Semiconductors – enablers of future mobility concepts

Kurt Sievers
Executive VP & General Manager NXP Automotive
Geschäftsführer NXP Semiconductors Germany GmbH
NXP Semiconductors

High Performance Mixed Signal and Standard Product solutions that leverage our leading RF, Analog, Power Management, Interface, Security and Digital Processing expertise

- **Employee base:**
 - ~25,000 employees in more than 25 countries
 - R&D in Europe, US, and Asia
 - Manufacturing in Asia and Europe

- **Net sales:** $4.2 B in 2011

- **Leader in mixed-signal Auto Semiconductors**
 - #3 China
 - #1 Car Infotainment
 - #1 In Vehicle Networks
 - #1 Car Access & Immobilization
 - #1 Automotive Small Signal Discretes & Logic
'Green Driving' ...?
A sustainable and profitable business:

‘Consumers deeply desire new products ... and are excited about their use!’

Hypothesis:

‘Growth in Electromobility comes from focus on new segments rather than conventional cars with electric drivetrains’

Examples:
- Different mobility (car-sharing etc.)
- Different and emotional cars (the ‘i’- generation)
- User groups with direct economic benefit (city pizza service)
(Hybrid) Electric Vehicles are not new …

Lohner Porsche Mixte, 1902:
Serial Hybrid series car with combustion engine and 2 electric motors in the front wheels

General Motors EV1, 1996
Pure Electric car with Lead acid battery

… facing disadvantages vs. combustion engine vehicles:
• range limitations (insufficient storage)
• no charging infrastructure
• high cost for limited additional value

No consumer traction
Why will (Hybrid) Electric Vehicles be inevitable this time?

- Global Climate
- Global Crisis & Oil Resources
- Urban congestion
- Advanced Technology

![Graph showing average annual crude oil prices](chart.png)
(Hybrid) Electric Vehicles are not new …

Lohner Porsche Mixte, 1902: Serial Hybrid series car with combustion engine and 2 electric motors in the front wheels

General Motors EV1, 1996 Pure Electric car with Lead acid battery

… facing disadvantages vs. combustion engine vehicles:

• range limitations (insufficient storage)
• no charging infrastructure
• high cost for limited additional value

➔ Technology (storage, power, efficiency)
➔ Consumer focus (connected mobility)
Electromobility – a significant growth opportunity for the semiconductor industry

- Today‘s market of automotive semiconductors:
 ~ 23 billion US$ (~8 % of total semiconductors market)

- Semiconductors content of electric drivetrain >2x of conventional powertrain

 Semiconductor $ per conventional vehicle
 2011: 250-300 US$
 2020: 400-450 US$

 Semiconductor $ per electric vehicle
 2011: ~900 US$
 2020: ~750 US$
Semiconductors & Electromobility … win - win!

Semiconductors enabling consumer acceptance

‘Connected Mobility’

- Digital consumer and mobile technologies for new services
- Mastering range anxiety
- Ensuring security in the grid
- Enhancing driver experience

Electromobility driving new semiconductor technology

‘More than Moore’

- High power ICs for the electric drivetrain (including safety isolation)
- Maximize energy efficiency of the conventional electronic system
Connected Mobility
Enabling new services

802.11p
LF, UHF

Cellular
NFC

Cellular

NFC

802.11p
Connected Mobility
Telematics to master range anxiety

- EVs want to be charged whenever they are parked
- Knowing infrastructure locations (Charge Spots) is not enough
- Important is to know the next available Charge Spot
- Connectivity is required for online checks
- ...and reservation
-authentication
-metering and billing
-roaming
Critical mass market factors for telematics:
- enabler of new business models
- small form factor and low cost
- automotive grade
- easy programmability
- privacy protection / security

NXP ATOP ramped up to mass production in 2011
Connected Mobility
Security in the grid

- Enabled by security against hacking and fraud:
 - localizing the charging station,
 - booking,
 - battery swapping
 - (pre-)paying / billing
Connected Mobility
Enhancing driver experience ... examples

- Uninterrupted entertainment in hybrid cars for start-stop systems – NXP first to supply complete portfolio of 6V capable amplifiers

- Driver information vs. driver distraction?
 Need advice on most economical driving and not excessive data (learn from Smart Phone)
Semiconductors & Electromobility … win - win!

Semiconductors enabling consumer acceptance

• 'Connected Mobility'
 - Digital consumer and mobile technologies for new services
 - Mastering range anxiety
 - Ensuring security in the grid
 - Enhancing driver experience

Electromobility driving new semiconductor technology

• 'More than Moore'
 - High power ICs for the electric drivetrain (including safety isolation)
 - Maximize energy efficiency of the conventional electronic system
The (Hybrid) Electrical Vehicle … driving new semiconductors technology

1) **High power** ICs (including safety isolation)

2) **Maximize energy efficiency** of the conventional electronic system
From ‘Moore’ . . .

Baseline CMOS: CPU, Memory, Logic

Transistors Per Die

10^10
10^9
10^8
10^7
10^6
10^5
10^4
10^3
10^2
10^1
10^0
10^-1

1K 4K 16K 64K 256K 1M 4M 16M 64M 256M 128M 1G 2G 4G

Moore: Miniaturization

130nm
90nm
65nm
45nm
32nm
22nm

Information Processing
From ‘Moore’ to ‘More-than-Moore’ … a new trajectory in Semiconductor technology

Baseline CMOS: CPU, Memory, Logic

More than Moore: Enrichment
- Analog/RF
- High Voltage
- Power
- Sensors
- Actuators

Sense, Interact, Power-up

Information Processing

Moore: Miniaturization

Information
Processing

Transistors Per Die

10^10

1965 Actual Data
MOS Arrays
MOS Logic 1975 Actual Data
1975 Projection
Memory
Microprocessor
Application map for power devices

Drain to Source Voltage V_{DS} (V)

Low voltage Medium voltage High voltage

Drain Current I_D (A)

Low current Medium current High current

NEW POWER technologies: GaN, SiC, ...

Computing

Automotive

Hybrid & EV

Consumer

Industrial

- Start-stop systems
- EPS
- ABS
- Solenoids
- Pump relays
- VRM
- PM IC switches
- DC/DC converters
- RF-PA basestations
- Engine control
- Solenoid drive
- Lamps
- Relay switching
- Wiper motor
- Transmission
- Water pump
- Airbags
- Inverter drive
- Ignition systems
- Auxiliary systems in HEV
 (heating, fans)
- Engine cooling
- EPS, step-down DC/DC
- Discharge lamp
- Discharge/Boosting
- Inverters
 full HEV & EV
- Inverters
 mild HEV
- Charger
 HEV
- Solar inverters
 Industrial appl
 UPS
- Servers
 PC
 Power PFC
- Power supply
 PFC
 notebook
 mobiles
- Power supply
 lighting
The (Hybrid) Electrical Vehicle … driving new semiconductor technology
Electric drivetrain requires high power and safety isolation

- All HV components need to be fully isolated from the car body network

TJA1052i
Isolated CAN Transceiver

- High Voltage Safety and Signal integrity
 - 3.75 kV (RMS) rated Galvanic Isolation
 - IEC61010-1 CAT II, 5kV rated voltage
 - IEC60950, CAT II, 6kV rated voltage
 - ± 8kV (IEC) ESD handling on the bus pins

- 3-chip Multi-Chip Module
 - Integrates TJA1049 CAN transceiver with 2 Capacitive Isolator chips
 - High transient immunity
 - Low EM emission and high EM immunity
 - Very fast isolator
 - Loop Delay < 220ns

- NXP Automotive Quality
 - AEC-Q100
The (Hybrid) Electrical Vehicle ... driving new semiconductor technology
Maximize energy efficiency of the existing conventional electronic system

- **Partial Networking** *(Audi, BMW, Daimler, Porsche, VW - Auto Electronics Conference in LB, June 2011)*

Ricky Hudi, managing E/E director at Audi:

“Audi and Volkswagen corporations have started to introduce Partial Networking into the next generation of car models.”
The (Hybrid) Electrical Vehicle … driving new semiconductor technology
Maximize energy efficiency of the existing conventional electronic system

- **Partial Networking:** Aug. 2011 NXP launches industry first ISO compliant ICs (NWP ISO 11898-6)

With Partial Networking:
- ECU on
- ECU off
- Only selected ECUs are 'on'

Power savings ~ 100 W
Emission savings 2.6g CO₂/km ≡ 247 € in 2015
The (Hybrid) Electrical Vehicle … driving new semiconductor technology
Maximize energy efficiency of the existing conventional electronic system

- Complement 12V boardnet with 48V: Audi, BMW, Daimler, Porsche, VW
 (Auto Electronics Conference in LB, June 2011)

- The higher the voltage, the lower the cable diameters and the smaller the actuators
- Beyond 60V DC special measures protecting humans have to be taken
- The optimum compromise between system cost and maximum power per weight is 48V

Expected reduction in fuel consumption: up to 6%
The (Hybrid) Electrical Vehicle … driving new semiconductor technology
Maximize energy efficiency of the existing conventional electronic system

- Complement 12V board net with 48V: NXP’s high-voltage mixed-signal technology available!

• Voltage robustness beyond +/- 100V in combination with high logic density

NXP’s technology ready for 48V in-car networks!
(including +/- 60V bus robustness)
Conclusion
Semiconductors & Electromobility

- Semiconductors enable Electromobility through 'Connected Mobility'
 - Consumer acceptance
 - New business models

- Electromobility drives new semiconductor technology
 - High voltage, high power
 - Energy efficiency

What it takes

- Blend technology from different domains … create new user experiences!
- Open industry standards … international … and beyond automotive!
- New business models … more complex than traditional automotive value-chain