MVR5510AVMA6EP – NXP Standard (Industrial)

Configuration for S32G based applications using DDR3L

Configuration report for QM OTP program ID: A6 rev B

Rev. 1.1- Sept 8 2021

Report

1 General description

The VR5510 is an multi-output power management integrated circuit, with focus on Gateway, V2X, Infotainment, and Industrial applications. It includes multiple high efficiency switch mode and linear voltage regulators. It offers external frequency synchronization input and output, for optimized system EMC performance.

The VR5510 includes enhanced safety features, with fail-safe output, becoming a full part of a safety-oriented system partitioning, covering both ASILB and ASILD safety integrity level. It is developed in compliance with ISO 26262 standard.

2 Features and benefits

- 60V DC maximum input voltage
- Configurable VPRE synchronous buck controller with external MOSFETs.
- Configurable Single/dual-Phase Low voltage buck converters with DVS capability
- Configurable Low voltage integrated synchronous BUCK3 converter
- BOOST converter with integrated low side switch
- 3x linear voltage regulators with configurable Output Voltage
- High voltage linear regulator (HVLDO) with LDO and Switch mode operation
- EMC optimization with frequency tuning, clock synchronization, frequency spread spectrum and slew rate control
- Low power standby mode (40uA quiescent Current)
- 2x input pins for wake-up detection and battery voltage sense
- Device control via I2C interface with CRC (up to 3.4 MHz)
- Selectable OTP Default configuration

3 Applications

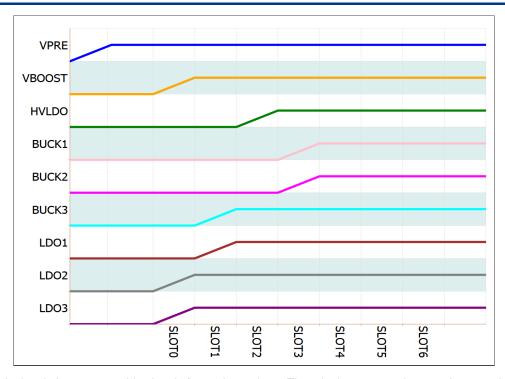
- Automotive Infotainment
- High End Industrial

4 Ordering information

Table 1. Ordering information

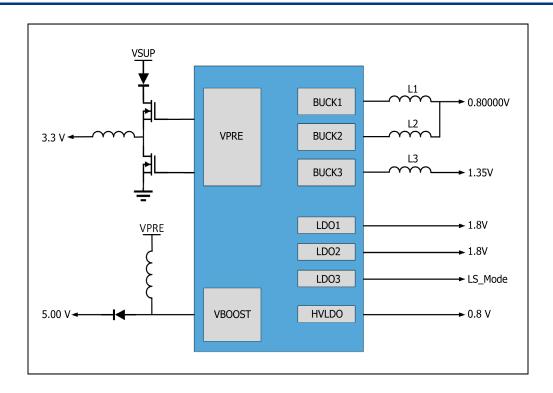
Type	e number ^[1]	Package	Description Version	
.,,,		Name		
MVR	5510AVMA6EP	QFN56-EP	QFN56 plastic thermally enhanced very thin quad flat non-leaded package. non-Wettable flanks; 56 terminals; 0.5mm pitch,8mmx8mmx0.85mm body	SOT684-21

[1] To order parts in tape and reel, add the R2 suffix to the part number.



R_MVR5510AVMA6EP

All information provided in this document is subjected to legal disclaimers. ©NXP B.V. 2021. All rights reserved.


NXP Semiconductors Rev. 1.1 - Sept 8 2021 Report

5 Power-up sequence summary

The signals depicted above are enable signals for each regulator. They don't represent the actual ramp voltage

6 Hardware configuration diagram

R_MVR5510AVMA6EP

7 System configuration

See VR5510 datasheet for parametric details. The OTP configuration summary for A6 sequence ID is provided in Tables below.

Table 2. Device OTP configuration

Functional block	Feature	OTP selection
	Main I2C Address	0x20
	VSUP UV threshold	4.9 V
	Auto Re-try Enable	Enabled (default)
	Auto Re-try Timeout	4 s (default)
Device Configuration	Number of Retries	Infinite Retry (default)
Device Configuration	PLL Enable	Disabled (default)
	Clock 1 Divider	2.22 MHz (default)
	Clock 2 Divider	455 KHz (default)
	Thermal Warning TH	105 °C (default)
	Deep Sleep Enable	DSM Disabled (default)
	PWRON2 Control	Not Required
	AMUX/FOUT Select	AMUX Enabled (default)
	PSYNC Enable	PSYNC Disabled (default)
	PSYNC Mode	Sync 2 x VR5510
IO Configuration	PSYNC Power Down Ctrl	Ignore for PwrDown
10 Collingulation	Standby Transition Timer	Enabled (default)
	Standby Discharge TH	75 mV (default)
	Standby Polarity	Active Low (default)
	Standby PGOOD Enable	Enabled (default)
	PSYNC PGOOD Ext	Disabled

R_MVR5510AVMA6EP

Ext Standby Discharge	Disabled
Standby PGOOD Delay	400us
VDDIO Supply Seletion	LDO3 (default)
Multiphase Configuration	Dual Phase

Table 3. Voltage Regulators Configuration

Functional block	Feature	OTP selection	
	VPRE Voltage	3.3 V (default)	
	Slope Compensation	41.4 mV/us	
	VPRE Standby Output Ctrl	Set by VPREV_STBY (I2C)	
	ILIM sense Voltage	120 mV	
	VPRE HighSide pull down Slew Rate Ctrl	PD / 520 mA (455 KHz default value)	
VPRE Configuration	VPRE HighSide pull up Slew Rate Ctrl	PU / 520 mA (455 KHz default value)	
VI IVE Configuration	VPRE LowSide Slew Rate Ctrl	PU / PD / 900 mA (default value)	
	Soft Start Ramp	2 mV/us (default)	
	VPRE Off Time	80 ns	
	TON in PFM	550 ns (default value)	
	TON Min	45 ns	
	Turn OFF Delay	250 us	
	VBOOST Voltage	5.00 V (default)	
	Slope Compensation	67 mV/us (default)	
VBOOST Configuration	Minimum TON	60 ns (default)	
v booot oomigaration	Current Limit	2.25 A (default)	
	Low Side Slew Rate Ctrl	500 V/us (default)	
	Input Path to BOS	Enabled (default)	

R_MVR5510AVMA6EP

Compensation Capacitor	125 pF (default)	
Compensation Resistor	500 kΩ (default)	

Table 4. BUCK Regulators

Functional block	Feature	OTP selection
	Output Voltage	0.80 V
	Current Limit	3.6 A
BUCK1/2 - Dual Phase	Output Inductor	1 uH(default)
	DVS Ramp of BUCK12 15.6 mV/us (power up) / 10.4 mV/us (power down)	
	Transconductance	65 umho
	Output Voltage	1.35 V
	Current Limit	3.6 A
BUCK3	Output Inductor	1 uH(default)
	Ramp	3.47 mV/us (power up/down)
	Transconductance	65 umho
	R Comp	56 ΚΩ

Table 5. LDO Regulators

Functional block	Feature	OTP selection	
LDO1 Regulator	Output Voltage	1.8 V	
	Current Limit	400 mA (default)	
LDO2 Regulator	Output Voltage	1.8 V	
	LDO Mode	LDO Mode (default)	
LDO3 Regulator	Output Voltage	LS_Mode	
	LDO Mode	Load Switch (default)	

R_MVR5510AVMA6EP

Table 6. HVLDO Regulator

Functional block	Feature	OTP selection	
	HVLDO Voltage	0.8 V (default)	
HVLDO Regulator	Transition Mode	Switch in Normal / LDO in Standby (default)	
	Sequence Control	Follows HVLDOS_OTP slot	

Table 7. Voltage Sequence and Timing Configuration

Regulator	Regulator Sequence Enabled		Phase Delay	Clock	TSD Event
VPRE	Auto-enabled	Enabled	No delay	CLK2	
VBOOST	Slot 0	Enabled	No delay	CLK1	Shutdown + DFS
BUCK1	Slot 3	Enabled	1 clock delay	CLK1	Shutdown + DFS
BUCK2	Slot 3	Enabled	2 clock delay	CLK1	Shutdown + DFS
вискз	Slot 1	Enabled	3 clock delay	CLK1	Shutdown + DFS
LDO1	Slot 1	Enabled			Shutdown + DFS
LDO2	Slot 0	Enabled			Shutdown + DFS
LDO3	LDO3 Slot 0				Shutdown + DFS
HVLDO	Slot 2	Enabled			Shutdown + DFS
SLOT Width	250 us				

Table 8. Safety State Machine Configuration

Functional block	Feature	OTP selection	
	FailSafe I2C Address	0x21	
	8sec Timer to DFS	Timer Disabled	
Safety Configuration	ABIST1 to RSTB delay	5 ms Delay	
	VCOREMON SVS Clamp Limit	16 steps available (default)	
	VCOREMON SVS Offset Type	Negative offset (default)	

R_MVR5510AVMA6EP

PGOOD assert with RSTB	PGOOD Asserts with RSTB Fault (default)
HVLDO Mode Select	Switch Mode (default)
WDI Polarity	Falling Edge
WDI on FCCU1	WDI Disabled (default)
STANDBY Mode	STANDBY Enabled (default)
STANDBY Polarity	Active Low in standby mode (default)
STANDBY Request Path	I2C + STBY Pin Transition (default)
STANDBY Window	STBY Window Enabled (default)
WD Init Timeout	1024 ms
Fault Recovery Mode	Disabled
WD Selection	Simple WD
WD Monitoring	WD Disabled
FCCU Monitoring	FCCU Disabled
LBIST Enable	LBIST Disabled

Table 9. Voltage Monitoring

	VMONEN	Voltage	UV_TH	OV_TH	UV Dbnc	OV Dbnc	PGOOD Ctrl	ABIST Ctrl
VCOREMON	Enabled	0.80000V	95.5%	106%	25 us	25 us	PGOOD Assigned	No ABIST at PWRUP
VDDIOMON	Enabled	3.3 V	95%	105%	25 us	25 us	PGOOD Assigned	No ABIST at PWRUP
HVLDOMON	Enabled	0.8 V	93%	107%	25 us	25 us	PGOOD Assigned	No ABIST at PWRUP
VMON1	Enabled	0.8 V	95.5%	106%	25 us	25 us	PGOOD Assigned	No ABIST at PWRUP
VMON2	Enabled	0.8 V	96.5%	105%	25 us	25 us	PGOOD Assigned	No ABIST at PWRUP

R_MVR5510AVMA6EP

MVR5510AVMA6EP - NXP Standard

Configuration report for QM OTP program ID: A6 rev B

VMON3	Enabled	0.8 V	95%	105%	25 us	25 us	PGOOD Assigned	No ABIST at PWRUP
VMON4	Enabled	0.8 V	95%	105%	25 us	25 us	PGOOD Assigned	No ABIST at PWRUP

8 Legal information

8.1 Definitions

Draft - The document is a draft version only. The content is still under internal review and subject to formal approval, which may result inmodifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included here in and shall have no liability for the consequences of use of such information.

Limited warranty and liability - Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have noliability for the consequences of use of such information. NXP Semiconductors takes no responsibility for the content in this documentif provided by an information source outside of NXP Semiconductors. In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to theremoval or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty,breach of contract or any other legal theory. Not withstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of NXP Semiconductors.

Right to make changes - NXP Semiconductors reserves the right to make changes to information published in this document, including ithout limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use - NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications - Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable forthe specified use without further testing or modification. Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products. NXP Semiconductorsdoes not accept any liability related to any default, damage, costs or problem

which is based on any weakness or default in the customer's applicationsor products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the productsor of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Limiting values - Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale - NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms,unless otherwise agreed in a valid written individual agreement. In casean individual agreement is concluded only the terms and conditions ofthe respective agreement shall apply. NXP Semiconductors here by expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors productsby customer.

No offer to sell or license - Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Suitability for use in automotive applications - This NXP Semiconductors product has been qualified for use in automotive applications. Unless otherwise agreed in writing, the product is not designed, authorized or warranted to be suitable for use in life support,life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product canreasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Export control - This document as well as the item(s) described hereinmay be subject to export control regulations. Export might require a prior authorization from competent authorities.

Translations - A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

8.2 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

NXP - is a trademark of NXP B.V.

R_MVR5510AVMA6EP

Contents

1 General description	1
2 Features and benefits	1
3 Applications	1
4 Ordering information	1
5 Power up sequence summary	2
6 Hardware configuration diagram	2
7 OTP configuration	3
8 Legal information	9

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

© NXP B.V. 2021 .

All rights reserved.

For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: Sept 8 2021 Document identifier: R_MVR5510AVMA6EP

Revision History

Date	OTP Rev / PDF Rev	OTP Changes from the first revision
Dec 28 2020	Rev A / Rev 1.0	Initial prototype release of the OTP settings
Mar 3 2021	Rev B / Rev 1.0	Production release of the OTP 1. ABIST1 to RSTB Delay: Changed to 5ms Delay from No Delay (default) 2. BUCK3 Non DVS Ramp: Changed to 3.47mV/us (power up/down) from 10.42mV/us (power up/down) 3. Standby PGOOD Release Delay: Changed to 400us from 300us 4. LDO1 Sequence: Changed to Slot 1 from Slot 0
Sept 8 2021	Rev B / Rev 1.1	Fixed typographical errors in the previously released rev B production OTP