Getting Started With µClinux Development
How to get this book?

Information about the book

Thank you for viewing this preview version. The full version is a comprehensive 168 pages, covering all the topics included in the Table of Contents.

The book is designed to help you get acquainted with µClinux, the Linux distribution for processors without a Memory Management Unit (MMU). It has a practical approach with lots of step-by-step guides. The guides have been designed around the Embedded Artists LPC2468 OEM Board and LPC2478 OEM Board with appropriate Base Board and for the Embedded Artists µClinux port for the LPC24xx microcontroller.

Free of charge with purchase of our kits

Table of Contents

1 Introduction ... 10
 1.1 What is an Embedded System? 10
 1.2 The Operating System .. 11
 1.3 Choosing Linux .. 11
 1.4 Organization of This Book ... 13
 1.5 Conventions in This Book .. 14

2 Linux vs. µClinux .. 15
 2.1 Introduction .. 15
 2.2 Linux ... 15
 2.2.1 Different Aspects... 15
 2.2.2 Important Features .. 16
 2.3 Memory Management Unit ... 16
 2.3.1 Swapping ... 18
 2.3.2 Memory protection ... 18
 2.4 µClinux .. 18
 2.4.1 Limitations ... 19
 2.4.2 Benefits ... 20
 2.4.3 Modifications ... 20
 2.5 Linux and Real-Time .. 20
 2.5.1 Real-time Preemption patch 21
 2.5.2 RTLinux ... 21
 2.5.3 RTAI ... 21
 2.5.4 Xenomai ... 21

3 The µClinux Port .. 23
 3.1 Introduction .. 23
 3.2 The Kernel Source Code ... 23
 3.2.1 Configuring the Kernel ... 25
 3.3 Architecture Specifics in the Kernel 27
 3.3.1 The mach-lpc22xx Directory 27
 3.3.2 The Include Directory .. 29
 3.4 Board Specifics in µClinux ... 29
 3.4.1 Makefile ... 30
 3.4.2 Configuration Files .. 31
 3.4.3 Applications and Drivers 32

4 Boot Loader .. 33
 4.1 Introduction .. 33
 4.1.1 Different Boot Loaders ... 33
 4.2 Das U-Boot ... 34
 4.3 Configuration Options ... 34
 4.3.1 Make Target .. 34
4.3.2 Configuration Files ... 36
4.3.3 Highlighted Configurations ... 36
4.4 Console / Environment ... 37
 4.4.1 Commands ... 37
 4.4.2 Variables ... 38
 4.4.3 Erase the Environment ... 39
4.5 Booting Options .. 39
 4.5.1 Important Remarks ... 39
 4.5.2 Boot Arguments .. 39
 4.5.3 Boot Images .. 40
 4.5.4 TFTP .. 40
 4.5.5 FAT File System ... 42
 4.5.6 USB Mass Storage ... 42
 4.5.7 MMC/SD Card ... 43
 4.5.8 NOR Flash .. 44
 4.5.9 NAND Flash .. 45

5 Device Drivers .. 47
 5.1 Introduction ... 47
 5.2 Linux Devices and Drivers ... 47
 5.3 Porting .. 48
 5.4 Frame Buffer .. 48
 5.4.1 Configuration ... 48
 5.4.2 Driver Code ... 49
 5.4.3 Usage .. 49
 5.5 Touch Screen .. 49
 5.5.1 Configuration ... 49
 5.5.2 Driver Code ... 50
 5.5.3 Usage .. 50
 5.6 Ethernet ... 51
 5.6.1 Configuration ... 51
 5.6.2 Driver Code ... 51
 5.6.3 Usage .. 51
 5.7 MMC / SD .. 52
 5.7.1 Configuration ... 52
 5.7.2 Driver code .. 52
 5.7.3 Usage .. 52
 5.8 USB Host .. 53
 5.8.1 Configuration ... 53
 5.8.2 Driver Code ... 53
 5.8.3 Usage .. 54
 5.9 USB Device .. 54
 5.9.1 Configuration ... 54
 5.9.2 Driver Code ... 55
 5.9.3 Usage .. 55
 5.10 UART ... 55
5.10.1 Configuration ... 55
5.10.2 Driver Code ... 56
5.10.3 Usage .. 56
5.11 I2C .. 56
5.11.1 Configuration ... 56
5.11.2 Driver Code ... 56
5.11.3 Usage .. 59
5.12 SPI ... 60
5.12.1 Configuration ... 60
5.12.2 Driver Code ... 61
5.12.3 Usage .. 61
5.13 RTC .. 62
5.13.1 Configuration ... 62
5.13.2 Driver Code ... 63
5.13.3 Usage .. 63
5.14 MTD .. 63
5.14.1 Configuration ... 64
5.14.2 Initialization Code .. 65
5.14.3 Driver Code ... 66
5.14.4 Usage .. 66
5.15 SFR .. 66
5.15.1 Driver Code ... 66
5.15.2 Usage .. 66
5.16 ADC ... 67
5.16.1 Driver Code ... 67
5.16.2 Usage .. 68
5.17 Joystick ... 68
5.17.1 Driver Code ... 68
5.17.2 Usage .. 68
5.18 Frame Buffer Console .. 69
5.18.1 Configuration ... 70
5.18.2 Usage .. 70

6 Application Development 71
6.1 Introduction ... 71
6.2 Programming Language .. 71
6.3 Development Tools ... 71
6.4 APIs and Libraries .. 72
6.5 Hello World Example ... 73
6.6 Threads Example ... 74
6.7 Networking Example .. 75
6.8 Nano-X Example ... 77
6.9 Run Application on Target ... 80
6.9.1 NFS .. 80
6.9.2 USB Memory Stick ... 80
6.9.3 ROMFS ... 80
7 Development Environment................................. 82
 7.1 Introduction ... 82
 7.2 Virtualization... 82
 7.2.1 Virtualization Techniques 83
 7.2.2 VMware Player .. 83
 7.3 Debian Distribution .. 83
 7.3.1 Users and Login ... 84
 7.3.2 Basic Commands ... 85
 7.3.3 The File System ... 87
 7.3.4 File Permissions ... 88
 7.3.5 Desktop Environment ... 89

8 Guides – VMware Player ... 90
 8.1 Getting Started .. 90
 8.2 Changing Memory Allocation 90
 8.3 Enable / Disable Hardware Devices 91
 8.4 Share Data with Host OS ... 92
 8.4.1 Shared Folders .. 92
 8.4.2 Drag and Drop .. 94
 8.4.3 Additional Ways ... 94
 8.5 Access to the Network .. 94
 8.5.1 Problems with Network Access 95

9 Guides – Debian Linux ... 96
 9.1 Getting Started .. 96
 9.2 Terminal / the Shell ... 98
 9.2.1 Introduction .. 98
 9.2.2 Browse the File System ... 98
 9.2.3 List Content of Files .. 100
 9.2.4 Search for Files / Content 101
 9.2.5 Change Settings of Terminal 102
 9.3 Customize the Desktop ... 102
 9.3.1 Changing Screen Resolution 102
 9.3.2 Changing Default Keyboard 103
 9.3.3 Changing Font Sizes ... 104
 9.4 File Systems .. 105
 9.4.1 Browsing the File System 105
 9.4.2 Connecting to a Network Drive 107
 9.4.3 Setup a Network File System (NFS) 108
 9.4.4 MMC/SD Card ... 109
 9.4.5 USB Memory Stick ... 111
 9.5 Users ... 111
 9.5.1 Find out who is Logged On 111
 9.5.2 Add a User .. 111
 9.5.3 Change Password .. 114
 9.5.4 Deleting a User .. 114
9.5.5 Groups... 114
9.5.6 Sudo.. 116
9.5.7 Changing Permissions of Files and Directories............................... 116
9.5.8 Changing Group and Owner Settings.. 117
9.6 Package Management... 117
9.6.1 Advanced Package Tool (APT)... 117
9.6.2 Aptitude.. 118
9.6.3 Synaptic.. 118
9.7 Working with Archives... 119
9.8 Working with Patches.. 120
9.9 Setup a TFTP Server... 123
9.10 The gedit Editor.. 123
9.10.1 Syntax Highlighting.. 124
9.10.2 Indentation... 125
9.10.3 Spell Checking... 125
9.10.4 Plugins.. 126
9.10.5 Alternative Editors.. 126
9.10.6 Shutting Down... 126
10 Guides – U-boot.. 127
10.1 Build the U-boot... 127
10.2 Explore the U-boot Environment.. 128
10.2.1 Connect a Terminal to the Board.. 129
10.2.2 Basic Commands.. 130
10.3 Network Related... 131
10.3.1 Configuration of Addresses.. 131
10.3.2 Using `tftpboot` to update the u-boot... 132
10.3.3 Using `tftpboot` to Boot µClinux with Root File System 133
10.3.4 Troubleshooting the `tftpboot` Command................................. 134
10.4 FAT File Systems... 134
10.4.1 USB Memory Stick... 134
10.4.2 MMC/SD Card.. 136
10.5 NOR Flash.. 137
10.5.1 Update NOR Flash via TFTP... 137
10.5.2 Update NOR Flash via USB... 138
10.5.3 Update NOR Flash via MMC... 139
10.5.4 Boot from NOR Flash with Images in RAM............................... 139
10.5.5 Boot from NOR Flash with Images in Flash................................ 140
10.6 NAND Flash.. 140
10.6.1 Update NAND Flash via TFTP... 140
10.6.2 Update NAND Flash via USB.. 141
10.6.3 Update NAND Flash via MMC.. 141
10.6.4 Boot from NAND Flash Using a JFFS2 File System.................. 142
10.7 Boot Automatically.. 142
11 Guides – µClinux.. 144
11.1 Build µClinux ... 144
11.2 Startup of Linux .. 146
 11.2.1 The rc script ... 147
 11.2.2 The userrc script .. 148
11.3 File Systems ... 148
 11.3.1 JFFS2 – Journalling Flash File System version 2 149
11.4 Users .. 149
 11.4.1 The passwd file .. 149
 11.4.2 Adding the addgroup, adduser and passwd Commands 150
11.5 Network Related .. 152
 11.5.1 Static IP Address .. 152
 11.5.2 Dynamic IP Address – DHCP ... 152
 11.5.3 FTP Access ... 154
 11.5.4 Telnet Access ... 155
 11.5.5 Web/HTTP Access .. 156
 11.5.6 NFS Mounting .. 157
11.6 Graphics Related .. 158
 11.6.1 Nano-X ... 158
11.7 USB Related ... 158
 11.7.1 USB Host – Connect USB Memory Stick 158
 11.7.2 USB Device – Target is a USB Memory Stick 159
11.8 I²C .. 160
 11.8.1 PCA9532 Device .. 160
 11.8.2 EEPROM Device ... 160
11.9 Real-Time Clock (RTC) .. 161
11.10 ADC ... 162
11.11 SFR .. 162
11.12 Framebuffer Console ... 163
12 Guides – Create Your Own SDK 165
 12.1 Debian Etch as VMware Appliance 165
 12.2 Install Necessary Tools .. 165
 12.3 Install and Build the u-boot and mkimage 167
 12.4 Install and Build µClinux .. 167
13 Resources .. 168
1 Introduction

This book is designed to help you get acquainted with µClinux, the Linux distribution for processors without a Memory Management Unit (MMU). The book has a practical approach with lots of step-by-step guides. The guides have been designed around the Embedded Artists LPC2468 OEM Board and LPC2478 OEM Board with appropriate Base Board and for the Embedded Artists µClinux port for the LPC24xx microcontroller.

The development environment used for the exercises is based on a Debian Etch Linux distribution which is distributed as a VMware image that can be run in, for example, the VMware Player available for Windows PCs as well as Linux PCs, i.e., a virtualization approach has been chosen for the Debian Etch distribution.

It is not necessary to have expert knowledge about using Linux in order to understand the content of this book or to do the exercises since one part of the book will cover the basics of using Linux.

Besides describing µClinux the Universal boot loader (U-boot) will also be covered in this book since without a boot loader it will be difficult to get µClinux up-and-running. There should be enough information in this book to get you working with µClinux on an Embedded System.

1.1 What is an Embedded System?

The term Embedded Systems is generally defined to mean a computer system designed to solve one or a very few specific functions. These functions may need to be performed during long periods of time without interruption or even interaction with a person. Because of this they must in general be reliable and stable, maybe even meet real-time and safety critical requirements. It is not acceptable to have to reboot an embedded system every day or even on a weekly or monthly basis, they may have to be able to run continually for several years. The computer system is embedded in a sense where it is put into a device in a way where the device is not perceived as being a computer system.

This term is quite general and applicable for a lot of different devices found in the everyday world today. There are in fact a lot more embedded systems around you than you would probably imagine, ranging from simple sensors such as a thermostat, thermometer or motion sensor to a TV, washing machine, mobile phone or parts in a modern car or airplane. A modern car today can have 60 or more embedded computers controlling everything from fuel injection, the power windows, airbags and brakes.

The opposite of an Embedded System is a general purpose computer system that can be used to perform many types of tasks and run many types of applications. The Personal Computer (PC) found in many homes today is a general purpose computer system. It can be used for word processing, photo editing, software development, web browsing, entertainment (play games, listen to music, watch movies), heavy computational tasks and much more.

The mobile phone is on the list of embedded devices, but the question is if this is still true. When the mobile phone could only be used to make a phone call and maybe send and receive text messages the definition would apply for a mobile phone, but the phones on the market today can be used for a lot more; take photographs, play music, browse the web, send and receive e-mails, navigation (using GPS), and lots more, i.e., it is more of a general purpose computer system. This last paragraph just want to point out that sometimes it might be difficult to say if a device is really considered to be an embedded system in the true original meaning of the term. Nevertheless it is a device with a computer system probably in the need for an operating system.
1.2 The Operating System

Why would an Operating System (OS) be needed in an embedded system? First of all it is not sure it would be needed at all. This depends on the situation and what the embedded system is supposed to do and which problem it must solve. For the simplest device only performing one task such as regularly reading a sensor value, an operating system would probably not be needed, while a more complex device where several sensors should be read, a display regularly updated, and data sent onto a wireless network an operating system would probably be a necessity.

The responsibility of the operating system is to manage the resources, such as processing power (access to the processor), memory, and other input- and output devices attached to the computer system. It lies as a layer between the applications and the actual hardware making sure access is handled in a fair and controlled way. Many different types of operating systems exist and below is a list of a couple of different types to know about.

- **Multitasking or single-tasking OS** – In a multitasking OS multiple tasks (also called processes) can be performed simultaneously although the computer system only has one CPU. It is the operating systems responsibility to divide the access time to the CPU into smaller parts, time slices, and to schedule the processes so that they are given one or more time slices at a time. How much time that is given to a process is dependent on a specific scheduling algorithm.

In a single tasking OS several processes may exist, but only one will run at any given time and the next process will not start to run until the first has stopped executing.

- **Real-Time Operating System (RTOS)** – This is an operating system usually found in embedded systems. The applications running in this OS need to react on input and deliver an output in real-time, sometimes with requirements on guaranteeing that deadlines are met and that the behaviour is deterministic. The RTOS is usually a multitasking operating system allowing several applications to run simultaneously.

- **Multi-user or single-user** – As the name implies a multi-user operating system allows for several users to have concurrent access to the computer while a single-user system only allows one user access. A server is typically running a multi-user operating system while a mobile phone usually only needs a single-user operating system.

1.3 Choosing Linux

In the annual survey conducted in the year 2007 by Embedded System Design, see ref [1], the participants were asked which operating system type they would be likely to use in their next embedded project. The majority would chose a commercial OS, but the number of developers choosing an open-source OS is high; 27 % as shown in Figure 1. Looking at the trend it reveals that the number of developers choosing a commercial OS is dropping.

According to the same survey 21 % of the participants were already using Linux as the open-source OS in their embedded project and 31 % were likely to use it in the next 6 to 12 months. The reason for choosing Linux was mostly because of low cost, adaptability/extensibility of the OS and personal control of its features and migration.

The survey shows that Linux, a multi-user and multitasking operating system, has become popular to use also in embedded systems, not only desktops and servers and that low cost is the prominent factor when choosing an open-source operating system for an embedded project.