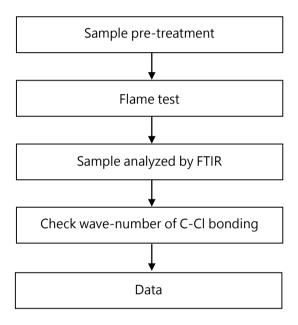
【Test method: IEC 62321-8】



No.: EKR25600351 Date: 13-Jun-2025 Page: 16 of 18

LINTEC Corporation 1-1-1 Koishikawa, Bunkyo-Ku, Tokyo 112-0002 Japan

Analytical flow chart - HBCDD



No.: EKR25600351 Date: 13-Jun-2025 Page: 17 of 18

LINTEC Corporation 1-1-1 Koishikawa, Bunkyo-Ku, Tokyo 112-0002 Japan

Analysis flow chart - PVC

No.: EKR25600351 Date: 13-Jun-2025 Page: 18 of 18

LINTEC Corporation 1-1-1 Koishikawa, Bunkyo-Ku, Tokyo 112-0002 Japan

* The tested sample / part is marked by an arrow if it's shown on the photo. *

EKR25600351

** End of Report **