
3-Phase Sensorless BLDC Motor Control

Kit with S32K144

Featuring Motor Control application Tuning (MCAT) Tool

by: NXP Semiconductors

1. Introduction

This application note describes the design of a 3-phase

Brushless DC (BLDC) motor control drive using a

sensorless algorithm and 3-phase low-voltage power

stage DEVKIT-MOTORGD based on SMARTMOS®

MC34GD3000 pre-driver. DEVKIT-MOTORGD is

designed to supply low power 3-phase Permanent

Magnet (PM) motors and measure analog and digital

quantities required by this application.

This design serves as an example of motor control

design using S32K1 family of automotive motor

control MCUs based on a 32-bit ARM® Cortex® -M4F

optimized for a full range of automotive applications.

Following are the supported features:

• 3-phase BLDC speed control based on Six-step

commutation control

• Shaft position obtained by Hall sensor or by

BEMF (Back Electromotive Force) voltage zero-

crossing detection technique

• DC-bus current, DC-bus voltage and BEMF

voltage sensing

• Motor speed determined by Hall sensor period

or BEMF zero-crossing period

• Application control user interface using

FreeMASTER debugging tool

NXP Semiconductors Document Number: AN12435

Application Notes Rev. 1 , 06/2020

Contents

1. Introduction .. 1

2. System concept .. 2

3. Sensorless BLDC control ... 2

3.1. Overview of the brushless DC motor 2

3.2. Output voltage actuation and complementary

unipolar PWM modulation technique 6

3.3. Position estimation based on BEMF zero-crossing

detection .. 8

3.4. States of the sensorless BLDC control based on

BEMF zero-crossing detection .. 15

4. Software implementation on the S32K144....................... 16

4.1. S32K144 – Key modules for BLDC six-step control16

4.2. S32K144 initialization .. 19

4.3. Software architecture .. 37

5. Application control .. 48

5.1. FreeMASTER graphical user interface 48

5.2. Motor Control Application Tuning Tool 49

6. Conclusion ... 57

7. References .. 58

8. Revision history ... 58

https://www.nxp.com/products/processors-and-microcontrollers/arm-microcontrollers/s32k-automotive-mcus/s32k1-microcontrollers-for-general-purpose:S32K1?utm_medium=AN-2021

Sensorless BLDC control

3-Phase Sensorless BLDC Motor Control Kit with S32K144, Rev. 1, 06/2020

2 NXP Semiconductors

Motor Control Application Tuning (MCAT) tool

2. System concept

The system is designed to drive a 3-phase BLDC motor. The application meets the following

performance specifications:

• Targeted at the S32K144EVB Evaluation Board (refer to dedicated user manual for

S32K144EVB available at www.nxp.com). See section References for more information.

• Control technique incorporating:

o Six-step commutation control of 3-phase brushless DC motor with and without position

sensor

o Rotor position is obtained by Hall sensor or by BEMF (Back Electromotive Force)

voltage zero-crossing detection technique

o Closed-loop speed control with action period 1ms

o Bi-directional rotation

o Motor current limitation

o Alignment and start-up

o 100 μs sampling period

• Automotive Math and Motor Control Library (AMMCLIB) – Speed control loop built on blocks

of precompiled SW library (see section References)

• FreeMASTER software control interface (motor start/stop, speed setup)

• FreeMASTER software monitor

• FreeMASTER embedded Motor Control Application Tuning (MCAT) tool (motor parameters,

speed loop, sensorless parameters)

• FreeMASTER software MCAT graphical control page (required speed, actual motor speed,

start/stop status, DC-Bus voltage level, DC-Bus current, system status)

• FreeMASTER software speed scope (observes actual and desired speeds, DC-Bus voltage and

DC-Bus current)

• FreeMASTER software high-speed recorder (six-step commutation control quantities)

• DC-Bus over-voltage and under-voltage, over-current, overload and start-up fail protection.

3. Sensorless BLDC control

3.1. Overview of the brushless DC motor

The BLDC motor (Figure 1) is a rotating electric machine with a classic slotted stator filled by 3-phase

winding similar to an induction motor. The phases mounted on the stator are connected to form a star or

delta connection. The rotor has surface-mounted permanent magnets. The motor can have more than one

http://www.nxp.com/

Sensorless BLDC control

3-Phase Sensorless BLDC Motor Control Kit with S32K144, Rev. 1, 06/2020

NXP Semiconductors 3

pole pair per phase. The number of pole pairs per phase defines the ratio between the electrical

revolution and the mechanical revolution.

The BLDC motor is equivalent to an inverted DC brushed motor, where the magnet rotates while the

conductors remain stationary. In the DC brushed motor, the commutator and brushes reverse the current

polarity in such a way that stator and rotor magnetic fields are perpendicular. However, in the brushless

DC motor, a power transistor (which must be switched in synchronization with the rotor position)

performs the polarity reversal. This process is also known as electronic commutation.

C A B

Permanent Magnets

Stator

Stator Winding

Shaft

Rotor

Air Gap

Center point

Figure 1. BLDC motor – cross-section

The arrangement of the magnets on the rotor creates a Trapezoidal Back Electromotive Force (BEMF)

shape when the rotor is spinning. Neglecting the higher-order harmonic terms, the BEMF in the motor

phase (ea,eb,ec) is as indicated in Figure 2. Each BEMF has a constant amplitude for 120 electrical

degrees, followed by a 60 electrical degree transition in each half-cycle. The ideal current waveforms in

each phase (ia,ib,ic) need to be quasi-square waveforms of 120 electrical degrees of conduction angle in

each half-cycle. The conduction of current in each phase must coincide with the flat part of the BEMF

waveforms, this guarantees that the developed torque is constant or ripple-free at all times. In order to

align current conduction in each phase with the flat part of the BEMF, the rotor position must be known.

Sensorless BLDC control

3-Phase Sensorless BLDC Motor Control Kit with S32K144, Rev. 1, 06/2020

4 NXP Semiconductors

Figure 2. 3-phase BEMF voltages and phase currents of a BLDC motor

The position of the rotor can be obtained by a position sensor or a sensorless algorithm. Various kinds

of position sensors are used. However, since the rotor is a permanent magnet, it is a very simple matter

to determine where the physical pole edges are using a simple, reliable, and inexpensive Hall effect

sensor.

The following techniques are commonly used to estimate rotor position in applications that rely on

sensorless control of a BLDC motor:
• BEMF zero-crossing detection method
• Flux level detection method
• Various kinds of system state observers
• Signal injection methods

From a control perspective, two logical mechanisms must be employed:

• Commutation control, where the phases are energized according to rotor position with

the quasi-square current waveforms.
• Speed/torque control, where the amplitude of the quasi-square current waveform applied to

the phases is controlled to achieve the desired speed/torque performance.

The following sections discuss the concept of the BEMF zero-crossing detection method, as well as the

methods and conditions for its correct evaluation.

3.1.1. Electronic commutation control

The commutation process provides a mechanism to energize phases according to the rotor position with

the quasi-square current waveforms. Since only six discreet outputs per electrical cycle are required (as

shown in Figure 2), six semiconductor power switches are sufficient to create quasi-square current

waveforms for the phases. Six semiconductor power switches form a 3-phase power inverter, designed

using IGBT or MOSFET switches. The power for the system is provided by the DC bus voltage UDCB.

The semiconductor switches and diodes are modeled as ideal devices in Figure 3.

Sensorless BLDC control

3-Phase Sensorless BLDC Motor Control Kit with S32K144, Rev. 1, 06/2020

NXP Semiconductors 5

Figure 3. Power stage and motor topology

Six-step commutation is a very common method for driving a 3-phase star-connected BLDC motor. In

six-step commutation control, the BLDC motor is operated in a two-phase model. Two phases are

energized while the third phase is disconnected as the space between the magnet poles passes over it and

produces a zero BEMF voltage. Selection of the two energized phases is carried out by a position sensor

or a position observer. The figure below shows table for the output current waveforms for a 3-phase

inverter and the switching devices that conduct during the six switching intervals per cycle.

Figure 4. Six-step switching sequence

3.1.2. Speed/torque control

Commutation ensures the proper direction of the phase current according to the rotor position of the

BLDC motor, while the motor torque/speed only depends on the amplitude of the quasi-square current

waveform. Continued control of the amplitude of the quasi-square current waveform for each phase of

the motor is ensured by hysteresis or PWM control.

PWM control is commonly used in applications where microcontrollers are employed. The duty cycle

for the PWM modulator is obtained by the speed PI controller. The speed PI controller amplifies the

Sensorless BLDC control

3-Phase Sensorless BLDC Motor Control Kit with S32K144, Rev. 1, 06/2020

6 NXP Semiconductors

error between the required and actual speeds, and its output, appropriately scaled, is assigned to the

PWM modulator.

The actual mechanical speed can be calculated as a time derivative of the shaft position mech .

Equation 1

Since the shaft travels exactly 1/6 of one electrical revolution (2 in radians) between two

commutations, the above equation can be rewritten to the following form:

() () () () () ()
5

0 60 60 120 120 180 180 240 240 300 300 360

0

360

1 1 1 360 3606el
mech

nCM
CM

n

d

p dt p T p T T T T T T
p T

→ → → → → →

=

= = = =

+ + + + +

Equation 2

Where:

• p is the number of pole pairs
• TCM is the time between two consecutive commutations
• TCM

n is the time between commutations in sector n = 0, 1, 2, 3, 4, 5

• el is the electrical position

3.2. Output voltage actuation and complementary unipolar PWM

modulation technique

The 3-phase voltage source inverter is shown in Figure 5. Voltage dividers connected to motor phases

serve on BEMF voltage measurement. Shunt resistor R60 is used for DC Bus current measurement.

Sensorless BLDC control

3-Phase Sensorless BLDC Motor Control Kit with S32K144, Rev. 1, 06/2020

NXP Semiconductors 7

Figure 5. 3-phase DC/AC inverter with shunt resistors for current measurement

There are different methodologies for powering and switching the phases. The unipolar PWM control

technique combines commutation control and torque control. While the state of the switches is

determined by commutation control, the torque is controlled by the applied duty cycle. An application

with BLDC control where the unipolar PWM control technique is employed, benefits from a reduction

in the MOSFET switching losses and an improvement in the system’s EMC robustness.

The unipolar PWM control means that the motor phase sees only the positive polarity of the voltage. To

achieve the unipolar PWM pattern, one phase is in complementary PWM mode while the second phase

is grounded and the third phase stays unpowered, as shown in Figure 6. This PWM pattern can be seen

every 60 electrical degrees, and they differ only in phase order. The phase order is determined according

to the shaft position by commutation control.

Sensorless BLDC control

3-Phase Sensorless BLDC Motor Control Kit with S32K144, Rev. 1, 06/2020

8 NXP Semiconductors

Figure 6. Complementary unipolar PWM switching

For example, in the first cycle, Phase A is powered by the complementary PWM signal while the

bottom transistor of Phase B is grounded and Phase C is unpowered. After the commutation event at 60°

electrical degrees, Phase A is still powered by the complementary PWM signal, Phase B is unpowered,

and Phase C becomes grounded instead.

The control described in this document is based on the complementary/independent unipolar PWM

modulation technique.

The following section explains sensorless position estimation by means of BEMF zero-crossing

detection for commutation control purposes.

3.3. Position estimation based on BEMF zero-crossing detection

Figure 2 shows ideal BEMF waveforms (ea, eb, ec) and depicts a commutation event occurring at a

position of 30 electrical degrees after the point where a BEMF zero-crossing arises. The BEMF zero-

crossing happens at a position of 30 electrical degrees after the point of the last commutation event. Let

us assume that the motor is spinning at a constant velocity; in this case, the motor needs the same

amount of time to travel from the position of the last commutation event to a BEMF zero-crossing and

from the BEMF zero-crossing to the following commutation event. In the time domain, a BEMF zero-

crossing is right in the middle of two commutation events. Therefore, the BEMF zero-crossing event,

with help of a timer, can simply be used to estimate the right commutation point as well as the velocity

of the rotor.

Sensorless BLDC control

3-Phase Sensorless BLDC Motor Control Kit with S32K144, Rev. 1, 06/2020

NXP Semiconductors 9

3.3.1. BEMF zero-crossing principle

To explain and simulate the idea of BEMF sensing techniques, this document provides a simplified

mathematical model based on the basic circuit topology (see Figure 7). The goal of the mathematical

model is to identify dependencies between the measurable motor waveforms and a BEMF zero-crossing.

The BEMF zero-crossing, in turn, helps to identify the commutation event.

Figure 7. Basic BLDC motor circuit topology

The mathematical model is based on the fact that only two phases of a motor are energized and the third

is disconnected. The natural voltage level of the whole model is referenced to half of the DC bus

voltage, which simplifies the mathematical expressions. The mathematical model assumes that the motor

phases are symmetrical (see Figure 7).

 Equation 3

For a symmetrical 3-phase motor, the sum of all BEMF voltages is zero, therefore:

ec + eb + ea = 0 → ec = –(eb – ea)

Equation 4

The unpowered phase has the following voltage equation, since there is no current flowing:

uN = uC – ec

Equation 5

By substituting Equation 3 with Equation 4 and Equation 5, the phase voltage on the unpowered phase
can be derived as:

3

2 2

DCB
c c

U
u e= +

Equation 6

Sensorless BLDC control

3-Phase Sensorless BLDC Motor Control Kit with S32K144, Rev. 1, 06/2020

10 NXP Semiconductors

At the time of the BEMF zero-crossing, the BEMF voltage (ec in this case) is zero as the name implies.

Therefore, by measuring voltage at the unpowered phase (ec) and comparing it to half of the DC bus

voltage, the BEMF zero-crossing can be accurately identified.

3.3.2. BEMF zero-crossing event detection and phase current

measurement

The exact position of the rotor can be sensed by measuring the BEMF voltage induced by the

rotating permanent magnet in the unpowered phase, Figure 8.

Figure 8. BEMF zero-crossing and commutation events, and their relationship to complementary unipolar PWM

switching

In Figure 8, the blue windows mark the time periods in which the respective phase is unpowered. The

voltage measured in this time window is the BEMF voltage. At the BEMF zero-crossing event, the

permanent magnet is right in front of a coil and the rotor field is positioned 90° versus the stator field.

This event happens in the middle of a commutation period and is marked as the black circles in the blue

BEMF window. At this time, the phase voltage is equal to half of the DC bus voltage, as described in

BEMF zero-crossing principle. In the case of a constant shaft velocity, the period between two

following zero-crossing events is equal to the commutation period.

Figure 9 zooms in closer to one of the PWM cycles. At the top of the figure is the PWM pattern, where

Phase A is controlled by PWM and Phase C is grounded for the entire PWM period. During the PWM

On cycle, the top switch of Phase A is turned on and the bottom switch of Phase C is grounded. Current

flows from the DC bus into Phase A, and back through Phase C and the DC bus shunt resistor. In this

cycle, the center point of the motor shows a voltage level of UDCB/2. The BEMF voltage in the

unpowered phase changes relatively to UDCB/2 in the positive and negative directions, which means that

the zero-crossing is detectable when the phase voltage on the unpowered phase is equal to UDCB/2. Also,

the phase current is measurable on the DC bus shunt.

Sensorless BLDC control

3-Phase Sensorless BLDC Motor Control Kit with S32K144, Rev. 1, 06/2020

NXP Semiconductors 11

During the Off cycle of the PWM period, both the Phase A and Phase C bottom switches are on.

Therefore, phase current circulates through Phase A, Phase C, and the two bottom switches back. During

this cycle, the phase current is unable to reach the DC bus shunt resistor and the phase current cannot be

measured. The center point of the motor as well is connected to ground, and the zero-crossing cannot

precisely be measured in that cycle.

Figure 9. BEMF zero-crossing detection with complementary unipolar PWM switching

Following on from the discussion above, phase current and BEMF voltage measurements must be

performed in the active phase of the PWM cycle.

3.3.3. BEMF voltage measurement

As we learned earlier, the BEMF voltage can only be measured during the active phase of the PWM.

Importantly, this is measured towards the end of the active cycle due to switching noises. In Figure 10,

the green marked area shows the window in which the BEMF should be measured.

Sensorless BLDC control

3-Phase Sensorless BLDC Motor Control Kit with S32K144, Rev. 1, 06/2020

12 NXP Semiconductors

Figure 10. BEMF voltage measurement

It should be noted that, depending on the motor and power stage parameters, the amplitude, period, and

damping of the voltage ringing vary. As a result, it is recommended that the BEMF voltage is measured

close to the end of the window. The time of this sample point also needs to be stored, as it is used to

enhance zero-crossing detection.

Figure 11. Precise BEMF zero-crossing identification

If we zoom in again and look at the BEMF voltage cycles (see Figure 11), it can be seen that the

crossing of the BEMF voltage and level can take place wherever between two following BEMF voltage

measurements. For accurate position estimation, an exact zero-crossing point has to be identified. This

exact zero-crossing point identification is done by an approximation based on the interpolation of two

following BEMF measurements.

Sensorless BLDC control

3-Phase Sensorless BLDC Motor Control Kit with S32K144, Rev. 1, 06/2020

NXP Semiconductors 13

Assuming that the shaft is not accelerating, actual BEMF voltage was measured at time TADC with the

voltage level of eT, and the previous measurement was taken at the time of TADC – TPWM with the voltage

level of eT-1, then the equation to calculate the exact time of the zero-crossing event could be derived as

follows:

1

1

2 2
DCB DCB

T T
T T

ZC ADC PWM

PWM ADC ZC T T

U U
e e

e e
T T T

T T T e e

−

−

− −
−

= = −
− −

Equation 7

This formula is calculated in the commutation period when two following comparisons of the

BEMF voltage to half of the DC bus have the opposite signs.

In order to enhance the accuracy of the zero-crossing event even further, the DC bus voltage and BEMF

voltage need to be measured simultaneously. DC bus voltage and phase BEMF voltage are scaled by

voltage dividers to respect 5V ADC input voltage range (Figure 12).

Figure 12. Phase C Back EMF voltage sensing circuit

3.3.3.1. BEMF voltage measurement limitations

The accuracy of the sensorless BLDC motor control algorithm based on the BEMF voltage

measurement is mostly limited by the precision of the BEMF voltage measured on a non-fed motor’s

phase. For example, the ADC accuracy, precision of the phase voltage sensing circuitry, signal noise,

and distortion caused by the power switching modules, all these factors need to be taken into account.

Noise generated by power switching modules can be eliminated by correctly setting the measurement

event to be far away from the switching edges (PWM to ADC synchronization). There still exists some

limitation that cannot be eliminated, namely the decay or freewheeling period. As soon as the phase is

disconnected from the power by the commutation event, there is still a current flowing through the

freewheeling diode. The conducting freewheeling diode connects the released phase to either a positive

or a negative DC bus voltage. The conduction time depends on the momentary load of the motor. In

some circumstances, the conduction time is so long that it doesn’t allow the detection of BEMF voltage,

as represented in Figure 13.

It is important to differentiate between the BEMF voltage generated by the motor and the phase voltage

tied to a positive or negative DC bus voltage during the decay period. For this purpose, a blanking time

period after the commutation event has to be employed. During this period, the BEMF voltage is not

Sensorless BLDC control

3-Phase Sensorless BLDC Motor Control Kit with S32K144, Rev. 1, 06/2020

14 NXP Semiconductors

sensed or used for sensorless control. The blanking period duration should reflect the motor, load, and

dynamic application parameters.

Figure 13. BEMF decay period

3.3.4. DC bus current measurement

DC bus current flows through R60 shunt resistor and produces voltage drop that is amplified by internal

MC34GD3000 OAMP to fit ADC input voltage range (see section References for more details).

Figure 14. DC bus current measurement

Sensorless BLDC control

3-Phase Sensorless BLDC Motor Control Kit with S32K144, Rev. 1, 06/2020

NXP Semiconductors 15

As mentioned in BEMF zero-crossing event detection and phase current measurement, the DC bus

current has to be measured in the active cycle of the PWM period due to the fact, that the DC bus current

equals the phase current only in the active cycle, as illustrated in Figure 14.

During the active cycle of the PWM period, the phase current is rising. The slope of the rising current is

defined by the motor phase coil inductance; the lower the phase inductance, the steeper the slope of the

rising current.

To obtain the average value of the DC bus current directly, the voltage on the DC bus shunt resistor has

to be measured in the middle of the active PWM cycle Figure 14.

3.4. States of the sensorless BLDC control based on BEMF zero-

crossing detection

In order to start and run the BLDC motor, the control algorithm has to go through the following states:

1. Alignment (initial position setting)

2. Start-up (forced commutation or open-loop mode)

3. Run (sensorless running with BEMF acquisition and zero-crossing detection)

3.4.1. Alignment

As mentioned previously, the main task for sensorless control of a BLDC motor is position estimation.

Before starting the motor, however, the rotor position is not known. The aim of the alignment state is to

align the rotor to a known position. This known position enables starting the rotation of the shaft in the

desired direction and generating the maximal torque during start-up. During the alignment state, all three

phases are powered in order to get the best performance behavior in either direction of shaft rotation.

Phase C is connected to the positive DC bus voltage and phases A and B are grounded. The alignment

time depends on the mechanical constant of the motor, including load, and also on the applied motor

current.

3.4.2. Start-up

In the start-up state, motor commutation is controlled in an open-loop mode without any rotor position

feedback. The commutation period is controlled by an open-loop starting curve. The open-loop start is

required only until the shaft speed is high enough (approximately 5% of nominal motor speed) to

produce an identifiable BEMF voltage.

3.4.3. Run

The block diagram of the run state is represented by Figure 15 and includes the BEMF acquisition with

zero-crossing detection in order to control the commutations. The motor speed is estimated based on

zero-crossing time periods. The difference between the demanded and estimated speeds is fed into the

speed PI controller. The output of the speed PI controller is proportional to the voltage to be applied to

the BLDC motor. The motor current is measured and filtered during the BEMF zero-crossing event and

Software implementation on the S32K144

3-Phase Sensorless BLDC Motor Control Kit with S32K144, Rev. 1, 06/2020

16 NXP Semiconductors

used as feedback into the current controller. The output of the current PI controller limits the output of

the speed PI controller. The limitation of the speed PI controller output protects the motor current from

exceeding the maximal allowed motor current.

Figure 15. Speed control with current limitation

4. Software implementation on the S32K144

4.1. S32K144 – Key modules for BLDC six-step control

The S32K144 device includes modules such as FlexTimer Module (FTM), Trigger MUX Control

(TRGMUX), Programmable delay block (PDB) and Analogue-to-Digital Converter (ADC) suitable for

control applications, in particular, motor control applications. These modules are directly interconnected

and can be configured to meet various motor control application requirements. Figure 16 shows module

interconnection for BLDC sensorless application using zero-crossing detection algorithm and sensor-

based application based on Hall sensor. The modules are described in the sections below, and a detailed

description can be found in the S32K1xx Series Reference Manual (see section References).

4.1.1. Module interconnection

The modules involved in output actuation, data acquisition and the synchronization of actuation and

acquisition, form the so-called Control Loop. This control loop consists of the 2 x FTM, TRGMUX,

2xPDB, and 2xADC modules as shown in Figure 16. The control loop is very flexible in operation and

can support static, dynamic or asynchronous timing.

Each control loop cycle can be initiated either by FTM3 PWM initialization trigger init_trig or by FTM3

PWM external trigger ext_trig. While init_trig signal is generated at beginning of PWM cycle, ext_trig

can be generated any time within the PWM period based on the value defined in the corresponding

FTM3 Channel Value register CnV.

Software implementation on the S32K144

3-Phase Sensorless BLDC Motor Control Kit with S32K144, Rev. 1, 06/2020

NXP Semiconductors 17

FTM3 trigger signal is routed to hardware trigger input of the PDB module through flexible TRGMUX

unit. In S32K14x, there are two ADC modules and two PDB modules that work in pairs. This means

that PDB0 is linked with ADC0 and PDB1 is linked with ADC1.

PDB pre-triggers ch0pretrigx are used as a precondition for ADC module. They are directly connected

to ADHWTS ports to select ADC channels as well as order of the channels by configurable pre-triggers

delays. When ADC receives rising edge of the trigger, ADC will start conversion according to the order

defined by pre-triggers ch0pretrigx.

PDB pre-trigger delays must be properly set to allow reliable operation between PDB and corresponding

ADC module. When the first pre-trigger is asserted, associated lock of the pre-trigger becomes active

until corresponding conversion is not completed. This associated lock is released by corresponding ADC

conversion complete flag ADC_SC1[COCOx]. This means that next pre-trigger can be generated only if

the ongoing conversion is completed.

Another FTM is used for commutation control. In sensorless mode, it is configured as a simple timer

that schedules and forces commutation events which are determined from the actual BEMF zero-

crossing period. For Hall based driven control, it is configured in input capture mode sensitive on

rising/falling edge. Every edge detected on FTM channel input indicates new commutation event and

FTM generates trigger that forces FTM3 PWM module to settings of the new commutation sector.

Actual rotor position and commutation sector is derived from the GPIOs input logic.

Detailed description can be found in the S32K1xx Series Reference Manual (see section References).

S32K144EVB

ADC0

ADC1

PDB0

MC34GD3000

ch5

LPSPI0

ch4

ch3

ch2

ch1

ch0
PA_HS_G

PA_LS_G

PB_HS_G

PA_LS_G

PC_HS_G

PC_LS_G

PWMAT

PWMAB

PWMBT

PWMBB

PWMCT

PWMCB

16-bit
DELAY
counter

DC bus voltage

DEVKIT-MOTORGD

PDB1
16-bit

DELAY
counter

ADCH0

ADCH0

ADCH0

ADCH1

RShunt

D
C

 b
u

s
 c

u
rr

e
n

t

PORTE
PTE10

fault0

fault7

Pin
interrupt

BEMF_A voltage (scaled)

DC bus voltage (scaled)

DC bus current (scaled)

ADHWTS A
ch0pretrig0

ADHWT
ch0trig

ch0trig
ADHWT

GD3000 Fault
detection

init_trig
ext_trig

COCO A

init_trig
ext_trig

ACK

COCO A

ACK

+

‒

FTM2

Input capture
(Hall sensor support)

FTM2_CH1

FTM2_CH0

VCC

HALL_A

HALL_B

HALL_C

ADHWTS A
ch0pretrig0

ADHWTS B
ch0pretrig1

ADCH0

M

FTM1_CH1
Commutation trigger

hw_trig

Commutation
trigger

FTM0
Commutation timer
for Sensorless mode

hw_trig

TRGMUX

Commutation trigger

Sensorless

Hall sensor

BEMF_B voltage (scaled)

BEMF_C voltage (scaled)

FTM3
Center-Aligned
PWM Mode

TRGMUX

Figure 16. S32K144 module interconnection

Software implementation on the S32K144

3-Phase Sensorless BLDC Motor Control Kit with S32K144, Rev. 1, 06/2020

18 NXP Semiconductors

4.1.2. S32K144 and FETs pre-driver interconnection

Excitation of power FETs is ensured by NXP MC34GD3000 pre-driver. This analog device is equipped

with charge pump that ensures external FETs drive at low power supply voltages. Moreover, three

external bootstrap capacitors provide gate charge to the high-side FETs (see section References).

Configuration of MC34GD3000 pre-driver is realized via LPSPI0 module. The MC34GD3000 allows

different operating modes to be set and locked by SPI commands. SPI commands also report condition

of the MC34GD3000 based on the internal monitoring circuits and fault detection logic. S32K144

detects fault state of the MC34GD3000 by means of interrupt signal on PTE10 pin. Integrated current

sensing amplifier with analog comparator allow to measure DC bus current and detect overcurrent.

Interconnection between S32K144 and MC34GD3000 is briefly depicted in Figure 16.

4.1.3. Module involvement in digital BLDC control loop

This section will discuss timing and modules synchronization to accomplish BLDC Six-step control on

the S32K144 and the internal hardware features. The time diagram of the automatic synchronization

between PWM and ADC in the BLDC application is shown in Figure 17.

In Sensorless mode, each commutation event gets triggered the FTM0 init_trig signal. This trigger

signal is routed to FTM3 trigger input through TRGMUX module, causing the reset of the FTM3

counter to its initial value. It also generates the FTM3 PWM initialization trigger event starting the

configurable PDB0 and PDB1 counters. ADC0 and ADC1 are triggered based on the PDB0 and PDB1

pre-trigger delays. When PDB counter reaches first pre-trigger delay value, PDB initiates first ADC

channel measurement.

DC bus current measurement is triggered first, at beginning of the PWM cycle by pretrig0. DC Bus

voltage and BEMF voltage are sampled simultaneously towards the end of the active PWM pulse. While

PDB0 triggers BEMF voltage measurement at pretrig0, DC Bus voltage measurement is triggered by

PDB1 at pretrig1. The ADC conversion results are automatically stored into a predefined queue in

memory. This sampling approach respect measurement principles of BEMF phase voltage, DC bus

current, and DC bus voltage measurement described in 3.3.3 and 3.3.4.

The ADC conversion complete interrupt notifies the CPU that the ADC conversion result values are

available for reading and further processing to identify the zero-crossing event and determine rotor

speed for speed control loop. Commutation event is then calculated based on the actual zero-crossing

period.

Software implementation on the S32K144

3-Phase Sensorless BLDC Motor Control Kit with S32K144, Rev. 1, 06/2020

NXP Semiconductors 19

FTM3_CH1

FTM3_CH0

PDB0_MOD

IDCbus UDCbus

50us

PDB1_MOD

Sample points

Sample points

Conversion
Complete time

FTM3_MOD
(2000 ticks)

FTM3_C0V

FTM3

PDB0

PDB1

ADC0

Conversion
Complete time

ADC1

CPU
ADC1

interrupt

init_trig
FTM3_CNTIN

Ubemf

adc1_ch0
adc1_ch1

adc0_ch0

pretrig0

pretrig1

pretrig0
deadtime

PWM update
and sync

FTM0
FTM2

Asynchronous commutation event
init_trig

IDCbus UDCbus

Ubemf_A

adc1_ch0
adc1_ch1

adc0_ch0

pretrig0

pretrig1

pretrig0

IDCbus

adc1_ch0

pretrig0

Zero-cross
detection

ADC1
interrupt

PWM update
and syncZero-cross

detection

init_trig init_trig

Figure 17. Module involvement in the sensorless BLDC software control loop

Module involvement and timing diagram is simplified in Hall sensor operation, since the commutation

control is ensured by hardware only. FTM2 is configured in input capture mode sensitive on

rising/falling edge with special Hall sensor support feature. It generates init_trig signal every time

rising/falling edge is detected on its input channel. This trigger restarts FTM3 counter to initial value

and generates the FTM3 PWM initialization trigger event in same way as FTM0 does in Sensorless

operation. Since BEMF voltage measurement for zero-cross detection is not needed, PDB0 and ADC0

are disabled. To control the torque/speed properly, Hall based application needs to measure DC bus

current and DC bus voltage. This measurement is ensured by PDB1 and ADC1 with the same timing

diagram as in Sensorless mode. CPU load is reduced due to the absence of the zero-crossing detection

algorithm.

4.2. S32K144 initialization

To simplify and accelerate application development, embedded part of the BLDC Sensorless motor

control application has been created using S32 Software Development Kit (S32 SDK). S32K144 can be

configured either by means of the Processor Expert extension, or programmed directly using SDK

drivers. Peripherals are initialized at beginning of the main() function. For each S32K144 module, there

Software implementation on the S32K144

3-Phase Sensorless BLDC Motor Control Kit with S32K144, Rev. 1, 06/2020

20 NXP Semiconductors

is a specific configuration function that uses S32 SDK APIs and configuration structures generated by

PEx to configure the MCU.

• McuClockConfig() – MCU clock configuration

• McuPowerConfig() – MCU power management configuration

• McuTrigmuxConfig() – TRGMUX module configuration

• McuPinsConfig() – PINs and PORT modules configuration

• McuLpuartConfig() – LPUART module configuration

• McuLpitConfig() – LPIT module configuration

• McuAdcConfig() – ADC modules configuration

• McuPdbConfig() – PDB modules configuration

• McuFtmConfig() – FTM modules configuration

Detailed SDK documentation can be found in folder created with S32 Design Studio installation.

(References).

4.2.1. Clock configuration and power management

S32K144 features a complex clocking sourcing, distribution and power management. To run a core of

the S32K144 as well as some MCU peripherals at maximum frequency 80 MHz in normal RUN mode,

S32K144 is supplied externally by 8 MHz crystal. This clock source supplies Phase-lock-loop (PLL),

which circuit multiplies frequency by 40 and divides by 2 resulting 160 MHz frequency on output. PLL

output is then divided by 2 to supply core and system (80 MHz), further divided by two and three to

supply bus clock (40 MHz) and flash clock (26.67 MHz), respectively. This clock configuration belongs

to one of the typical and recommended. It is summarized in Table 1.

Table 1. S32K144 clock configuration in RUN mode

Clock Frequency

CORE_CLOCK 80 MHz

SYS_CLK

80 MHz

BUS_CLK

40MHz

FLASH_CLK

26.67MHz (max freq. in RUN

mode)

This clock configuration and power management can be setup easily by S32 Processor Expert. Preview

of the S32K144 clock sourcing and distribution by means of Processor Expert is shown in Figure 18.

Software implementation on the S32K144

3-Phase Sensorless BLDC Motor Control Kit with S32K144, Rev. 1, 06/2020

NXP Semiconductors 21

Figure 18. S32K144 clock configuration in Processor Expert

Once the clock configuration is set, Processor Expert generates static configuration structure

clockMan1_InitConfig0, that is called by SDK’s CLOCK_SYS_Init function through array of the

configuration pointers g_clockManConfigsArr, Example 1.

Example 1. S32K144 clock configuration controlled by S32 SDK
void McuClockConfig(void)

{

 /* Clock configuration for MCU and MCU's peripherals */

 CLOCK_SYS_Init(g_clockManConfigsArr,

 CLOCK_MANAGER_CONFIG_CNT,

 g_clockManCallbacksArr,

 CLOCK_MANAGER_CALLBACK_CNT);

 /* Clock configuration update */

 CLOCK_SYS_UpdateConfiguration(0, CLOCK_MANAGER_POLICY_FORCIBLE);

}

...

/*! @brief Array of pointers to User configuration structures */
clock_manager_user_config_t const * g_clockManConfigsArr[] = {
 &clockMan1_InitConfig0
};
/*! @brief Array of pointers to User defined Callbacks configuration structures */
clock_manager_callback_user_config_t * g_clockManCallbacksArr[] = {(void*)0};
/* END clockMan1. */

As it was discussed at begging of this section, power management of the S32K144 is configured for

normal RUN mode. This power mode can be set in Processor Expert as well, Figure 19.

Software implementation on the S32K144

3-Phase Sensorless BLDC Motor Control Kit with S32K144, Rev. 1, 06/2020

22 NXP Semiconductors

Figure 19. S32K144 power management configuration in Processor Expert

Static configuration generated by Processor Expert is called by SDK’s POWER_SYS_Init function to

update power mode of the S32K144 device, Example 2.

Example 2. S32K144 power management controlled by S32 SDK
void McuPowerConfig(void)
{
 /* Power mode configuration for RUN mode */
 POWER_SYS_Init(&powerConfigsArr, 0, &powerStaticCallbacksConfigsArr,0);
 /* Power mode configuration update */
 POWER_SYS_SetMode(0,POWER_MANAGER_POLICY_AGREEMENT);
}

...

/*! @brief User Configuration structure power_managerCfg_0 */
power_manager_user_config_t pwrMan1_InitConfig0 = {
 .powerMode = POWER_MANAGER_RUN, /*!< Power manager mode */
 .sleepOnExitValue = false, /*!< Sleep on exit value */
};

/*! @brief Array of pointers to User configuration structures */
power_manager_user_config_t * powerConfigsArr[] = {
 &pwrMan1_InitConfig0
};
/*! @brief Array of pointers to User defined Callbacks configuration structures */

Same mechanism between Processor Expert and S32 SDK works for all S32K144 peripherals, which are

discussed below.

4.2.2. FlexTimer Module (FTM)

FlexTimer module (FTM) is built upon a timer with a 16-bit counter. It contains an extended set of features

that meet the demands of motor control, including the signed up-counter, dead time insertion hardware, fault

control inputs, enhanced triggering functionality, and initialization and polarity control.

Software implementation on the S32K144

3-Phase Sensorless BLDC Motor Control Kit with S32K144, Rev. 1, 06/2020

NXP Semiconductors 23

4.2.2.1. Center-aligned PWM mode

FTM3 instance is used in BLDC motor control application to generate center-align PWM by six,

complementary oriented channels to control power MOSFETs of the DEVKIT-MOTORGD board.

As depicted in Figure 17, up-down counting mode is selected as a dedicated counting mode for center-

align PWM. Due to the inverted logic of the high-side control inputs of the MC34GD3000 pre-driver,

even channels of the FTM3 must have inverted polarity. 20 kHz PWM frequency is adjusted by FTM3

Modulo register (FTM3_MOD = 2000) taking 80MHz clock source frequency into account. To protect

power MOSFETs against short circuit, deadtime 0.4μs is inserted for each complementary channels pair

in number of clock ticks 32 with default deadtime prescaler 1. This FTM3 configuration can be carried

out by using Processor Expert, Figure 20.

Figure 20. S32K144 FTM3 configuration in Processor Expert

While Initialization tab on the left allows to configure general features of the FTM module such as clock

sourcing, counter mode and register synchronization method, more specific settings related to the PWM

modulation such as PWM frequency, deadtime value, channels pairs setting are configured in

Configuration tab on the right, Figure 20.

The double-buffered registers FTM3_SWOCTRL and FTM3_OUTMASK are used to control the

unipolar PWM pattern as discussed in 3.2. The FTM3_SWCTRL register controls the PWM output by

forcing selected channels into a defined state. The FTM3_OUTMASK register controls the PWM output

by forcing selected channels into an inactive state. The double-buffered values are applied at each

commutation event triggered by either by FTM0 init_trig in Sensorless mode or FTM2 init_trig in Hall

Software implementation on the S32K144

3-Phase Sensorless BLDC Motor Control Kit with S32K144, Rev. 1, 06/2020

24 NXP Semiconductors

sensor mode. To allow this triggering mechanism, Hardware trigger 1 is enabled in Initialization tab,

Figure 20. Table 2 shows the SWOCTRL and OUTMASK values applied at a commutation event in a

particular sector of the six-step commutation sequence.

Table 2. Software control and output mask definition in six-step commutation sequence

Sector FTM3_SWOCTRL FTM3_OUTMASK

0 0x0808 0x34

1 0x2020 0x1C

2 0x2020 0x13

3 0x0202 0x31

4 0x0202 0x0D

5 0x0808 0x07

Alignment
1

0x0A0A 0x05

PWM off 0x0000 0x3F
1
 Alignment vector is set to allow a commutation sequence

starting from sector 0

To allow the application of the double-buffered values outside the commutation event, Hardware trigger 2

is enabled in Initialization tab as well, Figure 20. This hardware trigger is generated by writing 1 to the

SIM_FTMOPT1[FTM3SYNCBIT] bit.

The duty cycle of the center-aligned PWM is controlled by the FTM3_CnV (n = 0, 2, 4) register values. In

up-down counting mode, even channels define both, leading as well as trailing edges. Even channels are set

according to Equation 8

Equation 8

As discussed in section Module involvement in digital BLDC control loop to initiate control loop at

beginning of the PWM period, Initialization trigger is enabled in Initialization tab as well, Figure 20.

Once the FTM3 setting is completed, Processor Expert generates two configuration structures

flexTimer_pwm3_InitConfig and flexTimer_pwm3_PwmConfig that access and set corresponding FTM3

registers executing FTM_DRV_Init and FTM_DRV_InitPwm functions, Example 3.

Example 3. S32K144 FTM3 configured by S32 SDK
void McuFtmConfig(void)
{
 /* FTM3 module initialized as PWM signals generator */
 FTM_DRV_Init(INST_FLEXTIMER_PWM3, &flexTimer_pwm3_InitConfig, &statePwm);

 /* FTM3 module PWM initialization */
 FTM_DRV_InitPwm(INST_FLEXTIMER_PWM3, &flexTimer_pwm3_PwmConfig);

 /* Mask all FTM3 channels to disable PWM output */
 FTM_DRV_MaskOutputChannels(INST_FLEXTIMER_PWM3, 0x3F, true);
}

FTM_DRV_MaskOutputChannels function disables PWM output masking all FTM channels.

Software implementation on the S32K144

3-Phase Sensorless BLDC Motor Control Kit with S32K144, Rev. 1, 06/2020

NXP Semiconductors 25

4.2.2.2. Commutation timer for Sensorless mode

FTM0 is used in Sensorless mode to schedule and identify the commutation event. Initialization trigger

signal init_trig is internally routed to the FTM3 module trigger 1 input in order to perform commutation

of the PWM pairs. The commutation event is scheduled by changing the PWM period (counter module

value FTM0_MOD). When the counter overflows, a rising edge is generated and an interrupt is invoked.

The PWM generated by channel 0 has the duty cycle equal to 1 counter tick (FTM0_C0V = 1).

To be able to schedule long commutation periods at low speeds, the FTM0 counter is configured to run

at 625 kHz frequency. This module settings can be configured by Processor expert Figure 21 and

executing SDK APIs shown in Example 4. HALL_SENSOR macro must be set to 0 to allow FTM0

configuration for Sensorless operation.

Figure 21. S32K144 FTM0 configuration in Processor Expert

Example 4. S32K144 FTM0 configured by S32 SDK
void McuFtmConfig(void)
{

#if HALL_SENSOR

 /* FTM2 module initialized to process HALL signals (Hall sensor support) */
 FTM_DRV_Init(INST_FLEXTIMER_IC1, &flexTimer_ic1_InitConfig, &stateIc1);
 /* FTM2 module works in Input Capture mode */
 FTM_DRV_InitInputCapture(INST_FLEXTIMER_IC1, &flexTimer_ic1_InputCaptureConfig);
 /* Set FTM2CH1SEL bit to XOR FTM2_CH0, FTM2_CH1 and FTM1_CH1 to one single FTM2_CH1 input */
 SIM->FTMOPT1 |= SIM_FTMOPT1_FTM2CH1SEL(1);

#else

 /* FTM0 initialization */
 FTM_DRV_Init(INST_FLEXTIMER_MC0, &flexTimer_mc0_InitConfig, &stateMc0);

 /* FTM0 initialized as a simple up-counting timer with frequency 625 kHz */
 FTM_DRV_InitCounter(INST_FLEXTIMER_MC0, &flexTimer_mc0_TimerConfig);

#endif

}

Software implementation on the S32K144

3-Phase Sensorless BLDC Motor Control Kit with S32K144, Rev. 1, 06/2020

26 NXP Semiconductors

4.2.2.3. Input capture mode and Hall sensor support

FTM2 is configured in input capture mode with Hall sensor support feature dedicated for Hall sensor

signal processing. Three FTM channels, namely FTM2_CH1, FTM2_CH0, FTM1_CH1 are exclusively

OR’d’’ into one single input channel FTM2_CH1, Figure 22. Every edge detected on input channel

FTM2_CH1 indicates commutation event that generates init_trig signal which is internally routed to

FTM3 trigger input. This event updates PWM pattern through double-buffered registers

FTM3_SWCTRL and FTM3_ OUTMASK. These are updated by values of the new commutation sector

according to Table 2.

Timer channel and the free running counter is refreshed on every edge, so that the rotor speed can be

established based on the captured commutation time TCOM every edge applying Equation 2. Rotor

position is determined according to the Hall logic captured by GPIOs input logic.

0 60 120 180 240 300 360

0 60 120 180 240 300 360

0 60 120 180 240 300 360

0 60 120 180 240 300 360

Rotor Electrical Position (Degrees)

HALL A signal –> FTM2_CH1

HALL B signal –> FTM2_CH0

HALL C signal –> FTM1CH1

XOR –> FTM2CH1

Tcom

Figure 22. FTM2 in input capture mode with Hall sensor support

FTM2 can be configured by SDK as shown in Figure 23 and Example 5. HALL_SENSOR macro must

be set to 1 to allow FTM2 configuration for Hall based operation.

Software implementation on the S32K144

3-Phase Sensorless BLDC Motor Control Kit with S32K144, Rev. 1, 06/2020

NXP Semiconductors 27

Figure 23. S32K144 FTM2 configuration in Processor Expert

Example 5. S32K144 FTM2 configured by S32 SDK
void McuFtmConfig(void)
{

#if HALL_SENSOR

 /* FTM2 module initialized to process HALL signals (Hall sensor support) */
 FTM_DRV_Init(INST_FLEXTIMER_IC1, &flexTimer_ic1_InitConfig, &stateIc1);
 /* FTM2 module works in Input Capture mode */
 FTM_DRV_InitInputCapture(INST_FLEXTIMER_IC1, &flexTimer_ic1_InputCaptureConfig);
 /* Set FTM2CH1SEL bit to XOR FTM2_CH0, FTM2_CH1 and FTM1_CH1 to one single FTM2_CH1 input */
 SIM->FTMOPT1 |= SIM_FTMOPT1_FTM2CH1SEL(1);

#else

 /* FTM0 initialized as a simple up-counting timer */
 FTM_DRV_Init(INST_FLEXTIMER_MC0, &flexTimer_mc0_InitConfig, &stateMc0);
 /* Stop FTM0 counter */
 //FTM_DRV_CounterStop(INST_FLEXTIMER_MC0);
 FTM_DRV_InitCounter(INST_FLEXTIMER_MC0, &flexTimer_mc0_TimerConfig);

#endif
}

4.2.3. Trigger MUX Control (TRGMUX)

The TRGMUX provides an extremely flexible mechanism for connecting various trigger sources to

multiple pins/peripherals. With the TRGMUX, each peripheral that accepts external triggers usually has

one specific 32-bit trigger control register. Each control register supports up to four triggers, and each

trigger can be selected from the available input triggers.

Software implementation on the S32K144

3-Phase Sensorless BLDC Motor Control Kit with S32K144, Rev. 1, 06/2020

28 NXP Semiconductors

To trigger PDB0 and PDB1 modules by FTM3 initialization trigger signal init_trig, selection bit field

SEL0 of the TRGMUX_PDB0 and TRGMUX_PDB1 registers must be specified to define trigger

source.

Processor Expert generates configuration structure trgmux1_InitConfig0 that sets all TRGMUX registers

to assign trigger inputs with trigger outputs as demanded, Example 6. In particular, FTM3 initialization

trigger is assigned to PDB0, PDB1 trigger input as well as to TRGMUX output 2, PDB1 pre-triggers are

routed to TRGMUX output 3, ADC1 conversion complete flag is assigned to TRGMUX output 6,

FTM0 initialization trigger is assigned to FTM3 HW trigger 0. HALL_SENSOR macro defines whether

FTM3 module gets triggered either by FTM0 or by FTM3 initialization trigger.

Example 6. S32K144 TRGMUX module controlled by S32 SDK
void McuTrigmuxConfig(void)
{
 /* TRGMUX module initialization */
 TRGMUX_DRV_Init(INST_TRGMUX1, &trgmux1_InitConfig0);

#if HALL_SENSOR
 // Set initialization trigger for FTM3 from FTM2
 TRGMUX_DRV_SetTrigSourceForTargetModule(INST_TRGMUX1, TRGMUX_TRIG_SOURCE_FTM2_INIT_TRIG,
 TRGMUX_TARGET_MODULE_FTM3_HWTRIG0);
#else
 // Set initialization trigger for FTM3 from FTM0
 TRGMUX_DRV_SetTrigSourceForTargetModule(INST_TRGMUX1, TRGMUX_TRIG_SOURCE_FTM0_INIT_TRIG,
 TRGMUX_TARGET_MODULE_FTM3_HWTRIG0);
#endif

}

/*! trgmux1 configuration structure */
const trgmux_user_config_t trgmux1_InitConfig0 = {
 .numInOutMappingConfigs = 5,
 .inOutMappingConfig = trgmux1_InOutMappingConfig0,

};

const trgmux_inout_mapping_config_t trgmux1_InOutMappingConfig0[5] =
{
 {TRGMUX_TRIG_SOURCE_FTM3_INIT_TRIG, TRGMUX_TARGET_MODULE_PDB0_TRG_IN, false},
 {TRGMUX_TRIG_SOURCE_FTM3_INIT_TRIG, TRGMUX_TARGET_MODULE_PDB1_TRG_IN, false},
 {TRGMUX_TRIG_SOURCE_FTM3_INIT_TRIG, TRGMUX_TARGET_MODULE_TRGMUX_OUT2, false},
 {TRGMUX_TRIG_SOURCE_PDB1_CH0_TRIG, TRGMUX_TARGET_MODULE_TRGMUX_OUT3, false},
 {TRGMUX_TRIG_SOURCE_ADC1_SC1A_COCO, TRGMUX_TARGET_MODULE_TRGMUX_OUT6, false},
};

4.2.4. Programmable Delay Block (PDB)

The Programable Delay Block (PDB) is intended to completely avoid CPU involvement in the timed

acquisition of state variables during the control cycle. The PDB module contains a 16-bit programmable

delay counter that delays FTM3 initialization trigger and schedules ADC channels sampling through

PDB pre-triggers delays. When FTM3 initialization trigger is detected on the PDB0 and PDB1 trigger

input, PDB0 and PDB1 generate hardware signal to trigger ADC0 and ADC1 channels in order defined

by pre-trigger delays, Figure 24.

Software implementation on the S32K144

3-Phase Sensorless BLDC Motor Control Kit with S32K144, Rev. 1, 06/2020

NXP Semiconductors 29

Figure 24. PDB pre-triggers and trigger output

PDB pre-trigger delays can be set independently using CHnDLYm registers. Since the PDB0, PDB1 and

FTM3 modules are synchronized and share the same source frequency 80MHz, values of the

CHnDLYm registers are set using the same time base as for PWM. Table 3 shows all PDB0 and PDB1

pre-triggers used in BLDC six-step motor control application.

Table 3. PDB0 and PDB1 pre-triggers

FOC state variable PDB pre-trigger CHnDLYm value [ticks] Relation to PWM

Phase BEMF voltage pdb0_ch0_pretrig0 pdb_delay At 90% of the active PWM pulse

DC bus current pdb1_ch0_pretrig0

0 At beginning of the PWM

DC bus voltage pdb1_ch0_pretrig1

pdb_delay At 90% of the active PWM pulse

DC bus current measurement is triggered every PWM cycle at beginning of the PWM period by

pdb1_ch0_pretrig0. This delay is static value defined only once at the initialization phase. To measure

BEMF voltage and DC bus voltage simultaneously towards the end of the active PWM pulse,

pdb0_ch0_pretrig0 and pdb1_ch0_pretrig1 pre-trigger delays are dynamically modified according to

actual duty cycle, Equation 9.

Equation 9

A software routine limits pdb_delay to 180 ticks to prevent collision between pdb1_ch0_pretrig1 and

pdb1_ch0_pretrig0, at low duty cycles. This limit respects ADC conversion time that typically takes

~1.25 µs considering short ADC sample time and 40MHz ADC input frequency. PDB Sequence Error

Interrupt can be activated as well as hardware detector.

It should be noticed that CHnDLYx are double buffered registers meaning pdb_delay value is first

latched into CHnDLYx buffers and then loaded from their buffers at beginning of the PWM period

when 1 is written to SC[LDOK] bit and FTM3 init_trig signal is detected on PDB0 and PDB1 input.

General settings of the PDB module such as clock pre-scaler, input trigger source, loading mechanism

for double buffered registers as well as operation mode for pre-triggers can be configured by means of

Processor Expert as shown in Figure 25.

Software implementation on the S32K144

3-Phase Sensorless BLDC Motor Control Kit with S32K144, Rev. 1, 06/2020

30 NXP Semiconductors

Figure 25. S32K144 PDB1 module and pre-triggers configuration in Processor Expert

Processor Expert generates configuration structures pdbN_InitConfigX and pdbN_AdcTrigInitConfigX

that access appropriate PDB registers Example 7. To set PDB modulo and PDB pre-triggers delays,

PDB_DRV_SetTimerModulusValue and PDB_DRV_SetAdcPreTriggerDelayValue are used and

specified by values listed in Table 3. Double-buffered registers of the PBD modules are loaded using

PDB_DRV_LoadValuesCmd command.

Example 7. S32K144 PDB instances controlled by S32 SDK
void McuPdbConfig(void)
{
 /* PDB0 module initialization */
 PDB_DRV_Init(INST_PDB0, &pdb0_InitConfig0);
 /* PDB1 module initialization */
 PDB_DRV_Init(INST_PDB1, &pdb1_InitConfig0);

 /* PDB0 CH0 pre-trigger0 initialization */
 PDB_DRV_ConfigAdcPreTrigger(INST_PDB0, 0, &pdb0_AdcTrigInitConfig0);
 /* PDB1 CH0 pre-trigger0 initialization */
 PDB_DRV_ConfigAdcPreTrigger(INST_PDB1,0, &pdb1_AdcTrigInitConfig0);
 /* PDB1 CH0 pre-trigger1 initialization */
 PDB_DRV_ConfigAdcPreTrigger(INST_PDB1,0, &pdb1_AdcTrigInitConfig1);

 /* PDB0 modulus value set to half of the PWM cycle */
 PDB_DRV_SetTimerModulusValue(INST_PDB0, HALF_PWM_MODULO);
 /* Set PDB1 modulus value set to half of the PWM cycle */
 PDB_DRV_SetTimerModulusValue(INST_PDB1, HALF_PWM_MODULO);

 /* PDB0 CH0 pre-trigger0 delay set to sense BEMF voltage towards the end of the active PWM pulse */
 /* Initially set as for minimal duty cycle 10% -> 0.9 x Half PWM period x 0.1 = 180 */
 PDB_DRV_SetAdcPreTriggerDelayValue(INST_PDB0, 0, 0, PDB_DELAY_MIN);
 /* PDB1 CH0 pre-trigger0 delay set to sense DC bus current in the middle of the PWM cycle */
 PDB_DRV_SetAdcPreTriggerDelayValue(INST_PDB1, 0, 0, 0);
 /* PDB1 CH0 pre-trigger1 delay set to sense DC bus voltage towards the end of the active PWM pulse */
 /* Initially set as for minimal duty cycle 10% -> 0.9 x Half PWM period x 0.1 = 180 */
 PDB_DRV_SetAdcPreTriggerDelayValue(INST_PDB1, 0, 1, PDB_DELAY_MIN);

 // Enable PDB0 prior to PDB0 load
 PDB_DRV_Enable(INST_PDB0);
 // Enable PDB1 prior to PDB1 load
 PDB_DRV_Enable(INST_PDB1);
 /* Load PDB0 configuration */
 PDB_DRV_LoadValuesCmd(INST_PDB0);
 /* Load PDB1 configuration */
 PDB_DRV_LoadValuesCmd(INST_PDB1);
}

Software implementation on the S32K144

3-Phase Sensorless BLDC Motor Control Kit with S32K144, Rev. 1, 06/2020

NXP Semiconductors 31

4.2.5. Analog-to-Digital Converter (ADC)

The S32K144 device has two 12-bit Analog-to-Digital Converters (ADCs). These are 32-channel

multiplexed input successive approximation ADCs with 16 result registers.

Both ADC instances are triggered independently by two PDBs. ADC channels are sampled in the order

defined by PDB pre-triggers. When the first pre-trigger is asserted, associated lock of the pre-trigger

becomes active waiting for the conversion complete flag COCO generated by the corresponding ADC

channel. This sequence is repeated for each PDB pre-trigger and ADC channel couple.

Clock source of the ADC module is derived from the system clock frequency, further divided by 2

resulting 40 MHz supply frequency. To combine high conversion resolution and short conversion time,

12-bit resolution mode with sample time 12 clock cycles are set in the Converter Configuration tab in

the Processor Expert, Figure 26.

Figure 26. S32K144 ADC1 module and channels configuration in Processor Expert

ADC0 measures BEMF voltage of the disconnected phase by adc0_ch0. ADC0 input channel is selected

according to the actual commutation sector, Table 4.

Table 4. ADC0 input channel selection according to the actual sector

Sector BEMF voltage ADC0 input channel

0 Phase C ADC_INPUTCHAN_EXT2

1 Phase B ADC_INPUTCHAN_EXT5

2 Phase A ADC_INPUTCHAN_EXT4

3 Phase C ADC_INPUTCHAN_EXT2

4 Phase B ADC_INPUTCHAN_EXT5

5 Phase A ADC_INPUTCHAN_EXT4

DC bus voltage and DC bus current are measured by adc1_ch0 and adc1_ch1, respectively. Conversion

Complete Interrupt is activated for adc1_ch1 to invoke interrupt as soon as last conversion is completed.

To measure DC bus voltage, ADC_INPUTCHAN_EXT7 is selected as an input channel, Figure 26.

Example 8 shows ADC0 and ADC1 modules configuration. Processor Expert generates module

configuration structures adConvN_ConvConfigX as well as channel configuration structures

adConvN_ChnConfigX, which are present at the bottom of the example. These configuration structures

take effect calling SDK APIs in McuAdcConfig function, Example 8.

Software implementation on the S32K144

3-Phase Sensorless BLDC Motor Control Kit with S32K144, Rev. 1, 06/2020

32 NXP Semiconductors

Example 8. S32K144 ADC instances and channels controlled by S32 SDK
void McuAdcConfig(void)
{
 /* ADC0 module initialization */
 ADC_DRV_ConfigConverter(INST_ADCONV0, &adConv0_ConvConfig0);

 /* ADC0_SE2 input channel is initially selected for Phase C voltage sensing */
 ADC_DRV_ConfigChan(INST_ADCONV0, 0, &adConv0_ChnConfig0);

 /* ADC1 module initialization */
 ADC_DRV_ConfigConverter(INST_ADCONV1, &adConv1_ConvConfig0);

 /* ADC1_SE6 input channel is used for DC bus current sensing */
 ADC_DRV_ConfigChan(INST_ADCONV1, 0, &adConv1_ChnConfig0);

 /* ADC1_SE7 input channel is used for DC bus voltage sensing */
 ADC_DRV_ConfigChan(INST_ADCONV1, 1, &adConv1_ChnConfig1);
}

…

/*! adConv1 configuration structure */
const adc_converter_config_t adConv1_ConvConfig0 = {
 .clockDivide = ADC_CLK_DIVIDE_1,
 .sampleTime = 12U,
 .resolution = ADC_RESOLUTION_12BIT,
 .inputClock = ADC_CLK_ALT_1,
 .trigger = ADC_TRIGGER_HARDWARE,
 .pretriggerSel = ADC_PRETRIGGER_SEL_PDB,
 .triggerSel = ADC_TRIGGER_SEL_PDB,
 .dmaEnable = false,
 .voltageRef = ADC_VOLTAGEREF_VREF,
 .continuousConvEnable = false,
 .supplyMonitoringEnable = false,
};

const adc_chan_config_t adConv1_ChnConfig0 = {
 .interruptEnable = false,
 .channel = ADC_INPUTCHAN_EXT6,
};

const adc_chan_config_t adConv1_ChnConfig1 = {
 .interruptEnable = true,
 .channel = ADC_INPUTCHAN_EXT7,
};

4.2.6. Low Power Serial Peripheral Interface (LPSPI) and FETs pre-driver

(MC34GD3000)

LPSPI is used as communication interface between S32K144 processor and analog FET pre-driver

MC34GD3000. NXP’s Three-Phase Brushless Motor Pre-Driver Software Driver (TPP), based on the

S32 SDK is used to configure LPSPI of the S32K144 as well as MC34GD3000 properly. Included

embedded driver provides access to all features of MC34GD3000 FETs driver such as writing/reading

status registers, dead time insertion and fault protection.

Example 9 represents initialization of the S32K144 LPSPI0, MC34GD3000 and some important

S32K144 GPIOs. TPP configures and later controls GPIO pins to enable/disable or reset MC34GD3000

in the application. Operation mode, deadtime and interrupt mask of the MC34GD3000 are specified at

Software implementation on the S32K144

3-Phase Sensorless BLDC Motor Control Kit with S32K144, Rev. 1, 06/2020

NXP Semiconductors 33

next paragraphs. Parameters, such as LPSPI instance, chip select pin are defined at bottom of the

Example 9.

LPSPI0 communication frequency 2MHz is derived from the LPSPI0 input frequency 8MHz sourced

from the system oscillator clock (SOSC_CLK).

GPIOs, LPSPI0 and MC34GD3000 are configured and enabled by TPP_ConfigureGpio and

TPP_ConfigureSpi, TPP_Init functions, respectively.

Detailed description of the MC34GD3000 and its software driver (TPP) can be found at www.nxp.com.

Example 9. S32K144 LPSPI0 and MC34GD3000 controlled by TPP (S32 SDK)
void GD3000_Init(void)
{
 /* GD3000 pin configuration - EN1:PTA2 EN2:PTA2 & RST:PTA3 */
 tppDrvConfig.en1PinIndex = 2U;
 tppDrvConfig.en1PinInstance = instanceA;
 tppDrvConfig.en2PinIndex = 2U;
 tppDrvConfig.en2PinInstance = instanceA;
 tppDrvConfig.rstPinIndex = 3U;
 tppDrvConfig.rstPinInstance = instanceA;

 /* GD3000 device configuration */
 tppDrvConfig.deviceConfig.deadtime = INIT_DEADTIME;
 tppDrvConfig.deviceConfig.intMask0 = INIT_INTERRUPTS0;
 tppDrvConfig.deviceConfig.intMask1 = INIT_INTERRUPTS1;
 tppDrvConfig.deviceConfig.modeMask = INIT_MODE;

 tppDrvConfig.deviceConfig.statusRegister[0U] = 0U;
 tppDrvConfig.deviceConfig.statusRegister[1U] = 0U;
 tppDrvConfig.deviceConfig.statusRegister[2U] = 0U;
 tppDrvConfig.deviceConfig.statusRegister[3U] = 0U;

 tppDrvConfig.csPinIndex = 5U;
 tppDrvConfig.csPinInstance = instanceB;
 tppDrvConfig.spiInstance = 0;
 tppDrvConfig.spiTppConfig.baudRateHz = 2000000U;
 tppDrvConfig.spiTppConfig.sourceClockHz = 8000000U;

 TPP_ConfigureGpio(&tppDrvConfig);
 TPP_ConfigureSpi(&tppDrvConfig, NULL);
 TPP_Init(&tppDrvConfig, tppModeEnable);
}

4.2.7. Low Power Universal Asynchronous Receiver/Transmitter (LPUART)

LPUART1 is used as a communication interface between S32K144 processor and FreeMASTER run-

time debugging and visualization tool. Function McuLpuartConfig initializes LPUART1 module with

baud rate 115200, 1 stop bit and 8 bits per channel. This configuration is carried out by SDK’s LPUART

driver, Example 10.

Example 10. S32K144 LPUART1 controlled by S32 SDK
void McuLpuartConfig(void)
{
 /* LPUART module initialization */
 LPUART_DRV_Init(INST_LPUART1, &lpuart1_State, &lpuart1_InitConfig0);
}

/*! lpuart1 configuration structure */
const lpuart_user_config_t lpuart1_InitConfig0 = {
 .transferType = LPUART_USING_INTERRUPTS,

http://www.nxp.com/

Software implementation on the S32K144

3-Phase Sensorless BLDC Motor Control Kit with S32K144, Rev. 1, 06/2020

34 NXP Semiconductors

 .baudRate = 115200U,
 .parityMode = LPUART_PARITY_DISABLED,
 .stopBitCount = LPUART_ONE_STOP_BIT,
 .bitCountPerChar = LPUART_8_BITS_PER_CHAR,
 .rxDMAChannel = 0U,
 .txDMAChannel = 0U,
};

Configuration structure lpuart1_InitConfig0 can be modified manually or configured by means of

Processor Expert as shown in Figure 27.

Figure 27. S32K144 LPUART1 module configuration in Processor Expert

4.2.8. Low Power Interrupt Timer (LPIT)

The LPIT channel 0 is employed to control the speed and motor current in a software task. LPIT channel

0 is configured to generate a periodic interrupt every 1 ms. This module setting can be configured by

means of Processor expert and SDK commands as shown in Figure 28 and Example 11.

Figure 28. S32K144 LPIT module configuration in Processor Expert

Example 11. S32K144 LPIT module controlled by S32 SDK
void McuLpitConfig(void)
{
 /* LPIT module initialization */
 LPIT_DRV_Init(INST_LPIT0, &lpit0_InitConfig);

 /* LPIT channel0 initialization */
 LPIT_DRV_InitChannel(INST_LPIT0, 0, &lpit0_ChnConfig0);

 /* Start LPIT counter */
 LPIT_DRV_StartTimerChannels(INST_LPIT0, 0x1);

}

/*! Global configuration of lpit0 */
const lpit_user_config_t lpit0_InitConfig =
{
 .enableRunInDebug = false, /*!< true: LPIT run in debug mode; false: LPIT stop in debug mode */

Software implementation on the S32K144

3-Phase Sensorless BLDC Motor Control Kit with S32K144, Rev. 1, 06/2020

NXP Semiconductors 35

 .enableRunInDoze = false /*!< true: LPIT run in doze mode; false: LPIT stop in doze mode */
};

/*! User channel configuration 0 */
lpit_user_channel_config_t lpit0_ChnConfig0 =
{
 .timerMode = LPIT_PERIODIC_COUNTER,
 .periodUnits = LPIT_PERIOD_UNITS_MICROSECONDS,
 .period = 1000U,
 .triggerSource = LPIT_TRIGGER_SOURCE_INTERNAL,
 .triggerSelect = 0U,
 .enableReloadOnTrigger = false,
 .enableStopOnInterrupt = false,
 .enableStartOnTrigger = false,
 .chainChannel = false,
 .isInterruptEnabled = true
};

4.2.9. Port control and pin multiplexing

BLDC Six-Step motor control application requires following on chip pins assignment, Table 5.

Table 5. Pins assignment for S32K144 BLDC Six-Step motor control

Module Signal name Pin name / Functionality Description

FTM3

PWMA_HS_B PTB8 / FTM3_CH0 PWM signal for phase A high-side driver

(inverted)

PWMA_LS PTB9 / FTM3_CH1

PWM signal for phase A low-side driver

PWMB_HS_B PTB10 / FTM3_CH2

PWM signal for phase B high-side driver

(inverted)

PWMB_LS PTB11 / FTM3_CH3

PWM signal for phase B low-side driver

PWMC_HS_B PTC10 / FTM3_CH4 PWM signal for phase C high-side driver

(inverted)

PWMC_LS PTC11 / FTM3_CH5 PWM signal for phase C low-side driver

FTM2

HALL_A PTD11 / FTM2_CH1 Hall sensor A signal
1

HALL_B PTD10 / FTM2_CH0 Hall sensor B signal
1

HALL_C PTA1 / FTM1_CH1 Hall sensor C signal
1

ADC0

BEMF_A PTB0 / ADC0_SE4 BEMF voltage measurement of Phase A

BEMF_B PTB1 / ADC0_SE5 BEMF voltage measurement of Phase B

BEMF_C PTA6 / ADC0_SE2 BEMF voltage measurement of Phase C

ADC1
DCBI PTD4 / ADC1_SE6 DC bus current measurement

DCBV PTB12 / ADC1_SE7 DC bus voltage measurement

LPSPI0

SPI_SCLK PTB2 / LPSPI0_SCK SPI clock (2MHz)

SPI_MISO PTB3 / LPSPI0_SIN SPI input data from GD3000

SPI_MOSI PTB4 / LPSPI0_SOUT SPI output data for GD3000

LPUART1
SDA_SPI0_SOUT PTC6 / LPUART1_RX UART transmit data (FreeMASTER)

SDA_SPI0_SIN PTC7 / LPUART1_TX UART receive data (FreeMASTER)

TRGMUX

PTD1 PTD1 / TRGMUX_OUT2 FTM3 initialization trigger

PTA0 PTA0 / TRGMUX_OUT3 PBD1 channel 0 trigger output

PTE15 PTE15 / TRGMUX_OUT6 ADC1 conversion complete flag

GPIO

GD_EN PTA2 / PTA2 Enable signal for GD3000

GD_RST_B PTA3 / PTA3 Reset signal for GD3000

SPI_CS_B PTB5 / PTB5 Chip select signal for GD3000

BTN0 PTC12 / PTC12 Application control via board button

BTN1 PTC13 / PTC13 Application control via board button

Software implementation on the S32K144

3-Phase Sensorless BLDC Motor Control Kit with S32K144, Rev. 1, 06/2020

36 NXP Semiconductors

RGB_BLUE PTD0 / PTD0 RGB_BLUE indicating run state

PTD2 PTD2 / PTD2 GPIO toggling to measure execution time

BRAKE_PWM PTD14 / PTD14 Connecting / disconnecting braking resistor

RGB_RED PTD15 / PTD15 RGB_RED indicating fault state

RGB_GREEN PTD16 / PTD16 RGB_GREEN indicating ready/calib state

GD_INT PTE10 / PTE10 Interrupt signal indicating GD3000 fault
1
 FTM module with Hall support feature OR’ds FTM2_CH0, FTM2_CH1, FTM1_CH0 input pins into one single

FTM channel FTM2_CH1 that works in input capture mode. See section Input capture mode and Hall sensor

support for more details.

This pins assignment can be carried out by means of Processor Expert opening pin_mux:PinSetting

component. Pin assignment of the FTM3 module is shown in Figure 29 as an example.

Figure 29. S32K144 Pins assignment for FTM3 in Processor Expert

Once the pins are properly assigned meaning functionality for each pin is selected, Processor Expert

generates array of the configuration structures g_pin_mux_InitConfigArr that individually accesses Pin

Control Register PCR and GPIO registers.

One of the configuration structure is shown at bottom of Example 12. It defines that PTE10 pin works as

GPIO with input direction. In addition, interrupt on rising edge is enabled to be able to detect and

monitor fault conditions of the MC34GD3000 FET pre-driver, see section S32K144 and FETs pre-driver

interconnection.

Pins of the S32K144 are configured calling PINS_DRV_Init function at the top of the Example 12.

Example 12. S32K144 pins configuration controlled by S32 SDK
void McuPinsConfig(void)
{
 /* MCU Pins configuration */
 PINS_DRV_Init(NUM_OF_CONFIGURED_PINS, g_pin_mux_InitConfigArr);

}

pin_settings_config_t g_pin_mux_InitConfigArr[NUM_OF_CONFIGURED_PINS] =
{

...

 {
 .base = PORTE,
 .pinPortIdx = 10u,
 .pullConfig = PORT_INTERNAL_PULL_NOT_ENABLED,
 .passiveFilter = false,
 .driveSelect = PORT_LOW_DRIVE_STRENGTH,
 .mux = PORT_MUX_AS_GPIO,

Software implementation on the S32K144

3-Phase Sensorless BLDC Motor Control Kit with S32K144, Rev. 1, 06/2020

NXP Semiconductors 37

 .pinLock = false,
 .intConfig = PORT_INT_RISING_EDGE,
 .clearIntFlag = false,
 .gpioBase = PTE,
 .direction = GPIO_INPUT_DIRECTION,
 .digitalFilter = false,
 },
...

}

4.3. Software architecture

Figure 30 presents the conceptual system block diagram of the BLDC Six-step control technique

working either in sensorless or Hall sensor-based mode. This section is focused on the software design

of the Sensorless algorithm based on the zero-crossing detection technique.

The application is optimized for S32K144 motor control peripherals to achieve the least possible core

involvement in state variable acquisition and output action application. The motor control peripherals

(FTM0/FTM2, FTM3, PDB0, PDB1, ADC0, ADC1) are internally linked together to work

independently from the core, and to achieve deterministic sampling of analog quantities and precise

commutation of the stator field. The software part of the application consists of different blocks which

are described below. The entire application behavior is controlled from a PC through the FreeMASTER

run-time debugging tool.

The system block diagram is shown in Figure 30. The motor control algorithm blocks utilize the

Automotive Math and Motor control Library for ARM Cortex-M4(see section References).

The inputs of the control loop are the measured voltages and current on the power stage, in particular

the phase voltages, the DC bus current, and DC bus voltage. The DC bus current is amplified by the

current sense amplifier, which is part of the MC34GD3000 FET pre-driver, and then routed together

with the DC bus voltage and phase voltages to the ADC for measurement acquisition.

From a control perspective, the block diagram can be divided into two logical parts:

• Commutation control, where the phase voltages and DC bus voltage are used to calculate the

actual position of the shaft. According to the identified position, the next commutation event can

be prepared.
• Speed/torque control, where the required shaft velocity is compared to the actual measured

speed and regulated by the PI controller. The output of the speed PI controller is the duty cycle.

The duty cycle is limited by the current PI controller and assigned to the PWM.

Software implementation on the S32K144

3-Phase Sensorless BLDC Motor Control Kit with S32K144, Rev. 1, 06/2020

38 NXP Semiconductors

Figure 30. System block diagram

4.3.1. Introduction

This section describes the software design of the Sensorless BLDC Six Step Control framework

application. The application overview and description of software implementation are provided. The aim

of this section is to help in understanding of the designed software.

4.3.2. Application flow in Sensorless mode

Figure 31 explains the different application states. The figure consists of two interconnected parts:

• The speed over time characteristic
• The blocks in the lower part of the picture, which show the states of the application and the

transitions between respective states

The application software has three main states: the alignment state, the open-loop start state, and the run

state. In the run state, the BLDC motor is fully controlled in a closed-loop sensorless mode. After the

initialization of the peripheral modules has completed, the software enters the alignment state. In

alignment state, the rotor position is stabilized into a known position in order to create the same start-up

torque in both directions of rotation. This is achieved by applying a PWM signal to phase C. Phases A

and B are assigned with a duty cycle equal to zero; that is, they are connected to the negative pole of the

DC bus. The value of the duty cycle on phase C depends on the motor inertia and load applied on the

shaft. Such a technique aligns the shaft into position between phase A and B, which is perpendicular to

both start-up flux vectors (vectors 0 and 3) generated by the stator winding, and therefore ensures the

Software implementation on the S32K144

3-Phase Sensorless BLDC Motor Control Kit with S32K144, Rev. 1, 06/2020

NXP Semiconductors 39

same start-up torque in both directions of rotation. The duration of the alignment state depends on the

motor’s electrical and mechanical constants, the applied current (meaning duty cycle), and the

mechanical load.

When the alignment time-out expires, the application software moves to the open-loop start state. At a

very low shaft velocity, the BEMF voltage is too low to reliably detect the zero-crossing. Therefore, the

motor has to be controlled in an open-loop mode for a certain time period. The very first vector

generated by the stator windings needs to be set to a position 90° relative to the position of the flux

vector generated by magnets mounted on the rotor. The alignment and first start-up vector are shown in

Figure 31. The duration of the open-loop start state is defined by the number of open-loop

commutations. The number of open-loop commutations depends on the mechanical time constant of the

motor, including load, and also on the applied voltage (duty cycle). The shaft velocity after an open-

loop start-up is approximately 5% of nominal velocity. At a velocity approximately 5% of nominal

velocity, the BEMF voltage is high enough to reliably detect the zero-crossing.

After a defined number of commutation cycles, the state changes from the open-loop start state to the

run state. From here on, the commutation process based on the BEMF zero-crossing measurement takes

place, and the control enters the closed-loop mode.

Figure 31. Flow chart diagram of main function with background loop.

4.3.3. State machine

The application state machine is implemented using a one-dimensional array of pointers to state

functions, called AppStateMachine[]. The index of the array specifies the pointer to the related

Software implementation on the S32K144

3-Phase Sensorless BLDC Motor Control Kit with S32K144, Rev. 1, 06/2020

40 NXP Semiconductors

application state function. The application state machine consists of the following seven states selected

using the index variable appState value. The application states are listed in the Table 6. Possible state

transitions are shown in Figure 32.

Table 6. Application states in Sensorless mode

AppState Application state Description

0 INIT
The INIT state provides the initial configuration of the PWM duty cycle and DC
bus current offset calibration. The state machine then transitions to the STOP
state.

1 CALIB
The CALIB state provides the DC bus current calibration. The state machine

then transitions to ALIGNMENT state.

2 ALIGNMENT

In the ALIGNMENT state, the alignment vector is applied to the stator to set the

rotor to the defined position. The duration of the alignment state and the duty

cycle applied during the state are defined by the ALIGN_DURATION and

ALIGN_VOLTAGE macro values accessible in the BLDC appconfig.h header

file. The state machine then transitions to the START state.

3 START

In the START state, the motor commutation is controlled in an open-loop without

any rotor position feedback. The initial commutation period is controlled by the

STARTUP_CMT_PER macro value. Motor acceleration (commutation period

multiplier <1) is set by the START_CMT_ACCELER

macro value. The number of commutations in the START state is defined by

STARTUP_CMT_CNT macro value. All macro values are accessible in the

BLDC_appconfig.h header file. The aim of the START state is to achieve an RPM

where the zero-crossing event can be reliably detected (BEMF high enough).

Once the defined number of commutations is performed, the state machine

transitions to the RUN state.

4 RUN

In the RUN state, the BLDC motor is controlled in the closed-loop by the

sensorless algorithm (BEMF zero-crossing detection). Speed control and current

limitation are performed as described in 4.3.6, “Speed evaluation, motor current

limitation and control”. The transition to the INIT state is done by setting the

appSwitchState variable to 0.

5 STOP
In the STOP state, the motor is stopped and prepared to start running. Transition

to the ALIGNMENT state is performed once the appSwitchState variable is set to

1 and the freewheeling counter expires.

6 FAULT

The fault detection function is executed in the main endless loop, detecting DC

bus undervoltage, DC bus overvoltage, DC bus overcurrent, and GD3000 faults.

Once any of the faults are detected, the state machine automatically transitions

to the FAULT state. The PWM outputs are set to the safe state. To exit the

FAULT state, all fault sources must be removed and the faultSwitchClear variable

has to be set to 1 to clear the fault latch. The state machine then automatically

transitions to the INIT state.

Software implementation on the S32K144

3-Phase Sensorless BLDC Motor Control Kit with S32K144, Rev. 1, 06/2020

NXP Semiconductors 41

Figure 32. Application state machine

4.3.4. Application timing and interrupts

Figure 33 shows the application timing and the associated interrupts used for the commutation,

zero-crossing and speed control. The grey boxes show the executed interrupt routines versus the phase

voltage measurement.

The top row shows the interrupt that is activated when the ADC conversion sequence of BEMF voltage,

DC bus current, and DC bus voltage has been completed. In this interrupt, the FTM0 timer counter value

is saved as a BEMF measurement reference point. The zero-crossing detection algorithm is executed in

each ADC1 conversion complete interrupt after a commutation event. Once the zero-crossing is found,

the, detection algorithm is disabled until the new commutation event occurs.

The second row shows the FTM0 timer counter overflow interrupt generated at the time of the

commutation event. The time between each FTM0 timer counter overflow interrupt is dependent on the

actual speed of the motor. Channel of the ADC0 is reconfigured to reflect the change in the phase used

for the BEMF voltage sensing.

The last row shows the LPIT channel 0 time-out interrupt generated every 1 ms. This interrupt is used

for speed loop control and motor current limitation, executing PI controller functions.

Software implementation on the S32K144

3-Phase Sensorless BLDC Motor Control Kit with S32K144, Rev. 1, 06/2020

42 NXP Semiconductors

Figure 33. Application timing and interrupts

4.3.5. Zero-crossing detection processing

For state variable acquisition and zero-crossing detection processing, the ADC1 conversion sequence

complete interrupt is used. The interrupt service routine is executed once the conversion sequence

consisting of BEMF voltage, DC bus current, and DC bus current conversion is finished. The ADC1

conversion sequence complete interrupt service routine is shown in Example 13.

Before the ADC1 conversion complete ISR is executed, the ADC0 and ADC1 store the results in the

ADC0 and ADC1 results registers; BEMF voltage into ADC0_R0, DC bus current into ADC1_R0, and

DC bus voltage into ADC1_R1. These measurements are saved then into the result structure.

The value of the current sense amplifier bias voltage offset is subtracted from the measured DC bus

current value to obtain the bidirectional DC bus current.

A filtering of the DC bus voltage and DC bus current is provided using the moving average filter

functions. The BEMF voltage is then calculated as the difference between the phase voltage and the half

of the DC bus voltage. The BEMF voltage value is a signed number.

The software checks whether the current decay period has already passed (see BEMF zero-crossing

principle) to initiate the zero-crossing detection. The current decay period is called TOFF (variable

timeZCToff) in the application implementation, Example 13.

Software implementation on the S32K144

3-Phase Sensorless BLDC Motor Control Kit with S32K144, Rev. 1, 06/2020

NXP Semiconductors 43

Example 13. Processing measurements in the ADC1 conversion complete ISR
void ADC1_IRQHandler()
{
 tFloat delta;

 // Voltage measurement of the disconnected phase
 MEAS_GetBEMFVoltage(&ADCResults.BEMFVoltage);
 // DC Bus current raw value measurement
 MEAS_GetDCBCurrent(&ADCResults.DCBIVoltageRaw);
 // DC Bus voltage measurement
 MEAS_GetDCBVoltage(&ADCResults.DCBVVoltage);

 // Real DC Bus current = Raw value - DC bus current offset
 ADCResults.DCBIVoltage = MLIB_Sub(ADCResults.DCBIVoltageRaw, ADCResults.DCBIOffset);

 // Save time of the previous BEMF measurement
 timeOldBackEmf = timeBackEmf;
 // Save time of the actual BEMF measurement
 timeBackEmf = FTM_DRV_CounterRead(INST_FLEXTIMER_MC0);

 // Filtering of DC Bus voltage

u_dc_bus_filt = GDFLIB_FilterMA(ADCResults.DCBVVoltage, &Udcb_filt);

 // bemfVoltage = Voltage of the disconnected phase - DC Bus voltage/2
 bemfVoltage = MLIB_Sub(ADCResults.BEMFVoltage, MLIB_Div(u_dc_bus_filt, 2.0F));

 if(duty_cycle > DC_THRESHOLD)
 {
 // Filtering of DC Bus current

torque_filt = GDFLIB_FilterMA(ADCResults.DCBIVoltage, &Idcb_filt);
 }
 else
 {
 // Ignore DC bus current measurement at low duty cycles
 torque_filt = GDFLIB_FilterMA(0, &Idcb_filt);
 }

 // Check Toff period
 if(driveStatus.B.AfterCMT == 1)
 {
 if(timeBackEmf > timeZCToff)
 {
 driveStatus.B.AfterCMT = 0;
 }

 }

....

Where the commutation transient time TOFF has not yet expired (driveStatus.B.AfterCMT = 1), the

zero-crossing calculation will not be performed. The calculation will also not be performed if the

zero-crossing point has already been identified in the current commutation period

(driveStatus.B.NewZC= 1), or if the application is running in open-loop mode

(driveStatus.B.Sensorless = 0).

If the above mentioned conditions are not met, the zero-crossing detection routine will be executed.

Based on the current commutation sector, the BEMF slope direction is checked. If the BEMF slope is

negative, the sign of the calculated value is changed. This operation allows usage of a single BEMF

zero-crossing detection function for a positive slope BEMF in all commutation sectors.

When the zero-crossing position calculation is finished, the BEMF voltage value is stored as the old

value as it will be referenced again in the next PWM cycle.

Software implementation on the S32K144

3-Phase Sensorless BLDC Motor Control Kit with S32K144, Rev. 1, 06/2020

44 NXP Semiconductors

Code listing in Example 15 describes the zero-crossing detection routine that was called in the interrupt

shown before.

Example 14. S32K144 BEMF Zero-crossing detection control

....

if((driveStatus.B.AfterCMT == 0) && (driveStatus.B.NewZC == 0) && (driveStatus.B.Sensorless == 1))
 {

 /* If the BEMF voltage is falling, invert BEMF voltage value */
 if((ActualCmtSector & 0x01) == 0)
 {
 bemfVoltage = -bemfVoltage;
 }

 /* Rising BEMF zero-crossing detection */

 Save actual BEMF voltage (for ADC samples interpolation)
 bemfVoltageOld = bemfVoltage;

 driveStatus.B.AdcSaved = 1;
 }

 // Calibration timer for DC bus current offset measurement
 if(driveStatus.B.Calib)
 {
 calibTimer--;
 }

 // Application variables record
 FMSTR_Recorder();

}

In the case of a negative BEMF voltage (VBEMF < VDCB / 2), the zero-crossing point has not been

passed and the zero-crossing is not detectable. The software exits the zero-crossing detecting routine and

leaves the zero-crossing status bit unchanged (driveStatus.B.NewZC = 0). In the case of a zero or a

positive BEMF voltage (VBEMF ≥ VDCB / 2), the zero-crossing point was reached or passed and

Equation 7 is calculated, meaning that the BEMF voltage is divided by the delta of the two measured

points and multiplied by the measured PWM period (BEMF measurement period). After this calculation,

the old zero-crossing time and the new one are saved into the appropriate variables. The zero-crossing

period is then calculated based on the calculated time of zero-crossing and the time of the zero-crossing

in the previous commutation cycle. The zero-crossing period is also filtered to improve reliability

At the end of the routine, the new commutation time is calculated. Here, some motor characteristics

have to be taken into account. Instead of just adding half of a zero-crossing period to the actual zero-

crossing time, a so-called advance angle factor is taken into account, which actually activates the

commutation a bit earlier than calculated. This is usually a constant and depends on the motor

characteristics.

Finally, the zero-crossing status bit is set (driveStatus.B.NewZC = 1), so the zero-crossing detection

does not take place anymore in the current commutation cycle.

Software implementation on the S32K144

3-Phase Sensorless BLDC Motor Control Kit with S32K144, Rev. 1, 06/2020

NXP Semiconductors 45

Example 15. S32K144 BEMF Zero-crossing detection algorithm
 /* Rising BEMF zero-crossing detection */
 if(bemfVoltage >= 0)
 {
 /* Rising interpolation */
 delta = bemfVoltage - bemfVoltageOld; // Save delta of two measured points
 if((driveStatus.B.AdcSaved == 1) && (delta > bemfVoltage))
 {

// Zero-crossing time calculation
timeBackEmf -= MLIB_Mul(MLIB_Div(bemfVoltage, delta), MLIB_Sub(timeBackEmf,
timeOldBackEmf));

 }
 else
 {

// Zero-crossing time calculation
timeBackEmf -= (MLIB_Div(MLIB_Sub(timeBackEmf, timeOldBackEmf), 2));

 }

 // Save previous and actual zero-crossing time
 lastTimeZC = timeZC;
 timeZC = (uint16_t)timeBackEmf;

 // periodZC = (timeZC - lasTimeZC) + ftm_mod_old(no timer reset)
 periodZC[ActualCmtSector] = (ftm_mod_old - lastTimeZC) + timeZC;
 // Average of the previous and current ZC period
 actualPeriodZC = (actualPeriodZC + periodZC[ActualCmtSector]) >> 1;
 // advancedAngle(0.3815) = 0.5 * Advanced Angle(0.763)
 NextCmtPeriod = MLIB_Mul_F16(actualPeriodZC, advanceAngle);

 // Update commutation period -> FTM0_MOD = timeZC + nextCmtPeriod
 FTM_DRV_CounterStop(INST_FLEXTIMER_MC0);
 FTM_DRV_SetModuloCounterValue(INST_FLEXTIMER_MC0,timeZC+NextCmtPeriod, false);
 FTM_DRV_CounterStart(INST_FLEXTIMER_MC0);

 driveStatus.B.NewZC = 1;

 }

4.3.6. Speed evaluation, motor current limitation and control

The speed controller in Example 16 is executed in a timer interrupt every 1 ms. First of all, the actual

speed is calculated from all of the last six zero-crossing periods, and this is stored as the actual speed.

The required speed is fed into the ramp function controlling the motor speed slope. The difference

between the speed ramp function output and actual speed defines the speed error.

In the closed-loop mode, the actual speed error is fed into the PI controller function. Inputs to the PI

controller function include the speed error and the PI controller’s parameters such as the proportional

and integral gain constants. The output of the PI controller is the duty cycle, which is scaled to the PWM

resolution.

At the end of the speed control function, the duty cycle is loaded into the FTM3 PWM module.

Software implementation on the S32K144

3-Phase Sensorless BLDC Motor Control Kit with S32K144, Rev. 1, 06/2020

46 NXP Semiconductors

Example 16. S32K144 Speed evaluation software flow
void LPIT0_Ch0_IRQHandler()
{
 uint8_t i;
 PTD->PSOR |= 1<<2;

 if(driveStatus.B.CloseLoop == 1)
 {
 torqueErr = MLIB_Sub(I_DCB_LIMIT, torque_filt);
 currentPIOut = GFLIB_ControllerPIpAW(torqueErr, ¤tPIPrms);

 /* Speed control */

 period6ZC = periodZC[0];

 for(i=1;i<6;i++)
 {
 period6ZC += periodZC[i];
 }

 // Calculate actual rotor speed based on the BEMF zero cross period

actualSpeed = MLIB_Mul(MLIB_ConvertPU_FLTF32(MLIB_Div_F32(SPEED_SCALE_CONST,
period6ZC)), N_MAX);

 // Upper speed limit due to the limited DC bus voltage 12V
 if(requiredSpeed >= N_NOM)
 requiredSpeed = N_NOM;

 // Lower speed limit keeping reliable sensorless operation
 if(requiredSpeed < mcat_NMin)
 requiredSpeed = mcat_NMin;

 requiredSpeedRamp = GFLIB_Ramp(requiredSpeed, &speedRampPrms);
 speedErr = MLIB_Sub(requiredSpeedRamp, actualSpeed);
 speedPIOut = GFLIB_ControllerPIpAW(speedErr, &speedPIPrms);

....

The current limit controller is located in the same 1 ms timer interrupt (LPIT0_Ch0_IRQHandler()) as

the speed controller because the inputs and outputs of both controllers are linked together.

When the actual speed has been calculated, the current limit PI controller can be called by feeding it

with the difference between the actual current and the maximum allowed current of the motor. The

output of the PI controller is scaled to the number proportional to the PWM period. After the current PI

controller has calculated its duty cycle, both duty cycle output values are compared to each other.

If the speed PI controller duty cycle output is higher than the current limit PI controller output, then the

speed PI Controller duty cycle output value is limited to the output value of the current limit PI

controller. Otherwise, the speed PI duty cycle output will be taken as the duty cycle update value. The

value of the duty cycle will be used to update the FTM3 PWM module. At the end, the integral portion

values of both the PI controllers need to be synchronized to avoid one of the controllers increasing its

internal value as far as the upper limit. If the duty cycle was limited to the current PI duty cycle output,

then the integral portion of the current PI controller will be copied into the integral portion of the speed

controller, and vice versa. The above described procedure is also described in Example 17.

At the end of LPIT0_Ch0_IRQHandler() PDB0 and PDB1 pre-trigger delays are calculated based on the

actual duty cycle to measure DC Bus voltage and BEMF voltage towards the end of the active PWM

pulse as discussed in section Application timing and interrupts. Double-buffered registers

PDBn_CHnDLYx are updated when PDB_DRV_LoadValuesCmd is called and FTM3 init_trig is

detected on PDB0 and PDB1 trigger input.

Software implementation on the S32K144

3-Phase Sensorless BLDC Motor Control Kit with S32K144, Rev. 1, 06/2020

NXP Semiconductors 47

Example 17. S32K144 Speed evaluation and current limitation
....

if(currentPIOut >= speedPIOut)
 {
 /* If max torque not achieved, use speed PI output */
 currentPIPrms.fltIntegPartK_1 = speedPIOut;
 currentPIPrms.fltInK_1 = 0;
 /* PWM duty cycle update <- speed PI */
 duty_cycle = speedPIOut;

 driveStatus.B.CurrentLimiting = 0;
 }

 else
 {
 /* Limit speed PI output by current PI if max. torque achieved */
 speedPIPrms.fltIntegPartK_1 = currentPIOut;
 speedPIPrms.fltInK_1 = 0;
 /* PWM duty cycle update <- current PI */
 duty_cycle = currentPIOut;

 driveStatus.B.CurrentLimiting = 1;
 }

 // Update PWM duty cycle
 ACTUATE_SetDutycycle(duty_cycle, HW_INPUT_TRIG0);

 }
 else
 {
 actualSpeed = 0;
 }

 if(driveStatus.B.Freewheeling)
 {
 if(freewheelTimer > 0)
 {
 freewheelTimer--;
 }
 else
 {
 driveStatus.B.Freewheeling = 0;
 }
 }

 /* pdb_delay calculated based on the actual duty_cycle
 * to measure DC bus voltage and Back EMF voltage
 * towards the end of the active PWM pulse
 */
 pdb_delay = (uint16_t)(MLIB_Mul(MLIB_Div(duty_cycle, 100.0F), PDB_DELAY_MAX));

 // Saturate, if pdb_delay is lower than PDB_DELAY_MIN
 if(pdb_delay < PDB_DELAY_MIN)
 pdb_delay = PDB_DELAY_MIN;

 /* Update PDBs delays */
 PDB_DRV_SetAdcPreTriggerDelayValue(0, 0, 0, pdb_delay);
 PDB_DRV_SetAdcPreTriggerDelayValue(1, 0, 1, pdb_delay);
 PDB_DRV_LoadValuesCmd(0);
 PDB_DRV_LoadValuesCmd(1);

 CheckSwitchState();

 LPIT_DRV_ClearInterruptFlagTimerChannels(0, 0b1);
}

Application control

3-Phase Sensorless BLDC Motor Control Kit with S32K144, Rev. 1, 06/2020

48 NXP Semiconductors

4.3.7. Automotive Math and Motor Control Library

The application source code uses the NXP Automotive Math and Motor Control Library Set for

ARM® Cortex®-M4F (available at www.nxp.com) which consists of the following sub-libraries:

• Mathematical Library (MLIB) – includes basic mathematical functions such as addition,

multiplication, etc.

• General Function Library (GFLIB) – includes basic trigonometric and general mathematical

functions such as sine, cosine, ramp, PI controller, etc.

• General Digital Filters Library (GDFLIB) – includes digital FIR and IIR filters

• General Motor Control Library (GMLIB) – includes standard algorithms used for motor

control such as Clarke/Park transformations, Space Vector Modulation, etc.

• Advanced Motor Control Function Library (AMCLIB) – comprising advanced algorithms

used for motor control purposes.

5. Application control

5.1. FreeMASTER graphical user interface

The FreeMASTER run-time debugging tool is used to control the application and monitor application

variables during run-time. The FreeMASTER window with an opened application project comprises

several panes:

• Project Tree – Provides a logical project tree structure containing the main page, several

oscilloscopes and BEMF voltage recorder.

• Variable Stimulus – Allows you to enable automatic motor speed stimulus for motor speed

response observation.

• Variable Watch Grid – Contains the list of watched variables and provides a simple interface to

start/stop the motor and to set the rotation speed of the motor.

• Detailed View Area – Displays the Motor Control Application Tuning (MCAT) tool GUI by

default. Contents of the detailed view area change based on the selected item in the project tree.

http://www.nxp.com/

Application control

3-Phase Sensorless BLDC Motor Control Kit with S32K144, Rev. 1, 06/2020

NXP Semiconductors 49

Figure 34. FreeMASTER window with an application project opened

5.1.1. Project tree

Allows selecting the content of the detailed view area, as follows:

• S32K_BLDC_Sensorless – displays the MCAT GUI

• DC Bus Current Calib – displays the variable recorder (DCBI Calib) which allows recording of

DC Bus current offset as well as real value.

• StallCheck Detection – displays the variable recorder (StallCheck) triggered by variable

stallCheckCounter.

• App States & Faults – displays application states and faults in Variable Watch Grid.

• Start Up Sequence – displays the variable recorder (Start Up Sequence) which allows recording

of BEMF voltage, drive status, actual commutation sector and next commutation period.

• Closed Loop Control – displays scope and recorder of speed control variables

• Sensorless Control – displays scope of speed variables, DC Bus voltage variables, DC Bus

current variable, mixed scope with speed variables and DC Bus variables and displays also

recorder of BEMF and commutation variables.

5.2. Motor Control Application Tuning Tool

The MCAT is a graphical tool with a friendly environment and intuitive control. As shown in Figure 35

the tool consists of a motor selector bar, tab menu, and workspace. The MCAT tool represents a modular

Application control

3-Phase Sensorless BLDC Motor Control Kit with S32K144, Rev. 1, 06/2020

50 NXP Semiconductors

concept that consists of several sub-modules. Each sub-module represents one tab in the tab menu. The

arrangement of the submodules is flexible according to the needs of the embedded application.

Figure 35. MCAT – project page

The MCAT tool is part of reference software for a dedicated MCU. Since the tuning tool cannot be used

as a standalone, it is included in the FreeMASTER project by default.

The tool supports output header file generation with the calculated constants required for control

algorithms, and also enables on-line updates of those application control variables selected for tuning,

for example, the control loop, speed ramp, and so forth. The variables are updated by clicking the

“Update Target” button on each control tab.

The set motor parameters can be stored in an internal MCAT file by clicking the “Store Data” button or

the data can be reloaded by clicking the “Reload Data” button.

Each parameter and constant contains a short hint that can be activated on a parameter name mouse

focus; see Figure 36 for an example of this hint information.

Figure 36. Parameters hint information

The MCAT tool workspace is unique for each tab and a detailed overview of each available tab is

provided in the subsequent sections.

Application control

3-Phase Sensorless BLDC Motor Control Kit with S32K144, Rev. 1, 06/2020

NXP Semiconductors 51

5.2.1. Introduction tab

The introduction tab can be considered as a voluntary tab. It provides a room for describing or

introducing the targeted motor control application, as shown in Figure 35.

5.2.2. Parameters tab

The parameters tab is dedicated for entering the input application parameters, as shown in Figure 37 a

mandatory tab due to its high-level dependency with other tabs. Please take care while filling in an filled

value in the cells can cause unexpected behavior in an application running on the target. The impact of

each required input is described in Table 7. The number of input parameters needed to be filled in

depends on the selected application tuning mode:

• Basic – highly recommended for users who are not experienced enough in motor control theory.

The number of required input parameters is reduced. The mandatory cells are with a white

background while the rest of the input parameters are calculated automatically by the MCAT tool

engine. These parameters are read-only and shadowed.

• Expert – all input parameters are accessible and freely editable by the user. However, their

settings require a certain level of expertise in motor control theory.

NOTE

When switching from the Expert to Basic mode, some parameters are

overridden by the automatically calculated parameter values. Values

previously set in the Expert mode are not retained and need to be reloaded

by changing any editable parameter value and clicking the “Reload Data”

button after switching back to Expert mode.

Application control

3-Phase Sensorless BLDC Motor Control Kit with S32K144, Rev. 1, 06/2020

52 NXP Semiconductors

Figure 37. Parameters tab – Expert mode

Table 7 shows the list of the MCAT tool input parameters with their units, a brief description, typical

range, and their accessibility status in basic mode.

Table 7. Parameters tab – parameter list

Parameter name Unit Description Basic mode

accesibility

pp [-] Motor pole-pair number Yes

Iph nom [A] Motor nominal phase current Yes

Uph nom [V] Motor nominal phase voltage Yes

N nom [rpm] Motor nominal mechanical speed Yes

I max [A] HW board current scale Yes

U DCB max [V] HW board DC bus voltage scale Yes

I DCB over [A] DC bus overcurrent fault threshold current No

U DCB under [V] DC bus undervoltage fault threshold voltage No

U DCB over [V] DC bus overvoltage fault threshold voltage No

I DCB limit [A] DC bus current limit of control loop No

U DCB trip [V] Resistor braking DC bus voltage threshold No

N max [rpm] Mechanical speed limit No

ke [V.sec/rad] Back-EMF constant No

PWM freq [Hz] Frequency of PWM output signal No

Application control

3-Phase Sensorless BLDC Motor Control Kit with S32K144, Rev. 1, 06/2020

NXP Semiconductors 53

Align voltage [V] Voltage for mechanical rotor alignment No

Align duration [sec] Duration of motor alignment No

The parameters of the controlled motor can be acquired from the motor data sheet provided by the motor

manufacturer, or by laboratory measurement.

5.2.3. Control loop tab

The control loop tab is designed for speed and torque loop tuning. The torque and speed PI controllers

run in parallel with a common output limitation. The tab contains input parameters for the torque and

speed control loops that are used for the PI controller, the speed ramp, and speed filter constant

calculations, as shown in Figure 38.

Figure 38. Control loop tab – Expert mode

Table 8 shows the list of the speed/torque loop input parameters with their physical units, a brief

description, typical range, and their accessibility status in basic mode.

Table 8. Control loop tab – parameter list

Parameter name Unit Description Bacis mode

accesibility

Sample time [sec] Control loop period No

Output limit high [%] Control loop output high limit No

Output limit low [%] Control loop output low limit No

Application control

3-Phase Sensorless BLDC Motor Control Kit with S32K144, Rev. 1, 06/2020

54 NXP Semiconductors

Inc Up [rpm/sec] Speed ramp increment up Yes

Inc Down [rpm/sec] Speed ramp increment down Yes

MA Filter [lambda] Number of 2^n points of MA Torque filter No

Speed Loop Kp - Proportional gain of speed PI controller in time domain No

Speed Loop Ki - Integral gain of speed PI controller in time domain No

Torque Loop Kp - Proportional gain of torque PI controller in time domain No

Torque Loop Ki - Integral gain of torque PI controller in time domain No

Clicking the “Update Target” button effects an update of the control loop and speed ramp dedicated

variables in the target using the actual inputs from the tab.

5.2.4. Sensorless tab

The sensorless tab enables parameter settings for the BLDC sensorless control algorithm. The tab is

divided into two parts, the left-side fields represent those input parameters required for sensorless

algorithm constant calculation and the right-side represents the read-only calculated constants, as shown

in Figure 39.

Figure 39. Sensorless tab – Expert mode

Table 9 shows the list of the speed loop input parameters with their physical units, a brief description,

typical range, and their accessibility status in basic mode.

Application control

3-Phase Sensorless BLDC Motor Control Kit with S32K144, Rev. 1, 06/2020

NXP Semiconductors 55

Table 9. Sensorless tab – parameter list

Parameter name Unit Description Bacis mode

accesibility

Timer freq [Hz] Frequency of timer used for commutation timing and period
measurement

No

Speed min [rpm] Minimal speed threshold for sensorless speed control No

Freewheel time [sec] Freewheel counter value No

OL speed lim [rpm] Target open-loop speed; threshold to switch to closed-loop
operation

No

Cmt count [#] Commutation number for open-loop start-up No

1st cmt period [sec] First commutation period duration No

Time off [%] Current decay period in percentage of actual commutation
period

No

Integ thr corr. [%] Back-EMF integration threshold correction constant Yes

1 This parameter value is ignored as the BEMF voltage integration method is not used by the application.

5.2.5. Output file tab

The output file tab serves as a preview of the application constants corresponding to the tuned motor

control application, as shown in Figure 40.

Figure 40. Output file tab – Expert mode

Application control

3-Phase Sensorless BLDC Motor Control Kit with S32K144, Rev. 1, 06/2020

56 NXP Semiconductors

The constants are thematically divided into the groups according to selected control tabs as follows:

• Application scales

• Mechanical alignment

• BLDC control loop

• BLDC sensorless module

• FreeMASTER scale variables

Application tuning modes are not available for this tab.

Click the “Generate Configuration File” button to generate the content of the output file tab. The header

file BLDC_appconfig.h is generated and saved to the default path

NXP\MC_DevKits\MCSPTE1AK144\sw\MCSPTE1AK144_BLDC_6Step\Sources\Config.

5.2.6. Application control tab

The last tab available from the tab menu is the application control tab. The application control page is

based on the graphical components to provide a user friendly control interface.

Figure 41. Application control tab

In this view, the most important variables and settings are displayed using a graphical representation.

The fan can be switched on or off by using the “ON/OFF” switch or by changing the appSwitchState

Conclusion

3-Phase Sensorless BLDC Motor Control Kit with S32K144, Rev. 1, 06/2020

NXP Semiconductors 57

variable value in the Variable Watch Grid. The required speed can be selected either by clicking the

speed gauge or by manually changing the requiredSpeed variable value in the Variable Watch Grid.

Where any fault is detected, it has to be cleared manually by clicking the green “Fault Clear” button or

by setting the faultSwitchClear variable value to 0 in the Variable Watch Grid. Then, the application can

be switched on again. Faults present in the system are signalized by the red fault indicators. Pending

faults are signalized by small red circle indicators next to respective fault indicator.

6. Conclusion

The design described shows the simplicity and efficiency in using the S32K144 microcontroller for

Sensorless BLDC motor control and introduces it as an appropriate candidate for various low-cost

applications in the automotive area. MCAT tool provides interactive online tool which makes the BLDC

drive application tuning friendly and intuitive.

Revision history

3-Phase Sensorless BLDC Motor Control Kit with S32K144, Rev. 1, 06/2020

58 NXP Semiconductors

7. References

• MCSPTE1AK144: S32K144 Development Kit for BLDC and PMSM motor control

• S32 Design Studio IDE for ARM® based MCUs

• FreeMASTER Run-Time Debugging Tool

• S32K14XMCLUG , Automotive Math and Motor Control Library Set for S32K14x User Manual

• S32K1XXRM, S32K1xx Series Reference Manual

• S32K144EVB: S32K144 Evaluation Board

• DEVKIT-MOTORGD: Low-Cost Motor Control Solution for DEVKIT Platform

• GD3000: 3-Phase Brushless Motor Pre-Driver

• Rashid, M. H. Power Electronics Handbook, 2nd Edition. Academic Press

• Motor Control Application Tuning (MCAT) Tool

8. Revision history
Table 10. Revision history

Revision Number Date Substantive changes

0 04/2019 Initial release

1 05/2020 • Updated Figure 18.

• Updated Figure 20.

• Updated Example 3.

• Changed the text below

Example 3.

• Updated Figure 27.

• In Output file tab changed the

default path where the file is

saved.

• Updated the first bullet in

References.

• Updated Figure 30.

http://nxp.com/pages/mcspte1ak144-s32k144-development-kit-for-bldc-and-pmsm-motor-control:MCSPTE1AK144
http://www.nxp.com/S32DS-ARM
http://www.nxp.com/FREEMASTER
https://www.nxp.com/support/developer-resources/run-time-software/automotive-software-and-tools/automotive-math-and-motor-control-library-set:AUTOMATH_MCL?tab=Documentation_Tab
https://www.nxp.com/products/power-management/lighting-driver-and-controller-ics/automotive-lighting-led-driver-ics/s32k144-evaluation-board:S32K144EVB?tab=Documentation_Tab
https://www.nxp.com/products/processors-and-microcontrollers/arm-based-processors-and-mcus/s32-automotive-platform/s32k144-evaluation-board:S32K144EVB
https://www.nxp.com/support/developer-resources/hardware-development-tools/ultra-reliable-mcus-development-platform/low-cost-motor-control-solution-for-devkit-platform:DEVKIT-MOTORGD
https://www.nxp.com/products/power-management/motor-drivers/h-bridges/3-phase-brushless-motor-pre-driver:GD3000
http://www.nxp.com/mcat

Revision history

3-Phase Sensorless BLDC Motor Control Kit with S32K144, Rev. 1, 06/2020

NXP Semiconductors 59

Document Number: AN12435
Rev. 1

06/2020

How to Reach Us:

Home Page:

nxp.com

Web Support:

nxp.com/support

Information in this document is provided solely to enable system and software

implementers to use NXP products. There are no express or implied copyright licenses

granted hereunder to design or fabricate any integrated circuits based on the

information in this document. NXP reserves the right to make changes without further

notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its

products for any particular purpose, nor does NXP assume any liability arising out of the

application or use of any product or circuit, and specifically disclaims any and all

liability, including without limitation consequential or incidental damages. “Typical”

parameters that may be provided in NXP data sheets and/or specifications can and do

vary in different applications, and actual performance may vary over time. All operating

parameters, including “typicals,” must be validated for each customer application by

customer’s technical experts. NXP does not convey any license under its patent rights

nor the rights of others. NXP sells products pursuant to standard terms and conditions

of sale, which can be found at the following address: nxp.com/SalesTermsandConditions.

While NXP has implemented advanced security features, all products may be subject to

unidentified vulnerabilities. Customers are responsible for the design and operation of

their applications and products to reduce the effect of these vulnerabilities on

customer’s applications and products, and NXP accepts no liability for any vulnerability

that is discovered. Customers should implement appropriate design and operating

safeguards to minimize the risks associated with their applications and products.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD,

COOLFLUX, EMBRACE, GREENCHIP, HITAG, I2C BUS, ICODE, JCOP, LIFE VIBES,

MIFARE, MIFARE CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX,

MANTIS, MIFARE ULTRALIGHT, MIFARE4MOBILE, MIGLO, NTAG, ROADLINK,

SMARTLX, SMARTMX, STARPLUG, TOPFET, TRENCHMOS, UCODE, Freescale, the

Freescale logo, AltiVec, C 5, CodeTEST, CodeWarrior, ColdFire, ColdFire+, C Ware,

the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV, mobileGT, PEG,

PowerQUICC, Processor Expert, QorIQ, QorIQ Qonverge, Ready Play, SafeAssure, the

SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack,

CoreNet, Flexis, MXC, Platform in a Package, QUICC Engine, SMARTMOS, Tower,

TurboLink, and UMEMS are trademarks of NXP B.V. All other product or service names

are the property of their respective owners. Arm, AMBA, Arm Powered, Artisan, Cortex,

Jazelle, Keil, SecurCore, Thumb, TrustZone, and μVision are registered trademarks of

Arm Limited (or its subsidiaries) in the EU and/or elsewhere. Arm7, Arm9, Arm11,

big.LITTLE, CoreLink, CoreSight, DesignStart, Mali, Mbed, NEON, POP, Sensinode,

Socrates, ULINK and Versatile are trademarks of Arm Limited (or its subsidiaries) in the

EU and/or elsewhere. All rights reserved. Oracle and Java are registered trademarks of

Oracle and/or its affiliates. The Power Architecture and Power.org word marks and the

Power and Power.org logos and related marks are trademarks and service marks

licensed by Power.org.

© 2020 NXP B.V.

http://www.freescale.com/
http://www.freescale.com/support
http://www.freescale.com/SalesTermsandConditions
http://www.freescale.com/SalesTermsandConditions

	1. Introduction
	2. System concept
	3. Sensorless BLDC control
	3.1. Overview of the brushless DC motor
	3.1.1. Electronic commutation control
	3.1.2. Speed/torque control

	3.2. Output voltage actuation and complementary unipolar PWM modulation technique
	3.3. Position estimation based on BEMF zero-crossing detection
	3.3.1. BEMF zero-crossing principle
	3.3.1. BEMF zero-crossing principle
	3.3.2. BEMF zero-crossing event detection and phase current measurement
	3.3.3. BEMF voltage measurement
	3.3.3.1. BEMF voltage measurement limitations

	3.3.4. DC bus current measurement

	3.4. States of the sensorless BLDC control based on BEMF zero-crossing detection
	3.4.1. Alignment
	3.4.2. Start-up
	3.4.3. Run

	4. Software implementation on the S32K144
	4.1. S32K144 – Key modules for BLDC six-step control
	4.1.1. Module interconnection
	4.1.2. S32K144 and FETs pre-driver interconnection
	4.1.2. S32K144 and FETs pre-driver interconnection
	4.1.3. Module involvement in digital BLDC control loop

	4.2. S32K144 initialization
	4.2.1. Clock configuration and power management
	4.2.2. FlexTimer Module (FTM)
	4.2.2.1. Center-aligned PWM mode
	4.2.2.1. Center-aligned PWM mode
	4.2.2.2. Commutation timer for Sensorless mode
	4.2.2.2. Commutation timer for Sensorless mode
	4.2.2.3. Input capture mode and Hall sensor support
	4.2.2.3. Input capture mode and Hall sensor support

	4.2.3. Trigger MUX Control (TRGMUX)
	4.2.4. Programmable Delay Block (PDB)
	4.2.5. Analog-to-Digital Converter (ADC)
	4.2.5. Analog-to-Digital Converter (ADC)
	4.2.6. Low Power Serial Peripheral Interface (LPSPI) and FETs pre-driver (MC34GD3000)
	4.2.7. Low Power Universal Asynchronous Receiver/Transmitter (LPUART)
	4.2.8. Low Power Interrupt Timer (LPIT)
	4.2.9. Port control and pin multiplexing

	4.3. Software architecture
	4.3.1. Introduction
	4.3.2. Application flow in Sensorless mode
	4.3.3. State machine
	4.3.4. Application timing and interrupts
	4.3.5. Zero-crossing detection processing
	4.3.6. Speed evaluation, motor current limitation and control
	4.3.7. Automotive Math and Motor Control Library
	4.3.7. Automotive Math and Motor Control Library

	5. Application control
	5.1. FreeMASTER graphical user interface
	5.1.1. Project tree

	5.2. Motor Control Application Tuning Tool
	5.2.1. Introduction tab
	5.2.1. Introduction tab
	5.2.2. Parameters tab
	5.2.3. Control loop tab
	5.2.4. Sensorless tab
	5.2.5. Output file tab
	5.2.6. Application control tab

	6. Conclusion
	7. References
	8. Revision history

